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Introduction

Recently, Graph Theory has been lauded as an area of research with many appli-

cations in our everyday lives. These days, there is an unprecedented increase in

research related to graph theory. Graph theory is generally applicable to various

branches of mathematics, such as Algebra, Algebraic topology, Number Theory,

Algebraic Geometry, Numerical Analysis, Matrix Theory, Operations Science,

etc., even though graph theory was originally known by recreational math issues.

It also nurtured the growth of other branches of sciences like Physical Sciences,

Chemical Sciences, Computer Science, Life Science, Sociology, Economics, Social

Sciences, Geography, Architecture, Electrical Engineering, Genetics and so on.

In graph theory, numerous research studies are ongoing, especially in the field

of graph labeling. The origin of most Graph labeling methods can be traced back

to the theory introduced by A. Rosa [3] in 1967 or given by R. L. Graham and N.

J. A. Sloane [15] in 1980. Various Graph Labeling problems are β− valuation (or

graceful labeling), γ− labeling, ρ− labeling, cordial labeling, total magic cordial

labeling, elegant labeling, mean labeling, magic labeling, anti magic labeling,

prime labeling and so on. Among these, Magic labeling of a graph is a well known

one. For any abelian group A with identity element 0, a graph G = (V (G), E(G))

is said to be A-magic [19] if there exists a labeling l : E(G)→ Ar {0} such that
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Introduction

the induced vertex set labeling l+ : V (G)→ A defined by

l+(v) =
∑
{l(uv) : uv ∈ E(G)}

is a constant map.

Among various mathematical models, labeled graphs with a wide range of

applications serve as a useful model. For example, research fields like conflict

resolution in social psychology, electrical circuit theory and energy crisis theory

and others are enriched by qualitative labelings of graph. In the same way, quan-

titative labelings of graphs are applied in coding theory problems, such as radar

location codes, missile guidance codes, synch-set codes and convolution codes.

There are other applications for labeled graphs as fixing complexities of X−ray

crystallographic analysis or design communication network addressing systems.

Labeled graphs are also used in optimal circuit layout and radio astronomy.

An Overview of the Thesis

In this thesis, we define some new types of labelings, namely induced A-magic la-

beling of graphs, induced V4-magic labeling of graphs and edge induced V4-magic

labeling of graphs. Through out this work, we consider graphs that are con-

nected, finite, simple and undirected. The Klein 4-group, denoted by (V4,+) =

({0, a, b, c},+) is an abelian group of order 4 with identity element 0, where the

operation + is defined as a+a = b+b = c+c = 0 and a+b = c, b+c = a, c+a = b.

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G)

and (A,+) be an abelian group. Suppose f : V (G)→ A be a vertex labeling and

f ∗ : E(G)→ A denote the induced edge labeling of f defined by f ∗(uv) = f(u)+

f(v) for all uv ∈ E(G). Then f ∗ again induces a vertex labeling f ∗∗ : V (G)→ A

2



Introduction

defined by f ∗∗(u) = Σf ∗(uv), where the summation is taken over all the vertices

v which are adjacent to u. Then a graph G is said to be an induced A-magic

graph and denoted by IMAG or simply IMG if there exists a non zero vertex

labeling function f : V (G)→ A such that f ≡ f ∗∗. The function f, so obtained

is called an induced A-magic labeling of G and denoted by IMAL or simply IML.

In a similar way, by taking the Klein 4-group V4 instead of an arbitrary

abelian group A in the above definition, we can define induced V4-magic graphs

(IMV4G) and induced V4-magic labeling of a graph (IMV4L).

Let f : E(G) → V4 r {0} be an edge labeling and f+ : (V (G) → V4 denote

the induced vertex labeling of f defined by f+(u) =
∑

uv∈E(G)

f(uv) for all u ∈

(V (G). Then f+ again induces an edge labeling f++ : E(G) → V4 defined by

f++(uv) = f+(u)+f+(v). Then a graph G = (V (G), E(G)) is said to be an edge

induced V4-Magic graph if f++(e) is a constant for all e ∈ E(G). If this constant

is x then x is said to be the induced edge sum of the graph G, or sometimes

induced edge sum of an edge uv. The function f, so obtained is called a edge

induced V4-Magic labeling of G or simply edge induced Magic labeling of G and

it is denoted by EIMV4L or simply EIML.

Through out this thesis we will use the following notations:

(i) Γ(A) := set of all induced A-magic graphs.

(ii) Γk(A) := set of all induced A-magic graphs with induced magic label f

satisfying f(V (G)) = {k}, for some k ∈ Ar {0}.

(iii) Γ(V4) := set of all induced V4-magic graphs.

(iv) Γk(V4) := set of all induced V4-magic graphs with induced magic label f

satisfying f(V (G)) = {k}, for some k ∈ V4 r {0}.

(v) Γk,0(V4) := set of all induced V4-magic graphs induced magic label f satis-

3
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fying f(V (G)) = {k, 0}, for some k ∈ V4 r {0}.

(vi) σa(V4) := Set of all edge induced V4-magic graphs with edge induced magic

labeling f satisfying f++(u) = a for all u ∈ V.

(vii) σ0(V4) := Set of all edge induced V4-magic graphs with edge induced magic

labeling f satisfying f++(u) = 0 for all u ∈ V.

(viii) σ(V4) := σa(V4)
⋂

σ0(V4).

The thesis contains an introductory chapter and eight other chapters as well.

In the introductory chapter, we discuss the motivation of the study of induced

A-magic labeling, induced V4-magic labeling and edge induced V4-magic labeling

of graphs and a literature survey on it.

In Chapter One, we list out preliminary definitions from the areas of graph

theory and group theory which will be useful for the upcoming chapters in the

thesis.

Chapter Two introduces the concept of induced A-magic graphs, where

A is an abelian group and the concept of induced V4-magic graphs. The first

section of the chapter gives the definition of induced A-magic labeling and some

definitions of cycle related graphs. In the second section, we prove the “Induced

degree sum theorem” which establishes the necessary and sufficient condition for

a vertex label function to be an induced A magic label for a graph. This theorem

states that: Let f be a vertex labeling of a graph G. Then f is an IAML of G, if

and only if [deg (u)− 1]f(u) +
∑
f(v) = 0, for any vertex u ∈ V (G), where the

summation is taken over all the vertices v which are adjacent to u. We then we

prove a necessary and sufficient conditions for the path Pn, cycle Cn, the complete

graph Kn and the complete bipartite graph Km,n belongs to the above said sets

(i) and (ii). In the third section we define induced V4-magic labeling of graphs

and prove a theorem analogues to “Induced degree sum theorem”. Furthermore,
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we prove that G /∈ Γk(V4) for any graph G. In the last section of this chapter

we discuss whether the graphs cycle Cn, wheel graph Wn, helm Hn, web graph

W (2, n), closed helm CHn, flower graph Fln, gear graph Gn, fan graph Fn, flag

graph Fln, sunflower graph SFn, jelly fish J(m,n), sun graph Sunn, consecutive

broken sun graph CBSunp,q, one point union of t cycles of length n denoted by

C
(t)
n , n- gon book B(n, k), bipyramid graph BP (n) are induced V4 magic or not.

Chapter Three deals with induced V4-magic labeling of path and star re-

lated graphs. In the first section, we include definitions of some path and star

related graphs. Second section discusses induced V4 magic labeling of path re-

lated graphs namely path Pn, comb graph CBn, triangular Snake graph TSn,

double triangular snake graph DTSn, open ladder O(Ln), the book graph Bn and

so on. The third section discusses star related graphs namely complete graph

Kn, complete bipartite graph Km,n, star graph K1,n, bistar Bm,n, < K1,n : m >,

(n, k)-banana tree Bt(n, k) and windmill graph K
(n)
m admit induced V4-magic

labeling or not.

The first section of Chapter Four, we include the definition of subdivision

graph and prove some theorems regarding induced V4 magic labeling of subdivi-

sion of graphs. Moreover, we check whether the subdivision graph of Cn, Pn, Kn,

Bm,n, Km,n, K1,n, Wn, Hn, CBn, J(m,n), SFn, Gn and Fln admits the induced

V4 magic labeling or not. In the second section of this chapter, we prove that

shadow graph of any graph is not an induced V4 magic graph.

In the first section of Chapter Five, we provide the definitions of Middle

graph of a graph and prove the theorem: “Let G be a graph with every vertex

is of odd degree, then M(G) ∈ Γ(V4).” In continuation of this section we dis-

cuss induced V4-magic labeling of middle graphs like M(Pn), M(K1,n), M(Bm,n),

M(Km,n), M(Kn), M(CBn), M(Cn), M(Wn), M(Hn), M(Fln) and M(Sunn).

In the second section, we define Line graph of a graph and discuss induced V4-

5
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magic labeling of line graphs L(Cn), L(Pn), L(K1,n), L(Bm,n), L(Sunn), L(CBn),

L(Wn), L(TSn), L(Gn) and L(Fln).

Chapter Six introduces the concept of edge induced V4-magic labeling of

graphs and we prove some theorems regarding the concept of edge sum equation

of an edge in a graph. The second section of this chapter gives some main results

regarding the edge induced V4-magic labeling of graphs. In the third section, we

discuss edge induced V4 magic labeling of some graphs like Pn, Cn, K1,n, Km,n,

Bm,n, and Kn and in the last section we discuss edge induced V4 magic labeling

of some special graphs like Sunn, CBn, Wn, J(m,n), TSn and O(Ln).

Chapter Seven contains two sections, in which we discuss, edge induced V4

magic labeling of subdivision graph, line graph of some general graphs and some

special graphs.

Chapter Eight briefly sums up the overall aspects of the work and the scope

for further research also.

6



Chapter 1
Preliminaries

In this chapter, we include a brief overview of the prelimi-

nary concepts in graph theory and group theory that we used

in the coming chapters. Readers can refer to [4] and [12]

for notations and terminologies not explicitly specified in this

thesis.

1.1 Basic Definitions from Graph Theory

Definition 1.1.1. [12] A graph is an ordered triple G = (V (G), E(G), I(G)),

where V (G) is a non empty set, E(G) is a set disjoint from V (G) and I(G) is

an “incidence” relation that associates with each element of E(G) an unordered

pair of elements (same or distinct) of V (G). Elements of V (G) are called the

vertices (or nodes or points) of G and elements of E(G) are called the edges (or

lines) of G. V (G) and E(G) are the vertex set and the edge set of G respectively.

If for the edge e of G, I(G)(e) = {u, v}, we write IG(e) = uv.

Definition 1.1.2. [12] If I(G)(e) = {u, v} then the vertices u and v are called

the end vertices or ends of the edge e. Each edge is said to join its ends; in this

case, we say that e is incident with each one of its ends. Also, the vertices u and

7



1.1. Basic Definitions from Graph Theory

v are then incident with e.

Definition 1.1.3. [12] A set of two or more edges of a graph G is called a set

of multiple or parallel edges if they have the same pair of distinct ends.

Definition 1.1.4. [12] An edge for which the two ends are the same is called a

loop at the common vertex.

Definition 1.1.5. [12] A vertex u is a neighbour of v in G; if uv is an edge of

G; and u 6= v. The set of all neighbours of v is the open neighbourhood of v or

the neighbour set of v; and is denoted by N(v). The set N [v] = N(v)∪{v} is the

closed neighbourhood of v in G.

Definition 1.1.6. [12] Vertices u and v are adjacent to each other in G if and

only if there is an edge of G with u and v as its ends. Two distinct edges e and

f are said to be adjacent if and only if they have a common end vertex.

Definition 1.1.7. [12] A graph is simple if it has no loops and no multiple edges.

Thus, for a simple graph G; the incidence function I(G) is one-to-one. Hence,

an edge of a simple graph is identified with the pair of its ends. A simple graph,

therefore, may be considered as an ordered pair (V (G), E(G)), where V (G) is a

non empty set and E(G) is a set of un ordered pairs of elements of V (G).

Definition 1.1.8. [12] A graph is called finite if both V (G) and E(G) are finite.

A graph that is not finite is called an infinite graph.

Definition 1.1.9. [12] A simple graph G is said to be complete if every pair of

distinct vertices of G are adjacent in G. A complete graph, which has n vertices

is denoted by Kn.

Definition 1.1.10. [12] A graph is bipartite if it’s vertex set can be partitioned

into two nonempty subsets X and Y such that each edge of G has one end in X

and the other in Y. The pair (X, Y ) is called a bipartition of the bipartite graph.

8



1.2. Paths and Connectedness

The bipartite graph G with bipartition (X, Y ) is denoted by G(X, Y ). A simple

bipartite graph G(X, Y ) is complete if each vertex of X is adjacent to all the

vertices of Y. If G(X, Y ) is complete with |X| = m and |Y | = n then G(X, Y ) is

denoted by Km,n. A complete bipartite graph of the form K1,n is called a star.

Definition 1.1.11. [12] Let G be a graph and v ∈ V. Then the number of edges

incident at v in G is called the degree (or valency) of the vertex v in G and is

denoted by dG(v) or deg(v) or d(v).

Definition 1.1.12. [12] A graph G is called k−regular if every vertex of G has

degree k. A graph is said to be regular if it is k−regular for some non negative

integer k.

Definition 1.1.13. [12] A vertex of degree 0 is an isolated vertex of G. A vertex

of degree 1 is called a pendant vertex of G; and the unique edge of G incident to

such a vertex of G is a pendant edge of G.

1.2 Paths and Connectedness

Definition 1.2.1. [12] A walk in a graph G is an alternating sequence W :

v0e1v1e2v2 . . . epvp of vertices and edges beginning and ending with vertices in

which vi−1 and vi are the ends of ei, v0 is the origin and vp is the terminus of W.

The walk W is said to join v0 and vp, it is also referred to as a v0 − vp walk. If

the graph is simple, a walk is determined by the sequence of its vertices. The walk

is closed if v0 = vp and is open otherwise. The length of a walk is the number of

edges in it.

Definition 1.2.2. [12] A walk is called a trail if all the edges appearing in the

walk are distinct.

Definition 1.2.3. [12] A walk is called a path if all the vertices are distinct.

9



1.3. Operations on Graphs

Thus, a path in G is automatically a trail in G: When writing a path, we usually

omit the edges. A path on n vertices is usually denoted by Pn.

Definition 1.2.4. [12] A cycle is a closed trail in which the vertices are all

distinct. A cycle of length n is usually denoted by Cn.

Definition 1.2.5. [12] Let G be a graph. Two vertices u and v of G are said

to be connected if there is a u − v path in G. A graph G is said to be connected

if every pair of vertices in G are connected.

1.3 Operations on Graphs

Definition 1.3.1. [4] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with

V1∩V2 = φ. Then their union G = G1∪G2 is a graph with vertex set V = V1∪V2
and edge set E = E1 ∪ E2.

Definition 1.3.2. [4] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with

V1 ∩ V2 = φ. Then their join is denoted by G1 +G2 and it is a graph consists of

G1 ∪G2 and all edges joining V1 with V2.

Definition 1.3.3. [4] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs

with V1 ∩ V2 = φ. Then the product of G1 and G2 is denoted by G1 × G2 or

G1�G2 and it has vertex set V = V1 × V2 and two distinct vertices (u1, u2) and

(v1, v2) of G1 × G2 are adjacent whenever [u1 = v1 and u2 adjacent to v2] or

[u2 = v2 and u1 adjacent to v1].

Definition 1.3.4. [4] The Corona G1 � G2 or G1 ◦ G2 of two graphs G1 and

G2 is the graph obtained by taking one copy of G1, (which has p1 vertices) and

p1 copies of G2 and then joining the ith vertex of G1 by an edge to every vertex

in the ith copy of G2.

10



1.4. Basic Definitions from Group Theory

1.4 Basic Definitions from Group Theory

Definition 1.4.1. [6] A binary operation on a set S is a function mapping from

S × S into S.

Definition 1.4.2. [6] A binary operation ∗ on a set S is associative if (a∗b)∗c =

a ∗ (b ∗ c) for all a, b, c ∈ S.

Definition 1.4.3. [6] A binary operation ∗ on a set S is commutative if a ∗ b =

b ∗ a for all a, b ∈ S.

Definition 1.4.4. [6] A set S together with a binary operation ∗ is called a

binary algebraic structure or simply binary structure, denoted by < S, ∗ > .

Definition 1.4.5. [6] A group < G, ∗ > is a set G, closed under a binary

operation ∗, such that the following axioms are satisfied:

(i) The operation ∗ is associative.

(ii) There exists an element e ∈ G such that e ∗ x = x = x ∗ e for all x ∈ G.

(The element e is called the identity element of the binary operation on ∗

G.)

(iii) For each a ∈ G, there is an element a−1 ∈ G such that a∗a−1 = e = a−1 ∗a

for all a ∈ G. (The element a−1 is called the inverse of the element a.)

Definition 1.4.6. [6] A group < G, ∗ > is said to be an an abelian group or

simply abelian or a commutative group if the binary operation ∗ is commutative.

Definition 1.4.7. Let V4 = {0, a, b, c}. Then V4 is an abelian group with identity

element 0, under the binary operation + defined by a+ a = b+ b = c+ c = 0 and

a+ b = c, b+ c = a, c+ a = b. This abelian group is called Klein-4-group or V

group.
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1.4. Basic Definitions from Group Theory

Definition 1.4.8. [6] Let G be a group with identity element e. Then the order

of an element a in G is the smallest positive integer m such that am = e and it

is denoted by O(a).

12



Chapter 2
Induced Magic Labeling of Graphs

The first section of this chapter introduces the concept of in-

duced A-magic graph, where A is an Abelian group. Some

well known cycle-related graphs are also included. The second

section of the chapter gives a necessary and sufficient condi-

tion for some general graphs, that admits induced A magic

labeling. The third section of the chapter introduces the con-

cept of induced V4-magic graphs and the last section deals with

induced V4 magic labeling of some cycle related graphs.

2.1 Introduction

Let G = (V (G), E(G)) be the graph with vertex set V (G) and edge set E(G)

and (A,+) be an abelian group with identity element 0. Suppose f : V (G)→ A

be a vertex labeling and f ∗ : E(G) → A denote the induced edge labeling of f

defined by f ∗(uv) = f(u)+f(v) for all uv ∈ E(G). Then f ∗ again induces a vertex

1The second section of this chapter has been published in Malaya Journal of Matematik,
Volume. 8, Number 1, 59-61, (2020).

2The third and fourth sections of this chapter have been published in Malaya Journal of
Matematik, Volume. 8, Number 2, 473-477, (2020).
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2.1. Introduction

7 3

3 0 7

6 4

4 0 6

Figure 2.1: A graph G

labeling f ∗∗ : V (G) → A defined by f ∗∗(u) = Σf ∗(uv), where the summation is

taken over all the vertices v which are adjacent to u. A graph G = (V (G), E(G))

is said to be an induced A-magic graph and it is denoted by IMAG or simply

IMG if there exists a non zero vertex labeling f : V (G)→ A such that f ≡ f ∗∗.

The function f, so obtained is called an induced A-magic labeling of G and it is

denoted by IMAL or simply IML. This chapter discusses the induced A-magic

labeling of some general graphs and induced V4-magic labeling of some cycle

related graphs which belong to the following categories:

(i) Γ(A) := set of all induced A-magic graphs.

(ii) Γk(A) := set of all induced A-magic graphs with induced magic label f

satisfying f(V (G)) = {k}, for some k ∈ Ar {0}.

(iii) Γ(V4) := set of all induced V4-magic graphs.

(iv) Γk(V4) := set of all induced V4-magic graphs with induced magic label f

satisfying f(V (G)) = {k}, for some k ∈ V4 r {0}.

(v) Γk,0(V4) := set of all induced V4-magic graphs with induced magic label f

satisfying f(V (G)) = {k, 0}, for some k ∈ V4 r {0}.

Two different types of induced Z10-magic labelings of a graph G are shown in

Figure 2.1.
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2.1. Introduction

Definition 2.1.1. [8] The sum of the graphs Cn and K1 is called a wheel graph

and it is denoted by Wn, that is Wn = Cn +K1.

Definition 2.1.2. [18] The helm Hn is a graph obtained from a wheel Wn by

attaching a pendant edge at each vertex of the n-cycle.

Definition 2.1.3. [8] The web graph W (2, n) is a graph obtained by joining the

pendant points of a helm to form a cycle and adding a single pendant edge to

each vertex of this outer cycle.

Definition 2.1.4. [8] A closed helm CHn is a graph obtained from a helm by

joining each pendant vertex to form a cycle.

Definition 2.1.5. [22] A flower graph Fln is a graph obtained from a helm by

joining each pendant vertex to the central vertex of the helm.

Definition 2.1.6. [24] A gear graph is a graph Gn obtained from the wheel Wn

by adding a vertex between every pair of adjacent vertices of the n−cycle.

Definition 2.1.7. [8] A fan graph, denoted by Fn, is defined as Pn +K1, where

Pn is a path graph on n vertices.

Definition 2.1.8. [8] A flag graph is obtained by joining one vertex of Cn to

an extra vertex called the root and it is denoted by Fln.

Definition 2.1.9. [13] A sunflower graph is denoted by SFn and is obtained

by taking a wheel with the central vertex v0 and the n-cycle v1, v2, v3, . . . , vn and

additional vertices w1, w2, w3, . . . , wn, where wi is joined by edges to the vertices

vi and vi+1, where i+ 1 is taken modulo n.

Definition 2.1.10. [8] Jelly fish graph J(m,n) is obtained from a 4−cycle

v1v2v3v4 by joining v1 and v3 with an edge and appending the central vertex of

K1,m to v2 and appending the central vertex of K1,n to v4.

15



2.2. Induced A Magic Labeling of Graphs

Definition 2.1.11. [16] The sun graph on n = 2p vertices, denoted by Sunn,

is the graph obtained by appending a pendant vertex to each vertex of a p−cycle.

A broken sun graph is a connected unicyclic subgraph of a sun graph. We denote

by BS(p, q) the set of broken suns with n = p + q vertices and with a p− cycle.

For p > 2 and 0 < q < p, a consecutive broken sun graph, denoted by CBSunp,q,

is the graph belonging to BS(p, q) such that the subgraph induced by the vertices

of degree 2 is a path on p− q vertices.

Definition 2.1.12. We denote by C(n, k1, k2, k3, . . . , kt) the class of all graphs

obtained by identifying the apex vertices of t stars K1,ki (i = 1, 2, 3, . . . , t) with

t (1 ≤ t ≤ n) vertices of Cn.

Definition 2.1.13. [8] Let C
(t)
n denote the one-point union of t cycles of length

n. For n = 3 the graph C
(t)
3 is called friendship graph or Dutch 3-windmill graph.

Definition 2.1.14. [19] When k copies of Cn share a common edge it will form

the n−gon book graph of k pages and is denoted by B(n, k).

Definition 2.1.15. [19] Let N2 = {u, v} be the disconnected graph of order two.

The graph Cn + N2, the cycle Cn join N2, is called bi pyramid based on Cn and

is denoted by BP (n).

2.2 Induced A Magic Labeling of Graphs

Lemma 2.2.1. Let G = (V,E) be a graph and f is an IAML of G. If v1 ∈ V is

a pendant vertex adjacent to v ∈ V, then f(v) = 0.

Proof. Let f be an IAML of a graph G and v1 be a pendant vertex adjacent

to v. Then f ∗(vv1) = f(v) + f(v1) and v1 is a pendant vertex implies that

f ∗∗(v1) = f(v) + f(v1). Also f is an induced magic labeling of G implies that

f(v1) = f ∗∗(v1) = f(v) + f(v1). Thus f(v) = 0.

16



2.2. Induced A Magic Labeling of Graphs

Corollary 2.2.2. If G has a pendant vertex, then G /∈ Γk(A) for any Abelian

group A.

Proof. Proof is indisputable from the Lemma 2.2.1.

Lemma 2.2.3. Let f be an IAML of a graph G and wuvz be a path in G with

w and z are pendant vertices in G, then f ∗(uv) = 0.

Proof. Suppose f is an IAML of a graph G = (V,E) and wuvz is a path in

G with w and z are pendant vertices. Then by the Lemma 2.2.1, we have

f(u) = 0 = f(v). Hence f ∗(uv) = 0.

Theorem 2.2.4. Induced degree sum theorem

Let f be a vertex labeling of a graph G. Then f is an IAML of G, if and only if

[deg (u)− 1]f(u) +
∑

f(v) = 0, (2.1)

for any vertex u ∈ V (G), where the summation is taken over all the vertices v

which are adjacent to u.

In this case, the equation (2.1) corresponding to a vertex u is called induced

degree sum equation of the vertex u.

Proof. Let f be an IAML of G and u be a vertex in G with deg (u) = m.

