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Chapter 0
Introduction

As the title suggests, this thesis deals with some problems in spectral sets, Duggal

transformations, and Aluthge transformations of bounded linear operators on

Hilbert spaces.

The notion of spectral sets was introduced by J. von Neumann in 1951. If T

is a bounded linear operator on a Hilbert space, a closed proper subset X of the

complex plane C is called a spectral set for T if X contains the spectrum of T

and ‖ f(T ) ‖≤‖ f ‖∞, for all rational functions f having poles off X̌, where X̌

denotes the closure of X in the Reimann sphere S, and ‖ f ‖∞ the norm of f in

the C∗-algebra C(∂X̌).

If T = U |T | is the polar decomposition of a bounded linear operator T on

a Hilbert space, where U is a partial isometry such that T and U have the

same kernel, then the operator T̃ = |T |1/2 U |T |1/2 is known as the Aluthge

transformation of T. Aluthge transformation was first studied by A. Aluthge in

1990 in the paper [1] in relation with the p−hyponormal and log−hyponormal

operators. Aluthge transformation has received considerable attention in recent

years. One reason is the connection of Aluthge transformation with the invariant

subspace problem. Il Bong Jung, Eungil Ko, and Carl Pearcy proved in [22] that

3



Introduction 4

T has a nontrivial invariant subspace if and only if T̃ does. Another reason

is related with the iterated Aluthge transformation. In [22], Jung, Ko, and

Pearcy defined the nth Aluthge transform T̃ (n) for each non-negative integer n,

as T̃ (n) =
˜

(T̃ (n−1)) and T̃ (0) = T. They conjectured that for every bounded linear

operator on a Hilbert space, the Aluthge sequence {T̃ (n)}∞n=0 is norm convergent

to a quasinormal operator. M. Chō, I. B. Jung, and W. Y. Lee in [10], showed

that the conjecture is not true in the case of infinite dimensional Hilbert spaces.

The finite dimensional case is under study and yet to be resolved completely.

Aluthge transformation is very useful in the study of non-normal operators.

For a bounded linear operator T on a Hilbert space with polar decomposi-

tion T = U |T |, the operator T̂ = |T |U is the Duggal transformation of T. For

each non-negative integer n, the nth Duggal transformation T̂ (n) can be defined

as T̂ (n) =
̂

(T̂ (n−1)) and T̂ (0) = T. In 2003, Ciprian Foias, Il Bong Jung, Eungil

Ko, and Carl Pearcy initiated the study of Duggal transformations in [16], and

proved several analogous results for Aluthge transformations and Duggal trans-

formations. They named the transformation after B. P. Duggal who inspired

them to study this transformation. The volume of work done on Duggal trans-

formations, is considerably less, compared to that on Aluthge transformations.

Though the scope of this study embraces Duggal transformations and Aluthge

transformations, it devotes more attention to Duggal transformations. Spectral

sets of operators on Hilbert spaces are studied, and some relation between spec-

tral sets and the above mentioned transformations are established. The main re-

sults of this work are on the convergence of the norms of the Duggal iterates, the

convergence of the Duggal iterates and spectral sets, contractivity and positivity

of the maps between the Riesz Dunford algebras determined by an operator and

its Aluthge transformation and Duggal transformation, the polar decomposition

of Duggal transformations and Aluthge transformations, the minimal spectral

sets, and n−level spectral sets.
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Apart from the introduction, the thesis contains four chapters. Chapter 1

is devoted to the basic definitions and results that are necessary for the study.

This chapter covers some topics on bounded linear operators on Hilbert spaces,

rational and holomorphic functional calculi, C∗-algebras, and spectral sets.

Aluthge and Duggal transformations form the object of study in chapter 2.

T. Yamazaki in [35] proved that for every bounded linear operator T on a Hilbert

space, the sequence of the norms of the Aluthge iterates of T converges to the

spectral radius r(T ). Derming Wang in [33] gave another proof of this result.

In an attempt to prove, the analogue of the result of Yamazaki, that for every

bounded linear operator T on a Hilbert space, the sequence of the norms of the

Duggal iterates of T converges to the spectral radius r(T ), it is proved that for

certain classes of operators, the sequence of the norms of the Duggal iterates

converges to the spectral radius. This result is given as theorem 2.2.2. Further

investigation leads to an example of a finite dimensional operator showing that

there exist bounded linear operators on Hilbert spaces such that the sequence

of the norms of the Duggal iterates does not converge to the spectral radius,

and this is a striking difference of Duggal transformation compared to Aluthge

transformation. This example is exhibited in section 2.2.3.

After Yamazaki’s result in 2002 on the convergence of the sequence of the

norms of the Aluthge iterates, in 2003, T. Ando and T. Yamazaki in [3], proved

that in the case of a 2×2 matrix, the sequence of the iterated Aluthge transforma-

tions itself converges. In 2006, Jorge Antezana, Enrique R. Pujals and Demetrio

Stojanoff [4], proved the convergence of iterated Aluthge transformation sequence

for diagonalizable matrices. In section 2.2.3, an example is constructed showing

that the analogous results for these three results fail to hold in the case of Duggal

transformations. In 2004, T. Ando proved in [2] that if A is an n × n matrix

over C, then the convex hull of the spectrum σ(A) equals the numerical range

W (A) if and only if A and Ã have the same numerical range . In section 2.3.1,
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the study argues that this result does not hold if the Aluthge transformation is

replaced by the Duggal transformation.

If T is a bounded linear operator on a Hilbert space, there is an algebra of

bounded linear operators determined by the Riesz Dunford functional calculus

associated with the operator T, known as the Riesz Dunford algebra determined

by T. In section 2.3.2, the thesis analyzes the Aluthge and the Duggal transforma-

tions of the operator T when the partial isometry U in the polar decomposition

of T happens to be a coisometry. The homomorphisms between the Riesz Dun-

ford algebras determined by T, T̃ , and T̂ are studied. The notion of n−level

spectral set is introduced between spectral sets and complete spectral sets, for

every positive integer n. The thesis shows that if T = U |T | is the polar decom-

position of T, and U a coisometry, then T and T̂ have the same collection of

spectral sets, have the same collection of complete spectral sets, and have the

same collection of n−level spectral sets. Further the thesis proves that if T is

an invertible operator, and if for some n, the nth Duggal iterate T̂ (n) is normal,

then T is normaloid; in fact, in such cases, f(T ) is normaloid for every rational

function f having poles off σ(T ).

In [14], Ken Dykema and Hanne Schultz proved that if H is any Hilbert

space, then the Aluthge transformation map T → T̃ is continuous on the space

L(H) of all bounded linear operators on H. In section 2.3.3, the thesis examines

the continuity of the Duggal transformation map T → T̂ . Using the continuity

of the Duggal transformation map T → T̂ on the set of invertible operators,

results regarding the relation between the spectral sets of an operator and the

spectral sets of the limit of the sequence of the Duggal iterates, are obtained.

The following theorem is one of these results. If T is an invertible operator on a

Hilbert space, then the sequence of Duggal iterates {T̂ (n)}∞n=0 can converge to an

invertible operator if and only if T is quasinormal. The study proceeds to prove

the result: Let H be a Hilbert space and T ∈ L(H) be an invertible operator.



Introduction 7

Suppose that T̂ (n) → S in L(H), and X is a closed proper subset of C such that

X contains a neighborhood of σ(S). Further, assume that f(T̂ (n)) → f(S) for all

rational functions f having poles off X̌. Then, X is a spectral set for T if and

only if X is a spectral set for S.

In section 2.4, the contractivity and positivity of the map f(T ) → f(T̃ )

between the Riesz Dunford algebras determined by T and T̃ , and of the map

f(T ) → f(T̂ ) between the Riesz Dunford algebras determined by T and T̂ ,

are used to prove some of the consequences including the following theorem.

If T is a a bounded linear operator on a Hilbert space H such that the Riesz

Dunford algebra determined by T is closed in L(H) and f, g are holomorphic

functions on neighborhoods of σ(T ) satisfying (f(T ))∗ = g(T ), then (f(T̂ ))∗ =

g(T̂ ), (f(T̃ ))∗ = g(T̃ ).

The polar decomposition of Aluthge transformation and Duggal transforma-

tion of operators is the focus of study of chapter 3. In [20], Masatoshi Ito,

Takeaki Yamazaki, and Masahiro Yanagida obtained several results on the polar

decomposition of Aluthge transformation. In [21], Ito, Yamazaki, and Yanagida

showed results on the polar decomposition of the product of two operators and

of Aluthge transformation. They also showed properties and characterizations of

binormal and centered operators from the viewpoint of the polar decomposition

and Aluthge transformation. In [20], Ito, Yamazaki, and Yanagida gave an ex-

ample of a binormal, invertible operator T such that the Aluthge transformation

T̃ is not binormal. In chapter 3, it is shown that if T is a binormal, invertible op-

erator, then the Duggal transformation T̂ is binormal. Some of the consequences

of applying Aluthge transformation and Duggal transformation successively on

an invertible operator T are discussed. As a result, theorem 3.2.10 shows that if

T is invertible and binormal, then (̂T̃ ) = (̃T̂ ). The thesis further extends this re-

sult to iterated Aluthge transformations and Duggal transformations. The study

proceeds to show that if T is an invertible operator with polar decomposition
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T = U |T |, then the polar decomposition of T̂ is T̂ = U |T̂ |.

Let T = U |T | be the polar decomposition of an operator T. A theorem in [21]

says that T is binormal if and only if T̃ = Ũ |T̃ | is the polar decomposition of

the Aluthge transformation T̃ . The thesis discusses a similar situation for Dug-

gal transformations. Necessary and sufficient condition for T̂ to have the polar

decomposition T̂ = Û |T̂ | is obtained. The following theorem is an important

consequence. If T is binormal, then T̂ = Û |T̂ | is the polar decomposition of T̂ .

In section 3.2.3, the discussion on polar decomposition of Aluthge transforma-

tions and Duggal transformations is concluded by giving a modification of the

proof of a theorem in [21], using the semigroup properties of factors in the polar

decomposition of a bounded linear operator on a Hilbert space.

In [29], M. Schreiber characterized by means of normal dilations, those oper-

ators, the closure of whose numerical range is a spectral set. He obtained results

on the equality of the convex hull of the spectrum with the closure of the numer-

ical range in relation to the spectrality of the numerical range. In section 3.3,

Aluthge and Duggal transformations are discussed in the context of these results.

Minimal spectral sets and n−level spectral sets are the subjects of study of

chapter 4. If H is a Hilbert space and T ∈ L(H), then a closed subset X of C

is called a minimal spectral set for T, if X is a spectral set for T such that X

contains no other spectral set for T. As observed by J. P. Williams in [34], for

every operator T on a Hilbert space H, there is a minimal spectral set, and in

fact, every spectral set contains a minimal spectral set. A theorem in [7] says

that σ(T ) is a spectral set for T if and only if f(T ) is normaloid for every rational

function f having poles off the spectrum σ(T ). In chapter 4, it is observed that

these statements are equivalent to the uniqueness of the minimal spectral set.

Situations when the minimal spectral set of an operator is unique are discussed.

If X is a closed proper subset of the complex plane, R(X) the subalgebra
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of the C∗-algebra C(∂X̌) consisting of the rational functions having poles off

X̌, R(X) the set of all complex conjugates of members of R(X), and X happens

to be an n−level spectral set for the operator T on a Hilbert space H, then there

is a map ρ̃ : R(X) +R(X) → L(H) that extends the natural functional calculus

map ρ : R(X) → L(H). In section 4.3, results on the contractivity and positivity

of the map ρ̃ are obtained.

Further research that is possible beyond the thesis, and some of the problems

and possibilities that are left open, are briefly outlined in the Epilogue.



Chapter 1
Preliminaries

1.1 Introduction

This chapter is devoted to the basic definitions and results that are necessary for

the study, and covers some topics on bounded linear operators on Hilbert spaces,

rational and holomorphic functional calculi, C∗-algebras, and spectral sets.

Notation: In what follows, C denotes the set of all complex numbers, R the

set of all real numbers, and R+ the set of all non-negative real numbers. We

denote by H a Hilbert space, 〈 , 〉 the inner product, and L(H) the C∗-algebra

of all bounded linear operators on H. If T ∈ L(H), we denote the spectrum of

T by σ(T ), and the adjoint of T by T ∗. If M is a closed subspace of H, then

we denote by PM the orthogonal projection of H onto M. All the projections

we consider are orthogonal projections. If T ∈ L(H), we denote by ranT, the

range {Tx : x ∈ H}, and by kerT the set {x ∈ H : Tx = 0}. T always denotes

a bounded linear operator on a Hilbert space H, unless specified otherwise. If

X is a subset of a normed linear space, or of C, we denote by X, the closure of

X in the respective space, except in section 4.3. In section 4.3, the overbar is

10



1.2. Bounded operators on Hilbert spaces 11

used to denote complex conjugation. The term ‘operator’ is freely used to mean

‘bounded linear operator on the Hilbert space H ’.

1.2 Bounded operators on Hilbert spaces

Definition 1.2.1. Let H be a complex Hilbert space, and T ∈ L(H). The set of

x ∈ H such that Tx = 0 is a closed subspace of H. Let Y = {x ∈ H : Tx = 0}.

(ie., Y = kerT ). Let X = Y⊥. The projection E = PX is called the support of T.

If E is the support of T, then TE = T. Also E is the smallest of the projections

E1 of L(H) such that TE1 = T. (If E1 and E2 are two projections, we say that

E1 ≤ E2 if ranE1 ⊂ ranE2).

The closure of T (H) is a closed linear subspace Y of H. Let F = PY . Then

F is the smallest of the projections F1 of L(H) such that T ∗F1 = T ∗. Also, F is

the support of T ∗.

Definition 1.2.2 (Partial isometry). Let U ∈ L(H), and E its support. We say

that U is a partial isometry if U is an isometry on X = E(H).

If U ∈ L(H) is a partial isometry, then U(H) = U(X ) is a closed linear

subspace Y of H; and U maps X isometrically onto Y . Let F = PY . We say that

E is the initial projection of U and that F is the final projection of U. We say

that X is the initial space of U and that Y is the final space of U.

Let x ∈ X , y = Ux ∈ Y . For every z ∈ H, we have 〈x, z〉 = 〈x, Ez〉 =

〈Ux, UEz〉 = 〈y, UEz〉 = 〈y, Uz〉 = 〈U∗y, z〉 . Hence x = U∗y. Thus the map-

ping x → Ux of X onto Y has for its inverse (isometric) mapping the mapping

y → U∗y of Y onto X .

Since, furthermore, the support of U∗ is F, we see that U∗ is a partial isometry

with initial projection F and final projection E. We also see that U∗U = E
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and UU∗ = F. Thus U∗U and UU∗ are the initial and final projections of U.

Conversely, if V ∈ L(H) such that V ∗V is a projection, then V is a partial

isometry. Similarly, if W ∈ L(H) and WW ∗ is a projection, then W ∗ is a partial

isometry, and hence W is a partial isometry.

Remark 1.2.3. If U is a nonzero partial isometry, then ‖ U ‖= 1. (Proof: U is

a nonzero partial isometry =⇒ U∗U is a nonzero projection =⇒ 1 ∈ σ(U∗U) ⊂

{0, 1} =⇒‖ U ‖2= r(U∗U) = 1, where r(U∗U) denotes the spectral radius of the

operator U∗U.)

Definition 1.2.4 (Polar decomposition of an operator). Let T ∈ L(H), E

the support of T, F the support of T ∗, X = E(H) and Y = F (H). We put

|T | = (T ∗T )1/2. We have, for every x ∈ H, ‖ Tx ‖2= 〈T ∗Tx, x〉 = 〈|T |2x, x〉 =

〈|T |x, |T |x〉 =‖ |T |x ‖2 . Therefore, ‖ Tx ‖=‖ |T |x ‖ for all x ∈ H. Hence |T |

has support E, and consequently, |T |(H) = X .

Furthermore, the mapping |T |x → Tx is a linear isometry of |T |(H) onto

T (H), and therefore extends to a linear isometry V of X = |T |(H) onto Y =

T (H). Let U be the partial isometry with support E and which coincides with V

on X ; this partial isometry has E as initial projection and F as final projection.

We have T = U |T | an equality called the polar decomposition of T.

Thus any T ∈ L(H) can be written as

T = U |T |

where U is a partial isometry and |T | is a positive operator such that the initial

projection of U is E which is the support of T, the final projection of U is F

which is the support of T ∗, and such that the support of |T | is also E. Note that

TE = T, UE = U and |T |E = |T |.

On the other hand, if we have an equality T = U1T1 where T1 is positive
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hermitian and where U1 is a partial isometry whose initial projection is support

of T1, then we have T1 = |T | and U1 = U.

The equality

T ∗ = U∗(U |T |U∗)

is the polar decomposition of T ∗.

The following theorem in [27] deals with polar decomposition.

Theorem 1.2.5. [27] Let A be a bounded operator on a Hilbert space H. Then

there is a partial isometry U such that A = U |A|. The partial isometry U is

uniquely determined by the condition that kerU = kerA. Moreover, ranU =

ranA.

Remark 1.2.6. [12] Let A be a von Neumann algebra on a Hilbert space H. If

T ∈ A and T = U |T | the polar decomposition of T, then U ∈ A and |T | ∈ A. If

M is a left ideal in A and T ∈ A, then T ∈M if and only if |T | ∈ M.

Definition 1.2.7 (Shifts ). An operator S+ on a Hilbert space H is a unilateral

shift if there exists an infinite sequence {Hk}∞k=0 of nonzero pairwise orthogonal

subspaces of H such that H = ⊕∞k=0Hk and S+ maps each Hk isometrically onto

Hk+1.

Since S+|Hk
: Hk → Hk+1 is unitary (ie., a surjective isometry), it follows that

dimHk+1 = dimHk, for every k ≥ 0. This constant dimension is the multiplicity

of S+. The adjoint S∗+ of S+ lies in L(H), and is referred to as the backward

unilateral shift, also denoted by S−. Writing ⊕∞k=0xk for {xk}∞k=0 in H = ⊕∞k=0Hk,

it follows that S+ and S− are given by the formulas

S+x = 0⊕⊕∞k=1Ukxk−1 and S∗+x = ⊕∞k=0U
∗
k+1xk+1

for every x = ⊕∞k=0xk in H = ⊕∞k=0Hk, where 0 is the origin of H0 and Uk+1 is any

unitary transformation of the spaceHk onto the spaceHk+1 so that S+|Hk
= Uk+1,
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for each k ≥ 0. These are identified with the infinite matrices

S+ =



0 · · ·

U1 0 · · ·

U2 0 · · ·

U3 0 · · ·
. . . . . .


and S∗+ =



0 U∗
1 · · ·

0 U∗
2 · · ·

0 U∗
3 · · ·

0
. . .


of transformations.

