
Ph.D. THESIS MATHEMATICS

ON NON-COMMUTATIVE CONVEXITY IN HILBERT

C∗-BIMODULES

Thesis submitted to the

University of Calicut

for the award of the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

under the Faculty of Science

by

SYAMKRISHNAN MS

under the guidance of

Dr. A. K. Vijayarajan

KERALA SCHOOL OF MATHEMATICS

Kerala, India 673 635.

May 2023





KERALA SCHOOL OF MATHEMATICS

A. K. Vijayarajan Kerala School of Mathematics

Professor 10 May 2023

CERTIFICATE

I hereby certify that the thesis entitled “ON NON-COMMUTATIVE CONVEX-

ITY IN HILBERT C∗-BIMODULES" is a bona fide work carried out by Syamkr-

ishnan M S., under my guidance for the award of Degree of Ph.D., in Mathematics of

the University of Calicut and that this work has not been included in any other thesis

submitted previously for the award of any degree either to this University or to any

other University or Institution.

Dr. A. K. Vijayarajan

. Research Supervisor





DECLARATION

I hereby declare that the thesis, entitled “ON NON-COMMUTATIVE CONVEX-

ITY IN HILBERT C∗-BIMODULES" is based on the original work done by me un-

der the supervision of Dr. A. K. Vijayarajan, Professor, Kerala School of Mathematics

and it has not been included in any other thesis submitted previously for the award of

any degree either to this University or to any other University or Institution.

Kerala School of Mathematics,

10 May 2023 Syamkrishnan MS.





ACKNOWLEDGEMENT

It is a great pleasure to thank those people who made this thesis possible.

First and foremost I am extremely grateful to my supervisor Prof. A. K. Vijayara-

jan, for his invaluable advice, continuous support, and patience during my PhD study.

His knowledge and plentiful experience have encouraged me immensely throughout

my academic research. His outlook on the world has influenced my thought process

tremendously and has helped me shape-up as a better person.

I would also like to thank my friends, Arunkumar C. S. and Shabna A. M. for their

encouragement and support, who have also been my long-time collaborators. I am

deeply indebted to Dr. Pranav Haridas who has always been motivating and friendly

to me throughout.

I would like to take this opportunity to thank Prof. M. Manickam, Prof. Kalyan

chakraborty, Prof. Vellat Krishnakumar, Prof. Jayanthan and Dr. Rajesh Kuriakose

for all the support that they have provided to me during my doctoral studies.

I would like to thank all the non-academic staffs of KSoM for the help extended to

me during my doctoral studies, especially to Mrs. Reenamol C, Mrs. Bidusha M, Mr.

Nidhin Babu M, and Mr. Sreejith Kurungott.

I would also like to thank Dr. Anilkumar V, Dr. Raji Pilakkat, Dr. Prasad T, (late)

Dr. P. T. Ramachandran for being very helpful at various occasions.



I would like to thank the Council of Science and Industrial Research (CSIR), Gov-

erment of India for the fellowship provided to me for carrying out my research.

I also thank KSoM for providing me with the infrastructure and facilities to pursue

my PhD.

I would like to thank my wife, Anu for her unending love and care, and for helping

me handle responsibilities, and for being understanding through my ups and downs.

Her presence gave me great peace and helped me complete my research beautifully.

And to my son, Ayan for opening up a new dimension in my life and whose smile

gives me everything needed to keep going forward, always.

I would like to thank my Parents M. V. Sivan, Sheela Sivan for their love, care

and continuous support. I am thankful to my brother Vishnu, my sister Jyothi for their

constant support. I am thankful to my in-laws, Mathew and Annakutty, who have been

nothing short of parents to me.

It is a tremendous pleasure to acknowledge my friends and family Sreejith, Sandeep,

Pramod, Aswathy, Vivek, Subin, Sony, Charles, Binu, Dani, Anoop, Joseph, Aravind,

Radhika, Plawan Das, and Subham Sarkar.

There are many others who have played a role in shaping my mathematical career

whose names I haven’t mentioned here. I would like to thank all those people from the

bottom of my heart.

Kerala School of Mathematics,

10 May 2023 Syamkrishnan MS.



Contents

1 Introduction 1

2 Preliminaries 7

2.1 C∗ − algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Operator systems and spaces . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Completely positive maps . . . . . . . . . . . . . . . . . . . 10

2.2.2 Paulsen system . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Boundary representation of C∗-algebras . . . . . . . . . . . . . . . . 12

2.4 Classical convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 C∗-convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 C∗-extreme points of C∗-convex sets . . . . . . . . . . . . . 16

2.6 Injective operator systems and spaces . . . . . . . . . . . . . . . . . 17

2.6.1 Injective envelope and C∗-envelope of operator systems . . . 18

2.7 Hilbert C∗-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Matrix convex sets 23

i



CONTENTS

3.1 Matrix extreme points . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Boundary points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Bi-convex sets and bi-extreme maps 33

4.1 Bi-convexity in Hilbert C∗-bimodules . . . . . . . . . . . . . . . . . 33

4.2 Bi-extreme points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Bi-extreme CC maps on operator spaces . . . . . . . . . . . . . . . . 41

4.4 Triple ideals and prime TROs . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusion 57

Publications 59

Index 62

List of Symbols 63

Bibliography 64

ii



Chapter 1
Introduction

Non-commutative convexity has been used in the literature to refer to any one of several

forms of convexity where convex combinations of operators are studied. C∗-convexity

and matrix convexity are two well studied forms of non-commutative convexity. Ma-

trix convexity can be viewed as a dimension free version of C∗-convexity. While C∗-

convexity is in the context of a C∗-algebras, matrix convexity is in the context of a

family of matrix C∗-algebras. The early investigators of these concepts, Arveson [1]

and Bunce and Salinas [7] were initially concerned about the connections of these con-

cepts with matricial ranges of operators, among other things.

The notion of C∗-convexity as we use here was introduced by Loebl and Paulsen

in [23] and studied further by several other authors, for example [12–14, 19, 25]. On

the other hand, the concept of matrix convex sets was proposed by Wittstock [30] and

carried forward by Webster and Winkler [29]. The germ of this concept arose from

the properties of matricial ranges of operators. Having an appropriate notion of non-
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CHAPTER 1. INTRODUCTION

commutative convexity leads naturally to questions related to notions of extreme points

and possible analogues of the classical Krein-Milman theorem. In the context of C∗-

convexity a suitable notion of extreme point called C∗-extreme point was put forward

by Hopenwasser, Moore and Paulsen [19]. Later, Webster and Winkler [29] defined a

notion of extreme points, termed as matrix extreme points, in the case of matrix convex

sets. Farenick and Morenz proved a Krien-Milman type theorem [14,27] forC∗-convex

sets for a particular case. A general Krein-Milman type theorem in the case of matrix

convex sets was proved by Webster and Winkler [29], which says that, a matrix convex

setK is the matrix convex hull of its matrix extreme points. That is, the matrix extreme

points of K span K as matrix convex combinations. Unfortunately, matrix extreme

points are not minimal in this sense. Thus, one of the central goals in the study of matrix

convexity is to identify minimal sets of matrix extreme points that span matrix convex

sets. In [21] Kleski identified a sub collection of matrix extreme points for a matrix

convex set, which he termed as boundary points (termed as absolute extreme points by

some other authors). Kleski proved that the set of boundary points of a matrix convex

setK is minimal provided it spansK. He also proved a connection between boundary

points of K and boundary representations of the associated operator system A(K)

in finite dimensional setting.We use this result to show that boundary representations

for an operator system of the generated C∗-algebra are exactly boundary points of a

naturally associated matrix convex set in the finite dimensional case. In a recent paper

Davidson and Kennedy [8] introduced a new and extensive theory of noncommutative

convexity where a Krein-Milman type theorem is proved in full generality and they

also established minimality of the set of extreme points concerned.
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Let CP (A,B(H)) denotes the space of all completely positive maps from a unital

C∗-algebra A to B(H), the space of all bounded linear operators on a Hilbert space

H . Exploration of extreme points in this set up led Arveson to the notion of purity

of elements and he established a criterion for purity in terms the irreducibility of the

Stinespring representation ofA onH . ReplacingA by an operator systemR andB(H)

by the finite dimensional case (Mn(C) for some positive integer n), in a finite dimen-

sional set up of an operator system and matrix algebras, Farenick proved [9] that pure

CP maps are precisely matrix extreme points of the associated non-commutative com-

pact convex set of all matrix valued UCP maps on the operator system. Arveson and

Farenick in a sense proved that CP (A,B(H)) and CP (R,Mn(C)) can be viewed as

operator (resp. matrix) convex combinations of pure CP maps. But even in the case of

operator systems in general, a characterisation of pure elements of CP (R1, R2) is still

not known where R1 and R2 are arbitrary operator systems.

Note that Arveson’s criterion of pure CP maps from a unital C∗-algebra to B(H)

implies that the identity map betweenB(H) is pure. A more general question would be

about the purity of embeddings (complete order isomorphisms) of operator systems.

The above question can in particular be asked about the embedding of an operator

system R in its C∗-envelope C∗
e (R). Arveson [1] showed that B(H) is an injective

operator system by showing that each CP map from R → B(H) has a completely

positive extension to B(H). In [17] Hamana studied inclusions of operator systems

into injective operator systems and showed that every operator systemR is a subsytem

of an injective operator system I(R)-the injective envelope of R. In the framework

R ⊆ C∗
e (R) ⊆ I(R), Farenick and Tessier [11, Theorem 3.2 ] addressed the purity

3



CHAPTER 1. INTRODUCTION

of the inclusion map Iie : R → I(R) and proved a characterisation of the purity of

the embedding in terms of the prime nature of the C∗-envelope of R. In [18], Hamana

established a parallel framework for operator spaces as well, namely X ⊆ T ⊆ I(X)

where X is an operator space, T is the triple envelope of X and I(X) is the injective

envelope of X . A natural question that arises in this scenario is whether there is a

characterisation similar to that of operator systems proved in [11] and we take up this

question in this thesis.

