A STUDY ON STRENGTH OF STRONG FUZZY GRAPHS AND EXTRA STRONG k- PATH DOMINATION IN STRONG FUZZY GRAPHS

Thesis submitted to the
University of Calicut for the award of the degree of
\title{ DOCTOR OF PHILOSOPHY }
in Mathematics
under the Faculty of Science

by
 CHITHRA K. P.

Department of Mathematics, University of Calicut
Kerala, India 673635.

May 2018

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALICUT

CERTIFICATE

I hereby certify that the thesis entitled A STUDY ON STRENGTH OF STRONG FUZZY GRAPHS AND EXTRA STRONG k- PATH DOMINATION IN STRONG FUZZY GRAPHS is a bonafide work carried out by Smt. Chithra K. P., under my guidance for the award of Degree of Ph.D. in Mathematics of the University of Calicut and that this work has not been included in any other thesis submitted previously for the award of any degree either to this University or to any other University or Institution.

Raji Pilakkat

DECLARATION

I hereby declare that the thesis, entitled "A STUDY ON STRENGTH OF STRONG FUZZY GRAPHS AND EXTRA STRONG k- PATH DOMINATION IN STRONG FUZZY GRAPHS" is based on the original work done by me under the supervision of Dr. Raji Pilakkat, Professor, Department of Mathematics, University of Calicut and it has not been included in any other thesis submitted previously for the award of any degree either to this University or to any other University or Institution.

University of Calicut, 29 MAY 2018.

CHITHRA K. P.

ACKNOWLEDGEMENT

First and foremost I would like to sincerely thank my Research Supervisor Dr. Raji Pilakkat, Professor, Department of Mathematics, University of Calicut, for her expert guidance, helpful suggestions and for providing constructive criticism balanced with encouragement throughout the course of my research work.

Sincere thanks to Dr. Ramachandran P. T., Associate Professor and Head, Department, Department of Mathematics for their kind advices, assistance and for providing me facilities in the department. Also, I acknowledge my thanks to the faculty members Dr. Sini P. and Dr. Preethi Kuttipulackal for their support and encouragement.

Gratitude to Dr. Sheeba, Dr. Santhosh, Dr. Sivadasan Thirumangalath, Dr. M. Sreeja, Dr. Vinod Kumar, Sri. Jinto James, Sri. M. Nandakumar for their comments and suggestions.

It is my privilege to thank my research friends and hostelmates for their cheerful companionship and discussions they had with me. I thank the entire Department for the conductive atmosphere provided during this study.

I thank with warm heart to my Mother, Father, Mother in law, Father in law for their blessings on me and love to my husband Mr. Rajmohan and to my son

Nihal Raj. Also, thanks to my sisters and brother in laws for their support and timely encouragement.

Thankful acknowledgement to University of Calicut for the fellowship and facilities for doing the research.

Finally, heartfelt thanks to the External Power, in which I believe, for making the circumstances favorable to me in my onward journey till date.

University of Calicut,
29 MAY 2018.
Chithra K. P.

Contents

List of Symbols iii
List of Figures vi
0 Introduction 1
1 Preliminaries 7
1.1 Basics of Graph Theory 8
1.2 Operations on graphs 12
1.3 Fuzzy Relations 14
1.4 Fuzzy graphs 15
2 Strength of certain fuzzy graphs 20
2.1 Algorithm for finding strength of fuzzy graphs 21
2.2 Strength of strong fuzzy complete bipartite graph 25
2.3 Properly linked fuzzy graphs 27
2.4 Strong fuzzy Wagner graph 35
3 Strength of Fuzzy graphs derived from certain known Fuzzy graphs 36
3.1 Strength of join of fuzzy graphs 37
3.1.1 Fuzzy wheel graph 43
3.2 Corona of strong fuzzy graphs 46
3.3 Fuzzy Subdivision graph 57
3.4 Fuzzy middle graph 65
3.5 Total fuzzy graph, fuzzy split graph and fuzzy shadow graph 71
3.5.1 Total fuzzy graph 71
3.5.2 Fuzzy split graph 74
3.5.3 Fuzzy shadow graph 80
4 Products of fuzzy graphs 85
4.1 Cartesian product 85
4.2 Tensor product 108
4.3 Composition 115
4.4 Normal products 129
5 Relation between some fuzzy graphs and their line graphs 135
5.1 Line graph of some strong fuzzy graphs 136
5.1.1 Strong fuzzy butterfly graph 136
5.1.2 Strong fuzzy star graph 137
5.1.3 Strong fuzzy bull graph 137
5.1.4 Strong fuzzy diamond graph 138
5.2 Line graph of strong fuzzy cycle 139
6 Fuzzy extra strong k - path domination in strong fuzzy graphs 151
Epilogue 172
Bibliography 174
List of Publications 181
Index 183

List of Symbols

$A(G)$	the adjacency matrix of G
C_{n}	the cycle of length n.
deg v	degree of a vertex v
$d S_{k}(v)$	the extra strong k - path degree of a vertex v in a fuzzy graph G.
$d N_{k}(v)$	the extra strong k - path neighbourhood degree of a vertex v
	in a fuzzy graph G.
$d_{k}(v, S)$	the minimum length of the extra strong paths from v to u
$E S m k-D S(G)$	the set of all minimal extra strong k- path dominating sets
$E S \gamma_{S_{k}}(G)$	of a fuzzy graph G.

$E S \Gamma_{S_{k}}(G) \quad$ fuzzy extra strong k- path upper domination number.
$E S P N_{k}[u, S] \quad$ fuzzy extra strong k- path private neighbour.
$G(V, \mu, \sigma) \quad$ a fuzzy graph.
$G_{1}<G_{2}<\ldots<G_{m}$
a sequence of m n -linked fuzzy graphs.
$G_{1} \square G_{2}$
$G_{1} \otimes G_{2}$
the tensor product of two fuzzy graphs G_{1} and G_{2}.
$G_{1} \odot G_{2}$
$G_{1} \vee G_{2} \quad$ the join of two fuzzy graphs G_{1} and G_{2}.
$G_{1}\left[G_{2}\right] \quad$ the composition of two fuzzy graphs G_{1} and G_{2}.
$G_{1} \boxtimes G_{2} \quad$ the normal product of two fuzzy graphs G_{1} and G_{2}.
$H(V, \mu, \sigma) \quad$ the partial fuzzy subgraph of a fuzzy graph.
$L(G) \quad$ the line graph of a fuzzy graph $G(V, \mu, \sigma)$.
$M(G)\left(V_{M}, \mu_{M}, \sigma_{M}\right) \quad$ the fuzzy middle graph a fuzzy graph $G(V, \mu, \sigma)$
P_{n}
$S(G)\left(V_{s}, \mu_{s}, \sigma_{s}\right) \quad$ the shadow graph of a fuzzy graph $G(V, \mu, \sigma)$.
$\operatorname{split}(G)\left(V_{\text {split }}, \mu_{\text {split }}, \sigma_{\text {split }}\right) \quad$ the split graph of a fuzzy graph $G(V, \mu, \sigma)$ $s d(G)\left(V_{s d}, \mu_{s d}, \sigma_{s d}\right) \quad$ the subdivision graph of a fuzzy graph $G(V, \mu, \sigma)$ $T(G)\left(V_{T}, \mu_{T}, \sigma_{T}\right) \quad$ the total graph of a fuzzy graph $G(V, \mu, \sigma)$.
$V(G)$
W_{n}
$\delta_{S_{k}}(G)$
$\Delta_{S_{k}}$
$\delta_{N_{k}}(G)$
$\Delta_{N_{k}}$
the vertex set of the graph G.
the fuzzy wheel graph.
minimum of extra strong k - path degrees of vertices of a fuzzy graph G.
maximum of extra strong $k-$ path degrees of vertices of a fuzzy graph G.
the minimum extra strong k - path neighbourhood degree of a fuzzy graph.
the maximum extra strong k - path neighbourhood degree of a fuzzy graph.

List of Figures

1.1 A fuzzy graph G. 18
2.1 Fuzzy graph G. 22
2.2 A 2-linked fuzzy graph G, its parts G_{1} and G_{2}. 32
2.3 Fuzzy graph G and its merger graph. 33
2.4 Strong fuzzy Wagnergraphs with strengths 2, 3 and 4. 35
3.1 Fuzzy fan graph F_{24}. 38
3.2 Example for two fuzzy paths having $l_{1}=l_{2}=0$. 41
3.3 Example for two fuzzy paths having $l_{1}=1$ and $l_{2}=0$. 42
3.4 Example for two fuzzy paths having $l_{1}>1$ and $l_{2}=0$. 43
3.5 Two fuzzy graphs G_{1} and G_{2} and their corona. 47
3.6 Corona G of two strong fuzzy graphs G_{1} and G_{2} with $\mathscr{S}\left(G_{1}\right)=$ $\mathscr{S}(G)=6$. 50
3.7 Corona of two fuzzy graphs G_{1} and G_{2} with $\mathscr{S}\left(G_{1}\right)=5, \mathscr{S}(G)=6$. 51
3.8 Corona of two fuzzy graphs G_{1} and G_{2} with $\mathscr{S}\left(G_{1}\right)=5$ and $\mathscr{S}(G)=7$. 53
3.9 Two fuzzy graphs G_{1} and G_{2} and their corona. 54
3.10 Corona G of two fuzzy graphs G_{1} and G_{2} with $\left|G_{1}\right|=\left|G_{2}\right|=2$. 54
3.11 A strong fuzzy path and its subdivision graph. 58
3.12 A strong fuzzy butterfly graph and its subdivision graph. 59
3.13 A strong fuzzy Bull graph G and its subdivision graph $\operatorname{sd}(G)$. 60
3.14 A strong fuzzy diamond graph G and its subdivision graph $s d(G)$. 63
3.15 A strong fuzzy star graph and its middle graph $M(G)$. 68
3.16 A fuzzy diamond graph G and its middle graph $M(G)$. 70
3.17 A fuzzy path on 2 vertices and its total fuzzy graph. 72
3.18 A fuzzy path on 4 vertices and its total fuzzy graph. 73
3.19 (a) A fuzzy path on 2 vertices and its split graph, (b) A fuzzy path on 3 vertices and its split graph. 76
3.20 A fuzzy path on n vertices and its split graph. 77
3.21 A graph G on 3 vertices and its split graph. 80
3.22 (a) Fuzzy path on 2 vertices and its shadow graph (b) Fuzzy path on 4 vertices and its shadow graph. 82
3.23 A fuzzy complete graph on 3 vertices and its shadow graph. 84
4.1 The fuzzy paths G_{1}, G_{2} and their Cartesian product $G_{1} \square G_{2}$. 87
4.2 The fuzzy subgraphs G_{1} and G_{2}, their Cartesian product $G_{1} \square G_{2}$ and two partial fuzzy subgraphs H_{1} and H_{2} of $G_{1} \square G_{2}$. 89
4.3 Partial fuzzy subgraphs H_{12}, H_{13} and $H_{1 n+1}$ of $G=G_{1} \square G_{2}$. 92
4.4 Cartesian product of two fuzzy graphs with underlying graphs P_{k+1} and P_{n}. 95
4.5 Cartesian product of the fuzzy graphs G_{1} with underlying crisp graph P_{2} and G_{2} with underlying crisp graph C_{n}. 98
4.6 The Cartesian product of G_{1} and $G_{2}-\left\{v_{1}, \ldots, v_{l-1}\right\}$. 99
4.7 Cartesian product $G_{1} \square G_{2}$ of a fuzzy path G_{1} and a fuzzy star graph G_{2} 103
4.8 Cartesian product $G=G_{1} \square G_{2}$ of a fuzzy path G_{1} on 2 vertices and G_{2}, a fuzzy butterfly graph and the fuzzy subgraphs H_{1} and H_{2} of G. 106
4.9 A fuzzy subgraph H of G. 107
4.10 Tensor product of two fuzzy paths. 109
4.11 Tensor product of two strong fuzzy graphs. 110
4.12 (a) A fuzzy path on two vertices G_{1}, (b) a strong fuzzy cycle G_{2} and (c) their tensor product of G. 112
4.13 Composition of fuzzy graphs. 118
4.14 (a) A strong fuzzy path G_{1}, (b) a strong fuzzy star graph G_{2} and
(c) their composition G. 123
4.15 Composition of a fuzzy path and a fuzzy bull graph 124
4.16 (a) A strong fuzzy path G_{1}, (b) a strong fuzzy cycle G_{2} and (c) their composition G. 127
4.17 Normal product of a strong fuzzy path on two vertices and a strong fuzzy path on n vertices. 130
4.18 Normal product of two complete fuzzy graphs G_{1} and G_{2}. 131
4.19 Normal product of a strong fuzzy path on two vertices and a strong fuzzy star graph. 132
4.20 Normal product of a strong fuzzy path on two vertices and a strong fuzzy butterfly graph and their merger graph. 133
5.1 (a) A strong fuzzy Butterfly graph G and (b) its line graph $\mathrm{L}(\mathrm{G})$ 137
5.2 (a) A strong fuzzy Bull graph G and (b) its line graph $\mathrm{L}(\mathrm{G})$ 138
5.3 A strong fuzzy diamond graph G and its line graph $L(G)$. 139
5.4 A strong fuzzy cycle G. 141
5.5 A fuzzy cycle G of length 6 with 4 weakest edges and its line graph $L(G)$. 143
5.6 A fuzzy graph G with 12 vertices and 4 nonconsecutive weakest edges. 149
5.7 A fuzzy graph G with 13 vertices and 5 nonconsecutive weakest edges. 150
5.8 A fuzzy graph G with 13 vertices and 4 nonconsecutive weakest edges. 150
6.1 A fuzzy graph G having Strength 5. 152
6.2 A fuzzy graph G. 157
6.3 The fuzzy subgraph G_{1}. 158
6.4 A strong fuzzy wheel graph and a fuzzy wheel graph. 160
6.5 (a) A strong fuzzy Butterfly graph G, (b) its line graph L(G) and (c) merger graph of $L(G)$. 161

Chapter

Introduction

Graph theory has tremendous applications in many real life problems and many areas of science such as chemistry, computer networks, computational neuro science, condensed matter physics etc. By using the principles of graph theory many problems in the field of economics, linguistics, artificial intelligence, pattern recognition, network topologies etc. can be modeled and analysed.

Graphs do not model all the systems properly due to the uncertainty or haziness of the parameters of systems. For example, a social network may be represented as a graph where vertices represent accounts (persons, institutions, etc.) and edges represent the relation between the accounts. If the relations among accounts are to be measured as good or bad according to the frequency of contacts among the accounts. This and many other problems motivated to define fuzzy graphs. Azriel Rosenfeld was first introduced the concept of fuzzy graphs. Crisp graph and fuzzy graph are structurally similar. But fuzzy graph
has a separate importance, when there is an uncertainty on vertices and/or edges comes.

M-strong fuzzy graphs [4] were introduced by Bhutani and Battou. Bhutani and Rosenfeld consider strong arcs in fuzzy graphs [5] for their work. Mathew and Sunitha have introduced different types of arcs in fuzzy graphs and studied their properties [30].

Ore and Berge studied the domination set in graphs. Due to the diversity of applications of domination theory to real situation or location problem, the research in this field grows rapidly. Domination in Fuzzy graphs is discussed by A. Somasundram and S. Somasundram through their paper Domination in fuzzy graphs -1 [50].

In this thesis we consider strong fuzzy graphs which were introduced by Mordeson J. N. and Peng [34]. Sheeba M. B. [48] defined the strength of fuzzy graphs which are connected. We extend this definition to arbitrary fuzzy graphs as the maximum of strength of all connected components of a fuzzy graph. Also, in our work we have made an attempt to introduce the concept of extra strong k - path domination in strong fuzzy graphs.

Outline of the Thesis

Apart from this introductory chapter, we have presented our work in six chapters.

In Chapter 1, we describe the basic concepts, facts, elementary results and some of the operations of crisp graphs and fuzzy graphs. In this chapter we familiarise the concept of strength of fuzzy graphs and give some theorems that explain the strength of certain fuzzy graphs such as fuzzy path, fuzzy cycle etc. which are needed in the subsequent discussion.

In Chapter 2, we first derive an algorithm for finding the strength of a fuzzy path in a fuzzy graph $G(V, \mu, \sigma)$ and then the length of the path joining two vertices with minimum length and maximum strength. All of these algorithms are illustrated through examples. Apart from this, we define properly linked fuzzy graphs and derive strength of such graphs when each part of it is a strong fuzzy complete graph. Also in this chapter we find the strength of a strong fuzzy complete bipartite graph, strong fuzzy diamond graph, strong fuzzy butterfly graph and strong fuzzy bull graph.

In Chapter 3, we discuss join of some strong fuzzy graphs, corona of some strong fuzzy graphs, subdivision graph, middle graph, total graph, split graph and shadow graph of some strong fuzzy graphs. There are five sections in this chapter. In the first section, 'strength of join of fuzzy graphs' we find the strength of join of (1) two complete fuzzy graphs, (2) two fuzzy fan graphs, (3) two fuzzy star graphs, (4) two strong fuzzy paths, (5) strong fuzzy wheel graph which is the join of a fuzzy cycle and a fuzzy trivial graph. In the next section 'Corona of strong fuzzy graphs' we find the strength of corona of (1) a fuzzy trivial graph and a strong fuzzy graph which is not a fuzzy null graph, (2) two fuzzy
null graphs $G_{1}\left(U, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ with $|U|=1$ and $|V|>1$, (3) two strong fuzzy paths, (4) two strong fuzzy butterfly graphs. In the section 'Fuzzy subdivision graph of strong fuzzy graphs' we find the strength of subdivision graph of (1) strong fuzzy path, (2) strong fuzzy butterfly graph, (3) strong fuzzy Bull graph, (4) strong fuzzy star graph, (5) strong fuzzy diamond graph and (6) fuzzy complete graph. In the next section 'Fuzzy middle graph' we find strength of middle graph of (1)complete fuzzy graph, (2)strong fuzzy star graph and (3) strong fuzzy diamond graph. In the next section 'total fuzzy graph' we find the strength of total graph of fuzzy null graph and a fuzzy complete graph. In the next section 'Fuzzy split graph' we find the strength of split graph of a strong fuzzy path and a fuzzy complete graph. In the next section 'Fuzzy shadow graph' we find the strength of a strong fuzzy path and a fuzzy complete graph.

In Chapter 4, the strengths of Cartesian product, tensor product, composition and normal product of certain strong fuzzy graphs are determined.

First of all, we prove the Cartesian product of two fuzzy paths, each has P_{2} as its underlying crisp graph is a fuzzy cycle and its strength is 2 . Also we find the strength of Cartesian product of two fuzzy paths with respective crisp graphs P_{m} and P_{n} for all values of m and n and strength of Cartesian product of two strong fuzzy graphs with underlying crisp graphs P_{2} and C_{n}. We define the fuzzy book, and fuzzy pages and find the strength of fuzzy book. The strength of Cartesian product of a strong fuzzy path on 2 vertices and a strong fuzzy butterfly graph is also find.

In the next section, we determine the strength of tensor product of a strong fuzzy path on two vertices and a strong fuzzy path on n vertices. Also we find the strength of tensor product of a strong fuzzy path on two vertices and a fuzzy star graph, a strong fuzzy cycle. The strength of tensor product of two fuzzy complete graphs is also find here.

The third section discusses the strength of composition of strong fuzzy paths P_{m} and P_{n} for all values of m and n and prove that the strength of composition of two strong fuzzy paths on 2 and n vertices is not equal to that of the strength of composition of two strong fuzzy paths on n and 2 vertices respectively. We derive the strength of composition of a strong fuzzy path on two vertices and a strong fuzzy star graph and that of strong fuzzy Bull graph, and a strong fuzzy cycle.

The fourth section deals with the normal product of some strong fuzzy graphs and determine the strength of normal product of two strong fuzzy graphs with their respective underlying crisp graphs, (1) the paths P_{2} and $P_{n}, n>1,(2)$ the complete graphs K_{n} and K_{m}, (3) the paths P_{2} and the star graph S_{n}, (4) the star graphs S_{m} and S_{n}. This section also introduces a new concept called fuzzy merger graph. Using this concept, we derive the strength of normal product of a strong fuzzy path on two vertices and a strong fuzzy butterfly graph is 2 .

In Chapter 5 we find the strengths of line graphs of some strong fuzzy graphs which include strong fuzzy butterfly graph, strong fuzzy star graph, strong fuzzy bull graph and strong fuzzy diamond graph.

A path P in a fuzzy graph $G(V, \mu, \sigma)$ with all its edges have weight equal to w where $w=\min \{\sigma(u v): \sigma(u v)>0$ in $G\}$ is called a weakest path. A weakest path which is not a proper subpath of any other weakest path in the fuzzy graph G is called a maximal weakest path in G. We find strength of line graph a strong fuzzy path and strength of line graph of strong fuzzy cycle.

Chapter 6 introduces extra strong k - path domination in a strong fuzzy graph $G(V, \mu, \sigma)$, fuzzy extra strong k - path neighbour of a vertex, for a subset X of V, the open and closed extra strong k - path neighbourhood of X, fuzzy extra strong k - path isolated vertex, fuzzy extra strong k - path neighbourhood degree, minimal and maximal fuzzy extra strong k - path dominating set and fuzzy extra strong k - path domination number. Also we give an algorithm for finding an extra strong k - path minimal dominating set of a fuzzy graph and find extra strong k - path domination number of certain strong fuzzy graphs.

Fuzzy extra strong k - path private neighbour, fuzzy extra strong k - path independent set and fuzzy extra strong k - path minimal (and maximal) redundant and irredundant set are introduced and discussed with some of its properties.

comex 1

Preliminaries

Graph theory is most accepted because of its tremendous applications in various fields of Mathematics and other subjects. The publications of last thirty years show that Graph Theory is the fastest growing area among all the subjects in all disciplines. Many problems can be described by using a mathematical structure consisting of a set of points together with lines joining certain pair of points; such a diagram is termed as a graph [7].

The purpose of this chapter is to list the terminology and notation that we shall use in this work. Much of the terms used are standard graph theoretic terminology, a few terms will be introduced later when their turn comes.

A (undirected) graph [39] $G(V(G), E(G))$ consists of a nonempty set $V(G)$ and a collection $E(G)$ of unordered pair of elements of $V(G)$. If there is no ambiguity we simply write $G(V, E)$ or just G instead of $G(V(G), E(G))$ and if $e=(u, v)$, where $e \in E$ and $u, v \in V$, we simply write $e=u v$. An element,
indicated by a point, of V is called a vertex [7]. An element, a line joining the points representing ends, of E is called an edge [7], V is the vertex set and E is the edge set of G [39].

1.1 Basics of Graph Theory

Let $G(V, E)$ be the given graph. The order [7] of G is the number of vertices of G and the size [7] of G is the number of edges of G. The vertices u and v are said to be adjacent if $e=u v$ is an edge of G and the edge e is said to incident with (incident to or incident at) u and v. The end vertices of the edge $e[7]$ are u and v. Then the vertex v is called a neighbour of u. The set of all neighbours of the vertex u in a graph G is denoted by $N(u)$ [7]. Adjacent [7] edges have a common vertex. An edge with identical ends is called a loop [7] and an edge with distinct ends is called a link [7]. Two or more links with the same pair of ends are said to be parallel edges or multiple edges and graph having multiple edges is a multigraph [7]. A graph having a set of vertices connected by edges, where the edges have a direction associated with them is a directed graph (digraph) [7]. If edges have no orientation in a graph then that graph is an undirected graph. A simple graph is an undirected graph having no multiple edges and loops [7]. A graph $G(V, E)$ is finite [7] if both V and E are finite. A graph with a single vertex is called a trivial graph [7] and other graphs are nontrivial.

Through out the thesis, we consider only finite, simple, undirected graphs.

The degree [20] of a vertex v in the graph G is the number of edges incident to v and is denoted by deg v. A vertex of degree one is called an end vertex or a pendant vertex [32] and a vertex adjacent to a pendant vertex is called a support vertex [7]. A pendant edge is the edge incident with a pendant vertex. A vertex v is isolated [7] if deg $v=0$. By an empty graph [7] we mean a graph with no edges. The minimum degree of vertices in G is denoted by $\delta(G)$ and maximum degree of vertices in G by $\Delta(G)$ [7]. If both $\delta(G)$ and $\Delta(G)$ is equal to r then G is said to be r - regular or regular of degree r [7]. A simple graph G is said to be complete [40] if every pair of distinct vertices of G are adjacent in G. By K_{n} we mean a complete graph on n vertices. If the vertex set of a graph can be partitioned into two subsets, X and Y so that every edge has one end in X and other end in Y is called a bipartite graph ; such a partition (X, Y) is called a bipartition of the bipartite graph [7]. A simple bipartite graph is complete [7] if each vertex of X is adjacent to all vertices of Y. A complete bipartite graph with $|X|=m$ and $|Y|=n$ is denoted by $K_{m, n}$. When $m=1, K_{m n}$ is called a star graph [1]. The Wagner graph is the graph which is formed by adding to an octagon four edges joining its diagonally opposite pairs of vertices [27]. A planar undirected graph with 4 vertices and 5 edges is called a diamond graph [52]. It consists of a complete graph K_{4} minus one edge(http:// en.m.wikepedia.org).

Let G be a simple graph of order n, where $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. The
$n \times n$ zero-one matrix $A(G)=\left[a_{i j}\right]$, where

$$
a_{i j}= \begin{cases}1 & \text { if } u_{i} u_{j} \in E(G), \\ 0 & \text { if } u_{i} u_{j} \notin E(G) .\end{cases}
$$

is the adjacency matrix [9] of G

Note that A is a symmetric matrix, i.e, row i of A is identical to column i of A for every integer i with $1 \leq i \leq n$. It is observed that $\sum_{j=1}^{n} a_{i j}=\sum_{k=1}^{n} a_{k j}=\operatorname{deg}\left(v_{i}\right)$.

Let G be a simple graph [58] of order n, where $V(G)=\left\{u_{i}: i=1,2, \ldots, n\right\}$ and $E(G)=\left\{e_{j}: j=1,2, \ldots, n\right\}$. The $n \times m$ matrix $M(G)=\left[m_{i j}\right]$, where

$$
m_{i j}= \begin{cases}0 & \text { if } u_{i} \text { is not an end of } e_{j} \\ 1 & \text { if } u_{i} \text { is an end of the non-loop } e_{j} \\ 2 & \text { if } i \text { is an end of the loop } e_{j}\end{cases}
$$

is the incidence matrix [32] of G. It is observed that $\sum_{j=1}^{n} m_{i j}=\operatorname{deg}\left(u_{i}\right)$ and $\sum_{i=1}^{m} m_{i j}=2$.

A walk [7] in a graph G is an alternating sequence of vertices and edges, such as $W=u_{0} e_{1} u_{1} e_{2} \ldots e_{n} u_{n}$, beginning and ending with vertices in which $e_{i}=u_{i-1} u_{i} ; u_{0}$ is the origin and u_{n} is the terminus of W. The walk W is said to join u_{0} and u_{n}; it is also referred to as a $u_{0}-u_{n}$ walk. The length [7] of a walk is the number of edges in it. A walk is called a trail [7] if all the edges appearing in the walk are distinct. It is called a path [7] if all its vertices are distinct. Thus
a path in G is automatically a trail in G . When writing a path, we usually omit the edges. A cycle [7] is a closed trail in which all the vertices are distinct. A cycle of length n is denoted by C_{n} and a path with n vertices is denoted by P_{n}. Note that P_{n} has length $(n-1)$ [11]. A butterfly graph is constructed by joining two cycles C_{3} with a common vertex [13]. A bull graph consists of a triangle with two pendent edges at two distinct vertices of the triangle [17].

If there exist at least one path joining any two vertices of a graph G then it is said to be connected [22]. Otherwise, it is a disconnected graph [17]. For any two vertices u_{i} and u_{j} connected by a path in a graph G, the distance [11] between u_{i} and u_{j}, denoted by $d\left(u_{i}, u_{j}\right)$, is the length of a shortest $u_{i}-u_{j}$ path.

A graph K is called a subgraph [7] of G if $V(K) \subseteq V(G)$, and $E(K) \subseteq E(G)$. In this case G is a supergraph of K. Given any two graphs G and K, K is an induced subgraph [9] of G if $V(K) \subseteq V(G)$, only adjacent vertices in K are adjacent in G. In this case if $V(K)=S$, we write $K=G[S]$ or $K=<S>$. A subgraph K of G is a spanning subgraph [14] of G, if $V(K)=V(G)$. A maximal complete subgraph of a graph is a clique [6] of the graph. That is if Q is a clique in G, then no subgraph of G which contains Q properly is complete.

If e is an edge of a graph G, then $G-e$ is the graph in which it is obtained from G by deleting the edge e [59]. More generally, if F is any set of edges in G, then $G-F$ is the graph obtained from G by deleting all the edges in F [59]. Similarly, if u is a vertex of a graph G, then the graph obtained from G by deleting the vertex u and all edges incident with it is denoted by $G-u$ [59].

More generally, if S is any set of vertices in $G, G-S$ is the graph obtained from G by deleting all the vertices in S, and all edges incident with at least one of the vertices of S [59].

A component [22] of a graph G is a connected subgraph not properly contained in any other connected subgraph. A vertex v in a connected graph G is a cut vertex [9] if $G-v$ is disconnected. A connected graph that has no cut vertices is called a block [7]. A block of G containing exactly one cut vertex of G is called an end-block [9] of G.

1.2 Operations on graphs

This section deals with some of the operations on graphs that are used in subsequent chapters. $G_{1} \cup G_{2}$ is the union [58] of two graphs G_{1} and G_{2} with vertex set is the union of $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge set is the union of $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$. The join of two graphs G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is the graph with vertex set same as that of $G_{1} \cup G_{2}$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u_{i} u_{j}: u_{i} \in V\left(G_{1}\right)\right.$ and $u_{j} \in$ $\left.V\left(G_{2}\right)\right\}$ is called the join [18] of graphs G_{1} and G_{2}. The corona [18] of two graphs G_{1} and G_{2} is the graph $G=G_{1} \odot G_{2}$ formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, where $i^{\text {th }}$ vertex of the copy of G_{1} is adjacent to every vertex in $i^{\text {th }}$ copy of G_{2}. The middle graph [32] of the graph G is the graph $M(G)=\left(V(G) \cup E(G), E^{\prime}(G)\right)$, where $u v \in E^{\prime}$ if and only if either u is a vertex of G and v is an edge containing u, or u and v are edges having a vertex in common.

The line graph [58] $L(G)$ of a graph G, is the graph with vertex set is the edge set of $G, E(G)$ and edge set is $\{e f: e, f \in E(G)$ and e, f have a vertex in common $\}$. The Cartesian product $[26] G=G_{1} \square G_{2}$ of two graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ is the graph G whose vertex set $V_{1} \times V_{2}$. Let $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ be two vertices of G. They are adjacent in $G_{1} \square G_{2}$, if and only if $u_{1} u_{2} \in E_{1}$ and $v_{1}=v_{2}$, or $u_{1}=u_{2}$ and $v_{1} v_{2} \in E_{2}$. The tensor product (or direct product) [8] $G=G_{1} \otimes G_{2}$ of two graphs G_{1} and G_{2} is the graph G whose vertex set is $V\left(G_{1}\right) \times V\left(G_{2}\right)$. Let $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ be two vertices being adjacent in $G_{1} \otimes G_{2}$, if $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$. The strong (or normal) product [40] $G_{1} \boxtimes G_{2}$ of two simple graphs G_{1} and G_{2} is the graph with $V\left(G_{1} \boxtimes G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$, where $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G 1 \boxtimes G_{2}$ if either

1. $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2}, or
2. u_{1} is adjacent to u_{2} and $v_{1}=v_{2}$, or
3. u_{1} is adjacent to u_{2} and v_{1} is adjacent to v_{2}.

The composition (lexico graphic product) [47] $G_{1}\left[G_{2}\right]$ of two graphs G_{1} and G_{2}, is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1}\left[G_{2}\right]$, whenever $u_{1} u_{2} \in E\left(G_{1}\right)$, or $u_{1}=u_{2}$ and $v_{1} v_{2} \in$ $E\left(G_{2}\right)$.

Through out this thesis we consider the product of two graphs with disjoint vertex sets.

1.3 Fuzzy Relations

In this section we give some definitions in fuzzy set theory. A classical crisp set is normally defined as a collection X of objects that can be finite, countable, or uncountable.

A fuzzy subset [25] of a set X is a function $\mu: X \longrightarrow[0,1]$, where $[0,1]$ denotes the set $\{t \in \mathcal{R}: 0 \leq t \leq 1\}[60]$. Let μ be a fuzzy subset of X then the support of $\mu, \operatorname{Supp}(\mu)=\{x \in X: \mu(x)>0\}$ [35]. Let μ, ν be two fuzzy subsets of X. Then

1. $\mu \subseteq \nu$ if $\mu(x) \leq \nu(x), \forall x \in X$.
2. $\mu \subset \nu$ if $\mu(x) \leq \nu(x), \forall x \in X$ and there exists at least one $x \in X$ such that $\mu(x)<\nu(x)$.
3. $\mu=\nu$ if $\mu(x)=\nu(x)$, for all $x \in X$.

Let X and Y be any two subsets and μ, ν be fuzzy subsets of X and Y respectively. Then a fuzzy relation σ from the fuzzy subset μ into the fuzzy subset ν is a fuzzy subset σ of $X \times Y$ such that $\sigma(u v) \leq \mu(x) \wedge \nu(x)$ for all $u \in X$ and $v \in Y$. Also let $\sigma: X \times Y \longrightarrow[0,1]$ be a fuzzy relation from a fuzzy subset μ of X into a fuzzy subset ν of Y and $\rho: Y \times Z \longrightarrow[0,1]$ be a fuzzy relation from a fuzzy subset ν of Y into a fuzzy subset η of Z. Define $\sigma \circ \rho: X \times Z \longrightarrow[0,1]$ by $\sigma \circ \rho(x, z)=\vee\{\sigma(x, y) \wedge \rho(y, z) \mid y \in Y\}$ for all $x \in X, z \in Z$. Then $\sigma \circ \rho$ is
called the composition of σ with ρ [35].

Note that $\sigma \circ \rho$ is a fuzzy relation from a fuzzy subset μ of X into a fuzzy subset η of Z. The composition operation, $\sigma \circ \rho$ can be computed similar to matrix multiplication, where the addition and multiplication are replaced by \vee and \wedge respectively. Composition being associative, we use the notation σ^{2} to denote the composition $\sigma \circ \sigma, \sigma^{k}$ to denote $\sigma^{k-1} \circ \sigma, k>1$. Define $\sigma^{\infty}(x, y)=$ $\vee\left\{\sigma^{k}(x, y) \mid k=1,2, \ldots\right\}[35]$.

1.4 Fuzzy graphs

A fuzzy graph [35] $G(V, \mu, \sigma)$ is a non empty set V together with a pair of functions $\mu: V \longrightarrow[0,1]$ and $\sigma: V \times V \longrightarrow[0,1]$ such that for all u, v in V, $\sigma(u, v) \leq \mu(u) \wedge \mu(v)$. We call μ the fuzzy vertex set of G and σ the fuzzy edge set of G, respectively.The fuzzy graph $K(V, \nu, \tau)$ is called a partial fuzzy subgraph [43] of $G(V, \mu, \sigma)$ if $\nu \subset \mu$ and $\tau \subset \sigma$. Similarly, the fuzzy graph $K(U, \nu, \tau)$ is called a fuzzy subgraph [16] of $G(V, \mu, \sigma)$ induced by U if $U \subset V, \nu(u)=\mu(u)$ for all $u \in U$ and $\tau(u, v)=\sigma(u, v)$ for all $u, v \in U$. A vertex u of a fuzzy graph $G(V, \mu, \sigma)$ is said to be isolated vertex [50] if $\sigma(u, v)<\mu(u) \wedge \mu(v)$ for all $v \in V \backslash\{u\}$. Through out this Thesis the edge between two vertices u and v in a fuzzy graph is denoted by $u v$ rather than (u, v).

The fuzzy graph [23] $G(V, \mu, \sigma)$ with $\sigma(u, v)=0$ for all $u, v \in V$ is called a fuzzy null graph. A fuzzy trivial graph [30] is a fuzzy null graph on a single
vertex.

The underlying crisp graph of a fuzzy graph $G(V, \mu, \sigma)$ is denoted by $G(V, E)$. A sequence of distinct vertices $P=u_{0}, u_{1}, u_{2}, \ldots, u_{n}$ such that $\sigma\left(u_{i-1} u_{i}\right)>0$, $1 \leq i \leq n$ is called a path [42] P in a fuzzy graph $G(V, \mu, \sigma)$. Here length of the path P is $n \geq 1$. The consecutive pairs $\left(u_{i-1}, u_{i}\right)$ are called edges of the fuzzy path. The strength of P [5] is defined as $\wedge_{i=1}^{n} \sigma\left(u_{i-1} u_{i}\right)$. That is weight of the weakest edge of the fuzzy path P is called the strength of P. A single vertex u may also be considered as a fuzzy path. In this case the fuzzy path is of length 0 , and its strength is defined to be $\mu(u)$. A partial fuzzy subgraph $H(V, \mu, \sigma)$ is said to be connected [51] if $\sigma^{\infty}(u v)=\vee\left\{\sigma^{k}\left(v_{i-1} v_{i}\right): k=1,2, \ldots, n\right\}>0$ where $\mu(u)>0$, and $\mu(v)>0 \forall u, v \in V$.

A fuzzy cycle is the one in which its underlying crisp graph is a cycle and there exist more than one edge $u v$ such that $\sigma(u v)=\wedge\left\{\sigma\left(u_{i} u_{j}\right): \sigma\left(u_{i} u_{j}\right)>0\right\}$. Maximal connected partial fuzzy subgraphs are called components [31]. In fact, u and v are connected if, and only if, $\sigma^{\infty}(u v)>0$. A fuzzy graph G is connected [51] if, and only if, $\sigma^{\infty}(u v)>0$ for all $u, v \in V$.

A fuzzy graph G is a forest if the underlying crisp graph is a forest and a tree if the underlying crisp graph is connected forest. A fuzzy graph $G(V, \mu, \sigma)$ is called a complete fuzzy graph [3] if $\sigma(u v)=\mu(u) \wedge \mu(v)$, for all $u, v \in V$. A fuzzy graph $G(V, \mu, \sigma)$ is said to be a strong fuzzy graph if $\sigma(u v)=\mu(u) \wedge \mu(v)$, for all $u v \in E$, the edge set of G, the crisp graph which we call the edge set of G itself. A fuzzy graph $G(V, \mu, \sigma)$ is regular if, and only if (i) its underlying crisp
graph is an odd cycle and σ is a constant function, (ii) its underlying crisp graph is an even cycle and either σ is a constant function or alternate edges have same weights [49]. A fuzzy star graph [57] $G(\mu, \sigma)$ consists of two vertex sets V and U with $|V|=1$ and $|U|>1$, such that for $v \in V$ and $u_{i} \in U, \sigma\left(v, u_{i}\right)>0$ and $\sigma\left(u_{i}, u_{i+1}\right)=0,1 \leq i \leq n$.

Let u and v be two distinct vertices of $G(V, \mu, \sigma)$, a fuzzy graph with underlying crisp graph $G(V, E)$. Let its order and size be n and m respectively. If there exists at least one path between u and v of length less than or equal to k then the connectedness of strength k between u and v [49] is defined as the maximum of the strength of all paths between them of length less than or equal to k. Otherwise it is defined as zero. The $n \times n$ matrix $A=\left(a_{i j}\right)$ defined by

$$
a_{i j}= \begin{cases}\sigma\left(v_{i} v_{j}\right) & \text { if } i \neq j, \\ \mu\left(v_{i}\right) & \text { if } i=j .\end{cases}
$$

is called the weight matrix of G.

An example of a connected fuzzy graph is depicted as in Figure 1.1. The connectedness of strength 2 between the vertices v_{1} and v_{4} is 0.2 . The connectedness of strength 3 between the vertices v_{1} and v_{4} is 0.5 .

A fuzzy graph

Figure 1.1: A fuzzy graph G.

