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Chapter 1

Introduction

1.1 Stress-strength reliability

Stress strength model has become an important topic in applied statistics which resulted in a flood of

research articles of many authors across the continents during the last two decades. The main force

behind these developments is the term stress-strength. If a random variable X represents the stress

experienced by a system and another random variable Y represents the strength of the system and

if X > Y the system fails. Then P(X < Y ), the probability of not failing is defined as stress-strength

reliability. This can be considered as an assessment of reliability of the system. The particular problem

of applied statistics termed by stress-strength reliability is one of the developments in the field of

research of the model P(X < Y ). For a more detailed study of stress strength reliability the reader is

referred to Kotz [1].

The seed of this idea was introduced by Birnbaum [2]. The first paper with P(X < Y ) in its title

came from Birnbaum and McCarty [3]. The specific term stress-strength first appeared in the title of
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Church and Harris [4]. Govindarajulu [5] among others considered estimation of P(X < Y ) in the

non-parametric set up. It was Owen et al. [6] who first considered P(X < Y ) under certain parametric

assumptions. Later, majority of common distributions were considered for estimation of P(X < Y ).

If X and Y are two random variables, the notion P(X < Y ) has a number of implications.

P(X < Y ) has some relationship to the broader field of (partial) ordering of distributions. A variable

Y is said to be stochastically larger than a variable X, if the cumulative distribution function (cdf) of Y

is less than or equal to that of X. That is FY (t) ≤ FX(t). Consequently, P(X < Y ) ≥ 1/2. Thus the

model P(X < Y ) can be considered as originated from a problem of classical non-parametric tests of

equality of two distributions.

It is noted that to compare between two populations we use the expression of difference of means

(µ1 −µ2)/σ which is useful only under the assumption of normality. But to cope up with the variety

of complex real life situations it is required to use appropriate non-normal models; classic as well as

recently developed. Hence it was realized that the expressions of the type P(X < Y ) or P(X > Y ) can

be useful for examining the probability of inequality type relations between two random variables

under various conditions and situations. Natural application of these probabilities involve comparison

of two random variables representing the state of affairs in two different situations or different time

intervals. The specific practical problem of applied statistics highlighted by the term "stress-strength"

associated with a working system made this probability the topic of interest for a bulk of research

papers appeared in the literature.

Applications of the stress-strength parameter (R)

• In life testing experiments: When X and Y represent the lifetimes of two devices P(X < Y )

gives the probability that the device with lifetime X fails before the other.
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• Two-treatment comparisons: Treatment I is assigned to one group of individuals of size

n and treatment II to the other group of size m. If X and Y represent the remission times

with these two treatments say X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym respectively, the researcher is

interested to estimate P(X < Y ) which gives the probability that treatment II is better than

treatment I (Kotz [1]).

• Rocket engines: Here X represents the maximal chamber pressure generated by ignition of a

solid propellant, while Y is assumed to be the strength of the rocket chamber so that P(X < Y )

is simply the probability of successful firing of an engine (Kotz [1]).

• Response Models: A certain unit like a receptor in a human eye or any other organ operates

only if it is stimulated by a source of random magnitude Y and the stimulus exceeds a lower

threshold specific for that unit, X . In this case P(unit functions) is equivalent to the P(X < Y ),a

stress-strength relationship (Kotz [1]).

• As a general measure of difference between populations: Expressions of the type P(X <Y )

or P(X > Y ) can be useful for examining the probability of inequality type relations between

two random variables under various conditions and situations.

Note: Different types of expressions for stress-strength reliability are prevalent in literature. In the

stress-strength context if X represents the stress experienced by a system and Y represents the strength

of the system P(X < Y ) is termed as stress-strength reliability. If it is vice versa P(X > Y ) is the

stress-strength reliability. In situations other than stress-strength it makes no difference whether we

consider P(X < Y ) or P(X > Y ). Stress-strength reliability (stress-strength parameter) is usually

denoted by R.
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In industry many products may fail under stress. For example, a wooden bar breaks when

sufficient force is applied to it, a light bulb dies under stress of time, an electronic equipment stops

functioning in an environment of very high temperature. In such experiments for getting the precise

failure point, measurements may be made sequentially and only values larger (or smaller) than all

previous ones are recorded. This type of data are called record data. In the manufacturing industry, a

researcher might be interested to find the minimum failure stress of the product sequentially. So he

would like to search for the smallest of all the previous observations. Hence inference procedures for

R based on record data are also relevant in the stress-strength context. Motivated by this fact a new

field of enquiry was opened for researchers. A detailed review of literature on inference procedures of

R based on record values is given in Section 1.4.

1.2 Record values

Records were unexplored until Chandler[7] introduced the theory of record values and studied some

of its properties. At that time he formulated the ground work for a mathematical study of records.

Since then abundant literature was devoted to the study of records. Record values and associated

statistics have an important role in many real life applications involving data relating to meteorology,

hydrology, sports and life tests. A meteorologist may be interested in noting down the amount of

rainfall greater or smaller than previous ones. In some experiments an observation is stored only

if it is an upper (lower) record, because the measurement saving can be important especially when

the sample size is large, costly or all (some portion) of the data is damaged. In situations such as

hydrology, sports, financial markets, industry and traffic analysis, only records are observed and noted.

When all or some part of the data are destroyed record data is very useful for measurement saving.
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Many authors have considered records and associated statistics. For example see Ahsanullah[8],

Balakrishnan et al. [9] and so on. Recently Asgharzadeh [10] has considered interval estimation

for the two- parameter Pareto distribution based on records. Wang and Ye [11] studied inference on

Weibull distribution based on record values. Wang et al. [12] have discussed inference on Gompertz

distribution under records. Interval estimation for Gumbel distribution using climate records was

considered by Asgharzadeh et al. [13]. Estimation based on lower record values from exponentiated

Pareto distribution was studied by Sanggyeong Yoon et al. [14].

The standard record value process corresponds to an infinite sequence of independent and

identically distributed (i.i.d) continuous random variables. In that case we shall define record values.

Definition

Let X1,X2, . . . be a sequence of independent and identically distributed random variables with

common distribution function F which is continuous. An observation X j is called an upper record , if

it exceeds all previous observations. That is if X j > Xi for all i < j. Similarly an observation X j is

called a lower record , if it is less than all previous observations. That is if X j < Xi for all i < j.

1.2.1 Distribution of nth upper record

Let {X∗
j , j ≥ 1} denote a sequence of i.i.d exponential random variables. Due to the lack of memory

property of the exponential distribution, we find that the differences between successive records

follow i.i.d standard exponential distribution. Thus {J∗n}= {R∗
n −R∗

n−1,n ≥ 1} are i.i.d exponential

random variables. Thus R∗
n, n = 0,1,2, . . . the nth record corresponding to an i.i.d Exp(1) sequence

has Gamma(n+1,1) distribution. This result can be used to derive the distribution of Rn, the nthrecord

corresponding to an i.i.d sequence of random variables {X j} with common continuous cdf F (see

Arnold et al. [15]).
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Note that if X has cumulative distribution function F , then

− log(1−F(x)) d
= X∗

where X∗ ∼ exp(1),

⇒ 1−F(x) d
= e−X∗

,

or X d
= F−1(1− e−X∗

).

Thus X is a monotone increasing function of X∗ and consequently, the nth record of {Xn}, Rn is related

to the nth record of R∗
n of the exponential sequence by

Rn
d
= F−1(1− e−R∗

n).

Now the density function of Rn is given as follows.

R∗
n ∼ Gamma(n+1,1),

so that

fR∗
n
(r∗n) =

1
Γ(n+1)

e−r∗n(r∗n)
n.

Since

rn = F−1(1− e−r∗n),

F(rn) = 1− e−r∗n ,

r∗n = − log(1−F(rn)).
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Now the jacobian, ∣∣∣∣dr∗n
drn

∣∣∣∣= f (rn)

1−F(rn)
,

so that

fRn(rn) = f (r∗n)
∣∣∣∣dr∗n
drn

∣∣∣∣ = 1
Γ(n+1)

[− log(1−F(rn))]
n f (rn). (1.1)

We can transform upper records to lower records by replacing the original sequence {X j} by

{−X j, j ≥ 1}. Thus if Ln is the nth lower record of the above sequence, the density function of Ln is

given by

fLn(ln) =
1

Γ(n+1)
[−logF(ln)]

n f (ln). (1.2)

1.2.2 Joint density of records

The joint pdf of a set of records (R∗
0,R

∗
1, . . . ,R

∗
n) is given by (see Arnold et al. [15])

fR∗
0,R

∗
1,...,R

∗
n
(r∗0,r

∗
1, . . . ,r

∗
n) = e−r∗n , 0 < r∗0 < r∗1 < .. . < r∗n.

Applying the transformation Rn
d
= F−1(1− e−R∗

n) coordinate wise, we obtain the joint pdf of the set

of records R0,R1, . . . ,Rn corresponding to an i.i.d F sequence as

fR0,R1,...,Rn(r0,r1, . . . ,rn) =
∏

n
i=0 f (ri)

∏
n−1
i=0 (1−F(ri))

= f (rn)
n−1

∏
i=0

f (ri)

1−F(ri)
, −∞ < r0 < r1 < .. . < rn < ∞. (1.3)
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Applying the transformation Ln = −Rn, the joint density of the set of lower records L0,L1, . . . ,Ln

corresponding to an i.i.d sequence is given by

fL0,L1,...,Ln(l0, l1, . . . , ln) = f (ln)
n−1

∏
i=0

f (li)
F(li)

, ∞ > l0 > l1 > .. . > ln >−∞. (1.4)

1.3 Methods used for estimation of R

1.3.1 Maximum likelihood estimation

The maximum likelihood estimation is definitely the most popular procedure for estimation of stress-

strength reliability, R = P(X < Y ). Assume that a random vector (X ,Y ) has the probability density

function (pdf) f (x,y|θ) with an unknown scalar or vector valued parameter θ . We want to calculate

R = R(θ) = P(X < Y ) as a function of θ .

R(θ) =
∫

∞

−∞

∫
∞

−∞

f (x,y|θ)I(x < y)dxdy. (1.5)

If X and Y are independent with pdf’s fX(x) & fY (y) and cdf’s FX(x) & FY (y) respectively, (1.5) can

be rewritten in the following ways as

either R =
∫

∞

−∞

FX(z|θ) fY (z|θ)dz,

or R =
∫

∞

−∞

(1−FY (z|θ) fX(z|θ)dz.

(1.6)

Having derived an expression for R(θ) we construct the maximum likelihood estimator (MLE)

of the unknown parameter θ by maximizing the logarithm of the likelihood function logL(θ |x˜,y˜).
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Then due to the invariance property of maximum likelihood estimators, the MLE of R has the form

R̂ = R(θ̂), where θ̂ is the MLE of θ .

1.3.2 Bayes estimation

Bayesian approach considers parameter θ (scalar or vector) as a random variable (vector) with the pdf

π(θ) called the prior pdf. This pdf is based on some knowledge available to the person carrying out

the inference before data has been obtained.

Let π(θ) be a prior pdf of θ . Then the posterior pdf of θ is given by

π(θ |X˜,Y˜) = f (X˜,Y˜|θ)π(θ)∫
θ

f (X˜,Y˜|θ)π(θ)dθ
,

where f (X˜,Y˜|θ) denote the joint pdf of the data (X˜,Y˜); X˜ = (X1,X2, . . . ,Xn), Y˜ = (Y1,Y2, . . . ,Yn).

Under squared error loss function the Bayes estimator R can be obtained as the expectation of R=R(θ)

with respect to the posterior pdf π(θ |X˜,Y˜) as

R̄ =
∫

θ

R(θ)π(θ |X˜,Y˜)dθ .

Another method of determining Bayes estimator is to derive the posterior pdf of R first and then

find the estimator R̄ as an expectation over this posterior pdf. The pdf πR(R|X˜,Y˜) of R can be obtained

using a one-to-one transformation.

The choice of a prior:

Prior information about the parameter θ is summarized by the prior distribution g(θ). First step of

any Bayesian analysis is the choice of the prior. There are several ways of choosing the prior.
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1. Conjugate prior:

A class P of prior distributions is said to be conjugate family for F , a class of pdf’s, f (x,y|θ),

if the posterior distribution is in class P. A pdf g(θ) is called natural conjugate to the likelihood

function L(θ) if g(θ) and L(θ) are proportional to a function of θ . A simple and elegant

method of obtaining a conjugate prior for a family of distributions f (x|θ) which admits a

sufficient statistic T (x1,x2, . . . ,xn) = T is as follows. From factorization theorem, we have

likelihood function

L(x|θ) = u(x1,x2, . . . ,xn)v̂(T (x1,x2, . . . ,xn),θ)∝ v̂(T,θ)

which implies that there exists a pdf g(θ |T ) = g(θ) such that g(θ)∝ v̂(T,θ),θ ∈ Ω.

Comparing L(x|θ) and g(θ) it follows that there exists an interesting relationship between the

family of priors and likelihood. That is g(θ)∝ L(x|θ) (see A.K.Bansal[16]).

2. Non-informative prior:

When there is no information about the parameter the choice is the non-informative prior.

Jeffreys [17] proposed the following prior distribution g(θ):

• Rule A: If Ω = (−∞, ∞), take g(θ) to be a constant.i.e. θ is assumed to be uniformly

distributed.

• Rule B: If Ω = (0, ∞), take g(θ)∝ 1
θ

i.e. logθ is assumed to be uniformly distributed.

