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Abstract

One of the major operational issues in power system, with continuously grow-

ing energy demand is balancing power generation to the instantaneously

varying load. Under smart Grid (SG) paradigm, utilities have realized that

through Demand Side Management (DSM) and various Demand Response

(DR) programs, co-operation of consumers can be utilized in an efficient way

for this balancing procedure. In the present energy scenario, a major part of

the flexible demand arises from the residential power sector. With the de-

velopment in information and communication systems, the Price Based DR

(PBDR) programs can be effectively used for controlling the loads of smart

residential buildings thereby reducing consumer electricity bill and maximum

demand on the system. The comfort aspect of the consumer due to delay

in scheduling the loads is a factor to be considered while time scheduling

the loads. Nowadays there is a large scale deployment of small renewable

Distributed Generation (DG) sources like roof top Photovoltaic (PV) system

by residential consumers. The power generated from such intermittent re-

newable energy sources is random in nature. For predicting the availability

of energy the uncertainty associated with intermittent PV power generation
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is to be modeled using suitable method. Efficient utilization of all such avail-

able resources along with suitable load scheduling methods will certainly

result in reduction in the cost of electricity for the consumer and will also

benefit the utility. In SG scenario, the future residential consumer will have

renewable sources, flexible loads, nonflexible loads and various time depen-

dent tariff schemes and at the same time will provide operational flexibility

through improved data and communication infrastructures. The residential

load scheduling problem turns to be a complex one while considering the

constraints on operation of devices, comfort level associated with different

appliances, stochastic nature of renewable power generation and time varying

tariff. This necessitates a comprehensive model with implementable solution

for the residential load scheduling problem. The solution method should also

be able to handle the uncertainty of the solar power generation.

The objectives of the thesis are,

1. Develop a generalized mathematical model for load scheduling problem

including renewable sources.

2. Formulate stochastic learning algorithms using Binary Particle Swarm

Optimization, Learning Automata and Reinforcement Learning for the

solution of residential load scheduling problem.

3. Model the uncertainty associated with PV generation using suitable

probability distribution function.

4. Develop an algorithm using Reinforcement Learning for the solution of

residential load scheduling problem with PV source.

ii



5. Realize a prototype implementation of the developed stochastic learn-

ing algorithm using RL for a residential energy management system.

The first step is concerned with the development of a generalized math-

ematical model for the load scheduling problem which can include different

types of sources. Starting with the basic load scheduling problem with a

single power source, a generalized mathematical model which can include

different sources such as utility grid, DG sources etc is developed. The load

model considered is capable of handling the consumer comfort aspect. Basic

load scheduling problem is considered taking into account the operational

needs of the loads and with utility grid as the power source. A solution to

this problem is developed using Binary Particle Swarm Optimization (BPSO)

algorithm. The algorithm is validated and obtained the load schedule with

minimum cost and satisfying various operating constraints. With a case

study of a residential consumer with different types of loads, the algorithm

is verified. Considering consumer comfort and uncertain PV source the com-

plexity of the problem is increased and it is difficult to get solution with

this algorithm. In the next stage, the load scheduling problem including the

consumer comfort aspect is considered. The simple load model is modified

in this case by including a factor udc to account for delay in scheduling.

The load scheduling problem is formulated as a multistage decision making

problem and a stochastic learning algorithm using Reinforcement Learning

(RL) is developed to solve the problem with the modified load model and

the grid power. The results obtained are validated and compared with that

of Learning Automata (LA) algorithm which is a stochastic learning algo-

rithm for single stage decision making problem. The RL algorithm is verified

iii



considering the case study of a residential consumer and the load schedule

obtained corresponds to minimum cost. The method is found to be efficient

compared to LA and BPSO algorithms.

The integration of renewable DG source in the load scheduling is the next

stage. In this case in addition to grid connection, the residential consumer is

provided with a roof top PV system from which the power generation is not

constant. The uncertainty associated with PV generation need to be mod-

eled. The historical solar irradiance data collected from the national solar

radiation data base is used to model the random nature of irradiance using

Beta Probability Distribution Function. This can be used to calculate the

random power output produced from the PV source. A solution to the load

scheduling problem, which is complex due to the presence of uncertain PV

power generation, consumer comfort aspect, operating constraints of various

loads and time dependant tariff, is developed using Reinforcement Learning

(RL) method. The RL algorithm is validated and found to be effective in

providing the best load schedule with minimum energy cost, efficiently uti-

lizing the resources. The developed RL algorithm is analyzed for a variety

of load data.

Finally the developed RL algorithm is realized by implementing a pro-

totype model of Residential Energy Management System using a NodeMCU

IoT setup and the results are verified.

Large scale deployment of roof top PV system by residential consumers

together with variable pricing schemes introduced by the utilities impose

the need for efficient algorithms. Consumers are thus enabled to intelligently

schedule their appliances with minimum inconvenience. The stochastic learn-

iv



ing algorithms developed can be a step towards a solution to this problem as

it is beneficial to both consumer and utility.

Keywords: Smart Grid, Demand Response, Load Scheduling, Distributed

Generation, Photovoltaic source, Reinforcement Learning
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Chapter 1

Introduction

One of the major operational issues in power system operation is balancing

generation and load. Continuously growing energy demand, the deteriorating

fossil fuel, environmental concerns and emerging renewable distributed gen-

eration necessitated a change in the conventional energy infrastructure. One

of the proposed solutions is the concept of smart grid (SG). The smart grid

is intended to ensure supply of clean, safe, secure, reliable, resilient, efficient,

and sustainable energy. It provides monitoring, protecting and optimizing

automatically the operation of the interconnected elements.

The major systems involved in SG are smart infrastructure system, smart

management system and smart protection system. Smart infrastructure sys-

tem can be further subdivided into three subsystems. The smart energy

subsystem which deals with electricity generation, delivery, and consump-

tion. The smart information subsystem considers the advanced information

metering, monitoring, and management. The smart communication subsys-

tem is for communication connectivity and information transmission. Smart

1



Chapter 1. Introduction

management system in SG provides advanced management and control ser-

vices. The smart protection system provides advanced grid reliability anal-

ysis, failure protection, and security and privacy protection services. Thus,

smart grid aims to provide an efficient and reliable power supply for all at

every point. Basic features of SG include infrastructure for information and

power flow at various levels, making efficient use of renewable energy sources,

incorporation of sufficient energy storage media, economic and efficient use

of available energy. One of the management objectives of SG is the efficient

use of available energy. Also in power system operation, generation and load

balance should be ensured always. Traditionally, the electric utilities try to

match the supply to the demand for energy. But in smart grid, electricity

consumption of customer can also be managed to meet supply conditions.

This makes it possible to provide reliable power supply with the existing

generation and transmission capacities. Thus one of the important functions

of SG is demand side management (DSM).

Demand side management refers to programs implemented by the utility

to control the energy consumption at the customer side of the electric meter.

DSM also promotes distributed generation, in order to avoid long distance

transport, locally generated energy could be consumed by local loads, im-

mediately when it is available. This results in increased sustainability of the

smart grid, as well as reduced overall operational cost and carbon emission

levels. Demand side management alters customers electricity consumption

patterns to produce the desired changes in the load shapes of power distri-

bution systems. DSM techniques that can be employed are load shifting,

peak clipping, valley filling, strategic conservation, strategic load growth,

2



and flexible load shape. Three concepts in DSM are identified as energy effi-

ciency, energy conservation and demand response (DR). These programs are

employed to utilize the available energy more efficiently without installing

new generation and transmission infrastructure. Energy efficiency refers to

permanent installation of energy efficient technologies or elimination of en-

ergy losses in eixisting system. Energy conservation involves using less of a

resource, usually by making a behavioral choice or change. DR is related to

electricity market and price signals, in the form of load management.

Demand Response is a program established to motivate changes in elec-

tricity use by end-use customers, in response to changes in the price of elec-

tricity over time or to give incentive payments designed to induce lower elec-

tricity use at times of high market prices or when grid reliability is jeopar-

dized. Demand response programs are mainly categorized as: 1) Incentive

based Programs and 2) Price based Programs. The incentive based pro-

gram pays participating users for demand reduction during periods of system

stress. The incentives can be payments or bill credits for their participation in

the programs. This program includes Direct Load Control programs, Inter-

ruptible/Curtailable Load programs, Demand Bidding/Buyback Programs,

Emergency Demand Response Programs etc. The concept of these programs

are explained below.

Direct load control: In this case utility has the ability for remotely control-

ling (shuts down or cycles) a customers appliance (e.g. air conditioner, water

heater) on short notice. The participating customers are provided with in-

centive in the form of an electricity bill credit.

Interruptible/curtailable (I/C) service: The customers who agree to reduce
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their load to a pre-specified value during system contingencies are provided

with an incentive payment or rate discount on electricity bill. If the partici-

pating customers fail to reduce the load, they will have to pay penality.

Demand Bidding/Buyback Programs: Customers bid on specific load reduc-

tions in the electricity whole sale market and load curtailment must be done

as per the bid otherwise are liable to penalities.

Emergency Demand Response Programs: Incentive payments are provided

to customers for measured load reductions during emergency conditions.

In price based program the price of electricity will be different for different

time periods and the goal is to obtain a flattened demand pattern by provid-

ing low price for off-peak time and higher prices for peak times. By this the

consumers are indirectly induced to change the energy consumption in accor-

dance with price variation. From the consumer’s perspective the price based

DR schemes can be intelligently used to reduce the electricity bill. From

the utility’s perspective these are introduced to motivate the consumers to

change their electricity usage pattern and thus reduce the Maximum Demand

on the system. Utilities have designed various time varying tariffs such as

Time of use (ToU) pricing, Critical peak pricing (CPP), Real time pricing

(RTP) and Inclining block rate (IBR) to attain this objective.

Time-of-use (ToU) Pricing: The electricity price per unit consumption is dif-

ferent during different periods of time of a day or different seasons of a year.

The price is more at peak periods compared to other time periods. ToU

pricing is usually pre-determined for a long time period.

Critical Peak Pricing (CPP): During critical peak periods such as system

contingencies or high wholesale electricity prices,a pre-specified higher rate
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is used. CPP rates may also be added with a TOU or time-invariant price.

It is employed only for short period such as few days or hours in a year.

Real-time pricing (RTP): The price for electricity typically fluctuates hourly

reflecting changes in the wholesale price of electricity. RTP prices are usually

informed to the consumers hour-ahead or day ahead basis.

Inclining block rate (IBR): The tariff has two different rates based on the

energy usage of the consumer. If the consumption is more than a specified

limit, the consumer has to pay a higher rate. The consumers get incentive

by avoiding higher rates if they shift the operation of the loads to different

time periods.

In global power sector, demand response programs are implemented in vari-

ous countries such as USA, Norway, Italy, Spain, China etc. Time dependent

tariff is relevant in the smart grid scenario and in India, demand response is

in its nascent stages.

The type of consumer also is to be considered for effective application

of the DR programs. There are mainly three different sectors of electricity

consumers such as residential, commercial and industrial sectors. Generally

residential consumers with large number of flexible appliances are chosen for

performing demand response.

Nowadays the residential buildings are also becoming smarter with the

use of smart appliances and integration of information and communication

technology. Residential loads can be categorised into two groups, critical

loads and controllable or flexible loads. Critical loads are must-run loads

which are being turned on during a fixed time period and the time of use can

not be shifted. Lighting loads, TV, PC etc. come under this category. For
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these type of loads, the customer should have the freedom to switch ON and

OFF the loads as he desired. Controllable loads can be switched on at any

time slot in the specified interval. Their operation can be delayed and/or

interrupted if needed. Such loads include cloth washers, cloth dryers, dish

washers, Heating Ventillating and Air Conditioning (HVAC) systems, water

heaters, plug in electric vehicles, battery chargers for consumer electronics

etc. Delaying the operation of some loads may cause discomfort to the con-

sumer. The consumer may require to minimize the electricity bill without

compromising on the comfort.

With the exploration of renewable sources, there is large scale deployment

of small renewable generation systems. A large number of consumers tend to

cover their electricity demand by their own local generation using renewable

Distributed Genertion (DG) sources such as Photovoltaic (PV), wind tur-

bine based power generation systems etc. Among the various DGs the most

common and abundant resource is the PV. Recently, there is an increase in

the number of residential consumers who install roof top PV systems to meet

their load demand fully or partially. But the power generation from a PV

source is uncertain in nature.

The major aspects to be considered with respect to residential load schedul-

ing include comfort level associated with different appliances, constraints on

operation of devices, availability, price and nature of energy supply. It is

difficult or impractical for the consumers to control the loads manually con-

sidering all these aspects. So there is a need for automation and decision

making tools for scheduling the residential loads with efficient utilization of

all the resources and satisfying various constraints. In the past, big utilities
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were supplying power to big and small loads. In conventional power system,

the balancing of generation and loads was achieved by scheduling the gen-

erating units. These problems were well formulated as Unit Commitment

Problem (UCP), Economic Dispatch (ED), and Automatic Generation Con-

trol and different solutions were proposed and the area has matured. Now,

with new concepts of power balancing, a mathematical model is very nec-

essary for residential load scheduling. The following section describes the

concept of modeling in respect of the load scheduling problem. The uncer-

tainty modeling of PV source is explained in Section 1.1.2. The solution

methods of the residential load scheduling problem is discussed in Section

1.1.3. The objective of the research work is given in 1.2 and the concluding

section gives the outline of the thesis.

1.1 Research Focus

1.1.1 Generalized Mathematical Model for Residential

Load Scheduling

The future residential consumer will have renewable sources, flexible loads,

nonflexible loads and various time dependant tariff. Power generated from

renewable sources, RTP and arrival of non-schedulable loads are random.

The consumer will want to minimize his electricity bill without compromis-

ing on the comfort. Thus the problem is a decision making problem under

uncertain environment.

So for residential load scheduling problem, a generalized mathematical
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model is formulated. Also the uncertainty associated with the PV source

should be modeled to take into account the random variation of power out-

put from such sources. Stochastic learning algorithms are appropriate tool

for solving such problems. The objective is to minimize the total daily energy

cost of the consumer, satisfying the various constraints. A general mathe-

matical model for the load scheduling problem is developed which includes

power from n number of different sources such as PV, grid, wind turbine etc.

The inconvenience or discomfort caused due to delay in scheduling the load

is also taken into account in the load model.

1.1.2 Uncertainty Modeling of PV Power

The power output from DG sources such as PV and wind power generation

are fluctuating in nature. The uncertainty associated with PV power genera-

tion is due to the random nature of solar irradiance. If a lot of previous data

of irradiance is available, a suitable probability distribution can be selected to

model the random nature of irradiance. The best fitting distribution for the

irradiance data is determined and this is done by historical data processing.

1.1.3 Residential Load Scheduling

The main objective of the price based DR (PBDR) programs is reduction in

maximum demand, by motivating consumers with time dependant tariff to

change their electricity usage pattern that helps to reduce their energy bill.

Flexible loads are a good candidate for achieving this objective for residential

consumers where the operating constraints of loads are specified by the con-

sumer. Residential buildings are becoming smarter with wide use of smart
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appliances and integration of information and communication technology. In

addition to the power from utility grid, now the power from roof top PV

systems which is random in nature is also a source of energy for residen-

tial consumers. This necessitates efficient stochastic learning algorithms to

schedule the consumer load optimally so as to minimize the energy bill.

Binary Particle Swarm Optimization (BPSO) algorithm is a population

based stochastic search algorithm. Using BPSO algorithm, the load schedul-

ing problem without considering consumer comfort and PV source is solved.

Utility grid is the only source of energy in this case. The algorithm is vali-

dated with a case study of a residential consumer and this algorithm is found

to be capable of handling problem with small solution space.

Next, the load scheduling problem is considered with incorporating con-

sumer comfort in the load model. It is modeled as a multistage decision

making problem so as to apply Reinforcement Learning (RL) strategy. RL is

a stochastic learning method which involves learning from interactions with

the environment to optimize the reward. The solution obtained is validated

and is compared with the solution using Learning Automata algorithm.

In the next step, RL algorithm is developed for the residential load

scheduling problem considering the consumer comfort and PV source along

with grid power. The uncertainty of PV source is modeled using Beta PDF

and PV output power is calculated. This is used for load scheduling. Verifi-

cation and validation of the algorithm is carried out by considering the case

study of a residential consumer also.
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Finally the developed RL algorithm for load scheduling is tested by im-

plementing a prototype model using NodeMCU IoT setup.

1.2 Objectives

In the smart grid paradigm, PBDR programs can be effectively utilized for

controlling the loads of smart residential buildings. Recently, the use of

stochastic renewable energy sources like Photovoltaic by small domestic con-

sumer is increasing. A generalized model for the residential load scheduling

problem in the presence of renewable sources for any type of tariff is essential

to explore an implementable solution. Stochastic learning method like Re-

inforcement Learning (RL) is an efficient tool which has been used to solve

decision making problem under uncertainty. The objective is to find an im-

plementable solution for the residential load scheduling problem considering

consumer comfort, stochastic PV power and time varying tariff.

The main objectives can be enumerated as,

1) Develop a generalized mathematical model for load scheduling problem

including renewable sources.

2) Apply stochastic learning methods like Binary Particle Swarm Optimiza-

tion, Learning Automata and Reinforcement Learning for the solution of

residential load scheduling problem without PV source.

3) Model the uncertainty associated with PV generation using suitable method.

4) Develop an algorithm using Reinforcement Learning for the solution of res-

idential load scheduling problem with PV source.

5) Prototype implementation of the developed stochastic learning algorithm

using RL with PV for a residential energy management system.
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1.3 Outline of the thesis

The thesis focuses on solution to residential load scheduling problem using

stochastic learning algorithms. Load scheduling problem and the various

constraints associated with it are studied. The different formulations and

solution methodologies existing for residential load scheduling problem are

reviewed in detail emphasizing the advantages and limitations.

As a first step a the mathematical model for the load scheduling problem

with a single source is considered. From this a generalized model which can

include different sources is developed so as to incorporate DG sources. A

simple load model without the comfort aspect of the consumer is initially

taken for the study. The load model with a factor udc which takes into ac-

count the delay in switching on a device is next considered. A solution to

the load scheduling problem with one source, the utility grid and neglecting

consumer comfort is first tried using Binary Particle Swarm Optimization

(BPSO) algorithm. The algorithm is validated and is applied to a residential

case study. But BPSO algorithm has certain limitations as the complexity

of the problem increases with respect to the convergence of the algorithm.

Reinforcement Learning is a stochastic learning method which had been

applied for solution of several search and optimization problems. The appli-

cation of this method for load scheduling with PV source has not been fully

explored yet. The load scheduling problem without PV source is considered

but incorporating the comfort aspect in the load model. To apply RL strat-

egy, the problem is modeled as a mulistage decision making problem.

The application of RL method to the load scheduling problem with PV

source is to be investigated. The power output of the renewable DG unit like
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PV source is stochastic due to the uncertain nature of solar irradiance. The

uncertainty associated with these sources should be modeled using suitable

probability distribution function. Beta PDF is used to model the uncertainty

associated with the hourly solar irradiance, by historical data processing.

The random power output of the PV source is obtained and is used for load

scheduling.

The developed RL algorithm is used for the load scheduling problem with

two sources, the utility grid and PV source. The result obtained is validated

and verified to be the schedule with minimum cost satisfying the constraints.

The RL algorithm is validated with a case study for a residential load schedul-

ing.

Finally the developed stochastic learning algorithm using RL with PV

source is verified by realizing a prototyype implementation of a residential

energy management system.

The different chapters of the thesis are organized as follows.

DSM is one of the important functions of smart grid. Among the various

DR programs to achieve DSM, price based DR can be employed to reduce the

electricity bill of the residential consumers by properly scheduling the flexi-

ble loads. Load scheduling is a complex optimization problem with different

operating constraints. There are a large volume of work with different formu-

lations and solution methods for the load scheduling problem. A thorough

review of existing methods for load scheduling in general and with regards

to residential load scheduling with DG source in particular has been carried

out for identifying the problem and solution strategies. Chapter 2 gives the

review of the existing methods for load scheduling in the smart grid scenario.
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The formulation of a generalized mathematical model for the residential

load scheduling problem is explained in Chapter 3. The model takes into

account a number of different sources so that any type of DG source can be

included. The load model reflects the comfort aspect of the consumer also.

The solution of the load scheduling problem using Binary Particle Swarm

Optimization algorithm is given in Chapter 4. Here the scheduling consid-

ering the basic load model is done with power from utility grid alone.

The load scheduling problem is formulated as a multistage decision mak-

ing problem and RL solution is given in Chapter 5. First the basic RL

algorithm is reviewed. The solution to the problem with a single source is

presented and is compared with the solution available with LA algorithm

which is also reviewed.

The solution to the load scheduling problem with PV source is introduced

in Chapter 6. The power output from PV source is used for load scheduling

and this power is random in nature due to random variation of solar irradi-

ance. The uncertainty associated with the PV source is modeled using Beta

PDF. Modeling of solar irradiance using Beta PDF is also explained. Simula-

tion studies are also presented. A case study of a residential load scheduling

with PV source is also discussed.

The performance of the developed algorithm is investigated by implement-

ing a Residential Energy Management System (REMS)using a NodeMCU

IoT setup, for a residential consumer with different appliances along with a

PV source. The prototype implementation is explained in Chapter 7.

The important contributions are given in the concluding chapter, Chapter 8.

The limitations and the scope for further work are also explained.
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Chapter 2

Literature Survey

2.1 Introduction

Demand side management (DSM) is one of the important functions of smart

grid (SG) that aims to provide an efficient and reliable power supply for all at

every point. DSM programs are intended to manage the energy consumption

of the consumer in the most reliable and economic manner. Various demand

response (DR) programs are there to motivate the consumers to control the

electricity usage as a means to achieve this goal. To investigate the residen-

tial load scheduling problem in the SG scenario, the concepts of smart grid,

demand side management and demand response are to be familiarized. Sev-

eral works have been done to address the residential load scheduling problem

and a thorough literature survey has been conducted to study the residential

demand response and various approaches existing for the solution of the res-

idential load scheduling problem. Nowadays the integration of photovoltaic

sources in the residential power sector is increasing. But the power output
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from this source is fluctuating due to the random variation of solar irradi-

ance. The uncertainty associated with PV source need to be modeled so that

the power output can be predicted in advance. Review of various methods

available for uncertainty modeling is done. The literature on residetial load

scheduling with DG is also reviewed. The solution method that is chosen for

residential load scheduling should necessarily be a stochastic optimization

technique.