The weight matrix A of the fuzzy graph in Figure 1.1 is

$$
A=\left[\begin{array}{cccc}
0.6 & 0.5 & 0.2 & 0.0 \\
0.5 & 0.6 & 0.6 & 0.0 \\
0.2 & 0.6 & 0.7 & 0.7 \\
0.0 & 0.0 & 0.7 & 0.7
\end{array}\right]
$$

Also let A be an $n \times n$ weight matrix of the fuzzy graph G. For all $i \geq n$, the least positive integer n such that $A^{n}=A^{i}$ is called the strength of G. The strength of the fuzzy graph G in Figure 1.1 is 3.

A path $P=v_{i} v_{i+1} \ldots v_{j}$ of a fuzzy graph $G(V, \mu, \sigma)$ is said to connect the vertices v_{i} and v_{j} of G strongly [48] if its strength is maximum among all the paths between v_{i} and v_{j}. Such paths are called strong paths. Any strong path between two distinct vertices v_{i} and v_{j} in G with minimum length is called an extra strong path [48] between them. The maximum length of extra strong paths between every pair of distinct vertices in G is called the strength of connectivity
of the graph G [48]. Strength of connectivity of the graph G is proved to be the same as strength of G.

Theorem 1.4.1. [48] The strength of
(i) a strong fuzzy path on n vertices is its length $(n-1)$.
(ii) a complete fuzzy graph is one.
(iii) a regular fuzzy graph on n vertices is $\left[\frac{n}{2}\right]$.
(iv) a fuzzy star graph is 2 .

Theorem 1.4.2. [48] The strength of a fuzzy cycle G with underlying crisp graph a cycle on n vertices and l weakest edges, which altogether form a subpath in G is $n-l$ if $l \leq\left[\frac{n+1}{2}\right]$ and $\left[\frac{n}{2}\right]$ if $l>\left[\frac{n+1}{2}\right]$.

Theorem 1.4.3. [48] Let G be a fuzzy cycle with underlying crisp graph a cycle of length n, having l weakest edges which do not altogether form a subpath. If $l>\left[\frac{n}{2}\right]-1$ then the strength of the graph is $\left[\frac{n}{2}\right]$ and if $l=\left[\frac{n}{2}\right]-1$ then the strength of the graph is $\left[\frac{n+1}{2}\right]$.

Theorem 1.4.4. [48] In a fuzzy cycle of length n suppose there are $l<\left[\frac{n}{2}\right]-1$ weakest edges which do not altogether form a subpath. Let s denote the maximum length of the subpath which does not contain any weakest edge. If $s \leq\left[\frac{n}{2}\right]$ then the strength of the graph is $\left[\frac{n}{2}\right]$ and if $s>\left[\frac{n}{2}\right]$ then the strength of the graph is s.

Strength of certain fuzzy graphs

In this chapter we derive an algorithm for finding the strength of fuzzy graphs. Strength of strong fuzzy complete bipartite graph have been determined. A new concept named properly linked fuzzy graphs is introduced in this chapter. Also a fuzzy merger graph is defined and find a relation connecting fuzzy merger graph and a 1 - linked fuzzy graph. Further strength of such graphs are determined. Also strength of strong fuzzy Wagner graph has been determined.

[^0]
2.1 Algorithm for finding strength of fuzzy graphs

In this section we consider only those fuzzy graphs whose underline graphs are connected. Graph theory and graph algorithms are inseparably interwined subjects. Bhattacharya and Suraweera [2] have given an algorithm for finding $\sigma^{\infty}(u, v)$ using maximum spanning tree algorithm of fuzzy graphs. Here we give an algorithm for finding the strength of a fuzzy graph in a direct method. The concept of strength of connectivity between two vertices of a fuzzy graph introduced by Bhattacharya and Suraweera [2] was further studied by Sheeba M. B. [48] by introducing two new terminologies extra strong paths and strength of fuzzy graphs. Though theoretical approach is the strong clear cut method, it is some times difficult and tedious to find the strength for arbitrary graphs. So we tried for an algorithmic approach to find the strength of the fuzzy graphs and have succeeded. This section discusses an algorithmic approach to find the strength of fuzzy graphs.

Algorithm 2.1.1. Algorithm for finding the strength of a path in a

 fuzzy graph G.Let G be a fuzzy graph and v_{i}, v_{j} be two vertices of G. Let $P=x_{1} x_{2} \ldots x_{n}$, where $v_{i}=x_{1}$ and $v_{j}=x_{n}$ be a $v_{i}-v_{j}$ path with $\sigma_{k}=\sigma\left(x_{k} x_{k+1}\right), k=$ $1,2, \ldots,(n-1)$. Then the minimum value of σ_{k}, for $k=1,2, \ldots,(n-1)$ is the strength of P.

Input : $\sigma_{1}=\sigma\left(x_{1} x_{2}\right)$.

Step 1. For $k=2$, find σ_{k} and compare σ_{1} and σ_{k}.
If $\sigma_{k}>\sigma_{1}$ then ignore the value of σ_{k}.

If $\sigma_{k} \leq \sigma_{1}$ then $\sigma_{1}=\sigma_{k}$.

Step 2. Repeat Step 1 for $k=3,4, \ldots,(n-1)$.

Output: The strength of $P=\sigma_{1}$.

Illustration:

Figure 2.1: Fuzzy graph G.

Consider the fuzzy graph G in Figure 2.1. There are 3 paths joining v_{1} and $v_{5} ; v_{1} v_{4} v_{5}, v_{1} v_{3} v_{4} v_{5}$ and $v_{1} v_{2} v_{4} v_{5}$ in G. Let $P_{1}=v_{1} v_{2} v_{4} v_{5}$. Then $\sigma_{1}=\sigma\left(v_{1} v_{2}\right)=$ $0.3, \sigma_{2}=\sigma\left(v_{2} v_{4}\right)=0.8, \sigma_{3}=\sigma\left(v_{4} v_{5}\right)=0.7$. Here $\sigma_{2}>\sigma_{1}$. Therefore ignore σ_{2}. Since $\sigma_{3}>\sigma_{1}$ ignore σ_{3}. So $\sigma_{1}=0.3$ is the strength of P_{1}.

In a similar manner we can find the strength of the path of $v_{1} v_{4} v_{5}=0.2$ and that of $v_{1} v_{3} v_{4} v_{5}$ is equal to 0.4 .

Algorithm 2.1.2. Algorithm for finding $k_{v_{i} v_{j}}$, the length of the path joining two vertices v_{i} and v_{j} with minimum length and with maximum strength.

Let G be a fuzzy graph with underlying crisp graph $G(V, E)$ having vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For the vertices $v_{i}, v_{j}, k_{v_{i} v_{j}}$ denotes the minimum length of all the $v_{i}-v_{j}$ paths having maximum strength.

Input: All the paths joining v_{i} and v_{j} in G.

Step 1. Name the paths between v_{i} and v_{j} as $P_{1}, P_{2}, \ldots, P_{n}$.
Step 2. Find the strength S_{1} of P_{1} using Algorithm 2.1.1.

Step 3. For $k=2$, find the strength S_{k} of the $k^{\text {th }}$ path, P_{k} by Algorithm 2.1.1 and compare it with S_{1}.

If $S_{1}<S_{k}$ then rename P_{k} by P_{1}.
If $S_{1}>S_{k}$ then ignore the path P_{k} and repeat the step with P_{k+1} instead of P_{k}. If $S_{1}=S_{k}$ then rename P_{k} by P_{1} if length of $P_{k}<$ length of P_{1}. Otherwise ignore P_{k}.

Step 4. Repeat $\operatorname{Step}(3)$ with $k=k+1, k+2, \ldots, n$ to get the path P_{1} with minimum length and with maximum strength between v_{i} and v_{j}.

Step 5. The length of the path P_{1} is $k_{v_{i} v_{j}}$.

Illustration:

For the fuzzy graph G in Figure 2.1, name the paths $v_{1} v_{2} v_{4} v_{5}, v_{1} v_{4} v_{5}, v_{1} v_{3} v_{4} v_{5}$ as P_{1}, P_{2} and P_{3} respectively. By Algorithm(1), $S_{1}=$ strength of $P_{1}=0.3, S_{2}=$ strength of $P_{2}=0.2$ and $S_{3}=$ strength of $P_{3}=0.4$. Here $S_{1}>S_{2}$ so ignore the path P_{2} and compare the strength of P_{1} and P_{3}. Since $S_{3}>S_{1}$, ignore the path P_{1}. Then the length of $P_{3}(=3)$ is $k_{v_{1} v_{5}}$.

By the same algorithm we have, $k_{v_{1} v_{2}}=3, k_{v_{1} v_{3}}=1, k_{v_{1} v_{4}}=2, k_{v_{2} v_{3}}=$ $2, k_{v_{2} v_{4}}=1, k_{v_{2} v_{5}}=2, k_{v_{3} v_{4}}=1, k_{v_{3} v_{5}}=2$, and $k_{v_{4} v_{5}}=1$.

Algorithm 2.1.3. Algorithm for finding the strength of a fuzzy graph.

Let G be a fuzzy graph with underlying crisp graph G^{*} having vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For $m \geq 1,1 \leq i<i+m \leq n$, let $k_{v_{i} v_{i+m}}$ denote the minimum length of all the paths joining v_{i} and v_{i+m} having maximum strength. Let $m_{v_{1} v_{2}}=$ $k_{v_{1} v_{2}}$ and define for $1 \leq i<i+1<\ldots<i+m \leq n, m_{v_{i} v_{i+1} \ldots v_{i+m}}$ recursively as $m_{v_{i} v_{i+1} \ldots v_{i+m}}=\max \left\{m_{v_{i} v_{i+1} \ldots v_{i+m-1}}, k_{v_{i} v_{i+m}}\right\}$ for $m \geq 2$ and $m_{v_{i+m} v_{i+m+1}}=$ $\max \left\{m_{v_{i+m-1} v_{i+m} \ldots v_{n}}, k_{v_{i+m} v_{i+m+1}}\right\}$, for $m=1$. Then strength of G is $m_{v_{n-1} v_{n}}$.

Input: A fuzzy graph G with vertex set $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$.

Step 1. Choose the vertices v_{1} and v_{2} and find $k_{v_{1} v_{2}}=m_{v_{1} v_{2}}$.

Step 2. For $i=1, m=2$ find $k_{v_{i} v_{i+m}}$ and $m_{v_{i} v_{i+1} \ldots v_{i+m}}=$ $\max \left\{m_{v_{i} v_{i+1} \ldots v_{i+m-1}}, k_{v_{i} v_{i+m}}\right\}$.

Do the same for $i=1, m=3,4, \ldots(n-i)$ successively and find $m_{v_{i} v_{i+1} \ldots v_{i+m}}$.

Step 3. For $i=1, m=1$ find $k_{v_{i+m} v_{i+m+1}}$ and $m_{v_{i+m} v_{i+m+1}}=\max \left\{m_{v_{i+m-1} v_{i+m} v_{n}}\right.$, $\left.k_{v_{i+m} v_{i+m+1}}\right\}$.

Step 4. For the value $i=2$ perform $\operatorname{Step}(2)$ for $m=2,3, \ldots,(n-i)$ and then Step(3) for $m=1$ successively to find $m_{v_{i+m} v_{i+m+1}}$.

Step 5. Repeat $\operatorname{Step}(4)$ for $i=3,4, \ldots,(n-2)$ to find $m_{v_{n-1} v_{n}}$ which is the strength of G.

Illustration:

For the graph G in Figure 2.1, $k_{v_{1} v_{2}}=3=m_{v_{1} v_{2}}$.
$i=1, m=2, k_{v_{1} v_{3}}=1$ and $m_{v_{1} v_{2} v_{3}}=\max \left\{m_{v_{1} v_{2}}, k_{v_{1} v_{3}}\right\}=3$,
$i=1, m=3, k_{v_{1} v_{4}}=2$ and $m_{v_{1} v_{2} v_{3} v_{4}}=\max \left\{m_{v_{1} v_{2} v_{3}}, k_{v_{1} v_{4}}\right\}=3$,
$i=1, m=4, k_{v_{1} v_{5}}=3$ and $m_{v_{1} v_{2} v_{3} v_{4} v_{5}}=\max \left\{m_{v_{1} v_{2} v_{3} v_{4}, k_{v_{1} v_{4}}}\right\}=3$,
$i=1, m=1, k_{v_{2} v_{3}}=2$ and $m_{v_{2} v_{3}}=\max \left\{m_{v_{1} v_{2} v_{3} v_{4} v_{5}}, k_{v_{2} v_{3}}\right\}=3$,
$i=2, m=2, k_{v_{2} v_{4}}=1$ and $m_{v_{2} v_{3} v_{4}}=\max \left\{m_{v_{2} v_{3}}, k_{v_{2} v_{4}}\right\}=3$,
$i=2, m=3, k_{v_{2} v_{5}}=2$ and $m_{v_{2} v_{3} v_{4} v_{5}}=\max \left\{m_{v_{2} v_{3} v_{4}}, k_{v_{2} v_{5}}\right\}=3$,
$i=2, m=1, k_{v_{3} v_{4}}=1$ and $m_{v_{3} v_{4}}=\max \left\{m_{v_{2} v_{3} v_{4} v_{5}}, k_{v_{3} v_{4}}\right\}=3$,
$i=3, m=2, k_{v_{3} v_{5}}=2$ and $m_{v_{3} v_{4} v_{5}}=\max \left\{m_{v_{3} v_{4}}, k_{v_{3} v_{5}}\right\}=3$,
$i=3, m=1, k_{v_{4} v_{5}}=1$ and $m_{v_{4} v_{5}}=\max \left\{m_{v_{3} v_{4} v_{5}}, k_{v_{4} v_{5}}\right\}=3$. Then the strength of G is 3 .

2.2 Strength of strong fuzzy complete bipartite

graph

We start this section with very simple but very useful and strong result which states that if two vertices are adjacent in a strong fuzzy graph then the path (edge) $u v$ is the extra strong path connecting them. Therefore the length of the extra strong path joining two adjacent vertices in a strong fuzzy graph is one. Two vertices in a fuzzy graph are said to be adjacent if the weight of the edge determined by them is positive that is they are adjacent in the underlying crisp
graph. We also determine the strength of strong fuzzy complete bipartite graphs.

Theorem 2.2.1. Let G be a strong fuzzy graph. If u and v are two adjacent vertices of G then the length of the extra strong path joining u and v is one.

Proof. Suppose that u and v are adjacent in G. Since G is a strong fuzzy graph, the edge $u v$, has strength $\mu(u) \wedge \mu(v)$. All the other paths joining u and v have strength less than or equal to $\mu(u) \wedge \mu(v)$. Hence the edge $u v$ is the unique extra strong path joining u and v. Hence the result.

Corollary 2.2.1. If G is a strong fuzzy complete graph then its strength is one.

Remark 2.2.1. G is a strong fuzzy graph. Suppose u and v are two adjacent vertices of G. Then the path (edge) $u v$ is the only extra strong path joining u and v. So for the computation of strength of a fuzzy graph we need to consider only its distinct non-adjacent vertices.

Theorem 2.2.2. Strength of a strong fuzzy complete bipartite graph [44] G is two if $|V(G)|>2$.

Proof. Let $G(V, \mu, \sigma)$ be a strong fuzzy complete bipartite graph with $K_{m n}$ as its underlying crisp graph. Suppose that $m+n>2$. Let $U=\left\{u_{i}: i=1, \ldots, m\right\}$ and $V=\left\{v_{j}: j=1,2, \ldots, n\right\}$ be the bipartite sets. Also let u and v be any two distinct non-adjacent vertices of G. If u and $v \in U$, then all the $u-v$ paths in G pass through atleast one vertex in V. Let w be a vertex in V with $\mu(w) \geq \mu\left(v_{i}\right), \forall v_{i} \in V$. Then strength of any $u-v$ path is less than or equal
to that of the path $u w v$ in G. Therefore $u w v$ is one of the extra strong paths joining u and v and which is of length 2 . Similar is the case when both $u, v \in V$. Hence the theorem.

2.3 Properly linked fuzzy graphs

This section deals with properly linked fuzzy graphs. We give certain examples for it. Also, we find out the strength of properly linked fuzzy graphs.

Definition 2.3.1. A finite sequence of distinct fuzzy graphs [36] $G_{1}, G_{2}, \ldots, G_{m}$ with the property that $V\left(G_{i}\right) \cap V\left(G_{j}\right)$ is nonempty if and only if $|j-i| \leq 1,1 \leq$ $i, j \leq m$ is called a properly linked sequence or simply properly linked. It is $n-$ linked if the crisp graph induced by $<V\left(G_{i}\right) \cap V\left(G_{j}\right)>$ is K_{n}, a complete graph on n vertices, if $|j-i|=1,1 \leq i, j \leq m$.

Definition 2.3.2. A fuzzy graph G is said to be properly linked ($n-$ linked) if there exists a finite sequence of properly linked partial fuzzy subgraphs G_{1}, G_{2}, \ldots, G_{m}, where $m>1$, such that $G=G_{1} \cup G_{2} \cup \ldots \cup G_{m}$. In this case we say that $G_{1}, G_{2}, \ldots, G_{m}$ are parts of G.

Notation 2.3.1. If a fuzzy graph G is a union of a sequence of $m, n-$ linked fuzzy graphs $G_{1}, G_{2}, \ldots, G_{m}$, for some n then we write $G=G_{1}<G_{2}<\ldots<G_{m}$.

Lemma 2.3.1. Let $G=G_{1}<G_{2}<\ldots<G_{m}$ be a 1-linked strong fuzzy graph with $G_{1}, G_{2}, \ldots, G_{m}$ (where $m>1$) as its parts. Let $G_{1}, G_{2}, \ldots, G_{m}$ be complete
strong fuzzy graphs. For, $i=1,2, \ldots, n-1$, let $V\left(G_{i}\right) \cap V\left(G_{i+1}\right)=\left\{v_{i}\right\}$. Let u, v be any two distinct vertices of G. For $k<m$, if $u \in V\left(G_{1}\right) \backslash\left\{v_{1}\right\}$ and $v \in V\left(G_{k+1}\right) \backslash\left\{v_{k}\right\}$ then the length of extra strong path joining u and v in G is $k+1$.

Proof. This result is proved by induction on k. When $k=1, u \in V\left(G_{1}\right) \backslash\left\{v_{1}\right\}$ and $v \in V\left(G_{2}\right) \backslash\left\{v_{1}\right\}$. Therefore all the $u-v$ paths pass through v_{1}. Since G is complete, the extra strong path joining u and v_{1} and the same for v_{1} and v are respectively $u v_{1}$ and $v_{1} v$. Therefore the length of the extra strong path joining u and v is 2 .

Now, let us assume the result is true for every $k \leq n<m-1$. Let $u \in$ $V\left(G_{1}\right) \backslash\left\{v_{1}\right\}$ and $v \in V\left(G_{n+2}\right) \backslash\left\{v_{n+1}\right\}$. Note that every $u-v$ path must pass through the vertex v_{n+1}. By induction hypothesis the length of every extra strong path joining u and v_{n+1} is $n+1$. Since v_{n+1} and v lie in G_{n+2}, the only extra strong path joining v_{n+1} and v is the edge $v_{n+1} v$. Hence the length of the extra strong path joining u and v is $n+2$. In fact there is only one extra strong path joining u and v. Hence the lemma holds by induction.

The following theorem is an immediate consequence of Lemma 2.3.1.
Theorem 2.3.1. Let G be a 1 - linked fuzzy graph with m (where $m>1$) complete fuzzy graphs as its parts. Then the strength of G is m, the diameter of G.

Theorem 2.3.1 can be used to find the strength of certain fuzzy graphs. For
example strong fuzzy butterfly graph, strong fuzzy bull graph.

Definition 2.3.3. A strong fuzzy butterfly graph is a strong fuzzy graph with its underlying crisp graph is a butterfly graph [55].

Corollary 2.3.1. The strength of a strong fuzzy butterfly graph is two.

Proof. A strong fuzzy butterfly graph is a properly linked fuzzy graph with two complete fuzzy triangles as its parts. So, by Theorem 2.3.1, the strength of a fuzzy butterfly graph is 2 .

Definition 2.3.4. A strong fuzzy bull graph is a strong fuzzy graph with its underlying crisp graph is a bull graph [10].

Corollary 2.3.2. The strength of a strong fuzzy bull graph is 3 .

Proof. A strong fuzzy bull graph is 1 - linked by a sequence of 3 complete strong fuzzy graphs G_{1}, G_{2} and G_{3}, where G_{1} and G_{2} are fuzzy paths on two vertices and G_{3} a strong fuzzy triangle graph which is a complete strong fuzzy graph. So the strength of a strong fuzzy bull graph is three.

Theorem 2.3.1 can be generalized as follows.

Notation 2.3.2. If $P_{1}=u_{1} u_{2} \ldots u_{n}$ and $P_{2}=u_{n} u_{n+1} \ldots u_{m}$ are two paths in a fuzzy graph G then $P_{1}+P_{2}$ denote the path $u_{1} u_{2} \ldots u_{n} u_{n+1} \ldots u_{m}$.

Theorem 2.3.2. Let $G(V, \mu, \sigma)$ be a properly linked fuzzy graph with the complete fuzzy graphs $G_{1}, G_{2}, \ldots, G_{m}$ as its parts, where $m>1$. Suppose for $i=$
$1,2, \ldots, m-1,<V\left(G_{i}\right) \cap V\left(G_{i+1}\right)>=K_{n_{i}}$, a complete fuzzy graph on n_{i} vertices. Then the strength of G is the diameter m of G [20].

Proof. Let $V\left(G_{i}\right) \cap V\left(G_{i+1}\right)=\left\{u_{i 1}, u_{i 2}, \ldots, u_{i n_{i}}\right\}$, for $i=1,2, \ldots$, $m-1$. Let u and v be any two distinct non-adjacent vertices of G.

We prove the theorem in two steps.
Step 1: In this step we prove that if $u \in V\left(G_{1}\right) \backslash\left\{u_{11}, u_{12}, \ldots, u_{1 n_{1}}\right\}$ and $v \in$ $V\left(G_{k+1}\right) \backslash\left\{u_{k 1}, u_{k 2}, \ldots, u_{k n_{k}}\right\}$ then the length of the extra strong $u-v$ path is $k+1$, where $1 \leq k \leq m-1$.

We prove this result by induction on k. Assume that $k=1$.

Then every $u-v$ path lies completely in $G_{1} \cup G_{2}$. When $m=2$ it is obvious. Otherwise, any $u-v$ path have at least 4 subpaths $P_{1}, P_{2}, P_{3}, P_{4}$, and can be written as $P_{1}+P_{2}+P_{3}+P_{4}$ where P_{1} is a path from u to some vertex $u_{2 i}$ of $\left\{u_{21}, u_{22}, \ldots, u_{2 n_{2}}\right\}$ in $G_{1} \cup G_{2}, P_{2}$ is a path from $u_{2 i}$ to some vertex w in $G_{3} \cup G_{4} \cup \ldots \cup G_{m}, P_{3}$ is a path from w to some vertex $u_{2 j}$ of $\left\{u_{21}, u_{22}, \ldots, u_{2 n_{2}}\right\}$ in $G_{3} \cup G_{4} \cup \ldots \cup G_{m}$ and P_{4} is a path from $u_{2 j}$ to v in $G_{1} \cup G_{2}$. Such paths, obviously have strength \leq that of the path $P_{1}+u_{2 i} u_{2 j}+P_{4}$. Thus we can conclude that all the extra strong paths joining u and v lie completely in $G_{1} \cup G_{2}$.

Since G_{1} and G_{2} are complete fuzzy graphs, both u and v are adjacent to all the vertices of $\left\{u_{11}, u_{12}, \ldots, u_{1 n_{1}}\right\}$. If $\mu\left(u_{1 k}\right)={\underset{i=1}{m} \mu\left(u_{1 i}\right) \text {, then } u u_{1 k} v \text { is an extra }{ }^{m} \text {. }}^{2}$ strong path joining u and v in $G_{1} \cup G_{2}$ and is of length 2 .

Assume that the result is true for $k \leq n \leq m-2$. To prove the re-
sult for $k=n+1$, let $u \in V\left(G_{1}\right) \backslash\left\{u_{11}, u_{12}, \ldots, u_{1 n_{1}}\right\}$ and $v \in V\left(G_{n+2}\right) \backslash$ $\left\{u_{n+11}, u_{n+12} \ldots, u_{n+1 n_{n+1}}\right\}$. Then as above we prove that every extra strong path joining u and v lies completely in $G_{1} \cup G_{2} \cup \ldots \cup G_{n+2}$. When $n=m-2$, it is obvious. For $n<m-2$, if the result is not true then there exist a $u-v$ path in G which passes through a vertex of $V\left(G_{n+3}\right) \backslash\left\{u_{n+21}, u_{n+22}, \ldots, u_{n+2 n_{n+2}}\right\}$. Then it must pass through at least one vertex of the set $\left\{u_{n+21}, u_{n+22}, \ldots, u_{n+2 n_{n+2}}\right\}$. Any such path have at least four subpaths $P_{1}, P_{2}, P_{3}, P_{4}$ where P_{1} is a path from u to some vertex $u_{n+2 i}$ of the set $\left\{u_{n+21}, u_{n+22}, \ldots, u_{n+2 n_{n+2}}\right\}$ in $G_{1} \cup G_{2} \cup \ldots \cup G_{n+2}, P_{2}$ is a path from $u_{n+2 i}$ to a vertex z in $G_{1} \cup G_{n+3} \cup G_{n+4} \cup \ldots \cup G_{m}, P_{3}$ is a path from z to some vertex $u_{n+2 j}$ of $\left\{u_{n+21}, u_{n+22}, \ldots, u_{n+2 n_{n+2}}\right\}$ in $G_{n+3} \cup G_{n+4} \cup \ldots \cup G_{m}$ and P_{4} is a path from $u_{n+2 j}$ to v in $G_{1} \cup G_{2} \cup \ldots \cup G_{n+2}$.

Clearly the path $P_{1}+u_{n+2 i} u_{n+2 j}+P_{4}$ has strength greater than or equal to all such paths. Thus any extra strong path can be written as sum of two paths P, Q where P is an extra strong path from u to $w \in\left\{u_{n+11}, u_{n+12}, \ldots, u_{n+1 n_{n+1}}\right\}$ in $G_{1} \cup G_{2} \cup \ldots \cup G_{n+2}$, where $\mu(w)=\stackrel{n+1}{V_{1=1}} \mu\left(u_{n+1, i}\right)$ and Q is the edge $w v$ of G_{n+2}, since G_{n+2} is complete. Now by induction hypothesis the length of P is $n+1$. Therefore the length of extra strong path joining u and v is $n+2$.

Step 2: Let u and v be any two vertices of G. Suppose u and v belong to the same part G_{i} of G. Then u and v are adjacent because G_{i} is complete. Hence the edge $u v$ is the only extra strong $u-v$ path in G. Otherwise u belongs to some G_{i} and v belongs to some G_{j} of G, where G_{i} and G_{j} are two distinct parts of G. Without loss of generality assume that $i<j$. Then by Step 1 we
can conclude that the length of extra strong path is $j-i+1 \leq m$. In particular when $i=1$ and $j=m$, the length of extra strong $u-v$ path is m. Therefore $\mathscr{S}(G)=m$. Hence the theorem.

Remark 2.3.1. Theorem 2.3.2 need not be true when at least one part of a properly linked fuzzy graph fails to be a complete fuzzy graph. For example, the strong fuzzy graph G in Figure 2.2 is a 2 -linked fuzzy graph of strength 3 with parts G_{1} and G_{2}, where G_{1} is a complete fuzzy graph but G_{2} is not a complete fuzzy graph.

Figure 2.2: A 2-linked fuzzy graph G, its parts G_{1} and G_{2}.

Definition 2.3.5. A fuzzy diamond graph [24] is a fuzzy graph with the underlying crisp graph is a diamond graph.

From the definition of a strong fuzzy diamond graph, which is a $2-$ linked fuzzy graph having two parts and each is complete. Therefore we have the following Corollary.

Corollary 2.3.3. The strength of a strong fuzzy diamond graph is 2 .
Definition 2.3.6. Let $G_{1}, G_{2}, \ldots, G_{n}$ be n simple graphs with vertex sets V_{1}, V_{2}, \ldots, V_{n} respectively. For $i \neq j$ if $\left|V_{i} \cap V_{j}\right| \geq 1$, let $Z_{i j}=V_{i} \cap V_{j}$. Let $V=\bigcup_{k=1}^{n} V_{k}$
and $Z=\cup Z_{i j}$, where the union is taken for those $i \neq j$ for which $\left|V_{i} \cap V_{j}\right| \geq 1$. For such i and j, form a single vertex $z_{i j}$ by merging the vertices of $V_{i} \cap V_{j}$. Let $U=(V \backslash Z) \cup\left\{z_{i j}\right\}$. The simple graph with vertex set U and edge set E is called the merger graph of $G_{1}, G_{2}, \ldots, G_{n}$; where, for $u \neq v \in U$, $u v \in E$ provided,

1. $u, v \in V \backslash Z$ and are adjacent in $\bigcup_{i=1}^{n} G_{i}$.
2. $u=z_{i j}$ for some i and $j, v \in V \backslash Z$ and v is adjacent to at least one vertex in $Z_{i j}$.
3. $u=z_{i j}, v=z_{k l}$ for some i, j, k and l and at least one vertex of $Z_{i j}$ is adjacent to at least one vertex of $Z_{k l}$.

Figure 2.3: Fuzzy graph G and its merger graph.

Note 2.3.1. If $V_{i} \cap V_{j}=\phi, \forall i, j$ then the merger graph of $G_{1}, G_{2}, \ldots, G_{n}$ is just $G_{1} \cup G_{2} \cup \ldots \cup G_{n}$.

Definition 2.3.7. Let $G_{i}\left(V_{i}, \mu_{i}, \sigma_{i}\right), i=1,2, \ldots, n$ be fuzzy graphs with underlying crisp graph $G_{i}\left(V_{i}, E_{i}\right)$. The fuzzy merger graph $G\left(U, \mu_{\text {mer }}, \sigma_{\text {mer }}\right)$ is a fuzzy graph with its underlying crisp graph $G(U, E)$ is a merger graph of $G_{i}\left(V_{i}, E_{i}\right), i=$ $1,2, \ldots, n$ where U and E are as in Definition 2.3.6 and the membership functions $\mu_{m e r}$ and $\sigma_{m e r}$ are given by

$$
\begin{gathered}
\mu_{\text {mer }}(u)= \begin{cases}\mu_{i}(u) & \text { if } u \in V_{i} \backslash Z \text { for some } i, \\
{\hat{v \in V_{i} \cap V_{j}}}\left(\mu_{i}(v) \wedge \mu_{j}(v)\right) & \text { if } u=w_{i j} \text { for some i, j. }\end{cases} \\
\sigma_{\text {mer }}(u v)= \begin{cases}\sigma_{i}(u v) & \text { if } u, v \in V_{i} \text { for some i }, \\
\mu_{\text {mer }}(u) \wedge \mu_{\text {mer }}(v) & \text { otherwise } .\end{cases}
\end{gathered}
$$

Remark 2.3.2. Let $G_{i}\left(V_{i}, \mu_{i}, \sigma_{i}\right), i=1,2, \ldots, n$ be n fuzzy graphs such that $V_{i} \cap V_{j} \neq \phi$ if and only if $|j-i|=1$. Then the merger graph of these fuzzy graphs $G_{i}, i=1,2, \ldots, n$ is a 1 - linked fuzzy graph. Thus if each G_{i} is a complete strong fuzzy graph and $V_{i} \cap V_{j} \neq \phi$ if and only if $|j-i|=1$ then, their merger fuzzy graph has strength equal to its diameter by Theorem 2.3.1 which is also equal to the strength of $\bigcup_{i=1}^{n} G_{i}$. This result need not be true if $G_{i}^{\prime} s$ are not complete. For example, the merger graph of G in Figure 2.2 is the fuzzy butterfly graph which is of strength 2 but the strength of G is 3 .

2.4 Strong fuzzy Wagner graph

A strong fuzzy Wagner graph is a strong fuzzy graph with its underlying crisp graph is a Wagner graph (https://en.wikipedia.org/wiki/Wagner ${ }_{g}$ raph).

Theorem 2.4.1. Let G be a strong fuzzy Wagner graph. Then $2 \leq \mathscr{S}(G) \leq 4$.

Proof. From Figure 2.4 it is clear that to prove the theorem it is enough to prove $\mathscr{S}(G)$ never be greater than 4 .

Figure 2.4: Strong fuzzy Wagnergraphs with strengths 2,3 and 4.

Let u, v be two nonadjacent vertices of G. Without loss of generality assume, $u=u_{1}$. Then $v \in\left\{u_{3}, u_{4}, u_{6}, u_{7}\right\}$. If possible assume, length of an extra strong $u-v$ path is greater than 4 then there exists at least one path joining u and v of length greater than 4. But all those paths must pass either through both u_{2}, u_{8} or through u_{4}, u_{6}. Since G is a strong fuzzy graph, these paths never be extra strong.

Strength of Fuzzy graphs derived

from certain known Fuzzy graphs

In this chapter we determine the strength of join and corona of certain strong fuzzy graphs and that of middle graph and total graph of certain strong fuzzy graphs.

Definition 3.0.1. [34] Let $G_{i}\left(V_{i}, \mu_{i}, \sigma_{i}\right), i=1,2$ be two connected fuzzy graphs with underlying crisp graphs $G_{i}\left(V_{i}, E_{i}\right), i=1,2$ respectively. Then the union of two fuzzy graphs denoted by $G_{1} \cup G_{2}$ of G_{1} and G_{2} is $G(V, \mu, \sigma)$ with underlying crisp graph $G(V, E)$ is the union of $G_{i}\left(V_{i}, E_{i}\right), i=1,2$ where $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$ and

$$
\mu(u)= \begin{cases}\mu_{1}(u) & \text { if } u \in V_{1} \backslash V_{2}, \\ \mu_{2}(u) & \text { if } u \in V_{2} \backslash V_{1} .\end{cases}
$$

$$
\sigma(u v)= \begin{cases}\sigma_{1}(u v) & \text { if } u v \in E_{1} \backslash E_{2} \\ \sigma_{2}(u v) & \text { if } u v \in E_{2} \backslash E_{1}\end{cases}
$$

3.1 Strength of join of fuzzy graphs

In this section we concentrate our study on the strength of join of certain known fuzzy graphs.

Definition 3.1.1. [34] Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two connected fuzzy graphs with underlying crisp graph $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ respectively, where $V_{1} \cap V_{2}=\phi$. Then the join $G(V, \mu, \sigma)$ of G_{1} and G_{2} is the fuzzy graph with the underlying crisp graph $G(V, E)$ is the join of $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$, where $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2} \cup E^{\prime}$ where E^{\prime} is the set of all edges joining the vertices in V_{1} with vertices in V_{2}, also the membership functions μ and σ are defined as follows.

$$
\begin{aligned}
& \mu(u)= \begin{cases}\mu_{1}(u) & \text { if } u \in V_{1}, \\
\mu_{2}(u) & \text { if } u \in V_{2} .\end{cases} \\
& \sigma(u v)= \begin{cases}\sigma_{1}(u v) & \text { if } u, v \in V_{1}, \\
\sigma_{2}(u v) & \text { if } u, v \in V_{2}, \\
\mu_{1}(u) \wedge \mu_{2}(v) & \text { if } u \in V_{1} \text { and } v \in V_{2} .\end{cases}
\end{aligned}
$$

Example 3.1.1. 1. A fuzzy complete 2 - partite graph is the join of two
fuzzy null graphs.
2. A fuzzy wheel graph is the join of a fuzzy cycle and a trivial fuzzy graph.
3. A fuzzy star graph is the join of a fuzzy null graph and a fuzzy trivial graph.

Remark 3.1.1. From the definition of join G of two fuzzy graphs G_{1} and G_{2}, both G_{1} and G_{2} can be considered as maximal partial fuzzy subgraphs of G.

The join of two complete fuzzy graphs is again a complete fuzzy graph. Hence we have the following Theorem.

Theorem 3.1.1. The strength of join of two complete fuzzy graphs is one.
Definition 3.1.2. A fuzzy fan graph $F_{m n}$ [41] is defined as the join of a fuzzy null graph on $m \geq 1$ vertices and a fuzzy path on $n \geq 1$ vertices.

Figure 3.1: Fuzzy fan graph F_{24}.

Let $G(V, \mu, \sigma)$ be the join of two graphs $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ where G_{1} a fuzzy null graph on m vertices with vertex set $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and G_{2}
a strong fuzzy path on n vertices with vertex set $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. If $n=1$ then for any m, G is a fuzzy star graph. Therefore its strength is 1 if $m=1$ and 2 if $m>1$. If $n=2$ and $m=1$ then G is complete. Therefore its strength is one. If $n=2$ and $m>1$ then $\mathscr{S}(G)$ is 2 . For if u and v are two nonadjacent vertices in G then they are vertices of G_{1}. If w is a vertex of G_{2} with maximum weight among the vertex of G_{2} then $u w v$ is an extra strong path of G.

Now consider the cases for $n \geq 3$. First of all suppose that $m=1$. In this case $V_{1}=\left\{u_{1}\right\}$. If $\mu_{1}\left(u_{1}\right)<\bigwedge_{j=1}^{n} \mu_{2}\left(v_{j}\right)$ then clearly for any u and $v \in V\left(G_{2}\right)$, this $u-v$ path of G_{2} is the extra strong $u-v$ path of G.

Otherwise $\mu_{2}\left(v_{i}\right)<\mu_{1}\left(u_{1}\right)$. Then we have two cases. Let u and v be two nonadjacent vertices of G. Let l be the maximum of length of all subpaths of G_{2} of strength $>\mu_{1}\left(u_{1}\right)$ if such a path exists, otherwise let l be zero. Then $\mathscr{S}(G)=2 \vee l$.

The preceding discussion may be generalized as follows.

Theorem 3.1.2. Let $G(V, \mu, \sigma)$ be the join of two fuzzy graphs $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$, where G_{1} is a fuzzy null graph on $m \geq 2$ vertices with vertex set $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and G_{2} a strong fuzzy path on $n \geq 3$ vertices with vertex set
 let l be the maximum of length of all such subpaths of G_{2}. Then $\mathscr{S}(G)=l \vee 2$.

Proof. Let u and v be two nonadjacent vertices of G. If both of them are in V_{1} then all $u-v$ paths must pass through at least one vertex of V_{2}, since all v_{j} in
V_{2} are adjacent to both u and v. Then $u v_{j} v$ is an extra strong $u-v$ path in G

If both u and v are in V_{2} then we have the following cases.

Case 1. $l=0$.
 vertex in V_{1} such that $\mu_{1}\left(u_{j}\right) \geq \bigvee_{i=1}^{m} \mu_{1}\left(u_{i}\right)$ then $u u_{j} v$ is an extra strong $u-v$ path in G.

Case 2. $l=1$.

As u, v are nonadjacent vertices of G_{2}, the $u-v$ path of G_{2} contains a vertex of weight $\leq \bigvee_{i=1}^{n} \mu_{1}\left(u_{i}\right)$. Let u_{j} be a vertex of G_{1} such that $\mu_{1}\left(u_{j}\right) \geq$ strength of the $u-v$ path in G. Then $u u_{j} v$ is an extra strong $u-v$ path in G_{2}.

If $l>1$ then clearly $\mathscr{S}(G)=l$.

Corollary 3.1.1. Let G_{1}, G_{2} and G be fuzzy graphs as in Theorem 3.1.2. Then

Now consider the case where both G_{1} and G_{2} are fuzzy paths. That is $G(V, \mu, \sigma)$ is the join of two strong fuzzy graphs say, $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}\right.$, σ_{2}) with underlying crisp graphs P_{m} with vertex set $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and P_{n} with vertex set $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The case $n=1$ and the case $m=1$ are included in Theorem 3.1.2. So we suppose that both $m, n \geq 2$. For $n=m=2$, G is a complete strong fuzzy graph on 4 vertices so its strength is 1 .

When $m=2$ and $n>2, \mathscr{S}(G)=2 \vee l$ where l is the maximum of length of all subpaths of G_{2} having strength $>\underset{i=1}{V_{1}} \mu_{1}\left(u_{i}\right)$ if there exists such a path in G_{2}. The following theorem determines $\mathscr{S}(G)$ in all other cases.