Let v1, v2, v3, . . . , vm be the vertices adjacent to u in G. Now f is an IAML if

and only if f(u) = f ∗∗(u) = f ∗(uv1) + f ∗(uv2) + f ∗(uv3) + · · · + f ∗(uvm) =

mf(u) + f(v1) + f(v2) + f(v3) + · · ·+ f(vm).

That is if and only if (m− 1)f(u) +
∑
f(v) = 0, where v is adjacent to u.

Theorem 2.2.5. Pn ∈ Γ(A) if and only if n is a multiple of 3.

17



2.2. Induced A Magic Labeling of Graphs

Proof. Suppose n = 3m, for some integer m. Let Pn be the path with vertex set

V = {v1, v2, v3, . . . , vn−1, vn}. For any a 6= 0 in A, define f : V → A as

f(vi) =


a if i = 1, 4, 7, . . . , 3m− 2

0 if i = 2, 5, 8, . . . , 3m− 1

a−1 if i = 3, 6, 9, . . . , 3m.

Then, f is an IAML of Pn. Conversely, suppose n is not a multiple of 3, then

n = 3m + 1 or n = 3m + 2 for some positive integer m. Let f : V → A be a

vertex labeling function with f ≡ f ∗∗. Then for 1 ≤ k ≤ n − 3 and any path

vkvk+1vk+2vk+3 in Pn, we have f(vk+1) = f ∗∗(vk+1) implies that f(vk)+f(vk+1)+

f(vk+2) = 0. Also f(vk+2) = f ∗∗(vk+2) implies that f(vk+1)+f(vk+2)+f(vk+3) =

0. Therefore we should have f(vk) = f(vk+3). Also, since v2 and vn−1 are adjacent

to the pendant vertices v1 and vn respectively, we have f(v2) = 0 and f(vn−1) = 0.

Let us deal with the following cases:

Case 1 : n = 3m+ 1.

In this context, from the above discussion we have, 0 = f(v2) = f(v5) =

f(v8) = · · · = f(v3m−1) = f(vn−2) and 0 = f(vn−1) = f(vn−4) = · · · =

f(v6) = f(v3) = 0. Thus f(v3) = 0 and f(v1) + f(v3) = 0 imply that

f(v1) = 0, which again implies that 0 = f(v1) = f(v4) = f(v7) = · · · =

f(v3m+1) = f(vn.) Hencef ≡ 0, Therefore f is not an IAML.

Case 2 : n = 3m+ 2.

In this context from the above discussion we have, 0 = f(v2) = f(v5) =

f(v8) = · · · = f(v3m+2) = f(vn) and 0 = f(vn−1) = f(vn−4) = · · · =

f(v4) = f(v1). Thus f(v1) = 0 and f(v1) + f(v3) = 0 imply that f(v3) = 0,

which implies 0 = f(v3) = f(v6) = f(v9) = · · · = f(v3m) = f(vn−2). Hence

f ≡ 0. Therefore, f is not an IAML.
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2.2. Induced A Magic Labeling of Graphs

Hence if n is not a multiple of 3, then Pn /∈ Γ(A)

Theorem 2.2.6. Let {v1, v2, v3, . . . , vn−1, vn = v0} be the vertex set of Cn. Then

for any path vk−1vkv(k+1) mod n, f is an IAML of Cn if and only if f(vk−1) +

f(vk) + f(v(k+1) mod n) = 0, where 1 ≤ k ≤ n. Moreover any IAML f of Cn

satisfies f(vk) = f(v(k+3) mod n) for 1 ≤ k ≤ n.

Proof. For k = 1, 2, 3, . . . , n, consider the path vk−1vkv(k+1) mod n in Cn. Observe

that f is an IAML of Cn if and only if f(vk) = f ∗∗(vk), which holds if and only

if f(vk−1) + f(vk) + f(v(k+1) mod n) = 0.

Also for any 0 ≤ k ≤ n− 1, let vkvk+1v[(k+2) mod n]v[(k+3) mod n], is a path in Cn,

we have f(vk) + f(vk+1) + f(v(k+2) mod n) = 0 and f(vk+1) + f(v(k+2) mod n) +

f(v(k+3) mod n) = 0.

Thus f(vk) = f(v(k+3) mod n).

Corollary 2.2.7. Cn ∈ Γk(A) if and only if O(k) = 3, where O(k) denotes the

order of k in A.

Proof. Consider Cn with V (Cn) = {v1, v2, . . . , vn−1, vn = v0}. Suppose Cn ∈

Γk(A), that is there exists an IAML f of Cn with f(vi) = k for i = 1, 2, 3, . . . , n.

Then by Theorem 2.2.6, we have 3k = 0 in A, which implies O(k) = 3. Con-

versely, suppose O(k) = 3. Then consider the vertex label f(vi) = k for i =

1, 2, 3, . . . , n. Since f(vi) = k for all i and O(k) = 3, we have, f ∗(vivi+1) = 2k for

all i, and which implies f ∗∗(vi) = f ∗(vivi+1) + f ∗(vi−1vi) = 4k = k = f(vi), for

all i. Thus f is an IAML of Cn, that is Cn ∈ Γk(A). Hence the proof.

Corollary 2.2.8. Cn has a non-constant IAML if and only if n is a multiple of

3.

Proof. Consider Cn with vertex set {v1, v2, . . . , vn−1, vn = v0}. Suppose n = 3k,

for some integer k. Let a, b, c be any three elements with at least two of them are
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2.2. Induced A Magic Labeling of Graphs
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Figure 2.2: Cycle C6

different in A, such that a+ b+ c = 0, then define f : V (Cn)→ A as follows.

f(vi) =


a if i = 1, 4, 7, . . . , 3k − 2

b if i = 2, 5, 8, . . . , 3k − 1

c if i = 3, 6, 9, . . . , 3k.

Then clearly f is a non constant IAML of Cn.

Conversely, assume that n is not a multiple of 3. Then either n = 3k + 1 or

3k + 2 for some integer k. Let f be an IAML of Cn and f(v1) = w.

Case 1: n = 3k + 1. In this context, by the Theorem 2.2.6 we have:

w = f(v1) = f(v4) = f(v7) = · · · = f(v3k+1) = f(vn) = f(v3) = f(v6) =

f(v9) = · · · = f(v3k) = f(vn−1) = f(v2) = f(v5) = f(v8) = · · · =

f(v3k−1) = f(vn−2).

Thus f(vi) = w, for i = 1, 2, 3, . . . , n.

Case 2: n = 3k + 2. In this context, by the Theorem 2.2.6 we have:

w = f(v1) = f(v4) = f(v7) = · · · = f(v3k+1) = f(vn−1) = f(v2) = f(v5) =

f(v8) = · · · = f(v3k−1) = f(v3k+2) = f(vn) = f(v0) = f(v3) = f(v6) =

f(v9) = · · · = f(v3k) = f(vn−2).
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2.2. Induced A Magic Labeling of Graphs

Thus in this case, also f(vi) = w, for i = 1, 2, 3, . . . , n.

Thus in either case, we have f(vi) = w for i = 1, 2, 3, . . . , n. Thus if n 6≡ 0 (mod 3)

then every IAML of Cn is a constant IAML of Cn.

The Figure 2.2 represents an induced Z10-magic labeling of the cycle graph

C6.

Theorem 2.2.9. The complete graph Kn has an induced magic labeling f if

and only if (n − 3)f(v1) = (n − 3)f(v2) = (n − 3)f(v3) = · · · = (n − 3)f(vn) =

− [f(v1) + f(v2) + f(v3) + · · ·+ f(vn)] , where v1, v2, v3, . . . , vn are the vertices of

Kn.

Proof. For 1 ≤ i, j ≤ n, we have f(vi) = f ∗∗(vi) holds if and only if f(v1) +

f(v2) + f(v3) + · · ·+ f(vi−1) + (n− 2)f(vi) + f(vi+1) + · · ·+ f(vn) = 0, similarly

the condition f(vj) = f ∗∗(vj) is equivalent to the condition f(v1)+f(v2)+f(v3)+

· · ·+f(vj−1)+(n−2)f(vj)+f(vj+1)+· · ·+f(vn) = 0. Thus we have f is an IAML if

and only if (n−3)f(vi) = (n−3)f(vj) = − [f(v1) + f(v2) + f(v3) + · · ·+ f(vn)] ,

for 1 ≤ i, j ≤ n. Hence the proof.

Corollary 2.2.10. Kn ∈ Γk(A) if and only if O(k) divides 2n − 3, where O(k)

denotes the order of k in A.

Proof. Let Kn be the complete graph with vertex set {v1, v2, v3, . . . , vn}. We

have Kn ∈ Γk(A), means there exists an IAML f with f(v) = k, for all v ∈

V (Kn). Also by the Theorem 2.2.9, we have f is an IAML of Kn if and only if

(n− 3)f(v) = − [f(v1) + f(v2) + f(v3) + · · ·+ f(vn)] , for all v ∈ V (Kn).

ThusKn ∈ Γk(A) if and only if (n−3)k = −nk, that is if and only if (2n−3)k = 0,

that is if and only if O(k) divides 2n− 3 in A. This completes the proof.

Theorem 2.2.11. Km,n ∈ Γk(A) if and only if O(k) divides both 2m − 1 and

2n− 1, where O(k) denotes the order of k in A.

21



2.3. Induced V4 Magic Labeling of Graphs

Proof. Let V (Km,n) = {v1, v2, v3, . . . , vm, u1, u2, u3, . . . , un} with each (viuj) ∈

E(Km,n), for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Suppose Km,n ∈ Γk(A), then there exists

an IAML say, f with f(viuj) = k, for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Now f is an IAML

of Km,n implies k = f(v1) = f ∗∗(v1) = 2nk, since f ∗(v1uj) = 2k for 1 ≤ j ≤ n,

that is (2n − 1)k = 0 in A, which implies O(k) divides 2n − 1. Similarly by

considering the equation f(u1) = f ∗∗(u1), we get k = f(u1) = f ∗∗(u1) = 2mk,

that is (2m− 1)k = 0 in A, which implies O(k) divides 2m− 1.

Conversely, suppose that O(k) divides 2m− 1 and O(k) divides 2n− 1. Consider

the vertex label f(vi) = k = f(uj), for vi, uj ∈ V (Km,n), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Then f ∗(vi, uj) = 2k for 1 ≤ i ≤ m, 1 ≤ j ≤ n. There for i = 1, 2, 3, . . . ,m,

f ∗∗(vi) = Σn
j=1f

∗(viuj) = 2nk = k, since O(k) divides 2n − 1. Thus we have

f ∗∗(vi) = f(vi) = k for i = 1, 2, 3, . . . ,m. In a similar way, we have f ∗∗(uj) =

f(uj) = k for j = 1, 2, 3, . . . , n. Hence we have f = f ∗∗. Thus we get Km,n ∈

Γk(A). This concludes the proof.

2.3 Induced V4 Magic Labeling of Graphs

From this section onwards we consider the abelian group V4 instead of an arbi-

trary abelian group A. By taking the Klein 4 group, (V4,+) = ({0, a, b, c},+)

instead of the abelian group A, in the definition of induced A magic graphs, we

can define the induced V4 magic graph and induced V4 magic labeling as follows:

Let G = (V (G), E(G)) be the graph with vertex set V (G) and edge set E(G).

Let f : V (G)→ V4 be a vertex labeling and f ∗ : E(G)→ V4 denote the induced

edge labeling of f defined by f ∗(uv) = f(u) + f(v) for all uv ∈ E(G). Then f ∗

again induces a vertex labeling f ∗∗ : V (G) → V4 defined by f ∗∗(u) = Σf ∗(uv),

where the summation is taken over all the vertices v which are adjacent to u.

Then a graph G is said to be an induced V4-magic graph and denoted by IMV4G
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2.4. Cycle Related Graphs

or simply IMG if there exists a non zero vertex labeling f : V (G)→ V4 such that

f ≡ f ∗∗. The function f, so obtained is called an induced V4-magic labeling of G

and denoted by IMV4L or simply IML.

The “Induced degree sum theorem” corresponding to this context can be restated

as follows.

Theorem 2.3.1. Induced degree sum theorem

Let f be any vertex labeling of a graph G and u, be a vertex in G with deg (u) = m.

Then f is an induced V4 magic labeling if and only if f(u) + Σf(v) = 0 or

Σf(v) = 0 according as deg (u) = m is even or odd, where the summation is

taken over all the vertices v which are adjacent to u.

In this case, the above equation corresponding to a vertex u is called induced

degree sum equation of the vertex u.

Proof. From Theorem 2.2.4, we have f is an induced V4magic labeling of G if

and only if (m − 1)f(u) + Σf(v) = 0, where v is adjacent to u, then the result

follows directly from the fact that f(u) ∈ V4.

Theorem 2.3.2. For any graph G, G /∈ Γk(V4).

Proof. If possible, suppose G ∈ Γk(V4), that is there exists a non zero function f

such that f : V (G)→ V4 with f(v) = k for all v ∈ V (G), for some k ∈ V4 r {0}.

Then note that f ∗(e) = k + k = 0, for all e ∈ E(G). Thus f ∗∗(v) = 0, for all

v ∈ V (G). That is f 6≡ f ∗∗, which is a contradiction. Hence our assumption is

wrong. Therefore for any graph G, G /∈ Γk(V4).

2.4 Cycle Related Graphs

Theorem 2.4.1. Cn ∈ Γ(V4) if and only if n ≡ 0 (mod 3).
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Proof. Suppose n ≡ 0 (mod 3), define f : V (Cn)→ V4 as follows.

f(vi) =


a if i ≡ 1 (mod 3)

b if i ≡ 2 (mod 3)

c if i ≡ 0 (mod 3).

Then we can prove that f ∗∗ ≡ f, that is f is an IML of Cn. Proof of the converse

part follows from Corollary 2.2.8 and Theorem 2.3.2. This completes the proof.

Corollary 2.4.2. Cn ∈ Γa,0(V4) if and only if n ≡ 0 (mod 3).

Proof. Suppose n ≡ 0 (mod 3), define f : V (Cn)→ V4 as follows:

f(vi) =

 a if i ≡ 0, 1 (mod 3)

0 if i ≡ 2 (mod 3).

Then we can prove that f ∗∗ = f, that is f is an IML of Cn. Proof of the converse

part follows from Corollary 2.2.8 and Theorem 2.3.2. This completes the proof.

Theorem 2.4.3. The wheel graph Wn ∈ Γ(V4) if and only if n is even.

Proof. Let V (Wn) = {w, v1, v2, v3, . . . , vn}, where w is the central vertex. Sup-

pose n is even, then n = 4k or 4k + 2 for some positive integer k.

Case 1: n = 4k.

In this case, define f : V (Wn)→ V4 as

f(v) =


0 if v = w

a if v = v1, v3, v5, . . . v4k−1

b if v = v2, v4, v6, . . . v4k.
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2.4. Cycle Related Graphs

Case 2: n = 4k + 2.

In this case, define f : V (Wn)→ V4 as

f(v) =

 0 if v = w

a if v = vi.

then, in both cases we can verify that f is an induced V4 magic labeling of Wn.

Conversely, suppose n is an odd number, if f is an induced V4 magic labeling of

Wn. Then by the induced degree sum equation of vertices in Wn, f must satisfy

the following system of equations.

f(v2) + f(vn) + f(w) = 0

f(v1) + f(v3) + f(w) = 0

f(v2) + f(v4) + f(w) = 0

f(v3) + f(v5) + f(w) = 0

...

f(v1) + f(vn−1) + f(w) = 0

f(v1) + f(v2) + f(v3) + · · ·+ f(vn) = 0.

From the system of equations we have, f(v1) = f(v2) = f(v3) = · · · = f(vn),

thus from the last equation we have nf(vi) = 0, for i = 1, 2, 3, . . . , n. Since n

is odd this happens only when f(vi) = 0 for i = 1, 2, 3, . . . , n. Using this in the

first equation of the above system of equations we have f(w) = 0 also. Thus in

this case, f ≡ 0. Thus f is not an induced V4 magic labeling of Wn. Hence the

proof.

Corollary 2.4.4. Wn ∈ Γa,0(V4) if and only if n is even.

Proof. Let V (Wn) = {w, v1, v2, v3, . . . , vn}, where w is the central vertex. Sup-

pose n is even number. Define f : V (Wn)→ V4 as the following way.
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f(v) =

 0 if v = w

a if v = vi.

Then we can verify that f is an induced V4 magic labeling of Wn. The converse

part follows from the Theorem 2.4.3.

Theorem 2.4.5. The helm graph Hn ∈ Γ(V4) if and only if n is odd.

Proof. Let V (Hn) = {w, v1, v2, v3, . . . , vn, w1, w2, w3, . . . , wn}, where w be the

central vertex and wi be the pendant vertex adjacent to vi, for i = 1, 2, 3, . . . , n.

Suppose n is odd, then define f : V (Hn)→ V4 as

f(v) =

 0 if v = v1, v2, v3, . . . vn

a if v = w,w1, w2, w3, . . . , wn.

Then clearly f is an induced V4 magic labeling of Hn.

Conversely, suppose n is an even number. If f is an induced V4 magic labeling

of Hn then by the induced degree sum equation of vertices in Hn, f must satisfy

the following system of equations.

f(vi) = 0 for i = 1, 2, 3, . . . , n

f(w) + f(wi) = 0 for i = 1, 2, 3, . . . , n

f(w) = 0.

Thus f(vi) = f(wi) = f(w) = 0, that is f ≡ 0. Hence f is not an induced V4

magic labeling.

From the proof of Theorem 2.4.5, we have the following corollary.

Corollary 2.4.6. The helm graph Hn ∈ Γa,0(V4) if and only if n is odd.

Theorem 2.4.7. The web graph W (2, n) ∈ Γ(V4) if and only if n ≡ 0 (mod 3).
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Proof. Let {w, ui, vi, wi : i = 1, 2, 3, . . . , n} be the vertex set of W (2, n), where w

be the central vertex, u1, u2, u3, . . . , un are the vertices of inner cycle, v1, v2, v3, . . . ,

vn are the vertices of outer cycle and w1, w2, w3, . . . , wn are the pendant vertices

adjacent to v1, v2, v3, . . . , vn of W (2, n).

Suppose n ≡ 0 (mod 3), then define f : V (W (2, n))→ V4 as

f(v) =



0 if v = w, v1, v2, v3, . . . , vn

a if v = ui, wi, for i ≡ 1 (mod 3)

b if v = ui, wi, for i ≡ 2 (mod 3)

c if v = ui, wi, for i ≡ 0 (mod 3).

Then clearly f is an induced V4 magic labeling of W (2, n). Conversely, suppose

that n 6≡ 0 (mod 3), then n = 3k + 1 or 3k + 2 for some positive integer k.

If possible suppose f is an induced V4 magic labeling of W (2, n) then by the

induced degree sum equation of vertices of W (2, n), f must satisfy the following

system of equations.

f(vi) = 0 for i = 1, 2, 3, . . . , n

f(un) + f(u1) + f(u2) + f(w) = 0

f(u1) + f(u2) + f(u3) + f(w) = 0

f(u2) + f(u3) + f(u4) + f(w) = 0

...

f(u1) + f(un−1) + f(un) + f(w) = 0

f(ui) + f(wi) = 0 for i = 1, 2, 3, . . . , n

(n− 1)f(w) +
n∑
i=1

f(ui) = 0.

Since n = 3k+1 or 3k+2, from the above system of equations we have, f(vi) = 0,

f(ui) = f(wi), f(u1) = f(u2) = f(u3) = · · · = f(un) and (n−1)f(w)+nf(ui) =
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0 for i = 1, 2, 3, . . . , n.

Case 1: n = 3k + 1.

Subcase 1: k is even.

Note that k is even implies n = 3k + 1 is odd.

Therefore the equation (n− 1)f(w) + nf(ui) = 0 for i = 1, 2, 3, . . . , n

reduces to f(ui) = 0 for i = 1, 2, 3, . . . , n. Hence in this case, f(ui) =

f(vi) = f(wi) = f(w) = 0.

Subcase 2: k is odd.

Note that k is odd implies n = 3k + 1 is even. Thus the equation

(n − 1)f(w) + nf(ui) = 0 for i = 1, 2, 3, . . . , n reduces to f(w) = 0.

Thus from the system of equations we have, f(ui) = 0. Hence in this

case also, f(ui) = f(vi) = f(wi) = f(w) = 0.

Case 2: n = 3k + 2.

Subcase 1: k is even.

Note that k is even implies n = 3k + 2 is even. Thus the equation

(n − 1)f(w) + nf(ui) = 0 for i = 1, 2, 3, . . . , n reduces to f(w) = 0.

Thus from the system of equations we have, f(ui) = 0. Hence in this

case, f(ui) = f(vi) = f(wi) = f(w) = 0.

Subcase 2: k is odd.

Note that k is odd implies n = 3k + 2 is odd.

Therefore the equation (n− 1)f(w) + nf(ui) = 0 for i = 1, 2, 3, . . . , n

reduces to f(ui) = 0 for i = 1, 2, 3, . . . , n. Hence in this case also,

f(ui) = f(vi) = f(wi) = f(w) = 0.

Hence in both cases we have f ≡ 0, that is f is not an induced V4 magic labeling.
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Theorem 2.4.8. The closed helm CHn ∈ Γ(V4) for n is odd.

Proof. Let V (CHn) = {w, v1, v2, v3, . . . , vn, w1, w2, w3, . . . , wn}, where w be the

central vertex and wi be the pendant vertex adjacent to vi, for i = 1, 2, 3, . . . , n

in the corresponding helm Hn. Suppose n is odd, then define f : V (CHn)→ V4 as

f(v) =

 0 if v = v1, v2, v3, . . . , vn

a if v = w,w1, w2, w3, . . . , wn.

Then f is an IML of CHn. Hence the proof.

Corollary 2.4.9. CHn ∈ Γa,0(V4) for n is odd.

Proof. Proof follows directly from the proof of Theorem 2.4.8.

Theorem 2.4.10. The flower graph Fln ∈ Γ(V4) for all n.

Proof. Let V (Fln) = {w, ui, vi : i = 1, 2, 3, . . . , n}, where w is the central vertex,

u1, u2, u3, . . . , un are the vertices of corresponding cycle and v1, v2, v3, . . . , vn are

the vertices adjacent to the central vertex w.

Case 1: n is odd.

In this case, define f : V (Fln)→ V4 as

f(v) =


a if v = w

b if v = ui for i = 1, 2, 3, . . . , n

c if v = vi for i = 1, 2, 3, . . . , n.

Case 2: n is even.

In this case, define f : V (Fln)→ V4 as

f(v) =


0 if v = w

a if v = ui, vi for i is odd

b if v = ui, vi for i is even.
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Thus from both cases, we can verify that f is an induced V4 magic labeling of

Fln. This completes the proof.

Corollary 2.4.11. Fln ∈ Γa,0(V4) for all n.

Proof. Let V (Fln) = {w, ui, vi : i = 1, 2, 3, . . . , n}, where w be the central vertex,

u1, u2, u3, . . . , un are the vertices of corresponding cycle and v1, v2, v3, . . . , vn are

the vertices adjacent to the central vertex w. Define f : V (Fln)→ V4 as

f(v) =

 0 if v = w

a if v = ui, vi.

Then one can easily verify that f is an IML of Fln. Hence the proof.

Theorem 2.4.12. The gear graph Gn ∈ Γ(V4) if and only if n is even.

Proof. Let V (Gn) = {w, u1, u2, u3, . . . , un, v1, v2, v3, . . . , vn}, where w is the cen-

tral vertex u1, u2, u3, . . . , un are the vertices of the corresponding wheel graph Wn

and v1, v2, v3, . . . , vn are the remaining vertices with uivi, viui+1 ∈ E(Gn), where

i+ 1 is taken modulo n.

Suppose n is even, then define f : V (Gn)→ V4 as :

f(v) =



0 if v = w

a if v = ui for i is odd

b if v = ui for i is even

c if v = vi.

Then we can easily verify that f is an induced V4 magic labeling of Gn.

Conversely, suppose that n is an odd number. Then by the induced degree sum

equation of vertices in Gn we have: if f is an induced V4 magic labeling of Gn,
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then f satisfies the following system of equations.

f(v1) + f(v2) + f(w) = 0

f(v2) + f(v3) + f(w) = 0

...

f(vn−1) + f(vn) + f(w) = 0

f(vn) + f(v1) + f(w) = 0

f(u1) + f(u2) + f(u3) + · · ·+ f(un) = 0

f(v1) + f(u1) + f(u2) = 0

f(v2) + f(u2) + f(u3) = 0

f(v3) + f(u3) + f(u4) = 0

...

f(vn) + f(un) + f(u1) = 0.

Since n is odd, the equations corresponding to the vertices u1, u2, u3, . . . , un (that

is the first n equations) imply that f(v1) = f(v2) = f(v3) = · · · = f(vn).

