INDUCED AND EDGE INDUCED V_{4}-MAGIC LABELING OF GRAPHS

Thesis submitted to the
University of Calicut
for the award of the degree of
DOCTOR OF PHILOSOPHY
in Mathematics
under the Faculty of Science

by

LIBEESHKUMAR K. B.

Department of Mathematics, University of Calicut Kerala, India 673635.

Certificate

It is certified that the reports of adjudicators for the thesis " Induced and Edge Induced V_{4}-Magic Labeling of Graphs" of Mr. Libeeshkumar K.B., have not been suggested any modifications or corrections of the work .
12.04.2021

Calicut University Dr. Anilkumar V. Kesearch Supervisor

DECLARATION

I hereby declare that the thesis, entitled "INDUCED AND EDGE INDUCED V_{4}-MAGIC LABELING OF GRAPHS" is based on the original work done by me under the supervision of Dr. Anil Kumar V., Professor, Department of Mathematics, University of Calicut and it has not been included in any other thesis submitted previously for the award of any degree either to this University or to any other University or Institution.

University of Calicut,
27 October 2020.
Libeeshkumar K. B.

ACKNOWLEDGEMENT

I would like to express my immense and heartfelt gratitude to many people in the fulfillment of this work. First and foremost, I thank Dr. Anil Kumar V., Professor, Department of Mathematics, University of Calicut, who enlightened and constantly inspired me throughout the period of my research. I feel fortunate and very much privileged that my academic journey and scholastic achievement have been without much stress and strain because of his presence. His constant motivation, skillful guidance and easy access prompted me to keep on my work even in the difficult situation.

I extend my sincere gratitude to Dr. Preethi Kuttipulackal, Associate Professor and Head, Department of Mathematics, who has been very much lenient on me to provide all facilities of the department for the completion of my thesis. I also thank Dr. Raji Pilakkat, Associate Professor, Department of Mathematics and Dr. P. T. Ramachandran (Former Head, Department of Mathematics), Dr. Sini P., Assistant Professor, Department of Mathematics for their inspiration, assistance and guidance throughout my work.

I am enormously happy to thank my friends and well-wishers including Dr. Vineesh K.P., Assistant Professor, S.N.G College, Chelannur, Kozhikode, Premod, Assistant Professor, Govt.Polytechnic College, Perinthalmanna, Ummer K C, Assistant Professor, Govt. Polytechnic College, Kannur and Dr. Noufal K.M., C.K.G.M. Govt. College, Perambra, Dr. Latheesh Kumar A. R. and Dr. Shikhi M., for their incessant encouragement and assistance for the appropriate modification of my thesis.

Further, I thank all the Research fellows, M. Phil and M.Sc. students of the
department for the vibrant presence in making my life a memorable one in the department during these years.

I also appreciate and acknowledge the non teaching staff and Librarian of the department for the cordial support given to me during the entire tenure of my study here.

Words are insufficient to acknowledge the role of my family members including my wife Neelima C.C. and my daughter Vedha Kalyani in my life, whose humble, simple and innocent presence prompted me to materialize my dream.

I also express my gratitude to the Principals and Staff members of C.K.G.M. Govt. College, Perambra, Govt. Polytechnic College, Kannur and S.N.G. College, Chelannur, Kozhikode for their support and co-operation.

University of Calicut, 27 October 2020.

Libeeshkumar K. B.

Contents

List of Symbols iv

List of Figures vii
Introduction 1
1 Preliminaries 7
1.1 Basic Definitions from Graph Theory 7
1.2 Paths and Connectedness. 9
1.3 Operations on Graphs 10
1.4 Basic Definitions from Group Theory 11
2 Induced Magic Labeling of Graphs 13
2.1 Introduction 13
2.2 Induced A Magic Labeling of Graphs 16
2.3 Induced V_{4} Magic Labeling of Graphs 22
2.4 Cycle Related Graphs 23
3 Induced V_{4}-Magic Labeling of Path and Star Related Graphs 43
3.1 Introduction 43
3.2 Path Related Graphs 45
3.3 Star Related Graphs 55
4 Induced V_{4}-Magic Labeling of Subdivision and Shadow Graphs 65
4.1 Subdivision Graphs 65
4.2 Shadow Graphs 76
5 Induced V_{4}-magic Labeling of Middle and Line Graphs 77
5.1 Middle Graphs 77
5.2 Line Graphs 89
6 Edge Induced $V_{4}-$ Magic Labeling of Graphs 99
6.1 Introduction 99
6.2 Main Results 101
6.3 Edge Induced V_{4} Magic Labeling of Some Graphs 103
6 6.4 Edge Induced V_{4} Magic Labeling of Some Special Graphs 110
7 Edge Induced V_{4} - Magic Labeling of Subdivision Graphs andLine Graphs115
7.1 Subdivision Graphs 115
7.2 Line Graphs 126
8 Conclusion and Further Scope of Research 133
8.1 Summary of the Thesis . 133
8.2 Further Scope of Research . 134

Appendix I	139

List of Symbols

G	Simple, connected and undirected graph
$V(G)$	Vertex set of G
$E(G)$	Edge set of G
I_{G}	The incidence relation
$N(u)$	Neighbourhood set of the vertex u
$\operatorname{deg}(v)$	Degree of the vertex v
P_{n}	Path on n vertices
C_{n}	Cycle on n vertices
K_{n}	Complete graph
$K_{m, n}$	Complete bipartite graph
$K_{1, n}$	Star graph
$G_{1} \cup G_{2}$	Union of G_{1} and G_{2}
$G_{1}+G_{2}$	Join of G_{1} and G_{2}
$G_{1} \times G_{2}$ or $G_{1} \square G_{2}$	Product of G_{1} and G_{2}
$G_{1} \odot G_{2}$ or $G_{1} \circ G_{2}$	Corona of G_{1} and G_{2}
$O(k)$	Order of k in a group
$\Gamma(A)$	Set of all induced A-magic graphs
$\Gamma_{k}(A)$	Set of all induced A-magic graphs with induced magic label
	f satisfying $f(V(G))=\{k\}$, for some $k \in A \backslash\{0\}$

$\Gamma\left(V_{4}\right)$	Set of all induced V_{4}-magic graphs
$\Gamma_{k}\left(V_{4}\right)$	Set of all induced V_{4}-magic graphs with induced magic label f satisfying $f(V(G))=\{k\}$, for some $k \in V_{4} \backslash\{0\}$
$\Gamma_{k, 0}\left(V_{4}\right)$	Set of all induced V_{4}-magic graphs with induced magic label f satisfying $f(V(G))=\{k, 0\}$, for some $k \in V_{4} \backslash\{0\}$
W_{n}	Wheel graph
H_{n}	Helm graph
$W(2, n)$	Web graph
CH ${ }_{n}$	Closed helm
$F l^{n}$	Flower graph
G_{n}	Gear graph
F_{n}	Fan graph
$F l_{n}$	Flag graph
$S F_{n}$	Sunflower graph
$J(m, n)$	Jelly fish graph
Sun $_{n}$	Sun graph
$B S(p, q)$	Broken sun graph
$C^{\text {CSun }}{ }_{p, q}$	Consecutive broken sun graph
$C_{n}^{(t)}$	One point union of t cycles of length n
$C_{3}^{(t)}$	Friendship graph or Dutch 3 windmill graph
$B(n, k)$	n - gon Book graph
$B P(n)$	Bipyramid graph
$C B_{n}$	Comb graph
$T S_{n}$	Triangular snake graph
$D T S_{n}$	Double triangular snake graph
$O\left(L_{n}\right)$	Open ladder graph
$\Theta\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right)$	Generalized theta graph
B_{n}	Book graph

$B_{m, n}$	Bistar graph
$B t(n, k)$	$(n, k)-$ Banana tree
$K_{m}^{(n)}$	Windmill graph
$S(G)$	Subdivision graph of G
$S h(G)$	Shadow graph of G
$M(G)$	Middle graph of G
$L(G)$	Line graph of G
$\sigma_{a}\left(V_{4}\right)$	Set of all edge induced V_{4}-magic graphs with edge induced
	magic labeling f satisfying $f^{++}(u)=a$ for all $u \in V$
$\sigma_{0}\left(V_{4}\right)$	Set of all edge induced V_{4}-magic graphs with edge induced
	magic labeling f satisfying $f^{++}(u)=0$ for all $u \in V$
$\sigma\left(V_{4}\right)$	$\sigma_{a}\left(V_{4}\right) \cap \sigma_{0}\left(V_{4}\right)$

List of Figures

$2.1 \quad$ A graph G 14
2.2 Cycle C_{6} 20
2.3 Gear graph G_{4}. 32
3.1 Double triangular snake graph $D T S_{6}$ 50
$4.1 \quad$ Subdivision graph of CB_{7} 73
5.1 Middle graph of $K_{1,5}$ 81
6.1 Graph G_{1} 100
6.2 Graph G_{2} 100

Introduction

Recently, Graph Theory has been lauded as an area of research with many applications in our everyday lives. These days, there is an unprecedented increase in research related to graph theory. Graph theory is generally applicable to various branches of mathematics, such as Algebra, Algebraic topology, Number Theory, Algebraic Geometry, Numerical Analysis, Matrix Theory, Operations Science, etc., even though graph theory was originally known by recreational math issues. It also nurtured the growth of other branches of sciences like Physical Sciences, Chemical Sciences, Computer Science, Life Science, Sociology, Economics, Social Sciences, Geography, Architecture, Electrical Engineering, Genetics and so on.

In graph theory, numerous research studies are ongoing, especially in the field of graph labeling. The origin of most Graph labeling methods can be traced back to the theory introduced by A. Rosa [3] in 1967 or given by R. L. Graham and N. J. A. Sloane [15] in 1980. Various Graph Labeling problems are β - valuation (or graceful labeling), γ - labeling, $\rho-$ labeling, cordial labeling, total magic cordial labeling, elegant labeling, mean labeling, magic labeling, anti magic labeling, prime labeling and so on. Among these, Magic labeling of a graph is a well known one. For any abelian group A with identity element 0 , a graph $G=(V(G), E(G))$ is said to be A-magic [19] if there exists a labeling $l: E(G) \rightarrow A \backslash\{0\}$ such that
the induced vertex set labeling $l^{+}: V(G) \rightarrow A$ defined by

$$
l^{+}(v)=\sum\{l(u v): u v \in E(G)\}
$$

is a constant map.
Among various mathematical models, labeled graphs with a wide range of applications serve as a useful model. For example, research fields like conflict resolution in social psychology, electrical circuit theory and energy crisis theory and others are enriched by qualitative labelings of graph. In the same way, quantitative labelings of graphs are applied in coding theory problems, such as radar location codes, missile guidance codes, synch-set codes and convolution codes. There are other applications for labeled graphs as fixing complexities of X-ray crystallographic analysis or design communication network addressing systems. Labeled graphs are also used in optimal circuit layout and radio astronomy.

An Overview of the Thesis

In this thesis, we define some new types of labelings, namely induced A-magic labeling of graphs, induced V_{4}-magic labeling of graphs and edge induced V_{4}-magic labeling of graphs. Through out this work, we consider graphs that are connected, finite, simple and undirected. The Klein 4-group, denoted by $\left(V_{4},+\right)=$ $(\{0, a, b, c\},+)$ is an abelian group of order 4 with identity element 0 , where the operation + is defined as $a+a=b+b=c+c=0$ and $a+b=c, b+c=a, c+a=b$.

Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$ and $(A,+)$ be an abelian group. Suppose $f: V(G) \rightarrow A$ be a vertex labeling and $f^{*}: E(G) \rightarrow A$ denote the induced edge labeling of f defined by $f^{*}(u v)=f(u)+$ $f(v)$ for all $u v \in E(G)$. Then f^{*} again induces a vertex labeling $f^{* *}: V(G) \rightarrow A$
defined by $f^{* *}(u)=\Sigma f^{*}(u v)$, where the summation is taken over all the vertices v which are adjacent to u. Then a graph G is said to be an induced A-magic graph and denoted by IMAG or simply IMG if there exists a non zero vertex labeling function $f: V(G) \rightarrow A$ such that $f \equiv f^{* *}$. The function f, so obtained is called an induced A-magic labeling of G and denoted by IMAL or simply IML.

In a similar way, by taking the Klein 4 -group V_{4} instead of an arbitrary abelian group A in the above definition, we can define induced V_{4}-magic graphs $\left(\mathrm{IM} V_{4} \mathrm{G}\right)$ and induced V_{4}-magic labeling of a graph $\left(\mathrm{IM} V_{4} \mathrm{~L}\right)$.

Let $f: E(G) \rightarrow V_{4} \backslash\{0\}$ be an edge labeling and $f^{+}:\left(V(G) \rightarrow V_{4}\right.$ denote the induced vertex labeling of f defined by $f^{+}(u)=\sum_{u v \in E(G)} f(u v)$ for all $u \in$ $\left(V(G)\right.$. Then f^{+}again induces an edge labeling $f^{++}: E(G) \rightarrow V_{4}$ defined by $f^{++}(u v)=f^{+}(u)+f^{+}(v)$. Then a graph $G=(V(G), E(G))$ is said to be an edge induced V_{4}-Magic graph if $f^{++}(e)$ is a constant for all $e \in E(G)$. If this constant is x then x is said to be the induced edge sum of the graph G, or sometimes induced edge sum of an edge $u v$. The function f, so obtained is called a edge induced V_{4}-Magic labeling of G or simply edge induced Magic labeling of G and it is denoted by EIMV $V_{4} \mathrm{~L}$ or simply EIML.

Through out this thesis we will use the following notations:
(i) $\Gamma(A):=$ set of all induced A-magic graphs.
(ii) $\Gamma_{k}(A):=$ set of all induced A-magic graphs with induced magic label f satisfying $f(V(G))=\{k\}$, for some $k \in A \backslash\{0\}$.
(iii) $\Gamma\left(V_{4}\right):=$ set of all induced V_{4}-magic graphs.
(iv) $\Gamma_{k}\left(V_{4}\right):=$ set of all induced V_{4}-magic graphs with induced magic label f satisfying $f(V(G))=\{k\}$, for some $k \in V_{4} \backslash\{0\}$.
(v) $\Gamma_{k, 0}\left(V_{4}\right):=$ set of all induced V_{4}-magic graphs induced magic label f satis-
fying $f(V(G))=\{k, 0\}$, for some $k \in V_{4} \backslash\{0\}$.
(vi) $\sigma_{a}\left(V_{4}\right):=$ Set of all edge induced V_{4}-magic graphs with edge induced magic labeling f satisfying $f^{++}(u)=a$ for all $u \in V$.
(vii) $\sigma_{0}\left(V_{4}\right):=$ Set of all edge induced V_{4}-magic graphs with edge induced magic labeling f satisfying $f^{++}(u)=0$ for all $u \in V$.
(viii) $\sigma\left(V_{4}\right):=\sigma_{a}\left(V_{4}\right) \bigcap \sigma_{0}\left(V_{4}\right)$.

The thesis contains an introductory chapter and eight other chapters as well. In the introductory chapter, we discuss the motivation of the study of induced A-magic labeling, induced V_{4}-magic labeling and edge induced V_{4}-magic labeling of graphs and a literature survey on it.

In Chapter One, we list out preliminary definitions from the areas of graph theory and group theory which will be useful for the upcoming chapters in the thesis.

Chapter Two introduces the concept of induced A-magic graphs, where A is an abelian group and the concept of induced V_{4}-magic graphs. The first section of the chapter gives the definition of induced A-magic labeling and some definitions of cycle related graphs. In the second section, we prove the "Induced degree sum theorem" which establishes the necessary and sufficient condition for a vertex label function to be an induced A magic label for a graph. This theorem states that: Let f be a vertex labeling of a graph G. Then f is an IAML of G, if and only if $[\operatorname{deg}(u)-1] f(u)+\sum f(v)=0$, for any vertex $u \in V(G)$, where the summation is taken over all the vertices v which are adjacent to u. We then we prove a necessary and sufficient conditions for the path P_{n}, cycle C_{n}, the complete graph K_{n} and the complete bipartite graph $K_{m, n}$ belongs to the above said sets (i) and (ii). In the third section we define induced V_{4}-magic labeling of graphs and prove a theorem analogues to "Induced degree sum theorem". Furthermore,
we prove that $G \notin \Gamma_{k}\left(V_{4}\right)$ for any graph G. In the last section of this chapter we discuss whether the graphs cycle C_{n}, wheel graph W_{n}, helm H_{n}, web graph $W(2, n)$, closed helm $C H_{n}$, flower graph $F l^{n}$, gear graph G_{n}, fan graph F_{n}, flag graph $F l_{n}$, sunflower graph $S F_{n}$, jelly fish $J(m, n)$, sun graph $S u n_{n}$, consecutive broken sun graph $C B S u n_{p, q}$, one point union of t cycles of length n denoted by $C_{n}^{(t)}$, n - gon book $B(n, k)$, bipyramid graph $B P(n)$ are induced V_{4} magic or not.

Chapter Three deals with induced V_{4}-magic labeling of path and star related graphs. In the first section, we include definitions of some path and star related graphs. Second section discusses induced V_{4} magic labeling of path related graphs namely path P_{n}, comb graph $C B_{n}$, triangular Snake graph $T S_{n}$, double triangular snake graph $D T S_{n}$, open ladder $O\left(L_{n}\right)$, the book graph B_{n} and so on. The third section discusses star related graphs namely complete graph K_{n}, complete bipartite graph $K_{m, n}$, star graph $K_{1, n}$, bistar $B_{m, n},\left\langle K_{1, n}: m\right\rangle$, (n, k)-banana tree $B t(n, k)$ and windmill graph $K_{m}^{(n)}$ admit induced V_{4}-magic labeling or not.

The first section of Chapter Four, we include the definition of subdivision graph and prove some theorems regarding induced V_{4} magic labeling of subdivision of graphs. Moreover, we check whether the subdivision graph of C_{n}, P_{n}, K_{n}, $B_{m, n}, K_{m, n}, K_{1, n}, W_{n}, H_{n}, C B_{n}, J(m, n), S F_{n}, G_{n}$ and $F l^{n}$ admits the induced V_{4} magic labeling or not. In the second section of this chapter, we prove that shadow graph of any graph is not an induced V_{4} magic graph.

In the first section of Chapter Five, we provide the definitions of Middle graph of a graph and prove the theorem: "Let G be a graph with every vertex is of odd degree, then $M(G) \in \Gamma\left(V_{4}\right)$." In continuation of this section we discuss induced V_{4}-magic labeling of middle graphs like $M\left(P_{n}\right), M\left(K_{1, n}\right), M\left(B_{m, n}\right)$, $M\left(K_{m, n}\right), M\left(K_{n}\right), M\left(C B_{n}\right), M\left(C_{n}\right), M\left(W_{n}\right), M\left(H_{n}\right), M\left(F l_{n}\right)$ and $M\left(S u n_{n}\right)$. In the second section, we define Line graph of a graph and discuss induced $V_{4^{-}}$
magic labeling of line graphs $L\left(C_{n}\right), L\left(P_{n}\right), L\left(K_{1, n}\right), L\left(B_{m, n}\right), L\left(S u n_{n}\right), L\left(C B_{n}\right)$, $L\left(W_{n}\right), L\left(T S_{n}\right), L\left(G_{n}\right)$ and $L\left(F l_{n}\right)$.

Chapter Six introduces the concept of edge induced V_{4}-magic labeling of graphs and we prove some theorems regarding the concept of edge sum equation of an edge in a graph. The second section of this chapter gives some main results regarding the edge induced V_{4}-magic labeling of graphs. In the third section, we discuss edge induced V_{4} magic labeling of some graphs like $P_{n}, C_{n}, K_{1, n}, K_{m, n}$, $B_{m, n}$, and K_{n} and in the last section we discuss edge induced V_{4} magic labeling of some special graphs like $S u n_{n}, C B_{n}, W_{n}, J(m, n), T S_{n}$ and $O\left(L_{n}\right)$.

Chapter Seven contains two sections, in which we discuss, edge induced V_{4} magic labeling of subdivision graph, line graph of some general graphs and some special graphs.

Chapter Eight briefly sums up the overall aspects of the work and the scope for further research also.

Chapter

Preliminaries

In this chapter, we include a brief overview of the preliminary concepts in graph theory and group theory that we used in the coming chapters. Readers can refer to (4] and 12] for notations and terminologies not explicitly specified in this thesis.

1.1 Basic Definitions from Graph Theory

Definition 1.1.1. [12 A graph is an ordered triple $G=(V(G), E(G), I(G))$, where $V(G)$ is a non empty set, $E(G)$ is a set disjoint from $V(G)$ and $I(G)$ is an "incidence" relation that associates with each element of $E(G)$ an unordered pair of elements (same or distinct) of $V(G)$. Elements of $V(G)$ are called the vertices (or nodes or points) of G and elements of $E(G)$ are called the edges (or lines) of $G . V(G)$ and $E(G)$ are the vertex set and the edge set of G respectively. If for the edge e of $G, I(G)(e)=\{u, v\}$, we write $I_{G}(e)=u v$.

Definition 1.1.2. [12] If $I(G)(e)=\{u, v\}$ then the vertices u and v are called the end vertices or ends of the edge e. Each edge is said to join its ends; in this case, we say that e is incident with each one of its ends. Also, the vertices u and
v are then incident with e.
Definition 1.1.3. [12] A set of two or more edges of a graph G is called a set of multiple or parallel edges if they have the same pair of distinct ends.

Definition 1.1.4. [12] An edge for which the two ends are the same is called a loop at the common vertex.

Definition 1.1.5. 12] A vertex u is a neighbour of v in G; if $u v$ is an edge of G; and $u \neq v$. The set of all neighbours of v is the open neighbourhood of v or the neighbour set of v; and is denoted by $N(v)$. The set $N[v]=N(v) \cup\{v\}$ is the closed neighbourhood of v in G.

Definition 1.1.6. 12 Vertices u and v are adjacent to each other in G if and only if there is an edge of G with u and v as its ends. Two distinct edges e and f are said to be adjacent if and only if they have a common end vertex.

Definition 1.1.7. [12] A graph is simple if it has no loops and no multiple edges. Thus, for a simple graph G; the incidence function $I(G)$ is one-to-one. Hence, an edge of a simple graph is identified with the pair of its ends. A simple graph, therefore, may be considered as an ordered pair $(V)(G), E(G))$, where $V(G)$ is a non empty set and $E(G)$ is a set of un ordered pairs of elements of $V(G)$.

Definition 1.1.8. [12] A graph is called finite if both $V(G)$ and $E(G)$ are finite. A graph that is not finite is called an infinite graph.

Definition 1.1.9. [12] A simple graph G is said to be complete if every pair of distinct vertices of G are adjacent in G. A complete graph, which has n vertices is denoted by K_{n}.

Definition 1.1.10. [12 A graph is bipartite if it's vertex set can be partitioned into two nonempty subsets X and Y such that each edge of G has one end in X and the other in Y. The pair (X, Y) is called a bipartition of the bipartite graph.

The bipartite graph G with bipartition (X, Y) is denoted by $G(X, Y)$. A simple bipartite graph $G(X, Y)$ is complete if each vertex of X is adjacent to all the vertices of Y. If $G(X, Y)$ is complete with $|X|=m$ and $|Y|=n$ then $G(X, Y)$ is denoted by $K_{m, n}$. A complete bipartite graph of the form $K_{1, n}$ is called a star.

Definition 1.1.11. (12 Let G be a graph and $v \in V$. Then the number of edges incident at v in G is called the degree (or valency) of the vertex v in G and is denoted by $d_{G}(v)$ or $\operatorname{deg}(v)$ or $d(v)$.

Definition 1.1.12. 12] A graph G is called k-regular if every vertex of G has degree k. A graph is said to be regular if it is k-regular for some non negative integer k.

Definition 1.1.13. [12 A vertex of degree 0 is an isolated vertex of G. A vertex of degree 1 is called a pendant vertex of G; and the unique edge of G incident to such a vertex of G is a pendant edge of G.

1.2 Paths and Connectedness

Definition 1.2.1. 12 A walk in a graph G is an alternating sequence W : $v_{0} e_{1} v_{1} e_{2} v_{2} \ldots e_{p} v_{p}$ of vertices and edges beginning and ending with vertices in which v_{i-1} and v_{i} are the ends of e_{i}, v_{0} is the origin and v_{p} is the terminus of W. The walk W is said to join v_{0} and v_{p}, it is also referred to as a $v_{0}-v_{p}$ walk. If the graph is simple, a walk is determined by the sequence of its vertices. The walk is closed if $v_{0}=v_{p}$ and is open otherwise. The length of a walk is the number of edges in it.

Definition 1.2.2. [12] A walk is called a trail if all the edges appearing in the walk are distinct.

Definition 1.2.3. [12] A walk is called a path if all the vertices are distinct.

Thus, a path in G is automatically a trail in G : When writing a path, we usually omit the edges. A path on n vertices is usually denoted by P_{n}.

Definition 1.2.4. [12] A cycle is a closed trail in which the vertices are all distinct. A cycle of length n is usually denoted by C_{n}.

Definition 1.2.5. [12] Let G be a graph. Two vertices u and v of G are said to be connected if there is a $u-v$ path in G. A graph G is said to be connected if every pair of vertices in G are connected.

1.3 Operations on Graphs

Definition 1.3.1. (4) Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with $V_{1} \cap V_{2}=\phi$. Then their union $G=G_{1} \cup G_{2}$ is a graph with vertex set $V=V_{1} \cup V_{2}$ and edge set $E=E_{1} \cup E_{2}$.

Definition 1.3.2. [4] Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with $V_{1} \cap V_{2}=\phi$. Then their join is denoted by $G_{1}+G_{2}$ and it is a graph consists of $G_{1} \cup G_{2}$ and all edges joining V_{1} with V_{2}.

Definition 1.3.3. [4] Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with $V_{1} \cap V_{2}=\phi$. Then the product of G_{1} and G_{2} is denoted by $G_{1} \times G_{2}$ or $G_{1} \square G_{2}$ and it has vertex set $V=V_{1} \times V_{2}$ and two distinct vertices (u_{1}, u_{2}) and $\left(v_{1}, v_{2}\right)$ of $G_{1} \times G_{2}$ are adjacent whenever $\left[u_{1}=v_{1}\right.$ and u_{2} adjacent to $\left.v_{2}\right]$ or $\left[u_{2}=v_{2}\right.$ and u_{1} adjacent to $\left.v_{1}\right]$.

Definition 1.3.4. [4] The Corona $G_{1} \odot G_{2}$ or $G_{1} \circ G_{2}$ of two graphs G_{1} and G_{2} is the graph obtained by taking one copy of G_{1}, (which has p_{1} vertices) and p_{1} copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} by an edge to every vertex in the $i^{\text {th }}$ copy of G_{2}.

1.4 Basic Definitions from Group Theory

Definition 1.4.1. [6] A binary operation on a set S is a function mapping from $S \times S$ into S.

Definition 1.4.2. [6] A binary operation $*$ on a set S is associative if $(a * b) * c=$ $a *(b * c)$ for all $a, b, c \in S$.

Definition 1.4.3. [6] A binary operation $*$ on a set S is commutative if $a * b=$ $b * a$ for all $a, b \in S$.

Definition 1.4.4. [6] A set S together with a binary operation $*$ is called a binary algebraic structure or simply binary structure, denoted by $\langle S, *\rangle$.

Definition 1.4.5. [6] A group $<G, *>$ is a set G, closed under a binary operation $*$, such that the following axioms are satisfied:
(i) The operation * is associative.
(ii) There exists an element $e \in G$ such that $e * x=x=x * e$ for all $x \in G$. (The element e is called the identity element of the binary operation on $*$ G.)
(iii) For each $a \in G$, there is an element $a^{-1} \in G$ such that $a * a^{-1}=e=a^{-1} * a$ for all $a \in G$. (The element a^{-1} is called the inverse of the element a.)

Definition 1.4.6. [6] A group $\langle G, *>$ is said to be an an abelian group or simply abelian or a commutative group if the binary operation $*$ is commutative.

Definition 1.4.7. Let $V_{4}=\{0, a, b, c\}$. Then V_{4} is an abelian group with identity element 0 , under the binary operation + defined by $a+a=b+b=c+c=0$ and $a+b=c, b+c=a, c+a=b$. This abelian group is called Klein-4-group or V group.

1.4. Basic Definitions from Group Theory

Definition 1.4.8. [6] Let G be a group with identity element e. Then the order of an element a in G is the smallest positive integer m such that $a^{m}=e$ and it is denoted by $O(a)$.

Chapter

Induced Magic Labeling of Graphs

The first section of this chapter introduces the concept of induced A-magic graph, where A is an Abelian group. Some well known cycle-related graphs are also included. The second section of the chapter gives a necessary and sufficient condition for some general graphs, that admits induced A magic labeling. The third section of the chapter introduces the concept of induced V_{4}-magic graphs and the last section deals with induced V_{4} magic labeling of some cycle related graphs.

2.1 Introduction

Let $G=(V(G), E(G))$ be the graph with vertex set $V(G)$ and edge set $E(G)$ and $(A,+)$ be an abelian group with identity element 0 . Suppose $f: V(G) \rightarrow A$ be a vertex labeling and $f^{*}: E(G) \rightarrow A$ denote the induced edge labeling of f defined by $f^{*}(u v)=f(u)+f(v)$ for all $u v \in E(G)$. Then f^{*} again induces a vertex

[^0]

Figure 2.1: A graph G
labeling $f^{* *}: V(G) \rightarrow A$ defined by $f^{* *}(u)=\Sigma f^{*}(u v)$, where the summation is taken over all the vertices v which are adjacent to u. A graph $G=(V(G), E(G))$ is said to be an induced A-magic graph and it is denoted by IMAG or simply IMG if there exists a non zero vertex labeling $f: V(G) \rightarrow A$ such that $f \equiv f^{* *}$. The function f, so obtained is called an induced A-magic labeling of G and it is denoted by IMAL or simply IML. This chapter discusses the induced A-magic labeling of some general graphs and induced V_{4}-magic labeling of some cycle related graphs which belong to the following categories:
(i) $\Gamma(A):=$ set of all induced A-magic graphs.
(ii) $\Gamma_{k}(A):=$ set of all induced A-magic graphs with induced magic label f satisfying $f(V(G))=\{k\}$, for some $k \in A \backslash\{0\}$.
(iii) $\Gamma\left(V_{4}\right):=$ set of all induced V_{4}-magic graphs.
(iv) $\Gamma_{k}\left(V_{4}\right):=$ set of all induced V_{4}-magic graphs with induced magic label f satisfying $f(V(G))=\{k\}$, for some $k \in V_{4} \backslash\{0\}$.
(v) $\Gamma_{k, 0}\left(V_{4}\right):=$ set of all induced V_{4}-magic graphs with induced magic label f satisfying $f(V(G))=\{k, 0\}$, for some $k \in V_{4} \backslash\{0\}$.

Two different types of induced \mathbb{Z}_{10}-magic labelings of a graph G are shown in Figure 2.1.

Definition 2.1.1. [8] The sum of the graphs C_{n} and K_{1} is called a wheel graph and it is denoted by W_{n}, that is $W_{n}=C_{n}+K_{1}$.

Definition 2.1.2. 18 The helm H_{n} is a graph obtained from a wheel W_{n} by attaching a pendant edge at each vertex of the n-cycle.

Definition 2.1.3. [8] The web graph $W(2, n)$ is a graph obtained by joining the pendant points of a helm to form a cycle and adding a single pendant edge to each vertex of this outer cycle.

Definition 2.1.4. [8] A closed helm $C H_{n}$ is a graph obtained from a helm by joining each pendant vertex to form a cycle.

Definition 2.1.5. [22] A flower graph Fl^{n} is a graph obtained from a helm by joining each pendant vertex to the central vertex of the helm.

Definition 2.1.6. [24] A gear graph is a graph G_{n} obtained from the wheel W_{n} by adding a vertex between every pair of adjacent vertices of the n-cycle.

Definition 2.1.7. [8] A fan graph, denoted by F_{n}, is defined as $P_{n}+K_{1}$, where P_{n} is a path graph on n vertices.

Definition 2.1.8. [8] A flag graph is obtained by joining one vertex of C_{n} to an extra vertex called the root and it is denoted by $F l_{n}$.

Definition 2.1.9. [13] A sunflower graph is denoted by $S F_{n}$ and is obtained by taking a wheel with the central vertex v_{0} and the n-cycle $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and additional vertices $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$, where w_{i} is joined by edges to the vertices v_{i} and v_{i+1}, where $i+1$ is taken modulo n.

Definition 2.1.10. [8] Jelly fish graph $J(m, n)$ is obtained from a 4-cycle $v_{1} v_{2} v_{3} v_{4}$ by joining v_{1} and v_{3} with an edge and appending the central vertex of $K_{1, m}$ to v_{2} and appending the central vertex of $K_{1, n}$ to v_{4}.

Definition 2.1.11. [16] The sun graph on $n=2 p$ vertices, denoted by Sun n_{n}, is the graph obtained by appending a pendant vertex to each vertex of a p-cycle. A broken sun graph is a connected unicyclic subgraph of a sun graph. We denote by $B S(p, q)$ the set of broken suns with $n=p+q$ vertices and with a $p-c y c l e$. For $p>2$ and $0<q<p$, a consecutive broken sun graph, denoted by CBSun $n_{p, q}$, is the graph belonging to $B S(p, q)$ such that the subgraph induced by the vertices of degree 2 is a path on $p-q$ vertices.

Definition 2.1.12. We denote by $C\left(n, k_{1}, k_{2}, k_{3}, \ldots, k_{t}\right)$ the class of all graphs obtained by identifying the apex vertices of t stars $K_{1, k_{i}}(i=1,2,3, \ldots, t)$ with $t(1 \leq t \leq n)$ vertices of C_{n}.

Definition 2.1.13. (8) Let $C_{n}^{(t)}$ denote the one-point union of t cycles of length n. For $n=3$ the graph $C_{3}^{(t)}$ is called friendship graph or Dutch 3-windmill graph.

Definition 2.1.14. [19] When k copies of C_{n} share a common edge it will form the $n-$ gon book graph of k pages and is denoted by $B(n, k)$.

Definition 2.1.15. [19] Let $N_{2}=\{u, v\}$ be the disconnected graph of order two. The graph $C_{n}+N_{2}$, the cycle C_{n} join N_{2}, is called bi pyramid based on C_{n} and is denoted by $B P(n)$.

2.2 Induced A Magic Labeling of Graphs

Lemma 2.2.1. Let $G=(V, E)$ be a graph and f is an IAML of G. If $v_{1} \in V$ is a pendant vertex adjacent to $v \in V$, then $f(v)=0$.

Proof. Let f be an IAML of a graph G and v_{1} be a pendant vertex adjacent to v. Then $f^{*}\left(v v_{1}\right)=f(v)+f\left(v_{1}\right)$ and v_{1} is a pendant vertex implies that $f^{* *}\left(v_{1}\right)=f(v)+f\left(v_{1}\right)$. Also f is an induced magic labeling of G implies that $f\left(v_{1}\right)=f^{* *}\left(v_{1}\right)=f(v)+f\left(v_{1}\right)$. Thus $f(v)=0$.

Corollary 2.2.2. If G has a pendant vertex, then $G \notin \Gamma_{k}(A)$ for any Abelian group A.

Proof. Proof is indisputable from the Lemma 2.2.1.

Lemma 2.2.3. Let f be an IAML of a graph G and wuvz be a path in G with w and z are pendant vertices in G, then $f^{*}(u v)=0$.

Proof. Suppose f is an IAML of a graph $G=(V, E)$ and wuvz is a path in G with w and z are pendant vertices. Then by the Lemma 2.2.1, we have $f(u)=0=f(v)$. Hence $f^{*}(u v)=0$.

Theorem 2.2.4. Induced degree sum theorem

Let f be a vertex labeling of a graph G. Then f is an IAML of G, if and only if

$$
\begin{equation*}
[\operatorname{deg}(u)-1] f(u)+\sum f(v)=0 \tag{2.1}
\end{equation*}
$$

for any vertex $u \in V(G)$, where the summation is taken over all the vertices v which are adjacent to u.

In this case, the equation (2.1) corresponding to a vertex u is called induced degree sum equation of the vertex u.