Theorem 3.1.3. Let $G(V, \mu, \sigma)$ be the join of two strong fuzzy graphs $G_{1}\left(V_{1}, \mu_{1}\right.$, $\left.\sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ with underlying crisp graphs P_{m} and P_{n} with vertex sets $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} ; m \geq n>2$. Let l_{1} be the maximum of length of all subpaths of G_{1} of strength $>\underset{j=1}{\vee} \mu_{2}\left(v_{j}\right)$ if such a path exists otherwise let $l_{1}=0$. Also let l_{2} be the maximum of length of all subpaths of G_{2} of strength $>\bigvee_{i=1}^{m} \mu_{1}\left(u_{i}\right)$ if such a path exists otherwise let $l_{2}=0 . \mathscr{S}(G)=$ $l_{1} \vee l_{2} \vee 2$.

Proof. Let u and v be two nonadjacent vertices of G. Then either u and $v \in V_{1}$ or u and $v \in V_{2}$.

Case 1. $l_{1}=l_{2}=0$.

Figure 3.2: Example for two fuzzy paths having $l_{1}=l_{2}=0$.

Let u and $v \in V_{1}$. Then an extra strong $u-v$ path is $u v_{j} v$ where v_{j} is such that $\mu_{2}\left(v_{j}\right)=V_{i=1}^{n} \mu_{2}\left(v_{i}\right)$. Similarly if u and $v \in V_{2}$ then $u u_{i} v$ is an extra
strong $u-v$ path in G, where u_{i} is such that $\mu_{1}\left(u_{i}\right)=\bigvee_{j=1}^{m} \mu_{1}\left(u_{j}\right)$. So in this case $\mathscr{S}(G)=2$.

Case 2. $l_{1}=1$ and $l_{2}=0$ or $l_{1}=0$ and $l_{2}=1$.

Figure 3.3: Example for two fuzzy paths having $l_{1}=1$ and $l_{2}=0$.

Consider the case $l_{1}=1$ and $l_{2}=0$. Let u and $v \in V_{2}$. Since $l_{2}=0$, the
 $\mu_{1}\left(u_{j}\right)=\stackrel{m}{i=1} \mu_{1}\left(u_{i}\right)$. Then $u u_{j} v$ is an extra strong $u-v$ path in G of length 2. Let u and $v \in V_{1}$. Since $l_{1}=1, u u_{1} v$ is an extra strong $u-v$ path in G_{1} where $v_{i}=V_{j=1}^{n} \mu_{2}\left(v_{j}\right)$. Thus the strength of G is 2 .

Similarly we can prove the case when $l_{1}=0$ and $l_{2}=1$.

Case 3. $l_{1}>1$ or $l_{2}>1$.

Figure 3.4: Example for two fuzzy paths having $l_{1}>1$ and $l_{2}=0$.

First of all we consider the case, $l_{1}>1$. In this case $l_{2}=0$. Therefore if $u, v \in$ V_{2}, as in case 2, $u u_{j} v$ is an extra strong path in G, where $\mu_{1}\left(u_{j}\right)={\underset{i=1}{m} \mu_{1}\left(u_{i}\right) \text {. Now }{ }^{2} \text {. }}^{2}$
 or there exists a vertex $v_{i} \in V_{2}$ such that $\mu_{2}\left(v_{i}\right) \geq$ strength of the $u-v$ path in G_{1}. In the first case the $u-v$ path of G_{1} is the only an extra strong $u-v$ path in G. In the second case the path $u v_{i} v$ in G is an extra strong $u-v$ path. From this it follows that $\mathscr{S}(G)=l_{1}$. Similarly we can prove that $\mathscr{S}(G)=l_{2}$ if $l_{2}>1$. Therefore $\mathscr{S}(G)=l_{1} \vee l_{2}$.

3.1.1 Fuzzy wheel graph

Definition 3.1.3. A fuzzy wheel graph W_{n} is the join of the fuzzy cycle C_{n-1} and a fuzzy trivial graph.

Some results of this chapter are included in the following paper Chithra K. P., Raji Pilakkat, International Journal of Pure and Applied Mathematics, 106(3) 2016, 883-892

Definition 3.1.4. A vertex h of the wheel graph W_{n} is said to be a fuzzy hub if it is adjacent to all the other vertices of W_{n}.

Definition 3.1.5. A strong fuzzy wheel graph is a fuzzy wheel graph which is also a strong fuzzy graph.

Theorem 3.1.4. For $n \geq 4$, let $W_{n}=C_{n-1} \vee K_{1}$ be a strong fuzzy wheel graph with fuzzy hub h and $u_{1} u_{2} \ldots u_{n-1} u_{1}$ the fuzzy cycle C_{n-1}. If $\mu(h)<{ }_{i=1}^{n-1} \mu\left(u_{i}\right)$ then the strength of W_{n} is the strength of C_{n-1}.

Proof. Choose two distinct non-adjacent vertices u and v of W_{n}. Clearly $u, v \in$ $V\left(C_{n-1}\right)$. Since $\mu(h)<{ }_{i=1}^{n-1} \mu\left(u_{i}\right)$, all paths joining u and v, through h have strength $\mu(h)$, which is less than the strength of any path joining u_{i} and u_{j} in C_{n-1}. Therefore the length of extra strong paths joining u and v in W_{n} and those in C_{n-1} are one and the same. Hence the result.

Theorem 3.1.5. Let W_{n} be as in Theorem 3.1.4. If $\mu(h) \geq{ }_{i=1}^{n-1} \mu\left(u_{i}\right)$ then the strength of W_{n} is one when $n=4$ and two when $n>4$.

Proof. When $n=4, W_{n}$ is a complete fuzzy graph. Therefore the strength of W_{n} is one [48].

Now suppose that $n>4$. Let u and v be any two distinct non-adjacent vertices of W_{n}. Therefore both belong to $V\left(C_{n-1}\right)$. Clearly $u h v$ is an extra strong $u-v$ path in W_{n}. So strength of W_{n} is 2 .

The only remaining case is that some vertices of C_{n-1} have weight greater
than $\mu(h)$ and some have weight less than or equal to $\mu(h)$. In this case we have the following result.

Theorem 3.1.6. Let W_{n} be as in Theorem 3.1.4. Suppose that $\mu(h) \leq \mu\left(u_{i}\right)$ for some but not all the vertices $u_{i}, i=1,2, \ldots, n-1$. Let P be one of the maximal paths of C_{n-1} with the property that each edge of which has strength greater than $\mu(h)$. Let l be the length of P. Then $\mathscr{S}\left(W_{n}\right)=l \vee 2$.

Proof. Let u, v be any two distinct non-adjacent vertices of W_{n}. Then u and v are vertices of C_{n-1}. Let P_{1} and P_{2} be two paths in C_{n-1} having u and v as the end vertices.

Suppose that $l \leq 1$. Then both P_{1} and P_{2} have strength less than or equal to $\mu(h)$. Therefore $u h v$ is an extra strong path in W_{n}. Hence in this case $\mathscr{S}\left(W_{n}\right)=2$.

Now suppose $l \geq 2$. If both the paths P_{1} and P_{2} have strength less than or equal to $\mu(h)$ then $u h v$ is an extra strong path joining u and v and which is of length 2. If exactly one of the paths P_{1} and P_{2} say P_{1} has strength greater than $\mu(h)$, then the extra strong path joining u and v in W_{n} is the path P_{1}. Since each edge of which has strength greater than $\mu(h)$, the length of $P_{1} \leq$ length of $P=l$. In particular if u and v are the end vertices of P, then P itself is an extra strong path joining u and v. Hence the theorem.

3.2 Corona of strong fuzzy graphs

Definition 3.2.1. [21] Let $G_{1}\left(U, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ be two fuzzy graphs with the respective underlying crisp graphs $G_{1}\left(U, E_{1}\right)$ and $G_{2}\left(V, E_{2}\right)$ where $U=$ $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then the corona $G(W, \mu, \sigma)$ of G_{1} and G_{2} is a fuzzy graph with the underlying crisp graph is the corona $G=$ $G_{1} \odot G_{2}$ of $G_{1}\left(U, E_{1}\right)$ and $G_{2}\left(V, E_{2}\right)$ with vertex set $W=U \cup\left(\cup_{i=1}^{n} V_{i}\right)$, where $V_{i}=\left\{v_{1 i}, v_{2 i}, \ldots, v_{n i}\right\}, i=1,2, \ldots m$. For $1 \leq i \leq m$ and $1 \leq j \leq n$, the vertex $v_{j i}$ represent the vertex v_{j} of G_{2} in the $i^{\text {th }}$ copy of G_{2} corresponding to the vertex u_{i} of G_{1}. The fuzzy subset μ and the fuzzy relation σ on W are defined as

$$
\mu(w)= \begin{cases}\mu_{1}\left(u_{i}\right) & \text { if } w=u_{i} \in U \\ \mu_{2}\left(v_{j}\right) & \text { if } w=v_{j i}, i=1,2, \ldots, m, j=1,2, \ldots, n\end{cases}
$$

and
$\sigma(u v)= \begin{cases}\sigma_{1}(u v) & \text { if } u, v \in U, \\ \sigma_{2}(u v) & \text { if there exists an } i \text { such that } u=v_{j_{1} i} \\ & \text { and } v=v_{j_{2} i} \text { for some } j_{1}, j_{2} \text { with } 1 \leq j_{1} \neq j_{2} \leq m, \\ \mu_{1}(u) \wedge \mu_{2}(v) & \text { if } v=v_{j i} \text { for some } i \text { and } u=u_{i} \\ & \text { or } u=v_{j i} \text { for some } i \text { and } v=u_{i} .\end{cases}$

Figure 3.5: Two fuzzy graphs G_{1} and G_{2} and their corona.

As in the case of join, if G is the corona of G_{1} and G_{2} then both G_{1} and G_{2} can be considered as partial fuzzy subgraphs of G.

If G_{1} is complete and G_{2} is a trivial fuzzy graph then,

$$
\mathscr{S}(G)= \begin{cases}1 & \text { if } G_{1} \text { is trivial } \\ 3 & \text { otherwise }\end{cases}
$$

Notation 3.2.1. Suppose G_{1} and G_{2} are fuzzy graphs as in Definition 3.2.1. The copy of G_{2} in G corresponding to the vertex u_{i} of G_{1} in the corona G of G_{1} and G_{2} is denoted by $G_{2 i}$.

Let $G_{1}\left(U, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ be two fuzzy null graphs and $G(W, \mu, \sigma)$ be the corona of G_{1} and G_{2}. If $|V|=1$ then G is the union of paths on two vertices. Therefore, by Theorem 1.4.1 strength of G is one. If $|V|>1$ then G is the union of strong fuzzy star graphs with at least three vertices. So its strength is 2 by Theorem 1.4.1.

The corona of a fuzzy trivial graph and a non - null strong fuzzy graph is their join. Hence the Theorem. Hence by the discussions which precedes Theorem 3.2.1.

Theorem 3.2.1. Let $G_{1}\left(U, \mu_{1}, \sigma_{1}\right)$ be a fuzzy trivial graph with vertex set $\{u\}$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ be not a fuzzy null graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $G(W, \mu, \sigma)$ be the corona of G_{1} and G_{2}. Let l be the maximum of length of all subpaths of G_{2} of strength $>\mu_{1}(u)$ if such a path exists. Otherwise let l be zero. Then $\mathscr{S}(G)=l \vee 2$.

Definition 3.2.2. Let $G(V, \mu, \sigma)$ be a fuzzy graph. A path P with ends u and v in G is said to be a critical extra strong path if P is an extra strong $u-v$ path with length is equal to $\mathscr{S}(G)$.

Note 3.2.1. A fuzzy graph G may contain more than one critical extra strong paths.

Notation 3.2.2. The minimum of strength of all critical extra strong paths of a fuzzy graph G is denoted by $\sigma_{0}(G)$ or simply by σ_{0} if there is no confusion.

Proposition 3.2.1. Let $G_{1}\left(U, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs. Let $G(W, \mu, \sigma)$ be the corona of G_{1} and G_{2} then $\mathscr{S}(G) \geq \mathscr{S}\left(G_{1}\right)$.

Proof. Let $u, v \in V(G)$. If u and v are in $V\left(G_{1}\right)$ then all the $u-v$ paths lie completely in the partial fuzzy subgraph G_{1} of G. So length of an extra strong $u-v$ path in G is equal to that in G_{1}. So by definition of strength of a fuzzy graph, $\mathscr{S}(G) \geq \mathscr{S}\left(G_{1}\right)$. Hence the proposition.

The following Theorems deal with only those fuzzy graphs whose underlying crisp graphs are connected.

Definition 3.2.3. Let G be a fuzzy graph of strength $\mathscr{S}(G)$. Any extra strong path of length $\mathscr{S}(G)-1$ is called a minus critical extra strong path .

Theorem 3.2.2. Let $G(W, \mu, \sigma)$ be the corona of two strong fuzzy graphs $G_{1}\left(U, \mu_{1}\right.$, $\left.\sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ on the vertex sets $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}\right\}$ respectively. Let $\mu_{2}\left(v_{1}\right)<\sigma_{0}$. Suppose $\mathscr{S}\left(G_{1}\right) \geq 4$ and G_{1} contains no minus critical extra strong path. Then $\mathscr{S}(G)=\mathscr{S}\left(G_{1}\right)$ provided, the ends of every critical path in G_{1} is also connected by a path of length $\leq \mathscr{S}\left(G_{1}\right)-2$.

Proof. Let u, v be two nonadjacent vertices of G.

If u and $v \in V\left(G_{1}\right)$ then length of the extra strong $u-v$ path in G is $\leq \mathscr{S}\left(G_{1}\right)$. If $u=v_{1 i}$ and $v=v_{1 j}, i \neq j$ then all the $u-v$ paths must pass through both u_{i} and u_{j} and all such paths in G have strength $\mu_{2}\left(v_{1}\right)$. The hypothesis of the theorem imply that there is a $u-v$ path in G_{1} of length $\leq \mathscr{S}\left(G_{1}\right)-2$. Therefore, the length of the extra strong $u-v$ path in G is $\leq \mathscr{S}\left(G_{1}\right)-2+2=\mathscr{S}\left(G_{1}\right)$.

Similarly, if $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2 i}\right)$ then the length of the extra strong $u-v$ path is $\leq \mathscr{S}\left(G_{1}\right)$.

Figure 3.6: Corona G of two strong fuzzy graphs G_{1} and G_{2} with $\mathscr{S}\left(G_{1}\right)=\mathscr{S}(G)=6$.

The following three theorems can be proved in the same way as the previous one was proved.

Theorem 3.2.3. Let $G(W, \mu, \sigma)$ be the corona of two strong fuzzy graphs $G_{1}\left(U, \mu_{1}\right.$, $\left.\sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ on the vertex sets $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}\right\}$ respectively. Let $\mu_{2}\left(v_{1}\right)<\sigma_{0}$. Suppose $\mathscr{S}\left(G_{1}\right) \geq 4$ and G_{1} contains a minus critical extra strong path. Then $\mathscr{S}(G)=\mathscr{S}\left(G_{1}\right)$ provided the ends of every critical path in G_{1} is connected by a path of length $\leq \mathscr{S}\left(G_{1}\right)-2$ and the ends of every minus critical path in G_{1} is also connected by a path of length $\leq \mathscr{S}\left(G_{1}\right)-1$.

Theorem 3.2.4. Let $G(W, \mu, \sigma)$ be the corona of two strong fuzzy graphs $G_{1}\left(U, \mu_{1}\right.$, $\left.\sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ on the vertex sets $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}\right\}$ respectively. Suppose there exists no minus extra strong path in G_{1}. Let $\mu_{2}\left(v_{1}\right)<\sigma_{0}$ and $\mathscr{S}\left(G_{1}\right) \geq 4$. Then $\mathscr{S}(G)=\mathscr{S}\left(G_{1}\right)+1$ provided the ends of every critical path is also connected by a path of length $\mathscr{S}\left(G_{1}\right)-1$ and there exists a critical
path in G whose ends are connected by paths of length $\mathscr{S}(G)$ and $\mathscr{S}(G)-1$ only in G_{1}.

Theorem 3.2.5. Let $G(W, \mu, \sigma)$ be the corona of two strong fuzzy graphs $G_{1}\left(U, \mu_{1}\right.$, $\left.\sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ on the vertex sets $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}\right\}$ respectively. Suppose there exists a minus extra strong path in G_{1}. If $\mu_{2}\left(v_{1}\right)<\sigma_{0}$ and $\mathscr{S}\left(G_{1}\right) \geq 4$ then $\mathscr{S}(G)=\mathscr{S}\left(G_{1}\right)+1$ provided that the ends of every critical extra strong path in G_{1} is connected by a path of length $\leq \mathscr{S}\left(G_{1}\right)-1$ and either there exists a minus critical extra strong path whose ends are connected only by paths of length $\mathscr{S}(G)-1$ or there exists a critical extra strong path whose ends are connected only by paths of length $\geq \mathscr{S}(G)-1$.

Figure 3.7: Corona of two fuzzy graphs G_{1} and G_{2} with $\mathscr{S}\left(G_{1}\right)=5, \mathscr{S}(G)=6$.

Theorem 3.2.6. Let $G(W, \mu, \sigma)$ be the corona of two strong fuzzy graphs $G_{1}\left(U, \mu_{1}\right.$, $\left.\sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ on the vertex sets $U=\left\{u_{1}, \ldots, u_{n}\right\}$ with $|U|>1$ and $V=\left\{v_{1}\right\}$ respectively. Suppose that there exists a critical extra strong path P in G_{1} such that either its ends are joined by only one path in G_{1} or every other paths in G_{1} which joins the ends of P with strength $\geq \mu_{2}\left(v_{1}\right)$ is of length \geq that of P. Then $\mathscr{S}(G)=\mathscr{S}\left(G_{1}\right)+2$.

Proof. Let u, v be two nonadjacent vertices of G. If u and $v \in V\left(G_{1}\right)$ then length of the extra strong $u-v$ path in G is less than or equal to $\mathscr{S}\left(G_{1}\right)$. Now suppose that there exists a critical extra strong path P in G_{1} such that its ends are joined by only one path in G_{1}. Let u_{i} and u_{j} be the ends of P. Then there exists only one path in G joining $v_{1 i}$ and $v_{1 j}$. Therefore it itself is an extra strong $v_{1 i}-v_{1 j}$ path in G and its length is $\mathscr{S}\left(G_{1}\right)+2$. Therefore in this case $\mathscr{S}(G)=\mathscr{S}\left(G_{1}\right)+2$.

In the second case also, we suppose that u_{i} and u_{j} are the ends of P. Then the extra strong $v_{1 i}-v_{1 j}$ path in G is the path obtained by adding the edges $v_{1 i} u_{i}$ and $u_{j} v_{1 j}$ at the ends u_{i} and u_{j} of the path P to P respectively. Therefore in this case also $\mathscr{S}(G)=\mathscr{S}\left(G_{1}\right)+2$.

Theorem 3.2.7. Let $G(W, \mu, \sigma), G_{1}\left(U, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ be as in Theorem 3.2.6. If there exists a critical path P in G_{1} of strength $\leq \mu_{2}\left(v_{1}\right)$ then $\mathscr{S}(G)=\mathscr{S}\left(G_{1}\right)+2$.

Proof. Suppose there exists a critical path P of strength $\leq \mu_{2}\left(v_{1}\right)$ in G_{1} with ends u_{i} and u_{j}. Then the $v_{1 i}-v_{1 j}$ path in G obtained by adding the edges $v_{1 i} u_{1}$ and $u_{j} v_{1 j}$ at u_{i} and u_{j} respectively of P to P is an extra strong $v_{1 i}-v_{1 j}$ path of length $\mathscr{S}\left(G_{1}\right)+2$. So we can conclude that $\mathscr{S}(G)=\mathscr{S}\left(G_{1}\right)+2$.

Figure 3.8: Corona of two fuzzy graphs G_{1} and G_{2} with $\mathscr{S}\left(G_{1}\right)=5$ and $\mathscr{S}(G)=7$.

Theorem 3.2.8. Let $G_{1}\left(U, \mu_{1}, \sigma_{1}\right)$ be a strong fuzzy graph. Suppose that the underlying crisp graph is a path with vertex set $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Let $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ be a fuzzy null graph with vertex $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ with $|V|>1$. Let $G(W, \mu, \sigma)$ be the corona of G_{1} and G_{2}. Then $\mathscr{S}(G)=\mathscr{S}\left(G_{1}\right)+2$.

Proof. When $|V|=1$, the result follows by Theorem 3.2.6. When $|V|>1$, let u and v be two nonadjacent vertices of G. If both of them are in G_{1} then the length of the extra strong $u-v$ path is $\leq \mathscr{S}\left(G_{1}\right)$. If u and v are in the same copy of G_{2}, say $G_{2 i}$ of G then $u u_{i} v$ is the only extra strong path joining them.

If u and v are in different copies of G_{2} in G say $u \in G_{2 i}$ and $v \in G_{2 j}, i \neq j$ then every $u-v$ path in G is a union of the edge $u u_{i}, u_{i}-u_{j}$ path in the partial fuzzy subgraph of G_{1} of G and the edge $u_{j} v$. So length of an extra strong $u-v$ path is equal to (length of the $u_{i}-u_{j}$ path in $\left.G_{1}\right)+2$. If $u_{i}=u_{1}$ and $u_{j}=u_{n}$ then the length of the extra strong $u-v$ path in $G=\mathscr{S}\left(G_{1}\right)+2$. If $u \in V\left(G_{2 i}\right)$ and $v \in V\left(G_{1}\right)$ then the length of the extra strong $u-v$ path is clearly $\leq \mathscr{S}\left(G_{1}\right)+2$. (See Figure 3.9).

Figure 3.9: Two fuzzy graphs G_{1} and G_{2} and their corona.

Suppose $G_{1}\left(U, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ are two strong fuzzy paths on n and m vertices respectively. Let $G(W, \mu, \sigma)$ be the corona of G_{1} and G_{2}. Then G is a path on 2 vertices if $n=m=1$. So in this case $\mathscr{S}(G)=1$. When $n=2$ and $m=1, G$ is a path on 4 vertices. So in this case $\mathscr{S}(G)=3$. When $n=1$ and $m=2, G$ is a fuzzy cycle on 3 vertices. Hence $\mathscr{S}(G)=1$. When $n=2, m=2$, G is a 1 - linked fuzzy graph with 3 parts. Therefore its strength is 3 . Theorem 3.2.9 gives the general case.

Figure 3.10: Corona G of two fuzzy graphs G_{1} and G_{2} with $\left|G_{1}\right|=\left|G_{2}\right|=2$.

Theorem 3.2.9. Let $G_{1}\left(U, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy paths with P_{n} and P_{m} be their respective crisp graphs, where n and $m \geq 3$. For each vertex u_{i} of G_{1}, let l_{i} be the maximum length of subpaths of $G_{2 i}$ whose strength $>\mu_{1}\left(u_{i}\right)$ and let $l=\bigvee_{i=1}^{n} l_{i}$. If there is no such path, let $l_{i}=0$. Then the strength of the corona $G(W, \mu, \sigma)$ of G_{1} and G_{2} is $(n+1) \vee l$.

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, \ldots, v_{m}\right\}$. Let u and v be two nonadjacent vertices of $G(V, \mu, \sigma)$. If u and v are in G_{1} then the extra strong $u-v$ path in G lies in G_{1} and hence its length $\leq \mathscr{S}\left(G_{1}\right)=n-1$.

Let $u \in V\left(G_{2 i}\right)$ and $v \in V\left(G_{1}\right)$. Then all the $u-v$ paths must pass through u_{i} of G_{1}. Since u and u_{i} are adjacent the only extra strong $u-v$ path in G is the union of the edge $u u_{i}$ and the path $u_{i}-v$ of G_{1}. So, the length of the extra strong $u-v$ path is $\leq \mathscr{S}\left(G_{1}\right)+1=n$.

Let $u \in V\left(G_{2 i}\right)$ and $v \in V\left(G_{2 j}\right), i \neq j$. Then all the $u-v$ paths in G must pass through both u_{i} and u_{j} of G_{1}. So in this case the extra strong $u-v$ path in G is a union of the edge $u u_{i}$ of G, the path $u_{i}-u_{j}$ of G_{1} and the edge $u_{j} v$ of G. So, length of the extra strong $u-v$ path in G is $\leq \mathscr{S}\left(G_{1}\right)+2=n+1$.

Let $u, v \in V\left(G_{2 i}\right)$. If $l_{i} \geq 2$, then the length of any extra strong $u-v$ path in G is $\leq l_{i}$. If u and v are the end vertices of a subpath of $G_{2 i}$ of length l_{i} such that if strength $>\mu_{1}\left(u_{i}\right)$ then the length of extra strong $u-v$ path is l_{i}. Otherwise, that is if $l_{i} \leq 1$, it is 2 . Hence the Theorem.

Theorem 3.2.10. Let $G_{1}\left(U, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy but-
terfly graphs. Then the strength of corona $G(W, \mu, \sigma)$ of G_{1} and G_{2} is 4 .

Proof. Let w be the central vertex of G_{1} and w^{\prime} be the central vertex of G_{2}. Let the vertices of G_{1} be $\left\{u_{1}, u_{2}, u_{3}, u_{4}, w\right\}$ and vertices of G_{2} be $\left\{v_{1}, v_{2}, v_{3}, v_{4}, w^{\prime}\right\}$. Let us denote the copy of G_{2} corresponding to w by $G_{2 w}$. Let u, v be two nonadjacent vertices of G.

If u and v are in G_{1} the length of extra strong $u-v$ path in G is ≤ 2.

Let $u=v_{i j}$ and $v=v_{i k}$ where $j \neq k$. Then, both u and v are adjacent to $u_{i} \in V\left(G_{1}\right)$ in G. Also all the $u-v$ paths either pass through u_{i} of G_{1} or through the central vertex w^{\prime} of $G_{2 i}$ in G. If $\mu_{1}\left(u_{i}\right)=\mu_{2}\left(w^{\prime}\right)$ then all the $u-v$ paths have same strength. So the length of the extra strong path is 2 .

If $\mu_{1}\left(u_{i}\right)>\mu_{2}\left(w^{\prime}\right)$ then the extra strong path does not pass through w^{\prime}. Therefore the extra strong $u-v$ path is $u u_{i} v$. If $\mu_{1}\left(u_{i}\right)<\mu_{2}\left(w^{\prime}\right)$ then the extra strong $u-v$ paths lie completely in $G_{2 i}$. Therefore such paths have length 2 . Now let us suppose that u and v be in two different copies of G_{2}. If $u \in G_{2 i}$ and $v \in G_{2 j}$ then the length of the extra strong $u-v$ path in G is 4 . On the other hand if $u \in G_{2 i}$ and $v \in G_{2 w}$ then length of the extra strong $u-v$ path is 3. Also if u_{i} or u_{j} is w, the length of the extra strong $u-v$ path is 3 . So $\mathscr{S}(G)=4$.

3.3 Fuzzy Subdivision graph

Definition 3.3.1. [?] Let $G(V, \mu, \sigma)$ be a fuzzy graph with underlying crisp graph $G(V, E)$. Then the subdivision graph of G, denoted by $\operatorname{sd}(G)$, is the fuzzy graph $s d(G)\left(V_{s d}, \mu_{s d}, \sigma_{s d}\right)$ with the underlying crisp graph is the subdivision graph of $G(V, E)$, where the vertex set $V_{s d}=V \cup E$ and the membership functions $\mu_{s d}$ and $\sigma_{s d}$ are defined as

$$
\mu_{s d}(u)= \begin{cases}\mu(u) & \text { if } u \in V \\ \sigma(u) & \text { if } u \in E\end{cases}
$$

$\sigma_{s d}(u, e)= \begin{cases}\mu_{s d}(u) \wedge \mu_{s d}(e) & \text { if } u \in V, e \in E \text { and } u \text { is one of the end vertices of } e \text { in } \mathrm{G}, \\ 0 & \text { otherwise. }\end{cases}$

Theorem 3.3.1. Let G be a strong fuzzy path on n vertices. Then the strength $\mathscr{S}(\operatorname{sd}(G))$ of the subdivision graph $\operatorname{sd}(G)$ of G is $2 \mathscr{S}(G)$.

Proof. The subdivision graph of a strong fuzzy path on n vertices is a strong fuzzy path on $2 n-1$ vertices. (See Figure 3.11). So strength of $\operatorname{sd}(G)$ is $(2 n-1)-1=$ $2(n-1)=2 \mathscr{S}(G)$.

$\operatorname{sd}(G)$

Figure 3.11: A strong fuzzy path and its subdivision graph.

Theorem 3.3.2. Let $G(V, \mu, \sigma)$ be a strong fuzzy butterfly graph. Then the strength $\mathscr{S}(s d(G))$ of the subdivision graph of G is 6 .

Proof. Let the vertex set of G be $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ with u_{3} as the central vertex. Then G is a 1- linked fuzzy graph with two parts G_{1} and G_{2}, where both G_{1} and G_{2} are fuzzy cycles on 3 vertices. Its subdivision graph is also a 1 - linked fuzzy graph with two parts which are cycles on 6 vertices. (See Figure 3.12). Since each part $G_{i},(i=1,2)$ of G has at least two weakest edges of $G_{i}, \operatorname{sd}\left(G_{i}\right), i=1,2$ has at least 4 weakest edges in $\operatorname{sd}\left(G_{i}\right)$.

Let u, v be any two vertices of $s d(G)$. If both u and $v \in V\left(s d\left(G_{i}\right)\right), i=1,2$ then any extra strong path joining u and v lie completely in $s d\left(G_{i}\right), i=1$ or 2 . So the strength of the $u-v$ path in G is 3 by Theorem 1.4.2. Since $u_{3} \in V\left(G_{1}\right) \cap$ $V\left(G_{2}\right), u_{3} \in V\left(s d\left(G_{1}\right)\right) \cap V\left(s d\left(G_{2}\right)\right)$. If $u \in \operatorname{sd}\left(G_{1}\right) \backslash\left\{u_{3}\right\}$ and $v \in \operatorname{sd}\left(G_{2}\right) \backslash\left\{u_{3}\right\}$ then all the $u-v$ paths can be considered as the union of two paths P_{1} of $s d\left(G_{1}\right)$ joining u to u_{3} and P_{2} of $\operatorname{sd}\left(G_{2}\right)$ joining u_{3} to v. Therefore, the length of any extra strong the $u-v$ path is less than or equal to the length of any extra strong
$u-u_{3}$ path in $\operatorname{sd}\left(G_{1}\right)$ and $u_{3}-v$ path in $\operatorname{sd}\left(G_{2}\right)$ which is less than or equal to $3+3=6$. Also when u is the vertex $\in V(s d(G))$ corresponding to the edge $u_{1} u_{2}$ in G_{1} and v is the vertex $\in V(s d(G))$ corresponding to the edge $u_{4} u_{5}$ in $V\left(G_{2}\right)$ the strength of the $u-v$ path is exactly 6 .

Hence the theorem.

Figure 3.12: A strong fuzzy butterfly graph and its subdivision graph.

Theorem 3.3.3. Let G be a strong fuzzy Bull graph then the strength $\mathscr{S}(s d(G))$ of the subdivision graph of G is 6 .

Proof. A fuzzy bull graph $G(V, \mu, \sigma)$ is a 1 -linked fuzzy graph with three parts. Let P, P^{\prime} and $P^{\prime \prime}$ be its parts, where P and $P^{\prime \prime}$ are fuzzy paths on two vertices and P^{\prime} is a fuzzy triangle. Then $s d(G)$ is also a 1 - linked fuzzy graph with parts $G_{1}=s d(P), G_{2}=s d\left(P^{\prime}\right)$ and $G_{3}=s d\left(P^{\prime \prime}\right)$. (See Figure 3.13).

Figure 3.13: A strong fuzzy Bull graph G and its subdivision graph $\operatorname{sd}(G)$.

Let u and v be any two non-adjacent vertices of $s d(G)$. If $u, v \in V\left(G_{1}\right)$ or $u, v \in V\left(G_{3}\right)$ then the length of any extra strong $u-v$ path in G is 2 . Since both $s d(P)$ and $s d\left(P^{\prime \prime}\right)$ are paths on 3 vertices.

If $u, v \in V\left(G_{3}\right)$ then all the paths joining u and v lie completely in G_{3}. Since G_{3} is the subdivision graph of the strong fuzzy triangle $P^{\prime \prime}$, it is a strong fuzzy cycle on 6 vertices. As P^{\prime} contains at least 2 weakest edges, $\operatorname{sd}\left(G_{3}\right)$ contains at least 4 weakest edges. Therefore by Theorem 1.4.2, the length of the extra strong $u-v$ path in G_{3} is 3.

Let $\{w\}=V\left(G_{1}\right) \cap V\left(G_{3}\right)$ and $\left\{w^{\prime}\right\}=V\left(G_{2}\right) \cap V\left(G_{3}\right)$. If $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$ then all the $u-v$ paths pass through both w and w^{\prime} in $\operatorname{sd}(G)$. Since w and w^{\prime} are adjacent in G, the extra strong path joining w and w^{\prime} in $\operatorname{sd}(G)$ is $w e w^{\prime}$ where e is the vertex in $s d(G)$ corresponding to the edge $w w^{\prime}$ in G. So the length of the extra strong path joining u and v is $\leq 2+2+2=6$. When u and v are the pendant vertices of G then the extra strong $u-v$ path has length exactly 6 . Therefore $\mathscr{S}(G)=6$.

For a strong fuzzy tree G, the strength of G is the diameter of the underlying crisp graph of G. The subdivision graph of a fuzzy star graph is a fuzzy tree. It is immediate from the definition of fuzzy star graph and subdivision of a fuzzy graph the strength of the subdivision graph of a fuzzy star graph is 4 .

Theorem 3.3.4. The strength of the subdivision graph of a fuzzy star graph [56] G is 4.

Note 3.3.1. Let G be a strong fuzzy cycle on n vertices with l weakest edges in G having weight w. Then the edges in $\operatorname{sd}(G)$ incident with that vertices of $s d(G)$ corresponding to weakest edges of G are of weight w. Therefore in $s d(G)$, there are $2 l$ weakest edges.

Theorem 3.3.5. Let G be a strong fuzzy cycle of length n, which contains l weakest edges and which do not contain any weakest edge of G. Then the strength, $\mathscr{S}(s d(G))$, of the subdivision graph of G is $2 \mathscr{S}(G)$.

Proof. We have by Note 3.3.1, for a strong fuzzy cycle G of length n, if there are l weakest edges which altogether form a subpath in G then there are $2 l$ weakest edges which altogether form a subpath in $\operatorname{sd}(G)$.

By Theorem 1.4.2 if $2 l \leq\left[\frac{2 n+1}{2}\right]$ then $\mathscr{S}(s d(G))=2 n-2 l=2(n-l)$. If $2 l \leq\left[\frac{2 n+1}{2}\right]$ then $l \leq\left[\frac{n+1}{2}\right]$ so $\mathscr{S}(s d(G))=2 \mathscr{S}(G)$. Also by Theorem 1.4.2 if $2 l>\left[\frac{2 n+1}{2}\right]$ then $\mathscr{S}(s d(G))=\left[\frac{2 n}{2}\right]=2\left[\frac{n}{2}\right]$. We have $2 l>\left[\frac{2 n+1}{2}\right]$ implies $l \geq\left[\frac{n+1}{2}\right]$ so $\mathscr{S}(s d(G))=2 \mathscr{S}(G)$.

Suppose there are l weakest edges which do not altogether form a subpath in G. Then the $2 l$ weakest edges of $s d(G)$ also do not form a subpath in $\operatorname{sd}(G)$. So by Theorem 1.4.3 if $2 l>\left[\frac{2 n}{2}\right]-1$ then $\mathscr{S}(s d(G))=\left[\frac{2 n}{2}\right]$.

But if $2 l>\left[\frac{2 n}{2}\right]-1$ then $l>\left[\frac{n}{2}\right]-1$. Hence in this case $\mathscr{S}(s d(G))=2 \mathscr{S}(G)$.
Similarly if $2 l<\left[\frac{2 n}{2}\right]-1$ then $\mathscr{S}(\operatorname{sd}(G))=\left[\frac{2 n}{2}\right]$. Also $2 l<\left[\frac{2 n}{2}\right]-1$ implies $l \leq\left[\frac{n}{2}\right]-1$. So $\mathscr{S}(\operatorname{sd}(G))=\left[\frac{2 n}{2}\right]=2 \mathscr{S}(G)$.

Hence the proof.

Theorem 3.3.6. The strength of the subdivision graph of a strong fuzzy diamond graph is 4.

Proof. Let G be a strong fuzzy diamond graph with vertex set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Also let u and v be two non-adjacent vertices of $s d(G)$.

Case 1. $u, v \in V(G)$.

If u and v are adjacent in G and e be the edge joining u and v in G then the strength of the $u-v$ path is less than or equal to $\mu_{s d}(u) \wedge \mu_{s d}(v)$ and which is equal to $\sigma_{s d}(e)$. So the path $u e v$ is the extra strong path joining u and v in $\operatorname{sd}(G)$ which is of length 2. If u and v are non-adjacent vertices in G then $u, v \in\left\{u_{2}, u_{4}\right\}$ as shown in Figure 3.14. Suppose that $u=u_{2}$ and $v=u_{4}$.

G

$\operatorname{sd}(\mathbf{G})$

Figure 3.14: A strong fuzzy diamond graph G and its subdivision graph $\operatorname{sd}(G)$.

Then any extra strong path joining u and v in $s d(G)$ pass either through u_{1} or through u_{3} depending up on their weights. Without loss of generality assume that $\mu\left(u_{1}\right) \geq \mu\left(u_{3}\right)$. Since u_{1} is adjacent to both u and v and e_{1} is the edge $u u_{1}$ and e_{4} is the edge $u_{1} v$ in G, so $u e_{1} u_{1} e_{4} v$ is an extra strong path in $\operatorname{sd}(G)$ and it is of minimum length among all the other strong paths.

Case 2. $u, v \in E(G)$.

If u and v have a common vertex w in G then in $s d(G)$ the path $u w v$ is an extra strong path since, the strength of all the paths joining u and v in $\operatorname{sd}(G)$ have strength $\leq \mu_{s d}(u) \wedge \mu_{s d}(v)$ and $\mu_{s d}(w) \geq \mu_{s d}(u) \wedge \mu_{s d}(v)$. So the length of the extra strong path joining u and v is 2 .

Otherwise, suppose u and v have no common vertex in G then u and $v \in$ $\left\{e_{1}, e_{3}\right\}$ or $\left\{e_{2}, e_{4}\right\}$. (See Figure 3.14). Without loss of generality assume that u and $v \in\left\{e_{1}, e_{3}\right\}$. In this case all the $u-v$ paths have strength less than or equal to $\mu_{s d}(u) \wedge \mu_{s d}(v)=\mu_{s d}\left(u_{1}\right) \wedge \mu_{s d}\left(u_{2}\right) \wedge \mu_{s d}\left(u_{3}\right) \wedge \mu_{s d}\left(u_{4}\right)$. Therefore, the length
of the extra strong path is the minimum distance between u and v which is 4 .

Case 3. $u \in V(G)$ and $v \in E(G)$.

Without loss of generality assume that $u=u_{1}$ and $v=e_{3}$ where e_{3} is the vertex in $s d(G)$ corresponding to the edge $u_{3} u_{4}$ in G. (See Figure 3.14). Then strength of each $u-v$ path in $s d(G) \leq \mu_{s d}(u) \wedge \mu_{s d}(v)=\mu\left(u_{1}\right) \wedge \mu\left(u_{3}\right) \wedge \mu\left(u_{4}\right)$. So the extra strong path joining u and v lies completely in the maximal partial fuzzy subgraph of $s d(G)$ with vertex set $\left\{u_{1}, u_{3}, u_{4}, e_{3}, e_{4}, e_{5}\right\}$, which is a strong fuzzy cycle on 6 vertices. So the length of the extra strong path joining u and v is 3 .

Theorem 3.3.7. Let G be a fuzzy complete graph. Then the strength $\mathscr{S}(s d)(G)$ is 3 for $n=3$ and 4 for $n>3$.

Proof. When $n=3, \operatorname{sd}(G)$ is a strong fuzzy cycle on 6 vertices having at least 4 weakest edges. So the the result follows by Theorem 1.4.2.

Consider the case, $n>3$. Let u, v be two non-adjacent vertices of $\operatorname{sd}(G)$. If u and v are the vertices of G then the extra strong path joining u and v is uev where e is the edge $u v$ in G and is of length 2 .