Substituting these in the above system of equations, we get f(w) = 0. Now using

the fact that n is odd and f(v1) = f(v2) = f(v3) = · · · = f(vn), the last n

equations in the above system of equations imply that f(u1) = f(u2) = f(u3) =

· · · = f(un). Substituting these in the equation f(u1) + f(u2) + f(u3) + · · · +

f(un) = 0, we get f(ui) = 0, for i = 1, 2, 3, . . . , n which implies f(vi) = 0, for

i = 1, 2, 3, . . . , n. Hence f ≡ 0, that is f is not an induced V4 magic labeling of

Gn.

The Figure 2.3 represents a gear graph G4 with an induced V4-magic labeling.

Theorem 2.4.13. The fan graph Fn ∈ Γ(V4) for n is even.

Proof. Suppose n is an even number. We have Fn = Pn + K1. Let V (Fn) =
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Figure 2.3: Gear graph G4.

{w, v1, v2, v3, . . . , vn}, where v1, v2, v3, . . . , vn be the vertices corresponding to Pn

and w be the vertex corresponding to K1. Then define f : V (Fn)→ V4 as follows:

f(v) =

 0 if v = w

a if v = v1, v2, v3, . . . , vn.

Then we can easily verify that f is an induced V4 magic labeling of Fn. Hence

the proof follows.

Theorem 2.4.14. The flag graph Fln ∈ Γ(V4) if and only if n ≡ 0 (mod 3).

Proof. Let V (Fln) = {w, v1, v2, v3, . . . , vn}, where vi for i = 1, 2, 3, . . . , n is the

vertex of corresponding cycle graph Cn and w is the root vertex adjacent to the

vertex v1.

Suppose n ≡ 0 (mod 3), then define f : V (Fln)→ V4 as

f(v) =


0 if v = vi, i ≡ 1 (mod 3)

a if v = vi, i ≡ 0, 2 (mod 3)

0 if v = w.

Then we can easily verify that f is an induced V4 magic labeling of Fln.

Conversely, suppose that n 6≡ 0 (mod 3). If possible, suppose f is an induced V4

magic labeling of Fln. Then by the induced degree sum equation of vertices w
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and vi in Fln, f must satisfy the following system of equations.

f(v1) = 0

f(v2) + f(vn) + f(w) = 0

f(v2) + f(v3) = 0

f(v2) + f(v3) + f(v4) = 0

f(v3) + f(v4) + f(v5) = 0

...

f(vn−2) + f(vn−1) + f(vn) = 0

f(vn−1) + f(vn) = 0.

Note that n 6≡ 0 (mod 3) implies that n = 3k + 1 or n = 3k + 2 for some integer

k, also from the above system of equations we have f(v1) = f(vn−2) = 0 and

f(v2) = f(v3). Using these facts, we can prove that f(v1) = f(v2) = f(v3) =

· · · = f(vn) = 0 and f(w) = 0. Thus f is not an induced V4 magic labeling.

Hence the proof follows.

Theorem 2.4.15. The sunflower graph SFn ∈ Γ(V4), for n is even.

Proof. Suppose the given sunflower graph is obtained by taking a wheel graph

with the central vertex v0, the n−cycle v1, v2, v3, . . . , vn and additional vertices

w1, w2, w3, . . . , wn, where wi is joined by edges to the vertices vi and vi+1, where

i+ 1 is taken modulo n.

Suppose n is even, then define f : V (SFn)→ V4 as

f(v) =

 0 if v = v0, wi, for i = 1, 2, 3, . . . , n

a if v = vi, for i = 1, 2, 3, . . . , n.

Then we can easily prove that f is an induced V4 magic labeling of SFn.
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From the proof of Theorem 2.4.15, we have the following corollary.

Corollary 2.4.16. If n is even, then the sunflower graph SFn ∈ Γa,0(V4).

Theorem 2.4.17. The jelly fish J(m,n) ∈ Γ(V4) for all m and n.

Proof. Consider the jelly fish graph with V (J(m,n)) = {vk : k = 1, 2, 3, 4}

∪ {ui : i = 1, 2, 3, . . . ,m} ∪ {wj : j = 1, 2, 3, . . . , n}, where v′ks are the vertices

of corresponding C4 and ui, wj are the vertices of corresponding K1,m and K1,n

respectively. Now consider the following cases:

Case 1 : both m and n are odd.

Define f : V (J(m,n))→ V4 as:

f(v) =


0 if u1, w1, v = vk, for k = 1, 2, 3, 4

a if v = ui, for i = 2, 3, 4, . . . ,m

a if v = wj, for j = 2, 3, 4, . . . , n.

Case 2 : m and n are even.

Define f : V (J(m,n))→ V4 as:

f(v) =


0 if v = vk, for k = 1, 2, 3, 4

a if v = ui, for i = 1, 2, 3, . . . ,m

a if v = wj, for j = 1, 2, 3, . . . , n.

Case 3 : m odd and n even.

Define f : V (J(m,n))→ V4 as:

f(v) =


0 if v = u1, vk, for k = 1, 2, 3, 4

a if v = ui, for i = 2, 3, 4, . . . ,m

a if v = wj, for j = 1, 2, 3, . . . , n.
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Case 4 : m even and n odd.

Define f : V (J(m,n))→ V4 as:

f(v) =


0 if v = w1, vk, for k = 1, 2, 3, 4

a if v = ui, for i = 1, 2, 3, . . . ,m

a if v = wj, for j = 2, 3, 4, . . . , n.

In all the above cases, we can prove that f is an induced magic labeling of

J(m,n). Hence the proof.

Corollary 2.4.18. The jelly fish J(m,n) ∈ Γa,0(V4) for all m and n.

Theorem 2.4.19. The sun graph Sunn /∈ Γ(V4) for any n.

Proof. Consider a sun graph Sunn with {v1, v2, v3, . . . , vn} as vertex set of the

corresponding Cn and wi, 1 ≤ i ≤ n, be the pendant vertices attached to each

vi, 1 ≤ i ≤ n. If possible, suppose f : V (Sunn) → V4 is an IML of Sunn. Then

the induced degree sum equation of wi, we have f(vi) = 0. Using this in the

induced degree sum equation of vi, we get f(wi) = 0. Thus f ≡ 0, which is a

contradiction. Hence the proof.

Theorem 2.4.20. The CBSunp,q ∈ Γ(V4) if and only if q+ 3k = p−2 for some

integer k.

Proof. Consider a CBSunp,q with vertex set {vi : i = 1, 2, 3, . . . p} ∪ {uj : j =

1, 2, 3, . . . , q}, where uj is the pendant vertices adjacent to vertices vj. Suppose

q + 3k = p− 2 for some integer k. Then define f : V (CBSunp,q)→ V4 as

f(v) =



a if v = u1, uq

0 if v = u2, u3, u4, . . . , uq−1

0 if v = v1, v2, v3, . . . vq, vq+3, vq+6, vq+9, . . . , vp−2

a if v = vq+1, vq+2, vq+4, vq+5, . . . , vp−3, vp−1, vp.
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Then f is an IML of CBSunp,q. Hence, in this case CBSunp,q ∈ Γ(V4).

Conversely, suppose q + 3k 6= p− 2, that is q + 3k = p− 1 or q + 3k = p, for

some integer k.

If possible, suppose g : V (CBSunp,q) → V4 be an IML of CBSunp,q. Then

by the induced degree sum equation of the vertices ui, we have g(vi) = 0, for

i = 1, 2, 3, . . . , q. Similarly from the induced degree sum equation of the vertices

vi, we have the following system of equations.

g(vp) + g(u1) = 0

g(uj) = 0 for j = 2, 3, 4, . . . , q − 1

g(vq+1) + g(uq) = 0

g(vq+1) + g(vq+2) = 0

g(vq+1) + g(vq+2) + g(vq+3) = 0

g(vq+2) + g(vq+3) + g(vq+4) = 0

...

g(vp−2) + g(vp−1) + g(vp) = 0

g(vp−1) + g(vp) = 0.

Note that from the above system of equations, we have g(uq) = g(vq+1) = g(vq+2).

Therefore g(vq+3) = 0 and g(vp−1) = g(vp). Thus g(vp−2) = 0.

Case 1: q + 3k = p− 1.

In this case, using above system we have: g(vq+3) = g(vq+6) = g(vq+9) =

· · · = g(vp−4) = g(vp−1) = 0 and g(vq+1) = g(vq+2) = g(vq+4) = g(vq+5) =

· · · = g(vp−5) = g(vp−3) = g(vp−2).

But g(vp−2) = 0 implies g(vq+1) = g(vq+2) = g(vq+4) = g(vq+5) = · · · =

g(vp−5) = g(vp−3) = g(vp−2) = 0.
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Thus in this case, g ≡ 0, which is a contradiction. Hence CBSunp,q /∈

Γ(V4).

Case 2: q + 3k = p.

In this case, using above system we have: g(vq+3) = g(vq+6) = g(vq+9) =

· · · = g(vp−3) = g(vp) = 0 and g(vq+1) = g(vq+2) = g(vq+4) = g(vq+5) =

· · · = g(vp−4) = g(vp−2) = g(vp−1).

But g(vp−2) = 0 implies g(vq+1) = g(vq+2) = g(vq+4) = g(vq+5) = · · · =

g(vp−4) = g(vp−2) = g(vp−1) = 0.

Thus in this case, g ≡ 0, which is a contradiction. Hence CBSunp,q /∈

Γ(V4).

Hence the proof.

Theorem 2.4.21. The C(n, k1, k2, k3, . . . , kt) ∈ Γ(V4) for all n and ki where

i = 1, 2, 3, . . . , t.

Proof. Let {v1, v2, v3, . . . , vn} are the corresponding vertices of Cn and {vij :

i = 1, 2, 3, . . . , t, j = 1, 2, 3, . . . , ki} be the corresponding vertices of K1,ki . Let

f : V (C(n, k1, k2, k3, . . . , kt))→ V4. Define f as in the following way.

Define f(vk) = 0 for i = 1, 2, 3, . . . , n. If ki is odd for some i, for those i, define

f(vi1) = 0 and f(vij) = a, for j = 2, 3, 4, . . . , ki and if ki is even for some i, for

those i, define f(vij) = a, for j = 1, 2, 3, . . . , ki.

Then we can easily prove that f is an IML of C(n, k1, k2, k3, . . . , kt).

Hence the proof.

Theorem 2.4.22. Cn �K2 ∈ Γ(V4) for all n.

Proof. Let {v1, v2, v3, . . . , vn} are the corresponding vertices of Cn and {ui, wi}

be the corresponding vertices of the ith copy of K2, for i = 1, 2, 3, . . . , n. Let
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f : V (Cn �K2)→ V4 be defined by

f(v) =

 0 if v = vi, for i = 1, 2, 3, . . . , n

a if v = ui, wi, for i = 1, 2, 3, . . . , n.

Then we can easily prove that f is an IML of Cn �K2.

Hence the proof.

Theorem 2.4.23. Cn �Km ∈ Γ(V4) for all m and n.

Proof. Let V (Cn) = {v1, v2, v3, . . . , vn} and {ui1, ui2, ui3, . . . , uim} be the corre-

sponding vertices of the ith copy of Km for i = 1, 2, 3, . . . , n. Let f : V (Cn �

Km)→ V4.

Case 1: m is an even integer.

In this case, define f as

f(v) =

 0 if v = vi, for i = 1, 2, 3, . . . , n

a if v = uij, for all i, j.

Case 2: m is an odd integer.

In this case, define f as

f(v) =


0 if v = vi, for i = 1, 2, 3, . . . , n

0 if v = ui1, for i = 1, 2, 3, . . . , n

a if v = uij, for i = 1, 2, 3, . . . , n, j = 2, 3, 4, . . . ,m.

Then f is an IML of Cn �Km.

Hence the proof.

Theorem 2.4.24. Cn �Km ∈ Γ(V4) for m even.

Proof. Let V (Cn) = {v1, v2, v3, . . . , vn} and {ui1, ui2, ui3, . . . , uim} be the corre-

sponding vertices of the ith copy of Km for i = 1, 2, 3, . . . , n.
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Suppose m is an even integer. Let f : V (Cn �Km)→ V4 be defined by

f(v) =

 0 if v = vi, for i = 1, 2, 3, . . . , n

a if v = uij, for all i, j.

Then we can prove that f is an IML of Cn �Km.

Hence the proof.

Theorem 2.4.25. The friendship graph or Dutch 3-windmill graph C
(t)
3 ∈ Γ(V4)

for all t.

Proof. Let {ui, vi, wi} be the vertex set of ith copy C3 for i = 1, 2, 3, . . . , t and

the vertices u1, u2, u3, . . . , ut are identified with the vertex u.

Let f : V (C
(t)
3 )→ V4 be defined by

f(v) =

 0 if v = u

a if v = vi, wi for i = 1, 2, 3, . . . , t.

Then we can prove that f is an IML of C
(t)
3 .

Hence the proof.

Theorem 2.4.26. The graph C
(t)
n ∈ Γ(V4) for n ≡ 0 (mod 3).

Proof. Let {ui1, ui2, ui3, . . . , uin} be the vertex set of ith copy of Cn, for i =

1, 2, 3, . . . , t and the vertices u11, u21, u31, . . . , ut1 are identified with the vertex u.

Suppose n ≡ 0 (mod 3).

Case 1: t is an odd integer.

In this case, define f as:

f(v) =


a if v = u

0 if v = uij, where j ≡ 2 (mod 3) and i = 1, 2, 3, . . . , t

a if v = uij, where j ≡ 0, 1 (mod 3) and i = 1, 2, 3, . . . , t.
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Case 2: t is an even integer.

In this case, define f as:

f(v) =


0 if v = u

0 if v = uij, where j ≡ 1 (mod 3) and i = 1, 2, 3, . . . , t

a if v = uij, where j ≡ 0, 2 (mod 3) and i = 1, 2, 3, . . . , t.

Then one can easily verify that f is an IML of C
(t)
n .

Hence C
(t)
n ∈ Γ(V4) for n ≡ 0 (mod 3).

Theorem 2.4.27. The n−gon book graph B(n, k) ∈ Γ(V4) for k odd and n ≡

0 (mod 3).

Proof. Let {u1, ui2, ui3, ui4, . . . , ui(n−1), un} be the vertex set of ith copy of Cn in

K
(n)
m , where u1 and un be the common vertices.

Suppose k is an odd integer and n ≡ 0 (mod 3).

Let f : V (B(n, k))→ V4 be defined by

f(v) =


a if v = u1, un

0 if v = uij, where j ≡ 2 (mod 3)

a if v = uij, where j ≡ 0, 1 (mod 3).

Then we can easily prove that f is an IML of B(n, k).

Hence B(n, k) ∈ Γ(V4) for k odd and n ≡ 0 (mod 3).

Theorem 2.4.28. The bi pyramid BP (n) ∈ Γ(V4) for n ≡ 0 (mod 3).

Proof. Let V (N2) = {u, v} and V (Cn) = {v1, v2, v3, . . . , vn} and f : V (BP (n))→

V4 be defined by
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f(v) =



0 if v = u, v

a if v = vi, where i ≡ 1 (mod 3)

b if v = vi, where i ≡ 2 (mod 3)

c if v = vi, where i ≡ 0 (mod 3).

Then f is an IML of BP (n).

Hence BP (n) ∈ Γ(V4) for n ≡ 0 (mod 3).

Theorem 2.4.29. The bi pyramid based on Cn, BP (n) ∈ Γa,0(V4) for n ≡

0 (mod 3).

Proof. Let V (N2) = {u, v} and V (Cn) = {v1, v2, v3, . . . , vn}.Define f : V (BP (n))→

V4 as

f(v) =


0 if v = u, v

a if v = vi, where i ≡ 1, 2 (mod 3)

0 if v = vi, where i ≡ 0 (mod 3).

Then f is an IML of BP (n).

Hence BP (n) ∈ Γa,0(V4) for n ≡ 0 (mod 3).

Theorem 2.4.30. The graph Cn � Cm ∈ Γ(V4) for m even.

Proof. Let V (Cn) = {v1, v2, v3, . . . , vn} and {ui1, ui2, ui3, . . . , uim} be the vertex

set of ith copy of Cm, for i = 1, 2, 3, . . . , n. Suppose m is an even integer. Define

f : V (Cn � Cm)→ V4 as,

f(v) =

 0 if v = vi, for all i

a if v = uij for all i, j.

Then we can easily prove that f is an IML of Cn � Cm.

Hence the proof.
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From the proof of the above theorem we have the following corollary.

Corollary 2.4.31. The graph Cn � Cm ∈ Γa,0(V4) for m even.
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Chapter 3
Induced V4-Magic Labeling of Path and

Star Related Graphs

The first section of this chapter defines some path and star

related graphs. In the second section, we discuss induced V4-

magic labeling of path related graphs and in the last section

we deal with induced V4-magic labeling of some star related

graphs.

3.1 Introduction

Definition 3.1.1. The corona Pn �K1 is called the comb graph CBn.

Definition 3.1.2. [8] A triangular snake graph TSn is obtained from a path

v1, v2, v3, . . . , vn by joining vi and vi+1 to a new vertex wi for i = 1, 2, 3, . . . , n−1.

Definition 3.1.3. [8] A double triangular snake graph DTSn consists of two

triangular snake graphs that have a common path. That is, a double triangular

1This chapter has been published in South East Asian Journal of Mathematics and Math-
ematical Sciences, Volume 16, No. 2, 89-102, (2020).
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snake is obtained from a path v1, v2, v3, . . . , vn by joining vi and vi+1 to a new

vertex wi for i = 1, 2, 3, . . . , n−1 and to a new vertex ui for i = 1, 2, 3, . . . , n−1.

Definition 3.1.4. [14] An open ladder graph O(Ln), n ≥ 2 is obtained from

two paths of length n − 1 with V (G) = {ui, vi : 1 ≤ i ≤ n} and E(G) =

{uiui+1, vivi+1 : 1 ≤ i ≤ n− 1} ∪ {uivi : 2 ≤ i ≤ n− 1}.

Definition 3.1.5. [19] Given k natural numbers a1, a2, a3, . . . , ak. If we connect

the two vertices of N2 = {u, v} by k parallel paths of length a1, a2, a3, . . . , ak

then the resulting graph is called the generalized theta graph and is denoted by

Θ(a1, a2, a3, . . . , ak).

Definition 3.1.6. [20] The book graph Bn is the graph K1,n�P2, where K1,n is

the star with n edges.

Definition 3.1.7. The bistar Bm,n is the graph obtained by joining the central

or apex vertex of K1,m and K1,n by an edge.

Definition 3.1.8. [8] Let < K1,n : m > denote the graph obtained by taking m

disjoint copies of K1,n and joining a new vertex to the centers of the m copies of

K1,n.

Definition 3.1.9. [8] The (n, k)-banana tree Bt(n, k) is the graph obtained by

starting with n number of k−stars and connecting one end vertex from each to

a new vertex.

Definition 3.1.10. The graph obtained by attaching central vertices (or apex)

of n−copies of K1,n by a unique vertex u by n distinct edges is denoted by K∗1,n.

Definition 3.1.11. [25] The windmill graph K
(n)
m is the graph consisting of n

copies of the complete graph Km with a vertex in common.
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3.2 Path Related Graphs

Theorem 3.2.1. Pn ∈ Γ(V4) if and only if n ≡ 0 (mod 3).

Proof. Consider the path Pn with vertex set V = {v1, v2, v3, . . . , vn−1, vn}, where

n ≡ 0 (mod 3). Define f : V (Pn)→ V4 as :

f(vi) =

 a if i ≡ 0, 1 (mod 3)

0 if i ≡ 2 (mod 3).

Then, f is an induced magic labeling of Pn. Hence Pn ∈ Γ(V4). Conversely, if

n 6≡ 0 (mod 3) then by the Theorem 2.2.5 Pn /∈ Γ(V4).

From the proof of the above theorem, we have the following corollary.

Corollary 3.2.2. Pn ∈ Γa,0(V4) if and only if n ≡ 0 (mod 3).

Theorem 3.2.3. The comb graph CBn /∈ Γ(V4) for any n.

Proof. Let {ui, vi : 1 ≤ i ≤ n} be the vertex set of CBn, where vi(1 ≤ i ≤ n) are

the pendant vertices adjacent to ui(1 ≤ i ≤ n). If possible, suppose f is an IML

of the graph CBn. Then from the induced degree sum equation of the vertices vi

and ui, we have f(ui) = f(vi) = 0. That is f ≡ 0, which is a contradiction.

Theorem 3.2.4. The triangular snake graph TSn ∈ Γ(V4) for all n.

Proof. Let V (TSn) = {v1, v2, v3, . . . , vn, w1, w2, w3, . . . , wn−1}, where v1, v2, v3,

. . . , vn are the vertices of corresponding path Pn and f be an IML of TSn with

f(vi) = xi and f(wj) = yj. Then the vertices vi and wj must satisfy the induced

degree sum equation.

Note that the induced degree sum equation of vi gives the following system of
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equations.

x1 + x2 + y1 = 0

x1 + x2 + x3 + y1 + y2 = 0

x2 + x3 + x4 + y2 + y3 = 0

...

xn−2 + xn−1 + xn + yn−2 + yn−1 = 0

xn−1 + xn + yn−1 = 0.

Similarly the induced degree sum equation of wj gives the following system of

equations.

x1 + x2 + y1 = 0

x2 + x3 + y2 = 0

x3 + x4 + y3 = 0

...

xn−2 + xn−1 + yn−2 = 0

xn−1 + xn + yn−1 = 0.

By substituting the second system in the first system of equations, we get

x1 + x2 + y1 = 0

x1 + y1 = 0

x2 + y2 = 0

...

xn−2 + yn−2 = 0

xn−1 + xn + yn−1 = 0.
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From the above two system of equations, one can easily conclude that

x1 = y1

x2 = x3 = x4 = · · · = xn−1 = 0

y2 = y3 = y4 = · · · = yn−2 = 0

xn = yn−1.

Thus to get an IML of TSn, we need to define f : V (TSn)→ V4 as follows:

f(v) =



a if v = v1, w1

0 if v = vi, for i = 2, 3, 4, . . . , n− 1

0 if v = wj, for j = 2, 3, 4, . . . , n− 2

b if v = vn, wn−1.

Hence the proof.

Corollary 3.2.5. The triangular snake graph TSn ∈ Γa,0(V4) for all n.

Proof. Let V (TSn) = {v1, v2, v3, . . . , vn, w1, w2, w3, . . . , wn−1}, where v1, v2, v3, . . . ,

vn are the vertices of corresponding path Pn. Define f : V (TSn)→ V4 as follows.

f(v) =



a if v = v1, w1

0 if v = vi, for i = 2, 3, 4, . . . , n− 1

0 if v = wj, for j = 2, 3, 4, . . . , n− 2

a if v = vn, wn−1.

Then from Theorem 3.2.4, f is an IML of TSn. Hence the corollary follows.

Theorem 3.2.6. The double triangular snake graph DTSn ∈ Γ(V4) if and only

if n ≡ 0 (mod 3).

Proof. Consider a double triangular snake graph DTSn with vertex set {v1, v2, v3,
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. . . , vn, w1, w2, w3, . . . , wn−1, u1, u2, u3, . . . , un−1}, where v1, v2, v3, . . . , vn are the

vertices of corresponding path Pn and wi, ui are the vertices attached to vi and

vi+1 for i = 1, 2, ..., n−1. Suppose n ≡ 0 (mod 3) that is n = 3k, for some integer

k. Then define g : V (DTSn)→ V4 as:

g(v) =



0 if v = v2, v5, v8, . . . , vn−4, vn−1

a if v = v1, v3, v4, v6, v7, . . . , vn−3, vn−2, vn

0 if v = w3j, for j = 1, 2, 3, . . . , k − 1

a if v = w1, w2, w4, w5, w7, . . . , wn−2, wn−1

0 if v = u3j, for j = 1, 2, 3, . . . , k − 1

a if v = u1, u2, u4, u5, u7, . . . , un−2, un−1.

Then we can easily prove that g is an IML of DTSn.

Conversely, suppose that n = 3k+1 or n = 3k+2 for some integer k. If possible,

suppose f is an IML of DTSn. Then from the induced degree sum equation of

the vertices vi, we have the following system of equations.

f(v2) + f(u1) + f(w1) = 0

f(v1) + f(v2) + f(v3) + f(u1) + f(u2) + f(w1) + f(w2) = 0

f(v2) + f(v3) + f(v4) + f(u2) + f(u3) + f(w2) + f(w3) = 0

f(v3) + f(v4) + f(v5) + f(u3) + f(u4) + f(w3) + f(w4) = 0

...

f(vn−2) + f(vn−1) + f(vn) + f(un−2) + f(un−1) + f(wn−2) + f(wn−1) = 0

f(vn−1) + f(un−1) + f(wn−1) = 0.

