
Confronting physics of the early
Universe with cosmological observations

by

Joby P. K.
Indian Institute of Astrophysics, Bangalore

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy to the

Department of Physics
University of Calicut

Calicut, Kerala

January 2019





CERTIFICATE

This is to certify that the thesis titled Confronting physics of the early Universe with
cosmological observations is a bonafide record of the work done by Joby P. K. under our
joint supervision and that no part of it has been included previously for the award of any
degree, either in this university or any other institution.

Supervisor
Dr. Pravabati Chingangbam,
Indian Institute of Astrophysics,
Bangalore.

Co-supervisor
Dr. Ravikumar C. D.,
Department of Physics,
University of Calicut, Kerala.





CERTIFICATE

This is to certify that in the thesis titled Confronting physics of the early Universe with
cosmological observations by Joby P. K., the corrections / suggestions from the adjudica-
tors have been incorporated.

Supervisor
Dr. Pravabati Chingangbam,
Indian Institute of Astrophysics,
Bangalore.

Co-supervisor
Dr. Ravikumar C. D.,
Department of Physics,
University of Calicut, Kerala.





DECLARATION

I hereby declare that the thesis titled Confronting physics of the early Universe with
cosmological observations is an authentic record of research work carried out by me at
the Indian Institute of Astrophysics under the supervision of Dr. Pravabati Chingangbam
and Dr. Ravikumar C. D.. No part of this work has formed the basis for award of any other
degree in any university or institution.

Joby P. K.
Indian Institute of Astrophysics
Bangalore 560 034
January 2019.





ACKNOWLEDGEMENTS

I am extremely grateful to my PhD. supervisor and mentor, Dr. Pravabati Chingangbam,
for her guidance and support. She taught me the fundamentals of cosmology and general
relativity, which has formed the basis of my research. She has helped me in making the
transition from being a student to a being a research scholar. She has helped me to develop
an eye for detail. I thank her for being patient with me during my difficult times and
being harsh when required. She has always encouraged me to come up with my own ideas
and solutions to the problems I faced in my work, and given me the space and time to
make mistakes and learn from them. This has played an important role in my growth as a
researcher.

I would also like to thank my co-supervisor, Dr. Ravikumar C. D., for his valuable sugges-
tions and also for helping me with the various administrative procedures at Calicut Univer-
sity.

I thank Dr. Subinoy Das, Dr. Tuhin Ghosh, Dr. Stephen Appleby and Dr. Changbom Park
for their useful inputs and suggestions in our work. They have helped me in improving my
understanding of the subject and also in practical aspects of our work related to coding.

I would like to thank Dr. Jayant Murthy, the Director of Indian Institute of Astrophysics
(IIA), Dr. Aruna Goswami from the Board of Graduate Studies, IIA, Dr. G. C. Anupama,
Dean, IIA, and all the administrative staff at IIA who have helped me with the various
administrative procedures. I also thank Dr. K. M. Basheer, the Vice Chancellor, University
of Calicut (UoC) and Dr. M. Nasser, Director of Research, UoC for approving the early
submission of my thesis.

I thank my parents and my sisters who have played a vital role in my inclination towards
science. Their continuous encouragement and support has made this journey possible.

I thank Vidhya for her suggestions and the useful discussions on physics and other topics.
She has helped me with Linux and the various codes that we used during the course of this
thesis. I also thank Akanksha and Priya for the many discussions which have helped me

I



gain valuable insights into the subject.

Last but not the least, I thank all my friends at IIA who played their part in this journey,
academically and otherwise, making it a memorable experience.

II





LIST OF PUBLICATIONS

Refereed Journals

1. Search for anomalous alignments of structures in PLANCK data using Minkowski

Tensors

Joby P. K., Pravabati Chingangbam, Tuhin Ghosh, Vidhya Ganesan, Ravikumar C.
D., 2019, JCAP, 01, 009.

2. Minkowski tensors in three dimensions - probing the anisotropy generated by redshift

space distortion

Stephen Appleby, Pravabati Chingangbam, Changbom Park, K. P. Yogendran, Joby
P. K., 2018, ApJ, 863 200.

3. Tensor Minkowski Functionals for random fields on the sphere

Pravabati Chingangbam, K. P. Yogendran, Joby P. K. et al., 2017, JCAP, 12, 023.

4. Constraint on noncommutative spacetime from PLANCK data

Joby P. K., Pravabati Chingangbam and Subinoy Das, 2015, Phys. Rev. D 91,
083503.

IV



ABSTRACT

The Cosmic Microwave Background (CMB) is the oldest light in the Universe and gives
us access to a picture of the Universe when it was only ≈ 300,000 years old. The CMB
radiation consists of photons free streaming to us from the surface of last scattering. The
existence of such radiation was predicted by Dicke and his group and was experimen-
tally detected by Penzias and Wilson in 1965. The CMB gives us a window to study the
fundmental laws of physics by observing the Universe on the largest scales. Precise mea-
surements of the temperature and polarization fields of the CMB have allowed us to gain
valuable physical insights about properties of our Universe. It is found that on length scales
larger than≈ 300 Mpc, our Universe is homogeneous and statistically isotropic. In the first
part of our work, we test the fundamental assumption of SI and in the second part, we test
the prediction of noncommutative spacetime.

The standard ΛCDM cosmological model is the most widely accpeted model of our
Universe. The assumption of Statistical Isotropy (SI) is one of the important assumptions
of the ΛCDM model and has been found to be consistent with most tests of isotropy using
observations. However, there are many models which predict that our Universe is not
isotropic and strong limits on the violation of SI can constrain these models. There isn’t
any a priori reason for the Universe to be statistically isotropic, and hence it is important
to test this fundamental assumption which is one of the pillars of our understanding of the
Universe. We have developed techniques to measure the isotropy of random fields on the
sphere and in three dimensional flat space, and have used cosmological data to search for
deviations from SI.

We use Minkowski Tensors (MTs), which carry information regarding the shape of
closed curves, as a measure of isotropy. By choosing a suitable threshold to cut off a given
field, we get closed curves which form the boundaries of the connected regions and holes.
The isotropy and alignment of these closed curves provide information on the SI of the
underlying field. MTs were previously defined for closed curves in flat spaces. However,
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cosmological fields such as the CMB are defined on the sphere and thus the MTs can not
be directly applied to these fields. We generalize the definition of MTs to closed curves
on the sphere and provide a numerical method to estimate the MTs from pixelated maps.
Further, we apply our technique to the CMB temperature data given by the Planck mission
and find no signficant deviation from SI. We also apply our method to the beam convolved
individual frequency CMB temperature maps given by Planck and find that they are all
consistent with SI, except for the 30 GHz maps, which exhibit a mild level of anisotropy.
We suspect that an inaccurate estimation of the instrument beam or residual noise at 30
GHz could be the primary reason for this mild discrepancy.

We have also used the MTs for three dimensional density fields to demonstrate a method
to constrain the effect of Redshift Space Distortion (RSD). RSD is the modification of
the apparent shape of galaxy clusters due to the peculiar velocity of the galaxies, which
affects the measured redshift of the galaxy, making the Hubble’s redshift-distance relation
an inaccurate approximation. We compute the ensemble expectation values of the MTs
for a 3D isotropic Gaussian field and develop a numerical and a semi-analytic method to
estimate the MTs from a discretely sampled field. We apply our method to estimate the
MTs from the isotropic fields and the anisotropic fields obtained by applying a linear RSD
operator to the isotropic feilds. We find that RSD leads to a shift in the amplitude of the
elements of the MTs and show that this shift can be used to obtain constraints on the linear
RSD parameter.

In the last part of our work, we have tested spacetime noncommutativity, which is an
essential prediction of string theory. Based on evidence from observations, it is believed
that the early Universe went through a phase of accelerated expansion, known as Inflation.
During this phase, very small regions of space were blown up to cosmological sizes in
a very short amount of time. This allows us to search for spacetime noncommutativity,
which is an effect relevant at the extremely small scales, by looking at cosmological fields
such as the CMB. If our spacetime is noncommutative, then the form of the CMB angular
power spectrum is modified and this effect can be used to constrain the energy scale of
spacetime noncommutativity. First we estimate the effect of noncommutative spacetime on
the CMB angular power spectrum using the publicly available package, CAMB, and show
that Planck data is best suited to constrain the spacetime noncommutativity parameter. We
then perform a Bayesian analysis of the Planck 2013 CMB temperature data and obtain a
lower bound of ≈ 20 TeV on the energy scale of spacetime noncommutativity. Our results,
improve upon those of previous works by a factor of two.
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Finally we summarize all the research work that was carried out as part of this thesis.
We also discuss prospects for further research in the context of future CMB experiments
having higher resolutions than Planck and the application of MTs for probing the SI of the
CMB polarization fields as well as the CMB foregrounds.
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1
INTRODUCTION

1.1 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is a background black body radiation which
is observed in all directions of the sky. It was accidentally discovered by Arno Penzias
and Robert Wilson while they were making a radio receiver and found that it was detecting
noise [1]. Later, they realized that the noise was detected in every direction of the sky with
the same intensity. Around the same time, the existence of CMB was also predicted by a
research group led by Robert Dicke [2]. The CMB provided strong evidence for the Big
Bang cosmological model which states that the Universe was initially hot and dense and
later expanded and cooled down to the state that it is in today. The CMB is electromagnetic
radiation which peaks in the microwave region today and gives us the earliest “picture” of
the Universe that we have access to. For their discovery of the CMB, Penzias and Wilson
received the Nobel Prize for Physics in 1978.

The CMB is relic radiation from the early stages of evolution of the Universe and its
discovery has lead to many important advancements in the field of cosmology. Studies of
the CMB temperature and polarization have helped us to deepen our understanding of the
Universe. Today we have many competing models of the Universe which make different
predictions for the properties of the CMB. Precise observations of the CMB provide us with
a way to test these models. It is widely believed that our Universe in its early stages went
through a phase of accelerated expansion, known as Inflation [3–7]. This concept and its
predictions for the CMB are discussed in Section 1.4. Observations of the CMB sky have
given support to this idea and it has contributed to the development of the standard ΛCDM
model of cosmology.
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Measurements

Today the study of CMB observations have found applications in other fields includ-
ing particle physics. The CMB provides one of the strongest experimental evidences for
physics beyond the standard model. It tells us that a strong majority of the energy density
in our Universe consists of mysterious Dark Energy which is believed to drive the late time
accelerated expansion of the Universe, and Dark Matter which is invisible to us and forms
≈ 80% of the mass in the Universe. The analysis of CMB data have given us constraints on
the masses and number of species of neutrinos as well as constraints on dark matter candi-
dates such as axions and Weakly Interacting Massive Particles (WIMPs). The CMB has a
huge contribution in the development of our current understanding of the Universe. In the
following section, we discuss the various experiments which were designed to measure the
CMB temperature and polarization fields.

1.2 Measurements

The main observables of the CMB radiation are the temperature and polarization of the
photons. The polarization field can be divided into two parts, a curl free part and a gradient
free part. The curl free part is referred to as the E mode while the gradient free part is
referred to as the B mode of CMB polarization. In this section, we describe some of the
major experiments which were designed to measure the CMB observables.

1.2.1 COBE

COBE stands for COsmic Background Explorer and it was a satellite launched in 1989 to
make measurements of the CMB radiation. This mission carried three instruments, the Dif-
ferential Microwave Radiometer (DMR) for measuring the anisotropies in the CMB tem-
perature, the Far-InfraRed Absolute Spectrophotometer (FIRAS) for measuring the spec-
trum of the CMB, and the Diffuse InfraRed Background Experiment (DIRBE) to map the
emission due to dust. COBE was placed in a circular Sun-synchronous orbit at an altitude
of 900 km, given the requirements of full sky coverage and maintenance of thermal stability
of the instruments. COBE mapped the CMB sky for four years from 1989 to 1993.

This mission carried out full sky observations of the CMB in fourteen frequency chan-
nels. It is also the first experiment to make precise measurements of the CMB frequency
spectrum. FIRAS measured the CMB spectrum in the frequency range 1 to 100 cm−1

and found that it was a black body spectrum [8]. This confirmed the prediction of the
hot Big Bang model that the Universe in its early stages was in thermal equilibrium. The
fluctuations in the CMB temperature were detected for the first time and measured with a
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Introduction

sensitivity of the order of 10−5 and an angular resolution of 7◦ [9]. The diffuse infrared sky
emission was mapped by the DIRBE instrument [10]. George Smoot and John Mather were
the principle investigators of the COBE mission and received the Nobel Prize for Physics
in 2006.

1.2.2 WMAP

COBE experimentally confirmed the prediction of the black body spectrum of the CMB
photons and also detected the CMB temperature anisotropies. Following this development,
there was a need to make high precision measurements of the CMB temperature and po-
larization anisotropies for constraining models of cosmology. In this light. the Wilkinson
Microwave Anisotropy Probe (WMAP) was designed to make precise measurements of the
CMB anisotropies with error margins that would be well understood. WMAP made obser-
vations of the CMB in five frequency bands to minimize the systematic errors associated
with particular radiometers, and over a period of nine years to minimize the time depen-
dent systematic erros. It was placed in the Sun-Earth L2 Lagrangian point and conducted
its survey from 2001 to 2010.

WMAP made a full sky map of the CMB anisotropies with a resolution of 13 arcminutes
by combining observations at multiple frequencies. The map of the CMB sky created
by WMAP was found to be statistically consistent with that created by COBE despite
the differences in hardware and orbits. The WMAP data suggested that our Universe is
best described by the standard ΛCDM model with six parameters [11]. While it found a
strong alignment between the quadrupole and octupole components of the CMB sky [12],
there was no convincing explanation for this alignment. The nine years data was used to
estimate the values of the cosmological parameters with precisions of up to 1% and found
no significant deviations from the ΛCDM cosmological model.

1.2.3 Planck

The Planck mission was launched in 2009 with the goal of extracting all the information
that could possibly be gained from the CMB temperature fluctuations. This would give the
most accurate to date estimations of the age of the Universe, amount of baryonic matter,
dark matter and dark energy in the Universe. It was also aimed to catalogue the galaxy
clusters with the help of the Sunyaev-Zel’dovich effect and trace the distribution of dark
matter with the help of gravitational lensing. Additionally, it also measured with high
precision, the foreground emissions from sources such as thermal dust and synchrotron
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Characteristics of CMB

radiation in order to facilitate better cleaning of the CMB maps.

The instruments on board the Planck mission had higher sensitivity and angular res-
olution as compared to its predecessors and were expected to give the most precise mea-
surements of the CMB. Planck observed the CMB sky in nine frequency channels ranging
from 30 GHz to 857 GHz as compared to five channels of WMAP. The Low Frequency
Instrument (LFI) made observations in the frequency range 30 GHz to 70 GHz, while the
High Frequency Instrument (HFI) made observations in the frequency range 100 GHz to
857 GHz. Planck produced CMB sky maps with significantly improved angular resolution
of up to 5 arcminutes [13] as compared to 13 arcminutes of WMAP. As a result, these
maps could probe multipoles up to 2500 while WMAP could only probe multipoles up to
850. The data from this mission was able to estimate the value of the Hubble parameter
today with uncertainties ≈ 1% and this is tension with local measurements of the Hubble
parameter. This result is one of the biggest anomalies that are yet to be resolved in modern
cosmology.

1.3 Characteristics of CMB

The CMB radiation is observed to be extremely isotropic. The measured brightness tem-
perature of the CMB photons coming from different directions in the sky differs only at
the level of one part in 105 [9]. The frequency spectrum of the CMB is a blackbody spec-
trum having a temperature of ≈ 2.7 Kelvin. Studies of the CMB temperature fluctuations
reveal that they have a Gaussian probability distribution function with a standard deviation
of ≈ 10−4 Kelvin. For a Gaussian random field, all information content of the field is en-
coded in its power spectrum. The CMB fields are defined on the sphere and so we analyze
its angular power spectrum to extract information. For ease of calculation, first the mean
temperature is subtracted from the map to give a field of temperature fluctuations. Next,
the temperature fluctuations field is decomposed into spherical harmonics as,

∆T (θ, φ) =
`max∑
`=0

+∑̀
m=−`

a`m Y`m(θ, φ) (1.1)

where ∆T (θ, φ) denotes the temperature fluctuation in the direction defined by the spher-
ical coordinates θ and φ, Y`m are the spherical harmonics and a`m are the respective coef-
ficients. If the Universe is isotropic, then the angular power spectrum of ∆T can be given
as,
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Introduction

Figure 1.1: The CMB temperature fluctuations angular power spectrum based on full sky
observations by Planck [15].

C` ≡
1

2`+ 1

+∑̀
m=−`

|a`m|2 (1.2)

where C` denotes the power in the multipole `. Fig. 1.1 displays the angular power spectrum
of the CMB temperature anisotropies as measured by Planck.