If u and v are edges of G then, if they have a common vertex w in G then the path $u w v$ in $s d(G)$ is of strength exactly equal to $\mu_{s d}(u) \wedge \mu_{s d}(v)$, which is an extra strong path joining them in $\operatorname{sd}(G)$.

Suppose $u=u_{j} u_{k}$ and $v=u_{l} u_{m}$ are edges of G and have no vertex in common. The weight of the edges $u u_{j}$ and $u u_{k}$ are the same and the weight of the edges $v u_{l}$ and $v u_{m}$ are the same in $s d(G)$ and the extra strong path joining any two vertices u^{\prime} and $u^{\prime \prime}$ of G in $s d(G)$ is $u^{\prime} e u^{\prime \prime}$, where e is the edge joining u^{\prime} and $u^{\prime \prime}$ in G. So all the $u-v$ paths must have same strength in $\operatorname{sd}(G)$. Therefore, the length of the extra strong path joining u and v is the length of the shortest $u-v$ path in $\operatorname{sd}(G)$, which is 4 .

3.4 Fuzzy middle graph

Definition 3.4.1. [29] Let $G(V, \mu, \sigma)$ be a fuzzy graph with its underlying crisp graph $G(V, E)$. The fuzzy middle graph of G is denoted by $M(G)\left(V_{M}, \mu_{M}, \sigma_{M}\right)$ with crisp graph $M(G)\left(V_{M}, E_{M}\right)$, where the vertex set $V_{M}=V \cup E$ and edge set $E_{M}=\{u v:$ either u and v are two adjacent edges of G or $u \in V$ and $v \in$ E with u as one end vertex of $v\}$,

$$
\mu_{M}(u)= \begin{cases}\mu(u) & \text { if } u \in V \\ \sigma(u) & \text { if } u \in E\end{cases}
$$

and
$\sigma_{M}(u v)= \begin{cases}\sigma(u) \wedge \sigma(v) & \text { if } u, v \text { are two adjacent edges of } G, \\ \sigma(v) & \text { if } u \in V \text { and } v \in E \text { with } u \text { as one end vertex of } v .\end{cases}$

From the definition of middle graph of a fuzzy graph it is clear that the middle graph of a strong fuzzy path on n vertices is a $1-$ linked fuzzy graph with n parts, each of which is a complete fuzzy graph. So by Lemma 2.3.2 the strength of middle graph of a strong fuzzy path on n vertices is n.

Theorem 3.4.1. Let $G(V, \mu, \sigma)$ be a complete strong fuzzy graph with $M(G)\left(V_{M}\right.$, $\left.\mu_{M}, \sigma_{M}\right)$ its fuzzy middle graph. Then

$$
\mathscr{S}(M(G))= \begin{cases}0 & \text { if }|V|=1 \\ 2 & \text { if }|V| \geq 2\end{cases}
$$

Proof. Let $G(V, \mu, \sigma)$ be a complete fuzzy graph with middle graph $M(G)\left(V_{M}, \mu_{M}\right.$, $\left.\sigma_{M}\right)$. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertex set and $\left\{e_{1}, e_{2}, \ldots, e_{\frac{n(n-1)}{2}}\right\}$ be the edge set of G. If $|V|=1$ then G and $M(G)$ are fuzzy trivial graphs. Hence $\mathscr{S}(M(G))=\mathscr{S}(G)=0$.

If $|V|=2$ then $M(G)$ is a path on 3 vertices. Hence $\mathscr{S}(G)=2$.

Suppose that $|V|>2$. Let u, v be two non - adjacent vertices of $M(G)$.

Case 1. $u, v \in V(G)$.

Since all the vertices of G are adjacent, $e=u v$ is an edge of G and therefore it is a vertex of $M(G)$. By the definition of $M(G), e$ is adjacent to both u and v in $M(G)$ and $\mu_{M}(e)=\sigma(e)=\mu(u) \wedge \mu(v)$. As all the paths joining u and v
in $M(G)$ have strength less than or equal to $\mu(u) \wedge \mu(v)$, uev is an extra strong $u-v$ path in $M(G)$.

Case 2. $u, v \in E(G)$.

Suppose u_{l}, u_{k}, u_{m} and $u_{j} \in V(G)$ such that $u=u_{l} u_{k}$ and $v=u_{m} u_{j}$, in G. Then any path joining u and v have strength $\leq \mu\left(u_{l}\right) \wedge \mu\left(u_{k}\right) \wedge \mu\left(u_{m}\right) \wedge \mu\left(u_{j}\right)=$ μ_{\circ} (say). If w is the edge $u_{m} u_{l}$ or $u_{m} u_{k}$ or $u_{j} u_{l}$ or $u_{j} u_{k}$ of G then $u w v$ is a path in $M(G)$ with strength μ_{\circ}. So the length of any extra strong $u-v$ path in $M(G)$ is 2 .

Case 3. $u \in V(G)$ and $v \in E(G)$.

Clearly all the $u-v$ paths in $M(G)$ must have strengths $\leq \mu_{M}(u) \wedge \mu_{M}(v)$. Let w be one of the end vertices of v. Since G is complete, u is adjacent to w. Therefore $e=u w$ is an edge of G. Hence it is a vertex of $M(G)$ adjacent to both u and v in $M(G)$. Thus uev is a $u-v$ path in $M(G)$ having strength $\mu_{M}(u) \wedge \mu_{M}(v)$. Therefore uev is an extra strong $u-v$ path in $M(G)$. Hence the theorem.

Theorem 3.4.2. Let $G(V, \mu, \sigma)$ be a strong fuzzy star graph and $M(G)\left(V_{M}, \mu_{M}, \sigma_{M}\right)$ be its fuzzy middle graph. Then

$$
\mathscr{S}(M(G))= \begin{cases}0 & \text { if }|V|=1 \\ 2 & \text { if }|V|=2 \\ 3 & \text { otherwise }\end{cases}
$$

Proof. If $|V|=1$ or 2 then G is a complete fuzzy graph. Therefore the result follows from Theorem 3.4.1. So suppose that $|V| \geq 3$. Let $V=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertex set of G with u_{n} as the central vertex and $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ be the edge set of G with $e_{k}=u_{k} u_{n}$. Then $\left\{u_{1}, u_{2}, \ldots, u_{n}, e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ be the vertex set of the middle graph $M(G)$ of G (See Figure 3.15).

Figure 3.15: A strong fuzzy star graph and its middle graph $M(G)$.

Let u and v be two non-adjacent vertices of $M(G)$. Then we have the following three cases:
i Both u and v are pendant vertices of G.
ii One of u and v is a pendant vertex and the other is the central vertex of G.
iii One of u and v say u is a pendant vertex of G and other is a vertex of $M(G)$ which corresponds to an edge in G with u is not an end vertex.

In the first case, let us suppose that $u=u_{i}$ and $v=u_{j}$, where $1 \leq i \neq j \leq n-1$. Then all the $u-v$ paths pass through both the vertices e_{i} and e_{j} in $M(G)$. Since the middle graph of a strong fuzzy graph is strong fuzzy, $M(G)$ is a strong fuzzy graph. As e_{i} and e_{j} are the support vertices of u and v in $M(G)$ respectively, all $u-v$ paths in $M(G)$ must pass through these two vertices. Thus the $u-v$ path $u e_{i} e_{j} v$ of $M(G)$ will be an extra strong $u-v$ path with length 3.

In the second case, without loss of generality assume $u=u_{i}$ and $v=u_{n}, i<n$. All the $u-v$ paths must pass through e_{i}. As e_{i} is adjacent to both u and $v, u e_{i} v$ is an extra strong $u-v$ path with length 2 .

In the last case, we suppose that $u=u_{i}$, where $i \neq n$ and $v=e_{j}=u_{n} u_{j}$, where $j \neq i$. Here, $u e_{i} v$ is an extra strong $u-v$ path in G of length 2. Hence the Theorem.

Theorem 3.4.3. Let $G(V, \mu, \sigma)$ be a strong fuzzy diamond graph and $M(G)\left(V_{M}, \mu_{M}\right.$, $\left.\sigma_{M}\right)$ be its fuzzy middle graph. Then $\mathscr{S}(M(G))=3$.

Proof. Let $V=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be the vertex set and $E=\left\{e_{1}, e_{2}, \ldots, e_{5}\right\}$ where $e_{1}=u_{1} u_{2}, e_{2}=u_{2} u_{3}, e_{3}=u_{3} u_{4}, e_{4}=u_{4} u_{1}, e_{5}=u_{1} u_{3}$ be the edge set of G. Then $V_{M}=\left\{u_{1}, u_{2}, \ldots, u_{4}, e_{1}, e_{2}, \ldots, e_{5}\right\}$ (See Figure 3.16).

Figure 3.16: A fuzzy diamond graph G and its middle graph $M(G)$.

Let u, v be two nonadjacent vertices of $M(G)$. Then

Case 1. u and v are two adjacent vertices in G.

Suppose $u=u_{1}$ and $v=u_{2}$. Since $\sigma\left(e_{1}\right)=\mu\left(u_{1}\right) \wedge \mu\left(u_{2}\right)=\mu_{M}\left(e_{1}\right)$ and the vertex e_{1} is adjacent to both u_{1} and u_{2} in $M(G), u_{1} e_{1} u_{2}$ is the extra strong path joining u and v. So that the length of the extra strong $u_{1}-u_{2}$ path is 2 . In all other cases also the length of the extra strong $u-v$ path is 2 .

Case 2. u and v are two non - adjacent vertices in G say $u=u_{2}$ and $v=u_{4}$.

Without loss of generality assume that $\mu\left(u_{1}\right) \leq \mu\left(u_{3}\right)$. If $\mu\left(u_{4}\right) \wedge \mu\left(u_{2}\right) \leq$ $\mu\left(u_{1}\right)$ then the length of an extra strong path must be the minimum length of the path joining u and v, which is 3 .

If $\mu\left(u_{4}\right) \wedge \mu\left(u_{2}\right)>\mu\left(u_{1}\right)$ then $u_{2} e_{2} e_{3} u_{4}$ is an extra strong $u-v$ path and is of length equal to 3 .

Case 3. u and v are two non-adjacent edges in G.

Then $u, v \in\left\{e_{1}, e_{3}\right\}$ or $u, v \in\left\{e_{2}, e_{4}\right\}$ in $M(G)$. So all the $u-v$ paths have strength $=\mu_{M}\left(e_{1}\right) \wedge \mu_{M}\left(e_{3}\right)=\mu\left(u_{1}\right) \wedge \mu\left(u_{2}\right) \wedge \mu\left(u_{3}\right) \wedge \mu\left(u_{4}\right)$. Therefore each $e_{1} e_{i} e_{3}, i=2$ or 4 or 5 is an extra strong path and is of length 2 .

Case 4. u is a vertex of G and v is an edge of G.

Because of the symmetry we need only to consider the case $u=u_{1}$ and $v=e_{3}$. As all extra strong $u-v$ path have strength $\leq \mu_{M}\left(u_{1}\right) \wedge \mu_{M}\left(e_{3}\right)=$ $\mu\left(u_{1}\right) \wedge \mu\left(u_{3}\right) \wedge \mu\left(u_{4}\right)$ and since $\mu_{M}\left(e_{5}\right)=\sigma\left(e_{5}\right)=\mu\left(u_{1}\right) \wedge \mu\left(u_{3}\right), u_{1} e_{5} u_{3}$ is an extra strong $u-v$ path of length 2 . Hence the theorem.

3.5 Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

This section discusses the strength of total fuzzy graph, fuzzy split graph and fuzzy shadow graph.

3.5.1 Total fuzzy graph

The total graph of a graph $G(V, E)$ is the graph with vertex set $V \cup E$ and two vertices are adjacent, whenever they are either adjacent or incident in G [53].

Definition 3.5.1. [28] Let $G(V, \mu, \sigma)$ be a fuzzy graph with underlying crisp graph $G(V, E)$. Then the total fuzzy graph of G, denoted by $T(G)$ is the fuzzy graph $T(G)\left(V_{T}, \mu_{T}, \sigma_{T}\right)$ with the underlying crisp graph is the total graph of $G(V, E)$, where the vertex set $V_{T}=V \cup E$ and the membership functions μ_{T} and σ_{T} are defined as

$$
\mu_{T}(u)= \begin{cases}\mu(u) & \text { if } u \in V \\ \sigma(u) & \text { if } u \in E\end{cases}
$$

and for $u, v \in V_{T}$,

$$
\sigma_{T}(u v)= \begin{cases}\sigma(u v) & \text { if } u, v \in V \\ \sigma(u) \wedge \sigma(v) & \text { if } u, v \in E \text { and have a common vertex, } \\ \mu(u) \wedge \sigma(v) & \text { if } u \in V, v \in E \text { and } u \text { is a vertex incident with } E, \\ 0 & \text { otherwise. }\end{cases}
$$

If G is a trivial or a null fuzzy graph then $T(G)$ is G and hence $\mathscr{S}(T(G))=$ $\mathscr{S}(G)=0$. If G is a strong fuzzy path on 2 vertices then $T(G)$ is a complete strong fuzzy graph on 3 vertices. Hence $\mathscr{S}(T(G))=1$ by Theorem 1.4.1.

Figure 3.17: A fuzzy path on 2 vertices and its total fuzzy graph.

Theorem 3.5.1. Let $G(V, \mu, \sigma)$ be a strong fuzzy graph with its underlying crisp graph $G(V, E)$, a path on $n>2$ vertices. Then the strength of $T(G)$ is $n-1$.

Proof. Let us suppose that $V=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ and $E=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ where $e_{i}=u_{i} u_{i+1}, i=1,2, \ldots, n-1$.

Let u, v be two non-adjacent vertices of $T(G)$ (See Figure 3.18).

G

$T(G)$

Figure 3.18: A fuzzy path on 4 vertices and its total fuzzy graph.

Case 1. $u, v \in\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ or $u, v \in\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$.

First of all suppose that $u, v \in\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Let us suppose that $u=u_{i}$ and $v=u_{j}, i<j$. Clearly any extra strong $u-v$ path lie in the maximal partial fuzzy subgraph G^{\prime} with vertex set $\left\{u_{i}, e_{i}, u_{i+1}, e_{i+1}, \ldots, u_{j}, e_{j}\right\}$. In this case there is only one extra strong $u-v$ path, namely $u_{i} u_{i+1} \ldots u_{j}$ If possible, let k be the least positive integer $\geq i$ such that e_{k} belongs to the vertex set of an extra strong $u-v$ path P in $T(G)$. Let $e_{k} e_{k+1} \ldots e_{k+h}$ be the maximal subpath of P which lies in the path $e_{1} e_{2} \ldots e_{n-1}$ beginning at e_{k}.

Then $P_{1}=u_{k} u_{k+1} e_{k} e_{k+1} \ldots e_{k+h} u_{k+h+1}$ or $P_{2}=u_{k} u_{k+1} e_{k} \ldots e_{k+h} u_{k+h}$ or
$P_{3}=u_{k} e_{k} \ldots e_{k+h} u_{k+h+1}$ or $P_{4}=u_{k} e_{k} \ldots e_{k+h} u_{k+h}$ is a subpath of P. Then by replacing the subpaths P_{3} by $u_{k} u_{k+1} \ldots u_{k+h+1}$ and P_{2} and P_{4} by the path $u_{k} u_{k+1} \ldots u_{k+h}$, we get a $u-v$ path of strength \geq that of P and length less than or equal to that of P; a contradiction. So we can conclude that the extra strong $u-v$ path in this case is $u_{i} u_{i+1} \ldots u_{j-1} u_{j}$. Therefore the length of the extra strong $u-v$ path is less than or equal to $n-1$.

Similarly we can prove that if $u, v \in\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ then the length of the extra strong $u-v$ path is $\leq n-2$.

Case 2. $u \in\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $v \in\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$.

Let $u=u_{i}$ and $v=e_{j}, i<j$. In this case every extra strong $u-v$ path must be a subpath of the maximal partial fuzzy subgraph $G^{\prime \prime}$ of $T(G)$ with vertex set $u_{i}, u_{i+1}, \ldots, u_{j}, e_{i}, e_{i+1}, \ldots, e_{j}$. Let us denote the path $u_{1} u_{2} \ldots u_{n}$ of $T(G)$ by P_{1} and the path $e_{1} e_{2} \ldots e_{n-1}$ of $T(G)$ by P_{2}. Also let P be an extra strong $u-v$ path in $T(G)$ which lies in $G^{\prime \prime}$. Suppose k is the least positive integer such that $e_{k} \in V(P)$. Then $i \leq k \leq j$. By case 1 we can conclude that P is $u_{i} u_{i+1} \ldots u_{k} e_{k} \ldots e_{j}$. Its length is clearly $k-i+j-k+1=j-i+1 \leq n-1$ and equal to $n-1$ if $i=1$ and $j=n$.

3.5.2 Fuzzy split graph

Definition 3.5.2. [7] For a graph G and a vertex v of G, the neighbourhood set $N(v)$ is defined as the set of all vertices of G which are adjacent to v in G.

Definition 3.5.3. [46] For a graph G the split graph $\operatorname{split}(G)$ is obtained by adding a new vertex v^{\prime} corresponding to each vertex v of G such that $N\left(v^{\prime}\right)=$ $N(v)$.

Unless otherwise specified we denote the vertex corresponding to the vertex v of G in $\operatorname{split}(G)$ by v^{\prime} and the set of all such vertices v^{\prime} by V^{\prime}.

Hence the $\operatorname{split}(G)$ has the vertex set $V_{\text {split }}=V \cup V^{\prime}$ and the edge set $E_{\text {split }}=$ $\left\{u v: u, v \in V\right.$ and u, v are adjacent in G or $u \in V, v=w^{\prime} \in V^{\prime}$ such that u, w are adjacent in G \}.

Definition 3.5.4. The fuzzy split graph $\operatorname{split}(G)\left(V_{\text {split }}, \mu_{\text {split }}, \sigma_{\text {split }}\right)$ of a fuzzy graph $G(V, \mu, \sigma)$ is a fuzzy graph with underlying crisp graph $\operatorname{split}(G)$ where $\mu_{\text {split }}(u)=\mu_{\text {split }}\left(u^{\prime}\right)=\mu(u)$ for $u \in V$ and $u^{\prime} \in V^{\prime}$. $\sigma_{\text {split }}(u v)= \begin{cases}\sigma(u v) & \text { if } u \text { and } v \text { are adjacent in } V, \\ \mu(u) \wedge \mu(v) & \text { if } v=w^{\prime} \in V^{\prime} \text { such that } u \text { and } w, \\ & \text { are adjacent in } G, \\ 0 & \text { othewise. }\end{cases}$

For $|V|=1, \operatorname{split}(G)$ is a null fuzzy graph on 2 vertices. Therefore its strength is 0 .

Theorem 3.5.2. Let $G(V, \mu, \sigma)$ be a strong fuzzy path on $n>1$ vertices. Then the strength of $\operatorname{split}(G)$, the fuzzy split graph of G is

$$
\mathscr{S}(\operatorname{split}(G))= \begin{cases}n-1 & \text { if } n>3 \\ 3 & \text { if } n=2,3 .\end{cases}
$$

Proof. When $n=2$, the split graph of G is a fuzzy path on 4 vertices. Hence strength of $\operatorname{split}(G)$ is 3. (See Figure 3.19 (a)).

When $n=3$, let $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ be the vertex set of G as shown in Figure 3.19 (b) and u, v be two nonadjacent vertices of fuzzy split graph of G. If $u=v_{1}$ and $v=v_{3}$ then $u v_{2} v$ and $u v_{2}^{\prime} v$ are the only extra strong $u-v$ paths in $\operatorname{split}(G)$. If $u=v_{1}$ and if v is either v_{1}^{\prime} or v_{3}^{\prime}, the respective extra strong $u-v$ paths are $v_{1} v_{2} v_{1}^{\prime} v_{1} v_{2} v_{3}^{\prime}$, which is of length 2. If $u=v_{i}^{\prime}$ and $v=v_{i+1}^{\prime}, i=1,2$, all the $u-v$ paths have length 3. In the case $u=v_{1}^{\prime}$ and $v=v_{3}^{\prime}$ there is only one $u-v$ path, which is of length 2. Therefore in this case the strength of fuzzy split graph of G is 3.

Figure 3.19: (a) A fuzzy path on 2 vertices and its split graph, (b) A fuzzy path on 3 vertices and its split graph.

Figure 3.20: A fuzzy path on n vertices and its split graph.

When $n>3$ we proceed as follows. Let u and v be two nonadjacent vertices of $\operatorname{split}(G)$.

Case 1. $u, v \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Let $u=v_{i}$ and $v=v_{j}, i<j$. Then every extra strong $u-v$ path must be a subpath P of the maximal partial fuzzy subgraph G^{\prime} of $\operatorname{split}(G)$ with vertex set $v_{i}, v_{i+1}, \ldots, v_{j}, v_{i+1}^{\prime}, \ldots, v_{j-1}^{\prime}$. First of all note that if a $u-v$ path P in $\operatorname{split}(G)$ passes through v_{i-1} then it must pass through v_{i}^{\prime} and v_{i+1}. In fact $v_{i} v_{i-1}, v_{i-1} v_{i}^{\prime}$ and $v_{i}^{\prime} v_{i+1}$ are edges of P. In this case by deleting the vertices v_{j} for $j<i$ and v_{j}^{\prime} for $j \leq i$ of P and adding the edge $v_{i} v_{i+1}$ to P we get new $u-v$ path with less length and, strength not less than that of P, a contradiction. If P passes through v_{i}^{\prime} then $v_{i} v_{i-1}, v_{i-1} v_{i}^{\prime}$ and $v_{i}^{\prime} v_{i+1}$ are edges of P. As above by deleting these edges of P and adding the edge $v_{i} v_{i+1}$, we get a $u-v$ path with strength not less than that of P but length strictly less than that of P, a contradiction.

Similarly we can prove that P can't pass through any of the vertices $v_{k}, k>j$
or $v_{k}^{\prime}, k \geq j$.

Also from the definition of $\operatorname{split}(G)$ the path P must pass through either v_{k} or $v_{k}^{\prime} ; k=i+1, \ldots, j-1$. Since $\mu_{\text {split }}\left(v_{k}\right)=\mu_{\text {split }}\left(v_{k}^{\prime}\right)$ for $k=1,2, \ldots, n$, the path P is of the form $u_{i} u_{i+1} \ldots u_{j-1} u_{j}$ where $u_{k}=v_{k}$ or $v_{k}^{\prime}, k=i+1, \ldots, j-1$. In such a way that if some $u_{k}=v_{k}$ then $u_{k+1}=v_{k+1}$ or v_{k+1}^{\prime} and if some $u_{k}=v_{k}^{\prime}$ then $u_{k+1}=v_{k+1}$. Clearly length of P is $j-i$.

If $u=v_{1}$ and $v=v_{n}$ then the length of the extra strong $u-v$ path is equal to $n-1$. (See Figure 3.19).

Case 2. $u, v \in\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$.

As u is adjacent to v_{i-1} and v_{i+1} and v is adjacent to v_{j-1} and v_{j+1} only and any path from u to v traverse through v_{k} or v_{k}^{\prime}. Then there exist an extra strong path P in the maximal partial fuzzy subgraph of G with vertex set $v_{i}^{\prime}, v_{i+1}, v_{i+1}^{\prime}, \ldots, v_{j-1}, v_{j}^{\prime}$.

Clearly P contains either v_{k} or v_{k}^{\prime} but not both for $i \leq k \leq j$. Therefore length of $P=j-i$.

Case 3. $u \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $v \in\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$.

Let $u=v_{i}$ and $v=v_{j}^{\prime}$ with $i \leq j$. If $i=j$ then $v=v_{i}^{\prime}$. In this case, since v_{i}^{\prime} is adjacent to only v_{i+1} and v_{i-1} all the extra strong $u-v$ path must pass through either v_{i-1} or v_{i+1}. If $\mu\left(v_{i-1}\right) \geq \mu\left(v_{i+1}\right.$ then $u v_{i-1} v$ is an extra strong path in G, otherwise $u v_{i+1} v$ is an extra strong path in G.

As in the proof of Case (2) we can conclude that the length of the extra strong path joining u and v is j -i.

Proposition 3.5.1. Let $G(V, \mu, \sigma)$ be a strong fuzzy complete graph on 3 vertices. If there exists a vertex in G whose weight is strictly less than the weight of the other two vertices then $\mathscr{S}(\operatorname{split}(G))$ is 3 . Otherwise it is 2 .

Proof. Consider a strong fuzzy complete graph with vertex set $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let u, v be two nonadjacent vertices of $\operatorname{split}(G)$.

Suppose $u=v_{i}$ and $v=v_{i}^{\prime}, 1 \leq i \leq 3$. Since v_{i} is adjacent to all vertices except v_{i}^{\prime} and since $\mu\left(v_{j}\right)=\mu_{\text {split }}\left(v_{j}\right), \forall j$, in $\operatorname{split}(G), u v_{k} v$ is an extra strong $u-v$ path, where $v_{k}, k \neq i$ is a vertex of G with $\mu\left(v_{k}\right) \geq \max \left\{\mu\left(v_{j}\right): j \neq i\right\}$. Now suppose, $u=v_{i}^{\prime}$ and $v=v_{j}^{\prime}, 1 \leq i \neq j \leq 3$.

Let v_{k} be the vertex distinct from v_{i} and v_{j}. If $\mu\left(v_{k}\right) \geq \mu\left(v_{i}\right) \wedge \mu\left(v_{j}\right)$ then $u v_{k} v$ is an extra strong $u-v$ path in $\operatorname{split}(G)$. Otherwise, that is if $\mu\left(v_{k}\right)<\mu\left(v_{i}\right) \wedge \mu\left(v_{j}\right)$ then $u v_{j} v_{i} v$ is an extra strong $u-v$ path in $\operatorname{split}(G)$.

If at least two vertices of G have the minimum weight then all edges of $\operatorname{split}(G)$ have the same weight. Therefore $\mathscr{S}(\operatorname{split}(G))=2$.

Figure 3.21: A graph G on 3 vertices and its split graph.

We generalize Proposition 3.5.1 as follows:

Theorem 3.5.3. Let $G(V, \mu, \sigma)$ be a strong fuzzy complete graph on $n \geq 3$. If there exist two vertices u, v in G such that $\mu(u) \wedge \mu(v)$ is greater than the strength of all other vertices in G. Then the strength of $\operatorname{split}(G)$ is 3 . Otherwise it is 2 .

3.5.3 Fuzzy shadow graph

Definition 3.5.5. [54] The shadow graph of a connected graph $G(V, E)$ is constructed by taking two copies of G say $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ and $G^{\prime \prime}\left(V^{\prime \prime}, E^{\prime \prime}\right)$ and by joining each vertex v^{\prime} of G^{\prime} to those vertices in $G^{\prime \prime}$ which are neighbours of $v^{\prime \prime}$, where v^{\prime} and $v^{\prime \prime}$ represent the same vertex v of G.

Definition 3.5.6. The fuzzy shadow graph $S(G)\left(V_{s}, \mu_{s}, \sigma_{s}\right)$ of a fuzzy graph $G(V, \mu, \sigma)$ with underlying crisp graph $G(V, E)$ is defined as a fuzzy graph with its underlying crisp graph is the shadow graph of $G(V, E)$ with vertex set $V_{S}=$
$V^{\prime} \cup V^{\prime \prime}$ where V^{\prime} and $V^{\prime \prime}$ are the vertex sets corresponding to the two copies of $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ and $G^{\prime \prime}\left(V^{\prime \prime}, E^{\prime \prime}\right)$ of $G(V, E)$. For each $v \in V$, the vertices $v^{\prime} \in V^{\prime}$ and $v^{\prime \prime} \in V^{\prime \prime}$ corresponding to v have weight $\mu(v)$ that is, $\mu_{S}\left(v^{\prime}\right)=\mu_{S}\left(v^{\prime \prime}\right)=\mu(v)$ For $v^{\prime} \in V^{\prime}$ and a neighbour $w^{\prime \prime}$ of $v^{\prime \prime}$ in $V^{\prime \prime}, \sigma_{S}\left(v^{\prime} w^{\prime \prime}\right)=\mu(v) \wedge \mu(w)$ and for two adjacent vertices u^{\prime}, v^{\prime} in V^{\prime} and for two adjacent vertices $u^{\prime \prime}, v^{\prime \prime}$ in $V^{\prime \prime}$, $\sigma_{S}\left(u^{\prime} v^{\prime}\right)=\sigma_{S}\left(u^{\prime \prime} v^{\prime \prime}\right)=\sigma(u v)$, where $u, v \in V$, and σ_{S} is zero in all the other cases.

Theorem 3.5.4. Let $G(V, \mu, \sigma)$ be a strong fuzzy path on n vertices. Then the strength $\mathscr{S}(S(G))$ of the shadow graph $S(G)$ of G is

$$
\mathscr{S}(S(G))= \begin{cases}n-1 & \text { if } n \geq 3 \\ 2 & \text { if } n=2\end{cases}
$$

Proof. For $n=2$ the shadow graph of G is a fuzzy cycle on 4 vertices. Hence by Theorem 1.4.2 its strength is 2 . Let u and v be two non-adjacent vertices of $S(G)$. The underlying crisp graph of $S(G)$ has vertex set $V\left(G^{\prime}\right) \cup V\left(G^{\prime \prime}\right)$, where G^{\prime} and $G^{\prime \prime}$ are two copies of G with vertex set $V\left(G^{\prime}\right)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$, $V\left(G^{\prime \prime}\right)=\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}\right\}$. (See Figure 3.22).

Figure 3.22: (a) Fuzzy path on 2 vertices and its shadow graph (b) Fuzzy path on 4 vertices and its shadow graph.

Case 1. $u, v \in\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$.

Let $u=v_{i}^{\prime}$ and $v=v_{j}^{\prime}, i<j$. Then all the extra strong $u-v$ paths must be a subpath of the maximal partial fuzzy subgraph G^{\prime} of $S(G)$ with vertex set $v_{i}^{\prime}, v_{i+1}^{\prime}, \ldots, v_{j}^{\prime}, v_{i+1}^{\prime \prime}, \ldots, v_{j}^{\prime \prime}$.

If an extra strong $u-v$ path P passes through v_{i-1}^{\prime} or $v_{i-1}^{\prime \prime}$ then this path must pass through $v_{i}^{\prime \prime}$ and as $v_{i}^{\prime \prime}$ is adjacent to v_{i+1}^{\prime} and $v_{i+1}^{\prime \prime}, P$ must pass through at least one of v_{i+1}^{\prime} and $v_{i+1}^{\prime \prime}$.

In the first case by deleting all vertices in P with suffices $\leq i$, and by adding the single edge $v_{i}^{\prime} v_{i+1}^{\prime}$ and in the second case by deleting all vertices in G with suffices $\leq i$ and by adding the single edge $v_{i}^{\prime} v_{i+1}^{\prime \prime}$ we get another $u-v$ path of strength \geq that of P and length $<$ that of P, a contradiction.

Similarly we can prove that P does not pass through v_{j+1}^{\prime} or $v_{j+1}^{\prime \prime}$. Thus any extra strong $u-v$ path lie in G^{\prime}.

From the adjacency relation in $S(G)$ every $u-v$ path traverses at least once through v_{k}^{\prime} or $v_{k}^{\prime \prime}, i \leq k \leq j$. As $\mu\left(v_{k}^{\prime}\right)=\mu\left(v_{k}^{\prime \prime}\right)$ each extra strong $u-v$ path contains exactly one v_{k}^{\prime} or $v_{k}^{\prime \prime}$ for $i<k<j$. Thus any such path is given by $u u_{i+1} \ldots u_{j-1} v$ where $u_{k}=v_{k}^{\prime}$ or $v_{k}^{\prime \prime}$ for $i<k<j$. Therefore the length of such $u-v$ path is $j-i$. If $u=v_{1}^{\prime}$ and $v=v_{n}^{\prime}$ then the length of the extra strong $u-v$ path is equal to $n-1$. Also the case is same when $u, v \in\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}\right\}$.

Case 2. $u \in\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ and $v \in\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}\right\}$ in $S(G)$.

Let $u=v_{i}^{\prime}$ and $v=v_{j}^{\prime \prime}, i<j$. Here also we can conclude that every extra strong $u-v$ path lies in the maximal partial fuzzy subgraph G with vertex set $\left\{v_{k}^{\prime}: k=i-1, \ldots, j\right\} \cup\left\{v_{k}^{\prime \prime}: k=i, \ldots, j\right\}$. But all the $u-v$ paths in $G^{\prime \prime}$ must pass either through v_{k}^{\prime} or through $v_{k}^{\prime \prime}$ or through both v_{k}^{\prime} and $v_{k}^{\prime \prime}$, where $i<k<j$. As $\mu_{S}\left(v_{k}^{\prime}\right)=\mu_{S}\left(v_{k}^{\prime \prime}\right)$, all the $u-v$ paths in $G^{\prime \prime}$ have strength $\leq \mu_{S}\left(v_{i}^{\prime}\right) \wedge \mu_{S}\left(v_{i+1}^{\prime}\right) \wedge \ldots \wedge \mu_{S}\left(v_{j-1}^{\prime}\right) \wedge \mu_{S}\left(v_{j}^{\prime \prime}\right)$. Thus the path $P=u u_{2} u_{3} \ldots u_{j-1} v$ has strength equal to $\mu_{S}\left(v_{i}^{\prime}\right) \wedge \mu_{S}\left(v_{i+1}^{\prime}\right) \wedge \ldots \wedge \mu_{S}\left(v_{j-1}^{\prime}\right) \wedge \mu_{S}\left(v_{j}^{\prime \prime}\right)$, where $u_{k}=v_{k}^{\prime}$ or $v_{k}^{\prime \prime}$ for $2 \leq k \leq j-1$, and no other $u-v$ path in G having length less than that of P have strength greater than P. So P is an extra strong $u-v$ path and is of length equal to $j-i$. When $u=v_{1}^{\prime}$ and $v=v_{n}^{\prime \prime}$ the length of the extra strong $u-v$ path is equal to $n-1$.

Theorem 3.5.5. Let $G(V, \mu, \sigma)$ be a strong fuzzy complete graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then the strength of the shadow graph $S(G)$ of G is 2 for
$n \geq 2$.

Proof. Let $S(G)\left(W, \mu_{S}, \sigma_{S}\right)$ be the shadow graph of G with the underlying crisp graph has vertex set $W=V\left(G^{\prime}\right) \cup V\left(G^{\prime \prime}\right)$, where G^{\prime} and $G^{\prime \prime}$ are two copies of G with vertex set $V\left(G^{\prime}\right)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}, V\left(G^{\prime \prime}\right)=\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}\right\}$. For $n=2$ the shadow graph of G is a fuzzy cycle on 4 vertices. Hence the result is true by Theorem 1.4.2. So assume that $n \geq 3$. Let u, v be two non-adjacent vertices of $S(G)$ (See Figure 3.23). Then $u=v_{i}^{\prime}$, for $1 \leq i \leq n$ and $v=v_{i}^{\prime \prime}, 1 \leq i \leq n$. Note that both v_{i}^{\prime} and $v_{i}^{\prime \prime}$ are adjacent to all the other vertices of $S(G)$. So uwv where $w \in W \backslash\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}$ such that $\mu_{s}(w)=\underset{j \neq i}{V_{s}} \mu_{s}\left(v_{j}^{\prime}\right)$ is an extra strong $u-v$ path. Hence the theorem.

Figure 3.23: A fuzzy complete graph on 3 vertices and its shadow graph.

$\sigma_{0} 4$

Products of fuzzy graphs

In this chapter we discuss the strength of Cartesian product, tensor product, composition and normal product of certain strong fuzzy graphs.

4.1 Cartesian product

First of all we consider the Cartesian product of two strong fuzzy paths G_{1} and G_{2} on 2 vertices. Also here we discuss the strength of Cartesian product of two fuzzy paths, a fuzzy path on two vertices and a fuzzy cycle on n vertices, a fuzzy path on two vertices and a strong fuzzy star graph.

Definition 4.1.1. [26] For $i=1,2$, let $G_{i}\left(V_{i}, \mu_{i}, \sigma_{i}\right)$ be two fuzzy graphs with underlying crisp graphs $G_{i}\left(V_{i}, E_{i}\right)$. Their Cartesian product G, denoted by $G_{1} \square G_{2}$ is the fuzzy graph $G(V, \mu, \sigma)$ with the underlying crisp graph $G(V, E)$, the Cartesian product of the crisp graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ with vertex set $V=$
$V_{1} \times V_{2}$ and edge set $E=\left\{\left(u, u_{2}\right)\left(u, v_{2}\right) \mid u \in V_{1}, u_{2} v_{2} \in E_{2}\right\} \cup\left\{\left(u_{1}, w\right)\left(v_{1}, w\right) \mid w \in\right.$ $\left.V_{2}, u_{1} v_{1} \in E_{1}\right\}$ and whose membership functions μ and σ are defined as $\mu\left(u_{1}, u_{2}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{2}\left(u_{2}\right) ;\left(u_{1}, u_{2}\right) \in V$,

$$
\sigma\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right)= \begin{cases}\mu_{1}\left(u_{1}\right) \wedge \sigma_{2}\left(u_{2} v_{2}\right) & \text { if } u_{1}=v_{1} \text { and } u_{2} v_{2} \in E_{2} \\ \mu_{2}\left(u_{2}\right) \wedge \sigma_{1}\left(u_{1} v_{1}\right) & \text { if } u_{2}=v_{2} \text { and } u_{1} v_{1} \in E_{1} \\ 0 & \text { otherwise }\end{cases}
$$

Notation 4.1.1. Unless otherwise specified for $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V_{2}=$ $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ the notation $w_{i j}$ is used to denote the vertex $\left(u_{i}, v_{j}\right) \in V_{1} \times V_{2}$.

Lemma 4.1.1. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two fuzzy paths, each has P_{2} as its underlying crisp graph. Then the Cartesian product $G_{1} \square G_{2}$ of G_{1} and G_{2} is a fuzzy cycle.

Proof. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu, \sigma_{2}\right)$ be two fuzzy graphs with P_{2} as their underlying crisp graph. The fuzzy graph $G_{1} \square G_{2}$ is depicted in Figure 4.1.

G_{1}

$$
G: G_{1} \times G_{2}
$$

Figure 4.1: The fuzzy paths G_{1}, G_{2} and their Cartesian product $G_{1} \square G_{2}$.

Suppose that $\sigma_{1}\left(u_{1} u_{2}\right) \leq \sigma_{2}\left(v_{1} v_{2}\right)$. Then $\sigma\left(w_{11} w_{21}\right)=\sigma\left(w_{12} w_{22}\right)=\sigma_{1}\left(u_{1} u_{2}\right)$ and $\sigma\left(w_{11} w_{21}\right)=\sigma\left(w_{12} w_{22}\right)=\sigma_{1}\left(u_{1} u_{2}\right) . \quad \sigma\left(w_{11} w_{12}\right)=\mu_{1}\left(u_{1}\right) \wedge \sigma_{2}\left(v_{1} v_{2}\right)$ and $\sigma\left(w_{21} w_{22}\right)=\mu_{1}\left(u_{2}\right) \wedge \sigma_{2}\left(v_{1} v_{2}\right)$. Clearly $w_{11} w_{12}$ and $w_{12} w_{22}$ are weakest edges of $G_{1} \square G_{2}$. Therefore $G_{1} \square G_{2}$ has at least two weakest edges. Hence $G_{1} \square G_{2}$ is a fuzzy cycle.

Note 4.1.1. If $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ are two strong fuzzy paths then $\sigma\left(u_{1} u_{2}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{1}\left(u_{2}\right)$ and $\sigma_{2}\left(v_{1} v_{2}\right)=\mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right)$. If let us suppose that $\mu_{1}\left(u_{1}\right)=\min \left\{\mu_{1}\left(u_{1}\right), \mu_{1}\left(u_{2}\right), \mu_{2}\left(v_{1}\right), \mu_{2}\left(v_{2}\right)\right\}$. Then $\sigma\left(w_{11} w_{12}\right)=\sigma\left(w_{11} w_{21}\right)=$
$\sigma\left(w_{12} w_{22}\right)=a$ say and $\sigma\left(w_{21} w_{22}\right)$ is greater than or equal to this common value a. Thus if G_{1} and G_{2} are strong fuzzy graphs then at least three edges of $G_{1} \square G_{2}$ are weakest edges.

