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Preface

Solitons are localized waves which can propagate through nonlinear media with-

out change of its shape and remain unaffected even after collisions with each

other. Mathematically, the word ‘soliton’ refers to the solutions of the integrable

nonlinear partial differential equations. In real physical systems, the nonlinear

partial differential equations are non-integrable, but support the self-trapped so-

lutions or the solitary wave solutions. Hence in modern literature, this distinction

is no longer used and all self-trapped beams are called as solitons. Solitons have

been investigated in various fields such as nonlinear optics, plasmonics, fluid dy-

namics, Bose-Einstein Condensates, condensed matter physics and astrophysics.

Especially, the solitons in optical systems have been studied extensively due to

the advent of high intensity lasers and the optical fiber communication system.

The worldwide demand for ultra-fast data transmission and more bandwidth

promote further research in optical solitons.

Optical solitons are electromagnetic waves that are confined in space or time

or both. A pulse/beam spreads as it propagates due to dispersion/diffraction.

If the nonlinearity balances the dispersion, temporal solitons are formed and if

the nonlinearity counter acts with the diffraction, spatial solitons are obtained.

Spatio-temporal solitons or light bullets are obtained, if both the diffraction and

dispersion compensate with the nonlinearity.

The propagation of high intense beam modifies the optical properties of the

medium due to the contribution of higher order susceptibilities. Third order

susceptibility is the source of quadratic electro-optic effect or Kerr effect. This

leads to the variation of refractive index with beam intensity. In Kerr effect,

xix



the refractive index depends on the intensity of the beam at the very point (i.e.,

local nonlinearity). Very often the transport phenomena or interactions in the

system result in variation of the refractive index due to the beam intensity at

the vicinity of a point. This behaviour is called nonlocal nonlinearity.

Non-Hermitian operators which respect parity-time symmetry (PT ), possess

real eigenvalues for a set of system parameters. A Hamiltonian with complex po-

tential V (x) is PT symmetric, if V (x) = V ∗(−x) or the real part of the potential

is an even function of position and the imaginary part is odd. The complex po-

tential plays the role of refractive index or the dielectric permittivity. This leads

to the application of PT symmetry to diverse fields such as nonlinear optics,

Bose-Einstein condensates, metamaterials and photonics. The PT symmetric

optical systems exhibit novel features like loss-induced transparency, unidirec-

tional invisibility, selective mode lasing and coherent perfect laser absorption.

The thesis presents a theoretical study of beam dynamics in single and cou-

pled PT symmetric systems with Kerr and nonlocal nonlinearity. We have stud-

ied the higher eigenmodes of PT symmetric single systems with Kerr and non-

local nonlinearity. The studies have been extended to PT symmetric coupled

systems which find applications in all-optical switching. We have studied the

switching dynamics of the coupler with Kerr and nonlocal nonlinearity. Varia-

tional method has been employed for the semi-analytic analysis and finite dif-

ference beam propagation method for the direct simulation. The steady-state

equations have been solved using Newton’s Conjugate Gradient method and

pseudo-spectral methods.

The structure of the thesis is as follows. The first chapter describes a basic

introduction to solitons, optical solitons, kerr and nonlocal nonlinearities, PT

symmetric systems and methodology.

Chapter 2 deals with the single-hump and double-hump solitons in a system

with PT symmetric complex potential having Kerr nonlinearity. The PT sym-

metric counter part of the parabolic potential has been chosen for analysis. The

PT symmetric phase transition point has been studied by varying the strength

xx



of real part of the potential and the coefficient of the nonlinearity. We have

analyzed the stability of the solitons using Bogoliubov - De - Genes equations.

In chapter 3, the higher eigenmodes of the gap solitons in a PT symmetric

periodic potential with a defocusing nonlocal nonlinearity have been described.

The double-hump nonlocal gap solitons exist above a threshold value of energy

and spread through two neighboring channels in the PT symmetric region. The

power carried by the imaginary component of the double-hump soliton increases

with the imaginary part of the complex potential. The total power is invariant

with respect to the strength of the imaginary part of the potential and the range

of the nonlocality. The double-hump solitons are unstable and the perturbation

modes vary exponentially.

Chapter 4 describes the PT symmetric coupler in transverse real periodic

and aperiodic potentials with Kerr nonlinearity for linear and nonlinear regime.

The propagation-invariant solutions of the system have been studied and found

that the high frequency solitons reside in the minimum value of the periodic and

aperiodic potentials.

Beam dynamics in the PT symmetric coupler with transverse real periodic

potential having defocusing nonlocal nonlinearity has been studied in chapter

5. The high-frequency and the low-frequency modes with single-hump, double-

hump and triple-hump structures are obtained. The linear stability analysis

of the high-frequency and low-frequency modes predict that both modes are

stable for weak nonlocality but unstable with oscillatory instability for strong

nonlocality.

Chapter 6 deals with the switching dynamics in PT symmetric coupler with

transverse real potentials. Both periodic and aperiodic potentials are analysed

with Kerr and nonlocal nonlinearity. The switching from channel with gain to

channel with loss is possible for high input power by varying either the range of

the nonlocality or the strength of the transverse periodic potential.

Chapter 7 summarizes the findings of the thesis and describes future prospec-

tives of this work.
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Chapter 1

Basic Concepts and Thesis

Outline

1.1 Introduction

Solitons are localized waves which can propagate through nonlinear media with-

out change of its shape and remain unaffected even after collisions with each

other [1]. Mathematically, the word ‘soliton’ refers to the solutions of the inte-

grable nonlinear partial differential equations. In general, the nonlinear models

are non-integrable but support self-trapped solutions known as solitary waves.

The discovery of the soliton was quite accidental and it was reported by

J.S.Russel, a naval architect, in 1834. He observed a rounded, smooth and

well-defined heap of water moving with great velocity through a narrow canal

preserving its shape for kilometers. He called it as a ‘wave of translation’. Two

Dutch physicists, Korteweg and de Vries developed a theory for the wave of

translation and the dynamics is modeled by Kortweg de Vries equation (KdV).

Later Zabusky and Kruskal numerically studied KdV equation. They found the

solitary wave solutions with particle nature and termed it as ‘solitons’. Solitons

find applications in many fields such as nonlinear optics [2, 3, 4], Bose-Einstein

Condensates [5], and hydrodynamics [6].
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Optical solitons are electromagnetic waves that are confined in space or time

or both. The advent of lasers and the optical fibers revolutionized the commu-

nication industry. The world is in need of ultra-fast as well as high bandwidth

communication system. Optical solitons find potential applications in optical

communication systems, all-optical switching, and optical computing where they

act as information carrying bits.

1.2 Optical solitons

The propagation of electromagnetic pulse or beam though a medium leads to

the broadening due to chromatic dispersion or diffraction. These phenomena

adversely affect the technological applications of light. The information carrying

capacity get reduced due to the broadening of the pulse. However the nonlin-

earity of the medium counteracts in the case of high intense pulse/beam and

exactly balances the broadening. These self-trapped light beams are called op-

tical solitons. There are temporal and spatial optical solitons depending on the

confinement either in time or in space.

1.2.1 Linear effects

When an electromagnetic pulse or beam propagates through a medium, it broad-

ens due to dispersion or diffraction. In the case of low intensity beam, these are

the effects even in nonlinear media.

Dispersion

When the speed of a wave depends only on the physical properties of the medium,

it is independent of the frequency. The wave travels through the medium main-

taining its shape and the medium is called non-dispersive.

In dispersive media, the wave speed varies with the frequency of the wave

due to various reasons. In the case of electromagnetic wave, this is due to the

absorption of characteristic resonance frequencies by the bound electrons of the
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(a)

(b)

Figure 1.1: The broadening of a Gaussian input pulse as it propagates.
(a) Dispersion [7] and (b) diffraction [8].

media. This causes distortion of the wave as it propagates. A wavepacket has

many Fourier components. Each component propagates with different speed and

the wavepacket distorts. This is known as dispersion. When the high frequency

components of the wavepacket move slower than the low frequency components, it

is called the normal dispersion. The high frequency components travel faster than

the low frequency components in the anomalous dispersion regime. Hence the

pulse disperses and is known as group velocity dispersion (GVD). The dispersion

of the Gaussian pulse as it propagates through an optical fiber is shown in Figure

1.1(a) [7].

Diffraction

When a light beam encounters an obstacle/aperture, the beam bends around

it. This is known as diffraction. When the size of the obstacle is comparable
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with the wavelength of the beam, the diffraction effects are more pronounced.

A beam which propagates through a medium with varying refractive index, also

exhibit diffraction effects. A collimated light beam with the diameter d and the

wavelength λ, spreads through an angle λ/d due to diffraction. Figure 1.1(b)

shows the diffraction broadening of the pulse [8].

1.2.2 Kerr nonlinearity

When an optical pulse passes through a dielectric medium, the anharmonic mo-

tion of bound electrons produce nonlinear response [2]. The induced polarisation

P in the medium is related with the electric field E as given below:

P = ε0(χ
(1).E + χ(2) : EE : +χ(3) : EEE : +..., (1.1)

where ε0 is the permittivity of vacuum, χ(1) is the linear part of the susceptibility

and χ(2), χ(3), ... are the nonlinear parts of the susceptibilities of second, third

and higher orders. In general, χ(j) is a tensor of rank j+1 where j = 1, 2, .... The

nonlinear effects due to each χ(j) are different. Only the first order susceptibility

χ(1) contributes for low intense beam which is linear. As the intensity increases,

higher order susceptibility plays major role leading to nonlinear behaviour. Sec-

ond order susceptibility χ(2) vanishes for molecules with center of symmetry like

silica.

The nonlinear effects due to third order susceptibility χ(3) are important

for centrosymmetric and non-centrosymmetric molecules. It is responsible for

different nonlinear phenomena such as intensity-dependent refractive index, third

harmonic generation and four-wave mixing. The intensity-dependent refractive

index is also known as quadratic electro-optic effect or Kerr effect. The refractive

index obeys the relation:

n(I) = n0 + n2I, (1.2)

n0 and n2 being the linear and nonlinear terms respectively. In Kerr effect, the
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(a)

(b)

Figure 1.2: (a) The self phase modulation (SPM) of a wave packet and
(b) the self focusing of a pulse.

refractive index depends on the intensity of the beam at the very point (i.e., local

nonlinearity). The nonlinear refractive index is responsible for several effects in

the wave propagation which includes the self phase modulation (SPM) and the

self-focusing.

Self phase modulation (SPM)

When an optical pulse propagates through a fiber, high intense portions have

high refractive index whereas low intense portions have low refractive index. A

refractive index gradient develops within a single pulse of light such that positive

gradient for leading edge while negative gradient for trailing edge. The varia-

tion in refractive index causes variation in phase change and thereby produces

frequency-chirping [9, 10]. This phenomenon is known as Self Phase Modulation.

The frequency spectrum of the pulse broadens due to SPM. The SPM of a wave

packet is shown in Figure 1.2(a).
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Self-focusing

When a beam with high intensity propagates through a medium, a transverse

refractive index gradient develops in the medium. This acts like a focusing

lens for the beam. The refractive index is large at the regions where the beam

intensity high, generally at the center of the beam. This causes focusing of the

beam and the beam shrinks. As the beam shrinks, the refractive index gradient

across the transverse profile increases further. The peak intensity region in the

medium keeps increasing until any other effect (i.e, de-focusing) interrupt the

process. Kerr-induced self-focusing was first predicted by Kelley [11]. The self

focusing of a beam is depicted in Figure 1.2(b).

1.3 Nonlinear Schrödinger Equation (NLSE)

for optical field

An electromagnetic wave propagating through a nonlinear medium obeys

Maxwell’s equation:

∇2E − 1

c2
∂2E

∂t2
=

1

ε0c2
∂2P

∂t2
, (1.3)

where E is the electric field, c is the speed of light in free space, and ε0 is the

dielectric permittivity of the free space. The induced polarisation P includes

linear and nonlinear contributions:

P (r, t) = PL(r, t) + PNL(r, t), (1.4)

PL(r, t) = ε0

∫
χ(1)(t− t

′
)E(r, t

′
)dt

′
,

PNL(r, t) = ε0

∫ ∫ ∫
χ(3)(t− t1)(t− t2)(t− t3)E(r, t1)E(r, t2)E(r, t3)dt1dt2dt3.

Here χ(1) and χ(3) are the susceptibility tensors of order 1 and 3 respectively.
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The time-dependent nature of the envelop of the pulse is written as:

E(r, t) = A(Z, t)F (x, y)eiβ0Z , (1.5)

in which β0 is the propagation constant and F (x, y) is the transverse field dis-

tribution of the fundamental mode in a single-mode fiber. A(Z, t) is the time-

dependent amplitude which implies that each spectral component of the pulse

moves with different speed inside the fiber owing to the chromatic dispersion.

Hence the refractive index varies with the frequency ω which is expressed as:

ñ = n(ω) + n2|E|2. (1.6)

The analysis is carried out in Fourier domain to incorporate the chromatic dis-

persion. The nonlinearity is treated as a perturbation. The Fourier transform of

A(Z, t) is represented by Ã(Z, t) which obeys the equation:

∂Ã(Z, t)

∂Z
= i[β(ω) + ∆β − β0]Ã(Z, t). (1.7)

Here β(ω) = k0n(ω). The nonlinear part ∆β satisfies the relation:

∆β = k0n2|A|2
∫∞
−∞

∫∞
−∞ |F (x, y)|4dxdy∫∞

−∞

∫∞
−∞ |F (x, y)|2dxdy

. (1.8)

The Taylor expansion of β(ω) around ω0 is written as:

β(ω) = β0 + (ω − ω0)β1 + (ω − ω0)
2β2 + ..., (1.9)

where βj = djβ
dωj . Taking inverse Fourier transform of equation 1.7 after substi-

tuting for β(ω), A(Z, t) is obtained as:

∂A

∂Z
+ β1

∂A

∂t
+ iβ2

∂2A

∂t2
= iγ|A|2A, (1.10)

where (ω − ω0) ' ∂
∂t

in inverse Fourier transform, β1 and β2 are the first order
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dispersion effect 1
vg

and the group velocity dispersion parameter d2β
dω2 respectively.

The nonlinear parameter γ is given by n2ω
cAeff

, n2 being the intensity dependent

refractive index with the effective mode area Aeff = k0n2|A|2
∆β

.

Transforming equation 1.10 by introducing new cocordinates to a reference

frame moving with the pulse such that τ =
(t− z

vg
)

T0
, z = Z

LD
, and u =

√
γLDA,

the NLS equation for the optical field is obtained as:

i
∂u

∂z
+
β2

2

∂2u

∂t2
+ β|u|2u = 0. (1.11)

1.3.1 Temporal soliton

As we already seen, an optical pulse has an innate tendency to spread as it

propagates due to dispersion. The broadening of the pulse due to dispersion

exactly compensates with nonlinearity for high intensity. Then the pulse travels

without distortion and it is known as temporal soliton. If SPM balances the

GVD, the temporal solitons are formed [3, 4]. The dynamics of these solitons

are modeled by the Nonlinear Schrödinger Equation (NLSE):

i
∂Ψ

∂z
+
β2

2

∂2Ψ

∂t2
+ β|Ψ|2Ψ = 0, (1.12)

where Ψ denotes the temporal soliton. The sign of GVD parameter β2 is positive

and negative for bright and dark temporal solitons respectively. The dispersion

and the nonlinearity exactly balance in the anomalous dispersion regime (i.e.,

β2 = +1) thereby producing temporal solitons. The nonlinear coefficient β = 1

for self-focusing nonlinearity and β = −1 for self-defocusing nonlinearity.

1.3.2 Spatial soliton

The propagation of high intense light through nonlinear media result in the

diffraction and the self-focusing of the beam. The exact balance between the

self-focusing and the diffraction lead to the propagation of beam with constant

diameter. This is called the self-trapping of light or spatial soliton.
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Diffraction along one of the transverse directions is considered as similar to

the anomalous dispersion in temporal solitons. The dynamics of spatial solitons

is governed by the NLSE which is given by:

i
∂Ψ

∂z
+
β2

2

∂2Ψ

∂x2
+ β|Ψ|2Ψ = 0, (1.13)

where the second derivative is taken with respect to the transverse coordinate to

incorporate the diffraction.

1.4 Nonlinearities

The propagation of high intense beam/pulse modifies the optical properties of

the medium. There are different underlying mechanisms for the modification of

optical properties, depending on the nature of materials/media. Certain nonlin-

ear models which are used to explain these systems, are given below.

1.4.1 Competing nonlinearity

The nonlinear effects of the medium depends on the higher order susceptibility

(more than third order) if the beam intensity is too large [12]. Certain materials

like PTS, AlGaAs, and CdS exhibit these behaviour. In this case the nonlinearity,

nnl is expressed by:

nnl = n2I + n4I
2,

in which n2 and n4 are the coefficients of second and fourth order nonlinearity

respectively and both of them have opposite sign.

1.4.2 Saturable nonlinearity

Several systems including two-level atomic systems and photo-refractive mate-

rials, have saturable nonlinearity [12]. When a high intense beam propagates
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through these media, the nonlinearity get saturated. The nonlinear part of the

refractive index is characterised by the maximum refractive index change n∞ and

the saturation intensity Isat as given below:

nnl(I) = n∞[ 1− 1

(1 + I
Isat

)p
] ,

where p is a constant.

1.4.3 Transitive nonlinearities

In this model, the nonlinearity transits from one form to another as the intensity

varies, as in bistable solitons. The intensity at which the nonlinearity change its

form is called the critical intensity Icr. A simple model of the system is given by:

nnl(I) = n21I, I < Icr,

n22I, I > Icr,

where n21 denotes the nonlinear coefficient in the domain I < Icr and n22 repre-

sents the nonlinear coefficient in the domain I > Icr.

1.4.4 Nonlocal nonlinearity

A nonlinear optical effect is called nonlocal if the response induced by the beam at

a point on the medium also depends on the electromagnetic field at the vicinity

of the point [13]. Very often the transport phenomena or interactions in the

system result the variation of the refractive index with the beam intensity at the

surrounding points [14]. The extent of this surrounding is known as the degree

of nonlocality. Different materials/media exhibit various nonlocal nonlinearities

owing to particular physical mechanisms. Atomic diffusion [15], heat diffusion

[16], drift of ions [17], and long-range molecular interactions [18] are certain

mechanisms which lead to the nonlocal nonlinearity in physical systems.

When a beam with intensity I propagates through a medium, the variation
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Figure 1.3: Various degrees of nonlocality, as given by the width of the
nonlocal response function R(x) and the intensity profile of the beam I(x)
[19]. Shown are (a) local, (b) weakly nonlocal,(c) general (nonlocal), and
(d) highly nonlocal responses.

in refractive index is modeled by:

n(I) = s

∫
R(ζ − r)I(ζ, z)dζ, (1.14)

where r represents the transverse spatial coordinates, R(r) is the response func-

tion, s = 1 for self-focusing and s = −1 for defocusing nonlinearity. The nor-

malisation condition for R(r) is
∫
R(r)dr = 1 and R(r) = R(r) for real localised

symmetric response functions. The degree of nonlocality is obtained from the

width of the response function.