Similarly from the induced degree sum equation of ui and wi, we get the following

system of equations:

f(u1) + f(v1) + f(v2) = 0
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f(u2) + f(v2) + f(v3) = 0

f(u3) + f(v3) + f(v4) = 0

...

f(un−1) + f(vn−1) + f(vn) = 0.

and

f(w1) + f(v1) + f(v2) = 0

f(w2) + f(v2) + f(v3) = 0

f(w3) + f(v3) + f(v4) = 0

...

f(wn−1) + f(vn−1) + f(vn) = 0.

By comparing the induced degree sum equations of ui and wi, we get f(ui) =

f(wi), for i = 1, 2, 3, . . . , n − 1. Using this in the induced degree sum equations

of vi, we get

f(v2) = 0

f(v1) + f(v2) + f(v3) = 0

f(v2) + f(v3) + f(v4) = 0

f(v3) + f(v4) + f(v5) = 0

...

f(vn−2) + f(vn−1) + f(vn) = 0

f(vn−1) = 0.

By solving this, we get f(v2) = f(v5) = f(v8) = · · · = 0, f(vn−1) = f(vn−4) =

f(vn−7) = · · · = 0, f(v1) = f(v3) = f(v4) = f(v6) = f(v7) = · · · and f(vn) =
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Figure 3.1: Double triangular snake graph DTS6

f(vn−2) = f(vn−3) = f(vn−5) = f(vn−6) = · · · . By substituting this in the

induced degree sum equation of wi, we get f(w3) = f(w6) = f(w9) = · · · =

0, f(wn−3) = f(wn−6) = f(wn−9) = · · · = 0 and f(w1) = f(w2) = f(w4) =

f(w5) = · · · , f(wn−1) = f(wn−2) = f(wn−4) = f(wn−5) = · · · .

Case 1 : n = 3k + 1 for some integer k.

In this case, the above conclusion of the system of equations become

f(v2) = f(v5) = f(v8) = · · · = f(vn−2) = 0 and f(vn−1) = f(vn−4) =

f(vn−7) = · · · = f(v3) = 0, f(v1) = f(v3) = f(v4) = f(v6) = f(v7) = · · · =

f(vn−1) = f(vn) and f(vn) = f(vn−2) = f(vn−3) = f(vn−5) = f(vn−6) =

· · · = f(v4) = f(v2) = f(v1). Thus f ≡ 0.

Case 2 : n = 3k + 2 for some integer k.

In this case, the above conclusion of the system of equations become

f(v2) = f(v5) = f(v8) = · · · = f(vn−3) = f(vn) = 0 and f(vn−1) =

f(vn−4) = f(vn−7) = · · · = f(v4) = f(v1) = 0, f(v1) = f(v3) = f(v4) =

f(v6) = f(v7) = · · · = f(vn−2) = f(vn−1) and f(vn) = f(vn−2) = f(vn−3) =

f(vn−5) = f(vn−6) = · · · = f(v3) = f(v2). Thus f ≡ 0.

Hence in both cases, we get f ≡ 0, which is a contradiction. Hence the proof.
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The Figure 3.1 represents a double triangular snake graph DTS6 with an

induced V4-magic labeling.

Corollary 3.2.7. The double triangular snake graph DTSn ∈ Γa,0(V4) if and

only if n ≡ 0 (mod 3).

Proof. Proof follows from Theorem 3.2.6.

Theorem 3.2.8. For n ≥ 2, the open ladder graph O(Ln) ∈ Γ(V4) for n ≡

0 (mod 3).

Proof. Consider an open ladder graph O(Ln), n ≥ 2, with the vertex set V (G) =

{ui, vi : 1 ≤ i ≤ n} and the edge set E(G) = {uiui+1, vivi+1 : 1 ≤ i ≤

n− 1} ∪ {uivi : 2 ≤ i ≤ n− 1}.

Then for n ≡ 0 (mod 3), define f : V (O(Ln))→ V4 as follows.

f(v) =


0 if v = u2, u5, u8, . . . , un−1

0 if v = v2, v5, v8, . . . , vn−1

a otherwise.

Then f is an IML of O(Ln). Hence the proof follows.

Corollary 3.2.9. For n ≥ 2, the open ladder graph O(Ln) ∈ Γa,0(V4) for n ≡

0 (mod 3).

Proof. Proof follows from Theorem 3.2.8.

Theorem 3.2.10. The generalized theta graph Θ(a1, a2, a3, . . . , ak) ∈ Γ(V4) for

k is odd and ai ≡ 2 (mod 3), for i = 1, 2, 3, . . . , k.

Proof. Suppose k is an odd integer and ai ≡ 2 (mod 3). Let {u, vi1, vi2, vi3, . . . ,

viai−1
, v} be the vertices of the ith path of length ai.
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Let f : V (Θ(a1, a2, a3, . . . , ak))→ V4 be defined by

f(v) =


a if v = u, v

a if v = vij, where j ≡ 0, 2 (mod 3)

0 if v = vij, where j ≡ 1 (mod 3).

Then f is an IML of Θ(a1, a2, a3, . . . , ak).

Hence Θ(a1, a2, a3, . . . , ak) ∈ Γ(V4) for ai ≡ 2 (mod 3) and k odd.

Theorem 3.2.11. The book Bn ∈ Γ(V4) for n even.

Proof. We have Bn = K1,n�P2. Let V (K1,n) = {u, u1, u2, u3, . . . , un}, where u

be the apex vertex and V (P2) = {v, w}. Then the vertex set of K1,n�P2 is given

by {uv, u1v, u2v, u3v, . . . , unv, uw, u1w, u2w, u3w, . . . , unw}. Suppose n is an even

integer.

Let f : V (Bn)→ V4 be defined by

f(v) =

 0 if v = uv, uw

a if v = uiv, uiw, for i = 1, 2, 3, . . . , n.

Then we can easily prove that f is an IML of Bn.

Hence Bn ∈ Γ(V4) for n even.

Theorem 3.2.12. The graph P2�Cn ∈ Γ(V4) for n ≡ 0 (mod 3).

Proof. Let V (P2) = {u, v} and V (Cn) = {u1, u2, u3, . . . , un}. Then the V (P2�Cn)

is given by {uu1, uu2, uu3, . . . , uun, vu1, vu2, vu3, . . . , vun}. Suppose n ≡ 0 (mod 3).

Let f : V (P2�Cn)→ V4 be defined by

f(v) =


a if v = uui, vui, where i ≡ 0 (mod 3)

b if v = uui, vui, where i ≡ 1 (mod 3)

c if v = uui, vui, where i ≡ 2 (mod 3).
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Then f is an IML of P2�Cn.

Hence P2�Cn ∈ Γ(V4) for n ≡ 0 (mod 3).

Corollary 3.2.13. The graph P2�Cn ∈ Γa,0(V4) for n ≡ 0 (mod 3).

Proof. Let V (P2) = {u, v} and V (Cn) = {u1, u2, u3, . . . , un}. Then the V (P2�Cn)

is given by {uu1, uu2, uu3, . . . , uun, vu1, vu2, vu3, . . . , vun}. Suppose n ≡ 0 (mod 3).

Let f : V (P2�Cn)→ V4 be defined by

f(v) =


a if v = uui, vui, where i ≡ 0 (mod 3)

0 if v = uui, vui, where i ≡ 1 (mod 3)

a if v = uui, vui, where i ≡ 2 (mod 3).

Then one can easily verify that f is an IML of P2�Cn.

Hence P2�Cn ∈ Γa,0(V4) for n even.

Theorem 3.2.14. The graph Pn �K2 ∈ Γ(V4) for all n.

Proof. Let V (Pn) = {v1, v2, v3, . . . , vn} and {ui, wi} be the vertex set of ith copy

of K2, for i = 1, 2, 3, . . . , n.

Define f : V (Pn �K2)→ V4 by

f(v) =

 0 if v = vi, i = 1, 2, 3, . . . , n

a if v = ui, wi, i = 1, 2, 3, . . . , n.

Then we can prove that f is an IML of Pn �K2.

Hence Pn �K2 ∈ Γ(V4) for all n.

From the proof of above theorem we have the following corollary.

Corollary 3.2.15. The graph Pn �K2 ∈ Γa,0(V4) for all n.

Theorem 3.2.16. The graph Pn �K2 ∈ Γ(V4) for all n.
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Proof. Let V (Pn) = {v1, v2, v3, . . . , vn} and {ui, wi} be the vertex set of ith copy

of K2, for i = 1, 2, 3, . . . , n.

Define f : V (Pn �K2)→ V4 by

f(v) =

 0 if v = vi, i = 1, 2, 3, . . . , n

a if v = ui, wi, i = 1, 2, 3, . . . , n.

Then f is an IML of Pn �K2.

Hence Pn �K2 ∈ Γ(V4) for all n.

From the proof of above theorem we have the following corollary.

Corollary 3.2.17. The graph Pn �K2 ∈ Γa,0(V4) for all n.

Theorem 3.2.18. The graph Pn �Km ∈ Γ(V4) for all n and m.

Proof. Let V (Pn) = {v1, v2, v3, . . . , vn} and {ui1, ui2, ui3, . . . , uim} be the vertex

set of ith copy of Km, for i = 1, 2, 3, . . . , n.

Case 1: m is an even integer.

In this case, define f : V (Pn �Km)→ V4 by

f(v) =

 0 if v = vi, i = 1, 2, 3, . . . , n

a if v = uij, for all i, j.

Case 2: m is an odd integer.

In this case, define f : V (Pn �Km)→ V4 by

f(v) =


0 if v = vi, for i = 1, 2, 3, . . . , n

0 if v = ui1, for all i

a if v = uij, for all i, j = 2, 3, 4, . . . ,m.
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Then in both cases, we can prove that f is an IML of Pn �Km.

Hence Pn �Km ∈ Γ(V4) for all n and m.

From the proof of above theorem we have the following corollary.

Corollary 3.2.19. The graph Pn �Km ∈ Γa,0(V4) for all n and m.

3.3 Star Related Graphs

Theorem 3.3.1. The complete graph Kn ∈ Γ(V4) if and only if n is odd.

Proof. Let V (Kn) = {v1, v2, v3, . . . , vn}. Suppose n is odd.

Define f : V (Kn)→ V4 as :

f(vi) =

 0 if i = 1

a if i = 2, 3, 4, . . . , n.

Then, f is an induced magic labeling of Kn. Conversely, suppose n is an even

number. Then deg (vi) = n− 1 is an odd number. Therefore by Theorem 2.3.1,

we have f is an induced magic label if and only if f satisfies the following system

equations:

f(v2) + f(v3) + f(v4) + · · ·+ f(vn−1) + f(vn) = 0

f(v1) + f(v3) + f(v4) + · · ·+ f(vn−1) + f(vn) = 0

f(v1) + f(v2) + f(v4) + · · ·+ f(vn−1) + f(vn) = 0

...

f(v1) + f(v2) + f(v3) + · · ·+ f(vn−2) + f(vn) = 0

f(v1) + f(v2) + f(v3) + · · ·+ f(vn−2) + f(vn−1) = 0.
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Note that the above system of equations imply f(v1) = f(v2) = f(v3) = · · · =

f(vn) and which again implies that (n − 1)f(v1) = 0. That is f(v1) = 0. Thus

f ≡ 0, which is a contradiction.

The following corollary follows directly from the proof of Theorem 3.3.1.

Corollary 3.3.2. Kn ∈ Γa,0(V4) if and only if n is odd.

Theorem 3.3.3. For m,n > 1, the complete bipartite graph Km,n ∈ Γ(V4) if and

only if either m or n is odd.

Proof. Let V (Km,n) = {v1, v2, v3, . . . , vm, u1, u2, u3, . . . , un}, where viuj ∈ E(Km,n)

for i = 1, 2, 3, . . . ,m, and j = 1, 2, 3, . . . , n.

Case 1: m and n are odd.

In this case, we define f : V (Km,n)→ V4 as follows:

f(v) =


0 if v = v1, u1

a if v = v2, v3, v4, . . . , vm

b if v = u2, u3, u4, . . . , un.

Case 2: m is odd and n is even.

In this case, we define g : V (Km,n)→ V4 as follows:

g(v) =

 0 if v = v1, v2, v3, . . . , vm

a if v = u1, u2, u3, . . . , un.

Case 3: m is even and n is odd.

In this case, we define h : V (Km,n)→ V4 as follows:

h(v) =

 a if v = v1, v2, v3, . . . , vm

0 if v = u1, u2, u3, . . . , un.
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Then in each case, we can easily verify that the vertex labeling f, g and h

are induced magic labeling of Km,n. Thus Km,n ∈ Γ(V4) if either m or n is

odd.

Now consider the following case:

Case 4: m and n are even.

If possible, suppose f : V (Km,n)→ V4 is an induced magic labeling of Km,n.

Then by Theorem 2.3.1 f must satisfy the following system of equations:

f(vi) +
n∑
k=1

f(uk) = 0 for i = 1, 2, 3, . . . ,m. (3.1)

f(uj) +
m∑
k=1

f(vk) = 0 for j = 1, 2, 3, . . . , n. (3.2)

Note that the above equations in (3.1) imply that f(v1) = f(v2) = f(v3) =

· · · = f(vn) and the equations in (3.2) imply that f(u1) = f(u2) = f(u3) =

· · · = f(un). Thus the above system reduces to:

f(v1) + nf(u1) = 0

mf(v1) + f(u1) = 0.

Since both m and n are even the above system implies that f(v1) = f(u1) =

0. Thus f ≡ 0 and which is a contradiction to our assumption. Hence in

this case, Km,n /∈ Γ(V4).

Corollary 3.3.4. For n > 1, the star graph K1,n ∈ Γ(V4).

Proof. Let V (K1,n) = {v, v1, v2, v3, . . . , vn}, where vvi ∈ E(K1,n), for i = 1, 2, 3,

. . . , n.
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Case 1: n is an even integer.

In this case, we define f : V (K1,n)→ V4 as follows:

f(u) =

 0 if u = v

a if u = v1, v2, v3, . . . , vn.

Case 2: n is an odd integer.

In this case, define g : V (K1,n)→ V4 as follows:

g(u) =

 0 if u = v, v1

a if u = v2, v3, v4, . . . , vn.

Then in each case, we can easily verify that the vertex labeling f and g are

induced magic labeling of K1,n. Thus K1,n ∈ Γ(V4). for all n > 1.

Corollary 3.3.5. For n > 1, K1,n ∈ Γa,0(V4).

Theorem 3.3.6. For the bistar Bm,n ∈ Γ(V4) for all m and n with m+ n > 2.

Proof. Let V (Bm,n) = {u, v, v1, v2, v3, . . . , vm, u1, u2, u3, . . . , un}, where uv, vvi,

uuj ∈ E(Bm,n) for i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n.

Case 1: m and n are even.

In this case, we define f : V (Bm,n)→ V4 as follows:

f(w) =


0 if w = v, u

a if w = v1, v2, v3, . . . , vm

b if w = u1, u2, u3, . . . , un

Case 2: m is odd and n is even.

In this case, we define g : V (Bm,n)→ V4 as follows:

58



3.3. Star Related Graphs

g(w) =


0 if w = v, u, v1

a if w = v2, v3, v4, . . . , vm

b if w = u1, u2, u3, . . . , un.

Case 3: m is even and n is odd.

In this case, we define h : V (Bm,n)→ V4 as follows:

h(w) =


0 if w = v, u, u1

a if w = v1, v2, v3, . . . , vm

b if w = u2, u3, u4, . . . , un.

Case 4: m and n are odd.

In this case, we define k : V (Bm,n)→ V4 as follows:

k(w) =


0 if w = v, u, v1, u1

a if w = v2, v3, v4, . . . , vm

b if w = u2, u3, u4, . . . , un.

Then in each case, we can easily verify that the vertex labeling f, g, h and k are

induced magic labeling of Bm,n. Thus Bm,n ∈ Γ(V4), for all m and n.

Corollary 3.3.7. For the bistar Bm,n ∈ Γa,0(V4) for all m and n with m+n > 2.

Proof. Let V (Bm,n) = {u, v, v1, v2, v3, . . . , vm, u1, u2, u3, . . . , un}, where uv, vvi,

uuj ∈ E(Bm,n) for i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n.

Case 1: m and n are even.

In this case, define f : V (Bm,n)→ V4 as follows:

f(w) =

 0 if w = v, u

a if w = vi, uj, i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n.
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Case 2: m is odd and n is even.

In this case, define g : V (Bm,n)→ V4 as follows:

g(w) =

 0 if w = v, u, v1

a if w = vi, uj, i = 2, 3, . . . ,m, j = 1, 2, 3, . . . , n.

Case 3: m is even and n is odd.

In this case, we define h : V (Bm,n)→ V4 as follows

h(w) =

 0 if w = v, u, u1

a if w = vi, uj, i = 1, 2, 3, . . . ,m, j = 2, 3, . . . , n.

Case 4: m and n are odd.

In this case, we define k : V (Bm,n)→ V4 as follows

k(w) =

 0 if w = v, u, v1, u1

a if w = vi, uj, i = 2, 3, . . . ,m, j = 2, 3, . . . , n.

Then in each case, we can easily verify that the vertex labeling f, g, h and k are

induced magic labeling of Bm,n. Thus Bm,n ∈ Γa,0(V4), for all m and n.

Theorem 3.3.8. The graph < K1,n : m >∈ Γ(V4) for all m,n.

Proof. Consider the graph < K1,n : m > with {vi, vij : 1 ≤ j ≤ n} as the vertex

set of ith copy of K1,n with central vertex vi for i = 1, 2, 3, . . . ,m and let v be the

unique vertex adjacent to the central vertices vi in < K1,n : m > . Then define

f : V (< K1,n : m >)→ V4 as follows:

Case 1: m and n are odd.

In this case define f as
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f(u) =


a if u = v

a if u = vij, i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n

0 if u = vi, i = 1, 2, 3, . . . ,m.

Case 2: m is odd and n is even.

In this case define f as

f(u) =



a if u = v

0 if u = vi1

a if u = vij, i = 1, 2, 3, . . . ,m, j = 2, 3, 4, . . . , n

0 if u = vi, i = 1, 2, 3, . . . ,m.

Case 3: m is even and n is odd.

In this case define f as

f(u) =



0 if u = v

0 if u = vi1

a if u = vij, i = 1, 2, 3, . . . ,m j = 2, 3, 4, . . . , n

0 if u = vi, i = 1, 2, 3, . . . ,m.

Case 4: m and n are even.

In this case define f as

f(u) =


0 if u = v

a if u = vij, i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n

0 if u = vi, i = 1, 2, 3, . . . ,m.

Then one can easily verify that the vertex label f defined in all four cases are

IML of < K1,n : m > .

Hence the proof.
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From the proof of above theorem we have the following corollary.

Corollary 3.3.9. The graph < K1,n : m >∈ Γa,0(V4) for all m,n.

Theorem 3.3.10. The (n, k)-banana tree Bt(n, k) ∈ Γ(V4) for all n and k.

Proof. Consider the graph Bt(n, k). Let V [Bt(n, k)]={v, vi, vij : 1 ≤ i ≤ n , 1 ≤

j ≤ k} and E[Bt(n, k)]={vvi1, vivij} : 1 ≤ i ≤ n, 1 ≤ j ≤ k}.

Case 1 : k is an odd integer.

In this case, define f : (V (Bt(n, k)))→ V4 by

f(u) =


0 if u = v, vi, for i = 1, 2, 3, . . . , n

0 if u = vi1, for i = 1, 2, 3, . . . , n

a if u = vij, for i = 1, 2, 3, . . . , n, j = 2, 3, 4, . . . , k.

Case 2 : k is an even integer.

In this case, define f : (V (Bt(n, k)))→ V4 by

f(u) =


0 if u = v, vi, for i = 1, 2, 3, . . . , n

0 if u = vi1, vi2, for i = 1, 2, 3, . . . , n

a if u = vij, for i = 1, 2, 3, . . . n, j = 3, 4, . . . , k.

In both cases, we can easily verify that f is an IML of Bt(n, k). Hence the

proof.

Theorem 3.3.11. K∗1,n ∈ Γ(V4) for all n.

Proof. Let {vi, vi1, vi2, vi3, . . . , vin} be the vertex set of ith copy of K1,n, for i =

1, 2, 3, . . . , n with vi as the central vertex. Also suppose each vi is attached to a

vertex u by n distinct edges. Let f : V (K∗1,n)→ V4.
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Case 1: n is an even integer.

In this case, define f as:

f(v) =

 0 if v = u, vi

a if v = vij, for all i, j.

Case 2: n is an odd integer.

In this case, define f as:

f(v) =


0 if v = u, vi

0 if v = vi1, for i = 1, 2, 3, . . . , n

a if v = vij, for all i, j = 2, 3, 4, . . . , n.

Then we can easily verify that f is an IML of K∗1,n. Thus K∗1,n ∈ Γ(V4) for all n.

Hence the proof.

Theorem 3.3.12. K
(n)
m ∈ Γ(V4) for all m and n..

Proof. Let {u, ui,1, ui,2, ui,3, . . . , ui,(m−1)} be the vertex set of ith copy of Km in

K
(n)
m , for i = 1, 2, 3, . . . , n, where u is the common vertex.

Case (i) m is odd.

Suppose m is an odd integer. Let f : V (K
(n)
m )→ V4 be defined by

f(v) =

 0 if v = u

a if v = ui,j for all i, j.

Then we can prove that f is an IML of K
(n)
m . Thus K

(n)
m ∈ Γ(V4) for m odd.

Case (ii) m and n are even.

Suppose m and n are even integers. Let f : V (K
(n)
m )→ V4 be defined by
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f(v) =

 0 if v = u

a if v = ui,j, for all i, j.

Then we can prove that f is an IML of K
(n)
m . Thus K

(n)
m ∈ Γ(V4) for m and

n are even.

Case (iii) m is even and n is odd.

Suppose m is even and n is odd. Let f : V (K
(n)
m )→ V4 be defined by

f(v) =


0 if v = u

0 if v = ui,j, for all i = 1, j = 1, 2, 3, . . . ,m− 1

a if v = ui,j, for all i = 2, 3, 4, . . . , n, j = 1, 2, 3, . . . ,m− 1.

Then we can prove that f is an IML of K
(n)
m . Thus K

(n)
m ∈ Γ(V4) for m is

even and n is odd.

Hence the proof.

From the proof of the above theorem we have the following corollary.

Corollary 3.3.13. K
(n)
m ∈ Γa,0(V4) for all m and n.
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Chapter 4
Induced V4-Magic Labeling of

Subdivision and Shadow Graphs

In this chapter, we discuss induced V4-magic labeling of subdi-

vision graphs and shadow graphs of some graph. The first sec-

tion gives an introduction about subdivision graphs and then

deals with the induced V4-magic labeling of subdivision graphs

of some general and special graphs. In the second section, we

prove a pretty theorem regarding shadow graph of a graph.

4.1 Subdivision Graphs

The subdivision of an edge e = uv in the graph G gives a new graph obtained

by replacing the edge e = uv by two edges e1 = uw and e2 = wv. A subdivision

of a graph G is a graph which is denoted by S(G) and is obtained from the

subdivision of all edges in G.

Theorem 4.1.1. Let G be a graph with every vertex is of odd degree, then S(G) ∈

Γ(V4).
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Proof. Let V (G) = {v1, v2, v3, . . . , vn} and {u1, u2, u3, . . . , um} be the newly in-

serted vertices in S(G). Let f : V (S(G))→ V4 be defined by

f(v) =

 a if v = vk, for k = 1, 2, 3, . . . , n

0 if v = uj, for j = 1, 2, 3, . . . ,m.

Then we have f ∗(ei) = a for all ei ∈ E(S(G)) therefore f ∗∗(vk) = deg (vk)a = a,

since deg (vk) is odd. Also f ∗∗(uj) = f ∗(vαuj) + f ∗(vβuj) = a+ a = 0, where uj

is inserted in the edge vαvβ. Thus f ≡ f ∗∗. That is f is an IML of S(G). Hence

the proof.

From the proof of the above theorem, we have the following corollary.

Corollary 4.1.2. Let G be a graph with every vertex is of odd degree, then

S(G) ∈ Γa,0(V4).

Theorem 4.1.3. S(Cn) ∈ Γ(V4) if and only if n ≡ 0 (mod 3).

Proof. From Theorem 2.4.1, we know that Cn ∈ Γ(V4) if and only if n ≡

0 (mod 3). Also we have S(Cn) = C2n. Thus S(Cn) = C2n ∈ Γ(V4) if and

only if 2n ≡ 0 (mod 3), that is if and only if n ≡ 0 (mod 3). Hence the proof.

Theorem 4.1.4. S(Pn) ∈ Γ(V4) if and only if 2n ≡ 1 (mod 3).