Rule A is invariant under any linear transformation u = aθ +b. Rule B is invariant under any

exponential transformation u = θ k, k ̸= 0. Rules A and B are members of a large family of

priors g(θ) where θ may be a scalar or vector valued parameter and proportional to the positive
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square root of the determinant of the Fisher information matrix.

g(θ)∝ |I(θ)|1/2

If θ = (θ1,θ2, . . . ,θn), then under some assumptions (see Lehmann & Casella [18]), I(θ) is

the matrix with (i, j)th element,

Ii j(θ) =−E
[

δ 2

δθiδθ j
log f (X ,Y |θ)

]

Jeffreys’s prior is invariant under any one-to-one reparameterization.

1.3.2.1 Lindley’s approximate method to find Bayes estimator

In Bayesian estimation often we have a ratio of two integrals which cannot be expressed in a closed

form and requires numerical approximation. Lindley [19] developed an asymptotic approximation for

this as follows.

Let θ = (θ1,θ2, . . . ,θm), L(θ) be the logarithm of the likelihood function, v(θ) be the prior distribu-

tion of θ and u(θ) be an arbitrary function of θ . Then the Bayes estimator of u(θ) is the posterior

expectation u(θ) given the data x = (x1,x2, . . . ,xn), which is given by

I = E(u(θ |x)) =
∫

Ω
u(θ)v(θ)eL(θ)dθ∫
Ω

v(θ)eL(θ)dθ
. (1.7)

Let w(θ) = u(θ)v(θ) and

Lk(θ̂) =

[
δ kL(θ)

δθ k

]
θ=θ̂

, wk(θ̂) =

[
δ kw(θ)

δθ k

]
θ=θ̂

, Wi(θ̂) =
wi(θ̂)

w(θ̂)
, w(θ̂) ̸= 0
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Clearly L1(θ̂) = 0 at the MLE θ̂ .

Expanding L(θ), w(θ) and v(θ) by Taylor’s series about θ̂ and substituting in (1.7) we obtain

E(u(θ |x))≈

[
u+

1
2 ∑

i
∑

j
(ui j +uiρ j)σi j +

1
2 ∑

i
∑

j
∑
k

∑
l

Li jkuiσi jσkl...

]
,

evaluated at θ = θ̂ where

ρ = log(v(θ)), ρi =
δρ

δθi
, ui =

δu
δθi

, ui j =
δ 2u

δθiδθ j
.

Li j =
δ 2L

δθiδθ j
, σ =

{
−Li j

}−1
, Li jk =

δ 3L
δθiδθ jδθk

, i, j,k, l = 1,2, . . . ,m.

In particular for θ = (θ1,θ2), we have

E(u(θ1,θ2|x) ≈ u+
1
2
(u11σ11 +u22σ22 +u12σ12 +u21σ21)+ρ1(u1σ11 +u2σ21)+ρ2(u1σ12 +u2σ22)

+
1
2
[L30(u1σ

2
11 +u2σ11σ12)+L21

{
3u1σ11σ12 +u2(σ11σ22 +2σ

2
12)
}

+ L12
{

3u2σ22σ21 +u1(σ11σ22 +2σ
2
21)
}
+L03(u1σ21σ22 +u2σ

2
22)] (1.8)

evaluated at the MLE (θ̂1, θ̂2).

If θ1 and θ2 are apriori independent, σi j = 0, i ̸= j and we have

E[u(θ |x)] = u+
1
2
(u11σ11 +u22σ22)+ρ1u1σ11 +ρ2u2σ22

+
1
2
(
L30u1σ

2
11 +L03u2σ

2
22 +L21u2σ11σ22 +L12u1σ22σ11

)
+ . . . . (1.9)

evaluated at (θ̂1, θ̂2).
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1.3.2.2 Markov chain Monte Carlo method

It is known that MCMC originated in Statistical Physics literature and the first MCMC algorithm is

the Metropolis algorithm published by Metropolis et al. [20] in Journal of Chemical Physics. It comes

from the same group of scientists who developed Monte Carlo methods, mostly physicists working on

Mathematical Physics and atomic bomb. The primary focus of this algorithm is the computation of

the integral of high dimensions for which numerical integration is impossible. The first algorithm is

associated with the second computer called ’MANIAC’ built in Los Almos, New Mexico under the

direction of Metropolis, a physicist as well as a mathematician. The Metropolis algorithm was later

generalized by Hastings [21] as a statistical simulation tool in high-dimensional case. More about this

can be had from Robert and Casella [22].

Markov chain Monte Carlo Method (MCMC) is essentially Monte Carlo integration using

Markov chains. MCMC is a computer-driven sampling method. In Bayesian method as well as

frequentist approach one needs to integrate over high-dimensional probability distributions to make

inference about the model parameters. Using MCMC a distribution can be characterized without

knowing all of the distribution’s mathematical properties. MCMC is very useful in Bayesian inference

in taking random samples from posterior distributions, finding the mean of a posterior distribution etc.

which can not be directly calculated. The name MCMC combines two properties: Monte Carlo and

Markov chain.

Let us discuss the Monte Carlo method.

If g(θ |y) is the posterior distribution of θ

E(h(θ)|y) =
∫

h(θ)g(θ |y)dθ .
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Suppose we are able to simulate independent observations θ 1,θ 2, . . . ,θ m from the posterior density,

then the Monte Carlo estimate of the posterior mean is given by the sample mean

ĥ =
∑

m
j=1 h(θ j)

m
.

The associated simulated variance of the estimate is given by

v̂h =
∑

m
j=1(h(θ

j)− ĥ)2

(m−1)m
.

The Markov chain property of MCMC is that the random samples are drawn using a markov chain

in which each new sample depends upon the one just before it and not any other previous samples.

The MCMC sampling method sets up an irreducible, aperiodic Markov chain for which the station-

ary distribution is the posterior distribution. A general way of constructing a Markov chain is by

Metropolis-Hastings algorithm.

A Metropolis-Hastings algorithm (refer Metropolis et al. [20] and Hastings [21]) begins with

an initial value θ t given the (t − 1)th value in the sequence, θ t−1. This rule consists of a proposal

density which simulates a candidate value θ ∗ and the computation of an acceptance probability P

which indicates the probability that the candidate value will be accepted to be the next value in the

sequence.

Algorithm

Step 1: Simulate a candidate value θ ∗ from a proposal density p(θ ∗|θ t−1)

Step 2: Compute the ratio R = g(θ ∗)p(θ t−1)
g(θ t−1)p(θ ∗)
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Step 3: Compute the acceptance probability P = min(R,1)

Step 4: Sample a value θ t such that θ t = θ ∗ with probability P, otherwise θ t = θ t−1

Step 5: Repeat the steps 1 to 4 until we get the required number of samples.

If the proposal density is symmetric about the origin, the ratio has the simple form R = g(θ ∗)
g(θ t−1)

. We

often choose normal density as proposal density. Then the ratio of posterior densities R = g(θ ∗)
g(θ t−1)

is

found. To decide whether to accept or reject the sampled observation θ ∗ generate an observation U

from Uniform(0,1). If U < R,θ t = θ ∗, otherwise θ t = θ t−1.

1.3.2.3 Gibbs sampling

Let the joint posterior distribution [θ |data] is of high dimension; θ = (θ1,θ2, . . . ,θp). In this case it

cannot be obtained analytically.

We define the set of conditional distributions

[θ1|θ2 . . . ,θp,data],

[θ2|θ1, . . . ,θp,data], . . . ,

[θp|θ1, . . . ,θp−1,data].

We set up a Markov chain simulation algorithm from the joint posterior distribution by simulating

individual parameters from the set of p conditional distributions. Simulating in turn one value of

each individual parameters from these distributions is called one cycle of Gibbs sampling. Under

general conditions, draws from this simulated algorithm will converge to the target distribution (the
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joint posterior of θ ) of interest. In situations where it is not possible to draw samples directly from

the conditional distribution one can use Metropolis algorithm.

1.3.3 Interval estimation

In applications where the mere knowledge about a point estimator is not sufficient, that is in situations

where variability of the point estimator is to be known, one needs an interval which covers the

unknown value of R with a high probability of at least (1−α), where α > 0 and small.

Definition

Let the statistics L(X ,Y ) and U(X ,Y ) be such that

P(L(X ,Y )< R <U(X ,Y ))≥ 1−α, 0 < α < 1.

The interval (L(X ,Y ), U(X ,Y )) is called the confidence interval for R with the lower and upper

bounds L(X ,Y ) and U(X ,Y ) respectively with confidence coefficient 1−α . There are four methods

for construction of confidence intervals; exact method, asymptotic method, bootstrap method and

Bayesian method.

1.3.3.1 Exact method of interval estimation

To obtain the confidence interval by exact method it is required to find a pivotal quantity. A random

variable Q(X˜,Y˜) is said to be a pivotal quantity, if the distribution of Q(X˜,Y˜) is independent of all the

parameters. If one can find a and b such that

P(a < Q(X˜,Y˜)< b)≥ 1−α,
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from which we can deduce that

P
(
L(X˜,Y˜)< θ <U(X˜,Y˜)) ≥ 1−α

that gives a 100(1−α)% confidence interval for θ .

1.3.3.2 Asymptotic confidence interval

This method is suggested (refer Arnold [15]) for the cases when the construction of exact confidence

interval of R is impossible. The asymptotic confidence interval is based on the central limit theorem

which is stated as under "mild regularity conditions" a point estimator R̂ of R whether it is MLE or

UMVUE is asymptotically normal with mean R and the variance σ2
R as the sample sizes n1 and n2 of

X and Y respectively turn to infinity. So if we can construct an estimator σ̂2
R of σ2

R, we have

P
(
−z α

2
<

(R̂−R)
σ̂R

< z α

2

)
≈ 1−α,

where zα is the upper α cut off point of the standard normal distribution of the equation

∫
∞

zα

1√
2π

e−
t2
2 dt = α.

Then a 100(1−α)% asymptotic confidence interval for R is given by

(
R̂− z α

2
σ̂R, R̂+ z α

2
σ̂R

)
.



18 Introduction

1.3.3.3 Bootstrap confidence interval

The bootstrap method is a type of re-sampling method introduced by Bradley Efron[23] in which

sample data is considered as population. From this sample data, we re-sample it with replacement

large number of times. The resultant sampling distribution often approximate the true sampling

distribution of the statistic. From this bootstrapped sampling distribution, we can estimate parameter

value, standard errors (standard deviation of sample statistic) and then, calculate the confidence

interval.

Let θ be a population parameter of interest which belongs to unknown population distribution F .

θ̂ is a statistic that estimate the parameter θ and we have to find the sampling distribution of θ̂ from

the fitted distribution function F̂ . We draw bootstrap samples and calculate estimates of θ̂ from these

bootstrap samples to obtain the sampling distribution F̂∗ of θ̂ ∗. This sampling distribution is a good

approximation of F̂ .

There are two types of bootstrap sampliing; parametric and non-parametric.

Nonparametric bootstrap

When we are unable to determine from which probability distribution function the sample data may

have generated, we use empirical distribution function (which is based on observed sample data) to

simulate bootstrap samples. In practice we draw a random sample of the same size as that of original

sample with replacement to get a bootstrap sample. This process is repeated until we get the required

number of bootstrap samples.

Parametric Bootstrap

We assume that the observed data may have come from some known probability distribution function

( i.e normal, gamma or poisson or any). So, instead of using observed data ( as a non-parametric

bootstrap) we can use the assumed distribution function with probable parameter estimates ( which
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most likely the maximum likelihood estimates) for bootstrap re-sampling. We find the estimate of θ

from the original sample data and then this estimate is used to generate a bootstrap sample. Again

the parameter is estimated from the bootstrap sample using which the second bootstrap sample is

obtained. This process is repeated B times to get B bootstrap samples.

Three types of confidence intervals are used here.

1. Standard normal interval:

The simplest 100(1−α)% confidence interval is the standard normal interval given by

(θ̂ − z1− α

2
ŝeboot , θ̂ + z1− α

2
ŝeboot)

where ŝeboot is the bootstrap estimate of standard error based on θ̂1
∗
, . . . , θ̂ ∗

B .

2. Basic pivotal interval: The 100(1−α)% basic pivotal confidence interval is

(
2θ̂ − θ̂

∗
(1− α

2 )B
, 2θ̂ − θ̂

∗
( α

2 )B

)

where θ̂ ∗
β

is the β quantile of θ̂ ∗
1 , . . . , θ̂

∗
B .

3. Percentile bootstrap (Boot-p) interval:

Let G(x) = P(θ̂ ∗ ≤ x) be the cdf of θ̂ ∗. Define θ̂boot(x) = G−1(x) for a given x. Then the

100(1−α)% bootstrap percentile interval for θ is defined by

(
θ̂boot( α

2 )
, θ̂boot(1− α

2 )

)

where the confidence limits are α

2 and 1− α

2 quantiles of the bootstrap sample θ̂ ∗
1 , . . . , θ̂

∗
B .
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1.3.3.4 Bayesian method

The concept of confidence interval in Bayesian set up is different from frequentist confidence interval.

In frequetist approach it is known that the interval covers R with probability of at least (1−α) where

as in Bayesian method one knows that R is inside the interval with a given probability. This is because

the fact that under Bayesian model R is cosidered to be a random variable. To distinguish between

Bayesian and classical interval estimators the former is referred to as credible intervals rather than

confidence intervals. So we derive 100(1−α)% posterior credible intervals for the parameters of

interest based on the marginal posterior distribution of the parameter. Such credible intervals can

be obtained analytically or using a Markov chain Monte Carlo (MCMC) method. When a marginal

distribution is not symmetric, a 100(1−α)% highest posterior density (HPD) is more desirable. An

HPD interval has two main properties.

1. The density for every point inside the interval is greater than that for every point outside the

interval.

