Shikhi M. "A study on common neighbor polynomial of graphs." Thesis. Department of Mathematics, University of Calicut, 2019.

## Preliminaries

The chapter explores the graph theoretic terminology and notations that will appear in the subsequent chapters. We adopt the basic definitions and notations as in Graph Theory [20], written by J.A. Bondy and U.S.R. Murty. This chapter includes three sections. The first section deals with basic definitions and notations that may appear in the forthcoming chapters. In the second section various graph theoretic operations are discussed. Third section incorporates some basic results and theorems which are used in the forthcoming chapter to study the roots of polynomials.

### 1.1 Basic terminology

A graph $G$ is an ordered pair $(V, E)$ consisting of the disjoint sets $V$ of vertices and $E$ of edges, together with an incidence function $\psi: E \rightarrow V \times V$ which associates each edge of $G$ with an unordered pair of vertices of $G$. A graph having finite number of vertices and edges is called a finite graph. The number
of vertices and number of edges of a finite graph $G$ are called the order and size of $G$ respectively. Two or more edges having same end vertices are called multiple edges and an edge with identical end vertices is called a loop. A graph is simple if it has no multiple edges or loops.

The end vertices of an edge are said to the incident with the edge. Two vertices are adjacent if they are incident with a common edge and two edges are adjacent if they are incident to a common end vertex. Two adjacent vertices are said to be neighbors of each other. The set of all neighbors of a vertex $v \in V$ is called the neighbor set of $v$ and is denoted by $N(v)$. The number of vertices in $N(v)$ is called the degree of $v$. Vertices of degree 1 are called pendent vertices. A graph having all the vertices with same degree is called a regular graph. A subset $S$ of the set of vertices of a graph $G$ in which any two distinct vertices are adjacent is called a clique in $G$.

Let $G$ be a graph of order $n$. Then the adjacency matrix of $G$ is a $n \times n$ matrix in which the $i j^{\text {th }}$ entry becomes 1 or 0 according as the pair of vertices $v_{i}$ and $v_{j}$ are adjacent or not in $G$.

A complete graph is a simple graph in which all the pairs of vertices are adjacent. A graph is bipartite if its vertex set can be partitioned into two subsets $X$ and $Y$ so that any edge of $G$ has one end vertex in $X$ and the other in $Y$. If each vertex of $X$ is joined to every vertex of $Y$ in a bipartite graph, it is called a complete bipartite graph.

A complete $m$-partite graph $K_{n_{1}, n_{2}, \ldots, n_{m}}$ is a graph whose vertex set can be partitioned into $m$ non empty sets $V_{i}, i=1,2, \ldots, m$ such that every vertex in $V_{i}$ is adjacent to every vertex in $V_{j}$ for every $i \neq j$ and $i, j \in\{1,2, \ldots, m\}$.

A walk is an alternating sequence $v_{0} e_{1} v_{1} e_{2} \ldots v_{i-1} e_{i} v_{i} \ldots v_{n}$ of vertices and edges in which the vertices $v_{i-1}$ and $v_{i}$ are the end points of the edge $e_{i}$. The length of a walk is the number of edges in the walk. A path is a walk having all the vertices distinct. A path on $n$ vertices is denoted by $P_{n}$. A trail is a walk where all the edges are distinct. A closed trail in which all the vertices are distinct is called a cycle. A cycle of length $n$ is denoted by $C_{n}$. A graph $G$ is connected if for each pair of vertices $u$ and $v$ in $V(G)$, there is a $u-v$ path in $G$. A disconnected graph is a graph which is not connected. A graph is acyclic if it contains no cycles. A connected acyclic graph is called a tree.

The distance between two vertices $u$ and $v$, denoted by $d(u, v)$, is the length of the shortest $u-v$ path in $G$. The maximum distance between any pair of vertices of $G$ is called the diameter of $G$. The Hosoya polynomial[26] of $G$ is defined as $H(G, x)=\sum_{j=1}^{l} d(G, j) x^{j}$ where $d(G, j)$ denote the number of pairs of vertices in $G$ having distance $j$ apart and $l$ denote the diameter of the graph.