The chapter is organized as follows. The various literatures that provide

an overview of SG are discussed in Section 2.2. Section 2.3 describes the lit-

erature on different aspects of DSM and DR. Section 2.4 provides a review of

works on residential load scheduling. The review of methods used for uncer-

tainty modeling of photovoltaic source and load scheduling considering DG

are also included in this section. The various methods used for residential

load scheduling is reviewed in Section 2.6. Section 2.7 discusses various ap-

plications of reinforcement learning. The conclusion of the literature review

is presented in Section 2.8.

2.2 Overview of Smart Grid

Smart grid is considered as the next generation power grid. The smart grid

can be regarded as an electric system that uses information, two-way, cyber-

secure communication technologies and computational intelligence in an in-

tegrated fashion across the entire spectrum of the energy system from the

generation to the end points of electricity consumption.
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The security, agility, and robustness of a large-scale power delivery infras-

tructure that faces new threats and unanticipated conditions are addressed

by (Amin and Wollenberg, 2005) and suggested locally self regulating smart

grid as an alternative. The SG is described as the intelligent grid which is ex-

pected to address the major shortcomings of the existing grid by (Farhangi,

2010). It needs to provide the utility companies with full visibility and perva-

sive control over their assets and services. Also it is required to be self-healing

and resilient to system anomalies. It needs to empower its stakeholders to

define and realize new ways of engaging with each other and performing en-

ergy transactions across the system.

The enabling technologies on smart grid are surveyed and given by (Fang

et al., 2012). According to this, the major systems involved in SG are smart

infrastructure system, smart management system and smart protection sys-

tem. Smart infrastructure system can be further subdivided into three sub-

systems. The smart energy subsystem which deals with electricity genera-

tion, delivery, and consumption. The smart information subsystem consid-

ers the advanced information metering, monitoring, and management. The

smart communication subsystem is for communication connectivity and in-

formation transmission. Smart management system in SG provides advanced

management and control services. The smart protection system provides ad-

vanced grid reliability analysis, failure protection, and security and privacy

protection services.

The smart grid technologies and its characteristics are described by (Has-

san and Radman, 2010). Smart Grid goals, challenges and benefits are also

explained. Suggested recommendations for smart grid standards, taking into

17



Chapter 2. Literature Survey

account relevant approaches of smart grid standardization studies is given in

(Rohjans et al., 2010). Smart grid and associated technical, environmental

and socio-economic, and other non-tangible benefits to society is presented

in (El-Hawary, 2014). The potential promise of the SG, which is embedded

in its attributes such as efficiency, accommodating, quality focus, enabling

and self-healing are explained. The concerns and issues confronting its for-

ward progress, adoption and acceptance are also discussed. Some key issues

related to the future grid such as distributed cooperation and control, data

and application integration, and knowledge based comprehensive decision are

pointed out by (Li and Zhou, 2011).

The Advanced Metering Infrastructre (AMI) supports the bidirectional

information flow in SG. The utilization of AMI networks to realize Smart

Grid goals is described in (Hart, 2008). Key AMI attributes are described

as, communication to the electric meter to enable time stamping of meter

data, outage reporting, communication into the customer premise, service

connect/disconnect, on-request reads, and other functions. A Smart Grid

key management framework with application to AMI networks is proposed

by (Das et al., 2012). The potential application and communication require-

ments essential for Smart Grid implementation is presented in (Gungor et al.,

2013). The challenges related to smart grid communication infrastructure are

described in (Yan et al., 2013) such as complexity, efficiency, reliability and

security. A survey of complex network theory to modern smart grid applica-

tions is given by (Chu and Iu, 2017).

Thus, basic features of Smart Grid include infrastructure for information

and power flow at various levels, making efficient use of renewable energy
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sources, incorporation of sufficient energy storage media, economic and effi-

cient use of available energy. One of the management objectives of the SG is

the efficient use of available energy. Traditionally, the electric utilities try to

match the supply to the demand for energy. But in smart grid, customer con-

sumption of electricity is managed to meet supply conditions. Therefore one

of the important functions of SG is recognized as demand side management.

2.3 Demand Side Management and Demand

Response

With continuosly growing energy demand the importance of demand side

management is increasing in smart grid. DSM refers to programs imple-

mented by the utility to control the energy consumption at the customer

side of the electric meter. DSM also promotes distributed generation, in

order to avoid long-distance transport, locally generated energy could be

consumed by local loads, immediately when it is available. This results in

increased sustainability of the smart grid, as well as reduced overall oper-

ational cost and carbon emission levels. Demand side management alters

customers electricity consumption patterns to produce the desired changes

in the load shapes of power distribution systems. The DSM techniques that

can be employed in future Smart Grids can be considered as peak clipping,

valley filling, load shifting, strategic conservation, strategic load growth, and

flexible load shape.

The three concepts in DSM are identified as energy efficiency, energy

conservation and demand response by (Boshell and Veloza, 2008) . These
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programs are employed to use the available energy more efficiently without

installing new generation and transmission infrastructure. Energy efficiency

refers to permanent installation of energy efficient technologies or elimina-

tion of energy losses in eixisting system. Energy conservation involves using

less of a resource, usually by making a behavioral choice or change. Demand

response is related to electricity market and price signals, in the form of load

management.

Various researches are being carried out on different outlooks for imple-

mentation of DSM in smart grid. Many works focus on the salient char-

acteristics, technology implementation strategies, energy management and

economic analysis of DSM. An overview and a taxonomy for DSM is pre-

sented in (Palensky and Dietrich, 2011). Analysis of different types of DSM

and outlook on the latest demonstration projects in this domain are also

included. They categorize DSM into energy efficiency, Time of Use, demand

response and spinning reserve based on the timing and the impact of the

applied measures on the customer process. Along with the different aspects

of DSM, the concept of load based virtual storage power plants and various

communication protocols for load management are also discussed.

The economic effects of DSM in a grid where generation cost is considered as

a parameter to be analyzed is presented in (Verma et al., 2016). Differential

Evolution is implemented to solve the DC-OPF in each hour and also to find

the new load curve from DSM implemented in the system. It is shown that

DSM has an effect to reduce the cost of generation over a span of time at

overall grid level.
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In the technical report by U S Department of Energy (Qdr, 2006), demand

response is defined as the changes in electricity usage by end use customers

from their normal consumption patterns in response to, changes in the price

of electricity over time or to incentive payments designed to induce lower elec-

tricity use at times of high wholesale market prices or when system reliability

is jeopardized. DR includes all intentional electricity consumption pattern

modifications by end-use customers that are intended to alter the timing,

level of instantaneous demand, or total electricity consumption. Demand

response represents the outcome of an action undertaken by an electricity

consumer in response to a stimulus and typically involves customer behav-

ioral changes.

A summary of DR in deregulated electricity markets is presented in (Al-

badi and El-Saadany, 2008) which includes the potential benefits and asso-

ciated cost components. The customer response can be achieved by three

general actions. First, customers can reduce their electricity usage during

critical peak periods when prices are high without changing their consump-

tion pattern during other periods. Secondly, customers may respond to high

electricity prices by shifting some of their peak demand operations to off-peak

periods. The third type of customer response is by using onsite generation,

customer owned distributed generation.

The different technologies, models and algorithms for demand response

are addressed by various researchers. Good literatures on various aspects

of demand response programs in smart grid are presented in (Siano, 2014),

(Deng et al., 2015) and (Vardakas et al., 2015). A detailed survey of DR

and smart grid which includes customer classifications, conceptual model for
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the customers domain, different DR programs, Potential benefits of DR, En-

abling smart technologies, Control devices, Monitoring and Communications

systems for DR are described in (Siano, 2014). Customers are classified as

large commercial and industrial, small commercial and industrial, residential,

individual plug-in electric vehicles (PEVs) and fleet of PEVs. Different DR

programs are explained as price based, incentive based and demand reduction

bids. The concepts of smart metering and Advanced Metering Infrastructure

(AMI), Energy Management System (EMS), Energy Information Systems

(EIS) are presented in this paper. Some idustrial case studies are also briefly

reviewed and it shows that enabling technologies, such as smartmeters, AMI,

home energy controllers, EMS, wired and wireless communication systems

support the coordination of DR in smartgrids.

Mathematical models and approaches employed in DR programs are pre-

sented by (Deng et al., 2015). In this paper, they first give a review of

incentive based and price based DR progrms employed by the utility to mo-

tivate consumers to reshedule their energy consumption patterns. The ex-

isting mathematical models corresponds to utility maximization, cost min-

imization, price prediction, renewable energy, and energy storage oriented

problems. The DR approaches are identified as convex optimization, game

theory, dynamic programming, Markov decision process, stochastic program-

ming, and particle swarm optimization.

DR schemes based on pricing methods and optimization algorithms are

surveyed in (Vardakas et al., 2015). They classify DR schemes into three-

according to the control mechanism, the motivations offered to reduce the

power consumption and the DR decision variable. It can be centralized or
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distributed based on control mechanism. The consumers can be motivated by

price based or incentive based DR progrms. They identify the decision vari-

able, based on task-scheduling or energy-management DR shemes. Though

the the main electricity consumers are transportation, residential, commer-

cial and industrial sectors , DR programs are mostly applied to residential,

commercial and industrial consumers. A detailed classification of the opti-

mization models and the solution methods is presented in the paper. It is

identified that in future, the issues to be addressed are the stochastic nature

of the renewable sources and random nature of the appliance usage, to arrive

at optimal decision for DR implementation.

An optimization model that permits a consumer to adapt the hourly load

level in response to hourly electricity prices is proposed by A. J. Conejo et al

(Conejo et al., 2010). The objective of the model is to maximize the utility of

the consumer or minimizing the energy cost. Robust optimization techniques

are used to model price uncertainty. A linear programming algorithm is used

to realize the real time DR model.

The main industry drivers of smart grid are identified as the environment,

system reliability and operational excellence by (Rahimi and Ipakchi, 2010).

They address demand response as a market resource and give an outline of

the various product markets and DR facilitated by the existing ISOs/RTOs

in the United States. The challenges associated with variable generation and

potential solutions are also explained.

A DR simulator to study the demand response actions and schemes in

distribution networks is described in (Faria and Vale, 2011). In the case of

an energy shortage, reduction in load is achieved with the help of a con-
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sumer based price elasticity approach using real time pricing. The problem

is addressed in a retailer’s perspective. Optimal solution for load reduction

is determined using non-linear programming. With a case study it is shown

that the customer’s demand depends on price elasticity of demand, and on

the real-time pricing tariff.

Load shifting and load curtailment are two methods for DR implemen-

tation. A multi agent system for demand side management based on load

shifting and load curtailment techniques is proposed in (Logenthiran et al.,

2011). The multi-agent system provides an autonomous electronic platform

for demand side management in smart grid which are equipped with intel-

ligent devices. The operational cost and peak demand of the system are

minimized by shifting the energy demand within certain boundaries from

peak hours to off peak hours. The best possible load scheduling is found by

the shifting algorithm using a quadratic program. The objective of the cur-

tailment algorithm is to minimize the use of expensive generators like diesel

generators.

A demand side management strategy based on load shifting technique

considering a large number of devices of different types that include residen-

tial, commercial and industrial customers is presented by same authors in

(Logenthiran et al., 2012). A heuristic-based Evolutionary Algorithm is used

for solving the problem. The proposed strategy achieves substantial savings

and reduces the peak load demand of the smart grid.

The effect of impacts of DR on distribution network is also addressed in

some works. A quantitative study of the impacts on major attributes of a

residential distribution network operation is given in (Safdarian et al., 2016).
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The appliance level load profile of more than 1600 residential consumers from

Kainuu, Finland, is used for the study. The result obtained is then applied to

a network, and the impacts of the DR on network operation such as the net-

work losses, voltage profiles, and service reliability are studied. It was shown

that realization of only 10% of DR potentials would improve the system peak

load, network losses, and service reliability by 5.6%, 1.3%,and 1.7%, respec-

tively.

Renewable energy sources are an integral part of the smart grid. A renew-

able energy buying-back schemes with dynamic pricing to achieve the goal of

energy efficiency for smart grid is proposed by (Chiu et al., 2017). The dy-

namic pricing problem is formulated as a convex optimization dual problem

and a day-ahead time-dependent pricing scheme in a distributed manner is

proposed. It is suggested as a better option compared to net metering and

feed-in-tariff. Both the electric company and its users are benefitted by this

pricing strategy and improves significantly the system-wide energy provision

balance. The key review findings are given in Table 2.1

Demand response has been evolved from theoretical algorithmic solution

to more practical implementable strategy with due consideration to energy

and economic analysis in SG.

2.4 Residential Load Scheduling

Residential power sector is equipped with a number of schedulable loads.

As residential consumers are large in number, proper implementation of DR

programs in this sector will bring out a significant opening for energy manage-
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Table 2.1: DSM-DR Review Findings

Year Author
Review Findings

Key findings Parameters

2008
Boshell
and Veloza

The three concepts
in DSM are identi-
fied.

Energy efficiency, energy conserva-
tion and demand response.

2011
Palensky
and Dietrich

An overview and a
taxonomy for DSM
is presented.

Analysis of different types of DSM
and outlook on the latest demonstra-
tion projects in this omain are also
included.

2014 Siano A detailed survey
of DR and smart
grid are described.

Customer classifications, conceptual
model for the customers domain, dif-
ferent DR programs, Potential ben-
efits of DR, Enabling smart tech-
nologies, Control devices, Monitor-
ing and Communications systems for
DR are described.

2015
Deng
et al.

Mathematical
models and ap-
proaches employed
in DR programs are
presented patterns.

The existing mathematical models
corresponds to utility maximization,
cost minimization, price prediction,
renewable energy, and energy stor-
age oriented problems. The DR ap-
proaches are identified as convex op-
timization, game theory, dynamic
programming, Markov decision pro-
cess, stochastic programming, and
particle swarm optimization.

2015
Vardakas
et al.

DR schemes based
on pricing meth-
ods and optimiza-
tion algorithms are
surveyed.

It is identified that in future, the is-
sues to be addressed are the stochas-
tic nature of the renewable sources
and random nature of the appliance
usage for DR implementation.
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ment. A detailed literature survey is conducted to study the various existing

models and approaches for the solution of the residential load scheduling

problem. There are many works in literature for modeling and solving DR in

residential sector. The objective of the scheduling algorithm is to minimize

the consumers electricity bill and reducton of maximum demand on the sys-

tem with the tariff provided by the utiility. Different tariff structures such

as Time of Use pricing (ToU), Critical Peak Pricing (CPP), Real Time Pric-

ing (RTP) etc. are introduced as demand response initiatives in this case.

Demand response problem may be addressed in two perspectives: consumer

perspective to reduce the energy bill and utility perspective to reduce the

maximum demand. The basic modelling is to arrive at an objective function

which is to be optimized with proper scheduling strategy. The main aim of

this task is to minimize energy cost.

The works presented by (Kin Cheong Sou, 2011), (Alessandro Di Gior-

gio, 2012), (Xiao et al., 2010) and (Julien M. Hendrickx and Wolsey, 2013)

consider simple residential models. The problem of residential appliances

scheduling with an objective to minimize total energy cost for operating the

appliances based on their power profiles is addressed by (Kin Cheong Sou,

2011). It assumes a 24-hour ahead electricity tariff which is piecewise con-

stant. A power safety constraint for limiting maximum demand by the power

grid operator is also considered. The problem is modeled as a mixed integer

linear program problem. The same authors proposed an automatic decision

framework considering the effect of CO2 emission to schedule smart home

appliances so as to minimize electricity bill in (Kin Cheong Sou, 2013). A

day ahead electricity tariff and CO2 footprint, are assumed as the DR signals.
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These signals are first considered as piecewise constant and then arbitrary. A

dynamic programming formulation is used in this case. The design of a smart

home control strategy to maximize the economic savings of the customer is

proposed in (Alessandro Di Giorgio, 2012). The problem is formulated as

an event driven binary linear programming problem. The event can be a

consumer request to operate a load and DR signals such as price or power

threshold reduction for a spcific period. Its solution specifies the best time to

run of smart household appliances under a virtual power threshold constraint

and ToU tariff. Energy price, peak and average load profiles and the avail-

able power threshold are considered as time varying. Using real time pricing

scheme a min max scheduling algorithm is suggested by (Xiao et al., 2010)

and it provided near optimal solution for peak shaving, cost reduction and

risk aversion for consumers. They also proposed another algorithm for home

energy management in (Xiao et al., 2012). The problem is formulated as a

mixed problem between discrete appliance scheduling with dead lines and

continuous Heating, Ventillation and Cooling (HVC) device control. Here an

air conditioner is used as an example for HVC control with energy consump-

tion modelled as a continuous function. It models user comfort by placing

constraints on algorithm and assumes day ahead pricing with hourly prices

based on real energy pricing and consumption data in South Korea. Energy

price in peak hours is considered exponentially expensive while energy price

in early hours of a day are significantly discounted. The problem of schedul-

ing different energy consuming tasks when the energy price profile is given

and fixed for a prescribed period is discussed by (Julien M. Hendrickx and

Wolsey, 2013). They proposed a discrete time formulation for this problem
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and solved it by a minimum cut algorithm. Near-optimal cost is obtained

with a reduced time of computation.

A dynamic programming model for the demand side control problem to

minimize cost considering the level of discomfort is proposed by (Young Liang

and Shen, 2013). This model consider stochastic demand arrivals. The ob-

jective is to design a general central controller that minimizes the cost of

electricity and the discomfort from deferring the demands under time vary-

ing prices. It is assumed that users are equipped with smart appliances and

allowable delays are specified by users. To overcome the dimensionality prob-

lem with dynamic programming, two solutions methods are proposed, one is

a decentralization based heuristic approach and another approach based on

Q learning. Both the methods resulted in near optimal solutions.

A consumer automated energy management system for residential de-

mand response is presented by (O’Neill et al., 2010) which models both con-

sumer energy reservations and energy prices as Markov chains and uses Q

learning to optimally make energy consumption decisions to reduce the en-

ergy cost. The algorithm takes the sequence of consumer reservation vector

and sequence of energy prices as inputs. It includes a disutility function to

account for consumer dis-satisfaction of weighting.

A reinforcement learning based method to solve demand response prob-

lem is proposed by (Ahamed et al., 2011). The problem is modeled as a

Markov Decision Process and the objective is to minimize the electricity bill

considering the operating constraints of the load alongwith the consumer

discomfort due to delay in scheduling the load. The optimum schedule is

obtained with time varying price.
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The load scheduling problem is formulated as a simple decision making

problem by (Syed Q. Ali and Malik, 2013a). In this, the objective is to de-

cide the best time slot for scheduling the load to reduce the energy cost. The

decision maker is modeled as a learning automata. Discomfort due to delay

in scheduling is also considered. They also considered the load scheduling

problem as a combinatorial optimization problem constrained by the max-

imum demand limit (S. Q .Ali and .Malik, 2013). It is assumed that the

utility is using a time of use pricing based two part tariff with a limit on the

maximum demand. In this formulation Maximum Demand limit is taken as

a constraint for optimization.

Demand arrivals and real time price variations are random in nature.

Uncertainity and stochastic nature of the demand and pricing are also being

addressed (T and Poor, 2011). They formulated power consumption schedul-

ing problem with future price uncertainity and proposed an algorithm to

minimize expected cost at the consumer side. Both non interruptible and

interruptible loads are considered. The scheduling problem is formulated as

a Markovian process. It models the future prices within 24 hour time frame

by Gaussian random variables with known means, which are the expected

prices and some estimated variance.

A real time price based DR management for residential appliances by

stochastic optimization and robust optimization approaches is proposed in

(Chen et al., 2012). It determines the optimal operation in the next five

minute time interval while considering future electricity price uncertainities.

Monte Carlo simulation method is utilized to generate scenarios for simu-

lating real time price uncertainities in the proposed stochastic model. Op-
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eration task of appliances are divided into three different categories. Both

approaches achieve lower electricity bill cost as compared to current flat rate

electricity price.

A method to obtain the optimal scheduling of home appliances under

time of use electricity tariff is presented in (Setlhaolo et al., 2014). The

problem is modeled as a mixed integer nonlinear optimization problem in

which maimum demand limit is ensured by providing an incentive part along

with cost of electricity in the objective function. It also puts a bound on the

electricity bill and suggests a method to capture the cost of inconvenience.

The difference between baseline schedule and optimum schedule is taken as

the inconvenience level. But no general guideline is provided to choose the

weighting factor that represents the inconvenience level of each appliance.

One of the major category of schedulable loads come from thermostati-

cally controlled appliances. Specific appliance models and solutions are also

proposed in literature, such as electric water heater, air conditioner etc .

An appliance commitment problem using an electrical water heater load as

example is described by (Du and Lu, 2011). The objective is to minimize

the energy being subject to comfort constraint which is solved based on the

constraints of hot water thermal dynamics and temperature bounds specified

by users for discomfort. The problem is solved by a linear sequential opti-

mization enhanced multiloop algorithm. This algorithm is useful in getting

optimal schedules of thermostatically controlled loads.

Scheduling a group of interruptible loads is proposed by (M.A.Pedrasa

and Gill, 2009b). A Binary Particle Swarm Optimization (BPSO) method is

used for obtaining the curtailment schedule that minimizes the total payment
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and frequency of interruptions. This algorithm provides certain limitation

regarding the flexibility on scheduling and constraints pertaining to the dif-

ferent loads as only interruptible loads are considered for scheduling.

Apart from scheduling of flexible and interruptible loads in a single resi-

dential building, there are many works that focus on a group of consumers so

that the cost reduction is more effective for the utility alongwith the bill re-

duction for the consumer. (Mohsenian-Rad et al., 2010), (Chen Chen, 2011)

and (Chavali et al., 2014) proposed residential DR models considering group

of consumers. An autonomous and distributed demand side management sys-

tem for energy cost minimization in which multiple users interact with each

other and utility to coordinate their energy usage is proposed in (Mohsenian-

Rad et al., 2010). Utility provides the time dependant tariff. Each customer

is equipped with an automatic energy consumption scheduler. Game theory

is used to formulate an energy consumption scheduling game among the users.

The objective is to minimize Peak to Average Ratio (PAR) and energy cost.

Each user has control over the operation of the shiftable and non shiftable

appliances. An automatic energy consumption scheduler using a distributed

algorithm, provides an optimal schedule for the energy consumption for each

user. Quadratic energy cost function is assumed with two different coeffi-

cients for day time and night hours. The method is effective to reduce the

PAR, if a group of consumers are willing to act in a coordinated way. Real

time pricing based residential power scheduling scheme using game theory

is proposed by (Chen Chen, 2011). Energy Management Controller(EMC)

in each home and the service provider form a Stackelberg game model and

is formulated to analyze the interaction between consumer’s EMC and the
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service provider. The leader level game is played by the service provider and

the follower game is played by the EMC. The objective is to reduce the peak

load and consumer electricity bill. A distributed energy scheduling algorithm

based on cost optimizaion as a demand response for a group of customers

is proposed by (Chavali et al., 2014). In response to the varying electricity

prices, each user in the system will find an optimal start time and operating

mode for the appliances. An approximate greedy iterative algorithm is used

for obtaining the appliance schedule with a day ahead pricing scheme.