Figure 1.3 shows various degrees of nonlocality (or the width of the response

function) and the intensity of the beam [19, 14]. When the response function

is the dirac delta function R(r) = δ(r), the refractive index change n(I) is a

localised function of intensity such that n(I) = sI as depicted in Figure 1.3(a).

As the width of R(r) increases, the nonlocal contribution to refractive index

change also increases. If the width of the response function is much less than the
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width of the beam (Figure 1.3(b)), the intensity can expand as a Taylor series,

I(r) = I0 + r.∇⊥I + r2∇2
⊥I + ... (1.15)

where ∇⊥ represents the derivative with respect to the transverse coordinates.

Substituting the Taylor expansion of I in equation 1.14 and retaining the first

significant terms:

n(I) = s(I + γ∇2
⊥I), (1.16)

where γ = 1
2D

∫
r2R(r)dr which is the strength of the nonlocality and r spans D

dimensional coordinate space. This type of nonlinearity appears in the studies

of nonlinear effects in plasma [20]. Nonlinear Schrödinger equation with this

nonlinearity supports both the bright and the dark solitons [21]. When the width

of the response function is much greater than that of the beam, it represents

highly nonlocal limit as illustrated in Figure 1.3(d). Then the nonlinearity is

expressed as:

n(I) = sR(r)P, (1.17)

P being the power of the beam. So the propagation equation becomes local

and linear. It provides the evolution of a beam having the profile of the response

function which trapped inside an effective waveguide. This case was first reported

by Snyder and Mitchell [13].

Usually nonlinear response of the medium is nonlocal. However if the width

of the beam is very large compared to the width of the response function, the

nonlocal behaviour is negligible. Then γ = 0 and the nonlinearity is Kerr type.

NLSE for different types of nonlinearity can be written by modifying the

nonlinear term in equation 1.11 as:

i
∂u

∂z
+
β2

2

∂2u

∂x2
+ F (|u|2)u = 0, (1.18)
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in which F (|u|2) is the nonlinearity functional of refractive index change.

In chapters 3, 5 and 6 we have used nonlocal nonlinearity to study the exis-

tence and stability of optical solitons.

1.5 PT symmetric systems

When the force acting on the system is derivable from a single potential func-

tion which depends only on spatial coordinate, the system (force) is said to be

conservative [22]. In this case, Hamiltonian represents the total energy which is

the sum of the kinetic energy and the potential energy. The state of a system is

described in terms of the state vector ψ(r, t). The dynamics of the state vector

ψ(r, t) is given by the Schrödinger equation:

i~
∂ψ

∂t
= Hψ(r, t), (1.19)

where H = − ~2

2m
∇2ψ + V (r)ψ, Hamiltonian which is Hermitian operator acting

on the Hilbert space L2(<D) with dimension D. The inner product in this space

is defined as:

〈ψ, φ〉 =

∫
<D

ψ∗(r, t)φ(r, t)dr,

in which ∗ denotes complex conjugation. Hermitian conjugation H† for a linear

operator H is defined as 〈H†ψ, φ〉 = 〈ψ,Hφ〉. Hermitian operators or self-adjoint

operators are those which satisfies the relation H = H†. These possess real

eigenvalues and the eigenvectors form an orthonormal set. There is a linear

Hermitian operator corresponding to every physical observable.

The losses are inevitable in physical systems. When dissipative forces or

losses are present in the physical system, the system (force) is called dissipative.

The spatial soliton dynamics is modeled by the modified NLSE:

i
∂φ

∂z
+
∂2φ

∂x2
+
∂2φ

∂y2
+ F (|u|2)u− i

2
G(z)φ = 0, (1.20)
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G being the gain/loss of the system depending on whether G > 0 or G < 0

respectively.

The PT symmetric systems pave way to the fruitful utilisation of the losses.

A class of the non-Hermitian operators which respect the subsequent action of

space inversion (parity operator) and the time reversal, possess real eigenvalues

[23]. These are known as PT symmetric operators. Non-Hermitian Hamiltonian

respects the parity-time symmetry if the potential V (x) = V (−x)∗ [24]. The

PT symmetric Hamiltonians have real eigenvalues up to a critical value of the

gain/loss known as the PT symmetric phase transition point above which the

eigenvalues are complex. The PT symmetric phase transition point is also known

as exceptional point.

Two major discrete symmetries in physics are space inversion and time rever-

sal symmetries. The space inversion operator is also known as parity operator P

which is defined as Pψ(r, t) = ψ(−r, t) [25]. The time reversal operator is an an-

tilinear operator and is defined as T ψ(r, t) = ψ∗(r,−t). The antilinear behaviour

can be described by the relation T (λψ + φ) = λ∗T ψ + T φ. P2 = T 2 = I, I

being the identity operator and [P , T ] = 0. An operator H is PT symmetric if

[PT , H] = 0. PT symmetry is unbroken if the eigenfunctions of H is simultane-

ously eigenfunctions of PT . Then Hψ = Eψ implies that PT ψ = λψ. λ = eiθ

represents the pure phase. In the unbroken case, HPT ψ = E∗PT ψ is equivalent

to Hψ = E∗ψ. So the eigenvalues are real. i.e., PT symmetry is not sufficient

for real spectra, but it should be unbroken. Otherwise PT symmetry is broken

and it is associated with the complex eigenvalues.

PT symmetry does not lead to the completeness of eigenvectors unlike Her-

miticity. Though the spectrum is completely real, the eigenvectors do not form

complete set due to the presence of exceptional points just like other non-

Hermitian operators. The study of PT symmetric systems are important in

various fields such as nonlinear optics, plasma physics, meta-materials, atom

lasers and all-optical signal processing.
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1.6 PT symmetric optical systems

The idea of PT symmetry was first experimentally explored in optics [26]. The

mathematical equivalence of Schrödinger equation with paraxial diffraction equa-

tion implies that the complex potential behaves just like the complex refractive

index. The propagation constants are the eigenvalues of the paraxial equation

in stead of energy eigenvalues of the Schrödinger equation. Nowadays novel ar-

tificial structures and materials are explored by designing both the real and the

complex parts of the refractive index profile.

1.7 Methodology

Beam dynamics in a nonlinear media is modeled by nonlinear partial differential

equations. The challenge in the study of the nonlinear systems is that the nonlin-

ear partial differential equations are not exactly solvable. Hence semi-analytic,

numerical and perturbation methods are used for solving these equations. We

have employed the variational method and finite difference beam propagation

method for studying these systems. Spectral methods and iterative methods are

employed for solving the ordinary differential equations.

1.7.1 Variational method

The variational method was first proposed by Whitham [27]. This is a semi-

analytical method based on the average Lagrangian density and the trial func-

tions. It yields quite general results, but requires judicious selection of trial func-

tions. The variational method was employed to solve the nonlinear Schrödinger

equation at first by Anderson [28]. The results predicted were in good agree-

ment with that of the numerical methods and the inverse scattering method.

Since then the variational method has been employed by so many authors

[29, 30, 31, 32, 33, 34].

The variational method needs the Lagrangian of the system under study. The
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reduced Lagrangian is constructed from a suitable trial function with various

unknown parameters. The variation of each unknown parameter with respect

to the reduced Lagrangian is evaluated. The resultant evolution equations are

called Euler-Lagrange equations. The solutions of the system is obtained from

these equations.

Lagrangian formalism

Lagrangian formalism is based on the Hamilton’s principle which states that the

evolution of the infinite dimensional system is given by the expression [35]:

δI = δ

∫ ∫
L(Ψ,Ψ∗,Ψx,Ψ

∗
x,Ψz,Ψ

∗
z, x, z)dzdx = 0, (1.21)

where L is the Lagrangian functional of the system. The resulting Euler equation

which is known as Lagrangian equation, is expressed as:

∂

∂z

∂L

∂Ψz

+
∂

∂x

∂L

∂Ψx

− ∂L

∂Ψ
= 0.

Lagrangian of the dissipative systems include the conservative LC and the non-

conservative LNC terms [35] such that L = LC +LNC . Then Lagrangian equation

is restated as:

∂

∂z

∂LC

∂Ψz

+
∂

∂x

∂LC

∂Ψx

− ∂LC

∂Ψ
= Q, where

Q =
∂

∂z

∂LNC

∂Ψz

+
∂

∂x

∂LNC

∂Ψx

− ∂LNC

∂Ψ
,

where Q incorporates all dissipative processes.

The Ritz optimization procedure is applied to solve the system. In this

method, a set of judiciously chosen trail functions are selected and the variation

of the reduced Lagrangian is made to vanish. The reduced Lagrangian of the

system is given by:

< L >=

∫
L(Ψ,Ψ∗,Ψx,Ψ

∗
x,Ψz,Ψ

∗
z, x, z))dx.
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The variational method for dissipative systems are developed by Kontrovitch

[36, 37] which is stated as:

∂

∂z

∂ < L >

∂ηiz

+
∂

∂x

∂ < L >

∂ηix

− ∂L

∂ηi

= Re

∫
Q
∂Ψ∗

∂ηi

dx,

ηi being the variational parameters in the trial solution.

1.7.2 Finite Difference Beam Propagation Method

In this method, the partial differential equations are replaced by the approxi-

mations obtained from Taylor expansion nearest to the point of interest. The

dynamical equation is descretized by imposing a rectangular grid on the problem.

Consider a function u and its derivative which are finite, single-valued, and

continuous functions of x. Taylor expansion of u is obtained as:

u(x+ h) = u(x) + hu′(x) +
h2

2
u
′′
(x) +

h3

6
u
′′′
(x) + ...,

u(x− h) = u(x)− hu′(x) +
h2

2
u
′′
(x)− h3

6
u
′′′
(x) + ..., (1.22)

where the superscript ′ represents the derivative with respect to x. Addition and

substraction of these equations provide the second derivative and first derivative

respectively by neglecting higher powers of h. The corresponding expressions are

given by:

u
′′
(x) =

∂2u

∂x2
' 1

h2
(u(x+ h)− 2u(x) + u(x− h)),

u
′
(x) =

∂u

∂x
' 1

2h
(u(x+ h)− u(x− h)),

having an error of h2. If u is a function of x and z, a rectangular grid is imposed

on the x− z plane such that x = jh and z = nk with j and n are integers. The
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derivatives can be written as:

(
∂2u

∂x2
)j,n =

1

h2
(un

j+1 − 2un
j + un

j−1), (1.23)

∂u

∂z
=

1

k
(un+1

j − un
j ), (1.24)

where the forward difference approximation is used for ∂u
∂z

.

Crank-Nicolson implicit method

In this method, the forward difference approximation is used for ∂u
∂z

. The central

difference approximation for ∂2u
∂x2 is given by:

(
∂2u

∂x2
)j,n =

1

2
(
un+1

j+1 − 2un+1
j + un+1

j−1

h2
+
un

j+1 − 2un
j + un

j−1

h2
). (1.25)

For describing the method, consider the NLSE in the form given below:

i
∂u

∂z
=
∂2u

∂x2
+ |u|2u. (1.26)

A one dimensional beam propagates through the nonlinear medium. The output

field at z = L is obtained from its initial value at z = 0. The medium is divided

into equally spaced intervals by k along the propagation direction. The finite

difference form of the NLSE is expressed as:

i

k
(un+1

j − un
j ) =

1

2
(
un+1

j+1 − 2un+1
j + un+1

j−1

h2
+
un

j+1 − 2un
j + un

j−1

h2
) +

1

2
(|un+1

j |2un+1
j + |un

j |2un
j ). (1.27)

Rearranging the equation:

Cju
n+1
j+1 +Bju

n+1
j + Aju

n+1
j−1 = −Cju

n
j+1 +Bju

n
j − Aju

n
j−1, (1.28)

where Aj = − k
2h2 = Cj, Bj = i + k

2h2 − k
2
|uj|n+1, and Dj = i − k

2h2 + k
2
|uj|n.

Equation 1.28 is in the form AU = D, where A is tridiagonal matrix which is
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expressed as:

B1 C1 0 0 0 . . .

A1 B2 C2 0 0 . . .

0 A2 B3 C3 0 . . .

0 0 A3 B4 C4 . . .

. . .

An−2 Bn−1 Cn−1

. . . An−1 Bn





u1

u2

u3

.

.

.

un


=



d1

d2

d3

.

.

.

dn


(1.29)

The output field U will be obtained as:

U = A−1D. (1.30)

1.7.3 Pseudo-spectral methods

In pseudo-spectral method, the partial differential equations are solved point wise

in physical space (x, t) just like finite difference method [38, 39]. But the space

derivatives are evaluated using orthogonal functions. To illustrate the method,

consider an ordinary or partial differential equation of the form:

Lu = g. (1.31)

Here u(x, t) is the solution. The boundary conditions at x = ±1 depends L and

g(x, t) is the source term. The basic principle is to approximate the solution

with a finite sum:

u(x, t) ≈ un(x, t) = Σn
k=1vk(t)φk(x), (1.32)

where φk(x) is the set of basis functions and vk(t) is the coefficient of expansion.

A set of orthogonal functions are chosen for basis functions such as Fourier

integrals, Chebyshev polynomials e.t.c. The expansion coefficients are calculated
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using the residual function R which is defined as:

R[un(x, t)] := [Lun − g](x, t). (1.33)

R is evaluated from equation 1.32. The residual norm ‖R‖ is a measure of the

quality of the approximate solution. R should be as small as possible across the

domain. The spectral coefficients {vk}N
k=0 are chosen so that they satisfy the

boundary conditions. Rest of the spectral coefficients are evaluated such that

R[un(x, t)] vanishes as many spatial points as possible.

The solution at the collocation points are exact whereas interpolation pro-

vides the solution in between the collocation points. Chebyshev polynomials

are used for interpolation. Chebyshev points are defined as xj = cos( jπ
N

) where

j = 0, 1, 2, ..., N . The pseudo-spectral method works well for smooth functions

with geometrical convergence.

1.7.4 Newton’s Conjugate Gradient method

Newton’s conjugate gradient method is one of the iterative methods mainly used

for the computation of solitary waves. Basic principle involves Newton itera-

tions. The resultant linear Newton correction equation is solved using conjugate-

gradient iterations [40].

Consider solitary waves in a nonlinear media with arbitrary spatial dimen-

sions of the form:

L0u(x) = 0, (1.34)

where x is a vector and u(x) is a real-valued solitary wave. |u(x)| → 0 for

|x| → ∞.

For the illustration of the method, let the dynamics of the system is described

with the nonlinear Schrödinger equation:

i
∂U

∂t
+
∂2U

∂x2
+ |U |2U = 0. (1.35)
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The solitary wave satisfies the relation U(x, t) = u(x)eiµt, where µ is the propa-

gation constant. Substituting in equation 1.35:

d2u

dx2
− µu+ u3 = 0. (1.36)

In the case of complex-valued solitary waves, the equation can be expressed in

the above form with u consisting of real and imaginary parts of the solution.

Iterative methods are employed to solve equation 1.34. Let un(x) is an ap-

proximate solution. This should be close to the exact solution u(x). Now the

exact solution satisfies the relation:

u(x) = un(x) + en(x), (1.37)

where en(x) << 1 is the error. Substituting in equation 1.34 and expanding

about un(x) yields:

L0un + L1nen = O(e2
n), (1.38)

in which L1n is the linearization operator evaluated at the approximate solution

un. Neglecting higher order terms of en on the equation 1.38, the remaining

equation is linear inhomogeneous equation for en. Hence we can update the

solution such that:

un+1(x) = un(x) + ∆un(x), (1.39)

∆un being the updated amount. This term can be evaluated from the linear

inhomogeneous equation for en which is rewritten as:

L1n∆un = −L0un. (1.40)

Up to this, the method is equivalent to Newton iterations. Equation 1.40 is solved

by using conjugate-gradient iterations. The preconditioned conjugate gradient
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method is used for self-adjoint linearization operators and dropping the sub-

scripts n as given below:

∆u(0) = 0,

R(0) = −L0u,

D(0) = M−1R(0),

a(i) =
〈R(i),M−1R(i)〉
〈D(i),L1D(i)〉

,

∆u(i+1) = ∆u(i) + a(i)D(i),

R(i+1) = R(i) − a(i)L1D
(i),

b(i+1) =
〈R(i+1),M−1R(i+1)〉
〈R(i),M−1R(i)〉

,

D(i+1) = M−1R(i+1) + b(i+1)D(i),

where i = 0, 1, 2, ... is the index of conjugate-gradient (CG) iterations. The inner

product is defined as:

〈F1,F2〉 =

∫ ∞

−∞
F†

1.F2dx,

in which † denotes the Hermitian of a vector. M is the pre-conditioning operator

for accelerating the convergence of the conjugate-gradient iterations and it should

be easily invertible. Generally it is chosen as the linear differential part of L0.

The CG iterations are terminated depending on certain accuracy of ∆u(i).

The error of this solution is the residue R(i) = −L0un − L1n∆u
(i)
n and whose

M−1 weighted norm is given by:

‖R(i)‖M ≡ 〈R(i),M−1R(i)〉
1
2 . (1.41)

The CG iterations are terminated by checking the criterion:

‖R(i)‖M < εcg‖R(0)‖M, (1.42)

22



where εcg is the error tolerance parameter which lies between 10−1 and 10−3.

The accuracy of the solution is set as 10−10. Conjugate-Gradient method is

embedded inside the Newton iterations and so the method is called Newton

Conjugate-Gradient (NCG) method.

1.8 Outline of the thesis

The thesis presents a theoretical study of beam dynamics in single and coupled

PT symmetric systems focusing on Kerr and nonlocal nonlinearity. The varia-

tional and numerical methods are employed for the analysis. Finite difference

beam propagation method is used to study the evolution of beam in nonlinear

media as it propagates. Newton’s Conjugate-Gradient method is applied for

steady-state nonlinear equations and pseudo-spectral method for linear stability

analysis.

Chapter 2 deals with the single-hump and double-hump solitons in a system

with PT symmetric complex potential having Kerr nonlinearity. The PT sym-

metric parabolic potential of the form kx2

2
− iεx, has been chosen for analysis,

where k and ε represent the strength of the real part of the potential and the

strength of the loss term (imaginary part of the potential) respectively. The

system undergoes spontaneous PT symmetric phase transition from the PT

symmetric region to the broken PT symmetric region depending on the strength

of the imaginary part of the potential. The coefficient of the imaginary part

of the potential at which the phase transition occurs is known as the threshold

value. The PT symmetric phase transition point has been studied by varying

the strength of real part of the potential and the coefficient of the nonlinearity.