Proof. Let f be an IAML of G and u be a vertex in G with $\operatorname{deg}(u)=m$. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ be the vertices adjacent to u in G. Now f is an IAML if and only if $f(u)=f^{* *}(u)=f^{*}\left(u v_{1}\right)+f^{*}\left(u v_{2}\right)+f^{*}\left(u v_{3}\right)+\cdots+f^{*}\left(u v_{m}\right)=$ $m f(u)+f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\cdots+f\left(v_{m}\right)$.
That is if and only if $(m-1) f(u)+\sum f(v)=0$, where v is adjacent to u.

Theorem 2.2.5. $P_{n} \in \Gamma(A)$ if and only if n is a multiple of 3.

Proof. Suppose $n=3 m$, for some integer m. Let P_{n} be the path with vertex set $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right\}$. For any $a \neq 0$ in A, define $f: V \rightarrow A$ as

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i=1,4,7, \ldots, 3 m-2 \\
0 & \text { if } & i=2,5,8, \ldots, 3 m-1 \\
a^{-1} & \text { if } & i=3,6,9, \ldots, 3 m
\end{array}\right.
$$

Then, f is an IAML of P_{n}. Conversely, suppose n is not a multiple of 3 , then $n=3 m+1$ or $n=3 m+2$ for some positive integer m. Let $f: V \rightarrow A$ be a vertex labeling function with $f \equiv f^{* *}$. Then for $1 \leq k \leq n-3$ and any path $v_{k} v_{k+1} v_{k+2} v_{k+3}$ in P_{n}, we have $f\left(v_{k+1}\right)=f^{* *}\left(v_{k+1}\right)$ implies that $f\left(v_{k}\right)+f\left(v_{k+1}\right)+$ $f\left(v_{k+2}\right)=0$. Also $f\left(v_{k+2}\right)=f^{* *}\left(v_{k+2}\right)$ implies that $f\left(v_{k+1}\right)+f\left(v_{k+2}\right)+f\left(v_{k+3}\right)=$ 0 . Therefore we should have $f\left(v_{k}\right)=f\left(v_{k+3}\right)$. Also, since v_{2} and v_{n-1} are adjacent to the pendant vertices v_{1} and v_{n} respectively, we have $f\left(v_{2}\right)=0$ and $f\left(v_{n-1}\right)=0$. Let us deal with the following cases:

Case 1: $n=3 m+1$.
In this context, from the above discussion we have, $0=f\left(v_{2}\right)=f\left(v_{5}\right)=$ $f\left(v_{8}\right)=\cdots=f\left(v_{3 m-1}\right)=f\left(v_{n-2}\right)$ and $0=f\left(v_{n-1}\right)=f\left(v_{n-4}\right)=\cdots=$ $f\left(v_{6}\right)=f\left(v_{3}\right)=0$. Thus $f\left(v_{3}\right)=0$ and $f\left(v_{1}\right)+f\left(v_{3}\right)=0$ imply that $f\left(v_{1}\right)=0$, which again implies that $0=f\left(v_{1}\right)=f\left(v_{4}\right)=f\left(v_{7}\right)=\cdots=$ $f\left(v_{3 m+1}\right)=f\left(v_{n}.\right)$ Hence $f \equiv 0$, Therefore f is not an IAML.

Case 2: $n=3 m+2$.
In this context from the above discussion we have, $0=f\left(v_{2}\right)=f\left(v_{5}\right)=$ $f\left(v_{8}\right)=\cdots=f\left(v_{3 m+2}\right)=f\left(v_{n}\right)$ and $0=f\left(v_{n-1}\right)=f\left(v_{n-4}\right)=\cdots=$ $f\left(v_{4}\right)=f\left(v_{1}\right)$. Thus $f\left(v_{1}\right)=0$ and $f\left(v_{1}\right)+f\left(v_{3}\right)=0$ imply that $f\left(v_{3}\right)=0$, which implies $0=f\left(v_{3}\right)=f\left(v_{6}\right)=f\left(v_{9}\right)=\cdots=f\left(v_{3 m}\right)=f\left(v_{n-2}\right)$. Hence $f \equiv 0$. Therefore, f is not an IAML.

Hence if n is not a multiple of 3 , then $P_{n} \notin \Gamma(A)$
Theorem 2.2.6. Let $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}=v_{0}\right\}$ be the vertex set of C_{n}. Then for any path $v_{k-1} v_{k} v_{(k+1)} \bmod n, f$ is an IAML of C_{n} if and only if $f\left(v_{k-1}\right)+$ $f\left(v_{k}\right)+f\left(v_{(k+1) \bmod n}\right)=0$, where $1 \leq k \leq n$. Moreover any IAML f of C_{n} satisfies $f\left(v_{k}\right)=f\left(v_{(k+3) \bmod n}\right)$ for $1 \leq k \leq n$.

Proof. For $k=1,2,3, \ldots, n$, consider the path $v_{k-1} v_{k} v_{(k+1) \bmod n}$ in C_{n}. Observe that f is an IAML of C_{n} if and only if $f\left(v_{k}\right)=f^{* *}\left(v_{k}\right)$, which holds if and only if $f\left(v_{k-1}\right)+f\left(v_{k}\right)+f\left(v_{(k+1)} \bmod n\right)=0$.

Also for any $0 \leq k \leq n-1$, let $v_{k} v_{k+1} v_{[(k+2) \bmod n]} v_{[(k+3) \bmod n]}$, is a path in C_{n}, we have $f\left(v_{k}\right)+f\left(v_{k+1}\right)+f\left(v_{(k+2) \bmod n}\right)=0$ and $f\left(v_{k+1}\right)+f\left(v_{(k+2) \bmod n}\right)+$ $f\left(v_{(k+3) \bmod n}\right)=0$.

Thus $f\left(v_{k}\right)=f\left(v_{(k+3) \bmod n}\right)$.
Corollary 2.2.7. $C_{n} \in \Gamma_{k}(A)$ if and only if $O(k)=3$, where $O(k)$ denotes the order of k in A.

Proof. Consider C_{n} with $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}=v_{0}\right\}$. Suppose $C_{n} \in$ $\Gamma_{k}(A)$, that is there exists an IAML f of C_{n} with $f\left(v_{i}\right)=k$ for $i=1,2,3, \ldots, n$. Then by Theorem 2.2.6, we have $3 k=0$ in A, which implies $O(k)=3$. Conversely, suppose $O(k)=3$. Then consider the vertex label $f\left(v_{i}\right)=k$ for $i=$ $1,2,3, \ldots, n$. Since $f\left(v_{i}\right)=k$ for all i and $O(k)=3$, we have, $f^{*}\left(v_{i} v_{i+1}\right)=2 k$ for all i, and which implies $f^{* *}\left(v_{i}\right)=f^{*}\left(v_{i} v_{i+1}\right)+f^{*}\left(v_{i-1} v_{i}\right)=4 k=k=f\left(v_{i}\right)$, for all i. Thus f is an IAML of C_{n}, that is $C_{n} \in \Gamma_{k}(A)$. Hence the proof.

Corollary 2.2.8. C_{n} has a non-constant IAML if and only if n is a multiple of 3.

Proof. Consider C_{n} with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}=v_{0}\right\}$. Suppose $n=3 k$, for some integer k. Let a, b, c be any three elements with at least two of them are

7

Figure 2.2: \quad Cycle C_{6}
different in A, such that $a+b+c=0$, then define $f: V\left(C_{n}\right) \rightarrow A$ as follows.

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i=1,4,7, \ldots, 3 k-2 \\
b & \text { if } & i=2,5,8, \ldots, 3 k-1 \\
c & \text { if } & i=3,6,9, \ldots, 3 k
\end{array}\right.
$$

Then clearly f is a non constant IAML of C_{n}.
Conversely, assume that n is not a multiple of 3 . Then either $n=3 k+1$ or $3 k+2$ for some integer k. Let f be an IAML of C_{n} and $f\left(v_{1}\right)=w$.

Case 1: $n=3 k+1$. In this context, by the Theorem 2.2.6 we have:

$$
\begin{aligned}
& w=f\left(v_{1}\right)=f\left(v_{4}\right)=f\left(v_{7}\right)=\cdots=f\left(v_{3 k+1}\right)=f\left(v_{n}\right)=f\left(v_{3}\right)=f\left(v_{6}\right)= \\
& f\left(v_{9}\right)=\cdots=f\left(v_{3 k}\right)=f\left(v_{n-1}\right)=f\left(v_{2}\right)=f\left(v_{5}\right)=f\left(v_{8}\right)=\cdots= \\
& f\left(v_{3 k-1}\right)=f\left(v_{n-2}\right) .
\end{aligned}
$$

Thus $f\left(v_{i}\right)=w$, for $i=1,2,3, \ldots, n$.

Case 2: $n=3 k+2$. In this context, by the Theorem 2.2.6 we have:

$$
\begin{aligned}
& w=f\left(v_{1}\right)=f\left(v_{4}\right)=f\left(v_{7}\right)=\cdots=f\left(v_{3 k+1}\right)=f\left(v_{n-1}\right)=f\left(v_{2}\right)=f\left(v_{5}\right)= \\
& f\left(v_{8}\right)=\cdots=f\left(v_{3 k-1}\right)=f\left(v_{3 k+2}\right)=f\left(v_{n}\right)=f\left(v_{0}\right)=f\left(v_{3}\right)=f\left(v_{6}\right)= \\
& f\left(v_{9}\right)=\cdots=f\left(v_{3 k}\right)=f\left(v_{n-2}\right) .
\end{aligned}
$$

Thus in this case, also $f\left(v_{i}\right)=w$, for $i=1,2,3, \ldots, n$.

Thus in either case, we have $f\left(v_{i}\right)=w$ for $i=1,2,3, \ldots, n$. Thus if $n \not \equiv 0(\bmod 3)$ then every IAML of C_{n} is a constant IAML of C_{n}.

The Figure 2.2 represents an induced \mathbb{Z}_{10}-magic labeling of the cycle graph C_{6}.

Theorem 2.2.9. The complete graph K_{n} has an induced magic labeling f if and only if $(n-3) f\left(v_{1}\right)=(n-3) f\left(v_{2}\right)=(n-3) f\left(v_{3}\right)=\cdots=(n-3) f\left(v_{n}\right)=$ $-\left[f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\cdots+f\left(v_{n}\right)\right]$, where $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the vertices of K_{n}.

Proof. For $1 \leq i, j \leq n$, we have $f\left(v_{i}\right)=f^{* *}\left(v_{i}\right)$ holds if and only if $f\left(v_{1}\right)+$ $f\left(v_{2}\right)+f\left(v_{3}\right)+\cdots+f\left(v_{i-1}\right)+(n-2) f\left(v_{i}\right)+f\left(v_{i+1}\right)+\cdots+f\left(v_{n}\right)=0$, similarly the condition $f\left(v_{j}\right)=f^{* *}\left(v_{j}\right)$ is equivalent to the condition $f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+$ $\cdots+f\left(v_{j-1}\right)+(n-2) f\left(v_{j}\right)+f\left(v_{j+1}\right)+\cdots+f\left(v_{n}\right)=0$. Thus we have f is an IAML if and only if $(n-3) f\left(v_{i}\right)=(n-3) f\left(v_{j}\right)=-\left[f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\cdots+f\left(v_{n}\right)\right]$, for $1 \leq i, j \leq n$. Hence the proof.

Corollary 2.2.10. $K_{n} \in \Gamma_{k}(A)$ if and only if $O(k)$ divides $2 n-3$, where $O(k)$ denotes the order of k in A.

Proof. Let K_{n} be the complete graph with vertex set $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$. We have $K_{n} \in \Gamma_{k}(A)$, means there exists an IAML f with $f(v)=k$, for all $v \in$ $V\left(K_{n}\right)$. Also by the Theorem 2.2.9, we have f is an IAML of K_{n} if and only if $(n-3) f(v)=-\left[f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\cdots+f\left(v_{n}\right)\right]$, for all $v \in V\left(K_{n}\right)$. Thus $K_{n} \in \Gamma_{k}(A)$ if and only if $(n-3) k=-n k$, that is if and only if $(2 n-3) k=0$, that is if and only if $O(k)$ divides $2 n-3$ in A. This completes the proof.

Theorem 2.2.11. $K_{m, n} \in \Gamma_{k}(A)$ if and only if $O(k)$ divides both $2 m-1$ and $2 n-1$, where $O(k)$ denotes the order of k in A.

Proof. Let $V\left(K_{m, n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{m}, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ with each $\left(v_{i} u_{j}\right) \in$ $E\left(K_{m, n}\right)$, for $1 \leq i \leq m, 1 \leq j \leq n$. Suppose $K_{m, n} \in \Gamma_{k}(A)$, then there exists an IAML say, f with $f\left(v_{i} u_{j}\right)=k$, for $1 \leq i \leq m, 1 \leq j \leq n$. Now f is an IAML of $K_{m, n}$ implies $k=f\left(v_{1}\right)=f^{* *}\left(v_{1}\right)=2 n k$, since $f^{*}\left(v_{1} u_{j}\right)=2 k$ for $1 \leq j \leq n$, that is $(2 n-1) k=0$ in A, which implies $O(k)$ divides $2 n-1$. Similarly by considering the equation $f\left(u_{1}\right)=f^{* *}\left(u_{1}\right)$, we get $k=f\left(u_{1}\right)=f^{* *}\left(u_{1}\right)=2 m k$, that is $(2 m-1) k=0$ in A, which implies $O(k)$ divides $2 m-1$.

Conversely, suppose that $O(k)$ divides $2 m-1$ and $O(k)$ divides $2 n-1$. Consider the vertex label $f\left(v_{i}\right)=k=f\left(u_{j}\right)$, for $v_{i}, u_{j} \in V\left(K_{m, n}\right), 1 \leq i \leq m, 1 \leq j \leq n$. Then $f^{*}\left(v_{i}, u_{j}\right)=2 k$ for $1 \leq i \leq m, 1 \leq j \leq n$. There for $i=1,2,3, \ldots, m$, $f^{* *}\left(v_{i}\right)=\sum_{j=1}^{n} f^{*}\left(v_{i} u_{j}\right)=2 n k=k$, since $O(k)$ divides $2 n-1$. Thus we have $f^{* *}\left(v_{i}\right)=f\left(v_{i}\right)=k$ for $i=1,2,3, \ldots, m$. In a similar way, we have $f^{* *}\left(u_{j}\right)=$ $f\left(u_{j}\right)=k$ for $j=1,2,3, \ldots, n$. Hence we have $f=f^{* *}$. Thus we get $K_{m, n} \in$ $\Gamma_{k}(A)$. This concludes the proof.

2.3 Induced V_{4} Magic Labeling of Graphs

From this section onwards we consider the abelian group V_{4} instead of an arbitrary abelian group A. By taking the Klein 4 group, $\left(V_{4},+\right)=(\{0, a, b, c\},+)$ instead of the abelian group A, in the definition of induced A magic graphs, we can define the induced V_{4} magic graph and induced V_{4} magic labeling as follows:

Let $G=(V(G), E(G))$ be the graph with vertex set $V(G)$ and edge set $E(G)$. Let $f: V(G) \rightarrow V_{4}$ be a vertex labeling and $f^{*}: E(G) \rightarrow V_{4}$ denote the induced edge labeling of f defined by $f^{*}(u v)=f(u)+f(v)$ for all $u v \in E(G)$. Then f^{*} again induces a vertex labeling $f^{* *}: V(G) \rightarrow V_{4}$ defined by $f^{* *}(u)=\Sigma f^{*}(u v)$, where the summation is taken over all the vertices v which are adjacent to u. Then a graph G is said to be an induced V_{4}-magic graph and denoted by IM $V_{4} \mathrm{G}$
or simply IMG if there exists a non zero vertex labeling $f: V(G) \rightarrow V_{4}$ such that $f \equiv f^{* *}$. The function f, so obtained is called an induced V_{4}-magic labeling of G and denoted by $\mathrm{IM} V_{4} \mathrm{~L}$ or simply IML.

The "Induced degree sum theorem" corresponding to this context can be restated as follows.

Theorem 2.3.1. Induced degree sum theorem

Let f be any vertex labeling of a graph G and u, be a vertex in G with deg $(u)=m$. Then f is an induced V_{4} magic labeling if and only if $f(u)+\Sigma f(v)=0$ or $\Sigma f(v)=0$ according as deg $(u)=m$ is even or odd, where the summation is taken over all the vertices v which are adjacent to u.

In this case, the above equation corresponding to a vertex u is called induced degree sum equation of the vertex u.

Proof. From Theorem 2.2.4, we have f is an induced V_{4} magic labeling of G if and only if $(m-1) f(u)+\Sigma f(v)=0$, where v is adjacent to u, then the result follows directly from the fact that $f(u) \in V_{4}$.

Theorem 2.3.2. For any graph $G, G \notin \Gamma_{k}\left(V_{4}\right)$.

Proof. If possible, suppose $G \in \Gamma_{k}\left(V_{4}\right)$, that is there exists a non zero function f such that $f: V(G) \rightarrow V_{4}$ with $f(v)=k$ for all $v \in V(G)$, for some $k \in V_{4} \backslash\{0\}$. Then note that $f^{*}(e)=k+k=0$, for all $e \in E(G)$. Thus $f^{* *}(v)=0$, for all $v \in V(G)$. That is $f \not \equiv f^{* *}$, which is a contradiction. Hence our assumption is wrong. Therefore for any graph $G, G \notin \Gamma_{k}\left(V_{4}\right)$.

2.4 Cycle Related Graphs

Theorem 2.4.1. $C_{n} \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$.

Proof. Suppose $n \equiv 0(\bmod 3)$, define $f: V\left(C_{n}\right) \rightarrow V_{4}$ as follows.

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 1(\bmod 3) \\
b & \text { if } & i \equiv 2(\bmod 3) \\
c & \text { if } & i \equiv 0(\bmod 3)
\end{array}\right.
$$

Then we can prove that $f^{* *} \equiv f$, that is f is an IML of C_{n}. Proof of the converse part follows from Corollary 2.2.8 and Theorem 2.3.2. This completes the proof.

Corollary 2.4.2. $C_{n} \in \Gamma_{a, 0}\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$.

Proof. Suppose $n \equiv 0(\bmod 3)$, define $f: V\left(C_{n}\right) \rightarrow V_{4}$ as follows:

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 0,1(\bmod 3) \\
0 & \text { if } & i \equiv 2(\bmod 3)
\end{array}\right.
$$

Then we can prove that $f^{* *}=f$, that is f is an IML of C_{n}. Proof of the converse part follows from Corollary 2.2.8 and Theorem 2.3.2. This completes the proof.

Theorem 2.4.3. The wheel graph $W_{n} \in \Gamma\left(V_{4}\right)$ if and only if n is even.

Proof. Let $V\left(W_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where w is the central vertex. Suppose n is even, then $n=4 k$ or $4 k+2$ for some positive integer k.

Case 1: $n=4 k$.
In this case, define $f: V\left(W_{n}\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=w \\
a & \text { if } & v=v_{1}, v_{3}, v_{5}, \ldots v_{4 k-1} \\
b & \text { if } & v=v_{2}, v_{4}, v_{6}, \ldots v_{4 k}
\end{array}\right.
$$

Case 2: $n=4 k+2$.
In this case, define $f: V\left(W_{n}\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=w \\
a & \text { if } & v=v_{i}
\end{array}\right.
$$

then, in both cases we can verify that f is an induced V_{4} magic labeling of W_{n}. Conversely, suppose n is an odd number, if f is an induced V_{4} magic labeling of W_{n}. Then by the induced degree sum equation of vertices in W_{n}, f must satisfy the following system of equations.

$$
\begin{aligned}
f\left(v_{2}\right)+f\left(v_{n}\right)+f(w) & =0 \\
f\left(v_{1}\right)+f\left(v_{3}\right)+f(w) & =0 \\
f\left(v_{2}\right)+f\left(v_{4}\right)+f(w) & =0 \\
f\left(v_{3}\right)+f\left(v_{5}\right)+f(w) & =0 \\
\vdots & \\
f\left(v_{1}\right)+f\left(v_{n-1}\right)+f(w) & =0 \\
f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\cdots+f\left(v_{n}\right) & =0 .
\end{aligned}
$$

From the system of equations we have, $f\left(v_{1}\right)=f\left(v_{2}\right)=f\left(v_{3}\right)=\cdots=f\left(v_{n}\right)$, thus from the last equation we have $n f\left(v_{i}\right)=0$, for $i=1,2,3, \ldots, n$. Since n is odd this happens only when $f\left(v_{i}\right)=0$ for $i=1,2,3, \ldots, n$. Using this in the first equation of the above system of equations we have $f(w)=0$ also. Thus in this case, $f \equiv 0$. Thus f is not an induced V_{4} magic labeling of W_{n}. Hence the proof.

Corollary 2.4.4. $W_{n} \in \Gamma_{a, 0}\left(V_{4}\right)$ if and only if n is even.

Proof. Let $V\left(W_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where w is the central vertex. Suppose n is even number. Define $f: V\left(W_{n}\right) \rightarrow V_{4}$ as the following way.

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=w \\
a & \text { if } & v=v_{i}
\end{array}\right.
$$

Then we can verify that f is an induced V_{4} magic labeling of W_{n}. The converse part follows from the Theorem 2.4.3.

Theorem 2.4.5. The helm graph $H_{n} \in \Gamma\left(V_{4}\right)$ if and only if n is odd.

Proof. Let $V\left(H_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}, w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}$, where w be the central vertex and w_{i} be the pendant vertex adjacent to v_{i}, for $i=1,2,3, \ldots, n$. Suppose n is odd, then define $f: V\left(H_{n}\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=v_{1}, v_{2}, v_{3}, \ldots v_{n} \\
a & \text { if } & v=w, w_{1}, w_{2}, w_{3}, \ldots, w_{n}
\end{array}\right.
$$

Then clearly f is an induced V_{4} magic labeling of H_{n}.
Conversely, suppose n is an even number. If f is an induced V_{4} magic labeling of H_{n} then by the induced degree sum equation of vertices in H_{n}, f must satisfy the following system of equations.

$$
\begin{aligned}
f\left(v_{i}\right) & =0 \text { for } i=1,2,3, \ldots, n \\
f(w)+f\left(w_{i}\right) & =0 \text { for } i=1,2,3, \ldots, n \\
f(w) & =0
\end{aligned}
$$

Thus $f\left(v_{i}\right)=f\left(w_{i}\right)=f(w)=0$, that is $f \equiv 0$. Hence f is not an induced V_{4} magic labeling.

From the proof of Theorem 2.4.5, we have the following corollary.

Corollary 2.4.6. The helm graph $H_{n} \in \Gamma_{a, 0}\left(V_{4}\right)$ if and only if n is odd.

Theorem 2.4.7. The web graph $W(2, n) \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$.

Proof. Let $\left\{w, u_{i}, v_{i}, w_{i}: i=1,2,3, \ldots, n\right\}$ be the vertex set of $W(2, n)$, where w be the central vertex, $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are the vertices of inner cycle, $v_{1}, v_{2}, v_{3}, \ldots$, v_{n} are the vertices of outer cycle and $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ are the pendant vertices adjacent to $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ of $W(2, n)$.
Suppose $n \equiv 0(\bmod 3)$, then define $f: V(W(2, n)) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=w, v_{1}, v_{2}, v_{3}, \ldots, v_{n} \\
a & \text { if } & v=u_{i}, w_{i}, \text { for } i \equiv 1(\bmod 3) \\
b & \text { if } & v=u_{i}, w_{i}, \text { for } i \equiv 2(\bmod 3) \\
c & \text { if } & v=u_{i}, w_{i}, \text { for } i \equiv 0(\bmod 3)
\end{array}\right.
$$

Then clearly f is an induced V_{4} magic labeling of $W(2, n)$. Conversely, suppose that $n \not \equiv 0(\bmod 3)$, then $n=3 k+1$ or $3 k+2$ for some positive integer k. If possible suppose f is an induced V_{4} magic labeling of $W(2, n)$ then by the induced degree sum equation of vertices of $W(2, n), f$ must satisfy the following system of equations.

$$
\begin{aligned}
f\left(v_{i}\right) & =0 \text { for } i=1,2,3, \ldots, n \\
f\left(u_{n}\right)+f\left(u_{1}\right)+f\left(u_{2}\right)+f(w) & =0 \\
f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(u_{3}\right)+f(w) & =0 \\
f\left(u_{2}\right)+f\left(u_{3}\right)+f\left(u_{4}\right)+f(w) & =0 \\
\vdots & \\
f\left(u_{1}\right)+f\left(u_{n-1}\right)+f\left(u_{n}\right)+f(w) & =0 \\
f\left(u_{i}\right)+f\left(w_{i}\right) & =0 \text { for } i=1,2,3, \ldots, n \\
(n-1) f(w)+\sum_{i=1}^{n} f\left(u_{i}\right) & =0 .
\end{aligned}
$$

Since $n=3 k+1$ or $3 k+2$, from the above system of equations we have, $f\left(v_{i}\right)=0$, $f\left(u_{i}\right)=f\left(w_{i}\right), f\left(u_{1}\right)=f\left(u_{2}\right)=f\left(u_{3}\right)=\cdots=f\left(u_{n}\right)$ and $(n-1) f(w)+n f\left(u_{i}\right)=$

0 for $i=1,2,3, \ldots, n$.

Case 1: $n=3 k+1$.

Subcase 1: k is even.
Note that k is even implies $n=3 k+1$ is odd.
Therefore the equation $(n-1) f(w)+n f\left(u_{i}\right)=0$ for $i=1,2,3, \ldots, n$ reduces to $f\left(u_{i}\right)=0$ for $i=1,2,3, \ldots, n$. Hence in this case, $f\left(u_{i}\right)=$ $f\left(v_{i}\right)=f\left(w_{i}\right)=f(w)=0$.

Subcase 2: k is odd.
Note that k is odd implies $n=3 k+1$ is even. Thus the equation $(n-1) f(w)+n f\left(u_{i}\right)=0$ for $i=1,2,3, \ldots, n$ reduces to $f(w)=0$. Thus from the system of equations we have, $f\left(u_{i}\right)=0$. Hence in this case also, $f\left(u_{i}\right)=f\left(v_{i}\right)=f\left(w_{i}\right)=f(w)=0$.

Case 2: $n=3 k+2$.

Subcase 1: k is even.
Note that k is even implies $n=3 k+2$ is even. Thus the equation $(n-1) f(w)+n f\left(u_{i}\right)=0$ for $i=1,2,3, \ldots, n$ reduces to $f(w)=0$. Thus from the system of equations we have, $f\left(u_{i}\right)=0$. Hence in this case, $f\left(u_{i}\right)=f\left(v_{i}\right)=f\left(w_{i}\right)=f(w)=0$.

Subcase 2: k is odd.
Note that k is odd implies $n=3 k+2$ is odd.
Therefore the equation $(n-1) f(w)+n f\left(u_{i}\right)=0$ for $i=1,2,3, \ldots, n$ reduces to $f\left(u_{i}\right)=0$ for $i=1,2,3, \ldots, n$. Hence in this case also, $f\left(u_{i}\right)=f\left(v_{i}\right)=f\left(w_{i}\right)=f(w)=0$.

Hence in both cases we have $f \equiv 0$, that is f is not an induced V_{4} magic labeling.

Theorem 2.4.8. The closed helm $C H_{n} \in \Gamma\left(V_{4}\right)$ for n is odd.

Proof. Let $V\left(C H_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}, w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}$, where w be the central vertex and w_{i} be the pendant vertex adjacent to v_{i}, for $i=1,2,3, \ldots, n$ in the corresponding helm H_{n}. Suppose n is odd, then define $f: V\left(C H_{n}\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=v_{1}, v_{2}, v_{3}, \ldots, v_{n} \\
a & \text { if } & v=w, w_{1}, w_{2}, w_{3}, \ldots, w_{n}
\end{array}\right.
$$

Then f is an IML of $C H_{n}$. Hence the proof.
Corollary 2.4.9. $C H_{n} \in \Gamma_{a, 0}\left(V_{4}\right)$ for n is odd.

Proof. Proof follows directly from the proof of Theorem 2.4.8.
Theorem 2.4.10. The flower graph $F l^{n} \in \Gamma\left(V_{4}\right)$ for all n.

Proof. Let $V\left(F l^{n}\right)=\left\{w, u_{i}, v_{i}: \quad i=1,2,3, \ldots, n\right\}$, where w is the central vertex, $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are the vertices of corresponding cycle and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the vertices adjacent to the central vertex w.

Case 1: n is odd.
In this case, define $f: V\left(F l^{n}\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } & v=w \\
b & \text { if } & v=u_{i} \text { for } i=1,2,3, \ldots, n \\
c & \text { if } & v=v_{i} \text { for } i=1,2,3, \ldots, n
\end{array}\right.
$$

Case 2: n is even.
In this case, define $f: V\left(F l^{n}\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=w \\
a & \text { if } & v=u_{i}, v_{i} \text { for } i \text { is odd } \\
b & \text { if } & v=u_{i}, v_{i} \text { for } i \text { is even }
\end{array}\right.
$$

Thus from both cases, we can verify that f is an induced V_{4} magic labeling of $F l^{n}$. This completes the proof.

Corollary 2.4.11. $F l^{n} \in \Gamma_{a, 0}\left(V_{4}\right)$ for all n.

Proof. Let $V\left(F l^{n}\right)=\left\{w, u_{i}, v_{i}: i=1,2,3, \ldots, n\right\}$, where w be the central vertex, $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are the vertices of corresponding cycle and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the vertices adjacent to the central vertex w. Define $f: V\left(F l^{n}\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=w \\
a & \text { if } & v=u_{i}, v_{i}
\end{array}\right.
$$

Then one can easily verify that f is an IML of $F l^{n}$. Hence the proof.

Theorem 2.4.12. The gear graph $G_{n} \in \Gamma\left(V_{4}\right)$ if and only if n is even.

Proof. Let $V\left(G_{n}\right)=\left\{w, u_{1}, u_{2}, u_{3}, \ldots, u_{n}, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where w is the central vertex $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are the vertices of the corresponding wheel graph W_{n} and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the remaining vertices with $u_{i} v_{i}, v_{i} u_{i+1} \in E\left(G_{n}\right)$, where $i+1$ is taken modulo n.

Suppose n is even, then define $f: V\left(G_{n}\right) \rightarrow V_{4}$ as:

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=w \\
a & \text { if } & v=u_{i} \text { for } i \text { is odd } \\
b & \text { if } & v=u_{i} \text { for } i \text { is even } \\
c & \text { if } & v=v_{i}
\end{array}\right.
$$

Then we can easily verify that f is an induced V_{4} magic labeling of G_{n}.
Conversely, suppose that n is an odd number. Then by the induced degree sum equation of vertices in G_{n} we have: if f is an induced V_{4} magic labeling of G_{n},
then f satisfies the following system of equations.

$$
\begin{aligned}
f\left(v_{1}\right)+f\left(v_{2}\right)+f(w) & =0 \\
f\left(v_{2}\right)+f\left(v_{3}\right)+f(w) & =0 \\
\vdots & \\
f\left(v_{n-1}\right)+f\left(v_{n}\right)+f(w) & =0 \\
f\left(v_{n}\right)+f\left(v_{1}\right)+f(w) & =0 \\
f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(u_{3}\right)+\cdots+f\left(u_{n}\right) & =0 \\
f\left(v_{1}\right)+f\left(u_{1}\right)+f\left(u_{2}\right) & =0 \\
f\left(v_{2}\right)+f\left(u_{2}\right)+f\left(u_{3}\right) & =0 \\
f\left(v_{3}\right)+f\left(u_{3}\right)+f\left(u_{4}\right) & =0 \\
\vdots & \\
f\left(v_{n}\right)+f\left(u_{n}\right)+f\left(u_{1}\right) & =0 .
\end{aligned}
$$

Since n is odd, the equations corresponding to the vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ (that is the first n equations) imply that $f\left(v_{1}\right)=f\left(v_{2}\right)=f\left(v_{3}\right)=\cdots=f\left(v_{n}\right)$. Substituting these in the above system of equations, we get $f(w)=0$. Now using the fact that n is odd and $f\left(v_{1}\right)=f\left(v_{2}\right)=f\left(v_{3}\right)=\cdots=f\left(v_{n}\right)$, the last n equations in the above system of equations imply that $f\left(u_{1}\right)=f\left(u_{2}\right)=f\left(u_{3}\right)=$ $\cdots=f\left(u_{n}\right)$. Substituting these in the equation $f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(u_{3}\right)+\cdots+$ $f\left(u_{n}\right)=0$, we get $f\left(u_{i}\right)=0$, for $i=1,2,3, \ldots, n$ which implies $f\left(v_{i}\right)=0$, for $i=1,2,3, \ldots, n$. Hence $f \equiv 0$, that is f is not an induced V_{4} magic labeling of G_{n}.

The Figure 2.3 represents a gear graph G_{4} with an induced V_{4}-magic labeling.
Theorem 2.4.13. The fan graph $F_{n} \in \Gamma\left(V_{4}\right)$ for n is even.

Proof. Suppose n is an even number. We have $F_{n}=P_{n}+K_{1}$. Let $V\left(F_{n}\right)=$

Figure 2.3: Gear graph G_{4}.
$\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the vertices corresponding to P_{n} and w be the vertex corresponding to K_{1}. Then define $f: V\left(F_{n}\right) \rightarrow V_{4}$ as follows:

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=w \\
a & \text { if } & v=v_{1}, v_{2}, v_{3}, \ldots, v_{n}
\end{array}\right.
$$

Then we can easily verify that f is an induced V_{4} magic labeling of F_{n}. Hence the proof follows.

Theorem 2.4.14. The flag graph $F l_{n} \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$.

Proof. Let $V\left(F l_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where v_{i} for $i=1,2,3, \ldots, n$ is the vertex of corresponding cycle graph C_{n} and w is the root vertex adjacent to the vertex v_{1}.

Suppose $n \equiv 0(\bmod 3)$, then define $f: V\left(F l_{n}\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=v_{i}, i \equiv 1(\bmod 3) \\
a & \text { if } & v=v_{i}, i \equiv 0,2(\bmod 3) \\
0 & \text { if } & v=w
\end{array}\right.
$$

Then we can easily verify that f is an induced V_{4} magic labeling of $F l_{n}$.
Conversely, suppose that $n \not \equiv 0(\bmod 3)$. If possible, suppose f is an induced V_{4} magic labeling of $F l_{n}$. Then by the induced degree sum equation of vertices w
and v_{i} in $F l_{n}, f$ must satisfy the following system of equations.

$$
\begin{aligned}
f\left(v_{1}\right) & =0 \\
f\left(v_{2}\right)+f\left(v_{n}\right)+f(w) & =0 \\
f\left(v_{2}\right)+f\left(v_{3}\right) & =0 \\
f\left(v_{2}\right)+f\left(v_{3}\right)+f\left(v_{4}\right) & =0 \\
f\left(v_{3}\right)+f\left(v_{4}\right)+f\left(v_{5}\right) & =0 \\
\vdots & \\
f\left(v_{n-2}\right)+f\left(v_{n-1}\right)+f\left(v_{n}\right) & =0 \\
f\left(v_{n-1}\right)+f\left(v_{n}\right) & =0
\end{aligned}
$$

Note that $n \not \equiv 0(\bmod 3)$ implies that $n=3 k+1$ or $n=3 k+2$ for some integer k, also from the above system of equations we have $f\left(v_{1}\right)=f\left(v_{n-2}\right)=0$ and $f\left(v_{2}\right)=f\left(v_{3}\right)$. Using these facts, we can prove that $f\left(v_{1}\right)=f\left(v_{2}\right)=f\left(v_{3}\right)=$ $\cdots=f\left(v_{n}\right)=0$ and $f(w)=0$. Thus f is not an induced V_{4} magic labeling. Hence the proof follows.

Theorem 2.4.15. The sunflower graph $S F_{n} \in \Gamma\left(V_{4}\right)$, for n is even.

Proof. Suppose the given sunflower graph is obtained by taking a wheel graph with the central vertex v_{0}, the n-cycle $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and additional vertices $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$, where w_{i} is joined by edges to the vertices v_{i} and v_{i+1}, where $i+1$ is taken modulo n.

Suppose n is even, then define $f: V\left(S F_{n}\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } v=v_{0}, w_{i}, & \text { for } i=1,2,3, \ldots, n \\
a & \text { if } v=v_{i}, & \text { for } i=1,2,3, \ldots, n
\end{array}\right.
$$

Then we can easily prove that f is an induced V_{4} magic labeling of $S F_{n}$.