The natural counterparts of C*-envelopes and injective envelopes of operator sys-

tems for operator spaces are, triple envelopes and injective envelopes. While C*-

envelopes and injective envelopes of operator systems are C*-algebras themselves,

triple envelopes and injective envelopes of operator spaces display rich bimodule struc-

tures over C*-algebras occuring naturally in their construction. Extremity in the form

of purity for CP maps associated to operator systems does not have any natural ana-

logue for completely contractive(CC) maps associated to operator spaces. We show

that bi-extremity related to bi-convexity that we introduce for CC maps in the context

of Hilbert C∗-bimodules results in a partial parallel result for embeddings of operator

spaces into their injective envelopes involving the prime property that we introduce for

TROs generated by the operator spaces. In fact, we prove that for an operator space, the

canonical embedding of it into its injective envelope is bi-extreme if the triple envelope

generated by the operator space is prime.

As an extension of C∗-convexity in C∗-algebras, Magajna introduced [26] the no-

tion ofA-B absolute convexity in operator bimodulesB(H) over its unital subalgebras

and deduced analogues of classical separation theorems for convex subsets of Banach

4



spaces. For general Hilbert A-B-bimodules(A and B are unital C*-algebras), a notion

ofA-B convexity was introduced by Kian and Dehgani [20]. In this thesis we will refer

to A-B convexity as bi-convexity in general and introduce the notion of bi-extremity

associated with bi-convexity.

The thesis broadly divides into two sections distinct though related. The first sec-

tion deals with boundary representations of operator systems and boundary points of

associated matrix convex sets. Here we give a characterisation of boundary representa-

tions of an operator system in terms of boundary points of the associated matrix convex

set. The second section is on TROs and injective envelopes of operator spaces which

exhibit interesting natural Hilbert C∗-bimodule structures and this leads us to initiate

a study of non-commutative convexity in the setting of Hilbert C∗-modules( [22]). We

investigate the notion of bi-convex subsets of Hilbert C∗-bimodules and observe that

the notion is more general than C∗-convexity even in the case of trivial C∗-bimodules

where modules are C∗-algebras with self left and right actions. In this case we deduce

that unitaries are bi-extreme points in the unit ball of a trivial module, but conversely

bi-extreme points are either isometries or co-isometries. We also consider bi-convexity

of CC maps between operator spaces and show that (Proposition 4.3.1) the notion is

equivalent to the notion of purity and operator extremity of the corresponding Paulsen

maps in the special case of embedding of an operator system in its injective envelope.

We consider bi-convex combination of CC maps from operator spaces to Hilbert C∗-

bimodules and define bi-extreme CC maps. Prime TROs are defined in terms of triple

ideals and bi-extremity of CC maps on operator spaces is shown to be related to the

prime nature of the triple envelope of the operator space under consideration. We de-

5



CHAPTER 1. INTRODUCTION

duce that prime TROs occur along with prime C∗-algebras. These ideas lead to one of

our main results, namely, if the triple envelope of an operator space is a prime TRO,

then its embedding in its injective envelope is bi-extreme.

6



Chapter 2
Preliminaries

The main theme of this thesis being non-commutative convexity in C∗-algebras, in

this chapter we recall all the necessary related concepts that are required to set up the

context and to use in later parts of the thesis.

We start with the definition of a C∗-algebra. Linear spaces, Banach spaces and

Banach algebras we consider in this thesis are over the field of complex numbers C.

An algebra A is a linear space together with vector multiplication which satisfying

following conditions. For all a, b, c ∈ A and a scalar α,

1. a(bc) = (ab)c;

2. a(b+ c) = ab+ ac;

3. α(ab) = (αa)b = a(αb).

Let A be a Banach space over the complex numbers C. The Banach space A is called

7



CHAPTER 2. PRELIMINARIES

a Banach algebra if it is also an algebra with identity 1. That is, there exists a non

zero vector denoted by I ∈ A such that Ix = xI = x ∀x ∈ A, satisfying following

conditions. For all x, y ∈ A

1. ∥xy∥ ≤ ∥x∥∥y∥;

2. ∥I∥ = 1.

2.1 C∗ − algebras

A C∗-algebra A is a Banach algebra together with a map, x → x∗ called involution

with the following properties.

For all x, y ∈ A, λ ∈ C

1. x∗∗ = x;

2. (x+ y)∗ = x∗ + y∗;

3. (λx∗) = λx∗;

4. (xy)∗ = y∗x∗;

5. ∥x∗x∥ = ∥x∥2.

Now we will give some important examples.

8



2.1. C∗ − algebras

Example 2.1.1. 1. Set of all complex valued continuous functions defined on Com-

pact Hausdorff space X , denoted by C(X), where vector addition, vector mul-

tiplication ,involution and norm defined as follows. For all f, g ∈ C(X)

(a) (f + g)x = f(x) + g(x);

(b) (fg)x = f(x).g(x);

(c) f ∗(x) = f(x).

(d) for f ∈ C(X), the supremum norm of f on C(X) is defined as,

∥f∥∞ = Sup{|f(x)|, x ∈ X}.

2. The set of all bounded linear operatorsB(H) defined on Hilbert spaceH , where

multiplication defined as composition of operators and involution as adjoint and

norm is defined as operator norm,

that is, for T ∈ B(H), ∥T∥ = Sup{∥T (x)∥, x ∈ H with ∥x∥ ≤ 1}.

Every commutativeC∗-algebra with unity is isometrically isomorphic toC(X), for

some compact Hausdorff spaceX in complex plane. In general every C∗-algebras can

be identified isometrically isomorphic with a subalgebra of B(H), for some Hilbert

space H .

9
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2.2 Operator systems and spaces

Let A be a C∗-algebra and R ⊆ A, set R∗ = {a : a∗ ∈ R}. If R = R∗, then R

called self adjoint. A unital self adjoint subspace R of A is called operator system .

An element of a C∗-algebra is said to be positive if it is self adjoint and its spectrum

lies in the nonnegative reals.

An operator space X in a C∗-algebra is a linear subspace of the C∗-algebra. A

ternary ring of operators (TRO) T is a subspace of the C∗-algebraB(H) that is closed

under the triple product (x, y, z) → xy∗z for all x, y, z ∈ T . An important example of

a TRO is the space B(H,K), where H and K are Hilbert spaces.

2.2.1 Completely positive maps

Let R be an operator system of a C∗-algebra A and let B be another C∗-algebra. A

linear map ϕ : R → B is said to be positive if it maps positive elements into positive

elements and it is called completely positive (CP) if the linear map In ⊗ ϕ :Mn(C)⊗

R → Mn(C) ⊗ B is positive for all n ∈ N, where In is the n × n identity map on

Mn(C).

We look at some examples of CP maps. LetA, B be two C∗-algebras and π : A→

B be a ∗-homomorphism, then π is completely positive. An important example of a

CP map on a C∗-algebra A is given by conjugation with respect to an element, i.e., for

x ∈ A, ϕ : A→ A defined by ϕ(a) = x∗ax.

10



2.2. OPERATOR SYSTEMS AND SPACES

We use C∗(R) to denote the C∗-subalgebra of A generated by R. Let S be another

operator system and ϕ : R → S be a CP map. The map ϕ is called pure if ϕ′ : R → S

is any other CP map such that ϕ− ϕ′ is CP, then ϕ′ = tϕ, for some scalar t ∈ [0, 1]. A

CP map with CP inverse is called a complete order isomorphism between two operator

systems, which is the natural isomorphism of operator systems. Any abstract operator

system can be embedded into B(H), for some Hilbert space H as concrete operator

system [28, Theorem 13.1]. Similarly for operator spaces, any operator space can be

viewed as an operator space in B(H) for some Hilbert space H [28, Theorem 13.4].

2.2.2 Paulsen system

Let X and Y be operator spaces. A linear map ϕ : X → Y is called completely

contractive (CC) if the linear map In ⊗ ϕ :Mn(C)⊗X →Mn(C)⊗ Y is contractive

for all natural numbers n. To each operator space X ⊆ B(H,K) we can associate an

operator system S(X) in B(K ⊕H), called the Paulsen system of X which is defined

by

S(X) =


λIK x

y∗ µIH

 : x, y ∈ X,λ, µ ∈ C


where H and K are Hilbert spaces and IH , IK denote the identity operators on H , K

respectively. If X, Y ⊆ B(H,K) are operator spaces then a linear map ϕ : X → Y

induces a linear map S(ϕ) : S(X) → S(Y ) given by

S(ϕ)

(λIK x

y∗ µIH

) =

 λIK ϕ(x)

ϕ(y)∗ µIH

 .
11



CHAPTER 2. PRELIMINARIES

Further, if ϕ is CC, then S(ϕ) is CP [28].

Lemma 2.2.1. [28, Lemma 8.1] Let A,B be two unital C∗-algebras, let X be an

operator space in A, and let ϕ : X → B be a linear map. Define an operator system

S(X) =

{λI x

y∗ µI

λ, µ ∈ C, x, y ∈ X

}
and S(ϕ);S(X) →M2(B) via

S(ϕ)

(λI x

y∗ µI

) =

 λI ϕ(x)

ϕ(y)∗ µI

 .

If ϕ is completely contractive then S(ϕ) is completely positive.

A similar parallel association exists between TROs and C∗-algebras: For a TRO T

in B(H,K) we can associate a C∗-algebra

L(T ) =

TT ∗ + CIK T

T ∗ T ∗T + CIH


in B(K ⊕ H), known as the linking algebra of T [6]. Note that TT ∗ + CIK and

T ∗T + CIH are C∗-algebras in B(K) and B(H) respectively.