The linear stability analysis reveals that the stable solitons are formed for low

values of the coefficients of imaginary part of the potential and nonlinearity.

In chapter 3, the higher eigenmodes of the gap solitons in a PT symmetric

periodic potential with a defocusing nonlocal nonlinearity have been described.

The double-hump nonlocal gap solitons exist above a threshold value of energy
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and spread through two neighboring channels in the PT symmetric region. The

power carried by the imaginary component of the double-hump soliton increases

with the imaginary part of the complex potential. The total power is invariant

with respect to the strength of the imaginary part of the potential and the range

of the nonlocality. The power of the soliton increases with the propagation con-

stant or energy. The double-hump soliton exists in the PT symmetric domain

whereas it dies out in the broken PT symmetric region. The linear stability

of the double-hump solitons are studied using Bogoliobov-De-Genes equations.

The double-hump solitons are unstable and the perturbation modes vary expo-

nentially.

Chapter 4 describes the PT symmetric coupler in transverse real periodic and

aperiodic potentials with Kerr nonlinearity for linear and nonlinear regime. The

propagation-invariant solutions of the system have been studied and found that

the high frequency solitons reside in the minimum of the periodic and aperiodic

potentials. The high strength of the periodic potential causes the soliton to

be more confined in the lattice whereas high depth of the parabolic potential

leads to the confinement of the soliton at minimum value of the potential. The

linear coupler possesses real eigenvalues when the gain/loss coefficient is less

than the coupling coefficient for both periodic and aperiodic potentials. The

transverse periodic potential modulates the amplitude of the beam and causes

the formation of bands in the unbroken regime. The beam get trapped in the

channel with gain in the case of periodic and aperiodic potentials for nonlinear

coupler. The linear stability analysis reveals that the high frequency soliton is

stable for both periodic and aperiodic potentials.

The PT symmetric coupler with transverse real periodic potential having de-

focusing nonlocal nonlinearity has been studied in chapter 5. The high-frequency

and the low-frequency modes with single-hump, double-hump and triple-hump

structures are obtained. The high-frequency multi-hump modes are observed

in the first band gap. The low-frequency single-hump modes lie in the semi-

infinite band gap whereas low-frequency double-hump and triple-hump modes
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lie in the first band gap. The single-hump modes trap in the minimum of the

potential. The double-hump modes spread through the two consecutive lattice

while triple-hump modes lie across three consecutive lattices. As the range of

the nonlocal nonlinearity varies, the propagation constants corresponding to dif-

ferent modes also change. The linear stability analysis of the high-frequency and

low-frequency modes predict that both modes are stable for weak nonlocality but

unstable with oscillatory instability for strong nonlocality. The studies on the

propagation dynamics predict that when the range of the nonlocality increases,

the width increases and the amplitude decreases, resulting in constant power

propagation.

Chapter 6 deals with the switching dynamics in PT symmetric coupler with

transverse real potentials. Both periodic and aperiodic potentials are analysed

with Kerr and nonlocal nonlinearity. The power oscillates between the channels

for low input intensity whereas the power is trapped in the gain channel for high

input intensity in the case of weak nonlocality and low strength of the transverse

potentials. We get the travelling soliton solution, if the center of the solution lies

at the minimum of the transverse potentials. When the center of the solution lies

at the maximum of the periodic potential, the soliton get trapped. The power-

dependent switching of the PT symmetric nonlocal coupler has also been studied

in this chapter. The critical power increases with the range of the nonlocality

and the strength of the transverse potential. The switching from channel with

gain to channel with loss is possible for high input power by varying either the

range of the nonlocality or the strength of the transverse periodic potential.

Chapter 7 summarizes the findings of the thesis and describes future prospects

of this work.
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Chapter 2

Beam dynamics in Kerr media

having PT symmetric aperiodic

potential

2.1 Introduction

PT symmetry in nonlinear optics have been extensively studied because of its

potential applications in optical fiber communication systems and in photonics.

Though the system contains dissipative term, it exhibits many features of con-

servative systems like the real linear spectra and the stable nonlinear eigenmodes

with continuous energy values.

The existence of real spectra of PT symmetric Hamiltonians has been re-

ported first in parabolic complex potential of the form (x − iα)2, where α is a

real parameter [1]. The studies have been reported in PT symmetric polynomial

potentials and the PT symmetric cubic anharmonic oscillator potentials [2, 3, 4].

Solitons in PT symmetric optical systems exhibit unique features. Optical soli-

tons in PT symmetric periodic potential has been studied in Kerr media [5]. A

series of studies have been reported in Kerr media with different types of PT

symmetric potentials [6, 7, 8, 9] and in optical lattices [10, 11, 12, 13].
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The parabolic potential which is in the fundamental Harmonic oscillator prob-

lem, is a simplest model of potentials. Parabolic refractive index in crystals,

optical fibers and harmonic trap in Bose-Einstein Condensates are some mod-

ern applications of this potential. PT symmetric counter part of the parabolic

potential has been used to model the system.

In this chapter we have studied the single-hump and the double-hump solitons

of a system having PT symmetric complex potential [14]. The variational and

the numerical methods have been employed to analyze the system. The ground

state of the system has been studied in linear and nonlinear regime. The stability

analysis of the fundamental mode has been addressed. We have extended the

study to the double-hump structure in linear and nonlinear regime.

2.2 The theoretical model

The solitons in a PT symmetric complex potential is given by the one dimen-

sional equation:

i
∂Ψ

∂t
= −1

2

∂2Ψ

∂x2
+ (

1

2
kx2 − iεx)Ψ + 2g |Ψ|2 Ψ, (2.1)

where k and ε are the strengths of the real and the imaginary part of the potential

respectively and g is the coefficient of the nonlinearity. x represents the transverse

coordinate whereas t denotes the propagation direction (z for optical systems).

The PT symmetric complex potential of the system is given by:

V (x) = VR(x)− iVI(x), (2.2)

where VR(x) = 1
2
kx2 and VI(x) = εx.

The particle density of the matter wave solitons (intensity in optics) is given

by ρ = |Ψ|2 and hence the particle number of the matter wave solitons P , is
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(a) (b)

(c)

Figure 2.1: The linear case for real potential (ε = 0). (a) The eigenstates,
the real by orange and the imaginary by dotted purple, (b) the amplitude
(particle density), and (c) the phase profile along the transverse direction.

obtained by [15]:

P =

∫ ∞

−∞
|Ψ|2 dx =

∫ ∞

−∞
ρdx, (2.3)

which is analogous to the power in optical systems. The particle conservation for

a PT symmetric system is obtained from the continuity equation which reads:

∇.j = −∂ρ
∂t

+ 2VI(x)ρ, (2.4)
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where j is the particle flux and is given by:

j =
1

2i
(Ψ∗∂Ψ

∂x
−Ψ

∂Ψ∗

∂x
). (2.5)

2.2.1 The Stationary states

The steady state is obtained from the equation 2.1 by substituting for Ψ(x, t):

Ψ(x, t) = φ(x)e−iµt,

which can be written as:

−1

2

d2Φ

dx2
+ (

1

2
kx2 − iεx− µ)φ+ 2g |φ|2 φ = 0, (2.6)

where µ is the chemical potential of the system.

Now ρ = |φ|2 and j = 1
2i

(φ∗ ∂φ
∂x
− φ∂φ∗

∂x
). Assuming φ =

√
ρeiξ(x), the flux

reads as j = ρ ∂ξ
∂x

. For stationary states, ∂ρ
∂t

= 0, holds valid. The equation for

the particle conservation has been obtained from equation 2.4:

∂

∂x
(ρ
∂ξ

∂x
) = 2VI(x)ρ. (2.7)

The stationary states feature a nonflat phase profile on x. Equation 2.4 rep-

resents the motion of particles from the gain to the loss region as required to

conserve the overall particle number in the presence of VI(x) [15]. Equation 2.6

has been studied numerically to get the stationary states of the system.

2.2.2 The Dynamical States

The dynamics of the system have been analyzed both variationally and numeri-

cally. The model equation is obtained from the equation 2.1 by substituting

Ψ(x, t) = φ(x, t)e−iµt
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which results in:

−1

2

∂2φ

∂x2
+ (

1

2
kx2 − iεx− µ)φ+ 2g |φ|2 φ = i

∂φ

∂t
. (2.8)

The conservative part of the Lagrangian deals with the real part of the complex

PT symmetric potential while the nonconservative part deals with the imaginary

part:

Lc =
i

2
(φφ∗t − φ∗φt) +

1

2
| φx |2 −

1

2
kx2 | φ |2 +g | φ |4, (2.9)

Lnc = −iεx | φ |2 . (2.10)

The reduced Lagrangian of the conservative system from the infinite dimensional

Lagrangian density is given by:

Leff =

∫ ∞

0

Lcdx. (2.11)

The standard variational approach to the dissipative system leads to the equa-

tions:

∂

∂t

∂Leff

∂ηi

− ∂Leff

∂ηi

= Re

∫
Q
∂φ∗

∂ηi

dx, (2.12)

where Q = ∂LNC

∂φ∗
− ∂

∂x
∂LNC

∂φ∗
. The resulting equations are solved to study the

dynamics of the system. Equation 2.8 has been simulated using Finite Difference

Beam Propagation Method (FDBPM) as illustrated in section 1.7.2.
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2.3 The Single-hump soliton

2.3.1 The Stationary states

Equation 2.6 has been studied numerically in the linear and nonlinear regime and

the solutions are analyzed. In the linear case (g = 0), when ε = 0 the system

is Hermitian and the solutions are Hermite polynomials just like the harmonic

oscillator problem as shown in Figures 2.1(a), 2.1(b), and 2.1(c). Figures 2.2(a)-

2.2(c) elucidate the dependence of complex potential on the eigenstates, the

particle density and the phase profiles of the system when ε > 0. The phase

of the solution exhibits x dependence such that f(x) = tanh(x3) under PT

symmetric region. Figures 2.1(a) and 2.2(a) show that the real part of the

solution is symmetric and the imaginary part is antisymmetric about the origin.

When ε > 2, the eigenstates exhibit instability indicating PT symmetric phase

transition which is known as broken PT symmetric regime as shown in Figures

2.3(a)-2.3(c). The critical value of ε for which the phase transition occurs is

called as threshold value εth.

The eigenstate, the particle density and the phase for real potential in the

nonlinear regime are shown in Figures 2.4(a), 2.4(b) and 2.4(c). The system has

been studied for the complex potential and the eigenstate, the particle density

and the phase are plotted in Figures 2.5(a)-2.5(c). The solitons exist below the

PT threshold as shown in Figure 2.5(a) and corresponding particle density and

phase are plotted in Figures 2.5(b) and 2.5(c) respectively. Figure 2.6(a) reveals

that the soliton solutions do not exist in the the broken PT symmetric regime.

The eigenstate exhibits instability in the form of oscillatory divergence towards

the tail of the broken PT symmetric regime. The corresponding particle density

and phase are plotted in Figures 2.6(b) and 2.6(c) respectively.
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2.3.2 The propagation

The dynamical states have been studied variationally using the Gaussian profile

as the variational ansatz [15] which has the form:

ψ(x, t) = A(t) e
[ −x2

2a2(t)
+

ix2b(t)
2

+if(x)θ(t)]
, (2.13)

where A, a, b and θ represent time depending amplitude, the width, the wavefront

curvature and the phase respectively. The particle number of the fundamental

soliton is given by,

P =
A2a

√
π

4
. (2.14)

The particle number depends on the amplitude and the width of the Gaussian

profile. The variational analysis leads to four coupled equations:

At =
Ab

2
− εAa(

9
√
π

4
− 16√

π
) + θAa(

81
√
π

8
− 48√

π
), (2.15)

at = −ab+ εa2(
3
√
π

2
+

8√
π

)− θa2(
27
√
π

4
− 24√

π
, (2.16)

bt = 3b2 − k − 5

a4
− 24g√

2a2
− 27θ2a2 +

12µ

a2
, (2.17)

θt =

√
π

2a5
+
g
√

2

a3
+
µ

a3
+

27θ2a

4
+

3θb√
π
. (2.18)

Equations 2.15-2.18 have been studied both in linear and nonlinear regime.

Figures 2.7(a), 2.7(c) and 2.7(e) describe the evolution of the amplitude, the

width and the particle number for various values of ε keeping the strength of real

part of the potential unity (i.e., k = 1) in the linear regime. For real potential,

the amplitude decreases whereas the width increases and the particle number is a

constant as shown in Figure 2.7(a). In the case of the complex potential (ε > 0),

the amplitude decreases and the width increases in the unbroken PT symmetric

regime just like in the real potential. It supports the solutions as plotted in

Figure 2.7(c). For k = 1, ε = 0.13 shows PT symmetric phase transition and
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this value is called ε threshold (εth). When ε is increased further, the amplitude

and the width decrease and spontaneous PT symmetric break down occurs as

plotted in Figure 2.7(e). The amplitude, the width and the particle number

increase and the solution collapses in the broken PT symmetric region.

When the width increases, the amplitude decreases keeping the particle num-

ber constant for real potential in the nonlinear regime as shown in Figure 2.7(b).

In the unbroken PT symmetric region, the presence of the complex potential still

keeps the particle number same, but amplitude decreases and the width increases

as plotted in Figure 2.7(d). Beyond PT symmetric breaking point the particle

number increases and in this regime the solitons collapse as evident from Figure

2.7(f).

We have solved equation 2.1 numerically using the finite difference method to

determine the dynamics of the system assuming the variational ansatz as initial

solution. Figure 2.8(a) shows the solution for real potential with g = 0. In

the case of the complex potential with g = 0, (i.e, linear case) the solutions

exist for the unbroken PT symmetric regime as shown in Figure 2.8(c). When

the strength of the complex part of the potential increases, the system exhibits

the PT symmetric phase transition above which the particle number is not a

constant. This regime is known as broken PT symmetric regime and is plotted

in Figure 2.8(e). For the nonlinear case the studies have shown that the system

in the PT symmetric regime supports the solitons as shown in Figures 2.8(b)

and 2.8(d). Figure 2.8(f) is plotted for broken PT symmetric regime in which

the soliton collapses. The PT phase transition point increases linearly with the

strength of the nonlinearity as shown in Figure 2.9(a).

Figure 2.9(b) elucidates the variation of the PT phase transition point (εth)

with the strength of real part of potential k. As k increases, the PT symmetric

threshold decreases.

It is found that the results of the variational analysis agree with the results of

the direct simulation of equation 2.1. The system supports single-hump soliton

in the PT symmetric regime. As the nonlinearity increases, the εth also increases.
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By varying the strength of the nonlinearity we can change the PT symmetric

breaking point of the system.

2.3.3 Linear stability analysis

The stability of the stationary solutions has been discussed using the Bogoliubov-

de Genes (BDG) equations which are obtained by considering the effect of small

perturbations in the form [15]:

Ψ(x, t) = (φ(x) + p(x)eiΩt + q(x)e−iΩt)eiµt. (2.19)

This gives the linearized BDG equations as:

Ω

 p

q∗

 =

 L− iVi(x) φ2

−(φ∗)2 −L− iVi(x)

  p

q∗

 , (2.20)

where L = −µ− 1
2

∂2

∂x2 + 1
2
kx2 + 2g|φ|2 and Ω is the perturbation eigenvalue.

The solution is stable if imaginary part of Ω (imagΩ) is equal to zero, holds

for all the eigenvalues. Purely imaginary eigenvalues represent the unstable per-

turbation modes. The existence of complex eigenvalues lead to an oscillatory

instability with imagΩ > 0 or imagΩ < 0, former implies exponentially decay-

ing modes and latter corresponds to exponentially growing modes.

We have solved the matrix equation 2.20 using pseudo-spectral technique

based on Chebyshev polynomials to compute the operator L. In the case of real

potential (ε = 0), the stable solitons are obtained (i.e. |imagΩ| is negligible) for

all values of g and µ.

For complex potential (i.e. ε > 0), there is an oscillatory instability due to

the eigenvalues with nonvanishing real and imaginary parts. The stability of the

solutions are analyzed by varying µ, ε and g. The real and the imaginary parts

of Ω versus µ are plotted with various values of ε and g as shown in Figure 2.10.

For low ε and g ≤ 1, the growth rate increases with µ. The realΩ decreases with

µ whereas imagΩ increases with µ. The perturbation growth rate increases with
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µ and slightly depends on the imaginary potential. In the case of 0 < g ≤ 1,

imagΩ > 0, and the stationary state perturbed solution decays exponentially

on propagation along with the oscillatory instability. This is evident from first

row of Figure 2.10 which is plotted for g = 1. When g > 1, imagΩ < 0. So

the instability grows exponentially with µ and the growth rate decreases with

µ. The plots are shown in second row of Figure 2.10. The growth rate strongly

depends on the strength of nonlinearity.

Summarizing the result, the stationary state perturbation modes are ex-

ponentially decaying along with the oscillatory instability for the nonlinearity,

0 < g ≤ 1. As g increases, the instability grows exponentially along with the

oscillatory instability. The perturbation growth rate varies with g, µ and ε.

2.4 The Double-Hump Soliton

2.4.1 The Stationary States

Equation 2.6 has been studied using Newton’s Conjugate Gradient method as

discussed in section 1.7.4. The initial solution is assumed as Hermite-Gaussian

of order 1 as given below:

φ(x, t) = Ax e[
−x2

2a2 + ibx2

2
+if(x)θ], (2.21)

where the parameters A, a, b and θ are the amplitude, the width, the wave front

curvature and the phase respectively.

The stationary states of the double-hump solitons are plotted for various

values of the coefficient of the imaginary part of the potential ε and the strength

of the nonlinearity g as shown in Figures 2.11(a)-2.11(f). We found that the

system supports double-hump soliton in the PT symmetric regime. In the linear

case, Figures 2.11(a) and 2.11(c) show that the double hump solutions exist for

ε = 0 and ε = 0.1 respectively. The solution in the broken PT symmetric regime

(ε = 2) is plotted in Figure 2.11(e), which shows the collapse of the soliton. For
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weak nonlinearity (g < 1), the double-hump solitons exist as depicted in Figures

2.11(b) and 2.11(d) for ε = 0 and ε = 0.1 respectively. These solitons collapse in

the broken PT symmetric regime (ε = 2) as shown in Figure 2.11(f).