From the proof of Theorem 2.4.15, we have the following corollary.

Corollary 2.4.16. If n is even, then the sunflower graph $S F_{n} \in \Gamma_{a, 0}\left(V_{4}\right)$.

Theorem 2.4.17. The jelly fish $J(m, n) \in \Gamma\left(V_{4}\right)$ for all m and n.

Proof. Consider the jelly fish graph with $V(J(m, n))=\left\{v_{k}: k=1,2,3,4\right\}$ $\cup\left\{u_{i}: i=1,2,3, \ldots, m\right\} \cup\left\{w_{j}: j=1,2,3, \ldots, n\right\}$, where $v_{k}^{\prime} \mathrm{S}$ are the vertices of corresponding C_{4} and u_{i}, w_{j} are the vertices of corresponding $K_{1, m}$ and $K_{1, n}$ respectively. Now consider the following cases:

Case 1 : both m and n are odd.
Define $f: V(J(m, n)) \rightarrow V_{4}$ as:

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & u_{1}, w_{1}, v=v_{k}, \text { for } k=1,2,3,4 \\
a & \text { if } & v=u_{i}, \text { for } i=2,3,4, \ldots, m \\
a & \text { if } & v=w_{j}, \text { for } j=2,3,4, \ldots, n
\end{array}\right.
$$

Case 2: m and n are even.
Define $f: V(J(m, n)) \rightarrow V_{4}$ as:

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=v_{k}, \text { for } k=1,2,3,4 \\
a & \text { if } & v=u_{i}, \text { for } i=1,2,3, \ldots, m \\
a & \text { if } & v=w_{j}, \text { for } j=1,2,3, \ldots, n
\end{array}\right.
$$

Case 3: m odd and n even.
Define $f: V(J(m, n)) \rightarrow V_{4}$ as:

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u_{1}, v_{k}, \text { for } k=1,2,3,4 \\
a & \text { if } & v=u_{i}, \text { for } i=2,3,4, \ldots, m \\
a & \text { if } & v=w_{j}, \text { for } j=1,2,3, \ldots, n
\end{array}\right.
$$

Case 4: m even and n odd.
Define $f: V(J(m, n)) \rightarrow V_{4}$ as:

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=w_{1}, v_{k}, \text { for } k=1,2,3,4 \\
a & \text { if } & v=u_{i}, \text { for } i=1,2,3, \ldots, m \\
a & \text { if } & v=w_{j}, \text { for } j=2,3,4, \ldots, n
\end{array}\right.
$$

In all the above cases, we can prove that f is an induced magic labeling of $J(m, n)$. Hence the proof.

Corollary 2.4.18. The jelly fish $J(m, n) \in \Gamma_{a, 0}\left(V_{4}\right)$ for all m and n.

Theorem 2.4.19. The sun graph $\operatorname{Sun}_{n} \notin \Gamma\left(V_{4}\right)$ for any n.

Proof. Consider a sun graph S_{n} with $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ as vertex set of the corresponding C_{n} and $w_{i}, 1 \leq i \leq n$, be the pendant vertices attached to each $v_{i}, 1 \leq i \leq n$. If possible, suppose $f: V\left(S u n_{n}\right) \rightarrow V_{4}$ is an IML of $S u n_{n}$. Then the induced degree sum equation of w_{i}, we have $f\left(v_{i}\right)=0$. Using this in the induced degree sum equation of v_{i}, we get $f\left(w_{i}\right)=0$. Thus $f \equiv 0$, which is a contradiction. Hence the proof.

Theorem 2.4.20. The $C B S n_{p, q} \in \Gamma\left(V_{4}\right)$ if and only if $q+3 k=p-2$ for some integer k.

Proof. Consider a $C B S u n_{p, q}$ with vertex set $\left\{v_{i}: i=1,2,3, \ldots p\right\} \cup\left\{u_{j}: j=\right.$ $1,2,3, \ldots, q\}$, where u_{j} is the pendant vertices adjacent to vertices v_{j}. Suppose $q+3 k=p-2$ for some integer k. Then define $f: V\left(C B S u n_{p, q}\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } & v=u_{1}, u_{q} \\
0 & \text { if } & v=u_{2}, u_{3}, u_{4}, \ldots, u_{q-1} \\
0 & \text { if } & v=v_{1}, v_{2}, v_{3}, \ldots v_{q}, v_{q+3}, v_{q+6}, v_{q+9}, \ldots, v_{p-2} \\
a & \text { if } & v=v_{q+1}, v_{q+2}, v_{q+4}, v_{q+5}, \ldots, v_{p-3}, v_{p-1}, v_{p}
\end{array}\right.
$$

Then f is an IML of $C B S u n_{p, q}$. Hence, in this case $C B S u n_{p, q} \in \Gamma\left(V_{4}\right)$.
Conversely, suppose $q+3 k \neq p-2$, that is $q+3 k=p-1$ or $q+3 k=p$, for some integer k.

If possible, suppose $g: V\left(C B S u n_{p, q}\right) \rightarrow V_{4}$ be an IML of $C B S u n_{p, q}$. Then by the induced degree sum equation of the vertices u_{i}, we have $g\left(v_{i}\right)=0$, for $i=1,2,3, \ldots, q$. Similarly from the induced degree sum equation of the vertices v_{i}, we have the following system of equations.

$$
\begin{aligned}
g\left(v_{p}\right)+g\left(u_{1}\right) & =0 \\
g\left(u_{j}\right) & =0 \text { for } j=2,3,4, \ldots, q-1 \\
g\left(v_{q+1}\right)+g\left(u_{q}\right) & =0 \\
g\left(v_{q+1}\right)+g\left(v_{q+2}\right) & =0 \\
g\left(v_{q+1}\right)+g\left(v_{q+2}\right)+g\left(v_{q+3}\right) & =0 \\
g\left(v_{q+2}\right)+g\left(v_{q+3}\right)+g\left(v_{q+4}\right) & =0 \\
\vdots & \\
g\left(v_{p-2}\right)+g\left(v_{p-1}\right)+g\left(v_{p}\right) & =0 \\
g\left(v_{p-1}\right)+g\left(v_{p}\right) & =0 .
\end{aligned}
$$

Note that from the above system of equations, we have $g\left(u_{q}\right)=g\left(v_{q+1}\right)=g\left(v_{q+2}\right)$. Therefore $g\left(v_{q+3}\right)=0$ and $g\left(v_{p-1}\right)=g\left(v_{p}\right)$. Thus $g\left(v_{p-2}\right)=0$.

Case 1: $q+3 k=p-1$.
In this case, using above system we have: $g\left(v_{q+3}\right)=g\left(v_{q+6}\right)=g\left(v_{q+9}\right)=$ $\cdots=g\left(v_{p-4}\right)=g\left(v_{p-1}\right)=0$ and $g\left(v_{q+1}\right)=g\left(v_{q+2}\right)=g\left(v_{q+4}\right)=g\left(v_{q+5}\right)=$ $\cdots=g\left(v_{p-5}\right)=g\left(v_{p-3}\right)=g\left(v_{p-2}\right)$.

But $g\left(v_{p-2}\right)=0$ implies $g\left(v_{q+1}\right)=g\left(v_{q+2}\right)=g\left(v_{q+4}\right)=g\left(v_{q+5}\right)=\cdots=$ $g\left(v_{p-5}\right)=g\left(v_{p-3}\right)=g\left(v_{p-2}\right)=0$.

Thus in this case, $g \equiv 0$, which is a contradiction. Hence $C B S u n_{p, q} \notin$ $\Gamma\left(V_{4}\right)$.

Case 2: $q+3 k=p$.
In this case, using above system we have: $g\left(v_{q+3}\right)=g\left(v_{q+6}\right)=g\left(v_{q+9}\right)=$ $\cdots=g\left(v_{p-3}\right)=g\left(v_{p}\right)=0$ and $g\left(v_{q+1}\right)=g\left(v_{q+2}\right)=g\left(v_{q+4}\right)=g\left(v_{q+5}\right)=$ $\cdots=g\left(v_{p-4}\right)=g\left(v_{p-2}\right)=g\left(v_{p-1}\right)$.

But $g\left(v_{p-2}\right)=0$ implies $g\left(v_{q+1}\right)=g\left(v_{q+2}\right)=g\left(v_{q+4}\right)=g\left(v_{q+5}\right)=\cdots=$ $g\left(v_{p-4}\right)=g\left(v_{p-2}\right)=g\left(v_{p-1}\right)=0$.

Thus in this case, $g \equiv 0$, which is a contradiction. Hence $C B S u n_{p, q} \notin$ $\Gamma\left(V_{4}\right)$.

Hence the proof.

Theorem 2.4.21. The $C\left(n, k_{1}, k_{2}, k_{3}, \ldots, k_{t}\right) \in \Gamma\left(V_{4}\right)$ for all n and k_{i} where $i=1,2,3, \ldots, t$.

Proof. Let $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ are the corresponding vertices of C_{n} and $\left\{v_{i j}\right.$: $\left.i=1,2,3, \ldots, t, \quad j=1,2,3, \ldots, k_{i}\right\}$ be the corresponding vertices of $K_{1, k_{i}}$. Let $f: V\left(C\left(n, k_{1}, k_{2}, k_{3}, \ldots, k_{t}\right)\right) \rightarrow V_{4}$. Define f as in the following way.

Define $f\left(v_{k}\right)=0$ for $i=1,2,3, \ldots, n$. If k_{i} is odd for some i, for those i, define $f\left(v_{i 1}\right)=0$ and $f\left(v_{i j}\right)=a$, for $j=2,3,4, \ldots, k_{i}$ and if k_{i} is even for some i, for those i, define $f\left(v_{i j}\right)=a$, for $j=1,2,3, \ldots, k_{i}$.

Then we can easily prove that f is an IML of $C\left(n, k_{1}, k_{2}, k_{3}, \ldots, k_{t}\right)$.
Hence the proof.

Theorem 2.4.22. $C_{n} \odot K_{2} \in \Gamma\left(V_{4}\right)$ for all n.

Proof. Let $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ are the corresponding vertices of C_{n} and $\left\{u_{i}, w_{i}\right\}$ be the corresponding vertices of the $i^{\text {th }}$ copy of K_{2}, for $i=1,2,3, \ldots, n$. Let
$f: V\left(C_{n} \odot K_{2}\right) \rightarrow V_{4}$ be defined by

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } \quad v=v_{i}, & \text { for } \quad i=1,2,3, \ldots, n \\
a & \text { if } & v=u_{i}, w_{i}, \\
\text { for } \quad i=1,2,3, \ldots, n
\end{array}\right.
$$

Then we can easily prove that f is an IML of $C_{n} \odot K_{2}$.
Hence the proof.
Theorem 2.4.23. $C_{n} \odot \bar{K}_{m} \in \Gamma\left(V_{4}\right)$ for all m and n.

Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $\left\{u_{i 1}, u_{i 2}, u_{i 3}, \ldots, u_{i m}\right\}$ be the corresponding vertices of the $i^{\text {th }}$ copy of \bar{K}_{m} for $i=1,2,3, \ldots, n$. Let $f: V\left(C_{n} \odot\right.$ $\left.\bar{K}_{m}\right) \rightarrow V_{4}$.

Case 1: m is an even integer.
In this case, define f as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } \quad v=v_{i}, & \text { for } i=1,2,3, \ldots, n \\
a & \text { if } \quad v=u_{i j}, & \text { for all } i, j
\end{array}\right.
$$

Case 2: m is an odd integer.
In this case, define f as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } \quad v=v_{i}, & \text { for } i=1,2,3, \ldots, n \\
0 & \text { if } & v=u_{i 1}, \\
\text { for } i=1,2,3, \ldots, n \\
a & \text { if } & v=u_{i j}, \\
\text { for } i=1,2,3, \ldots, n, \quad j=2,3,4, \ldots, m
\end{array}\right.
$$

Then f is an IML of $C_{n} \odot \bar{K}_{m}$.
Hence the proof.
Theorem 2.4.24. $C_{n} \odot K_{m} \in \Gamma\left(V_{4}\right)$ for m even.

Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $\left\{u_{i 1}, u_{i 2}, u_{i 3}, \ldots, u_{i m}\right\}$ be the corresponding vertices of the $i^{\text {th }}$ copy of K_{m} for $i=1,2,3, \ldots, n$.

Suppose m is an even integer. Let $f: V\left(C_{n} \odot K_{m}\right) \rightarrow V_{4}$ be defined by

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=v_{i}, \\
\text { for } i=1,2,3, \ldots, n \\
a & \text { if } & v=u_{i j}, \text { for all } i, j
\end{array}\right.
$$

Then we can prove that f is an IML of $C_{n} \odot K_{m}$.
Hence the proof.
Theorem 2.4.25. The friendship graph or Dutch 3-windmill graph $C_{3}^{(t)} \in \Gamma\left(V_{4}\right)$ for all t.

Proof. Let $\left\{u_{i}, v_{i}, w_{i}\right\}$ be the vertex set of $i^{\text {th }}$ copy C_{3} for $i=1,2,3, \ldots, t$ and the vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{t}$ are identified with the vertex u.

Let $f: V\left(C_{3}^{(t)}\right) \rightarrow V_{4}$ be defined by

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u \\
a & \text { if } & v=v_{i}, w_{i} \text { for } i=1,2,3, \ldots, t
\end{array}\right.
$$

Then we can prove that f is an IML of $C_{3}^{(t)}$.
Hence the proof.
Theorem 2.4.26. The graph $C_{n}^{(t)} \in \Gamma\left(V_{4}\right)$ for $n \equiv 0(\bmod 3)$.

Proof. Let $\left\{u_{i 1}, u_{i 2}, u_{i 3}, \ldots, u_{i n}\right\}$ be the vertex set of $i^{\text {th }}$ copy of C_{n}, for $i=$ $1,2,3, \ldots, t$ and the vertices $u_{11}, u_{21}, u_{31}, \ldots, u_{t 1}$ are identified with the vertex u. Suppose $n \equiv 0(\bmod 3)$.

Case 1: t is an odd integer.
In this case, define f as:

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } \quad v=u \\
0 & \text { if } & v=u_{i j}, \text { where } \\
a \equiv 2(\bmod 3) \text { and } i=1,2,3, \ldots, t \\
a & \text { if } & v=u_{i j}, \text { where } \quad j \equiv 0,1(\bmod 3) \text { and } i=1,2,3, \ldots, t
\end{array}\right.
$$

Case 2: t is an even integer.
In this case, define f as:

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u \\
0 & \text { if } & v=u_{i j}, \text { where } \quad j \equiv 1(\bmod 3) \text { and } i=1,2,3, \ldots, t \\
a & \text { if } & v=u_{i j}, \text { where } \quad j \equiv 0,2(\bmod 3) \text { and } i=1,2,3, \ldots, t
\end{array}\right.
$$

Then one can easily verify that f is an IML of $C_{n}^{(t)}$.
Hence $C_{n}^{(t)} \in \Gamma\left(V_{4}\right)$ for $n \equiv 0(\bmod 3)$.

Theorem 2.4.27. The n-gon book graph $B(n, k) \in \Gamma\left(V_{4}\right)$ for k odd and $n \equiv$ $0(\bmod 3)$.

Proof. Let $\left\{u_{1}, u_{i 2}, u_{i 3}, u_{i 4}, \ldots, u_{i(n-1)}, u_{n}\right\}$ be the vertex set of $i^{\text {th }}$ copy of C_{n} in $K_{m}^{(n)}$, where u_{1} and u_{n} be the common vertices.

Suppose k is an odd integer and $n \equiv 0(\bmod 3)$.
Let $f: V(B(n, k)) \rightarrow V_{4}$ be defined by

Then we can easily prove that f is an IML of $B(n, k)$.
Hence $B(n, k) \in \Gamma\left(V_{4}\right)$ for k odd and $n \equiv 0(\bmod 3)$.

Theorem 2.4.28. The bi pyramid $B P(n) \in \Gamma\left(V_{4}\right)$ for $n \equiv 0(\bmod 3)$.

Proof. Let $V\left(N_{2}\right)=\{u, v\}$ and $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $f: V(B P(n)) \rightarrow$ V_{4} be defined by

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u, v \\
a & \text { if } & v=v_{i}, \text { where } \\
b \equiv 1(\bmod 3) \\
b & \text { if } & v=v_{i}, \text { where } \\
c & i \equiv 2(\bmod 3) \\
c & \text { if } & v=v_{i}, \text { where } \\
i \equiv 0(\bmod 3)
\end{array}\right.
$$

Then f is an IML of $B P(n)$.
Hence $B P(n) \in \Gamma\left(V_{4}\right)$ for $n \equiv 0(\bmod 3)$.
Theorem 2.4.29. The bi pyramid based on $C_{n}, B P(n) \in \Gamma_{a, 0}\left(V_{4}\right)$ for $n \equiv$ $0(\bmod 3)$.

Proof. Let $V\left(N_{2}\right)=\{u, v\}$ and $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$. Define $f: V(B P(n)) \rightarrow$ V_{4} as

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u, v \\
a & \text { if } & v=v_{i}, \text { where } \\
0 & i \equiv 1,2(\bmod 3) \\
0 & \text { if } & v=v_{i}, \text { where }
\end{array} i \equiv 0(\bmod 3) . ~ \$\right.
$$

Then f is an IML of $B P(n)$.
Hence $B P(n) \in \Gamma_{a, 0}\left(V_{4}\right)$ for $n \equiv 0(\bmod 3)$.

Theorem 2.4.30. The graph $C_{n} \odot C_{m} \in \Gamma\left(V_{4}\right)$ for m even.

Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $\left\{u_{i 1}, u_{i 2}, u_{i 3}, \ldots, u_{i m}\right\}$ be the vertex set of $i^{\text {th }}$ copy of C_{m}, for $i=1,2,3, \ldots, n$. Suppose m is an even integer. Define $f: V\left(C_{n} \odot C_{m}\right) \rightarrow V_{4}$ as,

$$
f(v)=\left\{\begin{array}{llll}
0 & \text { if } & v=v_{i}, & \text { for all } i \\
a & \text { if } & v=u_{i j} & \text { for all } i, j
\end{array}\right.
$$

Then we can easily prove that f is an IML of $C_{n} \odot C_{m}$.
Hence the proof.

2.4. Cycle Related Graphs

From the proof of the above theorem we have the following corollary.
Corollary 2.4.31. The graph $C_{n} \odot C_{m} \in \Gamma_{a, 0}\left(V_{4}\right)$ for m even.

Chapter 3

Induced V_{4}-Magic Labeling of Path and Star Related Graphs

The first section of this chapter defines some path and star related graphs. In the second section, we discuss induced V_{4} magic labeling of path related graphs and in the last section we deal with induced V_{4}-magic labeling of some star related graphs.

3.1 Introduction

Definition 3.1.1. The corona $P_{n} \odot K_{1}$ is called the comb graph $C B_{n}$.

Definition 3.1.2. [8] A triangular snake graph $T S_{n}$ is obtained from a path $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ by joining v_{i} and v_{i+1} to a new vertex w_{i} for $i=1,2,3, \ldots, n-1$.

Definition 3.1.3. [8] A double triangular snake graph $D T S_{n}$ consists of two triangular snake graphs that have a common path. That is, a double triangular

[^1]snake is obtained from a path $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ by joining v_{i} and v_{i+1} to a new vertex w_{i} for $i=1,2,3, \ldots, n-1$ and to a new vertex u_{i} for $i=1,2,3, \ldots, n-1$.

Definition 3.1.4. [14 An open ladder graph $O\left(L_{n}\right), n \geq 2$ is obtained from two paths of length $n-1$ with $V(G)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E(G)=$ $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 2 \leq i \leq n-1\right\}$.

Definition 3.1.5. [19] Given k natural numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$. If we connect the two vertices of $N_{2}=\{u, v\}$ by k parallel paths of length $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$ then the resulting graph is called the generalized theta graph and is denoted by $\Theta\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right)$.

Definition 3.1.6. 20 The book graph B_{n} is the graph $K_{1, n} \square P_{2}$, where $K_{1, n}$ is the star with n edges.

Definition 3.1.7. The bistar $B_{m, n}$ is the graph obtained by joining the central or apex vertex of $K_{1, m}$ and $K_{1, n}$ by an edge.

Definition 3.1.8. 8) Let $\left\langle K_{1, n}: m>\right.$ denote the graph obtained by taking m disjoint copies of $K_{1, n}$ and joining a new vertex to the centers of the m copies of $K_{1, n}$.

Definition 3.1.9. 8 The (n, k)-banana tree $B t(n, k)$ is the graph obtained by starting with n number of k-stars and connecting one end vertex from each to a new vertex.

Definition 3.1.10. The graph obtained by attaching central vertices (or apex) of n-copies of $K_{1, n}$ by a unique vertex u by n distinct edges is denoted by $K_{1, n}^{*}$.

Definition 3.1.11. 25 The windmill graph $K_{m}^{(n)}$ is the graph consisting of n copies of the complete graph K_{m} with a vertex in common.

3.2 Path Related Graphs

Theorem 3.2.1. $P_{n} \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$.

Proof. Consider the path P_{n} with vertex set $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, v_{n}\right\}$, where $n \equiv 0(\bmod 3)$. Define $f: V\left(P_{n}\right) \rightarrow V_{4}$ as :

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 0,1(\bmod 3) \\
0 & \text { if } & i \equiv 2(\bmod 3) .
\end{array}\right.
$$

Then, f is an induced magic labeling of P_{n}. Hence $P_{n} \in \Gamma\left(V_{4}\right)$. Conversely, if $n \not \equiv 0(\bmod 3)$ then by the Theorem $2.2 .5 P_{n} \notin \Gamma\left(V_{4}\right)$.

From the proof of the above theorem, we have the following corollary.

Corollary 3.2.2. $P_{n} \in \Gamma_{a, 0}\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$.

Theorem 3.2.3. The comb graph $C B_{n} \notin \Gamma\left(V_{4}\right)$ for any n.

Proof. Let $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ be the vertex set of $C B_{n}$, where $v_{i}(1 \leq i \leq n)$ are the pendant vertices adjacent to $u_{i}(1 \leq i \leq n)$. If possible, suppose f is an IML of the graph $C B_{n}$. Then from the induced degree sum equation of the vertices v_{i} and u_{i}, we have $f\left(u_{i}\right)=f\left(v_{i}\right)=0$. That is $f \equiv 0$, which is a contradiction.

Theorem 3.2.4. The triangular snake graph $T S_{n} \in \Gamma\left(V_{4}\right)$ for all n.

Proof. Let $V\left(T S_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}\right\}$, where v_{1}, v_{2}, v_{3}, \ldots, v_{n} are the vertices of corresponding path P_{n} and f be an IML of $T S_{n}$ with $f\left(v_{i}\right)=x_{i}$ and $f\left(w_{j}\right)=y_{j}$. Then the vertices v_{i} and w_{j} must satisfy the induced degree sum equation.
Note that the induced degree sum equation of v_{i} gives the following system of
equations.

$$
\begin{aligned}
x_{1}+x_{2}+y_{1} & =0 \\
x_{1}+x_{2}+x_{3}+y_{1}+y_{2} & =0 \\
x_{2}+x_{3}+x_{4}+y_{2}+y_{3} & =0 \\
\vdots & \\
x_{n-2}+x_{n-1}+x_{n}+y_{n-2}+y_{n-1} & =0 \\
x_{n-1}+x_{n}+y_{n-1} & =0 .
\end{aligned}
$$

Similarly the induced degree sum equation of w_{j} gives the following system of equations.

$$
\begin{aligned}
x_{1}+x_{2}+y_{1} & =0 \\
x_{2}+x_{3}+y_{2} & =0 \\
x_{3}+x_{4}+y_{3} & =0 \\
\vdots & \\
x_{n-2}+x_{n-1}+y_{n-2} & =0 \\
x_{n-1}+x_{n}+y_{n-1} & =0 .
\end{aligned}
$$

By substituting the second system in the first system of equations, we get

$$
\begin{aligned}
x_{1}+x_{2}+y_{1} & =0 \\
x_{1}+y_{1} & =0 \\
x_{2}+y_{2} & =0 \\
\vdots & \\
x_{n-2}+y_{n-2} & =0 \\
x_{n-1}+x_{n}+y_{n-1} & =0
\end{aligned}
$$

From the above two system of equations, one can easily conclude that

$$
\begin{aligned}
x_{1} & =y_{1} \\
x_{2}=x_{3}=x_{4}=\cdots=x_{n-1} & =0 \\
y_{2}=y_{3}=y_{4}=\cdots=y_{n-2} & =0 \\
x_{n} & =y_{n-1} .
\end{aligned}
$$

Thus to get an IML of $T S_{n}$, we need to define $f: V\left(T S_{n}\right) \rightarrow V_{4}$ as follows:

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } & v=v_{1}, w_{1} \\
0 & \text { if } & v=v_{i}, \text { for } i=2,3,4, \ldots, n-1 \\
0 & \text { if } & v=w_{j}, \text { for } j=2,3,4, \ldots, n-2 \\
b & \text { if } & v=v_{n}, w_{n-1}
\end{array}\right.
$$

Hence the proof.
Corollary 3.2.5. The triangular snake graph $T S_{n} \in \Gamma_{a, 0}\left(V_{4}\right)$ for all n.

Proof. Let $V\left(T S_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}\right\}$, where $v_{1}, v_{2}, v_{3}, \ldots$, v_{n} are the vertices of corresponding path P_{n}. Define $f: V\left(T S_{n}\right) \rightarrow V_{4}$ as follows.

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } & v=v_{1}, w_{1} \\
0 & \text { if } & v=v_{i}, \text { for } i=2,3,4, \ldots, n-1 \\
0 & \text { if } & v=w_{j}, \text { for } j=2,3,4, \ldots, n-2 \\
a & \text { if } & v=v_{n}, w_{n-1}
\end{array}\right.
$$

Then from Theorem 3.2.4 f is an IML of $T S_{n}$. Hence the corollary follows.

Theorem 3.2.6. The double triangular snake graph $D T S_{n} \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$.

Proof. Consider a double triangular snake graph $D T S_{n}$ with vertex set $\left\{v_{1}, v_{2}, v_{3}\right.$,
$\left.\ldots, v_{n}, w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}, u_{1}, u_{2}, u_{3}, \ldots, u_{n-1}\right\}$, where $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the vertices of corresponding path P_{n} and w_{i}, u_{i} are the vertices attached to v_{i} and v_{i+1} for $i=1,2, \ldots, n-1$. Suppose $n \equiv 0(\bmod 3)$ that is $n=3 k$, for some integer k. Then define $g: V\left(D T S_{n}\right) \rightarrow V_{4}$ as:

$$
g(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=v_{2}, v_{5}, v_{8}, \ldots, v_{n-4}, v_{n-1} \\
a & \text { if } & v=v_{1}, v_{3}, v_{4}, v_{6}, v_{7}, \ldots, v_{n-3}, v_{n-2}, v_{n} \\
0 & \text { if } & v=w_{3 j}, \text { for } j=1,2,3, \ldots, k-1 \\
a & \text { if } & v=w_{1}, w_{2}, w_{4}, w_{5}, w_{7}, \ldots, w_{n-2}, w_{n-1} \\
0 & \text { if } & v=u_{3 j}, \text { for } j=1,2,3, \ldots, k-1 \\
a & \text { if } & v=u_{1}, u_{2}, u_{4}, u_{5}, u_{7}, \ldots, u_{n-2}, u_{n-1}
\end{array}\right.
$$

Then we can easily prove that g is an IML of $D T S_{n}$.
Conversely, suppose that $n=3 k+1$ or $n=3 k+2$ for some integer k. If possible, suppose f is an IML of $D T S_{n}$. Then from the induced degree sum equation of the vertices v_{i}, we have the following system of equations.

$$
\begin{aligned}
f\left(v_{2}\right)+f\left(u_{1}\right)+f\left(w_{1}\right) & =0 \\
f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+f\left(u_{1}\right)+f\left(u_{2}\right)+f\left(w_{1}\right)+f\left(w_{2}\right) & =0 \\
f\left(v_{2}\right)+f\left(v_{3}\right)+f\left(v_{4}\right)+f\left(u_{2}\right)+f\left(u_{3}\right)+f\left(w_{2}\right)+f\left(w_{3}\right) & =0 \\
f\left(v_{3}\right)+f\left(v_{4}\right)+f\left(v_{5}\right)+f\left(u_{3}\right)+f\left(u_{4}\right)+f\left(w_{3}\right)+f\left(w_{4}\right) & =0 \\
\vdots & \\
f\left(v_{n-2}\right)+f\left(v_{n-1}\right)+f\left(v_{n}\right)+f\left(u_{n-2}\right)+f\left(u_{n-1}\right)+f\left(w_{n-2}\right)+f\left(w_{n-1}\right) & =0 \\
f\left(v_{n-1}\right)+f\left(u_{n-1}\right)+f\left(w_{n-1}\right) & =0 .
\end{aligned}
$$

Similarly from the induced degree sum equation of u_{i} and w_{i}, we get the following system of equations:

$$
f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(v_{2}\right)=0
$$

$$
\begin{aligned}
f\left(u_{2}\right)+f\left(v_{2}\right)+f\left(v_{3}\right) & =0 \\
f\left(u_{3}\right)+f\left(v_{3}\right)+f\left(v_{4}\right) & =0 \\
\vdots & \\
f\left(u_{n-1}\right)+f\left(v_{n-1}\right)+f\left(v_{n}\right) & =0 .
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(w_{1}\right)+f\left(v_{1}\right)+f\left(v_{2}\right) & =0 \\
f\left(w_{2}\right)+f\left(v_{2}\right)+f\left(v_{3}\right) & =0 \\
f\left(w_{3}\right)+f\left(v_{3}\right)+f\left(v_{4}\right) & =0 \\
\vdots & \\
f\left(w_{n-1}\right)+f\left(v_{n-1}\right)+f\left(v_{n}\right) & =0 .
\end{aligned}
$$

By comparing the induced degree sum equations of u_{i} and w_{i}, we get $f\left(u_{i}\right)=$ $f\left(w_{i}\right)$, for $i=1,2,3, \ldots, n-1$. Using this in the induced degree sum equations of v_{i}, we get

$$
\begin{aligned}
f\left(v_{2}\right) & =0 \\
f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right) & =0 \\
f\left(v_{2}\right)+f\left(v_{3}\right)+f\left(v_{4}\right) & =0 \\
f\left(v_{3}\right)+f\left(v_{4}\right)+f\left(v_{5}\right) & =0 \\
\vdots & \\
f\left(v_{n-2}\right)+f\left(v_{n-1}\right)+f\left(v_{n}\right) & =0 \\
f\left(v_{n-1}\right) & =0 .
\end{aligned}
$$

By solving this, we get $f\left(v_{2}\right)=f\left(v_{5}\right)=f\left(v_{8}\right)=\cdots=0, f\left(v_{n-1}\right)=f\left(v_{n-4}\right)=$ $f\left(v_{n-7}\right)=\cdots=0, f\left(v_{1}\right)=f\left(v_{3}\right)=f\left(v_{4}\right)=f\left(v_{6}\right)=f\left(v_{7}\right)=\cdots$ and $f\left(v_{n}\right)=$

Figure 3.1: Double triangular snake graph $D T S_{6}$
$f\left(v_{n-2}\right)=f\left(v_{n-3}\right)=f\left(v_{n-5}\right)=f\left(v_{n-6}\right)=\cdots$. By substituting this in the induced degree sum equation of w_{i}, we get $f\left(w_{3}\right)=f\left(w_{6}\right)=f\left(w_{9}\right)=\cdots=$ $0, f\left(w_{n-3}\right)=f\left(w_{n-6}\right)=f\left(w_{n-9}\right)=\cdots=0$ and $f\left(w_{1}\right)=f\left(w_{2}\right)=f\left(w_{4}\right)=$ $f\left(w_{5}\right)=\cdots, f\left(w_{n-1}\right)=f\left(w_{n-2}\right)=f\left(w_{n-4}\right)=f\left(w_{n-5}\right)=\cdots$.

Case 1: $n=3 k+1$ for some integer k.
In this case, the above conclusion of the system of equations become

$$
\begin{aligned}
& f\left(v_{2}\right)=f\left(v_{5}\right)=f\left(v_{8}\right)=\cdots=f\left(v_{n-2}\right)=0 \text { and } f\left(v_{n-1}\right)=f\left(v_{n-4}\right)= \\
& f\left(v_{n-7}\right)=\cdots=f\left(v_{3}\right)=0, f\left(v_{1}\right)=f\left(v_{3}\right)=f\left(v_{4}\right)=f\left(v_{6}\right)=f\left(v_{7}\right)=\cdots= \\
& f\left(v_{n-1}\right)=f\left(v_{n}\right) \text { and } f\left(v_{n}\right)=f\left(v_{n-2}\right)=f\left(v_{n-3}\right)=f\left(v_{n-5}\right)=f\left(v_{n-6}\right)= \\
& \cdots=f\left(v_{4}\right)=f\left(v_{2}\right)=f\left(v_{1}\right) . \text { Thus } f \equiv 0 .
\end{aligned}
$$

Case 2: $n=3 k+2$ for some integer k.
In this case, the above conclusion of the system of equations become

$$
\begin{aligned}
& f\left(v_{2}\right)=f\left(v_{5}\right)=f\left(v_{8}\right)=\cdots=f\left(v_{n-3}\right)=f\left(v_{n}\right)=0 \text { and } f\left(v_{n-1}\right)= \\
& f\left(v_{n-4}\right)=f\left(v_{n-7}\right)=\cdots=f\left(v_{4}\right)=f\left(v_{1}\right)=0, f\left(v_{1}\right)=f\left(v_{3}\right)=f\left(v_{4}\right)= \\
& f\left(v_{6}\right)=f\left(v_{7}\right)=\cdots=f\left(v_{n-2}\right)=f\left(v_{n-1}\right) \text { and } f\left(v_{n}\right)=f\left(v_{n-2}\right)=f\left(v_{n-3}\right)= \\
& f\left(v_{n-5}\right)=f\left(v_{n-6}\right)=\cdots=f\left(v_{3}\right)=f\left(v_{2}\right) . \text { Thus } f \equiv 0 .
\end{aligned}
$$

Hence in both cases, we get $f \equiv 0$, which is a contradiction. Hence the proof.

The Figure 3.1 represents a double triangular snake graph $D T S_{6}$ with an induced V_{4}-magic labeling.

Corollary 3.2.7. The double triangular snake graph $D T S_{n} \in \Gamma_{a, 0}\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$.

Proof. Proof follows from Theorem 3.2.6.
Theorem 3.2.8. For $n \geq 2$, the open ladder graph $O\left(L_{n}\right) \in \Gamma\left(V_{4}\right)$ for $n \equiv$ $0(\bmod 3)$.

Proof. Consider an open ladder graph $O\left(L_{n}\right), n \geq 2$, with the vertex set $V(G)=$ $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and the edge set $E(G)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{u_{i} v_{i}: 2 \leq i \leq n-1\right\}$.

Then for $n \equiv 0(\bmod 3)$, define $f: V\left(O\left(L_{n}\right)\right) \rightarrow V_{4}$ as follows.

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u_{2}, u_{5}, u_{8}, \ldots, u_{n-1} \\
0 & \text { if } & v=v_{2}, v_{5}, v_{8}, \ldots, v_{n-1} \\
a & & \text { otherwise }
\end{array}\right.
$$

Then f is an IML of $O\left(L_{n}\right)$. Hence the proof follows.

Corollary 3.2.9. For $n \geq 2$, the open ladder graph $O\left(L_{n}\right) \in \Gamma_{a, 0}\left(V_{4}\right)$ for $n \equiv$ $0(\bmod 3)$.

Proof. Proof follows from Theorem 3.2.8.

Theorem 3.2.10. The generalized theta graph $\Theta\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right) \in \Gamma\left(V_{4}\right)$ for k is odd and $a_{i} \equiv 2(\bmod 3)$, for $i=1,2,3, \ldots, k$.

Proof. Suppose k is an odd integer and $a_{i} \equiv 2(\bmod 3)$. Let $\left\{u, v_{i 1}, v_{i 2}, v_{i 3}, \ldots\right.$, $\left.v_{i a_{i-1}}, v\right\}$ be the vertices of the $i^{\text {th }}$ path of length a_{i}.