In particular, ifH is an infinite dimensional separable Hilbert space; that is, if

the Hilbert spaceH has a countably infinite orthonormal basis, say {ek}∞k=0 , then

set Hk = span {ek} for k ≥ 0 so that dimHk = 1 for all k ≥ 0. It can be verified

that S+ is a unilateral shift of multiplicity 1 on H if it shifts the orhonormal basis

{ek}∞k=0 for H; that is, if S+ek = ek+1 for every k ≥ 0. Conversely, an operator

S+ is a unilateral shift of multiplicity 1 on H only if it shifts some orhonormal

basis {uk}∞k=0 for H; that is, only if S+uk = uk+1 for every k ≥ 0.

If x = ⊕∞k=0xk is any vector in the Hilbert space H = ⊕∞k=0Hk, then ‖S+x‖2 =

‖0⊕⊕∞k=1Ukxk−1‖2 =
∑∞

k=1 ‖Ukxk−1‖2 =
∑∞

k=1 ‖xk−1‖2 =
∑∞

k=0 ‖xk‖2 = ‖x‖2 .

Thus the unilateral shift S+ is an isometry. This can also be verified observing

that S∗+S+ = I.

An operator S on a Hilbert space H is a bilateral shift if there exists an

infinite sequence {Hk}∞k=−∞ of nonzero pairwise orthogonal subspaces of H such

that H = ⊕∞k=−∞Hk and S maps each Hk isometrically onto Hk+1.

Definition 1.2.8 (Coisometry). Let H be a Hilbert space, and U ∈ L(H). We

say that U is a coisometry if UU∗ = I, where I is the identity operator in L(H).

The operator U is a coisometry if and only if U∗ is an isometry. Obviously

every unitary operator is a coisometry. Also an invertible coisometry is always

unitary. The backward unilateral shift is an example of a coisometry.



1.2. Bounded operators on Hilbert spaces 15

Definition 1.2.9 (Quasinomal operator). An operator T is called quasinormal

if T commutes with T ∗T.

Every normal operator is quasinormal. Converse is not true. For instance, if

A is an isometry, then A∗A = I. So A commutes with A∗A. If A is not unitary,

then A is not normal. For example, the unilateral shift is quasinormal, but not

normal.

Definition 1.2.10 (Dilations). Suppose that H is a subspace of a Hilbert space

K and let P be the projection from K onto H. If B ∈ L(K), then B induces an

operator A on H, defined by

Ax = PBx, x ∈ H.

We have AP = PB.

The operator A is called the compression of B to H, and B is called a dilation

of A to K.

If H is invariant under B then A is the restriction of B to H and B is an

extension of A to K. The following are some known facts.

• Every operator has a normal dilation.

• If ‖ A ‖≤ 1, then A has a unitary dilation.

• If 0 ≤ A ≤ 1, then A has a dilation that is a projection.

An operator B is called a power dilation (or strong dilation ) of an operator A

if Bn is a dilation of An for n = 1, 2, . . . (ie., Anx = PBnx, x ∈ H, n = 1, 2, . . .).

Definition 1.2.11 (Subnormal operator). An operator is subnormal if it has

a normal extension. More precisely, an operator A on a Hilbert space H is
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subnormal if there exists a normal operator B on a Hilbert space K such that H

is a subspace o K, H is invariant under the operator B, and the restriction of

B to H coincides with A.

Normal ⇒ subnormal.

On finite dimensional Hilbert spaces, the concepts normal and subnormal are the

same. Unilateral shift is subnormal, the bilateral shift is the normal extension.

Normal ⇒ quasinormal ⇒ subnormal.

On finite dimensional Hilbert spaces the three concepts, normal, quasinormal

and subnormal, are the same.

Subnormal ; quasinormal.

For example, let U be the unilateral shift and 0 6= c be a scalar. Let B be the

normal extension of U. Then B is the bilateral shift on a Hilbert space K. Let IK

be the identity operator on K. We know that if S and T are normal operators

such that S commutes with T ∗ and T commutes with S∗, then S + T is normal.

Therefore, the operator B + cIK is normal. Also, B + cIK is an extension of

U + cI. This shows that U + cI is subnormal. But U + cI is not quasinormal,

since if U + cI were quasinormal, U + cI would commute with (U + cI)∗(U + cI),

ie., (U + cI)[(U + cI)∗(U + cI)] = [(U + cI)∗(U + cI)](U + cI) which would imply

that UU∗ = U∗U and would contradict the fact that U is not normal.

Definition 1.2.12 (Spectral radius). If T ∈ L(H), the spectral radius r(T ) of T

is defined as

r(T ) = sup{|λ| : λ ∈ σ(T )}.

We see that

r(T ) = lim
k→∞

‖ T k ‖1/k .
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Definition 1.2.13 (Normaloid). An operator T is said to be normaloid if

r(T ) =‖ T ‖ .

Definition 1.2.14 (Numerical range). If T ∈ L(H), then the set W (T ) =

{〈Tx, x〉 : x ∈ H, ‖ x ‖= 1} is called the numerical range of T.

Theorem 1.2.15 (Toeplitz-Hausdorff theorem). The numerical range of an op-

erator is always convex.

In 1918, Toeplitz proved that for any operator A, the boundary of W (A) is

a convex curve, but left open the possibility that it had interior holes. In 1919,

Hausdorff proved that it did not.

Theorem 1.2.16. The closure of the numerical range includes the spectrum.

Theorem 1.2.17. If T is normal, then W (T ) is the closed convex hull C(σ(T ))

of the spectrum σ(T ) of T.

If T is not normal, then it can happen that C(σ(T )) 6= W (T ). For example,

let A =

 0 0

1 0

. Then σ(A) = {0} and W (A) = {z : |z| ≤ 1/2}.

Definition 1.2.18 (Convexoid operator). An operator T is said to be convexoid

if C(σ(T )) = W (T ).

Definition 1.2.19 (Unitarily equivalent operators). Let H be a Hilbert space,

and S, T ∈ L(H). We say that S and T are unitarily equivalent if there exists a

unitary operator U in L(H) such that S = U∗TU.

Unitarily equivalent operators have the same numerical range. (Proof: Sup-

pose that S and T are unitarily equivalent. Assume that S = U∗TU, where U

is unitary. For every x ∈ H, 〈Sx, x〉 = 〈U∗TUx, x〉 = 〈TUx, Ux〉 = 〈Ty, y〉 ,

where y = Ux, and we have ‖ y ‖=‖ Ux ‖=‖ x ‖ . On the other hand, for every

x ∈ H, 〈Tx, x〉 = 〈TUU∗x, UU∗x〉 = 〈SU∗x, U∗x〉 = 〈Sz, z〉 , where z = U∗x,

and we have ‖ z ‖=‖ U∗x ‖=‖ x ‖ . Thus W (S) = W (T ) ).
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1.3 Rational functional calculus and holomor-

phic functional calculus

Let U be an associative algebra with unity. We shall define C[t] as the integral

domain of all polynomials over C in the variable t.

Theorem 1.3.1. [7] Let x ∈ U . Then there is a unique algebra homomorphism

φ : C[t] → U such that φ(1) = 1 and φ(t) = x.

Notation: If p ∈ C[t] we define p(x) = φ(p); thus if p(t) =
∑n

k=0 akt
k, then

p(x) =
∑n

k=0 akx
k.

We shall denote by C(t) the field of fractions of the integral domain C[t].

Thus C(t) is the set of all rational forms f = p/q where p, q ∈ C[t] and q 6= 0.

The rational form f = p/q is said to be in the reduced form if p an q are relatively

prime in the integral domain C[t].

Definition 1.3.2 (The algebra R(X)). [7] Let X be a closed proper subset

of C, and let X̌ denote the closure of X, when we regard X as a subset of the

Riemann sphere S. That is, X̌ = X, when X is compact, and otherwise X̌ is X

together with the point at ∞. We let R(X) denote the quotients of polynomials

with poles off X̌, that is, the bounded, rational functions on X with a limit at

∞. Clearly, R(X) is a subalgebra of C(t).

Theorem 1.3.3. [7] Let U be an associative algebra with unity and A ∈ U .

There is a unique algebra homomorphism φ : R(σ(A)) → U such that φ(1) = 1

and φ(t) = A.

Notation: If f ∈ R(σ(A)) we define f(A) = φ(f); writing f = p/q where p, q ∈

C[t] and q has no zeros in σ(A), we have f(A) = q(A)−1p(A) = p(A)q(A)−1.

Note that if f = p/q belong to R(σ(A)), then q has no zeros in σ(A). This

means 0 /∈ q(σ(A)). But by the spectral mapping theorem, q(σ(A)) = σ(q(A)).
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Therefore, 0 /∈ σ(q(A)), and hence q(A) is invertible. Thus the definition of f(A)

makes sense in theorem 1.3.3.

Let H be a Hilbert space and T ∈ L(H). Suppose that X is a closed proper

subset of the complex plane C such that X ⊃ σ(T ). Obviously,R(X) ⊂ R(σ(T )).

Therefore, by applying the functional calculus of theorem 1.3.3, f(T ) is defined

and exists in L(H), for every f ∈ R(X). The mapping f → f(T ) : R(X) → L(H)

is an algebra homomorphism by theorem 1.3.3.

Definition 1.3.4 (Integrals of Banach space-valued functions). [23] Let U be

a Banach space and f be a continuous function of the complex variable z, with

f(z) ∈ U . Let C be a smooth closed curve in the plane C, defined by t → z(t) :

[a, b] → C (which is continuously differentiable on [a, b]). We define

∫
C

f(z)dz

(
=

∫ b

a

f(z(t))z′(t)dt

)

as the norm limit of the “Riemann sums” of the form

n∑
j=1

f(z(t′j))[z(tj)− z(tj−1)]

where a = t0 < t1 < . . . < tn = b, tj−1 ≤ t′j ≤ tj, the limit being taken as

max{|tj − tj−1| : j = 1, . . . n} → 0.

Definition 1.3.5 (Holomorphic functional calculus). [23] Suppose that U is a

Banach algebra and let A ∈ U . Let σ(A) be the spectrum of A, let C be a smooth

closed curve whose interior contains σ(A), and let n be a positive integer. It can

be seen that

An =
1

2πi

∫
C

zn(zI − A)−1dz (1.1)

Hence it follows that

p(A) =
1

2πi

∫
C

p(z)(zI − A)−1dz (1.2)
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for each polynomial p, where C is as described above. If f is a holomorphic

function (classical complex valued of complex variable), holomorphic in an open

set containing σ(A), we define

f(A) =
1

2πi

∫
C

f(z)(zI − A)−1dz (1.3)

for each A ∈ U , where C is a smooth closed curve whose interior contains σ(A).

By 1.3.4, the integral on the right hand side of (1.3) converges in the norm. So

it represents an element f(A) in U .

We shall denote by Hol(σ(A)) the set of functions holomorphic in some open

set containing σ(A) (the open set may vary with the function). It can be seen

that Hol(σ(A)) is an algebra.

Theorem 1.3.6. [23] The mapping f → f(A) is a homomorphism from the

algebra Hol(σ(A)) into U for each A in the Banach algebra U . If f is represented

by the power series
∑∞

n=0 anz
n throughout an open set containing σ(A), then

f(A) =
∞∑

n=0

anA
n.

Remark 1.3.7. Let H be a Hilbert space and let T ∈ L(H). Let X be a closed

proper subset of C such that X ⊃ σ(T ). If f is a rational function, then we

see that f ∈ R(X) =⇒ f = p/q, where p, q ∈ C(t) such that q has no zeros in

X =⇒ f is holomorphic on an open set containing X =⇒ f ∈ Hol(σ(T )). Thus

R(X) is a subalgebra of Hol(σ(T )).

1.4 Some topics in C∗-algebras

Definition 1.4.1 (Operator system ). If S is a subset of a C∗-algebra A, we set

S∗ = {a : a∗ ∈ S}, and we call S self-adjoint when S∗ = S. If A has a unit 1
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and S is a self-adjoint subspace of A containing 1, then we call S an operator

system.

Definition 1.4.2 (The C∗-algebra Mn(A) and the norm in Mn(A)). Let A be

a C∗-algebra, and let Mn(A) denote the set of all n × n matrices with entries

from A. We will denote a typical element of Mn(A) by (aij). There is a natural

way to make Mn(A) into a ∗-algebra. For (aij) and (bij) in Mn(A), set

(aij) + (bij) = (aij + bij),

c(aij) = (caij) if c ∈ C,

(aij) · (bij) = ( Σn
k=1aikbkj) ,

and

(aij)
∗ = (a∗ji).

Also, there is a unique way to introduce a norm such that Mn(A) becomes

a C∗-algebra.

One way that Mn(A) can be viewed as a C∗-algebra is to first choose a

one-to-one *-representation of A on some Hilbert space H, and then let Mn(A)

act on the direct sum of n copies of H in the obvious way. It can be easily

verified that this defines a one-to-one representation of Mn(A) for which the

above multiplication and * operation become operator composition and operator

adjoint. It is straight-forward to verify that the image of Mn(A) under this

representation is closed and hence a C∗-algebra.

Thus we have a way to turn Mn(A) into a C∗-algebra. But since the norm is

unique on a C∗-algebra we see that the norm on Mn(A) defined in this fashion

is independent of the particular representation of A we choose.

We shall use the notationMn for the C∗-algebra of all n×n complex matrices.
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In other words, Mn = Mn(C).

Definition 1.4.3. Let A be a unital C∗-algebra, and S ⊂ A be an operator

system. If B is a unital C∗-algebra and φ : S → B is a linear map, we say that φ

is a unital map if φ(1) = 1. We say that φ is self-adjoint if φ(a∗) = (φ(a))∗ for

all a ∈ S.

Definition 1.4.4 (Operator space). Let A be a C∗-algebra and let M be a

subspace, then we call M an operator space.

ClearlyMn(M) can be regarded as a subspace ofMn(A), and we letMn(M)

have the norm structure that it inherits from the unique norm structure on the

C∗-algebra Mn(A). Similarly if S ⊂ A is an operator system, then we endow

Mn(S) with the norm and the order structure that it inherits as a subspace of

the C∗-algebra Mn(A).

Definition 1.4.5. Let A be a C∗-algebra, M be a subspace, and let n be a

positive integer. If B is a C∗-algebra and φ : M→ B is a linear map, we define

φn : Mn(M) →Mn(B) by

φn((aij)) = (φ(aij)),

and call φn the nth amplification of φ.

Definition 1.4.6. Let A be a C∗-algebra, M a subspace of A, and let n be a

positive integer. If B is a C∗-algebra and φ : M → B is a linear map, we say

that

i. φ is positive if φ maps positive elements of M to positive elements of B.

ii. φ is contractive if ‖φ‖ ≤ 1.

iii. φ is n-positive if φn is positive.
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iv. φ is completely positive if φ is n-positive for all n.

v. φ is completely bounded if supn ‖φn‖ is finite, and, in this case, we set

‖φ‖cb = supn ‖φn‖ .

vi. φ is completely isometric if each φn is isometric.

vii. φ is completely contractive if ‖φ‖cb ≤ 1.

viii. φ is n-contractive if ‖φn‖ ≤ 1.

A positive map need not be completely positive; and a bounded map need

not be completely bounded. A contractive map need not be 2−contractive. In

general, ‖φn‖ 6= ‖φ‖ .

For example, let {Eij}2
i,j=1 denote the system of matrix units for M2, that is

Eij is the 2×2 matrix with 1 in the ijth entry and 0 elsewhere. Let φ : M2 →M2

be the transpose map. It can be easily seen that φ(A) is positive if A is positive,

and that ‖φ(A)‖ = ‖A‖ for all A ∈M2. Thus φ is positive and ‖φ‖ = 1.

Now, consider φ2 : M2(M2) →M2(M2). The matrix of matrix units

 E11 E12

E21 E22

 =


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1


can be written as B∗B where

B =


1√
2

0 0 1√
2

0 0 0 0

0 0 0 0

1√
2

0 0 1√
2

 ,



1.5. Spectral sets 24

and hence is positive. But

φ2

 E11 E12

E21 E22

 =

 φ (E11) φ (E12)

φ (E21) φ (E22)

 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


is not positive. For instance, if T is the operator on C4 that is represented by

the above matrix, and if x = (0,−1, 1, 0), then x ∈ C4 and 〈Tx, x〉 = −2 < 0.

Also, if

D =

 E11 E21

E12 E22

 ,

then ‖D‖ = 1, but ‖φ2 (D)‖ = 2. Therefore, ‖φ2‖ ≥ 2. Note that φ is contractive,

but not 2−contractive.

1.5 Spectral sets

Definition 1.5.1 (Spectral set, K-spectral set). Let X be a closed proper subset

of C, and let X̌ denote the closure of X when we regard X as a subset of the

Riemann sphere S. That is, X̌ = X, when X is compact, and otherwise X̌ is X

together with the point at ∞. We let R(X) denote the quotients of polynomials

with poles off X̌, that is, the bounded, rational functions on X with a limit

at infinity. We regard R(X) as a subalgebra of the C∗-algebra C(∂X̌), which

defines norms on R(X) and on each Mn(R(X)).

If X is a closed, proper subset of C, and T ∈ L(H), with σ(T ) ⊂ X, then

there is still a functional calculus, ie., a homomorphism ρ : R(X) → L(H), given
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by ρ(f) = f(T ), where f(T ) = p(T )q(T )−1 if f = p/q (see the remarks after

1.3.3).

If ‖ ρ ‖≤ 1, then X is called a spectral set for T.

If ‖ ρ ‖≤ K, then X is called a K-spectral set for T.

If ‖ ρ ‖cb≤ 1, then X is called a complete spectral set for T.

If ‖ ρ ‖cb≤ K, then X is called a complete K-spectral set for T.

Of course, ‖ ρ ‖ is defined as follows.

‖ ρ ‖ = sup{‖ ρ(f) ‖: f ∈ R(X), ‖ f ‖∞= 1}

= sup{‖ f(T ) ‖: f ∈ R(X), ‖ f ‖∞= 1},

where ‖ f ‖∞ is the norm of f in the C∗-algebra C(∂X̌).