A Wheel graph $W_{n}, n>3$ is obtained by taking the join of the cycle $C_{n-1}$ and $K_{1}$. A helm, $H_{n}, n>3$ is obtained from a wheel graph $W_{n}$ by adding pendent edges to every vertices on the wheel rim. A web graph $W B_{n}, n>3$ is obtained by joining the pendent vertices of a helm $H_{n}$ to form a cycle and then adding a single pendent edge to each vertex of this outer cycle. W $B_{n}$ has $3 n-2$ vertices and $3(n-1)$ edges. A shell graph $S_{n}$ where $n \geq 3$ is obtained from the cycle graph $C_{n}$ by adding the edges corresponding to the $(n-3)$ concurrent chords of the cycle. The vertex at which all the chords are concurrent is called the apex of the shell. A bow graph is a double shell with same apex in which each shell has any order.

A butterfly graph is a bow graph along with exactly two pendent edges at the apex. A friendship graph $F_{n}$ is the one point union of $n$ copies of the cycle $C_{3}$. A Tadpole $T_{(n, l)}$ is a graph obtained by attaching a path $P_{l}$ to one of the vertices of the cycle $C_{n}$ by a bridge. The $n$ - barbell graph $B_{n, 1}$ is a graph obtained by connecting two copies of complete graph $K_{n}$ by a bridge. The Lollipop graph $L_{m, n}$ is a graph obtained by joining a complete graph $K_{m}$ to a path $P_{n}$ with a bridge.

A bistar graph $B_{m, n}$ is obtained by connecting the center vertices of two star graphs $K_{1, m}$ and $K_{1, n}$ by a bridge. The bipartite Cocktail party graph $B_{n}$ is the graph obtained by removing a perfect matching from the complete bipartite graph $K_{n, n}$. The Windmill graph $W_{n}^{(m)}$ is obtained by taking $m$ copies of $K_{n}$ with a vertex in common. An armed crown $C_{n} \odot P_{m}$ is a graph obtained by attaching a path $P_{m}$ to every vertex of the cycle $C_{n}$.

A simple $k$-regular graph $G$ on $n$ vertices is said to be strongly regular of type ( $n, k, \lambda, l$ ) if there exists integers $\lambda, l$ such that any adjacent pair of vertices of $G$ have exactly $\lambda$ common neighbors and any non-adjacent pair of vertices of $G$ have exactly $l$ common neighbors.

A rooted tree[13] is a tree in which one of the vertices is distinguished as the root. According to the distance of other vertices from the root vertex, there is a hierarchy on the vertices of a rooted tree. The distance of a vertex $v$ from the root is called the depth or level of the vertex. The height of a rooted tree is the greatest depth of a vertex of the tree. Considering a path from the root to a vertex $w$, if a vertex $v$ immediately precedes $w$, then $v$ is called the parent of $w$ and $w$ is called the child of $v$. Vertices having same parent are called siblings.

An m-ary tree $(m \geq 2)$ is a rooted tree in which every vertex has $m$ or fewer number of children. A complete m-ary tree is an m-ary tree in which every internal vertices has exactly $m$ children and all leaves are of same distance from the root.

The derivative of a graph $G$ is a graph obtained from $G$ by deleting all the pendent vertices of $G$. A caterpillar[39] is a tree graph whose derivative is a path graph. Consequently, a caterpillar $P_{n}\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ is obtained by attaching $m_{i}$ pendent edges to the vertex $v_{i}$ of a path $P_{n}$ where $i \in\{1,2, \ldots, n\}$. A star like tree graph $S\left(n_{1}, n_{2}, \ldots, n_{k}\right)[24]$ is a graph having only one vertex $w$ of degree greater than 2 such that deletion of $w$ results in a disjoint union of the path graphs $P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{k}}$. The star like tree graphs are used to represent proteins which will have generally 20 branches where each branch indicates the presence of one of the 20 natural amino acids.

Let $G$ and $H$ be two graphs with incidence functions $\psi_{G}$ and $\psi_{H}$ respectively. Then $G$ and $H$ are isomorphic[33] if there exists bijections $\theta: V(G) \rightarrow V(H)$ and $\phi: E(G) \rightarrow E(H)$ such that $\psi_{G}(e)=u v$ if and only if $\psi_{H}(\phi(e))=\theta(u) \theta(v)$ where $u, v \in V(G)$ and $e \in E(G)$.

### 1.2 Graph operations

The splitting graph [12] $S(G)$ of a graph $G$ is obtained by adding new vertices $v^{\prime}$ to $G$ corresponding to each vertex $v$ of $G$ and then joining the vertex $v^{\prime}$ to all vertices of $G$ adjacent to $v$ in $G$. The shadow graph $S h(G)$ of a graph $G$ is obtained by taking two copies of $G$, say $G_{1}$ and $G_{2}$ and joining each vertex of
$G_{1}$ to the neighbors of the corresponding vertex of $G_{2}$. The Mycielski graph, $\mu(G)[22]$ of a graph $G$ contains $G$ itself as an isomorphic subgraph together with $n+1$ additional vertices; a vertex $v_{i}$ corresponding to each vertex $u_{i}$ of $G$ and another vertex $w$. Each $v_{i}$ is connected by an edge to $w$ and for each edge $u_{i} u_{j}$ of $G, \mu(G)$ includes two additional edges $u_{i} v_{j}$ and $v_{i} u_{j}$.