The following lemma holds by Lemma 4.1.1 and Note 4.1.1.

Lemma 4.1.2. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs. Suppose both the graphs have underlying crisp graphs P_{2} on two vertices. Then the strength of the Cartesian product of G_{1} and G_{2} is two.

Lemma 4.1.3. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two fuzzy graphs with crisp graphs P_{2} and P_{3} respectively. Then the strength of $G_{1} \square G_{2}$ is 3 .

Proof. Let the fuzzy graphs $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right), G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ and their Cartesian product $G_{1} \square G_{2}$ be as depicted in Figure 4.2. We denote the weights of the edges $w_{11} w_{12}, w_{11} w_{21}, w_{21} w_{22}$ and $w_{12} w_{22}$ by a, b, c and d respectively.

Figure 4.2: The fuzzy subgraphs G_{1} and G_{2}, their Cartesian product $G_{1} \square G_{2}$ and two partial fuzzy subgraphs H_{1} and H_{2} of $G_{1} \square G_{2}$.

The two partial fuzzy subgraphs H_{1} and H_{2} of $G_{1} \square G_{2}$ shown in Figure 4.2 are fuzzy cycles by Lemma 4.1.1. Theorem 4.1 .2 shows that both H_{1} and H_{2} have strength 2. Suppose the weakest edge of H_{1} has weight α and those of H_{2} have weight β.

Case 1. $\alpha \geq \beta$.
In this case $d \geq \alpha$.

Subcase 1. $d>\beta$. Then $e=g=f=\beta \longrightarrow(1)$. Let u and v be two vertices of G. If u and v are in $V\left(H_{1}\right)$, then the length of the extra strong path joining u and v is \leq the strength of H_{1}, ie 2 . Because, if a $u-v$ path P passes through
a vertex in $V(G) \backslash V\left(H_{1}\right)$ then it has strength \leq any $u-v$ path in H_{1} and its length must be greater than or equal to any $u-v$ path in H_{1}.

If u and v are in $V\left(G \backslash H_{1}\right)$ then $u, v \in\left\{w_{13}, w_{23}\right\}$ and hence adjacent. Therefore, the extra strong path joining u and v is $w_{13} w_{23}$, which is of length one.

If u is in $V\left(G \backslash H_{2}\right)$ and v is $\operatorname{in} V\left(G \backslash H_{1}\right)$. Then all the paths joining u and v must pass through an edge having weight β. Therefore, all the paths joining u and v have same strength. So, length of the extra strong path joining u and v is ≤ 3.

In particular if $u=w_{11}$ and $v=w_{23}$ or $u=w_{21}$ and $v=w_{13}$ then the length of extra strong path is equal to 3 .

Subcase 2. $d=\beta$.

Then $\mu_{1}\left(u_{1}\right)=\beta$ or $\mu_{1}\left(u_{2}\right)=\beta$ or $\mu_{2}\left(v_{2}\right)=\beta$. In the first case $d=f=$ $e=a=b=\beta$. In the second case $d=e=g=b=c=\beta$. In the third case $d=e=g=a=c=\beta$. In these cases the strength of any path connected by any two nonadjacent vertices are the same.

Case 2. $\alpha<\beta$.
The proof follows by interchanging the roles of H_{1} and H_{2}.

Theorem 4.1.1. Let G_{1} and G_{2} be two strong fuzzy graphs with respective underlying crisp graphs P_{2} and P_{n}. Then the strength of Cartesian product $G_{1} \square G_{2}$
of G_{1} and G_{2} is n.

Proof. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two fuzzy graphs with underlying crisp graphs P_{2} with vertex set $\left\{u_{1}, u_{2}\right\}$ and P_{n} with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ respectively.

Let $G(V, \mu, \sigma)$ be the Cartesian product $G_{1} \square G_{2}$ of G_{1} and G_{2} with underlying crisp graph $G(V, E)$ where the vertex set $V=\left\{\left(u_{i}, v_{j}\right)=w_{i j}: u_{i} \in V_{1}, v_{j} \in\right.$ $\left.V_{2}, i=1,2, j=1,2, \ldots, n\right\}$ and edge set $E=\left\{w_{i j} w_{i j+1}: 1 \leq j \leq n-1, i=\right.$ $1,2\} \cup\left\{w_{1 j} w_{2 j}: j=1,2, \ldots, n\right\}$.

We prove the theorem by induction on n. The result is trivial when $n=1$ and the result is true for $n=2$, and $n=3$ by Lemmas 4.1.2 and 4.1.3. When $n=2$, ie, when G_{1} and G_{2} are two fuzzy graphs with respective crisp graphs P_{2}, we proved that, the strength of the graph is 2 , by showing that if $u=w_{11}$ and $v=w_{22}$ (or $u=w_{21}$ and $v=w_{12}$) then length of the extra strong $u-v$ path is 2 and for any other u and v, it is 1 . Also in the case, G_{1} is a fuzzy graph with the underlying crisp graph P_{2} and G_{2} a fuzzy graph with underlying crisp graph P_{3}, we proved that the length of any extra strong $u-v$ path is 3 , when $u=w_{11}$ and $v=w_{23}$ or $u=w_{21}$ and $v=w_{13}$. For all other choices of u and v the length of the extra strong $u-v$ path is <3 and the extra strong $w_{11}-w_{13}$ path is $w_{11} w_{12} w_{13}$.

We assume that the result is true for $n=m$, where $m \geq 3$. That is if G_{1} is the fuzzy path P_{2} with vertex set $\left\{u_{1}, u_{2}\right\}$ and G_{2} is a fuzzy path P_{m} with vertex
set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ then assume that length of the extra strong path joining the vertices w_{11} and $w_{2 m}$ or the vertices w_{21} and $w_{1 m}$ in $G_{1} \square G_{2}$ is m and if $u=w_{11}$ and $v=w_{1 m}$ or if $u=w_{21}$ and $v=w_{2 m}$ then the length of the extra strong $u-v$ path is $m-1$, and in fact $w_{11} w_{12} \ldots w_{1 m}$ is the extra strong $w_{11}-w_{1 m}$ path. u and v are any other vertices of $G_{1} \square G_{2}$ then the length of the extra strong $u-v$ path is $<m-1$.

Let us suppose that G_{1} be the fuzzy path on the vertex set $\left\{u_{1}, u_{2}\right\}$ and G_{2} be the fuzzy path on the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{m+1}\right\}$. For $1 \leq p<q \leq m+1$, $H_{p q}$ denotes the maximal partial fuzzy subgraph of G with vertex set $\left\{w_{i j} ; i=\right.$ $1,2, p \leq j \leq q\}$. (See Figure 4.3).

Clearly, $H_{1 m+1}=G_{1} \square G_{2}$.

Figure 4.3: Partial fuzzy subgraphs H_{12}, H_{13} and $H_{1 n+1}$ of $G=G_{1} \square G_{2}$.

Let u and v be two non -adjacent vertices of $G_{1} \square G_{2}$. We assert that if $u=w_{i j}$ and $v=w_{k l} \in H_{2 m+1}$ then any extra strong $u-v$ path of G lie in $H_{2 m+1}$ and
the length of any extra strong $u-v$ path in $G_{1} \square G_{2}$ is $\leq m+1$, by the induction hypothesis when $u=w_{21}$ and when $v=w_{1 m+1}$ then the length of the extra strong $u-v$ path is $m+1$.

Case 1. Suppose that u and v are in $\left\{w_{i j}: i=1,2 ; j=2,3, \ldots, m\right\}$.

Then any path joining u and v in G can be viewed either as a path in the maximal partial fuzzy graph $H_{1 m}$ with vertex set $\left\{w_{i j}: i=1,2,1 \leq j \leq m\right\}$ or as a path in the maximal partial fuzzy graph $H_{2 m+1}$ with vertex set $\left\{w_{i j}: i=\right.$ $1,2 ; 2 \leq j \leq(m+1)\}$. Note that both these graphs have underlying crisp graphs isomorphic to $P_{2} \square P_{m}$. Therefore by induction hypothesis the length of the extra strong $u-v$ path is $\leq m<(m+1)$.

Case 2. $u, v \in\left\{w_{11}, w_{21}, w_{1 m+1}, w_{2 m+1}\right\}$.

Suppose $u \in\left\{w_{11}, w_{21}\right\}$ and $v \in\left\{w_{1 m+1}, w_{2}{ }_{m+1}\right\}$. Then we can prove the result in two steps.
(i) If $u=w_{11}$ and $v=w_{1 m+1}$ (or $u=w_{21}$ and $v=w_{2 m+1}$). Any path P_{m} in $H_{1 m+1}$ joining w_{11} and $w_{1 m+1}$ can be considered as sum of two paths P^{1} and P^{2} where P^{1} is a path in $H_{1 m}$ joining w_{11} and $w_{1 m}$ or it is a path joining w_{11} and $w_{2 m}$ in $H_{1 m}$ and P^{2} is $P \cap H_{m m+1}$. Note that the strength of the path P is minimum of strength of the paths $P^{i}: i=1,2$. By induction hypothesis if P^{1} is a path joining w_{11} and $w_{1 m}$ then it has maximum strength if $P^{1}=$ $w_{11} w_{12 \ldots w_{1 m}}$. Since $w_{1 m}$ and $w_{1 m+1}$ are adjacent, the path $w_{1 m} w_{1 m+1}$ is the extra strong path joining $w_{1 m}$ and $w_{1 m+1}$. In the second case, that is P^{1}
is a path from w_{11} to $w_{2 m}$ in $H_{1 m}$ and $P^{2}=P \cap H_{m m+1}$ then by induction hypothesis P^{1} has length m when P^{1} is an extra strong path. Therefore in this case length of the path P is $m+2$ and it has strength \leq the strength of the path $w_{11} w_{12} \ldots w_{1 m+1}$. Therefore, we can conclude that the path P has maximum strength if $P^{1}=w_{11} w_{12} \ldots w_{1 m}$ and $P^{2}=w_{1 m} w_{1 m+1}$. Also the length of P^{1} is minimum among all paths in $H_{1 m}$ between w_{11} and $w_{1 m}$.
(ii) If $u=w_{11}$ and $v=w_{2 m+1}$ (or $u=w_{21}$ and $v=w_{1 m+1}$).

In this case as in the proof of (i) we can prove that the strength of $u-v$ path is $m+1$ in $H_{1 m+1}$.

Hence the theorem.

Theorem 4.1.2. Let G_{1} and G_{2} be two strong fuzzy graphs with the underlying crisp graphs the path P_{m} and the path P_{n} on m and n vertices respectively. Then the strength of the Cartesian product $G=G_{1} \square G_{2}$ of G_{1} and G_{2} is $m+n-2$.

Proof. For a fixed n, we prove this theorem by induction on m. If $m=1$ then G_{1} is a fuzzy trivial graph. Thus when $m=1, G=G_{1} \square G_{2}$ is a copy of P_{n}, a fuzzy path on n vertices. If $n=1$, its strength is zero. If $n>1$ then its strength is $n-1$. In either case we have the strength is $m+n-2$. Assume that the result is true for $m=k>1$. To prove the result for $m=k+1$, let G_{1} and G_{2} be strong fuzzy graphs with underlying crisp graphs P_{k+1} and P_{n} respectively and let G be their Cartesian product. If $n=1$ then G is a copy of G_{1}. Therefore
strength of G is $k=m+n-2$ thus in this case the theorem holds. So assume that $n>1$. Also let $u, v \in V(G)$.

Figure 4.4: Cartesian product of two fuzzy graphs with underlying graphs P_{k+1} and P_{n}.

Case 1. $u, v \in\left\{w_{i j}: 1 \leq i \leq k, 1 \leq j \leq n\right\}$ or $u, v \in\left\{w_{i j}: 2 \leq i \leq k+1,1 \leq\right.$ $j \leq n\}$. Let H_{1} and H_{2} be the two maximal partial fuzzy subgraphs of G with vertex set $\left\{w_{i j}: 1 \leq i \leq k, 1 \leq j \leq n\right\},\left\{w_{i j}: 2 \leq i \leq k+1,1 \leq j \leq n\right\}$ respectively. Then any extra strong path joining u and v in G can be either a path in H_{1} or in H_{2} of G.

To prove this assertion we proceed as follows. Let us suppose that $u, v \in$ $V\left(H_{1}\right)$. Suppose P is an extra strong $u-v$ path in G, which passes through at least one of the vertices $w_{11}, w_{12}, \ldots, w_{1 n}$. Then, we claim that P does not pass through any of the vertices $w_{k+11}, w_{k+12}, \ldots, w_{k+1 n}$. If so, it contains a subpath $w_{k l} w_{k+1 l} w_{k+1 l+1} \ldots w_{k+1 j} w_{k j}$ of G, which can be viewed as a path of the maxi-
mal partial fuzzy subgraph with vertex set $\left\{w_{k 1}, w_{k 2}, \ldots, w_{k n}, w_{k+11} \ldots\right.$, $\left.w_{k+1 n-1}, w_{k+1 n}\right\}$ of G which is of the form $P_{2} \square P_{n}$. Therefore the extra strong path joining $w_{k l}$ and $w_{k j}$ is $w_{k l} w_{k l+1} \ldots w_{k j}$ by the proof of Theorem 4.1.1. Therefore we can conclude that every path like P is contained in H_{1}. Hence its length by induction $\leq k+n-2$. Similar is the case when $u, v \in V\left(H_{2}\right)$.

Case 2. $u \in\left\{w_{1 l}: l=1,2, \ldots, n\right\}$ and $v \in\left\{w_{k+1 l}: l=1,2, \ldots, n\right\}$.

Let us suppose that $u=w_{1 j}$ and $v=w_{k+1 l}$. For $i=1,2, \ldots, k+1$ we denote the path $w_{i 1} w_{i 2} \ldots w_{i n}$ with vertices $w_{i 1}, w_{i 2}, \ldots, w_{i n}$ in G by L_{i}. We claim that for a fixed $l, l=1,2, \ldots, n$ the edge $w_{k+1 l} w_{k l}$ has strength greater than or equal to the strength of any path from v to any vertex w of L_{k}. Suppose a path P_{1} from v to a vertex of L_{k} contains a subpath $Q_{1}=w_{k+1 j} w_{k+1 j-1} \ldots w_{k+1 l}$ of L_{k+1} where $j>l$, then the path P_{1} has strength less than or equal to that of the edge $w_{k+1 l} w_{k l}$. For if the edge $w_{k+1 l} w_{k l}$ is not a weakest edge of the cycle $C: w_{k l+1} w_{k+1 l+1} w_{k+1 l} w_{k l} w_{k l+1}$ then weight of $w_{k+1 l} w_{k+1 l+1}<$ weight of $w_{k+1 l} w_{k l}$. Therefore the strength of $P_{1}<$ strength of $w_{k+1 l} w_{k l}$.

If $w_{k+1 l} w_{k l}$ is a weakest edge of C then the subpath Q_{1} of P_{1} which belongs to L_{k+1} has strength \leq strength of $w_{k+1 l} w_{k l}$. If Q_{1} has strength greater than that of $w_{k+1 l} w_{k l}$ then all the edges $w_{k+1 l} w_{k l}, \ldots, w_{k+1 j} w_{k j}$ have weight equal to that of $w_{k+1 l} w_{k l}$. Therefore we can conclude that in this case the path P_{1} has strength \leq that of $w_{k+1 l} w_{k l}$. If P_{1} contains no subpath of L_{k+1} then any path from v to a vertex of L_{k} pass through the edge $v w_{k l}$. Hence its strength must
be less than or equal to the strength of the edge $v w_{k l}$. Hence the path having minimum length and with maximum strength from $w_{k+1 l}$ to a vertex of L_{k} is just the edge $w_{k+1 l} w_{k l}$.

By the same argument, the edge $w_{k l} w_{k-1 l}$ has the maximum strength and minimum length from $w_{k l}$ to any vertex in L_{k-1}. Therefore the path $w_{k+1 l} w_{k l} w_{k-1 l}$ is the path from $w_{k+1 l}$ to L_{k-1}. Proceeding similarly we get the path $w_{k+1 l} \ldots w_{1 l}$ is the path with maximum strength and minimum length from $w_{k+1 l}$ to any vertex of L_{1}. Proceeding similarly $w_{1 l} \ldots w_{1 j}$ is the path with maximum strength and minimum length path joining $w_{1 j}$ and $w_{1 l}$. Therefore the strength of the $u-v$ path is $\leq(n-1)+k=k+n-1$.

When $u=w_{11}$ and $v=w_{k+1 n}$, the strength of the $u-v$ path is equal to $k+n-1$. Thus the theorem is true for $m=k+1$. Therefore the theorem follows by induction.

Next we consider the Cartesian product of the fuzzy graphs P_{2} and a fuzzy cycle C_{n}. Suppose $V_{1}=\left\{u_{1}, u_{2}\right\}$, and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are the vertex set of G_{1} and G_{2} respectively. Then the Cartesian product of G_{1} and G_{2} is the fuzzy graph $G(V, \mu, \sigma)$ where the underlying crisp graph is $G(V, E)$ with vertex set $V=$ $\left\{w_{i j}, i=1,2, j=1,2, \ldots, n\right\}$ and edge set $E=\left\{w_{i j} w_{i j+1}, 1 \leq j<n, i=1,2\right\} \cup$ $\left\{w_{1 j} w_{2 j}, 1 \leq j<n\right\} \cup\left\{w_{i 1} w_{i n}, i=1,2\right\}$ where $\mu\left(w_{i j}\right)=\mu_{1}\left(u_{i}\right) \wedge \mu_{2}\left(v_{j}\right), \forall w_{i j} \in V$ $\sigma\left(w_{i j} w_{i j+1}\right)=\mu_{1}\left(u_{i}\right) \wedge \sigma_{2}\left(v_{j} v_{j+1}\right), u_{i} \in V_{1},\left(v_{j}, v_{j+1}\right) \in E_{2} ;$ $\sigma\left(w_{1 j} w_{2 j}\right)=\sigma_{1}\left(u_{1} u_{2}\right) \wedge \mu_{2}\left(v_{j}\right) ; \sigma\left(w_{i 1} w_{i n}\right)=\mu_{1}\left(u_{i}\right) \wedge \sigma_{2}\left(v_{1} v_{n}\right)$.

For example

Figure 4.5: Cartesian product of the fuzzy graphs G_{1} with underlying crisp graph P_{2} and G_{2} with underlying crisp graph C_{n}.

Theorem 4.1.3. Let G_{1} and G_{2} be two strong fuzzy graphs with underlying crisp graphs the path P_{2} with vertex set $V_{1}=\left\{u_{1}, u_{2}\right\}$ and the cycle C_{n} with vertex set $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ respectively and the weight of the weakest vertices of G_{1} is greater than the weight of the weakest vertices of G_{2}. If the weakest vertices of G_{2} altogether form a subpath of length l in G_{2} then the strength of the Cartesian product of G_{1} and G_{2} is $(n-l+1)$ if $l<\left[\frac{n+1}{2}\right]$ and $\left[\frac{n}{2}\right]$ if $l \geq\left[\frac{n+1}{2}\right]$.

Proof. Let u and v be two non-adjacent vertices of G. Without loss of generality assume that $v_{1}, v_{2}, \ldots, v_{l-1}$ are the weakest vertices of G_{2}. Also assume that the weight of each $v_{i}, i=1,2, \ldots, l-1$ is w and these vertices altogether form a
subpath in G_{2}. Then in G, the vertices $w_{11}, w_{12}, \ldots, w_{1 l-1}$ and $w_{21}, w_{22}, \ldots, w_{2 l-1}$ have the same weight w (See Figure 4.6).

Figure 4.6: The Cartesian product of G_{1} and $G_{2}-\left\{v_{1}, \ldots, v_{l-1}\right\}$.

Case 1. $l<\left[\frac{n+1}{2}\right]$.

If $u, v \in V(G)-\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ then the length of the extra strong $u-v$ path in G is $\leq n-l+1$, since the extra strong paths joining u and v lie completely in the maximal partial fuzzy subgraph $G_{1} \square\left(G_{2}-\left\{v_{1}, v_{2}, \ldots, v_{l-1}\right\}\right)$ of G with underlying crisp graph is of the form $P_{2} \square P_{n-(l-1)}$. Therefore by Theorem 4.1.2 the length of the extra strong $u-v$ path in $G \leq n-l+1$.

If $u, v \in\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ then all the $u-v$ paths have same strength in G. So all the extra strong paths joining u and v lie in the maximal partial subgraph $G_{1} \square G_{2}^{\prime}$ of G, where G_{2}^{\prime} is the maximal partial fuzzy graph of G_{2} with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{l-1}\right\}$. Also since $l \leq\left[\frac{n+1}{2}\right]$ the length of the extra strong $u-v$ path is $\leq l-1 \leq n-l+1$.

If $u \in\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ and $v \in V(G)-\left\{w_{11}, \ldots, w_{1 l-2}, w_{21}\right.$, $\left.\ldots, w_{2 l-2}\right\}$ or vice versa then all the paths joining u and v have same strength. So the length of the extra strong $u-v$ path is the minimum distance between u
and v in the underlying crisp graph of $G, P_{2} \square C_{n}$ which is $\leq(n-l+1)$.

If $u=w_{2 l}$ and $v=w_{1 n}$ then the length of the extra strong $u-v$ path is equal to $n-l+1$.

Case 2. $l \geq\left[\frac{n+1}{2}\right]$.

If $u, v \in V(G) \backslash\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ then as in Case 1 strength of $u-v$ path in G is $n-l+1 \leq\left[\frac{n}{2}\right]$. If $u, v \in\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ or $u \in G-\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ and $v \in\left\{w_{11}, \ldots, w_{1 l-1}, w_{21}, \ldots, w_{2 l-1}\right\}$ then all the $u-v$ paths must have same strength in G, and therefore the length of the extra strong path joining u and v is $\leq\left[\frac{n}{2}\right]$, since $l>\left[\frac{n+1}{2}\right]$. When $u=w_{11}$ and $v=w_{1 k}$ where $k=\left[\frac{n}{2}\right]$ then strength of the $u-v$ path in G is exactly equal to $\left[\frac{n}{2}\right]$. Hence the Theorem.

Theorem 4.1.4. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with underlying crisp graphs $K_{1}=\langle u\rangle$ and the cycle $C_{n}=v_{1} v_{2} \ldots v_{n} v_{1}$ respectively. Let $G(V, \mu, \sigma)$ be the Cartesian product of G_{1} and G_{2}. If v be a weakest vertex of G_{2} then

$$
\mathscr{S}(G)= \begin{cases}{\left[\frac{n}{2}\right]} & \text { if } \mu_{1}(u) \leq \mu_{2}(v), \\ \mathscr{S}\left(G_{2}\right) & \text { otherwise }\end{cases}
$$

Proof. If $\mu_{1}(u) \leq \mu_{2}(v)$ then all the vertices of $G_{1} \square G_{2}$ have the same weight $\mu_{1}(u)$. Therefore it is a regular fuzzy cycle. Hence by Theorem 1.4.1, strength of $G_{1} \square G_{2}$ is $\left[\frac{n}{2}\right]$.

If $\mu_{1}(u)>\mu_{2}(v)$, then,

$$
\mu\left(u, v_{i}\right)= \begin{cases}\mu_{2}\left(v_{i}\right) & \text { if } \mu_{2}\left(v_{i}\right) \leq \mu_{1}(u) \\ \mu_{1}(u) & \text { otherwise }\end{cases}
$$

Thus a vertex $\left(u, v_{i}\right)$ of G is a weakest vertex of G if and only if v_{i} is a weakest vertex of G_{2}. Therefore, the strength $\mathscr{S}(G)$ of G is that of G_{2}.

Theorem 4.1.5. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with underlying crisp graphs the path $P_{2}=u_{1} u_{2}$ and $C_{n}=v_{1} v_{2} \ldots v_{n} v_{1}$ respectively. Suppose that $\mu_{1}\left(u_{1}\right) \leq \mu_{1}\left(u_{2}\right) \wedge \mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \wedge \ldots \wedge \mu_{2}\left(v_{n}\right)$. Let $G=G_{1} \square G_{2}$ be the Cartesian product of G_{1} and G_{2}. Then the strength $\mathscr{S}(G)$ of the Cartesian product G of G_{1} and G_{2} is,

$$
\mathscr{S}(G)=\max \left\{\mathscr{S}\left(G_{2} \square G_{3}\right),\left\lceil\frac{n+1}{2}\right\rceil\right\} ;
$$

where G_{3} is the null graph with vertex set $\left\{u_{2}\right\}$.

Proof. Let u and v be two distinct vertices of G.

Case 1. $\mu_{1}\left(u_{2}\right)>\mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \ldots \wedge \mu_{2}\left(v_{n}\right)$.

Subcase 1. Let $u, v \in\left\{w_{1 j}, 1 \leq j \leq n\right\}$. Since $\mu\left(w_{1 j}\right)=\mu_{1}\left(u_{1}\right) ; 1 \leq j \leq n$, all the edges having $w_{1 j}$ as one of the end vertices, $1 \leq j \leq n$ have weight equal to $\mu_{1}\left(u_{1}\right)$. Therefore, the length of the extra strong path joining u and v is the
minimum length of the path joining u and v in G. That is less than or equal to $\left[\frac{n}{2}\right]$.

Subcase 2. Let $u, v \in\left\{w_{2 j}, 1 \leq j \leq n\right\}$.
Since $\mu\left(w_{1 j}\right) \leq \mu\left(w_{2 j}\right)$, the extra strong path joining u and v lies in the maximal partial fuzzy subgraph $G_{3} \square G_{2}$ of G. So we have by Theorem 4.1.4, the length of the extra strong $u-v$ path is the strength of G_{2}.

Subcase 3. Let $u \in\left\{w_{1 j}: 1 \leq j \leq n\right\}$ and $v \in\left\{w_{2 j}: 1 \leq j \leq n\right\}$.

Since $\mu_{1}\left(u_{1}\right) \leq \mu_{1}\left(u_{2}\right) \wedge \mu_{2}\left(v_{1}\right) \wedge \ldots \wedge \mu_{2}\left(v_{n}\right)$, all the $u-v$ paths in G have strength $\mu_{1}\left(u_{1}\right)$. So length of the extra strong $u-v$ path in G is the length of the shortest $u-v$ path in G which is $\leq\left\lceil\frac{n}{2}\right\rceil$.

Case 2. $\mu_{1}\left(u_{2}\right) \leq \mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \ldots \wedge \mu_{2}\left(v_{n}\right)$.

Subcase 1. $\mu_{1}\left(u_{1}\right)=\mu_{1}\left(u_{2}\right)$. Then $\mu\left(w_{i j}\right)=\mu_{1}\left(u_{1}\right) \forall i, j$. Therefore, the length of the extra strong path joining u and v in G is the minimum length of the path joining u and v in G, which is less than or equal to $\left[\frac{n+1}{2}\right]$.

Subcase 2. $\mu_{1}\left(u_{1}\right)<\mu_{1}\left(u_{2}\right)$. Then $\mu\left(w_{1 j}\right)=\mu_{1}\left(u_{1}\right)$ and $\mu\left(w_{2 j}\right)=\mu_{1}\left(u_{2}\right) \forall i, j$. If u or $v \in\left\{w_{1 j}, 1 \leq j \leq n\right\}$, then all the paths joining u and v have weight $\mu_{1}\left(u_{1}\right)$. Therefore, the length of the extra strong path joining u and v is the minimum length of the path joining u and v in G which is $\left[\frac{n}{2}\right]$.

If u and $v \in\left\{w_{2 j}, 1 \leq j \leq n\right\}$, then the extra strong path joining u and v lie in the subgraph $G_{3} \square G_{2}$. So by Theorem 4.1.4 the length of the extra strong $u-v$ path in G is $\left[\frac{n}{2}\right]$.

Note 4.1.2. Let $G(V, \mu, \sigma)$ be a fuzzy graph. If W is a subset of V then $<W>$ denotes the maximal partial fuzzy subgraph of G on W.

Definition 4.1.2. The fuzzy book is defined as the Cartesian product of graphs G_{1} with underlying crisp graph P_{2} and fuzzy star graph S_{n}, where $n>2$. Let $V\left(P_{2}\right)=\left\{u_{1}, u_{2}\right\}$ and $V\left(S_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with v_{1} as the central vertex. For $i=2,3, \ldots, n$, the maximal partial fuzzy subgraph $<\left\{w_{11}, w_{21}, w_{1 i}, w_{2 i}\right\}>$ with vertex set $<\left\{w_{11}, w_{21}, w_{1 i}, w_{2 i}\right\}>$ is called a fuzzy page of the fuzzy book, whose underlying crisp graph is isomorphic to $P_{2} \square P_{2}$. The crisp graph of the union of two fuzzy pages $<\left\{w_{11}, w_{21}, w_{1 i}, w_{2 i}\right\}>$ and $<\left\{w_{11}, w_{21}, w_{1 j}, w_{2 j}\right\}>$ is isomorphic to $P_{2} \square P_{3}, 2 \leq i \neq j \leq n$. It is called a fuzzy Domino graph.

Figure 4.7: Cartesian product $G_{1} \square G_{2}$ of a fuzzy path G_{1} and a fuzzy star graph G_{2}.

Theorem 4.1.6. Let G_{1} and G_{2} be two strong fuzzy graphs with underlying crisp graphs the path P_{2} and the star graph S_{n} respectively. Let $V\left(P_{2}\right)=\left\{u_{1}, u_{2}\right\}$ and
$V\left(S_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with v_{1} as the central vertex. Then the strength of the Cartesian product $G=G_{1} \square G_{2}$ is 3 .

Proof. Let $\left\{w_{11}, w_{12}, \ldots, w_{1 n}, w_{21}, w_{22}, \ldots, w_{2 n}\right\}$, where $n \geq 3$, be the vertex set of G. Clearly $w_{11} w_{21}$ is the common edge of the pages of $G_{1} \square G_{2}$. Let u and v be two non-adjacent vertices of G (See Figure 4.7). Then u and v lie on the same page or different pages of G. For $2 \leq i \neq j \leq n$, denote the partial fuzzy subgraph $<\left\{w_{11}, w_{21}, w_{1 i}, w_{2 i}\right\}>\cup<\left\{w_{11}, w_{21}, w_{1 j}, w_{2 j}\right\}>$ of $P_{2} \square S_{n}$ by $H_{i j}$. Therefore any extra strong path joining u and v can be considered as a path in $H_{i j}$ for some i and j. Since the underlying crisp graph of $H_{i j}$ is $P_{2} \square P_{3}$, the length of any extra strong path joining u and v in G is less than or equal to 3 , by Theorem 4.1.3.

In particular if $u=w_{12}$ and $v=w_{23}$, then any extra strong path joining u and v lie completely in H_{23} and hence has length exactly 3. Hence the theorem.

Now we are going to find the strength of the Cartesian product of fuzzy path and a fuzzy butterfly graph.

Theorem 4.1.7. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with crisp graphs the path P_{2} with vertex set $\left\{u_{1}, u_{2}\right\}$ and the butterfly graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}$ respectively. Then the strength of the Cartesian product $G(V, \mu, \sigma)$ of G_{1} and G_{2} is 3.

Proof. First of all assume that the degree of the vertex v_{1} of G_{2} is 4 and $\mu_{1}\left(u_{1}\right) \leq$ $\mu_{1}\left(u_{2}\right)$.

Let u and v be any two non-adjacent vertices of $G=G_{1} \square G_{2}$ with vertex set $\left\{w_{11}, w_{12}, \ldots, w_{15}, w_{21}, w_{22}, \ldots, w_{25}\right\}$.

Case 1. $\mu_{1}\left(u_{1}\right)$ or $\mu_{1}\left(u_{2}\right) \leq \mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \wedge \ldots \wedge \mu_{2}\left(v_{5}\right)$.

Then all the $u-v$ paths passing through any of $w_{1 j}, j=1,2, \ldots, 5$ have strength $\mu_{1}\left(u_{1}\right)$, because every edge incident with $w_{1 j}$ has weight $\mu_{1}\left(u_{1}\right)$. Therefore if at least one of u and v belongs to $\left\{w_{11}, w_{12}, \ldots, w_{15}\right\}$ then the extra strong $u-v$ paths are the shortest $u-v$ paths in the underlying crisp graph of G and therefore has length less than or equal to 3 .

If $u, v \in\left\{w_{21}, w_{22}, \ldots, w_{25}\right\}$ then any extra strong $u-v$ path lie in the maximal partial fuzzy subgraph with vertex set $\left\{w_{21}, w_{22}, \ldots, w_{25}\right\}$ which is a strong fuzzy butterfly graph. Therefore, by Corollary 2.3.1 the length of any extra strong $u-v$ path in G is 2 .

Case 2. $\mu_{2}\left(v_{j}\right)$ less than $\mu_{1}\left(u_{1}\right)$ for at least one j. Let us suppose that $\mu_{2}\left(v_{j}\right) \leq$ $\mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \ldots \wedge \mu_{2}\left(v_{5}\right)$.

Subcase 1. $v_{j}=v_{1}$.
Then all the paths passing through $w_{i 1}, i=1,2$ have strength $\mu_{2}\left(v_{1}\right)$. The fuzzy graph of G can be viewed as the union of two fuzzy subgraphs H_{1} and H_{2}, as shown in Figure 4.8. Note that $P_{2} \square C_{2}$ is the underlying crisp graph of both H_{1} and H_{2}.

Figure 4.8: Cartesian product $G=G_{1} \square G_{2}$ of a fuzzy path G_{1} on 2 vertices and G_{2}, a fuzzy butterfly graph and the fuzzy subgraphs H_{1} and H_{2} of G.

Suppose u and v belong to $V\left(H_{1}\right)$. Then any extra strong $u-v$ path lie in H_{1}, since $\mu\left(w_{11}\right)=\mu\left(w_{21}\right)=\mu_{2}\left(v_{1}\right)$, all the $u-v$ paths through w_{11} and w_{21} have the same strength. Therefore the length of the extra strong $u-v$ path is ≤ 2. Similarly if u and $v \in V\left(H_{2}\right)$ the length of any extra strong $u-v$ path is ≤ 2.

Let $u \in V\left(H_{1}\right)$ and $v \in V\left(H_{2}\right) \backslash V\left(H_{1}\right)$. In this case all the $u-v$ paths pass through w_{11} or w_{21} or both. Therefore all the $u-v$ paths have same strength. Hence the length of the extra strong path joining u and v is less than or equal to the minimum distance between u and v in G which is 3 .

Subcase 2. $v_{j} \neq v_{1}$.

Without loss of generality assume that $v_{j}=v_{2}$. Then by our assumption, $\mu_{2}\left(v_{2}\right) \leq \mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \wedge \ldots \wedge \mu_{2}\left(v_{5}\right)$. Let u or $v \in V\left(H_{1}\right)$. If at least one of the vertices u and $v \in\left\{w_{12}, w_{22}\right\}$, then all the $u-v$ paths have strength $\mu_{2}\left(v_{2}\right)$. So the length of any extra strong $u-v$ path in G is ≤ 3. If u and $v \notin\left\{w_{12}, w_{22}\right\}$
then all the extra strong $u-v$ paths lie in the graph H in Figure 4.9, which is obtained by deleting the vertices w_{12}, w_{22} from G.

Figure 4.9: A fuzzy subgraph H of G.

In this case if u and $v \in V\left(H_{1}\right)$ then either $u=w_{13}$, and $v=w_{21}$ or $u=w_{11}$ and $v=w_{23}$. In both these cases if a path joining u and v pass through a vertex of H_{2} then it must pass through w_{11} and w_{21} and any such path have strength $\leq \mu\left(w_{11}\right) \wedge \mu\left(w_{21}\right)$. Thus each extra strong path lies in the maximal partial fuzzy subgraph with vertex set $\left\{w_{11}, w_{21}, w_{13}, w_{23}\right\}$. Hence the length of the extra strong $u-v$ path is 2 by Theorem 4.1.2. Now suppose u and $v \in V\left(H_{2}\right)$, if any of the $u-v$ path through w_{13} (or w_{23}), definitely will pass through w_{23} (or w_{13}), w_{11} and w_{21}. Any such path has strength $\leq \mu\left(w_{11}\right) \wedge \mu\left(w_{21}\right)$. So every extra strong path lies in H_{2}. Therefore, the length of any extra strong $u-v$ path is 2 .

If $u=w_{13}$ and $v=w_{25}$ then any $u-v$ path in H has length ≥ 3. Also any $u-v$ path through the vertices w_{14} or w_{24} has length >3 and strength \leq any
other $u-v$ path in H. Therefore the length of extra strong $u-v$ path is the minimum distance between u and v, which is 3 . Hence we can conclude that $\mathscr{S}(G)=3$.

4.2 Tensor product

This section discusses strength of tensor product of certain graphs.

Definition 4.2.1. [12] Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two fuzzy graphs with underlying crisp graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ respectively. Then the tensor product G, denoted by $G_{1} \otimes G_{2}$, of G_{1} and G_{2} is the fuzzy graph $G\left(V, \mu_{1} \otimes\right.$ $\left.\mu_{2}, \sigma_{1} \otimes \sigma_{2}\right)$ with the underlying crisp graph $G\left(V, E_{1} \otimes E_{2}\right)$ is the tensor product of $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$, where $V=V_{1} \times V_{2}$ and $E_{1} \otimes E_{2}=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right.$: $\left.u_{1} v_{1} \in E_{1}, u_{2} v_{2} \in E_{2}\right\},\left(\mu_{1} \otimes \mu_{2}\right)\left(u_{1}, u_{2}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{2}\left(u_{2}\right)$ for $\left(u_{1}, u_{2}\right) \in V$ and $\left(\sigma_{1} \otimes \sigma_{2}\right)\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right)=\sigma_{1}\left(u_{1}, v_{1}\right) \wedge \sigma_{2}\left(u_{2}, v_{2}\right)$ for $\left(u_{1}, u_{2}\right) \in E_{1}$ and $\left(v_{1}, v_{2}\right) \in$ E_{2}.

Theorem 4.2.1. Let G_{1} and G_{2} be two fuzzy graphs with underlying crisp graphs P_{2} and P_{n} respectively. Then the strength $\mathscr{S}\left(G_{1} \otimes G_{2}\right)$ of the tensor product of G_{1} and G_{2} is $n-1$.

Proof. If $n=1$ then $G_{1} \otimes G_{2}$ is a null fuzzy graph. Therefore $\mathscr{S}\left(G_{1} \otimes G_{2}\right)=$ $0=n-1$. If $n>1$ then it is the disjoint union of two fuzzy paths on n vertices (See Figure 4.10). So by Theorem 1.4.1 $\mathscr{S}(G)=n-1$.

Figure 4.10: Tensor product of two fuzzy paths.

If we replace the fuzzy graph G_{2} of Theorem 4.2 .1 by an another fuzzy graph, having star graph as the underlying crisp graph on n vertices and keeping G_{1} as it is then, their tensor product G is a null fuzzy graph, if $n=1$. It is a disjoint union of two fuzzy paths if $n=2$ and if $n>2$ it is a disjoint union of two fuzzy star graphs on n vertices. Therefore in the first case, that is if $n=1$ then $\mathscr{S}(G)=0$ and in the second case that is if $n=2, \mathscr{S}(G)=1$ and when $n \geq 3$, $\mathscr{S}(G)=2$ by Theorem 3.1.4. We can summarize these results as follows.

Theorem 4.2.2. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two fuzzy graphs with underlying crisp graph the path P_{2} and the star graph S_{n} respectively. Then the strength of the tensor product G is

$$
\mathscr{S}(G)= \begin{cases}0 & \text { if } n=1 \\ 1 & \text { if } n=2 \\ 2 & \text { if } n \geq 3\end{cases}
$$

Theorem 4.2.3. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with the underlying crisp graphs the path P_{2} with vertex set $V_{1}=\left\{u_{1}, u_{2}\right\}$ and the cycle C_{n} with vertex set $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $\mu_{\circ}=\mu_{1}\left(u_{1}\right) \wedge \mu_{1}\left(u_{2}\right) \wedge \mu_{2}\left(v_{1}\right) \wedge$ $\mu_{2}\left(v_{2}\right) \ldots \wedge \mu_{2}\left(v_{n}\right)$. Then the strength of the tensor product of $G_{1} \otimes G_{2}(V, \mu, \sigma)$ with vertex set $V=\left\{w_{i j}: i=1,2 ; j=1,2, \ldots, n\right\}$ is

$$
\mathscr{S}(G)= \begin{cases}{\left[\frac{n}{2}\right] \quad} & \text { if }\left|V\left(G_{2}\right)\right| \text { is even and } \\ & \text { there exist } w \in V\left(G_{1}\right) \text {, such that } \mu_{1}(w)=\mu_{\circ}, \\ \mathscr{S}\left(G_{2}\right) & \text { if }\left|V\left(G_{2}\right)\right| \text { is even and } \\ & \text { there exist no } w \in V\left(G_{1}\right) \text {, such that } \mu_{1}(w)=\mu_{\circ}, \\ n & \text { if }\left|V\left(G_{2}\right)\right| \text { is odd. }\end{cases}
$$

Proof.
Case 1. $\left|V\left(G_{2}\right)\right|$ is even.