2.4.2 The Dynamics

We have assumed Hermite-Gaussian of order 1 as ansatz which is:

φ(x, t) = A(t)x e
[ −x2

2a2(t)
+

ix2b(t)
2

+if(x)θ(t)]
, (2.22)

where the variational parameters A(t), a(t), b(t) and θ(t) are the amplitude, the

width, the wave front curvature and the phase respectively. The particle number

of the higher eigenmode is P = A2a3√π
4

. The effective Lagrangian of the system

is given by the equation:

Leff =
3
√
πA2a5bt
16

+
135

√
πa7θ2A2

32
+
A2a

√
π

4
+

3k
√
πA2a5

16
− µA2a3

√
π

4

+
3gA4a5

√
π

32
√

2
+ A2a6θt +

3b2a5A2
√
π

16
+ 3θba6A2 − A2a2

2
. (2.23)

The variational analysis provide a set of the coupled equations for the amplitude,

the width, the wavefront curvature and the phase as given below:

At = εAa(
16√
π
− 75

√
π

16
)− 3Ab+ θaA(

48√
π
− 675

√
π

32
), (2.24)

at = −a2θ(
16√
π
− 135

√
π

16
)− εa2(

16

3
√
π
− 15

√
π

8
) + ba, (2.25)

bt = −b2 − k − 20

3a4
− 7gA2

√
π

2
√

2
+

4µ

3a2
+

32

3
√
πa3

+
135a2θ2

6
, (2.26)

θt =

√
π

a5
− 3

2a4
+

15gA2
√
π

32
√

2a
− 135aθ2

16
− 3θb− µ

√
π

2a3
. (2.27)

Equations 2.24-2.27 have been studied numerically in the linear and the nonlinear

regime.

These studies reveal that the system undergoes spontaneous PT symmetric

phase transition depending on the value of the strength of loss term (ε) in the
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linear regime. For real potential, the particle number remains constant but the

amplitude decreases and the width of the beam increases as the system evolves

as shown in Figure 2.12(a). Figure 2.12(c) is plotted for low values of ε and the

system behaves as in the case of real potential. This regime is known as unbroken

PT symmetric regime. As ε increases the system undergoes spontaneous phase

transition from unbroken to broken PT symmetric region. The particle number

increases along with the amplitude and the width of the profile in the broken

PT symmetric regime as plotted in Figure 2.12(e).

The system has been studied by varying the nonlinear coefficient, g. For the

weak nonlinearity and low loss, the soliton evolution is stable. Figure 2.12(b)

is plotted for the real potential ε = 0 and g = 0.1. It is evident from the plot

that as the width of the beam increases, the amplitude decreases and hence the

particle number remains constant. As shown in Figure 2.12(d) the behavior is

same as before in the unbroken PT symmetric regime. In the case of broken PT

symmetric regime, the particle number, the amplitude and the width increase

as shown in Figure 2.12(f). The soliton propagation is stable for low values of g

and ε.

Equation 2.1 has been studied numerically using the finite difference method.

The Hermite-Gaussian of order 1 is taken as the initial solution. The solution is

stable in the linear regime for ε = 0 as shown in Figure 2.13(a). Figure 2.13(c) is

plotted for ε = 0.01 and represents the unbroken PT symmetric regime in which

the output profile remains constant. But the particle number is not a constant

for broken PT symmetric regime and so the soliton collapses as shown in Figure

2.13(e) with ε = 2. The stable solitons exist for the weak nonlinearity in the case

of the real potential and low value of ε as shown in Figures 2.13(b) and 2.13(d)

respectively. Figure 2.13(f) is plotted for the broken PT symmetric regime in

which the soliton collapses as the system evolves. The variational results are in

close agreement with the numerical results.
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2.5 Conclusion

In this chapter, the single-hump and the double-hump solitons having PT sym-

metric complex potential in a medium with cubic nonlinearity have been studied

using the numerical and the variational methods. We have studied the station-

ary states and the dynamical states in the linear and nonlinear regime. It is

found that the strength of the complex part of the potential exhibits a thresh-

old value above which the solution is unstable both for the single hump and

the double hump solitons. Below the threshold value the system supports the

solitons and it is known as PT symmetric regime. By tuning the nonlinearity

and the strength of the real part of the potential it is possible to control the

PT symmetric threshold value. The phase of the stationary states of the system

exhibit spatial dependence for the complex potential. The solitons possess real

and imaginary parts for conserving particle number in which the imaginary part

contributes to gain or loss terms. The linear stability analysis predicts that in

the presence of the complex potential, the solitons become oscillatory unstable.

We found that the perturbation growth rate changes slightly with the imagi-

nary potential for a given nonlinearity. The instability changes drastically with

the strength of nonlinearity. For large values of the nonlinearity, the stationary

modes are exponentially unstable. For the weak nonlinearity, the stable solitons

exist both for fundamental mode (single-hump soliton) and the first excited state

(the double-hump soliton).
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(a) (b)

(c)

Figure 2.2: The linear case. The complex potential in unbroken PT
regime (ε = 0.01). (a) The eigenstates, the real by orange and the
imaginary by dotted purple, (b) the amplitude (particle density), and
(c) the phase profile along the transverse direction.
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(a) (b)

(c)

Figure 2.3: The linear case for broken PT regime (ε = 2). (a) The eigen-
states, the real by orange and the imaginary by dotted purple, (b) the
amplitude (particle density), and (c) the phase profile along the trans-
verse direction.
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(a) (b)

(c)

Figure 2.4: The nonlinear case (g = 0.1) for real potential (ε = 0). (a)
The eigenstates, the real by orange, the imaginary by dotted purple,
(b) the amplitude (particle density), and (c) the phase profile along the
transverse direction.
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(a) (b)

(c)

Figure 2.5: The nonlinear case (g = 0.1) for unbroken PT regime (ε =
0.01). (a) The eigenstates, the real by orange and the imaginary by
dotted purple versus x, (b) the amplitude (particle density versus x), (c)
the phase profile as function of x.
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(a) (b)

(c)

Figure 2.6: The broken PT regime (ε = 2) (nonlinear case (g = 0.1)).
(a) The eigenstates, the real by orange and the imaginary by dotted
purple, (b) the amplitude (particle density), and (c) the phase profile as
functions of x.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Linear (first column) and nonlinear (g = 0.1, second column)
for fundamental mode. The amplitude (dashed purple), the width (dot-
ted red) and the particle number or power (solid orange) as functions
of z. First, second and third rows for the real potential (ε = 0), the
PT symmetric regime (ε = 0.01) and the broken PT symmetric regime
(ε = 2) respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: The Simulations for the dynamical states. Linear regime
(first column) and nonlinear regime (second column with g = 0.1). First
row for real potential (ε = 0), second row for the PT symmetric regime
(ε = 0.01) and third row for broken PT symmetric regime (ε = 2).
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(a) (b)

Figure 2.9: The variation of the phase transition point εth. (a) εth versus
g and (b) εth versus k.

Figure 2.10: Real and imaginary parts of Ω vs µ in first and second
column respectively, for g = 1 (first row) and g = 2 (second row). The
imaginary potential ε is 0.1 (Blue o) and 2 (green *), respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: Linear (first column) and nonlinear (g = 0.1, second column)
stationary states of higher eigenmode for A = 1.02, a = 5, b = 1, θ =
0.314, µ = 1 and k = 1. First row for the real potential (ε = 0), second
row for the unbroken PT symmetric regime (ε = 0.01), and third row
for the broken PT symmetric regime (ε = 2).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.12: Linear (first column) and nonlinear (g = 0.1, second col-
umn). The particle number or power (solid orange), the amplitude
(dashed purple) and the width (dotted red) as function of t. First, second,
and third rows for the real potential (ε = 0), the unbroken PT symmet-
ric regime (ε = 0.01), and the broken PT symmetric regime (ε = 2)
respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13: The evolution of the first exited state. First and second
columns for linear and nonlinear regimes. First row for real potential
(ε = 0), second row for the unbroken PT symmetric regime (ε = 0.01),
and third row for the broken PT symmetric regime (ε = 2).
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Chapter 3

Higher eigenmodes of PT

symmetric nonlocal gap solitons

3.1 Introduction

The nonlocality of the nonlinear medium influences the behaviour of the beam

dynamics. The nonlocal nonlinearity is important in optics too [1, 2, 3]. PT

symmetric solitons in nonlocal nonlinear media have been investigated in various

systems. Spatio-temporal localizations in (3 + 1)-dimensional PT symmetric

and strongly nonlocal nonlinear media [4] and nonlocal multi-hump solitons in

parity-time symmetric periodic potential [5] have been reported earlier.

Gap solitons are the localized solutions in the linear band gap of the system.

These solitons exist in small length scales and find applications in all-optical

switching and photonic logic gates. The bifurcation and stability of gap solitons

have been reported [6]. These solitons has been analyzed in grating super struc-

tures [7]. Gap solitons have been investigated in PT symmetric systems such

as in photo-refractive media [8], scattering by defects [9], and in superlattice

and dual superlattice [10]. These solitons has been studied in dual-periodic PT

symmetric optical lattices [11]. Gap solitons in linear defects and the nonlocal

gap solitons in the defocusing media have been investigated [12, 13].
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In this chapter we have discussed the higher eigenmodes of the nonlocal gap

solitons having defocusing nonlinearity [14]. Section 3.2 briefly describes the

double-hump nonlocal gap solitons in a medium with defocusing nonlinearity.

The dynamical states have been studied in section 3.3. Section 3.4 and 3.5

discuss the linear stability analysis and conclusion respectively.

3.2 The first excited state

We consider Ψ as a generic field which represents the electromagnetic field and

the distribution of the particle number in the case of light and the matter wave

respectively. The medium under consideration is inhomogeneous with a defo-

cusing nonlinearity and a nonlocal response. The complex potential which is

experienced by the beam is periodic with a period π and PT symmetric. The

governing equations are given by [13]:

i
∂Ψ

∂z
=
−1

2

∂2Ψ

∂x2
+ (VR(x)− iVI(x))Ψ + VNL(|Ψ|2)Ψ, (3.1)

VNL − σ
∂2VNL

∂x2
= |Ψ|2, (3.2)

where VR, VI and VNL being the real part, the imaginary part and the nonlinear

part of the potential respectively. x and z represent the transverse and the

longitudinal coordinates. σ is the range or degree of nonlocality assumed as

positive quantity and σ = 0 represents the Kerr nonlinearity. The complex

periodic PT symmetric potential is given by VR(x) − iVI(x) = Vrsin
2(x) −

iVisin(2x). The power of the beam is obtained as:

P =

∫ ∞

−∞
|Ψ|2 dx. (3.3)

The particle conservation of the system is expressed by the continuity equation

[13]:

∇.j = −∂ρ
∂t

+ 2vI(x)ρ, (3.4)
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in which ρ = |Ψ|2, intensity and j is the particle flux:

j =
1

2i
(Ψ∗∂Ψ

∂x
−Ψ

∂Ψ∗

∂x
).

The stationary state solutions have been studied by assuming:

Ψ(x, z) = Φ(x)exp(−iµz), (3.5)

µ being the propagation constant for light waves (the chemical potential in the

case of the matter waves). Equations 3.1 and 3.2 take the new form:

µΦ =
−1

2

d2Φ

dx2
+ (VrSin

2(x)− iViSin(2x))Φ + VNLΦ,

VNL − σ
d2VNL

dx2
= |Φ|2. (3.6)

3.2.1 The nonlinear eigenmodes

The first excited state of the steady-state equation 3.6 have been solved using

Newton’s Conjugate Gradient method (section 1.7.4). The trial solution is chosen

as:

Φ(x) = Ax2exp[
−x2

w2
b

], (3.7)

where A and wb are the amplitude and the width respectively. Equation 3.6

yields the double-hump eigenmodes for the real and the complex potentials.

The eigenmodes are plotted in Figures 3.1(a)-3.1(f) as functions of x. Fig-

ures 3.1(a) and 3.1(b) are plotted for the real potential (i.e. Vi = 0). Figure

3.1(a) shows the amplitude along x. From Figure 3.1(b), it is evident that the

imaginary part of the solution is zero. The presence of the imaginary part of the

potential results in the complex double-hump solutions whose amplitude is plot-

ted in Figure 3.1(c). The real and the imaginary components of the eigenmodes

versus x are shown in Figure 3.1(d). The behavior of the solution near the PT

symmetric transition point has been studied. The amplitude with respect to x is
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: The double-hump gap solitons for σ = 0.5. First, second and
third rows for Vi = 0, Vi = 0.5 and Vi = 1.5 respectively. First column
for the intensity, second column shows the eigen state, the real part by
red ’*’ and the imaginary part by yellow ’o’.

59



(a) (b)

(c)

Figure 3.2: The phase profiles of the double-hump gap solitons for σ =
0.5. (a) Vi = 0, (b) Vi = 0.5, and (c) Vi = 1.5 respectively.

depicted in Figure 3.1(e). The real and the imaginary parts of the solution are

shown in Figure 3.1(f). As the strength of the imaginary part of the potential

increases, the imaginary component of the soliton also increases. Figure 3.2(a)

shows that the phase profile is flat for the real potential. The presence of the

imaginary part of the potential results in the spatial dependence of the phase as

depicted in Figures 3.2(b) and 3.2(c) for the unbroken regime with far and near

the phase transition point respectively.

The power carried by the double-hump soliton has been studied by treating

the contributions from the real and the imaginary parts separately in addition to

the total power. The total power P , the power carried by the real part Pr, and

the imaginary part Pi of the higher eigenmode with the propagation constant µ

have been plotted in Figures 3.3(a), 3.3(b), and 3.3(c) for different values of the

range of the nonlocality. It is found that P , Pr and Pi increase with µ in the PT
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(a) (b)

(c)

Figure 3.3: Power versus propagation constant. (a), (b) and (c) for
σ = 0.5, σ = 1 and σ = 10 respectively. In all figures Vi = 0, Vi = 0.5
and Vi = 1.7 from bottom to top.

symmetric regime. The power of the double-hump soliton increases with Vi for a

given µ. As the propagation constant increases the power carried by the soliton

also increases. Comparing Figures 3.3(a), 3.3(b), and 3.3(c), it is evident that

the power of higher eigenmode is independent of the range of the nonlocality. It

is found that the double-hump soliton exists only above a particular value of the

propagation constant or energy which is 2.8 in this case.

3.3 The Dynamical states

The dynamics of the system has been investigated using the variational and the

numerical method. Let Ψ(x, z) = Φ(x, z)exp(−iµz), and equations 3.1 and 3.2
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(a) (b)

(c) (d)

Figure 3.4: The variational results of the double-hump gap solitons for
σ = 1.0 with different values of Vi. (a) P versus µ, (b) P versus Wb, (c)
µ versus Wb, and (d) µ versus Wnl.

are rewritten as [13]:

µΦ = −i∂Φ

∂z
+
−1

2

∂2Φ

∂x2
+ (VR(x)− iVI(x))Φ + VNL(|Φ|2)Φ,

VNL − σ
∂2VNL

∂x2
= |Φ|2. (3.8)

The Lagrangian density of the system is described by the following equation:

L =
i

2
(ΦΦ∗

z − Φ∗Φz) +
1

2
| Φx |2 +v(x) | Φ |2 +VNL | Φ |2 −µ | Φ |2

+
σ

2
(
∂VNL

∂x
)2 − V 2

NL

2
. (3.9)

The Lagrangian density consists of conservative (LC) and non-conservative

(LNC) components for dissipative systems. The imaginary part of the complex

potential contributes in the non-conservative part of the Lagrangian. We have
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assumed the ansatz:

φ(x, z) = A(z)x2e
−x2

W2
b

(z)
+if(x)θ(z)

, (3.10)

A(z), wb(z) and θ(z) being the amplitude, the width and the phase. The phase

profile of the PT symmetric systems exhibit spatial dependence (f(x)) and here

f(x) = tanh(x) [13]. The reduced Lagrangian of the system is expressed as:

< LC >=

∫ ∞

−∞
Lcdx. (3.11)

The equations of the standard variational approach to the dissipative systems

are given by:

∂

∂z
(
∂ < LC >

∂ηi

)− ∂ < LC >

∂ηi

= 2Re

∫
Q
∂Φ∗

∂ηi

dx, (3.12)

where Q = ∂LNC

∂φ∗
− ∂

∂x
(∂LNC

∂φ∗
).

The effective Lagrangian of the system is obtained as:

< LC >= −µP +
7P

6W 2
b

+
VrP

2
[1− (3− 6W 2

b +W 4
b )e

−W2
b

2

3
]

+
10
√

2PAnlW
11
nl W

2
b

[2W 2
nl +W 2

b ]3.5
− 7

√
πσA2

nlW
3
nl

32
√

2
− 3

√
πσA2

nlW
5
nl

32
√

2

+
8
√

2P

3
√
πW 5

b

θ2

∫ ∞

−∞
f 2

xe
−2x2

W2
b x4dx. (3.13)

The variational analysis provides a set of equations which is given by:

θ = −
2Vi

∫∞
−∞ sin(2x)f(x)x4e

− 2x2

W2
b dx∫∞

−∞ f 2
xx

4e
− 2x2

W2
b dx

, (3.14)

Anl =
320W 4

nlW
2
b P√

π(2W 2
nl +W 2

b )3.5(7σ + 3W 2
nl)
, (3.15)

µ =
7

6W 2
b

+
8
√

2θ2

3
√
πW 5

b

∫ ∞

−∞
f 2

xx
4e
− 2x2

w2
b dx+

Vr

2
− Vr

6
e−

W2
b

2 [3− 6W 2
b +W 4

b ]

+
6400

√
2W 11

nl W
4
b P√

π(2W 2
nl +W 2

b )7(7σ + 3W 2
nl)
, (3.16)

63



(a) (b)

(c) (d)

Figure 3.5: The variational results of the double-hump gap solitons for
σ = 10.0 with different values of Vi = 0.1. (a) P versus µ, (b) P versus
Wb, (c) µ versus Wb, and (d) µ versus Wnl.

W 2
nl =

[9W 2
b − 14σ] +

√
[9W 2

b − 14σ + 9W 2
b ]2 + 3080σW 2

b

20
, (3.17)

7

3w3
b

=
8
√

2θ2

3
√
π

∂

∂wb

[
1

w5
b

∫ ∞

∞
f 2

xx
4e
− 2x2

W2
b dx] +

Vr

6
e−

W2
b

2 [15− 10W 2
b +W 4

b ]

+
3200

√
2W 11

nl W
3
b P [4W 2

nl − 5W 2
b ]√

π(2W 2
nl +W 2

b )4(7σ + 3W 2
nl)

. (3.18)

The variational equations 3.14-3.18 have been studied by varying Vi and σ.

The double-hump gap solitons in the first band gap possess interesting features.

These features are shown in the Figures 3.4 and 3.5. The power of the soliton

with µ has been analysed and the plots are shown in Figures 3.4(a) and 3.5(a)

for the weak and the strong nonlocality respectively. µ increases with P for any

value of Vi. But µ corresponding to strong nonlocality is less than that of the

weak nonlocality. The width of the soliton Wb versus P is shown in Figures
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(a) (b)

(c)

Figure 3.6: The simulation of the double-hump soliton. a) The real
potential, b) the unbroken PT symmetric regime, and c) the broken PT
symmetric regime.