Proof. We know that S(Pn) = P2n−1 and Pn ∈ Γ(V4) if and only if n ≡ 0 (mod 3).

Therefore S(Pn) = P2n−1 ∈ Γ(V4) if and only if 2n ≡ 1 (mod 3). Hence the

proof.

Theorem 4.1.5. S(Kn) ∈ Γ(V4) for n is even.

Proof. Suppose n is even. Then consider the complete graph Kn. Since n is

even, every vertex of Kn is of odd degree. Therefore by Theorem 4.1.1, we have

S(Kn) ∈ Γ(V4).
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Corollary 4.1.6. S(Kn) ∈ Γa,0(V4) for n is even.

Theorem 4.1.7. S(Bm,n) ∈ Γ(V4) if and only if m and n are even.

Proof. Suppose m and n are even. Consider the bistar graph Bm,n with vertex set

V (Bm,n) = {u, v, vi, uj : i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n}, where uv, vvi, uuj ∈

E(Bm,n) for i = 1, 2, 3, . . . ,m, and j = 1, 2, 3, . . . , n. Also let {v′, v′i, u′j : i =

1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n} be the inserted vertices in S(Bm,n) corresponding

to the edges uv, vvi and uuj respectively. Define f : V (S(Bm,n))→ V4 as :

f(w) =

 a if w = v, u, vi, uj

0 if w = v′, v′i, u
′
j.

Then f is an IML of S(Bm,n) and thus for m and n are even, S(Bm,n) ∈ Γ(V4).

Conversely, suppose that either m or n is odd and f is an IML of S(Bm,n).

Then by the induced degree sum theorem, f must satisfy the following system

of equations.

f(v′i) = 0 (4.1)

f(u′j) = 0 (4.2)

f(vi) + f(v) = 0 (4.3)

f(uj) + f(u) = 0 (4.4)

mf(v) + f(v′) = 0 (4.5)

nf(u) + f(v′) = 0 (4.6)

f(v) + f(u) + f(v′) = 0. (4.7)

From the above system of equations, (4.3) and (4.4) imply that f(vi) = f(v),

f(uj) = f(u), for i = 1, 2, 3, . . .m, and j = 1, 2, 3, . . . , n. Then consider the

following cases:
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Case 1: m and n are odd.

In this case, the Equations (4.5), (4.6) and (4.7) in the above system of

equations reduces to

f(v) + f(v′) = 0

f(u) + f(v′) = 0

f(v) + f(u) + f(v′) = 0.

Above three equations imply that f(v) = f(u) = f(v′) = 0. That is f ≡ 0,

which is a contradiction.

Case 2: m is odd and n is even.

In this case, the Equations (4.5), (4.6) and (4.7) in the above system of

equations reduces to

f(v) + f(v′) = 0

f(v′) = 0

f(v) + f(u) + f(v′) = 0.

These equations imply that f(v) = 0, therefore f(u) = 0. That is f ≡ 0,

which is a contradiction.

Case 3: m is even and n is odd.

In this case, the Equations (4.5), (4.6) and (4.7) in the above system of

equations reduces to

f(v′) = 0

f(u) + f(v′) = 0

f(v) + f(u) + f(v′) = 0.
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These equations imply that f(u) = 0, therefore f(v) = 0. That is f ≡ 0,

which is a contradiction.

Thus from the above three cases, we get, there exists no such IML for S(Bm,n).

Hence S(Bm,n) ∈ Γ(V4) if and only if m and n are even.

Corollary 4.1.8. Let S(Bm,n) ∈ Γa,0(V4) if and only if m and n are even.

Theorem 4.1.9. For the complete graph Km,n we have, S(Km,n) ∈ Γ(V4) for m

and n are odd.

Proof. Suppose m and n are odd. Since m and n are odd, every vertex of Km,n

is of odd degree. Therefore by Theorem 4.1.1, we have S(Km,n) ∈ Γ(V4).

Corollary 4.1.10. S(Km,n) ∈ Γa,0(V4) for m and n are odd.

Theorem 4.1.11. S(K1,n) ∈ Γ(V4) if and only if n is odd.

Proof. Let V (K1,n) = {v, uj : j = 1, 2, 3, . . . , n}, where vuj ∈ E(K1,n) for j =

1, 2, 3, . . . , n and let {vj : j = 1, 2, 3, . . . , n} be the inserted vertices in S(Kn)

corresponding to the edge vuj. Suppose n is odd, then define f : V (S(K1,n))→ V4

as

f(w) =

 a if w = v, uj

0 if w = vj.

Then f gives an IML for S(K1,n).

Conversely, suppose that n is even and f is an IML of S(K1,n). Then by the

induced degree sum equation of the vertices uj, vj and v the vertex labeling

function f must satisfies the following system of equations:

f(vj) = 0 (4.8)

f(v) + f(uj) = 0 (4.9)

(n− 1)f(v) = 0. (4.10)
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Since n is even, the Equation (4.10) implies that f(v) = 0. Therefore f(uj) = 0.

Thus f ≡ 0, which is a contradiction. Hence the proof.

Corollary 4.1.12. S(K1,n) ∈ Γa,0(V4)if and only if n is odd.

Theorem 4.1.13. The subdivision of wheel graph, S(Wn) ∈ Γ(V4) for n is odd.

Proof. Let V (Wn) = {w, v1, v2, v3, . . . , vn}, where w is the central vertex of Wn.

Let wi be the inserted vertices on the edge wvi and ui be the inserted vertices

on the edge vivi+1, for i = 1, 2, 3, . . . , n, where i+ 1 is taken modulo n.

Then for n odd, define f : V (S(Wn))→ V4 as

f(u) =

 a if u = w, vi

0 if u = ui, wi.

Then, since every vertex is of odd degree, by the Theorem 4.1.1, f is an IML of

S(Wn). Hence the proof.

Theorem 4.1.14. The subdivision of helm graph, S(Hn) ∈ Γ(V4) for n even.

Proof. Let V (Hn) = {w, v1, v2, v3, . . . , vn, w1, w2, w3, . . . , wn}, where w be the

central vertex and w1, w2, w3, . . . , wn be the pendant vertices adjacent to v1, v2, v3,

. . . , vn. Let (βi, 1 ≤ i ≤ n) be the inserted vertices on the edge (wvi, 1 ≤ i ≤

n), (ui, 1 ≤ i ≤ n) be the inserted vertices on the edge (vivi+1, 1 ≤ i ≤ n)

and (αi, 1 ≤ i ≤ n) be the inserted vertices on the edge (viwi, 1 ≤ i ≤ n).

Then for n even, define f : V (S(Hn))→ V4 as:

f(u) =

 a if u = vi, wi, βi

0 if u = w, ui, αi.

Then we can easily prove that f is an IML of S(Hn).

Hence the proof.
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Theorem 4.1.15. The subdivision of comb graph, S(CBn) ∈ Γ(V4) if and only

if n is odd.

Proof. Let {ui, vi : i = 1, 2, 3, . . . , n} be the vertex set of CBn, where vi be the

pendant vertex adjacent to ui. Suppose wi and tj are inserted vertices on the

edge uivi and ujuj+1, for i = 1, 2, 3, . . . , n and j = i = 1, 2, 3, . . . , n− 1.

Suppose n is an odd number. Define f : V (S(CBn))→ V4 as:

f(v) =



0 if v = w1, w2, w3, . . . , wn

a if v = t1, t2, t3, . . . , tn−1

a if v = ui, vi, for i odd

0 if v = ui, vi, for i even.

Then f is an IML of S(CBn).

Conversely, suppose that n is an even number. If possible, suppose there

exists an IML for S(CBn) say g : V (S(CBn))→ V4.

Since vi is a pendant vertex of S(CBn) the induced degree sum equation of vi

gives: g(wi) = 0. Also the induced degree sum equation of wi gives:

g(ui) + g(vi) = 0 for i = 1, 2, 3, . . . , n.

Note that the above equation implies that g(ui) = g(vi) for i = 1, 2, 3, . . . , n

Also the induced degree sum equation of ui gives

g(t1) + g(u1) = 0

g(t1) + g(t2) = 0

g(t2) + g(t3) = 0

g(t3) + g(t4) = 0

...
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g(tn−2) + g(tn−1) = 0

g(tn−1) + g(un) = 0.

Similarly induced degree sum equation of tj gives

g(t1) + g(u1) + g(u2) = 0

g(t2) + g(u2) + g(u3) = 0

g(t3) + g(u3) + g(u4) = 0

...

g(tn−1) + g(un−1) + g(un) = 0.

Note that the induced degree sum equation of ui implies that

g(u1) = g(t1) = g(t2) = g(t3) = · · · = g(tn−1) = g(un). (4.11)

Since n is even, by substituting this in the induced degree sum equation of tj,

we get

g(u2) = g(u4) = g(u6) = · · · = g(un) = 0. (4.12)

By substituting g(un) = 0 in Equation (4.11), we get

g(u1) = g(t1) = g(t2) = g(t3) = · · · = g(tn−1) = g(un) = 0. (4.13)

Substituting Equation( 4.13) and Equation (4.12) in the induced degree sum

equation of tj, we get

g(u1) = g(u3) = g(u5) = · · · = g(un−1) = 0. (4.14)

Thus g ≡ 0, which is a contradiction to our assumption. Thus in this case,

72



4.1. Subdivision Graphs

0 a 0 a 0 aa

a 0 a 0 a 0 a

0 0 0 0 0 0 0

a a a a a a

Figure 4.1: Subdivision graph of CB7

S(CBn) /∈ Γ(V4). Hence the proof.

In the Figure 4.1 an induced V4-magic labeling of the graph S(CB7) is given.

Theorem 4.1.16. The subdivision of jelly fish graph S(J(m,n)) ∈ Γ(V4) for all

m and n.

Proof. Consider the jelly fish graph with V (J(m,n)) = {vk : k = 1, 2, 3, 4.} ∪

{ui : i = 1, 2, 3, . . . ,m} ∪ {wj : j = 1, 2, 3, . . . , n}, where v1, v2, v3, v4 are the

vertices corresponding to C4, ui, wj are the vertices corresponding to K1,m and

K1,n respectively and αi(1 ≤ i ≤ m), βj(1 ≤ j ≤ n) be the inserted vertices on

the edges v2ui, v4wj respectively. Also let α, β, γ, δ, σ be the vertices inserted on

the edges v1v2, v2v3, v3v4, v4v1, v1v3 respectively.

Case 1: m and n are odd.

In this case, Define f : V (S(J(m,n)))→ V4 as :

f(v) =

 a if v = v1, v2, v3, v4, ui, wj

0 if v = αi, βj, α, β, γ, δ, σ.

Case 2: (m and n even) or (m odd and n even) or (m even and n odd).

In this case, define f : V (S(J(m,n)))→ V4 as:
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f(v) =

 a if v = v1, v3, α, β, γ, δ,

0 if v = v2, v4, ui, wj, αi, βj, σ.

Then for all cases, we can prove that f is an IML of S(J(m,n)). Hence the proof.

Theorem 4.1.17. The subdivision of sunflower graph S(SFn) ∈ Γ(V4), for n is

odd.

Proof. Suppose the given sunflower graph is obtained by taking a wheel with the

central vertex v0 and the n−cycle v1, v2, v3, . . . , vn and the additional vertices

w1, w2, w3, . . . , wn, where wi is joined by edges to the vertices vi, vi+1, where i+1

is taken modulo n. Also let αi, βi, γi, δi be the inserted vertices on the edges

v0vi, vivi+,1, viwi, wivi+1 respectively, where i+ 1 is taken modulo n.

Suppose n is odd, then define f : V (S(SFn))→ V4 as :

f(v) =

 a if v = v0, vi, γi, δi for i = 1, 2, 3, . . . , n

0 if v = wi, αi, βi for i = 1, 2, 3, . . . , n.

Then we can easily prove that f is an induced V4 magic labeling of S(SFn).

Hence the proof.

Theorem 4.1.18. The subdivision of gear graph, S(Gn) ∈ Γ(V4) for n odd.

Proof. Let V (Gn) = {w, u1, u2, u3, . . . , un, v1, v2, v3, . . . , vn}, where w is the cen-

tral vertex u1, u2, u3, . . . , un are the vertices of the corresponding wheel graph Wn

and v1, v2, v3, . . . , vn are the remaining vertices with uivi, viui+1 ∈ E(Gn), where

i + 1 is taken modulo n. Also let wi, αi, βi be the inserted vertices on the edges

wui, uivi, viui+i, where i+ 1 is taken modulo n.

Suppose n is an odd integer. Define f : V (S(Gn))→ V4 as
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f(v) =

 a if v = w, ui, αi, βi for i = 1, 2, 3, . . . , n

0 if v = wi, vi for i = 1, 2, 3, . . . , n.

Then we can easily prove that f is an induced V4 magic labeling of S(Gn). Hence

the proof.

Theorem 4.1.19. The subdivision of flower graph, S(Fln) ∈ Γ(V4) for all n.

Proof. Let V (Fln) = {w, u1, u2, u3, . . . , un, v1, v2, v3, . . . , vn}, where w is the cen-

tral vertex u1, u2, u3, . . . , un are the pendant vertices of corresponding helm and

v1, v2, v3, . . . , vn are the vertices adjacent to the central vertex w. Also let αi, βi, γi

and δi be the inserted vertices on the edges wui, uivi, wvi and vivi+1 respectively,

for i = 1, 2, 3, . . . , n with i+ 1 is taken modulo n.

Case 1: n is an odd number.

In this case, define f : V (S(Fln))→ V4 as

f(v) =



a if v = αi, vi for i = 1, 2, 3, . . . , n

b if v = w, βi for i = 1, 2, 3, . . . , n

c if v = ui, γi for i = 1, 2, 3, . . . , n

0 if v = δi, for i = 1, 2, 3, . . . , n.

Case 2: n is an even number.

In this case, we define f : V (S(Fln))→ V4 as

f(v) =

 a if v = ui, vi, αi, γi for i = 1, 2, 3, . . . , n

0 if v = w, βi, δi for i = 1, 2, 3, . . . , n.

Then in both cases, we can easily verify that f is an induced V4 magic labeling

of S(Fln). Hence the proof.
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4.2 Shadow Graphs

Definition 4.2.1. The shadow graph Sh(G) of a connected graph G is con-

structed by taking 2 copies G1 and G2 of G and joining each vertex u in G1 to

the neighbours of the corresponding vertex v in G2.

Theorem 4.2.2. For any graph G, Sh(G) /∈ Γ(V4).

Proof. If possible, suppose f : V (Sh(G))→ V4 be an IML of Sh(G).

Suppose {v1, v2, v3, . . . , vn, u1, u2, u3, . . . , un} be the vertex set of Sh(G), where

ui is the corresponding vertex of vi in Sh(G), for i = 1, 2, 3, . . . , n. Then note

that if N(vi) = {vi1, vi2, vi3, . . . , vim} in the graph G, then N(vi) = N(ui) =

{vi1, vi2, vi3, . . . , vim, ui1, ui2, ui3, . . . , uim} in Sh(G). Then note that the induced

degree sum equation of the vertices vi and ui gives:

f(vi) +
m∑
j=1

f(vij) +
m∑
j=1

f(uij) = 0. (4.15)

f(ui) +
m∑
j=1

f(vij) +
m∑
j=1

f(uij) = 0. (4.16)

Equation (4.15) and Equation (4.16) imply that f(vi) = f(ui).

Since vi and ui are arbitrary vertices of Sh(G), we have f(vi) = f(ui), for all

i = 1, 2, 3, . . . , n.

Thus Equation (4.15) and Equation (4.16) imply that f(vi) = f(ui) = 0,

since f(vij) = f(uij).

Since vi and ui are arbitrary vertices of Sh(G), we have f(vi) = f(ui) = 0 for

all pairs of vertices vi and ui in Sh(G). Hence f ≡ 0, which is a contradiction.

This completes the proof.
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Chapter 5
Induced V4-magic Labeling of Middle

and Line Graphs

This chapter discusses the induced V4-magic labeling of middle

graph and line graph of some graphs. The first section gives

an introduction about middle graphs and then deals with the

induced V4-magic labeling of middle graphs. In the second sec-

tion, we discuss the basic idea about line graph of a graph and

the induced V4-magic labeling of line graphs of some graphs.

5.1 Middle Graphs

The concept of middle graph was introduced by J. Akiyama, T. Hamada and I.

Yoshimura [1] in 1974.

Definition 5.1.1. The middle graph of a graph G, denoted by M(G), is the

graph obtained from G by inserting a new vertex into every edge of G and by

joining those pairs of these new vertices with edges which lie on adjacent edges

1The first section of this chapter has been accepted for publication in the journal of Advances
and Applications in Discrete Mathematics.
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of G.

Theorem 5.1.2. Let G be graph with every vertex is of odd degree, then M(G) ∈

Γ(V4).

Proof. Let V (G) = {v1, v2, v3, . . . , vn} and {u1, u2, u3, . . . , um} be the inserted

vertices in M(G). Let f : V (M(G))→ V4 be defined by:

f(v) =

 a if v = vk, for k = 1, 2, 3, . . . , n

0 if v = uj, for j = 1, 2, 3, . . . ,m.

Then we have f ∗(e) = a for all e ∈ E(M(G)). Therefore f ∗∗(vk) = deg (vk)a = a

since deg (vk) is odd. Also f ∗∗(uj) = f ∗(vαuj)+f ∗(vβuj) = 0, where uj is inserted

on the edge vαvβ. Thus f ≡ f ∗∗. That is f is an IML of M(G).

This completes the proof.

Theorem 5.1.3. Let P2 be the path with 2 vertices, then M(P2) ∈ Γ(V4).

Proof. Consider P2, we have M(P2) = P3. Let V (M(P2)) = {u, v, w} with

E(M(P2)) = {uv, vw}. Define f : V (M(P2))→ V4 as

f(t) =

 a if t = u,w

0 if t = v

Then f ∗(uv) = a and f ∗(vw) = a, therefore f ∗∗(u) = a, f ∗∗(v) = a + a = 0

and f ∗∗(w) = a. Thus f ≡ f ∗∗. That is f is an IML of M(P2). Hence M(P2) ∈

Γ(V4).

Theorem 5.1.4. Let Pn be the path with n vertices, then M(Pn) /∈ Γ(V4) for

any n ≥ 3.

Proof. Suppose n ≥ 3. Let {v1, v2, v3, . . . , vn} be the vertex set of Pn and uj be

the inserted vertex on the edge vjvj+1 in M(Pn), for j = 1, 2, 3, . . . , n − 1. If
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possible, suppose f : V (M(Pn)) → V4 is an IML of M(Pn) with f(vk) = xk,

for k = 1, 2, 3, . . . , n and f(uj) = yj, for j = 1, 2, 3, . . . , n − 1. Then by the

induced degree sum equation of each vertex in M(Pn), we have the following set

of equations.

The induced degree sum equation of v1, v2, v3, . . . , vn in M(Pn), give

y1 = 0

y1 + y2 + x2 = 0

y2 + y3 + x3 = 0

y3 + y4 + x4 = 0

...

yn−3 + yn−2 + xn−2 = 0

yn−2 + yn−1 + xn−1 = 0

yn−1 = 0.

Similarly the induced degree sum equation of u1, u2, u3, . . . , un−1 in M(Pn), give

y2 + x1 + x2 = 0

y1 + y2 + y3 + x2 + x3 = 0

y2 + y3 + y4 + x3 + x4 = 0

y3 + y4 + y5 + x4 + x5 = 0

...

yn−3 + yn−2 + yn−1 + xn−2 + xn−1 = 0

yn−2 + xn−1 + xn = 0.

By substituting the first set of equation in the second, we get the following equa-

tions.
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y1 = 0

yn−1 = 0

yk + xk = 0, for k = 2, 3, 4, . . . , n− 1.

But these equations with first system of equations implies that yk = 0 for k =

2, 3, 4, . . . , n−2, thus xk = 0 also for k = 2, 3, . . . , n−1. Using these in the induced

degree sum equation of the vertices u1 and un−1, we get x1 = 0 and xn = 0. Thus

we have x1 = x2 = x3 = · · · = xn = 0 and y1 = y2 = y3 = · · · = yn−1 = 0.

That is f ≡ 0, which means our assumption that f is an IML is wrong. Hence

M(Pn) /∈ Γ(V4), for any n ≥ 3.

Theorem 5.1.5. For the star graph K1,n, M(K1,n) ∈ Γ(V4) if and only if n is

odd.

Proof. Consider the star graph K1,n, where n is an odd number. Then note that

each vertex of K1,n is of odd degree, then by Theorem 5.1.2, we get M(K1,n) ∈

Γ(V4).

Conversely, Suppose that n is an even number. Let {v, v1, v2, v3, . . . , vn} be

the vertex set of K1,n, with v as the central vertex v1, v2, v3, . . . , vn be the

pendant vertices and u1, u2, u3, . . . , un be the inserted vertices on the edges

vv1, vv2, vv3, . . . , vvn respectively in M(K1,n).

If possible, suppose f : V (M(K1,n)) → V4 is an IML with f(v) = x, f(vj) = xj

and f(uj) = yj for j = 1, 2, 3, . . . , n.

Then the induced degree sum equation of the vertices vj in M(K1,n), imply that

yj = 0.

Using the fact that yj = 0 in the induced degree sum equation of the vertices

uj and the vertex v in M(K1,n) we get x + xj = 0 and (n − 1)x = 0. But we
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have supposed that n is an even number, therefore the equation (n − 1)x = 0

reduces to x = 0, thus x + xj = 0 implies xj = 0. Thus we have f ≡ 0 and our

assumption that f is an IML is wrong. Therefore for n even, M(K1,n) /∈ Γ(V4).

Hence the proof.

a

a

a

a

a

a

0
0

0

0

0

Figure 5.1: Middle graph of K1,5

In the Figure 5.1 an induced V4-magic labeling of the graph M(K1,5) is given.

Theorem 5.1.6. For the bistar Bm,n, M(Bm,n) ∈ Γ(V4) if and only if m and n

are even.

Proof. Let {u, u1, u2, u3, . . . , um, v, v1, v2, v3, . . . , vn} be the vertex set of Bm,n

with edge set {uv, uui, vvj : i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n}. Let αi be

the inserted vertex on the edge uui, βj be the inserted vertex on the edge vvj and

α be the inserted vertex on the edge uv.

Suppose m and n are even, then we have every vertex of Bm,n is of odd degree,

therefore by Theorem 5.1.2, we get M(Bm,n) ∈ Γ(V4).
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To establish the converse part, suppose that both m and n are not even. If

possible, suppose f : V (M(Bm,n))→ V4 is an IML. Consider the induced degree

sum equation of each vertices in M(Bm,n). Since ui and vj are pendant vertices

of M(Bm,n), we get f(αi) = f(βj) = 0. Since f(αi) = f(βj) = 0, the induced

degree sum equation of αi, βj, u, v and α imply that:

f(u) + f(ui) + f(α) = 0 for i = 1, 2, 3, . . . ,m (5.1)

f(v) + f(vj) + f(α) = 0 for j = 1, 2, 3, . . . , n (5.2)

mf(u) + f(α) = 0 (5.3)

nf(v) + f(α) = 0 (5.4)

f(u) + f(v) + (m+ n− 1)f(α) = 0. (5.5)

Now suppose the following cases:

Case 1: m and n are odd.

Note that if m and n are odd, then Equations (5.3) and (5.4) reduce to

f(u) + f(α) = 0

f(v) + f(α) = 0.

That is f(u) = f(v) = f(α). Therefore, since m and n are odd Equation

(5.5) reduces to f(α) = 0. Therefore f(u) = f(v) = f(α) = 0. Thus

Equations (5.1) and (5.2) imply that f(ui) = f(vj) = 0. Hence in this case

f ≡ 0.

Case 2: m is odd and n is even.

Note that if m is odd and n is even, then the Equations (5.3) and (5.4)

reduce to
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f(u) + f(α) = 0

f(α) = 0.

That is f(u) = f(α) = 0. Therefore Equation (5.5) implies f(v) = 0. Thus

Equations (5.1) and (5.2) imply that f(ui) = f(vj) = 0. Hence in this case

f ≡ 0.

Case 3: m is even and n is odd.

Note that if m is even and n is odd, then Equations (5.3) and (5.4) reduce

to

f(α) = 0

f(v) + f(α) = 0.

That is f(v) = f(α) = 0. Therefore Equation (5.5) implies f(u) = 0. Thus

Equations (5.1) and (5.2) imply that f(ui) = f(vj) = 0. Hence in this case

f ≡ 0.

From the above three cases, we get f ≡ 0, which is a contradiction to our

assumption. Hence the proof of the converse part follows.

Theorem 5.1.7. For the complete bipartite graph Km,n, we have M(Km,n) ∈

Γ(V4) for m and n are odd.