Let $f: V\left(\Theta\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right)\right) \rightarrow V_{4}$ be defined by

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } & v=u, v \\
a & \text { if } & v=v_{i j}, \text { where } \\
0 & \text { if } & v=v_{i j}, \text { where } \quad j \equiv 1(\bmod 3)
\end{array}\right.
$$

Then f is an IML of $\Theta\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right)$.
Hence $\Theta\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right) \in \Gamma\left(V_{4}\right)$ for $a_{i} \equiv 2(\bmod 3)$ and k odd.

Theorem 3.2.11. The book $B_{n} \in \Gamma\left(V_{4}\right)$ for n even.

Proof. We have $B_{n}=K_{1, n} \square P_{2}$. Let $V\left(K_{1, n}\right)=\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$, where u be the apex vertex and $V\left(P_{2}\right)=\{v, w\}$. Then the vertex set of $K_{1, n} \square P_{2}$ is given by $\left\{u v, u_{1} v, u_{2} v, u_{3} v, \ldots, u_{n} v, u w, u_{1} w, u_{2} w, u_{3} w, \ldots, u_{n} w\right\}$. Suppose n is an even integer.

Let $f: V\left(B_{n}\right) \rightarrow V_{4}$ be defined by

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u v, u w \\
a & \text { if } & v=u_{i} v, u_{i} w,
\end{array} \text { for } \quad i=1,2,3, \ldots, n .\right.
$$

Then we can easily prove that f is an IML of B_{n}.
Hence $B_{n} \in \Gamma\left(V_{4}\right)$ for n even.

Theorem 3.2.12. The graph $P_{2} \square C_{n} \in \Gamma\left(V_{4}\right)$ for $n \equiv 0(\bmod 3)$.

Proof. Let $V\left(P_{2}\right)=\{u, v\}$ and $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$. Then the $V\left(P_{2} \square C_{n}\right)$ is given by $\left\{u u_{1}, u u_{2}, u u_{3}, \ldots, u u_{n}, v u_{1}, v u_{2}, v u_{3}, \ldots, v u_{n}\right\}$. Suppose $n \equiv 0(\bmod 3)$.

Let $f: V\left(P_{2} \square C_{n}\right) \rightarrow V_{4}$ be defined by

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } \quad v=u u_{i}, v u_{i}, & \text { where } i \equiv 0(\bmod 3) \\
b & \text { if } \quad v=u u_{i}, v u_{i}, & \text { where } i \equiv 1(\bmod 3) \\
c & \text { if } \quad v=u u_{i}, v u_{i}, & \text { where } i \equiv 2(\bmod 3) .
\end{array}\right.
$$

Then f is an IML of $P_{2} \square C_{n}$.
Hence $P_{2} \square C_{n} \in \Gamma\left(V_{4}\right)$ for $n \equiv 0(\bmod 3)$.

Corollary 3.2.13. The graph $P_{2} \square C_{n} \in \Gamma_{a, 0}\left(V_{4}\right)$ for $n \equiv 0(\bmod 3)$.

Proof. Let $V\left(P_{2}\right)=\{u, v\}$ and $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$. Then the $V\left(P_{2} \square C_{n}\right)$ is given by $\left\{u u_{1}, u u_{2}, u u_{3}, \ldots, u u_{n}, v u_{1}, v u_{2}, v u_{3}, \ldots, v u_{n}\right\}$. Suppose $n \equiv 0(\bmod 3)$.
Let $f: V\left(P_{2} \square C_{n}\right) \rightarrow V_{4}$ be defined by

$$
f(v)=\left\{\begin{array}{llll}
a & \text { if } & v=u u_{i}, v u_{i}, & \text { where } i \equiv 0(\bmod 3) \\
0 & \text { if } & v=u u_{i}, v u_{i}, & \text { where } i \equiv 1(\bmod 3) \\
a & \text { if } & v=u u_{i}, v u_{i}, & \text { where } i \equiv 2(\bmod 3)
\end{array}\right.
$$

Then one can easily verify that f is an IML of $P_{2} \square C_{n}$.
Hence $P_{2} \square C_{n} \in \Gamma_{a, 0}\left(V_{4}\right)$ for n even.

Theorem 3.2.14. The graph $P_{n} \odot K_{2} \in \Gamma\left(V_{4}\right)$ for all n.

Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $\left\{u_{i}, w_{i}\right\}$ be the vertex set of $i^{\text {th }}$ copy of K_{2}, for $i=1,2,3, \ldots, n$.

Define $f: V\left(P_{n} \odot K_{2}\right) \rightarrow V_{4}$ by

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } \quad v=v_{i}, \quad i=1,2,3, \ldots, n \\
a & \text { if } \quad v=u_{i}, w_{i}, \quad i=1,2,3, \ldots, n
\end{array}\right.
$$

Then we can prove that f is an IML of $P_{n} \odot K_{2}$.
Hence $P_{n} \odot K_{2} \in \Gamma\left(V_{4}\right)$ for all n.

From the proof of above theorem we have the following corollary.

Corollary 3.2.15. The graph $P_{n} \odot K_{2} \in \Gamma_{a, 0}\left(V_{4}\right)$ for all n.
Theorem 3.2.16. The graph $P_{n} \odot \bar{K}_{2} \in \Gamma\left(V_{4}\right)$ for all n.

Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $\left\{u_{i}, w_{i}\right\}$ be the vertex set of $i^{\text {th }}$ copy of \bar{K}_{2}, for $i=1,2,3, \ldots, n$.

Define $f: V\left(P_{n} \odot \bar{K}_{2}\right) \rightarrow V_{4}$ by

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } \quad v=v_{i}, \quad i=1,2,3, \ldots, n \\
a & \text { if } \quad v=u_{i}, w_{i}, i=1,2,3, \ldots, n
\end{array}\right.
$$

Then f is an IML of $P_{n} \odot \bar{K}_{2}$.
Hence $P_{n} \odot \bar{K}_{2} \in \Gamma\left(V_{4}\right)$ for all n.

From the proof of above theorem we have the following corollary.

Corollary 3.2.17. The graph $P_{n} \odot \bar{K}_{2} \in \Gamma_{a, 0}\left(V_{4}\right)$ for all n.
Theorem 3.2.18. The graph $P_{n} \odot \bar{K}_{m} \in \Gamma\left(V_{4}\right)$ for all n and m.

Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $\left\{u_{i 1}, u_{i 2}, u_{i 3}, \ldots, u_{i m}\right\}$ be the vertex set of $i^{\text {th }}$ copy of \bar{K}_{m}, for $i=1,2,3, \ldots, n$.

Case 1: m is an even integer.
In this case, define $f: V\left(P_{n} \odot \bar{K}_{m}\right) \rightarrow V_{4}$ by

$$
f(v)=\left\{\begin{array}{llll}
0 & \text { if } & v=v_{i}, & i=1,2,3, \ldots, n \\
a & \text { if } & v=u_{i j}, & \text { for all } i, j
\end{array}\right.
$$

Case 2: m is an odd integer.
In this case, define $f: V\left(P_{n} \odot \bar{K}_{m}\right) \rightarrow V_{4}$ by

$$
f(v)=\left\{\begin{array}{llll}
0 & \text { if } & v=v_{i}, & \text { for } i=1,2,3, \ldots, n \\
0 & \text { if } & v=u_{i 1}, & \text { for all } i \\
a & \text { if } & v=u_{i j}, & \text { for all } i, \quad j=2,3,4, \ldots, m
\end{array}\right.
$$

Then in both cases, we can prove that f is an IML of $P_{n} \odot \bar{K}_{m}$. Hence $P_{n} \odot \bar{K}_{m} \in \Gamma\left(V_{4}\right)$ for all n and m.

From the proof of above theorem we have the following corollary.

Corollary 3.2.19. The graph $P_{n} \odot \bar{K}_{m} \in \Gamma_{a, 0}\left(V_{4}\right)$ for all n and m.

3.3 Star Related Graphs

Theorem 3.3.1. The complete graph $K_{n} \in \Gamma\left(V_{4}\right)$ if and only if n is odd.

Proof. Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$. Suppose n is odd.
Define $f: V\left(K_{n}\right) \rightarrow V_{4}$ as:

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
0 & \text { if } & i=1 \\
a & \text { if } & i=2,3,4, \ldots, n
\end{array}\right.
$$

Then, f is an induced magic labeling of K_{n}. Conversely, suppose n is an even number. Then $\operatorname{deg}\left(v_{i}\right)=n-1$ is an odd number. Therefore by Theorem 2.3.1, we have f is an induced magic label if and only if f satisfies the following system equations:

$$
\begin{aligned}
f\left(v_{2}\right)+f\left(v_{3}\right)+f\left(v_{4}\right)+\cdots+f\left(v_{n-1}\right)+f\left(v_{n}\right) & =0 \\
f\left(v_{1}\right)+f\left(v_{3}\right)+f\left(v_{4}\right)+\cdots+f\left(v_{n-1}\right)+f\left(v_{n}\right) & =0 \\
f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{4}\right)+\cdots+f\left(v_{n-1}\right)+f\left(v_{n}\right) & =0 \\
\vdots & \\
f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\cdots+f\left(v_{n-2}\right)+f\left(v_{n}\right) & =0 \\
f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+\cdots+f\left(v_{n-2}\right)+f\left(v_{n-1}\right) & =0 .
\end{aligned}
$$

Note that the above system of equations imply $f\left(v_{1}\right)=f\left(v_{2}\right)=f\left(v_{3}\right)=\cdots=$ $f\left(v_{n}\right)$ and which again implies that $(n-1) f\left(v_{1}\right)=0$. That is $f\left(v_{1}\right)=0$. Thus $f \equiv 0$, which is a contradiction.

The following corollary follows directly from the proof of Theorem 3.3.1.
Corollary 3.3.2. $K_{n} \in \Gamma_{a, 0}\left(V_{4}\right)$ if and only if n is odd.
Theorem 3.3.3. For $m, n>1$, the complete bipartite graph $K_{m, n} \in \Gamma\left(V_{4}\right)$ if and only if either m or n is odd.

Proof. Let $V\left(K_{m, n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{m}, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$, where $v_{i} u_{j} \in E\left(K_{m, n}\right)$ for $i=1,2,3, \ldots, m$, and $j=1,2,3, \ldots, n$.

Case 1: m and n are odd.
In this case, we define $f: V\left(K_{m, n}\right) \rightarrow V_{4}$ as follows:

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=v_{1}, u_{1} \\
a & \text { if } & v=v_{2}, v_{3}, v_{4}, \ldots, v_{m} \\
b & \text { if } & v=u_{2}, u_{3}, u_{4}, \ldots, u_{n}
\end{array}\right.
$$

Case 2: m is odd and n is even.
In this case, we define $g: V\left(K_{m, n}\right) \rightarrow V_{4}$ as follows:

$$
g(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=v_{1}, v_{2}, v_{3}, \ldots, v_{m} \\
a & \text { if } & v=u_{1}, u_{2}, u_{3}, \ldots, u_{n}
\end{array}\right.
$$

Case 3: m is even and n is odd.
In this case, we define $h: V\left(K_{m, n}\right) \rightarrow V_{4}$ as follows:

$$
h(v)=\left\{\begin{array}{lll}
a & \text { if } & v=v_{1}, v_{2}, v_{3}, \ldots, v_{m} \\
0 & \text { if } & v=u_{1}, u_{2}, u_{3}, \ldots, u_{n}
\end{array}\right.
$$

Then in each case, we can easily verify that the vertex labeling f, g and h are induced magic labeling of $K_{m, n}$. Thus $K_{m, n} \in \Gamma\left(V_{4}\right)$ if either m or n is odd.

Now consider the following case:

Case 4: m and n are even.
If possible, suppose $f: V\left(K_{m, n}\right) \rightarrow V_{4}$ is an induced magic labeling of $K_{m, n}$. Then by Theorem 2.3.1 f must satisfy the following system of equations:

$$
\begin{align*}
& f\left(v_{i}\right)+\sum_{k=1}^{n} f\left(u_{k}\right)=0 \text { for } i=1,2,3, \ldots, m . \tag{3.1}\\
& f\left(u_{j}\right)+\sum_{k=1}^{m} f\left(v_{k}\right)=0 \text { for } j=1,2,3, \ldots, n \tag{3.2}
\end{align*}
$$

Note that the above equations in (3.1) imply that $f\left(v_{1}\right)=f\left(v_{2}\right)=f\left(v_{3}\right)=$ $\cdots=f\left(v_{n}\right)$ and the equations in (3.2) imply that $f\left(u_{1}\right)=f\left(u_{2}\right)=f\left(u_{3}\right)=$ $\cdots=f\left(u_{n}\right)$. Thus the above system reduces to:

$$
\begin{aligned}
f\left(v_{1}\right)+n f\left(u_{1}\right) & =0 \\
m f\left(v_{1}\right)+f\left(u_{1}\right) & =0
\end{aligned}
$$

Since both m and n are even the above system implies that $f\left(v_{1}\right)=f\left(u_{1}\right)=$ 0 . Thus $f \equiv 0$ and which is a contradiction to our assumption. Hence in this case, $K_{m, n} \notin \Gamma\left(V_{4}\right)$.

Corollary 3.3.4. For $n>1$, the star graph $K_{1, n} \in \Gamma\left(V_{4}\right)$.

Proof. Let $V\left(K_{1, n}\right)=\left\{v, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where $v v_{i} \in E\left(K_{1, n}\right)$, for $i=1,2,3$, \ldots, n.

Case 1: n is an even integer.
In this case, we define $f: V\left(K_{1, n}\right) \rightarrow V_{4}$ as follows:

$$
f(u)=\left\{\begin{array}{lll}
0 & \text { if } & u=v \\
a & \text { if } & u=v_{1}, v_{2}, v_{3}, \ldots, v_{n}
\end{array}\right.
$$

Case 2: n is an odd integer.
In this case, define $g: V\left(K_{1, n}\right) \rightarrow V_{4}$ as follows:

$$
g(u)=\left\{\begin{array}{lll}
0 & \text { if } & u=v, v_{1} \\
a & \text { if } & u=v_{2}, v_{3}, v_{4}, \ldots, v_{n}
\end{array}\right.
$$

Then in each case, we can easily verify that the vertex labeling f and g are induced magic labeling of $K_{1, n}$. Thus $K_{1, n} \in \Gamma\left(V_{4}\right)$. for all $n>1$.

Corollary 3.3.5. For $n>1, K_{1, n} \in \Gamma_{a, 0}\left(V_{4}\right)$.

Theorem 3.3.6. For the bistar $B_{m, n} \in \Gamma\left(V_{4}\right)$ for all m and n with $m+n>2$.

Proof. Let $V\left(B_{m, n}\right)=\left\{u, v, v_{1}, v_{2}, v_{3}, \ldots, v_{m}, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$, where $u v, v v_{i}$, $u u_{j} \in E\left(B_{m, n}\right)$ for $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$.

Case 1: m and n are even.
In this case, we define $f: V\left(B_{m, n}\right) \rightarrow V_{4}$ as follows:

$$
f(w)=\left\{\begin{array}{lll}
0 & \text { if } & w=v, u \\
a & \text { if } & w=v_{1}, v_{2}, v_{3}, \ldots, v_{m} \\
b & \text { if } & w=u_{1}, u_{2}, u_{3}, \ldots, u_{n}
\end{array}\right.
$$

Case 2: m is odd and n is even.
In this case, we define $g: V\left(B_{m, n}\right) \rightarrow V_{4}$ as follows:

$$
g(w)=\left\{\begin{array}{lll}
0 & \text { if } & w=v, u, v_{1} \\
a & \text { if } & w=v_{2}, v_{3}, v_{4}, \ldots, v_{m} \\
b & \text { if } & w=u_{1}, u_{2}, u_{3}, \ldots, u_{n}
\end{array}\right.
$$

Case 3: m is even and n is odd.
In this case, we define $h: V\left(B_{m, n}\right) \rightarrow V_{4}$ as follows:

$$
h(w)=\left\{\begin{array}{lll}
0 & \text { if } & w=v, u, u_{1} \\
a & \text { if } & w=v_{1}, v_{2}, v_{3}, \ldots, v_{m} \\
b & \text { if } & w=u_{2}, u_{3}, u_{4}, \ldots, u_{n}
\end{array}\right.
$$

Case 4: m and n are odd.
In this case, we define $k: V\left(B_{m, n}\right) \rightarrow V_{4}$ as follows:

$$
k(w)=\left\{\begin{array}{lll}
0 & \text { if } & w=v, u, v_{1}, u_{1} \\
a & \text { if } & w=v_{2}, v_{3}, v_{4}, \ldots, v_{m} \\
b & \text { if } & w=u_{2}, u_{3}, u_{4}, \ldots, u_{n}
\end{array}\right.
$$

Then in each case, we can easily verify that the vertex labeling f, g, h and k are induced magic labeling of $B_{m, n}$. Thus $B_{m, n} \in \Gamma\left(V_{4}\right)$, for all m and n.

Corollary 3.3.7. For the bistar $B_{m, n} \in \Gamma_{a, 0}\left(V_{4}\right)$ for all m and n with $m+n>2$.

Proof. Let $V\left(B_{m, n}\right)=\left\{u, v, v_{1}, v_{2}, v_{3}, \ldots, v_{m}, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$, where $u v, v v_{i}$, $u u_{j} \in E\left(B_{m, n}\right)$ for $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$.

Case 1: m and n are even.
In this case, define $f: V\left(B_{m, n}\right) \rightarrow V_{4}$ as follows:

$$
f(w)=\left\{\begin{array}{lll}
0 & \text { if } \quad w=v, u \\
a & \text { if } \quad w=v_{i}, u_{j}, i=1,2,3, \ldots, m, \quad j=1,2,3, \ldots, n
\end{array}\right.
$$

Case 2: m is odd and n is even.
In this case, define $g: V\left(B_{m, n}\right) \rightarrow V_{4}$ as follows:

$$
g(w)=\left\{\begin{array}{lll}
0 & \text { if } \quad w=v, u, v_{1} \\
a & \text { if } \quad w=v_{i}, u_{j}, \quad i=2,3, \ldots, m, \quad j=1,2,3, \ldots, n
\end{array}\right.
$$

Case 3: m is even and n is odd.
In this case, we define $h: V\left(B_{m, n}\right) \rightarrow V_{4}$ as follows

$$
h(w)=\left\{\begin{array}{lll}
0 & \text { if } & w=v, u, u_{1} \\
a & \text { if } & w=v_{i}, u_{j}, \quad i=1,2,3, \ldots, m, \quad j=2,3, \ldots, n
\end{array}\right.
$$

Case 4: m and n are odd.
In this case, we define $k: V\left(B_{m, n}\right) \rightarrow V_{4}$ as follows

$$
k(w)=\left\{\begin{array}{lll}
0 & \text { if } \quad w=v, u, v_{1}, u_{1} \\
a & \text { if } \quad w=v_{i}, u_{j}, \quad i=2,3, \ldots, m, \quad j=2,3, \ldots, n
\end{array}\right.
$$

Then in each case, we can easily verify that the vertex labeling f, g, h and k are induced magic labeling of $B_{m, n}$. Thus $B_{m, n} \in \Gamma_{a, 0}\left(V_{4}\right)$, for all m and n.

Theorem 3.3.8. The graph $<K_{1, n}: m>\in \Gamma\left(V_{4}\right)$ for all m, n.

Proof. Consider the graph $<K_{1, n}: m>$ with $\left\{v_{i}, v_{i j}: 1 \leq j \leq n\right\}$ as the vertex set of $i^{\text {th }}$ copy of $K_{1, n}$ with central vertex v_{i} for $i=1,2,3, \ldots, m$ and let v be the unique vertex adjacent to the central vertices v_{i} in $\left\langle K_{1, n}: m\right\rangle$. Then define $f: V\left(<K_{1, n}: m>\right) \rightarrow V_{4}$ as follows:

Case 1: m and n are odd.
In this case define f as

$$
f(u)=\left\{\begin{array}{lll}
a & \text { if } & u=v \\
a & \text { if } & u=v_{i j}, \quad i=1,2,3, \ldots, m, \quad j=1,2,3, \ldots, n \\
0 & \text { if } & u=v_{i}, \quad i=1,2,3, \ldots, m
\end{array}\right.
$$

Case 2: m is odd and n is even.
In this case define f as

$$
f(u)=\left\{\begin{array}{lll}
a & \text { if } & u=v \\
0 & \text { if } & u=v_{i 1} \\
a & \text { if } & u=v_{i j}, \quad i=1,2,3, \ldots, m, \quad j=2,3,4, \ldots, n \\
0 & \text { if } & u=v_{i}, \quad i=1,2,3, \ldots, m
\end{array}\right.
$$

Case 3: m is even and n is odd.
In this case define f as

$$
f(u)=\left\{\begin{array}{lll}
0 & \text { if } & \quad u=v \\
0 & \text { if } & u=v_{i 1} \\
a & \text { if } & u=v_{i j}, \quad i=1,2,3, \ldots, m \quad j=2,3,4, \ldots, n \\
0 & \text { if } \quad u=v_{i}, \quad i=1,2,3, \ldots, m
\end{array}\right.
$$

Case 4: m and n are even.
In this case define f as

$$
f(u)=\left\{\begin{array}{lll}
0 & \text { if } & u=v \\
a & \text { if } & u=v_{i j}, \quad i=1,2,3, \ldots, m, \quad j=1,2,3, \ldots, n \\
0 & \text { if } & u=v_{i}, \quad i=1,2,3, \ldots, m
\end{array}\right.
$$

Then one can easily verify that the vertex label f defined in all four cases are IML of $<K_{1, n}: m>$.

Hence the proof.

From the proof of above theorem we have the following corollary.

Corollary 3.3.9. The graph $<K_{1, n}: m>\in \Gamma_{a, 0}\left(V_{4}\right)$ for all m, n.

Theorem 3.3.10. The (n, k)-banana tree $\operatorname{Bt}(n, k) \in \Gamma\left(V_{4}\right)$ for all n and k.

Proof. Consider the graph $\operatorname{Bt}(n, k)$. Let $V[B t(n, k)]=\left\{v, v_{i}, v_{i j}: 1 \leq i \leq n, 1 \leq\right.$ $j \leq k\}$ and $\left.E[B t(n, k)]=\left\{v v_{i 1}, v_{i} v_{i j}\right\}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$.

Case 1: k is an odd integer.
In this case, define $f:(V(B t(n, k))) \rightarrow V_{4}$ by

$$
f(u)=\left\{\begin{array}{llll}
0 & \text { if } \quad u=v, v_{i}, & \text { for } i=1,2,3, \ldots, n \\
0 & \text { if } \quad u=v_{i 1}, & \text { for } i=1,2,3, \ldots, n \\
a & \text { if } \quad u=v_{i j}, & \text { for } i=1,2,3, \ldots, n, j=2,3,4, \ldots, k
\end{array}\right.
$$

Case 2: k is an even integer.
In this case, define $f:(V(B t(n, k))) \rightarrow V_{4}$ by

$$
f(u)=\left\{\begin{array}{llll}
0 & \text { if } \quad u=v, v_{i}, & \text { for } i=1,2,3, \ldots, n \\
0 & \text { if } & u=v_{i 1}, v_{i 2}, & \text { for } i=1,2,3, \ldots, n \\
a & \text { if } & u=v_{i j}, & \text { for } i=1,2,3, \ldots n, j=3,4, \ldots, k
\end{array}\right.
$$

In both cases, we can easily verify that f is an IML of $B t(n, k)$. Hence the proof.

Theorem 3.3.11. $K_{1, n}^{*} \in \Gamma\left(V_{4}\right)$ for all n.

Proof. Let $\left\{v_{i}, v_{i 1}, v_{i 2}, v_{i 3}, \ldots, v_{i n}\right\}$ be the vertex set of $i^{\text {th }}$ copy of $K_{1, n}$, for $i=$ $1,2,3, \ldots, n$ with v_{i} as the central vertex. Also suppose each v_{i} is attached to a vertex u by n distinct edges. Let $f: V\left(K_{1, n}^{*}\right) \rightarrow V_{4}$.

Case 1: n is an even integer.
In this case, define f as:

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u, v_{i} \\
a & \text { if } & v=v_{i j},
\end{array} \text { for all } i, j .\right.
$$

Case 2: n is an odd integer.
In this case, define f as:

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u, v_{i} \\
0 & \text { if } & v=v_{i 1}, \text { for } \quad i=1,2,3, \ldots, n \\
a & \text { if } & v=v_{i j}, \text { for all } \quad i, j=2,3,4, \ldots, n
\end{array}\right.
$$

Then we can easily verify that f is an IML of $K_{1, n}^{*}$. Thus $K_{1, n}^{*} \in \Gamma\left(V_{4}\right)$ for all n. Hence the proof.

Theorem 3.3.12. $K_{m}^{(n)} \in \Gamma\left(V_{4}\right)$ for all m and n..

Proof. Let $\left\{u, u_{i, 1}, u_{i, 2}, u_{i, 3}, \ldots, u_{i,(m-1)}\right\}$ be the vertex set of $i^{t h}$ copy of K_{m} in $K_{m}^{(n)}$, for $i=1,2,3, \ldots, n$, where u is the common vertex.

Case (i) m is odd.
Suppose m is an odd integer. Let $f: V\left(K_{m}^{(n)}\right) \rightarrow V_{4}$ be defined by

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u \\
a & \text { if } & v=u_{i, j}
\end{array} \text { for all } i, j\right.
$$

Then we can prove that f is an IML of $K_{m}^{(n)}$. Thus $K_{m}^{(n)} \in \Gamma\left(V_{4}\right)$ for m odd.

Case (ii) m and n are even.
Suppose m and n are even integers. Let $f: V\left(K_{m}^{(n)}\right) \rightarrow V_{4}$ be defined by

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u \\
a & \text { if } & v=u_{i, j},
\end{array} \text { for all } i, j .\right.
$$

Then we can prove that f is an IML of $K_{m}^{(n)}$. Thus $K_{m}^{(n)} \in \Gamma\left(V_{4}\right)$ for m and n are even.

Case (iii) m is even and n is odd.
Suppose m is even and n is odd. Let $f: V\left(K_{m}^{(n)}\right) \rightarrow V_{4}$ be defined by

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=u \\
0 & \text { if } & v=u_{i, j}, \\
\text { for all } i=1, j=1,2,3, \ldots, m-1 \\
a & \text { if } & v=u_{i, j}, \\
\text { for all } i=2,3,4, \ldots, n, j=1,2,3, \ldots, m-1
\end{array}\right.
$$

Then we can prove that f is an IML of $K_{m}^{(n)}$. Thus $K_{m}^{(n)} \in \Gamma\left(V_{4}\right)$ for m is even and n is odd.

Hence the proof.

From the proof of the above theorem we have the following corollary.
Corollary 3.3.13. $K_{m}^{(n)} \in \Gamma_{a, 0}\left(V_{4}\right)$ for all m and n.

\section*{| Chapter |
| :---: |}

Induced V_{4}-Magic Labeling of
 Subdivision and Shadow Graphs

In this chapter, we discuss induced V_{4}-magic labeling of subdivision graphs and shadow graphs of some graph. The first section gives an introduction about subdivision graphs and then deals with the induced V_{4}-magic labeling of subdivision graphs of some general and special graphs. In the second section, we prove a pretty theorem regarding shadow graph of a graph.

4.1 Subdivision Graphs

The subdivision of an edge $e=u v$ in the graph G gives a new graph obtained by replacing the edge $e=u v$ by two edges $e_{1}=u w$ and $e_{2}=w v$. A subdivision of a graph G is a graph which is denoted by $S(G)$ and is obtained from the subdivision of all edges in G.

Theorem 4.1.1. Let G be a graph with every vertex is of odd degree, then $S(G) \in$ $\Gamma\left(V_{4}\right)$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ be the newly inserted vertices in $S(G)$. Let $f: V(S(G)) \rightarrow V_{4}$ be defined by

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } & v=v_{k}, \text { for } k=1,2,3, \ldots, n \\
0 & \text { if } & v=u_{j}, \text { for } j=1,2,3, \ldots, m
\end{array}\right.
$$

Then we have $f^{*}\left(e_{i}\right)=a$ for all $e_{i} \in E(S(G))$ therefore $f^{* *}\left(v_{k}\right)=\operatorname{deg}\left(v_{k}\right) a=a$, since $\operatorname{deg}\left(v_{k}\right)$ is odd. Also $f^{* *}\left(u_{j}\right)=f^{*}\left(v_{\alpha} u_{j}\right)+f^{*}\left(v_{\beta} u_{j}\right)=a+a=0$, where u_{j} is inserted in the edge $v_{\alpha} v_{\beta}$. Thus $f \equiv f^{* *}$. That is f is an IML of $S(G)$. Hence the proof.

From the proof of the above theorem, we have the following corollary.
Corollary 4.1.2. Let G be a graph with every vertex is of odd degree, then $S(G) \in \Gamma_{a, 0}\left(V_{4}\right)$.

Theorem 4.1.3. $S\left(C_{n}\right) \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$.

Proof. From Theorem 2.4.1, we know that $C_{n} \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv$ $0(\bmod 3)$. Also we have $S\left(C_{n}\right)=C_{2 n}$. Thus $S\left(C_{n}\right)=C_{2 n} \in \Gamma\left(V_{4}\right)$ if and only if $2 n \equiv 0(\bmod 3)$, that is if and only if $n \equiv 0(\bmod 3)$. Hence the proof.

Theorem 4.1.4. $S\left(P_{n}\right) \in \Gamma\left(V_{4}\right)$ if and only if $2 n \equiv 1(\bmod 3)$.

Proof. We know that $S\left(P_{n}\right)=P_{2 n-1}$ and $P_{n} \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$. Therefore $S\left(P_{n}\right)=P_{2 n-1} \in \Gamma\left(V_{4}\right)$ if and only if $2 n \equiv 1(\bmod 3)$. Hence the proof.

Theorem 4.1.5. $S\left(K_{n}\right) \in \Gamma\left(V_{4}\right)$ for n is even.

Proof. Suppose n is even. Then consider the complete graph K_{n}. Since n is even, every vertex of K_{n} is of odd degree. Therefore by Theorem 4.1.1, we have $S\left(K_{n}\right) \in \Gamma\left(V_{4}\right)$.

Corollary 4.1.6. $S\left(K_{n}\right) \in \Gamma_{a, 0}\left(V_{4}\right)$ for n is even.

Theorem 4.1.7. $S\left(B_{m, n}\right) \in \Gamma\left(V_{4}\right)$ if and only if m and n are even.

Proof. Suppose m and n are even. Consider the bistar graph $B_{m, n}$ with vertex set $V\left(B_{m, n}\right)=\left\{u, v, v_{i}, u_{j}: i=1,2,3, \ldots, m, j=1,2,3, \ldots, n\right\}$, where $u v, v v_{i}, u u_{j} \in$ $E\left(B_{m, n}\right)$ for $i=1,2,3, \ldots, m$, and $j=1,2,3, \ldots, n$. Also let $\left\{v^{\prime}, v_{i}^{\prime}, u_{j}^{\prime}: i=\right.$ $1,2,3, \ldots, m, j=1,2,3, \ldots, n\}$ be the inserted vertices in $S\left(B_{m, n}\right)$ corresponding to the edges $u v, v v_{i}$ and $u u_{j}$ respectively. Define $f: V\left(S\left(B_{m, n}\right)\right) \rightarrow V_{4}$ as :

$$
f(w)=\left\{\begin{array}{lll}
a & \text { if } & w=v, u, v_{i}, u_{j} \\
0 & \text { if } & w=v^{\prime}, v_{i}^{\prime}, u_{j}^{\prime}
\end{array}\right.
$$

Then f is an IML of $S\left(B_{m, n}\right)$ and thus for m and n are even, $S\left(B_{m, n}\right) \in \Gamma\left(V_{4}\right)$. Conversely, suppose that either m or n is odd and f is an IML of $S\left(B_{m, n}\right)$. Then by the induced degree sum theorem, f must satisfy the following system of equations.

$$
\begin{align*}
f\left(v_{i}^{\prime}\right) & =0 \tag{4.1}\\
f\left(u_{j}^{\prime}\right) & =0 \tag{4.2}\\
f\left(v_{i}\right)+f(v) & =0 \tag{4.3}\\
f\left(u_{j}\right)+f(u) & =0 \tag{4.4}\\
m f(v)+f\left(v^{\prime}\right) & =0 \tag{4.5}\\
n f(u)+f\left(v^{\prime}\right) & =0 \tag{4.6}\\
f(v)+f(u)+f\left(v^{\prime}\right) & =0 . \tag{4.7}
\end{align*}
$$

From the above system of equations, (4.3) and (4.4) imply that $f\left(v_{i}\right)=f(v)$, $f\left(u_{j}\right)=f(u)$, for $i=1,2,3, \ldots m$, and $j=1,2,3, \ldots, n$. Then consider the following cases:

Case 1: m and n are odd.
In this case, the Equations (4.5), (4.6) and (4.7) in the above system of equations reduces to

$$
\begin{aligned}
f(v)+f\left(v^{\prime}\right) & =0 \\
f(u)+f\left(v^{\prime}\right) & =0 \\
f(v)+f(u)+f\left(v^{\prime}\right) & =0 .
\end{aligned}
$$

Above three equations imply that $f(v)=f(u)=f\left(v^{\prime}\right)=0$. That is $f \equiv 0$, which is a contradiction.

Case 2: m is odd and n is even.
In this case, the Equations (4.5), 4.6) and (4.7) in the above system of equations reduces to

$$
\begin{aligned}
f(v)+f\left(v^{\prime}\right) & =0 \\
f\left(v^{\prime}\right) & =0 \\
f(v)+f(u)+f\left(v^{\prime}\right) & =0 .
\end{aligned}
$$

These equations imply that $f(v)=0$, therefore $f(u)=0$. That is $f \equiv 0$, which is a contradiction.

Case 3: m is even and n is odd.
In this case, the Equations (4.5), (4.6) and (4.7) in the above system of equations reduces to

$$
\begin{aligned}
f\left(v^{\prime}\right) & =0 \\
f(u)+f\left(v^{\prime}\right) & =0 \\
f(v)+f(u)+f\left(v^{\prime}\right) & =0
\end{aligned}
$$

These equations imply that $f(u)=0$, therefore $f(v)=0$. That is $f \equiv 0$, which is a contradiction.

Thus from the above three cases, we get, there exists no such IML for $S\left(B_{m, n}\right)$. Hence $S\left(B_{m, n}\right) \in \Gamma\left(V_{4}\right)$ if and only if m and n are even.

Corollary 4.1.8. Let $S\left(B_{m, n}\right) \in \Gamma_{a, 0}\left(V_{4}\right)$ if and only if m and n are even.

Theorem 4.1.9. For the complete graph $K_{m, n}$ we have, $S\left(K_{m, n}\right) \in \Gamma\left(V_{4}\right)$ for m and n are odd.

Proof. Suppose m and n are odd. Since m and n are odd, every vertex of $K_{m, n}$ is of odd degree. Therefore by Theorem 4.1.1, we have $S\left(K_{m, n}\right) \in \Gamma\left(V_{4}\right)$.

Corollary 4.1.10. $S\left(K_{m, n}\right) \in \Gamma_{a, 0}\left(V_{4}\right)$ for m and n are odd.
Theorem 4.1.11. $S\left(K_{1, n}\right) \in \Gamma\left(V_{4}\right)$ if and only if n is odd.

Proof. Let $V\left(K_{1, n}\right)=\left\{v, u_{j}: j=1,2,3, \ldots, n\right\}$, where $v u_{j} \in E\left(K_{1, n}\right)$ for $j=$ $1,2,3, \ldots, n$ and let $\left\{v_{j}: j=1,2,3, \ldots, n\right\}$ be the inserted vertices in $S\left(K_{n}\right)$ corresponding to the edge $v u_{j}$. Suppose n is odd, then define $f: V\left(S\left(K_{1, n}\right)\right) \rightarrow V_{4}$ as

$$
f(w)=\left\{\begin{array}{lll}
a & \text { if } & w=v, u_{j} \\
0 & \text { if } & w=v_{j}
\end{array}\right.
$$

Then f gives an IML for $S\left(K_{1, n}\right)$.
Conversely, suppose that n is even and f is an IML of $S\left(K_{1, n}\right)$. Then by the induced degree sum equation of the vertices u_{j}, v_{j} and v the vertex labeling function f must satisfies the following system of equations:

$$
\begin{align*}
f\left(v_{j}\right) & =0 \tag{4.8}\\
f(v)+f\left(u_{j}\right) & =0 \tag{4.9}\\
(n-1) f(v) & =0 \tag{4.10}
\end{align*}
$$

Since n is even, the Equation 4.10) implies that $f(v)=0$. Therefore $f\left(u_{j}\right)=0$. Thus $f \equiv 0$, which is a contradiction. Hence the proof.