Another formulation of DR in terms of an energy service decision support

tool for residential consumers to optimize their utilization of electrical energy

services is presented by (M.A.Pedrasa and Gill, 2009a). It is based around

an energy service model that place a received benefit on energy services. The

total energy service benefits minus cost of energy accounts for the net bene-

fits of the end user and a scheduling algorithm maximizes the net benefits.

They presented enhancements to the energy service decision support tool in

(M.A.Pedrasa and Gill, 2010). The basic formulation of cooperative PSO is

improved by introducing stochastic repulsion among particles. Four control-

lable DER, plug in hybrid vehicle, space heater, storage water heater and pool

pump are considered. They also determined the value of co-ordination by

comparing the results when optimal DER operation solved in a co-ordinated

manner versus when they are scheduled independently. They investigated

the cases with three tariff structures, ToU energy with ToU feed-in rates,

ToU energy with no feed-in compensation and ToU energy with ToU feed-in

rates and peak demand charges.
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The market-related problems of modern electric grids and possible solu-

tions to address them are reviewed and presented in (Muratori et al., 2014).

The residential demand response programs is analyzed and both on economic

and policy perspectives, the implications of this solution are discussed. With

a case study they showed that peak demand is not effectively reduced by

Time of Use programs, though they effectively shift the time of occurrence

of the peak demand. A review of smart home energy management system

technologies is given in (Amer et al., 2014). The Energy Management Sys-

tem (EMS) in a smart home intelligently controls household load in associ-

ation with smart meters, smart appliances, Plug-in Hybrid Electric Vehicles

(PHEVs), and home power generation and storage equipments. The concept

and background of smart home energy management system technologies are

discussed. The review is done by classifying the home energy management

works as consumption scheduling or home area networks. The challenges

such as cost, implementation and privacy issues of smart technologies are

also discussed.

Storage space heating also can be economically controlled by DR. Demand

Response associated with electric storage space heating loads of residential

consumer is presented in (Olli Kilkki, 2013) proposed a game theoritic ap-

proach to optimize the electricity price of storage space heating consumers

and to maximize the daily profit of the retailer. The consumers are given

the decided price vector and charging can be scheduled by minimizing the

total hourly cost of electricity. The problem is addressed from the retailer’s

perspective.
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A multiobjective optimization problem for home energy management with

internal energy sources is proposed by A. Moghaddamin et al. (Anvari-

Moghaddam et al., 2015). The home energy is provided by the utility and

internal energy sources such as micro cogeneration systems and underfloor

heating/cooling units. To obtain optimal energy use, a multiobjective mixed

integer nonlinear programming model is developed.

The models and solutions for residential load scheduling problem pro-

posed in these papers suggest methods to minimize both the energy cost of

the consumer as well as the maximum demand on the system. It is well

known that, there is a large scale deployment of roof top PV systems by

residential consumers these days. The aim of Jawaharlal Nehru National So-

lar Mission (JNNSM)launched by the Government is to achieve the installed

solar capacity of 100 GW by 2022 of which 40 GW is to be contributed by

the rooftop panels (mnre, 2017). As a result of many initiatives taken by the

central and state government, the installed capacity of the solar photovoltaic

has reached 17.05 GW in 2017. The presence of PV source is not considered

in the works discussed above.

2.4.1 Uncertainty Modeling of Photovoltaic Power Gen-

eration

Recently there is an increase in the number of residential consumers who

install roof top PV system to meet their electricity demand. But the power

generation from these sources are intermittent in nature. The uncertainity

associated with the renewable power generation is to be modeled accurately

and a review of various methods avilable in the literature is given below.
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There are mainly three types of modeling methods for PV source known

as, time series based method, probabilistic methods and stochastic meth-

ods. Time series based methods use models such as Unobserved Compo-

nent Models (UCM), Autoregressive Integrated Moving Average (ARIMA),

Neural Network, transfer function, hybrid models etc. In (Reikard, 2009) a

comparison of predicting global horizontal irradiance at different sites and at

different resolutions is given and performance of ARIMA model is found to

be best compared to other models. For transfer function using cloud cover

better result is obtained at high resolutions than ARIMA.

Three different methods using time series analysis to forecast solar ir-

radiance components such as global horizontal irradiance, diffuse horizontal

irradiance and direct normal irradiance with cloud cover effects are proposed

by (Yang et al., 2012). ARIMA model is used to forecast the irradiance in all

cases. It was found that the forecasts using the information of cloud cover

gave more accurate results. Modeling the variations in solar irradiance using

time series analysis is difficult as it requires a large amount of data.

In prbabilistic methods a suitable probability distribution function is re-

quired to model the random nature of solar irradiance based on historic data.

In (Salameh et al., 1995) Probability Density Functions (PDF) such as Beta,

Weibull and Log-Normal are studied to model the solar irradince using long

term irradiance data and it was found that the Beta distribution fits the

best. Beta PDF is used by several authors to model the uncertainty associ-

ated with solar irradiance and PV power generation. Beta distribution was

used by (Assuncao et al., 2003) to model 5 minute averaged solar radiation

indices in terms of optical air mass. In the study conducted using sequential

36



2.4 Residential Load Scheduling

Monte Carlo method by (Mohamed and Hegazy, 2015) with Beta, Weibull

and Normal distributions it is found that Beta distribution is the best fit

distribution to accurately model stochastic PV generation. In (Atwa et al.,

2010), Beta PDF was used in generating a probabilistic PV generation model

to minimize the energy losses in the distribution system.

Stochastic methods are also used for predicting the solar irradiance such

as neural network (Kayal and Chanda, 2015) and fuzzy methods (Wang et al.,

2015). Another stochatic method given by (Miozzo et al., 2014) uses Markov

Processes to model PV uncertainty.

From the literature, it can be concluded that, when sufficient data is

available, uncertainty associated with the solar irradiance can be efficiently

modeled by Beta distribution.

2.4.2 Residential Load Scheduling Considering DG

There is a large scale deployment of small renewable energy sources in the

consumer premises (Akash T.Davda and D.Desai, 2014). Renewable energy

source such as Photovoltaic and wind energy sources are generally used by

residential consumers. Also with the development in power electronic in-

terface and decrease in cost of PV panels this trend is expected to grow

(Carrasco et al., 2006), (Kouro et al., 2015). Sophisticated planning and op-

eration scheduling of Renewable Energy Resources with Demand Response

is presented in (Fahrioglua, 2012) and (Jamshid Aghaei, 2013). Residential

load scheduling in the presence of DG is an active research area now. Var-

ious existing models and approaches for the solution of the residential load

scheduling problem in the presence of PV are reviewed and given below.
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The development of a control system using Artificial Neural Networks

(ANNs) tuned by Genetic Algorithms(GAs), for the residential sector with

distributed generation is described by (E.Matallanas, 2012). It incorporates

local PV energy generation and the controller maximizes self consumption.

The system is made up of several ANNs placed at the various appliances and

the realized load shifting strategy provides a load schedule for the next day.

The model does not consider the inconvenience due to shifting the operation

of the loads. Though the method focuses on maximizing self consumption of

local generation, the uncertainty of PV power is not modeled in this work.

Guo et al. proposed a residential energy management system to minimize

the electricity cost under real time electricity tariff considering renewable gen-

eration such as PV modules or small wind turbines (Guo et al., 2012). The

problem is formulated as a stochastic optimization problem and is solved

by Lyapunov optimization technique. Without the use of stochastic models,

storage aspect is taken into account in this case.

A methodology for making robust day ahead operational schedules for

controllable distributed energy resources (DER) including a PV system is

suggested in (M.A.Pedrasa and Gill, 2011). The consumer net benefit is

maximized over a set of scenarios that model the range of uncertainity. The

optimal scenario set is derived by heuristic scenario reduction techniques.

Robust operational schedules are formulated under stochastic energy service

demand, availability of storage DER and status of dynamic peak pricing.

Stochastic programming method based on cooperative particle swarm op-

timization with stochastic repulsion among particles is used to derive the

schedule. In this work a different approach is used in which energy service
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demand is modeled by considering the hourly occupancy state probabilities.

The method used for selection of scenario set reduction is only approximate

and time consuming that limits practical implementation.

Considering DGs such as solar panel and wind turbine, a load manage-

ment method by energy cost minimization under real time pricing is proposed

by (Bingjie Ruan and Yan, 2014). The load management approach includes

DG based scheduling and RTP based scheduling using Genetic Algorithm.

The optimal appliance scheduling is obtained without considering the effect

of delay in scheduling the appliance. A Smart Home Energy Management

System with storage battery along with PV and wind turbine is proposed by

(Jidong Wang and Dai, 2012). A mixed integer non-linear programming is

used to solve the problem. Forecast of DERs is not considered.

The real time price is also forecasted for a home load management sys-

tem with PV installation using auto regressive moving average technique by

(Kiaee et al., 2014). The problem is formulated in a Mixed Integer Linear

Programming format and is solved in the General Algebraic Modelling Sys-

tem(GAMS) using CPLEX solver. The PV is capable of selling energy to

the distribution network.

M. Arora et al proposed an optimal scheduling of appliances in a smart

home with PV and energy storage device by (Arora and Chanana, 2014).

Residential loads are categorised as heating ventilating and air condition-

ing (HVAC) load and non-HVAC load. Load power is met either from PV

panel/battery or from grid on priority. ESD is charged from PV panel or

from grid during low priced period.

An autonomous demand side energy management system for a grid con-
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nected household with a roof top PV system is given in (O.Adika and Lingfeng-

Wang, 2014). The load scheduling problem is approached in a slightly differ-

ent way by introducing load clustering, wherein the appliances with similar

schedules are grouped together into a cluster instead of considering each indi-

vidual appliance. In the proposed approach the appliances Time of Use (ToU)

probabilities is used to predict the customer’s load pattern. The hourly price

signals are also designed based on ToU probabilities. Three pricing scenarios

are considered for analysis, Real time pricing, Feed in Tariff and Net pur-

chase and Net sale plan.

Suyang et al. proposed a home energy management system in which the

maximum demand and DR incentive are combined together for the DR mech-

anism (Suyang Zhou and Zhang, 2014). The home is equipped with PV and

battery system. In this scheme excessive power drawn from grid is charged

and the household can also sell the excess energy. The loads considered are

controllable loads such as electric water heater, air conditioner, clothes dryer

and electric vehicles along with critical loads. Half hour ahead rolling opti-

mization and a real time control strategy are combined to realize the energy

management of the household. It also utilizes a fuzzy logic controller to de-

termine battery charging/ discharging power and to control it under the real

time electricity price. The proposed control stratey is tested using a Zigbee

based real test environment.

The delay in scheduling the loads affect the convenience of the con-

sumer. Consumer comfort also is taken into account by some authors, in

load scheduling with PV. (Paterakis et al., 2015), (Park et al., 2017) and

(Arun and Selvan, 2017) consider comfort aspect in their works. A mixed
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integer linear programming model of a home energy management system is

presented in (Paterakis et al., 2015). A household including electric vehi-

cles, distributed generation such as roof-top PV units and energy storage

systems along with controllable loads is considered. Most of the operational

possibilities of demand response are addressed in this work and the system

is proved to be efficient in minimizing the energy cost under dynamic pric-

ing and reshaping the consumer load profile. Though the comfort associated

with thermostatically controlled loads is included, inconvenience caused to

the consumer due to scheduling of all controllable loads is not considered.

The uncertainty of solar power is also not addressed in the model proposed.

Algorithms for residential demand response considering user convenience un-

der real time and progressive pricing policies are presented by (Park et al.,

2017). The algorithm for reformulated problem guarantee optimal solution

for real time pricing policy. The heuristic algorithm for progressive pricing

formulation gave near optimal solutions. An intelligent residential energy

management system for smart residential buildings with renewable energy

resources (RER) is proposed by (Arun and Selvan, 2017). The objective is

to minimize the electricity bill and maximize the utilization of renewable en-

ergy with the real time price provided by the utility. Optimal sizing of RER

and battery units are also done to achieve this. Though the optimal sizing

of the RER is considered, the uncertainty modeling of power production by

RER and the consumer comfort aspect are not fully addressed in this work.

The key review findings are given in Table 2.2 and 2.3.

From the literature, it can be concluded that the most of the research
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Table 2.2: Residential Load Scheduling- Review Findings 1

Year Author
Review Findings

Key findings Analysis
2012 Guo et al. The problem is formulated as

a stochastic optimization prob-
lem and is solved by Lyapunov
optimization technique.

Without the use of
stochastic models, stor-
age aspect is taken into
account in this case.

2014
Bingjie
Ruan and
Yan

The load management ap-
proach includes DG based
scheduling and RTP based
scheduling using Genetic Algo-
rithm.

The optimal appliance
scheduling is obtained
without considering the
effect of delay in schedul-
ing the appliance.

2014
Arora and
Chanana

Load power is met either from
PV panel/battery or from grid
on priority. Optimization
problem is solved using Mixed
Integer Linear Programming.

A real time price based
scheduling mechanism is
introduced without con-
sidering the PV power
uncertainty.

2014
Suyang
Zhou and
Zhang

The home is equipped with PV
and battery system. Half hour
ahead rolling optimization and
a real time control strategy are
combined to realize the energy
management. It is tested using
a Zigbee based real test envi-
ronment.

The uncertainty associ-
ated with PV power gen-
eration and user comfort
aspects are not included.
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Table 2.3: Residential Load Scheduling- Review Findings 2

Year Author
Review Findings

Key findings Analysis

2015
Paterakis
et al.

A household including elec-
tric vehicles, roof-top PV
units and energy storage
systems is considered. The
comfort associated with
thermostatically controlled
loads is included.

Most of the operational
possibilities of demand re-
sponse are addressed in
this work but inconvenience
caused to the consumer due
to scheduling of all control-
lable loads is not consid-
ered. The uncertainty of
solar power is also not ad-
dressed in the model pro-
posed.

2017 Park et al. Residential demand re-
sponse considering user
convenience under real time
and progressive pricing
policies are presented. The
algorithm guarantee opti-
mal solution for real time
pricing policy.

Though the heuristic algo-
rithm for progressive pricing
formulation gave near opti-
mal solutions, the stochastic
nature of PV is not consid-
ered.

2017 Arun and
Selvan

In the residential energy
management system pro-
posed, optimal sizing of
RER and battery units are
also done. Genetic Algo-
rithm is used to get the op-
timal sizing and load sched-
ule.

The uncertainty modeling
of power production by
RER and the consumer
comfort aspect are not fully
addressed in this work.
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works discussed have not taken into account the random nature of the PV

power for the load scheduling of the residential consumers. The comfort of

the consumer due to delay in scheduling also need to be addressed more

effectively.

2.5 Residential DR Models

The basic modeling is to arrive at an objective function which has to be

optimized with proper scheduling strategy. Major aim of this task is to

minimize energy cost satisfying the operating constraints.

A real time pricing based residential power scheduling scheme is proposed

by (Chen Chen, 2011). EMC in each home and the service provider form a

Stackelberg game model.The EMC schedules by minimizing the function,

mins(s− t0)Ψn,a +

s+ln,a∑
r=s

πrcn,a

subject to

t0 ≤ s ≤ t0 + dn

An appliance commitment problem using an electrical water heater load

as example is proposed by (?). The objective is to minimize the energy being

subject to comfort constraint. It is given as

minun [
N∑
n=1

(pn.un.Pe.∆t)]

(Syed Q. Ali and Malik, 2013b) formulated the problem as a simple de-
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cision making problem. In this, the objective is to decide the best time slot

for scheduling the load to reduce the energy cost given by

Total cost =
∑
j∈J

∑
h∈H

Chrj

rj - power rating jth load and Ch is the hourly tariff.

The same problem is modeled by providing an incentive part in the ob-

jective function (Setlhaolo et al., 2014). It suggests a method to capture the

cost of inconvenience also by extending the objective function as,

Cost =
T∑
t=1

l∑
i=1

Pi[ctu
opt
it − βtλ(ublit − u

opt
it )]δt

Here, λ(ublit − u
opt
it ) denotes the state of consumer to earn incentive and βt is

the incentive.

Both the maximum demand and DR incentive are combined together to

form the DR mechanism (Suyang Zhou and Zhang, 2014). The DR mecha-

nism is modeled as,

Cost in time interval ∆t = Ct
rt.P

max
grid .∆t+ ((1 + δpun)Ct

rt)(p
t
grid − Pmax

grid )∆t

Crt is the real time price, ∆t is the time interval, δpun is the punishment

factor.

The energy management system proposed schedule the loads so as to

minimize the cost of net energy utilized,Eh
DG during the interval h (Arun
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and Selvan, 2017). The objective function is given by,

min[
∑
h

(Eh
DG.C

h)], h ∈ H

There is lot of divergence in the models discussed and are not complete

considering all categories of loads focussing on the comfort constraints and

the DG sources. A generalized mathematical model including all these as-

pects is necessitated.

2.6 Solution Methodologies for Residential Load

Scheduling

Residential Demand Response problem is a complex optimization problem

with different operating constraints. The optimization task is to minimize

the single or multiobjective function given by the cost equation satisfying

various conditions and constraints. DR problems are being solved by various

analytical and soft computing methods.

2.6.1 Analytical Methods

An analytical approach termed as linear sequential optimzation enhanced

multiloop algorithm for water heater load is given by (Du and Lu, 2011).

Event driven binary linear programming method is used for solving the

scheduling the events of appliances in (Alessandro Di Giorgio, 2012). A

minmax scheduling algorithm to reach near optimal solution of the problem

for general residential scheduling task is presented in (Xiao et al., 2010).
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They also proposed a minmax solution considering comfort level for heating,

ventillation and cooling devices in (Xiao et al., 2012).

A mixed integer linear programming method is used for sheduling the

smart home appliances by (Kin Cheong Sou, 2011) and (Chen et al., 2012).

(Arora and Chanana, 2014) also proposed a mixed integer linear program-

ming method for optimization problem of residential load scheduling consid-

ering heating ventilating and air conditioning (HVAC) load and non HVAC

load.

A mixed integer non-linear programming is used to solve the problem

by (Jidong Wang and Dai, 2012). Mixed integer non linear optimization

method used for the solution of constrained demand response program for

minimization of cost and discomfort is proposed in (Setlhaolo et al., 2014). A

multiobjective mixed integer nonlinear programming model is proposed for a

home energy system with internal energy sources such as micro cogeneration

systems and underfloor heating/cooling units in (Anvari-Moghaddam et al.,

2015). Dynamic programming is another approach used for solution of sev-

eral optimization problems. In dynamic programming the complex problem

is decomposed into a sequence of subproblems, which are solved backward

over each stage to obtain the optimum solution. A dynamic programming

model is presented in (Young Liang and Shen, 2013) for the demand side

control problem to minimize cost. Rolling optimization is another technique

used for load scheduling solution. Half hour ahead rolling optimization and

a real time control strategy are combined to realize the energy management

of the household (Suyang Zhou and Zhang, 2014).
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2.6.2 Soft Computing Methods

a. Stochastic Programming

Stochastic programming is leveraged to deal with uncertain optimization

problems. Stochastic dynamic programming algorithm for solving Markov

Decision process is put forward in (T and Poor, 2011). The solution has

given optimal scheduling pattern for different energy consuming devices. A

Q learning algorithm to reduce energy cost for a home energy management

system is proposed by (O’Neill et al., 2010). Guo et al. formulated a stochas-

tic optimization problem to minimize the electricity cost of a residential con-

sumer, under real time tariff considering renewable generation and is solved

by Lyapunov optimization technique (Guo et al., 2012). The load schedul-

ing problem is formulated as a combinatorial optimization problem and an

algorithm for solution is presented by (S. Q .Ali and .Malik, 2013) which is

a simple approach to find the load schedule of different appliances. Learning

Automata is another strategy which is used for solving optimization problems

and has been applied for the demand response problems used by (Syed Q. Ali

and Malik, 2013a). Heuristic based evolutionary algorithm is also used based

on load shifting technique for demand side management with large number

of devices in (Logenthiran et al., 2012).

b. Game Theory

Game theory is a solution method based on a model of interactive decision-

making processes. Demand response involves the game relationship between

the power utility and users which is used as an effective approach to facil-
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itate intelligent decision-making in demand response frameworks. A game

theoritic approach is used by (Mohsenian-Rad et al., 2010) to a demand side

management system for energy cost minimization in which multiple users in-

teract with each other and utility to coordinate their energy usage. An auto-

matic energy consumption scheduler using a distributed algorithm, provides

an optimal schedule for the energy consumption for each user. Another real

time pricing based residential power scheduling scheme using game theory

is proposed by (Chen Chen, 2011). Energy Management Controller (EMC)

in each home and the service provider form a Stackelberg game model and

is formulated to analyze the interaction between consumer’s EMC and the

service provider. The leader level game is played by the service provider and

the follower game is played by the EMC.

c. Artificial Neural Networks

Artificial Neural Networks (ANN) consists of interconnected parallel process-

ing elements used as computationl models. They can be trained to provide

optimum output for the input data given to the network. The control system

using Artificial Neural Networks (ANNs) tuned by Genetic Algorithms(GAs),

for the residential sector is described by (E.Matallanas, 2012). It incorporates

local PV energy generation and the controller maximizes self consumption. A

real time control strategy including fuzzy logic control and half hour rolling

optimization method given by(Suyang Zhou and Zhang, 2014) is used for

finding the optimum solution for demand response under complex operating

environments and with different categories of devices.
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d. Genetic Algorithm

Genetic Algorithm is a popular stochastic method used for optimization

task. In Genetic Algorithm based solution methods, a population of chromo-

somes are considered and evaluated by changing the chromosome string using

crossover and mutation operations. Application of Genetic Algorithm for a

domestic load management system with DGs is presented in (Bingjie Ruan

and Yan, 2014). The optimal appliance sheduling is obtained using this

method. Genetic Algorithm is also used to get the optimal sizing of DG and

load shedule in (Arun and Selvan, 2017) to realize an intelligent residential

energy management system for smart residential buildings with renewable

energy resources.

e. Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary computation tech-

nique developed by Kennedy and Eberhart in 1995 (J.Kennedy, 1995). It is

a population based stochastic search algorithm. The method was formulated

based on the social behaviour of bird flocking or fish schooling when search-

ing for food. Potential solutions to the problem are considered as particles

in PSO. Particle Swarm Optimization method for solving the energy man-

agement with Distributed Energy Resources is proposed by M.A.Pedrasa et

al. (M.A.Pedrasa and Gill, 2009a). They enhanced the algorithm by in-

corporating decision support tool by stochastic repulsion (M.A.Pedrasa and

Gill, 2010). Binary Particle Swarm Optimization method is also used by

(M.A.Pedrasa and Gill, 2009b) for curtailment of interruptible loads.
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2.7 Reinforcement Learning and Applications

Reinforcement Learning (RL) is a computational approach based on goal

directed learning from interaction with the environment (R.S.Sutton and

A.G.Barto, 1998). RL combines the features of dynamic programming and

supervised learning. In the learning process the agent continuously observes

the present state of the environment and performs an action chosen from

the permissible set of actions. The state transition occurs when an action

is performed and an immediate reward is obtained based on the state and

action performed. The objective of RL is to maximize the long term sum of

the reward. This is done by exploring new possibilities and exploiting avail-

able information. The learning methods help to maintain a balance between

exploration and exploitation to achieve the goal with optimal reward.