The observed features such as peaks, and drop in power at high ` in the angular power
spectrum carry information on the physical processes and the state of the Universe when
the CMB photons were emitted. Before the epoch of last scattering, the Universe could be
described as a photon-baryon plasma under the effect of two main competing forces: the
gravitational force pulling the contents together and the radiation pressure generating an
outward force. This resulted in periodic fluctuations in the baryon density field which leads
to the acoustic seen peaks in the CMB angular power spectrum. As seen in Fig. 1.1, the
first acoustic peak in the CMB power spectrum is seen at ` ≈ 220, which corresponds to an
angular scale of ≈ 0.82◦. As the photons began to free stream after the last scattering, their
diffusion from hot regions to cold regions reduced the differences in temperatures between
the different regions. This is known as Silk Damping and explains the observed decline in
power at large multipoles in the CMB power spectrum [14].
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Inflation

1.4 Inflation

The hot big bang model of the Universe has been very successful at explaining astronomi-
cal observations. However, there are a few issues with the standard big bang model which
need to be addressed. One of the problems is the observed homogeneity in the temperature
measurements of the CMB [4]. CMB radiation observed in opposite directions in the sky,
originate in regions which were at the time of emission of CMB, further away than the
distance that light could have travelled in the age of the Universe. This means that when
the CMB was emitted, these regions could not have been in causal contact. However, the
measured CMB temperature is about 2.7 Kelvin for all directions in the sky, with fluctua-
tions of the order of 10−5, suggesting that the Universe was in thermal equilibrium at that
time. This leaves us with the question as to how regions which were not in causal contact,
could have been in thermal equilibrium. This is known as the horizon problem. Another
issue is the observed flatness of the Universe. The required density of the Universe to halt
the expansion of the Universe, but not to lead to a recollapse is called the critical density.
It is found that the density of our Universe today is extremely close to the critical density
required for a flat Universe. This means that in the very early Universe, the density would
have differed from the critical density at only one part in 1057 [4]. It is a problem then to
explain such a high level of fine tuning of density in the early Universe and is known as the
flatness problem.

To address these and some other problems in the big bang model, Alan Guth came up
with the idea of cosmic inflation. In this model, he proposed that after the big bang, the
Universe went through a phase of exponential expansion [4]. It provides an elegant solution
to the horizon and flatness problems. Before inflation, the Universe was consisted of a small
dense region which was in causal contact and thermal equilibrium. Regions that are widely
separated today were initially very close to each other prior to inflation. This explains the
observed isotropy in the CMB temperature sky. During inflation, the Universe expanded by
an order of about 1028 in a fraction of a second and this rapid expansion caused the space to
become more flat irrespective of the initial density of the Universe, thus solving the flatness
problem.

The particle associated with the field that drives inflation is called the inflaton. The
quantum fluctuations of the inflaton field gave rise to the initial density perturbations in
the Universe. The density perturbations in turn curved the spacetime around them and
gave rise to the primordial perturbations in the metric describing our spacetime. These
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perturbations are often referred to as the primordial curvature perturbations. Most inflation
models predict that the primordial curvature perturbations have a nearly scale invariant
power spectrum of the form,

P (k) = As

(
k

k0

)ns−1

, (1.3)

where, AS is the amplitude of scalar perturbations, ns is the spectral index of scalar pertur-
bations and k0 is the pivot scale.

These initial density perturbations gave rise to the fluctuations in the CMB tempera-
ture sky that we observe today. After their emission, the CMB photons undergo physical
processes such as redshift due to cosmic expansion, gravitational redshift and lensing due
to the distribution of matter and scattering off free electrons, before reaching us, the ob-
servers. The initial density perturbations also evolve under the effect of gravity and cosmic
expansion to produce the matter density distribution in our Universe today. Observing the
CMB temperature fluctuations and polarization fields and the matter density distribution
fields today gives us an opportunity to test the various models of inflation.

1.5 Last scattering

Post inflation, the inflaton field is believed to have decayed into the standard model par-
ticles. The Universe at this point could be described as a hot plasma of electrons and
protons. The photons would travel a short distance before scattering off the free electrons.
This plasma was opaque and the mean free path of the photons was very small. Protons and
electrons would combine to form neutral hydrogen atoms but high energy photons would
ionize the newly formed atoms to give free protons and electrons. As the Universe contin-
ued to expand, it cooled down and the density of matter and radiation decreased. As the
temperature of the Universe decreased, the energy of the photons also decreased and there
came a point when the photon energies were not high enough to ionize the neutral atoms.
Since then, stable hydrogen atoms started forming and the free electrons available to scatter
the photons became scarce. As a result, the photons started to free stream and this epoch is
called the epoch of last scattering. The epoch of last scattering is believed to have occurred
at a redshift of about 1100 [16, 17]. Today we observe this radiation emitted at the time
of last scattering and it is called the cosmic microwave background radiation. The CMB
photons that we receive today originate from a spherical surface in the sky, with us at the
center, and a radius equivalent to the distance travelled by light in a time interval equal to
the age of the Universe. This surface is known as the surface of last scattering.
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1.6 Summary

The work carried out for this thesis, focuses on the testing of various fundamental princi-
ples of physics against cosmological observations. This chapter is aimed a providing an
introduction to the subject with a brief account of some key concepts. For the most part
of my work, I have used observations of the CMB temperature fluctuations field. In this
chapter we have discussed the prediction and discovery of the CMB radiation. We have
also discussed the importance of CMB observations in modern cosmology in the context
of testing the various models of our Universe, and their relevance to other areas of physics
such as particle physics. We have also presented a review of some of the experiments which
were aimed at making measurements of the CMB temperature and polarization fields. Of
these experiments, Planck provides the most precise measurements of the CMB, and we
have used Planck CMB temperature data in our work. We have also reviewed some of
the characteristics of the observed CMB radiation. The CMB temperature is found to have
a Gaussian distribution and is extremely isotropic across the sky with small fluctuations
of the order of 10−5. The angular power spectrum of the CMB contains features such as
acoustic peaks and these features provide useful information about our Universe such as
the density of matter and baryons.

We have also reviewed some of the problems with the standard hot big bang model
and explained how cosmic inflation resolves these issues. The quantum fluctuations of the
inflaton field lead to the anisotropies in the CMB temperature that we observe today. Fur-
ther, these quantum fluctuations also give rise to the distribution of matter in our Universe.
We have also discussed the epoch of last scattering after which the Universe became trans-
parent and photons free streamed to us as the CMB radiation. The next chapter contains
a discussion on the usefulness of the CMB in regard to cosmology. It also contains the
motivation for our work and a brief account of the research problems that are part of this
thesis.
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2
MOTIVATION, QUESTIONS AND

METHODOLOGY

2.1 Physical insights from the CMB

The Universe cooled down as it expanded and there came a point when the photons got
decoupled from matter and this epoch is know as the last scattering. The photons from last
scattering practically free streamed and contain information about the state of the Universe
at the time of last scattering. These photons give us the earliest picture of the Universe
that is accessible to us for observations and are called the Cosmic Microwave Background
(CMB) radiation. The CMB can give us useful insights on the physics of the early Uni-
verse. Each inflation model predicts certain features in the CMB power spectrum and hence
measurements of the CMB power spectrum can constrain these models. Inflation leads to
tiny regions in the early Universe to expand to cosmological sizes in a very short time and
this gives us an opportunity to constrain physics at the small scales with CMB observations.

The CMB radiation can also be used to probe some physical processes that occur post
the epoch of last scattering. On their way from the last scattering surface to the observer,
the CMB photons interact with the different constituents of the Universe and undergo pro-
cesses such as gravitational lensing and integrated Sachs-Wolfe effect. Information about
these processes is then encoded in the CMB photons which we observe today and can be
extracted with suitable analysis of the data. Thus the CMB can give us useful information
about the physics of our Universe, both in its early and late stages.
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2.2 Research problem

The main objective of my research has been to study fundamental physics and apply it
to the early Universe and test them using observational data. In my PhD work, I have
mainly looked at two aspects of the fundamental physics of the early Universe: statistical
isotropy (SI), which is assumed by many models, and the noncommutativity of spacetime
as predicted by some quantum theories of gravity.

2.2.1 Statistical isotropy

One of the important assumptions of the widely accepted ΛCDM cosmological model is
that our Universe is statistically isotropic. However, there are many models which suggest
that the early Universe was not statistically isotropic [18–27]. It is important to test this
assumption in order to improve our understanding of the Universe. Tests of SI are usually
based on cosmological data such as the CMB and the Large Scale Structure (LSS). In the
literature, methods such as the BiPolar Spherical Harmonics (BiPosh) [28] and the power
tensor [29] have been used to test the SI of CMB fields.

The tensor generalizations of the usual scalar Minkowski Functionals (MFs) are called
Minkowski Tensors (MTs). MTs carry shape information which can be used to test the SI
of fields by estimating the “average” shape of the structures (connected regions and holes)
in the fields. Chapter 3 contains a brief review of the MT definitions and an explanation
on how we can extract shape information from them. The definitions of the MTs contain
the position vector which is not well defined for the general curved manifold and hence,
they can not be directly applied to CMB fields which are defined on the sphere. In [30], the
authors make stereographic projections of the CMB temperature fluctuations and polariza-
tion fields on to a plane and test the SI of the projected CMB fields. They found a ≈ 4-σ
deviation from SI in the CMB E mode data.

Stereographic projection preserves angles but can scale the sizes of structures in the
field and hence it is important to test the above mentioned result by computing MTs for the
CMB fields directly on the sphere. We achieve this goal by rewriting the definitions of the
MTs in terms of the tangent vector to the curve. The tangent vector is well defined for every
smooth manifold and so the MTs can be applied even to curved spaces. This work and its
applications to the Planck 2015 CMB data has been discussed in detail in Chapter 4. We
have also investigated the effect of redshift space distortion on the distribution of matter
and how it is captured by the MTs in three dimensions. In Chapter 5, we have discussed a
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method to constrain the linear redshift space distortion parameter using MTs for the three
dimensional distribution of matter in our Universe.

2.2.2 Spacetime noncommutativity

Many quantum theories of gravity predict that our spacetime is noncommutative. If it is
true, then it means that for an observed event, the order in which the spatial and time
coordinates are measured becomes important. This is not observed in classical physics
and is an effect that would be relevant at extremely small length scales, comparable to
the Planck length scale. Since inflation blows up tiny regions of space to cosmological
sizes and this encodes information about small scale physics in the CMB, it gives us an
opportunity to study noncommutativity of spacetime by analyzing the CMB fields. In the
context of the CMB, the noncommutativity of spacetime modifies the form of the CMB
angular power spectra and by searching for this effect in the CMB data, we can constrain
the length scale at which spacetime noncommutativity becomes relvant.

Spacetime noncommutativity can be represented by the following relations [18, 19].

[x̂µ, x̂ν ] = iθµν (2.1)

where x̂µ are the coordinate operators. We study the simplest case of noncommutative
spacetime where the tensor θµν is considered to have only one independent element and
we call it θ. If this model is correct then it would affect the initial quantum fluctuations
of the inflaton field and modify the primordial scalar power spectrum. As a consequence,
the power spectrum of the CMB temperature flucuations and polarization would also get
modified. In the simplest case, taking θ as a constant, the modified expression for the CMB
angular power spectrum of temperature fluctuations can be given as [18],

Cθ
` =

∫
dkk2 |∆`(k)|2 P (k)i0(αk) (2.2)

where P (k) is the usual primordial scalar power spectrum in commutative spacetime.
|∆`(k)| are the CMB transfer functions, α = Hθ where H is the Hubble parameter at
the end of inflation and i0(x) = sinh (x)

x
. We can test the presence of this effect in the obser-

vations of the CMB temperature fluctuations. Spacetime noncommutativity has a similar
effect on the angular power spectrum of CMB polarization and hence measurements of
CMB polarization can also provide constraints on spacetime noncommutativity. This work
is discussed in detail in Chapter 6.
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2.3 Observational data

Throughout this work, we have tested assumptions of fundamental physics against CMB
observations. In Chapter 6, we have used the CMB temperature fluctuations data given
as part of the Planck 2013 [31] data release to constrain the spacetime noncommutativity
parameter. Additionally, we also obtain constraints on the noncommutativity of spacetime
for combinations of CMB temperature fluctuations data from Planck and Baryon Acous-
tic Oscillations (BAO) data from SDSS [32, 33] and 6DFGS [34] and CMB polarization
data from BICEP2 BICEP2 [35]. Planck has higher angular resolution than WMAP and
higher precision compared to ACBAR and CBI and hence our constraints are expected to
be significantly tighter than previous work which used WMAP, ACBAR and CBI data.

In Chapter 4, we have used pure CMB simulations generated by the SYNFAST rou-
tine [36, 37] to test the effect of masking, smoothing and pixel size on the computation of
MTs for CMB fields. We have also used the foreground and noise maps given as part of the
Planck 2015 data release [38] to study the behaviour of the alignment parameter α in toy
models which violate SI. We have used the CMB temperature fluctuations map provided
by the SMICA pipeline [39, 40], along with FFP8.1 SMICA simulations which include
residual foreground and noise, to look for deviations from SI in the CMB temperature
anisotropies. We have also used the beam convolved CMB temperature maps at individ-
ual frequencies cleaned by the Commander [41, 42], NILC [43, 44], SEVEM [45, 46] and
SMICA [39, 40] cleaning methods along with the FFP9 simulations to probe for violation
of SI.

2.4 Software packages: HEALPIX, CAMB and COSMOMC

We have used three publicly available software packages for testing our methods on simu-
lations as well as for performing the analysis of observed data. In this section we discuss
the software packages that were used during the course of this work.

2.4.1 HEALPIX

HEALPIX stands for Hierarchical Equal Area and iso-Latitude Pixelation of the sphere
[36,37]. As the name suggests, it was designed to divide the surface of a sphere into pixels
having the same surface area. These pixels can be easily divided further into smaller pixels
of equal area corresponding to a higher resolution map. In HEALPIX terms, the resolution
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of a given map is represented by the parameter called “Nside”. For a map with a resolution
parameter of Nside, the number of pixels is given by 12×Nside2. Additionally, this package
contains several routines which are extremely useful for the analysis of pixelated fields on
the sphere. The alm_tools module contains subroutines for the decomposition of a field
defined on the sphere, into spherical harmonics and vice versa. It also contains subroutines
for computing the derivatives of the field in spherical coordinates as well as smoothing the
field with a Gaussian kernel of a specified beam width. The synfast subroutine generates
a realization of the CMB sky for a specified seed value. These subroutines have been
extensively used during the course of this work for the purpose of generating simulations
of the CMB sky and the analysis of both the data and the simulations.

2.4.2 CAMB

CAMB is an acronym for Code for Anisotropies in the Microwave Background [47, 48],
developed by Antony Lewis and Anthony Challinor. It is an open source code that nu-
merically solves the Boltzmann equation for the Universe to compute the CMB and matter
power spectra, as well as the CMB transfer functions. Provided an input model of the Uni-
verse, CAMB computes the CMB temperature fluctuations, polarization and lensing power
spectra for a specified redshift. We have used CAMB in the work described in Chapter 4
to compute the CMB power spectra that was used to generate the CMB sky simulations,
and in the work described in Chapter 6 to test the effect of spacetime noncommutativity on
the CMB power spectra. This package is also provided as part of the COSMOMC package
which is dicussed below.

2.4.3 COSMOMC

COSMOMC is a publicly available Fortran code for performing cosmological parameter
estimation by doing a Markov Chain Monte Carlo analysis of the data [48, 49]. It was
developed by Antony Lewis, who is also the author of CAMB. It uses the Bayes theorem
which provides a way to compute the conditional probability of a model being the correct
description of the Universe for a set of observations. Given a model with a certain number
of free parameters and a set of observations, this package computes the best fit parame-
ter values and also the 1-σ and 2-σ confidence regions. In our search for the signatures
of noncommutative spacetime in the CMB datasets, we use COSMOMC to analyse the
Planck, BICEP2 and SDSS data to establish constraints on the energy scale of spacetime
noncommutativity.
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2.5 Summary

This chapter gives the motivation for the work which was carried out for this thesis. We
revisit some of the basics of CMB physics and mention the physical insights that we can
gain from studying the CMB. This includes information on the physics of the early Uni-
verse, from constraining models of inflation to the laws of physics that apply at the small
scales. Further, by studying cosmological fields such as the CMB and LSS, we can also
learn about the distribution of matter in our Universe today.

We have discussed here the research problems that we have investigated as part of
my PhD work, mainly the prediction of noncommutative spacetime and the fundamental
assumption that our Universe is statistically isotropic. We have given the relevance of
these studies to physics and have also mentioned the various observational datasets that
were used. For testing the prediction of noncommutative spacetime, we have mainly used
CMB data from Planck and BICEP2, while for probing SI we have used CMB temperature
flucuations data from Planck.

Finally we introduce the software packages that have been used for these analyses. The
HEALPIX package provides a method to divide a spherical surface into equal area pixels.
It also comes with useful modules for decomposition of a field into spherical harmonics
and vice versa and generating simulated CMB sky maps of a specified resolution. CAMB
solves the Boltzmann equations for a given set of input parameters to estimate the CMB and
matter power spectra and the CMB transfer functions. COSMOMC is a software package
for cosmological parameter estimation from a combination of observed datasets.
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3
MORPHOLOGY OF RANDOM FIELDS IN

FLAT 2D SPACE

3.1 Introduction

We test the principle of Statistical Isotropy (SI), which is a fundamental assumption of
the standard ΛCDM cosmological model, using CMB data. For this purpose, we treat
the cosmological fields as random fields on two or three dimensional spaces. Statistical
analysis of these fields give us information on the broad features of the Universe, which
is how we develop our understanding of the Universe. In two dimensions, the Cosmic
Microwave Background (CMB) temperature and polarization fields [1,9,50] are among the
most important cosmological fields. The theory of Gaussian random fields on the sphere,
relevant to the CMB fields, was developed by Bond and Efstathiou [51]. This was based
on the theory of excursion sets of random fields developed by Adler [52]. To test the SI of
these CMB fields, we use mathematical quantities called Minkowski Tensors (MTs) which
carry information regarding the shape of closed curves. In this chapter, we review the
definitions of the scalar Minkowski Functionals (MFs), their tensor generalizations MTs,
in two dimensions, and discuss how the MTs can be used to search for violations of SI in
the CMB fields.