Corollary 4.1.12. $S\left(K_{1, n}\right) \in \Gamma_{a, 0}\left(V_{4}\right)$ if and only if n is odd.

Theorem 4.1.13. The subdivision of wheel graph, $S\left(W_{n}\right) \in \Gamma\left(V_{4}\right)$ for n is odd.

Proof. Let $V\left(W_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where w is the central vertex of W_{n}. Let w_{i} be the inserted vertices on the edge $w v_{i}$ and u_{i} be the inserted vertices on the edge $v_{i} v_{i+1}$, for $i=1,2,3, \ldots, n$, where $i+1$ is taken modulo n.
Then for n odd, define $f: V\left(S\left(W_{n}\right)\right) \rightarrow V_{4}$ as

$$
f(u)=\left\{\begin{array}{lll}
a & \text { if } & u=w, v_{i} \\
0 & \text { if } & u=u_{i}, w_{i}
\end{array}\right.
$$

Then, since every vertex is of odd degree, by the Theorem 4.1.1, f is an IML of $S\left(W_{n}\right)$. Hence the proof.

Theorem 4.1.14. The subdivision of helm graph, $S\left(H_{n}\right) \in \Gamma\left(V_{4}\right)$ for n even.

Proof. Let $V\left(H_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}, w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}$, where w be the central vertex and $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ be the pendant vertices adjacent to v_{1}, v_{2}, v_{3}, \ldots, v_{n}. Let $\left(\beta_{i}, \quad 1 \leq i \leq n\right)$ be the inserted vertices on the edge $\left(w v_{i}, \quad 1 \leq i \leq\right.$ $n),\left(u_{i}, \quad 1 \leq i \leq n\right)$ be the inserted vertices on the edge $\left(v_{i} v_{i+1}, \quad 1 \leq i \leq n\right)$ and $\left(\alpha_{i}, \quad 1 \leq i \leq n\right)$ be the inserted vertices on the edge $\left(v_{i} w_{i}, \quad 1 \leq i \leq n\right)$. Then for n even, define $f: V\left(S\left(H_{n}\right)\right) \rightarrow V_{4}$ as:

$$
f(u)=\left\{\begin{array}{lll}
a & \text { if } & u=v_{i}, w_{i}, \beta_{i} \\
0 & \text { if } & u=w, u_{i}, \alpha_{i}
\end{array}\right.
$$

Then we can easily prove that f is an IML of $S\left(H_{n}\right)$.
Hence the proof.

Theorem 4.1.15. The subdivision of comb graph, $S\left(C B_{n}\right) \in \Gamma\left(V_{4}\right)$ if and only if n is odd.

Proof. Let $\left\{u_{i}, v_{i}: i=1,2,3, \ldots, n\right\}$ be the vertex set of $C B_{n}$, where v_{i} be the pendant vertex adjacent to u_{i}. Suppose w_{i} and t_{j} are inserted vertices on the edge $u_{i} v_{i}$ and $u_{j} u_{j+1}$, for $i=1,2,3, \ldots, n$ and $j=i=1,2,3, \ldots, n-1$.
Suppose n is an odd number. Define $f: V\left(S\left(C B_{n}\right)\right) \rightarrow V_{4}$ as:

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=w_{1}, w_{2}, w_{3}, \ldots, w_{n} \\
a & \text { if } & v=t_{1}, t_{2}, t_{3}, \ldots, t_{n-1} \\
a & \text { if } & v=u_{i}, v_{i}, \text { for } i \text { odd } \\
0 & \text { if } & v=u_{i}, v_{i}, \text { for } i \text { even }
\end{array}\right.
$$

Then f is an IML of $S\left(C B_{n}\right)$.
Conversely, suppose that n is an even number. If possible, suppose there exists an IML for $S\left(C B_{n}\right)$ say $g: V\left(S\left(C B_{n}\right)\right) \rightarrow V_{4}$.

Since v_{i} is a pendant vertex of $S\left(C B_{n}\right)$ the induced degree sum equation of v_{i} gives: $g\left(w_{i}\right)=0$. Also the induced degree sum equation of w_{i} gives:

$$
g\left(u_{i}\right)+g\left(v_{i}\right)=0 \text { for } i=1,2,3, \ldots, n \text {. }
$$

Note that the above equation implies that $g\left(u_{i}\right)=g\left(v_{i}\right)$ for $i=1,2,3, \ldots, n$ Also the induced degree sum equation of u_{i} gives

$$
\begin{aligned}
g\left(t_{1}\right)+g\left(u_{1}\right) & =0 \\
g\left(t_{1}\right)+g\left(t_{2}\right) & =0 \\
g\left(t_{2}\right)+g\left(t_{3}\right) & =0 \\
g\left(t_{3}\right)+g\left(t_{4}\right) & =0
\end{aligned}
$$

$$
\begin{aligned}
g\left(t_{n-2}\right)+g\left(t_{n-1}\right) & =0 \\
g\left(t_{n-1}\right)+g\left(u_{n}\right) & =0 .
\end{aligned}
$$

Similarly induced degree sum equation of t_{j} gives

$$
\begin{aligned}
g\left(t_{1}\right)+g\left(u_{1}\right)+g\left(u_{2}\right) & =0 \\
g\left(t_{2}\right)+g\left(u_{2}\right)+g\left(u_{3}\right) & =0 \\
g\left(t_{3}\right)+g\left(u_{3}\right)+g\left(u_{4}\right) & =0 \\
& \vdots \\
g\left(t_{n-1}\right)+g\left(u_{n-1}\right)+g\left(u_{n}\right) & =0 .
\end{aligned}
$$

Note that the induced degree sum equation of u_{i} implies that

$$
\begin{equation*}
g\left(u_{1}\right)=g\left(t_{1}\right)=g\left(t_{2}\right)=g\left(t_{3}\right)=\cdots=g\left(t_{n-1}\right)=g\left(u_{n}\right) . \tag{4.11}
\end{equation*}
$$

Since n is even, by substituting this in the induced degree sum equation of t_{j}, we get

$$
\begin{equation*}
g\left(u_{2}\right)=g\left(u_{4}\right)=g\left(u_{6}\right)=\cdots=g\left(u_{n}\right)=0 . \tag{4.12}
\end{equation*}
$$

By substituting $g\left(u_{n}\right)=0$ in Equation (4.11), we get

$$
\begin{equation*}
g\left(u_{1}\right)=g\left(t_{1}\right)=g\left(t_{2}\right)=g\left(t_{3}\right)=\cdots=g\left(t_{n-1}\right)=g\left(u_{n}\right)=0 . \tag{4.13}
\end{equation*}
$$

Substituting Equation(4.13) and Equation 4.12) in the induced degree sum equation of t_{j}, we get

$$
\begin{equation*}
g\left(u_{1}\right)=g\left(u_{3}\right)=g\left(u_{5}\right)=\cdots=g\left(u_{n-1}\right)=0 . \tag{4.14}
\end{equation*}
$$

Thus $g \equiv 0$, which is a contradiction to our assumption. Thus in this case,

Figure 4.1: \quad Subdivision graph of $C B_{7}$
$S\left(C B_{n}\right) \notin \Gamma\left(V_{4}\right)$. Hence the proof.

In the Figure 4.1 an induced V_{4}-magic labeling of the graph $S\left(C B_{7}\right)$ is given.

Theorem 4.1.16. The subdivision of jelly fish graph $S(J(m, n)) \in \Gamma\left(V_{4}\right)$ for all m and n.

Proof. Consider the jelly fish graph with $V(J(m, n))=\left\{v_{k}: k=1,2,3,4.\right\} \cup$ $\left\{u_{i}: i=1,2,3, \ldots, m\right\} \cup\left\{w_{j}: j=1,2,3, \ldots, n\right\}$, where $v_{1}, v_{2}, v_{3}, v_{4}$ are the vertices corresponding to C_{4}, u_{i}, w_{j} are the vertices corresponding to $K_{1, m}$ and $K_{1, n}$ respectively and $\alpha_{i}(1 \leq i \leq m), \quad \beta_{j}(1 \leq j \leq n)$ be the inserted vertices on the edges $v_{2} u_{i}, v_{4} w_{j}$ respectively. Also let $\alpha, \beta, \gamma, \delta, \sigma$ be the vertices inserted on the edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{1}, v_{1} v_{3}$ respectively.

Case 1: m and n are odd.
In this case, Define $f: V(S(J(m, n))) \rightarrow V_{4}$ as :

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } & v=v_{1}, v_{2}, v_{3}, v_{4}, u_{i}, w_{j} \\
0 & \text { if } & v=\alpha_{i}, \beta_{j}, \alpha, \beta, \gamma, \delta, \sigma
\end{array}\right.
$$

Case 2: (m and n even) or (m odd and n even) or (m even and n odd).
In this case, define $f: V(S(J(m, n))) \rightarrow V_{4}$ as:

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } & v=v_{1}, v_{3}, \alpha, \beta, \gamma, \delta \\
0 & \text { if } & v=v_{2}, v_{4}, u_{i}, w_{j}, \alpha_{i}, \beta_{j}, \sigma
\end{array}\right.
$$

Then for all cases, we can prove that f is an IML of $S(J(m, n))$. Hence the proof.

Theorem 4.1.17. The subdivision of sunflower graph $S\left(S F_{n}\right) \in \Gamma\left(V_{4}\right)$, for n is odd.

Proof. Suppose the given sunflower graph is obtained by taking a wheel with the central vertex v_{0} and the n-cycle $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and the additional vertices $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$, where w_{i} is joined by edges to the vertices v_{i}, v_{i+1}, where $i+1$ is taken modulo n. Also let $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}$ be the inserted vertices on the edges $v_{0} v_{i}, v_{i} v_{i+, 1}, v_{i} w_{i}, w_{i} v_{i+1}$ respectively, where $i+1$ is taken modulo n.

Suppose n is odd, then define $f: V\left(S\left(S F_{n}\right)\right) \rightarrow V_{4}$ as :

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } v=v_{0}, v_{i}, \gamma_{i}, \delta_{i} & \text { for } i=1,2,3, \ldots, n \\
0 & \text { if } v=w_{i}, \alpha_{i}, \beta_{i} & \text { for } i=1,2,3, \ldots, n
\end{array}\right.
$$

Then we can easily prove that f is an induced V_{4} magic labeling of $S\left(S F_{n}\right)$. Hence the proof.

Theorem 4.1.18. The subdivision of gear graph, $S\left(G_{n}\right) \in \Gamma\left(V_{4}\right)$ for n odd.

Proof. Let $V\left(G_{n}\right)=\left\{w, u_{1}, u_{2}, u_{3}, \ldots, u_{n}, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where w is the central vertex $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are the vertices of the corresponding wheel graph W_{n} and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the remaining vertices with $u_{i} v_{i}, v_{i} u_{i+1} \in E\left(G_{n}\right)$, where $i+1$ is taken modulo n. Also let $w_{i}, \alpha_{i}, \beta_{i}$ be the inserted vertices on the edges $w u_{i}, u_{i} v_{i}, v_{i} u_{i+i}$, where $i+1$ is taken modulo n.

Suppose n is an odd integer. Define $f: V\left(S\left(G_{n}\right)\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } v=w, u_{i}, \alpha_{i}, \beta_{i} & \text { for } i=1,2,3, \ldots, n \\
0 & \text { if } v=w_{i}, v_{i} & \text { for } i=1,2,3, \ldots, n
\end{array}\right.
$$

Then we can easily prove that f is an induced V_{4} magic labeling of $S\left(G_{n}\right)$. Hence the proof.

Theorem 4.1.19. The subdivision of flower graph, $S\left(F l^{n}\right) \in \Gamma\left(V_{4}\right)$ for all n.

Proof. Let $V\left(F l^{n}\right)=\left\{w, u_{1}, u_{2}, u_{3}, \ldots, u_{n}, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where w is the central vertex $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are the pendant vertices of corresponding helm and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the vertices adjacent to the central vertex w. Also let $\alpha_{i}, \beta_{i}, \gamma_{i}$ and δ_{i} be the inserted vertices on the edges $w u_{i}, u_{i} v_{i}, w v_{i}$ and $v_{i} v_{i+1}$ respectively, for $i=1,2,3, \ldots, n$ with $i+1$ is taken modulo n.

Case 1: n is an odd number.
In this case, define $f: V\left(S\left(F l^{n}\right)\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } v=\alpha_{i}, v_{i} & \text { for } i=1,2,3, \ldots, n \\
b & \text { if } v=w, \beta_{i} & \text { for } i=1,2,3, \ldots, n \\
c & \text { if } v=u_{i}, \gamma_{i} & \text { for } i=1,2,3, \ldots, n \\
0 & \text { if } v=\delta_{i}, & \text { for } i=1,2,3, \ldots, n
\end{array}\right.
$$

Case 2: n is an even number.
In this case, we define $f: V\left(S\left(F l^{n}\right)\right) \rightarrow V_{4}$ as

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } v=u_{i}, v_{i}, \alpha_{i}, \gamma_{i} & \text { for } i=1,2,3, \ldots, n \\
0 & \text { if } v=w, \beta_{i}, \delta_{i} & \text { for } i=1,2,3, \ldots, n
\end{array}\right.
$$

Then in both cases, we can easily verify that f is an induced V_{4} magic labeling of $S\left(F l^{n}\right)$. Hence the proof.

4.2 Shadow Graphs

Definition 4.2.1. The shadow graph $\operatorname{Sh}(G)$ of a connected graph G is constructed by taking 2 copies G_{1} and G_{2} of G and joining each vertex u in G_{1} to the neighbours of the corresponding vertex v in G_{2}.

Theorem 4.2.2. For any graph $G, \operatorname{Sh}(G) \notin \Gamma\left(V_{4}\right)$.

Proof. If possible, suppose $f: V(S h(G)) \rightarrow V_{4}$ be an IML of $S h(G)$.
Suppose $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ be the vertex set of $\operatorname{Sh}(G)$, where u_{i} is the corresponding vertex of v_{i} in $\operatorname{Sh}(G)$, for $i=1,2,3, \ldots, n$. Then note that if $N\left(v_{i}\right)=\left\{v_{i 1}, v_{i 2}, v_{i 3}, \ldots, v_{i m}\right\}$ in the graph G, then $N\left(v_{i}\right)=N\left(u_{i}\right)=$ $\left\{v_{i 1}, v_{i 2}, v_{i 3}, \ldots, v_{i m}, u_{i 1}, u_{i 2}, u_{i 3}, \ldots, u_{i m}\right\}$ in $S h(G)$. Then note that the induced degree sum equation of the vertices v_{i} and u_{i} gives:

$$
\begin{align*}
& f\left(v_{i}\right)+\sum_{j=1}^{m} f\left(v_{i j}\right)+\sum_{j=1}^{m} f\left(u_{i j}\right)=0 . \tag{4.15}\\
& f\left(u_{i}\right)+\sum_{j=1}^{m} f\left(v_{i j}\right)+\sum_{j=1}^{m} f\left(u_{i j}\right)=0 \tag{4.16}
\end{align*}
$$

Equation 4.15) and Equation 4.16) imply that $f\left(v_{i}\right)=f\left(u_{i}\right)$.
Since v_{i} and u_{i} are arbitrary vertices of $S h(G)$, we have $f\left(v_{i}\right)=f\left(u_{i}\right)$, for all $i=1,2,3, \ldots, n$.

Thus Equation (4.15) and Equation 4.16 imply that $f\left(v_{i}\right)=f\left(u_{i}\right)=0$, since $f\left(v_{i j}\right)=f\left(u_{i j}\right)$.

Since v_{i} and u_{i} are arbitrary vertices of $\operatorname{Sh}(G)$, we have $f\left(v_{i}\right)=f\left(u_{i}\right)=0$ for all pairs of vertices v_{i} and u_{i} in $S h(G)$. Hence $f \equiv 0$, which is a contradiction. This completes the proof.

Induced V_{4}-magic Labeling of Middle and Line Graphs

This chapter discusses the induced V_{4}-magic labeling of middle graph and line graph of some graphs. The first section gives an introduction about middle graphs and then deals with the induced V_{4}-magic labeling of middle graphs. In the second section, we discuss the basic idea about line graph of a graph and the induced V_{4}-magic labeling of line graphs of some graphs.

5.1 Middle Graphs

The concept of middle graph was introduced by J. Akiyama, T. Hamada and I. Yoshimura [1] in 1974.

Definition 5.1.1. The middle graph of a graph G, denoted by $M(G)$, is the graph obtained from G by inserting a new vertex into every edge of G and by joining those pairs of these new vertices with edges which lie on adjacent edges

[^2]of G.
Theorem 5.1.2. Let G be graph with every vertex is of odd degree, then $M(G) \in$ $\Gamma\left(V_{4}\right)$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ be the inserted vertices in $M(G)$. Let $f: V(M(G)) \rightarrow V_{4}$ be defined by:

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } & v=v_{k}, \text { for } k=1,2,3, \ldots, n \\
0 & \text { if } & v=u_{j}, \text { for } j=1,2,3, \ldots, m
\end{array}\right.
$$

Then we have $f^{*}(e)=a$ for all $e \in E(M(G))$. Therefore $f^{* *}\left(v_{k}\right)=\operatorname{deg}\left(v_{k}\right) a=a$ since $\operatorname{deg}\left(v_{k}\right)$ is odd. Also $f^{* *}\left(u_{j}\right)=f^{*}\left(v_{\alpha} u_{j}\right)+f^{*}\left(v_{\beta} u_{j}\right)=0$, where u_{j} is inserted on the edge $v_{\alpha} v_{\beta}$. Thus $f \equiv f^{* *}$. That is f is an IML of $M(G)$.

This completes the proof.

Theorem 5.1.3. Let P_{2} be the path with 2 vertices, then $M\left(P_{2}\right) \in \Gamma\left(V_{4}\right)$.

Proof. Consider P_{2}, we have $M\left(P_{2}\right)=P_{3}$. Let $V\left(M\left(P_{2}\right)\right)=\{u, v, w\}$ with $E\left(M\left(P_{2}\right)\right)=\{u v, v w\}$. Define $f: V\left(M\left(P_{2}\right)\right) \rightarrow V_{4}$ as

$$
f(t)=\left\{\begin{array}{lll}
a & \text { if } & t=u, w \\
0 & \text { if } & t=v
\end{array}\right.
$$

Then $f^{*}(u v)=a$ and $f^{*}(v w)=a$, therefore $f^{* *}(u)=a, f^{* *}(v)=a+a=0$ and $f^{* *}(w)=a$. Thus $f \equiv f^{* *}$. That is f is an IML of $M\left(P_{2}\right)$. Hence $M\left(P_{2}\right) \in$ $\Gamma\left(V_{4}\right)$.

Theorem 5.1.4. Let P_{n} be the path with n vertices, then $M\left(P_{n}\right) \notin \Gamma\left(V_{4}\right)$ for any $n \geq 3$.

Proof. Suppose $n \geq 3$. Let $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the vertex set of P_{n} and u_{j} be the inserted vertex on the edge $v_{j} v_{j+1}$ in $M\left(P_{n}\right)$, for $j=1,2,3, \ldots, n-1$. If
possible, suppose $f: V\left(M\left(P_{n}\right)\right) \rightarrow V_{4}$ is an IML of $M\left(P_{n}\right)$ with $f\left(v_{k}\right)=x_{k}$, for $k=1,2,3, \ldots, n$ and $f\left(u_{j}\right)=y_{j}$, for $j=1,2,3, \ldots, n-1$. Then by the induced degree sum equation of each vertex in $M\left(P_{n}\right)$, we have the following set of equations.

The induced degree sum equation of $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ in $M\left(P_{n}\right)$, give

$$
\begin{aligned}
y_{1} & =0 \\
y_{1}+y_{2}+x_{2} & =0 \\
y_{2}+y_{3}+x_{3} & =0 \\
y_{3}+y_{4}+x_{4} & =0 \\
\vdots & \\
y_{n-3}+y_{n-2}+x_{n-2} & =0 \\
y_{n-2}+y_{n-1}+x_{n-1} & =0 \\
y_{n-1} & =0
\end{aligned}
$$

Similarly the induced degree sum equation of $u_{1}, u_{2}, u_{3}, \ldots, u_{n-1}$ in $M\left(P_{n}\right)$, give

$$
\begin{array}{r}
y_{2}+x_{1}+x_{2}=0 \\
y_{1}+y_{2}+y_{3}+x_{2}+x_{3}=0 \\
y_{2}+y_{3}+y_{4}+x_{3}+x_{4}=0 \\
y_{3}+y_{4}+y_{5}+x_{4}+x_{5}=0 \\
\vdots \\
y_{n-3}+y_{n-2}+y_{n-1}+x_{n-2}+x_{n-1}=0 \\
y_{n-2}+x_{n-1}+x_{n}=0 .
\end{array}
$$

By substituting the first set of equation in the second, we get the following equations.

$$
\begin{aligned}
y_{1} & =0 \\
y_{n-1} & =0 \\
y_{k}+x_{k} & =0, \text { for } k=2,3,4, \ldots, n-1 .
\end{aligned}
$$

But these equations with first system of equations implies that $y_{k}=0$ for $k=$ $2,3,4, \ldots, n-2$, thus $x_{k}=0$ also for $k=2,3, \ldots, n-1$. Using these in the induced degree sum equation of the vertices u_{1} and u_{n-1}, we get $x_{1}=0$ and $x_{n}=0$. Thus we have $x_{1}=x_{2}=x_{3}=\cdots=x_{n}=0$ and $y_{1}=y_{2}=y_{3}=\cdots=y_{n-1}=0$. That is $f \equiv 0$, which means our assumption that f is an IML is wrong. Hence $M\left(P_{n}\right) \notin \Gamma\left(V_{4}\right)$, for any $n \geq 3$.

Theorem 5.1.5. For the star graph $K_{1, n}, M\left(K_{1, n}\right) \in \Gamma\left(V_{4}\right)$ if and only if n is odd.

Proof. Consider the star graph $K_{1, n}$, where n is an odd number. Then note that each vertex of $K_{1, n}$ is of odd degree, then by Theorem 5.1.2, we get $M\left(K_{1, n}\right) \in$ $\Gamma\left(V_{4}\right)$.

Conversely, Suppose that n is an even number. Let $\left\{v, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the vertex set of $K_{1, n}$, with v as the central vertex $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the pendant vertices and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the inserted vertices on the edges $v v_{1}, v v_{2}, v v_{3}, \ldots, v v_{n}$ respectively in $M\left(K_{1, n}\right)$.
If possible, suppose $f: V\left(M\left(K_{1, n}\right)\right) \rightarrow V_{4}$ is an IML with $f(v)=x, f\left(v_{j}\right)=x_{j}$ and $f\left(u_{j}\right)=y_{j}$ for $j=1,2,3, \ldots, n$.

Then the induced degree sum equation of the vertices v_{j} in $M\left(K_{1, n}\right)$, imply that $y_{j}=0$.
Using the fact that $y_{j}=0$ in the induced degree sum equation of the vertices u_{j} and the vertex v in $M\left(K_{1, n}\right)$ we get $x+x_{j}=0$ and $(n-1) x=0$. But we
have supposed that n is an even number, therefore the equation $(n-1) x=0$ reduces to $x=0$, thus $x+x_{j}=0$ implies $x_{j}=0$. Thus we have $f \equiv 0$ and our assumption that f is an IML is wrong. Therefore for n even, $M\left(K_{1, n}\right) \notin \Gamma\left(V_{4}\right)$. Hence the proof.

Figure 5.1: Middle graph of $K_{1,5}$

In the Figure 5.1 an induced V_{4}-magic labeling of the graph $M\left(K_{1,5}\right)$ is given.

Theorem 5.1.6. For the bistar $B_{m, n}, M\left(B_{m, n}\right) \in \Gamma\left(V_{4}\right)$ if and only if m and n are even.

Proof. Let $\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{m}, v, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the vertex set of $B_{m, n}$ with edge set $\left\{u v, u u_{i}, v v_{j}: i=1,2,3, \ldots, m, j=1,2,3, \ldots, n\right\}$. Let α_{i} be the inserted vertex on the edge $u u_{i}, \beta_{j}$ be the inserted vertex on the edge $v v_{j}$ and α be the inserted vertex on the edge $u v$.

Suppose m and n are even, then we have every vertex of $B_{m, n}$ is of odd degree, therefore by Theorem 5.1.2, we get $M\left(B_{m, n}\right) \in \Gamma\left(V_{4}\right)$.

To establish the converse part, suppose that both m and n are not even. If possible, suppose $f: V\left(M\left(B_{m, n}\right)\right) \rightarrow V_{4}$ is an IML. Consider the induced degree sum equation of each vertices in $M\left(B_{m, n}\right)$. Since u_{i} and v_{j} are pendant vertices of $M\left(B_{m, n}\right)$, we get $f\left(\alpha_{i}\right)=f\left(\beta_{j}\right)=0$. Since $f\left(\alpha_{i}\right)=f\left(\beta_{j}\right)=0$, the induced degree sum equation of $\alpha_{i}, \beta_{j}, u, v$ and α imply that:

$$
\begin{align*}
f(u)+f\left(u_{i}\right)+f(\alpha) & =0 \text { for } i=1,2,3, \ldots, m \tag{5.1}\\
f(v)+f\left(v_{j}\right)+f(\alpha) & =0 \text { for } j=1,2,3, \ldots, n \tag{5.2}\\
m f(u)+f(\alpha) & =0 \tag{5.3}\\
n f(v)+f(\alpha) & =0 \tag{5.4}\\
f(u)+f(v)+(m+n-1) f(\alpha) & =0 . \tag{5.5}
\end{align*}
$$

Now suppose the following cases:

Case 1: m and n are odd.
Note that if m and n are odd, then Equations (5.3) and (5.4) reduce to

$$
\begin{aligned}
& f(u)+f(\alpha)=0 \\
& f(v)+f(\alpha)=0 .
\end{aligned}
$$

That is $f(u)=f(v)=f(\alpha)$. Therefore, since m and n are odd Equation (5.5) reduces to $f(\alpha)=0$. Therefore $f(u)=f(v)=f(\alpha)=0$. Thus Equations (5.1) and (5.2) imply that $f\left(u_{i}\right)=f\left(v_{j}\right)=0$. Hence in this case $f \equiv 0$.

Case 2: m is odd and n is even.
Note that if m is odd and n is even, then the Equations (5.3) and (5.4) reduce to

$$
\begin{aligned}
f(u)+f(\alpha) & =0 \\
f(\alpha) & =0 .
\end{aligned}
$$

That is $f(u)=f(\alpha)=0$. Therefore Equation (5.5) implies $f(v)=0$. Thus Equations (5.1) and (5.2) imply that $f\left(u_{i}\right)=f\left(v_{j}\right)=0$. Hence in this case $f \equiv 0$.

Case 3: m is even and n is odd.
Note that if m is even and n is odd, then Equations (5.3) and (5.4) reduce to

$$
\begin{aligned}
f(\alpha) & =0 \\
f(v)+f(\alpha) & =0 .
\end{aligned}
$$

That is $f(v)=f(\alpha)=0$. Therefore Equation (5.5) implies $f(u)=0$. Thus Equations (5.1) and (5.2) imply that $f\left(u_{i}\right)=f\left(v_{j}\right)=0$. Hence in this case $f \equiv 0$.

From the above three cases, we get $f \equiv 0$, which is a contradiction to our assumption. Hence the proof of the converse part follows.

Theorem 5.1.7. For the complete bipartite graph $K_{m, n}$, we have $M\left(K_{m, n}\right) \in$ $\Gamma\left(V_{4}\right)$ for m and n are odd.

Proof. Suppose m and n are odd integers. Then consider a complete bipartite graph $K_{m, n}$. If m and n are odd, then each vertex in $K_{m, n}$ has odd degree, therefore by Theorem 5.1.2, $M\left(K_{m, n}\right) \in \Gamma\left(V_{4}\right)$.
Hence the proof follows.

Theorem 5.1.8. For the complete graph K_{n}, we have $M\left(K_{n}\right) \in \Gamma\left(V_{4}\right)$ for n is even.

Proof. Suppose n is an even number. Then note that every vertex is of odd degree in K_{n}, therefore by Theorem 5.1.2, $M\left(K_{n}\right) \in \Gamma\left(V_{4}\right)$ for n even.
This completes the proof.
Theorem 5.1.9. $M\left(C B_{n}\right) \in \Gamma\left(V_{4}\right)$ if and only if n is odd.

Proof. Let $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ be the vertex set of $C B_{n}$, where v_{i} is the pendant vertex adjacent to u_{i}, for $i=1,2,3, \ldots, n$. Also let $\left\{\alpha_{i}: i=1,2,3, \ldots, n\right\}$ and $\left\{\beta_{i}: i=1,2,3, \ldots, n-1\right\}$ be the inserted vertices on the edges $u_{i} v_{i}$ for $i=1,2,3, \ldots, n$ and $u_{i} u_{i+1}$ for $i=1,2,3, \ldots, n-1$ respectively in the graph $M\left(C B_{n}\right)$. Suppose n is an odd integer. Define $f: V\left(M\left(C B_{n}\right)\right) \rightarrow V_{4}$ as follows:

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } & v=u_{1}, u_{3}, u_{5}, \ldots, u_{n-2}, u_{n} \\
0 & \text { if } & v=u_{2}, u_{4}, u_{6}, \ldots, u_{n-3}, u_{n-1} \\
0 & \text { if } & v=\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n} \\
a & \text { if } & v=\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n-1} \\
0 & \text { if } & v=v_{1}, v_{2}, v_{4}, v_{6}, \ldots, v_{n-3}, v_{n-1}, v_{n} \\
a & \text { if } & v=v_{3}, v_{5}, v_{7}, \ldots, v_{n-4}, v_{n-2}
\end{array}\right.
$$

Then we can easily prove that $f \equiv f^{* *}$. Therefore f is an IML of $M\left(C B_{n}\right)$.
Conversely, suppose that n is an even number. If possible, suppose that $g: V\left(M\left(W_{n}\right)\right) \rightarrow V_{4}$ is an IML. Then the induced degree sum equation of v_{i} gives

$$
\begin{equation*}
g\left(\alpha_{1}\right)=g\left(\alpha_{2}\right)=g\left(\alpha_{3}\right)=\cdots=g\left(\alpha_{n}\right)=0 . \tag{5.6}
\end{equation*}
$$

The induced degree sum equation of α_{i} gives

$$
g\left(u_{1}\right)+g\left(v_{1}\right)+g\left(\beta_{1}\right)=0
$$

$$
\begin{aligned}
g\left(u_{2}\right)+g\left(v_{2}\right)+g\left(\beta_{1}\right)+g\left(\beta_{2}\right) & =0 \\
g\left(u_{3}\right)+g\left(v_{3}\right)+g\left(\beta_{2}\right)+g\left(\beta_{3}\right) & =0 \\
& \vdots \\
g\left(u_{n-1}\right)+g\left(v_{n-1}\right)+g\left(\beta_{n-2}\right)+g\left(\beta_{n-1}\right) & =0 \\
g\left(u_{n}\right)+g\left(v_{n}\right)+g\left(\beta_{n-1}\right) & =0 .
\end{aligned}
$$

The induced degree sum equation of u_{i} gives

$$
\begin{aligned}
g\left(u_{1}\right)+g\left(\beta_{1}\right) & =0 \\
g\left(\beta_{1}\right)+g\left(\beta_{2}\right) & =0 \\
g\left(\beta_{2}\right)+g\left(\beta_{3}\right) & =0 \\
& \vdots \\
g\left(\beta_{n-2}\right)+g\left(\beta_{n-1}\right) & =0 \\
g\left(\beta_{n-1}\right)+g\left(u_{n}\right) & =0 .
\end{aligned}
$$

The induced degree sum equation of β_{i} gives

$$
\begin{aligned}
g\left(u_{1}\right)+g\left(u_{2}\right)+g\left(\beta_{2}\right) & =0 \\
g\left(u_{2}\right)+g\left(u_{3}\right)+g\left(\beta_{1}\right)+g\left(\beta_{2}\right)+g\left(\beta_{3}\right) & =0 \\
g\left(u_{3}\right)+g\left(u_{4}\right)+g\left(\beta_{2}\right)+g\left(\beta_{3}\right)+g\left(\beta_{4}\right) & =0 \\
& \vdots \\
g\left(u_{n-2}\right)+g\left(u_{n-1}\right)+g\left(\beta_{n-3}\right)+g\left(\beta_{n-2}\right)+g\left(\beta_{n-1}\right) & =0 \\
g\left(u_{n-1}\right)+g\left(u_{n}\right)+g\left(\beta_{n-2}\right) & =0 .
\end{aligned}
$$

Using the above system of equations one can easily prove that $g \equiv 0$, which is a contradiction. Thus $M\left(C B_{n}\right) \notin \Gamma\left(V_{4}\right)$ for n is even. Hence the proof.

Theorem 5.1.10. Let C_{n} be the cycle with n vertices, then $M\left(C_{n}\right) \notin \Gamma\left(V_{4}\right)$.

Proof. Let $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the vertex set of C_{n} and u_{i} be the inserted vertex on the edge $v_{i} v_{i+1}$ in $M\left(C_{n}\right)$. If possible, suppose $f: V\left(M\left(C_{n}\right)\right) \rightarrow V_{4}$ is an IML with $f\left(v_{k}\right)=x_{k}$ and $f\left(u_{k}\right)=y_{k}$, for $k=1,2,3, \ldots, n$. Then by the induced degree sum equation of each vertex in $M\left(C_{n}\right)$, we have the following set of equations.

The induced degree sum equations of $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ in $M\left(C_{n}\right)$ give

$$
\begin{aligned}
y_{n}+y_{1}+x_{1} & =0 \\
y_{1}+y_{2}+x_{2} & =0 \\
y_{2}+y_{3}+x_{3} & =0 \\
\vdots & \\
y_{n-1}+y_{n}+x_{n} & =0 .
\end{aligned}
$$

Also the induced degree sum equations of $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ in $M\left(C_{n}\right)$ imply that

$$
\begin{array}{r}
y_{n}+y_{1}+y_{2}+x_{1}+x_{2}=0 \\
y_{1}+y_{2}+y_{3}+x_{2}+x_{3}=0 \\
y_{2}+y_{3}+y_{4}+x_{3}+x_{4}=0 \\
\vdots \\
y_{n-1}+y_{n}+y_{1}+x_{n}+x_{1}=0
\end{array}
$$

By substituting the first set of equations in the second, we get the following equations: $x_{k}+y_{k}=0$ for $k=1,2,3, \ldots, n$, which implies $x_{k}=y_{k}$, for $k=1,2,3, \ldots, n$. Thus from the first set of equations, we get $y_{k}=0$, for $k=1,2,3, \ldots, n$ which implies $x_{k}=0$, for $k=1,2,3, \ldots, n$. Thus we have $f \equiv 0$. Therefore our assumption is wrong. Hence $M\left(C_{n}\right) \notin \Gamma\left(V_{4}\right)$.

Theorem 5.1.11. $M\left(W_{n}\right) \in \Gamma\left(V_{4}\right)$ if and only if n is odd.

Proof. Let $V\left(W_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where w is the central vertex and $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the vertices of the corresponding $n-$ cycle. Let $\left\{w_{k}\right.$: $k=1,2,3, \ldots, n\}$ be the inserted vertices on the edges $w v_{k}$, and $\left\{u_{k}: k=\right.$ $1,2,3, \ldots, n\}$ be the inserted vertices on the edges $v_{k} v_{k+1}$ for $k=1,2,3, \ldots, n$ where $k+1$ is taken modulo n in the graph $M\left(W_{n}\right)$.

Suppose n is odd, then every vertex of W_{n} is of odd degree, therefore by Theorem 5.1.2, $M\left(W_{n}\right)$ is an induced magic graph.

Conversely, suppose n is an even number. If possible, suppose $f: V\left(M\left(W_{n}\right)\right) \rightarrow$ V_{4} is an IML of $M\left(W_{n}\right)$. Let $f\left(v_{k}\right)=x_{k}, f\left(u_{k}\right)=y_{k}, f\left(w_{k}\right)=z_{k}$ and $f(w)=x$.