Proof. Suppose m and n are odd integers. Then consider a complete bipartite

graph Km,n. If m and n are odd, then each vertex in Km,n has odd degree,

therefore by Theorem 5.1.2, M(Km,n) ∈ Γ(V4).

Hence the proof follows.
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Theorem 5.1.8. For the complete graph Kn, we have M(Kn) ∈ Γ(V4) for n is

even.

Proof. Suppose n is an even number. Then note that every vertex is of odd

degree in Kn, therefore by Theorem 5.1.2, M(Kn) ∈ Γ(V4) for n even.

This completes the proof.

Theorem 5.1.9. M(CBn) ∈ Γ(V4) if and only if n is odd.

Proof. Let {ui, vi : 1 ≤ i ≤ n} be the vertex set of CBn, where vi is the pen-

dant vertex adjacent to ui, for i = 1, 2, 3, . . . , n. Also let {αi : i = 1, 2, 3, . . . , n}

and {βi : i = 1, 2, 3, . . . , n − 1} be the inserted vertices on the edges uivi for

i = 1, 2, 3, . . . , n and uiui+1 for i = 1, 2, 3, . . . , n − 1 respectively in the graph

M(CBn). Suppose n is an odd integer. Define f : V (M(CBn))→ V4 as follows:

f(v) =



a if v = u1, u3, u5, . . . , un−2, un

0 if v = u2, u4, u6, . . . , un−3, un−1

0 if v = α1, α2, α3, . . . , αn

a if v = β1, β2, β3, . . . , βn−1

0 if v = v1, v2, v4, v6, . . . , vn−3, vn−1, vn

a if v = v3, v5, v7, . . . , vn−4, vn−2.

Then we can easily prove that f ≡ f ∗∗. Therefore f is an IML of M(CBn).

Conversely, suppose that n is an even number. If possible, suppose that

g : V (M(Wn)) → V4 is an IML. Then the induced degree sum equation of vi

gives

g(α1) = g(α2) = g(α3) = · · · = g(αn) = 0. (5.6)

The induced degree sum equation of αi gives

g(u1) + g(v1) + g(β1) = 0
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g(u2) + g(v2) + g(β1) + g(β2) = 0

g(u3) + g(v3) + g(β2) + g(β3) = 0

...

g(un−1) + g(vn−1) + g(βn−2) + g(βn−1) = 0

g(un) + g(vn) + g(βn−1) = 0.

The induced degree sum equation of ui gives

g(u1) + g(β1) = 0

g(β1) + g(β2) = 0

g(β2) + g(β3) = 0

...

g(βn−2) + g(βn−1) = 0

g(βn−1) + g(un) = 0.

The induced degree sum equation of βi gives

g(u1) + g(u2) + g(β2) = 0

g(u2) + g(u3) + g(β1) + g(β2) + g(β3) = 0

g(u3) + g(u4) + g(β2) + g(β3) + g(β4) = 0

...

g(un−2) + g(un−1) + g(βn−3) + g(βn−2) + g(βn−1) = 0

g(un−1) + g(un) + g(βn−2) = 0.

Using the above system of equations one can easily prove that g ≡ 0, which is a

contradiction. Thus M(CBn) /∈ Γ(V4) for n is even. Hence the proof.

Theorem 5.1.10. Let Cn be the cycle with n vertices, then M(Cn) /∈ Γ(V4).
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Proof. Let {v1, v2, v3, . . . , vn} be the vertex set of Cn and ui be the inserted

vertex on the edge vivi+1 in M(Cn). If possible, suppose f : V (M(Cn)) → V4

is an IML with f(vk) = xk and f(uk) = yk, for k = 1, 2, 3, . . . , n. Then by the

induced degree sum equation of each vertex in M(Cn), we have the following set

of equations.

The induced degree sum equations of v1, v2, v3, . . . , vn in M(Cn) give

yn + y1 + x1 = 0

y1 + y2 + x2 = 0

y2 + y3 + x3 = 0

...

yn−1 + yn + xn = 0.

Also the induced degree sum equations of u1, u2, u3, . . . , un in M(Cn) imply that

yn + y1 + y2 + x1 + x2 = 0

y1 + y2 + y3 + x2 + x3 = 0

y2 + y3 + y4 + x3 + x4 = 0

...

yn−1 + yn + y1 + xn + x1 = 0.

By substituting the first set of equations in the second, we get the following

equations: xk + yk = 0 for k = 1, 2, 3, . . . , n, which implies xk = yk, for

k = 1, 2, 3, . . . , n. Thus from the first set of equations, we get yk = 0, for

k = 1, 2, 3, . . . , n which implies xk = 0, for k = 1, 2, 3, . . . , n. Thus we have

f ≡ 0. Therefore our assumption is wrong. Hence M(Cn) /∈ Γ(V4).

Theorem 5.1.11. M(Wn) ∈ Γ(V4) if and only if n is odd.
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Proof. Let V (Wn) = {w, v1, v2, v3, . . . , vn}, where w is the central vertex and

{v1, v2, v3, . . . , vn} be the vertices of the corresponding n− cycle. Let {wk :

k = 1, 2, 3, . . . , n} be the inserted vertices on the edges wvk, and {uk : k =

1, 2, 3, . . . , n} be the inserted vertices on the edges vkvk+1 for k = 1, 2, 3, . . . , n

where k + 1 is taken modulo n in the graph M(Wn).

Suppose n is odd, then every vertex of Wn is of odd degree, therefore by

Theorem 5.1.2, M(Wn) is an induced magic graph.

Conversely, suppose n is an even number. If possible, suppose f : V (M(Wn))→

V4 is an IML of M(Wn). Let f(vk) = xk, f(uk) = yk, f(wk) = zk and f(w) = x.

Then the induced degree sum equation of vk, uk, wk and w gives

yk−1 + yk + zk = 0. (5.7)

yk−1 + yk + yk+1 + xk + xk+1 + zk + zk+1 = 0. (5.8)

x+ xk + yk−1 + yk + z1 + z2 + · · ·+ zk−1 + zk+1 + · · ·+ zn = 0. (5.9)

x+ z1 + z2 + z3 + · · ·+ zn = 0. (5.10)

Note that Equation (5.9) and (5.10) imply that

xk + yk−1 + yk + zk = 0. (5.11)

Thus the Equation (5.7) and (5.11) imply that xk = 0.

Therefore Equation (5.8) and (5.11) imply that yk = zk.

Thus Equation (5.7) again implies that yk = 0, therefore zk = 0 and Equation

(5.10) imply that x = 0. Thus we have xk = yk = zk = x = 0. Hence f ≡ 0,

therefore f is not an IML. Since f is arbitrary, there exists no such IML for

M(Wn). Hence M(Wn) /∈ Γ(V4), for n is even.

Theorem 5.1.12. M(Hn) ∈ Γ(V4) if and only if n is odd.
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Proof. Let V (Hn) = {w, vi, ui : i = 1, 2, 3, . . . , n}, where w be the central ver-

tex and u1, u2, u3, . . . , un be the pendant vertices adjacent to v1, v2, v3, . . . , vn.

Also let wk be the inserted vertices on the edges wvk, αk be the inserted ver-

tices on the edges vkvk+1 and βk be the inserted vertices on the edges vkuk for

k = 1, 2, 3, . . . , n, where k + 1 is taken modulo n.

Suppose n is odd. Define f : V (M(Hn))→ V4 as follows.

f(v) =

 a if v = vk, wk, for k = 2, 3, . . . , n

0 if v = v1, w1, w, uk, αk, βk.

Then we can easily prove that f is an IML of M(Hn).

Conversely, suppose that n is an even number. If possible, suppose g : V (M(Hn))→

V4 is an IML. Then the induced degree sum equation of uk, βk, vk,wk, w and αk

give

g(βk) = 0. (5.12)

g(vk) + g(uk) + g(αk−1) + g(αk) + g(wk) = 0. (5.13)

g(αk−1) + g(αk) + g(wk) + g(vk) = 0. (5.14)
n∑
i=1

g(wi) + g(αk−1) + g(αk) + g(vk) + g(w) = 0. (5.15)

g(w) +
n∑
i=1

g(wi) = 0. (5.16)

g(vk) + g(vk+1) + g(wk) + g(wk+1)

+g(αk−1) + g(αk) + g(αk+1) = 0. (5.17)

Note that Equation (5.13) and Equation (5.14) imply that g(uk) = 0 and Equa-

tion (5.15) and Equation (5.16) imply that

g(αk−1) + g(αk) + g(vk) = 0. (5.18)
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Therefore Equation (5.14) implies that g(wk) = 0. Thus Equation (5.16) again

implies that g(w) = 0. Since g(αk−1)+g(αk)+g(vk) = 0 and g(wk) = 0, Equation

(5.17) implies that g(vk) = g(αk). Thus Equation (5.18) implies that g(αk) = 0,

therefor g(vk) = 0. Thus we have g(βk) = g(uk) = g(wk) = g(w) = g(αk) =

g(vk) = 0. Hence g ≡ 0. Since the function g is arbitrary, we get M(Hn) /∈ Γ(V4),

for n is even. Hence the Proof.

Theorem 5.1.13. M(Fln) ∈ Γ(V4) for all n.

Proof. Let V (Fln) = {w, v1, v2, v3, . . . , vn}, where v1, v2, v3, . . . , vn are the ver-

tices of corresponding cycle graph Cn and w is the root vertex adjacent to the

vertex v1. Also let w1 be the inserted vertex on the edge v1w and u1, u2, u3, . . . , un

be the inserted vertices on the edges v1v2, v2v3, v3v4, . . . , vnv1 respectively in the

graph M(Fln).

Then define f : V (M(Fln))→ V4 as follows:

f(v) =

 a for v = u1, un, v2, vn

0 otherwise.

Then we can easily prove that f is an IML of M(Fln).

Hence the proof.

Theorem 5.1.14. M(Sunn) ∈ Γ(V4) for all n.

Proof. Note that in a sun graph Sunn, every vertex is of odd degree, therefore

by Theorem 5.1.2, M(Sunn) ∈ Γ(V4) for all n.

5.2 Line Graphs

Definition 5.2.1. [12] Let G be a graph, then the line graph of G is denoted

by L(G) and it is a graph whose vertex set is in 1 − 1 correspondence with the
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edge set of G and two vertices of L(G) are joined by an edge if and only if the

corresponding edges of G are adjacent in G.

Theorem 5.2.2. L(Cn) ∈ Γ(V4) if and only if n ≡ 0 (mod 3).

Proof. We know that L(Cn) = Cn and by Theorem 2.4.1, we have Cn ∈ Γ(V4) if

and only if n ≡ 0 (mod 3). Hence the proof.

Theorem 5.2.3. For n > 1, L(Pn) ∈ Γ(V4) if and only if n ≡ 1 (mod 3).

Proof. We know that L(Pn) = Pn−1 and by Theorem 3.2.1, we have Pn ∈ Γ(V4)

if and only if n ≡ 0 (mod 3). Hence L(Pn) = Pn−1 ∈ Γ(V4) if and only if

n− 1 ≡ 0 (mod 3). Hence the proof.

Theorem 5.2.4. For n > 1, L(K1,n) ∈ Γ(V4) if and only if n is odd.

Proof. We know that L(K1,n) = Kn and by Theorem 3.3.1, we have Kn ∈ Γ(V4)

if and only if n is odd. Hence L(K1,n) = Kn ∈ Γ(V4) if and only if n is odd.

Hence the proof.

Theorem 5.2.5. For the bistar graph Bm,n we have L(Bm,n) ∈ Γ(V4) for all m

and n.

Proof. Let V (Bm,n) = {u, v, v1, v2, v3, . . . , vm, u1, u2, u3, . . . , un}, where e = uv,

αi = vvi, βj = uuj ∈ E(Bm,n) for i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n. Then

we have V (L(Bm,n)) = {e, αi, βj : i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n}.

Case 1: m is odd and n is even.

In this case, define f : V (L(Bm,n))→ V4 as follows.

f(u) =

 0 if u = e, αi, for i = 1, 2, 3, . . . ,m

a if u = βj, for j = 1, 2, 3, . . . , n.
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Case 2: m is even and n is odd.

In this case, define g : V (L(Bm,n))→ V4 as follows:

g(u) =

 0 if u = e, βj, for j = 1, 2, 3, . . . , n

a if u = αi, for i = 1, 2, 3, . . . ,m.

Case 3: m and n are odd.

In this case, define h : V (L(Bm,n))→ V4 as follows:

h(u) =


0 if u = e

a if u = βj, for j = 1, 2, 3, . . . , n

a if u = αi, for i = 1, 2, 3, . . . ,m.

Case 4: m and n are even.

In this case, define k : V (L(Bm,n))→ V4 as follows:

k(u) =


0 if u = e

a if u = βj, for j = 1, 2, 3, . . . , n

a if u = αi, for i = 1, 2, 3, . . . ,m.

Then we can easily prove that the vertex labeling functions f, g, h and k are IML

for L(Bm,n). Thus for all m and n, we have L(Bm,n) is an induced magic graph.

Hence the proof.

Theorem 5.2.6. For the sun graph Sunn, we have L(Sunn) /∈ Γ(V4) for any n.

Proof. Consider a sun graph Sunn with {v1, v2, v3, . . . , vn} as vertex set of the

corresponding Cn and wi, 1 ≤ i ≤ n, be the pendant vertices attached to each

vi, 1 ≤ i ≤ n. Let αi = vivi+1 and βi = viwi be the edges in Sunn. Then the

vertices of L(Sunn) is given by αi = vivi+1 and βi = viwi for i = 1, 2, 3, . . . , n

and i+ 1 is taken modulo n.
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If possible, suppose there exists an IML of L(Sunn) say f : V (L(Sunn)) → V4.

Then the induced degree sum equation of the vertices αi and βi are given by:

f(αi−1) + f(αi) + f(αi+1) + f(βi) + f(βi+1) = 0. (5.19)

f(αi−1) + f(αi) + f(βi) = 0. (5.20)

Substituting Equation (5.20) in (5.19) we get f(αi) = f(βi) for i = 1, 2, 3, . . . , n.

Therefore Equation (5.20) again implies that f(αi) = 0 for i = 1, 2, 3, . . . , n.

Thus we have f ≡ 0. Since the function f is arbitrary, we get L(sunn) /∈ Γ(V4)

for any n. Hence the proof.

Theorem 5.2.7. For the comb graph CBn, we have L(CBn) /∈ Γ(V4) for any n.

Proof. Let {ui, vi : 1 ≤ i ≤ n} be the vertex set of CBn, where vi (1 ≤ i ≤ n)

are the pendant vertices adjacent to ui (1 ≤ i ≤ n). Also let αi = uivi, i =

1, 2, 3, . . . , n and βk = ukuk+1, k = 1, 2, 3, . . . , n− 1 be the edges in CBn. Then

{αi, βk : i = 1, 2, 3, . . . , n, k = 1, 2, 3, . . . , n− 1} is the vertex set of L(CBn).

If possible, suppose f is an IML of the graph L(CBn). Then from the induced

degree sum equation of the vertices αi, we get the following system of equations.

f(β1) = 0

f(β1) + f(β2) + f(α2) = 0

f(β2) + f(β3) + f(α3) = 0

f(β3) + f(β4) + f(α4) = 0

...

f(βn−2) + f(βn−1) + f(αn−1) = 0

f(βn−1) = 0.

Similarly, from the induced degree sum equation of the vertices βk, we get the
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following system of equations.

f(α1) + f(α2) + f(β2) = 0

f(α2) + f(α3) + f(β1) + f(β2) + f(β3) = 0

f(α3) + f(α4) + f(β2) + f(β3) + f(β4) = 0

f(α4) + f(α5) + f(β3) + f(β4) + f(β5) = 0

...

f(αn−2) + f(αn−1) + f(βn−3) + f(βn−2) + f(βn−1) = 0

f(αn−1) + f(αn) + f(βn−2) = 0.

By solving the above two system of equations one can easily prove that f(αi) = 0

and f(βk) = 0. That is f ≡ 0, which is a contradiction to our assumption. Thus

L(CBn) /∈ Γ(V4) for any n. Hence the proof.

Theorem 5.2.8. For the wheel graph Wn, we have L(Wn) /∈ Γ(V4) for n is odd.

Proof. Let V (Wn) = {w, v1, v2, v3, . . . , vn}, where w is the central vertex. Also

let αi = wvi and βi = vivi+1 for i = 1, 2, 3, . . . , n be the edges in Wn, where i+1 is

taken modulo n. Then we have V (L(Wn)) = {α1, α2, α3, . . . , αn, β1, β2, β3, . . . , βn}.

Suppose n is odd. If possible suppose f : V (L(Wn)) → V4 be an IML of

L(Wn).

Then from the induced degree sum equation of the vertices βi, we get,

f(αn) + f(α1) + f(βn) + f(β1) + f(β2) = 0

f(α1) + f(α2) + f(β1) + f(β2) + f(β3) = 0

f(α2) + f(α3) + f(β2) + f(β3) + f(β4) = 0

...

f(αn−1) + f(αn) + f(βn−1) + f(βn) + f(β1) = 0.
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Similarly, since n is odd, from the induced degree sum equation of the vertices

αi, we get,

f(α1) + f(α2) + f(α3) + · · ·+ f(αn) + f(β1) + f(β2) = 0

f(α1) + f(α2) + f(α3) + · · ·+ f(αn) + f(β2) + f(β3) = 0

f(α1) + f(α2) + f(α3) + · · ·+ f(αn) + f(β3) + f(β4) = 0

...

f(α1) + f(α2) + f(α3) + · · ·+ f(αn) + f(βn) + f(β1) = 0.

Since n is odd, the above system of equations implies that

f(β1) = f(β2) = f(β3) = · · · = f(βn) = β (say).

Therefore the above two system of equations reduce to,

f(αn) + f(α1) + β = 0

f(α1) + f(α2) + β = 0

f(α2) + f(α3) + β = 0

...

f(αn−1) + f(αn) + β = 0.

and f(α1) + f(α2) + f(α3) + · · ·+ f(αn) = 0.

Since n is odd, the above system of equations implies that f(α1) = f(α2) =

f(α3) = · · · = f(αn) = α (say) and α = 0. That is f(α1) = f(α2) = f(α3) =

· · · = f(αn) = 0. Using this fact in the last system of equations we get β = 0.

That is f(β1) = f(β2) = f(β3) = · · · = f(βn) = 0. Thus f ≡ 0, which is not

admissible. Thus there exist no such IML for L(Wn).

Hence the proof.
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Theorem 5.2.9. For the triangular snake graph TSn we have L(TSn) ∈ Γ(V4)

for all n.

Proof. Let V (TSn) = {v1, v2, v3, . . . , vn, w1, w2, w3, . . . , wn−1}, where v′is are the

vertices of corresponding path Pn. Also let αi = viwi, βi = vivi+1 and γi = vi+1wi,

where i = 1, 2, 3, . . . , n− 1 be the edges in TSn. Then V (L(TSn)) consists of the

vertices αi, βi and γi for i = 1, 2, 3, . . . , n − 1. Define f : V (L(TSn)) → V4 as

follows:

f(u) =



a if u = β1, βn−1, γ1, αn−1

0 if u = βi, for i = 2, 3, 4, . . . , n− 2

0 if u = γi, for i = 2, 3, 4, . . . , n− 1

0 if u = αi, for i = 1, 2, 3, . . . , n− 2.

Then we can prove that f is an IML of L(TSn). Thus L(TSn) ∈ Γ(V4) for all n.

Hence the proof.

Theorem 5.2.10. For the gear graph Gn, we have L(Gn) ∈ Γ(V4) for all n.

Proof. Let V (Gn) = {w, ui, vi : i = 1, 2, 3, . . . , n}, where w is the central ver-

tex, u1, u2, u3, . . . , un are the vertices of the corresponding wheel graph Wn and

v1, v2, v3, . . . , vn are the remaining vertices with αi = uivi, βi = viui+1, γi =

wui ∈ E(Gn), where i + 1 is taken modulo n. Then the vertex set of L(Gn)

consists of the vertices αi = uivi, βi = viui+1 and γi = wui for i = 1, 2, 3, . . . , n,

where i+ 1 is taken modulo n. Define f : V (L(Gn))→ V4 as follows:

f(u) =


a if u = αi, for i = 1, 2, 3, . . . , n

a if u = βi, for i = 1, 2, 3, . . . , n

0 if u = γi, for i = 1, 2, 3, . . . , n.

Then we can easily prove that f is an IML of L(Gn). Thus L(Gn) ∈ Γ(V4) for all

n. Hence the proof.
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Theorem 5.2.11. Consider the flag graph Fln. Then L(Fln) ∈ Γ(V4) if and only

if n ≡ 2 (mod 3).

Proof. Let V (Fln) = {w, v1, v2, v3, . . . , vn}, where v1, v2, v3, . . . , vn are the ver-

tices of corresponding cycle graph Cn and w is the root vertex adjacent to the

vertex v1. Also suppose ei = vivi+1 and e = v1w are the edges in Fln. Therefore

we can take the vertex set of L(Fln) as {e, e1, e2, e3, . . . , en}.

Suppose n ≡ 2 (mod 3), then define f : V (L(Fln))→ V4 as :

f(v) =


0 if v = ei, i ≡ 0 (mod 3)

a if v = ei, i ≡ 1, 2 (mod 3)

0 if v = e.

Then we can easily verify that this f is an induced V4 magic labeling of L(Fln).

To prove the converse part, consider the case n ≡ 0 (mod 3) or n ≡ 1 (mod 3).

If possible, suppose there exists an IML say g : V (L(Fln))→ V4. Then from the

induced degree sum equation of the vertices e and ei, we have the following set

of equations:

g(e1) + g(en) + g(e) = 0

g(en) + g(e2) + g(e) = 0

g(e1) + g(e2) + g(e3) = 0

g(e2) + g(e3) + g(e4) = 0

...

g(en−2) + g(en−1) + g(en) = 0

g(en−1) + g(e1) + g(e) = 0.

Now consider the following cases
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Case (i) n ≡ 0 (mod 3).

By solving the above system, we get g(e1) = g(e2) = g(e4) = g(e5) =

g(e7) = · · · = g(en−1) and g(e3) = g(e6) = g(e9) = · · · = g(en) = 0.

Similarly g(en) = g(en−1) = g(en−3) = g(en−4) = g(en−6) = · · · = g(e3) =

g(e2) and g(en−2) = g(en−5) = · · · = g(e4) = g(e1) = 0. That is g(ei) = 0,

for i = 1, 2, 3, . . . , n and hence g(e) = 0.

Therefore in this case, g ≡ 0.

Case(ii) n ≡ 1 (mod 3).

By solving the above system, we get g(e1) = g(e2) = g(e4) = g(e5) = · · · =

g(en−2) = g(en) and g(e3) = g(e6) = g(e9) = · · · = g(en−1) = 0. Similarly

g(en) = g(en−1) = g(en−3) = g(en−4) = g(en−6) = · · · = g(e3) = g(e1)

and g(en−2) = g(en−5) = · · · = g(e5) = g(e2) = 0. That is g(ei) = 0, for

i = 1, 2, 3, . . . , n and hence g(e) = 0.

Thus in this case, g ≡ 0.

Thus in both the cases we proved that g is not an IML of L(Fln). Thus L(Fln) ∈

Γ(V4) if and only if n ≡ 2 (mod 3).

Hence the proof.
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Chapter 6
Edge Induced V4− Magic Labeling of

Graphs

This chapter brings to light a new concept of labeling, and

we call it as edge induced V4-magic labeling of Graphs. In

the first section, we give the definition of the idea and in the

second section we give some main results about it. Third

and fourth sections deal with edge induced V4-magic labeling

of some graphs and special graphs respectively.

6.1 Introduction

Let V4 = {0, a, b, c} be the Klein-4-group with identity element 0 and G =

(V (G), E(G)) be the graph with vertex set V (G) and edge set E(G). Let f :

E(G) → V4 r {0} be an edge labeling and f+ : V (G) → V4 denote the induced

vertex labeling of f defined by f+(u) =
∑

uv∈E(G)

f(uv) for all u ∈ (V (G). Then

f+ again induces an edge labeling f++ : E(G) → V4 defined by f++(uv) =

f+(u) + f+(v). Then a graph G = (V (G), E(G)) is said to be an edge induced
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V4-magic graph or simply edge induced magic graph if f++(e) is a constant for

all e ∈ E(G). If this constant is x, then x is said to be the induced edge sum

of the graph G. The function f so obtained is called an edge induced V4-magic

labeling of G or simply edge induced magic labeling of G and it is denoted by

EIMV4L or simply EIML.