2. For a given probability content (say(1−α)), the interval is of shortest length.

Consider a Bayesian posterior density having the form

π (θ ,φ |D) =
1

C(D)
L(θ ,φ ,D)π (θ ,φ)

where D denotes data, the parameter θ is one-dimensional and φ may be multi-dimensional vector

of parameters other than θ in the model. Let π(θ |D) and Π(θ |D) be the marginal posterior density

function and marginal posterior cumulative distribution function (cdf) of θ respectively. We assume

that θ is unimodal and also θ can be generated from π(θ |D) using direct random generation scheme

or a MCMC algorithm. To obtain exact credible and HPD intervals, closed forms of π(θ |D) and
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Π(θ |D) are assumed to be known. For obtaining a 100(1−α)% credible interval, we calculate θ (α/2)

and θ (1−α/2) such that

Π(θ α/2|D) =
α

2

and

Π(θ 1−α/2|D) = 1− α

2
.

Then a 100(1−α)% for θ is

(θ α/2,θ 1−α/2).

Because π(θ |D) =
∫

π(θ ,ψ|D)dψ while ψ is high-dimensional, π(θ |D) is often analytically unob-

tainable. Chen and Shao [24] proposed a simple Monte Carlo method to estimate HPD intervals for

which it is not required to evaluate the marginal posterior densities analytically or numerically. This

method requires only an MCMC sample generated from the marginal posterior distribution of the

parameter of interest.

Let {θi, i = 1,2, . . . ,n} be an ergodic MCMC sample from π(θ |D). Then a 100(1−α)% Bayesian

credible interval is
(

θ([( α

2 )n])
,θ([(1− α

2 )n])

)
, where θ([( α

2 )n])
and θ([(1− α

2 )n])
are the [(α

2 )n]
th smallest and

[(1− α

2 )n]
th smallest of {θi} respectively.

To obtain a 100(1−α)% HPD interval, we let θ j be the smallest of {θi} and denote

R j(n) =
(
θ( j),θ( j+[(1−α)n])

)
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for j = 1,2, . . . ,n− [(1−α)n]. Then, R j∗(n) which has smallest interval width among all R j(n)′s is a

100(1−α)% HPD interval for θ .

1.4 Review of literature

Birnbaum et al. [2] was one of the first researchers who dealt with the model P(X < Y ) in stress-

strength context. Since then various research papers have come out in this area. Inference procedures

on P(X < Y ) has been considered by researchers for different distributions based on random samples.

Jeevanand and Nair [25] considered estimating P(X < Y ) from exponential samples containing spuri-

ous observations. Jeevanand [26] also studied Bayesian estimation of reliability under stress-strength

model for the Marshall-Olkin bivariate exponential distribution. Kundu and Gupta[27] considered

estimation of P(X < Y ) for generalized exponential distribution and for Weibull distribution[28].

Estimation of P(X <Y ) for the three parameter generalized exponential distribution was considered by

Raqab et al. [29]. Jiang and Wong [30] studied inference of P(X < Y ) for right truncated exponential

distribution. Stress-strength reliability of two parameter life time distribution based on progressively

censored samples was considered by Shoaee and Khorram [31]. Rezaei et al. [32] studied the estima-

tion of R when X and Y are two independent generalized Pareto random variables with common scale

parameter and different shape parameters. Some other works on random samples include estimation

of stress strength reliability of the standard two-sided power distribution by Cetinkaya and Genc

[33], reliability estimation in stress strength models : an MCMC approach by Soliman et al. [34] and

estimation of P(Y < X) for Weibull distribution under progressive Type II censoring by Valiollahi et

al. [35].

Abundant research studies have appeared in the literature in the area of estimation of the stress-

strength model using record values. Asgharzadeh et al. [36] considered interval estimation for the two
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parameter bathtub shaped lifetime distribution based on records. Likelihood and Bayesian estimation

of P(X < Y ) was considered by Baklizi [37]. He also studied inference on P(X < Y ) in the two

parameter Weibull model based on records [38] and estimation of Pr(X < Y ) using Record Values

in the One and Two Parameter Exponential Distributions[39]. Basirat et al. [40] made a study on

estimation of stress-strength parameter using record values from proportional hazard rate models.

Interval estimation of stress-strength reliability based on lower record values from Inverse Rayleigh

distribution was considered by Tarvirdizade & Hussain [41]. Tarvirdizade & Ahmedpur [42] studied

estimation of the stress-strength reliability for the two-parameter bathtub shaped lifetime distribution

based on upper record values. Statistical inference of P(X < Y ) for the Burr Type XII distribution

based on records was presented by Nadar et al. [43]. Here we would like to present a work on

"Estimation of stress-strength reliability for some distributions based on record values".

1.5 Outline of the thesis

In this thesis we present the estimation procedures of stress strength parameter based on record

values for some distributions namely; Pareto Type I, Pareto Type II, Pareto Type IV, inverse Chen,

exponentiated inverse Chen and inverse Weibull . The thesis is structured as follows.

Chapter 2 describes the estimation of R = P(X > Y ) based on upper record values when X and

Y are independent Pareto Type I random variables with same scale parameter and different shape

parameters. Maximum likelihood and Bayesian methods are used for the estimation of R when the

scale parameter is known. The corresponding confidence intervals are also found. A simulation study

is conducted to investigate the estimation procedures. A real data analysis is done to illustrate the

methods proposed. We also considered likelihood inference of R for Pareto Type II and Type IV
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distributions. Numerical examples are presented for illustrating the proposed methods followed by

some conclusions.

Chapter 3 deals with the estimation of R = P(X > Y ) when X and Y are from inverse Chen

distribution with different first shape parameters and same second shape parameter based on lower

record values. MLE, Bayes estimator and the confidence intervals are obtained when the second shape

parameter β is known. When β is unknown MLE, Bayes estimator using MCMC method and an HPD

interval are found. An approximate confidence interval and bootstrap confidence intervals are also

obtained. A Monte Carlo simulation is conducted to investigate the estimation procedures. A real data

analysis is presented for illustrative purpose. Further we discuss estimation of R for exponentiated

inverse Chen distribution. Maximum likelihood estimator and Bayes estimator are obtained when

the second shape parameter β is known as well as unknown. A numerical example is also presented.

Finally some conclusions are given.

Chapter 4 considers inverse Weibull distribution with same shape parameter and different scale

parameters for estimation of R = P(X < Y ) based on lower record values. When the shape parameter

is known MLE, Bayes estimator and the corresponding confidence intervals are derived. For unknown

shape parameter MLE, Bayes estimator using MCMC method and HPD interval are obtained. To

illustrate the methods presented a numerical example is given followed by some conclusions.

In Chapter 5 summary of the thesis and final conclusions with some directions for future work

are given.



Chapter 2

Estimation of stress-strength reliability

for Pareto distribution based on upper

record values

2.1 Introduction

The problem of estimating stress-strength reliability has many applications in a variety of fields. If X

and Y are two random variables representing the life lengths of a product with same guarantee period

produced by two companies P(X >Y ) represents the probability that one is better than the other. This

probability can be well described when X and Y follow Pareto Type I distribution. Pareto distributions

provide a family of fat-tailed distributions which can be used to describe income distributions. It is

also quite popular in modelling a wide variety of other social and economic distributions.
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Jeevanand [44] studied the problem of estimating R = P(X2 < X1) when X1 and X2 has the

bivariate Pareto distribution which arises in the context of a two-component system that is subject

to shocks arriving from independent sources according to Poisson process with different intensities.

Rezaei et al. [32] studied the estimation of R = P(X < Y ) when X and Y are two independent

generalized Pareto random variables with common scale parameter and different shape parameters.

The organization of this chapter is as follows. In Section 2 we derive the maximum likelihood

estimator and the corresponding confidence interval for the stress-strength parameter, R for Pareto

Type I distribution. Section 3 describes the Bayesian inference in which Lindley’s method is used

and the confidence interval is obtained. A simulation study is conducted to investigate and compare

the performance of point estimators and interval estimators in Section 4. A real data analysis for

illustrating the estimation methods is presented in Section 5. In Section 6 likelihood inference of

R for Pareto Type II distribution followed by a numerical example is described. Section 7 deals

with estimation of R for Pareto Type IV distribution by maximum likelihood method along with a

numerical example. Finally the conclusions drawn are given in Section 8.

2.2 Likelihood inference

The probability density function (pdf) and the cumulative distribution function (cdf) of the Pareto

Type I distribution with scale parameter α and shape parameter β (both positive) are given by

f (x) =
βαβ

xβ+1 , x ≥ α,α > 0,β > 0,

F(x) = 1− (
α

x
)β , x ≥ α,α > 0,β > 0

(2.1)

Let X and Y be two independent random variables from Pareto Type I distribution with parameters
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Fig. 2.1 pdf of Pareto Type I with α = 1

α,β1 and α,β2 respectively. Then using (2.1)

R = P(X > Y ) =
∫

∞

α

∫
∞

y

β1αβ1

xβ1+1

β2αβ2

yβ2+1 dxdy =
β2

β1 +β2
.

We are interested in estimating R based on upper record values on both variables. Let r˜=
(r1,r2, ......,rn) be a set of upper records from distribution of X with pdf ’f’ and cdf ’F’ and let

s˜= (s1,s2, ......,sm) be an independent set of upper records from distribution of Y with pdf ’g’ and

cdf ’G’. The likelihood functions are given by

L(α,β1|r˜) = f (rn)
n−1

∏
i=1

(
f (ri)

1−F(ri)

)
, 0 < r1 < r2 < ..... < rn < ∞ (2.2)

L(α,β2|s˜) = g(sm)
m−1

∏
i=1

(
g(si)

1−G(si)

)
, 0 < s1 < s2 < ..... < sm < ∞ (2.3)
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Substituting f,F,g and G the joint likelihood and the joint log likelihood are respectively given by

L(α,β1,β2|r˜,s˜) =
β n

1 αβ1

rβ1+1
n

n−1

∏
i=1

r−1
i

β m
2 αβ2

sβ2+1
m

m−1

∏
i=1

s−1
i (2.4)

l(α,β1,β2|r˜,s˜) = n logβ1 +β1 logα −
n−1

∑
i=1

logri − (β1 +1) logrn

+ m logβ2 +β2 logα −
m−1

∑
i=1

logsi − (β2 +1) logsm (2.5)

δ l
δβ1

= 0 ⇒ n
β1

= log
(rn

α

)
(2.6)

δ l
δβ2

= 0 ⇒ m
β2

= log
(sm

α

)
(2.7)

when α (the guarantee period) is known,

β̂1 =
n

log(rn/α)
, β̂2 =

m
log(sm/α)

. (2.8)

Then the MLE of R is given by R̂ = β̂2

β̂1+β̂2
.

Remark: While estimating shape parameters using record values it is assumed that the scale

parameters are common and known. The procedure is same if we assume that the scale parameters

α1 and α2 are assumed to be different but known. On the other hand if α1 and α2 are assumed to be

unknown we have to estimate them from the upper record data. But due to the nature of the scale

parameter (x ≥ α) in the model α cannot be estimated consistently from upper record values alone.

Hence the assumption that the scale parameters are known cannot be relaxed. In the data set analysed

we are using a data with same scale parameter. Intuitively this is an appropriate situation when we are

comparing the performance of two products with same warranty period.
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We shall study the distribution of β̂1 and β̂2. Consider first β̂1 = z1 =
n

log(rn/α) .

We know that the p.d.f of Rn is given by

fRn(rn) =
1

(n−1)!
f (rn)(− log(1−F(rn)))

n−1

=
1

(n−1)!
β n

1 αβ1

rβ1+1
n

(log(rn/α))n−1, rn > α. (2.9)

Therefore the p.d.f of z1 = β̂1 is given by

fz1(z1) =
(nβ1)

n

(n−1)!
exp

−nβ1
z1

zn+1
1

, z1 > 0. (2.10)

Here z1 ∼ InvGamma(n,nβ1).

Similarly z2 ∼ InvGamma(m,mβ2).

Therefore we can find the p.d.f of

R̂ =
β̂2

β̂1 + β̂2

=
z2

z1 + z2
=

1
1+ z1/z2

. (2.11)

Consider z1
z2

. By the properties of the inverted Gamma distribution and its relation with the gamma

distribution, we have nβ1
z1

∼ Gamma(n,1) and mβ2
z2

∼ Gamma(m,1).

Hence 2nβ1
z1

∼ χ2
2n and 2mβ2

z2
∼ χ2

2m. Since the two random variables are independent we have

(
2mβ2
2mz2

)
(

2nβ1
2nz1

) =
β2z1

β1z2
=

R
1−R

β̂1

β̂2
∼ F(2m,2n).
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This can be used to construct the following (1−α)% confidence interval for R.

(1+
β̂1

β̂2Fα

2 ,2m,2n

)−1

,

(
1+

β̂1

β̂2F1− α

2 ,2m,2n

)−1
 . (2.12)

2.3 Bayesian inference

It is also interesting how supplementary information other than upper record values available can

be incorporated. A convenient vehicle is the method of Bayesian inference. We have considered

both informative and non-informative priors . The sampling distribution of β1 and β2 and hence R

will instigate the use of an appropriate conjugate prior. We assume the conjugate family of prior

distribution to be Gamma family of distributions.

So,

π(β1) =
1

Γ(γ1)
θ

γ1
1 β

γ1−1
1 exp−θ1β1 , β1 > 0; θ1,γ1 > 0,

π(β2) =
1

Γ(γ2)
θ

γ2
2 β

γ2−1
2 exp−θ2β2 , β2 > 0; θ2,γ2 > 0.

