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Introduction

Graph theory is one of the well flourished branches of Mathematics. Orig-

inating from the modeling and negative resolution of famous Konigsberg bridge

problem by Leonard Euler[23], graph theory has entrenched as one of the best

tool to model network systems involved in complex real life problems. Beauty of

graph theory lies in its wide scope of applications in the fields ranging from net-

work theory, chemistry and operational research to architecture and linguistics.

Performing as a translator of real life problems to mathematical models, graph

theory has an astounding position amidst various branches of applied mathemat-

ics.

Among various branches of graph theory, graph polynomials is one of the

well studied concepts as they are used to unveil the structural properties of

graphs. Roughly speaking, a graph polynomial is a polynomial assigned to a

graph whose coefficients are the indicators of some graph theoretic parameters.

It can be defined as a function from the set of all finite graphs to the polynomial

ring over the set of real numbers such that isomorphic graphs are assigned to the

same polynomial.
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Introduction

In the present work, emphasizing on the structural similarity of pairs of nodes

in a network system, a new graph polynomial is introduced named as ‘Common

neighbor polynomial of graphs’. While modeling the structure of a social network

system, usually pairs of individuals with shared interests are represented by pairs

of vertices with common neighbors. The number of such common neighbors

serves as a measure of consensus and proclivities between the corresponding pair

of individuals. Moreover, it is conjectured that two persons having one or more

common acquaintances are more likely to be acquainted in future[7]. Hence the

study of common neighbors of pairs of nodes in a network system is significant

in predicting the possibility of future links as well as in clustering analysis.

An overview of the thesis

The thesis comprises an introductory chapter together with nine chapters in

which a new graph polynomial called “Common Neighbor Polynomial of graphs”

is introduced and studied in a detailed manner. In the introductory chapter, a

concise description is given detailing the motivational facts behind the intro-

duction of the new graph polynomial. Moreover, a blueprint of the upcoming

chapters is also provided.

In chapter 1, the terminology and notations that will appear in the subse-

quent chapters are detailed. Basic graph theoretic definitions are explained in

the first section. Second section of the chapter describes some important graph

operations. Section 1.3 includes an introduction to the theory of graph polyno-

mials along with some theorems on polynomials which are beneficial in the study
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of roots of polynomials.

In chapter 2, a new graph polynomial called ‘Common neighbor polyno-

mial’ is introduced whose coefficients are the cardinalities of i-common neighbor

sets which are defined as subsets of V (G) × V (G). The definition of i-common

neighbor set and common neighbor polynomial of graphs is introduced in sec-

tion 2.2. Let G(V,E) be a graph of order n. Then for 0 ≤ i ≤ n − 2, the

i-common-neighbor set of G is defined as N(G, i) := {(u, v) : u, v ∈ V, u 6=

v and |N(u) ∩ N(v)| = i}. The common-neighbor polynomial of G denoted by

N [G;x] is defined as N [G;x] =
∑(n−2)

i=0 |N(G, i)|xi. In section 2.3, the com-

mon neighbor polynomial of many well known graph classes are identified. The

common neighbor polynomial of strongly regular graphs and trees are studied

in section 2.4 and 2.5 respectively. The common neighbor polynomial of some

special graph constructions are discussed in section 2.6.

The common neighbor polynomial of graphs obtained by the unary graph

operations such as splitting graph, shadow graph or mycielsky graph of a given

graph are discussed in chapter 3.

Binary graph operations are used to model the action between two network

systems. Binary graph operations are usually known as graph products in which

two initial graphs are acted together according to some specific rules to produce

a new graph. Chapter 4 provides explicit formulae to find common neighbor

polynomial of some well known graph products such as join, corona, cartesian

product, rooted product and tensor product of graphs in terms of the common

neighbor polynomial of the parent graphs.

Structural equivalence of network systems is one of the prime concerns of
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network analysis. Usually in graph theory, isomorphic graphs are referred to as

equal graphs. But, the existence of isomorphism may not be a criteria for iden-

tifying two graphs as equivalent as far as structural equivalence is concerned.

From this point of view, CNP -equivalent classes of graphs are defined and

studied in chapter 5. Two graphs G and H are said to be CNP -equivalent

(G
N∼ H) if and only if N [G;x] = N [H;x]. Obviously, the relation

N∼ is an

equivalence relation on the class G of all simple finite graphs. The set of all

graphs CNP -equivalent to a graph G is denoted as [G]N and is defined as

[G]N = {H ∈ G : N [H;x] = N [G;x]}. A graph H is said to be CNP−unique

if [H]N = {H}. Some CNP -equivalent classes of graphs are identified in section

5.2. In section 5.3, it is showed that graph classes like complete graphs and

complete bipartite graphs are CNP -unique graphs.

While introducing a new graph polynomial, it is customary to verify whether

it can be the graphical model of a stable physical system. A polynomial all of

whose non zero roots lie in the open left half plane is said to be stable with

respect to the closed right half plane and such a polynomial is called a Hur-

witz polynomial. Identification of Hurwitz polynomials are beneficial in control

systems theory as they represent the characteristic equations of stable linear

systems. In chapter 6, we identify the conditions under which the common

neighbor polynomial of some graph classes becomes a Hurwitz polynomial.

Chapter 7 focuses on the real roots of common neighbor polynomial of

graphs. The roots of common neighbor polynomial of a graph G are called the

common neighbor roots of G. The number of real common neighbor roots of a

graph G where the multiplicities counted, is denoted by N (G). In chapter 7,
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we study the number of real common neighbor roots of some well known graph

classes.

In chapter 8 we generalize the concepts of i-common neighbor sets and com-

mon neighbor polynomial of graphs and define generalized i-common neighbor

sets and generalized common neighbor polynomial of graphs. In section 8.2. The

generalized common neighbor polynomial of some well known graph classes are

identified. Moreover, some characterizations on graphs in terms of generalized

common neighbor polynomial of graphs are also discussed. In section 8.3, we

define the simplicial complexes of graphs and introduce the concept of cluster

of a vertex in a graphs. In the light of these concepts, generalized i-common

neighbor sets of graphs is studied.

Chapter 9 spot lighted on the significance of common neighbor polynomial

of graphs in some applied areas. In section 9.1, we study common neighbor poly-

nomial of graphs incorporated with chemical graph theory. Structural analysis

of chemical molecules is a prime concern of mathematical chemistry. The com-

mon neighbor polynomial of nanostar dendrimers and PAMAM dendrimers are

studied in subsections 9.1.1 and 9.1.2 respectively. In 9.1.3, the Hosoya polyno-

mial of graphs with diameter not more than three is derived using the common

neighbor polynomial of corresponding graphs. Section 9.2 deals with the sig-

nificance of common neighbor polynomial of graphs in network data clustering.

In 9.2.1, we discuss the Shared Nearest Neighbor(SNN) clustering and explains

the way in which the common neighbor polynomial of graphs is useful in the

formation of meaningful clusters. In section 9.3, we establish a relation which

connects common neighbor polynomial of a graph with the adjacency matrix of
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the graphs. Making use of this relation, a C++ program is developed for gener-

ating coefficients of common neighbor polynomial of a graph and is provided as

an Appendix.

In the concluding chapter of the thesis, some directions for further research

are included. Also this chapter includes a list of publications and bibliography.
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