Scalar Minkowski Functionals have been widely used in the study of cosmological
fields [53–60]. MFs contain correlations of arbitrary order and are defined on real space.
MFs have been used to search for primordial non-Gaussianity [60–65], effect of residual
foreground in CMB data [66] and effect of lensing on CMB fields [67, 68]. However,
MFs are not sensitive to morphological information such as the shape and alignment of
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structures. Related quantites like the count of hot spots and cold spots [69–71] and extrema
counts [72] have also been applied to cosmological fields.

Minkowski Tensors are tensor generalizations of the scalar MFs and have been defined
for flat two and three dimensional spaces [73–78]. In this chapter we will briefly review the
scalar MFs and MTs in flat 2D space and also the advantages of using MTs over MFs. MTs
can be classified into translation invariant and translation covariant ones. One of the rank
two translation invariant MTs contains information about the shapes of connected regions
and holes in random fields and their relative spatial alignment. Ganesan and Chingangbam
[30] applied this method to the CMB temperature fluctuations and E mode of polarization
data given in Planck 2015 release [13] and found that the E mode data exhibit significant
level of alignment. We expect that an analysis of the full Planck data would shed more
light on the physical origin of this alignment.

This chapter is organized as follows, we first review the definitions of scalar MFs and
MTs in flat 2D space and focus on the translation invariant rank 2 MTs . Next, we describe
how to obtain connected regions and holes from a random field. The boundaries of these
connected regions and holes form closed curves that MT statistics can be applied to. We
discuss how information regarding the intrinsic isotropy of structures in a random field and
their relative alignment are contained in one of the MTs. We explain how the MTs can
used to study the statistical isotropy of random fields. Applications of MTs to CMB data is
covered in chapter 4.

3.2 Scalar Minkowski Functionals

For a closed curve in flat 2D space as shown in Fig. 3.1, we can define three MFs, the area
fraction, the contour length and the genus. Here we shall describe these quantities along
with their mathematical expressions.
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dl
k

Figure 3.1: A closed curve in flat 2D space. dl is the line element on the curve and κ
denotes the curvature at each point on the curve.

1. Area fraction: It is the ratio of the area enclosed by the closed curve to the total area
over which the field is defined. We shall denote it by V0. Mathematically, it can be
given as,

V0 ≡
1

A

∫
da

where, A is the total area over which the field is defined and da is the area element
in the region enclosed by the curve.

2. Contour length: It is the perimeter of the closed curve and we denote it by V1. It can
be written as,

V1 ≡
1

4

∫
C

dl

where, C denotes the closed curve and dl is the line element on C.

3. Genus: For a set of closed curves, the genus represents the number of closed curves.
Closed curves that form boundaries of hotspots are counted as +1, while those that
form boundaries of cold spots are counted as -1. A description of hotspots and cold
spots in random fields defined on flat 2D space is given in section 3.4. The genus for
a set of closed curves is denoted as V2 and is given by,

V2 ≡
1

2π

∫
C

κ dl

where, κ is the curvature for each point on the curves.

MF statistics can provide useful insights into the nature of the field. However, they do no
contain information on the shapes and alignment of the structures in the field. To get shape
and alignment information, we use Minkowski Tensors.
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3.3 Minkowski Tensors in flat 2D space

Scalar MFs are a subset of the more general Minkowski Tensors. In this section we review
the definitions of MTs of rank (m,n) on flat 2D space. We will then focus on the rank two
translation invariant MTs and discuss how they provide shape information.

For a closed curve C, we denote the position vector of a point on the curve by ~r, the
unit normal to the curve by n̂ and the local curvature of the curve at the point by κ. MTs
for the curve are defined as follows (see [77]):

Wm,0
0 =

∫
C
~r mda

Wm,n
1 = 1

2

∫
C
~r m ⊗ n̂nds

Wm,n
2 = 1

2

∫
C
~r m ⊗ n̂nκds,

(3.1)

where, C denotes the closed curve, da denotes the area element in the region enclosed by
the closed curve and ds is the line element on the curve. ⊗ denotes a tensor product of
two vectors and is defined as the symmetric product

(
~A⊗ ~B

)
ij

= 1
2

(AiBj + AjBi). ~rm

denotes the m-fold tensor product of ~r and similarly for n̂.

The usual scalar MFs are the rank-0 MTs. The rank-1 MTs are translation covariant.
MTs of rank-2 can be classified as translation covariant and translation invariant ones.
W 1,1

1 , W 0,2
1 , W 1,1

2 and W 0,2
2 are the translation invariant MTs. From these MTs, W 0,2

1 and
W 1,1

2 are dependent on each other. We choose the linearly independent translation invariant
MTs to be

W 1,1
1 = 1

2

∫
C
~r ⊗ n̂ds

W 1,1
2 = 1

2

∫
C
~r ⊗ n̂ds

W 0,2
2 = 1

2

∫
C
n̂⊗ n̂ds

(3.2)

These MTs are related to the scalar MFs as

V0E = W 1,1
1

V1E = W 0,2
1 +W 1,1

1

V2E = 2W 0,2
2

(3.3)

where E ≡ ê1 ⊗ ê1 + ê2 ⊗ ê2 is the unit matrix used to raise the rank of the usual scalar
MFs.
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Eqn. 3.3 implies that for a single curve, W 1,1
1 is proportional to the identity matrix and

does not provide any extra information over the area fraction. This will also hold for a set
of non-overlapping curves. In a similar way,W 0,2

2 is also proportional to the identity matrix
and does not provide any extra information over the genus. However, W 1,1

2 provides very
useful shape information in addition to the information provided by the contour length. We
explain in sections 3.5 and 3.6 how this information can be extracted from W 1,1

2 .

3.4 Connected regions and holes in random fields

In this section, we explain how we can obtain a set of connected regions and holes from a
given random field and apply MT statistics to the boundaries of these regions.

Consider a random field defined in flat 2D space. We can choose a threshold value, ν,
of the field and cut-off the field at this value. The regions which have field values greater
than the threshold, form connected regions. The set of such regions for a given value of the
threshold, together form an excursion set. The regions which have field values smaller than
the threshold, but which are surrounded on all sides by regions with field values greater
than the threshold, similar to a lake surrounded by land, are called holes. An example
of excursion sets obtained from a random field in two dimensions is given in Fig. 3.2.
The green curves represent the excursion set obtained by choosing a threshold value of 0,
while the blue and red curves represent excursion sets for threshold values 0.6 and -0.6
respectively.

The boundaries of such regions form closed curves to which MT statistics can be ap-
plied. By studying the MTs of these excursion sets, one can test the statistical properties
of the underlying random field. For example, if the field is Gaussian, then it will show up
in the amplitude of the scalar MFs and the MTs. If the field is statistically isotropic, then
it will show up in the intrinsic isotropy of the boundaries of excursion sets and their net
relative alignment. However, this information will only be captured in the MTs and not in
the scalar MFs. The next section explains how the MTs capture shape information from
the closed curves.
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Figure 3.2: Sample excursion sets from a random field in 2D space.

3.5 Shape parameter β

Here we focus on the MT W 1,1
2 as it contains information regarding the shape of the closed

curve [77]. The definition of W 1,1
2 for a single closed curve is given in Eqn. 3.2. Once we

have computed the elements of W 1,1
2 , we obtain the eigenvalues for this matrix. Let λ1 and

λ2 denote the two eigenvalues such that λ1 ≤ λ2. The eigenvalues do not change with the
rotation of the curve. The shape parameter β is then given by,

β ≡ λ1

λ2

(3.4)

It is important to note that the value of β does not change upon scaling the size of the
curve. β gives a measure of the intrinsic isotropy of the curve. We can show that the value
of β is one for any closed curve with m-fold symmetry, for m ≥ 3. Some examples of
isotropic convex structures are circles, equilateral triangles and equi-angular n-polygons.
By construction, the value of β can not be greater than one. A value of β smaller than one
indicates deviation from isotropy. As an example, for an ellipse, the more elongated the
ellipse, the smaller the value of β. In this way, β quantifies the isotropy of a closed curve.

3.6 Alignment parameter α

Here we discuss the relative alignment of a set of closed curves. First, we find W 1,1
2 for

each individual curve. Then we average each individual element over all the closed curves
to obtain the mean, W

1,1

2 . We denote the two eigenvalues of W
1,1

2 as Λ1 and Λ2 such that
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α=β α=1

0<α<1

Figure 3.3: α for a set of two identical ellipses for different angles between their semi-major
axes.

Λ1 ≤ Λ2. The alignment parameter α is then defined as,

α ≡ Λ1

Λ2

(3.5)

For a single curve, we find that α = β. For any set of circles with arbitrary radii, it is
straightforward to show that α = 1.

α gives a measure of the relative alignment between individual curves that are intrinsi-
cally anisotropic. In order to explain this, we consider a set of two identical ellipses. Each
individual ellipse has the same value of β, where 0 < β < 1. In the first case, let the
ellipses be arranged in such a way that their semi-major axes are orthogonal to each other.
For this case, we find that α = 1. Next, let the ellipses be arranged such that their semi-
major axes are aligned in the same direction. In this case, α = β. Finally, if the ellipses are
arranged such that the angle between their semi-major axes is less than 90◦, then we find
that 0 < α < 1. These cases are demonstrated in Fig. 3.3.

To understand how α measures the statistical isotropy of the set of curves, we visualize
the ellipses as follows. The translation invariance of W 1,1

2 allows us to translate one of the
ellipses so that the two have a common centroid. We first find out the average radial dis-
tances of the ellipses from the centroid, in each direction. We then denote the curve formed
by connecting the points which are at these average radial distances from the centroid in
each direction, as the locus curve. We expect that for the set of ellipses, α = 1, if their
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locus curve is isotropic. However, if the two ellipses are not identical, then their locus will
be anisotropic even if their semi-major axes are orthogonal to each other. In this case, we
would not recover α = 1 . We can extend this example to a distribution of ellipses and
we would find that α = 1 if the distribution is isotropic and α deviates from one when it
is anisotropic. We can generalize this understanding to any spatial distribution of closed
curves in flat 2D space and state that the distribution is statistically isotropic or unaligned
if α = 1 and anisotropic if α < 1.
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3.7 Summary

In this chapter, we have reviewed the definitions of the scalar MFs and the MTs for closed
curves in flat 2D space. MTs are tensor generalizations of the usual scalar MFs. They
contain additional information over their scalar coutnerparts. Of the three linearly inde-
pendent and translation invariant MTs in flat 2D space, we have focused on W 1,1

2 . For a
single closed curve, W 1,1

2 contains information on its intrinsic isotropy. Intrinsic isotropy
here refers to the m-fold rotational symmetry of the closed curve with m ≥ 3. For a set
of closed curves, W 1,1

2 contains inforamtion regarding the statistical isotropy or relative
spatial alignment of the curves.

We provide a new way to visualize a spatial distribution of closed curves in the context
of measuring statistical isotropy. The isotropy of the locus curve which we have defined,
gives a measure of the statistical isotropy of the distribution of closed curves. We have
explained this with examples of identical ellipses with different angles between their semi-
major axes. We have also shown how the information regarding the intrinsic isotropy of
individual curves and relative spatial alignment of a set of closed curves is encoded in the
rank-2 MT W 1,1

2 .
For a random field defined in flat 2D space, we have shown how excursion sets can

be obtained by choice of suitable threshold field values. The boundaries of structures in
the excursion sets form closed curves to which we can apply MT statistics. By studying
the MTs of a random field and their dependence on threshold values, we can get useful
insights into the properties of the field. This method can be applied to observational data of
cosmological fields and can be used as a test of the standard ΛCDM cosmological model.
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4
MINKOWSKI TENSORS FOR RANDOM

FIELDS ON THE SPHERE

4.1 Introduction

In chapter 3, we reviewed the definitions of the scalar MFs and the MTs for random fields
in flat 2D space. We are interested in the application of MTs to cosmological data such
as the CMB temperature fluctuations and Polarization and large scale structure. The CMB
fields are defined on the sphere and so the expressions for the MTs mentioned in chapter
3 can not be directly applied to CMB data. In this chapter we shall discuss two ways of
approaching this problem.

In the first method, as in [30], the CMB fields on the sphere are projected onto a two
dimensional plane using a stereographic projection. Next, the boundaries of the excursion
sets in the pixelized map are identified and the two dimensional MT statistics are applied to
the projections of the fields onto the plane. This method is applied to the data and then to
simulations based on the standard ΛCDM cosmological model. A comparison of the β and
α values obtained from data and from the simulations gives a measure of the agreement
between the model and the data. In [30], the authors used this method and found good
agreement between the data and the simulations for the CMB temperature fluctuations data
from the Planck 2015 release. They found a 4-σ difference between the simulations and
Planck 2015 data for the E mode of CMB polarization.

It is important to know whether the stereographic projection has a significant contribu-
tion to the difference between data and simulations found in [30], before we investigate the
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physical origin of such disagreement. In this context, we are interested in measuring the
MTs for the CMB fields directly on the sphere. We do so by generalizing the definition of
the MTs defined on flat space to closed curves on the surface of a sphere. The MTs are
re-expressed in terms of the field derivatives which can be computed for every point in the
field. This enables us to compute the average value of the MTs per unit area. We compute
MTs for the data and for 100 ΛCDM simulations and compare the two to test the level of
agreement.

This chapter is organized as follows, first we discuss the computation of the MTs using
stereographic projection on to a plane, in section 4.2. In section 4.3, we generalize the
definitions of MTs to general curved space and in particular, on the surface of a sphere.
Then we calculate analytically the ensemble average of the MTs for isotropic Gaussian and
Rayleigh fields on the sphere. We demonstrate how the MTs can be estimated numerically
from a pixelated map, in section 4.5. Finally, in section 4.7, we apply this method to
calculate the MTs directly on the sphere, to the Planck 2015 temperature fluctuations data
and ΛCDM simulations and present a comparison of the two.

4.2 α for CMB data using stereographic projection

In this approach, the fields defined on the sphere are first projected on to a 2D plane. Then
the MTs are calculated numerically from the projected fields. The mean of the shape pa-
rameter β, and the aligment parameter α can then be estimated from the eigenvalues of the
MTs. Vidhya and Pravabati applied this method [30] to the CMB temperature fluctuations
and E mode data given in the Planck 2015 data release. They found very good agreement,
≈ 1-σ between the data and simulations based on the standard ΛCDM cosmological model
for the temperature fluctuations data. For the E mode data, they found disagreement at the
level of 4-σ with the simulations. An understanding of the origin of this difference can lead
to important cosmological insights.

The stereographic projection preserves the relative angles between the line elements of
the closed curve, however the size of the structure can get scaled. For example, circles
on the surface of a sphere are projected as circles on the plane with the size being scaled
depending on the location on the sphere. This is demonstrated in Fig. 4.1. This means that
the sizes of the hot and the cold spots can get scaled and it can lead to numerical artefacts
in the calculations of α for these structures. Another issue is that with an increase in the
level of anisotropy, the numerical errors associated with the pixelization of the field also
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Figure 4.1: Stereographic projection of a circle on the sphere, on to a plane.

increase. This is seen in table 2 of [30]. For a pair of identical ellipses, the percentage
numerical error in the computation of α increases as the major axes of the ellipses are
more aligned. Higher alignment between the structures corresponds to a higher level of
anisotropy. When the major axes of the ellipses are orthogonal to each other, which means
the most isotropic case, the numerical error in compuation of α is 0%. In the case where
the the major axes of the ellipses are aligned in the same direction, which means most
anisotropic, the error in computation of α goes up to 24%.

By computing the MTs for the fields directly on the sphere, we can mitigate the nu-
merical errors introduced by the stereographic projection of the field, leading to a more
accurate estimate of the MTs. Before making physical inferences from the results of [30]
for the CMB E mode data, it is important to check whether the disagreement persists even
with direct a direct estimation of MTs on the sphere. It is also desirable to have an ana-
lytical understanding of the MTs for fields defined on curved spaces. For these reasons,
we have developed a method for computing the MTs on the sphere and it is discussed in
section 4.3.

4.3 Generalizing Minkowski Tensors to closed curves on
the sphere

We begin by revisiting the definitions of the MTs in flat space. The linearly independent
translation invariant MTs are given by [77],

W 1,1
1 = 1

2

∫
C
~r ⊗ n̂ds

W 1,1
2 = 1

2

∫
C
~r ⊗ n̂ds

W 0,2
2 = 1

2

∫
C
n̂⊗ n̂ds
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From Eqn. 3.3, W 1,1
1 is proportional to the Identity matrix and does not provide any

extra information over the scalar MFs. W 0,2
2 is also proportional to the Identity matrix, but

its two diagonal elements provide independent tests of the Gaussianity of the field. W 1,1
2

contains very useful information about the shape of the structures. In this section, we will
focus on the two MTs W 1,1

2 and W 0,2
2 .

The expressions for W 1,1
2 and W 0,2

2 contain the position vector term, which is not well
defined for a general curved manifold. The CMB fields are defined on the sphere and so
these definitions of MTs can not be directly applied to them. In order to apply the MT
statistics to the CMB fields, we must first generalize the definitions to the sphere. For any
given curved manifold, the tangent vector space is defined at every point on the manifold.
From this tangent vector space, a unique tangent vector is associated with each point on a
curve. With this knowledge, we re-express the MTs in terms of the tangent vector and the
curvature of the curve at each point by using integration by parts.