(2.13)

Using the priors and the likelihood function(2.4), the posterior distributions of β1 and β2 are obtained

as

β1|r˜∼ Gamma
(

n+ γ1 , θ1 + log
(rn

α

))
β2|s˜∼ Gamma

(
m+ γ2 , θ2 + log

(sm

α

)) (2.14)

Since β1 and β2 are independent, using standard transformation techniques and after some manipula-

tions the posterior p.d.f of R is given by

fR(r) =C
(1− r)n+γ1−1rm+γ2−1[

(1− r)
(
θ1 + log rn

α

)
+ r
(
θ2 + log sm

α

)]n+m+γ1+γ2
, 0 < r < 1



2.3 Bayesian inference 31

where C = Γ(n+m+γ1+γ2)
Γ(n+γ1)Γ(m+γ2)

(
θ1 + log

( rn
α

))n+γ1
(
θ2 + log

( sm
α

))m+γ2 .

Under squared error loss function, the Bayes estimator of R is the expected value of R. This

expected value contains an integral which is not obtainable in a simple closed form. Therefore using

the approximate method of Lindley [19], we can find the approximate Bayes estimator R̄B relative to

squared error loss function. By approximate method of Lindley the Bayes estimator for u(θ) for a

prior v(θ) is given by

∫
θ

u(θ)v(θ)expL(θ) dθ∫
θ

v(θ)expL(θ) dθ
= [u∗+

1
2
(u11σ11 +u22σ22)+ρ1u1σ11 +ρ2u2σ22

+
1
2
[σ11σ22(u1L12 +u2L21)+u1σ

2
11L30

+ u2σ
2
22L03]+O(

1
n2 )]atθ̂ (2.15)

where

u(θ) =
β2

β1 +β2
; ρ = log(π(β1)π(β2)) = logC+(γ1 −1)logβ1 −θ1β1 +(γ2 −1)logβ2 −θ2β2,

u∗ is the MLE of u(θ) and L(θ) is the logarithm of likelihood function. C is independent of β1 and

β2.

Further

u1 =
δu
δβ1

=
−β2

(β1 +β2)
2 ; u2 =

δu
δβ2

=
β1

(β1 +β2)
2 ; u11 =

δ 2u
δβ 2

1
=

2β2

(β1 +β2)
3 ; u22 =

δ 2u
δβ 2

2
=

−2β1

(β.1+β2)
3 .

ρ1 =
γ1 −1

β1
−θ1; ρ2 =

γ2 −1
β2

−θ2.

σ = [−Li j]
−1 where Li j =

[
δ 2L

δβiδβ j

]
.
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σ =


β 2

1
n 0

0 β 2
2

m

 ; L30 =
δ 3L
δβ 3

1
= 2n

β 3
1

; L03 =
δ 3L
δβ 3

2
= 2m

β 3
2
.

Substituting in eqn (2.15) we get the Bayes estimator as

R̄B = R̂+ R̂(1− R̂)


(

1− R̂− γ1 + β̂1θ1

)
n

+

(
γ2 − R̂− β̂2θ2

)
m

 . (2.16)

Further more, it follows from (2.14) that 2(θ1+log rn
α
)
(
β1|r

)̃
∼ χ2

2(n+γ1)
and 2(θ2+log sm

α
)
(
β2|s

)̃
∼

χ2
2(m+γ2)

. It follows that π(R|r˜,s˜), the posterior distribution of R is equal to that of (1+AW )−1 where

W ∼ F2(n+γ1),2(m+γ2) and A =
(n+γ1)(θ2+log sm

α
)

(m+γ2)(θ1+log rn
α
) . Therefore a Bayesian (1−α)% confidence interval for

R is given by

((
AF1− α

2 ,2(n+γ1),2(m+γ2)+1
)−1

,
(

AFα

2 ,2(n+γ1),2(m+γ2)+1
)−1
)
. (2.17)

When we have no information about the parameter we use a non informative prior. Jeffreys Invariant

prior is a non-informative prior. We assume a Jeffreys Invariant prior (see Subsection 1.3.2). So,

π(β1)∝
1
β1

; β1 > 0,

π(β2)∝
1
β2

; β2 > 0.

(2.18)

Using the priors and the likelihood functions, the posterior distributions of β1 and β2 are obtained as

β1|r˜∼ Gamma
(

n , log
(rn

α

))
β2|s˜∼ Gamma

(
m , log

(sm

α

))
.

(2.19)
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Since β1 and β2 are independent, then using standard transformation techniques and after some

manipulations the posterior p.d.f of R is given by

fR(r) =C
(1− r)n−1rm−1[

(1− r) log
( rn

α

)
+ r log

( sm
α

)]n+m , 0 < r < 1

where C = Γ(n+m)
Γ(n)Γ(m)

(
log
( rn

α

))n (log
( sm

α

))m.

Under squared error loss function, the Bayes estimator of R is the expected value of R. This expected

value contains an integral which is not obtainable in a simple closed form. Therefore using the

approximate method of Lindley [19], we can find the approximate Bayes estimator R̄B relative to

squared error loss function. By the approximate method of Lindley the Bayes estimator for u(θ) for a

prior v(θ) and a likelihood function is given by

∫
θ

u(θ)v(θ)expL(θ) dθ∫
θ

v(θ)expL(θ) dθ
= [u∗+

1
2
(u11σ11 +u22σ22)+ρ1u1σ11 +ρ2u2σ22

+
1
2
[σ11σ22(u1L12 +u2L21)+u1σ

2
11L30

+ u2σ
2
22L03]+O(

1
n2 )]atθ̂ (2.20)

where

u(θ) =
β2

β1 +β2
; v(θ) =

1
β1β2

; ρ = logv(θ) = log
(

1
β1β2

)
;

u∗ is the MLE of u(θ)and L(θ) is the logarithm of likelihood function.

Further

u1 =
δu
δβ1

=
−β2

(β1 +β2)
2 ; u2 =

δu
δβ2

=
β1

(β1 +β2)
2 ; u11 =

δ 2u
δβ 2

1
=

2β2

(β1 +β2)
3 ; u22 =

δ 2u
δβ 2

2
=

−2β1

(β1 +β2)
3 .
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ρ1 =
δρ

δβ1
=

−1
β1

; ρ2 =
δρ

δβ2
=

−1
β2

.

σ = [−Li j]
−1 where Li j =

[
δ 2L

δβiδβ j

]
.

σ =


β 2

1
n 0

0 β 2
2

m

 ; L30 =
δ 3L
δβ 3

1
= 2n

β 3
1

; L03 =
δ 3L
δβ 3

2
= 2m

β 3
2

.

Substituting in eqn(2.20) we get the Bayes estimator as

R̄B = R̂+ R̂(1− R̂)

[(
1− R̂

)
n

− R̂
m

]
.

Further more, it follows from (2.19) that

2 log(
rn

α
)
(
β1|r

)̃
∼ χ

2
2n

and

2log(
sm

α
)
(
β2|s

)̃
∼ χ

2
2m.

It follows that π(R|r˜,s˜), the posterior distribution of R is equal to that of (1+AW )−1 where

W ∼ F2n,2m

and A =
n log( sm

α
)

m log( rn
α
) . Therefore a Bayesian (1−α)% credible interval for R is given by

((
AF1− α

2 ,2n,2m +1
)−1

,
(

AFα

2 ,2n,2m +1
)−1
)
. (2.21)

which happens to be the same as the confidence interval based on MLE.
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2.4 A simulation study

In this section a Monte Carlo simulation study is conducted to investigate and compare the performance

of point estimators and confidence intervals presented in this chapter. The performance of MLE’s

and Bayes estimators is compared in terms of their biases and mean square errors (MSE’s). We

consider only one case, when the scale parameter α is known. We use the parameter values (β1,β2) =

(4,1),(2,2),(1,3),(1,9). Therefore Rexact = 0.2,0.5,0.75,0.9. To compute the Bayes estimators

two methods, one with conjugate prior and the other with Jeffreys invariant prior are considered. The

results based on 2000 replications are given here.

When the scale parameter is known we obtain the average estimates, biases and MSE’s of

the MLE and the approximate Bayes estimator of R. We also compute the expected length for the

confidence intervals obtained by using the ML method and Bayes method with conjugate prior as well

as Jeffreys prior. The results are tabulated in Table 3.1 and Table 3.2. From the simulation results,

it is observed that as the sample size (n,m) increases the biases and the MSE’s decrease. Thus the

consistency properties of all the methods are verified. It is observed that the bias of the estimators

become negative for values of R larger than 0.5.

It is also observed that the intervals based on all methods are maximized when R = 0.5 and

they become shorter and shorter as we move away to smaller and larger values. Increasing the

sample size on either variable also results in shorter intervals. Except for R = 0.5 expected length for

non-informative prior is shorter than that for conjugate prior.
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Table 2.1 Average estimates(AVR),biases and MSE’s of the estimators of R

Methods R MLE Bayes non-inform Bayes Conjugate
(n,m) AVR Bias MSE AVR Bias MSE AVR Bias MSE
(4,4) 0.2 0.2254 0.0254 0.0164 0.2440 0.0440 0.0166 0.3028 0.1028 0.0211
(4,7) 0.2124 0.0124 0.0111 0.2363 0.0363 0.0125 0.2999 0.0999 0.0189
(4,10) 0.2075 0.0075 0.0096 0.2333 0.0333 0.0112 0.2972 0.0972 0.0172
(7,4) 0.2298 0.0298 0.0138 0.2363 0.0363 0.0129 0.2636 0.0636 0.0125
(7,7) 0.2161 0.0161 0.0089 0.2279 0.0279 0.0092 0.2616 0.0616 0.0110
(7,10) 0.2101 0.0101 0.0068 0.2239 0.0239 0.0073 0.2590 0.0590 0.0094
(10,4) 0.2323 0.0323 0.0130 0.2337 0.0337 0.0118 0.2492 0.0492 0.0097
(10,7) 0.2179 0.0179 0.0077 0.2247 0.0247 0.0077 0.2472 0.0472 0.0083
(10,10) 0.2127 0.0127 0.0059 0.2214 0.0214 0.0061 0.2453 0.0453 0.0072

(4,4) 0.5 0.5019 0.0019 0.0275 0.5019 0.0019 0.0228 0.5019 0.0019 0.0112
(4,7) 0.4908 -0.0090 0.0227 0.5036 0.0036 0.0193 0.5258 0.0258 0.0116
(4,10) 0.4863 -0.0140 0.0207 0.5043 0.0043 0.0179 0.5339 0.0339 0.0114
(7,4) 0.5145 0.0145 0.0231 0.5014 0.0014 0.0196 0.4777 -0.0220 0.0115
(7,7) 0.5027 0.0027 0.0172 0.5026 0.0026 0.0152 0.5021 0.0021 0.0106
(7,10) 0.4978 -0.0020 0.0142 0.5029 0.0029 0.0128 0.5103 0.0103 0.0096
(10,4) 0.5209 0.0209 0.0206 0.5024 0.0024 0.0176 0.4716 -0.0280 0.0109
(10,7) 0.5089 0.0089 0.0142 0.5034 0.0034 0.0128 0.4954 -0.0050 0.0095
(10,10) 0.5046 0.0046 0.0119 0.5044 0.0044 0.0109 0.5040 0.0040 0.0086

(4,4) 0.75 0.7296 -0.0200 0.0186 0.7123 -0.0380 0.0179 0.6675 -0.0830 0.0183
(4,7) 0.7245 -0.0260 0.0162 0.7203 -0.0300 0.0146 0.7008 -0.0490 0.0121
(4,10) 0.7225 -0.0280 0.0151 0.7237 -0.0260 0.0132 0.7138 -0.0360 0.0101
(7,4) 0.7434 -0.0070 0.0139 0.7193 -0.0300 0.0146 0.6685 -0.0820 0.0167
(7,7) 0.7387 -0.0110 0.0109 0.7275 -0.0230 0.0107 0.7014 -0.0490 0.0108
(7,10) 0.7371 -0.0130 0.0092 0.7314 -0.0190 0.0086 0.7143 -0.0360 0.0085
(10,4) 0.7506 0.0006 0.0117 0.7238 -0.0260 0.0125 0.6720 -0.0780 0.0148
(10,7) 0.7459 -0.0040 0.0084 0.7321 -0.0180 0.0085 0.7044 -0.0460 0.0091
(10,10) 0.7443 -0.0060 0.0072 0.7360 -0.0140 0.0071 0.7174 -0.0330 0.0072

(4,4) 0.9 0.8817 -0.0180 0.0063 0.8648 -0.0350 0.0078 0.7662 -0.1340 0.0269
(4,7) 0.8804 -0.0200 0.0054 0.8720 -0.0280 0.0058 0.8198 -0.0800 0.0117
(4,10) 0.8799 -0.0200 0.0051 0.8751 -0.0240 0.0051 0.8413 -0.0590 0.0075
(7,4) 0.8909 -0.0090 0.0041 0.8727 -0.0270 0.0055 0.7752 -0.1250 0.0217
(7,7) 0.8899 -0.0100 0.0031 0.8799 -0.0200 0.0037 0.8258 -0.0740 0.0094
(7,10) 0.8898 -0.0100 0.0027 0.8833 -0.0170 0.0029 0.8460 -0.0540 0.0059
(10,4) 0.8954 -0.0050 0.0032 0.8769 -0.0230 0.0045 0.7809 -0.1190 0.0188
(10,7) 0.8946 -0.0050 0.0023 0.8842 -0.0160 0.0028 0.8300 -0.0700 0.0079
(10,10) 0.8943 -0.0060 0.0019 0.8873 -0.0130 0.0022 0.8498 -0.0500 0.0049