Reinforcement Learning has been used as an effective computatiional tool

for building autonomous systems for various fields of control. Its applications

include game playing, process control, power system, robotics etc. Some of

the applications of Reinforcement Learning are discussed in the next section.

2.7.1 Game Playing

Reinforcement Learning algorithms are used for various types of game play-

ing. The application of Reinforcement Learning to the game of Go is given

by (Silver et al., 2007). The method used a linear evaluation function and

large numbers of binary features to solve the problem. Game of Go is a

challenging one due to the large search space. AlphaGo program proposed

by D. Silver et al. by combining the application of RL and neural networks
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provided improved winning rate for the game (Silver et al., 2017).

A First-Person-Shooting (FPS) game in a 3D environment using Rein-

forcement Learning is presented by (Lample and Chaplot, 2017) . This task

a challenging one and it is solved by dividing into two phases namely nav-

igation and action. The navigation phase explores the map to find enemies

and in action phase fight enemies.

2.7.2 Robotics and Control

Reinforcement Learning methods have been applied for deriving proper con-

trol strategy for robotic applications. The batch reinforcement learning algo-

rithm was applied for solving a robotic soccer problem in (Riedmiller et al.,

2009). With case studies it was demonstrated that batch learning framework

of RL is very useful in the case of soccer-playing robots. The different frame-

work and tools offered by Reinforcement Learning to robotics are described

in detail by (Kober et al., 2013).

Autonomous helicopter flight represents a highly challenging control prob-

lem with non-minimum phase and complex dynamics. An application of Re-

inforcement Learning for the implementation of an autonomous helicopter

flight is presented in (Abbeel et al., 2007).

2.7.3 Power system

The Automatic Generation Control (AGC) problem is formulated as a stochas-

tic multistage decision problem and solved using Reinforcement Learning

algorithm by (Ahamed et al., 2002). The RL approach allows the control

objectives of AGC to be stated more qualitatively. Also, the algorithm can
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handle systems whose dynamics are not fully known or modeled. These fea-

tures of RL algorithm make it very effective for the application of AGC.

Ernst et al. used RL to solve stability problem of power system in (Ernst

et al., 2004). The application of RL to the oscillation damping problem in

power system is proposed by (Ernst et al., 2009). The considered RL ap-

proach decided closed loop policies based on a set of system trajectories and

cost values in a model free environment. The same problem was solved with

model predictive control (MPC) using analytical model and on comparison

RL is found to be competitive with MPC.

The economic dispatch problem is formulated as a multi stage decision

making problem by (Jasmin et al., 2011) and Reinforcement Learning method

is used to get the solution. Two learning algorithms, ε - greedy and pursuit

algorithms, are employed to distribute the power demand among different

generating units with minimum operating cost. Another algorithm that takes

into account the transmission losses was also developed. The flexibility and

efficiency of the algorithm is demonstrated considering different systems.

An intelligent Maximum Power Point Tracking (MPPT) algorithm using

Reinforcement Learning for wind energy conversion systems is described by

(Wei et al., 2015). Without the knowledge of wind turbine parameters or

wind speed information, a fast and real time MPPT control of the system is

achieved. Q-learning algorithm is used to realize to optimal control actions.

2.7.4 Multi Agent Reinforcement Learning

Reinforcement learning finds applications in multi agent systems also. Many

real-world tasks involve multiple agents with partial observability and limited
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communication. Learning is challenging in these cases due to local view

points of agents. The world is perceived as non-stationary due to concurrently

exploring teammates. A unified policy that performs well for multiple related

tasks, without explicit provision of task identity is presented in (Omidshafiei

et al., 2017).

2.8 Conclusion

A detailed review of the different models and methods employed for residen-

tial load scheduling is carried out in this chapter. Different researchers have

formulated the problem in different perspectives. Various solution methods

are also suggested. From the literature, it can be seen that future residential

consumer will have renewable sources, schedulable loads, non-schedulable

loads and various time dependant tariff. Power generated from renewable

sources, RTP and arrival of non-schedulable loads are random. The con-

sumer will want to minimize his electricity bill without compromising on the

comfort. Thus the problem is a decision making problem under uncertain

environment. A complete and comprehensive model is yet to be developed

considering all these aspects and optimization of the load scheduling based

on the same is to be explored. Stochastic learning algorithms like Reinforce-

ment Learning (R.S.Sutton and A.G.Barto, 1998) is a powerful tool to solve

such problems.

54



Chapter 3

Residential Demand Response

Model

3.1 Introduction

The conventional power system was relaying on hydro, thermal and nuclear

power generation as the main source of electrical energy. The balancing

of generation and loads was achieved by scheduling these generating units.

These problems were well formulated as Unit Commitment Problem (UCP),

Economic Dispatch (ED), and Automatic Generation Control and different

solutions were proposed (Wood and Wollenberg, 2003). It is well known that

there is large scale deployment of small renewable resources within the con-

sumer premises (Akash T.Davda and D.Desai, 2014). With the development

in power electronic interface and decrease in cost of PV panels, this trend is

expected to grow. With the development in communication and automation

technologies many consumer loads have become controllable. Utilities have
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realized that through various demand response (DR) programs under smart

grid paradigm, co-operation of consumers can be utilized in an efficient way

for the balancing act. That is, it is possible to bring down the cost of pro-

duction by shifting the load rather than starting expensive generators.

The consumer behavior can be be influenced by incentives and in price

based DR, this is achieved by designing appropriate tariff. Thus to achieve

the goal of price based DR, utility has to design innovative tariff schemes

which is attractive for the consumers and consumers require hardware and

software to schedule his/her loads. These two problems: designing of tar-

iff and scheduling of loads could be viewed as decoupled problems. If these

problems have to be addressed as a coupled problem, it should be done by an-

alyzing the business relationship between the utility and the consumer. From

the consumer’s perspective, it can be assumed that the tariff is specified by

the utility and a typical consumer schedules the load with the sole objective

of minimizing the electricity bill. Most of the residential consumers in the

near future will have renewable sources such as roof top PV. A typical con-

sumer will have various kinds of loads. Some may be flexible, some may be

interruptible, some loads when shifted may cause some difficulty to the con-

sumer. From the literature it is observed that, there is lot of divergence in the

terminology and models used. For example loads are classified and termed as

elastic and inelastic, controllable and critical, flexible and inflexible. Loads

are also categorized as schedulable, noninterruptible and nonschedulable, in-

terruptible and nonschedulable, atomic and nonatomic ,nonpre-emptive and

pre-emptive shedulable loads. A unified terminology is introduced as crit-

ical loads for all inflexible/nonshedulable/inelastic/baseline loads and flexi-
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ble/shedulable loads with nonpre-emptive and pre-emptive status are termed

as atomic and nonatomic respectively. Thus, there is a need for a unified

model for residential load commitment problem which takes into account

various types of loads and distributed generators having stochastic nature of

power generation. This chapter describes the development of a generalized

mathematical model for the load scheduling problem.

Following are the assumptions:

Schedulable loads are included in the residential energy management system.

Each load is associated with a start time, end time and a specified ON du-

ration of operation. The consumer comfort constraint is included.

The limitations are:

Battery is not included while considering the DG source. Generation schedul-

ing is not addressed together with load scheduling.

3.2 Generalized Mathematical Model

The system model considers a single household with a number of loads. It can

communicate with the utility and receives the electricity tariff. DR problem

is modeled as an optimization problem. The load model, tariff and the

scheduling algorithm are required for the simulation framework. To develop

the mathematical model, at first a timeline is to be defined.

3.2.1 The Timeline

A vector K is chosen to represent the timeline model such that there are |K|

time slots in a day. The value of |K| varies depending on the duration of the
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interval selected. e.g. |K|= 96, if the duration of interval is 15 minutes and

|K| =48, for an interval of 30 minutes duration. Here, it is assumed that the

interval is 1 hour, i.e. |K| =24, with the first interval starting from 12 am to

1 am. Then the second interval is the hour between 1 am to 2 am and so on.

Also, any time between 12 am to 1 am is counted in the first time slot. The

timeline for 1 hour interval is shown in Fig. 3.1.

Figure 3.1: Timeline for one hour intervals

3.2.2 Load Model

Residential loads can be categorized into two groups, critical loads and con-

trollable or flexible loads. Critical loads are must-run loads which are being

switched on for a fixed period of time and the time of use can not be shifted.

Lighting loads, fan, TV, PC etc. come under this category. For these type

of loads the customer should have the freedom to switch ON and OFF the

loads as he desires. Controllable loads can be turned on at any time slot

within the given interval. Their operation can be delayed and/or interrupted

if needed. They include cloth washers, cloth dryers, dish washers, Heating

Ventilating and Air Conditioning (HVAC) systems, water heaters, plug in

electric vehicles, battery chargers for consumer electronics etc. Controllable

loads can be further classified as atomic and non-atomic loads. Atomic loads

are non-interruptible loads and once switched on, will remain ON continu-
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ously for the specified duration. Non-atomic loads are interruptible loads

and once turned ON can be turned OFF any number of times during the

specified interval.

a. Basic Load Model

It is assumed that the consumer has total m number of flexible and nonflex-

ible loads such that m= |J | where J is the set of all loads in the household.

The flexible loads are assumed to be atomic in nature. Each load, j ∈ J is

modeled by a 4-tuple denoted by,

dj = (sj, fj, lj, rj) (3.1)

where {sj, fj} is the interval of operation of the load with sj and fj as the

beginning and ending time slots respectively. lj is the time duration for

which the load is ON. rj is the rated load power in kW (Ali et al., 2013).

That is, dj = (7, 16, 4, 5), means that, a load dj of 5kW power rating needs

to be switched ON in the interval {7,16} for a duration of 4 hours. Flexible

loads can be turned ON at any time slot in the permitted interval but once

switched ON, it remains ON for lj hours. Now the problem is to obtain

the optimum time slots for which the load is to be turned ON, subjected to

different constraints.

b. Load Model Considering Consumer Comfort

In this case, assumption regarding the flexible loads to be atomic is relaxed.

The loads can be non-atomic, i.e. these loads can be turned OFF any number
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of times during the permitted interval while satisfying the total ON period

duration of lj hours and are more flexible compared to atomic loads. Non

atomic loads also can be represented by the same load model as given in the

previous section, for atomic loads.

The objective is to minimize the total daily energy cost of the consumer,

satisfying the various constraints. This results in scheduling the loads in time

slots where price of electricity is low. There are some loads for which this

scheduling may cause discomfort to the consumer. The switching ON time

of a flexible load e.g. cloth washer can be delayed so as to operate it at a

low cost period. This delay causes some inconvenience or discomfort to the

consumer. A parameter udc is incorporated in the load model to capture the

degree of discomfort. Now, each load, j ∈ J is modeled by a 5-tuple denoted

by,

dj = (sj, fj, lj, rj, udcj) (3.2)

If the consumer is willing to accept delay, choose a low value of udc. Large

value of udc indicates that consumer can not tolerate delay and results in

high energy cost. Guidelines for choosing udc is developed and is explained

later in chapter 5.

3.2.3 Energy Cost Model for Load Scheduling

Let Ck denotes the hourly tariff provided by the utility. It is assumed that

Ck is available day ahead in the case of ToUP or CPP. It is available one

hour in advance in the case of RTP. A Maximum Demand (MD) limit is also

specified by the utility. So the total demand for any time slot should not
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cross the MD limit.

a. With one source of energy, the utility grid

The objective is to minimize the daily energy cost of the consumer. The

consumer has to take decision on the switching schedule of the different

loads. Let ukj denotes this decision variable. i.e., ukj denotes the ON/OFF

status of jth load in the kth time slot. If jth load is ON, ukj = 1 and if OFF

ukj = 0, during kth time slot.

The load scheduling problem is to obtain a vector,

u = [u1
1, u

2
1, . . . , u

24
1 , u

1
2, u

2
2, . . . , u

24
2 , . . . , u

1
m, u

2
m, . . . , u

24
m ] so as to minimize the

total electricity cost, f(u) for a day.

Now, the load scheduling problem is,

Minimize, total cost f(u)

f(u) =
24∑
k=1

m∑
j=1

Ckrju
k
j (3.3)

subject to,

fj∑
k=sj

ukj = lj; ukj = 0, for k < sj or k > fj

m∑
j=1

rju
k
j ≤MDL, k ∈ K

where, MDL is the Maximum Demand Limit and Ck denotes the hourly

tariff, ToUP or RTP.
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The solution space is defined as,

U = [u1
1, u

2
1, . . . , u

24
1 , u

1
2, u

2
2, . . . , u

24
2 , . . . , u

1
m, u

2
m, . . . , u

24
m ]

∀ukj ∈ {1, 0}

Then the aim is to find the optimum values of ukj .

b. General case with n sources

Consider the case with n sources such as PV, grid, wind turbine, energy

storage etc. A general mathematical model for the load scheduling problem

is developed to include all the sources.

Now the load scheduling problem is to find a sequence of decisions,

u = [u1
1i, u

2
1i, . . . , u

24
1i , u

1
2i, u

2
2i, . . . , u

24
2i , . . . , u

1
mi, u

2
mi, . . . , u

24
mi],

∀i ∈ {1, ...n} ,∀ukji ∈ {0, 1} such that total electricity cost , f(u) for a day is

minimized.

The power output of the renewable sources can be random in nature. So the

expected total cost is considered and the cost function f(u) can be generalized

as,

Minimize,

f(u) = E[
24∑
k=1

m∑
j=1

n∑
i=1

Ck
i rju

k
ji] (3.4)

subject to,
n∑
i=1

fj∑
k=sj

ukji = lj,∀j ∈ {1 . . .m}

ukji = 0, for k < sj or k > fj
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m∑
j=1

rju
k
j ≤MDL

where, Ck
i is the hourly energy cost of ith source

ukji is the binary status of jth load at kth hour, with ith source.

Here i = 1, 2, 3 . . . n denotes different sources such as PV, grid, wind turbine,

energy storage etc.

3.3 Conclusion

In future, consumers will have renewable sources, flexible loads, nonflexible

loads and various time dependant tariff. The consumer desires to minimize

his electricity bill without compromising on the comfort. Thus the problem

is a decision making problem under uncertain environment. The Residential

DR problem is modeled as an optimization problem. The development of

a generalized mathematical model for the load scheduling problem is pre-

sented in this chapter. Now it is required to explore methods to develop load

scheduling algorithms based on the generalized mathematical model for the

DR problem.
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Chapter 4

Load Scheduling using Binary

Particle Swarm Optimization

4.1 Introduction

With the development in communication and automation technologies many

consumer loads have become controllable. Controllable loads at the consumer

premises are the best candidate for implementing residential DR programs

and proper scheduling of these loads reduces consumer’s energy bill and peak

demand. The mathematical formulation of the problem has lot of similarity

to Economic dispatch and Unit commitment problem. Different authors

addressed the problem with different formulations, load models, constraints

and tariff patterns.

Load scheduling is a complex optimization problem with various oper-

ating constraints. It is required to develop an implementable solution to

the load scheduling problem considering the complex behaviour of the de-
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mand resources. There are many works related to development of schedul-

ing algorithm considering different types of loads. Soft computing method

like Particle Swarm Optimization (PSO) can be effectively used for solving

scheduling problems and the related works are reviewed in Chapter 2. So-

lution of unit commitment problem using hybrid PSO is described in (Ting

et al., 2006). H. Song et al applied PSO for photovotaic system allocation

also (Song et al., 2009). The solution to curtailmemt problem of interrupt-

ible loads using PSO method is presented in (M.A.Pedrasa and Gill, 2009b)

but the proposed method has the limitation with respect to flexible load

scheduling considering non-interruptible demand constraint. A more reason-

able sheduling method is essential for solving and implementing residential

load scheduling problem. Load scheduling is a commitment problem with

ON/OFF status at each time slot. Optimization algorithms which take bi-

nary values in the solution space are more suitable and Binary Particle Swarm

Optimization (BPSO) belongs to such a category. Thus BPSO is an effective

tool for solving load scheduling problem. The objective of the load scheduling

problem is to minimize the consumer’s electricity bill and to reduce the max-

imum demand on the system, satisfying various constraints. It is required

to find the optimal load schedule for minimum energy cost, subject to the

given MD limit, tariff and load parameter specifications. In this chapter the

development of load scheduling algorithm using BPSO method is presented.
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4.2 Particle Swarm Optimization

Particle swarm optimization is an evolutionary computation technique devel-

oped by Kennedy and Eberhart in 1995 (J.Kennedy, 1995). It is a population

based stochastic search algorithm. The method was formulated based on the

social behaviour of bird flocking or fish schooling when searching for food.

Potential solutions to the problem are considered as particles in PSO and

these particles communicate with each other. The particle locations are as-

signed in a random fashion initially, in the solution space. The particles

fly around the solution space and coordinate their movement similar to bird

flocking or fish schooling. They are influenced by its own best performance

and the best performance of the particles in the neighbourhood. Each par-

ticle remembers its own best position found so far in the exploration. This

position is called personal best. Also the position of the best performing

particle is called global best. The position and velocity describe the motion

of the particle and can be represented as vectors xi = [xi1, xi2, ..., xin] and

vi = [vi1, vi2, ..., vin] in an n dimensional search space for ith particle. Using

a fitness function, the performance evaluation of each particle is done itera-

tively. The new velocity of each particle is calculated based on its previous

velocity, the best position attained by the particle and the position of the

best performing particle.

Let pbest (personal best) be the best position achieved by a particle and gbest

(global best), the position of the best performing particle. Then at each it-

erative learning step the velocity and position of that particle are updated
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using the Eqns 4.1 - 4.2.

vk+1
i = wvki + c1rand()(pbest− xki ) + c2rand()(gbest− xki ) (4.1)

xk+1
i = xki + vk+1

i (4.2)

where, c1, c2 - Acceleration coefficients

w - Inertia coefficient

vki - Velocity at kth iteration for ith particle

xki - Position at kth iteration for ith particle

rand() generates a uniform random number in the interval [0,1]. At each

iteration, the position of the particle will be updated and this process will

be continued until the maximum number of iterations is attained. At the

end of the iterative procedure, the global best value gives the solution to the

problem.

In PSO the particle changes its velocity at each step targetting towards

pbest and gbest positions. The acceleration constants c1 and c2 represents

the weightage of the accelaration terms. c1 pulls the particle towards pbest

position and c2 pulls it towards the gbes position. Usually these parameters

are selected in the range of 0 to 4 (Chaturvedi et al., 2008). The use of

inertia weight results in convergence to a sufficiently optimal solution in

fewer iterations. The inertia weight w is decreased linearly as the iteration

proceeds and is given by w = wmax −
(wmax − wmin) ∗ iter

itermax
, where itermax

is the maximum iteration number, iter is the current iteration number and

vmax and vmin are the final and initial inertia weights respectively (Mahor

et al., 2009).
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4.2.1 Particle Swarm Optimization Algorithm

Similar to Genetic Algorithm, PSO is also initialized with a population of

random solutions. A random velocity is assigned to each solution or particle.

The particles keeps track the position of best solution it has achieved so

far and the position of the overall best solution obtained by any particle in

the population. By changing the velocity, at each time step the particles

move towards the pbest and gbest locations. The PSO algorithm is described

below.

Initialize a population of particles with random positions and velocities.

Evaluate the fitness function for each particle

Compare the fitness of the particle with pbest of the particle. If

present value is better than pbest, set pbest equal to the present

value and pbest position equal to the present position.

Compare the fitness of the particle with gbest of the population.

If present value is better than gbest, set gbest equal to the present

value and gbest position as the present position.

Change the velocity of each particle using equation 4.1 and position

using equation 4.2.

Repeat till a termination criteria is met or the maximum number

of iterations is reached.

Fitness value is the gbest value and particle with gbest is the optimal

solution.
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The values for the different particles are continuous in basic PSO ap-

proach. For problems with discrete solution space, binary version of PSO is

used to obtain the solution. The next section explains the concept of binary

particle swarm optimization (BPSO).

4.2.2 Binary Particle Swarm optimization

The original version of PSO operates on real values. The solution space of

the load scheduling problem is discrete in nature. So the particles need to

be defined in the discrete space. For the solution of problem with discrete

decision variables, a discrete binary version of PSO is proposed by Kennedy

and Eberhart in (J.Kennedy, 1997).

In BPSO, the value of xki can be 0 or 1 only. In this case also the velocity is

updated using Eqn 4.1, but is kept within the limits specified by +Vmax and −

Vmax. The velocity will determine a probability threshold. The particle is

more likely to choose 1 for higher values of vki and 0 for lower values vki . So

the threshold should be a real value between 0 and 1. This can be achieved

by using a Sigmoid function given by Eqn (4.3).

S(vi) =
1

1 + exp(−vi)
(4.3)

Using the Sigmoid function, the velocity is mapped into [0,1]. A random

number between 0 and 1 is generated using uniform distribution. S(vi) is

then compared with the random number, rand(), and the position is updated

as follows.
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xi = 1, if rand() < S(vi),

xi = 0, else.

BPSO can be effectively used for load scheduling problem. In the next

section the residential load scheduling problem is explained.

4.3 Residential Load Scheduling

4.3.1 Load Model

Consider a consumer with a number of flexible and nonflexible loads. It is

assumed that all flexible loads are atomic or non-interruptible. So the basic

load model explained in Chapter 3 is selected. A time line is defined such

that a day consists of 24 equal time slots k, k ∈ [1, 24]. k=1 is the time slot

between 12 am and 1 am and k=24 is the last time slot.