[79, 80] contain an introduction and study of integral geometry for tensors on spaces
with affine connections. Tensor integration consists of parallel transporting the tangent
vectors to a point on the curve and then adding them together in the same tangent vector
space. It is defined as the inverse operation of covariant differentiation. With this notion of
tensor integration, we define two quantities for a smooth closed curve on a general curved
manifold as,

W1 ≡
1

4

∫
C

T̂ ⊗ T̂ ds

W2 ≡
1

2π

∫
C

T̂ ⊗ T̂ κ ds (4.1)

T̂ is the unit tangent vector at each point on the curve and κ is the geodesic curvature
of the curve at every point on the curve. W1 is the tensor generalization of the scalar MF
contour length and we shall refer to it as the Contour Minkowski Tensor (CMT).W2 is the
generalization of W 1,1

2 to any curved manifold in two dimensions. It is to be noted that
while W 1,1

2 and W 0,2
2 contain the position vector, W1 andW2 depend only on the tangent

vector and the geodesic curvature and can hence be applied to closed curves on the surface
of a sphere. The work presented here has been published in [81].
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4.4 Analytical computation of MTs on the sphere

In this section we will derive analytic expressions for the computation of the element by
element average of W1 and W2 over all the closed curves for a given field on the sphere.
We shall denote them byW1 andW2 respectively. We start with the generalized definitions
given in Eqn. 4.1. With the introduction of a suitable Jacobian and the Dirac δ-function ,
we convert the line integrals to area integrals, as done in [57], to get,

W1 =
1

4

∫
S2

da δ(u− νt) |∇u| T̂ ⊗ T̂ (4.2)

W2 =
1

2π

∫
S2

daδ(u− νt)κ |∇u| T̂ ⊗ T̂ (4.3)

where u is the field, νt is the threshold, and da is the area element. If we can express the
tangent vector in terms of the field, then the whole of the integrand would be in terms of
the field and we can perform the analytic calculation. This can be achieved as follows. For
each point on the curve, the normal vector can be given as ~n = ∇u = (u;1, u;2), where
n is the normal vector, ∇ denotes the covariant derivative on the sphere and u;i is the i-
th component of the covariant derivative. The tangent vector is orthogonal to the normal
vector and hence we can choose to write it in terms of the field as,

T̂i = εij
u;j

|∇u|
(4.4)

εij denotes the antisymmetric tensor and ε12 = 1. As explained in [81], κ can be written
in terms of the field derivatives as,

κ =
2u;1u;2u;12 − u2

;1u;22 − u2
;2u;11

|∇u|3
(4.5)

By substituting Eqns. 4.4 and 4.5 in Eqns. 4.2 and 4.3, we obtain

W1 =
1

4

∫
S2

da δ(u− νt)
1

|∇u|
M (4.6)

W2 =
1

2π

∫
S2

da δ(u− νt)
κ

|∇u|
M (4.7)

the matrixM denotes the tensor product T̂ ⊗ T̂ and can be given as
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M =

 u2
;2 u;1u;2

u;1u;2 u2
;1

 (4.8)

Even though the determinant ofM vanishes at each point on the sphere, we can show
that the determinants ofW1 andW2 will not be zero. The off-diagonal elements u;1u;2 will
be zero when u;1 and u;2 are not correlated. For such a case, the diagonal elements ofW1

andW2 will be their eigenvalues and their product will give the respectively determinants.

For a random field on the surface of a sphere, Eqns. 4.6 and 4.7 can be used to ana-
lytically compute the MTs. In section 4.5, we discuss the numerical estimation of these
quantities from pixelated maps.

4.4.1 Ensemble expectation values for isotropic Gaussian fields

Here we shall compute the ensemble expectation values per unit area of the MTs for an
isotropic Gaussian field u, defined on the surface of a sphere. For this we need the joint
Probability Distribution Function (PDF) of the field and it’s derivatives. Let ξ(r) denote
the two point function of u with r ebing the distance between the two points. The variance
of the field and it’s derivatives can be expressed in terms of ξ(r) as,

σ2
0 =

〈
u2
〉

= ξ(0)

σ2
1 =

〈
|∇u|2

〉
= 2ξ′′(0)

σ2
2 =

〈∣∣∇2u
∣∣2〉 = 2ξ′′′′(0) (4.9)

′ represents differentiation with respect to r. Let ~X denote the vector consisting of u and
its first and second order derivatives. We have ~X = (u, u;1, u;2, u;11, u;22, u;12) with a joint
probability distribution given as,

P( ~X) =
1√

(2π)6 detΣ
exp−1

2

(
~XΣ−1 ~X

)
(4.10)

and the covariance matrix Σ is given [53] as,
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Σ =



σ0 0 0 −σ1/2 −σ1/2 0

0 σ1/2 0 0 0 0

0 0 σ1/2 0 0 0

−σ1/2 0 0 σ2/2 σ2/6 0

−σ1/2 0 0 σ2/6 σ2/2 0

0 0 0 0 0 σ2/6


(4.11)

We can then write the ensemble expectation values of the MTs for each threshold νt as,

〈
W1(νt)

〉
=
∫

d ~X P( ~X)
∫
S2 da δ(u− νt) 1

|∇u|M〈
W2(νt)

〉
=
∫

d ~X P( ~X)
∫
S2 da δ(u− νt) κ

|∇u|M
(4.12)

The field u is isotropic and hence the area integral and the ~X integrals commute, allow-
ing us to perform the ~X integral first. This gives us the ensemble expectation values ofW1

andW2 per unit area,

〈w1(νt)〉 = 1
16
√

2rc
e−ν

2
t /2 I

〈w2(νt)〉 = 1
8
√

2π3/2r2c
ν e−ν

2
t /2 I

(4.13)

where rc ≡ σ0/σ1 is the correlation length and I is the identity matrix. The alignment
parameter at every threshold is α = 〈w1〉11 / 〈w1〉22 = 1.

For any Gaussian field isotropic or not, u;1 and u;2 are always uncorrelated and hence
the diagonal terms of 〈w1(νt)〉 are always zero. The diagonal elements of 〈w1(νt)〉 contain
information on the Gaussian nature of the field. The correlation length rc contains cosmo-
logical information. The statistical isotropy (SI) of the field is captured by the equality of
the diagonal elements of 〈w1(νt)〉. For an isotropic field, α = 1, and 0 < α < 1 for an
anisotropic field. The diagonal elements of 〈w2(νt)〉 are always identical irrespective of the
level of isotropy of the field. Eqn. 4.13 is valid for flat and curved spaces alike.

4.4.2 Ensemble expectation values for isotropic Rayleigh fields

For the CMB, the total polarization intensity has a Rayleigh PDF. Thus it is important to
have an analytical understanding of the MTs for Rayleigh fields on the sphere before we
apply MT statistics to the CMB polarization field. The approach we take is similar to
the one in section 4.4.1. Let Q and U denote the usual stokes parameters for the CMB
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polarization field, then we construct the 12 dimensional vector ~Y from Q, U and their
derivatives, ~Y = (Q,U,Q;i, U;i, Q;ij, U;ij), where i, j = 1, 2. The joint PDF of ~Y can then
be given as,

P(~Y ) =
1√

(2π)12detΣ
exp

(
−1

2
~Y Σ−1 ~Y

)
(4.14)

where Σ is the covariance matrix for a Rayleigh distribution (expression for Σ is given in
section 2.2 of [82]). We then calculate the integrals in a similar way as in 4.4.1 to get,

〈w1(νt)〉 = 1
2rc
ν e−ν

2
t /2 I

〈w2(νt)〉 = 1
8πr2c

(ν2
t − 1) e−ν

2
t /2 I

(4.15)

The information contained in 〈w1(νt)〉 and 〈w2(νt)〉 here is to be interpreted in the same
way as in section 4.4.1.

4.5 Numerical estimation of α

When dealing with real data, the maps are pixelated and Eqns. 4.6 and 4.7 can not be
directly applied. We compute the MTs numerically for these maps. Before we can compute
MTs numerically for pixelated maps, we need to find a suitable approximation for the δ-
function. We follow the method in [57] and approximate the δ-function as follows:

δ(u− νt) =
1

∆νt
(4.16)

for pixels having the value of the field between νt−∆νt/2 and νt + ∆νt/2. ∆νt is the size
of the bin for the threshold. For the rest of the pixels, δνt = 0.

The approximation of the δ-function introduces a numerical error in the estimation of
the MTs. This error has been studied and quantified in [83]. LetWGauss

1 denote the matrix
obtained for a Gaussian isotropic field using Eqn. 4.13 . Then the numerical error in the
diagonal elements ofW1 associated with the approximation of the δ-function, ∆W1, can
be given by [83],

∆W1 =

√
π

4
√

2

√
τ

∆ν
(erf(ν+)− erf(ν−))−WGauss

1 (4.17)

where ν+ = ν + ∆ν/2 and ν− = ν −∆ν/2.
We simulated an isotropic Gaussian CMB temperature map and computedW1 analyt-

ically based on Eqn. 4.13 and numerically based on Eqn. 4.6. By taking the difference
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Figure 4.2: Top panel: Diagonal elements of W1 from one simulated isotropic Gaussian
CMB temperature fluctuations map. The black solid line represents the analytic calculation
using Eqn. 4.13, while the red dots represent the numerical computations using Eqn. 4.6.
Bottom panel: Numerical error in the respective elements obtained by subtracting the nu-
merical results from the corresponding analytic ones. The error is in good agreement with
what is expected from the δ-function approximation.

ofW1 computed by these two methods, we found that the error is in good agreement with
what is expected from the δ-function approximation as given in [83]. This is shown in
Fig. 4.2. By using this approximation for the δ-function in Eqn. 4.6, we can compute α
numerically for a pixelated map.

4.6 Application to CMB simulations

We want to use Eqn. 4.6 to numerically estimate α for the CMB temperature fluctuations
data given in the Planck 2015 data release [13]. But first we apply our method to simulated
Gaussian CMB maps with input isotropic power spectrum in order to test the reliability
of our method. For these maps it is expected that we should recover α values close to
one. In this section, we will study the effect of the Galactic and point sources mask, beam
smoothing and the pixel size on the estimation of α as a function of the threshold.
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4.6.1 Galactic and point sources mask

The level of foreground contamination is very high for regions close to the Galactic plane.
For such regions, recovering the clean CMB signal is difficult and hence they are excluded
from cosmological analysis along with the pixels that contain point sources. In our analysis,
we use the common mask UT78, which is given by the Planck team [13] as the preffered
mask for temperature analysis. UT78 has a sky fraction of 77.6%. When excluding some
regions of the sky from the analysis, closed curves near the boundaries of these regions
can get cut off and contribute junk values to the estimation of α. Understanding the impact
of masking on the estimation of α is important. We study this effect with the help of
simulations.

First we generate 100 realizations of the CMB temperature sky with FWHM=20′ using
the HEALPIX [36, 37] package along with the CMB angular power spectrum from the
CAMB [47, 48] package. We compute α for each realization and the mean α and standard
deviation σα over the 100 realizations. α obtained in this way is represented by the blue
line in the top left panel of Fig. 4.3 . α values for thresholds further away from the mean are
found to be relatively smaller than those for thresholds closer to the mean. This is because
there are fewer structures away from the mean that α is avergaed over and the probability
of them being isotropically distributed is very small. We then mask the simulations with
the UT78 and and compute α and σα for the masked maps. These are represented in the top
left panel of Fig. 4.3 by the red line. α values for the masked simulations are found to be
relatively smaller than those for the unmasked ones. This result is expected since masking
removes regions of the sky from the analysis. This leads to α being averaged over fewer
structures and hence a larger statistical error.

4.6.2 Beam smoothing

The observing instrument can contribute residual noise to the CMB data leading to an
inaccurate estimation of α. In order to mitigate this effect, the maps are smoothed with a
Gaussian beam with a suitable FWHM. Smoothing also provides a way to reduce the effect
to closed curves that get cut off at the mask boundaries, on the estimation of α. Here we
discuss how smoothing affects the estimation of α. We repeat the procedure mentioned in
section 4.6.1 and calculate α for the masked simulations with a different smoothing angle
of 60′. These are represented in the top right panel of Fig. 4.3 by the red line, while the
blue line represents masked simulations with an FWHM of 20′. The maps smoothed with
FWHM=60′ are found to have α values relatively smaller than those with FWHM=20′.
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Smoothing reduces the number of structures that α is averaged over, leading to a larger
statistical error in the estimation of α.

4.6.3 Pixel size

When smoothing a map, it is decomposed into spherical harmonics and these are convolved
with a Gaussian beam of the given FWHM. During this process, it is important to make
sure that the smoothing scale is not very large in comparison with the size of a pixel. We
compare α obtained from the SMICA CMB temperature data and α averaged over 100
pure CMB simulations, each with the HEALPIX resolution parameter Nside=2048, with
and without first downgrading the maps to Nside=512. We find a better agreement between
the data and the simulations when the maps are downgraded to Nside=512. The reason for
this is not well understood.

In order to demonstrate this effect, we compare α computed from 100 pure CMB sim-
ulations with Nside=1024, with that obtained from the same set of simulations after first
downgrading them to Nside=512. The maps were smoothed with a Gaussian beam of
FWHM=20′ in both the cases. They are represented by the blue and red lines respec-
tively in the bottom middle panel of Fig. 4.3. We found that α values for maps that were
downgraded were lower than for those that were not. This is expected because the process
of downgrading is similar to that of beam smoothing and leads to fewer structures that α is
averaged over.
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Figure 4.3: Top left panel: Comparison of α for simulated CMB temperature maps
smoothed to FWHM=20′, for unmasked (blue line) and masked (red line) simulations.
Top right panel: Comparison of α for masked CMB temperature simulations smoothed
to FWHM=20′ (blue line) and FWHM=60′ (red line). Bottom panel: Comparison of α
values computed from CMB temperature simulations having Nside=1024 and FWHM=20′,
with and without downgrading to Nside=512. All plots are results of averaging over 100
realizations. The error bars are the sample variance for 100 realizations.
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4.7 Application to Planck data

In this section, we apply our method to the CMB temperature fluctuations data given in the
Planck 2015 data release. The results presented here are on arxiv [84] and has been ac-
cepted for publication at JCAP. We want to test the SI of the observed data by comparing α
obtained from the observations to the α obtained from mock Planck data. The observations
and simulations are first masked with UT78, downgraded to Nside=512, smoothed with a
Gaussian beam of FWHM=20′ and then α is computed from them. The numerical error in
α due to the δ-function approximation mentioned in section 4.5 is well understood [83] and
is almost identical for all the realizations with the same resolution. Hence it does not affect
the estimation of the difference in α values between the data and the simulations and we
have not subtracted this error. In all the figures here, α is used to denote both the α from
the data as well as the α from the simulations.

4.7.1 SMICA CMB temperature map

We have used the CMB temperature map provided by the SMICA pipeline [39, 40]. It
has a resolution of Nside=2048 and FWHM=5′. The map is downgraded to Nside=512,
smoothed with a Gaussian beam of 20′ and masked with the common mask UT78. Next,
we estimate αdata from this map and it is represented by the red line in Fig. 4.4. For
the mock data, we take 100 publicly available Full Focal Plane (FFP8) SMICA simulated
maps including the instrument beam effect and residual foreground and noise. We then
downgrade these maps to Nside=512, smooth them with a Gaussian beam of 20′ and mask
them with UT78 before computing αsim from them. It is represented by the black line
in Fig. 4.4. A comparison of the data and the FFP8 SMICA simulations both of which
contain the CMB, instrument effects and residual foreground and noise, yields an excellent
agreement, ≤ 1-σ, between the data and the simulations. A comparison of αdata and αsim

computed from 100 pure CMB simulations leads to the same conclusion.

4.7.2 Individual frequency data

Here we test for alignment of structures in the beam-convolved CMB temperature maps at
individual observing frequencies. Planck observes the CMB sky in nine frequency channels
[38], ranging from 30 GHz to 857 GHz. We shall denote these by T obs. There are four main
algorithms which are used to extract the clean CMB signal from the total sky temperature
[13]. They are Commander [41, 42], NILC [43, 44], SEVEM [45, 46] and SMICA [39, 40]
and provide CMB subtracted maps for each observation frequency of Planck, which we
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Figure 4.4: Comparison of α estimated from the SMICA CMB temperature map (red line),
and αsim computed from 100 FFP simulations (black line).

shall denote by T fg. The clean beam-convolved CMB maps for each frequency, T clean,
are then obtained by subtracting the foreground maps from the observed sky temperature
maps as,

T clean ≡ T obs − T fg (4.18)

The frequencies ranging from 30 GHz to 70 GHz are referred to as the Low Frequency
Instrument (LFI) channels while those from 100 GHz to 857 GHz are referred to as the High
Frequency Instrument (HFI) channels. The LFI data have a resolution of Nside = 1024 and
the HFI data have a resolution of Nside = 2048. In our analysis, we first downgrade all
the maps to a resolution of Nside = 512, mask them with UT78 and smooth them with a
Gaussian beam of FWHM=20′ and then compute MTs from them. Planck also provides
simulations of the CMB sky for all the LFI and HFI channels. We repeat the same procedure
for the simulated data and compare the α computed from individual frequency data to
those computed from the corresponding simulations. The results for individual frequency
channels are plotted in figure 4.5.