2.4 A simulation study 37

Table 2.2 Expected length

(n,m) R MLE Bayes non-inform Bayes Conjugate
95%EL 90%EL 95%EL 90%EL 95%EL 90%EL

(4,4) 0.4571 0.3837 0.4571 0.3837 0.4894 0.4143
(4,7) 0.4181 0.3478 0.4181 0.3478 0.4513 0.3792
(4,10) 0.4001 0.3316 0.4001 0.3316 0.4329 0.3625
(7,4) 0.3976 0.3360 0.3976 0.3360 0.4119 0.3489
(7,7) 0.2 0.3464 0.2901 0.3464 0.2901 0.3652 0.3070
(7,10) 0.3229 0.2693 0.3229 0.2693 0.3424 0.2868
(10,4) 0.3732 0.3164 0.3732 0.3164 0.3789 0.3214
(10,7) 0.3165 0.2659 0.3165 0.2659 0.3280 0.2761
(10,10) 0.2900 0.2428 0.2900 0.2428 0.3026 0.2539

(4,4) 0.5846 0.5031 0.5846 0.5031 0.5739 0.4941
(4,7) 0.5348 0.4584 0.5348 0.4584 0.5232 0.4484
(4,10) 0.5122 0.4383 0.5122 0.4383 0.4993 0.4274
(7,4) 0.5346 0.4581 0.5345 0.4581 0.5233 0.4485
(7,7) 0.5 0.4704 0.4011 0.4704 0.4011 0.4624 0.3942
(7,10) 0.4409 0.3753 0.4409 0.3753 0.4332 0.3687
(10,4) 0.5131 0.4391 0.5131 0.4391 0.5003 0.4282
(10,7) 0.4411 0.3756 0.4411 0.3756 0.4334 0.3688
(10,10) 0.4058 0.3447 0.4058 0.3447 0.3996 0.3394

(4,4) 0.4993 0.4228 0.4993 0.4228 0.5129 0.4364
(4,7) 0.4388 0.3729 0.4388 0.3729 0.4424 0.3763
(4,10) 0.4130 0.3517 0.4130 0.3517 0.4110 0.3499
(7,4) 0.4569 0.3834 0.4568 0.3834 0.4731 0.3996
(7,7) 0.75 0.3849 0.3242 0.3849 0.3242 0.3933 0.3320
(7,10) 0.3534 0.2983 0.3534 0.2983 0.3575 0.3020
(10,4) 0.4377 0.3659 0.4377 0.3659 0.4534 0.3817
(10,7) 0.3593 0.3014 0.3593 0.3014 0.3686 0.3101
(10,10) 0.3235 0.2719 0.3235 0.2719 0.3292 0.2771

(4,4) 0.3142 0.2560 0.3142 0.2560 0.4158 0.3466
(4,7) 0.2593 0.2146 0.2593 0.2146 0.3170 0.2648
(4,10) 0.2378 0.1982 0.2378 0.1982 0.2746 0.2299
(7,4) 0.2796 0.2256 0.2796 0.2256 0.3811 0.3151
(7,7) 0.9 0.2193 0.1799 0.2192 0.1799 0.2778 0.2303
(7,10) 0.1949 0.1613 0.1949 0.1613 0.2342 0.1948
(10,4) 0.2634 0.2115 0.2634 0.2115 0.3632 0.2991
(10,7) 0.2005 0.1639 0.2005 0.1639 0.2577 0.2129
(10,10) 0.1749 0.1442 0.1749 0.1442 0.2133 0.1769
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Fig. 2.2 Curve of bias of R̂ against R

Fig. 2.3 Curve of MSE of R̂ against R

2.5 Data analysis

In this section we analyze the real data to illustrate the use of our proposed estimation methods. The

data from Crowder [45] give the lifetimes of the steel specimens tested at two different stress levels.

DataSet 1: (38.5 stress level): 60,51,83,140,109,106,119,76,68,67

DataSet 2: (38 stress level): 100,90,59,80,128,117,177,98,158,107

We fit the Pareto Type I distribution to the two data sets separately. The estimated parameters (based on
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ML methods), Kolmogorov-Smirinov(K-S) distances between the fitted and the empirical distribution

functions and corresponding p-values are presented in Table 2.3.

From the Table it is clear that Pareto distribution with common scale parameter fits quite well to

both data. For the above data we observe the upper record values as follows

r : 60,83,140

s : 100,128,177

Based on these record values and assuming α = 51, we obtain the MLE’s of β1 and β2 from (2.8) as

3.9611 and 3.2146 respectively. Therefore the MLE of R becomes R̂ = 0.4479. The corresponding

95% confidence interval based on (2.12) is equal to (0.1224,0.8253). In the Bayesian inference,

for the first estimator we take the values of the hyper parameters as γ1 = γ2 = θ1 = θ2 = 0.5. Then

we obtain the Bayes estimator R̄1 = 0.4775. Also the 95% credible interval from (2.17) is (0.1295,

0.8121). Using a non-informative prior, the Bayes estimator R̄2 = 0.4544. The corresponding 95%

Table 2.3 K S distances and p values

Data set Scale parameter shape parameter K-S distance p-value
1 51 2.0173 0.2233 0.6247
2 51 1.3592 0.3577 0.119

credible interval from (2.21) is calculated as (0.1224,0.8253).

2.6 Pareto Type II distribution

If the standard Pareto distribution is allowed to have an additional location parameter it is called

Pareto Type II distribution. The p.d.f of a Pareto Type II distribution with location parameter µ , scale
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parameter α and shape parameter β is given by

f (x) =
β

α

(
1+

x−µ

α

)−(β+1)

, µ ∈ R,x ⩾ µ,α,β > 0 (2.22)

and the c.d.f is given by
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Fig. 2.4 pdf of Pareto Type II with µ = 0 and α = 1

F(x) = 1−
(

1+
x−µ

α

)−β

. (2.23)

Let

X ∼ ParetoTypeII(µ,α,β1) and

Y ∼ ParetoTypeII(µ,α,β2) (2.24)
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R = P(X > Y ) =
∫

∞

µ

∫
∞

µ

β1

α

(
1+

x−µ

α

)−(β1+1)
β2

α

(
1+

y−µ

α

)−(β2+1)

dxdy

=
β2

β1 +β2
(2.25)

We would like to estimate R = P(X > Y ) based on upper records from both the distributions of X and

Y .

2.6.1 Likelihood inference

Let r˜= (r1,r2, ...,rn) be a set of upper records from the distribution of X and s˜= (s1,s2, ...,sn) be an

independent set of upper records from the distribution of Y . The likelihood function based on upper

records is given by

L(µ,α,β1,β2) =
β n

1
αn

(
1+

rn −µ

α

)−β n

∏
i=1

(
1+

ri −µ

α

)−1

×
β m

2
αm

(
1+

sm −µ

α

)−β m

∏
i=1

(
1+

si −µ

α

)−1

. (2.26)

The log likelihood is given by

l = n logβ1 −n logα −β1 log
(

1+
rn −µ

α

)
−

n

∑
i=1

log
(

1+
ri −µ

α

)
+m logβ2 −m logα −β2 log

(
1+

sm −µ

α

)
−

m

∑
i=1

log
(

1+
si −µ

α

)
. (2.27)

∂ l
∂β1

= 0 ⇒ n
β1

− log
(

1+
rn −µ

α

)
= 0

∂ l
∂β2

= 0 ⇒ m
β2

− log
(

1+
sm −µ

α

)
= 0. (2.28)
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When α & µ are known, the MLE’s of β1 & β2 are given by

β̄1 =
n

log
(
1+ rn−µ

α

) ; β̄2 =
m

log
(
1+ sm−µ

α

) . (2.29)

Then the MLE of R is obtained as

R̂ =
β̂2

β̂1 + β̂2
. (2.30)

When α is unknown, from ∂ l
∂α

= 0, we obtain the MLE of α as the solution of a non-linear equation

of the form α = h(α) where

h(α) =
1

m+n
[

n(rn −µ)(
1+ rn−µ

α

)
log
(
1+ rn−µ

α

) + n

∑
i=1

ri −µ(
1+ ri−µ

α

)
+

m(sm −µ)(
1+ sm−µ

α

)
log
(
1+ sm−µ

α

) + m

∑
i=1

si −µ(
1+ si−µ

α

) ]. (2.31)

The Lomax distribution is a particular case of Pareto Type II distribution that has been shifted so

that its support begins at zero [46]. The problem of estimating R = P(X > Y ) for this distribution is

discussed by Mahmoud et al. [47].

2.6.2 Numerical example

In this section we present the analysis of a data generated from Pareto Type II distribution to illustrate

the proposed methods. First we generate 20 observations from Pareto Type II (µ = 10,α = 2,β = 3)

and 20 observations from Pareto Type II (µ = 10,α = 2,β = 4) and is reported in Table 2.4.
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Table 2.4 Pareto Type II data

x y x y x y x y
10.16 10.15 14.54 10.22 11.11 14.5 10.67 10.73
12.27 10.42 12.61 10.41 10.53 10.04 13.04 10.06
10.37 10.09 12.34 10.03 10.49 10.23 11.54 10.47
11.76 10.34 10.46 11.01 10.64 10.44 15.25 10.63
10.44 10.13 11 10.08 10.09 10.1 10.06 10.26

The upper records from these two sets of data are

r : 10.16, 12.27, 14.54, 15.25.

s : 10.15, 10.42, 11.01, 14.5.

It is assumed that µ and α are known and is equal to 10 & 2 respectively. Then the MLE’s of β from

the two sets are 3.1059 and 3.3936 respectively. Hence the MLE of R is 0.5221.

When α is assumed to be unknown the mle of α is 2.7797. Then the MLE’s of β from the two

sets are 3.7707 and 4.1548 respectively. Hence the MLE of R is 0.5242.

2.7 Pareto Type IV distribution

In Pareto Type IV we have an inequality parameter in addition. The pdf and c.d.f of a Paerto Type

IV distribution with scale parameter α , location parameter µ , shape parameter β and inequality

parameter γ is given respectively by

f (x) =
β

γα

(
1+
(

x−µ

α

) 1
γ

)−(β+1)(
x−µ

α

) 1
γ
−1

F(x) = 1−

(
1+
(

x−µ

α

) 1
γ

)−β

x ⩾ µ α,µ,β ,γ > 0
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Let

X ∼ ParetoTypeIV (µ,α,γ,β1) and

Y ∼ ParetoTypeIV (µ,α,γ,β2) (2.32)

Then

R = P(X > Y )

=
∫

α

µ

(
1+
(

y−µ

α

) 1
γ

)−β1
β2

γα

(
1+
(

y−µ

α

) 1
γ

)−(β2+1)(
y−µ

α

) 1
γ
−1

dy

=
β2

β1 +β2
(2.33)

We would like to consider estimation of R = P(X > Y ) based on upper records.
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2.7.1 Likelihood inference

Let r˜= (r1,r2, ...,rn) be a set of upper records from the distribution of X and s˜= (s1,s2, ...,sn) be an

independent set of upper records from the distribution of Y . The likelihood function based on lower

records is given by

L(µ,α,γ,β1,β2) =
β n

1
γnαn

(
1+
(

rn −µ

α

) 1
γ

)−β1 n

∏
i=1

(
1+
(

ri −µ

α

) 1
γ

)−1(
ri −µ

α

) 1
γ
−1

×
β m

2
γmαm

(
1+
(

sm −µ

α

) 1
γ

)−β2 m

∏
i=1

(
1+
(

si −µ

α

) 1
γ

)−1(
si −µ

α

) 1
γ
−1

(2.34)

and the log likelihood is given by

l = n logβ1 −n logγ −n logα −β1 log

(
1+
(

rn −µ

α

) 1
γ

)
−

n

∑
i=1

[
log

(
1+
(

ri −µ

α

) 1
γ

)
− (

1
γ
−1) log

(
ri −µ

α

)]

+m logβ2 −m logγ −m logα −β2 log

(
1+
(

sm −µ

α

) 1
γ

)
−

m

∑
i=1

[
log

(
1+
(

si −µ

α

) 1
γ

)
− (

1
γ
−1) log

(
si −µ

α

)]

(2.35)

∂ l
∂β1

= 0 ⇒ the MLE ofβ1, β̂1 =
n

log
(

1+
( rn−µ

α

) 1
γ

) (2.36)

∂ l
∂β2

= 0 ⇒ the MLE ofβ2, β̂2 =
m

log
(

1+
( sm−µ

α

) 1
γ

) (2.37)

Then the MLE of R is obtained as

R̂ =
β̂2

β̂1 + β̂2
(2.38)
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2.7.2 Numerical example

In this section we present the analysis of a data generated from Pareto Type IV distribution to illustrate

the proposed methods. For this purpose 20 observations each from Pareto Type IV(µ = 10,α =

4,β = 3,γ = 2) and Pareto Type IV(µ = 10,α = 4,β = 2,γ = 2) are generated and tabulated (Table

2.5).

Table 2.5 Pareto Type IV data

x y x y x y x y
10.16 10.3 10.2 10.07 11.01 13.59 10.01 10.01
10.03 10.01 30.58 18.24 11.23 13.5 10.45 10.12
15.15 10.85 16.83 10.18 10.29 10.34 19.24 10.06
10.13 10.07 15.47 12.91 10.24 10.02 12.38 10.04
13.1 10.01 10.21 11.47 10.42 15.29 37.53 10.44

The upper records from these two sets of data are

r : 10.16,15.15,30.58,37.53.

s : 10.3,10.85,18.24.

It is assumed that µ, α and γ are known and are equal to 10,4 and 2 respectively. Then the

MLE’s of β from the two sets are 3.1069 and 3.3706 respectively. Hence the MLE of R is 0.5203.