A well known theorem known as von Neumann’s inequality, says that an

operator T is a contraction if and only if the closed unit disk is a spectral set for

T. Thus for every T ∈ L(H), the set {z ∈ C : |z| ≤ ||T ||} is always a spectral

set for T.

By replacing the algebra R(X) in the above definition by the algebra Hol(X)

and by defining f(T ) according to the Riesz-Dunford functional calculus we

obtain more general definitions of spectral sets and K-spectral sets.

Theorem 1.5.2 (Berger-Foias-Lebow). If S is a compact, convex spectral set for

the operator T on a Hilbert space H, and if ∂S denotes the boundary of S, then
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there exists a normal operator N defined on a larger Hilbert space K ⊃ H such

that

i. σ(N) ⊂ ∂S

ii. T nx = PNnx, x ∈ H, n = 1, 2, . . .

where P is the orthogonal projection of K onto H.

The theorem says that if S is a compact spectral set for T, then there exists

a strong normal dilation N of T such that σ(N) ⊂ ∂S.



Chapter 2
Aluthge and Duggal transformations

2.1 Introduction

Let H be a separable Hilbert space with 2 ≤ dimH ≤ ℵ0 and L(H) be the

C∗-algebra of all bounded linear operators on H. Let T ∈ L(H). Let T = U |T |

be the unique polar decomposition of T, where U is a partial isometry such that

kerU = kerT = ker|T | and |T | = (T ∗T )1/2. Obviously |T | is a positive operator.

Also ‖ Tx ‖=‖ |T |x ‖ for all x ∈ H, and if E = U∗U then E is the initial

projection of U (ie., E = PX where X = (kerU)⊥ = (kerT )⊥) and E is the

support of T as well as the support of |T |. The following definition is due to

Aluthge [1].

Definition 2.1.1 (Aluthge transformation [1]). If T ∈ L(H) and T = U |T | is

the polar decomposition of T, then

T̃ = |T |1/2U |T |1/2

is called the Aluthge transformation of T.

Definition 2.1.2 ( Duggal transformation [16]). If T ∈ L(H) and T = U |T | is

27
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the polar decomposition of T, then

T̂ = |T |U

is called the Duggal transformation of T.

Definition 2.1.3 (λ−Aluthge transformation). If T ∈ L(H), T = U |T | the

polar decomposition of T, and 0 < λ < 1, then ∆λ(T ) = |T |λU |T |1−λ is called the

λ−Aluthge transformation of T. When λ = 1/2, the λ−Aluthge transformation

is the Aluthge transformation.

The notion of Aluthge transformation was first studied in [1] in relation

with the p−hyponormal and log−hyponormal operators. Roughly speaking, the

Aluthge transformation of an operator is closer to being normal. Aluthge trans-

formation has received much attention in recent years. One reason is the connec-

tion of Aluthge transformation with the invariant subspace problem. Jung, Ko

and Pearcy proved in [22] that T has a nontrivial invariant subspace if and only

if T̃ does. Another reason is related with the iterated Aluthge transformation.

In [16], Foias, Jung, Ko and Pearcy introduced the the concept of Dug-

gal transformations, and proved several analogous results for Aluthge transfor-

mations and Duggal transformations. Yamazaki in [35] proved that for every

T ∈ L(H), the sequence of the norms of the Aluthge iterates of T converges to

the spectral radius r(T ). Derming Wang in [33] gave another proof of this re-

sult. We started studying Aluthge and Duggal transformations hoping to prove,

the analogue of the result of Yamazaki, that the sequence of the norms of the

Duggal iterates of T converges to the spectral radius r(T ), for every T ∈ L(H).

Several finite dimensional examples suggested that the result is true for Duggal

transformations. We succeeded in proving that the sequence of the norms of the

Duggal iterates converges to the spectral radius, for certain classes of operators.

We give this result as theorem 2.2.2. Further investigation led to an example of
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a finite dimensional operator showing that there exist operators such that the

sequence of the norms of the Duggal iterates does not converge to the spectral

radius. We exhibit this example in section 2.2.3.

Definition 2.1.4. Let H be a Hilbert space and let T ∈ L(H).

i. T is called hyponormal if T ∗T ≥ TT ∗.

ii. For p > 0, T is p−hyponormal if (T ∗T )p ≥ (TT ∗)p. (Thus 1−hyponormal

means simply hyponormal).

iii. If T is invertible, T is called log−hyponormal if log T ∗T ≥ log TT ∗.

Theorem 2.1.5. [1] Let H be a Hilbert space and T ∈ L(H).

i. For 0 < p < 1/2, if T is p−hyponormal, then T̃ is p + 1/2−hyponormal.

ii. For 1/2 ≤ p ≤ 1, if T is p−hyponormal, then T̃ is 1−hyponormal.

Theorem 2.1.6. [31] Let H be a Hilbert space, T ∈ L(H), and T be invertible.

If T is log−hyponormal, then T̃ is 1/2−hyponormal.

It is well known that σ(T ) = σ(T̃ ) = σ(T̂ ) ( [22], [16]). The following theorem

shows some known results.

Theorem 2.1.7. Let T ∈ L(H).

i. ‖ T̃ ‖≤‖ T ‖, ‖ T̂ ‖≤‖ T ‖ .

ii. T is quasinormal if and only if T = T̃ if and only if T = T̂ .

Proof. Let T = U |T | be the polar decomposition of T. One can note that (if

U 6= 0) ‖ U ‖= 1 (see the remark 1.2.3 on page 12 ). Further, one can see that

‖ T ‖= ‖ |T |2 ‖1/2=‖ |T | ‖=‖ |T |1/2 ‖2 and hence ‖ |T |1/2 ‖= ‖T‖1/2 [24].
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Now

‖ T̃ ‖ = ‖ |T |1/2U |T |1/2 ‖

≤ ‖ |T |1/2 ‖ · ‖ U ‖ · ‖ |T |1/2 ‖

= ‖ |T |1/2 ‖2

= ‖ T ‖ (2.1)

‖ T̂ ‖ = ‖ |T |U ‖

≤ ‖ |T | ‖ · ‖ U ‖

= ‖ |T | ‖

= ‖ T ‖ (2.2)

Further, T = T̂ =⇒ T = |T |U =⇒ U |T | = |T |U =⇒ |T | commutes with

U =⇒ |T |1/2 commutes with U =⇒ |T |1/2U = U |T |1/2 =⇒ |T |1/2U |T |1/2 =

U |T | =⇒ T̃ = T. On the other hand, T = T̃ =⇒ T = |T |1/2U |T |1/2 =⇒

T |T |1/2 = |T |1/2U |T | =⇒ T |T |1/2 = |T |1/2T =⇒ |T |1/2 commutes with T =⇒

|T | commutes with T =⇒ T ∗T commutes with T =⇒ T is quasinormal =⇒ U

and |T | commute (see [18]) =⇒ |T |U = U |T | =⇒ T̂ = T. Also, T is quasinormal

⇐⇒ U and |T | commute ⇐⇒ T̂ = T. Thus T is quasinormal ⇐⇒ T = T̂ ⇐⇒

T = T̃ .

Definition 2.1.8. For T ∈ L(H), denote by Hol(σ(T )) the algebra of all

complex-valued functions which are analytic on some neighborhood of σ(T ),

where linear combinations and products in Hol(σ(T )) are defined (with varying

domains) in the obvious way. The (Riesz-Dunford) algebra AT ⊆ L(H) is defined

as

AT = {f(T ) : f ∈ Hol(σ(T ))},

where the operator f(T ) ∈ L(H) is defined by the Riesz-Dunford functional

calculus as in 1.3.5.
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The following theorem in [16] gives useful information about T̃ and T̂ by

studying maps between the algebras AT ,A
eT and A

bT .

Theorem 2.1.9. [16] For every T ∈ L(H), with T̃ , T̂ , and Hol(σ(T )) as defined

above:

(a) The maps Φ̃ : AT → A
eT and Φ̂ : AT → A

bT defined by

Φ̃(f(T )) = f(T̃ ), Φ̂(f(T )) = f(T̂ ), f ∈ Hol(σ(T ))

are well defined contractive algebra homomorphisms. Thus

max{‖ f(T̃ ) ‖, ‖ f(T̂ ) ‖} ≤‖ f(T ) ‖, f ∈ Hol(σ(T )).

(b) More generally, the maps Φ̃ and Φ̂ are completely contractive, meaning that

for every n ∈ N and every n×n matrix (fij) with entries from Hol(σ(T )),

max{‖ (fij(T̂ )) ‖, ‖ (fij(T̃ )) ‖} ≤‖ (fij(T )) ‖ .

(The norm here is the natural norm in the C∗-algebra Mn(L(H)) ).

(c) Every spectral set for T is a spectral set for both T̃ and T̂ . For fixed K > 1,

every K-spectral set for T is a K-spectral set for both T̃ and T̂ .

(d) If W (S) denotes the numerical range of an operator S in L(H), then

W (f((T̂ )) ∪W (f((T̃ )) ⊂ W (f((T )), f ∈ Hol(σ(T ))

(the overbar denoting the closure).

Remark 2.1.10. Aluthge transformations and Duggal transformations enjoy sev-

eral analogous properties. The following are some.
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i. ‖ T̃ ‖≤‖ T ‖, ‖ T̂ ‖≤‖ T ‖ .

ii. σ(T̃ ) = σ(T ), σ(T̂ ) = σ(T )

iii. T is quasinormal ⇐⇒ T = T̃ ⇐⇒ T = T̂ .

iv. r(T ) = r(T̃ ) = r(T̂ ).

v. ‖ f(T̃ ) ‖≤‖ f(T ) ‖, ‖ f(T̂ ) ‖} ≤‖ f(T ) ‖, f ∈ Hol(σ(T )).

vi. Every spectral set for T is a spectral set for T̃ , every spectral set for T is

a spectral set for T̂ .

vii. Every K-spectral set for T is a K-spectral set for T̃ , every K-spectral set

for T is a K-spectral set for T̂ .

viii. ‖ (fij(T̃ )) ‖≤‖ (fij(T )) ‖, ‖ (fij(T̂ )) ‖≤‖ (fij(T )) ‖ for every positive

integer n and every n× n matrix (fij) with entries in Hol(σ(T )).

ix. W (T̃ ) ⊂ W (T ), W (T̂ ) ⊂ W (T ), where W (T ) denotes the closure of the

numerical range W (T ) of T.

2.2 Aluthge and Duggal iterates

2.2.1 Aluthge and Duggal iterates

Definition 2.2.1 (Iterated Aluthge transformations). Denote T̃ (0) = T , T̃ (1) =

T̃ , T̃ (2) = (̃T̃ (1)), . . . , T̃ (n) =
˜

(T̃ (n−1)), . . . .

For every T ∈ L(H), the sequence {‖ (T̃ (n)) ‖}∞n=0 is decreasing such that

r(T ) ≤
∥∥∥T̃ (n)

∥∥∥ ≤ ‖T‖ . (Proof: Since σ(T ) = σ(T̃ ) = σ(T̃ (n)) for all n ∈ N,

we have, r(T ) = r(T̃ (n)) ≤‖ T̃ (n) ‖ for all n ∈ N. The fact ‖ T̃ (n) ‖≤‖ T ‖

follows easily from an application of the inequality ( 2.1) on page 30). Hence
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{‖ (T̃ (n)) ‖}∞n=0 is a convergent sequence. In 2002, Yamazaki in the excellent

paper [35] proved that for every T ∈ L(H), the sequence of the norms of the

Aluthge iterates of T converges to the spectral radius r(T ).

Theorem 2.2.2. [35] For every T ∈ L(H), the sequence {||T̃ (n)||} converges to

r(T ).

In 2003, Derming Wang in [33] used Mc Intosh inequality and Heinz inequality

to give another proof of the above theorem.

Definition 2.2.3 (Iterated Duggal transformations). Denote T̂ (0) = T , T̂ (1) =

T̂ , T̂ (2) = (̂T̂ (1)), . . . , T̂ (n) =
̂

(T̂ (n−1)), . . . .

In the coming sections, we investigate the convergence of the norms of the

Duggal iterates of a bounded linear operator on a Hilbert space.

2.2.2 Convergence of the norms of Duggal iterates

We shall prove that limn→∞ ‖ T̂ (n) ‖= r(T ) for operators T belonging to certain

classes of operators in L(H). By the inequality (2.2), ‖ T̂ (n+1) ‖≤‖ T̂ (n) ‖ for

all n ∈ N. Moreover σ(T̂ (n)) = σ(T ), and hence r(T̂ (n)) = r(T ) for all n ≥ 0.

Thus { ||T̂ (n)|| }∞n=0 is a decreasing sequence which is bounded below by r(T ).

The following lemma is an easy consequence.

Lemma 2.2.4. There is an s ≥ r(T ) for which limn→∞ ‖ T̂ (n) ‖= s.

Remark 2.2.5. We notice one more analogy between Aluthge and Duggal trans-

formations.

The sequence {‖ (T̃ (n)) ‖}∞n=0 is decreasing such that r(T ) ≤‖ T̃ (n) ‖≤

‖T‖ , and r(T̃ (n)) = r(T ) for all n. The sequence {‖ (T̂ (n)) ‖}∞n=0 is

decreasing such that r(T ) ≤‖ T̂ (n) ‖≤ ‖T‖ , and r(T̂ (n)) = r(T ) for

all n.
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Theorem 2.2.6 (Mc Intosh inequality ). For bounded linear operators A,B and

X,

‖ A∗XB ‖ ≤ ‖ AA∗X ‖1/2 ‖ XBB∗ ‖1/2 .

Theorem 2.2.7 (Heinz inequality ). For positive linear operators A and B, and

bounded linear operator X,

‖ AαXBα ‖ ≤ ‖ AXB ‖α ‖ X ‖1−α

for all 0 ≤ α ≤ 1.

Using these inequalities we prove the following results.

Lemma 2.2.8. For any positive integer k,

‖ (T̂ (n+1))k ‖≤‖ (T̂ (n))k ‖

for all n ≥ 0. Consequently, the decreasing sequence {‖ (T̂ (n))k ‖}∞n=0 is conver-

gent.

Proof. Let f(t) = tk, t ∈ a neighborhood of σ(T ), and note that σ(T ) = σ(T̂ (n)).

We have f ∈ Hol(σ(T )). Applying theorem 2.1.9 (a) , the proof is complete.

Lemma 2.2.9. If T̂ (n) = Un|T̂ (n)| is the polar decomposition of T̂ (n), then for

any positive integer k,

‖ (T̂ (n+1))k ‖≤‖ |T̂ (n)|2 (T̂ (n))k−1 ‖1/2 ‖ (T̂ (n))k−1UnU
∗
n ‖1/2

Proof. We have T̂ (n+1) = |T̂ (n)|Un and therefore (T̂ (n+1))k = |T̂ (n)|(T̂ (n))k−1Un.

Hence by theorem 2.2.6,

‖ (T̂ (n+1))k ‖ ≤ ‖ |T̂ (n)|(T̂ (n))k−1Un ‖

≤ ‖ |T̂ (n)|2(T̂ (n))k−1 ‖1/2 ‖ (T̂ (n))k−1UnU
∗
n ‖1/2
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Lemma 2.2.10. Let n be a positive integer and T ∈ L(H) be an operator satis-

fying the condition ‖ |T̂ (n)|2(T̂ (n))k−1 ‖≤‖ (T̂ (n))k+1 ‖ . Then

‖ (T̂ (n+1))k ‖≤‖ (T̂ (n))k+1 ‖1/2 ‖ (T̂ (n))k−1 ‖1/2

Proof. By lemma 2.2.9,

‖ (T̂ (n+1))k ‖ ≤ ‖ |T̂ (n)|2(T̂ (n))k−1 ‖1/2 ‖ (T̂ (n))k−1UnU
∗
n ‖1/2

≤ ‖ (T̂ (n))k+1 ‖1/2 ‖ (T̂ (n))k−1UnU
∗
n ‖1/2

≤ ‖ (T̂ (n))k+1 ‖1/2 ‖ (T̂ (n))k−1 ‖1/2

since UnU
∗
n is a projection.

Lemma 2.2.11. Let n be a positive integer and T ∈ L(H) be an operator satis-

fying the condition |T̂ (n)| T̂ (n) = T̂ (n) |T̂ (n)|. Then

‖ (T̂ (n+1))k ‖≤‖ (T̂ (n))k+1 ‖1/2 ‖ (T̂ (n))k−1 ‖1/2

Proof.

‖ |T̂ (n)|2 (T̂ (n))k−1 ‖ = ‖ |T̂ (n)| · |T̂ (n)| (T̂ (n))k−1 ‖

= ‖ T̂ (n) |T̂ (n)| (T̂ (n))k−1 ‖

= ‖ |T̂ (n)| (T̂ (n))k ‖

= ‖ (T̂ (n))k+1 ‖ .

By lemma 2.2.10, the result follows.

Lemma 2.2.12. Let T ∈ L(H) be an operator satisfying the condition

‖ |T̂ (n)|2(T̂ (n))k−1 ‖ ≤ ‖ (T̂ (n))k+1 ‖
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for all k = 1, 2, . . . , and for all large positive integers n. Then limn→∞ ‖ (T̂ (n))k ‖

= sk for any positive integer k.

Proof. We prove the lemma by induction on k. By lemma 2.2.4, the result is true

for k = 1. Suppose that the result is true for 1 ≤ k ≤ m. By lemma 2.2.10, for

large n,

‖ (T̂ (n+1))m ‖ ≤ ‖ (T̂ (n))m+1 ‖1/2 ‖ (T̂ (n))m−1 ‖1/2

≤ ‖ (T̂ (n))m ‖1/2 ‖ T̂ (n) ‖1/2 ‖ (T̂ (n))m−1 ‖1/2 (2.3)

Put limn→∞ ‖ (T̂ (n))m+1 ‖= t (the limit exists by lemma 2.2.8 .) Now, taking

limits as n →∞ in (2.3), the induction hypothesis shows that

sm ≤ t1/2s(m−1)/2 ≤ sm/2s1/2s(m−1)/2 = sm.

Therefore,

t1/2s(m−1)/2 = sm.

Hence

t = sm+1.

The lemma follows by induction.

Theorem 2.2.13. If T ∈ L(H) is such that ‖ |T̂ (n)|2 (T̂ (n))k−1 ‖ ≤ ‖ (T̂ (n))k+1 ‖

for all k = 1, 2, . . . , and for all large positive integers n, then

lim
n→∞

‖ T̂ (n) ‖= r(T ).