To interpret the SI of the observational data described above, we compare them with
mock Planck data. We compute α for 100 FFP9 simulations of the CMB temperature
sky given in [38] for each individual observing frequency. A comparison of the data, which
contains CMB and instrument beam effects, with the FFP9 simulations containing the same
is shown in figure 4.5. The FFP9 simulations are represented by the black lines while the
maps cleaned by the Commander, NILC, SEVEM and SMICA pipelines are represented
by the purple, blue, green and red lines respectively. As mentioned earlier, αsim is the mean
over 100 simulations. σα is the standard deviation over the 100 simulations and is used as
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Figure 4.5: Comparison of α data for the Planck observation frequencies with α sim for
beam-convolved CMB temperature maps from 100 Planck simulations for the correspond-
ing frequencies. There seems to be good agreement between the data and the simulations
which include the instrumental beam effect for all frequency channels, except 30 GHz.
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the 1-σ error bar in our analysis.

α values for thresholds further away from the mean are relatively smaller, as explained
in section 4.6.1. We find that the α computed from the data is consistent with that computed
from the corresponding simulations at the level of 1-σ, for the frequencies ranging from 44
GHz to 857 GHz. However, there is significant difference (≈ 2-σ) between the α values
computed from the data and the simulations for the case of the 30 GHz channel. The reason
for this disagreement is not yet understood, but we suspect that an inaccurate estimation
of the beam effect in the maps could be causing it. In order to confirm the source of this
disagreement, we need a better understanding of the dependence of α on the instrument
beam effect. We also find the same trends in the results when the procedure is repeated for
each frequency channel with the maps being smoothed to an FWHM of 60′. The estimation
of α is not strongly affected by the addition of noise to the simulations for frequencies upto
353 GHz. Although, the addition of noise drastically affects the α estimates for the 545
GHz and 857 GHz simulations. This is expected because for the 545 GHz and 857 GHz
channels, the CMB signal to noise ratio is smaller.

4.7.3 Quantifying the difference between data and simulations

The quantity Dα defined below gives a measure of the deviation of the data from the simu-
lations,

Dα ≡
∣∣∣∣α data − α sim

σ sim
α

∣∣∣∣ (4.19)

where the superscripts, “data” and “sim” denote the observed data and the Planck ΛCDM
simulations respectively. Again, σα is the 1-σ error bar, which is the standard deviation
computed from the 100 simulations. Dα measures the level of disagreement between the
data and the simulations. A smaller Dα value indicates good agreement between the theory
and the observed data. W1 is averaged over fewer structures for thresholds away from the
mean as explained in section 4.6.1. Hence α values calculated for these thresholds are less
significant. To get an accurate estimate of the level of agreement between the data and the
simulations, the Dα values should be averaged over a range of thresholds for which the α
values are highly significant. We average Dα over the threshold range: - 0.8 to + 0.8, for
each dataset. For the maps smoothed with a Gaussian beam of FWHM=20′, the Dα values
are listed in Table 4.1. If we choose to averaged Dα over the threshold range: - 1 to + 1,
then the disagreement between the simulations and the observed data is reduced. However,
there is still a significant disagreement ≈ 1.9-σ for the 30 GHz channel.
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Dα 30 GHz 44 GHz 70 GHz 100 GHz 143 GHz 217 GHz 353 GHz 545 GHz 857 GHz

COM 2.03 0.59 0.63 0.73 0.75 0.66 0.67 0.70 0.73

NILC 1.89 0.82 0.71 0.63 0.68 0.75 0.76 0.75 0.77

SEVEM 2.01 0.60 0.69 0.66 0.72 0.69 0.67 0.65 0.71

SMICA 2.01 0.69 0.78 0.70 0.61 0.60 0.62 0.61 0.61

Table 4.1: Dα values averaged over thresholds, νt, from −0.8 to +0.8, for CMB tempera-
ture for various Planck datasets smoothed with a Gaussian beam of FWHM=20′.

4.8 Summary

MTs contain additional shape information over their scalar counterparts. While the scalar
MFs have been used in cosmology to study properties such as the Gaussian nature of cos-
mological fields, MTs provide a means to test the SI of these fields. The usual definitions of
the 2D linearly independent translation invariant MTs contain a position vector term, which
is not well defined for curved spaces. This means that the MT statistics can not be directly
applied to the CMB fields which are defined on the sphere. In [30], the authors applied
the MT method to the CMB temperature fluctuations and E mode fields by first projecting
these fields on to a plane. They found good agreement between the data and the simulations
for the temperature maps, but the E mode data was found to deviate from the ΛCDM simu-
lations at the level of 4-σ. It is important to gain an analytical understanding and numerical
estimation of MTs for random fields directly on the sphere before interpreting the SI of the
data.

We have generalized the definitions of the MTs to curved spaces. This is achieved by
using integration by parts in the usual definitions of the MTs and re-expressing them in
terms of the tangent vector, which is always well defined for any curved space. By con-
verting the line integrals in the MT definitions to area integrals with the use of a suitable
Jacobian, we are able to re-write the definitions in a form which can be easily computed for
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Minkowski Tensors for random fields on the sphere

any smooth random field. It allows for the direct computation of the MTs for CMB fields
which are defined on the surface of a sphere. We also describe a method for the numerical
estimation of the MTs for pixelated maps on the sphere, by using an approximation for the
δ-function as in [57]. We have computed the ensemble average of the MTs W1 and W2

for isotropic Gaussian and Rayleigh fields on the sphere. The information on the SI of the
field is contained in the equality of the eigenvalues ofW1, while information on the Gaus-
sian/Rayleigh nature is encoded in the amplitude of the expression forW1. The diagonal
elements ofW2 also provide independent probes of the Gaussianity of the field. This work
has been published in the Journal of Cosmology and Astroparticle Physics (JCAP) [81].

We have applied the method described above to the CMB temperature fluctuations data
given as part of the Planck 2015 data release [38]. We first used our method to compute
the alignment parameter α from simulations and investigate the effect of masking, beam
smoothing and pixel size on the estimation of α. We define the quantity Dα which gives a
measure of the level of disagreement between the observations and the simulations. Section
4.7.1 describes the application of this method to the CMB temperature fluctuations map
provided by the SMICA pipeline and a comparison of the α thus obtained, to those obtained
from the FFP8 simulations. The data is found to agree well with the simulations, ≤1-σ.
Further, we compare the α values estimated from the beam-convolved maps at individual
frequencies given in the Planck data, with the corresponding FFP9 simulations. We find
good agreement ≈1-σ between the data and the simulations for all frequencies except 30
GHz. The α values estimated from the 30 GHz data differ by ≈2-σ from those estimated
from the correspoding simulations. The origin of this difference is not well understood but
we suspect that it could arise due to an inaccurate estimation of the beam effect. This work
is on arxiv [84] and has been accepted for publication at JCAP.
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5
MINKOWSKI TENSORS AS TOOLS FOR

CONSTRAINING REDSHIFT SPACE

DISTORTION

5.1 Introduction

MTs statistics can be used to probe statistical properties such as Gaussianity and isotropy
of random fields. They carry shape and direction information that is not there in the scalar
MFs. The previous chapter describes the generalization of MTs to random fields on the
sphere and application to the CMB temperature fluctuations field. These statistics were
applied to non-Gaussian density fields constructed from slices of mock galaxy simulations
in [85]. These fields contain a preferred direction because of the redshift space distortion
effect, which is discussed below.

When the positions of a spatial distribution of galaxies is plotted in redshift space, the
distribution appears squashed. This is because of the peculiar velocities of the galaxies
causing a Doppler shift in addition to the cosmological redshift and is known as Redshift
Space Distortion (RSD). The Hubble’s law which relates observed redshifts to distances
then gives an inaccurate estimate of the distance to the object. For galaxies that are bound
in a virialized system, the Doppler shift associated with their peculiar velocities causes the
system to appear elongated along the line of sight. This effect is called the “Fingers of
God” effect. When a galaxy cluster assembles, the galaxies fall inwards towards the center
of the cluster and the Doppler shift associated with their motion causes the system to look
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Minkowski Tensors as tools for constraining redshift space distortion

squashed along the line of sight. This effect is known as the Kaiser effect.

In [85], the three dimensional density field was decomposed into two dimensional
slices before applying MT statistics. This method is useful for photometric redshift cat-
alogs which have large galaxy number density and volumes, but relatively poor informa-
tion on the position along the line of sight. It is possible to directly analyze the full three
dimensional density field due to the large spectroscopic galaxy catalogs becoming avail-
able [86–89]. The full three dimensional field contains more information than the slices
that it is divided into. Additionally, the two and three dimensional statistics are expected
to have a different sensitivity to bias, shot noise and redshift space distortion. Hence it is
desirable to perform the analysis of the full field without binning it into two dimensional
slices.

In this chapter, we apply the MT statistics to random fields in three dimensions. First,
we derive an analytic expression for estimating MTs from a three dimensional density field
and compute the ensemble expectation values of the MTs for isotropic Gaussian fields.
We then give a numerical and a semi-analytic method to estimate MTs from a discretely
sampled three dimensional field and apply our method to an isotropic Gaussian field in three
dimensions. Finally, we study the effect of anisotropy of the field on the MTs and show
that the MTs can constrain the linear redshift space distortion parameter. RSD modifies
the shape of large scale structures along the line of sight of the observer and generates
anisotropic iso-density contours. Here we use the three dimensional rank two translation
invariant MTs W 0,2

1 and W 0,2
2 to search for the anisotropy generated by RSD. We calculate

the ensemble average ofW 0,2
1 andW 0,2

2 for an isotropic Gaussian field and also demonstrate
a method to estimate these MTs from a discretely sampled field by generating iso-density
surfaces. We discuss the effect of the linear RSD operator on W 0,2

1 , W 0,2
2 and how it can be

used to constrain the RSD parameter.

This chapter is organized as follows. In section 5.2, we review the definitions of the
MTs in three dimensions. We compute the ensemble average of the MTs for an isotropic
Gaussian random field in section 5.3. Section 5.4 contains a description of the algorithm
that we use to numerically estimate the MTs from a pixelated dataset. We apply a linear
RSD operator to simulated isotropic Gaussian density fields and discuss how it affects the
elements of the MTs in section 5.5. We also explain how this method probes the anisotropy
generated by the action of the linear RSD operator and hence can be used to constrain the
RSD parameter from observations.

43



Minkowski Tensors in 3D

5.2 Minkowski Tensors in 3D

In this work, we use the rank two MTs which can be defined as [78],

W 2,0
0 ≡ A0

∫
Q

~x 2 dV (5.1)

W r,s
t ≡ At

∫
∂Q

Gt ~x
r ⊗ n̂ s dA (5.2)

where t=1,2,3 and (r, s)=(2,0), (1,1) or (0,2). ~x and n̂ are respectively the position vector
and the unit normal vector to the bounding surface. G1 = 1, G2 = (κ1 + κ2) /2 and
G3 = κ1 · κ2, where κ1 and κ2 are the principle curvatures of the bounding surface for
each point. ⊗ denotes the symmetric tensor product of two vector quantities and is defined
as
(
~A⊗ ~B

)
ij

= 1
2

(AiBj + AjBi). ~x r represents the n-fold symmteric product of ~x with

itslef and similarly for n̂ s. At is the normalization constant which is chosen so as to match
the scalar MFs. A0 = 1/V , A1 = 1/6V and A2 = 1/3πV . Q represents the volume of
the excursion set and dV denotes the volume element in it, while ∂Q represents the area
binding the region and dA represents the area element on it.

The Eqns. 5.1, 5.2 give a complete set of 3 × 3 matrices that can be constructed from
~x and n̂ integrated over Q and ∂Q. However, not all MTs defined this way are linearly
independent. The six linearly independent MTs are: W 2,0

0 , W 2,0
1 , W 2,0

2 , W 2,0
3 , W 0,2

1 and
W 0,2

2 . From these six MTs, only W 0,2
1 and W 0,2

2 are translation invariant and we will focus
on these two for this work. They can be given by,

W 0,2
1 =

1

6V

∫
∂Q

n̂2 dA (5.3)

W 0,2
2 =

1

3π V

∫
∂Q

G2 n̂
2 dA (5.4)

W 0,2
1 and W 0,2

2 computed from a given random field can give us useful information
about the statistical properties of the field. In the next section, we compute the ensemble
average of W 0,2

1 and W 0,2
2 for an isotropic Gaussian random field in three dimensions.
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5.3 Ensemble average for an isotropic Gaussian field

For a smooth isotropic Gaussian random field u in three dimensions, let ν denote the thresh-
old which defines the boundary ∂Q of the excursion set. In order to analytically perform
the integration for W 0,2

1 and W 0,2
2 , we write down the respective expressions in terms of

the field and its first and second order derivatives, ui and uij . The subscripts i, j represent
differentiation with respect to the coordinates xi, xj and run over the range 1 ≤ i, j ≤ 3.
The unit normal vector to the iso-density surface bounnding the excursion set is orthogonal
to the surface and can be given as, n̂ = ∇u/ |∇u|. By using a delta function, δ(u− ν), the
area integrals can be transformed into volume integrals to give,

W 0,2
1 = A1

∫
dV δ(u− ν)

1

|∇u|
M (5.5)

W 0,2
2 = A1

∫
dV δ(u− ν)

G2

|∇u|
M (5.6)

where the matrixM can be given as,

M =


u2

1 u1u2 u1u3

u1u2 u2
2 u2u3

u1u3 u2u3 u2
3

 (5.7)

For a given surface, the mean curvatureG2 is related to the unit normal vector to the surface
as,

G2 = −1

2
∇ · n̂ (5.8)

G2 can be expressed in terms of the field derivatives as,

G2 =
1

2 |∇u|3
[
2 (u1u2u12 + u2u3u23 + u1u3u13)−

(
u2

1(u22 + u23) + u2
2(u11 + u33) + u2

3(u11 + u22)
)]

(5.9)
We define the quantities σ0 and σ1 as,

σ2
0 ≡ 〈u〉

2 (5.10)

σ2
1 ≡ 〈∇u〉

2 (5.11)
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The non-zero correlations which contain the second order field derivatives are,

〈uiiuii〉 ≡ c, 〈uijuij〉i 6=j ≡ s,

〈uiiujj〉i 6=j ≡ q,
(5.12)

This gives us a ten component column vector ~X = u, u1, u2, u3, u11, u22, u33, u12, u23, u13

with a joint probability distribution having the form,

P ( ~X) =
1√

(2π)10DetΣ
exp

(
−1

2
~XT Σ−1 ~X

)
(5.13)

Σ denotes the covariance matrix Σ ≡ ~X ~XT and is explicitly given in [90]. The ensemble
expectation values of W 0,2

1 and W 0,2
2 are then given as,

〈
W 0,2

1 (ν)
〉

= A1

∫
d ~X
∫

dV P ( ~X) δ(u− ν) 1
|∇u|M,〈

W 0,2
2 (ν)

〉
= A2

∫
d ~X
∫

dV P ( ~X) δ(u− ν) G2

|∇u|M,
(5.14)

As the volume integrals and the ~X integrals commute, we can interchange the order and
do the ~X integration first. This gives us the ensemble expectation values per unit volume,

〈
W 0,2

1 (ν)
〉

= σ1
9
√

3π σ0
e−ν

2/2 I = 〈W1〉
3
I〈

W 0,2
2 (ν)

〉
=

σ2
1

27π
√

2π σ2
0

ν e−ν
2/2 I = 〈W2〉

3
I

(5.15)

where I is the identity matrix and W1 and W2 are the usual scalar MFs defineds as,

W1 = 1
6V

∫
∂Q

dA,

W2 = 1
3π V

∫
∂Q
G2 dA

(5.16)

Information on the Gaussian nature of the field is contained in the amplitude of the expec-
tation values, while information on the isotropy of the field is carried by the identity matrix.
We can extract information directly from the components of W 0,2

1 and W 0,2
2 or from their

eigenvalues and eigenvectors. If the field is anisotropic, then the eigenvalues will not be
equal, independent of the choice of coordinate system.
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5.4 Numerical estimation from a discretely sampled field

In this section we estimate the MT statistics from a discretely sampled density field. Two
methods that can be used for the numerical estimation of the MTs for three dimensional
fields are discussed below.

5.4.1 Marching Tetrahedra method

The details of the method of surface generation and computation of MTs from these sur-
faces are given in 1 [90]. First, discrete random fields, are generated in Fourier space based
on a linear ΛCDM matter spectrum with fiducial cosmological parameter values.These
fields are smoothed with a Gaussian kernel and then converted to real space to give three
dimensional density fields δi,j,k. i, j, k denote the coordinates of the pixel on a regular lat-
tice with side length Nside such that, 1 ≤ i, j, k ≤ Nside. The fields are normalized by the
Root Mean Square (RMS) fluctuation of δi,j,k within the box, σ0. These fields are used to
generate triangulated surfaces of constant density, δ = ν by using the marching tetrahe-
dra method [91]. Points on the edges of the tetrahedra with density δ = ν are obtained
by interpolating the density field linearly and generate a triangulated surface from these
points. The scalar MFs and the MTs can then be computed from the iso-density surfaces
thus obtained by using the discretized approximations given in [78].