2.8 Conclusion

This chapter considered the estimation of stress-strength reliability R = P(X > Y ) based on upper

record values where X and Y are independent random variables from Pareto Type I distribution with

same scale parameter but different inequality parameters. The results for estimation of R by maximum
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likelihood estimation and Bayesian approach are reported when the common scale parameter is known.

Further the likelihood inference of R for Pareto Type II & Type IV distributions are discussed. We

didn’t discuss the estimation of R for Pareto Type III distribution due to the intractability of an explicit

expression for R. Moreover, in the case of Pareto Type II and Type IV we think that the estimation of

R in Bayesian method can be studied using E M algorithm which we haven’t attempted here.

From the simulation results, it is observed that as the sample size (n, m) increases the biases and

the MSE’s decrease. Thus the consistency properties of all the methods are verified. It is observed

that the bias of the estimators become negative for values of R larger than 0.5. It is also observed that

the interval based on MLE is maximized when R = 0.5 and it becomes shorter and shorter as we move

away to smaller and larger values. Increasing the sample size on either variable also results in shorter

intervals. The simulation results of Bayesian interval estimation are influenced by the values of the

hyperparameters. All the simulations and real data analysis are done in R software.



Chapter 3

Estimation of stress-strength reliability

for inverse Chen distribution based on

lower record values

3.1 Introduction

An increasing demand for life time distributions to describe complex practical situations gave rise to a

number of life time models. The new life time distribution with bathtub-shape or increasing failure

rate function proposed by Chen [48] was one among them. The bathtub hazard function provides an

appropriate conceptual model for some electronic and mechanical products as well as the lifetime of

humans.



50 Estimation of stress-strength reliability for inverse Chen distribution based on lower record values

The cumulative distribution function (cdf) of Chen distribution is given by

F(y) = 1− eλ (1−eyβ
), y > 0,λ ,β > 0

and hence probability density function (pdf) is given by

f (y) = λβyβ−1e
[
yβ+λ (1−eyβ

)
]
, y > 0,λ ,β > 0.

If a random variable Y has a Chen distribution, then the distribution of X = 1
Y is termed as an Inverse

Chen distribution (ICD). Its cumulative distribution function (cdf) is given by

F(x) = eλ (1−ex−β
), x > 0,λ ,β > 0 (3.1)

and the probability density function (pdf) of Inverse Chen distribution (ICD) is

f (x) = λβx−(β+1)e
[
x−β+λ (1−ex−β

)
]
, x > 0,λ ,β > 0. (3.2)

In literature a few papers have been published for estimation of stress-strength reliability for Chen

distribution based on random samples. Asgharzadeh et al. [36] considered interval estimation for the

two parameter bathtub shaped lifetime distribution based on records. Estimation of stress-strength

reliability for the two-parameter bathtub shaped life time distribution based on upper record values was

presented by Bahman Tarvirdizade [42]. In this chapter we consider the estimation of R = P(X > Y )

based on lower records when X and Y are independent but not identically distributed inverse-Chen
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random variables.

The organization of this chapter is as follows. In Section 2 the likelihood inference of the stress-
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Fig. 3.1 pdf of inverse Chen distribution

strength parameter followed by asymptotic confidence interval and bootsrap confidence intervals are

discussed. Section 3 describes the Bayesian inference. In Section 4 a simulation study is conducted

to investigate and compare the performance of point estimators presented in this chapter. Section 5

presents a real data analysis for the illustration of the proposed estimation methods . Section 6 deals

with the estimation of R for exponentiated inverse Chen distribution followed by a numerical example.

Finally the conclusions drawn are given in Section 7.
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3.2 Likelihood inference

Let X and Y be two independent random variables from inverse Chen distribution with parameters

(γ,β ) and (δ ,β ) respectively. Then using (3.1) and (3.2)

R = P(X > Y ) =
∫

∞

0
P(Y < X |X = x) f (x)dx =

γ

δ + γ
.

We would like to estimate R based on lower record values on both variables. Let r˜=(r1,r2, ......,rn)

be a set of lower records from distribution of X with pdf f and cdf F and let s˜= (s1,s2, ......,sm) be an

independent set of lower records from distribution of Y with pdf g and cdf G. Then the likelihood

functions are given by

L(γ,β |r˜) = f (rn)
n−1

∏
i=1

(
f (ri)

F(ri)

)
,r1 > r2 > ..... > rn > 0. (3.3)

L(δ ,β |s˜) = g(sm)
m−1

∏
i=1

(
g(si)

G(si)

)
,s1 > s2 > ..... > sm > 0. (3.4)

Substituting f, F, g and G the joint likelihood and the joint log likelihood are respectively given by

L(β ,γ,δ |r˜,s˜) = γ
n
β

ne
γ

(
1−er−β

n

)
n

∏
i=1

r−(β+1)
i er−β

i

δ
m

β
me

δ

(
1−es−β

m

)
m

∏
i=1

s−(β+1)
i es−β

i (3.5)

l(β ,γ,δ |r˜,s˜) = nlogγ +nlogβ + γ

(
1− er−β

n
)
+

n

∑
i=1

[
−(β +1)logri + r−β

i

]
+ mlogδ +mlogβ +δ

(
1− es−β

m
)
+

m

∑
i=1

[
−(β +1)logsi + s−β

i

]
(3.6)
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δ l
δγ

= 0 ⇒ n
γ
+
(

1− er−β
n
)
= 0 (3.7)

δ l
δδ

= 0 ⇒ m
δ
+
(

1− es−β
m
)
= 0 (3.8)

δ l
δβ

=
(m+n)

β
− γr−β

n er−β
n logrn −

n

∑
i=1

(
logri(1+ r−β

i )
)

− δ s−β
m es−β

m logsm −
m

∑
i=1

(
logsi(1+ s−β

i )
)
= 0 (3.9)

3.2.1 When shape parameter β is known

Under the assumption that the shape parameter β is known, the MLE’s of γ and δ , say respectively,

can be obtained from (3.7) and (3.8) as

γ̂ =
−n(

1− er−β
n

) ; δ̂ =
−m(

1− es−β
m

) . (3.10)

Then the MLE of R is given by

R̂ =
γ̂

γ̂ + δ̂
.

We shall study the distribution of R̂. For this we first obtain the distribution of

γ̂ =
−n

1− er−β
n

.

Since the pdf of Rn is given by

fRn(rn) =
1

(n−1)!
f (rn) [− logF(rn)]

n−1

=
1

(n−1)!
γβ r−(β+1)

n e

[
r−β

n +γ(1−er−β
n )

] [
−γ(1− er−β

n )
]n−1

, rn > 0. (3.11)
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the pdf of Z1 = γ̂ is given by

fZ1(z1) =
(nγ)ne−

nγ

z1

Γ(n)zn+1
1

, z1 > 0. (3.12)

This is identified as the inverted gamma distribution.

Z1 ∼ IGamma(n,nγ).

Similarly, for Z2 = δ̂ we can obtain

Z2 ∼ IGamma(m,mδ ).

Therefore we can find the pdf of

R̂ =
γ̂

δ̂ + γ̂
=

Z1

Z2 +Z1
=

1
1+ Z2

Z1

.

Consider Z2
Z1

. By the properties of inverse gamma distribution and the relation with the gamma

distribution, we have

nγ

z1
∼ Gamma(n,1);

mδ

z2
∼ Gamma(m,1).

Hence

2nγ

z1
∼ χ

2
2n;

2mδ

z2
∼ χ

2
2m.
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Clearly, by the independence of two χ2 random variables, we have

2nγ/2nz1

2mδ/2mz2
=

γz2

δ z1
=

R
1−R

∼ F(2n,2m)

This fact leads us to the construction of the following (1−α)% confidence interval for R.

(1+
δ̂

γ̂Fα

2 ,2n,2m

)−1

,

(
1+

δ̂

γ̂F1− α

2 ,2n,2m

)−1
 (3.13)

3.2.2 When shape parameter β is unknown

This subsection discusses likelihood inference of R when all of the parameters γ,δ and β are unknown.

In this case by using (3.7) and (3.8) we obtain

γ̂ =
−n(

1− er−β̂
n

) ; δ̂ =
−m(

1− es−β̂
m

) (3.14)

where β̂ is the MLE of the parameter β which is obtained by solving the following non-linear equation

(m+n)
β

− γr−β
n er−β

n logrn −
n

∑
i=1

(
logri(1+ r−β

i )
)

− δ s−β
m es−β

m logsm −
m

∑
i=1

(
logsi(1+ s−β

i

)
= 0 (3.15)
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Therefore β̂ can be obtained as a solution of the non-linear equation of the form h(β ) = β where

h(β ) = (m+n)

−nr−β
n er−β

n logrn(
1− er−β

n

) − ms−β
m es−β

m logsm(
1− es−β

m

) +
n

∑
i=1

logri(1+ r−β

i )+
m

∑
i=1

logsi(1+ s−β

i )

−1

(3.16)

Since β̂ is a fixed point solution of this non-linear equation, it can be obtained by using an iterative

procedure as h(β j) = β j+1 where β j is the jth iteration of β̂ .

The iteration procedure should be stopped when |β j −β j+1| is sufficiently small. Once we obtain

β̂ , γ̂ and δ̂ can be deduced from (3.7) and (3.8).

Therefore the MLE of R is computed to be

R̂ =
γ̂

δ̂ + γ̂
.

Since the study of the distribution of R is very complicated and difficult, it is not possible to obtain

exact confidence interval of R. In this case we propose some confidence interval based on the

asymptotic distribution of R̂ and the bootstrap method.

3.2.3 Asymptotic confidence interval

In this subsection we obtain approximate confidence interval of R based on the asymptotic distribution

of R̂ in which it is required to calculate Fisher information matrix. We obtain the observed informa-

tion matrix, since the expected information matrix is very complicated and will require numerical
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integration. The 3x3 observation matrix is given by

I(γ,δ ,β ) =


I11 I12 I13

I21 I22 I23

I31 I32 I33



where

I11 =− δ 2l
δγ2 =

n
γ2 ; I12 = I21 =− δ 2l

δγδδ
= 0; I22 =− δ 2l

δδ 2 =
m
δ 2

I13 = I31 =− δ 2l
δγδβ

=−er−β
n r−β

n logrn; I23 = I32 =− δ 2l
δδδβ

=−es−β
m s−β

m logrm

I33 = − δ 2l
δβ 2 =

m+n
β 2 − γ(logrn)

2r−β
n er−β

n
(

1+ r−β
n

)
+

n

∑
i=1

r−β

i (logri)
2

−δ (logsm)
2s−β

m es−β
m
(

1+ s−β
m

)
+

m

∑
i=1

s−β

i (logsi)
2

As n → ∞ and m → ∞, by the asymptotic properties of MLE, R̂ is asymptotically normal with mean R

and asymptotic variance

σ
2
R =

3

∑
i=1

3

∑
j=1

δR
δλi

δR
δλ j

I−1
i j
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where λ1 = γ, λ2 = δ , λ3 = β and I−1
i j is the (i,j)th element of the inverse of the I(γ,δ ,β ) (Rao[49]).

Since

δR
δγ

=
δ

(δ + γ)2 ,
δR
δδ

=
−γ

(δ + γ)2 ,
δR
δβ

= 0,

we have

σ
2
R =

1
(δ + γ)4

[
δ

2I−1
11 + γ

2I−1
22 −2γδ I−1

12

]
.

Now to compute the asymptotic confidence interval of R, the variance σ2
R is to be estimated. The

estimate of σ2
R say σ̂2

R can be obtained by replacing (γ,δ ,β ) involved in σ̂2
R by their corresponding

MLE’s. Therefore the asymptotic 100(1−α)% confidence interval of R is given by

(
R̂− z1− α

2
σ̂

2
R, R̂+ z1− α

2
σ̂

2
R

)
(3.17)

where zα is the α quantile of the standard normal distribution.

3.2.4 Bootstrap confidence intervals

In this subsection we consider some confidence intervals based on the parametric bootstrap methods.

We propose to use the following method to generate parametric bootstrap samples of R as suggested

by Effron and Tibshirani[50].
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Step 1: Compute γ̂, δ̂ ,and R̂ the MLE’s of γ,δ and R based on the original two samples of lower

records. r˜= (r1, . . . ,rn), s˜= (s1, . . . ,sm).

Step 2: Generate independent bootstrap lower record samples r˜∗ = (r∗1, . . . ,r
∗
n) and s˜∗ = (s∗1, . . . ,s

∗
m)

from inverse Chen distribution with the parameters γ̂, β̂ and δ̂ , β̂ respectively. By using these

data we compute the bootstrap estimates say γ̂∗, δ̂ ∗, β̂ ∗ and R̂∗.

Step 3: Repeat step2. B times to obtain a set of bootstrap samples of R say R̂∗
1, . . . , R̂

∗
B.

Using the above bootstrap samples of R, we obtain three different bootstrap confidence intervals of R

as follows:

1. Standard normal interval: The simplest 100(1−α)% bootstrap interval is the standard

normal interval (
R̂− z1− α

2
ŝeboot , R̂+ z1− α

2
ŝeboot

)
. (3.18)

where ŝeboot is the bootstrap estimate of the standard error based on R̂∗
1, . . . , R̂

∗
B.

2. Basic pivotal interval: The 100(1−α)% basic pivotal confidence interval is

(
2R̂− r̂∗(1− α

2 )B
, 2R̂− r̂∗( α

2 )B

)
(3.19)

where r̂∗
β

is the β quantile of R̂∗
1, . . . , R̂

∗
B.

3. Percentile interval: The 100(1−α)% bootstrap percentile interval is defined by

(
R̂( α

2 )B
, R̂(1− α

2 )B

)
(3.20)
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where the confidence limits are α

2 and 1− α

2 quantiles of the bootstrap sample R̂∗
1, . . . , R̂

∗
B.