Figure 6.1 and Figure 6.2 represent edge induced V4 magic labeling of graphs

G1 and G2 with induced edge sums 0 and a respectively.

a

ab

b

c

Figure 6.1: Graph G1

a a

b c

bc

Figure 6.2: Graph G2

This chapter discusses the concept of edge induced V4-magic labeling of some

graphs which belongs to the following categories:
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(i) σa(V4) := Set of all edge induced V4-magic graphs with edge induced magic

labeling f satisfying f++(u) = a for all u ∈ V.

(ii) σ0(V4) := Set of all edge induced V4-magic graphs with edge induced magic

labeling f satisfying f++(u) = 0 for all u ∈ V.

(iii) σ(V4) := σa(V4)
⋂

σ0(V4).

6.2 Main Results

Theorem 6.2.1. Let G = (V,E) be a graph with either each vertex is of odd

degree or even degree then G ∈ σ0(V4).

Proof. Let G be a graph with deg(vi) = ri for vi ∈ V, i = 1, 2, 3, . . . , n.

Case 1: ri is odd.

In this case, define f : E → V4 r {0} as f(e) = a for all e ∈ E. Then

f+(ui) = deg (ui)a = ria = a. Thus f++(e) = 0 for all e ∈ E.

Case 2: ri is even.

In this case, define f : E → V4 r {0} as f(e) = a for all e ∈ E. Then

f+(ui) = deg (ui)a = ria = 0. Thus f++(e) = 0 for all e ∈ E.

Thus in both cases f++ ≡ 0. Therefore G ∈ σ0(V4).

Hence the proof.

Theorem 6.2.2. Let G = (V,E) be a magic graph. Then G ∈ σ0(V4).

Proof. Suppose G = (V,E) is a magic graph. then there exists a magic labeling

say f : E → V4 r {0} such that f+ : V → V4 is a constant function. Then

f++ ≡ 0. Hence G ∈ σ0(V4).
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Theorem 6.2.3. Let G = (V,E) be a graph with uv ∈ E and f : E → V4 r {0}

be an edge label of G then f++(uv) =
∑
uα∈E

f(uα) +
∑
βv∈E

f(βv), where α 6= v and

β 6= u.

Proof. Let f : E → V4 r {0} be an edge label of G, then f+(u) =
∑
uα∈E

f(uα) for

all u ∈ V. Thus we have:

f++(uv) = f+(u) + f+(v)

=
∑
uα∈E

f(uα) +
∑
βv∈E

f(βv)

=
∑

uα∈E,v 6=α

f(uα) + f(uv) +
∑

βv∈E,u 6=β

f(βv) + f(uv)

=
∑

uα∈E,v 6=α

f(uα) +
∑

βv∈E,u 6=β

f(βv), (Since f(uv) ∈ V4).

Theorem 6.2.4. Induced edge sum theorem.

For any graph G, f is an edge induced V4-Magic labeling of G if and only if the

induced edge sum

x = f++(uv) =
∑

uα∈E, α 6=v

f(uα) +
∑

βv∈E, β 6=u

f(βv), for all (u, v) ∈ E (6.1)

The Equation (6.1) corresponding to an edge uv in G, is called induced edge

sum equation of the edge uv.

Proof. Proof follows from the definition of edge induced magic labeling and

Theorem 6.2.3.
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6.3 Edge Induced V4 Magic Labeling of Some

Graphs

Theorem 6.3.1. P2 ∈ σ0(V4) and P2 /∈ σa(V4).

Proof. Consider the path P2 : v1e1v2. Let f : E → V4 r {0} be defined by

f(e1) = x, for some x ∈ V4 r {0}. Then f+(v1) = f+(v2) = x. Therefore

f++(e1) = 0. Hence P2 ∈ σ0(V4) and P2 /∈ σa(V4).

Corollary 6.3.2. P2 /∈ σ(V4).

Proof. Proof follows from Theorem 6.3.1.

Theorem 6.3.3. P3 ∈ σa(V4) and P3 /∈ σ0(V4).

Proof. Consider the path P3 : v1e1v2e2v3. Let f : E → V4 r {0} be defined by

f(e1) = x1, f(e2) = x2 for some x1, x2 ∈ V4 r {0}. Then f+(v1) = x1, f
+(v2) =

x1 + x2, f
+(v3) = x2. Therefore f++(e1) = x2, f

++(e2) = x1. Then P3 ∈ σ0(V4)

or P3 ∈ σa(V4) accordingly x1 = x2 = 0 or x1 = x2 = a. Since x1, x2 ∈ V4 r {0},

x1 = x2 = 0 is not possible. Therefore P2 /∈ σ0(V4). Therefore if we take

x1 = x2 = a then f is an EIML of P3. Thus P3 ∈ σa(V4). Hence the proof.

Corollary 6.3.4. P3 /∈ σ(V4).

Proof. Clearly the proof follows from Theorem 6.3.3.

Theorem 6.3.5. P4 ∈ σa(V4) and P4 /∈ σ0(V4).

Proof. Consider the path P4 : v1e1v2e2v3e3v4. Let f : E → V4 r {0} be de-

fined by f(e1) = x1, f(e2) = x2, f(e3) = x3 for some x1, x2, x3 ∈ V4 r {0}.

Then f+(v1) = x1, f
+(v2) = x1 + x2, f

+(v3) = x2 + x3, f
+(v4) = x3. Therefore
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f++(e1) = x2, f
++(e2) = x1 +x3, f

++(e3) = x2. Then P4 ∈ σ0 or P4 ∈ σa accord-

ingly x2 = x1 +x3 = 0 or x2 = x1 +x3 = a. But x2 = 0 is not possible. Therefore

P4 /∈ σ0(V4). Thus if we take x1 = b, x2 = a, x3 = c, then f is an EIML of P4.

Hence the proof.

Corollary 6.3.6. P4 /∈ σ(V4).

Proof. Proof follows from Theorem 6.3.5.

Theorem 6.3.7. Pn is not an edge induced magic graph for any n ≥ 5.

Proof. Suppose that n ≥ 5. Consider the path Pn : v1e1v2e2v3e3 · · · vn−1envn. Let

f : E → V4 r {0} be defined by f(ei) = xi for some xi ∈ V4 r {0} for i =

1, 2, 3, . . . , n−1. Then f+(v1) = x1, f
+(v2) = x1 +x2, f

+(v3) = x2 +x3, f
+(v4) =

x3 +x4 and so on. Therefore f++(e1) = x2, f
++(e2) = x1 +x3, f

++(e3) = x2 +x4.

Now if possible, suppose f is an EIML of Pn. Then we have f++(e1) = x2 = x2 +

x4 = f++(e3), which implies x4 = 0, which is a contradiction to our assumption.

Hence Pn /∈ σ0(V4) and Pn /∈ σa(V4) for n ≥ 5.

Hence the proof.

Corollary 6.3.8. Pn /∈ σ(V4) for any n.

Proof. Proof of the corollary follows from Corollary 6.3.2, Corollary 6.3.4, Corol-

lary 6.3.6 and Theorem 6.3.7.

Theorem 6.3.9. Cn ∈ σ0(V4) for all n.

Proof. We can observe that the proof follows from Theorem 6.2.1.

Theorem 6.3.10. Cn ∈ σa(V4) if and only if n is a multiple of 4.

Proof. Consider the cycle graph defined by Cn := v1e1v2e2v3e3 · · · vn−1en−1vnenv1.

Suppose n is a multiple of 4, say n = 4k, for some integer k. Define f : E(Cn)→
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V4 r {0} as

f(ej) =

 b for j = 1, 5, 9, . . . , 4k − 3, 2, 6, 10, . . . , 4k − 2

c for j = 3, 7, 11, . . . , 4k − 1, 4, 8, 12, . . . , 4k.

Then we can prove that f++(ej) = a for j = 1, 2, 3, . . . , n. That is f is an EIML

of Cn. Therefore in this case, Cn ∈ σa(V4).

Conversely, suppose that n is not a multiple of 4. Then n = 4k+ 1 or n = 4k+ 2

or n = 4k + 3 for some integer k. If possible, suppose f is an EIML of Cn with

f(ei) = xi for i = 1, 2, 3, . . . , n. Then from the induced edge sum equation of

each edge, we get

xn + x2 = x1 + x3 = x2 + x4 = x3 + x5 = · · · = xn−1 + x1. (6.2)

Case 1: n = 4k + 1.

In this case, Equation (6.2) implies that x1 = x5 = x9 = · · · = xn = x4 =

x8 = x12 = · · · = xn−1 = x3 = x7 = x11 = · · · = xn−2 = x2 = x6 =

x10 = · · · = xn−3. Thus in this case if we let xi = f(ei) = a for all i then

f++(ei) = 0 for all i. Hence Cn /∈ σa(V4).

Case 2: n = 4k + 2.

In this case, Equation (6.2) implies that x1 = x5 = x9 = · · · = xn−1 = x3 =

x7 = x11 = · · · = xn−3 and x2 = x6 = x10 = · · · = xn = x4 = x8 = x12 =

· · · = xn−2. Then if we let f(e1) = a and f(e2) = b then f+(vj) = c for all

j. Thus f++(ei) = 0 for all i. Hence Cn /∈ σa(V4)

Case 3: n = 4k + 3.

In this case, Equation (6.2) implies that x1 = x5 = x9 = · · · = xn−2 =

x2 = x6 = x10 = · · · = xn−1 = x3 = x7 = x11 = · · · = xn = x4 = x8 =

x12 = · · · = xn−3. Thus in this case, if we let xi = f(ei) = a for all i then
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f++(ei) = 0 for all i. Hence Cn /∈ σa(V4).

Thus from all the three cases above, we have Cn /∈ σa(V4). Thus Cn ∈ σa(V4) if

and only if n is a multiple of 4.

Hence the proof.

Corollary 6.3.11. Cn ∈ σ(V4) if and only if n is a multiple of 4.

Proof. Proof follows from Theorem 6.3.9 and Theorem 6.3.10.

Theorem 6.3.12. Consider the star graph K1,n, then we have the following.

(i) K1,n ∈ σ0(V4) if and only if n is odd.

(ii) K1,n ∈ σa(V4) if and only if n is even.

Proof. Consider K1,n with vertex set {v, v1, v2, v3, . . . , vn}, where vvi ∈ E(K1,n)

for i = 1, 2, 3, . . . , n. Let f be an edge label of K1,n, with f(vvi) = xi, then from

the induced edge sum equation of each edge we have the equation:

x2+x3+x4+· · ·+xn = x1+x3+x4+· · ·+xn = · · · = x1+x2+x3+· · ·+xn−1. (6.3)

Thus we have f is an EIML of K1,n if and only if x1 = x2 = x3 = · · · = xn.

case (1) n is an odd integer.

Let f(vvi) = xi = a, then f+(v) = na = a and f+(vi) = a. Thus

f++(vvi) = a + a = 0 for all i. Hence in this case, we can conclude that

K1,n ∈ σ0(V4) and K1,n /∈ σa(V4).

case (2) n is an even integer.

Let f(vvi) = xi = a, then f+(v) = na = 0 and f+(vi) = a. Thus

f++(vvi) = 0 + a = a for all i. Hence in this case, we can conclude that

K1,n ∈ σa(V4) and K1,n /∈ σ0(V4).
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Hence the proof.

From the Theorem 6.3.12, we have the following corollary.

Corollary 6.3.13. K1,n /∈ σ(V4) for any n.

Theorem 6.3.14. Consider the bipartite graph Km,n, then we have then we have

the following.

(i) Km,n ∈ σ0(V4) for m+ n is even.

(ii) Km,n ∈ σa(V4) for m+ n is odd.

Proof. Let V (Km,n) = {v1, v2, v3, . . . , vm, u1, u2, u3, . . . , un}, where viuj ∈ E(Km,n)

for i = 1, 2, 3, . . .m and j = 1, 2, 3, . . . , n. Let f : E(Km,n)→ V4r{0} be defined

by f(viuj) = a for all viuj ∈ E(Km,n).

Case 1: m+ n is even.

subcase (i) m and n are odd.

In this case, we get f+(vi) = na = a and f+(uj) = ma = a. Thus

f++(viuj) = 0 for all i and j.

subcase (ii) m and n are even.

In this case, we get f+(vi) = na = 0 and f+(uj) = ma = 0. Thus

f++(viuj) = 0 for all i and j.

Thus, if m+ n is even then Km,n ∈ σ0(V4).

Case 2: m+ n is odd.

subcase (i) m is even n is odd.

In this case, we get f+(vi) = na = a and f+(uj) = ma = 0. Thus

f++(viuj) = a+ 0 = a for all i and j.
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subcase (ii) m is odd n is even.

In this case, we get f+(vi) = na = 0 and f+(uj) = ma = a. Thus

f++(viuj) = 0 + a = a for all i and j.

Thus if m+ n is even, then Km,n ∈ σa(V4).

Hence the proof.

Theorem 6.3.15. Consider bistar graph Bm,n, then then we have the following.

(i) Bm,n ∈ σ0(V4) if and only if m and n are even.

(ii) Bm,n ∈ σa(V4) if and only if m and n are odd.

Proof. Let V (Bm,n) = {u, v, v1, v2, v3, . . . , vm, u1, u2, u3, . . . , un}, where uv, vvi,

uuj ∈ E(Bm,n) for i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n. Let f : E(Bm,n) →

V4 r {0} be an edge label defined as follows:

f(e) =


α if e = uv

xi if e = vv1, vv2, vv3, . . . , vvm

yj if e = uu1, uu2, uu3, . . . , uun.

Then by considering the induced edge sum equation of the edges vvi we have:

α + x2 + x3 + x4 + · · ·+ xm = α + x1 + x3 + x4 + · · ·+ xm

= α + x1 + x2 + x3 + · · ·+ xm
... (6.4)

= α + x2 + x3 + x4 + · · ·+ xm−1.

In the light of Equation (6.4), we have x1 = x2 = x3 = · · · = xm = β (say).

Similarly by considering the induced edge sum equation of the edges uuj one can

easily prove that y1 = y2 = y3 = · · · = yn = γ (say). Thus the induced edge sum
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equations of the edge vvi and uuj are given by α + (m − 1)β = α + (n − 1)γ.

Also the induced edge sum equation of the edge uv is given by x1 + x2 + x3 +

· · ·+ xm + y1 + y2 + y3 + · · ·+ yn = mβ + nγ.

Thus f is an edge induced magic label with induced edge sum x if and only

if

x = α + (m− 1)β = α + (n− 1)γ = mβ + nγ. (6.5)

Case 1: m and n are even.

In this case, Equation (6.5) becomes x = α + β = α + γ = 0. Thus

α = β = γ, and the induced edge sum x = 0.

Hence in this case, Bm,n ∈ σ0(V4).

Case 2: m and n are odd.

In this case, Equation (6.5) becomes x = α = β + γ. Thus in this we can

choose β = b and γ = c then α = a and which implies that the induced

edge sum becomes x = a.

Hence in this case, Bm,n ∈ σa(V4).

Case 3: m is even and n is odd.

In this case, Equation (6.5) becomes x = α+β = α = γ which implies that

β = 0. That is f(vvi) = xi = β = 0, which a contradiction to the choice of

f. Therefore Bm,n /∈ σ0(V4) and Bm,n /∈ σa(V4).

Case 4: m is odd and n is even.

In this case, Equation (6.5) becomes x = α = α + γ = β which implies

γ = 0. That is f(uuj) = yj = γ = 0, which a contradiction to the choice of

f. Therefore Bm,n /∈ σ0(V4) and Bm,n /∈ σa(V4).

Hence the proof.
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Theorem 6.3.16. Let Kn be the complete graph with n vertices, then Kn ∈

σ0(V4) for all n.

Proof. Consider the complete graph Kn. Let f : E(Kn) → V4 r {0} be an edge

label with f(e) = a for all e ∈ E(Kn). Then the induced vertex label f+ becomes

f+(u) = (n− 1)a, for all u ∈ V (Kn). Using this, we have the induced edge label

f++ becomes f++(e) = 2(n− 1)a = 0, for all e ∈ E(Kn). Thus Kn ∈ σ0(V4) for

all n. Hence the proof.

6.4 Edge Induced V4 Magic Labeling of Some

Special Graphs

Theorem 6.4.1. The sun graph Sunn ∈ σ0(V4) for all n.

Proof. Since every vertex is of odd degree, by Theorem 6.2.1 the theorem follows.

Theorem 6.4.2. The sun graph Sunn ∈ σa(V4) for n is even.

Proof. Consider a sun graph Sunn with {v1, v2, v3, . . . , vn} as vertex set of the

corresponding Cn and wi, 1 ≤ i ≤ n, be the pendant vertices attached to each

vi, 1 ≤ i ≤ n. Let f : E(Sunn)→ V4 r {0} be defined by

f(e) =



b if e = v1v2, v3v4, v5v6, . . . , vn−1vn

c if e = v2v3, v4v5, v6v7, . . . , vnv1

b if e = v1w1, v3w3, v5w5, . . . , vn−1wn−1

c if e = v2w2, v4w4, v6w6, . . . , vnwn.

Then we can easily prove that f++(e) = a for all e ∈ E(Sunn). That is Sunn ∈

σa(V4). Hence the proof.

110



6.4. Edge Induced V4 Magic Labeling of Some Special Graphs

Corollary 6.4.3. The sun graph Sunn ∈ σ(V4) if and only if n is even.

Proof. Proof follows from Theorem 6.4.1 and Theorem 6.4.2.

Theorem 6.4.4. The comb graph CBn is not an edge induced magic graph, for

any n.

Proof. Let {ui, vi : 1 ≤ i ≤ n} be the vertex set of CBn, where vi(1 ≤ i ≤ n)

are the pendant vertices adjacent to ui(1 ≤ i ≤ n). If possible, suppose f :

E(CBn) → V4 r {0} is an induced edge label of CBn. Then using the induced

edge sum equation of the edges u1v1 and u2v2 we get, f++(u1v1) = f++(u2v2),

which implies f(u1u2) = f(u1u2) + f(u2u3). That is f(u2u3) = 0, which is a

contradiction. Thus CBn is not an edge induced magic graph.

Hence the proof.

Theorem 6.4.5. The wheel graph Wn ∈ σ0(V4) for n is odd.

Proof. Suppose n is odd. Then, since every vertex of Wn is of odd degree, by

Theorem 6.2.1 the proof follows.

Theorem 6.4.6. Let J(m,n) be the jelly fish graph then we have the following.

(i) J(m,n) ∈ σ0(V4) if and only if m and n are of same parity.

(ii) J(m,n) /∈ σa(V4) for any m and n.

Proof. Consider the jelly fish graph with V (J(m,n)) = {vk : k = 1, 2, 3, 4}

∪{ui : i = 1, 2, 3, . . . ,m} ∪ {wj : j = 1, 2, 3, . . . , n}, where v′ks are the vertices

of C4 and ui, wj are the vertices of corresponding K1,m and K1,n respectively.

Let f : E(J(m,n)) → V4 r {0} be an edge induced magic label with f(v1v2) =

x1, f(v1v4) = x2, f(v3v4) = x3, f(v2v3) = x4, f(v1v3) = x5, f(v2ui) = ei, and

f(v4wj) = yj for i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n.
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Using the induced edge sum equation of the edges v2ui, we get

e2 + e3 + e4 + · · ·+ em + x1 + x4 = e1 + e3 + e4 + · · ·+ em + x1 + x4

= e1 + e2 + e4 + · · ·+ em + x1 + x4
...

= e1 + e2 + e3 + · · ·+ em−1 + x1 + x4.

The above equations imply that e1 = e2 = e3 = · · · = em = α (say). Thus the

induced edge sum equation of v2ui reduces to (m− 1)α + x1 + x4.

In a similar way, by considering the induced edge sum equation of the edges

v4wj, we get y1 = y2 = y3 = · · · = yn = β (say). Thus the induced edge sum

equation of v4wj reduces to (n− 1)β + x2 + x3.

Now consider the induced edge sum equation of the edges v1v2 and v2v3, then

we get mα+ x2 + x4 + x5 = mα+ x1 + x3 + x5 which implies x2 + x4 = x1 + x3.

Similarly by considering the induced edge sum equation of v1v4 and v3v4, we

get nβ + x1 + x3 + x5 = nβ + x2 + x4 + x5. Also from the induced edge sum

equation of v1v3, we get its induced edge sum equal to x1 + x2 + x3 + x4 = 0,

since x2 + x4 = x1 + x3.

Thus from the above discussion we have the induced edge sum is given by:

x = (m− 1)α + x1 + x4 = (n− 1)β + x2 + x3

= mα + x2 + x4 + x5 = mα + x1 + x3 + x5 (6.6)

= nβ + x1 + x3 + x5 = nβ + x2 + x4 + x5 = 0.

Since the induced sum is 0, we have J(m,n) /∈ σa(V4) for any m,n.

Now consider the following cases.

Case 1 : m and n are even.
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In this case, equation (6.6) becomes

x = α + x1 + x4 = β + x2 + x3 = x2 + x4 + x5 = x1 + x3 + x5 = 0. (6.7)

Choose α = β = x5 = c, x1 = x2 = a, x3 = x4 = b, then above Equation

(6.7) follows. Thus in this case, J(m,n) ∈ σ0(V4)

Case 2 : m and n are odd.

In this case, equation (6.6) becomes

x = x1 + x4 = x2 + x3

= α + x2 + x4 + x5 = α + x1 + x3 + x5 (6.8)

= β + x1 + x3 + x5 = β + x2 + x4 + x5 = 0.

Choose α = β = x5 = a, x1 = x2 = x3 = x4 = b, then above Equation

(6.8) follows. Thus in this case, J(m,n) ∈ σ0(V4)

Case 3 : m odd and n even.

In this case, Equation (6.6) becomes

x = x1 + x4 = β + x2 + x3

= α + x2 + x4 + x5 = α + x1 + x3 + x5

= x1 + x3 + x5 = x2 + x4 + x5 = 0.

Note that above equations imply that α = ei = f(v2ui) = 0, which is not

admissible. Thus in this case, J(m,n) /∈ σ0(V4).

Case 4 : m even and n odd.

In this case, Equation (6.6) becomes

x = α + x1 + x4 = x2 + x3
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= x2 + x4 + x5 = x1 + x3 + x5

= β + x1 + x3 + x5 = β + x2 + x4 + x5 = 0.

Note that above equations imply that β = yj = f(v4wj) = 0, which is not

admissible. Thus in this case, J(m,n) /∈ σ0(V4).

Thus J(m,n) ∈ σ0(V4) if and only if m and n are of same parity.

Hence the proof.

Theorem 6.4.7. The triangular snake graph TSn ∈ σ0(V4) for all n.

Proof. Since every vertex of TSn is of even degree, by Theorem 6.2.1 the proof

follows.

Theorem 6.4.8. The open ladder graph O(Ln) ∈ σ0(V4) for all n.

Proof. Since every vertex of O(Ln) is of odd degree, by Theorem 6.2.1 the proof

follows.
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Chapter 7
Edge Induced V4− Magic Labeling of

Subdivision Graphs and Line Graphs

This chapter discusses the edge induced V4-magic labeling of

subdivision graph and line graph of some graphs. The first

section deals with the edge induced V4-magic labeling of sub-

division graphs of some graphs. In the second section, we

discuss the edge induced V4-magic labeling of line graphs of

some graphs.

7.1 Subdivision Graphs

Theorem 7.1.1. Let G be graph with every vertex is of odd degree, then S(G) ∈

σa(V4).

Proof. Suppose G is a graph with every vertex is of odd degree. Then define

f : E(S(G))→ V4 r {0} by f(e) = a for all e ∈ E(S(G)).

Let uv ∈ E(G) and α be the inserted vertex on the edge uv in S(G). Then

f(uα) = f(vα) = a. Therefore f+(u) = f+(v) = deg (u)a = a, since deg (u)
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is odd and f+(α) = deg (α)a = 0, since deg (α) = 2. Thus f++(uα) = a

and f++(vα) = a. Since uv is an arbitrary edge in S(G), we can conclude that

f++(e) = a for all e ∈ S(G). Thus S(G) ∈ σa(V4).

Hence the proof.

Theorem 7.1.2. Let G be graph with every vertex is of even degree, then S(G) ∈

σ0(V4).

Proof. Suppose G is a graph with every vertex is of even degree. Then define

f : E(S(G))→ V4 r {0} by f(e) = a for all e ∈ E(S(G)).

Let uv ∈ E(G) and α be the inserted vertex on the edge uv in S(G). Then

f(uα) = f(vα) = a. Therefore f+(u) = f+(v) = deg (u)a = 0, since deg (u)

is even and f+(α) = deg (α)a = 0, since deg (α) = 2. Thus f++(uα) = 0

and f++(vα) = 0. Since uv is an arbitrary edge in S(G), we can conclude that

f++(e) = 0 for all e ∈ S(G). Thus S(G) ∈ σ0(V4).

Hence the proof.

Theorem 7.1.3. S(P2) ∈ σa(V4) and S(P2) /∈ σ0(V4).