Figure 4.11: Tensor product of two strong fuzzy graphs.

Then $G=G_{1} \otimes G_{2}$ is a disjoint union of two fuzzy cycles H_{1} with vertex set $\left\{w_{11}, w_{22}, w_{13}, w_{24}, \ldots, w_{1 n-1}, w_{2 n}\right\}$, and H_{2} with vertex set $\left\{w_{12}, w_{23}, w_{14}, w_{25}, \ldots, w_{2 n-1}, w_{1 n}, w_{21}\right\}$. (See Figure 4.11).

Subcase 1. There exist $w \in V_{1}$ such that $\mu_{1}(w)=\mu_{\circ}$.

In this case, all the edges of G have the same weight. So, the strength of $G=$ strength of $H_{1}=$ strength of $H_{2}=\left[\frac{n}{2}\right]$.

Subcase 2. There exist no $w \in V_{1}$ such that $\mu_{1}(w)=\mu_{\circ}$.

In this case, there exists a $w \in V_{2}$ such that $\mu_{2}(w)=\mu_{\circ}$. Without loss of generality assume that $w=v_{1}$. Then w_{11} and w_{21} are two weakest vertices of G. In fact each weakest vertex of G_{2} determines exactly one weakest vertex in H_{1} as well as in H_{2}. So the number of weakest vertices of H_{1} and that of H_{2} are equal and equal to that of G_{2}. Note only that if G_{2} has m consecutive weakest vertices then both H_{1} and H_{2} have the same number of consecutive weakest vertices. From this we can conclude that the strength of G is equal to that of G_{2}.

Case 2. $\left|V\left(G_{2}\right)\right|$ is odd.

In this case $G=G_{1} \otimes G_{2}$ is a strong fuzzy cycle with vertex set $\left\{w_{11}, w_{22}, w_{13}, w_{24}, \ldots, w_{2 n-1}, w_{1 n}, w_{21}, w_{12}, w_{23}, \ldots, w_{1 n-1}, w_{2 n}\right\}$. (See Figure 4.12).

Figure 4.12: (a) A fuzzy path on two vertices G_{1}, (b) a strong fuzzy cycle G_{2} and (c) their tensor product of G.

Subcase 1.

Then all the edges of G have the same weight. Therefore by Theorem 1.4.1; $\mathscr{S}(G)=\left[\frac{2 n}{2}\right]=n$.

Subcase 2. There exist no $w \in V_{1}$ such that $\mu_{1}(w)=\mu_{\circ}$.

By our assumption there exists a vertex $w \in V_{2}$ such that $\mu_{2}(w)=\mu_{\circ}$. Assume that $w=v_{1}$. Then w_{11} and w_{21} are weakest vertices of the partial fuzzy subgraph $P=<\left\{w_{11}, w_{22}, w_{13}, w_{24}, \ldots, w_{2 n-1}, w_{1 n}\right\}>$ and $Q=<\left\{w_{21} w_{12} w_{23} \ldots w_{1 n-1}\right.$ $\left.w_{2 n}\right\}>$ of G. Also corresponding to each weakest path of length m in G_{2} there exist weakest paths of the same length in P and in Q. Let u and v be any two vertices of G. Then the path joining u and v having length $\geq n$ passes through at least one weakest edge of G. So the length of the extra strong $u-v$ path in G is $\leq n$. If $u=w_{11}$ and $v=w_{21}$ then the length of the extra strong $u-v$ path
is exactly n. Hence the proof.

Theorem 4.2.4. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with underlying crisp graphs K_{n} and K_{m} respectively. Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be the set of all vertices of K_{n} and K_{m}. Then the strength of the tensor product $G_{1} \otimes G_{2}(V, \mu, \sigma)$ of G_{1} and G_{2} is,

$$
\mathscr{S}\left(G_{1} \otimes G_{2}\right)= \begin{cases}0 & \text { for } n=1, m \geq 1 \quad \text { or } n \geq 1, m=1, \\ 1 & \text { for } n=m=2, \\ 2 & \text { for } n>2 \text { and } m>2, \\ 3 & n=2, m>2 \text { or } n>2, m=2 .\end{cases}
$$

Proof. Let u and v be two non-adjacent vertices of $G=G_{1} \otimes G_{2}$, say $u=w_{i j}$ and $v=w_{k l}$. Then u_{i} is not adjacent to u_{k} in G_{1} or v_{j} is not adjacent to v_{l} in G_{2}.

Case 1. $n=1, m \geq 1$ or $m=1, n \geq 1$.

In this case $G=G_{1} \otimes G_{2}$ is a null fuzzy graph on m (or n) vertices. Therefore $\mathscr{S}(G)$ is 0.

Case 2. $n=m=2$.

In this case the tensor product is the disjoint union of two fuzzy paths with P_{2} as the underlying crisp graphs. So strength of G is 1 by Theorem 1.4.1.

Case 3. $n>2$ and $m>2$.

Since G_{1} and G_{2} are complete fuzzy graphs of order >2 there exist at least one vertex in $G_{1} \otimes G_{2}$ which is adjacent to both u and v in $G_{1} \otimes G_{2}$.

Whether $i=k$ or not, since n and $m>2$, we can find a $u_{r} \in V\left(G_{1}\right)$ different from u_{i} and u_{k} such that $\mu_{1}\left(u_{r}\right)=\vee\left\{\mu_{1}\left(u_{p}\right): 1 \leq p \neq i, k \leq n\right\}$ and a $v_{s} \in V\left(G_{2}\right)$ such that $\mu_{2}\left(v_{s}\right)=\vee\left\{\mu_{2}\left(v_{q}\right): 1 \leq q \neq l, j \leq m\right\}$, so that $w_{r s}$ is adjacent to both u and v in G. By the choice of $w_{r s}$ the path $u w_{r s} v$ is an extra strong path joining u and v in G of length 2.

Case 4. $m>2$ and $n=2$ (or $n>2$ and $m=2$).

First of all suppose that $n=2$ and $m>2$. The case $m>2$ and $n=2$ can be dealt as in the same way. We have the following cases,
i $u=w_{1 j}, v=w_{1 l}, 1 \leq j \neq l \leq m$,
ii $u=w_{2 j}, v=w_{2 l}, 1 \leq j \neq l \leq m$,
iii $u=w_{1 j}$ and $v=w_{2 j}$ for some j.

In the first two cases we can proceed as in the proof of Case 3 and prove that the length of the extra strong path joining u and v is 2 .

When $u=w_{1 j}$ and $v=w_{2 j}$, there is no vertex in G which is adjacent to both u and v. Since $w_{1 j}$ is adjacent to $w_{2 k}$, for $k \neq j$ and $w_{2 j}$ is adjacent to $w_{1 l}$, for $l \neq j$, the extra strong path joining u and v is $u w_{2 r} w_{1 s} u$, where $\left(v_{r}\right), r \neq j$ is chosen so that $\mu_{2}\left(v_{r}\right) \geq \vee\left\{\mu_{2}\left(v_{p}\right) ; r \neq j\right\}$ and $v_{s}, s \neq j, r$, is chosen
such that $\mu_{2}\left(v_{s}\right) \geq \vee\left\{\mu_{2}\left(v_{q}\right) ; q \neq j, r\right\}$. Hence the length of the extra strong path joining u and v is 3 .

4.3 Composition

Another product we consider is the composition.

Definition 4.3.1. [47] Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two fuzzy graphs with underlying crisp graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ respectively. Then the composition $G(V, \mu, \sigma)$, denoted by $G_{1}\left[G_{2}\right]$, of G_{1} and G_{2} is the fuzzy graph with the underlying crisp graph $G(V, E)$ is the composition of the crisp graphs of G_{1} and G_{2} where $V=V_{1} \times V_{2}$ and $E=\left\{\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right): u_{1}=v_{1},\left(u_{2}, v_{2}\right) \in\right.$ E_{2} or $\left.\left(u_{1}, v_{1}\right) \in E_{1}\right\}$ are the vertex set and edge set of $G(V, E)$ respectively and μ and σ are defined as
$\mu\left(u_{1}, u_{2}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{2}\left(u_{2}\right),\left(u_{1}, u_{2}\right) \in V$,
$\sigma\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right)= \begin{cases}\mu_{1}\left(u_{1}\right) \wedge \sigma_{2}\left(u_{2}, v_{2}\right) & \text { if } u_{1}=v_{1} \text { and }\left(u_{2}, v_{2}\right) \in E_{2}, \\ \mu_{2}\left(u_{2}\right) \wedge \mu_{2}\left(v_{2}\right) \wedge \sigma_{1}\left(u_{1}, v_{1}\right) & \text { if }\left(u_{1}, v_{1}\right) \in E_{1}, \\ 0 & \text { otherwise. }\end{cases}$
Recall that the vertex $\left(u_{i}, v_{j}\right)$ of $V_{1} \times V_{2}$ is denoted by $w_{i j}$.

For $m=1$ and $n=2$ or $m=2$ and $n=1$ the composition of paths P_{m} and P_{n} is a path on two vertices and for $m=n=2$ their composition is a complete graph on 4 vertices. Hence in both these cases the strength of composition of P_{m} and P_{n} is one.

Lemma 4.3.1. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy paths with underlying crisp graphs $P_{2}=u_{1} u_{2}$ and $P_{n}=v_{1} v_{2} \ldots v_{n}$. Let $G(V, \mu, \sigma)=$ $G_{1}\left[G_{2}\right]$ be the composition of G_{1} and G_{2}. Then

$$
\mathscr{S}(G)= \begin{cases}2 & \text { if } \mu_{1}\left(u_{1}\right)=\mu_{1}\left(u_{2}\right) \text { or } l \leq 1 \\ l & \text { otherwise }\end{cases}
$$

where l is the maximum length of subpaths of G_{2} having strength $>\mu_{1}\left(u_{1}\right) \wedge$ $\mu_{1}\left(u_{2}\right)$ if such a path exists, zero otherwise.

Proof. Let $u=w_{i j}$ and $v=w_{k m}$ be two nonadjacent vertices of G. Then $i=k$ and v_{j} and v_{m} are not adjacent. Assume that $\mu_{1}\left(u_{1}\right) \geq \mu_{1}\left(u_{2}\right)$. If $u=w_{2 j}$ and $v=w_{2 m}$ then any $u-v$ path has strength $\leq \mu_{1}\left(u_{2}\right) \wedge \mu_{2}\left(v_{j}\right) \wedge \mu_{2}\left(v_{m}\right)$. As the path $u w_{1 j} v$ has strength $\mu_{1}\left(u_{2}\right) \wedge \mu_{2}\left(v_{j}\right) \wedge \mu_{2}\left(v_{m}\right)$, it is an extra strong $u-v$ path in G.

Now suppose that $u=w_{1 j}$ and $v=w_{1 m}$. Also suppose that $\mu_{1}\left(u_{1}\right)=\mu_{1}\left(u_{2}\right)$. In this case by interchanging the values of u_{1} and u_{2} in the discussion above we get $u w_{2 j} v$ is an extra strong $u-v$ path in G. If $\mu_{1}\left(u_{2}\right)<\mu_{1}\left(u_{1}\right)$ and if $l \leq 1$ then any subpath of P_{2} of length ≥ 2 has strength $\leq \mu_{1}\left(u_{2}\right)$. Thus any $u-v$ path which lies in the maximal partial subgraph of G with vertex set $\left\{w_{11}, w_{12}, \ldots, w_{1 n}\right\}$ has strength $\leq \mu_{1}\left(u_{2}\right)$. Therefore in this case $u w_{2 j} v$ is an extra strong $u-v$ path in G.

Now suppose that $l>1$. If we choose v_{j} and v_{m} as the ends of a subpath of
P_{n} of length l and strength $>\mu_{1}\left(u_{2}\right)$ then $w_{1 j} w_{1 j+1} w_{1 m}$ or $w_{1 m} w_{1 m+1} \ldots w_{1 j}$ is an extra strong $u-v$ path according as $m>j$ or $j>m$ respectively. Therefore the length of extra strong $u-v$ path is $\leq l$. Thus if we choose v_{j} and v_{m} as the ends of the maximal subpath we get the length of the extra strong $w_{1 j}-w_{1 m}$ path is l. Hence the lemma.

In general, for two graphs G_{1} and $G_{2}, G_{1}\left[G_{2}\right] \neq G_{2}\left[G_{1}\right]$. Therefore if G_{1} and G_{2} are two fuzzy graphs then also $G_{1}\left[G_{2}\right] \neq G_{2}\left[G_{1}\right]$. For example if G_{1} and G_{2} are fuzzy graphs with the underlying crisp graphs P_{n} and P_{2} respectively then $G_{1}\left[G_{2}\right]$ is a $2-$ linked fuzzy graph with $n-1$ parts, each part is a complete fuzzy graphs on 4 vertices (See Figure 4.13(b)). On the other hand $G_{2}\left[G_{1}\right]$ is as shown in Figure 4.13(a).

Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy paths with crisp graphs P_{n} and P_{2} respectively and $G(V, \mu, \sigma)$ be their composition. Then $G(V, \mu, \sigma)$ is a properly linked fuzzy graphs with $n-1$ parts, each is complete. Then by Theorem 2.3.2 we have the following result.

Theorem 4.3.1. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two fuzzy graphs with crisp graphs P_{n} and P_{2} respectively and $G(V, \mu, \sigma)$ be their composition. Then the strength $\mathscr{S}(G)$ of $G=G_{1}\left[G_{2}\right]$ is 1 for $n=1$ and $(n-1)$ for $n>1$.

(a) $\mathrm{G}_{2}\left[\mathrm{G}_{1}\right]$

(b) $\mathrm{G}_{1}\left[\mathrm{G}_{2}\right]$

Figure 4.13: Composition of fuzzy graphs.

Theorem 4.3.2. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy paths with underlying crisp graphs $P_{2}=u_{1} u_{2}$ and $P_{n}=v_{1} v_{2} \ldots v_{n}$ respectively. Also let $G(V, \mu, \sigma)$ be their composition. If $\mu_{1}\left(u_{1}\right) \vee \mu_{1}\left(u_{2}\right)<\mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \wedge \ldots \wedge \mu_{2}\left(v_{n}\right)$, then the strength $\mathscr{S}(G)$ of the composition $G=G_{1}\left[G_{2}\right]$ of G_{1} and G_{2} is as follows.

$$
\mathscr{S}(G)= \begin{cases}1 & \text { if } n=1 \text { or } n=2, \\ (n-1) & \text { if } \mu_{1}\left(u_{1}\right) \neq \mu_{1}\left(u_{2}\right) \text { and } n>2, \\ 2 & \text { if } \mu_{1}\left(u_{1}\right)=\mu_{1}\left(u_{2}\right) \text { and } n>2\end{cases}
$$

Proof. For $n=1, G$ is a strong fuzzy path on two vertices and for $n=2, G$ is a strong fuzzy complete graph on 4 vertices. Therefore in these cases $\mathscr{S}(G)=1$ by Theorems 1.4.1.

Now suppose that $n>2$.

Case 1. $\mu_{1}\left(u_{1}\right) \neq \mu_{1}\left(u_{2}\right)$.

Without loss of generality assume that $\mu_{1}\left(u_{1}\right)<\mu_{1}\left(u_{2}\right)$ in G_{1}. Let u and v be any two non - adjacent vertices of G. If u or v or both belong to the set $\left\{w_{1 j}: 1 \leq j \leq n\right\}$ then all the paths joining u and v have strength $\mu_{1}\left(u_{1}\right)$. Therefore $u w_{2 j} v, j=1,2, \ldots, n$ are all extra strong $u-v$ paths.

If u and $v \in\left\{w_{2 j}: 1 \leq j \leq n\right\}$. Let us suppose that $u=w_{2 i}$ and $v=w_{2 j}$ with $i<j$. If a path joining u and v contains a vertex $w_{1 k} ; 1 \leq k \leq n$ then its strength is $\mu_{1}\left(u_{1}\right)$. Therefore the extra strong path joining u and v is $u w_{2 i+1} \ldots w_{2 j-1} v$. Its length is clearly less than or equal to $n-1$. If $u=w_{21}$ and $v=w_{2 n}$ then the length of the extra strong $u-v$ path is equal to $n-1$.

Similarly we can prove that if $\mu_{1}\left(u_{1}\right)>\mu_{2}\left(u_{2}\right)$ then $\mathscr{S}(G)=n-1$.
Case 2. $\mu_{1}\left(u_{1}\right)=\mu_{1}\left(u_{2}\right)$.

Then all the edges of G have the same weight $\mu_{1}\left(u_{1}\right)$. For $u=w_{1 i}, v=$ $w_{1 j}, u w_{2 k} v$ and for $u=w_{2 i}, v=w_{2 j}, u w_{1 k} v$ are extra strong paths. Therefore in this case strength of G is 2 .

Theorem 4.3.3. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with crisp graphs the path $P_{2}=u_{1} u_{2}$ and the path $P_{n}=v_{1} v_{2} \ldots v_{n}$ respectively and $G(V, \mu, \sigma)$ be their composition. Let $l=$ maximum length of all subpaths of the path $w_{11} w_{12} \ldots w_{1 n}$ of G of strength $>\mu_{1}\left(u_{2}\right) \vee$ maximum length of all subpaths of the path $w_{21} w_{22} \ldots w_{2 n}$ of G of strength $>\mu_{1}\left(u_{1}\right)$ if such subpaths exist, otherwise let $l=0$. Let $\mu_{1}\left(u_{1}\right) \vee \mu_{1}\left(u_{2}\right) \geq \mu_{1}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \wedge \ldots \wedge \mu_{2}\left(v_{n}\right)$.

Then the strength $\mathscr{S}(G)$ of the composition of G_{1} and G_{2} is 2 if $\mu_{1}\left(u_{1}\right)=\mu_{1}\left(u_{2}\right)$. Otherwise, it is $l \vee 2$.

Proof. Let u and v be two non - adjacent vertices of G. Without loss of generality assume that $\mu_{1}\left(u_{1}\right) \leq \mu_{1}\left(u_{2}\right)$. If $u, v \in\left\{w_{1 j}: 1 \leq j \leq n\right\}$. Then $u=w_{1 i}$ and $v=w_{1 k}$ for some $1 \leq i \neq k \leq n$. Then $w_{1 i} w_{2 i} w_{1 k}$ has strength $\mu\left(w_{1 i}\right) \wedge \mu\left(w_{1 k}\right)$. Therefore $w_{1 i} w_{2 i} w_{1 k}$ is an extra strong $u-v$ path.

Suppose u and $v \in\left\{w_{2 j}: 1 \leq j \leq n\right\}$. Let $u=w_{2 i}$ and $v=w_{2 j}$ with $i<j$. If all the vertices $v_{k}, i \leq k \leq j$ have weight $>\mu_{1}\left(u_{1}\right)$ then the extra strong path joining u and v is the path $w_{2 i} w_{2 i+1} \ldots w_{2 j-1} w_{2 j}$ of G_{2} joining $w_{2 i}$ and $w_{2 j}$. Otherwise $w_{2 i} w_{1 k} w_{2 j}$, for some k for which $\mu_{2}\left(v_{k}\right)=$ $\max _{i=1,2, \ldots n}\left\{\mu_{2}\left(v_{i}\right)\right\}$ is an extra strong path joining u and v. Therefore $\mathscr{S}(G)=$ $\max \left\{2\right.$, length of the maximal subpath of G_{2} having strength $\left.>\mu_{1}\left(u_{1}\right)\right\}$.

Theorem 4.3.4. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with crisp graphs P_{m} and P_{n} respectively where $P_{m}=u_{1} u_{2} \ldots u_{m}$ and $P_{n}=$ $v_{1} v_{2} \ldots v_{n}$ where $m, n>2$. Let the paths $P_{m}=u_{1} u_{2} \ldots u_{m}$ and $P_{n}=v_{1} v_{2} \ldots v_{n}$ be their respective underlying crisp graphs, where, $m, n>2$. Let $G(V, \mu, \sigma)$ be the composition of G_{1} and G_{2}. Then the strength $\mathscr{S}(G)$ of G is $(m-1) \vee(n-1)$.

Proof. Let u, v be two non- adjacent vertices of G.

Case 1. $u, v \in\left\{w_{i j}: j=1,2, \ldots, n\right\}$.

Without loss of generality assume that $u=w_{i k}$ and $v=w_{i q}$ with $k<q$. Suppose there exist a vertex which is adjacent to both u and v in G such that $\mu(w) \geq \mu\left(w_{i k}\right) \wedge \mu\left(w_{i k+1}\right) \wedge \ldots \wedge \mu\left(w_{i q}\right)$ such a vertex may exist if $\mu_{1}\left(u_{i-1}\right)$ or $\mu_{1}\left(u_{i+1}\right)$ is greater than or equal to $\mu_{1}\left(u_{i}\right)$. Then $u w v$ is an extra strong path, which is of length 2 .

Otherwise, the path $P_{k q}=w_{i k} w_{i k+1} \ldots w_{i q}$ is an extra strong $u-v$ path in G. The length of $P_{k q}$ is $q-k \leq n-1$.

Case 2. $u, v \in\left\{w_{i j}: i=1,2, \ldots, m\right\}$ for some $j, 1 \leq j \leq n$.

For $1 \leq j \leq n$, let H_{j} be the path $w_{1 j} w_{2 j} \ldots w_{m j}$ of G and for $1 \leq i \leq m, L_{i}$ be the path $w_{i 1} w_{i 2} \ldots w_{i n}$. Let $u=w_{k j}$ and $v=w_{p j}, k \neq p, 1 \leq j \leq n$. Then, all the $u-v$ paths pass through at least one vertex of each $L_{i} ; k \leq i \leq p$. So $w_{k j} w_{k+1 j} \ldots w_{k+m j}$ is an extra strong $u-v$ path. Every such path has length $|p-k|$. Therefore, if $u=w_{11}$ and $v=w_{m 1}$ then the length of the extra strong path is $m-1$.

Case 3. $u=w_{i j}$ and $v=w_{k l}$, where $i \neq k$ and $j \neq l$.

Without loss of generality assume that $i<k$ and $j<l$. Then all the $u-v$ paths pass through at least one vertex of each $L_{i+1}, L_{i+2}, \ldots, L_{k-1}$. So the strength of the $u-v$ path in G must be $\leq \mu_{1}\left(u_{i}\right) \wedge \mu_{1}\left(u_{i+1}\right) \wedge \ldots \wedge \mu_{1}\left(u_{k-1}\right) \wedge$ $\mu_{1}\left(u_{k}\right) \wedge \mu_{2}\left(v_{j}\right) \wedge \mu_{2}\left(v_{l}\right)$. Here $w_{i j} w_{i+1 l} \ldots w_{k-1 l} w_{k l}$ is an extra strong path in G and is of length equal to $|k-i|$, which is $=n-1$ when $k=1$ and $i=n$.

Hence the theorem.

Theorem 4.3.5. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with underlying crisp graphs the path P_{2} with vertex set $\left\{u_{1}, u_{2}\right\}$ and the star graph $S_{n}, n \geq 3$ with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ having v_{n} as the central vertex respectively. If $G(V, \mu, \sigma)$ is their composition, then the strength of G is 2 .

Proof. Let $u=w_{i j}$ and $v=w_{k l}$ be two non - adjacent vertices of G. Then either $i=k=1$ or $i=k=2$ and j and l are distinct from n. Let us suppose that $i=k=1$. In this case any $u-v$ path has strength $\leq \mu_{1}\left(u_{1}\right) \wedge \mu_{2}\left(v_{j}\right) \wedge \mu_{2}\left(v_{l}\right)$. If $\mu_{1}\left(u_{1}\right) \leq \mu_{1}\left(u_{2}\right)$ then $u w_{2 j} v$ is an extra strong path in G.

Now consider the case $\mu_{1}\left(u_{1}\right)>\mu_{1}\left(u_{2}\right)$. In this case we have the following subcases. If $\underset{i \neq j, l}{\vee} \mu_{2}\left(v_{i}\right) \leq \mu_{1}\left(u_{2}\right)$ then again $u w_{2 j} v$ is an extra strong $u-v$ path in G. Otherwise, let $\alpha=\underset{i \neq j, l}{\bigvee} \mu_{2}\left(v_{i}\right)>\mu_{1}\left(u_{2}\right)$. If $\mu_{2}\left(v_{m}\right)=\alpha$ then $u w_{1 n} v$ is an extra strong $u-v$ path in G. If $\mu_{2}\left(v_{m}\right)=\alpha$ for some $m \neq j, l, n$ and $\mu_{2}\left(v_{n}\right) \leq \mu_{1}\left(u_{2}\right)$ then $u w_{2 m} v$ is an extra strong $u-v$ path in G. Thus in the case $i=k=1$ the length of the extra strong $u-v$ path is 2 .

If $i=k=2$, as above, we can prove that the length of extra strong $u-v$ path is 2 . Hence $\mathscr{S}(G)=2$.

Figure 4.14: (a) A strong fuzzy path G_{1}, (b) a strong fuzzy star graph G_{2} and (c) their composition G.

Theorem 4.3.6. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with underlying crisp graphs, the path P_{2} with vertex set $\left\{u_{1}, u_{2}\right\}$ and the Bull graph with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ respectively and $G(V, \mu, \sigma)$ be their composition. Then the strength $\mathscr{S}(G)$ of G is 2 if $\mu_{1}\left(u_{1}\right)=\mu_{1}\left(u_{2}\right)$.

Proof. Let G_{1}, G_{2} and G be as shown in Figure 4.15. Let u and v be two nonadjacent vertices of G. Then $u, v \in\left\{w_{11}, w_{13}, w_{15}\right\}$ or $u, v \in\left\{w_{11}, w_{14}\right\}$ or $u, v \in$ $\left\{w_{12}, w_{15}\right\}$ or $u, v \in\left\{w_{21}, w_{23}, w_{25}\right\}$ or $u, v \in\left\{w_{21}, w_{24}\right\}$ or $u, v \in\left\{w_{22}, w_{25}\right\}$.

First of all we suppose that u, v belong to $\left\{w_{11}, w_{13}, w_{15}\right\}$ or belong to $\left\{w_{11}, w_{14}\right\}$ or belong to $\left\{w_{12}, w_{15}\right\}$. In these cases let us write $u=w_{1 i}$ and $v=w_{1 j}$ for suitable i and j. Then since $\mu_{1}\left(u_{1}\right)=\mu_{1}\left(u_{2}\right)$ and strength of any path joining u and v is $\leq \mu_{1}\left(u_{1}\right) \wedge \mu_{2}\left(v_{i}\right) \wedge \mu_{2}\left(v_{j}\right)$ we have $u w_{2 i} v$ is an extra strong $u-v$ path in G, which is of length 2 .

Similarly if u, v belong to $\left\{w_{21}, w_{23}, w_{25}\right\}$ or belong to $\left\{w_{21}, w_{24}\right\}$ or belong to
$\left\{w_{22}, w_{25}\right\}$ then also every extra strong path joining them has length 2. Hence $\mathscr{S}(G)=2$.

Figure 4.15: Composition of a fuzzy path and a fuzzy bull graph.

Theorem 4.3.7. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with underlying crisp graphs, the path P_{2} with vertex set $\left\{u_{1}, u_{2}\right\}$ and the Bull graph with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Let $G(V, \mu, \sigma)$ be their composition. If $\mu_{1}\left(u_{1}\right)>\mu_{2}\left(v_{2}\right) \wedge \mu_{2}\left(v_{4}\right)>\mu_{1}\left(u_{2}\right)$ or $\mu_{1}\left(u_{1}\right)<\mu_{2}\left(v_{2}\right) \wedge \mu_{2}\left(v_{4}\right)<\mu_{1}\left(u_{2}\right)$ then the strength of G is 3 .

Proof. Let G_{1}, G_{2} and G as shown in Figure 4.15. First of all suppose that $\mu_{1}\left(u_{1}\right)>\mu_{2}\left(v_{2}\right) \wedge \mu_{2}\left(v_{4}\right)>\mu_{1}\left(u_{2}\right)$. Let u and v be two nonadjacent vertices of G. Then $u, v \in\left\{w_{11}, w_{13}, w_{15}\right\}$ or $u, v \in\left\{w_{11}, w_{14}\right\}$ or $u, v \in\left\{w_{12}, w_{15}\right\}$ or $u, v \in\left\{w_{21}, w_{23}, w_{25}\right\}$ or $u, v \in\left\{w_{21}, w_{24}\right\}$ or $u, v \in\left\{w_{21}, w_{25}\right\}$. If $u=w_{11}$ and $v=w_{15}$ or vice versa then there is only one extra strong path P, which is $w_{11} w_{12} w_{14} w_{15}$. All other $u-v$ paths have strength either strictly less than that
of P or length \geq that of P and strength \leq that of P. Clearly length of P is 3 .

In all other cases the length of extra strong $u-v$ paths are of length 2. Therefore strength of G is 3 .

Similarly we can prove that strength of G is 3 if $\mu_{1}\left(u_{1}\right)<\mu_{2}\left(v_{2}\right) \wedge \mu_{2}\left(v_{4}\right)<$ $\mu_{1}\left(u_{2}\right)$.

Theorem 4.3.8. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with underlying crisp graphs, the path P_{2} with vertex set $\left\{u_{1}, u_{2}\right\}$ and the Bull graph with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Let $G(V, \mu, \sigma)$ be their composition. If $\mu_{1}\left(u_{1}\right) \neq \mu_{1}\left(u_{2}\right)$ and $\mu_{2}\left(v_{2}\right) \wedge \mu_{2}\left(v_{4}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{1}\left(u_{2}\right)$. Then strength of G is 2.

Proof. Suppose that $\mu_{1}\left(u_{1}\right)>\mu_{1}\left(u_{2}\right)$ and $\mu_{2}\left(v_{2}\right) \leq \mu_{2}\left(v_{4}\right)$. The other case can be dealt in the same fashion. Then the given condition becomes $\mu_{1}\left(u_{2}\right)=\mu_{2}\left(v_{2}\right)$. In this case if $u=w_{11}$ and $v=w_{15}$ (or $u=w_{21}$ and $v=w_{25}$) then $u w_{24} v$ (respectively $u w_{14} v$) is an extra strong $u-v$ path in G of length 2 . In all other cases clearly extra strong $u-v$ paths have length 2 . Therefore strength of G is 2.

Theorem 4.3.9. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with underlying crisp graphs the path $P_{2}=u_{1} u_{2}$ and $C_{n}=v_{1} v_{2} \ldots v_{n}$ respectively. Let $v \in V\left(G_{2}\right)$ be such that $\mu_{2}(v)=\mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \ldots \wedge \mu_{2}\left(v_{n}\right)$. Then the strength of composition of G_{1} and G_{2} is

$$
\mathscr{S}(G)= \begin{cases}{\left[\frac{n}{2}\right] \quad} & \text { if } \mu_{1}\left(u_{1}\right) \text { and } \mu_{1}\left(u_{2}\right) \leq \mu_{2}(v) \text { and } \mu_{1}\left(u_{1}\right) \neq \mu_{1}\left(u_{2}\right), \\ 2 & \text { if } \mu_{1}\left(u_{1}\right) \text { and } \mu_{1}\left(u_{2}\right) \leq \mu_{2}(v) \text { and } \mu_{1}\left(u_{1}\right)=\mu_{1}\left(u_{2}\right) \\ & \text { or if } \mu_{1}\left(u_{1}\right) \text { and } \mu_{1}\left(u_{2}\right)>\vee_{i=1}^{n} \mu_{2}\left(v_{i}\right), \\ \mathscr{S}\left(G_{2}\right) \quad \text { if } \mu_{1}\left(u_{1}\right)>\vee_{i=1}^{n} \mu_{2}\left(v_{i}\right) \quad \text { and } \mu_{1}\left(u_{2}\right)<\mu_{2}(v) \\ & \text { or if } \mu_{1}\left(u_{2}\right)>{\underset{i=1}{n} \mu_{2}\left(v_{i}\right) \quad \text { and } \mu_{1}\left(u_{1}\right)<\mu_{2}(v) .} \quad\end{cases}
$$

Proof. Let u and v be two nonadjacent vertices of $G=G_{1}\left[G_{2}\right]$. Then either $u, v \in\left\{w_{1 j}: j=1,2, \ldots, n\right\}$ or $u, v \in\left\{w_{2 j}: j=1,2, \ldots, n\right\}$ (See Figure 4.16).

(b)
(a)

(c)

Figure 4.16: (a) A strong fuzzy path G_{1}, (b) a strong fuzzy cycle G_{2} and (c) their composition G.

Case 1. $\mu_{1}\left(u_{1}\right)$ and $\mu_{1}\left(u_{2}\right) \leq \mu_{2}(v)$ and $\mu_{1}\left(u_{1}\right) \neq \mu_{1}\left(u_{2}\right)$.

In this case $\mu\left(w_{i j}\right)=\mu_{1}\left(u_{i}\right)$ for $i=1,2$. Without loss of generality assume that $\mu_{1}\left(u_{1}\right)<\mu_{1}\left(u_{2}\right)$. Then for the first choice of u and v ie, for $u, v \in\left\{w_{1 j}: j=\right.$ $1,2, \ldots, n\}$ all the $u-v$ paths have same strength in G. So $u w v$ is an extra strong $u-v$ path of length 2 where w is any vertex in the set $\left\{w_{2 j}: j=1,2, \ldots, n\right\}$.

For the second choice of u and v ie, for $u, v \in\left\{w_{2 j}: j=1,2, \ldots, n\right\}$, the vertices of the extra strong path joining them lie completely in the set of $\left\{w_{2 j}\right.$: $j=1,2, \ldots, n\}$. In G this set of vertices forms a fuzzy cycle and each vertex has
same strength as $\mu_{1}\left(u_{2}\right)$. So the strength of the $u-v$ path in G is $\left[\frac{n}{2}\right]$.
Case 2. $\mu_{1}\left(u_{1}\right)$ and $\mu_{1}\left(u_{2}\right) \leq \mu_{2}(v)$ and $\mu_{1}\left(u_{1}\right)=\mu_{1}\left(u_{2}\right)$.

Then all the vertices of G have same weight $\mu_{1}\left(u_{1}\right)$. So in both choices for u and v ie, for $u, v \in\left\{w_{1 j}: j=1,2, \ldots, n\right\}$ or $u, v \in\left\{w_{2 j}: j=1,2, \ldots, n\right\}$, every extra strong path is of length 2 .

Case 3. $\mu_{1}\left(u_{1}\right) \wedge \mu_{1}\left(u_{2}\right)>$ the weight of every vertex of G_{2}.

In this case the vertices in $\left\{w_{1 j}: j=1,2, \ldots, n\right\}$ and in $\left\{w_{2 j}: j=1,2, \ldots, n\right\}$ form two fuzzy cycles both are copies of G_{2}. Therefore, if $u, v \in\left\{w_{1 j}: j=\right.$ $1,2, \ldots, n\}$ and by choosing a vertex w of $\left\{w_{2 j}: j=1,2, \ldots, n\right\}$ of maximum weight, we get an extra strong $u-v$ path namely $u w v$ of length 2 . Similarly if $u, v \in\left\{w_{2 j}: j=1,2, \ldots, n\right\}$ we get an extra strong $u-v$ path of length 2 . Therefore in this case strength of G is 2 .

Case 4. $\mu_{1}\left(u_{1}\right)>\bigvee_{i=1}^{n} \mu_{2}\left(v_{i}\right)$ and $\mu_{1}\left(u_{2}\right)<\mu_{2}(v)$ or $\mu_{1}\left(u_{2}\right)>\bigvee_{i=1}^{n} \mu_{2}\left(v_{i}\right)$ and $\mu_{1}\left(u_{1}\right)<\mu_{2}(v)$.
 Then $\mu\left(w_{2 j}\right)=\mu_{2}\left(u_{2}\right) \forall j$.

If u and v are in the first choice, the vertices of the extra strong paths joining them lie completely in the set of $\left\{w_{1 j}: j=1,2, \ldots, n\right\}$. In G this set of vertices forms a fuzzy cycle, which is a copy of G_{2}. So the strength of the $u-v$ path in G is $\mathscr{S}\left(G_{2}\right)$.

If u, v are as in the second choice then all the $u-v$ paths have same strength $\mu_{1}\left(u_{2}\right)$. So the length of the extra strong path joining u and v is 2.

4.4 Normal products

In this section Normal products of strong fuzzy graphs and their strength are discussed.

Definition 4.4.1. [38]

For $i=1,2$, let $G_{i}\left(V_{i}, \mu_{i}, \sigma_{i}\right)$ be two fuzzy graphs with underlying crisp graphs $G_{i}\left(V_{i}, E_{i}\right)$. Their normal product, denoted by $G_{1} \boxtimes G_{2}$, of G_{1} and G_{2} is the fuzzy graph $G(V, \mu, \sigma)$ with the underlying crisp graph the normal product of the crisp graph $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ with vertex set $V=V_{1} \times V_{2}$ and the edge set $E=\left\{\left(u, u_{2}\right)\left(u, v_{2}\right) \mid u \in V_{1},\left(u_{2}, v_{2}\right) \in E_{2}\right\} \cup\left\{\left(u_{1}, w\right)\left(v_{1}, w\right) \mid\left(u_{1}, v_{1}\right) \in E_{1}, w \in\right.$ $\left.V_{2}\right\} \cup\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid\left(u_{1}, v_{1}\right) \in E_{1},\left(u_{2}, v_{2}\right) \in E_{2}\right\}$ and whose membership functions μ and σ are defined as $\mu\left(u_{1}, u_{2}\right)=\mu_{1}\left(u_{1}\right) \wedge \mu_{2}\left(u_{2}\right)$ if $\left(u_{1}, u_{2}\right) \in V$ and $\sigma\left(\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right)= \begin{cases}\mu_{1}\left(u_{1}\right) \wedge \sigma_{2}\left(u_{2}, v_{2}\right) & \text { if } u_{1}=v_{1} \text { and }\left(u_{2}, v_{2}\right) \in E_{2}, \\ \sigma_{1}\left(u_{1}, v_{1}\right) \wedge \mu_{2}\left(u_{2}\right) & \text { if } u_{2}=v_{2} \text { and }\left(u_{1}, v_{1}\right) \in E_{1}, \\ \sigma_{1}\left(u_{1}, v_{1}\right) \wedge \sigma_{2}\left(u_{2}, v_{2}\right) & \text { if }\left(u_{1}, u_{2}\right) \in E_{1} \text { and }\left(v_{1}, v_{2}\right) \in E_{2}, \\ 0 & \text { otherwise. }\end{cases}$ Theorem 4.4.1. Let $G(V, \mu, \sigma)$ be the normal product of two strong fuzzy graphs $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ with their respective underlying crisp graphs

1. the paths P_{2} and $P_{n}, n>1$. Then $\mathscr{S}(G)=n-1$.
2. the complete graphs K_{n} and K_{m}. Then $\mathscr{S}(G)=1$.
3. the paths P_{2} and the star graph S_{n}. Then $\mathscr{S}(G)=2$.
4. the star graphs S_{m} and S_{n}. Then $\mathscr{S}(G)=2$.

Proof.

1. In this case the normal product of G_{1} and G_{2} is a 2- connected fuzzy graph with n parts. Each part of which is a complete fuzzy graph on 4 vertices. Hence the proof follows by Theorem 2.3.2.

Figure 4.17: Normal product of a strong fuzzy path on two vertices and a strong fuzzy path on n vertices.
2. In this case the normal product of G_{1} and G_{2} is a complete fuzzy graph. So $\mathscr{S}(G)=1$ by Theorem 1.4.1.