Then the induced degree sum equation of v_{k}, u_{k}, w_{k} and w gives

$$
\begin{align*}
y_{k-1}+y_{k}+z_{k} & =0 . \tag{5.7}\\
y_{k-1}+y_{k}+y_{k+1}+x_{k}+x_{k+1}+z_{k}+z_{k+1} & =0 . \tag{5.8}\\
x+x_{k}+y_{k-1}+y_{k}+z_{1}+z_{2}+\cdots+z_{k-1}+z_{k+1}+\cdots+z_{n} & =0 . \tag{5.9}\\
x+z_{1}+z_{2}+z_{3}+\cdots+z_{n} & =0 . \tag{5.10}
\end{align*}
$$

Note that Equation (5.9) and (5.10) imply that

$$
\begin{equation*}
x_{k}+y_{k-1}+y_{k}+z_{k}=0 . \tag{5.11}
\end{equation*}
$$

Thus the Equation (5.7) and (5.11) imply that $x_{k}=0$.
Therefore Equation (5.8) and (5.11) imply that $y_{k}=z_{k}$.
Thus Equation 5.7) again implies that $y_{k}=0$, therefore $z_{k}=0$ and Equation (5.10) imply that $x=0$. Thus we have $x_{k}=y_{k}=z_{k}=x=0$. Hence $f \equiv 0$, therefore f is not an IML. Since f is arbitrary, there exists no such IML for $M\left(W_{n}\right)$. Hence $M\left(W_{n}\right) \notin \Gamma\left(V_{4}\right)$, for n is even.

Theorem 5.1.12. $M\left(H_{n}\right) \in \Gamma\left(V_{4}\right)$ if and only if n is odd.

Proof. Let $V\left(H_{n}\right)=\left\{w, v_{i}, u_{i}: i=1,2,3, \ldots, n\right\}$, where w be the central vertex and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the pendant vertices adjacent to $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. Also let w_{k} be the inserted vertices on the edges $w v_{k}, \alpha_{k}$ be the inserted vertices on the edges $v_{k} v_{k+1}$ and β_{k} be the inserted vertices on the edges $v_{k} u_{k}$ for $k=1,2,3, \ldots, n$, where $k+1$ is taken modulo n.

Suppose n is odd. Define $f: V\left(M\left(H_{n}\right)\right) \rightarrow V_{4}$ as follows.

$$
f(v)=\left\{\begin{array}{lll}
a & \text { if } & v=v_{k}, w_{k}, \quad \text { for } k=2,3, \ldots, n \\
0 & \text { if } & v=v_{1}, w_{1}, w, u_{k}, \alpha_{k}, \beta_{k}
\end{array}\right.
$$

Then we can easily prove that f is an IML of $M\left(H_{n}\right)$.
Conversely, suppose that n is an even number. If possible, suppose $g: V\left(M\left(H_{n}\right)\right) \rightarrow$ V_{4} is an IML. Then the induced degree sum equation of $u_{k}, \beta_{k}, v_{k}, w_{k}, w$ and α_{k} give

$$
\begin{align*}
g\left(\beta_{k}\right) & =0 . \tag{5.12}\\
g\left(v_{k}\right)+g\left(u_{k}\right)+g\left(\alpha_{k-1}\right)+g\left(\alpha_{k}\right)+g\left(w_{k}\right) & =0 . \tag{5.13}\\
g\left(\alpha_{k-1}\right)+g\left(\alpha_{k}\right)+g\left(w_{k}\right)+g\left(v_{k}\right) & =0 . \tag{5.14}\\
\sum_{i=1}^{n} g\left(w_{i}\right)+g\left(\alpha_{k-1}\right)+g\left(\alpha_{k}\right)+g\left(v_{k}\right)+g(w) & =0 . \tag{5.15}\\
g(w)+\sum_{i=1}^{n} g\left(w_{i}\right) & =0 . \tag{5.16}\\
g\left(v_{k}\right)+g\left(v_{k+1}\right)+g\left(w_{k}\right)+g\left(w_{k+1}\right) & \\
+g\left(\alpha_{k-1}\right)+g\left(\alpha_{k}\right)+g\left(\alpha_{k+1}\right) & =0 . \tag{5.17}
\end{align*}
$$

Note that Equation (5.13) and Equation (5.14) imply that $g\left(u_{k}\right)=0$ and Equation (5.15) and Equation (5.16) imply that

$$
\begin{equation*}
g\left(\alpha_{k-1}\right)+g\left(\alpha_{k}\right)+g\left(v_{k}\right)=0 . \tag{5.18}
\end{equation*}
$$

Therefore Equation (5.14) implies that $g\left(w_{k}\right)=0$. Thus Equation (5.16) again implies that $g(w)=0$. Since $g\left(\alpha_{k-1}\right)+g\left(\alpha_{k}\right)+g\left(v_{k}\right)=0$ and $g\left(w_{k}\right)=0$, Equation (5.17) implies that $g\left(v_{k}\right)=g\left(\alpha_{k}\right)$. Thus Equation (5.18) implies that $g\left(\alpha_{k}\right)=0$, therefor $g\left(v_{k}\right)=0$. Thus we have $g\left(\beta_{k}\right)=g\left(u_{k}\right)=g\left(w_{k}\right)=g(w)=g\left(\alpha_{k}\right)=$ $g\left(v_{k}\right)=0$. Hence $g \equiv 0$. Since the function g is arbitrary, we get $M\left(H_{n}\right) \notin \Gamma\left(V_{4}\right)$, for n is even. Hence the Proof.

Theorem 5.1.13. $M\left(F l_{n}\right) \in \Gamma\left(V_{4}\right)$ for all n.

Proof. Let $V\left(F l_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the vertices of corresponding cycle graph C_{n} and w is the root vertex adjacent to the vertex v_{1}. Also let w_{1} be the inserted vertex on the edge $v_{1} w$ and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the inserted vertices on the edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{n} v_{1}$ respectively in the graph $M\left(F l_{n}\right)$.

Then define $f: V\left(M\left(F l_{n}\right)\right) \rightarrow V_{4}$ as follows:

$$
f(v)= \begin{cases}a & \text { for } v=u_{1}, u_{n}, v_{2}, v_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Then we can easily prove that f is an IML of $M\left(F l_{n}\right)$.
Hence the proof.

Theorem 5.1.14. $M\left(S u n_{n}\right) \in \Gamma\left(V_{4}\right)$ for all n.

Proof. Note that in a sun graph $S u n_{n}$, every vertex is of odd degree, therefore by Theorem 5.1.2, $M\left(S u n_{n}\right) \in \Gamma\left(V_{4}\right)$ for all n.

5.2 Line Graphs

Definition 5.2.1. [12 Let G be a graph, then the line graph of G is denoted by $L(G)$ and it is a graph whose vertex set is in $1-1$ correspondence with the
edge set of G and two vertices of $L(G)$ are joined by an edge if and only if the corresponding edges of G are adjacent in G.

Theorem 5.2.2. $L\left(C_{n}\right) \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$.

Proof. We know that $L\left(C_{n}\right)=C_{n}$ and by Theorem 2.4.1, we have $C_{n} \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$. Hence the proof.

Theorem 5.2.3. For $n>1, L\left(P_{n}\right) \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 1(\bmod 3)$.

Proof. We know that $L\left(P_{n}\right)=P_{n-1}$ and by Theorem 3.2.1, we have $P_{n} \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 0(\bmod 3)$. Hence $L\left(P_{n}\right)=P_{n-1} \in \Gamma\left(V_{4}\right)$ if and only if $n-1 \equiv 0(\bmod 3)$. Hence the proof.

Theorem 5.2.4. For $n>1, L\left(K_{1, n}\right) \in \Gamma\left(V_{4}\right)$ if and only if n is odd.

Proof. We know that $L\left(K_{1, n}\right)=K_{n}$ and by Theorem 3.3.1, we have $K_{n} \in \Gamma\left(V_{4}\right)$ if and only if n is odd. Hence $L\left(K_{1, n}\right)=K_{n} \in \Gamma\left(V_{4}\right)$ if and only if n is odd. Hence the proof.

Theorem 5.2.5. For the bistar graph $B_{m, n}$ we have $L\left(B_{m, n}\right) \in \Gamma\left(V_{4}\right)$ for all m and n.

Proof. Let $V\left(B_{m, n}\right)=\left\{u, v, v_{1}, v_{2}, v_{3}, \ldots, v_{m}, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$, where $e=u v$, $\alpha_{i}=v v_{i}, \beta_{j}=u u_{j} \in E\left(B_{m, n}\right)$ for $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$. Then we have $V\left(L\left(B_{m, n}\right)\right)=\left\{e, \alpha_{i}, \beta_{j}: i=1,2,3, \ldots, m, j=1,2,3, \ldots, n\right\}$.

Case 1: m is odd and n is even.
In this case, define $f: V\left(L\left(B_{m, n}\right)\right) \rightarrow V_{4}$ as follows.

$$
f(u)=\left\{\begin{array}{lll}
0 & \text { if } \quad u=e, \alpha_{i}, & \text { for } i=1,2,3, \ldots, m \\
a & \text { if } \quad u=\beta_{j}, & \text { for } j=1,2,3, \ldots, n
\end{array}\right.
$$

Case 2: m is even and n is odd.
In this case, define $g: V\left(L\left(B_{m, n}\right)\right) \rightarrow V_{4}$ as follows:

$$
g(u)=\left\{\begin{array}{lll}
0 & \text { if } & u=e, \beta_{j}, \\
\text { for } j=1,2,3, \ldots, n \\
a & \text { if } & u=\alpha_{i},
\end{array} \text { for } i=1,2,3, \ldots, m . ~ \$\right.
$$

Case 3: m and n are odd.
In this case, define $h: V\left(L\left(B_{m, n}\right)\right) \rightarrow V_{4}$ as follows:

Case 4: m and n are even.
In this case, define $k: V\left(L\left(B_{m, n}\right)\right) \rightarrow V_{4}$ as follows:

Then we can easily prove that the vertex labeling functions f, g, h and k are IML for $L\left(B_{m, n}\right)$. Thus for all m and n, we have $L\left(B_{m, n}\right)$ is an induced magic graph. Hence the proof.

Theorem 5.2.6. For the sun graph $S u n_{n}$, we have $L\left(S u n_{n}\right) \notin \Gamma\left(V_{4}\right)$ for any n.

Proof. Consider a sun graph Sun_{n} with $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ as vertex set of the corresponding C_{n} and $w_{i}, 1 \leq i \leq n$, be the pendant vertices attached to each $v_{i}, 1 \leq i \leq n$. Let $\alpha_{i}=v_{i} v_{i+1}$ and $\beta_{i}=v_{i} w_{i}$ be the edges in Sunn. Then the vertices of $L\left(\right.$ Sun $\left._{n}\right)$ is given by $\alpha_{i}=v_{i} v_{i+1}$ and $\beta_{i}=v_{i} w_{i}$ for $i=1,2,3, \ldots, n$ and $i+1$ is taken modulo n.

If possible, suppose there exists an IML of $L\left(\right.$ Sun $\left._{n}\right)$ say $f: V\left(L\left(\right.\right.$ Sun $\left.\left._{n}\right)\right) \rightarrow V_{4}$. Then the induced degree sum equation of the vertices α_{i} and β_{i} are given by:

$$
\begin{align*}
f\left(\alpha_{i-1}\right)+f\left(\alpha_{i}\right)+f\left(\alpha_{i+1}\right)+f\left(\beta_{i}\right)+f\left(\beta_{i+1}\right) & =0 . \tag{5.19}\\
f\left(\alpha_{i-1}\right)+f\left(\alpha_{i}\right)+f\left(\beta_{i}\right) & =0 . \tag{5.20}
\end{align*}
$$

Substituting Equation (5.20) in (5.19) we get $f\left(\alpha_{i}\right)=f\left(\beta_{i}\right)$ for $i=1,2,3, \ldots, n$. Therefore Equation (5.20) again implies that $f\left(\alpha_{i}\right)=0$ for $i=1,2,3, \ldots, n$. Thus we have $f \equiv 0$. Since the function f is arbitrary, we get $L\left(s u n_{n}\right) \notin \Gamma\left(V_{4}\right)$ for any n. Hence the proof.

Theorem 5.2.7. For the comb graph $C B_{n}$, we have $L\left(C B_{n}\right) \notin \Gamma\left(V_{4}\right)$ for any n.

Proof. Let $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ be the vertex set of $C B_{n}$, where $v_{i}(1 \leq i \leq n)$ are the pendant vertices adjacent to $u_{i}(1 \leq i \leq n)$. Also let $\alpha_{i}=u_{i} v_{i}, i=$ $1,2,3, \ldots, n$ and $\beta_{k}=u_{k} u_{k+1}, \quad k=1,2,3, \ldots, n-1$ be the edges in $C B_{n}$. Then $\left\{\alpha_{i}, \beta_{k}: i=1,2,3, \ldots, n, k=1,2,3, \ldots, n-1\right\}$ is the vertex set of $L\left(C B_{n}\right)$. If possible, suppose f is an IML of the graph $L\left(C B_{n}\right)$. Then from the induced degree sum equation of the vertices α_{i}, we get the following system of equations.

$$
\begin{aligned}
f\left(\beta_{1}\right) & =0 \\
f\left(\beta_{1}\right)+f\left(\beta_{2}\right)+f\left(\alpha_{2}\right) & =0 \\
f\left(\beta_{2}\right)+f\left(\beta_{3}\right)+f\left(\alpha_{3}\right) & =0 \\
f\left(\beta_{3}\right)+f\left(\beta_{4}\right)+f\left(\alpha_{4}\right) & =0 \\
& \vdots \\
f\left(\beta_{n-2}\right)+f\left(\beta_{n-1}\right)+f\left(\alpha_{n-1}\right) & =0 \\
f\left(\beta_{n-1}\right) & =0 .
\end{aligned}
$$

Similarly, from the induced degree sum equation of the vertices β_{k}, we get the
following system of equations.

$$
\begin{aligned}
f\left(\alpha_{1}\right)+f\left(\alpha_{2}\right)+f\left(\beta_{2}\right) & =0 \\
f\left(\alpha_{2}\right)+f\left(\alpha_{3}\right)+f\left(\beta_{1}\right)+f\left(\beta_{2}\right)+f\left(\beta_{3}\right) & =0 \\
f\left(\alpha_{3}\right)+f\left(\alpha_{4}\right)+f\left(\beta_{2}\right)+f\left(\beta_{3}\right)+f\left(\beta_{4}\right) & =0 \\
f\left(\alpha_{4}\right)+f\left(\alpha_{5}\right)+f\left(\beta_{3}\right)+f\left(\beta_{4}\right)+f\left(\beta_{5}\right) & =0 \\
& \vdots \\
f\left(\alpha_{n-2}\right)+f\left(\alpha_{n-1}\right)+f\left(\beta_{n-3}\right)+f\left(\beta_{n-2}\right)+f\left(\beta_{n-1}\right) & =0 \\
f\left(\alpha_{n-1}\right)+f\left(\alpha_{n}\right)+f\left(\beta_{n-2}\right) & =0 .
\end{aligned}
$$

By solving the above two system of equations one can easily prove that $f\left(\alpha_{i}\right)=0$ and $f\left(\beta_{k}\right)=0$. That is $f \equiv 0$, which is a contradiction to our assumption. Thus $L\left(C B_{n}\right) \notin \Gamma\left(V_{4}\right)$ for any n. Hence the proof.

Theorem 5.2.8. For the wheel graph W_{n}, we have $L\left(W_{n}\right) \notin \Gamma\left(V_{4}\right)$ for n is odd.

Proof. Let $V\left(W_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where w is the central vertex. Also let $\alpha_{i}=w v_{i}$ and $\beta_{i}=v_{i} v_{i+1}$ for $i=1,2,3, \ldots, n$ be the edges in W_{n}, where $i+1$ is taken modulo n. Then we have $V\left(L\left(W_{n}\right)\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n}\right\}$.

Suppose n is odd. If possible suppose $f: V\left(L\left(W_{n}\right)\right) \rightarrow V_{4}$ be an IML of $L\left(W_{n}\right)$.

Then from the induced degree sum equation of the vertices β_{i}, we get,

$$
\begin{aligned}
f\left(\alpha_{n}\right)+f\left(\alpha_{1}\right)+f\left(\beta_{n}\right)+f\left(\beta_{1}\right)+f\left(\beta_{2}\right) & =0 \\
f\left(\alpha_{1}\right)+f\left(\alpha_{2}\right)+f\left(\beta_{1}\right)+f\left(\beta_{2}\right)+f\left(\beta_{3}\right) & =0 \\
f\left(\alpha_{2}\right)+f\left(\alpha_{3}\right)+f\left(\beta_{2}\right)+f\left(\beta_{3}\right)+f\left(\beta_{4}\right) & =0 \\
& \vdots \\
f\left(\alpha_{n-1}\right)+f\left(\alpha_{n}\right)+f\left(\beta_{n-1}\right)+f\left(\beta_{n}\right)+f\left(\beta_{1}\right) & =0 .
\end{aligned}
$$

Similarly, since n is odd, from the induced degree sum equation of the vertices α_{i}, we get,

$$
\begin{aligned}
f\left(\alpha_{1}\right)+f\left(\alpha_{2}\right)+f\left(\alpha_{3}\right)+\cdots+f\left(\alpha_{n}\right)+f\left(\beta_{1}\right)+f\left(\beta_{2}\right) & =0 \\
f\left(\alpha_{1}\right)+f\left(\alpha_{2}\right)+f\left(\alpha_{3}\right)+\cdots+f\left(\alpha_{n}\right)+f\left(\beta_{2}\right)+f\left(\beta_{3}\right) & =0 \\
f\left(\alpha_{1}\right)+f\left(\alpha_{2}\right)+f\left(\alpha_{3}\right)+\cdots+f\left(\alpha_{n}\right)+f\left(\beta_{3}\right)+f\left(\beta_{4}\right) & =0 \\
& \vdots \\
f\left(\alpha_{1}\right)+f\left(\alpha_{2}\right)+f\left(\alpha_{3}\right)+\cdots+f\left(\alpha_{n}\right)+f\left(\beta_{n}\right)+f\left(\beta_{1}\right) & =0 .
\end{aligned}
$$

Since n is odd, the above system of equations implies that

$$
f\left(\beta_{1}\right)=f\left(\beta_{2}\right)=f\left(\beta_{3}\right)=\cdots=f\left(\beta_{n}\right)=\beta \text { (say). }
$$

Therefore the above two system of equations reduce to,

$$
\begin{aligned}
f\left(\alpha_{n}\right)+f\left(\alpha_{1}\right)+\beta & =0 \\
f\left(\alpha_{1}\right)+f\left(\alpha_{2}\right)+\beta & =0 \\
f\left(\alpha_{2}\right)+f\left(\alpha_{3}\right)+\beta & =0 \\
& \vdots \\
f\left(\alpha_{n-1}\right)+f\left(\alpha_{n}\right)+\beta & =0 .
\end{aligned}
$$

and $f\left(\alpha_{1}\right)+f\left(\alpha_{2}\right)+f\left(\alpha_{3}\right)+\cdots+f\left(\alpha_{n}\right)=0$.
Since n is odd, the above system of equations implies that $f\left(\alpha_{1}\right)=f\left(\alpha_{2}\right)=$ $f\left(\alpha_{3}\right)=\cdots=f\left(\alpha_{n}\right)=\alpha$ (say) and $\alpha=0$. That is $f\left(\alpha_{1}\right)=f\left(\alpha_{2}\right)=f\left(\alpha_{3}\right)=$ $\cdots=f\left(\alpha_{n}\right)=0$. Using this fact in the last system of equations we get $\beta=0$. That is $f\left(\beta_{1}\right)=f\left(\beta_{2}\right)=f\left(\beta_{3}\right)=\cdots=f\left(\beta_{n}\right)=0$. Thus $f \equiv 0$, which is not admissible. Thus there exist no such IML for $L\left(W_{n}\right)$.

Hence the proof.

Theorem 5.2.9. For the triangular snake graph $T S_{n}$ we have $L\left(T S_{n}\right) \in \Gamma\left(V_{4}\right)$ for all n.

Proof. Let $V\left(T S_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}\right\}$, where v_{i}^{\prime} s are the vertices of corresponding path P_{n}. Also let $\alpha_{i}=v_{i} w_{i}, \beta_{i}=v_{i} v_{i+1}$ and $\gamma_{i}=v_{i+1} w_{i}$, where $i=1,2,3, \ldots, n-1$ be the edges in $T S_{n}$. Then $V\left(L\left(T S_{n}\right)\right)$ consists of the vertices α_{i}, β_{i} and γ_{i} for $i=1,2,3, \ldots, n-1$. Define $f: V\left(L\left(T S_{n}\right)\right) \rightarrow V_{4}$ as follows:

$$
f(u)=\left\{\begin{array}{lll}
a & \text { if } & u=\beta_{1}, \beta_{n-1}, \gamma_{1}, \alpha_{n-1} \\
0 & \text { if } & u=\beta_{i}, \\
\text { for } \quad i=2,3,4, \ldots, n-2 \\
0 & \text { if } & u=\gamma_{i}, \text { for } i=2,3,4, \ldots, n-1 \\
0 & \text { if } & u=\alpha_{i}, \\
\text { for } i=1,2,3, \ldots, n-2 .
\end{array}\right.
$$

Then we can prove that f is an IML of $L\left(T S_{n}\right)$. Thus $L\left(T S_{n}\right) \in \Gamma\left(V_{4}\right)$ for all n. Hence the proof.

Theorem 5.2.10. For the gear graph G_{n}, we have $L\left(G_{n}\right) \in \Gamma\left(V_{4}\right)$ for all n.

Proof. Let $V\left(G_{n}\right)=\left\{w, u_{i}, v_{i}: i=1,2,3, \ldots, n\right\}$, where w is the central vertex, $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are the vertices of the corresponding wheel graph W_{n} and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the remaining vertices with $\alpha_{i}=u_{i} v_{i}, \beta_{i}=v_{i} u_{i+1}, \gamma_{i}=$ $w u_{i} \in E\left(G_{n}\right)$, where $i+1$ is taken modulo n. Then the vertex set of $L\left(G_{n}\right)$ consists of the vertices $\alpha_{i}=u_{i} v_{i}, \quad \beta_{i}=v_{i} u_{i+1}$ and $\gamma_{i}=w u_{i}$ for $i=1,2,3, \ldots, n$, where $i+1$ is taken modulo n. Define $f: V\left(L\left(G_{n}\right)\right) \rightarrow V_{4}$ as follows:

$$
f(u)=\left\{\begin{array}{llll}
a & \text { if } & u=\alpha_{i}, & \text { for } \quad i=1,2,3, \ldots, n \\
a & \text { if } & u=\beta_{i}, & \text { for } \quad i=1,2,3, \ldots, n \\
0 & \text { if } & u=\gamma_{i}, & \text { for } \quad i=1,2,3, \ldots, n
\end{array}\right.
$$

Then we can easily prove that f is an IML of $L\left(G_{n}\right)$. Thus $L\left(G_{n}\right) \in \Gamma\left(V_{4}\right)$ for all n. Hence the proof.

Theorem 5.2.11. Consider the flag graph $F l_{n}$. Then $L\left(F l_{n}\right) \in \Gamma\left(V_{4}\right)$ if and only if $n \equiv 2(\bmod 3)$.

Proof. Let $V\left(F l_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the vertices of corresponding cycle graph C_{n} and w is the root vertex adjacent to the vertex v_{1}. Also suppose $e_{i}=v_{i} v_{i+1}$ and $e=v_{1} w$ are the edges in $F l_{n}$. Therefore we can take the vertex set of $L\left(F l_{n}\right)$ as $\left\{e, e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$. Suppose $n \equiv 2(\bmod 3)$, then define $f: V\left(L\left(F l_{n}\right)\right) \rightarrow V_{4}$ as :

$$
f(v)=\left\{\begin{array}{lll}
0 & \text { if } & v=e_{i}, i \equiv 0(\bmod 3) \\
a & \text { if } & v=e_{i}, i \equiv 1,2(\bmod 3) \\
0 & \text { if } & v=e
\end{array}\right.
$$

Then we can easily verify that this f is an induced V_{4} magic labeling of $L\left(F l_{n}\right)$. To prove the converse part, consider the case $n \equiv 0(\bmod 3)$ or $n \equiv 1(\bmod 3)$. If possible, suppose there exists an IML say $g: V\left(L\left(F l_{n}\right)\right) \rightarrow V_{4}$. Then from the induced degree sum equation of the vertices e and e_{i}, we have the following set of equations:

$$
\begin{aligned}
g\left(e_{1}\right)+g\left(e_{n}\right)+g(e) & =0 \\
g\left(e_{n}\right)+g\left(e_{2}\right)+g(e) & =0 \\
g\left(e_{1}\right)+g\left(e_{2}\right)+g\left(e_{3}\right) & =0 \\
g\left(e_{2}\right)+g\left(e_{3}\right)+g\left(e_{4}\right) & =0 \\
& \vdots \\
g\left(e_{n-2}\right)+g\left(e_{n-1}\right)+g\left(e_{n}\right) & =0 \\
g\left(e_{n-1}\right)+g\left(e_{1}\right)+g(e) & =0 .
\end{aligned}
$$

Now consider the following cases

Case (i) $n \equiv 0(\bmod 3)$.
By solving the above system, we get $g\left(e_{1}\right)=g\left(e_{2}\right)=g\left(e_{4}\right)=g\left(e_{5}\right)=$ $g\left(e_{7}\right)=\cdots=g\left(e_{n-1}\right)$ and $g\left(e_{3}\right)=g\left(e_{6}\right)=g\left(e_{9}\right)=\cdots=g\left(e_{n}\right)=0$. Similarly $g\left(e_{n}\right)=g\left(e_{n-1}\right)=g\left(e_{n-3}\right)=g\left(e_{n-4}\right)=g\left(e_{n-6}\right)=\cdots=g\left(e_{3}\right)=$ $g\left(e_{2}\right)$ and $g\left(e_{n-2}\right)=g\left(e_{n-5}\right)=\cdots=g\left(e_{4}\right)=g\left(e_{1}\right)=0$. That is $g\left(e_{i}\right)=0$, for $i=1,2,3, \ldots, n$ and hence $g(e)=0$.

Therefore in this case, $g \equiv 0$.

Case(ii) $n \equiv 1(\bmod 3)$.
By solving the above system, we get $g\left(e_{1}\right)=g\left(e_{2}\right)=g\left(e_{4}\right)=g\left(e_{5}\right)=\cdots=$ $g\left(e_{n-2}\right)=g\left(e_{n}\right)$ and $g\left(e_{3}\right)=g\left(e_{6}\right)=g\left(e_{9}\right)=\cdots=g\left(e_{n-1}\right)=0$. Similarly $g\left(e_{n}\right)=g\left(e_{n-1}\right)=g\left(e_{n-3}\right)=g\left(e_{n-4}\right)=g\left(e_{n-6}\right)=\cdots=g\left(e_{3}\right)=g\left(e_{1}\right)$ and $g\left(e_{n-2}\right)=g\left(e_{n-5}\right)=\cdots=g\left(e_{5}\right)=g\left(e_{2}\right)=0$. That is $g\left(e_{i}\right)=0$, for $i=1,2,3, \ldots, n$ and hence $g(e)=0$.

Thus in this case, $g \equiv 0$.

Thus in both the cases we proved that g is not an IML of $L\left(F l_{n}\right)$. Thus $L\left(F l_{n}\right) \in$ $\Gamma\left(V_{4}\right)$ if and only if $n \equiv 2(\bmod 3)$.
Hence the proof.

Edge Induced V_{4} - Magic Labeling of Graphs

This chapter brings to light a new concept of labeling, and we call it as edge induced V_{4}-magic labeling of Graphs. In the first section, we give the definition of the idea and in the second section we give some main results about it. Third and fourth sections deal with edge induced V_{4}-magic labeling of some graphs and special graphs respectively.

6.1 Introduction

Let $V_{4}=\{0, a, b, c\}$ be the Klein-4-group with identity element 0 and $G=$ $(V(G), E(G))$ be the graph with vertex set $V(G)$ and edge set $E(G)$. Let f : $E(G) \rightarrow V_{4} \backslash\{0\}$ be an edge labeling and $f^{+}: V(G) \rightarrow V_{4}$ denote the induced vertex labeling of f defined by $f^{+}(u)=\sum_{u v \in E(G)} f(u v)$ for all $u \in(V(G)$. Then f^{+}again induces an edge labeling $f^{++}: E(G) \rightarrow V_{4}$ defined by $f^{++}(u v)=$ $f^{+}(u)+f^{+}(v)$. Then a graph $G=(V(G), E(G))$ is said to be an edge induced
V_{4}-magic graph or simply edge induced magic graph if $f^{++}(e)$ is a constant for all $e \in E(G)$. If this constant is x, then x is said to be the induced edge sum of the graph G. The function f so obtained is called an edge induced V_{4}-magic labeling of G or simply edge induced magic labeling of G and it is denoted by EIM $V_{4} \mathrm{~L}$ or simply EIML.

Figure 6.1 and Figure 6.2 represent edge induced V_{4} magic labeling of graphs G_{1} and G_{2} with induced edge sums 0 and a respectively.

Figure 6.1: Graph G_{1}

Figure 6.2: Graph G_{2}

This chapter discusses the concept of edge induced V_{4}-magic labeling of some graphs which belongs to the following categories:
(i) $\sigma_{a}\left(V_{4}\right):=$ Set of all edge induced V_{4}-magic graphs with edge induced magic labeling f satisfying $f^{++}(u)=a$ for all $u \in V$.
(ii) $\sigma_{0}\left(V_{4}\right):=$ Set of all edge induced V_{4}-magic graphs with edge induced magic labeling f satisfying $f^{++}(u)=0$ for all $u \in V$.
(iii) $\sigma\left(V_{4}\right):=\sigma_{a}\left(V_{4}\right) \bigcap \sigma_{0}\left(V_{4}\right)$.

6.2 Main Results

Theorem 6.2.1. Let $G=(V, E)$ be a graph with either each vertex is of odd degree or even degree then $G \in \sigma_{0}\left(V_{4}\right)$.

Proof. Let G be a graph with $\operatorname{deg}\left(v_{i}\right)=r_{i}$ for $v_{i} \in V, i=1,2,3, \ldots, n$.

Case 1: r_{i} is odd.
In this case, define $f: E \rightarrow V_{4} \backslash\{0\}$ as $f(e)=a$ for all $e \in E$. Then $f^{+}\left(u_{i}\right)=\operatorname{deg}\left(u_{i}\right) a=r_{i} a=a$. Thus $f^{++}(e)=0$ for all $e \in E$.

Case 2: r_{i} is even.
In this case, define $f: E \rightarrow V_{4} \backslash\{0\}$ as $f(e)=a$ for all $e \in E$. Then $f^{+}\left(u_{i}\right)=\operatorname{deg}\left(u_{i}\right) a=r_{i} a=0$. Thus $f^{++}(e)=0$ for all $e \in E$.

Thus in both cases $f^{++} \equiv 0$. Therefore $G \in \sigma_{0}\left(V_{4}\right)$.
Hence the proof.
Theorem 6.2.2. Let $G=(V, E)$ be a magic graph. Then $G \in \sigma_{0}\left(V_{4}\right)$.

Proof. Suppose $G=(V, E)$ is a magic graph. then there exists a magic labeling say $f: E \rightarrow V_{4} \backslash\{0\}$ such that $f^{+}: V \rightarrow V_{4}$ is a constant function. Then $f^{++} \equiv 0$. Hence $G \in \sigma_{0}\left(V_{4}\right)$.

Theorem 6.2.3. Let $G=(V, E)$ be a graph with $u v \in E$ and $f: E \rightarrow V_{4} \backslash\{0\}$ be an edge label of G then $f^{++}(u v)=\sum_{u \alpha \in E} f(u \alpha)+\sum_{\beta v \in E} f(\beta v)$, where $\alpha \neq v$ and $\beta \neq u$.

Proof. Let $f: E \rightarrow V_{4} \backslash\{0\}$ be an edge label of G, then $f^{+}(u)=\sum_{u \alpha \in E} f(u \alpha)$ for all $u \in V$. Thus we have:

$$
\begin{aligned}
f^{++}(u v) & =f^{+}(u)+f^{+}(v) \\
& =\sum_{u \alpha \in E} f(u \alpha)+\sum_{\beta v \in E} f(\beta v) \\
& =\sum_{u \alpha \in E, v \neq \alpha} f(u \alpha)+f(u v)+\sum_{\beta v \in E, u \neq \beta} f(\beta v)+f(u v) \\
& =\sum_{u \alpha \in E, v \neq \alpha} f(u \alpha)+\sum_{\beta v \in E, u \neq \beta} f(\beta v), \quad\left(\text { Since } f(u v) \in V_{4}\right) .
\end{aligned}
$$

Theorem 6.2.4. Induced edge sum theorem.

For any graph G, f is an edge induced V_{4}-Magic labeling of G if and only if the induced edge sum

$$
\begin{equation*}
x=f^{++}(u v)=\sum_{u \alpha \in E, \alpha \neq v} f(u \alpha)+\sum_{\beta v \in E, \beta \neq u} f(\beta v), \text { for all }(u, v) \in E \tag{6.1}
\end{equation*}
$$

The Equation (6.1) corresponding to an edge $u v$ in G, is called induced edge sum equation of the edge $u v$.

Proof. Proof follows from the definition of edge induced magic labeling and Theorem 6.2.3,

6.3 Edge Induced V_{4} Magic Labeling of Some Graphs

Theorem 6.3.1. $P_{2} \in \sigma_{0}\left(V_{4}\right)$ and $P_{2} \notin \sigma_{a}\left(V_{4}\right)$.

Proof. Consider the path $P_{2}: v_{1} e_{1} v_{2}$. Let $f: E \rightarrow V_{4} \backslash\{0\}$ be defined by $f\left(e_{1}\right)=x$, for some $x \in V_{4} \backslash\{0\}$. Then $f^{+}\left(v_{1}\right)=f^{+}\left(v_{2}\right)=x$. Therefore $f^{++}\left(e_{1}\right)=0$. Hence $P_{2} \in \sigma_{0}\left(V_{4}\right)$ and $P_{2} \notin \sigma_{a}\left(V_{4}\right)$.

Corollary 6.3.2. $P_{2} \notin \sigma\left(V_{4}\right)$.

Proof. Proof follows from Theorem 6.3.1.

Theorem 6.3.3. $P_{3} \in \sigma_{a}\left(V_{4}\right)$ and $P_{3} \notin \sigma_{0}\left(V_{4}\right)$.

Proof. Consider the path $P_{3}: v_{1} e_{1} v_{2} e_{2} v_{3}$. Let $f: E \rightarrow V_{4} \backslash\{0\}$ be defined by $f\left(e_{1}\right)=x_{1}, f\left(e_{2}\right)=x_{2}$ for some $x_{1}, x_{2} \in V_{4} \backslash\{0\}$. Then $f^{+}\left(v_{1}\right)=x_{1}, f^{+}\left(v_{2}\right)=$ $x_{1}+x_{2}, f^{+}\left(v_{3}\right)=x_{2}$. Therefore $f^{++}\left(e_{1}\right)=x_{2}, f^{++}\left(e_{2}\right)=x_{1}$. Then $P_{3} \in \sigma_{0}\left(V_{4}\right)$ or $P_{3} \in \sigma_{a}\left(V_{4}\right)$ accordingly $x_{1}=x_{2}=0$ or $x_{1}=x_{2}=a$. Since $x_{1}, x_{2} \in V_{4} \backslash\{0\}$, $x_{1}=x_{2}=0$ is not possible. Therefore $P_{2} \notin \sigma_{0}\left(V_{4}\right)$. Therefore if we take $x_{1}=x_{2}=a$ then f is an EIML of P_{3}. Thus $P_{3} \in \sigma_{a}\left(V_{4}\right)$. Hence the proof.

Corollary 6.3.4. $P_{3} \notin \sigma\left(V_{4}\right)$.

Proof. Clearly the proof follows from Theorem 6.3.3.

Theorem 6.3.5. $P_{4} \in \sigma_{a}\left(V_{4}\right)$ and $P_{4} \notin \sigma_{0}\left(V_{4}\right)$.