Proof. By lemma 2.2.8, we see that for each fixed positive integer k, the se-

quence {‖ (T̂ (n))k ‖1/k}∞n=0 is convergent, and by lemma 2.2.12, it converges to s.
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Therefore,

s ≤ ‖ (T̂ (n))k ‖1/k

for all n and k. By lemma 2.2.4,

r(T ) ≤ s.

Suppose, if possible, r(T ) < s. For every fixed k, the sequence {‖ (T̂ (n))k ‖}∞n=0

is decreasing. Now fix an n. We have

‖ (T̂ (n))k ‖ ≤ ‖ (T̂ (0))k ‖ = ‖ T k ‖

for all k. Therefore,

‖ (T̂ (n))k ‖1/k ≤ ‖ T k ‖1/k

for all k. Since r(T ) < s, and limk→∞ ‖ T k ‖1/k= r(T ), we see that

‖ (T̂ (n))k ‖1/k< s

for sufficiently large k. This is a contradiction. Hence

s = r(T ).

ie., lim
n→∞

‖ T̂ (n) ‖= r(T ).

Theorem 2.2.14. Let T ∈ L(H) be an operator satisfying the condition that

T̂ (n) |T̂ (n)| = |T̂ (n)| T̂ (n) for all large positive integers n. Then

lim
n→∞

‖ T̂ (n) ‖= r(T ).
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Proof. (See proof of lemma 2.2.11 ).

‖ |T̂ (n)|2 (T̂ (n))k−1 ‖ = ‖ (T̂ (n))k+1 ‖

for all k = 1, 2, . . . , and for all large n. Hence by theorem 2.2.13, the proof is

complete.

Remark 2.2.15. An operator S is quasinormal if and only if S|S| = |S|S. (For S is

quasinormal ⇐⇒ S commutes with S∗S ⇐⇒ S commutes with (S∗S)1/2 = |S|).

Thus theorem 2.2.14 says that if T̂ (n) is quasinormal for large positive integers

n, then limn→∞ ‖ T̂ (n) ‖= r(T ). But this is obvious since if T̂ (n) is quasinormal

for some n, then (̂T̂ (n)) = T̂ (n). ie., T̂ (n+1) = T̂ (n) and hence T̂ (m) = T̂ (n) for

all m ≥ n. Being a quasinormal operator, T̂ (n) is normaloid, and therefore,

‖ T̂ (m) ‖=‖ T̂ (n) ‖= r(T̂ (n)) = r(T ) for all m ≥ n. Thus limn→∞ ‖ T̂ (n) ‖= r(T ).

Corollary 2.2.16. Let T ∈ L(H) be an operator satisfying |(T̂ (n))2| = |T̂ (n)|2

for all large positive integers n. Then

lim
n→∞

‖ T̂ (n) ‖= r(T ).

Proof. ‖ |T̂ (n)|2 (T̂ (n))k−1 ‖ = ‖ |(T̂ (n))2| (T̂ (n))k−1 ‖ = ‖ (T̂ (n))k+1 ‖ for all large

n, and for all k = 1, 2, . . . . By theorem 2.2.13, the proof follows.

Remark 2.2.17. An operator S is quasinormal if and only if S is hyponormal

and |S2| = |S|2 [15]. Thus theorem 2.2.14 can be deduced as a consequence of

corollary 2.2.16.

If T̂ (n) is quasinormal for some n, then obviously, ‖ T̂ (n) ‖→ r(T ) as n →∞

( see remark 2.2.15 ). Similarly, if T̂ (n) is normaloid for some n, then for all

m ≥ n, we have r(T ) = r(T̂ (m)) ≤‖ T̂ (m) ‖≤‖ T̂ (n) ‖= r(T̂ (n)) = r(T ), hence

‖ T̂ (m) ‖= r(T ), and therefore limn→∞ ‖ T̂ (n) ‖= r(T ). As a special case, if T

itself is normaloid, then ‖ T̂ (n) ‖=‖ T ‖= r(T ) for all n.
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Remark 2.2.18. Now we pose the crucial question. Is it true that for every

T ∈ L(H), the sequence {‖ T̂ (n) ‖}∞n=0 converge to the spectral radius r(T )?

2.2.3 The norms of the Duggal iterates of T need not

converge to r(T )

In 2002, Yamazaki [35], proved that for every T ∈ L(H), the Aluthge norm

sequence {‖ T̃ (n) ‖}∞n=0 converges to the spectral radius r(T ). In 2003, T. Ando

and T. Yamazaki [3], proved that in the case of a 2 × 2 matrix the sequence of

the iterated Aluthge transformations itself converges. In 2006, Jorge Antezana,

Enrique R. Pujals and Demetrio Stojanoff [4], proved the convergence of iterated

Aluthge transformation sequence for diagonalizable matrices.

We construct below an example showing that the analogues of these three

results fail in the case of Duggal transformations. Note that we thus answer the

question in remark 2.2.18 in the negative.

Example 2.2.19. Let H be the Hilbert space C2 and consider A ∈ L(H) given

by

A =

 −1 −2

2 1

 .

Then the polar decomposition of A is A = U |A|, where U =

 0 −1

1 0

 and

|A| =

 2 1

1 2

 . We see that σ(A) = {−
√

3i,
√

3i}, ‖ A ‖= 3, r(A) =
√

3. The

Duggal transformation of A is

Â =

 1 −2

2 −1

 .
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So ‖ Â ‖= 3. The polar decomposition of Â is Â = U1|Â|, where U1 = 0 −1

1 0

 and |Â| =

 2 −1

−1 2

. Hence the second Duggal iterate Â(2) of A

is

Â(2) =

 −1 −2

2 1

 = A.

This shows that

Â(n) =

A if n is even

A1 if n is odd

where A1 =

 1 −2

2 −1

. Hence ‖ Â(n) ‖= 3 for all n. Thus { ‖ Â(n) ‖ }∞n=0 does

not converge to r(A). More obviously, { Â(n) }∞n=0 does not converge. Also note

that A is a 2× 2 diagonalizable matrix. ( A is diagonalizable because the eigen

values of A are distinct ).

Remark 2.2.20. In 2007, Huajun Huang and Tin-Yau Tam, proved in [19] that

the iterated λ-Aluthge sequence converges for an n × n matrix if the nonzero

eigenvalues of the matrix have distinct moduli. Earlier in [4], Jorge Antezana,

Enrique R. Pujals and Demetrio Stojanoff proved the convergence of iterated

Aluthge transformation sequence for diagonalizable matrices. If A is a normal

n × n matrix over C, then it is always possible to choose an orthonormal basis

of Cn such that the corresponding matrix is diagonal [13]. Conversely if A is an

n × n matrix over C and if it is possible to choose an orthonormal basis of Cn

such that the corresponding matrix is diagonal, then obviously A is normal. If A

is normal, then Ã(n) = A for all n ∈ N, and hence the sequence {Ã(n)} converges

trivially. Thus the result of Antezana, Pujals and Stojanoff is trivial in the case

of matrices which are diagonalizable with respect to an orthonormal basis.

The question of whether for every T ∈ L(H) the sequence of iterated Aluthge

transformation sequence converge remained unanswered for some time. Recently
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M. Chō, I. B. Jung, and W. Y. Lee in [10] constructed a hyponormal bilateral

weighted shift T : `2(Z) → `2(Z) such that {T̃ (n)}∞n=0 does not converge in the

norm topology. However, the convergence of iterated Aluthge transformation

sequence for T ∈ L(H), where H is a finite dimensional Hilbert space remains

as an open problem.

Remark 2.2.21. Even though, in general, {‖ T̂ (n) ‖}∞n=0 does not converge to r(T )

( as shown in the example), there are operators T for which ‖ T̂ (n) ‖−→ r(T ).

For instance, if T is normaloid, (in particular, if T is quasinormal, subnormal,

or hyponormal ), then ‖ T̂ (n) ‖−→ r(T ) (see remark 2.2.17 ). We proved in

theorem 2.2.13, for certain class of operators ‖ T̂ (n) ‖−→ r(T ).

2.3 More on Aluthge and Duggal transforma-

tions

2.3.1 Invertible operators and Duggal transformations

In 2004, T. Ando in [2] proved the remarkable result that if A is an n×n matrix

over C, then the convex hull of σ(A) equals the numerical range W (A) if and

only if A and the Aluthge transformation Ã have the same numerical range. In

this section we show that in the analogous case of Duggal transformations, the

implication in one direction holds, and the converse fails. We give an example

to show that the converse fails even for 2× 2 matrices. Also, we prove that if S

and T are unitarily equivalent, then so are Ŝ and T̂ .

Lemma 2.3.1. If T ∈ L(H) is invertible, then T̂ is invertible.

Proof. If T is invertible, then T has the polar decomposition T = U |T |, where

U is unitary [28]. Also |T | = U−1T. Therefore, |T | is invertible, and hence,

T̂ = |T |U is invertible.
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Lemma 2.3.2. Let T ∈ L(H) be any operator. If T = U |T | is the polar decom-

position of T, then T̂ = U∗TU.

Proof. Let E = U∗U. Then E is a projection and E|T | = |T |. Therefore, U∗TU =

U∗U |T |U = E|T |U = |T |U = T̂ .

Theorem 2.3.3. Let T ∈ L(H). If V is unitary and S = V ∗TV, then Ŝ = V ∗T̂ V.

Proof. We have

S∗S = (V ∗TV )∗(V ∗TV )

= V ∗T ∗V V ∗TV

= V ∗T ∗TV

= V ∗|T |2V

= (V ∗|T |V )(V ∗|T |V )

and V ∗|T |V is positive (note that 〈V ∗|T |V x, x〉 = 〈|T |V x, V x〉 ≥ 0 ∀x ∈ H).

Therefore, |S| = V ∗|T |V.

Let T = U |T | be the polar decomposition of T. Then kerU = kerT. Let U1 =

V ∗UV. Now U∗
1 U1 = V ∗U∗V V ∗UV = V ∗U∗UV and since U∗U is a projection

V ∗U∗UV = V ∗(U∗U)2V

= (V ∗U∗UV )2

and hence V ∗U∗UV = U∗
1 U1 is a projection. Thus U1 is a partial isometry.

Let x ∈ H. Then x ∈ kerU1 ⇐⇒ V ∗UV x = 0 ⇐⇒ UV x = 0 ⇐⇒ V x ∈

kerU ⇐⇒ V x ∈ kerT ⇐⇒ TV x = 0 ⇐⇒ V ∗TV x = 0 ⇐⇒ x ∈ kerS. Thus

kerU1 = kerS.
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Hence S = U1|S| is the polar decomposition of S. Therefore, Ŝ = |S|U1 =

V ∗|T |V V ∗UV = V ∗|T |UV = V ∗T̂ V

Theorem 2.3.4. Let T ∈ L(H) be invertible. If T = U |T | is the polar decom-

position of T, then for all n ∈ N, the nth Duggal iterate T̂ (n) = (U∗)nTUn.

Proof. We prove the result by induction. Since T is invertible, U is unitary. By

lemma 2.3.2, T̂ = U∗TU. Thus the result is true for n = 1. (The case n = 0 is

trivial).

Suppose that n ≥ 2 and assume that the result is true for all m ≤ n − 1.

Then

T̂ (n−1) = (U∗)n−1TUn−1

= U∗[(U∗)n−2TUn−2]U

= U∗T̂ (n−2)U by the induction hypothesis.

Therefore, by theorem 2.3.3,

T̂ (n) = U∗T̂ (n−1)U

= U∗[(U∗)n−1TUn−1]U

= (U∗)nTUn.

Remark 2.3.5. If T is invertible, by theorem 2.3.4, every Duggal iterate of T is

unitarily equivalent to T. So if T is invertible, every Duggal iterate of T has the

same numerical range as that of T.

Remark 2.3.6. In [2], T. Ando proved that if A is an n×n matrix over C, then the

convex hull of σ(A) equals W (A) if and only if A and Ã have the same numerical

range .
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Consider the analogous case of Duggal transformations. Let A be an n × n

matrix over C, and let C(σ(A)) denote the convex hull of σ(A). Suppose that

C(σ(A)) = W (A). By theorem 2.1.9, W (Â) ⊂ W (A). Since this is a finite di-

mensional case, numerical ranges are compact, and hence closed. Thus W (Â) ⊂

W (A) = C(σ(A)) = C(σ(Â)) ⊂ W (Â). Therefore, W (Â) = W (A). Thus if the

convex hull of σ(A) equals the numerical range W (A), then A and the Duggal

transformation Â have the same numerical range.

The converse fails in the case of Duggal transformations. For example if A is

invertible, then A and Â are unitarily equivalent, and therefore, A and Â have

the same numerical range. But in this case, the convex hull of σ(A) need not be

equal to W (A), as the following example shows.

Example 2.3.7. Let

A =

 1 1

0 −1

 .

Then A is an invertible matrix and σ(A) = {−1, 1}.

It is fairly standard that if A is a 2×2 matrix with distinct eigen values α and

β, and corresponding eigen vectors f and g, so normalized that ‖ f ‖=‖ g ‖= 1,

then W (A) is a closed elliptical disc with foci at α and β; if γ = | 〈f, g〉 | and

δ =
√

1− γ2, then the minor axis is γ|α− β|/δ and the major axis is |α− β|/δ.

Also, if A has only one eigen value α, then W (A) is the circular disc with center

α and radius 1
2
‖ A−α ‖ . The results given in this paragraph can be seen in [18].

If A =

 1 1

0 −1

, then α = 1 and β = −1 are the distinct eigen values of

A with corresponding eigen vectors f = (1, 0) and g = (−1/
√

5, 2/
√

5). We have

‖ f ‖=‖ g ‖= 1. Let γ = | 〈f, g〉 | and δ =
√

1− γ2. Then γ|α − β|/δ = 1 and

|α− β|/δ =
√

5.

Therefore, the numerical range W (A) is the closed elliptical disc with foci at
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1 and −1; the minor axis is 1 and the major axis is
√

5.

The convex hull of σ(A) is the straight line segment with end points (−1, 0)

and (1, 0). Thus the convex hull of σ(A) does not equal W (A). Notice that since

A is invertible and by lemma 2.3.2, Â is unitarily equivalent to A. So A and Â

have the same numerical range.

By the remark 2.3.6 and the example 2.3.7, we have discussed the complete

Duggal transformation analogue of Ando’s result.

2.3.2 When the partial isometry in the polar decomposi-

tion is a coisometry

Let T ∈ L(H) and let T = U |T | be the polar decomposition of T. In this section

we study the Aluthge and the Duggal transformations of T when the partial

isometry U in the polar decomposition of T happens to be a coisometry. A

particular case is when U is actually unitary. We know that when T is invertible,

the partial isometry U in the polar decomposition of T is a unitary operator.

We introduce in this section the concept of n−level spectral sets. We show

that if the partial isometry U in the polar decomposition of T is a coisometry,

then the obvious algebra homomorphism between the Riez Dunford algebras AT

and A
bT is a complete isometry. As a consequence, we prove that in such cases,

the operators T and T̂ have the same collection of complete spectral sets. Also

we show that for any invertible non-normaloid T, the sequence of the norms of

Duggal iterates of T cannot converge to the spectral radius of T ; and this result

is an improvement of the results of section 2.2.3.

Lemma 2.3.8. If T = U |T | is the polar decomposition of T and if U is a

coisometry, then ‖ T̂ ‖=‖ T ‖ .
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Proof. We have T̂ = U∗TU. Therefore, UT̂U∗ = UU∗TUU∗ = T, and therefore,

‖ T ‖ = ‖ UT̂U∗ ‖ ≤ ‖ U ‖ · ‖ T̂ ‖ · ‖ U∗ ‖ ≤ ‖ T̂ ‖ . But by the inequality

( 2.2) on page 30, ‖ T̂ ‖≤‖ T ‖ . Hence ‖ T̂ ‖=‖ T ‖ .

If T is invertible, we can prove the following stronger result.

Theorem 2.3.9. If T ∈ L(H) is invertible, then ‖ T̂ (n) ‖=‖ T ‖ for all n ∈ N.

Proof. If T is invertible, and T = U |T | is the polar decomposition of T, then U

is unitary. Also T̂ = U∗ T U. By theorem 2.3.4, T̂ (n) = (U∗)n T Un for all n ∈ N.

Therefore, Un T̂ (n) (U∗)n = T. So, ‖ T ‖≤‖ T̂ (n) ‖ . But ‖ T̂ (n) ‖≤ ‖T‖ .

If we apply the following lemma from [16], we can prove theorem 2.3.11 which

is much more general than lemma 2.3.8.

Lemma 2.3.10 ( [16]). If T = U |T | is the polar decomposition of T, then for

every f ∈ Hol(σ(T )), we have f(T )U = Uf(T̂ ).

Theorem 2.3.11. If T = U |T | is the polar decomposition of T and if U is a

coisometry, then for every f ∈ Hol(σ(T )), we have ‖ f(T̂ ) ‖=‖ f(T ) ‖ .

Proof. By theorem 2.1.9, ‖ f(T̂ ) ‖≤‖ f(T ) ‖ . On the other hand, we have by

lemma 2.3.10, f(T )U = Uf(T̂ ). Therefore, U f(T̂ ) U∗ = f(T ) U U∗ = f(T ). So,

‖ f(T ) ‖ = ‖ U f(T̂ ) U∗ ‖ ≤ ‖ f(T̂ ) ‖ .

Corollary 2.3.12. If T ∈ L(H) is invertible, then ‖ f(T̂ ) ‖=‖ f(T ) ‖ for all

f ∈ Hol(σ(T )).

Theorem 2.3.13. If T = U |T | is the polar decomposition of T, and U is coisom-

etry, then the map Φ̂ : AT → A
bT defined by Φ̂(f(T )) = f(T̂ ), f ∈ Hol(σ(T )) is

an isometry.
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Proof. By theorem 2.3.11,

‖ Φ̂(f(T )) ‖=‖ f(T̂ ) ‖=‖ f(T ) ‖,

for all f ∈ Hol(σ(T )).

Corollary 2.3.14. If T ∈ L(H) is invertible, then the map Φ̂ : AT → A
bT defined

by Φ̂(f(T )) = f(T̂ ), f ∈ Hol(σ(T )) is an isometry.

Let T ∈ L(H) be invertible. By an application of lemma 2.3.1, we see that

T̂ (n) is invertible for all n ∈ N. Also, σ(T ) = σ
(
T̂ (n)

)
for all n ∈ N. So by

applying 2.3.12 inductively, we can prove the following result.