3.4(b) and 3.5(b) for σ = 1 and σ = 10 respectively. Wb decreases with P and

increases with Vi. The large range of the nonlocality results in decrease in the

width of the soliton. Wb versus µ is plotted in Figures 3.4(c) and 3.5(c) for

weak and strong nonlocality respectively. Wb is constant for lower values of µ

and decreases for the values nearest to the band edge in the case of the weak

nonlocality as depicted in Figure 3.4(c). When the range of the nonlocality is

high (i.e, σ = 10), Wb decreases with µ as shown in Figure 3.5(c). From Figures

3.4(c) and 3.5(c), it is very clear that Wb increases with Vi. The width of the

nonlocal potential Wnl with µ for various Vi are plotted in Figures 3.4(d) and

3.5(d) in the PT symmetric regime. Wnl is invariant with respect to µ for a

given Vi. When Vi increases, Wnl also increases. From the Figures 3.4(d)-3.5(d),

it is obvious that Wnl is greater for large σ.

The direct simulation of the system has been done using the finite difference
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method. The evolution of the soliton has been plotted in Figure 3.4. The evolu-

tion of the soliton is stable for the real potential and the PT symmetric regime

as shown in Figures 3.6(a) and 3.6(b) respectively. But the soliton dies out in

the broken PT symmetric regime as is evident from Figure 3.6(c).

3.4 Linear Stability Analysis

The linear stability analysis has been done using the Bogoliubov-De Genes

(BDG) equation. Consider the small perturbations of the form [13]:

Ψ(x, z) = (φ(x) + p(x)eiλz + q(x)e−iλ∗z)eiµz, (3.19)

where p(x) and q(x) are the amplitudes of perturbation with eigenvalue λ. Sub-

stituting for Ψ(x, z) in equations 3.1 and 3.2, and neglecting higher powers of

p(x) and q(x), the linearized BDG equations are obtained as:

λgp = [L+ iVi(x)]p− ΦD(Φ∗p+ q∗Φ),

λgq
∗ = [−L+ iVi(x)]q

∗ + Φ∗D(Φ∗p+ q∗Φ), (3.20)

being L = µ+ 1
2

∂2

∂x2 − Vr(x)− V µ
NL(x) and D = (1− σ ∂2

∂x2 )
−1.

The solution is stable if the imaginary part of the eigenvalue Im(λ) is zero.

The complex eigenvalues represent unstable solution. The perturbation modes

increase exponentially for the negative values of Im(λ) and decrease exponen-

tially for the positive values of Im(λ).

The pertubation modes decay exponentially along with the oscillatory insta-

bility if the nonlocality is weak, as shown in Figure 3.7(a). However the pertur-

bation modes grow exponentially with oscillatory instability in the case of strong

nonlocality as depicted in 3.7(b). This is true for the unbroken PT symmetric

regime as depicted in Figures 3.7(c) and 3.7(d) for weak and strong nonlocality

respectively. Figures 3.7(e) and 3.7(f) illustrate that the double-hump modes are

unstable in the broken regime whether the nonlocality is weak or strong.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: The linear stability analysis. First column for σ = 0.5 and
the second column for σ = 8. First, second and third rows for the
real potential, the unbroken PT symmetric regime, and the broken PT
symmetric regime.
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3.5 Conclusion

The beam dynamics of the double-hump gap solitons in a PT symmetric com-

plex potential in a medium having defocusing nonlocal nonlinearity have been

studied. The double-hump solitons have symmetric real part and the antisym-

metric imaginary part for the particle conservation. Higher eigenmodes exist

above a critical value of the propagation constant and preserve its shape irre-

spective of the range of the nonlocality. The power of these solitons increase with

the propagation constant and it is independent of the range of the nonlocality.

The dynamical states have been analyzed. It was found that the power of the

soliton increases with the propagation constant and decreases with the range of

the nonlocality. The width of the soliton decreases with the propagation con-

stant, the power and the range of the nonlocality. The width of the nonlocal

potential remains same with the propagation constant and increases with the

range of the nonlocality. The direct simulation of the system reveals the exis-

tence of the double-hump solitons in the PT symmetric regime and it dies out

in the broken PT symmetric regime. The linear stability analysis has been done

and found that the double-hump soliton is unstable. The perturbation modes

are exponentially decaying for low ranges of the nonlocality and exponentially

growing for high ranges of the nonlocality. These studies have been extended to

the coupled systems.
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Chapter 4

Beam dynamics in PT symmetric

coupled systems with Kerr

nonlinearity

4.1 Introduction

The realisation of integrated photonic devices, require basic elements of photonic

circuitry such as couplers, diodes, switches, and isolators [1]. Two closely spaced

parallel single mode channels with an intensity dependent refractive index is

known as the directional coupler [2]. The beam dynamics in coupled systems

are described by coupled nonlinear Schrödinger equation (CNLSE) and studied

theoretically in 1992 [3]. The nonlinear coupler has been studied as a basic

photonic element which permits intensity-dependent energy transport [4, 5].

The presence of the gain/loss in PT symmetric systems yield complex dy-

namics and improve its functionality. The coupler with gain of one channel is

exactly compensated by the loss of the other channel, constitutes a PT sym-

metric coupler [6]. They render unidirectional dynamics suitable for an optical

diode. The dynamical properties of these systems are characterised by the rela-

tion between the coefficients of the coupling (C) and gain/loss (G) which divides
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the system parameters into two domains corresponding to the broken and unbro-

ken regimes. These systems exhibit diverse phenomena including bright solitons

[7, 8, 9, 10] and dark solitons [11], breathers [12] and rogue waves [13]. Recently,

the phase transition in multimode nonlinear parity-time symmetric waveguide

couplers [14], the stable nonlinear super modes and direct transport in asymmet-

ric couplers [15] have been demonstrated. The parity-time symmetry breaking

in coupled nano-beam cavities has been reported [16]. It was reported that dual

laser cavities having saturable nonlinearity supports solitons and vortices [6, 17].

The PT symmetry can be achieved in these systems by constructing both the

cores with doped lossy material while external pumping of the dopant atoms

produce linear gain in the system [18]. The integrability of the PT symmetric

dimer was studied [19] and solitons were predicted in a chain of parity-time in-

variant dimers [20]. The blow up regimes in the PT symmetric coupler and the

actively coupled dimer was analyzed [21]. An exactly solvable PT symmetric

dimer from a Hamiltonian system of nonlinear oscillators with gain and loss was

reported [22].

The periodic nature of refractive index leads to formation of transmission

bands and photonic band gaps. These properties are utilised to create high

reflectivity, high dispersion and frequency filtering characteristics [23]. One ex-

ample is index gratings either embedded in optical fibers or in bulk [24, 25, 26].

We can create periodic potentials in Bose-Einstein Condensate (BEC) using op-

tical lattices (OL) and through the transverse modulation of refractive index in

Photonic crystals [27].

This chapter discusses the PT symmetric coupled system with transverse

periodic and aperiodic potentials in Kerr media [28]. The model of PT symmetric

coupled system has been introduced. The system has been analyzed in linear

regime. The studies are extended to the propagation dynamics and for the linear

stability analysis.
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4.2 The Model

The electromagnetic fields in the two channels of a coupled system are repre-

sented by Ψ1 and Ψ2 and they are coupled by the tunnelling of light between

the two cores. The PT symmetric coupled system in a transverse potential with

Kerr nonlinearity is modelled by a set of normalized coupled one dimensional

Nonlinear Schrödinger Equations [8]:

i
∂Ψ1

∂z
+
∂2Ψ1

∂x2
+ VR(x)Ψ1 + β |Ψ1|2 Ψ1 + iGΨ1 + CΨ2 = 0, (4.1)

i
∂Ψ2

∂z
+
∂2Ψ2

∂x2
+ VR(x)Ψ2 + β |Ψ2|2 Ψ2 − iGΨ2 + CΨ1 = 0, (4.2)

where VR(x) be the transverse real potential, β be the strength of the nonlinear-

ity, C and G be the coupling and the gain/loss coefficients respectively. z is the

scaled propagation distance whereas x is the transverse spatial coordinate. The

system is PT symmetric if the gain of the first channel is compensated by an

equal amount of loss of the second channel.

We focus on two types of the potential profiles of the form:

VR(x) = Vrsin
2(x), (4.3)

VR(x) = V0x
2, (4.4)

in which equation 4.3 is the periodic potential with period π of strength Vr and

equation 4.4 is the aperiodic potential of strength V0.

The propagation invariant solutions U(x) of the system has been studied to

understand the effect of the transverse potential. The solution U(x) is related

with the fields Ψ1 and Ψ2 as follows:

Ψ1(x, z) = U(x)e−i(µz−θ1), (4.5)

Ψ2(x, z) = U(x)e−i(µz−θ2), (4.6)

where µ be the propagation constant and θ1 and θ2 are the phases of the solutions

in channel 1 and 2 respectively. Substituting the equations 4.5 and 4.6 in the
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(a) (b)

(c) (d)

Figure 4.1: High-frequency modes (solid red) of the system for C = 1,
β = 1 and G = 0.5. First row for periodic potential (dashed blue): (a)
Vr = 1, and (b) Vr = 4. Second row for aperiodic potential (dashed
blue): (c) V0 = 0.01, and (d) V0 = 0.04.

model equations 4.1 and 4.2 and after simplification, the governing equations of

the system is obtained as:

d2U

dx2
+ VR(x)U + CthU + β|U |2U − µU = 0, (4.7)

where Cth = Ccos(δ) =
√
C2 −G2, and δ = θ1 − θ2.

Either cos(δ) > 0 which denotes the high-frequency mode, U+ or cos(δ) < 0

which denotes the low-frequency mode, U−. Two families persist only for G < C.

The high-frequency and the low-frequency modes are studied by using Newton

Conjugate Gradient (NCG) method.

The high-frequency modes have been studied in the case of transverse periodic

potential. The results are shown in Figures 4.1(a) and 4.1(b). The high-frequency
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(a) (b)

(c) (d)

Figure 4.2: Low-frequency modes (solid red) of the system for C = 1,
β = 1 and G = 0.5. First row for periodic potential (dashed blue): (a)
Vr = 1, and (b) Vr = 4. Second row for aperiodic potential (dashed
blue): (c) V0 = 0.01, and (d) V0 = 0.04.

mode resides in each lattice site around the minimum of the potential as shown

in Figure 4.1(a). As the strength of the potential Vr increases, the mode is tightly

confined in the site as depicted in Figure 4.1(b).

The system is studied with the transverse potential of the form VR(x) = V0x
2.

The high-frequency modes exists only in the minimum of the potential. From

Figure 4.1(c), it is evident that the center of the modes lies at the minimum of

the potential. As the depth of the potential increases, these modes confined in

the site as is plotted in Figure 4.1(d).

The low-frequency modes are studied and plotted in Figures 4.2(a)-4.2(d).

Increasing Vr, more tightly confine the low-frequency modes to the lattice in the

case of the periodic potential as depicted in Figures 4.2(a) and 4.2(b). These

modes get trapped in the minimum of the aperiodic potential as shown in Figures
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4.2(c) and 4.2(d). Figures 4.1 and 4.2 reveal that the amplitudes of the low-

frequency modes are slightly greater than that of the high-frequency modes.

4.3 The linear regime

The linearised version of the system is described by equation 4.7 with β = 0 and

is given by:

d2U

dx2
+ VR(x)U + CthU − µU = 0, (4.8)

Cth =
√
C2 −G2.

Case 1: The periodic potential

Since the potential is periodic, the system supports Bloch waves of the form

U(x) = UK(x)eiKx in equation 4.8, where K represents the Bloch momentum

with the periodicity condition UK(x + π) = UK(x). The Bloch solutions satisfy

the equation:

d2UK

dx2
+ 2iK

dUK

dx
+ (VR(x)−K2)UK + CthUK = µUK . (4.9)

Employing the spectral method based on Chebyshev polynomials, the eigen-

values of the system is calculated and determined the PT symmetric regime.

The eigenvalues are computed for Bloch momentum K for various values of the

gain/loss coefficient (G) keeping the strength of the periodic potential and the

coupling coefficient, unity.

The first two linear bands, formed by the real part of the eigenvalues (Re(µ))

are shown in Figures 4.3(a) and 4.3(b). Figure 4.3(a) shows the band formation

of Re(µ) for the coupler with G = 0. The presence of G lifts certain eigenvalues

of the second band as shown in Figure 4.3(b). As far as G < C, the Im(µ)

is negligibly small indicating the unbroken PT symmetric regime. When G

exceeds C, all the eigenvalues of the second band shift to low values (bottom

of blue band) and the new band appears as illustrated in Figure 4.3(c) and
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(a) (b)

(c) (d)

Figure 4.3: The linear coupler (β = 0) with C = 1 and Vr = 1. (a)
and (b) for real part of the eigenvalues versus the Bloch momentum in
which the first band in blue and the second band in green respectively for
G = 0.0 and G = 0.5. (c) and (d) are the real and the imaginary parts
of the eigenvalues versus Bloch momentum respectively for G = 2.0.

Im(µ) becomes large as shown in Figure 4.3(d) which is the broken regime. The

effect of the transverse periodic potential on the intensity of the beam has been

studied numerically. The amplitude of the beam in the absence of the transverse

potential is shown in Figure 4.4(a). The presence of the transverse periodic

potential modulates the amplitude as depicted in Figures 4.4(b) and 4.4(c).

Case 2: The aperiodic potential

The linear coupler which is governed by equation 4.8 with VR(x) = V0x
2, has

been studied using spectral method based on Chebyshev polynomials.

The eigenvalues of the coupler in the absence of the gain/loss coefficient are

plotted in Figure 4.5(a). The eigenvalues are purely real as expected because
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(a) (b) (c)

Figure 4.4: The linear coupler (β = 0) with C = 1 and Vr = 1. Intensity
profile for various values of Vr in the unbroken PT regime (G = 0.5): (a)
Vr = 0, (b) Vr = 1, and (c) Vr = 10.

of the Hermitian nature of the system. The system becomes non-Hermitian due

to the presence of the gain/loss term and it is in the unbroken regime up to

G < C as depicted in Figure 4.5(b). From Figure 4.5(c) it is evident that the

eigenvalues are complex for G ≥ C and it represents the broken regime. The

influence of the transverse aperiodic potential on the beam intensity has been

studied numerically. The intensity profile in the absence of the potential is shown

in Figure 4.5(d). The presence of the potential varies the amplitude as illustrated

in Figures 4.5(e) and 4.5(f) for low and high strength of the transverse aperiodic

potential respectively.

4.4 The propagation dynamics

The nonlinear PT symmetric coupler is modeled by the equations 4.1 and 4.2.

The solutions of the system has been studied in terms of the propagation constant

µ:

Ψ1(x, z) = Φ1(x, z)e
−iµz, (4.10)

Ψ2(x, z) = Φ2(x, z)e
−iµz. (4.11)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: The linear PT symmetric coupler with transverse parabolic
potential with C = 1 and V0 = 1. (a) G = 0, (b) G = 0.5 and (c)
G = 2.0. Intensity distribution for G = 0.5 with various values of V0: (d)
V0 = 0, (e) V0 = 1 and (f) V0 = 10.
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The substitution of Ψ1 and Ψ2 in equations 4.1 and 4.2 give the nonlinear eigen-

value problem:

i
∂Φ1

∂z
+
∂2Φ1

∂x2
+ VR(x)Φ1 + β |Φ1|2 Φ1 + iGΦ1 + CΦ2 = µΦ1, (4.12)

i
∂Φ2

∂z
+
∂2Φ2

∂x2
+ VR(x)Φ2 + β |Φ2|2 Φ2 − iGΦ2 + CΦ1 = µΦ2. (4.13)

The semi-analytical solutions of the system is obtained from the equations 4.12

and 4.13 using the variational method.

The conservative part of the Lagrangian of a nonlinear PT symmetric coupler

is given by:

LC =
i

2
(Φ1Φ

∗
1z − Φ∗

1Φ1z + Φ2Φ
∗
2z − Φ∗

2Φ2z) +
1

2
(| Φ1x |2 + | Φ2x |2)

−VR(x) | Φ1 |2 −VR(x) | Φ2 |2 −C(Φ2Φ
∗
1 + Φ1Φ

∗
2)

+µ(| Φ1 |2 + | Φ2 |2)−
β

2
(| Φ1 |4 + | Φ2 |4), (4.14)

where the subscript z and x represent the derivative with respect to the coor-

dinates z and x respectively. The Euler-Lagrangian equation of the system is

expressed as:

∂

∂z
(
∂LC

∂Φ∗
1z

)− ∂LC

∂Φ∗
1

+
∂

∂z
(
∂LC

∂Φ∗
2z

)− ∂LC

∂Φ∗
2

= Qi, (4.15)

where Qi incorporates all dissipative terms of the system. The dissipative terms

are obtained from equations 4.12 and 4.13 as Q1 = −iGΦ1 and Q2 = iGΦ2. The

reduced Lagrangian of the system is given by:

< LC >=

∫ ∞

−∞
Lcdx. (4.16)

The trial solution for the variational analysis is chosen as:

Φj(x, z) = Aj(z)Exp[
−(x− x0(z))

2

2a2
+ iv(z)x+ iθj(z)], (4.17)

in which the amplitudes Aj(z), the velocity v(z), the center of mass x0(z) and
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: The results from variational method for the periodic poten-
tial. The variation of P1, P2, x0 and v along z for parameter values C = 1,
β = 1 and µ = 0.10 with the initial conditions v[0] = 0.01, θ1 = 0.50
and θ2 = 0.50. First column for 2D plots, and second column for phase
diagram of channel 1. First row: Vr = 1, x0[0] = 0, second row: Vr = 1,
x0[0] = π

2
and third row: Vr = 10, x0[0] = 0.81



the phases θj(z) are the variational parameters with j = 1, 2 representing the

channels. The width of the soliton a is considered as constant.

The intensity (power) of the channel is defined as:

pj =

∫ ∞

−∞
ΦjΦ

∗
jdx,

=
√
πA2

ja, (4.18)

where j = 1 for channel 1 and j = 2 for channel 2. The relative intensity is

defined as the ratio of intensity of the channel to the total intensity which is

defined as:

P1 =
p1

p1 + p2

, P2 =
p2

p1 + p2

, (4.19)

for channels 1 and 2 respectively.