2.3 Boundary representation of C∗-algebras

A representation of a C∗-algebra A is a ∗-homomorphism π : A → B(H), where H

is a Hilbert space. Let π : A → B(H) be a representation if π is injective then π

12



2.4. CLASSICAL CONVEX SETS

is called faithful representation . If closed the linear span of π(A)H = {π(a)h, a ∈

A, h ∈ H} is H then, π is called non-degenerate representation . Let π : A → B(H)

be a representation. If there exists h ∈ H such that closed linear span of π(A)h =

{π(a)h, a ∈ A} is H , then π is called cyclic representation and h is said to be cyclic

vector. Let π : A → B(H) be a representation. Let K be a subspace of H such that

π(a)k ∈ K ∀a ∈ A, k ∈ K then K is called invariant subspace for π(A). If π(A) has

no nontrivial closed invariant subspace then π is called an irreducible representation.

Extensions of CP maps defined on operator systems to the C∗-algebra containing

it is of at most importance in the theory of operator systems. We recall below the

extension theorem due to Arverson on the and unique extension property (UEP).

Definition 2.3.1. A unital completely positive map ϕ : R → B(H) is said to have

unique extension property if ϕ has a unique completely positive extension ϕ̃ : C∗(R) →

B(H), and ϕ̃ is a representation of C∗(R) on H . An irreducible representation π :

C∗(R) → B(H) is said to be a boundary representation of C∗(R) for R if π|R has

unique extension property.

2.4 Classical convex sets

Classical convexity in the set up of linear spaces is a geometric concept. An algebraic

non commutative analogue this concept to the set up of C∗-algebras essentially was

initiated by Arveson who also contributed extensively to the associated non commu-

tative extremal theory. We will draw a lot from the work of Arveson and others in the

13
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later parts of the thesis.

Let V be a vector space over real or complex numbers and let K ⊂ V is said to be

convex if λa+ (1− λ)b ∈ K for all a, b ∈ K and λ ∈ [0, 1].

Let K ⊂ V be any convex set, a point x ∈ K is an extreme point of K if there

does not exists λ ∈ (0, 1) such that x = λa+ (1− λ)b where a, b ∈ K and a ̸= b.

For example, closed unit disc in complex plane is convex. Set of all points with

modulus one are its extreme points.

2.5 C∗-convexity

A non commutative analogue of the classical convexity was formally introduced by

Paulsen and Lobel [23] and is named as C∗-convexity. A subset K of a C∗-algebra A

is C∗-convex , if {x1, x2, · · · , xn} ⊂ K, and {a1, a2, · · · , an} ⊂ A with
n∑

i=1

a∗i ai = I ,

then
n∑

i=1

a∗ixiai ∈ K, where I is the identity of A.

Remark 2.5.1. It is clear from the definition that classical convexity is a particular in-

stance ofC∗-convexity where theC∗-algebra under consideration is the set of complex

numbers. C∗-convexity is essentially an ‘algebraic’ property in the context of algebras

as opposed to the ‘geometric’ property of classical convexity in linear spaces.

All singleton sets will form classical convex sets where as in a non commutativeC∗-

algebra any non scalar singleton not a C∗-convex set. for this, let x be non scalar ele-

14



2.5. C∗-CONVEXITY

ment in a non commutativeC∗-algebraA. For the unitaries,U inA supposeU∗xU = x

will imply that x is a scalar multiple of identity.

Example 2.5.1. • B = {T ∈ B(H) : ||T || ≤ 1}, unit ball in B(H).

• K = {T ∈ B(H) : 0 ≤ T ≤ 1}, then K is C∗-convex. To show this, let

Ti ∈ K, ai ∈ B(H), i = 1, 2, · · · , n with
n∑

i=1

a∗i ai = I . 0 ≤ Ti ≤ 1 =⇒ 0 ≤
n∑

i=1

a∗iTiai ≤
n∑

i=1

a∗i ai = I .

• Let T ∈ B(H), where H is a Hilbert space, and let C∗(T ) be the C∗-algebra

generated by T . The nth matrix range of T for any natural number n is defined as

Wn(T ) = {ϕ(T )|ϕ : C∗(T ) →Mn(C) is a unital completely positive map}. It

is the study of these sets called generalized numerical ranges of T which pre-

ceded the study of C∗-convex sets by Arveson. The set Wn(T ) is C∗-convex for

any T ∈ B(H). To see this let {x1, x2, · · · , xn} ⊂ Wn(T ), and {a1, a2, · · · , an} ⊂

Mn(C) with
n∑

i=1

a∗i ai = In. Then we can find ϕi : C∗(T ) → Mn(C) such

that ϕi(T ) = xi, i = 1, 2, · · · , n then define ψ(x) =
n∑

i=1

a∗iϕi(x)ai where

x ∈ C∗(T ), then ψ is a completely positive map from C∗(T ) to Mn(C) with

ψ(I) =
n∑

i=1

a∗i ai = In, and ψ(T ) =
n∑

i=1

a∗ixiai, then ψ(T ) ∈ Wn(T ) [2, p.301].

• Generalising the above idea for an operator system R, the set of all nth matrix

states of R, CSn(R) = {ϕ : R → Mn| ϕ is unital completely positive } can be

seen to be C∗-convex, arguing as above.

15
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2.5.1 C∗-extreme points of C∗-convex sets

As in classical theory, it is interesting to examine the analogous and appropriate no-

tion of extreme points and the resulting possible Krein-Milman type theorems in C∗-

convexity. The following definition captures the spirit of extremity in the new context

which we will see to be the appropriate one.

Definition 2.5.1. Let K be a C∗- convex set, x ∈ K is a proper C∗- convex combina-

tion of {x1, x2, · · · , xn} if x =
n∑

i=1

a∗ixiai where
n∑

i=1

a∗i ai = I and each ai is invertible.

A point x ∈ K is a C∗- extreme point of K if whenever x is a proper C∗- convex

combination of {x1, x2, · · · , xn}, then each xi is unitarily equivalent to x. i.e., there

exists unitaries ui ∈ A such that x = u∗ixiui.

Using a result by Loebl [24] that any matrix is linear extreme of its unitary orbit,

Paulsen and Loebl proved [23, Proposition 23 ] thatC∗-extreme points of ofC∗-convex

sets in Mn are actually linear extreme points.

Proposition 2.5.1. [23, Proposition23] If T is a C∗-extreme point of a C∗-convex set

K ⊂Mn, then T is a linear extreme point.

We give some examples of C∗-extreme point of some C∗-convex sets. Consider

B(H), the C∗-extreme points of closed unit ball are precisely the isometries and co-

isometries.

Let U ∈ B(H) be either an isometry or a co-isometry. Then U is a C∗-extreme

point of the unit ball inB(H) [19, Theorem 1.1]. TheC∗-extreme points of the unit ball

16
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are precisely the isometries and co-isometries [19, Corollary 1.2]. If I = {T ∈ B(H) :

0 ≤ T ≤ 1} ⊆ B(H), where H is separable; then the projections are C∗-extreme in

I [23, Proposition 26]. If Q is a C∗-extreme point of I , then Q is a projection [23,

Proposition 28].

2.6 Injective operator systems and spaces

Injectivity is a categorical concept and here we will use the injectivity of operator

systems (spaces) in the category of operator systems (spaces) and completely positive

maps ( completely contractive maps) to study bi-extremity of embedding maps.

Definition 2.6.1. An operator system J is injective if for every operator system R and

every operator system S containing R as an operator subsystem, each completely pos-

itive linear map ϕ : R → J has an extension to a completely positive linear map

Φ : S → J .

Similarly, an operator space J is injective if, for every operator space R and every

operator space S containing R as an operator subspace, each completely contrac-

tive linear map ψ : R → J has an extension to a completely contractive linear map

Ψ : S → J .

Let S ⊂ J ⊂ B(H) be any operator systems where J is injective. A linear map ϕ :

J → J is a S-projection on J if and only if it is unital completely positive, idempotent

and ϕ|S = IS - the identity map on S. Let Φ,Ψ be two S-projections on J . Define a
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partial ordering ≤ by Φ ≤ Ψ if and only if Φ◦Ψ = Ψ◦Φ = Φ. An S-projection which is

minimal with respect to this partial ordering ≤ will be called a minimal S-projection.

Similarly we can define minimal X-projection in the context of an operator space X

and CC maps. For operator systems R and S, a one-to-one completely positive linear

map ϕ : R → S such that ϕ(R) is an operator subsystem of S is called a complete order

embedding ofR into S if ϕ is a complete order isomorphism when considered as a map

from the operator system R onto the operator system ϕ(R). It is known that injective

operator systems (spaces) in B(H) corresponds to CP (CC) projections [28, Theorem

15.1].

2.6.1 Injective envelope and C∗-envelope of operator systems

We recall the notions of injective envelope and C∗-envelope of an operator system

[11,17].

Definition 2.6.2. An injective envelope of an operator system R is a pair (J, τ) con-

sisting of

1. an injective operator system J , and

2. a unital complete order embedding τ : R → J such that, for every inclusion

τ(R) ⊆ Q ⊆ J as operator subsystems in which Q is injective, necessarily

Q = J .

Let S ⊂ B(H) and ϕ : B(H) → B(H), be a minimal S-projection, then Im(ϕ) is

18
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the injective envelope of S [17, Theorem 4.1].

Definition 2.6.3. A C∗-envelope of an operator systemR is a pair (A, τ) consisting of

1. a unital C∗ algebra A, and

2. a unital complete order embedding τ : R → A such that τ(R) generates the

C∗-algebra A

such that, for every unital complete order embedding k : R → B of R into a unital

C∗-algebra B for which k(R) generates B, there exists a unital ∗-homomorphism π :

B → A with π ◦ k = τ .