Proof. Consider the path $P_{4}: v_{1} e_{1} v_{2} e_{2} v_{3} e_{3} v_{4}$. Let $f: E \rightarrow V_{4} \backslash\{0\}$ be defined by $f\left(e_{1}\right)=x_{1}, f\left(e_{2}\right)=x_{2}, f\left(e_{3}\right)=x_{3}$ for some $x_{1}, x_{2}, x_{3} \in V_{4} \backslash\{0\}$. Then $f^{+}\left(v_{1}\right)=x_{1}, f^{+}\left(v_{2}\right)=x_{1}+x_{2}, f^{+}\left(v_{3}\right)=x_{2}+x_{3}, f^{+}\left(v_{4}\right)=x_{3}$. Therefore
$f^{++}\left(e_{1}\right)=x_{2}, f^{++}\left(e_{2}\right)=x_{1}+x_{3}, f^{++}\left(e_{3}\right)=x_{2}$. Then $P_{4} \in \sigma_{0}$ or $P_{4} \in \sigma_{a}$ accordingly $x_{2}=x_{1}+x_{3}=0$ or $x_{2}=x_{1}+x_{3}=a$. But $x_{2}=0$ is not possible. Therefore $P_{4} \notin \sigma_{0}\left(V_{4}\right)$. Thus if we take $x_{1}=b, x_{2}=a, x_{3}=c$, then f is an EIML of P_{4}. Hence the proof.

Corollary 6.3.6. $P_{4} \notin \sigma\left(V_{4}\right)$.

Proof. Proof follows from Theorem 6.3.5.
Theorem 6.3.7. P_{n} is not an edge induced magic graph for any $n \geq 5$.

Proof. Suppose that $n \geq 5$. Consider the path $P_{n}: v_{1} e_{1} v_{2} e_{2} v_{3} e_{3} \cdots v_{n-1} e_{n} v_{n}$. Let $f: E \rightarrow V_{4} \backslash\{0\}$ be defined by $f\left(e_{i}\right)=x_{i}$ for some $x_{i} \in V_{4} \backslash\{0\}$ for $i=$ $1,2,3, \ldots, n-1$. Then $f^{+}\left(v_{1}\right)=x_{1}, f^{+}\left(v_{2}\right)=x_{1}+x_{2}, f^{+}\left(v_{3}\right)=x_{2}+x_{3}, f^{+}\left(v_{4}\right)=$ $x_{3}+x_{4}$ and so on. Therefore $f^{++}\left(e_{1}\right)=x_{2}, f^{++}\left(e_{2}\right)=x_{1}+x_{3}, f^{++}\left(e_{3}\right)=x_{2}+x_{4}$. Now if possible, suppose f is an EIML of P_{n}. Then we have $f^{++}\left(e_{1}\right)=x_{2}=x_{2}+$ $x_{4}=f^{++}\left(e_{3}\right)$, which implies $x_{4}=0$, which is a contradiction to our assumption. Hence $P_{n} \notin \sigma_{0}\left(V_{4}\right)$ and $P_{n} \notin \sigma_{a}\left(V_{4}\right)$ for $n \geq 5$.

Hence the proof.

Corollary 6.3.8. $P_{n} \notin \sigma\left(V_{4}\right)$ for any n.

Proof. Proof of the corollary follows from Corollary 6.3.2, Corollary 6.3.4, Corollary 6.3.6 and Theorem 6.3.7.

Theorem 6.3.9. $C_{n} \in \sigma_{0}\left(V_{4}\right)$ for all n.

Proof. We can observe that the proof follows from Theorem 6.2.1.

Theorem 6.3.10. $C_{n} \in \sigma_{a}\left(V_{4}\right)$ if and only if n is a multiple of 4 .

Proof. Consider the cycle graph defined by $C_{n}:=v_{1} e_{1} v_{2} e_{2} v_{3} e_{3} \cdots v_{n-1} e_{n-1} v_{n} e_{n} v_{1}$. Suppose n is a multiple of 4 , say $n=4 k$, for some integer k. Define $f: E\left(C_{n}\right) \rightarrow$
$V_{4} \backslash\{0\}$ as

$$
f\left(e_{j}\right)=\left\{\begin{array}{lll}
b & \text { for } \quad j=1,5,9, \ldots, 4 k-3, & 2,6,10, \ldots, 4 k-2 \\
c & \text { for } \quad j=3,7,11, \ldots, 4 k-1, & 4,8,12, \ldots, 4 k
\end{array}\right.
$$

Then we can prove that $f^{++}\left(e_{j}\right)=a$ for $j=1,2,3, \ldots, n$. That is f is an EIML of C_{n}. Therefore in this case, $C_{n} \in \sigma_{a}\left(V_{4}\right)$.
Conversely, suppose that n is not a multiple of 4 . Then $n=4 k+1$ or $n=4 k+2$ or $n=4 k+3$ for some integer k. If possible, suppose f is an EIML of C_{n} with $f\left(e_{i}\right)=x_{i}$ for $i=1,2,3, \ldots, n$. Then from the induced edge sum equation of each edge, we get

$$
\begin{equation*}
x_{n}+x_{2}=x_{1}+x_{3}=x_{2}+x_{4}=x_{3}+x_{5}=\cdots=x_{n-1}+x_{1} . \tag{6.2}
\end{equation*}
$$

Case 1: $n=4 k+1$.
In this case, Equation (6.2) implies that $x_{1}=x_{5}=x_{9}=\cdots=x_{n}=x_{4}=$ $x_{8}=x_{12}=\cdots=x_{n-1}=x_{3}=x_{7}=x_{11}=\cdots=x_{n-2}=x_{2}=x_{6}=$ $x_{10}=\cdots=x_{n-3}$. Thus in this case if we let $x_{i}=f\left(e_{i}\right)=a$ for all i then $f^{++}\left(e_{i}\right)=0$ for all i. Hence $C_{n} \notin \sigma_{a}\left(V_{4}\right)$.

Case 2: $n=4 k+2$.
In this case, Equation (6.2) implies that $x_{1}=x_{5}=x_{9}=\cdots=x_{n-1}=x_{3}=$ $x_{7}=x_{11}=\cdots=x_{n-3}$ and $x_{2}=x_{6}=x_{10}=\cdots=x_{n}=x_{4}=x_{8}=x_{12}=$ $\cdots=x_{n-2}$. Then if we let $f\left(e_{1}\right)=a$ and $f\left(e_{2}\right)=b$ then $f^{+}\left(v_{j}\right)=c$ for all j. Thus $f^{++}\left(e_{i}\right)=0$ for all i. Hence $C_{n} \notin \sigma_{a}\left(V_{4}\right)$

Case 3: $n=4 k+3$.
In this case, Equation (6.2) implies that $x_{1}=x_{5}=x_{9}=\cdots=x_{n-2}=$ $x_{2}=x_{6}=x_{10}=\cdots=x_{n-1}=x_{3}=x_{7}=x_{11}=\cdots=x_{n}=x_{4}=x_{8}=$ $x_{12}=\cdots=x_{n-3}$. Thus in this case, if we let $x_{i}=f\left(e_{i}\right)=a$ for all i then

$$
f^{++}\left(e_{i}\right)=0 \text { for all } i \text {. Hence } C_{n} \notin \sigma_{a}\left(V_{4}\right) \text {. }
$$

Thus from all the three cases above, we have $C_{n} \notin \sigma_{a}\left(V_{4}\right)$. Thus $C_{n} \in \sigma_{a}\left(V_{4}\right)$ if and only if n is a multiple of 4 .

Hence the proof.
Corollary 6.3.11. $C_{n} \in \sigma\left(V_{4}\right)$ if and only if n is a multiple of 4.

Proof. Proof follows from Theorem 6.3.9 and Theorem 6.3.10.
Theorem 6.3.12. Consider the star graph $K_{1, n}$, then we have the following.
(i) $K_{1, n} \in \sigma_{0}\left(V_{4}\right)$ if and only if n is odd.
(ii) $K_{1, n} \in \sigma_{a}\left(V_{4}\right)$ if and only if n is even.

Proof. Consider $K_{1, n}$ with vertex set $\left\{v, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where $v v_{i} \in E\left(K_{1, n}\right)$ for $i=1,2,3, \ldots, n$. Let f be an edge label of $K_{1, n}$, with $f\left(v v_{i}\right)=x_{i}$, then from the induced edge sum equation of each edge we have the equation:

$$
\begin{equation*}
x_{2}+x_{3}+x_{4}+\cdots+x_{n}=x_{1}+x_{3}+x_{4}+\cdots+x_{n}=\cdots=x_{1}+x_{2}+x_{3}+\cdots+x_{n-1} . \tag{6.3}
\end{equation*}
$$

Thus we have f is an EIML of $K_{1, n}$ if and only if $x_{1}=x_{2}=x_{3}=\cdots=x_{n}$.
case (1) n is an odd integer.
Let $f\left(v v_{i}\right)=x_{i}=a$, then $f^{+}(v)=n a=a$ and $f^{+}\left(v_{i}\right)=a$. Thus $f^{++}\left(v v_{i}\right)=a+a=0$ for all i. Hence in this case, we can conclude that $K_{1, n} \in \sigma_{0}\left(V_{4}\right)$ and $K_{1, n} \notin \sigma_{a}\left(V_{4}\right)$.
case (2) n is an even integer.
Let $f\left(v v_{i}\right)=x_{i}=a$, then $f^{+}(v)=n a=0$ and $f^{+}\left(v_{i}\right)=a$. Thus $f^{++}\left(v v_{i}\right)=0+a=a$ for all i. Hence in this case, we can conclude that $K_{1, n} \in \sigma_{a}\left(V_{4}\right)$ and $K_{1, n} \notin \sigma_{0}\left(V_{4}\right)$.

Hence the proof.

From the Theorem 6.3.12, we have the following corollary.
Corollary 6.3.13. $K_{1, n} \notin \sigma\left(V_{4}\right)$ for any n.

Theorem 6.3.14. Consider the bipartite graph $K_{m, n}$, then we have then we have the following.
(i) $K_{m, n} \in \sigma_{0}\left(V_{4}\right)$ for $m+n$ is even.
(ii) $K_{m, n} \in \sigma_{a}\left(V_{4}\right)$ for $m+n$ is odd.

Proof. Let $V\left(K_{m, n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{m}, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$, where $v_{i} u_{j} \in E\left(K_{m, n}\right)$ for $i=1,2,3, \ldots m$ and $j=1,2,3, \ldots, n$. Let $f: E\left(K_{m, n}\right) \rightarrow V_{4} \backslash\{0\}$ be defined by $f\left(v_{i} u_{j}\right)=a$ for all $v_{i} u_{j} \in E\left(K_{m, n}\right)$.

Case 1: $m+n$ is even.
subcase (i) m and n are odd.
In this case, we get $f^{+}\left(v_{i}\right)=n a=a$ and $f^{+}\left(u_{j}\right)=m a=a$. Thus $f^{++}\left(v_{i} u_{j}\right)=0$ for all i and j.
subcase (ii) m and n are even.
In this case, we get $f^{+}\left(v_{i}\right)=n a=0$ and $f^{+}\left(u_{j}\right)=m a=0$. Thus $f^{++}\left(v_{i} u_{j}\right)=0$ for all i and j.

Thus, if $m+n$ is even then $K_{m, n} \in \sigma_{0}\left(V_{4}\right)$.
Case 2: $m+n$ is odd.
subcase (i) m is even n is odd.
In this case, we get $f^{+}\left(v_{i}\right)=n a=a$ and $f^{+}\left(u_{j}\right)=m a=0$. Thus $f^{++}\left(v_{i} u_{j}\right)=a+0=a$ for all i and j.
subcase (ii) m is odd n is even.
In this case, we get $f^{+}\left(v_{i}\right)=n a=0$ and $f^{+}\left(u_{j}\right)=m a=a$. Thus $f^{++}\left(v_{i} u_{j}\right)=0+a=a$ for all i and j.

Thus if $m+n$ is even, then $K_{m, n} \in \sigma_{a}\left(V_{4}\right)$.

Hence the proof.
Theorem 6.3.15. Consider bistar graph $B_{m, n}$, then then we have the following.
(i) $B_{m, n} \in \sigma_{0}\left(V_{4}\right)$ if and only if m and n are even.
(ii) $B_{m, n} \in \sigma_{a}\left(V_{4}\right)$ if and only if m and n are odd.

Proof. Let $V\left(B_{m, n}\right)=\left\{u, v, v_{1}, v_{2}, v_{3}, \ldots, v_{m}, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$, where $u v, v v_{i}$, $u u_{j} \in E\left(B_{m, n}\right)$ for $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$. Let $f: E\left(B_{m, n}\right) \rightarrow$ $V_{4} \backslash\{0\}$ be an edge label defined as follows:

$$
f(e)=\left\{\begin{array}{lll}
\alpha & \text { if } & e=u v \\
x_{i} & \text { if } & e=v v_{1}, v v_{2}, v v_{3}, \ldots, v v_{m} \\
y_{j} & \text { if } & e=u u_{1}, u u_{2}, u u_{3}, \ldots, u u_{n}
\end{array}\right.
$$

Then by considering the induced edge sum equation of the edges $v v_{i}$ we have:

$$
\begin{align*}
\alpha+x_{2}+x_{3}+x_{4}+\cdots+x_{m} & =\alpha+x_{1}+x_{3}+x_{4}+\cdots+x_{m} \\
& =\alpha+x_{1}+x_{2}+x_{3}+\cdots+x_{m} \\
& \vdots \tag{6.4}\\
& =\alpha+x_{2}+x_{3}+x_{4}+\cdots+x_{m-1} .
\end{align*}
$$

In the light of Equation (6.4), we have $x_{1}=x_{2}=x_{3}=\cdots=x_{m}=\beta$ (say). Similarly by considering the induced edge sum equation of the edges $u u_{j}$ one can easily prove that $y_{1}=y_{2}=y_{3}=\cdots=y_{n}=\gamma$ (say). Thus the induced edge sum
equations of the edge $v v_{i}$ and $u u_{j}$ are given by $\alpha+(m-1) \beta=\alpha+(n-1) \gamma$. Also the induced edge sum equation of the edge $u v$ is given by $x_{1}+x_{2}+x_{3}+$ $\cdots+x_{m}+y_{1}+y_{2}+y_{3}+\cdots+y_{n}=m \beta+n \gamma$.

Thus f is an edge induced magic label with induced edge sum x if and only if

$$
\begin{equation*}
x=\alpha+(m-1) \beta=\alpha+(n-1) \gamma=m \beta+n \gamma . \tag{6.5}
\end{equation*}
$$

Case 1: m and n are even.
In this case, Equation (6.5) becomes $x=\alpha+\beta=\alpha+\gamma=0$. Thus $\alpha=\beta=\gamma$, and the induced edge sum $x=0$.

Hence in this case, $B_{m, n} \in \sigma_{0}\left(V_{4}\right)$.
Case 2: m and n are odd.
In this case, Equation (6.5) becomes $x=\alpha=\beta+\gamma$. Thus in this we can choose $\beta=b$ and $\gamma=c$ then $\alpha=a$ and which implies that the induced edge sum becomes $x=a$.

Hence in this case, $B_{m, n} \in \sigma_{a}\left(V_{4}\right)$.
Case 3: m is even and n is odd.
In this case, Equation (6.5) becomes $x=\alpha+\beta=\alpha=\gamma$ which implies that $\beta=0$. That is $f\left(v v_{i}\right)=x_{i}=\beta=0$, which a contradiction to the choice of f. Therefore $B_{m, n} \notin \sigma_{0}\left(V_{4}\right)$ and $B_{m, n} \notin \sigma_{a}\left(V_{4}\right)$.

Case 4: m is odd and n is even.
In this case, Equation (6.5) becomes $x=\alpha=\alpha+\gamma=\beta$ which implies $\gamma=0$. That is $f\left(u u_{j}\right)=y_{j}=\gamma=0$, which a contradiction to the choice of f. Therefore $B_{m, n} \notin \sigma_{0}\left(V_{4}\right)$ and $B_{m, n} \notin \sigma_{a}\left(V_{4}\right)$.

Hence the proof.

Theorem 6.3.16. Let K_{n} be the complete graph with n vertices, then $K_{n} \in$ $\sigma_{0}\left(V_{4}\right)$ for all n.

Proof. Consider the complete graph K_{n}. Let $f: E\left(K_{n}\right) \rightarrow V_{4} \backslash\{0\}$ be an edge label with $f(e)=a$ for all $e \in E\left(K_{n}\right)$. Then the induced vertex label f^{+}becomes $f^{+}(u)=(n-1) a$, for all $u \in V\left(K_{n}\right)$. Using this, we have the induced edge label f^{++}becomes $f^{++}(e)=2(n-1) a=0$, for all $e \in E\left(K_{n}\right)$. Thus $K_{n} \in \sigma_{0}\left(V_{4}\right)$ for all n. Hence the proof.

6.4 Edge Induced V_{4} Magic Labeling of Some Special Graphs

Theorem 6.4.1. The sun graph $\operatorname{Sun}_{n} \in \sigma_{0}\left(V_{4}\right)$ for all n.

Proof. Since every vertex is of odd degree, by Theorem 6.2.1 the theorem follows.

Theorem 6.4.2. The sun graph $\operatorname{Sun}_{n} \in \sigma_{a}\left(V_{4}\right)$ for n is even.

Proof. Consider a sun graph Sun_{n} with $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ as vertex set of the corresponding C_{n} and $w_{i}, 1 \leq i \leq n$, be the pendant vertices attached to each $v_{i}, 1 \leq i \leq n$. Let $f: E\left(S u n_{n}\right) \rightarrow V_{4} \backslash\{0\}$ be defined by

$$
f(e)=\left\{\begin{array}{lll}
b & \text { if } & e=v_{1} v_{2}, v_{3} v_{4}, v_{5} v_{6}, \ldots, v_{n-1} v_{n} \\
c & \text { if } & e=v_{2} v_{3}, v_{4} v_{5}, v_{6} v_{7}, \ldots, v_{n} v_{1} \\
b & \text { if } & e=v_{1} w_{1}, v_{3} w_{3}, v_{5} w_{5}, \ldots, v_{n-1} w_{n-1} \\
c & \text { if } & e=v_{2} w_{2}, v_{4} w_{4}, v_{6} w_{6}, \ldots, v_{n} w_{n}
\end{array}\right.
$$

Then we can easily prove that $f^{++}(e)=a$ for all $e \in E\left(\right.$ Sun $\left._{n}\right)$. That is $S u n_{n} \in$ $\sigma_{a}\left(V_{4}\right)$. Hence the proof.

Corollary 6.4.3. The sun graph $\operatorname{Sun}_{n} \in \sigma\left(V_{4}\right)$ if and only if n is even.

Proof. Proof follows from Theorem 6.4.1 and Theorem 6.4.2.
Theorem 6.4.4. The comb graph $C B_{n}$ is not an edge induced magic graph, for any n.

Proof. Let $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ be the vertex set of $C B_{n}$, where $v_{i}(1 \leq i \leq n)$ are the pendant vertices adjacent to $u_{i}(1 \leq i \leq n)$. If possible, suppose f : $E\left(C B_{n}\right) \rightarrow V_{4} \backslash\{0\}$ is an induced edge label of $C B_{n}$. Then using the induced edge sum equation of the edges $u_{1} v_{1}$ and $u_{2} v_{2}$ we get, $f^{++}\left(u_{1} v_{1}\right)=f^{++}\left(u_{2} v_{2}\right)$, which implies $f\left(u_{1} u_{2}\right)=f\left(u_{1} u_{2}\right)+f\left(u_{2} u_{3}\right)$. That is $f\left(u_{2} u_{3}\right)=0$, which is a contradiction. Thus $C B_{n}$ is not an edge induced magic graph.

Hence the proof.

Theorem 6.4.5. The wheel graph $W_{n} \in \sigma_{0}\left(V_{4}\right)$ for n is odd.

Proof. Suppose n is odd. Then, since every vertex of W_{n} is of odd degree, by Theorem 6.2.1 the proof follows.

Theorem 6.4.6. Let $J(m, n)$ be the jelly fish graph then we have the following.
(i) $J(m, n) \in \sigma_{0}\left(V_{4}\right)$ if and only if m and n are of same parity.
(ii) $J(m, n) \notin \sigma_{a}\left(V_{4}\right)$ for any m and n.

Proof. Consider the jelly fish graph with $V(J(m, n))=\left\{v_{k}: k=1,2,3,4\right\}$ $\cup\left\{u_{i}: i=1,2,3, \ldots, m\right\} \cup\left\{w_{j}: j=1,2,3, \ldots, n\right\}$, where $v_{k}^{\prime} \mathrm{S}$ are the vertices of C_{4} and u_{i}, w_{j} are the vertices of corresponding $K_{1, m}$ and $K_{1, n}$ respectively. Let $f: E(J(m, n)) \rightarrow V_{4} \backslash\{0\}$ be an edge induced magic label with $f\left(v_{1} v_{2}\right)=$ $x_{1}, f\left(v_{1} v_{4}\right)=x_{2}, f\left(v_{3} v_{4}\right)=x_{3}, f\left(v_{2} v_{3}\right)=x_{4}, f\left(v_{1} v_{3}\right)=x_{5}, f\left(v_{2} u_{i}\right)=e_{i}$, and $f\left(v_{4} w_{j}\right)=y_{j}$ for $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$.

Using the induced edge sum equation of the edges $v_{2} u_{i}$, we get

$$
\begin{aligned}
e_{2}+e_{3}+e_{4}+\cdots+e_{m}+x_{1}+x_{4} & =e_{1}+e_{3}+e_{4}+\cdots+e_{m}+x_{1}+x_{4} \\
& =e_{1}+e_{2}+e_{4}+\cdots+e_{m}+x_{1}+x_{4} \\
& \vdots \\
& =e_{1}+e_{2}+e_{3}+\cdots+e_{m-1}+x_{1}+x_{4} .
\end{aligned}
$$

The above equations imply that $e_{1}=e_{2}=e_{3}=\cdots=e_{m}=\alpha$ (say). Thus the induced edge sum equation of $v_{2} u_{i}$ reduces to $(m-1) \alpha+x_{1}+x_{4}$.

In a similar way, by considering the induced edge sum equation of the edges $v_{4} w_{j}$, we get $y_{1}=y_{2}=y_{3}=\cdots=y_{n}=\beta$ (say). Thus the induced edge sum equation of $v_{4} w_{j}$ reduces to $(n-1) \beta+x_{2}+x_{3}$.

Now consider the induced edge sum equation of the edges $v_{1} v_{2}$ and $v_{2} v_{3}$, then we get $m \alpha+x_{2}+x_{4}+x_{5}=m \alpha+x_{1}+x_{3}+x_{5}$ which implies $x_{2}+x_{4}=x_{1}+x_{3}$. Similarly by considering the induced edge sum equation of $v_{1} v_{4}$ and $v_{3} v_{4}$, we get $n \beta+x_{1}+x_{3}+x_{5}=n \beta+x_{2}+x_{4}+x_{5}$. Also from the induced edge sum equation of $v_{1} v_{3}$, we get its induced edge sum equal to $x_{1}+x_{2}+x_{3}+x_{4}=0$, since $x_{2}+x_{4}=x_{1}+x_{3}$.
Thus from the above discussion we have the induced edge sum is given by:

$$
\begin{align*}
x & =(m-1) \alpha+x_{1}+x_{4}=(n-1) \beta+x_{2}+x_{3} \\
& =m \alpha+x_{2}+x_{4}+x_{5}=m \alpha+x_{1}+x_{3}+x_{5} \tag{6.6}\\
& =n \beta+x_{1}+x_{3}+x_{5}=n \beta+x_{2}+x_{4}+x_{5}=0 .
\end{align*}
$$

Since the induced sum is 0 , we have $J(m, n) \notin \sigma_{a}\left(V_{4}\right)$ for any m, n.
Now consider the following cases.

Case 1: m and n are even.

In this case, equation (6.6) becomes

$$
\begin{equation*}
x=\alpha+x_{1}+x_{4}=\beta+x_{2}+x_{3}=x_{2}+x_{4}+x_{5}=x_{1}+x_{3}+x_{5}=0 . \tag{6.7}
\end{equation*}
$$

Choose $\alpha=\beta=x_{5}=c, x_{1}=x_{2}=a, x_{3}=x_{4}=b$, then above Equation (6.7) follows. Thus in this case, $J(m, n) \in \sigma_{0}\left(V_{4}\right)$

Case 2: m and n are odd.
In this case, equation (6.6) becomes

$$
\begin{align*}
x & =x_{1}+x_{4}=x_{2}+x_{3} \\
& =\alpha+x_{2}+x_{4}+x_{5}=\alpha+x_{1}+x_{3}+x_{5} \tag{6.8}\\
& =\beta+x_{1}+x_{3}+x_{5}=\beta+x_{2}+x_{4}+x_{5}=0 .
\end{align*}
$$

Choose $\alpha=\beta=x_{5}=a, x_{1}=x_{2}=x_{3}=x_{4}=b$, then above Equation (6.8) follows. Thus in this case, $J(m, n) \in \sigma_{0}\left(V_{4}\right)$

Case 3: m odd and n even.
In this case, Equation 6.6 becomes

$$
\begin{aligned}
x & =x_{1}+x_{4}=\beta+x_{2}+x_{3} \\
& =\alpha+x_{2}+x_{4}+x_{5}=\alpha+x_{1}+x_{3}+x_{5} \\
& =x_{1}+x_{3}+x_{5}=x_{2}+x_{4}+x_{5}=0 .
\end{aligned}
$$

Note that above equations imply that $\alpha=e_{i}=f\left(v_{2} u_{i}\right)=0$, which is not admissible. Thus in this case, $J(m, n) \notin \sigma_{0}\left(V_{4}\right)$.

Case 4: m even and n odd.
In this case, Equation (6.6) becomes

$$
x=\alpha+x_{1}+x_{4}=x_{2}+x_{3}
$$

$$
\begin{aligned}
& =x_{2}+x_{4}+x_{5}=x_{1}+x_{3}+x_{5} \\
& =\beta+x_{1}+x_{3}+x_{5}=\beta+x_{2}+x_{4}+x_{5}=0 .
\end{aligned}
$$

Note that above equations imply that $\beta=y_{j}=f\left(v_{4} w_{j}\right)=0$, which is not admissible. Thus in this case, $J(m, n) \notin \sigma_{0}\left(V_{4}\right)$.

Thus $J(m, n) \in \sigma_{0}\left(V_{4}\right)$ if and only if m and n are of same parity.
Hence the proof.

Theorem 6.4.7. The triangular snake graph $T S_{n} \in \sigma_{0}\left(V_{4}\right)$ for all n.

Proof. Since every vertex of $T S_{n}$ is of even degree, by Theorem 6.2.1 the proof follows.

Theorem 6.4.8. The open ladder graph $O\left(L_{n}\right) \in \sigma_{0}\left(V_{4}\right)$ for all n.

Proof. Since every vertex of $O\left(L_{n}\right)$ is of odd degree, by Theorem 6.2.1 the proof follows.

Chapter
 7

Edge Induced $V_{4}-$ Magic Labeling of Subdivision Graphs and Line Graphs

This chapter discusses the edge induced V_{4}-magic labeling of subdivision graph and line graph of some graphs. The first section deals with the edge induced V_{4}-magic labeling of subdivision graphs of some graphs. In the second section, we discuss the edge induced V_{4}-magic labeling of line graphs of some graphs.

7.1 Subdivision Graphs

Theorem 7.1.1. Let G be graph with every vertex is of odd degree, then $S(G) \in$ $\sigma_{a}\left(V_{4}\right)$.

Proof. Suppose G is a graph with every vertex is of odd degree. Then define $f: E(S(G)) \rightarrow V_{4} \backslash\{0\}$ by $f(e)=a$ for all $e \in E(S(G))$.

Let $u v \in E(G)$ and α be the inserted vertex on the edge $u v$ in $S(G)$. Then $f(u \alpha)=f(v \alpha)=a$. Therefore $f^{+}(u)=f^{+}(v)=\operatorname{deg}(u) a=a$, since deg (u)
is odd and $f^{+}(\alpha)=\operatorname{deg}(\alpha) a=0$, since $\operatorname{deg}(\alpha)=2$. Thus $f^{++}(u \alpha)=a$ and $f^{++}(v \alpha)=a$. Since $u v$ is an arbitrary edge in $S(G)$, we can conclude that $f^{++}(e)=a$ for all $e \in S(G)$. Thus $S(G) \in \sigma_{a}\left(V_{4}\right)$.
Hence the proof.
Theorem 7.1.2. Let G be graph with every vertex is of even degree, then $S(G) \in$ $\sigma_{0}\left(V_{4}\right)$.

Proof. Suppose G is a graph with every vertex is of even degree. Then define $f: E(S(G)) \rightarrow V_{4} \backslash\{0\}$ by $f(e)=a$ for all $e \in E(S(G))$.

Let $u v \in E(G)$ and α be the inserted vertex on the edge $u v$ in $S(G)$. Then $f(u \alpha)=f(v \alpha)=a$. Therefore $f^{+}(u)=f^{+}(v)=\operatorname{deg}(u) a=0$, since deg (u) is even and $f^{+}(\alpha)=\operatorname{deg}(\alpha) a=0$, since $\operatorname{deg}(\alpha)=2$. Thus $f^{++}(u \alpha)=0$ and $f^{++}(v \alpha)=0$. Since $u v$ is an arbitrary edge in $S(G)$, we can conclude that $f^{++}(e)=0$ for all $e \in S(G)$. Thus $S(G) \in \sigma_{0}\left(V_{4}\right)$.

Hence the proof.
Theorem 7.1.3. $S\left(P_{2}\right) \in \sigma_{a}\left(V_{4}\right)$ and $S\left(P_{2}\right) \notin \sigma_{0}\left(V_{4}\right)$.

Proof. Since $S\left(P_{2}\right)=P_{3}$ proof follows directly from Theorem 6.3.3.
Theorem 7.1.4. $S\left(P_{n}\right) \notin \sigma_{a}\left(V_{4}\right)$ and $S\left(P_{n}\right) \notin \sigma_{0}\left(V_{4}\right)$ for any $n \geq 3$.

Proof. Note that $S\left(P_{n}\right)=P_{2 n-1}$ and if $n \geq 3$ then $2 n \geq 5$, therefore the proof follows directly from Theorem 6.3.7.

Theorem 7.1.5. $S\left(C_{n}\right) \in \sigma_{0}\left(V_{4}\right)$ for all n.

Proof. Since $S\left(C_{n}\right)=C_{2 n}$, proof follows from Theorem 6.3.9.
Theorem 7.1.6. $S\left(C_{n}\right) \in \sigma_{a}\left(V_{4}\right)$ if and only if n is even.

Proof. Since $S\left(C_{n}\right)=C_{2 n}$ proof follows directly from Theorem 6.3.10.

Corollary 7.1.7. $S\left(C_{n}\right) \in \sigma\left(V_{4}\right)$ if and only if n is even.

Proof. The proof follows from Theorem 7.1.5 and Theorem 7.1.6.
Theorem 7.1.8. For the star graph $K_{1, n}$, we have the following.
(i) $S\left(K_{1, n}\right) \in \sigma_{a}\left(V_{4}\right)$ if and only if n is odd.
(ii) $S\left(K_{1, n}\right) \notin \sigma_{0}\left(V_{4}\right)$ for any n.

Proof. Consider $K_{1, n}$ with vertex set $\left\{v, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where $v v_{i} \in E\left(K_{1, n}\right)$ for $i=1,2,3, \ldots n$. Let u_{i} be the inserted vertices on the edge $v v_{i}$ for $i=$ $1,2,3, \ldots, n$ in $S\left(K_{1, n}\right)$.

Let $f: E\left(S\left(K_{1, n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ with $f\left(v u_{i}\right)=x_{i 1}$, and $f\left(u_{i} v_{i}\right)=x_{i 2}$ for $i=1,2,3, \ldots, n$. Then from the induced edge sum equation of each edge we have the following equation.

$$
\begin{aligned}
x_{11}=x_{21}=x_{31}=\cdots=x_{n 1} & =x_{21}+x_{31}+x_{41}+\cdots+x_{n 1}+x_{12} \\
& =x_{11}+x_{31}+x_{41}+\cdots+x_{n 1}+x_{22} \\
& =x_{11}+x_{21}+x_{31}+\cdots+x_{n 1}+x_{32} \\
& \vdots \\
& =x_{11}+x_{31}+x_{41}+\cdots+x_{n-11}+x_{n 2} .
\end{aligned}
$$

Let $x=x_{11}=x_{21}=x_{31}=\cdots=x_{n 1}$ then above equations become

$$
\begin{aligned}
x & =(n-1) x+x_{12} \\
& =(n-1) x+x_{22} \\
& =(n-1) x+x_{32} \\
& \vdots \\
& =(n-1) x+x_{n 2} .
\end{aligned}
$$

Note that the above system implies that $x_{12}=x_{22}=x_{32}=\cdots=x_{n 2}=y$ (say).
Then the above system of equations reduces to $x=(n-1) x+y$.

$$
\text { That is }(n-2) x+y=0 \text {. }
$$

Case (i) n is an odd integer.
In this case, the equation $(n-2) x+y=0$ reduces to $x+y=0$, that is $x=y$. Thus by taking $x=y=a$ that is, by defining $f: E\left(S\left(K_{1, n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as $f\left(e_{i}\right)=a$, for all $e_{i} \in E\left(S\left(K_{1, n}\right)\right)$ we can prove that $S\left(K_{1, n}\right) \in \sigma_{a}\left(V_{4}\right)$.

Case (ii) n is an even integer.
In this case, the equation $(n-2) x+y=0$ reduces to $y=0$. That is $f\left(u_{i} v_{i}\right)=x_{i 2}=0$, which is a contradiction to the choice for f. Therefore, in this case, $S\left(K_{1, n}\right)$ is not an edge induced magic graph.

Note that $S\left(K_{1, n}\right) \in \sigma_{0}\left(V_{4}\right)$ only when $x=0$. But $x=0$ is not possible. Therefore $S\left(K_{1, n}\right) \notin \sigma_{0}\left(V_{4}\right)$ for any n.

Hence the proof.
Theorem 7.1.9. For the bistar graph $B_{m, n}, S\left(B_{m, n}\right)$ is not an edge induced magic graph for any m and n.

Proof. Let $V\left(B_{m, n}\right)=\left\{u, v, v_{1}, v_{2}, v_{3}, \ldots, v_{m}, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$, where $u v, v v_{i}$, $u u_{j} \in E\left(B_{m, n}\right)$ for $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$. Also let w_{i}, t_{j} and w be the inserted vertices on the edge $v v_{i}, u u_{j}$ and $u v$ respectively for $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$ in the graph $S\left(B_{m, n}\right)$.
Let $f: E\left(S\left(B_{m, n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ with $f(v w)=\gamma, f(w u)=\delta, f\left(v w_{i}\right)=x_{i}$, $f\left(w_{i} v_{i}\right)=\alpha_{i}, f\left(u t_{j}\right)=y_{j}$ and $f\left(t_{j} u_{j}\right)=\beta_{j}$, then by considering the induced edge sum equation of each edge we have the following equations.

The induced edge sum equation of the edges $w_{i} v_{i}$ gives: $x_{1}=x_{2}=x_{3}=\cdots=$ $x_{m}=x$ (say). Similarly the induced edge sum equation of the edges $t_{j} u_{j}$ gives:
$y_{1}=y_{2}=y_{3}=\cdots=y_{n}=y$ (say).
The induced edge sum equation of the edges $v w_{i}$ gives:

$$
\begin{aligned}
\alpha_{1}+\gamma+(m-1) x & =\alpha_{2}+\gamma+(m-1) x \\
& =\alpha_{3}+\gamma+(m-1) x \\
& \vdots \\
& =\alpha_{m}+\gamma+(m-1) x .
\end{aligned}
$$

Note that above system of equations imply that $\alpha_{1}=\alpha_{2}=\alpha_{3}=\cdots=\alpha_{m}=\alpha$ (say). Thus each induced edge sum in above system reduces to $\alpha+\gamma+(m-1) x$. Similarly by considering the induced edge sum equation of the edges $u t_{j}$, we get the induced induced edge sum is $\beta+\delta+(n-1) y$, where $\beta=\beta_{1}=\beta_{2}=\beta_{3}=$ $\cdots=\beta_{n}$.