A single load is modeled by a 4-tuple denoted by,

dj = (sj, fj, lj, rj) (4.4)

where [sj, fj] is the permitted interval of operation of the load with starting

time slot, sj and ending time slot, fj. lj is the time duration for which the

load is ON. rj is the rated load power in kW.
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4.3.2 Mathematical model of the Load Scheduling prob-

lem

The objective of the load scheduling problem is to obtain the load schedule

such that the daily energy cost of the consumer is minimized subject to the

different operational constraints. The source of energy can be the utility grid

and/or renewable energy sources in the consumer premise. In this case, it

is assumed that there is only one source of electrical energy, the utility grid.

Let Ck denotes the hourly tariff provided by the utility. It is assumed that

Ck is available day ahead in the case of ToUP or CPP. It is available one

hour in advance in the case of RTP. A Maximum Demand Limit(MDL) is

also specified by the utility. So the total demand for any time slot should

not cross the MDL.

The jth load status , at kth time slot is denoted as ukj . If the load is ON,

then ukj = 1 and ukj = 0 if the load is OFF. It is assumed that there are m

number of loads, which are flexible and nonflexible. Flexible loads can be

turned ON at any time slot in the permitted interval but nonflexible loads

are to be switched ON for fixed time slots.

With m loads and 24 time slots, now it is required to obtain a vector,

u = [u1
1, u

2
1, . . . , u

24
1 , u

1
2, u

2
2, . . . , u

24
2 , . . . , u

1
m, u

2
m, . . . , u

24
m ]

so as to minimize the daily energy cost, f(u).

The mathematical model of the load scheduling problem is,

Minimize,

Total cost =
24∑
k=1

m∑
j=1

Ckrju
k
j (4.5)
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subject to the constraints,

fj∑
k=sj

ukj = lj

ukj = 0, k < sj or k > fj
m∑
j=1

rju
k
j ≤MDL, k = 1 . . . , 24, j = 1, . . . ,m

The objective function of the problem is the total cost of energy. The con-

sumer specified load constraint is the time slots of operation of each load.

Utility constraint is that the total power consumption of all the loads at any

time slot should be within the MD Limit. The load scheduling problem is

complex owing to the presence of several types of loads with diverse char-

acteristics in the consumer premise and the different constraints and tariff

imposed by the utility. The solution space is defined as,

U = [u1
1, u

2
1, . . . , u

24
1 , u

1
2, u

2
2, . . . , u

24
2 , . . . , u

1
m, u

2
m, . . . , u

24
m ], ∀ukj ∈ {0, 1}

In the next section a solution method for the residential load scheduling

problem using BPSO is presented.

4.4 Residential Load Scheduling Using BPSO

In the load scheduling problem, it is required to find the ON/OFF status

of the various loads and the corresponding decision variable ukj is discrete in

nature as explained in the previous section. BPSO can be applied to obtain

the solution of scheduling problems in dicrete space. To apply BPSO to the

load scheduling problem, at first the particle is to be identified such that it
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should include the characteristics of all loads. A parameter pj = fj−sj−lj+1

is computed for each load, from the given load parameters. A particle is

constituted using pj’s of different loads. If the parameters of the jth load is

dj = (8, 12, 2, 4), then pj = 3. The load dj can be switched ON at any of the

time slots 8+0, 8+1, 8+2 or 8+3. That is, the optimum time slot to switch

on the jth load is to be selected from [sj+n, n = 0, 1, 2..pj]. A four bit binary

number is used to represent pj.

The objective of the load scheduling problem is to minimize the cost function

given by,

Total cost =
24∑
k=1

m∑
j=1

Ckrju
k
j (4.6)

subject to the given constraints. Hence the fitness function for BPSO is

chosen as the cost function of the scheduling problem. The initial popula-

tion is randomly selected from the binary pj’s of all loads. As the particle

correspods to the switching ON time slot of the different loads, from the

global best particle optimum schedule can be obtained and the minimum

energy cost is the corresponding fitness value. The algorithm for solution of

scheduling problem using BPSO is detailed below.

To start with, the population size, maximum iteration number, number

of loads, pbest and gbest values are initialized. The input data required are

the parameters of the consumer load, utility specified MD limit and tariff.

Particles are generated and initial population is randomly selected. Velocity

associated with each particle is also initialized. Using Eqn (4.6) the fitness

of the particle is calculated. The fitness value is compared with pbest value

and MDL condition is checked. Minimum of the fitness value and pbest
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is assigned as new pbest value. Minimum of the pbest and gbest is the up-

dated global best solution. Velocity is updated using Eqn (4.1) and restricted

within permissible limits. Using sigmoid function given by Eqn (4.3), S(vi)

is computed and new position is obtained.

When the iterative process ends, the gbest value gives the minimum cost.

The optimum load schedule is obtained from global best particle.

Load Scheduling Algorithm using BPSO

Initialize the Maximum Demand limit, Number of loads, Population

size, Word length of each particle, Vmax, Maximum iterations, pbest

and gbest values

Read the load parameters (sj, fj, lj, rj)

Calculate pj = fj − sj − lj + 1 for each load

Generate initial population of binary particles randomly within the al-

lowable range pj

Initialize velocity parameters

Calculate the fitness of ith particle using Eqn (4.6)

If fitness(i) < pbest(i) and the maximum demand limit is

not violated for the current position, pbest(i) = fitness(i)

and save the position of particle.

If pbest(i) < gbest, gbest = pbest(i) and save the global best

particle position.
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Update velocity value of each binary element of the particle

using the Eqn (4.1)

Limit the velocity values within the allowable range +Vmax to −

Vmax

Map the velocity to S(vi) using Sigmoid function in Eqn (4.3)

Compare S(vi) with rand(), get the new position xi

Limit the new particle position within the permissible subset

Repeat for all particles

Repeat till the maximum number of iterations is reached

Schedule is obtained from the global best particle value and the cost is

the gbest value.
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4.5 Results and Discussion

The developed Load scheduling algorithm using Binary particle Swarm op-

timization has been validated for a system with 6 loads having the charac-

teristics given in Table 4.1.

Table 4.1: Load Details

Load s f l r

1 2 11 2 4

2 4 18 3 4

3 6 8 3 4

4 4 12 3 5

5 5 10 6 5

6 11 19 4 6

Table 4.2: Parameters used in BPSO

c1 2.05

c2 2.05

wmin 0.4

wmax 0.9

No. of particles 20
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Figure 4.1: Tariff Structure

A two part tariff has been considered for simulation studies as given in

4.1. This tariff structure specifies two different rates for electricity usage

varying with tine. The parameter used in the BPSO solution is given in Ta-

ble 4.2. The algorithm converged in 100 iterations and the optimum schedule

is obtained. The energy cost incurred has been reduced to 404 units from

the unscheduled cost of 525 units for maximum demand constraint of 20kW.

To check the reliability of the algorithm, simulation is done for different

values of the Maximum Demand and schedules obtained are tabulated in

Table 4.3 and 4.4. The total energy cost is given in Table 4.5. The result

has been validated by comparing with those given in (Ali et al., 2013). It

can be seen that the non flexible loads, ie, 3rd and 5th, are scheduled at the

sixth and fifth time slot respectively. The other flexible loads are scheduled

between their respective sj’s and fj’s in the low cost period considering the

MD constraint. The unscheduled demand is shown in Fig. 4.2. The sched-

uled demand allocations for different MD limits are shown in Fig. 4.3 and
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Table 4.3: Schedule with MDL =10 kW

Hour Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Total

Dmand

1 0 0 0 0 0 0 0

2 4 0 0 0 0 0 4

3 4 0 0 0 0 0 4

4 0 0 0 0 0 0 0

5 0 0 0 0 5 0 5

6 0 0 4 0 5 0 9

7 0 0 4 0 5 0 9

8 0 0 4 0 5 0 9

9 0 0 0 5 5 0 10

10 0 0 0 5 5 0 10

11 0 0 0 5 0 0 5

12 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0

16 0 4 0 0 0 6 10

17 0 4 0 0 0 6 10

18 0 4 0 0 0 6 10

19 0 0 0 0 0 6 6

20 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0
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Table 4.4: Schedule with MDL =20 kW

Hour Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Total

Dmand

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 5 0 5

6 0 0 4 0 5 0 9

7 0 0 4 0 5 0 9

8 0 0 4 0 5 0 9

9 0 4 0 5 5 0 14

10 4 4 0 5 5 0 18

11 4 4 0 5 0 0 13

12 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0

16 0 0 0 0 0 6 6

17 0 0 0 0 0 6 6

18 0 0 0 0 0 6 6

19 0 0 0 0 0 6 6

20 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0
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Figure 4.2: Unscheduled Demand
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Figure 4.3: Scheduled Demand with MDL=10kW
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Figure 4.4: Scheduled Demand with MDL=20kW
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Table 4.5: Effect of Maximum Demand on the Total cost
(6 loads)

Demand Cost

Unscheduled 525

Scheduled with MDL = 10kW 428

Scheduled with MDL = 20kW 404

Table 4.6: Effect of scheduling on the total cost for
100 loads

Demand Cost

Unscheduled 3132

Scheduled 1028

Fig. 4.4.

For proving the efficacy of the developed algorithm for scheduling, the pro-

posed alogirithm has been applied for 100 loads whose characteristics are de-

veloped through a Load generation program (Syed Q. Ali and Malik, 2013a).

Table 4.6 shows the cost reduction on scheduling using the developed BPSO

algorithm.

4.6 Case Study

To investigate the performance of the proposed BPSO algorithm for load

scheduling, a smart home with different types of appliances is considered.
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Lighting loads are considered as critical loads. Typical schedulable appliances

in the home include Washing machine, Cloth dryer, Dish washer, Vacuum

cleaner, Iron and Rice cooker, well pump and plug in hybrid electric vehi-

cles(PHEV). These appliances operate with different time intervals, duration

of operation and power ratings. The parameters of the household devices are

given in Table 4.7. The electricity price and MD limit are received from the

Table 4.7: Parameters of Household Devices

Sl. No. Appliance s f l r (kW)

1 Lighting 18 20 3 0.36

2 Washing machine 8 14 2 0.50

3 Cloth dryer 11 17 1 2.70

4 Dish washer 13 21 2 2.10

5 Vacuum cleaner 9 14 1 0.65

6 Iron 6 9 1 1.10

7 Rice cooker 7 10 1 0.30

8 Well pump 12 16 1 1.50

9 PHEV charging 10 24 2 2.30

utility. For simulation purpose, two different tariff templates are generated,

ToUP given in Fig 4.5(a) and a random time varying price given in Fig 4.5(b).

The time varying tariff is generated by adding a random number between +2

and -2 to the mean price during the particular interval. The energy cost for

the unscheduled demand with all the domestic loads switched ON for lj hours

starting from sj is found to be 118.65 units for ToUP and the corresponding

maximum demand is 5kW.

The algorithm is tested for residential load scheduling using both the tar-
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Figure 4.5: Tariff (a)ToU Pricing (b)Real Time Pricing

iffs. Also, from the utility perspective the maximum demand on the system

should not exceed the specified limit. The maximum value of the unscheduled

demand for this case is 5kW. Hence for simulation the MD limits are chosen

as 4 kW and 3kW, which are lower than the maximum unscheduled demand.

The simulation is done first using ToUP and with a MD limit of 4kw. As

expected all appliances are committed in the low priced period within the

specified time slots without violating the MD limit of 4. For example, the

duration of operation of lighting load is 3 hours starting from 18th time slot.

We can not shift the time of operation of a critical load such as lighting load.

It is observed that lighting load is ON during the interval {18 - 20} itself.

The flexible load such as washing machine is ON during the low priced in-

terval {8 - 9}, which is within the specified time slot of {8 - 14}. The energy

bill of the consumer is decreased to 89.25 units. The appliance schedule is

given in Table 4.8.
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Table 4.8: Schedule with MDL =4kW

HourLight-WashingCloth Dish VacuumIron Rice Well PHEV Demand

ing machine dryer washer cleaner cookerpumpcharging Total

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0.5 0.5

8 0 0.5 0 0 0 0 0 0 0 0.5

9 0 0.5 0 0 0 1.1 0 0 0 1.6

10 0 0 0 0 0 0 0.3 0 0 0.3

11 0 0 0 0 0.65 0 0 0 0 0.65

12 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0

15 0 0 0 2.1 0 0 0 0 0 2.1

16 0 0 0 2.1 0 0 0 1.5 0 3.6

17 0 0 2.7 0 0 0 0 0 0 2.7

18 0.36 0 0 0 0 0 0 0 0 0.36

19 0.36 0 2 0 0 0 0 0 0 0.36

20 0.36 0 0 0 0 0 0 0 0 0.36

21 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 2.3 2.3

23 0 0 0 0 0 0 0 0 2.3 02.3

24 0 0 0 0 0 0 0 0 0 0
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The scheduling is repeated with 3kw MD limit. It can be seen that, for

this case also the loads are scheduled within the specified sj’s and fj’s but

with an increased energy cost of 93.8. This is expected as some loads are to

be scheduled in high priced slots to restrict the demand within the specified

MD limit. The appliance schedule is given in Table 4.9.

Table 4.9: Schedule with MDL =3kW

HourLight-WashingCloth Dish VacuumIron Rice Well PHEV Demand
ing machine dryer washer cleaner cookerpumpcharging Total

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1.1 0 0 0 1.1
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0.5 0 0 0 0 0.3 0 0 0.8
11 0 0.5 0 0 0 0 0 0 0 0.5
12 0 0 0 0 0 0 0 1.5 0 1.5
13 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0.65 0 0 0 0 0.65
15 0 0 0 2.1 0 0 0 0 0 2.1
16 0 0 0 2.1 0 0 0 0 0 2.1
17 0 0 2.7 0 0 0 0 0 0 2.7
18 0.36 0 0 0 0 0 0 0 0 0.36
19 0.36 0 0 0 0 0 0 0 0 0.36
20 0.36 0 0 0 0 0 0 0 0 0.36
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 2.3 2.3
24 0 0 0 0 0 0 0 0 2.3 2.3
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Next the scheduling is done using random time varying tariff for two

different maximum demand limits. It is observed that in this case also,

scheduling of all the loads are confined to the low priced periods, within

the permitted interval satisfying the MD limit constraint . The cumulative

demand in each hour is shown in Figure 4.6.
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(c) Demand for MDL=3kW
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(e) Demand for MDL=3kW

Figure 4.6: Demand Allocations (a)Unscheduled demand,
(b), (c) Scheduled Demands for ToUP and (d), (e), Scheduled Demands for
RTP

87



Chapter 4. Load Scheduling using Binary Particle Swarm Optimization

The variation of energy cost with MDL is shown in Table 4.10. Also it

can be observed that, the energy cost scheduled under RTP is low and is

justified as it reflects the actual price at a particular time slot compared to

ToUP which is fixed in advance.

Table 4.10: Effect of MDL on the total energy cost

Demand Cost for ToUP Cost for RTP

Unscheduled 118.65 128.84

Scheduled with MDL = 4kW 89.25 61.54

Scheduled with MDL = 3kW 93.8 63.54

4.7 Conclusion

A solution to residential load scheduling problem obtained through BPSO

based algorithm is presented. Several simulation experiments are done, con-

sidering the case study of a domestic consumer with various demand resources

and the results are analyzed for various MD limits and tariffs. The results

show that the loads are scheduled with minimum cost satisfying the consumer

as well as utility constraints, maintaining total demand below the Maximum

Demand limit. This is beneficial to both the utility as well as the consumer.

The effect of MD limit on energy cost is also analysed. But BPSO Algorithm

has certain limitations. As the algorithm reaches to the optimum solution,

the probability of changing the position of the particle must be near to zero.

Since sigmoid function is used the position will change by taking the value

of 1 or 0 with the probability of 0.5. When the complexity of the problem
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increases as renewable sources and comfort aspect are incorporated, the par-

ticle size increases. Convergence of the algorithm will be difficult and time

consuming in this case. To incorporate consumer comfort and stochastic re-

newable source in the residential load scheduling problem, optimization tools

which can solve decision making problem in the presence of uncertainty is

needed and Reinforcement Learning is identified as one of the powerful tools.
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Chapter 5

Residential Load Scheduling

Using Reinforcement Learning

5.1 Introduction

In the previous chapter, a solution method to the residential load schedul-

ing problem using Binary Particle Swarm Optimization method is presented.

The developed BPSO algorithm is found to be capable of providing a load

schedule with minimum cost satisfying the given constraints. However the

following aspects are not addressed in the BPSO algorithm due to the in-

creased complexity of the problem.

As the cost of electrical energy is only a fraction of the total house hold

budget, consumer will be ready to schedule their load only if it does not affect

their convenience. This is not addressed in majority of the works reported

in the literature. Some research works are there in this direction considering

inconvenience caused to the consumer but a quantitative modeling of house-
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hold devices based on comfort level still lacks in these works. A parameter

udc incorporated in the load model serves to capture the degree of discom-

fort.

It is well known that there is a large scale deployment of small renewable

distributed generation (DG) sources within the consumer premises. Among

the various DGs, the most common and abundant resource is the Photo-

voltaic. The uncertainty associated with time varying solar power should

also be taken into account while considering the load scheduling problem.

Now a load scheduling method is to be developed to solve the problem which

is a decision making problem under uncertain environment and Reinforce-

ment Learning is one of the tools to solve such prroblems.

In this chapter, the solution of load scheduling problem considering con-

sumer comfort and a single power source (utility grid) is described and the

solution method employed is stochastic learning algorithm, namely Rein-

forcement Learning (RL). Learning Automata algorithm is another stochas-

tic learning algorithm used for single stage decision making problems. The

solution obtained using RL and its comparison with LA algorithm is also

presented.

5.2 Learning Automata Algorithm

Learning Automata (LA) (Thathachar and Sastry, 2011) are models used

for adaptive decision making in random environments. LA algorithm can be

used to learn the best decision in a single stage decision making problem with

uncertain environment. Learning is achieved through repeated interactions
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with the environment. A simple decision making problem, the N arm bandit

problem, is considered to explain the LA algorithm.

The N arm bandit is a game based on a slot machine with N arms. The

player can play any arm of his choice by paying a fixed fee. The action

of playing an arm is denoted as a. When the arm is played, a random

reward is returned by the machine which is denoted as R(a). The probability

distribution for each arm is assumed to be fixed and is not known to the

player. So the reward from each arm will be around a mean value with some

value of variance. The mean value represents the goodness of choosing an

arm or quality of an arm and is denoted by Q(a). For example, playing on

arm 2 results in return of a random variable beween 0.4 and 0.7, the mean

value of which is Q(4) = 0.55. By playing the game, the goal of the player

is to get maximum reward with minimum number of trials. The decision to

be taken by the player is to play the arm with maximum mean value, as the

reward from the arm is around a mean value. Here the play on an arm can

be taken as the decision or action. Thus the objective is to find the best

action corresponding to the arm with highest reward (best arm), from the

action set consisting of the set of arms.

To find the best arm, a direct and simple method is to find the mean

corresponding to each arm after a large number of trials on each arm and

choose the best arm. Let the reward received for playing an arm in the ith

trial be denoted as Ri. Then the mean value estimated for the arm from n
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trials, Qn(a) is given by the equation,

Qn(a) =

n∑
i=1

Ri(a)

n
(5.1)

If mean value for all the arms are found, then the best arm i.e. the one

with maximum mean, and the best action corresponding to it denoted as

’greedy action’, ag can be obtained as follows.

Qn(ag) = maxa∈AQ
n(a)⇒ ag = arg maxa∈AQ

n(a) (5.2)

Though simple, the above method is time consuming and not efficient. With

number of arms N = 50 and number of trials n = 1000, the player is required

to play N ∗ n = 50000 times, to make a decision. An efficient method for

solving this problem is the Learning Automata algorithm which make use

of an iterative method for obtaining the mean values corresponding to each

arm. The iterative formula for the estimates of the mean value can be derived

as follows using equation 5.1.

Qn+1(a) =

∑n
i=1 R

i(a) +Rn+1(a)

n+ 1
(5.3)

=
nQn(a) +Rn+1(a) +Qn(a)−Qn(a)

n+ 1

= Qn(a) +
1

n+ 1
(Rn+1(a)−Qn(a))

From the above equation, it can be noted that the new estimate based on the

(n+ 1)th observation Qn+1(a) is the old estimate Qn(a) plus a small number

times the error, (Rn+1(a) − Qn(a)). Instead of
1

n+ 1
a decreasing sequence
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αn can be used to get a recursive equation.

Starting with initial estimate Q0(0) = 0, the estimate of the expected

value can be found using this equation. Here, Q(a) = E{R(a)} where

E{R(a)} is the expected value of the reward or observation related to an

arm and Qn(a)) is the estimate of Q(a) obtained from n trials. The follow-

ing recursive equation can be utilized to find the estimate of expected value

of R(a), if the observations are chosen independently.

Qn+1(a) = Qn(a) + αn[R(a)−Qn(a)] (5.4)

where αn is the update factor, the value of which aids in the convergence of

the algorithm.

Now, an efficient strategy for the selection of action need to be identified.

An action taken with uniform probability is one method, in which all the arms

are played equal number of times or the action space is explored throughout

the learning. But it will be reasonable to play the best arm instead of playing

all the arms. At any time during the play, there will be one action with

maximum estimate of Q up to that time and is called the greedy action.

If a greedy action is selected then the available knowledge regarding the

values of actions is exploited. But there may be other actions better than

the greedy action. Thus by trying a nongreedy action the other chances

can be explored. So the action selection strategy should maintain a balance

between exploitation and exploration. There are different algorithms for

action selection. One such algorithm to balance exploration and exploitation

is ε- greedy algorithm and is described next.
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5.2.1 ε-greedy Method for Action Selection

The action corresponding to the best estimate of Q value is called the greedy

action, which is based on the present estimate of Q. If a greedy action

is selected then the available knowledge regarding the values of actions is

exploited. It may be noted that, during the nth episode the estimate of

Q value, Qn(a) will be far from true value if n is small. Hence using the

greedy action at this stage will not be a good idea. But there may be other

actions better than the greedy action and these possibilities also have to

be explored. So the action selection strategy should maintain a balance

between exploitation and exploration. In the initial phase of the algorithm,

the estimates Qn(a) may not be the true value. But, as the number of trials

n increases the chance of the estimates approaching the true mean value

increases and ag becomes the best action. Hence it is preferred to get more

information by exploring the unknown environment in the initial phase of

the algorithm. As n increases, it is better to exploit the information already

available.