R
τ

A

κ

B

π

The C∗-envelope of an operator system R is the smallest C∗-algebra that contains R

as a sub operator system up to completely isometric isomorphism.

2.7 Hilbert C∗-modules

A Hilbert C∗-module is a generalisation of a Hilbert space with scalar valued inner

product replaced by C∗-algebra valued inner product.
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Definition 2.7.1. Let B be a C∗-algebra and E a complex vector space and a right

B-module with a sesquilinear map ⟨., .⟩B : E × E → B which is conjugate linear in

the first variable and linear in the second variable such that x, y ∈ E , a ∈ B

1. ⟨x, x⟩B ≥ 0

2. ⟨x, x⟩B = 0 =⇒ x = 0

3. ⟨x, y⟩∗B = ⟨y, x⟩B

4. ⟨x, ya⟩B = ⟨x, y⟩Ba

5. if E is complete with respect to the norm ∥x∥ = ∥⟨x, x⟩B∥
1
2 , then E is called a

right Hilbert B-module.

Similarly we can define a left module.

We can consider Hilbert C∗-modules over possibly different C∗-algebras where

along with the above axioms, a compatibility condition between the actions of the al-

gebras is necessary.

Definition 2.7.2. Let A and B be C∗- algebras and E a complex vector space and an

A-B-bimodule. Suppose that we have sesquilinear forms A⟨., .⟩ and ⟨., .⟩B so that E

is both a left Hilbert A-module and a right Hilbert B-module such that the forms are

related by the equation A⟨x, y⟩z = x⟨y, z⟩B for all x, y, z ∈ E . Then E is called a

Hilbert C∗ A-B-bimodule.
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Remark 2.7.1. The compatibility condition mentioned above ensures that if E is a

Hilbert C∗ A-B-bimodule, then ∥A⟨x, x⟩∥ = ∥⟨x, x⟩B∥ for all x ∈ E [5, Corollary

1.11].

Example 2.7.1. 1. Let A be a C∗-algebra, then A is a Hilbert C∗ A-A-bimodule

where bimodule multiplication is defined by multiplication in A and A⟨x, y⟩ =

xy∗ and ⟨x, y⟩A = x∗y are the inner products.

2. Consider B(K,H),where H and K are Hilbert spaces. Then B(K,H) is a

HilbertC∗B(H)-B(K)-bimodule, where inner products are defined by B(H)⟨T, S⟩ =

TS∗, ⟨T, S⟩B(K) = T ∗S for all T, S ∈ B(K,H).
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Chapter 3
Matrix convex sets

LetMm×n(V ) denotes the vector space ofm×nmatrices over a complex vector space

V , and set Mn(V ) = Mn×n(V ). We write Mm×n = Mm×n(C) and Mn = Mn×n(C).

The following definition of a matrix convex set as a non-commutative analogue of the

classical convex set was introduced by Wittstock [30].

Definition 3.0.1. A matrix convex set in a vector space V is a collection K = (Kn) of

subsets Kn ⊂Mn(V ) such that

k∑
i=1

γ∗i viγi ∈ Kn

∀ vi ∈ Kni
, γi ∈Mni,n for i = 1, 2, · · · , k satisfying

k∑
i=1

γ∗i γi = In.

From the definition of matrix convex sets, it is clear that if K = (Kn) is ma-

trix convex, then each set Kn is a C∗-convex set in Mn(V ), To see this, consider
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γi ∈ Mn, vi ∈ Kn such that
k∑

i=1

γ∗i γi = In, then by definition of matrix convex set
k∑

i=1

γ∗i viγi ∈ Kn. A compact matrix convex set is a matrix convex set K = (Kn) in a

locally convex topological vector space V such that eachKn is compact in the product

topology in Mn(V ).

We will now discuss a few examples of compact matrix convex sets from [29].

Example 3.0.1. Let a, b ∈ R∪{±∞}, define [aI,bI] = ([aIn, bIn])where [aIn, bIn] =

{α ∈Mn|aIn ≤ α ≤ bIn}.

To see this, let γi ∈Mni,n, αi ∈ [aIni
, bIni

] such that
k∑

i=1

γ∗i γi = In, then γ∗i aIiγi ≤

γ∗i αiγi ≤ γ∗i bInγi so that γ∗i γiaIn ≤ γ∗i αiγi ≤ γ∗i γibIn, ∀i = 1, · · · , k which gives
k∑

i=1

γ∗i γiaIn ≤
k∑

i=1

γ∗i αiγi ≤
k∑

i=1

γ∗i γibIn. Hence
k∑

i=1

γ∗i αiγi ∈ [aIn, bIn].

Example 3.0.2. Let T be a bounded operator on a separable Hilbert space H . Then

W(T ) = (Wn(T )) is a matrix convex set in C, where Wn(T ) = {ϕ(T )| ϕ : B(H) →

Mn unital completely positive map} is the nth matricial range of T .

For this, let γi ∈Mni,n, ϕi(T ) ∈ Wni
(T ) such that

k∑
i=1

γ∗i γi = In. Since ϕi is unital

completely positive γ∗i ϕiγi is completely positive and
k∑

i=1

γ∗i ϕi(I)γi = In. Therefore
k∑

i=1

γ∗i ϕiγi is unital completely positive and
k∑

i=1

γ∗i ϕi(T )γi ∈ Wn(T ).

Example 3.0.3. Consider a concrete operator system R acting on a separable infinite

dimensional Hilbert space H . Let B = (Bn), where Bn = {x ∈ Mn(R) : ∥x∥ ≤ 1},

then B is a matrix convex set in R.
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This is a special case of the above example which can be seen as follows. Let S

be the unilateral right shift operator on an infinite dimensional separable Hilbert space

H . We claim that Bn = Wn(S) for all n. For this we use the proof techniques

of [10, Proposition 5.2]. First note that S∗S ≤ 1 so that ∥ϕ(S)∥ ≤ 1 for all ϕ(S) ∈

Wn(S). Thus Wn(S) ⊆ Bn. Now since T ⊂ σ(S), we have σ(S) ∩ ∂W1(S) = T,

where ∂W1(S) is the topological boundary of W1(S). By [1, Theorem 3.1.2] for each

λ ∈ σ(S)∩∂W1(S) there exists a multiplicative state ϕ on C∗(S) such that λ = ϕ(S).

Thus T ⊆ W1(S). By passing to matrix convex combinations of the elements of T,

every unitary u ∈ Mn is an element of Wn(S). Since the convex hull of the unitary

group in Mn is Bn, we have, Bn ⊆ Wn(S). Hence the claim.

The following example is a well known example of a compact matrix convex set.

Example 3.0.4. For an operator system R, denote the set of all nth matrix states of R

by CSn(R) = {ϕ : R → Mn| ϕ is UCP}.

Then CS(R) = (CSn(R)) is a compact matrix convex set in R∗-the dual space of

R, equipped with the weak∗-topology [29, Proposition 3.5].

3.1 Matrix extreme points

In the section we look at the natural notion of extreme points associated with matrix

convex sets.

Definition 3.1.1. Suppose that K = (Kn) is a matrix convex set in V . We say that
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a matrix convex combination v =
k∑

i=1

γ∗i viγi ∈ Kn with vi ∈ Kni
, γi ∈ Mni,n for

i = 1, 2, · · · , k satisfying
k∑

i=1

γ∗i γi = In is proper if each γi has a right inverse in

Mn,ni
. Also we say v ∈ Kn is a matrix extreme point if whenever v is a proper matrix

convex combination of vi ∈ Kni
for i = 1, 2, · · · , k, then each ni = n and v = u∗i viui

for some unitary ui ∈ Mn.

Now we give examples of matrix extreme points of certain matrix convex sets.

Example 3.1.1. [29, Example 2.2] Let a, b ∈ R then the matrix extreme points of

matrix convex set Kn = [aIn,bIn] are a, b.

The matrix extreme points of K1 = [a, b] are classical extreme points hence are a

and b. Let T ∈ [aIn, bIn], n ≥ 2, since T is a diagonalizable matrix and spectrum of

T ∈ [a, b] there exists U ∈ Mn such that T = U∗


x1

. . .

xn

U , where xi ∈ [a, b].

Let U =


a1
...

an

 , where ai is the ith row matrix of U . Since U is unitary, ai s are

right invertible, therefore T =
n∑

i=1

a∗ixiai is a proper matrix convex combination. But

T cannot be unitaraly equivalent to xi, for all i = 1, · · · , n. Hence there is no element

in [aIn, bIn], n ≥ 2 which is matrix extreme. Therefore matrix extreme points of K

are precisely a, b.

Example 3.1.2. [29, Example 2.3] If A be a C∗-algebra, then matrix extreme points
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of the matrix convex set CS(A) are exactly the pure matrix states.

On a matrix convex set K, we can define maps called matrix affine maps. With

these maps we get operator systems associated with each compact matrix convex set.

Definition 3.1.2. A matrix affine mapping on a matrix convex setK = (Kn) in a vector

space V is a sequence θ = (θn) of mappings θn : Kn →Mn(W ) for some vector space

W such that

θn(
k∑

i=1

γ∗i viγi) =
k∑

i=1

γ∗i θni
(vi)γi

for all vi ∈ Kni
, γi ∈ Mni,n for i = 1, 2, · · · , k satisfying

k∑
i=1

γ∗i γi = In.

Let K = (Kn) and K′ = (K ′
n) be matrix convex sets in locally convex topolog-

ical vector spaces V and W respectively. A matrix affine homeomorphism θ = (θn)

between K and K′ is a matrix affine mapping such that each θn is a homeomorphism

of the product topologies on either sides. It is easy to see that matrix extreme points

and linear extreme points are preserved under matrix affine homeomorphisms.