Case 1: The periodic potential

The reduced lagrangian of the system having the transverse periodic potential

of the form in equation 4.3, is obtained as:

< LC >= vzx0(p1 + p2) + θ1z(p1) + θ2z(p2) +
(p1 + p2)

2a2

+v2(p1 + p2)− µ(p1 + p2)− 0.5Vr(p1 + p2)(1− e−a2

Cos(2x0))

−β(p2
1 + p2

2)

2
√

2πa
− 2CCos(δ)

√
p1p2. (4.20)

The variational equations of the coupled system is given by:

p1z = 2CSin(δ)
√
p1p2 + 2Gp1, (4.21)

p2z = −2CSin(δ)
√
p1p2 − 2Gp2, (4.22)

x0z = 2v, (4.23)

θ1z = −Vrx0e
−a2

Sin(2x0) + 0.5Vr(1− e−a2

Cos(2x0)) + µ− v2

− 1

2a2
+

βp1√
2πa

+

√
p2

p1

CaCos(δ), (4.24)
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(a) (b)

(c) (d)

Figure 4.7: The nonlinear PT symmetric coupler with transverse periodic
potential. First row: The results from variational method. The relative
intensities in the two channels (Solid for channel 1 and dashed for channel
2) as a funtion of z for parameter values C = 1,Vr = 1 and µ = 0.10 with
the initial conditions x0[0] = 0, v[0] = 0.01, θ1 = 0.50 and θ2 = 0.50.
(a) Input beam to channel 1(gain), (b) Input beam to channel 2 (loss).
Second row: The results from direct simulation. The soliton evolution
for Vr = 1, β = 1, x0[0] = 0, v[0] = 0.01, θ1 = 0.5 and θ2 = 0.5. c)
channel 1 and d) channel 2.

θ2z = −Vrx0e
−a2

Sin(2x0)) + 0.5Vr(1− e−a2

Cos(2x0)) + µ− v2

− 1

2a2
+

βp2√
2πa

+

√
p1

p2

CaCos(δ), (4.25)

vz = Vrasin(2x0)e
−a2

, (4.26)

where the subscript z represents the derivative with respect to z. Here the width

a is assumed as unity.

The evolution of the solitons in term of x0, v, and Pi has been studied using

a system of six coupled equations 4.21-4.26. Figure 4.6(a) shows that the soliton

is trapped in channel 1 with slight oscillation in power and nearly zero power in
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channel 2. If initially its center lies at the minimum of the potential, its velocity

and centre of mass increase whose phase space is depicted in Figure 4.6(b). If

the initial position of the soliton lies at x0 = π
2

(i.e., at the maximum of the

potential), the power slightly oscillates, the center of mass and the velocity is

constant as illustrated in Figure 4.6(c) with nearly zero power in channel 2.

The phase diagram of channel 1 is plotted in Figure 4.6(d). When Vr has large

value, the power is a constant, the center of mass increases and the velocity

completes a cycle as shown in Figure 4.6(e) for channel 1. Figure 4.6(f) shows

the corresponding phase diagram of channel 1.

The variation of power along the propagation direction has been plotted in

Figures 4.7(a)-4.7(b). The beam get trapped in the channel with gain in the

case of the nonlinear PT symmetric coupler. When the input power is initially

in channel 1, it remains there as shown in Figure 4.7(a). Figure 4.7(b) depicts

that the power switches from channel 2 (loss) to channel 1 (gain) if input beam

is in the channel with loss (i.e, channel 2).

The direct simulation of the system has been done using finite difference

method. The beam evolution has been studied with initial power in channel

1. The soliton evolves with constant power as shown in Figure 4.7(c). The

intensity in the second channel is negligible as depicted in Figure 4.7(d). The

direct simulation is in agreement with the variational results.

Case 2: The aperiodic potential

The reduced lagrangian of the system with the transverse aperiodic potential

described by equation 4.4, is expressed as:

< LC >= vzx0(p1 + p2) + θ1zp1 + θ2zp2 +
p1 + p2

2a2
+ v2(p1 + p2)− µ(p1 + p2)

−β(p2
1 + p2

2)

2
√

2πa
− 0.5V0(p1 + p2)(a

2 + 2x2
0)− 2CCos(δ)

√
p1p2. (4.27)
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The variational equations of the coupled system is obtained as:

p1z = 2CSin(δ)
√

(p1p2) + 2Gp1, (4.28)

p2z = −2CSin(δ)
√

(p1p2)− 2Gp2, (4.29)

x0z = 2v, (4.30)

θ1z = µ+ 0.5V0(a
2 + 2x2

0)− v2 − 1

2a2
+

βp1√
2πa

+

√
p2

p1

CaCos(δ), (4.31)

θ2z = µ+ 0.5V0(a
2 + 2x2

0)− v2 − 1

2a2
+

βp2√
2πa

+

√
p1

p2

CaCos(δ), (4.32)

vz = 2V0x0. (4.33)

where V0 be the depth of the potential. The width, a is assumed as unity.

The beam dynamics in term of x0, v, and Pi, has been studied numerically by

solving the coupled equations 4.28-4.33. The beam get trapped in the channel

with gain due to the nonlinearity. Figure 4.8(a) shows that the power slightly os-

cillates whereas its velocity and center of mass increase representing a travelling

soliton with nearly zero power in channel 2. Figure 4.8(b) illustrates correspond-

ing phase diagram for channel 1. The direct simulation of the system has been

done using finite difference method. The soliton evolves with constant power in

channel 1 in the unbroken regime as depicted in Figure 4.8(c). The power in the

second channel is nearly zero, and it evolves as shown in Figure 4.8(d).

4.5 The linear stability analysis

The linear stability of the stationary states of the coupled system has been in-

vestigated using Bogoliubov-De Genes (BDG) equations. Consider small pertur-

bations of the stationary states of the system as:

Ψ1(x, z) = (Φ1(x) + q1(x)e
iλz + q2(x)e

−iλ∗z)eiµz,

Ψ2(x, z) = (Φ2(x) + q3(x)e
iλz + q4(x)e

−iλ∗z)eiµz. (4.34)
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(a) (b)

(c) (d)

Figure 4.8: The results of PT symmetric nonlinear coupler with a trans-
verse parabolic potential. First row from variational method for param-
eter values C = 1, β = 1, V0 = 1 and µ = 0.10 with the initial conditions
v[0] = 0.01, x0[0] = 0, θ1 = 0.50 and θ2 = 0.50. (a) P1, P2, x0 and v
along z, and (b) phase diagram of Channel 1. Second row: The power
evolution for V0 = 1, β = 1, x0[0] = 0, v[0] = 0.01, θ1 = 0.5 and θ2 = 0.5.
c) channel 1 and d) channel 2.

The linearizing equations 4.1 and 4.2 due to the small values of q1, q2, q3 and q4

provide the following matrix A which is given by:


L1 + iG βΦ2

1 C 0

−β(Φ∗
1)

2 −L1 + iG 0 −C

C 0 L2 − iG βΦ2
2

0 −C −β(Φ∗
2)

2 −L2 − iG

 (4.35)
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where

L1 = −µ+
d2

dx2
+ VR + β|Φ1|2,

L2 = −µ+
d2

dx2
+ VR + β|Φ2|2.

When Φ1(x) = Φ2(x) = U(x), it obeys the equation 4.7. Then the matrix A is

rewritten in terms of Cosδ as:
L βU2 Ccosδ 0

−β(U∗)2 −L 0 −C

Ccosδ 0 L βU2

0 −Ccosδ −β(U∗)2 −L

 (4.36)

where Cos(δ) > 0 for high-frequency modes and Cos(δ) < 0 for low-frequency

modes.

We have applied the spectral methods based on Chebyshev polynomials to

solve the system. A grid is chosen extending 40 along x to evaluate the potential

and the diffraction operators. The eigenvalues of ’A’ are λ’s. λ’s are purely real

for stable solutions. If the imaginary part of the eigenvalue Im(λ) is negative,

then the perturbation mode increases exponentially. The positive Im(λ) results

in exponentially decreasing perturbation modes.

The stability of the high frequency solutions of the nonlinear PT symmetric

coupler having transverse periodic potential in equation 4.3 has been analyzed

and the results are plotted in Figures 4.9(a)-4.9(b). The solutions are stable

with purely real eigenvalues. The linear stability analysis of the system with

transverse parabolic potential whose profile is given by equation 4.4, has been

done. Figures 4.9(c) and 4.9(d) illustrate that the eigenvalues are purely real for

high frequency soliton.

The low-frequency modes are unstable for both periodic and the aperiodic

potential. Figures 4.10(a) and 4.10(b) show that the perturbation eigenmodes

grow exponentially for periodic potential. This is true for aperiodic potential
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(a) (b)

(c) (d)

Figure 4.9: The results of linear stability analysis of the system for high
frequency modes. The real and imaginary parts of the perturbation eigen-
values (λ) versus the propagation constant µ are shown. First row for
periodic potential with β = 1: (a) Vr = 1, and (b) Vr = 5. Second row
for parabolic potential with β = 1: (c) V0 = 1, and (d) V0 = 5.

also as depicted in Figures 4.10(c) and 4.10(d).

4.6 Conclusion

The PT symmetric coupler in a transverse periodic and aperiodic potential has

been studied for linear and nonlinear regimes. The propagation-invariant solu-

tions of the system were studied and it has been found that the high-frequency

and low-frequency modes reside in the minimum of the potential both for peri-

odic and parabolic potentials. High strength of the periodic potential causes the

modes to be more confined in the lattice where as high depth of the parabolic

potential leads to the confinement of the mode at the minimum of the potential.

The amplitude of the low-frequency modes are slightly greater than that of the

high-frequency modes. The PT symmetric regime of the system has been deter-
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(a) (b)

(c) (d)

Figure 4.10: The results of linear stability analysis of the system for
low-frequency modes. The real and imaginary parts of the perturbation
eigenvalues (λ) versus the propagation constant µ are shown. First row
for periodic potential with β = 1: (a) Vr = 1, and (b) Vr = 5. Second
row for parabolic potential with β = 1: (c) V0 = 1, and (d) V0 = 5.

mined in the linear case and the dynamics of the modes have been investigated

for those parameter values. The propagation constants of the system is real in

the PT symmetric regime whereas it is complex in the broken PT symmetric

domain. As far as the gain/loss coefficient is less than the coupling coefficient,

the coupler is in unbroken regime irrespective of the type of the transverse poten-

tial. The transverse periodic potential creates band gaps and thereby forbidden

propagation constants whereas no band gaps appear for parabolic potential. We

have analyzed the soliton dynamics in the case of nonlinear coupler with trans-

verse potentials. The beam get trapped in the channel with gain. For low values

of the strength of the transverse periodic and aperiodic potentials, velocity and

center of mass of the soliton increases. When the center of the soliton coin-

cides with the minimum of the periodic potential, we get the trapped solitons for

high strength of the periodic potential. The linear stability analysis reveals that
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the high-frequency modes are stable for both periodic and parabolic potentials,

and the low-frequency modes are unstable. These results find applications in

photonic devices for all-optical switching.
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Chapter 5

Nonlocal gap solitons in PT

symmetric coupler

5.1 Introduction

The PT symmetric couplers have been extensively studied because of its ap-

plications in ultra-fast data transfer and all-optical switching devices. The PT

symmetric couplers in nonlinear regime possess novel features depending on the

nature of the media and the intensity of the beam. Hence these systems have

been investigated in various types of nonlinearity and coupling terms.

The PT symmetric coupler with third order dispersion in Kerr media has

been studied [1]. The existence and the stability of the solitons has been reported

in PT symmetric coupler [2]. The symmetric and the asymmetric solitons have

been investigated in dual-core coupler with quadratic and cubic nonlinearity [3].

The PT symmetric coupler has been studied in the context of competing cubic-

quintic nonlinearity [4].

The symmetric and asymmetric solitons have been reported in the nonlocal

coupler [5]. The detailed study of the soliton solutions in nonlocal coupler has

been done [6]. But the PT symmetric coupler with nonlocal nonlinearity has

not been reported yet. In this context, we have studied the nonlocal gap solitons
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in PT symmetric coupler.

This chapter deals with the PT symmetric coupler having transverse peri-

odic modulation with nonlocal nonlinearity. The model of the PT symmetric

nonlocal coupler has been defined. The propagation invariant modes and the

linear stability analysis have also been discussed. The study has been further

extended to the propagation dynamics of the modes.

5.2 The PT symmetric nonlocal coupler

The beam dynamics of the system has been modeled by modifying the equations

of the nonlinear coupler [7] as given below:

iΨ1z + Ψ1xx + (VR(x) + iG+ VNL1)Ψ1 + CΨ2 = 0, (5.1)

VNL1 − σ
∂2VNL1

∂x2
= |Ψ1|2, (5.2)

iΨ2z + Ψ2xx + (VR(x)− iG+ VNL2)Ψ2 + CΨ1 = 0, (5.3)

VNL2 − σ
∂2VNL2

∂x2
= |Ψ2|2, (5.4)

where Ψ1 and Ψ2 are the fields (the electric fields in optics or the particle distri-

bution of matter waves) in the gain and loss channels respectively, VNL1 and VNL2

are the corresponding nonlocal nonlinearities in the channels, C is the coefficient

of coupling and G is the gain/loss coefficient. The range of the nonlocality is σ,

σ > 0 for defocusing, σ < 0 for self-focusing, and σ = 0 for Kerr nonlinearities.

The real potential VR(x) = Vrsin
2(x), is along the transverse direction x, with

period π and the strength Vr. The subscripts z and xx denote the first derivative

with respect to z and the second derivative with respect to x respectively.

The solutions of the system Φ1 and Φ2 in terms of the propagation constant

µ are obtained from:

Ψ1(x, z) = Φ1(x, z)e
i(−µz+θ1), (5.5)

Ψ2(x, z) = Φ2(x, z)e
i(−µz+θ2), (5.6)
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(a) (b)

Figure 5.1: The linear coupler with C = 1. The real (Re(µ)) and imagi-
nary (Im(µ)) parts of the eigenvalues are plotted by varying Vr. (a) The
unbroken regime for G = 0.5 and (d) the broken regime for G = 1.5. The
bands are named from bottom to top such as first, second and third.

where θ1 and θ2 are the phases of the fields. The phase difference between the

fields is represented by δ = θ1 − θ2 and Sin(δ) = G
C
.

The solutions satisfy the equations:

iΦ1z + µΦ1 + Φ1xx + (VR(x) + VNL1)Φ1 + CCos(δ)Φ2 + iG(Φ1 − Φ2) = 0, (5.7)

VNL1 − σ
∂2VNL1

∂x2
= |Φ1|2, (5.8)

iΦ2z + µΦ2 + Φ2xx + (VR(x) + VNL2)Φ2 + CCos(δ)Φ1 + iG(Φ1 − Φ2) = 0, (5.9)

VNL2 − σ
∂2VNL2

∂x2
= |Φ2|2. (5.10)

5.3 The propagation invariant modes

When Φ1(x, z) = Φ2(x, z) = U(x), we get the propagation invariant modes of

the system from Equations 5.7-5.10 which has the form:

d2U

dx2
+ VR(x)U + VNL(x)U + CthU + µU = 0, (5.11)

Cth = CCos(δ) =
√
C2 −G2,

VNL − σ
d2VNL

dx2
= |U |2. (5.12)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: The propagation-invariant high-frequency (first column) and
low-frequency (second column) modes of the nonlinear coupler for C =
1,G = 0.5, σ = 1.0, and Vr = 1.0 (dashed blue, periodic potential).
First, second and third rows for single-hump, double-hump, and triple-
hump modes respectively. (a) µ = 3.4, (b) µ = 1.4, (c) µ = 5.5, (d)
µ = 4.4, (e) µ = 8.9, and (f) µ = 7.4.
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(a) (b)

(c) (d)

Figure 5.3: The propagation-invariant high-frequency and low-frequency
modes of the nonlinear coupler for C = 1,G = 0.5, σ = 1.0, and Vr = 1.0
(dashed blue, periodic potential). The variation of power P of single-
hump mode with µ for various values of G: (a) and (c) σ = 0.5, and (b)
and (d) σ = 1.0.

5.3.1 Linear eigenmodes

The linearised version of the system is described by equation 5.11 with VNL = 0

which is given by:

d2U

dx2
+ VR(x)U + CthU + µU = 0. (5.13)

Since the potential is periodic, the equation 5.13 yields Bloch waves of the form

U(x) = UK(x)eiKx, where K represents the Bloch momentum with the period-

icity condition UK(x+ π) = UK(x). The Bloch solutions satisfy the equation:

−d
2UK

dx2
− 2iK

dUK

dx
− (VR(x)−K2)UK − CthUK = µUK . (5.14)
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(a) (b)

(c) (d)

Figure 5.4: The propagation-invariant low-frequency modes of the non-
linear coupler for C = 1, G = 0.5 and σ = 1.0 (dashed blue, periodic
potential). First row for high-frequency mode (solid red) and second row
for low-frequency mode (solid red). (a) Vr = 1 and µ = 2.8, (b) Vr = 2
and µ = 4.4, (c) Vr = 1 and µ = 1.4, and (d) Vr = 2 and µ = 2.4.

The eigenvalues of the system is calculated by the spetral method based on

Chebychev polynomials [8]. The eigenvalues are plotted by varying Vr as shown

in Figures 5.1(a) and 5.1(b). It is found that the system possesses band structure

due to the presence of the transverse periodic potential. When the gain/loss

coefficient G is less than C, the system possess real eigenvalues as evident from

Figure 5.1(a). This is the unbroken PT symmetric regime. When G > C, Im(µ)

is not equal to zero, representing the broken regime as shown in Figure 5.1(b).

5.3.2 Nonlinear eigenmodes

The nonlinear eigenmodes of the system has been obtained from Equations 5.11

and 5.12 by employing Newton’s Conjugate Gradient method. When Cth > 0,
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the eigenmodes are termed as high-frequency modes. If Cth < 0, eigenmodes

are known as low-frequency modes. Both modes coexist in the system as far as

G < C. When G = C, high-frequency and low-frequency modes merge together.

Both the high-frequency and the low-frequency modes are analysed by varying

the range of the nonlocal nonlinearity σ and the strength of the potential Vr.

Both modes exist for a set of continuous values of µ which strongly depends on

the range of the nonlocality σ.

Figures 5.2(a)-5.2(e) illustrate the high-frequency single-hump, double-hump

and triple-hump modes respectively for σ = 1. The high-frequency modes exist

in the first band gap. High-frequency single-hump modes lie in the lower part

of the first band gap as depicted in Figure 5.2(a). The mode get trapped in the

minimum of the transverse potential. As µ increases further to the middle of the

first band gap, the double-hump high-frequency modes are obtained as shown in

Figure 5.2(c). The double-hump mode spreads through two consecutive lattices.

When µ lies nearest to the second band, the triple-hump high-frequency modes

are observed. The triple-hump mode lies across three consecutive lattices. The

low-frequency single-hump, double-hump and triple-hump modes are plotted in

Figures 5.2(b)-5.2(f). The single-hump mode lie in the semi-infinite band gap as

shown in Figure5.2(b). The double-hump and triple-hump modes lie in the first

band gap as plotted in Figures 5.2(d)-5.2(f).