The ε- greedy algorithm maintains a balance between exploration and

exploitation by choosing a random action a with a probability of ε. Also

a greedy action ag is chosen with probability of (1- ε). It may be noted

that if ε = 0, the algorithm will always select greedy action, and if ε = 1,

the algorithm will always select random action. The value of ε decides the

balance between exploration and exploitation. Initially, ε is chosen close to 1,

to explore the unknown environment. As n increases ε is gradually reduced,

so that the available information is exploited.
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5.3 Reinforcement Learning

5.3.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) is a computational approach based on goal

directed learning from interaction with the environment (R.S.Sutton and

A.G.Barto, 1998). It is similar to how animals optimize their behaviour by

learning, to obtain rewards and avoid punishments like learning of an infant

to walk. In the learning process, the agent directly interacts with the en-

vironment without any supervisor as in the case of supervised learning. At

each step the agent takes an action and the agent does not initially know the

effect of its action on the state of the environment and the immediate reward

of this action. By a trial and error process, the agent learns optimal actions

so as to maximize the reward in each state.

The learning methodology developed in Reinforcement Learning combines

the features of two disciplines namely dynamic programming and supervised

learning. Dynamic Programming is a classical method in the field of math-

ematics that has been used to solve several optimization problems. But the

application of Dynamic Programming is limited to problems with small size

and complexity. Supervised learning methods like neural networks needs dif-

ferent sets of input- ouput pairs to train the network. Reinforcement Learning

is a neuro-dynamic programming method in which an explicit goal is learned

to achieve by trial and error interaction with the environment.

The learner or agent tries different actions at different states and learns

to attain the best action at each state such that the long term reward is max-

imized. The action at any state affects the future state of the environment

97



Chapter 5. Residential Load Scheduling Using Reinforcement Learning

Figure 5.1: Interaction between Agent and Environment in Reinforcement
Learning

and the agent tries to attain a control policy or rule for choosing an action.

In RL, the agent can learn optimal policy or rule using simple learning algo-

rithms.

The interaction between the agent and environment is illustrated in Fig

5.1 (R.S.Sutton and A.G.Barto, 1998). The agent interacts with the envi-

ronment and at each step t = 0, 1, 2, 3, ...., some representation of the envi-

ronment’s state st ∈ S is received, where S denotes the set of all possible

states. At each state, an action At ∈ A(st) is selected, where A(st) is the

set of actions in state st. After performing an action, the agent receives a

numerical reward Rt+1 ∈ R and finds itself in a new state st+1.

The main elements of a Reinforcement Learning system are explained in the

following section.

5.3.2 Elements of Reinforcement Learning Problem

The previous example considered in Section 5.2 had only one state. But in

many problems it may be required to find the best action for different states.

The characteristics of such general Reinforcement Learning problem and its
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Figure 5.2: Grid world problem

various elements are explained in this section. Consider the example of a

grid world problem to find the shortest path as given in Fig. 5.2.

The grid with 36 cells arranged in 6 rows and 6 columns is considered.

The agent can be at any one of the cells, at any instant. The aim of the

agent is to reach the goal state, denoted by T and the crossed cells have

some obstacles. For each cell transition, a cost is incurred and the cost is

high when passing through the crossed cells. The agent can follow different

paths to reach the goal state, accordingly the cost also will vary. Starting

from any initial position of the cell, the grid world problem is to find the

optimum path to be followed to reach the goal. The different elements of

the Reinforcement Learning Problem are now explained, with respect to this

example.
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1. State Space: The cell number describes the state of the agent at any

time. The possible state the agent can occupy is the one from the entire

cell space of 36 cells and it is called state space. In Reinforcement

Learning, the state space is defined as the set of all possible states the

agent can occupy at different instants of time. At any instant k, the

state of the agent is denoted as xk ∈ X where X is the state space.

From the initial state x0, the agent performs a series of cell transitions

or actions ao, a1, a2.....aN−1, to reach the goal state T .

2. Action Space: At any instant k, the agent can perform any action

ak ∈ Ak , where Ak, represents the set of permissible actions. The

permissible set of actions depends on the current state xk. For example,

if the agent is in cell number 13, xk = 13, then move to left is not

possible, but move to right, up and down are possible. Thus for each

cell there is a set of possible cell movements. The set of permissible

actions at any instat k forms the action space.

3. System Model: Reinforcement Learning uses direct interaction with

the system to learn and reach the goal. It may not be possible always.

In such cases a mathematical or simulation model is required. In the

grid world problem, the next position of the agent xk+1 depends on the

present state xk and the action ak. It can be represented as,

xk+1 = f(xk, ak) (5.5)

For example, if xk = 13, ak = right then xk+1 = 14, and if xk =

13, ak = down then xk+1 = 19. For simple systems like this, next state
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can be obtained easily by observation. But for systems with larger

state space, a simulation model is needed to obtain xk+1.

4. Policy: Based on the action taken ak, trasition from current state xk

to the next state xk+1 occurs as given by equation 5.5. A policy in

reinforcement learning can be defined as any mapping from state space

X to the action space A and is represented by π. The action taken

by the agent on reaching state x is denoted as π(x). At any state x,

there are many possible paths to reach the goal state. Each path can

be treated as a policy denoted by π1(x), π2(x), etc. It is required to

find the optimum policy π∗(x), corresponding to the minimum cost.

5. Reinforcement Function: The Reinforcement function should reflect

the goal of the agent. In the case of shortest path problem, it can be

assumed that each normal cell movement results in a cost of 1 unit

and a cell with obstacle results in a high cost or penality. When the

agent takes an action ak that results in state transition from xk to

xk+1 then the reinforcement function is represented as g(xk, ak, xk+1).

The reinforcement function returned by each step is also called the

reward, Rk. The agent learns to find a sequence of actions so that

the total reward or cost for reaching the goal state
∑
g(xk, ak, xk+1) is

minimized.

6. Value Function: Reinforcement function indicates the goodness of a

policy in the immediate sense, whereas value function indicates the

goodness of the policy in long run. In order to evaluate the desirability

of a policy over N stages, one can measure the total expected dis-
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counted cost. Value function of any policy π, V π , returns the goodness

of the policy in long-run. The total cost incurred by following a policy

π over N stages starting from an initial state can be calculated as,

V π(x) =
N−1∑
k=0

γkg(xk, ak, xk+1) (5.6)

Here γ which is called the discount factor accounts how much future

rewards to be discounted in rating a good policy over N stages at the

present state x. The value of discount factor is between 0 and 1. Here

in the case of grid-world problem, the costs are same for a normal cell

movement and therefore the value can be taken as 1.

A policy π1 is better than policy π2, only if V π1 ≤ V π2 , ∀x ∈ X. The

ultimate goal of the problem is to find an optimal policy π∗ for which

the total expected cost is minimum compared to all other policy π ∈ Π.

This can be mathematically expressed as,

V π∗(x) ≤ V π(x), ∀x ∈ X, ∀π ∈ Π (5.7)

By following a policy, π(x), the minimum cost is obtained which is

denoted as V ∗(x). This value is called as optimal value function. There

are many methods to find out the optimal policy π∗ and one commonly

used method is Q − learning algorithm which is discussed in Section

5.3.4.
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5.3.3 Multi Stage Decision Problem (MSDP)

Reinforcement Learning can be utilized to obtain solution of Multi Stage

Decision Problems (MSDP). A problem in which a sequence of decisions is

required to be taken for arriving at the solution is called a MSDP. The re-

wards obtained in each stage of decision making can be stochastic in nature.

The application of reinforcement learning for the solution of MSDP is ex-

plained below.

By taking an action a ∈ A, the current state of the system x ∈ X moves

to a new state y with a transition probability of Pxy such that,

Pxy > 0 ∀x, y ∈ X, a ∈ A (5.8)∑
y∈X

Pxy = 1 ∀x ∈ X, a ∈ A (5.9)

An immediate payoff or reward g(x, a, y) is obtained based on the state

and action taken in that state. The goal is to find a policy which decides the

actions to be taken in each state of the environment such that the cumulative

measure of rewards received is optimum. Also the corresponding policy is

called optimal policy.

The value function V π(x) for a MSDP with N stages is given by equation

5.6. To explain the concept of value function, its application for MSDP is

described below.

Consider a single stage problem with N = 1. At the first instant, k = 0,

the state transition occurs from x0 to x1. Since N = 1, x1 is the terminal

state here. This transition is prescribed by a policy, π(x0) and results in an

immediate reward g(x0, π(x0), x1) and reward G(x1) which is the terminal
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reward obtained from state 1. The value function is given by

V π
1 (x0) = E[g(x0, π(x0), x1) + γG(x1)] (5.10)

For a two-stage problem, i.e when N = 2, upon taking action π(x0), the

state transition occurs to x1. Then the system reaches x2 by adopting a

policy π(x1) and returns a reward G(x2). The value function in this case is

given by,

V π
2 (x0) = E[g(x0, π(x0), x1) + γG(x1)]

= E[g(x0, π(x0), x1) + γ(g(x1, π(x1), x2) + γG(x2))]

= E[g(x0, π(x0)x1) + γ(g(x1, π(x1), x2)) + γ2G(x2)]

For a N -stage problem, the value function is given by,

V π
N (x0) = E[

N−1∑
k=0

γkg(xk, π(xk, xk+1) + γNG(xN)] (5.11)

The policy that corresponds to the best action and best reward at a par-

ticular state is called as optimal policy π∗. The optimal cost that is given

by adopting the optimal policy π∗ is called optimal value function which is

calculated using a recursive equation.

For the case N = 1, replacing the expectation operator with transition prob-

ability Pxy,

V π
1 (x) =

∑
y∈X

P π(x)
xy [g(x, π(x), y) + γG(y)], ∀x ∈ X (5.12)
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For the system, the optimal value function is given by,

V ∗1 (x) = min
π∈Π

∑
y∈X

P π(x)
xy [g(x, π(x), y) + γG(y)], ∀x ∈ X (5.13)

If the policy, π(x) is fixed for a state then,

V ∗1 (x) = min
a∈A

∑
y∈X

P a
xy[g(x, π(x), y) + γG(y)], ∀x ∈ X (5.14)

From the above equation, it is clear that, the optimal action and hence

the optimal value functions depends upon the minimization of two terms

g(x, π(x), y) and γG(y). Here g(x, π(x), y) represents the immediate reward

and γG(y) represents the cost to go. If a k stage problem is considered, to

obtain the optimal value, the cost to go in k − 1th should also be optimum.

Thus the optimal value function for kth stage is given by,

V ∗k (x) = min
a∈A

∑
y∈X

P a
xy[g(x, π(x), y) + γV ∗k−1(y)], ∀x ∈ X (5.15)

To find the optimal value function for N stages, recursive equations can be

used starting from the first stage by applying the equation V ∗0 (x) = G(x)

and searching the action space A, N times.

The value function under policy π is given by,

V π(x) =
∑
y∈X

P π(x)
xy [g(x, π(x), y) + γV π(y)] (5.16)

With transition probabilities known, equation (5.16) can be solved to obtain

V π(x). The optimal policy π∗ which corresponds to optimal value function
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can be defined as one for which

V π∗(x) ≤ V π(x),∀x ∈ X, ∀π ∈ Π (5.17)

Then the optimal value function for an N-stage problem can be defined as in

Dynamic programming steps as,

V ∗k (x) = min
a∈A

∑
y∈X

P a
xy[g(x, π(x), y) + γV ∗k−1(y)], ∀x ∈ X (5.18)

starting from the initial condition V ∗0 (x) = 0.

Thus a mathematical formulation of the MSDP is obtained. The steps

to be followed to reach the optimum policy is also explained. The solution

method for reaching the optimal policy called Q-learning is described in the

next section.

5.3.4 Q Learning Algorithm

Q-learning is a solution method used to find the optimal policy by learning

the values of function Q(x, a) which can be used even if transition proba-

bilities are unknown. The value of the Q function is the value of taking an

action in a state under policy π. The Q-value corresponding to a policy π is

defined as,

Qπ(x, a)) =
∑
y∈X

P a
xy[g(x, a, y) + γV π(y)] (5.19)

Comparing equation (5.19) with equation (5.16),

Qπ(x, π(x)) = V π(x), ∀x ∈ X (5.20)
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For optimal policy π∗, the above equations can be written as Qπ∗(x, π∗(x)) =

V π∗(x) = V ∗(x),∀x ∈ X which returns optimum value of Q for the state

action pair (x, π∗). For a minimization problem, the optimal Q-value can be

defined as

Q∗(x, a) = min
π
Qπ(x, a) (5.21)

which implies

Q∗(x, a) = Qπ∗(x, a) ∀x ∈ X, ∀a ∈ A (5.22)

The optimal policy is given by,

π∗(x) = argmina∈AQ
∗(x, a) (5.23)

The Q-learning method can be employed by generating a sequence of samples

which can be used to update the value of Q. At each iteration, the agent

takes an action from the state x using some strategy to reach the new state y

and receives an immediate reward given by g(x, a, y) that is used to update

the value of Q.

Qn+1(x, a) = Qn(x, a) + η[g(x, a, y) + γmin
a′∈A

Qn(y, a′)−Qn(x, a)]

∀x ∈ X, ∀a ∈ A
(5.24)

The above update equation consists of two parameters, η and γ. Learning

index η indicates how much the Q- values are modified at each of the learning

steps. Discount factor γ ∈ (0, 1) indicates how much the future rewards are

to be discounted. Learning parameter η ∈ (0, 1) and with small value of

η, Qn converges to Q∗ and therefore for large values of n, Q∗(x, a) can be
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approximated as Qn(x, a).

The Q-learning algorithm for a MSDP with N stages is given below.

For all states x ∈ X and a ∈ A

Initialize the value of Q0(x, a) = 0

For i = 1 : max iter

Observe the current state x0

For k=1:N

Select an action ak using action selection strategy

Perform action ak and reach state xk+1

Obtain the immediate reward g(xk, ak, xk+1)

Update the value of Q(xk, ak)

Update the state from xk to xk+1

End

End

End

Updating of Q value estimates are repeated a large number of times.

When each action is performed sufficient number of times in each state, the

estimated Q-values converge to true Q-values. To select an action from the

action set various action selection strategies are used and most commonly

used method is the ε-greedy algorithm described earlier in Section 5.2.1.
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5.4 Load Scheduling

5.4.1 Load Model

The switching ON time of a flexible load, can be delayed so as to operate it

at a low cost period. This delay causes some inconvenience or discomfort to

the consumer. This aspect also need to be addressed while scheduling the

loads. Here, a load model that include the consumer comfort as explained

in Section 3.2.2 is considered. The objective of the load scheduling problem

is to minimize the total cost of electricity consumed in a day subjected to

various constraints.

A time line as explained in Section 3.2.1 consisting of 24 equal time slots,

k in one day is chosen. The time between 12 am and 1am is denoted as k=1,

the first time slot and k=24 is the last time slot. Each individual load is

modeled by a 5-tuple represented as,

dj = (sj, fj, lj, rj, udcj) (5.25)

where [sj, fj] represents the operating interval of load dj. lj denotes the total

duration for which the load should remain ON. rj is the power rating in kW.

If jth load is switched on at sj, it will remain on from k = sj to k = sj+lj−1.

The problem is to obtain the optimum time slots at which the loads are to

be switched ON, subject to different constraints. udcj is a parameter called

unit delay cost introduced to capture the degree of discomfort due to the

delay in switching (Ahamed et al., 2011). The parameter udc incorporated

in the load model serves to capture the degree of discomfort. The guidelines
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for choosing udc also is formulated.

5.4.2 Load Scheduling with One Source of Energy (Util-

ity Grid)

The load scheduling problem is considered with a single source of energy, the

utility grid.

The objective is to minimize the total energgy cost for one day satisfying

various constraints. i.e., Minimize,

Total cost =
24∑
k=1

m∑
j=1

Ckrju
k
j (5.26)

subject to,

fj∑
k=sj

ukj = lj; ukj = 0, for k < sj or k > fj

where, k = 1 . . . , 24, j = 1, . . . ,m

The solution space is defined as,

U = [u1
1, u

2
1, . . . , u

24
1 , u

1
2, u

2
2, . . . , u

24
2 , . . . , u

1
m, u

2
m, . . . , u

24
m ]

∀ukj ∈ {1, 0}

Then the aim is to find the optimum values of ukj .

A solution method based on Reinforcement Learning for the load scheduling

problem is explained in the next section.
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5.5 RL Algorithm for Load Sheduling

There exist a variety of machine learning strategies which takes the stochas-

tic nature of problem environment effectively. Reinforcement Learning (RL)

is a neuro-dynamic programming method in which an explicit goal is learned

to achieve by trial and error interaction with the environment. RL combines

the features of dynamic programming and supervised learning. The main ob-

jective of Reinforcement Learning is to find an optimal policy that maximizes

the reward. The agent learns to attain the best action at each state such

that the long term reward is maximized. In RL, the agent can learn optimal

policy using simple learning algorithms. In this section, the RL algorithm

for Load scheduling without PV source is given (Ahamed et al., 2011).

The Load scheduling problem is to find a decision or commitment sched-

ule u1, u2, u3, . . . um, where uj is a vector representing the status of the jth

load. uj = [u1
j , . . . u

24
j ]

The optimization problem is given by,

f(u) = minukj

24∑
k=1

m∑
j=1

Ckrju
k
j (5.27)

Since there are no coupling constraints, the above problem can be written as

m∑
j=1

[minukj

24∑
k=1

Ckrju
k
j ] (5.28)

Now the problem is converted to m minimization problems which can be

solved independently.
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Now it is required to solve the following equation,

minukj

24∑
k=1

Ckrju
k
j (5.29)

subject to,

fj∑
k=sj

ukj = lj ukj = 0, for k < sj or k > fj (5.30)

The above problem is modeled as a Markov Decision Process (MDP). If

a system satisfies Markov Property, then the response of the environment

at k + 1th instant depends only on the state and action at instant k. Thus

in the case of an MDP next state depends on the present state and present

decision. To formulate the load scheduling problem as a MDP and to make

use of RL (R.S.Sutton and A.G.Barto, 1998), state, state space, transition

function, action set and reward function which are explained in 5.3.2 are to

be identified with respect to the load scheduling problem.

The information needed to arrive at the decision should be contained in

the state of the system. The decision to be taken in each step is, which loads

are to be turned ON. This in turn depends on the price of electricity at the

time of use and ON duration of the load. So in the case of load scheduling

problem, the state at any stage k is represented by a two dimensional vector

[x(1), x(2)], where x(1) is the current time slot and x(2) is the ON duration

of the load. Here the optimal actions need to be found only from k = sj

to k = fj since ukj = 0, for for k < sj or k > fj. The MDP starts with

x(1) = k = sj and x(2) = 0 and terminates when x(1) = fj or x(2) = lj.
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The state space is given by,

χ = {(x(1), x(2)); x(1) ∈ {sj, . . . , fj}, x(2) ∈ {0, 1, . . . , lj}}

At each state, the action to be taken is whether to switch ON or OFF the

load. The action set A = {0, 1}. The process starts from k = sj. At

each step, k is incremented by one so xk+1(1)= xk(1)+1. If a=1, the load

is switched ON and xk+1(2)=xk(2)+1. Also if a=0, the load is OFF, then

xk+1(2)=xk(2)+0. The transition from current state to the next state by the

application of an action is defined by the transition function. In this case,

from the present state the new state is obtained using the equation,

[xk+1(1), xk+1(2)] = [xk(1) + 1, xk(2) + a] (5.31)

The objective is to minimize the cost of electricity subject to the constraints.

To capture this objective the cost incurred when the process moves from x to

xnew can be used to formulate the reward function, g(x, a, xnew). For MSDP

having N stages, the requirement is to find the optimal sequence of actions,

a0, a1, a2, .....aN−1 such that observed cost
∑N−1

k=1 γg(xk, ak, xk+1) is mini-

mized. The cost for a sequence of actions is the same as the objective func-

tion when all constraints are satisfied i.e.
∑24

k=1 g(x, a, xnew)=
∑24

k=1 C
krju

k
j .

If any of the constraints is violated a high penality is assigned to the reward

function g(.). Also, when a load with a non zero value of udc is not commit-

ted, a penality proportional to the rating rj and udc of the load is given.
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Therefore, the reward function is given by,

g(x, a, xnew) = Ckrj; if a = 1 (5.32)

= udcjrj; if a = 0

= penality; if

xnew(1) = f and xnew(2) < l

Now to solve the MSDP the Q learning algorithm explained in Section 5.3.4

is used which involves learning Q values. To learn the Q values, start with an

initial guess Q0(x, a), for all state action pairs. At each time instant k, the

system is in state xk, and we take an action ak based on the current estimate

Qn(xk, ak). Based on the action chosen, a new state xk+1 is reached and a

cost of g(xk, ak, xk+1) is incurred. Using this data the Q value for the current

state action pair is updated using the Eqn (5.33).

Qn+1(xk, ak) = Qn(xk, ak) + η[g(xk, a, xk+1) + γmin
a′∈A

Qn(xk+1, a
′)−Qn(xk, ak)]

∀x ∈ X, ∀a ∈ A

(5.33)

The update equation consists of two parameters, i.e. η and γ. Learning

index η indicates how much the Q values are modified at each of the learning

steps. γ is the discount factor which is assumed to be 1. In the initial part

of the algorithm, Qn(xk, ak) will not be a good approximation of Q∗(xk, ak).

Updating of Q value estimates are repeated a large number of times. If η

is sufficiently small and if all possible (x,a) combinations of state and action
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are sufficiently visited then the iteration given by Eqn (5.33) will result in

Qn converging to the optimal value Q∗. The RL algorithm is given below.

REINFORCEMENT LEARNING ALGORITHM FOR LOAD SCHEDULINGWITH

ONE SOURCE (UTILITY GRID)

Read the load data (sj, fj, lj, rj, udcj) for all loads

Initialize Max episodes, the parameters η and γ

For j=1 to m

Initialize Q0(x, a) = 0, ∀x ∈ X & ∀a ∈ A

Initialize ε

For n = 1 to Max episodes

x(1) = sj; x(2) = 0;

x = [x(1) x(2)]; k = x(1)

while (x(1) < fj AND x(2) < lj)

Find the set of permissible actions

Select greedy action with probability 1 − ε or a random

exploratory action with probability ε

Find the new state xnew using Eqn.(5.31)

Find the cost corresponding to the transition using Eqn.(5.32)

Update the Q-value corresponding to the state action pair

using Eqn.(5.33)

x = xnew
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k = k + 1

end

Update ε

end

Save the commitment schedule ukj for the jth load.

end

The result of RL algorithm is compared with that of Learning Automata

algorithm (Syed Q. Ali and Malik, 2013b). If we consider only atomic

loads, the load scheduling problem will become a SSDP. The load scheduling

problem with m loads is viewed as m independent single stage decision-

making problems. The reward obtained on taking an action ’a’ is, R(a) =∑sj+a+lj−1
k=sj+a Ckrj.

R(a) =

sj+a+lj−1∑
k=sj+a

Ckrj (5.34)

. The objective is to find the best action a∗ that minimizes the expected value

of the reward Q(a) = E{R((a)}, which can be obtained using the following

equation.