Consider the graph $G(V, E)$ and let $w \notin V$. Then the graph $G^{\prime}=G+w$ is a graph obtained from $G$ by including the vertex $w$ in $G$ and joining it to all other vertices of $G$. If $H$ and $K$ are two graphs, then the join, $H \vee K$ is the graph with vertex set $V(H) \cup V(K)$ and edge set $E(H) \cup E(K) \cup\{u v: u \in V(H), v \in V(K)\}$.

The corona of two graphs[13] $K$ and $H$ is formed from one copy of $K$ and $|V(K)|$ copies of $H$ where the $i^{\text {th }}$ vertex of $K$ is adjacent to every vertex in the $i^{\text {th }}$ copy of $H$ [35]. It is denoted by $K \circ H$. The Cartesian product[13] of two graphs $G$ and $H$ is the graph $G \square H$ with vertex set $V(G) \times V(H)$ and the vertices $(u, v)$ and $(x, y)$ are adjacent if and only if $u=x$ and $v y \in E(H)$ or $u x \in E(G)$ and $v=y$.

A rooted graph is a graph in which one vertex is distinguished as a root. The rooted product[3] of a graph $G$ and a rooted graph $H$ is obtained as follows: Take $|V(G)|$ copies of $H$ and for each vertex $v_{i}$ of $G$, identify $v_{i}$ with the root vertex of the $i^{\text {th }}$ copy of $H$. The tensor product[13] of two graphs $K$ and $H$ is the graph $K \times H$ with vertex set $V(K) \times V(H)$ and the vertices $(u, v)$ and $(x, y)$ are adjacent if and only if $u x \in E(K)$ and $v y \in E(H)$.

### 1.3 Polynomials

The following theorems can be used to study the number of real roots of polynomials.

Theorem 1.3.1 (de Gua's Theorem [42]). If the polynomial $f(x)$ lacks $2 m$ consecutive terms then it has no less than $2 m$ imaginary roots. If $2 m+1$ consecutive terms are missing then, if they are between terms of different signs, the polynomial has no less than $2 m$ imaginary roots, whereas, if the missing terms are between terms of same sign, the polynomial has no less than $2 m+2$ imaginary roots.

Theorem 1.3.2 (S. Kakeya [40]). Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial with real coefficients satisfying $a_{0}<a_{1} \leq a_{2} \leq \ldots \leq a_{n}$, then all the zeros of $p(z)$ lie in $|z| \leq 1$.

Theorem 1.3.3. [37] Consider the cubic equation $a x^{3}+b x^{2}+c x+d=0$. Then the discriminant of the cubic equation is given by $\Delta=b^{2} c^{2}-4 a c^{3}-4 b^{d}+18 a b c d-$ $27 a^{2} d^{2}$. If $\Delta>0$, the equation has three real distinct roots; if $\Delta=0$, the equation has three real roots in which one of them is a multiple root; if $\Delta<0$, the equation has one real root and two imaginary roots.

A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is said to be stable [28] with respect to a region $\Omega \in \mathbb{C}^{n}$ if no root of $f$ lies in $\Omega$. Polynomials which are stable with respect to the closed right half plane and with respect to the open unit disk are called Hurwitz polynomial and Schur polynomial respectively. Hurwitz polynomials are important in control systems theory, because they represent the characteristic equations of stable linear systems[15].

Let $\mathcal{G}$ be the set of finite graphs on $n$ vertices and $R[x]$ the polynomial ring over the real numbers. Then a graph polynomial is a function $P: \mathcal{G} \rightarrow R[x]$ such that for any two graphs $G, H \in \mathcal{G}$, if $G$ is isomorphic to $H$, then $P(G)=P(H)$. A graph polynomial encodes information about the graph and enables algebraic methods for extracting this information.

With the introduction of edge difference polynomial[21] in 1878, J.J. Sylvester initiated the study of graph polynomials which was further studied by J. Petersen in 1891. Since then many graph polynomials were introduced among which matching polynomial[9], chromatic polynomial[16], Hosoya polynomial[26] and domination polynomial[36] are well popularized.