Given a compact matrix convex set, one can associate an operator system with it

in the following way: if K is a compact matrix convex set in a locally convex space V ,

then A(K) = {f = (fn) : K → C|f matricially affine and f1 continuous} is an op-

erator system in the sense of Choi-Effros. Following proposition gives the connection

between a compact matrix convex set and its associated operator system.

Proposition 3.1.1. [29, Proposition 3.5]

1. If R is an operator system, then CS(R) is a self-adjoint compact convex set in
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R∗, equipped with the weak∗ topology, and A(CS(R)) and R are isomorphic as

operator systems.

2. If K is a compact matrix convex set in a locally convex space V , then A(K) is

an operator system, and K and CS(A(K)) are matrix affinely homeomorohic.

3.2 Boundary points

Characterisation of boundary representations for operator systems has been done by

several authors. Arveson [3] characterised boundary representations in terms of max-

imality of UCP maps. Kleski in [21] presents another characterisation that exploits

a connection between boundary representations of the operator system A(K) and a

certain type of extreme points of the compact convex set K, namely boundary points

defined below.

Definition 3.2.1. [21] A boundary point of a matrix convex set K = (Kn) is an

element b ∈ Kn such that whenever b is a matrix convex combination b =
m∑
i=1

γ∗i aiγi,

not necessarily proper, of elements ai ∈ Kni
, then ai ∼u b if ni ≤ n; otherwise,

ai ∼u b⊕ ci for some ci ∈ K.

In the following theorem Kleski [21] established the connection between boundary

points of compact matrix convex set K and boundary representations for A(K).

Theorem 3.2.1. [21, Theorem 4.2] Let K be a compact matrix convex set in a lo-

cally convex space V . Suppose A(K) acts on a finite dimensional Hilbert space. The
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boundary points of K correspond exactly to the boundary representations for A(K).

From the definition of a boundary point it is clear that all boundary points are matrix

extreme points. But, Kleski [21] gives an example to show that all matrix extreme

points need not be boundary points.

Example 3.2.1. [21] Let T = T1 ⊕ T2, where T1 = 1, T2 =

0 2

0 0

. Let K =

(Wn(T )). We can see that T1 ∈ (W1(T )), T2 ∈ (W2(T )) are matrix extreme points of

K. SinceT1 can be written as proper compression ofT2, that isT1 =
[

1√
2

1√
2

]
T2

 1√
2

1√
2

.

Therefore T1 cannot be a boundary point of K.

Here we give an example to show that there are matrix convex sets for which all

matrix extreme points are boundary points.

Example 3.2.2. Consider the matrix convex set K = ([aIn, bIn]) . Webster and Winkler

[29] proved that the set of all matrix extreme points of K, ∂K is {a, b}. Here we show

that a and b are also the boundary points of K. Without loss of generality assume that

a = γ∗i viγi, where γi ∈ Mni,1 and vi ∈ Kni
, γ∗i γi = 1. If ni = 1, then there

is nothing to prove. If ni = 2, then one can reduce the expression γ∗i viγi into an

expression in the first level in the following way.

Since vi ∈ [aI2, bI2], we have

vi = U∗

a′ 0

0 b′

U,
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where U is a unitary in M2 and a′, b′ ∈ [a, b].

Now consider

a =γ∗i viγi = γ∗i

x1 x2

y1 y2

 γi = γ∗i U
∗

a′ 0

0 b′

Uγi
=c∗1a

′c1 + c∗2b
′c2,

where [c1, c2] = γ∗i U
∗. This gives us a = a′ and a = b′. Similarly one can extend

the argument to the case ni ≥ 2 and to any matrix convex combination. Thus a is a

boundary point of K. Similarly b is also a boundary point of K.

This result is similar in nature to Theorem 3.2.1, but instead of a compact con-

vex set, it concerns an operator system. The proof utilizes a result by Farenick that

establishes a connection between matrix extreme points of K and pure matrix states.

Additionally, we employ an extension result on pure matrix states ofA(K) and bound-

ary representations established by Kleski.

Theorem 3.2.2. Let R be an operator system acting on a finite dimensional Hilbert

space. Then boundary representations forR correspond exactly to boundary points of

CS(R).

Proof. By Theorem 3.2.1, there is a one to one correspondence between boundary

points of CS(R) and the boundary representations for A(CS(R)). By [29, Proposition
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3.5] R and A(CS(R)) are isomorphic as operator systems. That is, there is UCP-map

ϕ between R and A(CS(R)) such that ϕ is bijective and ϕ−1 is CP. Since ϕ and ϕ−1

are UCP-maps, ϕ is a complete isometry. But by [1, Theorem 2.1.2] there is a one to

one correspondence between boundary representations for R and boundary represen-

tations for A(CS(R)). Thus there is a one to one correspondence between boundary

representations for R and the boundary points of CS(R).

Corollary 3.2.1. Let R be an operator system acting on a finite dimensional Hilbert

space. Then a representation π : C∗(R) → Mn(C) is a boundary representation for

R if and only if π|R is a boundary point of CS(R).

For a matrix convex set K for which matrix extreme points and boundary points

coincide, the following theorem gives a sufficient condition for a finite dimensional

representation to be a boundary representation for A(K).

Theorem 3.2.3. Let K be a compact matrix convex set and A(K) be the associated

operator system which acts on a finite dimensional Hilbert space H . Assume that

every matrix extreme point in K is a boundary points of K. If π is a representation of

C∗(A(K)) on a finite dimensional Hilbert space such that π|A(K)
is pure, then π is a

boundary representation.

Proof. We have π|A(K)
∈ UCP (A(K),Ml) is pure. By [9] pure CP maps are matrix

extreme points. Then by our assumption π|A(K)
is a boundary point. By Theorem 3.2.1

there is a boundary representation ρ ofC∗(A(K)) forA(K) such that π|A(K)
= U∗ρ(.)U
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where U is a unitary. Hence π is a completely positive extension of U∗ρ(.)U . Since ρ

is a boundary representation, U∗ρ(.)U is also a boundary representation which gives

π = U∗ρ(.)U . Thus π is a boundary representation.

32



Chapter 4
Bi-convex sets and bi-extreme maps

4.1 Bi-convexity in Hilbert C∗-bimodules

We consider bi-convex sets in Hilbert C∗-bimodules and study their bi-extreme points.

We deduce that for a trivial module, unitaries are bi-extreme points of the closed unit

ball whereas conversely, bi-extreme points of the closed unit ball of the trivial module

B(H), where H is a Hilbert space are shown to be either isometries or co-isometries.

The natural notion of non-commutative convexity in bimodules is bi-convexity and

is defined below along the lines of [20].

Definition 4.1.1. Let E be a Hilbert C∗ A-B-bimodule and {x1, x2, · · · , xn} ⊂ E . A

bi-convex combination of {x1, x2, · · · , xn} is
n∑

i=1

a∗ixibi where ai ∈ A, bi ∈ B such

that
n∑

i=1

a∗i ai = IA,
n∑

i=1

b∗i bi = IB.

A subsetK of E is calledA-B-convex if it is closed under all bi-convex combinations.
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If the algebras under discussion are clear, we will refer to A-B-convex as bi-convex.

Remark 4.1.1. (i) Case when E=A=B=A-a C∗-algebra, the A-B-bimodule A is

called a trivial Hilbert C∗-bimodule.

(ii) It is to be noted that even in the case of a trivialC∗-bimodule, bi-convexity in the

C∗-bimodule A is different from the C∗- convexity [19,23] in the C∗- algebra A

because of the larger set of coefficients available in bi-convexity. It is easy to see

that even in the trivial case, bi-convex sets and C∗-convex sets do not coincide

though in this case bi-convex sets are C∗- convex sets and not conversely.

Example 4.1.1. Consider M2(C) as Hilbert M2(C) −M2(C)-bimodule. Let α be a

scalar, K = {αI} then it is easy to see that K is a C∗- convex set.

Let a =

 1√
2

1√
2

− 1√
2

1√
2

, b =

1 0

0 1

. Then a∗a = I2, b
∗b = I2 but a∗(αI)b = αa∗ /∈ K,

hence K = {αI} is not M2(C)−M2(C)-convex set.

Remark 4.1.2. Let X be a Hilbert A-B-bimodule. If K ⊂ X is A-B-convex. If

λi ∈ [0, 1], i = 1, · · · , n, such that
n∑

i=1

λi = 1. Consider ai =
√
λiIA, bi =

√
λiIB. we

get
n∑

i=1

a∗i ai =
n∑

i=1

λiIA = IA,
n∑

i=1

b∗i bi =
n∑

i=1

λiIB = IB. Let xi ∈ K then
n∑

i=1

λixi =

n∑
i=1

a∗ixibi ∈ K, hence K is convex in the usual sense.

Now, we will give some examples of bi-convex sets.

Example 4.1.2. 1. LetA andB beC∗ algebras andX be a HilbertA-B-bimodule.

If M is a positive scalar, then S = {x ∈ X, ∥x∥ ≤ M} is A-B-convex. In
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particular, the closed unit ball of X is A-B-convex [20, Theorem 10].

2. Consider B(K,H) as Hilbert B(H)-B(K)-bimodule. Then for a fixed scalar

r > 0, the set S = {T ∈ B(K,H); 0 ≤ T ∗T ≤ rIK} is B(H)-B(K)-bi-

convex [20, Propositon 4].

3. Let X be a Hilbert A-B-bimodule. Then the subset S = {x ∈ X : ⟨x, x⟩ ≤

r2IA, for some positive real number r ̸= 1} ofX is A-B- bi-convex [20, Exam-

ple 8].

4. Let X be a Hilbert A-B- bimodule, x, y ∈ X . Define A-B-bi-convex segment

connecting x and y byCSA,B(x, y) = {
n∑

i=1

a∗ixbi+
m∑
i=1

c∗i ydi|
n∑

i=1

a∗i ai+
m∑
i=1

c∗i ci =

IA,
n∑

i=1

b∗i bi +
m∑
i=1

d∗i di = IB}. If x, y ∈ X , then CSA,B(x, y) is A-B-bi-convex

and contains x and y [20, Proposition 15 ].