Qk+1
j (a) = Qk

j (a) + η(R(a)−Qk
j (a)) (5.35)

. The LA algorithm for load scheduling is given below.

LEARNING AUTOMATA ALGORITHM

Read the load data (sj, fj, lj, rj) for all loads

Initialize Max episodes, the learning parameters η, ε
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Calculate pj = fj − sj − lj + 1

Initialize Q0
j(a)=0, for a = 1, . . . , pj

For n = 1 to Max episodes

Select random action a with probability ε or greedy action ag with

probability 1-ε

Calculate the observed cost using Eqn.(5.34)

Update the estimates using Eqn.(5.35)

Update ε

end

Find the best action for the jth load: a∗ = argmina∈A{Qj(a)}

5.6 Results and Discussions

To test the efficacy of the Reinforcement learning algorithm for load schedul-

ing, several simulation experiments are conducted. Max episodes, the learn-

ing parameters η and ε are initialized as 1000, 0.1 and 0.5 respectively. ε is

updated to 0.9 ∗ ε after every 100 episodes. Initially a system consisting of

6 loads is considered and the load characteristics is given in Table 5.1. The

price of electricity is given in Table 5.2.

The simulation is done and the load schedule obtained is given in Table

5.3. It is observed that all the loads are scheduled in the low priced period

within their specified time slots. For example, if load number 5 is considered

it can be turn on at any time slot in the interval {20 - 24} for a duration of 2
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Table 5.1: Load Details

Load s f l r udc
1 9 17 3 5 1
2 8 15 4 3 1
3 11 19 5 7 2
4 10 24 7 5 1
5 20 24 2 5 3
6 6 18 8 5 1

Table 5.2: Price of Electricity

Time,k Price,Ck
1...12 5
13,14 12

15...18 5
19,20,21 10
22,23,24 5

hours. The schedule obtained for this load is {22 - 23} which are low priced

periods. The total energy cost obtained is 735 units which is the minimum

total energy cost corresponding to the given tariff and load details.

With same set of loads simulation is repeated with different values of udc

ranging from 0 to 20, to study the effect of udc. It is observed that the total

cost of energy increased with udc. The results are tabulated in Table 5.4.

From the table we can see that when udc increases, the cost increases as

consumer convenience is given importance. Moreover, we can also see that

when udc is above 7 there is little impact. Here the daily average tariff of

electricity is around 7 units. From this we can give guidelines for choosing

udc. If convenience is of utmost importance choose udc greater than the
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Table 5.3: Load Schedule

Hour Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Demand
from grid

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 1 5
7 0 0 0 0 0 1 5
8 0 1 0 0 0 1 8
9 1 1 0 0 0 1 13
10 1 1 0 1 0 0 13
11 1 1 1 1 0 1 25
12 0 0 1 1 0 1 17
13 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 1 1 0 1 17
16 0 0 1 1 0 1 17
17 0 0 1 1 0 0 12
18 0 0 0 1 0 0 5
19 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0
22 0 0 0 0 1 0 5
23 0 0 0 0 1 0 5
24 0 0 0 0 0 0 0
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average tariff (Cav) and choose a value between 0 and Cav if delay can be

tolerated.

Table 5.4: Effect of udc on cost

udc (for all loads) cost

0 735

3 735

5 795

7 890

8 988

20 988

The algorithm is validated and compared with Learning Automata algo-

rithm proposed in (Syed Q. Ali and Malik, 2013b). To compare with Ali et.

al., a load generator is programmed to generate 100 loads, assuming udc = 0

for all loads. Five categories of loads based on the time of occurrence are

considered. Category 1 is assumed to be non flexible loads that can occur

at any time of the day with a duration of one to four hours. The other cat-

egories include flexible loads occuring at load peak of the day, load peak at

night and off peak hours. So category II load is with sj randomly selected

between the 8th and 15th interval and the scheduling window is randomly

selected between one to seven intervals. The length is chosen anywhere be-

tween one to three intervals. Category III load is chosen such that it starts

between 17th and 20th interval. The scheduling window is randomly chosen

between one to five intervals and the length is between one to two intervals.

Category IV load is assumed to occur between 1st and 8th interval, the off-

peak hours after midnight. The length is chosen anywhere between one and

120



5.6 Results and Discussions

three intervals and the scheduling window is randomly chosen between one

to five intervals. Category V is with a start time randomly selected between

the 13th and 15th interval, a scheduling window of one to five intervals and

length between one to three intervals. The differential tariff used is shown

in Fig. 5.3. The performance comparison of the algorithms is given in Table

5.5.

Figure 5.3: Tariff

All loads are committed in the low priced time slots and the total price

of electricity for the learned schedule is 5014 units. With unscheduled load

the total price of electricity is found to be 5161 units. When we generate

the load a second time using the program, the load profile may change due

to randomness. The computation time of RL algorithm 100 loads is found

to be 3.89s, which is less than that of Learning Automata algorithm. The

performance comparison of the algorithms is given in Table 5.5.
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Table 5.5: Performance Comparison with LA

Scheduled Unscheduled Computation Time(s) Computation Time (s)

Cost Cost with RL with LA

5014 5161 3.89 6.76

LA is used for solving single stage decision making problems and load

scheduling problem is solved using LA considering it as an SSDP. In LA the

performance index of each action is updated on computation of reward for

that action. But in MSDP, RL is suitable since it updates the Q value or

performance index of each state action pair considering the discounted reward

of future action. Hence, the chance of finding the best action corresponding to

a particular state is improved in RL compared to LA. Thus the computation

time is reduced in RL.

5.7 Case Study

To investigate the performance of the proposed scheduling algorithm, a smart

home with schedulable and unschedulabe appliances is considered. Typical

schedulable appliances in the home include Washing machine, Cloth dryer,

Dish washer, Vacuum cleaner, Iron and Rice cooker and the residential loads

are considered by referring several case studies in the literature. These appli-

ances operate with different time intervals, duration of operation and power

ratings. Typical residential loads are considered by referring several case

studies in the literature.Also the consumer’s willingness to tolerate delay in

operation of the schedulable devices is reflected through the choice of udc
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value. The parameters of the household devices are given in Table 5.6.

Table 5.6: Parameters of Household Devices

Sl. No. Appliance s f l r udc

1 Lighting 18 20 3 0.36 8

2 Washing machine 8 14 2 0.50 1

3 Cloth dryer 11 17 1 1.80 0

4 Dish washer 14 19 2 1.20 9

5 Vacuum cleaner 9 14 1 0.65 1

6 Iron 6 9 1 1.10 1

7 Rice cooker 7 10 1 0.30 0

The dish washer assigned with udc = 9 indicates that the consumer is

not willing to accept the inconvenience caused by delay. We can not shift

the time of operation of a non flexible load such as lighting load. The dura-

tion of operation is 3 hours starting from 18th time slot. The study is first

conducted without considering the DG source. As expected the appliances

are committed satisfying all the specified requirements with an energy cost

of 53.65 units. The appliance schedule is given in Table 5.7. If the consumer

is willing to tolerate delay for the operation of the dish washer, then a low

value of udc can be set for this load. Simulation is repeated with udc=0 for

the dish washer load. It was observed that the appliance schedule shifted to

the low priced periods with a minimum total energy cost of 45.25 units.

For the same residential loads given in Table 5.6 with udc = 0 for all loads,

simulation is also done with Binary Particle Swarm Optimization (BPSO)

algorithm proposed in (Remani et al., 2015). The results are compared with

the results obtained using RL algorithm and is shown in Table 5.8. It is
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Table 5.7: Home Appliance Schedule

Hour Lighting Washing Cloth Dish Vacuum Iron Rice Grid
machine dryer washer cleaner cooker Power

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 1.1
7 0 0 0 0 0 0 1 0.3
8 0 1 0 0 0 0 0 0.5
9 0 1 0 0 1 0 0 1.15
10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 0 0 1 0 0 0 0 1.8
13 0 0 0 0 0 0 0 0
14 0 0 0 1 0 0 0 1.2
15 0 0 0 1 0 0 0 1.2
16 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0
18 1 0 0 0 0 0 0 0.36
19 1 0 0 0 0 0 0 0.36
20 1 0 0 0 0 0 0 0.36
21 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0
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observed the scheduled cost obtained in both the cases is the same, minimum

cost of 45.45. But the computation time is less in the case of RL algorithm

(1.34s) compared to BPSO algorithm (16.51s). With PV source and comfort

constraint, the load scheduling problem is more complex and it is difficult to

obtain solution with BPSO.

Table 5.8: Performance Comparison with BPSO

Scheduled Unscheduled Computation Time(s) Computation Time (s)

Cost Cost with RL with BPSO

45.45 53.65 1.34 16.51

5.8 Conclusion

A solution to the residential load scheduling problem using Reinforcement

Learning approach is developed. The discomfort caused due to delay in

scheduling a load is also considered in the load model by including a factor

udc. A large number of simulations are done and the results obtained are

analyzed and verified. The algorithm is also verified with the case study of

a home with different types of loads. From the simulation results it is found

that using the utility grid power, the loads are scheduled with minimum total

energy cost, satisfying the constraints. Also the RL algorithm is found to

be a better approach compared to other methods. But the renewable energy

source is not included in the problem considered. Next, the load scheduling

problem in the presence of Photovoltaic (PV) source need to be addressed.
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Chapter 6

Residential Load Scheduling

with PV Using Reinforcement

Learning

6.1 Introduction

The deployment of small intermittent renewable energy resources within the

consumer premises is increasing nowadays. A large number of consumers tend

to cover their electricity demand by their own local generation using renew-

able Distributed Genertion (DG) sources such as PV, wind turbine based

power generation systems etc. They produce clean energy which helps in

meeting the rising power demand with minimum environmental challenges.

Among the various DGs the most common and abundant resource is the

Photovoltaic. Recently, there is an increase in the number of residential con-

sumers who install roof top PV systems to meet their load demand. With
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the development in power electronic interface and decrease in cost of Pho-

tovoltaic(PV) panels (Carrasco et al., 2006), (Kouro et al., 2015), this trend

is expected to grow. If the power output from such renewable sources is

utilized effectively depending on the availability, it will help in reducing the

electricity bill of the residential consumer. But the power generation from

such sources is not consistent. This is mainly due to the random nature of

the solar irradiance. The uncertain nature of the power output should also be

taken into account while considering the PV source for energy management.

Even though there are many works that consider home energy management

system with PV source, the uncertainty associated with the power generation

of PV source is not modeled in most of the cases.

The solar irradiance can be modeled using probabilistic distributions, if

sufficient data is available. (Salameh et al., 1995) used Probability Density

Functions (PDF) such as Beta, Weibull and Log-Normal to model the solar

irradince and it was found that the Beta distribution fits the best. Beta

PDF is used by several authors to model the uncertainty associated with

solar power generation (Assuncao et al., 2003), (Atwa et al., 2010). In this

work, the historic solar irradiance data of the site selected is taken from Na-

tional Renewable Energy Laboratory (NREL) solar radiation database and

the solar irradiance is modeled using Beta PDF to represent the uncertainty.

For residential load scheduling the consumer comfort also is to be taken

into account. Thus the future residential consumer will have renewable

sources, schedulable loads, non-schedulable loads and various time depen-

dant tariff.The consumer wants to minimize his electricity bill without com-

promising on the comfort. Thus the major aspects to be considered with
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respect to residential load scheduling include comfort level associated with

different appliances, constraints on operation of devices, availability, price

and nature of energy supply. A generalized mathematical model developed

considering these aspects, is explained earlier in Chapter 3. Reinforcement

Learning (RL) is an approriate tool to solve this load scheduling problem

which requires decision making considering uncretainty.

In this chapter, the uncertainty modeling of PV power generation using

Beta PDF is described. The solution for residential load scheduling problem

considering the uncertain PV power generation using Reinforcement Learn-

ing method is also explained.

6.2 Uncertainty modeling of Photovoltaic Sys-

tem

The output of the renewable DG unit like Photovoltaic source is stochastic

due to the uncertain nature of solar irradiance. When sufficient data is

available, uncertainty associated with the solar irradiance can be modeled

as a random variable for which probabilistic distributions are used. A lot

of previous data of irradiance is available and for developing the uncertainty

model for the same, Beta PDF is being used (Atwa et al., 2010).

fb(s) =
Γ(α + β)

Γ(α)Γ(β)
∗ (s)α−1 ∗ (1− s)β−1

for 0 ≤ s ≤ 1, α, β ≥ 0

= 0 otherwise

(6.1)
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where,

s solar irradiance kW/m2

fb(s) Beta distribution function of s

α, β parameters of Beta distribution function

α and β are calculated from the mean(µ) and standard deviation(σ) of the

random variable s.

β = (1− µ) ∗
(
µ ∗ (1 + µ)

σ2
− 1

)
(6.2)

α =
µ ∗ β
1− µ

(6.3)

To model the hourly solar irradiance using Beta PDF, the mean and

standard deviation of the historical data is needed. This is obtained by

historical data processing. In this study, the historic solar irradiance data

of the site selected is taken from National Renewable Energy Laboratory

(NREL) solar radiation database. The hourly solar irradiance of the site

under study for a period of one year is considered. The year is divided into

four seasons and each season with 3 months, is represented by any day in

that season. The day is further divided into 24-h segments. There will be

90 irradiance values for each hour in a season, considering 30 days for a

month(3months X 30days). For each hour, the mean and standard deviation

of solar irradiance is computed from this data and Beta pdf is generated.

The Power generation of the PV module depends on the solar irradiance,

ambient temperature and the module characteristics (Atwa et al., 2010). For

a particular hour solar irradiation s is generated using the corresponding
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Beta PDF.

Then, the PV output power PS, is calculated using the following equations

(6.4) - (6.8).

FF =
VMPP ∗ IMPP

Voc ∗ Isc
(6.4)

Tc = TA + s

(
NOT − 20

0.8

)
(6.5)

Iy = s[Isc +Ki(Tc− 25)] (6.6)

Vy = Voc −Kv ∗ Tc (6.7)

PS = N ∗ FF ∗ Vy ∗ Iy (6.8)

where

FF Fill Factor

Voc Open-circuit voltage in V

Isc Short circuit current in A

VMPP Voltage at maximum power point in V

IMPP Current at maximum power point in A

TA Ambient temperature in 0 C

Tc Cell temperature in 0 C

NOT Nominal operating temperature of cell in 0 C

Kv Voltage temperature coefficient V/0 C

Ki Current temperature coefficient I/0 C

s solar irradiance in kW/m2

PS Power output of the PV module
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The PV power output obtained using Eqn (6.8) is utilized for load schedul-

ing with PV. Load scheduling with PV is explained in the next section.

6.3 Residential Microgrid

The general block diagram of a residential microgrid with grid connected PV

source is shown in Fig. 6.1 which includes the converters and controllers

needed for actual implementation (Amrr et al., 2018). For integrating it

with the PV source a dc-to-dc solar charge controller or power-conditioning

unit (PCU) is used. The charging of battery is decided by the controller

depending on the battery voltage level from the solar PV and/or utility grid.

Figure 6.1: Micro grid
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6.4 Load Scheduling with PV Source

6.4.1 Load Model

The same load model as considered in Chapter 5 is taken in this case also,

which incorporates the parameter udc to capture the degree of discomfort.

Each individual load is modeled by a 5-tuple represented as,

dj = (sj, fj, lj, rj, udcj) (6.9)

where [sj, fj] represents the operating interval of load dj. lj denotes the total

duration for which the load should remain ON. rj is the power rating in kW.

As explained, if the consumer is willing to accept delay, choose a low

value of udc. Large value of udc can be selected if consumer can not tolerate

delay but results in high energy cost.

6.4.2 Load Scheduling with two Sources (Grid and PV

Source)

Consider the case with two sources, utility grid and PV source. The mathe-

matical model of this problem can be obtained by substituting n = 2 in the

general case explained in Chapter 3. The load scheduling problem is to find

a sequence of decisions,

u = [u1
1i, u

2
1i, . . . , u

24
1i , u

1
2i, u

2
2i, . . . , u

24
2i , . . . , u

1
mi, u

2
mi, . . . , u

24
mi], ∀ i ∈ {1, 2} such

that total electricity cost, for a day is minimized.
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Minimize the total energy cost function given by,

Total cost = E[
24∑
k=1

m∑
j=1

2∑
i=1

Ck
i rju

k
ji] (6.10)

subject to,
2∑
i=1

fj∑
k=sj

ukji = lj,∀j ∈ {1,m}

ukji = 0, for k < sj or k > fj

where Ck
i is the hourly energy cost of ith source,

ukji is the binary status of jth load at kth hour, with ith source.

Here i = 1, 2 denotes the sources grid and PV respectively.

6.5 RL Algorithm for Load Scheduling with

PV Source

It is assumed that the grid connected home is equipped with a roof top PV

system. The purchase of grid power can be reduced by making the best use

of PV power. The task is to minimize the daily electricity cost considering

the two sources, the PV and the grid, subject to the constraints.

That is,

minukjiE[
24∑
k=1

2∑
i=1

Ck
i rju

k
ji] (6.11)

subject to,
fj∑
k=sj

ukji = lj (6.12)
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ukji = 0, for k < sj or k > fj

Here, i=1 for grid and i=2 for PV. ukji indicates the status of load j, in the

time slot k. That is, ukji denotes ON/OFF status. E[] denotes the expected

value.

The state is defined same as, [x(1), x(2)], where x(1) is the current time

slot and x(2) is the ON duration of the load. At each state, the action to

be taken is whether to switch ON, from grid/PV or switch OFF the load.

The action set is modified to A = {0, 1, 2}. For switching OFF, the action

is denoted as, a = 0. Action a is taken as 1 for switching ON the device

using grid power. When the load is switched on from PV power, a = 2. This

action causes a reduction in available PV power Ppv, during that particular

hour and the PV power is updated to, Ppvnew given by,

Ppvnew = Ppv − rj (6.13)

In the reinforcement learning approach the stochastic nature of PV Power

can be incorporated in the reward function and the the reinforcement func-

tion is defined as,

g(x, a, xnew) = Ck
i rj; if a = 1 or 2 (6.14)

= penality; if Ppvnew < rj and a = 2

= udcjrj; if a = 0

= penality;

if xnew(1) = f and xnew(2) < l
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where, Ck
i denotes the cost of one unit of energy during the kth time slot for

ith source. Ck
i depends on the nature of power source i, solar or grid and also

on the type of tariff in the case of grid power. It is to be noted that, after

load scheduling, the PV power availability at that time slot is updated to

Ppvnew. If the power available is less than rj a penalty is assigned as reward

function.

State transition function is defined as,

[xk+1(1), xk+1(2)] = [xk(1) + 1, xk(2) + a′] (6.15)

where, a′= 0 , if the device is in OFF state, that is a=0 and a′=1 , if the

device status is switched ON, either from grid or PV, that is a=1 or a=2.

Before starting Q value updation, the α, β parameters are generated

from historical data. Also the (sj, fj, lj, rj, udcj) data for each load is made

available. The Q values are initialized to zero for each load. i.e. Q0(x, a) = 0,

where state x = [x(1) x(2)], a = {0, 1, 2}. The PV power for the time slot

is simulated using Beta PDF, which takes into account the randomness of

PV power. Starting from x(1) = sj and x(2) = 0, action/decision is taken

based on availability of PV power following ε-greedy strategy. Depending on

the action taken state transition occurs and the Q-value as well as PV power

availability are updated. After sufficient number of iterations, the learning

phase converges, which is decided by the negligible updation in Q-values.

The simulation phase gives the best action or source switching of each load

corresponding to different time slots. The steps involved in RL algorithm for

load scheduling with PV is given below.

REINFORCEMENT LEARNING ALGORITHM
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Calculate α and β from the past historical irradiance data

Read the load data (sj, fj, lj, rj, udcj) for all loads

Initialize Max episodes, the parameters η and γ

For j=1 to m

Initialize Q0(x, a) = 0, ∀x ∈ X & ∀a ∈ A

Initialize ε

For n = 1 to Max episodes

x(1) = sj; x(2) = 0;

x = [x(1) x(2)]; k = x(1)

while (x(1) < fj AND x(2) < lj)

if (First device in the kth hour),

Simulate the PV power for the hour using Beta PDF

else read the available PV power

Find the set of permissible actions

Select greedy action with probability 1 − ε or a random

exploratory action with probability ε

Find the new state xnew using Eqn.(6.15)

Find the cost corresponding to the transition using Eqn.(6.14)

Update the Q-value corresponding to the state action pair

using Eqn.(5.33)

Update PV power availability for the hour if a=2 using

Eqn.(6.13)
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x = xnew

k = k + 1

end

Update ε

end

Save the commitment schedule ukji for the jth load.

end

6.6 Results and Discussions

6.6.1 Modeling the Uncertainty of PV Power

The output power of the PV module is dependent on the solar irradiance,

the characteristics of the module and ambient temperature. The uncertainty

in the solar irradiance is modeled using Beta PDF as stated earlier. In this

study, the historic hourly irradiance data is taken from the solar radiation

database of National Renewable Energy Lab (NREL) for the site Thrissur,

Kerala (Latitude 10.52oN , Longitude 76.21oE). The parameters of the Beta

PDF of solar irradiation is estimated from the hourly irradiance data. The

four seasons in Kerala can be divided as winter, summer, south west monsoon

and retreating monsoon. There are 90 data points corresponding to a season.

The Beta pdf for each hour is generated and using this the hourly irradiance

is simulated. The PV source is designed to meet about 50 percent of the

total load for 24 hours. So a PV source with 160 modules is selected and
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Table 6.1: PV module Parameters

Watt peak(W) 75

Open circuit voltage(V) 21.98

Short circuit current (A) 5.32

Voltage at maximum power(V) 17.32

Current at maximum power(V) 4.76

Voltage temperature coefficient(mV/0C) 14.4

Current temperature coefficient(mA/0C) 1.22

Nominal cell operating temperature(0C) 43

the power output is simulated. The characteristics of the PV module (Atwa

et al., 2010) is given in Table 6.1.

6.6.2 Load Scheduling with PV Source

Simulation is done with PV source for the same load details, given in Table

6.2. For the grid power the same tariff as shown in Table 6.3 is used, while the

cost of PV power is assumed a low value of 1 unit. As mentioned earlier, to

simulate random solar irradiation Beta distribution function is used. Hence

while learning in each iteration the algorithm sees different PV power and

in the simulations tested for each day the PV power will be different. One

such scenario is shown in Fig. 6.2 .

The commitment schedule obtained using a simulated power scenario is

given in Table 6.4. In the schedule, the ON status of load with power taken

from PV source is denoted as 2 and that with grid power is denoted as 1.