The power of single-hump high-frequency modes P versus µ with various

values of G for σ = 0.5 and σ = 1.0 are shown in Figures 5.3(a) and 5.3(b)

respectively. P increases with µ and G. The power of single-hump low-frequency

modes P as a function of µ with various values of G for σ = 0.5 and σ = 1.0 are

depicted in Figures 5.3(c) and 5.3(d) respectively. P increases with µ whereas

decreases with G.

As Vr increases, the amplitude of single-hump high-frequency mode increases

as shown in Figures 5.4(a) and 5.4(b). Similarly the amplitude of single-hump

low-frequency mode increases as plotted in Figures 5.4(c) and 5.4(d). As Vr

increases, the propagation constants of both modes increase.
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(a) (b)

(c) (d)

Figure 5.5: The linear stability analysis of the nonlocal coupler for C =
1, and Vr = 1. The real and the imaginary parts of the perturbation
eigenvalues as function of µ. First and second rows for high-frequency
and low-frequency modes respectively with σ = 0.5 (first column) and
σ = 1 (second column).

5.4 The linear stability analysis

The stability of the nonlocal solitons have been analyzed by employing

Bogoliobov-De-Genes (BDG) equations. The nonlocal solitons are slightly per-

turbing such that:

Ψ1 = (U(x) + r1(x)e
iλz + s1(x)e

−iλ∗z)e−iµz,

VNL1 = V µ
NL1(x, z) + ∆VNL1(x, z),

Ψ2 = (U(x) + r2(x)e
iλz + s2(x)e

−iλ∗z)e−iµz,

VNL2 = V µ
NL2(x, z) + ∆VNL2(x, z). (5.15)

The linearizing Equations 5.7-5.10:
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λr1 = (L1 + iG+ UDU∗)r1 + UDUs∗1 + (Cth − iG)r2, (5.16)

λs∗1 = (−L1 + iG− U∗DU)s∗1 − U∗DU∗r1 − (Cth + iG)s∗2, (5.17)

λr2 = (L1 − iG+ UDU∗)r2 − UDUs∗2 + (Cth + iG)r1, (5.18)

λs∗2 = (−L1 − iG− U∗DU)s∗2 − U∗DU∗r2 − (Cth − iG)s∗1, (5.19)

being L1 = ∂2
x+VrSin

2(x)+µ+D|U |2 and D = (1−σ∂2
x)
−1. The set of Equations

5.16-5.19 is solved employing pseudo-spectral method. The diffraction and D

operators, and the potential VR are evaluated using Chebyshev polynomials. We

have studied the linear stability of high-frequency as well as the low-frequency

modes.

The nature of the eigenvalue λ determines the stability of the solution. The

solution is stable for real values of λ. The complex values of λ leads to the

oscillatory instability of the solution. Purely imaginary positive or negative

eigenvalues represent exponentially decaying or growing modes respectively.

We have studied the perturbation eigenvalues as functions of µ. Figure 5.5

shows stability plots of high-frequency and low-frequency modes for various range

of nonlocal nonlinearity. Figure 5.5(a) illustrates that imaginary part of the per-

turbation eigenvalues are negligible comparing with the real part and so the

high-frequency modes for weak nonlocality are linearly stable. As σ increases

both the real part and the imaginary part are comparable as shown in Fig-

ure 5.5(b). The perturbation modes decay exponentially. Hence high-frequency

modes are unstable and exhibit oscillatory instability. The low-frequency modes

are stable for weak nonlocality whereas unstable for strong nonlocality as evident

from Figures 5.5(c) and 5.5(d) respectively.

The linear stability analysis of the single-hump high-frequency and low-

frequency modes of nonlocal coupler have been studied for various strength of

the transverse potential with strong nonlocal nonlinearity. Figures 5.6(a) and

5.6(b) illustrate that the high-frequency modes are unstable with oscillatory in-
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(a) (b)

(c) (d)

Figure 5.6: The linear stability analysis of single-hump high-frequency
(first row) and low-frequency (second row) modes nonlocal coupler for
C = 1, G = 0.5, and σ = 1.0 with Vr = 1 (first column) and Vr = 2
(second column).

stability for Vr = 1 and Vr = 2. The perturbation modes decay exponentially for

low strength of the potential whereas grow exponentially for high strength of the

potential. However the low-frequency perturbation modes decay exponentially

for any strength of the potential as it is evident from Figures 5.6(c) and 5.6(d).

The low-frequency modes are unstable. Hence the strength of the potential does

not affect the stability of the high-frequency and low-frequency modes.

5.5 The propagation dynamics

We have employed the semi-analytical method to study the propagation of high-

frequency and low-frequency modes. When Φ1 = Φ2 = Φ, equations 5.7-5.10
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(a) (b)

(c) (d)

Figure 5.7: The propagation dynamics of high-frequency and low-
frequency modes along the propagation direction for C = 1, G = 0.5,
Vr = 1.0 and σ = 1.0. (a) The amplitude (A) and the width (w), (b) the
center of mass (x0) and velocity v, (c) the phase (ζ) of the high-frequency,
and (d) the phase (ζ) of the low-frequency.

reduced to the form:

iΦz + µΦ + Φxx + (VR(x) + VNL)Φ + CthΦ = 0, (5.20)

VNL − σ
∂2VNL

∂x2
= |Φ|2, (5.21)

where Cth as defined in Equation 5.12. The Lagrangian density of the system is

obtained as:

LC =
i

2
(Φ∗

zΦ− Φ∗Φz) + |Φx|2 − µ|Φ|2 − VR(x)|Φ|2 − CCos(δ)|Φ|2

−VNL(x)|Φ|2 +
σ

2
(
∂VNL

∂x
)2 +

V 2
NL

2
. (5.22)

The variational ansatz is assumed as:

Φ(x, z) = A(z)e
[
−(x−x0(z))2

2w(z)2
+iv(z)x+iζ(z)]

, (5.23)
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where the amplitude A(z), the width w(z), the velocity v(z), the center of mass

x0(z) and the phases ζ(z) are the variational parameters. The nonlocal nonlin-

earity is of the form [8]:

VNL(x, z) = ANL(z)Exp[
−(x− x0(z))

2

2w2
NL(z)

], (5.24)

where ANL, and wNL are the amplitude and the width of the nonlocal nonlin-

earity. In terms of power p =
√
πA2w, the effective Lagrangian is given by:

< LC >= vzx0p+ ζzp+
p

2w2
+ v2p− µp− 0.5Vrp(1− e−w2

Cos(2x0))

−
√

2wNLANLp√
2w2

NL + w2
− 2CCos(δ)

√
p+

√
πwNLA

2
NL

2
(1 +

σ

2w2
NL

). (5.25)

The variational equations are obtained as:

pz = 0, (5.26)

x0z = 2v, (5.27)

ζz = −Vrx0e
−w2

Sin(2x0) + µ− v2 + 0.5Vr(1− e−w2

Cos(2x0))−
1

2w2

+CCos(δ)−
√

2wNLANL√
2w2

NL + w2
, (5.28)

vz = Vrsin(2x0)e
−w2

, (5.29)

ANL =
2
√

2w2
NLp

(σ + 2w2
NL)

√
π2w2

NL + w2
, (5.30)

1

w3
+ Vrwe

−w2

Cos(2x0)−
√

2wNLwANL

(2w2
NL + w2)1.5

= 0, (5.31)

w2
NL =

σ + w2 +
√

(σ + w2)2 + 12σw2

4
. (5.32)

The solutions of equations 5.26-5.32 yield the dynamics of high-frequency

(Cos(δ) > 0) and low-frequency (Cos(δ) < 0) modes.

We have studied the variation of center of mass (x0), velocity (v), width (w),

and the amplitude (A) of the modes along the propagation direction. Figure

5.7(a) illustrates that both modes have constant amplitude and width, thereby
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: The nature of high-frequency and low-frequency modes for
varying σ (first column) and Vr (second column) with parameter values
C = 1, G = 0.5, and Vr = 1. (a) and (b) The amplitude (A) and width
(w), (c) and (d) the center of mass (x0) and velocity (v), (e) and (f) the
phases (ζ) of high-frequency (hf) and low-frequency (lf) modes.
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(a) (b)

(c) (d)

Figure 5.9: The beam propagation for C = 1 and G = 0.5. First row for
Vr = 1 by varying σ: (a) σ = 1 and (b) σ = 5. Second row for σ = 2 by
varying Vr: (c) Vr = 1 and (d) Vr = 2.

producing constant power as found from equation 5.26. The center of mass and

velocity increase as shown in Figure 5.7(b). The phase of the high-frequency

mode increases as it propagates, whereas that of the low-frequency mode de-

creases as shown in Figures 5.7(c) and 5.7(d) respectively.

The dynamics of both modes have been studied by varying σ and Vr. When σ

increases, the widths of both modes increase whereas the amplitudes decrease as

shown in Figure 5.8(a). The center of mass and velocity decrease for low values

of σ and becomes constant as σ increases as depicted in Figure 5.8(c). Figure

5.8(e) shows that the phases of both modes increase with σ. As Vr increases, the

amplitude decreases whereas the width increases as depicted in Figure 5.8(b).

The center of mass x0, and the velocity v slightly oscillate as plotted in Figure

5.8(d). Figure 5.8(f) illustrates that the phases of the high-frequency and the

low-frequency modes increase with Vr.
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(a) (b)

Figure 5.10: The beam propagation for C = 1, Vr = 1, σ = 1 and
G = 0.5. (a) The amplitude and the width, and (b) the phase of high-
frequency mode.

Equations 5.20 and 5.21 have been studied numerically using finite difference

method by varying σ and Vr. When σ and Vr change, the beam propagates with

constant power as depicted in Figures 5.9(a)-5.9(d).

Figure 5.10(a) shows that the amplitude and the width remain constant along

the propagation direction for fixed values of σ and Vr. The corresponding phase

of the high-frequency mode is shown in Figure 5.10(b). These results agree with

the variational analysis.

5.6 Conclusion

The nonlocal gap solitons of PT symmetric coupler with transverse real periodic

potential having defocusing nonlocal nonlinearity have been investigated. The

propagation invariant solutions of the system has been studied and found that

high-frequency and low-frequency modes coexist in the system as far as the

gain/loss coefficient is less than the coupling coefficient. The high-frequency

and the low-frequency modes with single-hump, double-hump and triple-hump

structures are obtained. The high-frequency multi-hump modes are observed in

the first band gap. The low-frequency single-hump modes lie in the semi-infinite

band gap whereas low-frequency double-hump and triple-hump modes lie in the

first band gap. The single-hump modes trap in the minimum of the potential.
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The double-hump modes spread through the two consecutive lattice while triple-

hump modes lie across three consecutive lattices. As the range of the nonlocal

nonlinearity varies, the propagation constants corresponding to different modes

also change. When the propagation constant increases, the power of the high-

frequency and low-frequency single-hump modes increases. However increase in

the gain/loss coefficient results increase in the power of high-frequency modes

whereas decrease in the power of low-frequency modes. The linear stability

analysis of the high-frequency and low-frequency modes predict that both modes

are stable for weak nonlocality while unstable with oscillatory instability for

strong nonlocality. The studies on the propagation dynamics reveal that when

the range of the nonlocality increases, the width increases and the amplitude

decreases, resulting constant power propagation. The switching dynamics of the

coupler with Kerr and nonlocal nonlinearity has been discussed in chapter 6.

109



Bibliography

[1] L.Safaei and M.B.Zarndi and M.Hatami. PT-symmetric nonlinear direc-

tional fiber couplers with gain and loss for ultrashort optical pulses. J Laser

Opt Photonics 2017;4:155.

[2] M.gren and F.Kh.Abdullaev and V.V.Konotop. Solitons in a PT-symmetric

(2) coupler. Optics Letters. 2017;42:20 4079-4082.

[3] L.Gubeskys and B.A.Malomed. Symmetric and asymmetric solitons in

dual-core couplers with competing quadratic and cubic nonlinearities.

J.Opt.Soc.Am.B 2013;30:7 1843-1852.

[4] G.Burlak and S.Garcia-Paredes and B.A.Malomed. PT-symmetric couplers

with competing cubic-quintic nonlinearities. Chaos. 2016;26:113103.

[5] X.Shi and B.A.Malomed and F.Ye and X.Chen. Symmetric and asymmetric

solitons in a nonlocal nonlinear coupler. Phys. Rev. A. 2012;85:053839.

[6] Y.L.Dang and H.J.Li and J.Lin. Soliton solutions in nonlocal nonlinear cou-

pler. Nonlinear Dynamics. 2016;88:1 1-13.

[7] K.A.Muhsina and P.A.Subha. Soliton beam dynamics in parity-time sym-

metric nonlinear coupler. Eur.Phys.J.D. 2015;69:7 17.

[8] C.P.Jisha and A.Alberucci and V.A.Brazhnyi and G.Assanto. Nonlocal gap

solitons inpt-symmetric periodic potentials with defocusing nonlinearity.

Phys Rev A 2014;89:013812.

110



 SUNEERA T. P. “STUDIES ON BEAM DYNAMICS IN SINGLE AND COUPLED
PARITY-TIME SYMMETRIC SYSTEMS WITH KERR AND NONLOCAL 
NONLINEARITY”. THESIS. DEPARTMENT OF PHYSICS, UNIVERSITY OF 
CALICUT, 2018.



Chapter 6

Switching dynamics of PT

symmetric coupled systems

6.1 Introduction

The inventions of lasers and the optical fibers revolutionize the communication

system and the data transfer. The basic building blocks of photonic circuitry

needs couplers, switches, isolators and diodes which can replace the role of elec-

trons with photons. Optical transistors has been introduced as the basic elements

of photonic logic gates [1]. The bistable switching in optical transistors with pho-

tonic crystals has been reported [2]. All-optical switching in optically induced

nonlinear waveguide couplers has been experimentally demonstrated by Falko

Diebel et.al [3]. Nonlinear switching has been reported on dual-core nonlinear

optical fiber couplers with XPM and Raman intra-pulse applied to femto-second

pulse propagation [4].

PT symmetric couplers act as unidirectional valves by trapping the intensity

in the gain channel. Ultrafast optical switching has been studied using PT

symmetric Bragg gratings [5]. All-optical transistors and logic gates have been

invented using PT symmetric Y-junctions [6]. Optimal PT symmetric switch

features the exceptional point has been reported [7].
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In this chapter, we have described the switching dynamics in PT symmet-

ric coupler with nonlocal nonlinearity having transverse periodic and aperiodic

potentials. The propagation dynamics of a PT symmetric nonlocal coupler and

the nonlinear switching have been addressed.

6.2 The propagation dynamics

We have studied the PT symmetric coupler having transverse real potential

V (x) = VR(x) with defocusing nonlocal nonlinearity. The system has been mod-

eled by modifying the coupled nonlinear Schrödinger equation (NLSE):

iΨ1z + Ψ1xx + (VR(x) + iG+ VNL1)Ψ1 + CΨ2 = 0, (6.1)

VNL1 − σ
∂2VNL1

∂x2
= |Ψ1|2, (6.2)

iΨ2z + Ψ2xx + (VR(x)− iG+ VNL2)Ψ2 + CΨ1 = 0, (6.3)

VNL2 − σ
∂2VNL2

∂x2
= |Ψ2|2, (6.4)

where the subscript z represents the first derivative with respect to the prop-

agation direction z (in normalised unit) and subscript xx implies the second

derivative with respect to transverse direction x. Ψ1 and Ψ2 are the electric

fields in the channels with gain and loss respectively. The nonlocal nonlinearity

in the gain channel is denoted by VNL1 and that of lossy channel by VNL2. The

range of the nonlocal nonlinearity is denoted by σ, with σ > 0 for defocusing and

σ < 0 for self-focusing nonlinearities. σ = 0 corresponds to the Kerr nonlinear-

ity. C represents the coupling coefficient and G denotes the gain/loss coefficient.

When the gain in one channel is compensated by equal loss in other channel,

the coupler is in PT symmetric regime. We have explored the PT symmetric

nonlocal coupler with the periodic and the aperiodic transverse potentials, which

have the following form:-

(1) The periodic potential VR(x) = Vrsin
2(x), of period π and the strength Vr,

and

(2) The aperiodic potential VR(x) = V0x
2 with the strength V0.
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The solutions of the system Ψ1 and Ψ2, satisfy the following equations:

Ψ1(z, x) = Φ1(x, z)e
iµz, (6.5)

Ψ2(z, x) = Φ2(x, z)e
iµz, (6.6)

µ being the propagation constant. The modeled equations 6.1-6.4 have been

rewritten as:

iΦ1z − µΦ1 + Φ1xx + (VR(x) + iG+ VNL1)Φ1 + CΦ2 = 0, (6.7)

VNL1 − σ
∂2V 2

NL1

∂x2
= |Φ1|2, (6.8)

iΦ2z − µΦ2 + Φ2xx + (VR(x)− iG+ VNL2)Φ2 + CΦ1 = 0, (6.9)

VNL2 − σ
∂2V 2

NL2

∂x2
= |Φ2|2. (6.10)

Equations 6.7-6.10 have been analyzed by employing the variational and numer-

ical methods to study the propagation dynamics and the nonlinear switching of

the system.

The Lagrangian density of Equations 6.7-6.10 is expressed as:

LC =
i

2
(Φ∗

1zΦ1 − Φ∗
1Φ1z) +

i

2
(Φ∗

2zΦ2 − Φ∗
2Φ2z) + |Φ1x|2 + |Φ2x|2 + µ|Φ1|2

+µ|Φ2|2 − VR(x)(|Φ1|2 + |Φ2|2)− C(Φ∗
1Φ2 + Φ∗

2Φ1)− VNL1(x)|Φ1|2

−VNL2(x)|Φ2|2 +
σ

2
[(
∂VNL1

∂x
)2 + (

∂VNL2

∂x
)2] +

V 2
NL1 + V 2

NL2

2
, (6.11)

LNC = −iG[|Φ1|2 − |Φ2|2], (6.12)

where LC and LNC being conservative and nonconservative components of the

Lagrangian density respectively.

The trial solution has been assumed as:

Φj(x, z) = Aj(z)Exp[
−(x− x0(z))

2

2w(z)2
+ iv(z)x+ iθj(z)], (6.13)

where the index j = 1, 2 indicates the gain and lossy channels respectively. The

amplitudes Aj(z), the width w(z), the velocity v(z), the center of mass x0(z)
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: The variational results of the nonlinear coupler with trans-
verse periodic potential for various values of Vr with C = 1, σ = 1 and
G = 0.5. The initial conditions are p1 = 6.0, p2 = 0.01, v = 0.01,
θ1 = 0.5, and θ2 = 0.5. (a) Vr = 0, x0 = 0, (b) Vr = 0, x0 = π

2
, (c)

Vr = 1, x0 = 0, (d) Vr = 1, x0 = π
2
, (e) Vr = 4, x0 = 0 and (f) Vr = 4,

x0 = π
2
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and the phases θj(z) are the variational parameters. The nonlocal nonlinearity

has been selected as:

VNLj(x, z) = ANLj(z)Exp[
−(x− x0(z))

2

2w2
NL(z)

], (6.14)

ANLj being the amplitude of the nonlocal nonlinearity and wNL being the com-

mon width of the nonlocal nonlinearity.