As in the case of any other convexity, a computationally friendly convex combina-

tion requires only two elements for testing bi-convexity as proved in Proposition 16 [20]

which we quote below:

Proposition 4.1.1. Let S be an A-B-convex subset of the Hilbert A-B-bimodule E

and let {x1, x2, · · · , xn} ⊆ K. If z =
n∑

i=1

aixibi with ai ∈ A, bi ∈ B and
n∑

i=1

aia
∗
i =

IA and
n∑

i=1

b∗i bi = IB, then z = e1xf1 + e2yf2, for some x, y ∈ S, e1, e2 ∈ A and

f1, f2 ∈ B with e1e∗1 + e2e
∗
2 = IA and f ∗

1 f1 + f ∗
2 f2 = IB.
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4.2 Bi-extreme points

Now we define bi-extreme points of bi-convex subsets of Hilbert C∗-bimodules.

Definition 4.2.1. Let K be a bi-convex subset of a Hilbert C∗ A-B-bimodule E . A

bi-convex combination x =
n∑

i=1

a∗ixibi; ai ∈ A, bi ∈ B and xi ∈ K is said to be a

proper representation of x if ai and bi are invertible, for all i = 1, · · · , n. An element

x ∈ K is a bi-extreme point of K if for any proper representation
n∑

i=1

a∗ixibi of x there

exists unitaries ui ∈ A, vi ∈ B such that x = u∗ixivi for all i = 1, · · · , n.

Remark 4.2.1. Not that the bi-convex combination in the above definition can be re-

duced to a combination of two terms in view of 4.1.1. Further using polar decomposi-

tion it is enough to consider positive invertible coefficients in the bi-convex combina-

tion to check for bi-extreme points in bi-convex sets as explained below. Suppose X is

a Hilbert A-B-bimodule and K ⊆ X a bi-convex set. Consider z = a∗1x1b1 + a∗2x2b2,

where a1, a2 ∈ A, b1, b2 ∈ B and x1, x2 ∈ X with a1, a2 are invertible in A and b1, b2

are invertible in B such that
2∑

i=1

a∗i ai = IA,
2∑

i=1

b∗i bi = IB. Assume that ai = uipi

and bi = viqi be the polar decompositions, where pi, qi are positive invertible ele-

ments and ui, vi are unitaries of A,B respectively. Then z = a∗1x1b1 + a∗2x2b2 =

p1u
∗
1x1v1q1+p2u

∗
2x2v2q2 = p1y1q1+p2y2q2, where y1, y2 ∈ K. This means that z can

be represented as a combination with positive invertible coefficients.

The following theorem gives examples for bi-extreme points.
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Theorem 4.2.1. Unitaries are bi-extreme points of the bi-convex set of closed unit ball

of any trivial bimodule.

Proof. Let A be a trivial bimodule andK denotes the closed unit ball in A. Let u ∈ A

be any unitary. Let u = p1x1q1+p2x2q2, where xi ∈ K and pi, qi ∈ A; pi, qi > 0 such

that p21 + p22 = I and q21 + q22 = I . Note that v1 =

 p1 p2

−p2 p1

 and v2 =

q1 −q2

q2 q1


are unitaries in M2(A). For y =

x1 0

0 x2

 we have

v1yv2 =

 p1 p2

−p2 p1


x1 0

0 x2


q1 −q2

q2 q1



=

 p1x1q1 + p2x2q2 −p1x1q2 + p2x2q1

−p2x1q1 + p1x2q2 p2x1q2 + p1x2q1



=

 u −p1x1q2 + p2x2q1

−p2x1q1 + p1x2q2 p2x1q2 + p1x2q1

 .

As u is a unitary and ∥v1yv2∥ ≤ 1, it follows that −p1x1q2+p2x2q1 = 0 = −p2x1q1+

p1x2q2. Thus,

p1x1q2 = p2x2q1

x1 = p−1
1 p2x2q1q

−1
2 (4.1)
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p2x1q1 = p1x2q2

x1 = p−1
2 p1x2q2q

−1
1 (4.2)

p−1
1 p2x2q1q

−1
2 = p−1

2 p1x2q2q
−1
1 .

Since p21 + p22 = I and q21 + q22 = I , we have p1 commutes with p2 and q1 commutes

with q2. Then

x2q
2
1q

−2
2 = p21p

−2
2 x2. (4.3)

Now using p1x1q2 = p2x2q1,

x2 = p1p
−1
2 x1q2q

−1
1 (4.4)

p2x1q1 = p1x2q2

x2 = p−1
1 p2x1q1q

−1
2 . (4.5)

From (4.4) and (4.5)

p1p
−1
2 x1q2q

−1
1 = p−1

1 p2x1q1q
−1
2

x1q
2
2q

−2
1 = p−2

1 p22x1. (4.6)
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Now

u = p1x1q1 + p2x2q2

= p1p
−1
1 p2x2q1q

−1
2 q1 + p2x2q2

= p2x2q
2
1q

−1
2 + p2x2q2

= p2(x2q
2
1q

−2
2 + x2)q2. (4.7)

= p2(p
2
1p

−2
2 x2 + x2)q2

= p2((−I + p−2
2 )x2 + x2)q2

= p2p
−2
2 x2q2

= p−1
2 x2q2 (4.8)

where we used p21p−2
2 = p21(I − p21)

−1 = −I + (I − p21)
−1 = −I + p−2

2 .

Similarly, using q21q−2
2 = −I + q−2

2 in equation (4.7) we have

u = p2x2q
−1
2 . (4.9)

Substituting equation (4.4) in u = p1x1q1 + p2x2q2 will give

u = p1x1q1 + p2p1p
−1
2 x1q2q

−1
1 q2

= p1x1q1 + p1x1q
2
2q

−1
1

= p1(x1 + x1q
2
2q

−2
1 )q1 (4.10)
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= p1(x1 + x1(−I + q−2
1 ))q1

= p1x1q
−1
1 . (4.11)

Similarly, u = p−1
1 x1q1. Then by (4.11) we have u = p1x1q

−1
1 = p−1

1 x1q1. It follows

that p21x1 = x1q
2
1 . Applying functional calculus with the root function on σ(p21)∪σ(q21),

we have

p1x1 = x1q1 (4.12)

Similarly from equations (4.8) and (4.9) we will get

p2x2 = x2q2. (4.13)

Using equations (4.12) and (4.13), we can see that u = x1 and u = x2 as follows.

u = p1x1q1 + p2x2q2

= p1p1x1 + p2p
−1
1 p2x1q1q

−1
2 q2

= p21x1 + p22p
−1
1 p1x1

= p21x1 + p22x1

= (p21 + p22)x1

= x1
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and

u = p1p
−1
1 p2x2q1q

−1
2 q1 + x2q

2
2

= p2x2q
2
1q

−1
2 + x2q

2
2

= x2q2q
2
1q

−1
2 + x2q

2
2

= x2(q
2
1 + q22)

= x2.

Hence u is a bi-extreme point.

Remark 4.2.2. In the case of the trivial module B(H) where H is a Hilbert space,

it can be shown that bi-extreme points of the closed unit ball are either isometries or

co-isometries. Let T be a bi-extreme point of the closed unit ball ofB(H). Then T can

be written as T = 1
2
(T1 + T2), where T1, T2 are either isometry or co-isometry [16,

Problem 107] which is a proper bi-convex combination in the trivial module. Since T

is bi-extreme, there exists unitaries ui, vi such that T = u∗iTivi, i = 1, 2 which implies

that T is either an isometry or a co-isometry.

4.3 Bi-extreme CC maps on operator spaces

We describe bi-extremity of CC maps between operator spaces and prove that the no-

tion is equivalent to the notion of purity and operator extremity of the corresponding
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Paulsen map for the case of embedding of the Paulsen system in its injective envelope.

In this section, we study extremity of the canonical embedding map from an opera-

tor spaceX into its injective envelope I(X). LetX ⊆ B(H) be an operator space and

S(X) be the Paulsen system associated with X . Let Φ : B(H ⊕H) → B(H ⊕H) be

the minimal S(X)-projection. Then image of Φ is the injective envelope of S(X)

and is denoted by I(S(X)) [17]. We can decompose Φ as Φ =

 σ π

π∗ θ

 where

σ, θ : B(H) → B(H) are CP maps and π : B(H) → B(H) is CC. Let us denote

the image of σ by I11(X) and image of θ by I22(X) respectively. As Φ is a completely

positive projection, the maps σ and θ are also completely positive projections onB(H).

Thus I11(X) and I22(X) are injective operator systems and hence they areC∗-algebras,

where the multiplication is defined as follows: for x, y ∈ I11(X), x ◦ y = σ(xy) and

similarly for I22(X). From the minimality of Φ, we can see that π is a minimal X-

projection and image of π is the injective envelope I(X) of the operator spaceX [18].

We note that I(X) is a Hilbert C∗ I11(X) - I22(X)-bimodule as explained below.

We have, I(S(X)) =

{ a x

y∗ b

 ; a ∈ I11(X), b ∈ I22(X), x, y ∈ I(X)

}
. Since

I(S(X)) is a C∗-algebra, for x, y ∈ I(X),

 0 x

y∗ 0


 0 x

y∗ 0

 =

x ◦ y∗ 0

0 y∗ ◦ x

.

Therefore the product x ◦ y∗ ∈ I11(X), y∗ ◦ x ∈ I22(X) gives an I11(X)-valued in-

nerproduct ⟨x, y⟩ = x ◦ y∗ which makes I(X) a Hilbert C∗- left module over I11(X).