Theorem 2.3.15. If T ∈ L(H) is invertible, then ‖ f(T̂ (n)) ‖=‖ f(T ) ‖ for all

n ∈ N and for all f ∈ Hol(σ(T )).

Remark 2.3.16. If T is invertible, then by theorem 2.3.9, ‖ T̂ (n) ‖=‖ T ‖ for all

n ∈ N, and hence {‖ T̂ (n) ‖} is a constant sequence converging to ‖ T ‖ . Thus if

T is any invertible non-normaloid, then the sequence {‖ T̂ (n) ‖} cannot converge

to the spectral radius r(T ). Referring back to the section 2.2.3, notice that the

operator considered in example 2.2.19 was invertible and non-normaloid. For the

operator in the example, we proved constructively that the norms of the Duggal

iterates do not converge to the spectral radius. Now we realize that it was not

accidental, and it is the case with every invertible non-normaloid.

Remark 2.3.17. Theorem 2.3.9 says that if T is invertible, then ‖ T̂ (n) ‖=‖ T ‖

for all n ∈ N. But the condition that ‖ T̂ (n) ‖=‖ T ‖ for all n, does not imply

T is invertible. It does not even imply that U is a coisometry. Consider the

following example.

Example 2.3.18. Let A =

 1 0

0 0

 . Then the matrix A is not invertible. Since

A is self-adjoint, Â(n) = A for all n, and therefore, ‖ Â(n) ‖=‖ A ‖ for all n.
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The polar decomposition of A is A = U |A|, where the partial isometry U = 1 0

0 0

 and |A| =

 1 0

0 0

 . Notice that U is not even a coisometry.

Lemma 2.3.19. Let T = U |T | be the polar decomposition of T. If U is a

coisometry, then for every n × n matrix (fij) with fij ∈ Hol(σ(T )), we have

‖ (fij(T̂ )) ‖=‖ (fij(T )) ‖ .

Proof. Let (fij) be an n × n matrix with fij ∈ Hol(σ(T )). By lemma 2.3.10,

fij(T )U = Ufij(T̂ ) for all i, j. Therefore, fij(T ) = Ufij(T̂ )U∗ for all i, j. Thus

(fij(T )) = (Ufij(T̂ )U∗). Therefore,

‖ (fij(T )) ‖ = ‖ (Ufij(T̂ )U∗) ‖

=

∥∥∥∥∥∥∥∥∥∥∥∥


U 0 · · · 0

0 U · · · 0
...

...
...

0 0 · · · U

 (fij(T̂ ))


U∗ 0 · · · 0

0 U∗ · · · 0
...

...
...

0 0 · · · U∗



∥∥∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥∥∥∥


U 0 · · · 0

0 U · · · 0
...

...
...

0 0 · · · U



∥∥∥∥∥∥∥∥∥∥∥∥
.
∥∥∥(fij(T̂ ))

∥∥∥ .

∥∥∥∥∥∥∥∥∥∥∥∥


U∗ 0 · · · 0

0 U∗ · · · 0
...

...
...

0 0 · · · U∗



∥∥∥∥∥∥∥∥∥∥∥∥
But the above diagonal matrices have norm less than or equal to 1. (For example,

let R =


U 0 · · · 0

0 U · · · 0
...

...
...

0 0 · · · U

 . Then R ∈Mn(L(H)), RR∗ =


1 0 · · · 0

0 1 · · · 0
...

...
...

0 0 · · · 1

 .
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Therefore, ‖ RR∗ ‖= 1. So, ‖ R∗ ‖2=‖ R ‖2= 1. Therefore, ‖ R ‖= 1.) Thus

‖ (fij(T )) ‖≤‖ (fij(T̂ )) ‖ .

On the other hand, by theorem 2.1.9,

‖ (fij(T̂ )) ‖≤‖ (fij(T )) ‖ .

Thus ‖ (fij(T̂ )) ‖=‖ (fij(T )) ‖ .

Theorem 2.3.20. If T = U |T | is the polar decomposition of T and U a coisom-

etry, then the map Φ̂ : AT → A
bT defined by Φ̂(f(T )) = f(T̂ ), f ∈ Hol(σ(T )) is

a complete isometry.

Proof. By lemma 2.3.19,

‖ (fij(T̂ )) ‖=‖ (fij(T )) ‖ .

for every n× n matrix (fij) where fij ∈ Hol(σ(T )). In other words, the equality

‖ Φ̂n(fij) ‖=‖ (fij) ‖ holds for every positive integer n and for every n×n matrix

(fij) where fij ∈ Hol(σ(T )). Thus for all positive integers n, ‖ Φ̂n ‖= 1, where

Φ̂n denotes the nth amplification of Φ̂. Hence, Φ̂ is a complete isometry.

Corollary 2.3.21. If T is invertible, then the map Φ̂ defined as above is a

complete isometry.

Recall the definitions of spectral set and complete spectral set, given in sec-

tion 1.5. Let X be a closed proper subset of C, and let X̌ denote the closure

of X, when we regard X as a subset of the Riemann sphere S. We let R(X)

denote the quotients of polynomials with poles off X̌, that is, the bounded, ra-

tional functions on X with a limit at ∞. We regard R(X) as a subalgebra of the
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C∗-algebra C(∂X̌), which defines norms on R(X) and each Mn(R(X)).

If X is a closed, proper subset of C, and T ∈ L(H), with σ(T ) ⊂ X, then

there is a functional calculus, ie., a homomorphism ρ : R(X) → L(H), given by

ρ(f) = f(T ), where f(T ) = p(T )q(T )−1 if f = p/q. If ‖ ρ ‖≤ 1, then X is called

a spectral set for T. If ‖ ρ ‖cb≤ 1, then X is called a complete spectral set for T.

Now let us introduce the concept of n-level spectral sets. They are discussed

in more detail in section 4.3 on page 89.

Definition 2.3.22 (n-level spectral set). Let n be a positive integer. Let X, ρ,

and T be as discussed above. If ‖ρn‖ ≤ 1, where ρn denotes the nth amplification

of ρ, then we say that X is an n-level spectral set for T.

Lemma 2.3.23. If T = U |T | is the polar decomposition of T, and U is a coisom-

etry, then T and T̂ have the same collection of spectral sets.

Proof. By theorem 2.3.11,

‖ f(T̂ ) ‖=‖ f(T ) ‖,

for all f ∈ Hol(σ(T )). If X is a closed set in the complex plane such that

σ(T ) ⊃ X, then R(X) is a subalgebra of Hol(σ(T )). Hence

‖ f(T̂ ) ‖=‖ f(T ) ‖,

for all f ∈ R(X). Therefore, T and T̂ have the same collection of spectral

sets.

Corollary 2.3.24. If T is invertible, then T and T̂ have the same collection of

spectral sets.

Let T = U |T | be the polar decomposition of T. If U is a coisometry, then
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lemma 2.3.19 says that for every n × n matrix (fij) with fij ∈ Hol(σ(T )), we

have ‖ (fij(T̂ )) ‖=‖ (fij(T )) ‖ . Applying this we get the following result.

Lemma 2.3.25. If T = U |T | is the polar decomposition of T, and U is coisom-

etry, then T and T̂ have the same collection of complete spectral sets. Also, for

every fixed positive integer n, the operators T and T̂ have the same collection of

n−level spectral sets.

Theorem 2.3.26. Let T ∈ L(H) be an invertible operator. If for some n, the nth

Duggal iterate T̂ (n) is normal, then T is normaloid. In fact, f(T ) is normaloid

for every f ∈ R(σ(T )).

Proof. By theorem 2.3.15, ‖ f(T̂ (n)) ‖=‖ f(T ) ‖ for all f ∈ Hol(σ(T )). If X is a

closed set in the complex plane such that σ(T ) ⊃ X, then R(X) is a subalgebra

of Hol(σ(T )). It follows that T̂ (n) and T have the same collection of spectral

sets. Since T̂ (n) is normal, σ(T̂ (n)) is a spectral set for T̂ (n). But σ(T̂ (n)) = σ(T ).

Thus σ(T ) is a spectral set for T. By a theorem in [7], σ(T ) is a spectral set for

T if and only if f(T ) is normaloid for every f ∈ R(σ(T )). In particular, T is

normaloid.

2.3.3 Continuity of the maps T → T̃ and T → T̂

Ken Dykema and Hanne Schultz proved in [14] that the Aluthge transformation

map T → T̃ is continuous on L(H). This result can be seen in [30] also. In this

section we examine the continuity of the Duggal transformation map T → T̂ .

The method of proof in [14] to prove the Aluthge transformation map T → T̃ is

continuous (which uses continuous functional calculus), does not readily translate

to the context of Duggal transformations. So we examine the continuity of the

Duggal transformation map T → T̂ on the set of invertible operators in L(H)

and prove that the map is continuous on the set of invertible operators. As a
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consequence we show that the sequence of the Duggal iterates of an invertible

operator T converges to an invertible operator if and only if T is quasinormal.

Further we obtain some results regarding the relation between the spectral

sets of an operator and the spectral sets of the limit of the sequence of the Duggal

iterates.

Theorem 2.3.27. [14]

i. Given R ≥ 1 and ε > 0, there are real polynomials p and q such that for

every T ∈ L(H) with ‖ T ‖≥ R, we have ‖ T̃ − p(T ∗T )Tq(T ∗T ) ‖< ε.

ii. For every T ∈ L(H), the Aluthge transformation T̃ of T belongs to the

C∗-algebra generated by T and the identity.

Theorem 2.3.28. [14] The Aluthge transformation map T → T̃ is ( ‖ . ‖ , ‖ . ‖ )

continuous on L(H).

Remark 2.3.29. Let T ∈ L(H). Suppose that the Aluthge transformation se-

quence {T̃ (n)} is convergent and that T̃ (n) → S in L(H) as n → ∞. Then S is

quasinormal. (The fact that S is quasinormal can be proved as follows. Define

∆(T ) = T̃ for all T ∈ L(H). By theorem 2.3.28, the map ∆ : L(H) → L(H) is

continuous. Therefore, ∆(T̃ (n)) → ∆(S) as n → ∞. But ∆(T̃ (n)) = T̃ (n+1), and

T̃ (n+1) → S as n →∞. Hence ∆(S) = S. ie., S̃ = S. Thus S is quasinormal).

Let H be a finite dimensional Hilbert space. Every quasinormal operator on

H is normal (see remarks after 1.2.11 ). Hence if T ∈ L(H), and T̃ (n) → S in

L(H) as n →∞, then S is normal.

Definition 2.3.30. Let H be a Hilbert space. Let ∆ : L(H) → L(H) and

Γ : L(H) → L(H) be defined by

∆(T ) = T̃ , Γ(T ) = T̂ for T ∈ L(H).
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Let D be a subset of L(H). We say that D is a Duggal continuity family if the

map Γ|D : D → L(H) is continuous.

Notice that by theorem 2.3.28, the Aluthge transformation map ∆ is contin-

uous on all of L(H).

Our next aim is to prove that the set of all invertible operators in L(H) is

a Duggal continuity family, or in other words, our aim is to prove that the map

T → T̂ is continuous on the set of invertible operators.

Theorem 2.3.31. [11] Let A be a unital complex C∗-algebra. Let A, B be subsets

of C and f : A → B a homeomorphism. Put A0 = {x ∈ NA : σ(x) ⊂ A}, B0 =

{x ∈ NA : σ(x) ⊂ B} where NA denotes the set of all normal elements of the

C∗-algebra A. Then {f(x) : x ∈ A0} = B0, and the map x → f(x) : A0 → B0 is

a homeomorphism.

Notice that f ∈ C(σ(x)) for every x ∈ A0, and hence by the continuous

functional calculus on C∗-algebras, f(x) is defined as an element in A.

If A = B = R+ and α ∈ R+\{0}, then f : A → B defined by f(t) = tα is a

homeomorphism. Here, A0 = B0 = {x ∈ NA : σ(x) ⊂ R+} = A+, the set of all

positive elements inA. Hence by the above theorem, the map x → xα : A+ → A+

is a homeomorphism.

If x ∈ A, then |x| = (x∗x)1/2. Since the maps x → x∗x : A → A+ and

x → x1/2 : A+ → A+ are continuous, the theorem below follows.

Theorem 2.3.32. [11] Let A be a unital complex C∗-algebra and A+ be the set

of all positive elements in A. The map

x → |x| : A → A+

is continuous.
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Theorem 2.3.33. Let H be a Hilbert space and S be the set of all invertible

operators in L(H). Then S is a Duggal continuity family. In other words, the

map T → T̂ is continuous on S.

Proof. If T ∈ L(H), let T = θ(T )µ(T ) be the polar decomposition of T. We

have, µ(T ) = |T | = (T ∗T )1/2. If T ∈ S, then µ(T ) ∈ S, and in this case,

θ(T ) = Tµ(T )−1.

By theorem 2.3.32, the map T → µ(T ) is continuous on L(H). Also, the

inversion map S → S−1 : S → L(H) is continuous. Hence the map θ : S → L(H)

is continuous. If T ∈ L(H), then T̂ = µ(T )θ(T ).

Suppose that {Sn} is a sequence in S such that Sn → S in S as n →∞. Since

θ : S → L(H) is continuous, and the map T → µ(T ) is continuous on L(H), we

see that θ(Sn) → θ(S) and µ(Sn) → µ(S) in L(H) as n →∞. Therefore, Ŝn → Ŝ

in L(H) as n → ∞. Thus the map T → T̂ is continuous on S. In other words,

Γ|S : S → L(H) is continuous. Hence S is a Duggal continuity family.

Theorem 2.3.34. Let H be a Hilbert space. Suppose that D is a Duggal conti-

nuity family in L(H). Let T ∈ D be such that

i. T̂ (n) ∈ D for all n ∈ N.

ii. T̂ (n) → S in L(H) as n →∞.

iii. S ∈ D.

Then S is quasinormal.

Proof. Since D is a Duggal continuity family, the Duggal transformation map
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Γ|D : D → L(H) is continuous. Therefore,

Γ(S) = Γ
(
limn→∞T̂ (n)

)
= limn→∞Γ

(
T̂ (n)

)
= limn→∞T̂ (n+1)

= S.

Hence, S is quasinormal.

Corollary 2.3.35. Let H be a finite dimensional Hilbert space. Suppose that D

is a Duggal continuity family in L(H). Let T ∈ D be such that

i. T̂ (n) ∈ D for all n ∈ N.

ii. T̂ (n) → S in L(H) as n →∞.

iii. S ∈ D.

Then S is normal.

Proof. On finite dimensional Hilbert spaces every quasinormal operator is normal

(see remarks after 1.2.11 on page 15). Therefore, by theorem 2.3.34, the proof

follows.

Theorem 2.3.36. Let T ∈ L(H) be such that

(i) T is invertible

(ii) {T̂ (n)} converges to S ∈ L(H) such that S is invertible.

Then S is quasinormal.
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Proof. Since T is invertible, T̂ (n) is invertible for every n. By theorem 2.3.33,

the set S of invertible operators in L(H) is a Duggal continuity family. By

theorem 2.3.34, S is quasinormal.

Corollary 2.3.37. Let H be a finite dimensional Hilbert space. Let T ∈ L(H)

be such that

(i) T is invertible

(ii) {T̂ (n)} converges to S ∈ L(H) such that S is invertible.

Then S is normal.

Lemma 2.3.38. Let U, S ∈ L(H) and assume that U is unitary. Then

i. S is normal if and only if U∗SU is normal.

ii. S is quasinormal if and only if U∗SU is quasinormal.

Proof. S normal ⇒ S∗S = SS∗ ⇒ (U∗SU)∗(U∗SU) = U∗S∗UU∗SU =

U∗S∗SU = U∗SS∗U = U∗SUU∗S∗U = (U∗SU)(U∗SU)∗ ⇒ U∗SU normal.

S quasinormal ⇒ S(S∗S) = (S∗S)S ⇒ (U∗SU)[(U∗SU)∗(U∗SU)] =

U∗SUU∗S∗UU∗SU = U∗S(S∗S)U = U∗(S∗S)SU = U∗S∗UU∗SUU∗SU =

[(U∗SU)∗(U∗SU)](U∗SU) ⇒ U∗SU quasinormal.

On the other hand, since U∗ is unitary, U∗SU normal (quasinormal) ⇒

(U∗)∗(U∗SU)U∗ normal (quasinormal) ⇒ S normal (quasinormal).

Theorem 2.3.39. Let N be the set of all normal operators and Q be the set of

all quasinormal operators in L(H). Let T ∈ L(H) be invertible. Then

i. T and T̂ are at the same distance from N .

ii. T and T̂ are at the same distance from Q.
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Proof. Let T = U |T | be the polar decomposition of T. By lemma 2.3.2, T̂ =

U∗TU. Since T is invertible, U is unitary. Therefore, ‖ U∗RU ‖=‖ R ‖ for every

R ∈ L(H). By lemma 2.3.38, N = {U∗SU : S ∈ N} and Q = {U∗SU : S ∈ Q}.

Therefore,

dist(T̂ ,N ) = inf {‖ T̂ − S ‖: S ∈ N}

= inf {‖ T̂ − U∗SU ‖: S ∈ N}

= inf {‖ U∗TU − U∗SU ‖: S ∈ N}

= inf {‖ U∗(T − S)U ‖: S ∈ N}

= inf {‖ T − S ‖: S ∈ N}

= dist(T,N ).

Similarly, dist(T̂ ,Q) = dist(T,Q).

Let T ∈ L(H) be invertible. Then {T̂ (n)}∞n=0 is a sequence of invertible

operators. The following theorem shows that this sequence can converge to an

invertible operator in L(H) only when T is quasinormal. Notice that if T is

quasinormal then T̂ (n) = T for all n.

Theorem 2.3.40. Let T ∈ L(H) be invertible. Then {T̂ (n)}∞n=0 converges to an

invertible operator in L(H) if and only if T is quasinormal.

Proof. If T is quasinormal then T̂ (n) = T for all n, and therefore one part of the

proof is trivial.

Conversely, suppose that {T̂ (n)}∞n=0 converges to S in L(H), and assume that

S is invertible. Let Q be the set of all quasinormal operators in L(H). Then Q

is a closed subset of L(H). By theorem 2.3.36, S ∈ Q. By repeated application
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of theorem 2.3.39, we see that dist (T,Q) = dist (T̂ (n),Q) for all n. Therefore,

dist (T,Q) = dist (T̂ (n),Q)

≤ ‖ T̂ (n) − S ‖

for every n. Since T̂ (n) → S as n → ∞, it follows that dist (T,Q) = 0. Since Q

is closed, T ∈ Q.