In [90], we have tested this method on an isotropic Gaussian field. We have generated
a density field with Nside = 512 using the method described above and smoothed the
field with a Gaussian kernel, W (kRG) = e−k

2R2
G/4, where RG = 20h−1Mpc. The field

threshold ν is varied from -3 to +3 in N=40 equi-spaced steps. For each threshold, we
generate a triangulated iso-density surface consisting of pixels that satisfy the condition
δi,j,k > ν and this surface defines the excursion set. We then numerically estimate the
scalar MFs and MTs from these surfaces. We compute the mean and error bars for W 0,2

1

and W 0,2
2 numerically from Nreal = 50 realizations and compare them with the theoretical

expectation values for an isotropic Gaussian field. We find excellent agreement (< 1%)
between the theoretical expectation values and the MTs estimated numerically using this
method.

1This numerical calculation using the marching tetrahedra method is part of the publication, but is not a
part of my thesis work
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Figure 5.1: MTs estimated for an isotropic Gaussian field using the semi-analytic method.
Left panel: Diagonal elements of W 0,2

1 represented by the blue, green and red dots and the
theoretical expectation values represented by the black line. The blue, green and red points
overlap leading to only the red points being visible. Right panel: Same as the left panel,
but for W 0,2

2 .

5.4.2 Semi-analytic method

Additionally, we have developed a semi-analytic code to estimate the Minkowski Tensors
for a discretely sampled density field in three dimensions. As in section 5.4.1, we generate
isotropic Gaussian fields in fourier space and then smooth them with a Gaussian kernel and
convert them to get three dimensional isotropic Gaussian fields, δi,j,k, in real space. From
each field, the mean is subtracted and then the field values are normalized by the standard
deviation, to give fields with zero mean and unit standard deviation. For each realization,
we vary the field threshold from -3 to +3 and estimate W 0,2

1 and W 0,2
2 using Eqns. 5.5 and

5.6.The field derivatives and second order derivatives are computed in real space for each
pixel, by using the difference in the field values of neighbouring pixels in the respective
directions. The quantities∇u andG2 can be computed from the first and second order field
derivatives. Applying the same idea as in [57], for each threshold ν, we approximate the
δ-function for the case of discretely sampled fields as,

δ(u− ν) =
1

∆νt
(5.17)

when the field value u lies between ν + ∆ν and ν − ∆ν, where ∆ν is the threshold bin
size.

We have applied our method to simulations of isotropic Gaussian density fields in three
dimensions with Nside = 512 and RG = 20h−1Mpc generated using the ΛCDM linear
matter power spectrum. We generated 50 simulations and estimated the mean and standard
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Figure 5.2: Numerical error in the MTs estimated for an isotropic Gaussian field using the
semi-analytic method. Left panel: Diagonal elements of ∆W 0,2

1 from Eqn. 5.18 represented
by the blue, green and red lines. Right panel: Same as the left panel, but for ∆W 0,2

2 from
Eqn. 5.19.

deviations of W 0,2
1 and W 0,2

2 , which are displayed in Fig. 5.1. The diagonal elements
(1,1), (2,2) and (3,3) of W 0,2

1 are represented by the blue, green and red dots respectively
in the left panel, while the theoretical expectation values for an isotropic Gaussian field
are represented by the black line. In the right panel of Fig. 5.1, the diagonal elements
(1,1), (2,2) and (3,3) of W 0,2

2 are represented by the blue, green and red dots respectively.
Again, the black line represents the theoretical expectation values for an isotropic Gaussian
field. To quantify the numerical error in the MTs estimated using our method, we define
the following quantities,

∆W 0,2
1 (νt) = W 0,2

1 (νt)−W (G)0,2
1 (νt), (5.18)

∆W 0,2
2 (νt) = W 0,2

2 (νt)−W (G)0,2
2 (νt). (5.19)

W 0,2
1 (νt) and W 0,2

2 (νt) represent the MTs estimated using our method, W (G)0,2
1 (νt) and

W
(G)0,2
2 (νt) represent the respective expectation values for an isotropic Gaussian field and

∆W 0,2
1 (νt) and ∆W 0,2

2 (νt) represent the corresponding numerical errors in the estimated
MTs. We have computed ∆W 0,2

1 (νt) and ∆W 0,2
2 (νt) based on the mean MTs estimated

from 50 simulations of Nside=512 and the results are displayed in Fig. 5.2. In the left
panel, the diagonal elements (1,1), (2,2) and (3,3) of ∆W 0,2

1 (νt) are represented by the
blue, green and red lines respectively. The right panel shows the diagonal elements (1,1),
(2,2) and (3,3) of ∆W 0,2

2 (νt) which are again represented by the blue, green and red lines
respectively.

We find that the MTs estimated using our method for isotropic Gaussian fields are
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Effect of anisotropy on the Minkowski Tensors

consistent with the corresponding theoretical expectation values at the subpercent level.
This work is part of my thesis and is currently in progress.

5.5 Effect of anisotropy on the Minkowski Tensors

For isotropic Gaussian random fields, the MTs we discussed here are proportional to the
product of the scalar MFs and the identity matrix. In this section, we study the effect of
anisotropy on these statistics. We first generate an isotropic Gaussian field δi,j,k from a
linear ΛCDM matter power spectrum using fiducial parameter values. We arbitrarily take
the x3-axis as the line of sight and apply a linear RSD operator. This way we generate 50
realizations of an anisotropic Gaussian field from the same ΛCDM matter power spectrum
given in section 5.4. The following transformation is applied to an isotropic density field
in fourier space to get an anisotropic redshift space distorted field,

δ(rsd)(~k) = b (1 + Υµ2
~k
) δ(~k) (5.20)

where µ2
~k

= k2
x3
/k2 and the RSD parameter is Υ = f/b. f ≈ Ω

6/11
m is the growth parameter

and b is the bias. We have used the plane-parallel approximation which reduces the RSD
effect to the Kaiser effect that corresponds to a shift in the amplitude in the Fourier space by
an amount 1+Υµ2

~k
. We then smooth the field in the Fourier space with a Gaussian beam of

width RG = 20h−1Mpc. The MTs are then computed for both the isotropic field, Υ = 0,
and the redshift space distorted field, Υ 6= 0. We set b = 1 and Υ = Ω

6/11
m because we use

the matter density field directly instead of a biased tracer such as the galaxy or halos. Since
Υ is dependent on redshift, the resultant W 0,2

1 and W 0,2
2 matrices will also depend on the

redshift. Here we generate the fields at redshift zero.

We find that the effect of RSD is to introduce a constant shift in the relative amplitude
of the diagonal elements. The diagonal elements of the matrices are no longer equal and
this signal is more pronounced in W 0,2

1 . In our analysis, we have chosen the coordinate
system such that the x3-axis is along the line of sight. For a random choice of coordinates,
the matrices should be first diagonalized and the effect of RSD would be to give unequal
eigenvalues for the matrices. Based on our findings, we can say that the RSD parameter
Υ = f/b can be constrained by the measurements of the diagonal elements of W 0,2

1 and
W 0,2

2 .
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5.6 Summary

In this work, we have introduced MTs for three dimensional fields. We have calculated the
ensemble expectation values of the rank two translation independent MTs W 0,2

1 and W 0,2
2

for isotropic Gaussian random fields. An algorithm for generating closed iso-density sur-
faces to extract these statistics from a discretely sampled field is also provided. The MTs
estimated numerically using our method show excellent agreement with the theoretical ex-
pectation values for the same quantities for isotropic Gaussian fields. For such fields, the
MTs are proportional to the scalar MFs and the identity matrix. Any departure from Gaus-
sianity or isotropy can modify W 0,2

1 and W 0,2
2 to give non-zero off-diagonal components or

unequal diagonal components.

We generate simulated RSD fields by applying a linear RSD operator to isotropic Gaus-
sian fields generated from a linear ΛCDM matter power spectrum and apply our numerical
algorithm to the resultant fields. RSD distorts the shapes of the connected regions and
holes along the line of sight and leads to a preferred direction in the normals to the iso-
density surfaces. Using our method, we find that RSD modifies the amplitudes of ∆W 0,2

1

and ∆W 0,2
2 by ≈ 10% as compared to the corresponding isotropic fields. This amplitude

shift can be used to constrain the RSD parameter Υ = f/b.

In this work, we have used linear density fields and the Kaiser approximation which is
a result of the coherent infall of mass into over dense regions. It is expected that the these
statistics can also probe the non-linear anisotropies resulting from the Finger of God effect.
However, non-linear gravitational collapse is statistically isotropic on all scales and thus we
expect that W 0,2

1 and W 0,2
2 will not be sensitive to it. The eigenvalues of these MTs provide

an independent measure of the level of non-Gaussianity in the field and carry information
complementary to the scalar MFs.
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6
CONSTRAINING SPACETIME

NONCOMMUTATIVITY WITH CMB
OBSERVATIONS

6.1 Introduction

This chapter covers the second part of our work, testing the prediction of noncommutativ-
ity of spacetime, using cosmological data. Noncommutativity of spacetime is a common
prediction of many quantum theories of gravity. If true, the effects on noncommutative
spacetime would be relevant at length scales that are comparable to the Planck length scale.
In noncommutative spacetime, the power spectrum of the primordial density perturbations
gets modified. The primordial density perturbations give rise to the matter distribution and
the CMB fields that we observe today. Hence a modification of the primordial power spec-
trum, in turn leads to a modification of the power spectrum of the density distribution and
CMB fields. We analyze the observed CMB fields and search for signatures of spacetime
noncommutativity.

In order to understand how the information on spacetime noncommutativity, contained
in the primordial perturbations is carried over to the CMB fields, we review the inflationary
scenario. In the simplest model, inflation arises due to the evolution of a scalar field, the
so-called inflaton field. The initial seeds of gravitational potential wells around which mat-
ter could cluster and form structures, is provided by the quantum flucuations of the inflaton
field. If the prediciton of noncommutative spacetime is correct, then the signature of non-
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commutativity would be present in the statistical properties of these quantum fluctuations.
As described in Section 2.2.2, the Universe expands rapidly during the Inflationary phase
and as a result, tiny regions of space expand to cosmological sizes in an extremely short
amount of time. This leaves signatures of the small scale physics, such as noncommutative
spacetime, which is relevant for the tiny regions, on the large scale observables such as the
CMB fields and the distribution of matter in our Universe. Thus inflation gives us an oppor-
tunity to test the prediction of spacetime noncommutativity, using the density distribution
and CMB fields.

In the literature, there have been many studies [18,19,24,92–106] probing the effect of
spacetime noncommutativity on inflation and signatures in the CMB. A derivation of the
modification of the CMB angular power spectrum due to the noncommutativity of space-
time was done in [18]. The noncommutativity parameter in [18], was constrained using
data from WMAP [107–109], ACBAR [110–112] and CBI [113–117], in [19].

We follow a methodology similar to that of [19] and analyze the effect of spacetime
noncommutativity on the angular power spectrum of the CMB temperature fluctuations.
First we the publicly available package CAMB [47, 48] to compute the theoretical CMB
angular power spectrum of temperature fluctuations for some non-zero values of the non-
commutativity parameter. We find that the CMB power spectrum is most sensitive to the
noncommutativity parameter in the range of scales probed by the Planck mission. Further,
we study the effect of spacetime noncommutativity on the angular power spectrum of the
E mode of CMB polarization. We find that the effect of the noncommutativity parameter is
much weaker on the E mode power spectrum, than on the temperature fluctuations. Hence,
we conclude that the Planck temperature fluctuations data is best suited to constrain the
noncommutativity parameter.

We use data from Planck [31], Baryon Acoustic Oscillations (BAO) from SDSS-DR9
[32,33] and 6dFGS [34], and BICEP2 CMB polarization data [35] , to constrain the space-
time noncommutativity parameter, by performing Markov Chain Monte Carlo (MCMC)
anaylsis. We obtain a constraint on the noncommutativity parameter, that is tighter by
about a factor of 2 over the previous constraint obtained in [19]. Planck has higher reso-
lution and accuracy compared to WMAP, ACBAR and CBI and this is what leads to the
improvement in the constraint.
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6.2 Noncommutativity parameter

Here we go through the basic equations of noncommutative spacetime and how it affects the
angular power spectrum of the CMB temperature fluctuations and E mode of polarization.
We will follow the same formulation, as given in [18, 19]. In noncommutative spacetime,
the coordinate operators, x̂µ, do not commute and the commutator is given as follows,

[
x̂µ, x̂ν

]
= iθµ,ν , (6.1)

where θµ,ν is a constant antisymmetric matrix with dimension L2. Since this is an appli-
cation to cosmology, it is natural to choose a coordinate system where the time coordinate
represents the proper time for an observer in a galaxy and the physical coordinates measure
distance in such spatial slices. On the right hand side of Eq. 6.1, we have the physical θµ,ν ,
which remains constant throughout the evolution of the Universe.

In conformal coordinates, Eq. 6.1 retains its form, while xµ now represent coordinates
in the conformal frame. However, θµ,ν would not be constant in time and θµ,ν in physical
coordinates would be related to that in conformal coordinates as follows,

θ0i,ph = a(t) θ0i,co(t)

θij,ph = a(t) θij,co(t)
(6.2)

where, the superscripts “ph” and “co” represent the physical and the conformal frames
respectively, while a(t) represents the scale factor of the expansion of the Universe. In this
work, we perform all our calculations in the conformal frame and in the end, we convert the
resultant constraint to the physical frame. To simply the notation, we will use, θµν when
we actually mean, θµν,co(t).

If spacetime is noncommutative, then that leads to a deformation of the fields. Let φ0

denote a field in commutative spacetime and let φθ denote the corresponding deformed field
in noncommutative spacetime. In our case, the field in consideration is the field of scalar
perturbations generated during inflation. The deformation of the field due to spacetime
noncommutativity, leads to a modified power spectrum, PΦθ(k), which is related to the
usual power spectrum in commutative spacetime, PΦ0(k), as given by [18],

PΦθ(k) = PΦ0(k) cosh
(
H~θ 0 · k

)
(6.3)

54



Constraining spacetime noncommutativity with CMB observations

PΦ0(k) is the usual direction independent power spectrum in commutative spacetime. It is
given by,

PΦ0(k) =
As
k3

(
k

k0

)ns−1

(6.4)

where, As is the amplitude of scalar perturbations, ns is the scalar spectral index and k0

is a pivot scale that we can choose. The modified angular power spectrum of the CMB
temperature fluctuations in noncommutative spacetime is then given by [19],

CTT
` =

∫
dk k2 PΦ0(k)

∣∣∆T
` (k)

∣∣2 i0(θHk) (6.5)

where, i0 is the modified spherical bessel function of the first kind. It is given by, i0(x) =
sinh(x)
x

.
∣∣∆T

l (k)
∣∣ is the transfer function for the CMB temperature fluctuations. It contains

information about the physical processes that affect the evolution of the fluctuations from
the epoch of last scattering till the time of observation. In this work, we assume that
spacetime noncommutativity does not affect

∣∣∆T
l (k)

∣∣, since
∣∣∆T

l (k)
∣∣ is relevant at scales

much larger than the noncommutativity length scale.

The polarization degrees of freedom of the CMB photons can be decomposed into
the E and B modes. The E modes represent the curl free component while the B modes
represent the divergence free component. In a way similar to the temperature fluctuations,
the modified angular power spectrum of the E mode of CMB polarization, CEE

` , can also
be derived. It is given by,

CEE
` =

∫
dk k2 PΦ0(k)

∣∣∆E
` (k)

∣∣2 i0(θHk) (6.6)

where,
∣∣∆E

l (k)
∣∣ is the transfer function for the E mode of CMB polarization.

6.3 Effect of spacetime noncommutativity on the CMB power
spectrum

In this section, we estimate the effect of spacetime noncommutativity on the angular power
spectrum of CMB temperature and E mode fields. For our calculations, we will work with
the quantity Di

`, where i refers to TT or EE. Di
` is related to Ci

` as,

D i
` ≡

`(`+ 1)

2π
C i
` (6.7)
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Figure 6.1: Comparison of ∆DTT
` (α) and ∆DTT

` /DTT
` (α) values computed for different

values of α with linear and log scale on the y axis.

We denote the quantity θH by α and study the variation in Di
` with respect to α. In

this work, the publicly available code CAMB [47,48] was used to compute the Di
`. CAMB

solves the Boltzman equation for the early Universe to obtain the transfer functions, ∆i
`,

for the CMB temperature fluctuations, E and B modes of polarization. Then it performs
the integral over k in Eq. (6.5) and (6.6) to obtain the Di

`s. For our work, in order to
calculate the angular power spectrum in noncommutative spacetime, we modify CAMB to
incorporate the factor of i0 in the expression for the primordial power spectrum. To see how
Di
` changes with α, we first calculate Di

`(α) for different values of α and the we compute
the difference, ∆Di

`(α) = Di
`(α) − Di

`(0). We systematically change α and study how
∆Di

`(α) changes.

A comparison of ∆DTT
` (α) for different values of α is plotted in Fig. 6.1. The argument

of i0 in Eq. (6.5) and (6.6) is a dimensionless quantity. We have taken α in units of Mpc
since the unit of k used in CAMB is Mpc−1. For our work, we have used the Planck best-fit
values for the ΛCDM cosmological parameters [31]. i0(x) is a monotonically increasing
function of x that goes to one as x → 0. Hence, for larger values of α, we find an overall
increase in the amplitude of C`. As seen in the left panel of Fig. 6.1, the difference between
the DTT

` s for various values of α, is the largest for the range ` < 3000. This is the range
of multipoles probed by the Planck mission and so Planck data is the most suitable for
constraining α from CMB observations. We find that with decreasing α, there is a sharp
decrease in the amplitude of ∆DTT

` (α). The right panel of Fig. 6.1 shows a comparison of
∆DTT

` /DTT
` (α) with linear and log scale on the y axis. This plot demonstrates the effect

of the i0 factor on the DTT
` (α) calculations.