Similarly we can define I22(X)-valued innerproduct ⟨x, y⟩ = x∗ ◦ y that makes I(X)

a Hilbert C∗- right module over I22(X). In fact, since there is the required compati-

bility condition between the above two inner products, I(X) is a Hilbert C∗- I11(X) -
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I22(X)-bimodule.

We require the following lemma for our future discussions. This is in fact a suitable

form for our purposes of a similar result in [15].

Let X be an operator space and ϕ : X → I(X) be a CC map. As S(I(X)) ⊆

I(S(X)), in the remaining chapters we will consider the corresponding Paulsen map

S(ϕ) : S(X) → S(I(X)) of ϕ as a map S(ϕ) : S(X) → I(S(X)).

Lemma 4.3.1. Suppose ϕ : X → I(X) is a completely contractive (CC) map such

that S(ϕ) : S(X) → I(S(X)) is the corresponding Paulsen map. Let Ψ : S(X) →

I(S(X)) be a CP map such that S(ϕ) − Ψ is a CP map. If Ψ(1) is an invertible

element in the C∗-algebra I(S(X)), then there exist invertible elements a ∈ I11(X)

and b ∈ I22(X), and a CC map ψ : X → I(X) such that

Ψ

(λIH x

y∗ µIH

) =

a 0

0 b

 ◦

 λIH ψ(x)

ψ(y)∗ µIH

 ◦

a 0

0 b

 .

Proof. Let T ⊆ B(H) be the TRO generated byX andA be the C∗-algebra generated

by S(X). Since I(S(X)) is injective, we can extend the CP maps S(ϕ) and Ψ to A in

such a way that S(ϕ)−Ψ is still completely positive. In the following we regard S(ϕ)

and Ψ as maps fromA to I(S(X)). Note thatA = {

x11 + λIH x12

x21 x22 + µIH

 : x11 ∈

TT ∗, x12 ∈ T, x21 ∈ T ∗, x22 ∈ T ∗T, λ, µ ∈ C}. Now, let p be a positive element in
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the C∗-algebra A1 = TT ∗ + CIH , such that p ≤ 1. As

0 0

0 0

 ≤

p 0

0 0

 ≤

1 0

0 0

 ,

we have

Ψ

(p 0

0 0

) = (S(ϕ)− (S(ϕ)−Ψ))

(p 0

0 0

)

≤ (S(ϕ)− (S(ϕ)−Ψ))

(1 0

0 0

)

=

1 0

0 0

− (S(ϕ)−Ψ)

(1 0

0 0

)

≤

1 0

0 0

 .

Thus

Ψ

(p 0

0 0

) =

∗ 0

0 0

 .
Since A1 is the span of its positive elements, there exists a CP map
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ϕ1 : A1 → B(H) such that

Ψ

(d1 0

0 0

) =

ϕ1(d1) 0

0 0

 .

By analogous arguments one obtains a CP map ϕ2 : A2 → B(H) such that

Ψ

(0 0

0 d2

) =

0 0

0 ϕ2(d2)

 ,

where A2 = T ∗T + CIH . Let a11 = ϕ1(1), b11 = ϕ2(1) and ω = Ψ(1). As

Ψ

(1 0

0 0

) ∈ I(S(X)), we have a11 ∈ I11(X) and b11 ∈ I22(X). Let a1/211 and b1/211

be the square roots of a11 and b11 in the C∗-algebras I11(X) and I22(X) respectively.

Define a map Ψ0 : S(X) → I(S(X)) by

Ψ0 =

a−1/2
11 0

0 b
−1/2
11

 ◦Ψ ◦

a−1/2
11 0

0 b
−1/2
11

 .

Recall that Φ is the minimal S(X)-projection. Then

Ψ0

(I 0

0 0

) =

a−1/2
11 0

0 b
−1/2
11

 ◦

a11 0

0 0

 ◦

a−1/2
11 0

0 b
−1/2
11
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= Φ

(a−1/2
11 a11 0

0 0

) ◦

a−1/2
11 0

0 b
−1/2
11



=

σ(a−1/2
11 a11) 0

0 0

 ◦

a−1/2
11 0

0 b
−1/2
11



=

a1/211 0

0 0

 ◦

a−1/2
11 0

0 b
−1/2
11



= Φ

(a1/211 a
−1/2
11 0

0 0

)

=

σ(a1/211 a
−1/2
11 ) 0

0 0



=

I 0

0 0

 .

Similarly, Ψ0

(0 0

0 I

) =

0 0

0 I

.

It follows that the two projections

IH 0

0 0

 and

0 0

0 IH

 belongs to the multi-

plicative domain of Ψ0 [4, Proposition 1.3.11]. There exists a completely contractive
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map ψ : X → I(X) such that

Ψ0

(λ x

y∗ µ

) =

 λI ψ(x)

ψ(y)∗ µI

 .

Then

Ψ

(λ x

y∗ µ

) =

a 0

0 b


 λI ψ(x)

ψ(y)∗ µI


a 0

0 b

 ,
where a = a

1/2
11 and b = b

1/2
11 .

Now we will study the extremal property of the canonical embedding τ : X →

I(X).

Definition 4.3.1. Let E be a Hilbert C∗-bimodule over C∗-algebras A and B with left

A action and right B action ( αxβ ∈ E ∀ α ∈ A, x ∈ E , β ∈ B). Suppose that X is

an operator space and ϕ : X → E is a CC map. A bi-convex combination of ϕ is an

expression ϕ(·) =
n∑

i=1

α∗
iϕi(·)βi, where ϕi : X → E are CC maps and αi ∈ A, βi ∈ B

such that
n∑

i=1

α∗
iαi = IA,

n∑
i=1

β∗
i βi = IB.

Such a bi-convex combination is called proper if αi, βi are right invertible and it

is called trivial if α∗
iαi = λiI, β

∗
i βi = λiI, α

∗
iϕiβi = λiϕ for some λi ∈ [0, 1].

A CC map ϕ : X → E is bi-extreme if any proper bi-convex combination ϕ =

n∑
i=1

α∗
iϕiβi is trivial.

Remark 4.3.1. An important example and a particular case of interest to us is the
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instance when E = I(X), A = I11(X) and B = I22(X).

Let R be an operator system and I(R) be the injective envelope of R. We recall

operator convexity for maps from R into I(R).

Definition 4.3.2. Let R be an operator system and ϕ : R → I(R) be a unital CP

map. An operator convex combination of ϕ is an expression ϕ =
n∑

i=1

α∗
iϕiαi, where

ϕi : R → I(R) are UCP maps and αi ∈ I(R) such that
n∑

i=1

α∗
iαi = I .

Such an operator convex combination is proper if αi are right invertible for i =

1, 2, · · · , n and trivial if α∗
iαi = λiI and α∗

iϕiαi = λiϕ for some λi ∈ [0, 1].

We say that ϕ is operator extreme if any proper convex combination is trivial.

Remark 4.3.2. The following result along the lines of [15, Proposition. 2.12]gives us

a characterization of bi-extremity of a CC map from an operator space into its injective

envelope in terms of purity of the corresponding Paulsen map.

Proposition 4.3.1. Suppose that ϕ : X → I(X) is a CC map and S(ϕ) : S(X) →

I(S(X)) is the associated CP map. Then the following are equivalent:

(1) S(ϕ) is a pure CP map.

(2) S(ϕ) is operator extreme.

(3) ϕ is bi-extreme.

Proof. (1) =⇒ (2): Let S(ϕ) =
n∑

i=1

α∗
iψiαi where ψi : S(X) → I(S(X)) are

UCP maps and αi ∈ I(S(X)); i = 1, 2, . . . , n. Then α∗
iψiαi ≤ S(ϕ), ∀i. By purity
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of S(ϕ), there exist ti ∈ [0, 1] such that α∗
iψiαi = tiS(ϕ) and hence α∗

iαi = tiI .

Therefore S(ϕ) is operator extreme.

(2) =⇒ (3): Let ϕ =
n∑

i=1

α∗
iψiβi be a proper bi-convex combination. Take γi =

αi ⊕ βi for i = 1, 2, . . . , n. Then γi ∈ I(S(X)) and γi is right invertible. Therefore

S(ϕ) =
n∑

i=1

γ∗i S(ψi)γi is a proper operator convex combination. By assumption (2),

there exist ti ∈ [0, 1] such that γ∗i S(ψi)γi = tiS(ϕ). It follows that α∗
iψiβi = tiϕ and

hence
n∑

i=1

α∗
iψiαi is trivial.

(3) =⇒ (1): Suppose that S(ϕ) = Ψ1 + Ψ2 for some CP maps Ψ1,Ψ2 : S(X) →

I(S(X)). Fix ϵ > 0 and define Ei = (1 − ϵ)Ψi +
ϵ
2
(S(ϕ)) for i = 1, 2. Then

E1, E2 : S(X) → I(S(X)) are CP maps such that E1 + E2 = S(ϕ). Note that

E1(1) = (1− ϵ)Ψ1(1) +
ϵ

2
I ≥ ϵ

2
I as (1− ϵ)Ψ1 ≥ 0.

Therefore E1(1) is invertible. Similarly E2(1) is also invertible. By the lemma 4.3.1

Ei

(λ x

y∗ µ

) =

ai 0

0 bi


 λIK ψi(x)

ψi(y)
∗ µIH


ai 0

0 bi



where a1, a2, b1, b2 are all invertible. SinceE1+E2 = S(ϕ), ϕ = a1ψ1b1+a2ψ2b2. By

assumption, the above bi-convex combination is trivial. That is, there exist ti ∈ [0, 1],

i = 1, 2 such that a2i = tiI, b
2
i = tiI and aiψibi = tiϕ. It follows that Ei = tiS(ϕ) for

i = 1, 2. Since this is true for every ϵ > 0, Ψi is also a scalar multiple of S(ϕ). Hence
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S(ϕ) is pure.