3.3 Bayesian inference

In this section we deal with the Bayesian method for making inference based on lower record values.

We consider two cases, one with known shape parameter β and the other in which it is unknown.

3.3.1 Known shape parameter β

When β is known we assume two priors, namely conjugate prior and non-informative prior .

The likelihood function of γ and δ suggest that the conjugate family of prior distributions for γ and δ

to be gamma family of distributions.

π(γ) =
ba1

1
Γ(a1)

γ
a1−1e−b1γ , γ > 0, a1,b1 > 0

π(δ ) =
ba2

2
Γ(a2)

δ
a2−1e−b2δ , δ > 0, a2,b2 > 0 (3.21)

where a1,b1 and a2,b2 are the parameters of the prior distributions of γ and δ respectively. Using

these prior distributions and likelihood functions in (3.5), the posterior distributions of γ and δ are
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obtained respectively as

γ|r˜∼ Gamma(n+a1, er−β
n +b1 −1)

and δ |s˜∼ Gamma(m+a2, es−β
m +b2 −1).

(3.22)

Since the priors γ and δ are independent, then using standard transformation technique and after some

manipulations the posterior pdf of R will be

fR(r) =C
rn+a1−1(1− r)m+a2−1[

r
(

er−β
n +b1 −1

)
+(1− r)

(
es−β

m +b2 −1
)]n+m+a1+a2

where

C =
Γ(n+m+a1 +a2)

Γ(n+a1)Γ(m+a2)

(
er−β

n +b1 −1
)n+a1 (

es−β
m +b2 −1

)m+a2
.

Under squared error loss function, the Bayes estimate of R is the expected value of R. This expected

value contains an integral which is not obtainable in a closed form. Therefore we can use the

approximate method of Lindley [19], to find the approximate Bayes estimator R̄B relative to squared

error loss function. By the approximate method of Lindley the Bayes estimator for u(θ) for a prior

v(θ) is given by

∫
θ

u(θ)v(θ)expL(θ) dθ∫
θ

v(θ)expL(θ) dθ
= [u∗+

1
2
(u11σ11 +u22σ22)+ρ1u1σ11 +ρ2u2σ22

+
1
2
[σ11σ22(u1L12 +u2L21)+u1σ

2
11L30

+ u2σ
2
22L03]+O(

1
n2 )]atθ̂ (3.23)
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where

u(θ) =
γ

γ +δ
; v(θ) = π(γ)π(δ ); ρ = logv(θ) = logC+(a1−1) logγ −b1γ +(a2−1) logδ −b2δ .

u∗ is the MLE of u(θ) and L(θ) is the logarithm of likelihood function, C is independent of γ and δ .

Further

u1 =
δu
δγ

=
δ

(δ + γ)2 ; u2 =
δu
δδ

=
−γ

(δ + γ)2 ; u11 =
δ 2u
δγ2 =

−2δ

(δ + γ)3 ; u22 =
δ 2u
δδ 2 =

2γ

(δ + γ)3

ρ1 =
δρ

δγ
=

a1 −1
γ

−b1; ρ2 =
δρ

δδ
=

a2 −1
δ

−b2

σ = [−Li j]
−1 where Li j =

[
δ 2L

δθiδθ j

]

σ =

 γ2

n 0

0 δ 2

m

 ; L30 =
δ 3L
δγ3 = 2n

γ3 ; L03 =
δ 3L
δδ 3 =

2m
δ 3 .

Substituting in eqn (3.23) we get the Bayes estimator as

R̄B = R̂

[
1+
(
1− R̂

)(1− R̂
m

− R̂
n
+

(a1 −b1γ̂)

n
− (a2 −b2δ̂ )

m

)]
. (3.24)

Again, it follows from (3.22) that

2(er−β
n +b1 −1)(γ|r˜)∼ χ

2
2(n+a1)

and

2(es−β
m +b2 −1)(δ |s˜)∼ χ

2
2(m+a2)

.
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Hence π
(
R|r˜,s)̃, the posterior distribution of R, is equal to that of (1+AF)−1 where

F ∼ F2(m+a2),2(n+a1), A =
(m+a2)(er−β

n +b1 −1)

(n+a1)(es−β
m +b2 −1)

.

Therefore a Bayesian (1−α)% confidence interval for R is given by

(
(AF1− α

2 ,2(m+a2),2(n+a1)+1)−1, (AFα

2 ,2(m+a2),2(n+a1)+1)−1
)
. (3.25)

When we are ignorant about the parameter Jeffreys non informative prior is used. We assume

π(γ)∝
1
γ
, γ > 0.

π(δ )∝
1
δ
, δ > 0.

(3.26)

Using the priors and the likelihood function(3.5), the posterior distributions of β1 and β2 are obtained

as

γ|r˜∼ Gamma
(

n , er−β
n −1

)
.

δ |s˜∼ Gamma
(

m , es−β
m −1

)
.

(3.27)

Since γ and δ are independent, then using standard transformation techniques and after some manipu-

lations the posterior pdf of R is given by

fR(r) =C
(1− r)m−1rn−1[

r
(

er−β
n −1

)
+(1− r)

(
es−β

m −1
)]n+m , 0 < r < 1

where C = Γ(n+m)
Γ(n)Γ(m)

(
er−β

n −1
)n(

es−β
m −1

)m
.

Under squared error loss function, the Bayes estimator of R is the expected value of R. This expected
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value contains an integral which can’t be obtained in a simple closed form. Therefore, using the

approximate method of Lindley [19], we can find the approximate Bayes estimator R̄B relative to

squared error loss function. By the approximate method of Lindley the Bayes estimator for u(θ) for a

prior v(θ) is given by

∫
θ

u(θ)v(θ)expL(θ) dθ∫
θ

v(θ)expL(θ) dθ
= [u∗+

1
2
(u11σ11 +u22σ22)+ρ1u1σ11 +ρ2u2σ22

+
1
2
[σ11σ22(u1L12 +u2L21)+u1σ

2
11L30

+ u2σ
2
22L03]+O(

1
n2 )]atθ̂ (3.28)

where

u(θ) =
γ

δ + γ
; v(θ)∝

1
γδ

; ρ = logv(θ)∝ log
(

1
γδ

)
,

u∗ is the MLE of u(θ) and L(θ) is the logarithm of likelihood function.

Further

u1 =
δu
δγ

=
δ

(δ + γ)2 ; u2 =
δu
δδ

=
−γ

(δ + γ)2 ; u11 =
δ 2u
δγ2 =

−2δ

(δ + γ)3 ; u22 =
δ 2u
δδ 2 =

2γ

(δ + γ)3 ,

ρ1 =
δρ

δγ
=

−1
γ

; ρ2 =
δρ

δδ
=

−1
δ

,

σ = [−Li j]
−1 where Li j =

[
δ 2L

δθiδθ j

]
,

σ =

 γ2

n 0

0 δ 2

m

 ; L30 =
δ 3L
δγ3 = 2n

γ3 ; L03 =
δ 3L
δδ 3 =

2m
δ 3 .

Substituting in (3.28) we get the Bayes estimator as

R̄B = R̂+ R̂(1− R̂)

[(
1− R̂

)
m

− R̂
n

]
.
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Further more, it follows from (3.27) that

2(er−β
n −1)

(
γ|r
)̃
∼ χ

2
2n

and

2(es−β
m −1)

(
δ |s
)̃
∼ χ

2
2m.

It follows that π(R|r˜,s˜), the posterior distribution of R, is equal to that of (1+AW )−1 where

W ∼ F2m,2n, A =
m(er−β

n −1)

n(es−β
m −1)

.

Therefore a Bayesian (1−α)% credible interval for R is given by

((
AF1− α

2 ,2m,2n +1
)−1

,
(

AFα

2 ,2m,2n +1
)−1
)
. (3.29)

3.3.2 Unknown shape parameter β

We assume that all the parameters γ,δ and β are unknown and have independent gamma priors

(ai,bi), i = 1,2,3 respectively. That is

π(γ) =
ba1

1
Γ(a1)

γ
a1−1e−b1γ , γ > 0, a1,b1 > 0.

π(δ ) =
ba2

2
Γ(a2)

δ
a2−1e−b2δ , δ > 0, a2,b2 > 0.

π(β ) =
ba3

3
Γ(a3)

β
a3−1e−b3β , β > 0, a3,b3 > 0.
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The joint posterior distribution of (γ,δ ,β ) is given by

π(γ,δ ,β |r˜,s˜) =
L (⃗r, s⃗;γ,δ ,β )π(γ)π(δ )π(β )∫

L
(
r˜,s˜;γ,δ ,β

)
π(γ)π(δ )π(β )dγdδdβ

(3.30)

where the numerator is

ba1
1 γn+a1−1e−(er−β

n +b1−1)γ

Γ(a1)

ba2
2 δ m+a2−1e−(es−β

m +b2−1)δ

Γ(a2)


(

ba3
3 β m+n+a3−1e−b3β

Γ(a3)

)(
n

∏
i=1

r−(β+1)
i er−β

i

)(
m

∏
i=1

s−(β+1)
i es−β

i

)

Clearly it is not possible to obtain an explicit Bayes estimate of the model parameters. For this we

have to use a simulation technique to compute the Bayes estimate of R and the corresponding credible

interval. We use Gibbs sampling technique which uses the posterior distributions of each parameter

conditional on others ( Gelfand & Smith [51]). The conditional posterior distributions of γ,δ and β

can be obtained as follows.

(
γ|δ ,β ,r˜,s)̃ ∼ Gamma

(
n+a1, er−β

n +b1 −1
)

(
δ |γ,β ,r˜,s)̃ ∼ Gamma

(
m+a2, es−β

m +b2 −1
)

and

π(β |γ,δ ,r˜,s˜)∝ β
m+n+a3−1e−b3β−γer−β

n −δes−β
m

(
n

∏
i=1

r−(β+1)
i er−β

i

)(
m

∏
i=1

s−(β+1)
i es−β

i

)
(3.31)
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Though it is easy to generate samples of γ and δ from gamma distributions, it is not possible to

sample directly from the conditional posterior distribution for β . Hence we use MCMC technique.

To do this Metropolis-Hastings algorithm (Metropolis et al. [20] and Hastings [21]) with q(.) as a

proposal distribution is applied. Therefore the method of Gibbs sampling along with M-H algorithm

is described as follows.

Step1. Start with β (0) = β̂ as an initial guess and set t = 1.

Step2. Generate γ(t) from Gamma
(

n+a1,er−β
n +b1 −1

)
Step3. Generate δ (t) from Gamma

(
m+a2,es−β

m +b2 −1
)

Step4. Using Metropolis-Hastings method, generate β (t) from π(β |γ,δ ,⃗r, s⃗) with the proposal

distribution as q(β )∝ N
(
β (t−1),0.25

)
, (β > 0)

Step5. Compute R(t) = γ(t)

(δ (t)+γ(t))

Step6. set t=1

Step7. Repeat steps 2-6 N times.

Now the approximate posterior mean of R is given by

Ê(R|⃗r, s⃗) = 1
N −M

N

∑
t=M+1

R(t) (3.32)

where M is the burn-in period (that is the number of iterations before the stationary distribution is

achieved).

Based on N and R(t) values, using the method proposed by Chen and Shao [24], a 100(1−α)% HPD

credible interval can be constructed as

(
R[ α

2 N],R[(1− α

2 )N]

)
(3.33)
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where R[ α

2 N] and R[(1− α

2 )N] are the [α

2 N]th smallest integer and the [(1− α

2 )N] th smallest integer of

{R(t), t = M+1,M+2, . . . ,N}, respectively.

3.4 A Simulation study

In this section a Monte Carlo simulation study is conducted to investigate and compare the performance

of point estimators and confidence intervals presented in this chapter. The performance of MLE’s

Fig. 3.2 Curve of bias of R̂ against R

and Bayes estimators is compared in terms of their biases and mean squared errors (MSE’s). We also

compare different confidence intervals in terms of their coverage probability and expected length. We

consider two cases; when the parameter β known and β unknown separately. We use the parameter

values (γ,δ ) = (4,1),(2,2),(1,3),(1,9) and β = 2. Therefore Rexact = 0.2,0.5,0.75,0.9. To compute

the Bayes estimators and HPD credible intervals, we consider two priors as follows:

1. Conjugate Prior : a1 = a2 = a3 = b1 = b2 = b3 = 0.5
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Table 3.1 Average estimates (AVR), biases and MSE’s of the estimators of R.