Figure 4.18: Normal product of two complete fuzzy graphs G_{1} and G_{2}.
3. Let G_{1} be a strong fuzzy path on the vertex set $V_{1}=\left\{u_{1}, u_{2}\right\}$ and G_{2} be the strong fuzzy star graph with vertex set $V_{2}=\left\{v_{1}, \ldots, v_{n}\right\}$ with v_{n} as the central vertex of G_{2}. Let u, v be two non-adjacent vertices of $G=G_{1} \boxtimes G_{2}$. (See Figure 4.19). As all the $u-v$ paths contain the vertex $w_{1 n}$ or the vertex $w_{2 n}$ or both $w_{1 n}$ and $w_{2 n}$, the strength of any $u-v$ path is $\leq\left(\mu\left(w_{1 n}\right) \vee \mu\left(w_{2 n}\right)\right) \wedge \mu(u) \wedge \mu(v)$. From this it is clear that $u w v$ is an extra strong $u-v$ path in G, where $w=w_{1 n}$ or $w_{2 n}$ according as $\mu\left(w_{1 n}\right) \geq \mu\left(w_{2 n}\right)$ or $\mu\left(w_{2 n}\right) \geq \mu\left(w_{1} n\right)$. Therefore $\mathscr{S}(G)=2$.

Figure 4.19: Normal product of a strong fuzzy path on two vertices and a strong fuzzy star graph.
4. Let G_{1} and G_{2} be two strong fuzzy star graphs with their underlying crisp graphs S_{m} and S_{n} respectively. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V\left(G_{2}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let u_{m} be the central vertex of G_{1} and v_{n} be the central vertex of G_{2}. Let u, v be two non-adjacent vertices of G. Then $u, v \neq w_{m n}$, because $w_{m n}$ is adjacent to all the other vertices of G. If one of them is $w_{i j}, j=1,2, \ldots, n-1$, then the other is different from $w_{i n}$ and one of them is $w_{i j}, i=1,2, \ldots, m-1$ then the other is different from $w_{m j}$.

Let $u, v \in\left\{w_{i j}: j=1,2, \ldots, n-1\right\}$ for some $i, 1 \leq i<m$. Then all the $u-v$ paths pass through either $w_{i n}$ or through $w_{m j}$ or through $w_{m n}$. Therefore $u w v$ is an extra strong path where $w \in\left\{w_{i n}, w_{m j}, w_{m n}\right\}$ such that $\mu(w)=\max \left\{\mu\left(w_{m n}\right), \mu\left(w_{i n}\right), \mu\left(w_{m j}\right)\right\}$. Therefore the length of the extra strong $u-v$ path is 2 . Similarly if $u, v \in\left\{w_{i j}: i=1,2, \ldots, m-1\right\}$ for some $j, 1 \leq j \leq n$, the length of extra strong $u-v$ path is 2 .

Let $u=w_{i j}$ and $v=w_{k l}$ where $i \neq k$ and $j \neq l$ and $1 \leq i, k \leq m$,
$1 \leq j, l \leq n$. Then all the paths must pass through $w_{m n}$. Hence we have only one extra strong $u-v$ path in G, that is $u w_{m n} v$.

Theorem 4.4.2. Let $G(V, \mu, \sigma)$ be the normal product of a strong fuzzy path $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ on two vertices and a strong fuzzy butterfly graph $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$. Then $\mathscr{S}(G)=2$.

Proof.

Let H_{1} be the strong fuzzy path with vertex set $V_{1}=\left\{u_{1}, u_{2}\right\}$ and H_{2} be the strong fuzzy butterfly graph with vertex set $V_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ as shown in Figure 4.20.

The merger graph of the normal product G of G_{1} and G_{2} is a 1- linked graph with two parts. Therefore $\mathscr{S}(G)=2$.

Figure 4.20: Normal product of a strong fuzzy path on two vertices and a strong fuzzy butterfly graph and their merger graph.

Conjecture 4.4.1. Let $G(V, \mu, \sigma)$ be the normal product of two strong fuzzy graphs $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ with their respective underlying crisp
graphs are the paths P_{n} and P_{m} with $n \geq m, m, n>1$. Then $\mathscr{S}(G)=n-1$.

Conjecture 4.4.2. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with their underlying crisp graphs $P_{2}=u_{1} u_{2}$ and $C_{n}=v_{1} v_{2} \ldots v_{n}$ respectively and the weight of the weakest vertices of G_{1} is greater than the weight of the weakest vertices of G_{2}. If the weakest vertices of G_{2} altogether form a subpath of length l in G_{2} then the strength of normal product $G(V, \mu, \sigma)$ of G_{1} and G_{2} is $n-l$ if $l \leq\left[\frac{n}{2}\right]$ and $\left[\frac{n}{2}\right]$ if $l>\left[\frac{n}{2}\right]$.

Conjecture 4.4.3. Let $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ be two strong fuzzy graphs with their underlying crisp graphs $P_{2}=u_{1} u_{2}$ and $C_{n}=v_{1} v_{2} \ldots v_{n}$ respectively. Suppose that $\mu_{1}\left(u_{1}\right) \leq \mu_{1}\left(u_{2}\right) \wedge \mu_{2}\left(v_{1}\right) \wedge \mu_{2}\left(v_{2}\right) \wedge \ldots \wedge \mu_{2}\left(v_{n}\right)$. Let $G(V, \mu, \sigma)$ be the normal product of G_{1} and G_{2}. Then the strength $\mathscr{S}(G)$ is $\mathscr{S}(G)= \begin{cases}\max \left\{\left[\frac{n}{2}\right], \mathscr{S}\left(G_{2}\right)\right\} & \text { if } \mu_{1}\left(u_{2}\right)>\wedge \mu_{2}\left(v_{i}\right), \\ {\left[\frac{n}{2}\right]} & \text { if } \mu_{1}\left(u_{2}\right) \leq \wedge \mu_{2}\left(v_{i}\right) .\end{cases}$

Relation between some fuzzy

graphs and their line graphs

The line graph of a graph $G(V, E)$ represents the adjacencies between edges of G. Whitney and Krausz (1943) constructed the line graph in their papers 'Congruent graphs and the connectivity of graphs' and and the name line graph was given by Harary and Norman [19]. John N. Mordeson [33] defined and gave some results of fuzzy line graph in his paper 'Fuzzy line graphs'.

In this chapter we find the strength of the line graphs of strong fuzzy butterfly graph, strong fuzzy star graph, strong fuzzy bull graph and strong fuzzy diamond graph, strong fuzzy path, strong fuzzy cycle in terms of the respective graphs.

Definition 5.0.1. [33] Let $G(V, \mu, \sigma)$ be a fuzzy graph with its underlying crisp

[^1]graph $G(V, E)$. The fuzzy line graph $L(G)\left(V_{L}, \mu_{L}, \sigma_{L}\right)$ of $G(V, \mu, \sigma)$ is the fuzzy graph with its underlying crisp graph $L(G)\left(V_{L}, E_{L}\right)$ is the line graph of $G(V, E)$ where the vertex set $V_{L}=E$ and edge set $E_{L}=\{u v: u$ and v are edges in G, which have a common vertex in $G\}, \mu_{L}(u)=$ $\sigma(u)$ if $u \in V_{L}$ and for $u, v \in E_{L}$
\[

\sigma_{L}(u v)= $$
\begin{cases}\sigma(u) \wedge \sigma(v) & \text { if } u \text { and } v \text { have a vertex in common } \\ 0 & \text { otherwise }\end{cases}
$$
\]

5.1 Line graph of some strong fuzzy graphs

5.1.1 Strong fuzzy butterfly graph

Theorem 5.1.1. The strength of the line graph of a strong fuzzy butterfly graph is three.

Proof. The line graph $L(G)$ of a strong fuzzy butterfly graph $G(V, \mu, \sigma)$ is a $2-$ linked fuzzy graph with parts $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right), G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$, and $G_{3}\left(V_{3}, \mu_{3}, \sigma_{3}\right)$, where $G_{1}\left(V_{1}, \mu_{1}, \sigma_{1}\right)$ and $G_{3}\left(V_{3}, \mu_{3}, \sigma_{3}\right)$ are fuzzy triangles and $G_{2}\left(V_{2}, \mu_{2}, \sigma_{2}\right)$ is fuzzy complete graph on 4 vertices (A butterfly graph and its line graph are shown in figure 1). So by Theorem 2.3.2 strength of $L(G)$ is 3 .

Figure 5.1: (a) A strong fuzzy Butterfly graph G and (b) its line graph $L(G)$.

5.1.2 Strong fuzzy star graph

Theorem 5.1.2. The strength of the line graph of a strong fuzzy star graph is one.

Proof. In a strong fuzzy star graph S_{n} all the edges are adjacent. So the line graph of the strong fuzzy star graph is a strong fuzzy complete graph. Therefore by Theorem 1.4.1 the strength of the line graph of a strong fuzzy star graph is one.

5.1.3 Strong fuzzy bull graph

Theorem 5.1.3. The strength of the line graph of a strong fuzzy bull graph is 2 .

Proof.

Figure 5.2: (a) A strong fuzzy Bull graph G and (b) its line graph $L(G)$.

The line graph of a strong fuzzy bull graph is a strong fuzzy butterfly graph (A bull graph $G(V, \mu, \sigma)$ and its line graph are shown in Figure 2). Therefore by Theorem 2.3.2 the strength of the line graph of a strong fuzzy bull graph is 2.

5.1.4 Strong fuzzy diamond graph

Theorem 5.1.4. The strength of line graph of a strong fuzzy diamond graph is 2.

Proof. The line graph of a strong fuzzy diamond graph is a strong fuzzy wheel graph on 5 vertices as shown in Figure 5.3. Therefore by Theorems 3.1.4, 3.1.5, 3.1.6 strength of line graph of a strong fuzzy diamond graph is 2 .

Figure 5.3: A strong fuzzy diamond graph G and its line graph $L(G)$.

5.2 Line graph of strong fuzzy cycle

Proposition 5.2.1. In a strong fuzzy cycle of length n suppose there are l weakest edges which do not altogether form a subpath. Let s denote the maximum length of a subpath which does not contain any weakest edge. Then

$$
\mathscr{S}(G)= \begin{cases}{\left[\frac{n}{2}\right]} & \text { if } s \leq\left[\frac{n}{2}\right], \\ s & \text { if } s>\left[\frac{n}{2}\right] .\end{cases}
$$

Proof. Let u, v be two non-adjacent vertices of G. Then in G there are two paths joining u and v. If both the paths contain a weakest vertex then the extra strong path joining u and v is the shortest path joining u and v in its underlying crisp graph, which is of length $\leq\left[\frac{n}{2}\right]$. If u and v are the end vertices of a path having length $\left[\frac{n}{2}\right]$ then the extra strong path joining u and v is of length $=\left[\frac{n}{2}\right]$.

Otherwise, there is a $u-v$ path P having no weakest vertices. Then P is an extra strong path joining u and v. The length of P, by hypothesis, is $\leq s$. If u and v are the end vertices of the maximal subpath which does not contain any weakest edge in G then the length of P is s. Hence the theorem.

Now we consider the case of the strength of line graph of a fuzzy cycle. To determine this we introduce the following definitions:

Definition 5.2.1. Two paths P_{1} and P_{2} of a fuzzy cycle C are said to be vertex disjoint or simply disjoint if $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\phi$ and edge disjoint if $E\left(P_{1}\right) \cap$ $E\left(P_{2}\right)=\phi$ where $V\left(P_{2}\right)$ denotes the vertices of P_{2} and $E\left(P_{2}\right)$ denotes the edges of $P_{i}, i=1,2$.

Definition 5.2.2. Suppose P_{1} and P_{2} are two disjoint paths of a fuzzy cycle C with respective end points u_{1}, v_{1} and u_{2}, v_{2}. Then, $<\left(V(C) \backslash\left(V\left(P_{1} \cup P_{2}\right)\right) \cup\right.$ $\left.\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}\right)>$ is a union of two disjoint paths of C, called complementary paths relative to the paths P_{1} and P_{2}.

Definition 5.2.3. Let $G(V, \mu, \sigma)$ be a fuzzy graph. A path P in G with all its edges have weight equal to w where $w=\min \{\sigma(u v): \sigma(u v)>0$ in $G\}$ is called a weakest path. A weakest path which is not a proper subpath of any other weakest path in the fuzzy graph G is called a maximal weakest path in G.

Here after in this chapter we denote the weight of weakest paths of any fuzzy graph G by w.

Note 5.2.1. A graph may have more than one maximal weakest paths. For example, in the strong fuzzy cycle G in Figure $5.4 u_{2} u_{3} u_{4} u_{5} u_{6} u_{7}$ and $u_{8} u_{9} u_{10} u_{11} u_{12}$ are maximal weakest paths of G.

Figure 5.4: A strong fuzzy cycle G.

Definition 5.2.4. Two paths of the collection P of pairwise disjoint paths in a fuzzy cycle C are said to be consecutive if one of the complementary paths relative to them contains all other paths of P.

Definition 5.2.5. A collection P of pairwise disjoint paths in a fuzzy cycle C is said to form a chain if its members can be arranged in a sequence $P_{1}, P_{2}, \ldots, P_{n}$ such that $\left(P_{1}, P_{2}\right),\left(P_{2}, P_{3}\right), \ldots,\left(P_{n-1}, P_{n}\right)$ and $\left(P_{1}, P_{n}\right)$ are consecutive.

Proposition 5.2.2. Let G be a strong fuzzy path (or a strong fuzzy cycle), then its fuzzy line graph $L(G)$ is also a strong fuzzy path (strong fuzzy cycle).

Proof. Let G be a strong fuzzy path. Let underlying crisp graph be the graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ where $e_{i}=v_{i} v_{i+1}, i=$ $1,2, \ldots, n-1$. Since for $1<i<n-1$ the edge e_{i} in the underlying crisp graph is adjacent only to the edge e_{i-1} and e_{i+1}, the vertex e_{i} of the crisp graph $L^{*}(G)$ of
$L(G)$ is adjacent only to the vertices e_{i-1} and e_{i+1} of $L^{*}(G)$. Since the edge e_{1} of underlying crisp graph is adjacent only to the edge e_{2} of underlying crisp graph and the edge e_{n} of underlying crisp graph is adjacent only to the edge e_{n-1} of underlying crisp graph, the vertices e_{1} and e_{n} of $L^{*}(G)$ are adjacent only to its vertices e_{2} and e_{n-1} respectively. Thus $L^{*}(G)$ is a path with vertices $e_{1}, e_{2}, \ldots, e_{n}$ and edges $e_{1} e_{2}, e_{2} e_{3}, \ldots, e_{n-1} e_{n}$. The lemma now follows from the definition of $L(G)$.

Similar is the case of a fuzzy cycle.

Proposition 5.2.3. If P is a weakest path of length k in a strong fuzzy graph G then in the fuzzy line graph $L(G)$ of G the path P^{\prime} corresponding to the path P of G with vertex set as edge set of P is a weakest path in $L(G)$ of length $k-1$.

Theorem 5.2.1. Let G be a strong fuzzy cycle of length n. Suppose there are l weakest edges which form m maximal weakest paths in G. Then for $n>3$ and $m<\left[\frac{n}{2}\right]$ the line graph $L(G)$ of G has $l+m$ weakest edges.

Proof. By Proposition 5.2.3, for a weakest path P of G with strength w and length l, the path P^{\prime} of $L(G)$ with vertex set as edge set of P is a path of length $(l-1)$ with strength w. Note that the end vertices of u and v of P^{\prime} are also have weight w. So the edges incident with u and v in $L(G)$ are also have weight w. So each maximal weakest path P in G of length p gives a weakest path in $L(G)$ of length $p+1$. Therefore m weakest paths, give rise to $(l+m)$ weakest edges in $L(G)$.

Also if P_{1}^{\prime} and P_{2}^{\prime} are two paths of $L(G)$ corresponding to two distinct maximal paths P_{1} and P_{2} of G, then they are edge disjoint. [Note that the path P^{\prime} of $\mathrm{L}(\mathrm{G})$ thus obtained need not be maximal. See Figure 5.5].

Figure 5.5: A fuzzy cycle G of length 6 with 4 weakest edges and its line graph $L(G)$.

Proposition 5.2.4. Suppose P_{1} and P_{2} are two disjoint weakest paths of lengths n_{1} and n_{2} respectively in the fuzzy cycle C. Suppose one of the complementary paths P relative to these paths is of length one, then there exists a weakest path of length $\left(n_{1}+n_{2}\right)$ in $L(G)$ with edges of P_{1}, P_{2} and P as vertex set.

Theorem 5.2.2. Let G be a strong fuzzy cycle of length n. Suppose G contains exactly one maximal weakest path P. Let its length be l. Then the strength $\mathscr{S}(L(G))$ of the line graph $L(G)$ of G is

$$
\mathscr{S}(L(G))= \begin{cases}\mathscr{S}(G)-1 & \text { if } l \leq\left[\frac{n-1}{2}\right] \\ \mathscr{S}(G) & \text { if } l>\left[\frac{n-1}{2}\right]\end{cases}
$$

Proof. Since P is a path of length l in G by Proposition 5.2.3 the path P^{\prime} of $L(G)$ with vertex set as edge set of P is a weakest path of $L(G)$ of length $l-1$.

If $l=n-1$, then all edges in G but one is weakest. In this case all the edges of $L(G)$ are weakest. Hence by 1.4.1, $\mathscr{S}(L(G))=\left[\frac{n}{2}\right]=\mathscr{S}(G)$. Let us suppose that $l<n-1$. Since all the vertices of P^{\prime} are weakest the edges incident to the vertices of P^{\prime} are also weakest edges and all the other edges are non-weakest. There are $l+1$ edges incident with the vertices of P^{\prime} by Theorem 5.2.1. In this case there is only one weakest path $L(G)$ which is of length $l+1$.

Now by Theorem 1.4.2.

$$
\begin{gathered}
\mathscr{S}(L(G))= \begin{cases}n-(l+1) & \text { if } l+1 \leq\left[\frac{n+1}{2}\right], \\
{\left[\frac{n}{2}\right]} & \text { if } l+1>\left[\frac{n+1}{2}\right] .\end{cases} \\
= \begin{cases}\mathscr{S}(G)-1 & \text { if } l \leq\left[\frac{n-1}{2}\right], \\
\mathscr{S}(G) & \text { if } l>\left[\frac{n-1}{2}\right] .\end{cases}
\end{gathered}
$$

Theorem 5.2.3. Let G be a strong fuzzy cycle of length n with l weakest edges. Let there be m maximal weakest paths $P_{1}, P_{2}, \ldots, P_{m}$ in G, where $m \geq 1$. If for $i=1,2, \ldots, m-1$, one of the complementary paths Q_{i} between P_{i} and P_{i+1} is of length one such that $P_{1} Q_{1} P_{2} Q_{2} \ldots P_{m-1} Q_{m-1} P_{m}$ is a path of length $l+m-2$ and the complementary paths between P_{1} and P_{m} which does not contain any P_{i}
is of length ≥ 2. Then the strength $\mathscr{S}(L(G))$ of $L(G)$ is

$$
\mathscr{S}(L(G))= \begin{cases}\mathscr{S}(G)-m & \text { if } l \leq\left[\frac{n+1}{2}\right]-m \\ {\left[\frac{n}{2}\right]} & \text { if } l>\left[\frac{n+1}{2}\right]-m\end{cases}
$$

Proof. Let Q be the complementary path between P_{m} and P_{1}. Then Q does not contain any of the paths $P_{1}, P_{2}, P_{3}, \ldots, P_{m-1}, P_{m}$.

If Q is of length one then in $L(G)$ either both ends of each edge is weakest vertices or one of the ends is a weakest vertex. Thus every edge in $L(G)$ in this case is a weakest edge. Hence $\mathscr{S}(L(G))=\left[\frac{n}{2}\right]=\mathscr{S}(G)$ by Theorem 1.4.1.

Now suppose that the length of Q is not one. Note that the vertices of $L(G)$ corresponding to the edges of $P_{1}, P_{2}, \ldots, P_{m}$ are weakest. Though the vertices of $L(G)$ corresponding to the edges $Q_{1}, Q_{2}, \ldots, Q_{m-1}$ are not weakest, the edges incident with them have weakest vertices on the other end. Thus the path P in $L(G)$ with vertex set as edge set of the path $P_{1} Q_{1} P_{2} Q_{2} \ldots P_{m-1} Q_{m-1} P_{m}$ of G together forms a weakest path of length $l+m-2$. Since there are more than one edge in Q, the edge e_{1} of Q incident with P_{1} and the edge e_{2} of Q incident with the path P_{m} are different in $L(G)$. The vertex of $L(G)$ corresponding to the edge e_{1} of G is adjacent to one end vertex of P by a weakest edge and the vertex of $L(G)$ corresponding to the edge e_{2} is adjacent to the other end of P by a weakest edge. All other edges of $L(G)$ are of non weakest. Hence $L(G)$ contains only one maximal weakest path of length $l+m$. Therefore the strength
$\mathscr{S}(L(G))$ of $L(G)$ is

$$
\begin{gathered}
\mathscr{S}(L(G))= \begin{cases}n-(l+m) & \text { if } l \leq\left[\frac{n+1}{2}\right]-m \\
{\left[\frac{n}{2}\right]} & \text { if } l>\left[\frac{n+1}{2}\right]-m\end{cases} \\
= \begin{cases}(n-l)-m & \text { if } l \leq\left[\frac{n+1}{2}\right]-m \\
{\left[\frac{n}{2}\right]} & \text { if } l>\left[\frac{n+1}{2}\right]-m .\end{cases} \\
\quad= \begin{cases}\mathscr{S}(G)-m & \text { if } l \leq\left[\frac{n+1}{2}\right]-m \\
{\left[\frac{n}{2}\right]} & \text { if } l>\left[\frac{n+1}{2}\right]-m\end{cases}
\end{gathered}
$$

Hence the proof.

Theorem 5.2.4. Let G be a strong fuzzy cycle of length n. Suppose there are l weakest edges in G which do not altogether form a subpath in G. Let $P_{1}, P_{2}, \ldots, P_{m}$ be the chain of all m maximal weakest paths in G. If for every P_{i}, P_{i+1} which do not contain any of the P_{k} 's are of length greater than one (when $j=m, P_{j+1}=P_{1}$). Let s denote the maximum length of the subpaths which do not contain any weakest edge of G. Then if $l<\left[\frac{n}{2}\right]-(m+1)$, the strength $\mathscr{S}(L(G))$ of the line graph $L(G)$ of G is

$$
\mathscr{S}(L(G))= \begin{cases}\mathscr{S}(G)-1 & \text { if } s=\left[\frac{n}{2}\right]+1 \quad \text { and } n \text { odd }, \\ \mathscr{S}(G) & \text { otherwise. }\end{cases}
$$

Proof. Since l weakest edges of G are distributed to form m maximal weakest paths in G, there are $l+m$ weakest edges in $L(G)$. Also the maximum length of paths in $L(G)$ which do not contain any weakest edge is clearly $s-1$. By Theorem 1.4.4, the strength $\mathscr{S}(L(G))$ of $L(G)$, when $l+m<\left[\frac{n}{2}\right]-1$ is

$$
\mathscr{S}(L(G))= \begin{cases}{\left[\frac{n}{2}\right]} & \text { if } s \leq\left[\frac{n}{2}\right]+1 \\ s-1 & \text { if } s>\left[\frac{n}{2}\right]+1\end{cases}
$$

Consider the case $s \leq\left[\frac{n}{2}\right]+1$. Then either $s \leq\left[\frac{n}{2}\right]$ or $s=\left[\frac{n}{2}\right]+1$. Also $l+m<\left[\frac{n}{2}\right]-1$ implies that $l<\left[\frac{n}{2}\right]-1$. So when $s \leq\left[\frac{n}{2}\right], \mathscr{S}(G)=\left[\frac{n}{2}\right]=\mathscr{S}(L(G))$ by Theorem 1.4.4.

When $s=\left[\frac{n}{2}\right]+1$,

$$
\mathscr{S}(G)=\left[\frac{n+1}{2}\right]= \begin{cases}{\left[\frac{n}{2}\right]} & \text { if } n \text { even } \\ {\left[\frac{n}{2}\right]+1} & \text { if } n \text { odd } .\end{cases}
$$

where as $\mathscr{S}(L(G))=\left[\frac{n}{2}\right]$ which implies

$$
\mathscr{S}(L(G))= \begin{cases}\mathscr{S}(G) & \text { if } n \text { even } \\ \mathscr{S}(G)-1 & \text { if } n \text { odd }\end{cases}
$$

When $s>\left[\frac{n}{2}\right]+1, s>\frac{n}{2}$. Therefore $\mathscr{S}(G)=\mathscr{S}(L(G))$. Therefore

$$
\mathscr{S}(L(G))= \begin{cases}\mathscr{S}(G)-1 & \text { if } s=\left[\frac{n}{2}\right]+1 \text { and } n \text { odd } \\ \mathscr{S}(G) & \text { otherwise. }\end{cases}
$$

Hence the proof.

Theorem 5.2.5. Let G be a strong fuzzy cycle of length n. Let there be l weakest edges in G which do not altogether form a subpath in G and form a chain of paths $P_{1}, P_{2}, \ldots, P_{n}$. Also there exist at least two indices $i<j$ such that the complementary paths between P_{i}, P_{i+1} and P_{j}, P_{j+1} which do not contain any one of the P_{k} s are of length greater than one (when $j=m, P_{j+1}=P_{1}$ in G). Let s denote the maximum length of the subpaths which do not contain any weakest edge in G. Then if $l>\left[\frac{n}{2}\right]-(m+1)$ the strength $\mathscr{S}(L(G))$ of the line graph $L(G)$ of G is

$$
\mathscr{S}(L(G))=\left\{\begin{array}{ll}
\mathscr{S}(G) & \text { if } l>\left[\frac{n}{2}\right]-1, \\
\text { or if } l \leq\left[\frac{n}{2}\right]-1 \text { and } s \leq\left[\frac{n}{2}\right], \\
\mathscr{S}(G)-1 & \text { if } l \leq\left[\frac{n}{2}\right]-1,
\end{array} \text { and } s>\left[\frac{n}{2}\right] .\right.
$$

If $l=\left[\frac{n}{2}\right]-(m+1)$ then

$$
\mathscr{S}(L(G))= \begin{cases}\mathscr{S}(G) & \text { if } l<\left[\frac{n}{2}\right]-1, \quad s \leq\left[\frac{n}{2}\right] \quad \text { and } n \text { is odd, } \\ \mathscr{S}(G)+1 & \text { if } l<\left[\frac{n}{2}\right]-1, \quad s \leq\left[\frac{n}{2}\right] \text { and } n \text { even } \\ \mathscr{S}(G)-1 & \text { if } l<\left[\frac{n}{2}\right]-1, \quad s>\left[\frac{n}{2}\right] .\end{cases}
$$

Proof. For $l>\left[\frac{n}{2}\right]-(m+1)$, consider the following cases.
Case 1. $l>\left[\frac{n}{2}\right]-1$.

Here, by applying Theorem 1.4.3 we get $\mathscr{S}(L(G))=\left[\frac{n}{2}\right]$ which is equal to $\mathscr{S}(G)$.

Case 2. $l \leq\left[\frac{n}{2}\right]-1<l+m$

Then by Lemma 5.2.1 and by Theorem 1.4.4

$$
\mathscr{S}(G)= \begin{cases}{\left[\frac{n}{2}\right]} & \text { if } s \leq\left[\frac{n}{2}\right] \\ s & \text { if } s>\left[\frac{n}{2}\right]\end{cases}
$$

That is if $s \leq\left[\frac{n}{2}\right]$ then $s-1 \leq\left[\frac{n}{2}\right]$ which gives $\mathscr{S}(L(G))=\left[\frac{n}{2}\right]=\mathscr{S}(G)$. (See Figure 5.6 with $n=12, l=4, m=2$ and Figure 5.7 with $n=13, l=5, m=2$). If $s>\left[\frac{n}{2}\right]$ then $s-1=\left[\frac{n}{2}\right]$. So $\mathscr{S}(L(G))=\left[\frac{n}{2}\right]=s-1=\mathscr{S}(G)-1$. (See Figure 5.8 with $n=13, l=4, m=2)$.

Figure 5.6: A fuzzy graph G with 12 vertices and 4 nonconsecutive weakest edges.

Figure 5.7: A fuzzy graph G with 13 vertices and 5 nonconsecutive weakest edges.

Figure 5.8: A fuzzy graph G with 13 vertices and 4 nonconsecutive weakest edges.

Consider the case $l=\left[\frac{n}{2}\right]-(m+1)$ then $\mathscr{S}(L(G))=\left[\frac{n+1}{2}\right]$. Since $m \geq 2$, $l<\left[\frac{n}{2}\right]-1$. By applying Theorem 1.4.3 $\mathscr{S}(G)=\left[\frac{n}{2}\right]$ if $s \leq\left[\frac{n}{2}\right]$. So

$$
\mathscr{S}(L(G))=\left[\frac{n+1}{2}\right]= \begin{cases}{\left[\frac{n}{2}\right]} & \text { if } n \text { even } \\ {\left[\frac{n}{2}\right]+1} & \text { if } n \text { odd }\end{cases}
$$

Therefore

$$
\mathscr{S}(L(G))=\left\{\begin{array}{cl}
\mathscr{S}(G) & \text { if } n \text { even } \\
\mathscr{S}(G)+1 & \text { if } n \text { odd }
\end{array}\right.
$$

If $l<\left[\frac{n}{2}\right]-1$ then if $s>\left[\frac{n}{2}\right], \mathscr{S}(G)=s$. So $\mathscr{S}(L(G))=s-1=\mathscr{S}(G)-1$. Hence the proof.

Chapter
 6

Fuzzy extra strong k - path domination in strong fuzzy graphs

Domination in fuzzy graphs is discussed by A.Somasundram and S.Somasundram [50], by using effective edges [50] in fuzzy graphs. Using strong edges, Nagoor Gani and Chandrasekaran [15] are introduced in fuzzy graphs - the domination, the independent domination and the irredundance. C.Natarajan and S.K.Ayyaswamy [37] introduced strong(weak) domination in fuzzy graphs. The concept of Strong (Weak) domination [45] in graphs was introduced by Sampathkumar and Pushpalatha. This chapter introduces fuzzy extra strong $k-$ path domination in strong fuzzy graphs and discusses some of its properties.

Definition 6.0.1. Let $G(V, \mu, \sigma)$ be a fuzzy graph. Let $u, v \in V$. For a positive integer k, v is said to be an extra strong $k-$ path neighbour of u if there exists an extra strong $u-v$ path of length $\leq k$ in G.

We denote the set of all extra strong $k-$ path neighbours of u by $N_{k}(u)$. That is $N_{k}(u)=\{v \in V: \exists$ an extra strong $u-v$ path of length $\leq k\}$.

Definition 6.0.2. Let $G(V, \mu, \sigma)$ be a fuzzy graph. For a subset S of V, the open extra strong $k-$ path neighbourhood of S is defined to be $N_{k}(S)=\bigcup_{u \in S} N_{k}(u)$ and the closed extra strong k - path neighbourhood of S is $N_{k}[S]=N_{k}(S) \cup S$. If $S=\{u\}$, a singleton subset of V, then instead of $N_{k}[S]$ we write $N_{k}[u]$, and call a closed extra strong neighbourhood of u.

Remark 6.0.1. A vertex $v \in N_{k}(u)$ if and only if $u \in N_{k}(v)$.

Definition 6.0.3. Let $G(V, \mu, \sigma)$ be a fuzzy graph on V. Let $u, v \in V$. If there does not exist an extra strong $u-v$ path joining u and v of length $\leq k$ in G then v is called an extra strong k - path isolated vertex of u and vice versa.

Remark 6.0.2. If G is of strength k then for any $n \geq k$, then
i $N_{n}(u)=V \backslash\{u\}$ for any vertex u of V and
ii $N_{n}[S]=V$, for any subset S of V.

Example 6.0.1.

Figure 6.1: A fuzzy graph G having Strength 5.

For the fuzzy graph G in Figure 6.1, there is only one extra strong path P of length 5 which is $u_{1} u_{2} u_{4} u_{5} u_{6} u_{7}$. Therefore $N_{5}\left(u_{1}\right)=\left\{u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\}$.

It is to be noted that $N_{1}\left(u_{5}\right)=\left\{u_{4}, u_{6}\right\}, N_{2}\left(u_{5}\right)=\left\{u_{2}, u_{4}, u_{6}, u_{7}\right\}$ and for any $k \geq 3, N_{k}\left(u_{5}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{6}, u_{7}\right\}$.

By considering the extra strong path joining two vertices of a fuzzy graph we define two types of degree for each vertex v of a fuzzy graph.

Definition 6.0.4. For a fuzzy graph $G(V, \mu, \sigma)$ on the vertex set V and for a positive integer k, the extra strong k - path degree $d S_{k}(v)$ of a vertex v in G, is defined as the sum of the strength of all the extra strong paths joining v and vertices in $N_{k}(v)$. The extra strong k - path neighbourhood degree $d N_{k}(v)$ of a vertex v of a fuzzy graph is $\sum_{u \in N_{k}(v)} \mu(u)$.

From Figure 6.1, $d S_{1}\left(u_{5}\right)=0.8, d N_{1}\left(u_{5}\right)=1.1, d S_{2}\left(u_{5}\right)=1.6$ and $d N_{2}\left(u_{5}\right)=$ 2.6.

Notation 6.0.1. For a fuzzy graph G on the vertex set V and for an integer k, $\min \left\{d S_{k}(u): u \in V(G)\right\}$ is denoted by $\delta_{S_{k}}(G)$ or simply by $\delta_{S_{k}}$ and $\max \left\{d S_{k}(u):\right.$ $u \in V(G)\}$ is denoted by $\Delta_{S_{k}}(G)$ or by $\Delta_{S_{k}}$. Similarly minimum extra strong k - path neighbourhood degree of a fuzzy graph and maximum extra strong $k-$ path neighbourhood degree of a fuzzy graph are denoted by $\delta_{N_{k}}(G)$ and $\Delta_{N_{k}}(G)$ respectively.

From Figure 6.1, $\delta_{S_{1}}(G)=0.4, \Delta_{S_{1}}(G)=1.3, \delta_{N_{1}}(G)=0.7, \Delta_{N_{1}}(G)=1.4$.

Definition 6.0.5. Let $G(V, \mu, \sigma)$ be a fuzzy graph and $S \subseteq V(G)$ and $v \in V-S$, $d_{k}(v, S)$ is defined to be the minimum length of the extra strong paths from v to $u, u \in S$.

Note 6.0.1. For every vertex $v \in V-S, d_{k}(v, S) \leq$ strength of the graph G.

Definition 6.0.6. Let $G(V, \mu, \sigma)$ be a fuzzy graph. For a positive integer k, a subset $S \subseteq V$ is said to be fuzzy extra strong k - path dominating set of G if for every $v \in V$ either $v \in S$ or there exist an extra strong path of length $\leq k$ from v to a vertex of S in G.

Note 6.0.2. Let $G(V, \mu, \sigma)$ be a fuzzy graph. A subset S of V is said to be fuzzy extra strong k - path dominating set of G, if for every vertex $v \in V-S, \exists$ an extra strong path of length $\leq k$ from v to a vertex u of S then we simply say that v extra strong $k-$ path dominates u.

Remark 6.0.3. If S is a fuzzy extra strong k - path dominating set of a fuzzy graph G then every superset $S^{\prime} \supseteq S$ is also a fuzzy extra strong k - path dominating set.

Definition 6.0.7. A fuzzy extra strong k - path dominating set S is a minimal fuzzy extra strong k - path dominating set if no proper subset $S^{\prime \prime} \subseteq S$ is a fuzzy extra strong $k-$ path dominating set.

Note 6.0.3. The set of all minimal fuzzy extra strong $k-$ path dominating sets of a fuzzy graph G is denoted by $E S m k-D S(G)$.

Definition 6.0.8. A fuzzy extra strong k - path dominating set of a fuzzy graph with minimum number of vertices is called a minimum extra strong k - path dominating set.

Definition 6.0.9. The fuzzy extra strong k - path domination number $\gamma_{S_{k}}(G)$ of a fuzzy graph G is the minimum cardinality of a $E S m k-D S(G)$ set.

The fuzzy extra strong k - path upper domination number $\Gamma_{S_{k}}(G)$ is the maximum cardinality of sets in $E S m k-D S(G)$.

Example 6.0.2.

From Figure 6.1, for $k=1$, the sets $\left\{u_{2}, u_{6}\right\},\left\{u_{1}, u_{3}, u_{5}, u_{6}\right\},\left\{u_{1}, u_{3}, u_{4}, u_{6}\right\}$, $\left\{u_{2}, u_{5}, u_{7}\right\}$ are minimal extra strong $k-$ path dominating sets. For $k=2,\left\{u_{1}, u_{5}\right\}$, $\left\{u_{2}, u_{6}\right\},\left\{u_{1}, u_{4}\right\},\left\{u_{1}, u_{7}\right\}$, for $k=3,\left\{u_{4}\right\},\left\{u_{1}, u_{7}\right\},\left\{u_{1}, u_{6}\right\},\left\{u_{3}, u_{6}\right\},\left\{u_{3}, u_{7}\right\}$, $\left\{u_{2}, u_{7}\right\},\left\{u_{5}\right\}$ are minimal extra strong k - path dominating sets. Also for any $k>3$, all singletons are minimal dominating for G.

So, $\mathrm{ES} \gamma_{S_{1}}(G)=2, \mathrm{ES} \Gamma_{S_{1}}(G)=4$.

Remark 6.0.4. Let $G(V, \mu, \sigma)$ be a fuzzy graph. Note that for any $u, v \in V$, if u extra strong k - path dominates v then v extra strong k - path dominates u. Hence extra strong k - path domination is a symmetric relation on V.

Definition 6.0.10. Let $G(V, \mu, \sigma)$ be a fuzzy graph and $V_{1} \subset V . G \backslash V_{1}$ is defined to be the fuzzy graph $G\left(V_{2}, \mu_{1}, \sigma_{1}\right), V_{2}=V \backslash V_{1}, \mu_{1}=\mu / V_{2}, \sigma_{1}=\sigma / V_{1} \times V_{2}$.

Algorithm 6.0.1. Algorithm for finding an extra strong k - path minimal dominating set D of a fuzzy graph G.

Step 1. Find the length of the extra strong path joining every pair of vertices of G using Algorithm (2.2.2).

Step 2. List out all pairs of vertices of G so that the length of extra strong paths between them is less than or equal to k, as U.

Step 3. Select a vertex which appears most number of times in the pairs of U. If there are more than one, select one among them (say u) and put it in the set D. Now group the vertices paired to u in U as V_{1}.

Step 4. From the fuzzy graph $G_{1}=G-\left(V_{1} \cup\{u\}\right)$.

Step 5. Add the isolated vertices I_{1} of G_{1} to the set D and denote $G_{2}=G_{1}-I_{1}$.

Step 6. Repeat Steps 3, 4 and 5 successively for each component of G_{2}.

Step 7. Stop the process when the union of D and the deleted vertices of G is $V(G)$.

The subset D of V thus obtained will be a minimal ES k - path dominating set.

Illustration:

Let $G(V, \mu, \sigma)$ be a fuzzy graph with vertex set $V=\left\{u_{1}, u_{2}, \ldots, u_{10}\right\}$. For $u_{i}, u_{j} \in$ V, denote the length of an extra strong $u_{i}-u_{j}$ path of G by $k_{u_{i} u_{j}}$.