Corollary 2.3.41. Let H be a finite dimensional Hilbert space. Let T ∈ L(H)

be invertible. Then {T̂ (n)}∞n=0 converges to an invertible operator in L(H) if and

only if T is normal.

Remark 2.3.42. The following is another form of the corollary 2.3.41 and it ap-

peared in [5]. If Glr(C) is the general linear group of r × r invertible complex

matrices and T ∈ Glr(C), then the sequence {T̂ (n)} can not converge (in Glr(C)),

unless T is normal.

Definition 2.3.43. Let T ∈ L(H). Let X be a closed proper subset of C with

σ(T ) ⊂ X. Let f be a rational function with poles off X̌. We shall say that

f ∈ R(X,T ) if it satisfies the condition that f(T̂ (n)) → f(S) in L(H) whenever

T̂ (n) → S in L(H) as n →∞.

If p is any polynomial, then the map A → p(A) is continuous on L(H).

Therefore, if T ∈ L(H) is any operator, and if X is any closed proper subset of

C with σ(T ) ⊂ X, then p ∈ R(X,T ).

Theorem 2.3.44. Let T ∈ L(H) be invertible, and X be any closed proper subset

of C such that σ(T ) ⊂ X and R(X,T ) = R(X). Suppose that T̂ (n) → S in L(H)

as n →∞, and that σ(S) ⊂ X. If X is a spectral set for T, then X is a spectral

set for S.

Proof. Let f ∈ R(X). Then f ∈ Hol(σ(T )). Since T is invertible, by theo-

rem 2.3.15, ‖ f(T̂ (n)) ‖=‖ f(T ) ‖ for all n ∈ N. Since f ∈ R(X,T ), we have
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f(T̂ (n)) → f(S) in L(H) as n →∞. Therefore, ‖ f(T̂ (n)) ‖→‖ f(S) ‖ as n →∞.

Hence ‖ f(S) ‖=‖ f(T ) ‖ . This proves the theorem.

The following theorem talks about the upper semi-continuity of the spectrum.

We use this theorem to prove the useful result in theorem 2.3.46

Theorem 2.3.45. [28] Suppose A is a Banach algebra, x ∈ A, Ω is an open

set in C, and σ(x) ⊂ Ω. Then there exists δ > 0 such that σ(x+y) ⊂ Ω for every

y ∈ A with ‖ y ‖< δ.

Theorem 2.3.46. Let H be a Hilbert space and T ∈ L(H). If {T̂ (n)} converges

to S ∈ L(H), then Hol(σ(S)) ⊂ Hol(σ(T )).

Proof. Let Ω be an open set in C with Ω ⊃ σ(S). By theorem 2.3.45, there exists

δ > 0 such that σ(S+R) ⊂ Ω for every R ∈ L(H) with ‖ R ‖< δ. Since T̂ (n) → S

as n → ∞, there exists a positive integer n0 such that ‖ T̂ (n) − S ‖< δ for all

n ≥ n0. Hence σ(S + T̂ (n0) − S) ⊂ Ω. ie., σ(T̂ (n0)) ⊂ Ω. But σ(T̂ (n0)) = σ(T ). So

σ(T ) ⊂ Ω. Thus if Ω is an open set in C with Ω ⊃ σ(S), then Ω ⊃ σ(T ).

Now, f ∈ Hol(σ(S)) ⇒ f is holomorphic on an open set Ω that contains

σ(S) ⇒ f is holomorphic on an open set Ω that contains σ(T ) ⇒ f ∈ Hol(σ(T )).

Remark 2.3.47. The analogue of theorem 2.3.46 is true in the case of Aluthge

transformations. The proof uses the fact that σ(T̃ (n)) = σ(T ) for all n. We state

the result in the following theorem.

Theorem 2.3.48. Let H be a Hilbert space and T ∈ L(H). If {T̃ (n)} converges

to S ∈ L(H), then Hol(σ(S)) ⊂ Hol(σ(T )).

Theorem 2.3.49. Let H be a Hilbert space and T ∈ L(H) be an invertible

operator. Suppose that T̂ (n) → S in L(H), and X is a closed proper subset of C

such that X contains a neighborhood of the spectrum σ(S). Further, assume that
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f(T̂ (n)) → f(S) for all f ∈ R(X). Then X is a spectral set for T if and only if

X is a spectral set for S.

Proof. As in the first paragraph of the proof of theorem 2.3.46, we see that X

contains a neighborhood of σ(T ). Now, let f ∈ R(X). Then f ∈ Hol(σ(S)) ⊂

Hol(σ(T )). Since T is invertible, by theorem 2.3.15, ‖ f(T̂ (n)) ‖=‖ f(T ) ‖ for all

n ∈ N. It follows that ‖ f(T ) ‖=‖ f(S) ‖ . Hence, X is a spectral set for T if

and only if X is a spectral set for S.

2.4 Contractivity and positivity of the maps

f (T ) → f (T̃ ) and f (T ) → f (T̂ )

Let H be an arbitrary Hilbert space whose dimension satisfies 2 ≤ dimH ≤ ℵ0.

If T ∈ L(H), let

AT = {f(T ) : f ∈ Hol(σ(T ))}.

Then AT is a subalgebra of the C∗-algebra L(H). In [16], Foias, Jung, Ko, and

Pearcy proved that the maps f(T ) → f(T̃ ) and f(T ) → f(T̂ ) are completely

contractive algebra homomorphisms from AT onto A
eT and from AT onto A

bT

respectively. Also, these maps are unital.

Let T ∈ L(H) be such that AT is closed in L(H). In this case AT is a closed

subalgebra of L(H) and therefore is a subspace, that is, a closed linear manifold.

In such cases the set AT + (AT )∗ is an operator system in the C∗-algebra L(H).

Notice that there are operators in L(H) such that AT is closed in L(H). For

example, if H is finite dimensional, then AT is a closed subalgebra of L(H) for

every T ∈ L(H).

If T = I, the identity operator on any Hilbert spaceH, then for every function
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f ∈ Hol(σ(T )),

f(T ) = f(I)

=
1

2πi

∫
C

f(z)(zI − I)−1dz where C is a smooth closed curve whose

interior contains σ(I)

=
1

2πi

∫
C

f(z)(z − 1)−1 I dz

= I
1

2πi

∫
C

f(z)

(z − 1)
dz

= I
1

2πi
f(1) 2πi since 1 ∈ σ(I)

= f(1) I,

which shows that AT = CH, where CH denotes the set of all scalar operators in

L(H). Obviously, CH is a closed subalgebra of L(H).

We use the following two results from [26] to prove some consequences.

Theorem 2.4.1 ( [26]). Let A be a unital C∗-algebra and let M be a subspace

of A containing 1. If B is a unital C∗-algebra and φ : M → B is a unital

contraction, then φ extends uniquely to a positive map φ̃ : M + M∗ → B with φ̃

given by φ̃(a + b∗) = φ(a) + φ(b)∗.

Theorem 2.4.2 ( [26]). If S is an operator system in a unital C∗-algebra A,

B a unital C∗-algebra and if φ : S → B is a unital positive map, then φ is

self-adjoint.

Theorem 2.4.3. Let H be a Hilbert space and T ∈ L(H) be such that AT is

closed in L(H). If f, g ∈ Hol(σ(T )) such that (f(T ))∗ = g(T ), then (f(T̂ ))∗ =

g(T̂ ), (f(T̃ ))∗ = g(T̃ ).

Proof. Being a closed subalgebra of L(H), the set AT is a subspace of the unital

C∗-algebra L(H) and I ∈ AT . By theorem 2.1.9, the maps Φ̂ : AT → A
bT and
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Φ̃ : AT → A
eT defined by

Φ̂(h(T )) = h(T̂ ), Φ̃(h(T )) = h(T̃ ), h ∈ Hol(σ(T ))

are well-defined and contractive. Also Φ̂ and Φ̃ are unital (Let h be the constant

polynomial h(z) = 1. Then h ∈ Hol(σ(T )) = Hol(σ(T̃ )) = Hol(σ(T̂ )) and

h(T ) = h(T̂ ) = h(T̃ ) = I ). Since Φ̂ is a unital contraction of the algebra AT into

the algebra A
bT ⊂ L(H), by theorem 2.4.1, Φ̂ extends uniquely to a positive map

Ψ̂ : AT + (AT )∗ → L(H) defined by Ψ̂(f(T ) + g(T )∗) = Φ̂(f(T )) + (Φ̂(g(T )))∗.

Since AT + (AT )∗ is an operator system, by theorem 2.4.2, Ψ̂ is self-adjoint.

Therefore,

(f(T̂ ))∗ = (Φ̂(f(T )))∗

= (Ψ̂(f(T )))∗

= Ψ̂((f(T ))∗)

= Ψ̂(g(T ))

= Φ̂(g(T ))

= g(T̂ ).

The proof goes similar in the case of Aluthge transformations.

Corollary 2.4.4. Let H be a Hilbert space and T ∈ L(H) be such that AT is

closed in L(H). If T ∗ = g(T ) for some g ∈ Hol(σ(T )), then (T̂ )∗ = g(T̂ ) and

(T̃ )∗ = g(T̃ ).

Proof. Apply theorem 2.4.3 taking f ∈ Hol(σ(T )) defined by f(z) = z.

Remark 2.4.5. Note that AT is a commutative algebra. The fact that AT is a

commutative algebra can be proved as follows: By the definition of the holomor-

phic functional calculus in 1.3.6, the mapping f → f(T ) : Hol(σ(T )) → L(H)
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is an algebra homomorphism, and the range of this homomorphism is AT . The

function algebra Hol(σ(T )) is commutative. Therefore, the algebra AT is com-

mutative. Thus if T ∗ = g(T ) for some g ∈ Hol(σ(T )), then since both T and T ∗

belong to AT , we see that T and T ∗ commute, or in other words, T is normal.

So in this case T̂ = T̃ = T. Thus the corollary 2.4.4, which we proved using

theorem 2.4.3, is true even otherwise.



Chapter 3
Polar decomposition of Aluthge and

Duggal transformations

3.1 Introduction

Let T = U |T | be the polar decomposition of an operator T ∈ L(H). Then one can

think about the polar decomposition of Aluthge transformation T̃ , and of Dug-

gal transformation T̂ . In [20], Masatoshi Ito, Takeaki Yamazaki, and Masahiro

Yanagida obtained results on the polar decomposition of Aluthge transforma-

tion. In [21], Ito, Yamazaki, and Yanagida showed results on the polar decom-

position of the product of two operators and of Aluthge transformation. They

also showed properties and characterizations of binormal and centered operators

from the viewpoint of the polar decomposition and Aluthge transformation.

In [20], Ito, Yamazaki, Yanagida gave an example of a binormal, invertible

operator T such that the Aluthge transformation T̃ is not binormal. In this

chapter, first we show that if T is a binormal, invertible operator, then the

Duggal transformation T̂ is binormal. We discuss some consequences of applying

Aluthge transformation and Duggal transformation successively on an invertible

64
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operator T. In theorem 3.2.10, we show that if T is invertible and binormal, then

(̂T̃ ) = (̃T̂ ). Further we extend this result to iterated Aluthge transformations

and Duggal transformations. We proceed to show that if T is an invertible

operator with polar decomposition T = U |T |, then the polar decomposition of

T̂ is T̂ = U |T̂ |.

Let T = U |T | be the polar decomposition of an operator T. A theorem in [21]

says that T is binormal if and only if T̃ = Ũ |T̃ | is the polar decomposition

of the Aluthge transformation T̃ . We discuss the similar situation of Duggal

transformations. We give necessary and sufficient condition for T̂ to have the

polar decomposition T̂ = Û |T̂ |. As a consequence, we prove that if T is binormal,

then T̂ = Û |T̂ | is the polar decomposition of T̂ . Characterization of operators

T = U |T |, having the property that T̃ (n) = Ũ (n) |T̃ (n)| is the polar decomposition

of T̃ (n) for all n = 1, 2, . . . , exists. In theorem 3.2.27, we prove that the final space

of U is invariant under every |T̂ (n)|, if T̂ (n) = Û (n) |T̂ (n)| is the polar decomposition

of T̂ (n) for all n = 1, 2, . . . .

In [9], Ximena Catepillan and Waclaw Szymanski proved the semigroup prop-

erties of factors in the polar decomposition of operators. In section 3.2.3, we use

them to give a modification of the proof of a theorem in [21].

In [29], M. Schreiber discussed operators for which the closure of the numerical

range is a spectral set. He characterized such operators by means of normal

dilations. He obtained relations between the spectrality of the numerical range

and the equality of the convex hull of the spectrum with the closure of the

numerical range. In section 3.3, we discuss some consequences of these results

on Aluthge and Duggal transformations. In theorem 3.3.6, we prove a general

version of one part of Ando’s theorem. We proceed to prove that if A is an n×n

matrix over C, and if the convex hull of the spectrum of A is a spectral set for

the matrix A, then the matrices A, Ã, and Â have the same numerical range.
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3.2 Aluthge and Duggal transformations of bi-

normal and centered operators

3.2.1 Aluthge and Duggal transformations of binormal

or centered invertible operators

The following lemma shows results about Aluthge and Duggal transformation of

invertible operators.

Lemma 3.2.1. If T ∈ L(H) is invertible, then T̃ and T̂ are invertible. In this

case,

T̃ = |T |1/2T |T |−1/2

T̂ = |T | T |T |−1

(see lemma 2.3.1).

Definition 3.2.2. An operator T is said to be binormal if [ |T |, |T ∗| ] = 0,

where [ A, B ] = AB−BA. The operator T is said to be centered if the following

sequence

. . . , T 3(T 3)∗, T 2(T 2)∗, TT ∗, T ∗T, (T 2)∗T 2, (T 3)∗T 3, . . .

is commutative.

Binormal and centered operators were defined by S. L. Campbell in [8] and

B. B. Morrel and P. S. Muhly in [25], respectively. Relations among these classes

and that of quasinormal operators are easily obtained as follows.

quasinormal ⊂ centered ⊂ binormal .
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Theorem 3.2.3. [20] Let T ∈ L(H), and suppose that T = U |T | is the polar

decomposition of T. Then T̃ = U |T̃ | if and only if T is binormal. ( Note that,

this assertion does not mean that T̃ = U |T̃ | is the polar decomposition of T̃ , when

T is binormal ).

Theorem 3.2.4. [20] Let T ∈ L(H), and suppose that T = U |T | be the polar de-

composition of T. If T is binormal, then T̃ = U∗UU |T̃ | is the polar decomposition

of T̃ .

Theorem 3.2.5. Let T ∈ L(H) be invertible. Suppose that T = U |T | is the polar

decomposition of T. If T is binormal, then T̃ = U |T̃ | is the polar decomposition

of T̃ .

Proof. Since T is invertible, U is unitary. By theorem 3.2.4, the proof follows.

If S, T and V are operators with S = V ∗TV, and V unitary, then it can

be easily verified that |S| = V ∗ |T |V and |S|1/2 = V ∗ |T |1/2 V. Further, if the

polar decomposition of T is T = U |T |, then the polar decomposition of S is

S = (V ∗UV ) |S|. Hence S̃ = V ∗T̃ V.

Remark 3.2.6. The binormality of T does not imply the binormality of the

Aluthge transformation T̃ . The following example is from the paper of Ito, Ya-

mazaki, and Yanagida [20]. It gives a binormal operator T such that the Aluthge

transformation T̃ is not binormal. We give the example here not only for the

sake of completeness but also for the reason that it gives a simple example of

an invertible operator which is not binormal. Notice that the operator in the

example is invertible. We shall show that the analogous case of the Duggal

transformations is different. We prove in theorem 3.2.9 that, if T is an invertible

operator, then the binormality of the operator T implies the binormality of the

Duggal transformation T̂ .
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Example 3.2.7. [20] There exists a binormal operator T such that the Aluthge

transformation T̃ is not binormal. Let

T =


0 0 5

1/2
√

3/2 0
√

3/2 −1/2 0


and T = U |T | be the polar decomposition of T. Then T is binormal since

T ∗T.TT ∗ = TT ∗.T ∗T =


1 0 0

0 1 0

0 0 25


and also

|T | = (T ∗T )1/2 =


1 0 0

0 1 0

0 0 5

 ,

so that

U = T |T |−1 =


0 0 1

1/2
√

3/2 0
√

3/2 −1/2 0

 .

Therefore,

T̃ = |T |1/2U |T |1/2 =


0 0

√
5

1/2
√

3/2 0
√

15/2 −
√

5/2 0

 .

We get that

(T̃ )∗T̃ .T̃ (T̃ )∗ =


20 −

√
3 0

−5
√

3 2 0

0 0 25
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and

T̃ (T̃ )∗.(T̃ )∗T̃ =


20 −5

√
3 0

−
√

3 2 0

0 0 25

 .

Hence T̃ is not binormal.

Theorem 3.2.8. Let T = U |T | is the polar decomposition of the operator T,

and U a coisometry. If T is binormal, then T̂ is binormal.

Proof. We have T̂ = U∗TU. Therefore, (T̂ )∗T̂ = U∗ |T |2 U ≥ 0, and |T̂ | =

U∗ |T | U. On the other hand, T̂ (T̂ )∗ = U∗ |T ∗|2 U ≥ 0, and |(T̂ )∗| = U∗ |T ∗| U.

Hence, |T̂ | |(T̂ )∗| = |(T̂ )∗| |T̂ |, and T̂ is binormal.

If S and T are unitarily equivalent operators, then S is binormal if and only

if T is binormal.

Theorem 3.2.9. Let T be invertible. Then T is binormal if and only if T̂ is

binormal.

Proof. Since T is invertible, the polar decomposition of T has the form T = U |T |

where U is unitary. Also, T̂ = U∗TU. Thus T and T̂ are unitarily equivalent.

Theorem 3.2.10. Let T ∈ L(H) be invertible. If T is binormal, then (̂T̃ ) = (̃T̂ ).

Proof. Let T = U |T | be the polar decomposition of T. Since T is invertible,

U is unitary. By lemma 2.3.2, T̂ = U∗TU. ie., T̂ is unitarily equivalent to T.

Therefore, (̃T̂ ) = U∗T̃U.

By theorem 3.2.5, T̃ = U |T̃ | is the polar decomposition of T̃ , and therefore,

again by lemma 2.3.2, (̂T̃ ) = U∗T̃U.

For convenience of notation we make the following definitions. We use these

notations till the end of the present section.
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Definition 3.2.11. Let T be an operator. Define ∆(T ) = T̃ , Γ(T ) = T̂ . For

every non-negative integer n, define ∆n(T ) = T̃ (n), Γn(T ) = T̂ (n).