Also we get, the induced edge sum of the edges $v w$ is $m x+\delta$ and the edge sum of the edge $w u$ is $n y+\gamma$.

Thus the edge sum equation of the graph $S\left(B_{m, n}\right)$ is given by:

$$
\begin{equation*}
x=y=\alpha+\gamma+(m-1) x=\beta+\delta+(n-1) y=m x+\delta=n y+\gamma . \tag{7.1}
\end{equation*}
$$

Case 1: m and n are even integers.
In this case, Equation (7.1) becomes

$$
x=y=\alpha+\gamma+x=\beta+\delta+y=\delta=\gamma .
$$

Therefore $x=\gamma$, which implies that $\alpha=0$, which is not possible.
Hence in this case, $B_{m, n}$ is not an edge induced magic graph.

Case 2: m and n are odd integers.
In this case, Equation (7.1) becomes

$$
x=y=\alpha+\gamma=\beta+\delta=x+\delta=y+\gamma .
$$

Therefore $x=x+\delta$ which implies that $\delta=0$, which is not possible.
Hence in this case, $B_{m, n}$ is not an edge induced magic graph.

Case 3: m is even and n is odd.
In this case, Equation (7.1) becomes

$$
x=y=\alpha+\gamma+x=\beta+\delta=\delta=y+\gamma .
$$

Therefore $\beta+\delta=\delta$ which implies that $\beta=0$, which is not possible.
Hence in this case, $B_{m, n}$ is not an edge induced magic graph.

Case 4: m is odd and n is even.
In this case, Equation (7.1) becomes

$$
x=y=\alpha+\gamma=\beta+\delta+y=x+\delta=\gamma .
$$

Therefore $\alpha+\gamma=\gamma$ which implies that $\alpha=0$, which is not possible.
Hence in this case, $B_{m, n}$ is not an edge induced magic graph.

Thus in all cases, we get $S\left(B_{m, n}\right)$ is not an edge induced magic graph.
Hence the proof.

Theorem 7.1.10. For the the complete graph K_{n} with n vertices, we have the following.
(i) $S\left(K_{n}\right) \in \sigma_{0}\left(V_{4}\right)$ for n odd.
(ii) $S\left(K_{n}\right) \in \sigma_{a}\left(V_{4}\right)$ for n even.

Proof. Consider the subdivision graph of the complete graph $S\left(K_{n}\right)$. Let $v u$ an edge in $S\left(K_{n}\right)$, where $v \in V\left(K_{n}\right)$ and u be an inserted vertex in $S\left(K_{n}\right)$. Define $f: E\left(S\left(K_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ by $f(e)=a$ for all $e \in E\left(S\left(K_{n}\right)\right)$. Then $f^{+}(v)=(n-1) a$ and $f^{+}(u)=a+a=0$. Therefore $f^{++}(v u)=(n-1) a$. Since the vertices u and v are arbitrary, we have $f^{++}(v u)$ is a constant.

Case (i) n is an odd integer.
In this case, $f^{++}(v u)=(n-1) a=0$. Therefore $S\left(K_{n}\right) \in \sigma_{0}\left(V_{4}\right)$.
Case (ii) n is an even integer.
In this case, $f^{++}(v u)=(n-1) a=a$. Therefore $S\left(K_{n}\right) \in \sigma_{a}\left(V_{4}\right)$.

Hence the proof.

Theorem 7.1.11. For the sun graph S_{n}, we have $S\left(\operatorname{Sun}_{n}\right) \in \sigma_{a}\left(V_{4}\right)$ for all n.

Proof. Let $\left\{u_{i}, v_{i}: i=1,2,3, \ldots, n\right\}$ be the vertex set of $C B_{n}$, where v_{i} are the pendant vertex adjacent to u_{i}. Also let t_{i} and w_{i}, be the inserted vertices on the edge $u_{i} u_{i+1}, u_{i} v_{i}$, for $i=1,2,3, \ldots, n$ and $i+1$ is taken modulo n.
Suppose $f: E\left(S\left(\right.\right.$ Sun $\left.\left._{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ is an edge induced magic label of $S u n_{n}$ with $f\left(u_{i} t_{i}\right)=e_{i}, f\left(t_{i} u_{i+1}\right)=\alpha_{i}, f\left(u_{i} w_{i}\right)=\beta_{i}$ and $f\left(w_{i} v_{i}\right)=\gamma_{i}$.

Then using the induced edge sum equation of the edges $w_{i} v_{i}$, we get

$$
\begin{equation*}
\beta_{1}=\beta_{2}=\beta_{3}=\cdots=\beta_{n}=\beta \text { (say). } \tag{7.2}
\end{equation*}
$$

By the induced edge sum equation of the edges $u_{i} t_{i}$, we get

$$
\begin{equation*}
\alpha_{n}+\alpha_{1}+\beta=\alpha_{1}+\alpha_{2}+\beta=\alpha_{2}+\alpha_{3}+\beta=\cdots=\alpha_{n-1}+\alpha_{n}+\beta . \tag{7.3}
\end{equation*}
$$

By the induced edge sum equation of the edges $t_{i} u_{i+1}$, we get

$$
\begin{equation*}
e_{1}+e_{2}+\beta=e_{2}+e_{3}+\beta=e_{3}+e_{4}+\beta=\cdots=e_{n}+e_{1}+\beta \tag{7.4}
\end{equation*}
$$

By the induced edge sum equation of the edges $u_{i} w_{i}$, we get

$$
\begin{equation*}
\alpha_{n}+e_{1}+\gamma_{1}=\alpha_{1}+e_{2}+\gamma_{2}=\alpha_{2}+e_{3}+\gamma_{3}=\cdots=\alpha_{n-1}+e_{n}+\gamma_{n} \tag{7.5}
\end{equation*}
$$

Case (i) n is an odd integer.
In this case, Equation (7.3) and Equation(7.4) implies that

$$
\begin{array}{r}
\alpha_{1}=\alpha_{2}=\alpha_{3}=\cdots=\alpha_{n}=\alpha(\text { say }) . \\
e_{1}=e_{2}=e_{3}=\cdots=e_{n}=e(\text { say }) .
\end{array}
$$

Therefore equation (7.5) implies that

$$
\gamma_{1}=\gamma_{2}=\gamma_{3}=\cdots=\gamma_{n}=\gamma(\text { say })
$$

Therefore in this case, the induced edge sum equation of the graph $S\left(S u n_{n}\right)$ is given by:

$$
\beta=2 \alpha+\beta=2 e+\beta=\alpha+e+\gamma .
$$

Since $\alpha \in V_{4}$, the above equation reduces to $\beta=\alpha+e+\gamma$.
Therefore in this case, if we choose $\alpha=e=b$ and $\beta=\gamma=a$, then we can easily prove that $S\left(S u n_{n}\right) \in \sigma_{a}\left(V_{4}\right)$.

Case (ii) n is an even integer.
In this case, Equation (7.3) implies

$$
\begin{array}{r}
\alpha_{1}=\alpha_{3}=\alpha_{5}=\cdots=\alpha_{n-1}=x_{1}(\text { say }) . \\
\alpha_{2}=\alpha_{4}=\alpha_{6}=\cdots=\alpha_{n}=x_{2}(\text { say }) .
\end{array}
$$

Also in this case Equation (7.4) implies

$$
\begin{array}{r}
e_{1}=e_{3}=e_{5}=\cdots=e_{n-1}=y_{1}(\text { say }) . \\
e_{2}=e_{4}=e_{6}=\cdots=e_{n}=y_{2}(\text { say }) .
\end{array}
$$

Therefore Equation (7.5) reduces to
$x_{2}+y_{1}+\gamma_{1}=x_{1}+y_{2}+\gamma_{2}=x_{2}+y_{1}+\gamma_{3}=x_{1}+y_{2}+\gamma_{4}=\cdots=x_{1}+y_{2}+\gamma_{n}$.

Note that Equation (7.6) implies that

$$
\begin{array}{r}
\gamma_{1}=\gamma_{3}=\gamma_{5}=\cdots=\gamma_{n-1}=z_{1}(\text { say }) . \\
\gamma_{2}=\gamma_{4}=\gamma_{6}=\cdots=\gamma_{n}=z_{2}(\text { say }) .
\end{array}
$$

Therefore in this case, the induced edge sum equation of the graph $S\left(S u n_{n}\right)$ is given by:

$$
\beta=x_{1}+x_{2}+\beta=y_{1}+y_{2}+\beta=x_{2}+y_{1}+z_{1}=x_{1}+y_{2}+z_{2} .
$$

Therefore in this case, if we choose $x_{1}=x_{2}=y_{1}=y_{2}=b$ and $\beta=z_{1}=$ $z_{2}=a$ then we can easily prove that $f^{++}(e)=a$ for all $e \in E\left(S\left(\right.\right.$ Sun $\left.\left._{n}\right)\right)$. Thus $S\left(S u n_{n}\right) \in \sigma_{a}\left(V_{4}\right)$.

Hence the proof.
Theorem 7.1.12. For the comb graph $C B_{n}$, we have $S\left(C B_{n}\right)$ is not an edge induced magic graph, for any n.

Proof. Let $\left\{u_{i}, v_{i}: 1,2,3, \ldots, n\right\}$ be the vertex set of $C B_{n}$, where v_{i} is the pendant vertex adjacent to u_{i}. Let w_{i} and t_{j} be the inserted vertices in the edges $u_{i} v_{i}$ and $u_{j} u_{j+1}$ for $i=1,2,3, \ldots, n$ and $j=1,2,3, \ldots, n-1$ respectively . If possible,
suppose $f: E\left(S\left(C B_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ is an edge induced magic label of $S\left(C B_{n}\right)$. Then using the induced edge sum equation of the edges $v_{1} w_{1}$ and $u_{1} t_{1}$, we get $f\left(u_{1} w_{1}\right)=f\left(t_{1} u_{2}\right)+f\left(u_{1} w_{1}\right)$. That is $f\left(t_{1} u_{2}\right)=0$, which is a contradiction. Hence $S\left(C B_{n}\right)$ is not an edge induced magic graph, for any n.

Hence the proof.
Theorem 7.1.13. Let $J(m, n)$ be the jelly fish graph. Then $S(J(m, n)) \in \sigma_{a}\left(V_{4}\right)$ for m and n are of same parity.

Proof. Consider the jelly fish graph with $V(J(m, n))=\left\{v_{k}: k=1,2,3,4\right\} \cup\left\{u_{i}\right.$: $i=1,2,3, \ldots, m\} \cup\left\{w_{j}: j=1,2,3, \ldots, n\right\}$, where v_{k}^{\prime} s are the vertices of corresponding C_{4}, u_{i}, w_{j} are the vertices of corresponding $K_{1, m}$ and $K_{1, n}$ respectively and $\alpha_{i}(1 \leq i \leq m), \beta_{j}(1 \leq j \leq n)$ be the inserted vertices on the edges $v_{2} u_{i}, v_{4} w_{j}$ respectively and $\alpha, \beta, \gamma, \delta, \mu$ be the vertices inserted on the edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{1}, v_{1} v_{3}$ respectively.

Case (i) m and n are even integers.
In this case, define $f: E(S(J(m, n))) \rightarrow V_{4} \backslash\{0\}$ by

$$
f(e)=\left\{\begin{array}{lll}
a & \text { if } & e=\alpha_{i} u_{i}, v_{2} \alpha_{i}, v_{4} \beta_{j}, \beta_{j} w_{j}, v_{1} \mu, v_{3} \mu \\
b & \text { if } & e=v_{2} \alpha, \alpha v_{1}, v_{1} \delta, \delta v_{4} \\
c & \text { if } & e=v_{4} \gamma, \gamma v_{3}, v_{3} \beta, \beta v_{2}
\end{array}\right.
$$

Case (ii) m and n are n odd integers.
In this case, define $f: E(S(J(m, n))) \rightarrow V_{4} \backslash\{0\}$ by

$$
f(e)=\left\{\begin{array}{lll}
a & \text { if } \quad e=v_{2} \alpha, \alpha v_{1}, v_{3} \beta, \beta v_{2}, v_{2} \alpha_{i},, v_{4} \beta_{j}, \alpha_{i} u_{i}, \beta_{j} w_{j} \\
b & \text { if } e=v_{1} \delta, \delta v_{4}, v_{4} \gamma, \gamma v_{3},, v_{1} \mu, v_{3} \mu
\end{array}\right.
$$

Then in both cases we can verify that $f^{++}(e)=a$ for all $e \in E(S(J(m, n)))$. That is f is an EIML of $S(J(m, n))$. Thus in both cases $S(J(m, n)) \in \sigma_{a}\left(V_{4}\right)$.

Hence the proof.
Theorem 7.1.14. For the wheel graph W_{n}, we have $S\left(W_{n}\right) \in \sigma_{a}\left(V_{4}\right)$ for n is odd.

Proof. Suppose n is odd. Since every vertex is of odd degree, the proof follows from Theorem 7.1.1.

Theorem 7.1.15. For the flag graph $F l_{n}$, we have the following.

Case (i) $S\left(F l_{n}\right) \notin \sigma_{0}\left(V_{4}\right)$ for any n.

Case (ii) $S\left(F l_{n}\right) \in \sigma_{a}\left(V_{4}\right)$ if and only if n is odd.

Proof. Let $V\left(F l_{n}\right)=\left\{v, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the vertices of corresponding cycle graph C_{n} and v is the root vertex adjacent to the vertex v_{1}. Also let u be the inserted vertex on the edge $v_{1} v$ and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the inserted vertices on the edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{n} v_{1}$ respectively in the graph $S\left(F l_{n}\right)$.

If possible, let $g: E\left(S\left(F l_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ be an edge label with $g^{++}(e)=0$ for all edge in $S\left(F l_{n}\right)$. Then consider the induced edge sum of the edge $u v$. Note that $g^{++}(u v)=g\left(u v_{1}\right)$. Therefore $g\left(u v_{1}\right)=0$, which is a contradiction and it proves (i).

Suppose n is an odd integer. In this case, define $f: E\left(S\left(F l_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as follows.

$$
f(e)=\left\{\begin{array}{lll}
a & \text { if } & e=u v, u v_{1} \\
b & \text { if } & e=u_{1} v_{1}, u_{3} v_{3}, u_{5} v_{5}, \ldots u_{n-2} v_{n-2}, u_{n} v_{n} \\
c & \text { if } & e=u_{2} v_{2}, u_{4} v_{4}, u_{6} v_{6}, \ldots u_{n-3} v_{n-3}, u_{n-1} v_{n-1} \\
b & \text { if } & e=u_{1} v_{2}, u_{3} v_{4}, u_{5} v_{6}, \ldots u_{n-2} v_{n-1}, u_{n} v_{1} \\
c & \text { if } & e=u_{2} v_{3}, u_{4} v_{5}, u_{6} v_{7}, \ldots u_{n-3} v_{n-2}, u_{n-1} v_{n} .
\end{array}\right.
$$

Then $f^{++}(e)=a$ for all $e \in E\left(S\left(F l_{n}\right)\right)$. Thus $S\left(F l_{n}\right) \in \sigma_{a}\left(V_{4}\right)$.
To prove the converse part, suppose n is an even integer. If possible, let $h: E\left(S\left(F l_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ be an edge label with $h^{++}(e)=a$ for all edge in $S\left(F l_{n}\right)$. Consider the induced edge sum of the edge $u v$. We have $h^{++}(u v)=h\left(u v_{1}\right)$. Similarly if we let $h\left(u_{i} v_{i+1}\right)=y_{i}$, for $i=1,2,3, \ldots, n$ with $i+1$ is taken modulo n. Then the induced edge sum of the edges $v_{i} u_{i}$ for $i=1,2,3, \ldots, n$ gives

$$
\begin{equation*}
y_{n}+y_{1}+h\left(u v_{1}\right)=y_{1}+y_{2}=y_{2}+y_{3}=\cdots=y_{n-1}+y_{n} . \tag{7.7}
\end{equation*}
$$

Since n is an even integer the above equation implies that $y_{1}=y_{3}=y_{5}=\cdots=$ $y_{n-1}=x$ (say) and $y_{2}=y_{4}=y_{6}=\cdots=y_{n}=y$ (say). Thus the Equation (7.7) reduces to $x+y+h\left(u v_{1}\right)=x+y$, which implies that $h\left(u v_{1}\right)=0$, which is not admissible. Hence there exists no such edge label h. Hence if n is an even integer, then $S\left(F l_{n}\right) \notin \sigma_{a}\left(V_{4}\right)$.

Hence the proof.

Corollary 7.1.16. $S\left(F l_{n}\right) \in \sigma\left(V_{4}\right)$ if and only if n is odd.

Proof. Proof follows from the above Theorem 7.1.15.

Theorem 7.1.17. For the the triangular snake graph $T S_{n}$, we have $S\left(T S_{n}\right) \in$ $\sigma_{0}\left(V_{4}\right)$ for all n.

Proof. Since every vertex is of even degree, the proof follows from Theorem 7.1.2.

7.2 Line Graphs

Theorem 7.2.1. $L\left(P_{3}\right) \in \sigma_{0}\left(V_{4}\right)$ and $L\left(P_{3}\right) \notin \sigma_{a}\left(V_{4}\right)$.

Proof. Since $L\left(P_{3}\right)=P_{2}$, proof follows directly from Theorem 6.3.1.
Corollary 7.2.2. $L\left(P_{3}\right) \notin \sigma\left(V_{4}\right)$.

Proof. Proof follows from Theorem 7.2.1.

Theorem 7.2.3. $L\left(P_{4}\right) \in \sigma_{a}\left(V_{4}\right)$ and $L\left(P_{4}\right) \notin \sigma_{0}\left(V_{4}\right)$.

Proof. Since $L\left(P_{4}\right)=P_{3}$ proof follows directly from Theorem 6.3.3.
Corollary 7.2.4. $L\left(P_{4}\right) \notin \sigma\left(V_{4}\right)$.

Proof. Proof follows from Theorem 7.2.3.
Theorem 7.2.5. $L\left(P_{5}\right) \in \sigma_{a}\left(V_{4}\right)$ and $L\left(P_{5}\right) \notin \sigma_{0}\left(V_{4}\right)$.

Proof. Since $L\left(P_{5}\right)=P_{4}$, proof follows directly from Theorem 6.3.5.
Corollary 7.2.6. $L\left(P_{5}\right) \notin \sigma\left(V_{4}\right)$.

Proof. Proof follows from the Theorem 7.2.5.
Theorem 7.2.7. $L\left(P_{n}\right)$ is not an edge induced magic graph for any $n \geq 6$.

Proof. Note that $L\left(P_{n}\right)=P_{n-1}$. Thus if $n \geq 6$, then $L\left(P_{n}\right)=P_{n-1}$ and $n-1 \geq 5$, therefore the proof follows from Theorem 6.3.7.

Corollary 7.2.8. $L\left(P_{n}\right) \notin \sigma\left(V_{4}\right)$ for any $n \geq 3$.

Proof. Proof of the corollary follows from Corollary 7.2.2, Corollary 7.2.4, Corollary 7.2.6 and Theorem 7.2.7.

Theorem 7.2.9. $L\left(C_{n}\right) \in \sigma_{0}\left(V_{4}\right)$ for all n.

Proof. Since $L\left(C_{n}\right)=C_{n}$, the proof follows from Theorem 6.3.9.

Theorem 7.2.10. $L\left(C_{n}\right) \in \sigma_{a}\left(V_{4}\right)$ if and only if n is a multiple of 4 .

Proof. Since $L\left(C_{n}\right)=C_{n}$, the proof follows from Theorem 6.3.10.
Corollary 7.2.11. $L\left(C_{n}\right) \in \sigma\left(V_{4}\right)$ if and only if n is a multiple of 4 .

Proof. The proof follows from Theorem 7.2.9 and Theorem 7.2.10.
Theorem 7.2.12. Let $K_{1, n}$ be the star graph, then $L\left(K_{1, n}\right) \in \sigma_{0}\left(V_{4}\right)$ for all n.

Proof. Since $L\left(K_{1, n}\right)=K_{n}$, the proof follows from Theorem 6.3.16.
Theorem 7.2.13. Let $C B_{n}$ be the comb graph, then we have the following.
(i) $L\left(C B_{n}\right) \notin \sigma_{0}\left(V_{4}\right)$ for any n.
(ii) $L\left(C B_{n}\right) \notin \sigma_{a}\left(V_{4}\right)$ for any n.

Proof. Let $\left\{u_{i}, v_{i}: i=1,2,3, \ldots, n\right\}$ be the vertex set of $C B_{n}$, where u_{i} is the pendant vertex adjacent to v_{i}. Also let $w_{i}=u_{i} v_{i}, i=1,2,3, \ldots, n$ and $t_{k}=u_{k} u_{k+1}, \quad k=1,2,3, \ldots, n-1$ be the edges in $C B_{n}$. Then $\left\{w_{i}, t_{k}: i=\right.$ $1,2,3, \ldots, n, k=1,2,3, \ldots, n-1\}$ are the vertices of $L\left(C B_{n}\right)$.

Proof of (i).

If possible, suppose $L\left(C B_{n}\right) \in \sigma_{0}\left(V_{4}\right)$ for some n. Then there exists an EIML say $f: E\left(L\left(C B_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ with $f^{++}(e)=0$ for all $e \in$ $E\left(L\left(C B_{n}\right)\right)$.

Let $f\left(t_{i} w_{i}\right)=\alpha_{i}, f\left(t_{i} w_{i+1}\right)=\beta_{i}$, for $i=1,2,3, \ldots, n-1$ and $f\left(t_{j} t_{j+1}\right)=\gamma_{j}$, for $j=1,2,3, \ldots, n-2$. Then the induced edge sum equation of the edges $t_{i} w_{i}$ gives the equation,

$$
\gamma_{1}+\beta_{1}=\gamma_{1}+\beta_{1}+\gamma_{2}+\beta_{2}
$$

$$
\begin{aligned}
& =\gamma_{2}+\beta_{2}+\gamma_{3}+\beta_{3} \\
& \cdots \\
& =\gamma_{n-3}+\beta_{n-3}+\gamma_{n-2}+\beta_{n-2} \\
& =\gamma_{n-2}+\beta_{n-2}+\beta_{n-1} .
\end{aligned}
$$

But since $f^{++} \equiv 0$, we get $\gamma_{1}+\beta_{1}=0$, using this fact in the above system of equations, we get

$$
\gamma_{1}+\beta_{1}=\gamma_{2}+\beta_{2}=\gamma_{3}+\beta_{3}=\cdots=\gamma_{n-2}+\beta_{n-2}=0
$$

That is $\gamma_{i}=\beta_{i}$ for $i=1,2,3, \ldots, n-2$. Thus using $\gamma_{n-2}=\beta_{n-2}$ in the equation $\gamma_{n-2}+\beta_{n-2}+\beta_{n-1}=0$, we get $\beta_{n-1}=0$. That is $f\left(t_{n-1} w_{n}\right)=0$, which is a contradiction. Hence our assumption is wrong, that is $L\left(C B_{n}\right) \notin$ $\sigma_{0}\left(V_{4}\right)$ for all n.

Proof of (ii) .

If possible, suppose $L\left(C B_{n}\right) \in \sigma_{a}\left(V_{4}\right)$ for some n. Then there exists an EIML say $g: E\left(L\left(C B_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ with $g^{++}(e)=a$ for all $e \in$ $E\left(L\left(C B_{n}\right)\right)$.
Let $g\left(t_{i} w_{i}\right)=\alpha_{i}, g\left(t_{i} w_{i+1}\right)=\beta_{i}$, for $i=1,2,3, \ldots, n-1$ and $g\left(t_{j} t_{j+1}\right)=\gamma_{j}$, for $j=1,2,3, \ldots, n-2$.

Then the induced edge sum of the edge $t_{1} w_{1}$ and $t_{2} w_{2}$ gives $\gamma_{1}+\beta_{1}=$ $\gamma_{1}+\beta_{1}+\gamma_{2}+\beta_{2}=a$. Thus we get $\gamma_{1}+\beta_{1}=a$ and $\gamma_{2}+\beta_{2}=0$.

Similarly the induced edge sum of the edges $t_{1} w_{2}$ and $t_{1} t_{2}$ gives $\alpha_{1}+\alpha_{2}+$ $\gamma_{1}=\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}+\gamma_{2}$. Since $\gamma_{2}+\beta_{2}=0$ the above equation reduces to $\alpha_{1}+\alpha_{2}+\gamma_{1}=\alpha_{1}+\alpha_{2}+\beta_{1}$ and which implies that $\gamma_{1}=\beta_{1}$. That is $\gamma_{1}+\beta_{1}=0$, which is contradiction. Hence our assumption is wrong, that is $L\left(C B_{n}\right) \notin \sigma_{a}\left(V_{4}\right)$ for any n.

Hence the Proof.

Theorem 7.2.14. For the flag graph $F l_{n}$, we have $L\left(F l_{n}\right) \notin \sigma_{a}\left(V_{4}\right)$ for any n.

Proof. Let $V\left(F l_{n}\right)=\left\{w, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the vertices of corresponding cycle graph C_{n} and w is the root vertex adjacent to the vertex v_{1}. Also suppose $e_{i}=v_{i} v_{i+1}$ and $e=v_{1} w$ are the edges in $F l_{n}$. Therefore we can take the vertex set of $L\left(F l_{n}\right)$ equal to $\left\{e, e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$.

If possible, suppose $L\left(F l_{n}\right) \in \sigma_{a}\left(V_{4}\right)$ for some n. Then there exists an EIML say $f: E\left(L\left(F l_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ with $f^{++}(e)=a$ for all $e \in E\left(L\left(F l_{n}\right)\right)$.

Let $f\left(e_{i} e_{i+1}\right)=\alpha_{i}$, for $i=1,2,3, \ldots, n$ with $i+1$ is taken modulo $n, f\left(e_{1} e\right)=\alpha$ and $f\left(e_{n} e\right)=\beta$. Then the induced edge sum equation of the edges $e_{n} e_{1}, e_{1} e$, and $e_{n} e$ gives the equation:

$$
\alpha_{n-1}+\alpha_{1}+\alpha+\beta=\alpha_{n}+\alpha_{1}+\beta=\alpha_{n-1}+\alpha_{n}+\alpha=a .
$$

but $\alpha_{n}+\alpha_{1}+\beta=\alpha_{n-1}+\alpha_{n}+\alpha$ implies $\alpha+\beta=\alpha_{1}+\alpha_{n-1}$, thus $\alpha_{n-1}+\alpha_{1}+$ $\alpha+\beta=0$, which is a contradiction. Hence our assumption is wrong, that is $L\left(F l_{n}\right) \notin \sigma_{a}\left(V_{4}\right)$ for any n.

Hence the Proof.
Theorem 7.2.15. For the sun graph $S_{n} n_{n}$, we have $L\left(S u n_{n}\right) \in \sigma_{0}\left(V_{4}\right)$ for all n.

Proof. Note that in $L\left(S u n_{n}\right)$ every vertex is of even degree. Therefore by Theorem 6.2.1, we have $L\left(S u n_{n}\right) \in \sigma_{0}\left(V_{4}\right)$ for all n.

Theorem 7.2.16. Consider bistar graph $B_{m, n}$, then $L\left(B_{m, n}\right) \in \sigma_{0}\left(V_{4}\right)$ for m and n are even.

Proof. Note that for m and n are even, every vertex in $L\left(B_{m, n}\right)$ is of even degree. Therefore by Theorem 6.2.1, we have $L\left(B_{m, n}\right) \in \sigma_{0}\left(V_{4}\right)$ for all n.

Theorem 7.2.17. For the triangular snake graph $T S_{n}$, we have $L\left(T S_{n}\right) \in \sigma_{0}\left(V_{4}\right)$ for all n.

Proof. Since every vertex in $L\left(T S_{n}\right)$ is of even degree, by Theorem 6.2.1 the proof follows.

Conclusion and Further Scope of

Research

A summary of the thesis is given in the first section of the chapter. The following section includes some guidelines for a researcher to explore more areas.

8.1 Summary of the Thesis

In this thesis, we introduced three types of graph labelings namely induced A magic labeling, induced V_{4}-magic labeling and edge induced V_{4}-magic labeling. In the first part of the work, we discussed the induced A-magic labeling of some general graphs and induced V_{4}-magic labeling of cycle related, path related and star related graphs. Finally we discussed the induced V_{4}-magic labeling of Subdivision graph, Shadow graph, Middle graph and Line graph of some general and special graphs.

The thesis also introduced the concept of edge induced V_{4}-magic labeling of graphs and give the necessary and sufficient conditions for some general graphs like path P_{n}, cycle C_{n}, complete graph K_{n} and the complete bipartite graph
$K_{m, n}$ and some more graphs having edge induced V_{4}-magic labeling. The thesis concluded with the study of edge induced V_{4}-magic labeling of Subdivision graph and Line graphs of some general and special graphs.

8.2 Further Scope of Research

(i) Study the Necessary and Sufficient conditions of induced V_{4}-magic labeling of some more graphs.
(ii) Examine the Necessary and Sufficient conditions of Induced V_{4}-magic labeling of operation of two graphs.
(iii) Investigate induced V_{4}-magic labeling of total graphs of some special graphs.
(iv) Study the Necessary and Sufficient conditions of edge induced V_{4}-magic labeling of some more graphs.
(v) Examine the Necessary and Sufficient conditions of edge induced V_{4}-magic labeling of operation of two graphs.
(vi) Investigate edge induced V_{4}-magic labeling of total graphs of some special graphs.

Bibliography

[1] Akiyama. J., Hamada.T., and Yoshimura.Y., Miscellaneous properties of middle graphs, TRU Math. 10, 41-53, (1974).
[2] A. Krishnaa, Some Applications of Labelled Graphs International Journal of Mathematics Trends and Technology (IJMTT) -Volume 37, Number 3, September, (2016).
[3] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graph (International Symposium, Rome, July 1996), Gordon and Breach, N. Y. and Dunod Paris, 349-355, (1967).
[4] Frank Harary, Graph theory, Addison-Wesley Publishing Company, Reading, MA, (1972).
[5] G. Chartrand and P. Zhang, Introduction to Graph Theory, Mc Graw - Hill, Boston, (2005).
[6] John B. Fraleigh, A first course in abstract algebra, seventh edition, Pearson.
[7] John Clark and D. A. Holton, A First Look at Graph Theory, World Scientific, (1991).
[8] Joseph A. Gallian, A dynamic survey of graph labeling. The Electronics Journal of Combinatorics, 17, (2014).
[9] Joseph A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, Twenty-first edition, December 21, (2018).
[10] Koilraj S. and Ayyaswamy S. K., Labeling of Graphs, Ph.D thesis submitted to Bharatidasan university, Tiruchirappalli.
[11] Rajesh Kanna M. R., Pradeep Kumar R. and Jagadeesh R., Computation of Topological Indices of Dutchwindmill Graph, Open journal of Discrete Mathematics, 674-81, (2016).
[12] R. Balakrishnan and K. Ranganathan, A text book of graph theory. SpringerVerlag, NewYork, (2012).
[13] Ponraj R. et.al, Radio mean labeling of a graph, AKCE International Journal of Graphs and Combinatorics, 12, 224-228, (2015).
[14] P. Sumathi and A. Rathi, Quotient Labeling of Some Ladder Graphs, American Journal of Engineering Research (AJER) Volume-7, Issue-12, 38-42, (2018).
[15] R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Math., 1, 382-404, (1980).
[16] Romain Boulet, Spectral characterizations of sun graphs and broken sun graphs, Discrete Mathematics and Theoretical Computer Science, Vol. 11, No. 2, 149-160, (2009).
[17] S. Arumukam and S. Ramachandran, An introduction to graph theory. Scitech Publications (India) Pvt. Ltd.
[18] Seoud M. A. and Youssef M. Z., Harmonious labellings of helms and related graphs, unpublished.
[19] S. M. Lee et. al, On the V_{4}-magic graphs, Comgressus Numerantium, 156, 59-67, (2002).
[20] Swaminathan V. and Jeyanthi P., Super edge-magic strength of re crackers, banana trees and unicyclic graphs, Discrete Math., 306, 1624-1636, (2006).
[21] Tom M. Apostol, Introduction to analytic number theory. Springer International, Student Edition.
[22] Vandana P. T. and Anil Kumar V., V-magic labelings of wheel related graphs, British journal of Mathematics and Computer science, 8(3), 189219, (2015).
[23] Vandana P. T. and Anil Kumar V., V4-magic labelings of some graphs, British journal of Mathematics and Computer science, 11(5), 1-20, (2015).
[24] Vaithilingam K., Difference labeling of some graphs families, International Journal of Mathematics and Statistics Invention (IJMSI), Vol.2, Issue 6, $37-43$, June (2014).
[25] Yixiao Liu, Zhiping Wang, The Rainbow Connection of Windmill and Corona Graph, Applied Mathematical Sciences, Vol. 8, no. 128, 6367-6372, (2014).

APPENDIX I

List of Publications

1. K. B. Libeeshkumar and V. Anil Kumar, Induced Magic Labeling of Some Graphs, Malaya Journal of Matematik, Volume. 8, Number 1, 59-61, (2020).
2. K. B. Libeeshkumar and V. Anil Kumar, Induced V_{4}-magic labeling of cycle related graphs, Malaya Journal of Matematik, Volume. 8, Number 2, 473-477, (2020).
3. K. B. Libeeshkumar and V. Anil Kumar, Induced $V_{4}-$ Magic Labeling of Some Star and Path Related Graphs, South East Asian Journal of Mathematics and Mathematical Sciences, Volume 16, No. 2, 89-102, (2020).
4. K. B. Libeeshkumar and V. Anil Kumar, Induced $V_{4}-$ Magic Labeling of Middle Graphs, Advances and Applications in Discrete Mathematics (Accepted for publication).
5. K. B. Libeeshkumar and V. Anil Kumar, Induced $V_{4}-$ Magic Labeling of Line Graphs, Advances and Applications in Mathematical Sciences, Communicated.
6. K. B. Libeeshkumar and V. Anil Kumar, Induced $V_{4}-$ Magic Labeling of some Subdivision Graphs, National Conference on Recent Frontiers in Fractional Calculus Theory and its Applications, Communicated.
7. K. B. Libeeshkumar and V. Anil Kumar, Edge Induced $V_{4}-$ Magic Labeling of Graphs, Malaya Journal of Matematik, Communicated.

Index

Adjacent, 8

Binary operation, 11
Binary structure, 11

Corona of graphs, 10
Cycle, 10

Degree, 9
edge induced V_{4}-magic labeling, 100
Edge induced V_{4}-magic graph, 99

Graph, 7
n-gon book, 16
banana tree, 44
bipartite, 8
bistar, 44
book, 44
closed helm, 15
comb, 43
complete, 8
connected, 10
double triangular snake, 43
dutch 3 -windmill, 16
fan, 15
finite, 8
flag, 15
flower, 15
friendship, 16
gear, 15
generalized theta, 44
helm, 15
jelly fish, 15
regular, 9
simple, 8
sun, 16
sunflower, 15
triangular snake, 43
web, 15
wheel, 15
windmill, 44
bi pyramid, 16
open ladder, 44
Group, 11
abelian, 11
Klein-4-group, 11
induced A-magic graph, 14
induced A-magic labeling, 14
induced V_{4}-magic graph, 22
induced V_{4}-magic labeling, 23
induced degree sum equation, 23
induced edge sum, 100
induced edge sum equation , 102

Join of graphs, 10
Line graph, 89
Loop, 8
Middle graph, 77
Neighbour, 8
Parallel edges, 8
Path, 9
Pendant edge, 9
Pendant vertex, 9
Product of graphs, 10
Shadow graph, 76
Star, 9
Subdivision of a graph, 65
Trail, 9
Union of graphs, 10
Walk, 9

[^0]: ${ }^{1}$ The second section of this chapter has been published in Malaya Journal of Matematik, Volume. 8, Number 1, 59-61, (2020).
 ${ }^{2}$ The third and fourth sections of this chapter have been published in Malaya Journal of Matematik, Volume. 8, Number 2, 473-477, (2020).

[^1]: ${ }^{1}$ This chapter has been published in South East Asian Journal of Mathematics and Mathematical Sciences, Volume 16, No. 2, 89-102, (2020).

[^2]: ${ }^{1}$ The first section of this chapter has been accepted for publication in the journal of Advances and Applications in Discrete Mathematics.