The input power P is distributed between the channels such that P = p1 +p2

where p1 =
∫∞
−∞ |Φ1|2dx and p2 =

∫∞
−∞ |Φ2|2dx. The relative power is defined as

the ratio of the power of single channel to the total power P = p1 + p2 which is

expressed as:

P1 =
p1

P
, P2 =

p2

P
. (6.15)

for gain and loss channels respectively.

Case:1 The periodic potential

The effective Lagrangian of the nonlocal coupler with the transverse periodic

potential Vr(x) = Vrsin
2(x) is given by:

< LC >= vzx0(p1 + p2) + θ1zp1 + θ2zp2 +
p1 + p2

2w2
+ v2(p1 + p2) + µ(p1 + p2)

−0.5Vr(p1 + p2)(1− e−w2

Cos(2x0))−
√

2wNL(ANL1p1 + ANL2p2)√
2w2

NL + w2

−2CCos(δ)
√
p1p2 +

√
πwNL(A2

NL1 + A2
NL2)

2
(1 +

σ

2w2
NL

). (6.16)

The variational equations of the coupled system are given by:

p1z = 2CSin(δ)
√
p1p2 + 2Gp1, (6.17)

p2z = −2CSin(δ)
√
p1p2 − 2Gp2, (6.18)

x0z = 2v, (6.19)
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(a) (b)

(c) (d)

Figure 6.2: The variational results for the nonlocal coupler with trans-
verse aperiodic potential. The variation of x0, v and Pi along z with
C = 1, σ = 1.0 and G = 0.5 with the initial conditions v = 0.01,
θ1 = 0.5, and θ2 = 0.5. (a) V0 = 0.01, (b) V0 = 0.05. (c)x0 and v as
functions of z for V0 = 0.01, and (d) x0 and v versus z for V0 = 0.05.

θ1z = −Vrx0e
−w2

Sin(2x0) + 0.5Vr(1− e−w2

Cos(2x0)) + µ− v2

− 1

2w2
+

√
p2

p1

CCos(δ) +

√
2wNLANL1√
2w2

NL + w2
, (6.20)

θ2z = −Vrx0e
−w2

Sin(2x0) + 0.5Vr(1− e−w2

Cos(2x0)) + µ− v2

− 1

2w2
+

√
p1

p2

CCos(δ) +

√
2wNLANL2√
2w2

NL + w2
, (6.21)

vz = Vrsin(2x0)e
−w2

, (6.22)

ANL1 =
2
√

2w2
NLp1

(σ + 2w2
NL)

√
π(2w2

NL + w2)
, (6.23)

ANL2 =
2
√

2w2
NLp2

(σ + 2w2
NL)

√
π(2w2

NL + w2)
, (6.24)

p1 + p2

w3
+ Vrwe

−w2

Cos(2x0)(p1 + p2)−
√

2wNLw(ANL1p1 + ANL2p2)

(2w2
NL + w2)1.5

= 0, (6.25)

w2
NL =

σ + w2 +
√

(σ + w2)2 + 12σw2

4
. (6.26)116



We have studied equations 6.17-6.26 numerically by exciting the channel with

gain (i.e., channel 1) for high input power. The variation of x0, v, and Pj

along the propagation direction are plotted in Figures 6.1(a)-6.1(f) with strong

nonlocality (i.e, σ = 1) by varying the strength of the potential. In the absence

of the transverse potential, the soliton moves with constant v and increasing x0

as depicted in Figures 6.1(a) and 6.1(b) with the relative power nearly one in

channel 1 and nearly zero in channel 2. The presence of the potential varies v

and x0. When the strength of the transverse potential is low and x0 is initially

at the minimum of the potential, as the soliton evolves v and x0 increase linearly

with z as shown in Figure 6.1(c). It means that the solution is a travelling

soliton. But if x0 is initially at the maximum of the potential, v and x0 slightly

oscillate representing trapped soliton as plotted in Figure 6.1(d). Figures 6.1(e)

and 6.1(f) are plotted for high Vr. From Figure 6.1(e), it is evident that v and

x0 increase nonlinearly with z if initially x0 lies at the minimum of the potential.

The solution is a trapped soliton with slightly oscillating v and x0, if x0 lies

initially at the maximum of the potential as shown in Figure 6.1(f). Depending

on the initial position of the solution, it behaves like the travelling soliton or the

trapped soliton.

Case:2 The aperiodic potential

The effective Lagrangian of the system with transverse aperiodic potential

VR(x) = V0x
2, is obtained as:

< LC >= vzx0(p1 + p2) + θ1zp1 + θ2zp2 +
p1 + p2

2w2
+ v2(p1 + p2)

− 0.5Vr(p1 + p2)(w
2 + x2

0)−
√

2wNL(ANL1p1 + ANL2p2)√
2w2

NL + w2
+ µ(p1 + p2)

− 2CCos(δ)
√
p1p2 +

√
πwNL(A2

NL1 + A2
NL2)

2
(1 +

σ

2w2
NL

). (6.27)
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: The power-dependent switching of the nonlinear coupler with
transverse periodic potential for C = 1 and G = 0.5 with initial condi-
tions x0 = 0.1, v = 0.01, θ1 = 0.5, and θ2 = 0.5. The transmission
coefficient of gain channel versus normalized input power in: (a) σ = 1,
(b) Vr = 0, and (c) for Vr = 1. The direct simulation, the relative inten-
sity along the propagation direction with σ = 1 and Vr = 1: (d) input
power 2, nearly zero P1 at z=2.5, (e) input power 8, P1 = 0.5 at z=2.5,
and (f) input power 120, P1 = 1 at z=2.5.
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The variational equations of the system are given by:

p1z = 2CSin(δ)
√
p1p2 + 2Gp1, (6.28)

p2z = −2CSin(δ)
√
p1p2 − 2Gp2, (6.29)

x0z = 2v, (6.30)

θ1z = 0.5V0(p1 + p2)(w
2 − 2x2

0)− µ− v2

− 1

2w2
+

√
p2

p1

CCos(δ) +

√
2wNLANL1√
2w2

NL + w2
, (6.31)

θ2z = 0.5V0(p1 + p2)(w
2 − 2x2

0)− µ− v2

− 1

2w2
+

√
p1

p2

CCos(δ) +

√
2wNLANL2√
2w2

NL + w2
, (6.32)

vz = 2V0x0, (6.33)

ANL1 =
2
√

2w2
NLp1

(σ + 2w2
NL)

√
π(2w2

NL + w2)
, (6.34)

ANL2 =
2
√

2w2
NLp2

(σ + 2w2
NL)

√
π(2w2

NL + w2)
, (6.35)

p1 + p2

w3
+ V0w[z](p1 + p2)−

√
2wNLw(ANL1p1 + ANL2p2)

(2w2
NL + w2)1.5

= 0, (6.36)

w2
NL =

σ + w2 +
√

(σ + w2)2 + 12σw2

4
. (6.37)

We have solved equations 6.28-6.37 numerically and the solutions are plotted in

Figures 6.2(a)-6.2(d). Figures 6.2(a) and 6.2(b) illustrate that when the input

power is high, the power get trapped in the gain channel. The variation of x0

and v along z is depicted in Figures 6.2(c) and 6.2(d). Figure 6.2(c) shows that

x0 increases linearly with z whereas v remains constant for low strength of the

potential. Both x0 and v increase along z for V0 = 0.004 as plotted in Figure

6.2(d). The solution is a travelling soliton for the parabolic potential.

6.3 The nonlinear switching

The switching behaviour has been explored by varying the input power, the range

of the nonlocal nonlinearity, and the strength of the transverse potentials.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: The switching behaviour of the nonlinear coupler with trans-
verse aperiodic potential for C = 1 and G = 0.5 with initial conditions
x0 = 0.1, v = 0.01, θ1 = 0.5, θ2 = 0.5. First row: The transmission
coefficient of gain channel versus normalized input power: (a) σ = 0, (b)
σ = 1, and (c) Vr = 0.004. Second row: the direct simulation results
for σ = 1 and Vr = 0.004: (d) input power 5, nearly zero P1 at z=2.5,
(e) input power 9, P1 = 0.5 at z=2.5, and (f) input power 80, P1 = 1 at
z=2.5.
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(a) (b)

(c) (d)

Figure 6.5: The nonlinear switching of coupler with transverse potential
by varying σ for Vr = 1 with C = 1 and G = 0.5. The initial conditions
are v = 0.01, θ1 = 0.5, and θ2 = 0.5. (a) σ = 0.05, and (b) σ = 5.
Corresponding direct simulation results (c) and (d).

6.3.1 Varying input power

The propagation distance at which the entire power switches to the other channel

is called the coupling length Lc. When the gain channel is excited, the power

switches to the lossy channel at the coupling length for low input power, whereas

the power get trapped in the gain channel for high input power. The transmission

coefficient of the gain channel T1 is defined as the ratio of the input power to the

total power at the coupling length z = Lc. When the transmission coefficient is

0.5, the corresponding power is called the critical power Pr.
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Case:1 The periodic potential

The variational equations 6.17-6.26 have been solved numerically and the switch-

ing behaviour has been plotted in Figures 6.3(a)-6.3(c) by varying Vr and σ.

When Vr increases, Pr also increases for nonlocal coupler as depicted in Figure

6.3(a). It is evident that the presence of the potential results increase in Pr. Fig-

ures 6.3(b) and 6.3(c) illustrate that Pr increases with σ. The direct simulation

of Equations 6.7-6.10 for the transverse periodic potential has been done using

finite difference method. Figures 6.3(d), 6.3(e), and 6.3(f) show the variation of

relative intensity as functions of z for different values of input power. For low

input power, the input beam switches from gain to loss channel with T1 nearly

zero for coupling length (say, z = 2.5) as shown in Figure 6.3(d). Fifty percent

of input power is transmitted to loss channel at coupling length for much more

input power as depiced in Figure 6.3(e). The input power is completely trapped

in the gain channel for high input power with T1 nearly unity as illustrated in

Figure 6.3(f).

Case: 2 Aperiodic potential

The variational equations 6.28-6.37 have been studied numerically and the power-

dependent switching has been investigated by varying V0 and σ. Figures 6.4(a)

and 6.4(b) show that Pr increases with Vr for Kerr (σ = 0) and nonlocal coupler

(σ = 1). Figure 6.4(c) reveals that when σ increases Pr increases. The direct

simulation of Equations 6.7-6.10 with transverse aperiodic potential has been

done by employing finite difference method. From Figures 6.4(d), 6.4(e) and

6.4(f), it is evident that as the power increases, T1 increases from zero to unity.

The variational results are in agreement with the results of the direct simulation.
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(a) (b)

(c) (d)

Figure 6.6: The nonlinear switching of coupler with transverse aperiodic
potential by varying σ for Vr = 1 with C = 1 and G = 0.5. The initial
conditions are v = 0.01, θ1 = 0.5, and θ2 = 0.5. (a) σ = 0.05 and (b)
σ = 2. Corresponding direct simulation results are in (c) and (d).

6.3.2 Varying the range of the nonlocality

Case:1 The periodic potential

The nonlinear switching of the system has been studied numerically by solving

Equations 6.17-6.26. In the case of PT symmetric nonlocal coupler, the input

power is trapped in the gain channel for low values of Vr and σ with high input

power as shown in 6.5(a). As σ increases, the power switches from gain channel

to the lossy channel as depicted in 6.5(b). The direct simulation of equations

6.7-6.10 has been done and the results are plotted in Figures 6.5(c)-6.5(d). Both

methods predict that it is possible to switch power from gain channel to lossy
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(a) (b)

(c) (d)

Figure 6.7: The nonlinear switching of the nonlocal coupler with trans-
verse periodic potential varying Vr for σ = 0.10 and P1 = 6. The vari-
ational results in (a) Vr = 1 and (b) Vr = 10. Corresponding direct
simulation results in (c) and (d).

channel even for high input power by varying the range of the nonlocality.

Case:2 The aperiodic potential

The nonlinear switching of the system has been studied numerically by solving

Equations 6.28-6.37. The input power is trapped in the gain channel for low

values of σ as shown in Figure 6.6(a) with high input power. The power switches

from gain channel to other as illustrated in Figure 6.6(b) by varying σ. The

direct simulation of Equations 6.7-6.10 with transverse aperiodic potential has

been done using finite difference method. Figures 6.6(c) is plotted for weak

nonlocality, in which the input power get trapped in the gain channel for high
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input power. However the power switches from channel with gain to lossy channel

for strong nonlocality even for high input power as depicted in Figure 6.6(d).

6.3.3 Varying the strength of the transverse potential

Figures 6.7(a) and 6.7(b) show that the power switches from gain channel to

loss by tuning Vr even for low values of σ and high input power. The direct

simulation of the system has been done and the results are plotted in Figures

6.7(c)-6.7(d). The direct simulation results are in agreement with the variational

results. But the strength of the aperiodic potential can not induce switching.

6.4 Conclusion

The beam dynamics has been investigated in PT symmetric coupler with a trans-

verse periodic and aperiodic potential having a defocusing nonlocal nonlinearity.

We found that the solution provides travelling soliton if initially its center lies

at the minimum of the transverse potentials. When the center of the solution

lies at the maximum of the periodic potential initially, the trapped soliton is ob-

tained. The power-dependent switching of the PT symmetric nonlocal coupler

has been studied. The critical power increases with the range of the nonlocality

and the strength of the transverse potential. The switching from gain channel to

loss channel is possible for high input power by varying either the range of the

nonlocality or the strength of the transverse periodic potential.
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Chapter 7

Results and conclusions

PT symmetric systems shed light on reducing the detrimental effect of losses

by proper engineering of materials. Artificial materials or structures can be

fabricated by simultaneously controlling the gain and loss of the system, which

is possible by designing both the real and imaginary parts of the refractive index

profile. The study of beam dynamics in PT symmetric nonlinear systems are

fascinating because of its far-reaching applications in nonlinear optics, photonic

devices, and Bose-Einstein condensates.

7.1 Results

Our study has led to the following results and conclusions.

• We have studied fundamental and higher eigenmode solitons in a parabolic

PT symmetric potential with Kerr nonlinearity. The PT symmetric phase

transition point vary with the strength of real part of the potential and the

coefficient of nonlinearity. The linear stability analysis reveals that the

stable solitons are formed for low values of the coefficients of imaginary

part of the potential and nonlinearity. The double-hump solitons exist for

propagation constants higher than that of the single-hump solitons.

• We have further explored the higher eigenmodes of gap solitons in the pe-
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riodic PT symmetric potential with nonlocal nonlinearity. Gap solitons

are self-trapped wave packets in the linear band gap of periodic potentials.

Double-hump nonlocal gap solitons exist above a threshold value of energy

and spread through two neighboring channels in the PT symmetric region.

The power carried by the imaginary component of the double-hump soli-

ton increases with the imaginary part of the complex potential. The total

power is invariant with respect to the strength of the imaginary part of

the potential and the range of the nonlocality. The power of the soliton

increases with the propagation constant or energy. The double-hump soli-

tons exist in the PT symmetric domain whereas it dies out in the broken

PT symmetric region. The double-hump solitons are unstable and the

perturbation modes vary exponentially.

• The studies have been extended to PT symmetric coupled systems in trans-

verse periodic and parabolic potentials with Kerr nonlinearity for linear and

nonlinear regime. The propagation-invariant solutions of the system have

been studied and it was found that the high frequency solitons reside in the

minimum of the periodic and aperiodic potentials. The high strength of

the periodic potential causes the soliton to be more confined in the lattice

whereas high depth of the parabolic potential leads to the confinement of

the soliton at minimum of the potential. The linear coupler possesses real

eigenvalues when the gain/loss coefficient is less than the coupling coeffi-

cient for both periodic and aperiodic potentials. The transverse periodic

potential modulates the amplitude of the beam and causes the formation

of bands in the unbroken regime. In the case of nonlinear coupler with

transverse periodic and aperiodic potentials, the beam get trapped in the

channel with gain. The linear stability analysis reveals that the high fre-

quency soliton is stable for both periodic and aperiodic potentials.

• We have further studied the fundamental and higher eigenmodes of the

PT symmetric nonlocal coupler having transverse periodic potential. The
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propagation-invariant solutions show that the system supports both high-

frequency and low-frequency modes as far as the gain/loss coefficient is less

than the coupling coefficient. The high-frequency and the low-frequency

modes with single-hump, double-hump and triple-hump structures are ob-

tained. The high-frequency multi-hump modes are observed in the first

band gap. The low-frequency single-hump modes lie in the semi-infinite

band gap whereas low-frequency double-hump and triple-hump modes lie

in the first band gap. The single-hump modes get trapped in the minimum

of the potential. The double-hump modes spread through the two consec-

utive lattice while triple-hump modes lie across three consecutive lattices.

As the range of the nonlocal nonlinearity varies, the propagation constants

corresponding to different modes also change. The linear stability analysis

of the high-frequency and low-frequency modes predict that both modes

are stable for weak nonlocality while unstable with oscillatory instability

for strong nonlocality. The propagation dynamics reveals that when the

range of the nonlocality increases, the width increases and the amplitude

decrease, resulting constant intensity propagation.

• We have then focused our attention on the switching dynamics of the above

described PT symmetric coupled system.The power oscillates between the

channels for low input intensity whereas the power get trapped in the gain

channel for high input intensity in the case of weak nonlocality and low

strength of the transverse potentials. The power-dependent switching of

the PT symmetric nonlocal coupler has been studied. The critical power

increases with the range of the nonlocality and the strength of the trans-

verse potential. The switching from gain channel to loss channel is possible

for high input power by varying either the range of the nonlocality or the

strength of the transverse periodic potential.

Multi-hump solitons act as multiple guiding modes. PT symmetric couplers

find applications in all optical switching devices. All optical switches can act as

high speed switch as well as basic building blocks of photonic circuitry, which
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find applications in communication systems. Mathematical equivalence of NLSE

with Gross-Petavsky equation suggests that the findings found applications in

Bose-Einstein condensates and atom lasers.

7.2 Future prospective

There are so many frontiers to be explored in beam propagation and interaction

in nonlinear media of PT symmetric systems. Fundamental modes being less

complex are studied extensively whereas higher eigenmodes are less explored.

The studies on coupled systems have to be extended to nonlinear PT symmetric

potentials and nonlinear coupling. There are ample opportunities to extend

the studies in Kerr and nonlocal nonlinear media to other nonlinearities like

competing nonlinearity and photo-refractive nonlinearity. Similar studies can be

extended to dark solitons and nematicons also.
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