Theorem 3.2.10 says that if T is invertible and binormal, then Γ(∆(T )) =

∆(Γ(T )).

The following characterization of centered operators from the viewpoint of

the polar decomposition and the Aluthge transformation can be seen in [20].

Theorem 3.2.12. [20] Let T be an operator. Then ∆n(T ) is binormal for all

n ≥ 0 if and only if T is a centered operator.

Theorem 3.2.13. Let T be invertible and centered. Then Γ(∆n(T )) = ∆n(Γ(T ))

for all n ≥ 0.

Proof. Since T is centered, T is binormal. Therefore, the result is true for the

case n = 1, by theorem 3.2.10. Suppose that the result is true for n = m − 1.

Then Γ(∆m−1(T )) = ∆m−1(Γ(T )).

Now, ∆m−1(T ) is invertible since T is invertible. By theorem 3.2.12, ∆m−1(T )

is binormal. Therefore, by theorem 3.2.10, Γ[∆(∆m−1(T ))] = ∆[Γ(∆m−1(T ))].

Hence,

Γ(∆m(T )) = Γ[∆(∆m−1(T ))]

= ∆[Γ(∆m−1(T ))]

= ∆[∆m−1(Γ(T ))]

= ∆m(Γ(T ))

The theorem follows by induction.

Theorem 3.2.14. If T is invertible and binormal, then ∆(Γn(T )) = Γn(∆(T ))

for all n ≥ 0.
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Proof. The result is true for n = 1, by theorem 3.2.10.

Suppose that the result is true for n = m−1. ie., ∆(Γm−1(T )) = Γm−1(∆(T )).

Since T is invertible and binormal, by lemma 3.2.1 and theorem 3.2.9, Γn(T )

is invertible and binormal for all n ≥ 0. Since Γm−1(T ) is binormal and invertible,

by theorem 3.2.10, ∆[Γ(Γm−1(T ))] = Γ[∆(Γm−1(T ))]. Hence,

∆(Γm(T )) = ∆[Γ(Γm−1(T ))]

= Γ[∆(Γm−1(T ))]

= Γ[Γm−1(∆(T ))]

= Γm(∆(T ))

The theorem follows by induction.

Every centered operator is binormal. So combining theorem 3.2.13 and the-

orem 3.2.14 we have the following result.

Theorem 3.2.15. Let T be invertible and centered. Then

Γ(∆n(T )) = ∆n(Γ(T )), ∆(Γn(T )) = Γn(∆(T ))

for all n ≥ 0.

Corollary 3.2.16. Let T be invertible and centered. Then

Γm(∆n(T )) = ∆n(Γm(T ))

for all m, n ≥ 0.

Proof. The proof follows by theorem 3.2.12, theorem 3.2.14, and theorem 3.2.15.
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3.2.2 Polar decomposition of Aluthge and Duggal trans-

formations

The following result gives the polar decomposition of the product of two opera-

tors.

Theorem 3.2.17. [17] Let T = U |T |and S = V |S| be the polar decompositions.

If T and S are doubly commutative (ie., [T , S] = [T , S∗] = 0), then

TS = UV |TS|

is the polar decomposition of TS.

The following is a generalization of this result.

Theorem 3.2.18. [21] Let T = U |T |, S = V |S| and |T | |S∗| = W | |T | |S∗| |

be the polar decompositions. Then

TS = UWV |TS|

is also the polar decomposition.

This theorem can be used to obtain the polar decomposition of the Duggal

transformation of an invertible operator as follows.

Theorem 3.2.19. Let T ∈ L(H) be invertible. If T = U |T | is the polar decom-

position of T, then

T̂ = U |T̂ |

is the polar decomposition of T̂ .

Proof. Since T is invertible, U is unitary and |T | is invertible. We have, |U | =

|U∗| = I the identity operator, because UU∗ = U∗U = I = I2 and I ≥ 0. Since
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kerI = kerU = kerU∗ = {0}, we see that U = UI is the polar decomposition of

U. We have |T |∗ |T | = |T |2 and |T | ≥ 0. Therefore, | |T | | = |T |. Since |T | is

invertible, ker|T | = kerI = {0}, and hence |T | = I | |T | | is the polar decom-

position of |T |. Also |T | |U∗| = |T |. Replacing T and S by |T | and U respectively

in 3.2.18, we obtain |T |U = IIU | |T |U | is the polar decomposition of |T |U,

or in other words, T̂ = U |T̂ | is the polar decomposition of T̂ .

Remark 3.2.20. Theorem 3.2.19 shows that the Duggal analogue of theorem 3.2.3

is false. By theorem 3.2.19, whenever T = U |T | is invertible, T̂ = U |T̂ |. An

invertible operator need not always be binormal. For an example of invertible

non-binormal operator, consider the matrix T̃ in example 3.2.7.

Lemma 3.2.21. If U is a partial isometry, then |U | = U∗U and U = U |U | is

the polar decomposition of U. Also, Û = Ũ = U∗UU.

Proof. Since U∗U is a projection, (U∗U)2 = U∗U and U∗U ≥ 0. Therefore,

|U | = (U∗U)1/2 = U∗U. Since U∗U is the support of U, we have UU∗U = U.

ie., U |U | = U. The kernel condition for the polar decomposition is satisfied

automatically. Hence U = U |U | is the polar decomposition of U.

Since |U | = U∗U = (U∗U)2 and U∗U ≥ 0, we have |U |1/2 = U∗U. Therefore,

Û = |U | U = U∗UU and Ũ = |U |1/2 U |U |1/2 = (U∗U)U(U∗U) = U∗UU.

Let T = U |T | and S = V |S| be the polar decompositions. The following

theorem gives an equivalent condition so that TS = UV |TS| becomes the polar

decomposition.

Theorem 3.2.22. [21] Let T = U |T | and S = V |S| be the polar decompositions.

Then |T | |S∗| = |S∗| |T | if and only if

TS = UV |TS|
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is the polar decomposition.

We use this theorem to prove the following result on the polar decomposition

of the Duggal transformation of an operator.

Theorem 3.2.23. Let T = U |T | be the polar decomposition of T. Then T̂ =

Û |T̂ | is the polar decomposition of T̂ if and only if |T | |U∗| = |U∗| |T |.

Proof. Since U is a partial isometry, (kerU)⊥ is the initial space of U. Since U∗U

is the support of both T and U, we see that ran (U∗U) = (kerU)⊥ = (kerT )⊥.

Also, U∗U is self-adjoint. Therefore, ker |T | = kerT = [ran (U∗U)]⊥ =

ker (U∗U). Every projection is a partial isometry, in particular, U∗U is a partial

isometry. Further, (U∗U) |T | = |T | (U∗U) = |T |. Hence |T | = (U∗U) |T | is the

polar decomposition of |T |, recalling | |T | | = |T |.

By lemma 3.2.21, U = U |U | is the polar decomposition of U and Û = U∗UU.

Replacing T and S in theorem 3.2.22 by |T | and U respectively, we see that

| |T | | · |U∗| = |U∗| · | |T | |

if and only if

|T |U = U∗UU | |T |U |

is the polar decomposition of |T |U.

ie.,

|T | · |U∗| = |U∗| · |T |

if and only if

T̂ = U∗UU |T̂ |

is the polar decomposition of T̂ .
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ie.,

|T | · |U∗| = |U∗| · |T |

if and only if

T̂ = Û |T̂ |

is the polar decomposition of T̂ .

Let T = U |T | be the polar decomposition of T. A theorem in [21] says that

T is binormal if and only if T̃ = Ũ |T̃ | is the polar decomposition of the Aluthge

transformation T̃ . In the following two theorems we discuss the similar situation

of Duggal transformations.

Theorem 3.2.24. Let T = U |T | be the polar decomposition of T. If T is binor-

mal, then T̂ = Û |T̂ | is the polar decomposition of T̂ .

Proof. Let F = UU∗. Then F is the support of T ∗. If T is binormal, then

ker |T ∗| is invariant under |T |. Therefore, (ker |T ∗|)⊥ is invariant under |T |. But

(ker |T ∗|)⊥ = (ker T ∗)⊥ = ran F. Therefore, F |T |F = |T |F, and hence |T |F =

F |T |. It follows that |T | |U∗| = |U∗| |T |. By theorem 3.2.23, T̂ = Û |T̂ | is the

polar decomposition of T̂ .

Theorem 3.2.25. Let T = U |T | be the polar decomposition of T, and E, F the

initial and final projections, respectively, of the partial isometry U. If T̂ = Û |T̂ |

is the polar decomposition of T̂ , then EF = FE, or equivalently, U is binormal.

Proof. We have, E = U∗U and F = UU∗. If T̂ = Û |T̂ | is the polar decomposition

of T̂ , then by theorem 3.2.23, |T | |U∗| = |U∗| |T |. Thus, |T | F = F |T |, and

therefore, ran |T | is invariant under F. Hence (ran |T |) is invariant under F. But

(ran |T |) = (kerT )⊥ = ran E. Hence EF = FE.

Next, U is binormal, if and only if, |U | |U∗| = |U∗| |U |, if and only if, EF =

FE.
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Remark 3.2.26. Let T be an operator, and T = U |T | the polar decomposition

of T. Let E, F be the initial and final projections, respectively, of the partial

isometry U. By lemma 3.2.21, Û = Ũ = U∗UU. Theorem 3.1 in [21] says that

if U is a partial isometry, then U is binormal, if and only if, Ũ is a partial

isometry, if and only if, U2 is a partial isometry. Thus if T̂ = Û |T̂ | is the polar

decomposition of T̂ , then the following hold.

i. |T | |U∗| = |U∗| |T |.

ii. EF = FE.

iii. U is binormal.

iv. Û is a partial isometry.

v. Ũ is a partial isometry.

vi. U2 is a partial isometry.

On the other hand, if T is binormal, then T̂ = Û |T̂ | is the polar decomposition

of T̂ , and this in turn implies each of the above statements.

Theorem 3.2.27. Let T = U |T | be the polar decomposition of T. If T̂ (n) =

Û (n) |T̂ (n)| is the polar decomposition of T̂ (n) for all n = 1, 2, . . . , then |U∗| com-

mutes with every |T̂ (n)|, or in other words, ran U is invariant under every |T̂ (n)|.

Proof. Let E = U∗U and F = UU∗. First note that ran U = ran F.

By theorem 3.2.23 and theorem 3.2.25, we have

|T | |U∗| = |U∗| |T | (3.1)

and EF = FE.
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Since (Û)∗ is a partial isometry,

|(Û)∗| = Û(Û)∗ = U∗UUU∗U∗U = EFE = EF.

Also,

(T̂ )∗T̂ = (|T |U)∗ |T |U = U∗ |T |2 U

= U∗ |T |2 UU∗U

= U∗ |T |UU∗ |T |U by ( 3.1)

= (U∗ |T |U)2

and U∗ |T |U ≥ 0. Therefore, |T̂ | = U∗ |T |U.

Since T̂ (2) = Û (2) |T̂ (2)| and T̂ = Û |T̂ | are polar decompositions, by theo-

rem 3.2.23,

|T̂ | |(Û)∗| = |(Û)∗| |T̂ |.

But

|T̂ | |(Û)∗| = U∗ |T |UEF = U∗ |T |UF = |T̂ |F

and

|(Û)∗| |T̂ | = EFU∗ |T |U = FEU∗ |T |U = FU∗ |T |U = F |T̂ |.

Thus |T̂ |F = F |T̂ |. Therefore, |T̂ | |U∗| = |U∗| |T̂ |.

Next, since T̂ (n) = Û (n) |T̂ (n)| is the polar decomposition of T̂ (n) for n ≤ 3, by

the same argument as above, we see that

|T̂ (2)| = (Û)∗ |T̂ | (Û).

Also,

|T̂ (2)| |(Û)∗| = |(Û)∗| |T̂ (2)|.
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ie.,

|T̂ (2)|EF = EF |T̂ (2)|.

Now, ÛE = U∗UUU∗U = U∗UU = Û and E(Û)∗ = (Û)∗. Therefore,

|T̂ (2)|EF = |T̂ (2)|F

and

EF |T̂ (2)| = FE |T̂ (2)| = F |T̂ (2)|.

Thus

|T̂ (2)|F = F |T̂ (2)|.

Therefore, |T̂ (2)| |U∗| = |U∗| |T̂ (2)|.

Proceeding like this, we obtain |T̂ (n)| |U∗| = |U∗| |T̂ (n)| for all n.

3.2.3 Semigroup properties of factors in the polar decom-

position and some applications

Masatoshi Ito, Takeaki Yamazaki and Masahiro Yanagida in [21] proved the fol-

lowing theorem 3.2.28 using properties of the polar decomposition of the product

of operators. In this section we give a modification of the proof of this theorem

using semigroup properties of factors in the polar decomposition.

Theorem 3.2.28. [21] Let T ∈ L(H) and T = U |T | be the polar decomposition

of T. Then the following are equivalent.

i. T is centered.

ii. T̃ (n) = Ũ (n) |T̃ (n)| is the polar decomposition for all nonnegative integer n.

iii. T n = Un |T n| is the polar decomposition for all natural number n.
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Theorem 3.2.29. [21] Let T ∈ L(H) and T = U |T | be the polar decomposition

of T. Then T is binormal if and only if T̃ = Ũ |T̃ | is the polar decomposition of

T̃ .

Definition 3.2.30. Let S be a commutative semigroup with unit. A mapping

π : S → L(H) is called a

i. semigroup homomorphism if π(s + t) = π(s)π(t), s, t ∈ S and π(0) = I.

ii. normal homomorphism if the set {π(s), π(t)∗, s, t ∈ S} is commutative.

iii. quasinormal homomorphism if the set {π(s)∗π(s), π(t), s, t ∈ S} is com-

mutative.

iv. subnormal homomorphism if there exists a Hilbert space K containing H

and a normal homomorphism τ : S → L(H) such that H is invariant for

each τ(s) and τ(s)|H = π(s), s ∈ S.

v. centered homomorphism if the set {π(s)∗π(s), π(t)π(t)∗, s, t ∈ S} is com-

mutative.

All these special kinds of homomorphisms are, clearly, assumed to be semigroup

homomorphisms. Notice that L(H) is considered here as a semigroup under the

operation of multiplication of operators.

Let π : S → L(H) be a semigroup homomorphism. Let

π(s) = θ(s)µ(s)

be the polar decomposition of the operator π(s), s ∈ S.

The following two theorems in [9] discuss the semigroup properties of the

factors θ and µ in the polar decomposition of π.
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Theorem 3.2.31. [9]

i. If π is centered, then θ is a semigroup homomorphism.

ii. Assume additionally that for each s, t ∈ S there exists r ∈ S such that

s = t + r or t = s + r. If θ is a semigroup homomorphism, then π is

centered.

The semigroup N satisfies the additional condition in (ii) of theorem 3.2.31,

but the semigroup N× N does not.

Theorem 3.2.32. [9] Let S be a commutative semigroup with unit and let π :

S → L(H) be a semigroup homomorphism. π is a quasinormal homomorphism

if and only if µ is a semigroup homomorphism.

Proof of theorem 3.2.28. N is a semigroup that satisfies the additional condition

in (ii) of theorem 3.2.31. Let π : N → L(H) be defined by

π(n) = T n, n ∈ N.

Then π is a semigroup homomorphism. Let

π(n) = θ(n)µ(n)

be the polar decomposition of the operator π(n), n ∈ N. Now, θ(1) = U and

µ(1) = |T |.

Assume that T is centered. Then the set

{π(n)∗π(n), π(m)π(m)∗, n,m ∈ N} = {(T n)∗T n, Tm(Tm)∗, n,m ∈ N}

is commutative, and therefore, we see that π is a centered homomorphism. By
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theorem 3.2.31, θ : N → L(H) is a semigroup homomorphism. Therefore, for

every n ∈ N, Un = (θ(1))n = θ(n).

Hence the polar decomposition of T n = π(n) is

T n = θ(n)µ(n) = θ(n)|π(n)| = Un |T n|

for every n ∈ N. This proves (i) ⇒ (iii).

Assume that T n = Un |T n| is the polar decomposition for all natural number

n. Then θ(n) = Un for all n ∈ N. Therefore, for n, m ∈ N,

θ(n + m) = Un+m = UnUm = θ(n)θ(m),

and hence θ is a semigroup homomorphism. By theorem 3.2.31, π is a centered

homomorphism. It follows that T is centered. This proves (iii) ⇒ (i).

The rest of the proof is essentially the same as that in [21]. We give it here

for completeness.

To prove (i) ⇒ (ii). Assume that T is centered. By theorem 3.2.12, T̃ (n) is

binormal for all n ∈ N. By theorem 3.2.29,

T̃ = Ũ |T̃ | is the polar decomposition of T̃ . (3.2)

Next since T̃ is binormal and since (3.2) holds, we have by theorem 3.2.29,

T̃ (2) = Ũ (2) |T̃ (2)| is the polar decomposition of T̃ (2).

Repeating this method, we have T̃ (n) = Ũ (n) |T̃ (n)| is the polar decomposition for

all nonnegative integer n.

To prove (ii)⇒ (i). Assume that T̃ (n) = Ũ (n) |T̃ (n)| is the polar decomposition
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for all nonnegative integer n. By theorem 3.2.29, T̃ (n) is binormal for all n ∈ N.

Hence T is centered by theorem 3.2.12.

3.3 Spectral sets and numerical range of Alu-

thge and Duggal transformations

In [29], M. Schreiber characterized by means of normal dilations those operators

the closure of whose numerical range is a spectral set. He obtained results on

the equality of the convex hull of the spectrum with the closure of the numerical

range, in relation to the spectrality of the numerical range. In this section we

discuss Aluthge and Duggal transformations in the context of these results.

The Toeplitz - Hausdorff theorem states that the numerical range W (T ) of

an operator T ∈ L(H) is always convex. If T is normal, then W (T ) is the closed

convex hull C(σ(T )) of the spectrum σ(T ) of T. These facts can be seen in [18].

We defined dilations in 1.2.10 as follows. Let T ∈ L(H). If there exists

a normal operator N on a larger Hilbert space K ⊃ H such that Tx = PNx

for all x ∈ H, where P is the orthogonal projection of K onto H, then N is

called a normal dilation of T. If, in addition, T nx = PNnx for all x ∈ H and all

n = 0, 1, 2, . . . , then N is called a strong normal dilation of T.