In figure 6.2, we have shown the effect of α on the computation of ∆DEE
` (α) and
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Figure 6.2: Comparison of ∆DEE
` (α) and ∆DEE

` /DEE
` (α) values computed for different

values of α with linear and log scale on the y axis.

∆DEE
` /DEE

` (α). Both the panels here are similar to those in Fig. 6.1. The amplitude
of ∆DEE

` (α) is about two orders of magnitude smaller than that of ∆DTT
` (α) for the

corresponding values of α, as seen in the left panel of Fig. 6.2. We find that the ratio
∆DEE

` /DEE
` (α) has values similar to those of ∆DTT

` /DTT
` (α) for the same values of α.

Based on this figure, we conclude that CMB E mode data can not significantly improve
upon the constraint on α obtained from CMB temperature data, even though polarization
provides independent information about the properties of the Universe.

6.4 Method and data

In this section, we compare the standard ΛCDM cosmological model with noncommuta-
tive spacetime, with CMB temperature fluctuations data from Planck [31]. Additionally,
we also use BAO data from SDSS [32, 33] and 6DFGS [34], and CMB polarization data
from BICEP2 [35]. In this work, the baryon density Ωbh

2, cold dark matter density Ωch
2,

the Hubble parameter H0, optical depth of reionization τ , the amplitude As and spectral
index ns of the primordial scalar perturbations are the cosmological parameters used. Ad-
ditionally, we have the spacetime noncommutativity parameter α ≡ θH , for a total of seven
parameters.

To constrain α, we perform a Bayesian statistical inference analysis of the data using
the publicly available MCMC package COSMOMC [48, 49] for cosmological parameter
estimation. A modified version of CAMB as described in section 6.3 was used for calcu-
lating the theoretical angular power spectra for the temperature fluctuations and E mode
of CMB polarization. These spectra go in as inputs for the likelihood analysis. To test
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the convergence of the generated Markov chains, we use the Gelman-Rubin convergence
criterion R − 1 < 0.02. R denotes the ratio of the variance of chain means to the mean of
chain variances. For the six standard model parameters, we use the default flat priors given
in COSMOMC. We choose a flat prior for α with an upper limit value of 0.1 and a lower
limit value of 10−8. We set the upper limit to have a range wide enough to accommodate
the constraint obtained by [19]. The lower limit was chosen so that the results obtained,
from several runs of COSMOMC with progressively smaller values of α, are stable. We run
COSMOMC for different combinations of the observational data sets and present here the
results for (a) Planck data alone, (b) Planck + BAO data and (c) Planck + BAO + BICEP2
data. For Planck data, `max = 2479 is the largest multipole.

6.5 Results

6.5.1 Best fit values and parameter constraints

First we shall describe the result obtained using Planck data alone. The one-dimensional
mean (dashed lines) and the marginalized (solid lines) likelihood curves for α are shown in
Fig. 6.3. We find that α is constrained to have only those values which fall below a certain
upper bound. A comparison of the best fit values and 2-σ limits of the ΛCDM parameters
in the case of commutative and noncommutative spacetime are shown in Table . We find
only marginal changes in the values of the ΛCDM model parameters when spacetime is
taken to be noncommutative. We obtain the upper bounds, α < 0.0026 and α < 0.0087 at
1-σ and 2-σ, respectively.
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Figure 6.3: The one-dimensional mean (the dashed lines) and marginalized (solid lines)
likelihood curves for α, obtained using Planck data alone.

i0 is a monotonically increasing function and so it is possible that there is a degeneracy
between α and ns and to a mild extent with H0. In order to probe these possible degenera-
cies, we have computed the 1-σ and 2-σ two-dimensional joint constraints between these
three parameters. These are shown in Fig. 6.4. We find that the degeneracy between these
three parameters is very mild and that the strength of the degeneracy is larger for larger α
values, as we can see from the 2-σ contour.

We repeated the same analysis for noncommutative spacetime with Planck+BAO and
Planck+BAO+BICEP2 datasets. The mean values and 2-σ error bars for the cosmological
parameters and the 1-σ and 2-σ upper limits for α are shown in Table 6.2. We find marginal
shifts in the 1-σ and 2-σ upper bounds for α on including the BAO and BICEP2 datasets.
Including the BICEP2 data in the analysis leads to slightly tighter constraints on α.

6.5.2 Constraint on the physical noncommutativity parameter

In the previous section, we obtained the constraints on α using Planck data. Here we
will convert these into the corresponding 1-σ and 2-σ constraints on the physical noncom-
mutativity parameter, θph. α is related to the noncommutativity parameter in conformal
coordinates, θ as,
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Parameter Planck Planck

Commutative spacetime Noncommutative
spacetime

Ωbh
2 0.0220 0.0226

0.0215 0.0219 0.0225
0.0214

Ωch
2 0.1199 0.1251

0.1147 0.1198 0.1252
0.1147

H0 67.29 69.65
64.98 67.23 69.53

64.90

τ 0.0898 0.1158
0.0640 0.0878 0.1134

0.0622

ns 0.9605 0.9748
0.9462 0.9599 0.9738

0.9457

ln(1010As) 3.090 3.139
3.043 3.084 3.134

3.036

α ≡ θH — < 0.0026 (1-σ)

— < 0.0087 (2-σ)

Table 6.1: The mean values and the 2-σ error bars for the ΛCDM parameters in commuta-
tive spacetime and in noncommutative spacetime, obtained using PLANCK data alone.
For α we have given the 1-σ and 2-σ upper bounds. The pivot scale used for As is
k = 0.05 Mpc−1.

α = Hθ. (6.8)

Further, θ is related to the physical noncommutativity parameter θph as given in Eq.
6.2. Hence, to convert the constraints on α into constraints on θph, we must first obtain the
constraints on θ by fixing the value of H during inflation. Denoting the power spectrum of
primordial tensor perturbations by PT and the tensor to scalar ratio PT/Pφ by r, we use the
relation PT = (H/2 π)2 to obtain,

H2 = (2π)2 r Pφ. (6.9)

We use the best fit value of As from the column with noncommutativity spacetime in
Table 6.1, along with the 2-σ limit r < 0.11 from Planck [31] in Eq. 6.9 to obtain

H < 1.943× 10−5MP , (6.10)

where MP is the Planck mass. We take the 1-σ limit on α given in the third column of
Table 6.1 and obtain the 1-σ constraint on θ to be θ < 0.427×10−9 m2. Similarly, by using
the 2-σ constraint on α, we obtain the 2-σ constraint on θ to be θ < 1.406× 10−9 m2.

Next, we will use the value of the cosmological scale factor ,a, at the end of inflation,
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Figure 6.4: The joint two-dimensional constraints at 1-σ and 2-σ confidence levels on α,
ns and H0, obtained using Planck data alone.

to obtain constraints on θph. If we follow the assumption in [19], that the temperature of
reheating of the Universe was close to the grand unified theory energy scale, 1016GeV , then
the scale factor at the end of inflation is a ≈ 10−29. We use this value of a to obtain the
constraint on the physical noncommutativity parameter to be

√
θph < 0.653 × 10−19m at

1-σ and
√
θph < 1.186× 10−19m at 2-σ. The corresponding lower bounds on the noncom-

mutativity energy scale are 18.9764 and 10.4548 TeV at 1-σ and 2-σ respectively. If the
reheating temperature is different, then these numbers will also change. The 1-σ constraint
that we have obtained on θph is about a factor of two improvement over the constraint
obtained in [19].
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Parameter Planck + BAO Planck + BAO +
BICEP2

Ωbh
2 0.0220 0.0225

0.0215 0.0219 0.0224
0.0214

Ωcdmh
2 0.1187 0.1223

0.1153 0.1196 0.1231
0.1162

H0 67.71 66.10
69.25 67.30 68.82

65.81

τ 0.0896 0.1151
0.0657 0.0964 0.1233

0.0717

ns 0.9622 0.9733
0.9504 0.9600 0.9709

0.9487

ln(1010As) 3.08 3.13
3.03 3.10 3.15

3.05

α ≡ θH < 0.0025 (1-σ) < 0.0021 (1-σ)

< 0.0083 (2-σ) < 0.0074 (2-σ)

Table 6.2: The mean values and the 2-σ error bars for the ΛCDM model parameters in
noncommutative spacetime, obtained using Planck+BAO and Planck+BAO+BICEP2 data
sets. We have shown the 1-σ and 2-σ upper bounds for α. The pivot scale used for As is
again k = 0.05 Mpc−1.

6.6 Summary

In this chapter, we have confronted the prediction of noncommutative spacetime, with ob-
servational data from Planck, BAO and BICEP2. If spacetime is noncommutative, then
the power spectrum of primordial scalar perturbations is modified and this can used to test
the prediction. First, we studied the effect of noncommutative spacetime on the theoretical
angular power spectrum of CMB temperature fluctuations and the E mode of CMB polar-
ization. We find that this effect is most pronounced in the range of multipoles ` < 3000,
which is the range probed by Planck. Thus we expect Planck data to give more stringent
constraints than those given by WMAP data. We also find that spacetime noncommutativity
has a much weaker effect on the CMB E mode than on the CMB temperature fluctuations
and hence the constraints will not be improved significantly with the inclusion of E mode
data.

In order to constrain the spacetime noncommutativity scale, θph, we compare the the-
oretical angular power spectra of CMB temperature fluctuations with those obtained from
observations, mainly Planck data. We obtain the best fit values of the ΛCDM cosmological
parameters and the spacetime noncommutativity parameter by performing an MCMC like-
lihood analysis of the data. We find an upper bound 6.23 × 10−20m on the value of θph at
1-σ, which improves upon the previous constraint using WMAP, ACBAR and CBI data, by
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a factor of about 2. The higher angular resolution of Planck in comparison to WMAP and
its higher precision in comparison to ACBAR and CBI is what leads to the improvement in
the constraints.

The effect of spacetime noncommutativity on the CMB fields decreases at multipoles
higher than 3000 and so we expect that inclusion of CMB data at smaller scales will not
significantly improve the constraint. Since the effect on the CMB E mode is much weaker
than on the temperature fluctuations, the inclusion of E mode data will also not significantly
improve the constraint. Spacetime noncommutativity will aslo affect the power spectrum
of the primordial tensor modes [118] and it will show up in the angular power spectrum
of the B mode of CMB polarization. We have not included this effect in our analysis. It
will not have an impact on our results since BICEP2 data is restricted to lower multipole
range where the effect of noncommutative spacetime is negligible. In the future, including
high resolution B mode data can potentially improve the constraint on θph. However, this is
subject to improvements in our ability to disentangle physical effects like the gravitational
lensing due to the large scale structure, that are important at the smaller scales.

63



7
SUMMARY AND FUTURE PROSPECTS

7.1 Summary

This thesis presents a test of the assumptions of fundamental physics such a commutativity
of spacetime and statistical isotropy, against cosmological data, mostly the CMB temper-
ature fluctuations. The CMB and LSS are important observational tools which allow us
to probe the laws of physics that govern our Universe, both at the large and small scales.
High precision measurements of the CMB temperature and polaization fields enable us to
impose tight constraints on the various proposed models of the Universe. Such studies help
us in obtaining a deeper understanding of the Universe. The CMB also facilitates a way
to probe physics beyond the standard model by providing useful information on the dark
matter and dark energy content of our Universe. In this work, we mostly focus on test-
ing the prediction of noncommutative spacetime and the assumption that our Universe is
statistically isotropic, by analyzing the CMB data.

In chapter 1, we present a brief account of the standard hot big bang model of the
Universe and discuss some of its limitations. We then introduce the concept of cosmic
inflation and discuss how it resolves some of these limitations. Further, we discuss the
evolution of the Universe post the inflationary era and the epoch of last scattering. The
CMB is relic radiation emitted at the epoch of last scattering which free streamed to us
today after travelling for almost the age of the Universe. We explain the importance of CMB
in the advancement of physics and its role in constraining the various models of inflation.
Further, we discuss some of the key experiments carried out to make measurements of the
CMB fields and the features that were found in these observations.
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In chapter 2, we discuss the information that is carried by the CMB radiation and its
usefulness to physics. We also present the main goals of this work and the problem state-
ments of the research work that I have carried out during my term as a PhD. student. These
include testing the commutativity of our spacetime and developing tools for testing the sta-
tistical isotropy (SI) of random fields and applying them to CMB data. This chapter also
contains an account of the observational data that was used during the course of this work.
Further, we also give a brief introduction to some of the key software packages such as
HEALPIX, CAMB and COSMOMC that we have used for our analysis.

For testing the SI of CMB data, we use Minkowski Tensors (MTs) which are mathe-
matical quantities which carry information regarding the shape of closed curves. Chapter
3 contains an introduction to Minkowski Tensors in flat 2D space and an explanation as to
how they carry isotropy information. By isotropy, we refer to the m-fold symmetry of the
closed curve, for m ≥ 3. We discuss the generation of closed curves from random fields by
selecting a threshold value to cut off the field. The MT method can then be applied to these
closed curves. We also introduce the shape and aligment parameters and discuss a method
to use these parameters to probe the isotropy of random fields in flat 2D spaces.

In chapter 4, we discuss the application of the MT method to the CMB fields. The MT
definitions carry a position vector term which is not usually well defined on curved spaces,
making it difficult to apply the MT method to CMB fields which are defined on the sphere.
One way to work around this issue is to stereographically project the fields onto a plane
and carry out the analysis on the projected fields. We have discussed the limitations of this
method and the importance of computing the MTs directly on the sphere. We generalize
the definitions of the MTs to closed curves on the sphere, enabling their direct application
to the CMB fields. Further, we apply the MT method to look for violations of SI in the
CMB temperature data provided by Planck. We find excellent agreement between data and
simulations for the SMICA frequency coadded CMB temperature map and the beam con-
volved maps at all frequencies except the 30 GHz observations. For the 30 GHz band, we
find ≈ 2-σ deviation from SI. We suspect that this mild discrepancy arises from inaccurate
estimation of the instrument beam or residual noise at 30 GHz. Further investigation of
the instrument beam and residual noise is needed before we can confirm the origin of this
discrepancy.

In chapter 5, we present a method to constrain the linear redshift-space distortion pa-
rameter by using MTs for density fields in three dimensions. The peculiar velocities of
objects in galaxy clusters and super clusters affect the observed redshifts of the objects and
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lead to distortion of the apparent shape of the clusters in redshift space. The MTs can cap-
ture information on the shape of objects and hence can be used to measure the distortion
of shape of the clusters. We discuss the effect of applying a linear redshift-space distortion
operator on simulated density fields in three dimensions, which leads to a shift in the am-
plitude of the elements of the MTs. This shift in amplitude can be measured and used to
constrain the redshift-space distortion parameter.

In chapter 6, we discuss noncommutative spacetime as predicted by some quantum
theories of gravity and its effect on the angular power spectrum of the CMB temperature
fluctuations and polarization fields. We find that this effect is dominant in the multipole
range ` < 3000 which is the range probed by Planck and hence Planck data is suitable
to constrain spacetime noncommutativity. Further, we perform a bayesian analysis of the
Planck 2013 temperature fluctuations data to obtain constraints on the energy scale at which
spacetime noncommutativity becomes relevant. Our results improve upon the results of
previous works by a factor of about two.

7.2 Future prospects

So far, there has been no strong observational evidence supporting the prediction of non-
commutative spacetime. In our anaylsis of the CMB temperature fluctuations data provided
by Planck, we found that the effect of spacetime noncommutativity on the CMB angular
power spectrum is most prominent in the range of multipoles probed by Planck. Based
on our analysis of this effect in the theoretical CMB angular power spectra produced by
the CAMB package, we concluded that CMB data of higher resolutions would not signif-
icantly improve upon the constraints on the energy scale of spacetime noncommutativity.
At the surface of last scattering, photons began to free stream and the diffusion of pho-
tons between regions having different temperatures lead to a dilution of the differences in
temperatures between these regions. As a result, the information that can be extracted by
probing smaller and smaller scales in the CMB fields, is limitted. However, a more de-
tailed analysis of the effect of spacetime noncommutativity on the CMB power spectrum
at smaller scales is necessary before we can claim that the constraints on the energy scale
of noncommutativity can not be significantly improved by future data with higher resolu-
tions. For this purpose, we can consider future cosmic variance limitted CMB experiments
with higher angular resolutions than Planck. We can then forecast the constraint on the
spacetime noncommutativity energy scale from such an experiment and compare the fore-
casted constraints to those obtained using Planck data. Such an analysis will enable us
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to comment on whether or not CMB data with higher angular resolution can improve the
constraint on the spacetime noncommutativity energy scale, and if yes, then how much of
an improvement we can expect from such an experiment. This work would be important in
providing guidance towards future searches for the noncommutativity of spacetime, which
is a prediction of string theory and other quantum theories of gravity.