All the loads are scheduled between their respective sj’s and fj’s in the low

priced period. At any time slot when the PV power is sufficient to meet the
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Figure 6.2: Simulated Irradiance and Power

load demand, the scheduling is done using PV power. The remaining loads

are committed with grid power in the low priced period and satisfying the

constraints. For example, load 1 is committed during the interval {9 - 11}

and is powered by PV source. Load 3 is ON during {11 - 15}, with grid power

for 11th slot and PV power for slots {12 - 15}. It can be seen that slot 11 is

a low priced period for grid power. For load 4, the schedule is {10 - 12} and

{15 - 18} with 16th slot powered from PV. With PV, the total energy cost is

reduced to 495 and the demand from grid is also reduced. The simulations

are repeated for a large number of scenarios. Even though there is variation

in the simulated PV power due to uncertainty, it is observed that the load
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Table 6.2: Load Details

Load s f l r udc
1 9 17 3 5 1
2 8 15 4 3 1
3 11 19 5 7 2
4 10 24 7 5 1
5 20 24 2 5 3
6 6 18 8 5 1

Table 6.3: Price of Electricity

Time,k Price,Ck
1...12 5
13,14 12
15...18 5

19,20,21 10
22,23,24 5

schedules obtained corresponds to the minimum energy cost.

Next, to demonstrate the scalability and validate the same, 100 random

loads are generated, assuming udc = 0 for all loads. The PV source capacity

is enhanced to account for the increased number of loads. The simulation is

carried out with the same loads. In this case the total cost of electricity is

reduced to 2130 units, whereas the cost with unscheduled demand is 5161

units and scheduled using RL without PV is 5014. The unscheduled load, the

load scheduled using RL algorithm, without PV and with PV are shown in

Fig. 6.3. It can be seen that without PV, as the load tries to avoid periods

with higher price, though there is reduction in energy cost the maximum

demand on the system is increased. The results show that, with PV there
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Table 6.4: Load Schedule with PV

Hour Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Demand
from grid

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 1 5
7 0 0 0 0 0 1 5
8 0 2 0 0 0 1 5
9 2 0 0 0 0 1 5
10 2 2 0 1 0 1 10
11 2 2 1 1 0 1 17
12 0 2 2 1 0 1 10
13 0 0 2 0 0 0 0
14 0 0 2 0 0 0 0
15 0 0 2 1 0 1 10
16 0 0 0 2 0 0 0
17 0 0 0 1 0 0 5
18 0 0 0 1 0 0 5
19 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0
22 0 0 0 0 1 0 5
23 0 0 0 0 1 0 5
24 0 0 0 0 0 0 0
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is reduction in energy cost and grid power consumption. This is achieved

by maximum utilization of available PV power by effective load scheduling

using RL algorithm.

143



Chapter 6. Residential Load Scheduling with PV Using Reinforcement
Learning

Hour
2 4 6 8 10 12 14 16 18 20 22 24

 U
n

s
c
h

e
d

u
le

d
 D

e
m

a
n

d

10

20

30

40

50

60

70
Unscheduled Demand Allocation

(a)

Hour
2 4 6 8 10 12 14 16 18 20 22 24

 S
c
h

e
d

u
le

d
 D

e
m

a
n

d
 w

it
h

o
u

t 
P

V

10

20

30

40

50

60

70
Scheduled Demand Allocation without PV

(b)

Hour
2 4 6 8 10 12 14 16 18 20 22 24

 S
c
h

e
d

u
le

d
 D

e
m

a
n

d
 w

it
h

 P
V

10

20

30

40

50

60

70
Scheduled Demand Allocation with PV

(c)

Figure 6.3: (a)Unscheduled Demand (b)Scheduled Demand without PV us-
ing RL (c)Scheduled Demand with PV using RL
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6.7 Case Study

To investigate the performance of the proposed scheduling algorithm, a grid

connected smart home with PV source and schedulable and nonschedulabe

appliances is considered. Typical schedulable appliances in the home include

Washing machine, Cloth dryer, Dish washer, Vacuum cleaner, Iron and Rice

cooker. These appliances operate with different time intervals, duration of

operation and power ratings. Also the consumer’s willingness to tolerate

delay in operation of the schedulable devices is taken into account by proper

choice of udc value. The parameters of the household devices are given

in Table 6.5. The dish washer assigned with udc = 9 indicates that the

Table 6.5: Parameters of Household Devices

Sl. No. Appliance s f l r udc

1 Lighting 18 20 3 0.36 8

2 Washing machine 8 14 2 0.50 1

3 Cloth dryer 11 17 1 1.80 0

4 Dish washer 14 19 2 1.20 9

5 Vacuum cleaner 9 14 1 0.65 1

6 Iron 6 9 1 1.10 1

7 Rice cooker 7 10 1 0.30 0

consumer is not willing to accept the inconvenience caused by delay. We can

not shift the time of operation of a non flexible load such as lighting load.

The duration of operation is 3 hours starting from 18th time slot.

The PV generation of the home considered is 5kW. The appliance com-

mitment schedule with DG is given in Table 6.6. In the schedule, the ON
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status of load with power taken from PV source is denoted as 2 and that with

grid power is denoted as 1. It can be seen that in this case for the lighting

load which is unschedulable and required to be operated in time slots {18 -

20}, power is taken from grid, due to the non-availability of the PV power at

that time slots. Also dish washer load is assigned a high udc to avoid delay

in scheduling. Consequently it is ON during time slots {14 - 15}. With PV,

the energy cost is reduced to 16.25 units.

Table 6.6: Home Appliance Schedule with PV

Hour Lighting Washing Cloth Dish Vacuum Iron Rice Grid
machine dryer washer cleaner cooker Power

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 2 0
8 0 2 0 0 0 2 0 0
9 0 2 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0 0 0 2 0 0 0
14 0 0 0 2 0 0 0 0
15 0 0 0 2 0 0 0 0
16 0 0 2 0 0 0 0 0
17 0 0 0 0 0 0 0 0
18 1 0 0 0 0 0 0 0.36
19 1 0 0 0 0 0 0 0.36
20 1 0 0 0 0 0 0 0.36
21 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0
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6.8 Conclusion

The output power of the Photovoltaic source is stochastic in nature due to

the uncertainty associated with solar irradiance. The random nature of the

solar irradiance is modeled using Beta PDF. The discomfort caused due to

delay in scheduling a load is also considered in the load model by including a

factor udc. A solution to the residential load scheduling using Reinforcement

Learning approach is developed. A large number of simulations are done

and the results obtained are analyzed and verified. From the simulation

results it is found that the loads are scheduled with minimum energy cost,

effectively utilizing the PV and grid, and satisfying the constraints, which

will be beneficial to the consumer as well as the utility.
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Chapter 7

Prototype Implementation of

Residential Energy

Management System

7.1 Introduction

The grid connected PV systems are beoming a promising source of energy

for residential sector, which is one of the major power consumers. This has

markedly influenced the power consumption pattern of residential consumers.

Efficient microgrid control methods with optimal scheduling of loads will

provide reliable and cost effective energy utilization. The PBDR programs

including intermittent PV power generation enable consumers to utilize en-

ergy more efficiently, leading to energy savings and cost reduction. But it

is difficult or impractical for the consumers to control the loads manually

considering the complexity associated with it and necessitated efficient au-
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tomated load scheduling algorithm. By simulation experiments it is found

that the developed RL algorithm helps to attain the goal of cost reduction

along with considering the various constraints and priorities associated with

loads and generation resources. In the smart grid scenario, with the devel-

opment and integration of information and communication technologies, the

practical implementation of the algorithm proposed for load scheduling is

to be explored by exploiting the two way communication feature between

consumer and utility.

The performance of the load scheduling algorithm in a practical system

is investigated by implementing a Residential Energy Management System

(REMS) using NodeMCU IoT setup. In this work, only the load scheduling

and communication technologies associated with it is focussed. For making

it a real time system, suitable controller modules of the invereter also is to

be developed. The prototype model developed to showcase the algorithm is

described in this chapter.

7.2 Residential Energy Management System

(REMS)

A residential consumer with a grid connected rooftop PV system is considered

for study, with five different types of appliances. The architecture of REMS

is explained below.
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7.2.1 Architecture of REMS

The prototype Residential Energy Management System includes an Energy

Management Controller (EMC), a user interface and device status indicators.

The architecture of the proposed system is shown in Fig 7.1.

Figure 7.1: Architecture of REMS

The EMC receives the load details and constraints as entered by the

consumer. Forecasting of PV power for the next day is done a priori using

the probability distribution function. The forecasted PV power generation

for different time slots is being communicated to the utility so that they

can fix the tariff for different time slots. The tariff reflects the promotion of

photovoltaic power instead of grid whenever it is available. The EMC receives

the tariff from the utility through communication interfacing. Optimal load

schedule for the different loads are generated by the consumer based on

the tariff. The obtained ON/OFF status is communicated to the various

relays connected to the loads at each and every time slot. The EMC also

provides the facility to reschedule the loads automatically as desired by the

consumer or demanded by the utility. Using the user interface the consumer

can initialize the status of each load as per the requirement such as the power
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rating, duration of operation and flexible operating interval. Consumer is also

having the flexibility to modify/reschedule in case if any change is needed.

7.2.2 Functionalities of REMS

The different functionalities of REMS can be described as follows.

• Add/Edit Device details

This enables the consumer to enter and update the details such as start

time sj, finish time fj, ON duration lj, power rating rj and udcj value

of each load j depending on the requirement.

• Forecast PV power

The consumer can simulate the PV power using the PV power modeling

and forecasting program and is communicated to the utility. Utility

provides the tariff based on the availability of PV power at different

time slots.

• Load scheduling

The load scheduling is done using Reinforcement Learning algorithm

based on PV power generation and real time tariff and optimal load

schedule is obtained. The load scheduling program generates a matrix

of arrays with values 0 or 1 or 2 at each slot, to indicate the appliance

status. After scheduling the device status is indicated as 0 if device

is OFF, 1 if connected to utility grid (source 1), 2 if connected to PV

(source 2). This schedule is available to the consumer.

• Display device status

The generated load schedule of the various devices are communicated

152



7.2 Residential Energy Management System (REMS)

and the status of these at different time slots displayed. Also based on

the device status two power values, power taken from Grid and PV are

updated and finally sent to utility.

The Signal flow in REMS is illustrated in Fig 7.2.

Figure 7.2: Signal flow in REMS

7.2.3 Prototype Implementation

The prototype implementation of the REMS is done using a NodeMCU.

The NodeMcu is an open-source firmware and development kit that helps

to Prototype the IoT product within a few Lua script lines or C codes.

NodeMCU is like Arduino Hardware with a input output built in the board

itself. It has also a Wi-Fi built in to connect directly to internet to control the

things online using Nodejs Style network API for digital network applications,

which facilitates developers to code running on the Board and speed up the

Internet of Things application development process. The Development Board

is based on ESP8266 Chip. The user interface is implemented using Visual

Basic and communication is enabled through Wi-Fi. The prototype setup is
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shown in Fig 7.3. One day is divided into 24 time slots for scheduling and

Figure 7.3: Prototype setup

tariff updates. In the proto type, the duration of one time slot is taken as

one minute instead of one hour. The procedure for energy management is as

follows:

• Initialize the status of each load such as, start time, finish time, ON

duration, power rating and udc through the user interface by the con-

sumer.

• Simulate the PV power using the PV power modeling and forecasting

program and communicate to the utility. Utility provides the tariff

based on the availability of PV power at different time slots.

• Obtain the optimal load schedule using Reinforcement Learning al-

gorithm based on PV power generation and real time tariff. After

scheduling the device status is indicated as 0 if device is OFF, 1 if con-
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nected to utility grid (source 1), 2 if connected to PV (source 2). This

schedule is available to the consumer.

• The obtained ON/OFF status at each time slot is communicated to

the various relays connected to the loads and power taken from Grid

and PV are updated and finally sent to utility.

7.3 Results and Discussions

To investigate the performance of the proposed scheduling algorithm, a grid

connected smart home with PV source and schedulable and nonschedulabe

appliances is considered. The PV capacity is taken as 3kW. Typical schedu-

lable appliances in the home include Washing machine, Cloth dryer, Dish

washer and Vacuum cleaner. These appliances operate with different time

intervals, duration of operation and power ratings. Also the consumer’s will-

ingness to tolerate delay in operation of the schedulable devices is indicated

by proper choice of udc value. The parameters of the household devices are

given in Table 7.1.

Table 7.1: Parameters of Household Devices

Sl. No. Appliance s f l r udc

1 Lighting 18 20 3 0.36 8

2 Washing machine 8 14 4 0.50 1

3 Cloth dryer 11 17 3 1.80 0

4 Dish washer 14 19 2 1.20 9

5 Vacuum cleaner 9 14 3 0.65 1
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The PV power is simulated using PV power modeling and forecsting pro-

gram and is communicated to the utility. The tariff provided by the utility is

used for load scheduling. The optimum load schedule is generated by running

the load scheduling program using RL algorithm. The screenshots showing

consumer details entry through user interface, DG power generation and load

scheduling are given in Figs 7.4, 7.5 and 7.6 respectively.

Figure 7.4: Consumer details
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Figure 7.5: Tariff generation

Figure 7.6: Load scheduling
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Table 7.2: Home Appliance Schedule with PV

Hour Lighting Washing Cloth Dish Vacuum Grid PV
machine dryer washer cleaner Power Power

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0.40
8 0 2 0 0 0 0 1.05
9 0 2 0 0 0 0 1.92
10 0 2 0 0 0 0 2.64
11 0 2 0 0 2 0 2.77
12 0 0 2 0 2 0 3.07
13 0 0 2 0 2 0 2.95
14 0 0 2 1 0 0 2.31
15 0 0 0 2 0 0 1.74
16 0 0 0 0 0 0 1.07
17 0 0 0 0 0 0 0.56
18 1 0 0 0 0 0.36 0
19 1 0 0 0 0 0.36 0
20 1 0 0 0 0 0.36 0
21 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0

The load schedule obtained is given in Table 7.2. The schedule obtained

corresponds to minimum enrgy cost of 33.95 units, effectively utilizing grid

power and PV power. All the appliances are scheduled as per the requirement

of the consumer. The switching ON of dish washer with a high value of udc

should not be delayed and in the absence sufficient PV power, its swiching

ON interval is found to be {14,15}, though 14th time slot is a high priced

slot for grid power.
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7.4 Conclusion

The developed RL algorithm for load scheduling with PV is tested by imple-

menting a prototype model of Residential Energy Management System using

a NodeMCU IoT setup and verified the results through the display status of

the devices in the set up. Thus the proposed RL algorithm is found to be

implementable. But the real implementation demands more research in the

direction of interfacing of controllers associated with PV sources. Here, just

a status indicator alone is incorporated to indicate and prove the working

of the developed scheduling algorithm. Recent government policies promote

large scale deployment of grid connected roof top PV systems for residen-

tial consumers and the proposed implementable solution will be beneficial

to both consumer as well as the utility and a step towards promoting clean

energy.
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Conclusions and Future Work

8.1 Introduction

Continuously growing energy demand and associated challenges are of major

concern in electric power sector currently. In the Smart Grid framework,

price based Demand Response (PBDR) programs are identified as one of the

means to address this issue by motivating changes in electricity use by con-

sumers in response to time varying electricity price. In the present energy

scenario a major part of the flexible demand arises from the residential con-

sumers and PBDR programs can be effectively used for controlling the loads

of smart residential buildings thereby reducing consumer electricity bill and

maximum demand on the system. Recent advancements in energy usage of

the residential consumer by way of integration of intermittent roof top PV

sources increases the complexity of DR strategy. Residential load scheduling

problem need to consider several factors like operational constraints of the

appliances, consumer comfort related to delay in scheduling the appliance,
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uncertainty associated with PV generation, time varying tariff etc. Devising

suitable method to obtain optimum load schedule with minimum energy cost

by efficient utilization of all the available resources is significant in residential

load scheduling and a step towards meeting the increasing demand.

Review of concept and different aspects of Smart Grid is carried out, to

get an overview of various features of Smart Grid. One of the management

objectives of the Smart Grid is identified as efficient use of available energy.

Demand Side Management is thus found to be one of the important func-

tions of Smart Grid. Review on various techniques used to realize DSM and

DR in general is done. The main objective is to reduce the electricity bill

of the consumer and to reduce the maximum demand. The various methods

used for residential load scheduling is reviewed in detail. From the litera-

ture, it is seen that future residential consumer will have renewable sources,

schedulable loads, nonschedulable loads and various time dependant tariff.

Power generated from renewable sources like PV is random in nature. The

consumer will want to minimize his electricity bill without compromising on

the comfort. A complete and comprehensive model need to be developed

considering all these aspects. Also, the problem is a decision making prob-

lem under uncertain environment.

Various analytical and soft computing methods are used to solve the

problem. Most of these methods discussed in the review lack the ability to

handle stochastic data. The stochastic learning algorithms are capable of

solving such problems under uncertain environment.
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8.2 Summary and Major Findings

The different features of smart grid and the significance of Demand Side

Management and Demand Response are reviewed. Review of methods for

residential load scheduling directed to the scope of formulating a general-

ized mathematical model and implementable solution for the residential load

scheduling problem with intermittent PV source. In this research work appli-

cation of stochastic learning algorithms for residential load scheduling with

PV source is proposed in the smart grid context.

8.2.1 Generalized Mathematical Model

Future residential consumer will have renewable sources, flexible loads, non-

flexible loads and various time dependant tariff. Power generated from re-

newable sources are random. The consumer desires to minimize his electricity

bill without compromising on the comfort. This delay causes some inconve-

nience or discomfort to the consumer. A generalized mathematical model

which can include different renewable sources is developed for the residential

load scheduling problem taking into account all these aspects. A parameter

udc incorporated in the load model capture the degree of discomfort.

8.2.2 Load Scheduling Using Binary Particle Swarm

Optimization

A solution to basic load scheduling problem is developed using Binary Par-

ticle Swarm Optimization (BPSO) algorithm. This problem considered the

operational needs of the loads and utility grid as the power source. The
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BPSO algorithm is formulated as a minimization problem by taking fitness

function as the total daily energy cost. Load schedule is obtained from the

global best particle value and the minimum cost from the gbest value. The

algorithm is validated and obtained the load schedule with minimum cost

and satisfying various operating constraints. With a case study of a residen-

tial consumer with different types of loads, the algorithm is verified. With

consumer comfort and uncertain PV source the complexity of the problem is

increased and it is difficult to get solution with this algorithm.

8.2.3 Load Scheduling Using Reinforcement Learning

In this case, the simple load model is modified by including a factor udc to

account for delay in scheduling. The load scheduling problem with the mod-

ified load model considering consumer comfort and grid power, is formulated

as a multistage decision making problem and a stochastic learning algorithm

using Reinforcement Learning (RL) is developed to solve the problem. The

state variables are taken as the the current time slot and the ON duration

of the load. At each state, the action to be taken is whether to switch ON

or OFF the load. Based on the action taken, a new state is reached and a

cost is obtained which is used to update Q-value. Using the Q-learning algo-

rithm the optimum load schedule is obtained. With different types of loads,

the results obtained using RL algorithm are validated and compared with

that of Learning Automata (LA) algorithm. The RL algorithm is verified

considering the case study of a residential consumer and the load schedule

corresponding to minimum cost is obtained.
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The method is found to be efficient compared to LA and BPSO algo-

rithms.

8.2.4 Uncertainty Modeling and Load Scheduling Us-

ing Reinforcement Learning with PV Source

The fluctuating power generation from PV source is considered by modeling

the uncertainty associated with the solar irradiance. The solar irradiance

data of the site selected is taken from National Renewable Energy Labora-

tory (NREL) solar radiation database. The hourly solar irradiance of the

site under study for a period of one year is collected and is modeled using

Beta PDF. This is used to estimate the power output from the PV source.

The residential load scheduling problem including a roof top PV system

is considered. A solution to the load scheduling problem is developed using

RL, considering the presence of uncertain PV power generation, consumer

comfort aspect, operating constraints of various loads and time varying tar-

iff. At each state, considering the simulated PV power, here the action to be

taken is whether to switch ON from grid or PV or switch OFF the load. De-

pending on the action selected the state changes and the corresponding cost

incurred is used to update Q-value. The RL algorithm is validated and found

to be effective in providing the best load schedule with minimum energy cost,

efficiently utilizing the resources. The developed RL algorithm is analyzed

for a variety of load data. Finally the developed RL algorithm is realized by

implementing a prototype model of Residential Energy Management System

using a NodeMCU IoT setup and the results are verified.
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8.3 Major Research Contributions

The research work provides an implementable solution to the residential load

scheduling problem considering PV source in the Smart Grid Scenario. A

generalized model is developed incorporating the renewable DG sources. A

solution method using BPSO algorithm is developed for basic load schedul-

ing problem. The uncerainty associated with PV source is modeled using

Beta PDF. Stochastic learnig algorithms are developed to find optimum load

schedule with minimum cost and satisfying the various constraints. The algo-

rithm is implemented by setting up a prototype model of Residential Energy

Management System.

The main contributions of the thesis can be summarized as,

1) A generalized mathematical model for load scheduling problem including

renewable sources is developed.

2)Stochastic learning algorithms using Binary Particle Swarm Optimization,

Learning Automata and Reinforcement Learning are developed and are used

in solving residential load scheduling problem so as to get optimal load sched-

ule with minimum energy cost.

3) The uncertainty associated with the solar irradiance is modeled using Beta

PDF and is utilized for calculating the power generation from PV source.

4) A Reinforcement Learning algorithm is developed for the solution of resi-

dential load scheduling problem with PV source to obtain the optimal load

schedule with minimum energy cost, efficiently utilizing the resources.

5) The developed RL algorithm is verified by implementing a prototype model

of Residential Energy Management System using a NodeMCU IoT setup and

the results are verified.
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Large scale deployment of roof top PV system by residential consumers

together with variable pricing schemes introduced by the utilities impose the

need for efficient algorithms that can be used by the consumers to intelli-

gently schedule their appliances with minimum inconvenience and minimum

cost. The stochastic learning algorithms proposed can be used to obtain a

solution to this problem and it will be beneficial to both consumer and utility.

8.4 Limitations and Future Work

In this thesis work, only PV source is considered for residential load schedul-

ing. Renewable DG sources such as wind turbine based generation, fuel cell

etc can also be considered as power source for load scheduling to obtain opti-

mum load schedule. The formulation can be made more general by including

storage within the consumer premises into the model. Uncertainty associated

with pricing and load arrivals also can be modeled. Generation scheduling

can also be included.

As a future work, residential load scheduling including renewable genera-

tion with storage considering price and load uncertainties can be considered.

Also load scheduling and generation scheduling can be combined to a single

task for energy management.
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