Figure 6.2: A fuzzy graph G.

$$
\begin{array}{lllll}
k_{u_{1} u_{2}}=2, & k_{u_{2} u_{3}}=2, & k_{u_{3} u_{4}}=1, & k_{u_{4} u_{5}}=1, & k_{u_{5} u_{6}}=1, \\
k_{u_{1} u_{3}}=1, & k_{u_{2} u_{4}}=1, & k_{u_{3} u_{5}}=5, & k_{u_{4} u_{6}}=2, & k_{u_{5} u_{7}}=2, \\
k_{u_{1} u_{4}}=2, & k_{u_{2} u_{5}}=2, & k_{u_{3} u_{6}}=3, & k_{u_{4} u_{7}}=3, & k_{u_{5} u_{8}}=3, \\
k_{u_{1} u_{5}}=3, & k_{u_{2} u_{6}}=4, & k_{u_{3} u_{7}}=4, & k_{u_{4} u_{8}}=4, & k_{u_{5} u_{9}}=2, \\
k_{u_{1} u_{6}}=4, & k_{u_{2} u_{7}}=5, & k_{u_{3} u_{8}}=5, & k_{u_{4} u_{9}}=3, & k_{u_{5} u_{10}}=3, \\
k_{u_{1} u_{7}}=5, & k_{u_{2} u_{8}}=6, & k_{u_{3} u_{9}}=4, & k_{u_{4} u_{10}}=4, & k_{u_{6} u_{7}}=1, \\
k_{u_{1} u_{8}}=6, & k_{u_{2} u_{9}}=5, & k_{u_{3} u_{10}}=4, & k_{u_{6} u_{8}}=2, & k_{u_{6} u_{9}}=1, \\
k_{u_{1} u_{9}}=5, & k_{u_{2} u_{10}}=6, & k_{u_{6} u_{10}}=2, & k_{u_{7} u_{8}}=1, & k_{u_{7} u_{9}}=2, \\
k_{u_{1} u_{10}}=6, & k_{u_{7} u_{10}}=3, & k_{u_{8} u_{9}}=3, & k_{u_{8} u_{10}}=4, & k_{u_{9} u_{10}}=1 .
\end{array}
$$

For finding a minimal extra strong $1-$ path dominating set D, the vertex pairs to be considered are $\left(u_{1}, u_{3}\right),\left(u_{2}, u_{4}\right),\left(u_{3}, u_{4}\right),\left(u_{4}, u_{5}\right),\left(u_{5}, u_{6}\right),\left(u_{6}, u_{7}\right),\left(u_{6}, u_{9}\right),\left(u_{7}, u_{8}\right)$.

Here u_{6} repeats maximum number of times. Therefore $u_{6} \in D$. Here the vertices paired to u_{6} are u_{5}, u_{7}, u_{9}. Now form the graph G_{1} by deleting the vertices
$u_{5}, u_{6}, u_{7}, u_{9}$ from G. Thus $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{8}, u_{10}\right\}$.

Figure 6.3: The fuzzy subgraph G_{1}.

Form the graph G_{2} by deleting the isolated vertices u_{8} and u_{10} from G_{1} ie, $G_{2}=G_{1} \backslash\left\{u_{8}, u_{10}\right\}$. Now add the isolated vertices u_{8} and u_{10} of G_{2} to D.

For the graph $G_{2}, k_{u_{1} u_{2}}=3 k_{u_{1} u_{3}}=1 k_{u_{1} u_{4}}=2 k_{u_{2} u_{3}}=2 k_{u_{2} u_{4}}=1 k_{u_{3} u_{4}}=$ 1. Consider the vertex pairs $\left(u_{1}, u_{3}\right),\left(u_{2}, u_{4}\right)$, and $\left(u_{3}, u_{4}\right)$. The length of the extra strong path joining the vertices in each pair is one. Here two vertices u_{3} and u_{4} repeat maximum number of times. Choose one among them, say u_{3} and add it to D and delete the vertices paired to u_{3} and the vertex u_{3} from G_{2} and form G_{3}. The resulting graph G_{3} is the trivial fuzzy graph on the vertex $\left\{u_{2}\right\}$. Add u_{2} to D. The subset D thus obtained is an an ES $k-$ path minimal dominating set, where $D=\left\{u_{2}, u_{3}, u_{6}, u_{8}, u_{10}\right\}$.

Note 6.0.4.

1. For any strong fuzzy graph G, the length of an extra strong path joining adjacent vertices is 1 . Therefore extra strong 1 - path dominating sets are dominating sets of the underlying crisp graphs.
2. For a positive integer k, if S is a fuzzy extra strong k - path dominating set then it is also a fuzzy extra strong $k+1$ dominating set. In general an extra strong $(k+1)-$ path dominating set will not be an extra strong k - path dominating set. But if k is the strength of the graph, every fuzzy extra strong $(k+1)-$ path dominating set is a fuzzy extra strong k - path dominating set. More generally any fuzzy extra strong l - path dominating set where $l \geq k$ is fuzzy extra strong k - path dominating set.
3. For a fuzzy graph G and for $k=1$ if there exist an extra strong k - path dominating set S consisting of a single vertex v of G then S is a the minimal extra strong k - path dominating set for all values of k. Thus if for a fuzzy graph G if ES $\gamma_{S_{1}}(G)=1$ then ES $\gamma_{S_{k}}(G)=1, \forall k$.

Note 6.0.5.

1. From Note 6.0.4 if the given fuzzy graph G is a complete fuzzy graph or a strong fuzzy wheel graph or a strong fuzzy butterfly graph or a strong fuzzy star graph, ES $\gamma_{S_{k}}(G)=1$ for all values of k.

Example 6.0.3.

Figure 6.4 (a) shows that for a strong fuzzy wheel graph G, with fuzzy hub $v,\{v\}$ is an $\mathrm{ES} k$ - path minimal dominating set for all values of k. But from Figure 6.4(b) it is clear that $\{v\}$ is not a minimal extra strong $1-$ path dominating set.

Figure 6.4: A strong fuzzy wheel graph and a fuzzy wheel graph.

Theorem 6.0.1. For a fuzzy path G on n vertices, $E S \gamma_{S_{k}}(G)=\left\lceil\frac{n}{2 k+1}\right\rceil, \forall k$.

Proof. For a fuzzy path, there is only one path joining any two vertices of G. So for each value k,

$$
\operatorname{ES} \gamma_{S_{k}}(G) \leq\left\lceil\frac{n}{2 k+1}\right\rceil
$$

To see the reverse inequality, let D be a fuzzy ES $k-$ path dominating set with $|D|=r$. If possible, let $r \leq\left\lceil\frac{n}{2 k+1}\right\rceil-1$. The r vertices of D dominate at the most $r(2 k+1)$ vertices of G including the vertices of D. But $r(2 k+1)<$ $\left(\frac{n}{2 k+1}+1-1\right)(2 k+1)<n$. Thus D can dominates only $<|G|$ vertices, a contradiction. Thus $r \geq\left\lceil\frac{n}{2 k+1}\right\rceil$. Hence the result.

Corollary 6.0.1. The ES k - path domination number of the line graph of a strong fuzzy butterfly graph $G(V, \mu, \sigma)$ is $\gamma_{S_{k}}(G)= \begin{cases}2 & \text { if } k=1, \\ 1 & \text { if } k \geq 2 .\end{cases}$

Figure 6.5: (a) A strong fuzzy Butterfly graph G, (b) its line graph $L(G)$ and (c) merger graph of $\mathrm{L}(\mathrm{G})$.

Corollary 6.0.2. Let G be a fuzzy graph with its underlying crisp graph is a path on n vertices. Suppose $L(G)$ is the line graph of G. Then ES $\gamma_{S_{k}}(L(G))=\left\lceil\frac{n-1}{2 k+1}\right\rceil$.

Corollary 6.0.3. Let G be a fuzzy graph with its underlying crisp graph is a path on n vertices. If $s d(G)$ is the subdivision graph of G, then $\operatorname{ES} \gamma_{S_{k}}(s d(G))=$ $\left\lceil\frac{2 n-1}{2 k+1}\right\rceil$.

Theorem 6.0.2. For a fuzzy graph $G(V, \mu, \sigma)$, with underlying crisp graph a cycle of length n, $E S \gamma_{S_{k}}(G)=\left\lceil\frac{n}{2 k+1}\right\rceil \forall k$.

Proof. Let $V=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Also let u be a vertex in V such that $\mu(u)=$ $\wedge_{i=1}^{n} \mu\left(u_{i}\right)$. We have by Theorem 1.4.2, 1.4.3, 1.4.4, $\mathscr{S}(G) \geq\left[\frac{n}{2}\right]$. It is obvious that for $k \geq\left[\frac{n}{2}\right]$, u fuzzy extra strong k - path dominates all the vertices of G. So ES $\gamma_{S_{k}}(G)=1, \forall k \geq\left[\frac{n}{2}\right]$. Now we want to prove the result for $k<\left[\frac{n}{2}\right]$. Let G^{*} be the underlying crisp graph of G on n vertices $u_{1}, u_{2}, \ldots, u_{n}$. Suppose there are l weakest edges which altogether form a subpath, say, $P^{\prime}=u_{1} u_{2} \ldots u_{l}$ where $l>\frac{n+1}{2}$ in G. Then strength of the graph is $\left[\frac{n}{2}\right]$. In this case the vertex u_{1} dominates $2 k+1$ vertices of G including u_{1}.

The remaining $n-(2 k+1)$ vertices are extra strong $k-$ path dominated by $\left\lceil\frac{n-(2 k+1)}{2 k+1}\right\rceil$ vertices of G. So for each value of k,

$$
E S \gamma_{S_{k}}(G) \leq\left\lceil\frac{n-(2 k+1)}{2 k+1}\right\rceil+1=\left\lceil\frac{n}{2 k+1}\right\rceil
$$

Suppose the weakest edges of G do not altogether form a subpath. Then \exists at most one extra strong path joining any two vertices of G of length $\leq k$. So

$$
E S \gamma_{S_{k}}(G) \leq\left\lceil\frac{n}{2 k+1}\right\rceil
$$

That is in both the cases the r vertices of G dominates $r(2 k+1)$ vertices including these r vertices of G. So the converse part follows as in the case of a fuzzy path.

Theorem 6.0.3. Let G be a strong fuzzy complete bipartite graph with $K_{m n}$ as its underlying crisp graph. Then the ES k - path domination number of G is

$$
E S \gamma_{S_{k}}(G)= \begin{cases}1 & \text { if } k \geq 2 \text { or } k=1 \text { and } m \text { or } n \text { is equal to } 1, \\ 2 & \text { otherwise } .\end{cases}
$$

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the bipartite sets of G.

Case 1. $k \geq 2$, or $k=1$ and $m=1$ or $k=1$ and $n=1$.

If m and n are not simultaneously one then $\mathscr{S}(G)=2$ and if $m=n=1$ then $\mathscr{S}(G)=1$. Therefore in these cases length of extra strong path joining any two vertices of G is at most 2. Clearly a single vertex of G can extra strong $k-$ path dominate all the other vertices of G. Clearly $E S \gamma_{S_{k}}(G)=1$.

Case 2. $k=1$ and m, n are greater than 1 .

It is obvious that any vertex in U extra strong 1 - path dominate all the vertices of V, and any vertex in V can extra strong 1-path dominate all the vertices of U. So if $u \in U$ and $v \in V$ then $\{u, v\}$ extra strong 1 - path dominates all the vertices of G. So $\operatorname{ES}_{\gamma_{S_{1}}}(G) \leq 2$. Also for $k=1$, no vertex in U can dominate any other vertices of U, so $\mathrm{ES} \gamma_{S_{1}}(G) \neq 1$. Therefore ES $\gamma_{S_{1}}(G)=2$.

Theorem 6.0.4. Let G be a properly linked fuzzy graph with the complete fuzzy graphs $G_{1}, G_{2}, \ldots, G_{m}$ as its parts. Suppose for $i=1,2, \ldots, m-1, V\left(G_{i}\right) \cap$ $V\left(G_{i+1}\right)=K_{n_{i}}$, a complete graph on n_{i} vertices. Then the ES k - path domination number of G, $E S \gamma_{S_{k}}(G)=\left\lceil\frac{m}{2 k}\right\rceil$.

Proof. As each G_{i} is complete, each vertex of G_{i} dominates all the vertices of G_{i}. If a vertex belongs to $V\left(G_{i}\right) \cap V\left(G_{i+1}\right)$ then it dominates all the vertices of both G_{i} and G_{i+1}. In the case of $k>1$, a vertex in $V\left(G_{i}\right) \cap V\left(G_{i+1}\right)$, dominates k parts to the left and k parts to the right of that vertex, (if they exist). So as
far as the domination is concerned, instead of taking the whole chain we take its merger graph G^{\prime}. The merger graph G^{\prime} is a 1 - liked fuzzy graph with m parts where each part is complete. The strength of a strong fuzzy complete graph is 1 by Theorem 1.4.1. As there is only one extra strong path joining any two vertices of G^{\prime}, we have for each value of k, ES $\gamma_{S_{k}}(G) \leq\left\lceil\frac{m}{2 k}\right\rceil$.

Conversely, let S be an arbitrary extra strong $k-$ path dominating set of G^{\prime} with $|S|<\left\lceil\frac{m}{2 k}\right\rceil$. Let u be any vertex of S. If $u=w_{i+1}$ with the notation of Definition 2.3.6 for some i, j then it extra strong k - path dominates $2 k$ parts and itself. If $u \neq w_{i j}$ then it dominates at most $2 k-1$ parts. Therefore if $|S|<\left\lceil\frac{m}{2 k}\right\rceil$ it will not $E S k$ - path dominate all the vertices of G. Hence the proof.

The middle graph of a strong fuzzy path on n vertices is a $1-$ linked graph with $n-1$ fuzzy complete graphs as its parts.

Corollary 6.0.4. Let G be a fuzzy graph with its underlying crisp graph is a path on n vertices and $M(G)$ its middle graph of G. Then $\gamma_{S_{k}}(M(G))=\left\lceil\frac{n-1}{2 k}\right\rceil$, for $k \geq 1$.

Corollary 6.0.5. The ES k - path domination number of a strong fuzzy Bull graph G is $\gamma_{S_{k}}(G)= \begin{cases}2 & \text { if } k=1, \\ 1 & \text { if } k \geq 2 .\end{cases}$

Proof. A strong fuzzy Bull graph is a strong fuzzy graph with three parts each of which is complete and from Theorem 6.0.4 the proof follows.

Corollary 6.0.6. The ES k - path domination number of a strong fuzzy diamond graph G is $1, \forall k$.

Proof. The line graph G of a strong fuzzy diamond graph is a strong fuzzy wheel graph on 5 vertices. Hence by Note 1 extra strong k - path domination number of a strong fuzzy diamond graph is 1 .

Theorem 6.0.5. The ES k - path domination number of line graph of strong fuzzy diamond graph G is $1, \forall k$.

Proof. The line graph of a strong fuzzy diamond graph G is a strong fuzzy wheel graph on 5 vertices. See Figure 5.3. So the fuzzy hub can dominate all the other 4 vertices of the line graph of G. Hence the theorem.

Definition 6.0.11. For $S \subseteq V$, a vertex $v \in S$ is called an extra strong k - path enclave of S if $N_{k}[v] \subseteq S$, and $v \in S$ is an extra strong k - path isolate of S if $N_{k}(v) \subseteq V \backslash S$. A set is said to be extra strong k - path enclaveless if it does not contain any extra strong k - path enclaves.

Property 1. The following statements are equivalent for a strong fuzzy graph $G(V, \mu, \sigma)$. Let $S \subset V$ be an extra strong k - path dominating set.
i For every vertex $v \in V \backslash S, \exists$ a vertex $u \in S$ such that the length of the extra strong path joining u to $v \leq k$.
ii For every vertex $v \in V \backslash S, d_{k}(v, S) \leq k$.
iii $N_{k}[S]=V$.
iv For every vertex $v \in V \backslash S,\left|N_{k}[v] \cap S\right| \geq 1$, that is for every vertex $v \in V \backslash S$, there exists $u \in S$ and extra strong path joining v to u of length $\leq k$.
v For every vertex $v \in V,\left|N_{k}[v] \cap S\right| \geq 1$.
vi The set $V \backslash S$ is extra strong k - path enclaveless.

Theorem 6.0.6. Let $G(V, \mu, \sigma)$ be a fuzzy graph. An extra strong k - path dominating set S is an extra strong minimal k - path dominating set if and only if for each vertex $u \in S$ any one of the following conditions holds:
(a) u is an extra strong $k-$ path isolate of S.
(b) there exist a vertex $v \in V \backslash S$ for which $N_{k}(v) \cap S=\{u\}$.

Proof. Suppose S is an extra strong k - path dominating set and for each vertex $u \in S$ one of the conditions (a) and (b) holds. Suppose that S is not an extra strong minimal k - path dominating set. That is there exists a vertex $u \in S$ such that $S \backslash\{u\}$ is an extra strong k - path dominating set. Hence there exists an extra strong path joining u to at least one vertex in $S \backslash\{u\}$ having length $\leq k$ that is, (a) does not hold for S. Since $S \backslash\{u\}$ is an extra strong k - path dominating set, for every vertex in $V \backslash S$ there exist an extra strong path having length $\leq k$ to at least one vertex in $S \backslash\{u\}$, that is (b) does not hold.

Conversely, assume that S is an extra strong minimal k - path dominating set of G. Then for every vertex $u \in S, S \backslash\{u\}$ is not an extra strong k - path
dominating set. This means for some $v \in(V \backslash S) \cup\{u\}$, there does not exist an extra strong path joining u to v having length $\leq k$. Now either $v=u$ or $v \in V \backslash S$ in the first case u is an extra strong k - path isolate of S. In the second case, since v is not extra strong k - path dominated by $S \backslash\{u\}$, but is extra strong k - path dominated by $S, N_{k}(v) \cap S=\{u\}$.

Definition 6.0.12. Let $G(V, \mu, \sigma)$ be a fuzzy graph and S be a set of vertices of G and let $u \in S$. A vertex $v \in V$ is said to be an ES k - path private neighbour of u with respect to S if $N_{k}[v] \cap S=\{u\}$. The set of all ES k - path private neighbours of u is called the $E S k$ - path private neighbour set of u and is denoted by $E S P N_{k}[u, S]$.

In other words, $E S P N_{k}[u, S]=N_{k}[u]-N_{k}[S-\{u\}]$. Also notice that, if $u \in E S P N_{k}[u, S]$ then u is an extra strong $k-$ path isolated vertex in S.

Example 6.0.4.

Let S be the subset $\left\{u_{2}, u_{6}\right\}$ of the vertex set of the graph in Figure 6.1 $E S P N_{1}\left[u_{2}, S\right]=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, $E S P N_{1}\left[u_{6}, S\right]=\left\{u_{5}, u_{6}, u_{7}\right\}$, $E S P N_{2}\left[u_{2}, S\right]=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$, $E S P N_{2}\left[u_{6}, S\right]=\left\{u_{4}, u_{5}, u_{7}\right\}$.

Remark 6.0.5. A subset S of the vertex set of a fuzzy graph $G(V, \mu, \sigma)$ is a minimal fuzzy $E S k$ - path dominating set if and only if for every vertex $v \in S$ there exists a vertex $w \in V-(S-\{v\})$ which is not dominated by $S-\{v\}$.

Which is equivalent to, S is a minimal fuzzy $E S k$ - path dominating set if and only if $E S P N_{K}[u, S] \neq \phi$ for every vertex $u \in S$, that is every vertex $u \in S$ has at least one $E S k$ - path private neighbour with respect to S.

Definition 6.0.13. If there is no extra strong path of length $\leq k$ between u and v, two vertices of a fuzzy graph G then in G, u and v are said to be fuzzy extra strong k - path independent. If any two vertices of D, a subset of V, are fuzzy extra strong k - path independent and are extra strong k - path dominating then D is said to be an extra strong k - path independent set of G.

In Figure $6.1\left\{u_{4}, u_{7}\right\}$ is a fuzzy extra strong $2-$ path independent set.

Definition 6.0.14. If for every vertex $v \in V-S, S$ is a fuzzy extra strong $k-$ path independent set of $G(V, \mu, \sigma)$, the set $S \cup\{v\}$ is not a fuzzy extra strong k - path independent set of G then S is a maximal fuzzy extra strong k - path independent set of $G(V, \mu, \sigma)$.

Proposition 6.0.1. A fuzzy extra strong k - path independent set S in a fuzzy graph $G(V, \mu, \sigma)$ is maximal fuzzy extra strong k - path independent set if and only if it is fuzzy extra strong k - path independent and fuzzy extra strong $k-$ path dominating.

Proof. Let S be a maximal fuzzy extra strong k - path independent set. Then from the definition it is clear that S is both fuzzy extra strong k - path independent and fuzzy extra strong k - path dominating. Conversely, if a set S is both fuzzy extra strong k - path independent and fuzzy extra strong k - path
dominating. Suppose S is not maximal fuzzy extra strong $k-$ path independent. Then there exists a vertex $u \in V-S$ for which $S \cup\{u\}$ is fuzzy extra strong $k-$ path independent. Therefore there does not exist an extra strong path of length less than or equal to k joining any vertex in S to u. Hence S cannot be fuzzy extra strong $k-$ path dominating. Hence the proof.

Theorem 6.0.7. Every maximal fuzzy extra strong $k-$ path independent set in a fuzzy graph G is a minimal fuzzy extra strong k - path dominating set of G for each value of k.

Proof. Let S be a maximal fuzzy extra strong k - path independent set in G. Proposition 6.0.1 asserts that S is a fuzzy extra strong k - path dominating set. We must show that S is, in fact, a fuzzy extra strong k - path minimal dominating set. A fuzzy extra strong k - path dominating set S is a minimal fuzzy extra strong $k-$ path dominating set if for every vertex $v \in S$ the set $S-\{v\}$ is not a fuzzy extra strong $k-$ path dominating set. Assume therefore that S is not a minimal fuzzy extra strong k - path dominating set. But if for some $v \in S, S-\{v\}$ fuzzy extra strong $k-$ path dominates $V-(S-\{v\})$, then there is an extra strong path of length less than or equal to k joining at least one vertex in $S-\{v\}$ to v. This contradicts our assumption that S is a maximal fuzzy extra strong k - path independent set of G. Therefore, S must be a minimal fuzzy extra strong k - path dominating set. Hence the proof.

Definition 6.0.15. Let $G(V, \mu, \sigma)$ be a fuzzy graph and $S \subseteq V$. A vertex $u \in S$ is said to be a fuzzy extra strong k - path redundant vertex with respect to S if
$E S P N_{k}[u, S]=\phi$. This means for any $v \in V, N_{k}[v] \cap S=\phi$ or $\left|N_{k}[v] \cap S\right|>1$ or $N_{k}[v] \cap S \subset S \backslash\{u\}$. Equivalently u is fuzzy extra strong k - path redundant in S if $N_{k}[u] \subseteq N_{k}[S-\{u\}]$. Otherwise u is said to be fuzzy extra strong $k-$ path irredundant vertex.

Definition 6.0.16. Let $G(V, \mu, \sigma)$ be a fuzzy graph and $S \subseteq V$. The set S is said to be fuzzy extra strong k - path irredundant set if $E S P N_{k}[u, S] \neq \phi$ for every vertex u in S. That is, every vertex $u \in S$ has at least one extra strong k - path private neighbour in S. A fuzzy ES k - path irredundant set S is a maximal irredundant set, if for every vertex $u \in V \backslash S$, the set $S \cup\{u\}$ is not fuzzy irredundant set. The minimum cardinality taken over all maximal ES $k-$ path irredundant sets of vertices of G is called lower irredundance number and is denoted by $E S i r_{S_{k}}$. The maximum cardinality taken over all maximal ES $k-$ path irredundant sets of vertices of G is called upper irredundance number and is denoted by $E S I R_{S_{k}}$.

Proposition 6.0.2. A fuzzy extra strong k - path dominating set S is a minimal fuzzy ES k - path dominating set if and only if it is fuzzy extra strong k - path dominating and fuzzy extra strong $k-$ path irredundant.

Proof. The fact that a minimal extra strong k - path dominating set is both fuzzy extra strong k - path dominating and fuzzy extra strong k - path irredundant. Conversely, if a set S is both fuzzy extra strong k - path dominating and fuzzy extra strong k - path irredundant, we must show that it is minimal extra strong $k-$ path dominating. Suppose not, by Remark 6.0.5 it is sufficient to show
that there exists a vertex $v \in S$ such that $S-\{v\}$ is a fuzzy extra strong $k-$ path dominating set. But since S is irredundant, $E S P N_{k}[v, S] \neq \phi$. Let $w \in E S P N_{k}[v, S]$. By Definition 6.0.15 there does not exist an extra strong path joining w to any vertex in $S-\{v\}$. Therefore $S-\{v\}$ is not a dominating set, a contradiction.

Theorem 6.0.8. Let $G(V, \mu, \sigma)$ be a fuzzy graph and $S \subseteq V$. If no vertex of S is an extra strong k - path isolate of S and if S is an extra strong $k-$ path irredundant set then $V-S$ is an extra strong $k-$ path dominating set.

Proof. Let S be an extra strong k - path irredundant set in a fuzzy graph G which has no extra strong k - path isolated vertex. Suppose $V \backslash S$ is not an extra strong k - path dominating set. Then there exists a vertex v in S such that the length of extra strong paths joining v to any vertex of $V \backslash S$ is $>k$, because no vertex of S is an extra strong isolate of S. Therefore $E S P N_{k}[v, S]=\phi$, a contradiction. Hence the theorem.

Theorem 6.0.9. Let $G(V, \mu, \sigma)$ be a fuzzy graph with $S \subseteq V$ be a fuzzy extra strong k - path irredundant set. Then ES $\gamma_{S_{k}}(G) / 2<E S i r_{S_{k}}(G) \leq E S \gamma_{S_{k}}(G)<$ $2 E S i r_{S_{k}}(G)-1$.

Proof. Let $E S \operatorname{ir}_{S_{k}}(G)=p$ and let $S=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ be a fuzzy extra strong $k-$ path irredundant set of G. Therefore ES $P N_{k}\left[v_{i}, S\right] \neq \phi$, for $1 \leq i \leq p$. Let $S^{\prime}=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ where $u_{i} \in E S P N_{k}\left[v_{i}, S\right], i=1,2, \ldots, p$. Note that
possibly $u_{i}=v_{i}$ (if v_{i} is its own ES k - path private neighbour), but in any case the cardinality of $S \cup S^{\prime}$ is $\leq 2 p=2 E S i r_{S_{k}}(G)$.

We claim that the set $S^{\prime \prime}=S \cup S^{\prime}$ is an extra strong k - path dominating set. If not, then there must exist at least one vertex $w \in V-S^{\prime \prime}$ which is not extra strong k - path dominated by $S^{\prime \prime}$. This means that $w \notin N_{k}[x]$ for any vertex $x \in S^{\prime \prime}$, and therefore $E S P N_{k}[w, S \cup\{w\}] \neq \phi$.

In particular $v_{i} \notin N_{k}[w]$ for any vertex $v_{i} \in S$. Therefore $E S P N_{k}\left[v_{i}, S \cup\right.$ $\{w\}] \neq \phi$. Thus $S \cup\{w\}$ is a fuzzy extra strong $k-$ path irredundant set, which contradicts the assumption that S is a maximal fuzzy extra strong k - path irredundant set. Therefore, $S^{\prime \prime}$ is a fuzzy extra strong $k-$ path dominating set.

By Theorem 6.0.7, ES ir $r_{S_{k}}(G) \leq E S \gamma_{S_{k}}(G)$.

To prove the last inequality, note that although $S^{\prime \prime}$ is an extra strong k - path dominating set it cannot be a minimal fuzzy extra strong k - path dominating set unless $\left|S^{\prime \prime}\right|=S$, by Theorem 6.0.7. Therefore $E S \gamma_{S_{k}}(G) \leq 2 E S i r_{S_{k}}(G)-1$ and $E S \gamma_{S_{k}}(G) / 2<E S i r_{S_{k}}(G)$.

Epilogue

In this research work the strength of various strong fuzzy graphs, derived strong fuzzy graphs, products of strong fuzzy graphs have been determined. The results obtained in this work may be extended to all types of fuzzy graphs. Also by suitable modifications the results obtained here may be extended to directed fuzzy graphs. Much more research remains to be done on fuzzy extra strong $k-$ path domination.

We presume that the above stated problems will be beneficial for research aspirants.

Bibliography

[1] Sheldon B Akers, Dov Harel, and Balakrishnan Krishnamurthy. The star graph: An attractive alternative to the n-cube. In Interconnection networks for high-performance parallel computers, pages 145-152. IEEE Computer Society Press, 1994.
[2] Prabir Bhattacharya. Some remarks on fuzzy graphs. Pattern Recognition Letters, 6(5):297-302, 1987.
[3] Kiran R Bhutani. On automorphisms of fuzzy graphs. Pattern recognition letters, 9(3):159-162, 1989.
[4] Kiran R Bhutani and Abdella Battou. On m-strong fuzzy graphs. Information Sciences, 155(1):103-109, 2003.
[5] Kiran R Bhutani and Azriel Rosenfeld. Strong arcs in fuzzy graphs. Information sciences, 152:319-322, 2003.
[6] Béla Bollobás. Modern graph theory, volume 184. Springer Science \& Business Media, 2013.
[7] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph theory with applications, volume 290. Citeseer, 1976.
[8] Boštjan Brešar and Simon Špacapan. On the connectivity of the direct product of graphs. Australas. J. Combin, 41:45-56, 2008.
[9] Gary Chartrand, Linda Lesniak, and Ping Zhang. Graphs \mathcal{E} digraphs, volume 39. CRC Press, 2010.
[10] Maria Chudnovsky. The structure of bull-free graphs ithree-edge-paths with centers and anticenters. Journal of Combinatorial Theory, Series B, 102(1):233-251, 2012.
[11] John Clark and Derek Allan Holton. A first look at graph theory. World Scientific Publishing Co Inc, 1991.
[12] Shovan Dogra. Different types of product of fuzzy graphs. Progress in nonlinear dynamics and chaos, 3(1):41-56, 2015.
[13] Hilda Stanley Ezhilarasi and J Jeba Jesintha. Butterfly graphs with shell orders m and $2 \mathrm{~m}+1$ are graceful. Bonfring International Journal of Research in Communication Engineering, 2(2):1, 2012.
[14] Jean-Claude Fournier. Graphs Theory and Applications: With Exercises and Problems. John Wiley \& Sons, 2013.
[15] A Nagoor Gani and K Prasanna Devi. 2-domination in fuzzy graphs. Advances in fuzzy sets and systems, 1(1):17-26, 2006.
[16] A Nagoor Gani and SR Latha. On irregular fuzzy graphs. Applied Mathematical Sciences, 6(11):517-523, 2012.
[17] Ralucca Gera, Stephen Hedetniemi, and Craig Larson. Graph Theory: Favorite Conjectures and Open Problems-1. Springer, 2016.
[18] Carmelito E Go and Sergio R Canoy Jr. Domination in the corona and join of graphs. In International Mathematical Forum, volume 6, pages 763-771, 2011.
[19] Frank Harary and Robert Z Norman. Some properties of line digraphs. Rendiconti del Circolo Matematico di Palermo, 9(2):161-168, 1960.
[20] Frank Harary and Robert W Robinson. The diameter of a graph and its complement. The American Mathematical Monthly, 92(3):211-212, 1985.
[21] Özge Çolakoğlu Havare and Hamza Menken. On corona product of two fuzzy graphs. Intern. J. Fuzzy Mathematical Archive, 11(2):95-100, 2016.
[22] Teresa W Haynes, Stephen Hedetniemi, and Peter Slater. Fundamentals of domination in graphs. CRC Press, 1998.
[23] Andrés Jiménez-Losada, Julio R Fernández, Manuel Ordóñez, and Michel Grabisch. Games on fuzzy communication structures with choquet players. European Journal of Operational Research, 207(2):836-847, 2010.
[24] William B Johnson and Gideon Schechtman. Diamond graphs and superreflexivity. Journal of Topology and Analysis, 1(02):177-189, 2009.
[25] Arnold Kaufmann. Introduction to the theory of fuzzy subsets, volume 2. Academic Pr, 1975.
[26] Sandi Klavžar, Alenka Lipovec, and Marko Petkovšek. On subgraphs of cartesian product graphs. Discrete mathematics, 244(1-3):223-230, 2002.
[27] John Maharry and Neil Robertson. The structure of graphs not topologically containing the wagner graph. Journal of Combinatorial Theory, Series B, 121:398-420, 2016.
[28] J Malarvizhi. A study on isomorphism and special types of fuzzy graphs. PhD thesis, Bharathidasan University, 2010.
[29] Veena Mathad and B Sharada. On fuzzy middle graph. Adv. Appl. Discrete Math., 9(1):57-64, 2012.
[30] Sunil Mathew and MS Sunitha. Node connectivity and arc connectivity of a fuzzy graph. Information Sciences, 180(4):519-531, 2010.
[31] Terry A McKee, John N Mordeson, and Premchand S Nair. Fuzzy graphs and fuzzy hypergraphs, 2001.
[32] Jason J Molitierno. Applications of combinatorial matrix theory to Laplacian matrices of graphs. CRC Press, 2012.
[33] John N Mordeson. Fuzzy line graphs, volume 14. Elsevier, 1993.
[34] John N Mordeson and Peng Chang-Shyh. Operations on fuzzy graphs. Information Sciences, 79(3):159-170, 1994.
[35] John N Mordeson and Premchand S Nair. Fuzzy graphs and fuzzy hypergraphs, volume 46. Physica, 2012.
[36] A Nagoorgani and K Radha. Some sequences in fuzzy graphs. Far East Journal of applied Mathematics, 31(3):321-325, 2008.
[37] C Natarajan and SK Ayyasawamy. On strong (weak) domination in fuzzy graphs. World Academy of Science, Engineering and Technology, 67:247249, 2010.
[38] G Nirmala and M Vijaya. Fuzzy graphs on composition, tensor and normal products. International journal of scientific and research publications, 2(6):1, 2012.
[39] KR Parthasarathy. Basic graph theory. Tata McGraw-Hill, 1994.
[40] O Balakrishnan-R Ranganathan. A text book of graph theory. 1999.
[41] S.Vimala R.Jebesty Shajila. Fuzzy vertex graceful labelling on wheel and fan graphs. IOSR Journal of Mathematics, 12(2):45-49, 2016.
[42] Azriel Rosenfeld. Fuzzy graphs. Fuzzy sets and their applications, 513:77-95, 1975.
[43] Sovan Samanta and Madhumangal Pal. Fuzzy threshold graphs. CIIT International Journal of Fuzzy Systems, 3(12):360-364, 2011.
[44] Sovan Samanta and Madhumangal Pal. Fuzzy planar graphs. IEEE Transactions on Fuzzy Systems, 23(6):1936-1942, 2015.
[45] E Sampathkumar and L Pushpa Latha. Strong weak domination and domination balance in a graph. Discrete Mathematics, 161(1-3):235-242, 1996.
[46] E Sampathkumar and HB Walikar. On splitting graph of a graph, j. Karnatak Univ. Sci, 25(13):13-16, 1980.
[47] Suhadi Wido Saputro, Rinovia Simanjuntak, Saladin Uttunggadewa, Hilda Assiyatun, Edy Tri Baskoro, ANM Salman, and M Bača. The metric dimension of the lexicographic product of graphs. Discrete Mathematics, 313(9):1045-1051, 2013.
[48] MB Sheeba and Raji Pilakkat. Strength of a fuzzy graph. Far East Journal of Mathematical Sciences, 73(2):273, 2013.
[49] MB Sheeba and Raji Pilakkat. Strength of fuzzy cycles. South asian Journal of Mathematics, 1:8-28, 2013.
[50] A Somasundaram and S Somasundaram. Domination in fuzzy graphs-i. Pattern Recognition Letters, 19(9):787-791, 1998.
[51] MS Sunitha and A Vijayakumar. Complement of a fuzzy graph. Indian Journal of Pure and Applied Mathematics, 33(9):1451-1464, 2002.
[52] Mihai Talmaciu and Elena Nechita. Recognition algorithm for diamond-free graphs. Informatica, 18(3):457-462, 2007.
[53] SK Vaidya and DD Bantva. Distance two labeling of some total graphs. General Mathematics Notes, 3(1):100-107, 2011.
[54] Prakash L Vihol. Discussion on some interesting topics in graph theory. PhD thesis, Saurashtra University, 2011.
[55] S Vimala and A Nagarani. Energy of fuzzy labeling graph [efl (g)]-part i. International Journal Of Scientific \& Engineering Research, 7(4), 2016.
[56] S Vimala and JS Sathya. Some results on point set domination of fuzzy graphs. Cybernetics and Information Technologies, 13(2):58-62, 2013.
[57] S Vimala and R Jebesty Shajila. A note on fuzzy edge-vertex graceful labelling of star graph and helm graph. Advances in Theoretical and Applied Mathematics, 11(4):331-338, 2016.
[58] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River, 2001.
[59] Robin J Wilson. An introduction to graph theory. Pearson Education India, 1970.
[60] Hans-Jürgen Zimmermann. Fuzzy set theory and its applications. Springer Science \& Business Media, 2011.

List of Publications

Papers Published / Communicated

1. Chithra K. P., Raji Pilakkat : Strength of certain fuzzy graphs, International journal of pure and applied mathematics, Vol 106, No:3(2016)883892.
2. Chithra K. P., Raji Pilakkat: Strength of certain fuzzy graphs Annals of fuzzy mathematics and informatics, Vol 12, No : 4(2016) 585-596.
3. Chithra K. P., Raji Pilakkat : Strength of subdivision graph of certain fuzzy graphs, International journal of current engineering sciences, Vol 5, No:8(2016), 56-60.
4. Chithra K. P., Raji Pilakkat : Strength of Cartesian product of certain fuzzy graphs, Palestine Journal of Mathematics(Accepted).
5. Chithra K. P., Raji Pilakkat : Strength of tensor product of certain fuzzy
graphs,International Journal of Applied Mathematics, Volume 30, No 2, 2017, 107-115.
6. Chithra K. P., Raji Pilakkat : Algorithm for finding strength of fuzzy graphs, Bulletin of Kerala Mathematical Association (Accepted).

Paper presented

Presented a paper entitled 'Strength of subdivision graph of certain strong fuzzy graphs' in MESMAC International Conference, MES Mampad College (Autonomous), Malappuram Dt., Kerala, India on 14, 15 and 16 February 2017.

Index

adjacency matrix of a graph, 10
Algorithm for finding strength of fuzzy graphs, 21
bipartite graph, 9
block of a graph, 12
bull graph, 11
butterfly graph, 11
Cartesian product of
graphs, 13
fuzzy graphs, 85
clique, 11
complementary paths, 140
complete fuzzy graph, 16
complete graph, 9
component of
a fuzzy graph, 16
a graph, 12
composition of
fuzzy graphs, 115
graphs, 13
connected fuzzy graph, 16
connected graph, 11
corona of
graphs, 12
strong fuzzy graphs, 46
critical extra strong path, 48
cycle, 11
degree of a vertex, 9
extra strong k - path
isolated vertex, 152
neighbour of a vertex, 151
neighbourhood degree, 153
dominating set, 154
enclave of a set, 165
independent, 168
irredundant, 169
private neighbour, 167
redundant, 169
fuzzy
line graph, 135
middle graph, 65
subdivision graph, 57
wheel graph, 43
null graph, 15
shadow graph, 80
split graph, 75
total graph, 71
trivial graph, 15
fuzzy forest, 16
fuzzy diamond graph, 32
fuzzy graph, 15
graph, 7
incidence matrix of a graph G., 10
join of
fuzzy graphs, 37
graphs, 12
line graph, 13
line graph of
strong fuzzy bull graph, 137
strong fuzzy butterfly graph, 136
strong fuzzy cycle, 139
strong fuzzy diamond graph, 138
strong fuzzy star graph, 137
merger graph, 33
middle graph, 12
minimal fuzzy extra strong k - path
dominating set, 154
minus critical extra strong path, 49
normal product of
fuzzy graphs, 129
graphs, 13
order of a graph, 8
partial fuzzy subgraph, 15
pendant
edge, 9
vertex, 9
properly linked fuzzy graph, 27
regular fuzzy cycle, 17
size of a graph, 8
splitting graph, 75
strength of
a fuzzy path, 16
strong fuzzy
wheel graph, 44
strong fuzzy bull graph, 29
strong fuzzy butterfly graph, 29
strong fuzzy graph, 16
strong fuzzy Wagner graph, 35
subgraph, 11
support vertex, 9
tensor product of fuzzy graphs, 108
graphs, 13
trail, 10
trivial
fuzzy graph, 15
graph, 8
Wagner graph, 9
weight matrix, 17

[^0]: Some results of this chapter are included in the following paper Chithra K. P., Raji Pilakkat, International Journal of Pure and Applied Mathematics, 106(3) 2016, 883-892

[^1]: Some results of this chapter are included in the following paper Chithra K. P., Raji Pilakkat, Annals of Fuzzy Mathematics and Informatics, Volume 30, No:2, 2017, 107-115