Theorem 3.3.1. [16] Every spectral set for T is a spectral set for T̃ and a

spectral set for T̂ . Also W (T̃ ) ⊂ W (T ), and W (T̂ ) ⊂ W (T )

Theorem 3.3.2. [29] Let C(X) denote the convex hull of X. If C(σ(T )) is a

spectral set for T, then there exists a strong normal dilation N of T such that

C(σ(T )) = W (T ) = W (N).

Theorem 3.3.3. [29] If there exists a strong normal dilation N of T such that

W (N) = W (T ), then W (T ) is a spectral set for T.
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Theorem 3.3.4. [2] Let A be an n × n matrix over C. The convex hull of the

eigen values of A equals W (A) if and only if A and Ã have the same numerical

range

Theorem 3.3.5. [18] If H is a finite dimensional Hilbert space and T ∈ L(H),

then the numerical range W (T ) is compact.

Theorem 3.3.6. Let T ∈ L(H) be such that C(σ(T )) = W (T ). Then W (T̃ ) =

W (T ). Also W (T̂ ) = W (T ). (In other words, if T is convexoid, then so are T̃

and T̂ ).

Proof. By theorem 3.3.1, W (T̃ ) ⊂ W (T ) = C(σ(T )) = C(σ(T̃ )) ⊂ W (T̃ ). The

proof of W (T̂ ) = W (T ) is similar.

Remark 3.3.7. This theorem generalizes one part of Ando’s theorem 3.3.4. The

finite dimensional case was discussed in remark 2.3.6.

Theorem 3.3.8. Let T ∈ L(H) be such that C(σ(T )) = W (T ). Suppose there

exists a strong normal dilation N of T such that W (N) = W (T ). Then

(a) there exists a strong normal dilation N1 of T̃ such that W (N1) = W (T̃ ),

(b) there exists a strong normal dilation N2 of T̂ such that W (N2) = W (T̂ ).

( Remember W (T̃ ) = W (T̂ ) = W (T ), in this case by theorem 3.3.6 ).

Proof. By theorem 3.3.3, W (T ) is a spectral set for T. By theorem 3.3.1, W (T ) is

a spectral set for T̃ . But C(σ(T̃ )) = C(σ(T )) = W (T ). Thus C(σ(T̃ )) is a spectral

set for T̃ . By theorem 3.3.2, there exists a strong normal dilation N1 of T̃ such

that W (N1) = W (T̃ ), proving (a).

The proof of (b) is similar.



3.3. Spectral sets and numerical range 84

Theorem 3.3.9. Let T ∈ L(H). If C(σ(T )) is a spectral set for T, then W (T ) =

W (T̃ ) = W (T̂ ).

Proof. If C(σ(T )) is a spectral set for T, by theorem 3.3.2, C(σ(T )) = W (T ).

Therefore, by theorem 3.3.6, W (T ) = W (T̃ ) = W (T̂ ).

Corollary 3.3.10. Let A be an n×n matrix over C. If C(σ(A)) is a spectral set

for A, then A, Ã, and Â have the same numerical range.

Proof. Obvious by theorem 3.3.5 and theorem 3.3.9.



Chapter 4
Minimal spectral sets and n−level

spectral sets

4.1 Introduction

Let H be a Hilbert space and T ∈ L(H). A closed subset X of C is called a

minimal spectral set for T, if X is a spectral set for T such that X contains no

other spectral set for T.

It is known that that for every operator T on a Hilbert space H, there is

a minimal spectral set; in fact, every spectral set contains a minimal spectral

set [34]. A theorem in [7] says that σ(T ) is a spectral set for T if and only if

f(T ) is normaloid for every f ∈ R(σ(T )). In this chapter we observe that these

statements are equivalent to the uniqueness of the minimal spectral set. We

discuss situations when the minimal spectral set of an operator is unique.

Earlier in section 2.3.2, we introduced n−level spectral sets. If X is a closed

set in the complex plane and if X is an n−level spectral set for an operator T in

L(H), then there is a map ρ̃ : R(X) +R(X) → L(H) that extends the natural

85
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functional calculus map ρ : R(X) → L(H), where R(X) is the set of all complex

conjugates of members of R(X). In this chapter, we obtain some results on the

contractivity and positivity of the map ρ̃.

4.2 Uniqueness of minimal spectral sets

Lemma 4.2.1. Let T ∈ L(H), and let F be a collection of spectral sets for T

such that F is totally ordered under set inclusion. Then ∩M∈FM is a spectral

set for T.

Proof. Let N = ∩M∈FM. Clearly N is closed. Being a subset of a second

countable space we see that N c is Lindelöf. We have N c = ∪M∈FM c. Thus

{M c : M ∈ F} is an open covering of N c. There is a countable subcollection

{M c
i : i = 1, 2, . . .} such that N c = ∪iM

c
i . Therefore, N = ∩iMi. Since F is

totally ordered under set inclusion, the collection {Mi : i = 1, 2, . . .} is totally

ordered under set inclusion. Hence by the von Neumann’s result [32], N is a

spectral set for T.

Theorem 4.2.2 ( [6] ). If T ∈ L(H), then there exists a minimal spectral set

for T.

Proof. Let A be the collection of all spectral sets of T. If M1, M2 ∈ A, define

M1 ≤ M2 if M2 ⊂ M1. Then ≤ is a partial order on A. By lemma 4.2.1, every

totally ordered subset of A has an upper bound in A. By Zorn’s lemma, A has

a maximal element M. Then M is a spectral set for T and M contains no other

spectral set for T.

Theorem 4.2.3 ( [34] ). Let T ∈ L(H). If X is any spectral set for T, then there

is a minimal spectral set M for T such that M ⊂ X.
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Proof. Let A be the collection of all spectral sets for T which are contained in

X. Clearly A is nonempty since X ∈ A. By lemma 4.2.1 and by Zorn’s lemma,

there exists M ∈ A such that M contains no other element of A. Then M is a

minimal spectral set for T such that M ⊂ X.

Corollary 4.2.4. If T ∈ L(H), there is a minimal spectral set M for T such

that M is contained in {z : |z| ≤‖ T ‖}.

Theorem 4.2.5 ( [32]). For every T ∈ L(H), one has σ(T ) = ∩τ, where τ varies

over all spectral sets of T.

Theorem 4.2.6. Let T ∈ L(H). If F is the collection of all minimal spectral

sets for T, then ∩M∈FM = σ(T ).

Proof. If A is the collection of all spectral sets of T, by theorem 4.2.5, ∩X∈AX =

σ(T ). Given X ∈ A, by theorem 4.2.3, there is a minimal spectral set MX such

that MX ⊂ X. Hence ∩X∈AMX ⊂ ∩X∈AX = σ(T ). Since each MX is in F we

see that ∩M∈FM ⊂ ∩X∈AMX . Thus ∩M∈FM ⊂ σ(T ).

On the other hand, σ(T ) ⊂ M for every M ∈ F since M is a spectral set and

hence σ(T ) ⊂ ∩M∈FM. This proves the theorem.

If σ(T ) itself is a spectral set for T, then the minimal spectral set for T is

unique, namely the spectrum σ(T ). In particular, if T is normal, then σ(T ) is

the unique minimal spectral set for T. In general, the minimal spectral set for

an operator is not unique. The following example 4.2.8 gives one such operator.

Theorem 4.2.7 ( [7]). Suppose T ∈ L(H), α ∈ C and β > 0.

(i) The closed disc {λ ∈ C : |λ− α| ≤ β} is a spectral set for T if and only if

‖ T − αI ‖≤ β.

(ii) The set {λ ∈ C : |λ−α| ≥ β} is a spectral set for T if and only if α /∈ σ(T )

and ‖ (T − αI)−1 ‖≤ 1/β.
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Example 4.2.8. Let

A =

 1 3/2

0 1

 .

Then A is invertible, σ(A) = {1}, and

A−1 =

 1 −3/2

0 1

 .

We have,

A∗ =

 1 0

3/2 1

 ,

and

A∗A =

 1 3/2

3/2 13/4

 ,

hence σ(A∗A) = {4, 1/4}, r(A∗A) = 4 =‖ A ‖2 . Therefore, ‖ A ‖=‖ A−1 ‖= 2.

Hence X1 = {z : |z| ≤ 2} and X2 = {z : |z| ≥ 1/2} are spectral sets for A.

(X2 is a spectral set for A follows from (ii) of theorem 4.2.7. Note that 0 /∈ σ(A),

and ‖ A ‖≤ 2).

By theorem 4.2.3, there are minimal spectral sets M1 and M2 for T such

that M1 ⊂ X1 and M2 ⊂ X2. Then M1 6= M2. To see this, suppose if possible,

M1 = M2 = M (say). Then M ⊂ X1 ∩ X2. Since M is a spectral set for T, it

follows that X1 ∩X2 is a spectral set for T. But X1 ∩X2 = {z : 1/2 ≤ |z| ≤ 2}

is not a spectral set for T ( page 145 in [26] (since R = 2 >
√

3) ). This

contradiction proves that M1 6= M2. Thus A has more than one minimal spectral

set.

Theorem 4.2.9. Let T ∈ L(H). The following are equivalent.

(a) T has a unique minimal spectral set.
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(b) If X1 and X2 are spectral sets for T, then X1 ∩X2 is a spectral set for T.

(c) σ(T ) is a spectral set for T.

(d) For every f ∈ R(σ(T )), r(f(T )) =‖ f(T ) ‖ .

Proof. (a) ⇒ (b). Suppose T has a unique minimal spectral set. Let X1 and X2

be spectral sets for T. By theorem 4.2.3, there exist minimal spectral sets M1

and M2 for T such that M1 ⊂ X1 and M2 ⊂ X2. By the uniqueness, M1 = M2.

Thus M1 ⊂ X1 ∩X2. Since M1 is a spectral set, X1 ∩X2 is a spectral set.

(b) ⇒ (a). Assume (b). Suppose M1 and M2 are minimal spectral sets for

T. By hypothesis M1 ∩ M2 is a spectral set for T. But M1 ∩ M2 ⊂ M1 and

M1 ∩M2 ⊂ M2. By the minimality M1 ∩M2 = M1 and M1 ∩M2 = M2. Hence

M1 = M2.

(c) and (d) are equivalent [7] . Now we prove (a) and (c) are equivalent.

(a) ⇒(c). Suppose T has a unique minimal spectral set. By theorem 4.2.6,

this minimal spectral set must be σ(T ).

(c)⇒(a). If σ(T ) is a spectral set for T, then T has a unique minimal spectral

set, namely σ(T ).

Remark 4.2.10. The equivalence of (b) and (c) are known facts by [34]. However

we have given a proof here for completeness.

4.3 n-level spectral sets

Recall the definition of n-level spectral set on page 50. If X is a closed, proper

subset of C, and T ∈ L(H) with σ(T ) ⊂ X, then there is a functional calcu-

lus, ie., a homomorphism ρ : R(X) → L(H), given by ρ(f) = f(T ), where

f(T ) = p(T )q(T )−1 if f = p/q, a quotient of polynomials. We regard R(X) as a
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subalgebra of the C∗-algebra C(∂X̌), which defines norms on R(X) and on each

Mn(R(X)). If ‖ ρ ‖≤ 1, then X is called a spectral set for T. If ‖ ρ ‖cb≤ 1,

then X is called a complete spectral set for T. If n is a positive integer, and if

‖ρn‖ ≤ 1, where ρn denotes the nth amplification of ρ, then we say that X is an

n-level spectral set for T.

Let A be a C∗-algebra and let M be a subspace (then we call M an operator

space). Let B be a C∗-algebra and φ : M→ B a linear map.

Lemma 4.3.1 ( [26]). If φ is n-contractive and k ≤ n, then φ is k-contractive.

If φ is n-positive and k ≤ n, then φ is k-positive.

So we have the following theorem.

Theorem 4.3.2. Let T ∈ L(H). If k and n are positive integers such that k ≤ n

and if X is an n-level spectral set for T, then X is a k-level spectral set for T.

In particular, every n-level spectral set for T is a spectral set for T, and every

complete spectral set for T is a spectral set for T.

Theorem 4.3.3 ( [26]). Let B, C be C∗-algebras with units, let A be a subalgebra

of B, 1 ∈ A and let S = A + A∗. If φ : S → C is positive, then ‖φ(a)‖ ≤

‖φ(1)‖ ‖a‖ for all a ∈ A.

Theorem 4.3.4 ( [26]). Let A be a unital C∗-algebra and let M be a subspace

of A containing 1. If B is a unital C∗-algebra and φ : M → B is a unital

contraction, then φ extends uniquely to a positive map φ̃ : M+M∗ → B with φ̃

given by φ̃(a + b∗) = φ(a) + φ(b)∗.

Let X be a closed set in the complex plane andM = R(X). LetR(X) denote

the set of all complex conjugates of members of R(X). Put S = R(X) +R(X).

Let T ∈ L(H). If X is a spectral set for T, by theorem 4.3.4, there is a well defined

positive map ρ̃ : S → L(H) given by ρ̃(f + g) = f(T ) + g(T )∗. Conversely, by
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theorem 4.3.3, if the above map ρ̃ is well-defined and positive, then X is a spectral

set for T (noticing the fact that ‖ρ̃(1)‖ = ‖I‖ = 1 ).

Theorem 4.3.5 ( [26]). Let A and B be C∗-algebras with units, let M be a

subspace of A, 1 ∈ M and S = M + M∗. If φ : M → B is unital and 2-

contractive, then the map φ̃ : S → B given by φ̃(a + b∗) = φ(a) + φ(b)∗ is

2-positive and contractive.

Theorem 4.3.6. Let X be closed set in the complex plane. If X is a 2-level

spectral set for T, then the map ρ̃ : R(X) +R(X) → L(H) given by ρ̃(f + g) =

f(T ) + g(T )∗ is 2-positive and contractive.

Proof. R(X) is a subspace of the unital C∗-algebra C(X). If X is a 2-level

spectral set for T, then the map ρ : R(X) → L(H) defined by ρ(f) = f(T ) is

unital and 2-contractive. By theorem 4.3.5, the map ρ̃ : R(X) +R(X) → L(H)

given by ρ̃(f + g) = f(T ) + g(T )∗ is 2-positive and contractive.

Theorem 4.3.7. Let X be closed set in the complex plane. If X is a 2n-level

spectral set for T, then the map ρ̃ : R(X) +R(X) → L(H) given by ρ̃(f + g) =

f(T ) + g(T )∗ is 2n-positive and n-contractive.

Proof. The proof is only a simple generalization of the proof of theorem 4.3.6.

Corollary 4.3.8. Let X be closed set in the complex plane. If X is a complete

spectral set for T, then the map ρ̃ : R(X) +R(X) → L(H) given by ρ̃(f + g) =

f(T ) + g(T )∗ is completely positive and completely contractive.

Proof. If X is a complete spectral set for T, then X is a 2n-level spectral set for

all n. By theorem 4.3.7, ρ̃ is 2n-positive and n-contractive for all n. Then ρ̃ is

completely contractive. Also by lemma 4.3.1, ρ̃ is completely positive.



Epilogue

Some of the problems that were thought about and where further research is

possible, are discussed below briefly.

It is proved in chapter 2 that if T is a bounded linear operator on a Hilbert

space, then the sequence of the norms of Duggal iterates of T converges to the

spectral radius r(T ), if T satisfies certain conditions. In general, unlike Aluthge

transformations, the sequence need not converge to r(T ). One can attempt to

characterize operators T on a Hilbert space H, having the property that the

sequence of the norms of Duggal iterates of T converges to the spectral radius

r(T ).

The example 2.2.19 furnishes a 2 × 2 matrix A such that { ‖ Â(n) ‖ }∞n=0

does not converge to r(A), and such that { Â(n) }∞n=0 does not converge. In this

case, the sequence { Â(n) }∞n=0 does not converge because it is an alternating

sequence. By the results of Ando and Yamazaki [3], and of Antezana, Pujals and

Stojanoff [4], the Aluthge sequence { Ã(n) }∞n=0 cannot be alternating (at least

for a 2 × 2 matrix A or for a diagonalizable matrix A ). The study of the class

of operators (matrices) for which the sequence of Duggal iterates is alternating

remains to be explored.
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The continuity of the Duggal transformation map T → T̂ on the set of in-

vertible operators is established. The continuity of the Duggal transformation

map T → T̂ on all of L(H) is a problem that remains to be answered.

In theorem 2.3.46, it is proved that if T ∈ L(H), and if {T̂ (n)} converges to

S ∈ L(H), then Hol(σ(S)) ⊂ Hol(σ(T )). The possibility of operators for which

the inclusion is proper needs to be analyzed further.

Theorem 2.3.49 is a result about the relation between spectral sets of an

invertible operator and spectral sets of the limit of the sequence of Duggal iterates

of the operator. More exploration is needed to resolve completely the similar

problems that arise in the case of arbitrary operators.

Theorem 3.2.10 shows that if T ∈ L(H) is invertible and binormal, then

(̂T̃ ) = (̃T̂ ); and corollary 3.2.16 proves that if T ∈ L(H) is invertible and

centered, then Γm(∆n(T )) = ∆n(Γm(T )) for all m, n ≥ 0. One can work out more

general classes of operators T having the property (̂T̃ ) = (̃T̂ ), and operators T

having the property Γm(∆n(T )) = ∆n(Γm(T )) for all m,n ≥ 0.

For an operator T with polar decomposition T = U |T |, theorem 3.2.23 gives

the necessary and sufficient condition for T̂ to have the the polar decomposi-

tion T̂ = Û |T̂ |. Characterization of operators T = U |T |, having the property

that T̃ (n) = Ũ (n) |T̃ (n)| is the polar decomposition of T̃ (n) for all n = 1, 2, . . . ,

exists. Theorem 3.2.27 gives some partial results in the similar case of Duggal

transformations, and demands further research.

If A is a von Neumann algebra on a Hilbert space H, and T ∈ A, then obvi-

ously, the Aluthge transformation T̃ and the Duggal transformation T̂ are also

in A. So, some operator algebraic study of Aluthge and Duggal transformations

is possible, although it was not within the scope of the thesis.
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Identification of some or all minimal spectral sets of an arbitrary operator

is an unsettled problem, except in the case of some special classes of operators.

There exist some results of this nature in the case of compact and completely

non-normal operators.

By theorem 4.3.2, every n-level spectral set for T ∈ L(H) is a spectral set

for T. So far, one does not know an example of a spectral set which is not an

n-level spectral set. Further research on n-level spectral sets may help the study

of spectral sets and complete spectral sets.
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