Proof. Since S(P2) = P3 proof follows directly from Theorem 6.3.3.

Theorem 7.1.4. S(Pn) /∈ σa(V4) and S(Pn) /∈ σ0(V4) for any n ≥ 3.

Proof. Note that S(Pn) = P2n−1 and if n ≥ 3 then 2n ≥ 5, therefore the proof

follows directly from Theorem 6.3.7.

Theorem 7.1.5. S(Cn) ∈ σ0(V4) for all n.

Proof. Since S(Cn) = C2n, proof follows from Theorem 6.3.9.

Theorem 7.1.6. S(Cn) ∈ σa(V4) if and only if n is even.

Proof. Since S(Cn) = C2n proof follows directly from Theorem 6.3.10.
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Corollary 7.1.7. S(Cn) ∈ σ(V4) if and only if n is even.

Proof. The proof follows from Theorem 7.1.5 and Theorem 7.1.6.

Theorem 7.1.8. For the star graph K1,n, we have the following.

(i) S(K1,n) ∈ σa(V4) if and only if n is odd.

(ii) S(K1,n) /∈ σ0(V4) for any n.

Proof. Consider K1,n with vertex set {v, v1, v2, v3, . . . , vn}, where vvi ∈ E(K1,n)

for i = 1, 2, 3, . . . n. Let ui be the inserted vertices on the edge vvi for i =

1, 2, 3, . . . , n in S(K1,n).

Let f : E(S(K1,n)) → V4 r {0} with f(vui) = xi1, and f(uivi) = xi2 for

i = 1, 2, 3, . . . , n. Then from the induced edge sum equation of each edge we have

the following equation.

x11 = x21 = x31 = · · · = xn1 = x21 + x31 + x41 + · · ·+ xn1 + x12

= x11 + x31 + x41 + · · ·+ xn1 + x22

= x11 + x21 + x31 + · · ·+ xn1 + x32
...

= x11 + x31 + x41 + · · ·+ xn−11 + xn2.

Let x = x11 = x21 = x31 = · · · = xn1 then above equations become

x = (n− 1)x+ x12

= (n− 1)x+ x22

= (n− 1)x+ x32
...

= (n− 1)x+ xn2.
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Note that the above system implies that x12 = x22 = x32 = · · · = xn2 = y(say).

Then the above system of equations reduces to x = (n− 1)x+ y.

That is (n− 2)x+ y = 0.

Case (i) n is an odd integer.

In this case, the equation (n−2)x+y = 0 reduces to x+y = 0, that is x = y.

Thus by taking x = y = a that is, by defining f : E(S(K1,n)) → V4 r {0}

as f(ei) = a, for all ei ∈ E(S(K1,n)) we can prove that S(K1,n) ∈ σa(V4).

Case (ii) n is an even integer.

In this case, the equation (n − 2)x + y = 0 reduces to y = 0. That is

f(uivi) = xi2 = 0, which is a contradiction to the choice for f. Therefore,

in this case, S(K1,n) is not an edge induced magic graph.

Note that S(K1,n) ∈ σ0(V4) only when x = 0. But x = 0 is not possible. Therefore

S(K1,n) /∈ σ0(V4) for any n.

Hence the proof.

Theorem 7.1.9. For the bistar graph Bm,n, S(Bm,n) is not an edge induced

magic graph for any m and n.

Proof. Let V (Bm,n) = {u, v, v1, v2, v3, . . . , vm, u1, u2, u3, . . . , un}, where uv, vvi,

uuj ∈ E(Bm,n) for i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n. Also let wi, tj and w be

the inserted vertices on the edge vvi, uuj and uv respectively for i = 1, 2, 3, . . . ,m

and j = 1, 2, 3, . . . , n in the graph S(Bm,n).

Let f : E(S(Bm,n)) → V4 r {0} with f(vw) = γ, f(wu) = δ, f(vwi) = xi,

f(wivi) = αi, f(utj) = yj and f(tjuj) = βj, then by considering the induced

edge sum equation of each edge we have the following equations.

The induced edge sum equation of the edges wivi gives: x1 = x2 = x3 = · · · =

xm = x (say). Similarly the induced edge sum equation of the edges tjuj gives:
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y1 = y2 = y3 = · · · = yn = y (say).

The induced edge sum equation of the edges vwi gives:

α1 + γ + (m− 1)x = α2 + γ + (m− 1)x

= α3 + γ + (m− 1)x

...

= αm + γ + (m− 1)x.

Note that above system of equations imply that α1 = α2 = α3 = · · · = αm = α

(say). Thus each induced edge sum in above system reduces to α+γ+ (m−1)x.

Similarly by considering the induced edge sum equation of the edges utj, we get

the induced induced edge sum is β + δ + (n − 1)y, where β = β1 = β2 = β3 =

· · · = βn.

Also we get, the induced edge sum of the edges vw is mx+ δ and the edge sum

of the edge wu is ny + γ.

Thus the edge sum equation of the graph S(Bm,n) is given by:

x = y = α + γ + (m− 1)x = β + δ + (n− 1)y = mx+ δ = ny + γ. (7.1)

Case 1: m and n are even integers.

In this case, Equation (7.1) becomes

x = y = α + γ + x = β + δ + y = δ = γ.

Therefore x = γ, which implies that α = 0, which is not possible.

Hence in this case, Bm,n is not an edge induced magic graph.

Case 2: m and n are odd integers.

In this case, Equation (7.1) becomes
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x = y = α + γ = β + δ = x+ δ = y + γ.

Therefore x = x+ δ which implies that δ = 0, which is not possible.

Hence in this case, Bm,n is not an edge induced magic graph.

Case 3: m is even and n is odd.

In this case, Equation (7.1) becomes

x = y = α + γ + x = β + δ = δ = y + γ.

Therefore β + δ = δ which implies that β = 0, which is not possible.

Hence in this case, Bm,n is not an edge induced magic graph.

Case 4: m is odd and n is even.

In this case, Equation (7.1) becomes

x = y = α + γ = β + δ + y = x+ δ = γ.

Therefore α + γ = γ which implies that α = 0, which is not possible.

Hence in this case, Bm,n is not an edge induced magic graph.

Thus in all cases, we get S(Bm,n) is not an edge induced magic graph.

Hence the proof.

Theorem 7.1.10. For the the complete graph Kn with n vertices, we have the

following.

(i) S(Kn) ∈ σ0(V4) for n odd.

(ii) S(Kn) ∈ σa(V4) for n even.
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Proof. Consider the subdivision graph of the complete graph S(Kn). Let vu

an edge in S(Kn), where v ∈ V (Kn) and u be an inserted vertex in S(Kn).

Define f : E(S(Kn)) → V4 r {0} by f(e) = a for all e ∈ E(S(Kn)). Then

f+(v) = (n − 1)a and f+(u) = a + a = 0. Therefore f++(vu) = (n − 1)a. Since

the vertices u and v are arbitrary, we have f++(vu) is a constant.

Case (i) n is an odd integer.

In this case, f++(vu) = (n− 1)a = 0. Therefore S(Kn) ∈ σ0(V4).

Case (ii) n is an even integer.

In this case, f++(vu) = (n− 1)a = a. Therefore S(Kn) ∈ σa(V4).

Hence the proof.

Theorem 7.1.11. For the sun graph Sunn, we have S(Sunn) ∈ σa(V4) for all

n.

Proof. Let {ui, vi : i = 1, 2, 3, . . . , n} be the vertex set of CBn, where vi are the

pendant vertex adjacent to ui. Also let ti and wi, be the inserted vertices on the

edge uiui+1, uivi, for i = 1, 2, 3, . . . , n and i+ 1 is taken modulo n.

Suppose f : E(S(Sunn)) → V4 r {0} is an edge induced magic label of Sunn

with f(uiti) = ei, f(tiui+1) = αi, f(uiwi) = βi and f(wivi) = γi.

Then using the induced edge sum equation of the edges wivi, we get

β1 = β2 = β3 = · · · = βn = β (say). (7.2)

By the induced edge sum equation of the edges uiti, we get

αn + α1 + β = α1 + α2 + β = α2 + α3 + β = · · · = αn−1 + αn + β. (7.3)

By the induced edge sum equation of the edges tiui+1, we get
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e1 + e2 + β = e2 + e3 + β = e3 + e4 + β = · · · = en + e1 + β. (7.4)

By the induced edge sum equation of the edges uiwi, we get

αn + e1 + γ1 = α1 + e2 + γ2 = α2 + e3 + γ3 = · · · = αn−1 + en + γn. (7.5)

Case (i) n is an odd integer.

In this case, Equation (7.3) and Equation(7.4) implies that

α1 = α2 = α3 = · · · = αn = α (say).

e1 = e2 = e3 = · · · = en = e (say).

Therefore equation (7.5) implies that

γ1 = γ2 = γ3 = · · · = γn = γ (say).

Therefore in this case, the induced edge sum equation of the graph S(Sunn)

is given by:

β = 2α + β = 2e+ β = α + e+ γ.

Since α ∈ V4, the above equation reduces to β = α + e+ γ.

Therefore in this case, if we choose α = e = b and β = γ = a, then we can

easily prove that S(Sunn) ∈ σa(V4).

Case (ii) n is an even integer.

In this case, Equation (7.3) implies

α1 = α3 = α5 = · · · = αn−1 = x1 (say).

α2 = α4 = α6 = · · · = αn = x2 (say).
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Also in this case Equation (7.4) implies

e1 = e3 = e5 = · · · = en−1 = y1 (say).

e2 = e4 = e6 = · · · = en = y2 (say).

Therefore Equation (7.5) reduces to

x2 +y1 +γ1 = x1 +y2 +γ2 = x2 +y1 +γ3 = x1 +y2 +γ4 = · · · = x1 +y2 +γn.

(7.6)

Note that Equation (7.6) implies that

γ1 = γ3 = γ5 = · · · = γn−1 = z1 (say).

γ2 = γ4 = γ6 = · · · = γn = z2 (say).

Therefore in this case, the induced edge sum equation of the graph S(Sunn)

is given by:

β = x1 + x2 + β = y1 + y2 + β = x2 + y1 + z1 = x1 + y2 + z2.

Therefore in this case, if we choose x1 = x2 = y1 = y2 = b and β = z1 =

z2 = a then we can easily prove that f++(e) = a for all e ∈ E(S(Sunn)).

Thus S(Sunn) ∈ σa(V4).

Hence the proof.

Theorem 7.1.12. For the comb graph CBn, we have S(CBn) is not an edge

induced magic graph, for any n.

Proof. Let {ui, vi : 1, 2, 3, . . . , n} be the vertex set of CBn, where vi is the pendant

vertex adjacent to ui. Let wi and tj be the inserted vertices in the edges uivi and

ujuj+1 for i = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . , n − 1 respectively . If possible,
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suppose f : E(S(CBn)) → V4 r {0} is an edge induced magic label of S(CBn).

Then using the induced edge sum equation of the edges v1w1 and u1t1, we get

f(u1w1) = f(t1u2) + f(u1w1). That is f(t1u2) = 0, which is a contradiction.

Hence S(CBn) is not an edge induced magic graph, for any n.

Hence the proof.

Theorem 7.1.13. Let J(m,n) be the jelly fish graph. Then S(J(m,n)) ∈ σa(V4)

for m and n are of same parity.

Proof. Consider the jelly fish graph with V (J(m,n)) = {vk : k = 1, 2, 3, 4}∪{ui :

i = 1, 2, 3, . . . ,m} ∪ {wj : j = 1, 2, 3, . . . , n}, where v′ks are the vertices of cor-

responding C4, ui, wj are the vertices of corresponding K1,m and K1,n respec-

tively and αi (1 ≤ i ≤ m), βj (1 ≤ j ≤ n) be the inserted vertices on the

edges v2ui, v4wj respectively and α, β, γ, δ, µ be the vertices inserted on the edges

v1v2, v2v3, v3v4, v4v1, v1v3 respectively.

Case (i) m and n are even integers.

In this case, define f : E(S(J(m,n)))→ V4 r {0} by

f(e) =


a if e = αiui, v2αi, v4βj, βjwj, v1µ, v3µ

b if e = v2α, αv1, v1δ, δv4

c if e = v4γ, γv3, v3β, βv2.

Case (ii) m and n are n odd integers.

In this case, define f : E(S(J(m,n)))→ V4 r {0} by

f(e) =

 a if e = v2α, αv1, v3β, βv2, v2αi, , v4βj, αiui, βjwj

b if e = v1δ, δv4, v4γ, γv3, , v1µ, v3µ.

Then in both cases we can verify that f++(e) = a for all e ∈ E(S(J(m,n))).

That is f is an EIML of S(J(m,n)). Thus in both cases S(J(m,n)) ∈ σa(V4).
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Hence the proof.

Theorem 7.1.14. For the wheel graph Wn, we have S(Wn) ∈ σa(V4) for n is

odd.

Proof. Suppose n is odd. Since every vertex is of odd degree, the proof follows

from Theorem 7.1.1.

Theorem 7.1.15. For the flag graph Fln, we have the following.

Case (i) S(Fln) /∈ σ0(V4) for any n.

Case (ii) S(Fln) ∈ σa(V4) if and only if n is odd.

Proof. Let V (Fln) = {v, v1, v2, v3, . . . , vn}, where v1, v2, v3, . . . , vn are the vertices

of corresponding cycle graph Cn and v is the root vertex adjacent to the vertex

v1. Also let u be the inserted vertex on the edge v1v and u1, u2, u3, . . . , un be the

inserted vertices on the edges v1v2, v2v3, v3v4, . . . , vnv1 respectively in the graph

S(Fln).

If possible, let g : E(S(Fln)) → V4 r {0} be an edge label with g++(e) = 0

for all edge in S(Fln). Then consider the induced edge sum of the edge uv. Note

that g++(uv) = g(uv1). Therefore g(uv1) = 0, which is a contradiction and it

proves (i).

Suppose n is an odd integer. In this case, define f : E(S(Fln)) → V4 r {0}

as follows.

f(e) =



a if e = uv, uv1

b if e = u1v1, u3v3, u5v5, . . . un−2vn−2, unvn

c if e = u2v2, u4v4, u6v6, . . . un−3vn−3, un−1vn−1

b if e = u1v2, u3v4, u5v6, . . . un−2vn−1, unv1

c if e = u2v3, u4v5, u6v7, . . . un−3vn−2, un−1vn.
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Then f++(e) = a for all e ∈ E(S(Fln)). Thus S(Fln) ∈ σa(V4).

To prove the converse part, suppose n is an even integer. If possible, let

h : E(S(Fln))→ V4r{0} be an edge label with h++(e) = a for all edge in S(Fln).

Consider the induced edge sum of the edge uv. We have h++(uv) = h(uv1).

Similarly if we let h(uivi+1) = yi, for i = 1, 2, 3, . . . , n with i+ 1 is taken modulo

n. Then the induced edge sum of the edges viui for i = 1, 2, 3, . . . , n gives

yn + y1 + h(uv1) = y1 + y2 = y2 + y3 = · · · = yn−1 + yn. (7.7)

Since n is an even integer the above equation implies that y1 = y3 = y5 = · · · =

yn−1 = x (say) and y2 = y4 = y6 = · · · = yn = y (say). Thus the Equation

(7.7) reduces to x + y + h(uv1) = x + y, which implies that h(uv1) = 0, which

is not admissible. Hence there exists no such edge label h. Hence if n is an even

integer, then S(Fln) /∈ σa(V4).

Hence the proof.

Corollary 7.1.16. S(Fln) ∈ σ(V4) if and only if n is odd.

Proof. Proof follows from the above Theorem 7.1.15.

Theorem 7.1.17. For the the triangular snake graph TSn, we have S(TSn) ∈

σ0(V4) for all n.

Proof. Since every vertex is of even degree, the proof follows from Theorem

7.1.2.

7.2 Line Graphs

Theorem 7.2.1. L(P3) ∈ σ0(V4) and L(P3) /∈ σa(V4).
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Proof. Since L(P3) = P2, proof follows directly from Theorem 6.3.1.

Corollary 7.2.2. L(P3) /∈ σ(V4).

Proof. Proof follows from Theorem 7.2.1.

Theorem 7.2.3. L(P4) ∈ σa(V4) and L(P4) /∈ σ0(V4).

Proof. Since L(P4) = P3 proof follows directly from Theorem 6.3.3.

Corollary 7.2.4. L(P4) /∈ σ(V4).

Proof. Proof follows from Theorem 7.2.3.

Theorem 7.2.5. L(P5) ∈ σa(V4) and L(P5) /∈ σ0(V4).

Proof. Since L(P5) = P4, proof follows directly from Theorem 6.3.5.

Corollary 7.2.6. L(P5) /∈ σ(V4).

Proof. Proof follows from the Theorem 7.2.5.

Theorem 7.2.7. L(Pn) is not an edge induced magic graph for any n ≥ 6.

Proof. Note that L(Pn) = Pn−1. Thus if n ≥ 6, then L(Pn) = Pn−1 and n−1 ≥ 5,

therefore the proof follows from Theorem 6.3.7.

Corollary 7.2.8. L(Pn) /∈ σ(V4) for any n ≥ 3.

Proof. Proof of the corollary follows from Corollary 7.2.2, Corollary 7.2.4, Corol-

lary 7.2.6 and Theorem 7.2.7.

Theorem 7.2.9. L(Cn) ∈ σ0(V4) for all n.

Proof. Since L(Cn) = Cn, the proof follows from Theorem 6.3.9.
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Theorem 7.2.10. L(Cn) ∈ σa(V4) if and only if n is a multiple of 4.

Proof. Since L(Cn) = Cn, the proof follows from Theorem 6.3.10.

Corollary 7.2.11. L(Cn) ∈ σ(V4) if and only if n is a multiple of 4.

Proof. The proof follows from Theorem 7.2.9 and Theorem 7.2.10.

Theorem 7.2.12. Let K1,n be the star graph, then L(K1,n) ∈ σ0(V4) for all n.

Proof. Since L(K1,n) = Kn, the proof follows from Theorem 6.3.16.

Theorem 7.2.13. Let CBn be the comb graph, then we have the following.

(i) L(CBn) /∈ σ0(V4) for any n.

(ii) L(CBn) /∈ σa(V4) for any n.

Proof. Let {ui, vi : i = 1, 2, 3, . . . , n} be the vertex set of CBn, where ui is

the pendant vertex adjacent to vi. Also let wi = uivi, i = 1, 2, 3, . . . , n and

tk = ukuk+1, k = 1, 2, 3, . . . , n − 1 be the edges in CBn. Then {wi, tk : i =

1, 2, 3, . . . , n, k = 1, 2, 3, . . . , n− 1} are the vertices of L(CBn).

Proof of (i) .

If possible, suppose L(CBn) ∈ σ0(V4) for some n. Then there exists an

EIML say f : E(L(CBn)) → V4 r {0} with f++(e) = 0 for all e ∈

E(L(CBn)).

Let f(tiwi) = αi, f(tiwi+1) = βi, for i = 1, 2, 3, . . . , n−1 and f(tjtj+1) = γj,

for j = 1, 2, 3, . . . , n− 2. Then the induced edge sum equation of the edges

tiwi gives the equation,

γ1 + β1 = γ1 + β1 + γ2 + β2
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= γ2 + β2 + γ3 + β3

· · ·

= γn−3 + βn−3 + γn−2 + βn−2

= γn−2 + βn−2 + βn−1.

But since f++ ≡ 0, we get γ1 + β1 = 0, using this fact in the above system

of equations, we get

γ1 + β1 = γ2 + β2 = γ3 + β3 = · · · = γn−2 + βn−2 = 0.

That is γi = βi for i = 1, 2, 3, . . . , n − 2. Thus using γn−2 = βn−2 in the

equation γn−2 + βn−2 + βn−1 = 0, we get βn−1 = 0. That is f(tn−1wn) = 0,

which is a contradiction. Hence our assumption is wrong, that is L(CBn) /∈

σ0(V4) for all n.

Proof of (ii) .

If possible, suppose L(CBn) ∈ σa(V4) for some n. Then there exists an

EIML say g : E(L(CBn)) → V4 r {0} with g++(e) = a for all e ∈

E(L(CBn)).

Let g(tiwi) = αi, g(tiwi+1) = βi, for i = 1, 2, 3, . . . , n−1 and g(tjtj+1) = γj,

for j = 1, 2, 3, . . . , n− 2.

Then the induced edge sum of the edge t1w1 and t2w2 gives γ1 + β1 =

γ1 + β1 + γ2 + β2 = a. Thus we get γ1 + β1 = a and γ2 + β2 = 0.

Similarly the induced edge sum of the edges t1w2 and t1t2 gives α1 + α2 +

γ1 = α1 + α2 + β1 + β2 + γ2. Since γ2 + β2 = 0 the above equation reduces

to α1 + α2 + γ1 = α1 + α2 + β1 and which implies that γ1 = β1. That is

γ1 + β1 = 0, which is contradiction. Hence our assumption is wrong, that

is L(CBn) /∈ σa(V4) for any n.
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Hence the Proof.

Theorem 7.2.14. For the flag graph Fln, we have L(Fln) /∈ σa(V4) for any n.

Proof. Let V (Fln) = {w, v1, v2, v3, . . . , vn}, where v1, v2, v3, . . . , vn are the ver-

tices of corresponding cycle graph Cn and w is the root vertex adjacent to the

vertex v1. Also suppose ei = vivi+1 and e = v1w are the edges in Fln. Therefore

we can take the vertex set of L(Fln) equal to {e, e1, e2, e3, . . . , en}.

If possible, suppose L(Fln) ∈ σa(V4) for some n. Then there exists an EIML say

f : E(L(Fln))→ V4 r {0} with f++(e) = a for all e ∈ E(L(Fln)).

Let f(eiei+1) = αi, for i = 1, 2, 3, . . . , n with i+ 1 is taken modulo n, f(e1e) = α

and f(ene) = β. Then the induced edge sum equation of the edges ene1, e1e, and

ene gives the equation:

αn−1 + α1 + α + β = αn + α1 + β = αn−1 + αn + α = a.

but αn + α1 + β = αn−1 + αn + α implies α + β = α1 + αn−1, thus αn−1 + α1 +

α + β = 0, which is a contradiction. Hence our assumption is wrong, that is

L(Fln) /∈ σa(V4) for any n.

Hence the Proof.

Theorem 7.2.15. For the sun graph Sunn, we have L(Sunn) ∈ σ0(V4) for all

n.

Proof. Note that in L(Sunn) every vertex is of even degree. Therefore by Theo-

rem 6.2.1, we have L(Sunn) ∈ σ0(V4) for all n.

Theorem 7.2.16. Consider bistar graph Bm,n, then L(Bm,n) ∈ σ0(V4) for m

and n are even.

Proof. Note that for m and n are even, every vertex in L(Bm,n) is of even degree.

Therefore by Theorem 6.2.1, we have L(Bm,n) ∈ σ0(V4) for all n.

130



7.2. Line Graphs

Theorem 7.2.17. For the triangular snake graph TSn, we have L(TSn) ∈ σ0(V4)

for all n.

Proof. Since every vertex in L(TSn) is of even degree, by Theorem 6.2.1 the

proof follows.
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Chapter 8
Conclusion and Further Scope of

Research

A summary of the thesis is given in the first section of the

chapter. The following section includes some guidelines for a

researcher to explore more areas.

8.1 Summary of the Thesis

In this thesis, we introduced three types of graph labelings namely induced A-

magic labeling, induced V4-magic labeling and edge induced V4-magic labeling.

In the first part of the work, we discussed the induced A-magic labeling of some

general graphs and induced V4-magic labeling of cycle related, path related and

star related graphs. Finally we discussed the induced V4-magic labeling of Sub-

division graph, Shadow graph, Middle graph and Line graph of some general and

special graphs.

The thesis also introduced the concept of edge induced V4-magic labeling of

graphs and give the necessary and sufficient conditions for some general graphs

like path Pn, cycle Cn, complete graph Kn and the complete bipartite graph
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8.2. Further Scope of Research

Km,n and some more graphs having edge induced V4-magic labeling. The thesis

concluded with the study of edge induced V4-magic labeling of Subdivision graph

and Line graphs of some general and special graphs.

8.2 Further Scope of Research

(i) Study the Necessary and Sufficient conditions of induced V4-magic labeling

of some more graphs.

(ii) Examine the Necessary and Sufficient conditions of Induced V4-magic la-

beling of operation of two graphs.

(iii) Investigate induced V4-magic labeling of total graphs of some special graphs.

(iv) Study the Necessary and Sufficient conditions of edge induced V4-magic

labeling of some more graphs.

(v) Examine the Necessary and Sufficient conditions of edge induced V4-magic

labeling of operation of two graphs.

(vi) Investigate edge induced V4-magic labeling of total graphs of some special

graphs.
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