In their analysis of the SI of the CMB data from Planck using stereographic projec-
tions [30], the authors found no significant deviation from SI in the CMB temperature
fluctuations data. However, they found ≈ 4-σ deviation from SI in the CMB polarization
maps given in the Planck 2015 data release. It is important to test these results by direct
computation of MTs on the sphere, before we search for physical explanations for the dis-
crepancy. We have developed a method to compute MTs for random fields directly on the
sphere and applied our method to the CMB temperature fluctuations data. We found ex-
cellent agreement between the data and the statistically isotropic ΛCDM simulations for
the CMB temperature maps. As a next step, our method can be applied for computing the
MTs on the sphere for the CMB polarization data and the results can be compared with
those obtained from isotropic simulations. This work would shed light on the contribution
of the stereographic projection to the 4-σ deviation from isotropy in CMB polarization data
found in [30]. If there is indeed a violation of SI in the CMB polarization, then it would re-
quire physical explanations regarding the origin of the anisotropy. Additionally, a detailed
analysis of the Planck 30 GHz instrument beam and residual noise needs to be performed
before we can conclude that the ≈ 2-σ discrepancy found in Planck 30 GHz temperature
observations is of physical origin. This can be done by performing a MT analysis with
varying smoothing angles of the Planck 30 GHz noise maps and simulated isotropic maps
convolved with the Planck 30 GHz beam.

It is also interesting to study the statistical properties of the CMB foreground fields.
Studying the properties of these fields could give important physical insights regarding the
mechanisms that give rise to the respective emissions, as well as the distribution of matter
in our galaxy. A better understanding of the foreground fields would also help in improving
the accuracy of CMB extraction. In [119], the authors use skewness and kurtosis to test the
Gaussianity of the Haslam 408 MHz map, which describes the synchrotron radiation from
our galaxy. Surprisingly, they found that the statistical properties of the Haslam map are
strongly Gaussian at the small scales. Investigating the origin of this property could yield
important information about the distribution of free electrons in our galaxy.

67



BIBLIOGRAPHY

[1] A. A. Penzias and R. W. Wilson, Astrophys. J., 142, 419 (1965) .

[2] R. Dicke et al., Astrophys. J., 142, 414-419 (1965) .

[3] A. A. Starobinsky, Pis’ma Zh. Eksp. Teor. Fiz. 30, 719, [JETP Lett. 30, 682 (1979)]

(1979) .

[4] A. H. Guth, Phys. Rev. D, 23, 347 (1981) .

[5] A. A. Starobinsky, Phys. Lett. B, 117, 175 (1982) .

[6] A. D. Linde, Phys. Lett. B, 108, 175 (1982) .

[7] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett., 48, 1220 (1982) .

[8] D. Fixsen et al., Astrophys. J., 473 576, [arXiv:astro-ph/9605054] (1996) .

[9] G. F. Smoot et al., Astrophys. J., 396 L1 (1992) .

[10] T. J. Sodroski et al., Astrophys. J., 428 2 638 (1994) .

[11] C. L. Bennett et al., Astrophys. J. Suppl. Ser., 148 1 (2003) .

[12] C. L. Bennett et al., Astrophys. J. Suppl. Ser., 192 17 (2011) .

[13] R. Adam et al. [Planck Collaboration], Astron. Astrophys., 594, A9 (2016) .

[14] J. Silk, Astrophys. J., 151 459 (1968) .

[15] Planck Images, “https://www.cosmos.esa.int/web/planck/.”

[16] Peebles PJE, Astrophys. J., 153:1–11 (1968) .

[17] Zel’dovich Y, Kurt V, Sunyaev R., Sov. PHYS. -JETP, 28:146 (1969) .

68



BIBLIOGRAPHY

[18] E. Akofor, A. P. Balachandran, S. G. Jo, A. Joseph, and B. A. Qureshi, J. High

Energy Phys., 05 092 (2008) .

[19] E. Akofor, A. P. Balachandran, A. Joseph, L. Pekowsky and B. A. Qureshi, Phys.

Rev. D, 79, 063004 (2009) .

[20] Joby P. K., P. Chingangbam and S. Das, Phys. Rev. D, 91, 083503 (2015) .

[21] J. R. Bond, D. Pogosyan and T. Souradeep, Phys. Rev. D, 62, 043005 (2000) .

[22] T. Schücker, A. Tilquin and G. Valent, MNRAS, 444, Issue 3, 2820-2836 (2014) .

[23] M. E. Rodrigues et al., Phys. Rev. D, 86, 104059 (2012) .

[24] J. Soda, Class. Quant. Grav., 29, 083001 [arXiv:1201.6434 [hep-th]] (2012) .

[25] K. Dimopoulos, Int. Journal of Modern Phys. D, 21, 03, 1250023 (2012) .

[26] A. Maleknejad et al., Physics Reports, 528, Issue 4, 161-261 (2013) .

[27] Razieh Emami, arxiv:1511.01683, [astro-ph.CO] (2015) .

[28] Tarun Souradeep, Amir Hajian, Soumen Basak, New Astronomy Reviews, 50

889-895 (2006) .

[29] Pranati K. Rath, Pramoda Kumar Samal, Mod. Phys. Lett., A30 1550131 (2015) .

[30] V. Ganesan and P. Chingangbam, JCAP, 06 023, [arXiv:1608.07452] [INSPIRE]

(2017) .

[31] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys., 571, A15 (2014) .

[32] N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta, et al., Mon. Not.

Roy. Astron. Soc., 427 no. 3, 2132–2145, [arXiv:1202.0090 [astro-ph.CO] (2012) .

[33] L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton, et al., Mon. Not. Roy.

Astron. Soc., 427 no. 4, 3435–3467, [arXiv:1203.6594 [astro-ph.CO] (2013) .

[34] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, et al., Mon. Not.

Roy. Astron. Soc., 416 3017–3032, [arXiv:1106.3366 [astro-ph.CO]] (2011) .

[35] P. A. R. Ade, et al. [BICEP2 Collaboration], Phys. Rev. Lett., 112, 241101

[arXiv:1403.3985 [astro-ph.CO]] (2014) .

69



BIBLIOGRAPHY

[36] K. M. Gorski et al., Astrophys. J., 622, 759 (2005) .

[37] HEALPIX, “http://healpix.sourceforge.net.”

[38] Planck Legacy Archive, “http://pla.esac.esa.int/pla/#maps.”

[39] J. Cardoso et al., Ieee Journal of Selected Topics in Signal Processing, 2, 735

(2008) .

[40] Planck Collaboration XII., Astron. Astrophys., 571, A12 (2014) .

[41] Eriksen, H. K., O’Dwyer, I. J., Jewell, J. B., et al., ApJS, 155, 227 (2004) .

[42] Eriksen, H. K., Jewell, J. B., Dickinson, C., et al., ApJ, 676, 10 (2008) .

[43] Basak, S., & Delabrouille, J. MNRAS, 419, 1163 (2012) .

[44] Basak, S., & Delabrouille, J. MNRAS, 435, 18 (2013) .

[45] Leach, S. M., Cardoso, J.-F., Baccigalupi, C., et al., Astron. Astrophys., 491, 597

(2008) .

[46] Fernández-Cobos, R., Vielva, P., Barreiro, R. B., & Martínez-González, MNRAS,
420, 2162 (2012) .

[47] http://camb.info/.

[48] A. Lewis and S. Bridle, Phys. Rev. D, 66, 103511 [astro-ph/0205436] (2002) .

[49] http://cosmologist.info/cosmo/.

[50] J. Kovac et al., Nature, 420 772 [astro-ph/0209478][INSPIRE] (2002) .

[51] J.R. Bond and G. Efstathiou, MNRAS, 226 655[IN SPIRE] (1987) .

[52] R.J. Adler, https://doi.org/10.1137/1.9780898718980, .

[53] H. Tomita, Prog. Theor. Phys., 76 952 (1986) .

[54] J.R. Gott et al., Astrophys. J., 352 1 (1990) .

[55] K. R. Mecke, T. Buchert, and H. Wagner, Astron. Astrophys., 288 697 (1994) .

[56] J. Schmalzing and T. Buchert, Astrophys. J., 482 L1-L4 (1997) .

70



BIBLIOGRAPHY

[57] J. Schmalzing and K.M. Gorski, Mon. Not. Roy. Astron. Soc., 297 355

[astro-ph/9710185][INSPIRE] (1998) .

[58] S. Winitzki and A. Kosowsky, New Astron., 3 75 (1998) .

[59] T. Matsubara, Astrophys. J., 584 1 (2003) .

[60] T. Buchert, M. J. France and F. Steiner, Class. Quantum Grav., 34, 094002 (2017) .

[61] D. Novikov, J. Schmalzing and V. F. Mukhanov, Astron. Astrophys., 364 17 (2000) .

[62] E. Komatsu et al., ApJS, 192, 18 (2011) .

[63] V. Ganesan, P. Chingangbam, K.P. Yogendran and C. Park, JCAP, 02 028 (2015) .

[64] P. A. R. Ade et al.[Planck Collaboration], Astron. Astrophys., 594 A17 (2016) .

[65] P. A. R. Ade et al.[Planck Collaboration], Astron. Astrophys., 594 A16 (2016) .

[66] P. Chingangbam and C. Park, JCAP, 02 031 (2013) .

[67] D. Munshi, B. Hu, T. Matsubara, P. Coles and A. Heavens, JCAP, 04 056 (2016) .

[68] L. Santos, K. Wang and W. Zhao, JCAP, 07 029 (2016) .

[69] P. Coles and J. D. Barrow, MNRAS, 228 407 (1987) .

[70] P. Chingangbam, C. Park, K. P. Yogendran and R. van de Weygaert, Astrophys. J.,
755 122 (2012) .

[71] C. Park et al., JKAS, 46 125 (2013) .

[72] D. Pogosyan, C. Gay and C. Pichon, Phys. Rev. D, 80 081301 (2009) .

[73] P. McMullen, Rend. Circ. Palermo, 50 259 (1997) .

[74] S. Alesker, Geom. Dedicata, 74 241-248 (1999) .

[75] C. Beisbart, R. Dahlke, K. Mecke and H. Wagner, Physics and Geometry of

Spatially Complex Systems (ed. by K. Meche and D. Stoyan), Vol. 600 of Lecture

Notes in Physics pp. 249-271 (2002) .

[76] D. Hug, R. Schneider and R. Schuster, Math. J., 19 137-158 (2008) .

[77] G.E. Schroder-Turk, S. Kapfer, B. Breidenbach, C. Beisbart and K. Mecke, J.

Microsc., 238 57 (2010) .

71



BIBLIOGRAPHY

[78] G.E. Schroder-Turket al., New J. Phys., 15 083028 (2013) .

[79] A. Moor, Acta Math., 86 71 (1951) .

[80] W. Fabian, Proc. Edinburg Math. Soc., 10 145 (1957) .

[81] P. Chingangbam, K. P. Yogendran, Joby P. K., V. Ganesan, S. Appleby and C. Park,
JCAP, 12 023 (2017) .

[82] P.D. Naselsky and D.I. Novikov, Astrophys. J, 507 31

[astro-ph/9801285][INSPIRE] (1998) .

[83] E. A. Lim and D. Simon, JCAP, 01 048 [arXiv:1103.4300][INSPIRE] (2012) .

[84] Joby P. K., P. Chingangbam, T. Ghosh, V. Ganesan and Ravikumar C. D.,
arxiv:1807.01306 [astro-ph.co], 2018.

[85] S. Appleby et al., Astrophys. J., 858 87 (2018) .

[86] J. Liske et al., MNRAS, 452, 2, 2087-2126 (2015) .

[87] K. S. Dawson et al., AJ, 151, 44 (2016) .

[88] K. Bundy et al., Astrophys. J., 798, 7 (2015) .

[89] M. R. Blanton et al., AJ, 154, 28 (2017) .

[90] S. Appleby, P. Chingangbam, C. Park, K. P. Yogendran and Joby P. K., Astrophys.

J., 863 200 (2018) .

[91] A. Doi and A. Koide, IEICE Trans., E74 214 (1991) .

[92] C. S. Chu, B. R. Greene and G. Shiu, Mod. Phys. Lett., A16 2231-2240, [arXiv:

hep-th/0011241] (2001) .

[93] F. Lizzi, G. Mangano, G. Miele, M. Peloso, Jhep, 0206 049, [arXiv:

hep-th/0203099] (2002) .

[94] R. Brandenberger and P. M. Ho, Phys. Rev. D, 66, 023517 [arXiv:hep-th/0203119]

(2002) .

[95] Q. G. Huang and M. Li, Jhep 0306 (2003) 014, [arxiv:hep-th/0304203], Q. G.

Huang, M. Li, JCAP 0311 (2003) 001, [arXiv:astro-ph/0308458] (2003) .

72



BIBLIOGRAPHY

[96] S. Tsujikawa, R. Maartens and R. Brandenberger, Phys. Lett. B, 574 141-148

[arXiv:astro-ph/0308169] (2003) .

[97] L. Barosi, F. A. Brito, A. R. Queiroz, Jcap, 0804:005 [arXiv:0801.0810[hep-th]]

(2008) .

[98] A. H. Fatollahi, M. Hajirahimi, Europhys. Lett., 75 542-547,

[arXiv:astro-ph/0607257] (2006) .

[99] A. H. Fatollahi, M. Hajirahimi, Phys. Lett. B, 641 381-385,

[arXiv:hep-th/0611225] (2006) .

[100] S. Fabi, B. Harms and A. Stern, Phys. Lett. D, 78, 065037, [arXiv:0808.0943

[hep-th]] (2008) .

[101] K. Karwan, Eur. Phys. J. C, 521 [arXiv:0903.2806 [astro-ph.CO]] (2010) .

[102] Y. Shtanov and H. Pyatkovska, Phys. Rev. D, 80, 023521 (2009), [Erratum-ibid. D

83, 069904] [arXiv:0904.1887 [gr-qc]] (2011) .

[103] B. Malekolkalami and M. Farhoudi, Class. Quant. Grav., 27, 245009

[arXiv:1007.2499 [gr-qc]] (2010) .

[104] M. Moumni, A. BenSlama and S. Zaim, J. Geom. Phys., 61, 151 [arXiv:0907.1904

[hep-ph]] (2011) .

[105] T. S. Koivisto and D. F. Mota, Jhep, 1102, 061 [arXiv:1011.2126 [astro-ph.CO]]

(2011) .

[106] A. Nautiyal, Phys. Lett. B, 728 472 [arXiv:1303.4159 [astro-ph.CO]] (2014) .

[107] E. Komatsu et al., J. Suppl. Ser., 180, 330 (2009) .

[108] M. R. Nolta et al., Astrophys. J. Suppl. Ser., 180, 296 (2009) .

[109] J. Dunkley et al., Astrophys. J. Suppl. Ser., 180, 306 (2009) .

[110] C. L. Reichardt et al., ApJ, 694, 1200 (2009) .

[111] C. L. Kuo et al., ApJ, 664, 687 (2007) .

[112] C. L. Kuo et al., ApJ, 600, 32 (2004) .

[113] B. S. Mason et al., ApJ, 591, 540 (2003) .

73



BIBLIOGRAPHY

[114] J. L. Sievers et al., ApJ, 660, 976 (2007) .

[115] J. L. Sievers et al., ApJ, 591, 599 (2003) .

[116] T. J. Pearson et al., ApJ, 591, 556 (2003) .

[117] A. C. S. Readhead et al., ApJ, 609, 498 (2004) .

[118] M. Shiraishi, D. F. Mota, A. Ricciardone and F. Arroja, Jcap, 1407, 047

[arXiv:1401.7936 [astro-ph.CO]] (2014) .

[119] A. Ben-David, S. V. Hausegger and A. D. Jackson, JCAP, 11 019 (2015) .

74


	Acknowledgements
	List of Publications
	Abstract
	Notations and Abbreviations
	List of Figures
	Introduction
	Cosmic Microwave Background
	Measurements
	COBE
	WMAP
	Planck

	Characteristics of CMB
	Inflation
	Last scattering
	Summary

	Motivation, Questions and Methodology
	Physical insights from the CMB
	Research problem
	Statistical isotropy
	Spacetime noncommutativity

	Observational data
	Software packages: HEALPIX, CAMB and COSMOMC
	HEALPIX
	CAMB
	COSMOMC

	Summary

	Morphology of random fields in flat 2D space
	Introduction
	Scalar Minkowski Functionals
	Minkowski Tensors in flat 2D space
	Connected regions and holes in random fields
	Shape parameter 
	Alignment parameter 
	Summary

	Minkowski Tensors for random fields on the sphere
	Introduction
	 for CMB data using stereographic projection
	Generalizing Minkowski Tensors to closed curves on the sphere
	Analytical computation of MTs on the sphere
	Ensemble expectation values for isotropic Gaussian fields
	Ensemble expectation values for isotropic Rayleigh fields

	Numerical estimation of 
	Application to CMB simulations
	Galactic and point sources mask
	Beam smoothing
	Pixel size

	Application to Planck data
	SMICA CMB temperature map
	Individual frequency data
	Quantifying the difference between data and simulations

	Summary

	Minkowski Tensors as tools for constraining redshift space distortion
	Introduction
	Minkowski Tensors in 3D
	Ensemble average for an isotropic Gaussian field
	Numerical estimation from a discretely sampled field
	Marching Tetrahedra method
	Semi-analytic method

	Effect of anisotropy on the Minkowski Tensors
	Summary

	Constraining spacetime noncommutativity with CMB observations
	Introduction
	Noncommutativity parameter
	Effect of spacetime noncommutativity on the CMB power spectrum
	Method and data
	Results
	Best fit values and parameter constraints
	Constraint on the physical noncommutativity parameter

	Summary

	Summary and Future Prospects
	Summary
	Future prospects

	References