4.4 Triple ideals and prime TROs

Recall the definition of two sided triple ideal of a TRO. A two sided triple ideal of

a TRO T is a linear subspace I of T such that TT ∗I + IT ∗T ⊂ I . Now if X is an

operator space and A is the C∗-algebra generated by S(X) and J is a two sided ideal

of A, then J =

J11 J12

J21 J22

 . It is easy to observe that J11, J22 are two sided ideals of

the C∗-algebras TT ∗ +CI and T ∗T +CI respectively and J12, J21 are triple ideals of

the TROs T and T ∗ respectively.

In the case of embedding of an operator system in its injective envelope, Farenick

and Tessier [11] proved an equivalence between purity of the embedding map and

prime nature of the C∗-envelope of the operator system. In this section we inves-

tigate a similar situation for operator spaces where we associate bi-extremity of the

corresponding embedding map with an appropriate analogous property of the triple

envelope, in terms of triple ideals.

Considering the HilbertC∗-bimodule property of the injective envelope of an oper-

ator space, we introduce it’s commutant and explore how it is related to the bi-extremity

of the embedding of the operator space in its injective envelope. We prove that if the

embedding is bi-extreme, then the commutant is trivial.

Definition 4.4.1. LetX be an operator space, its injective envelope I(X) be the Hilbert
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C∗-bimodule over the C∗-algebras I11 and I22. The commutant of I(X) defined by

I(X)
′

= {A1 ⊕ A2 ∈ I(S(X)), A1 ∈ I11(X), A2 ∈ I22(X) :

A1x = xA2;A2x
∗ = x∗A1,∀x ∈ I(X)}.

The following observation is crucial in our further discussions.

Remark 4.4.1. Elements of S(I(X)) commute with the elements of I(X)
′ . For, ifλ x

y∗ µ

 ∈ S(I(X)) and A1 ⊕ A2 ∈ I(X)
′ , then

A1 0

0 A2


λ x

y∗ µ

 =

A1λ A1x

A2y
∗ A2µ



=

λA1 xA2

y∗A1 µA2



=

λ x

y∗ µ


A1 0

0 A2

 .

Proposition 4.4.1. If the complete order embedding τ : X → I(X) is bi-extreme,

then the commutant I(X)
′ is trivial.

Proof. LetA1⊕A2 be a non-trivial positive element in I(X)
′ such that norm ofA1⊕A2
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is one. Consider S(τ) : S(X) → I(S(X)), the associated CP map. Now,

S(τ)

λ x

y∗ µ

 =

 λ τ(x)

τ(y∗) µ



=

A1 0

0 A2


1/2  λ τ(x)

τ(y∗) µ


A1 0

0 A2


1/2

+

(
I −

A1 0

0 A2

)1/2

 λ τ(x)

τ(y∗) µ

(I −
A1 0

0 A2

)1/2

.

Therefore S(τ) is not pure and hence τ : X → I(X) cannot be bi-extreme by Propo-

sition 4.3.1.

The purity of embedding of an operator system is shown to be equivalent to a certain

nature of the generated C∗-algebra, namely the prime nature. Let us recall the notion

of a prime C∗-algebra.

Definition 4.4.2. A C∗-algebra A is called prime if for any two sided ideals J and J ′

such that JJ ′ = 0, then J = 0 or J ′ = 0.

Theorem 4.4.1. [11, Theorem 3.2]The following statement are equivalent for the

canonical unital complete order embedding τ : R → I(R);

(1) τ is pure in the cone CP (R, I(R));

(2) the C∗-algebra C∗
e (R) is prime.
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To understand a similar scenario in the setup of operator spaces and generated

TRO’s, we introduce the notion of prime TROs. We show that our notion captures the

related structure by showing that prime TROs in a way give rise to prime C∗-algebras,

which is made precise in a following Proposition.

Definition 4.4.3. A TRO T is called prime if the following conditions hold;

(1) If for any two sided ideal A of TT ∗ and any two sided triple ideal B of T such

that AB = 0, then A = 0 and B = 0.

(2) If for any two sided ideal D of T ∗T and any two sided triple ideal C of T such

that CD = 0, then C = 0 and D = 0.

Proposition 4.4.2. Let T be a TRO generated by an operator spaceX . If T is a prime

TRO, then A = C∗(S(X)) is a prime C∗-algebra.

Proof. Let

J =

J11 J12

J21 J22

 and J ′ =

J ′
11 J ′

12

J ′
21 J ′

22


are two sided ideals of A such that JJ ′ = 0. Then

J11 J12

J21 J22


J ′

11 J ′
12

J ′
21 J ′

22

 =

0 0

0 0



will give J11J ′
12 = 0, J12J

′
22 = 0 and J21J ′

11 = 0, J22J
′
21 = 0. Since T is a prime TRO,

it follows that J11 = 0, J12 = 0, J12 = 0, J22 = 0 or J ′
21 = 0, J ′

11 = 0, J ′
22 = 0, J ′

21 =
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0. Therefore J = 0 or J ′ = 0 and hence A is prime.

Remark 4.4.2. In a characterisation of pure embedding of an operator system in its

injective envelope Farenick and Tessier [11] proves that corresponding C∗-envelope

is prime. In this chapter we identify a class of TROs for which the embedding of the

generating operator space into its injective envelope is bi-extreme.

Let us briefly recall the construction of triple envelope of an operator space X

[17, Theorem 4.1]. Let Φ be the minimal S(X)-projection on B(H ⊕ H). Consider

IΦ = {x ∈ B(H ⊕ H); Φ(x∗x) = Φ(xx∗) = 0}, and B(H ⊕ H)Φ = Im Φ + IΦ,

where Im Φ denotes the image of Φ. Then B(H ⊕H)Φ is a unital C∗-subalgebra of

B(H ⊕ H) and IΦ is a closed two sided ideal of B(H ⊕ H)Φ. There is a canonical

map

k : S(X) → Im Φ → B(H ⊕H)Φ/IΦ = I(S(X)).

Then theC∗-subalgebra of I(S(X)) generated by k(S(X)) is the requiredC∗-envelope

C∗
e (S(X)) of S(X). Hence C∗

e (S(X)) is of the form

TT ∗ + CI T

T ∗ T ∗T + CI

 ,
where T is a triple subsystem of I(X) generated by X . Hence [18, Theorem 3.2(ii)]

implies that T is the triple envelope of X . Further, if X is an operator space and

τ : X → I(X) is the canonical embedding ofX into its injective envelope I(X), then

S(τ) : S(X) → I(S(X)) is the canonical embedding of the operator system S(X).
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Remark 4.4.3. In the following theorem we prove that if the TRO generated by an

operator space is prime, then the canonical embedding of the operator space into its

injective envelope is bi-extreme.

Theorem 4.4.2. LetX be an operator space, τ : X → I(X) be the canonical embed-

ding map and T be the triple envelope ofX . If T is a prime TRO, then τ is bi-extreme.

Proof. Since T is a prime TRO, by the above Proposition C∗
e (S(X)) is a prime C∗-

algebra and hence the Paulsen map S(τ) : S(X) → I(S(X)) is pure [11]. Then by

Proposition 4.3.1, the map τ is bi-extreme.

Remark 4.4.4. Given an operator space X and the canonical embedding map τ from

X to I(X), it is not clear whether the bi-extremity of τ will imply that the triple en-

velope of X is a prime TRO, unlike in the analogous case of operator systems and

C∗-envelopes.

The theorem 4.2.1 and the theorem 4.4.2 are part of the published work, Bi-extremity

of embeddings of operator spaces into their injective envelopes. Syamkrishnan. M.S.,

Vijayarajan, A.K., Adv. Oper. Theory 7, 52 (2022).
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Chapter 5
Conclusion

Boundary representations of an operator system in a C∗-algebra and boundary points

of the associated matrix convex set are studied and possible relations between the two

are investigated in this thesis.

Here we established a connection between boundary representations for a finite di-

mensional operator system and boundary points of the associated matrix convex set.

Using this result we characterized boundary representations of the C∗-algebra gener-

ated by a finite dimensional operator system in terms of boundary points of the asso-

ciated matrix convex set.

In the subsequent part of the thesis, we study bi-convex subsets of Hilbert C∗-

bimodules and explore their extremities. Here we introduced the notion of bi-extreme

points of bi-convex subsets of Hilbert C∗-bimodules and we have proved that unitaries

are bi-extreme points of the bi-convex set of closed unit ball of any trivial bimodule.

We defined bi-convex CC maps between operator spaces and Hilbert C∗- bimodules
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and defined bi-extreme CC maps. We further introduced the notion of operator convex

combination of the map between an operator system and its injective envelope. Here

we established equivalent conditions for a CC map to be bi-extreme in terms of purity

and operator extremity of the associated Paulsen map. For an operator space X , we

define commutant of its injective operator space I(X) and prove that if the complete

order embedding τ : X → I(X) is bi-extreme, then the commutant of I(X) is trivial.

We define prime TROs and proved that if the TRO generated by X is prime, then

the C∗-algebra generated by its Paulsen system, S(X) is a prime C∗-algebra.

Finaly using the above results, for an operator space X , we established a sufficient

condition for an embedding map τ : X → I(X) to be bi-extreme in terms of the prime

nature of the triple envelope T of X .

It is well known that every Hilbert C∗-module can be isometrically embedded into

B(H1, H2), where H1, H2 are Hilbert spaces. There are notions of nondegenerate, ir-

reducible and cyclic representations of Hilbert C∗-modules. Extending these concepts

into Hilbert C∗-bimodules will be interesting.

Matrix convexity in the context of Hilbert C∗-bimodules is worth exploring. We

defined bi-extreme points for bi-convex sets in HilbertC∗-modules. A study of possible

relations between C∗-extreme points and bi-extreme points in the context of trivial

Hilbert C∗-bimodule is interesting to study.
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