(n,m) R MLE Bayes conjugate Bayes non-inform
AVR bias MSE AVR bias MSE AVR bias MSE

(3,3) 0.23 0.03 0.0216 0.3311 0.1311 0.0298 0.2529 0.0529 0.0216
(3,5) 0.2366 0.0366 0.0192 0.2808 0.0808 0.0159 0.2449 0.0449 0.0176
(3,7) 0.2389 0.0389 0.0181 0.2594 0.0594 0.0117 0.2406 0.0406 0.0158
(5,3) 0.2127 0.0127 0.0146 0.3298 0.1298 0.0284 0.2427 0.0427 0.0166
(5,5) 0.2 0.2175 0.0175 0.0121 0.2807 0.0807 0.0157 0.2331 0.0331 0.0125
(5,7) 0.2188 0.0188 0.0107 0.2597 0.0597 0.0114 0.228 0.028 0.0105
(7,3) 0.2064 0.0064 0.0126 0.3275 0.1275 0.0261 0.2395 0.0395 0.0149
(7,5) 0.2102 0.0102 0.0094 0.2787 0.0787 0.014 0.2286 0.0286 0.0094
(7,7) 0.2122 0.0122 0.0084 0.2582 0.0582 0.0104 0.2241 0.0241 0.0087

(3,3) 0.4981 -0.0019 0.0358 0.4982 -0.0018 0.0101 0.4983 -0.0016 0.0283
(3,5) 0.5144 0.0144 0.03 0.4658 -0.0342 0.012 0.4986 -0.0014 0.0246
(3,7) 0.5207 0.0207 0.0277 0.4539 -0.046 0.0126 0.4979 -0.0021 0.0229
(5,3) 0.4823 -0.0177 0.0305 0.5317 0.0317 0.0121 0.4982 -0.0018 0.0249
(5,5) 0.5 0.497 -0.0029 0.0234 0.4979 -0.002 0.0117 0.4972 -0.0027 0.0199
(5,7) 0.503 0.003 0.02 0.4855 -0.0144 0.0112 0.4962 -0.0037 0.0174
(7,3) 0.4774 -0.0226 0.0276 0.5448 0.0448 0.0125 0.5003 0.0003 0.0229
(7,5) 0.4911 -0.0088 0.02 0.5103 0.0103 0.011 0.4982 -0.0018 0.0173
(7,7) 0.4973 -0.0027 0.0172 0.4979 0.0021 0.0106 0.4974 -0.0026 0.0152

(3,3) 0.7191 -0.0308 0.0264 0.6401 -0.1098 0.0247 0.6986 -0.0514 0.0247
(3,5) 0.7376 -0.0124 0.0194 0.6391 -0.1108 0.0246 0.7026 -0.0424 0.0202
(3,7) 0.7447 -0.0053 0.0167 0.6407 -0.1093 0.0231 0.7111 -0.038 0.0182
(5,3) 0.7102 -0.0398 0.0247 0.6829 -0.0671 0.0156 0.7054 -0.0445 0.0214
(5,5) 0.75 0.7289 -0.021 0.0161 0.6791 -0.0709 0.0158 0.7146 -0.0354 0.0156
(5,7) 0.7367 -0.0133 0.0128 0.68 -0.0609 0.0144 0.7185 -0.0315 0.0131
(7,3) 0.7089 -0.041 0.0224 0.7016 -0.0484 0.0121 0.7111 -0.0389 0.0188
(7,5) 0.7269 -0.023 0.0141 0.6968 -0.0531 0.0123 0.7195 -0.0304 0.0133
(7,7) 0.7343 -0.0157 0.0114 0.6976 -0.0524 0.0114 0.7232 -0.0267 0.0112

(3,3) 0.8723 -0.0277 0.0103 0.7162 -0.1838 0.048 0.8507 -0.0493 0.0126
(3,5) 0.8852 -0.0148 0.0066 0.7281 -0.1719 0.0404 0.8614 -0.0386 0.0091
(3,7) 0.8902 -0.0098 0.0051 0.7347 -0.1652 0.0356 0.8657 -0.0342 0.0075
(5,3) 0.8686 -0.0314 0.0099 0.7864 -0.1136 0.0208 0.8576 -0.0423 0.0104
(5,5) 0.9 0.8826 -0.0174 0.0053 0.7914 -0.1085 0.0184 0.8688 -0.0311 0.0064
(5,7) 0.8881 -0.0119 0.0038 0.796 0.1039 0.016 0.8735 -0.0264 0.0048
(7,3) 0.8693 -0.0307 0.0088 0.8171 -0.0829 0.0124 0.8629 -0.0371 0.0087
(7,5) 0.8826 -0.0174 0.0046 0.8195 -0.0805 0.0115 0.8734 -0.0266 0.0051
(7,7) 0.8875 -0.0125 0.0034 0.8232 -0.0768 0.01 0.8775 -0.0225 0.004
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Table 3.2 Expected lengths(EL) and coverage probability (CP) of the confidence intervals
with (1−α) = 0.95.

(n,m) R MLE Bayes conjugate Bayes non-inform
EL CP EL CP EL CP

(3,3) 0.5218 0.953 0.3181 0.854 0.5218 0.953
(3,5) 0.4583 0.946 0.3062 0.876 0.4583 0.946
(3,7) 0.4292 0.951 0.2979 0.98 0.4292 0.951
(5,3) 0.4831 0.951 0.5252 0.961 0.4831 0.951
(5,5) 0.2 0.4064 0.952 0.4337 0.97 0.4064 0.952
(5,7) 0.371 0.948 0.3888 0.971 0.371 0.948
(7,3) 0.4659 0.949 0.5073 0.94 0.4659 0.949
(7,5) 0.3823 0.946 0.4107 0.959 0.3823 0.946
(7,7) 0.343 0.948 0.3626 0.961 0.343 0.948

(3,3) 0.6452 0.953 0.6352 0.995 0.6452 0.953
(3,5) 0.5981 0.946 0.5856 0.983 0.5981 0.946
(3,7) 0.5752 0.951 0.5602 0.979 0.5752 0.951
(5,3) 0.5974 0.951 0.5855 0.989 0.5974 0.951
(5,5) 0.5 0.5369 0.952 0.5273 0.985 0.5369 0.952
(5,7) 0.5067 0.948 0.4969 0.983 0.5067 0.948
(7,3) 0.5754 0.949 0.5605 0.983 0.5754 0.949
(7,5) 0.5069 0.946 0.4973 0.982 0.5069 0.946
(7,7) 0.4703 0.948 0.4624 0.977 0.4703 0.948

(3,3) 0.5669 0.953 0.5841 0.978 0.5669 0.953
(3,5) 0.5267 0.946 0.5456 0.964 0.5267 0.946
(3,7) 0.508 0.951 0.5263 0.959 0.508 0.951
(5,3) 0.5045 0.951 0.5105 0.981 0.5045 0.951
(5,5) 0.75 0.4535 0.952 0.4644 0.967 0.4535 0.952
(5,7) 0.4283 0.948 0.4402 0.962 0.4283 0.948
(7,3) 0.4758 0.949 0.4742 0.983 0.4758 0.949
(7,5) 0.4182 0.946 0.4237 0.97 0.4182 0.946
(7,7) 0.3879 0.948 0.3956 0.962 0.3879 0.948

(3,3) 0.3824 0.953 0.5063 0.903 0.3824 0.953
(3,5) 0.3451 0.946 0.4709 0.863 0.3451 0.946
(3,7) 0.3289 0.951 0.4535 0.818 0.3289 0.951
(5,3) 0.3191 0.951 0.3976 0.941 0.3191 0.951
(5,5) 0.9 0.2756 0.952 0.3579 0.907 0.2756 0.952
(5,7) 0.2553 0.948 0.337 0.874 0.2553 0.948
(7,3) 0.2908 0.949 0.3438 0.963 0.2908 0.949
(7,5) 0.2446 0.946 0.3029 0.928 0.2446 0.946
(7,7) 0.2226 0.948 0.2804 0.897 0.2226 0.948
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Table 3.3 Average estimates (AVR), biases and MSE’s of the estimators of R.

(n,m) R MLE Bayes
AVR bias MSE AVR bias MSE

(3,3) 0.1724 -0.0276 0.031 0.3337 0.1337 0.0482
(3,5) 0.2056 0.0056 0.032 0.3154 0.1154 0.0342
(3,7) 0.2286 0.0286 0.0327 0.3066 0.1066 0.0288
(5,3) 0.1628 -0.0374 0.0201 0.3713 0.1713 0.0753
(5,5) 0.2 0.1722 -0.0278 0.0169 0.1673 -0.0326 0.0331
(5,7) 0.1825 -0.0175 0.0156 0.1818 -0.0182 0.0358
(7,3) 0.1949 -0.0052 0.0211 0.2792 0.0792 0.0749
(7,5) 0.1762 -0.0238 0.0142 0.2195 0.0195 0.0431
(7,7) 0.1759 -0.0241 0.0119 0.1202 -0.0798 0.0381

(3,3) 0.4993 -0.0007 0.074 0.5031 0.0031 0.3222
(3,5) 0.5661 0.0661 0.0602 0.5182 0.0182 0.0355
(3,7) 0.5821 0.0821 0.0513 0.5899 0.0899 0.058
(5,3) 0.4334 -0.0666 0.06 0.4342 -0.0658 0.0378
(5,5) 0.5 0.496 -0.0039 0.0445 0.5951 0.0951 0.0321
(5,7) 0.5281 0.0281 0.0363 0.4862 -0.0138 0.0202
(7,3) 0.4136 -0.0864 0.0523 0.4142 -0.0858 0.0477
(7,5) 0.4659 -0.034 0.0365 0.4118 -0.0882 0.0299
(7,7) 0.4978 -0.0022 0.0296 0.6846 0.1846 0.0641

(3,3) 0.7738 0.0238 0.0428 0.8458 0.0958 0.0259
(3,5) 0.7869 0.0369 0.028 0.7569 0.0069 0.0519
(3,7) 0.7639 0.0139 0.0248 0.8309 0.0809 0.0774
(5,3) 0.7316 -0.0183 0.0443 0.723 -0.0269 0.0225
(5,5) 0.75 0.7752 0.0252 0.0236 0.8786 0.1286 0.0449
(5,7) 0.7719 0.0219 0.0179 0.8821 0.1321 0.0451
(7,3) 0.7072 -0.0428 0.0413 0.6373 -0.1127 0.0338
(7,5) 0.7575 0.0075 0.0215 0.8497 0.0997 0.038
(7,7) 0.7649 0.0149 0.0159 0.6568 -0.0932 0.0452

(3,3) 0.9105 0.0105 0.0118 0.9737 0.0737 0.0108
(3,5) 0.9107 0.0107 0.0107 0.9958 0.0958 0.0094
(3,7) 0.8867 -0.0133 0.016 0.929 0.029 0.0288
(5,3) 0.8972 -0.0028 0.0117 0.9306 0.0306 0.0119
(5,5) 0.9 0.9144 0.0144 0.0067 0.9586 0.0586 0.0085
(5,7) 0.9091 0.0091 0.0068 0.9994 0.0994 0.0099
(7,3) 0.8924 -0.0076 0.0113 0.9716 0.0716 0.0088
(7,5) 0.9123 0.0123 0.0056 0.9974 0.0974 0.0096
(7,7) 0.9121 0.0121 0.0049 0.9001 0.0001 0.0214
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Table 3.4 Expected lengths (EL) and coverage probability (CP) of the asymptotic confidence
interval with (1−α) = 0.95.

(n,m) R Asymptotic con_intl
EL CP

(3,3) 0.3596 0.572
(3,5) 0.3758 0.631
(3,7) 0.3908 0.691
(5,3) 0.3362 0.611
(5,5) 0.2 0.3133 0.649
(5,7) 0.3075 0.697
(7,3) 0.3674 0.683
(7,5) 0.3018 0.691
(7,7) 0.2798 0.688

(3,3) 0.5631 0.618
(3,5) 0.5434 0.662
(3,7) 0.5381 0.701
(5,3) 0.5438 0.664
(5,5) 0.5 0.509 0.709
(5,7) 0.4905 0.739
(7,3) 0.5349 0.678
(7,5) 0.4901 0.74
(7,7) 0.4618 0.774

(3,3) 0.4251 0.58
(3,5) 0.4036 0.641
(3,7) 0.4214 0.712
(5,3) 0.4362 0.657
(5,5) 0.75 0.375 0.674
(5,7) 0.3639 0.723
(7,3) 0.4534 0.712
(7,5) 0.3724 0.725
(7,7) 0.3438 0.747

(3,3) 0.2231 0.535
(3,5) 0.2024 0.545
(3,7) 0.2289 0.613
(5,3) 0.2304 0.637
(5,5) 0.9 0.1779 0.586
(5,7) 0.1741 0.603
(7,3) 0.2293 0.666
(7,5) 0.171 0.63
(7,7) 0.1579 0.635
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2. Non-informative Prior : Jeffreys prior

We report all the results based on 2000 replications.

Case I: In this case, we obtained the average estimates, biases and MSE’s of the MLE and the

approximate Bayes estimator of R based on the two priors. We also obtained the coverage probability

and expected length for the confidence intervals by using the maximum likelihood and Bayes methods.

The results are reported in Tables 3.1 and 3.2.

Fig. 3.3 Curve of MSE of R̂ against R

Case II: In this case, first we obtained the MLE of β and then computed the average estimates,

biases and MSE’s of the MLE and the approximate Bayes estimator of R based on conjugate prior.

We also computed the expected lengths of the asymptotic confidence interval.

The results are reported in Tables 3.3 and 3.4. Based on our simulation results, it is observed

that as the sample sizes (n,m) increase the MSE’s decrease. Thus the consistency property of all the

methods is satisfied. Increasing the sample size on either variable results in shorter intervals. It is

observed that the length of the interval is maximized when R = 0.5 and gets shorter and shorter as we
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move away to smaller and larger values of R. For the Bayes estimators based on conjugate prior, the

estimators and credible intervals are sensitive to the assumed values of hyper parameters.

From Table 3.2, it is also observed that the results of the both interval based on MLE and the

interval based on non-informative prior are the same. Further the confidence intervals based on ML

method have the coverage probability (CP) independent of the value of R. The CP for the confidence

interval based on conjugate prior increases as R increases from 0.2 to 0.5 and then decreases.

The results given in Table 3.3 showed a decrease of MSE as the sample size increases satisfying the

consistency property of the proposed estimators. From Table 3.4 it is observed that expected length of

the asymptotic confidence intervals is maximum when R = 0.5 and it decreases as we move away to

smaller or larger values.

3.5 Data analysis

In this section we analyze a real data to illustrate the use of our proposed estimation methods. The

data from Crowder [45] give the lifetimes of the steel specimens tested at two different stress levels.

DataSet 1: (38 stress level): 100,90,59,80,128,117,177,98,158,107,125,118

DataSet 2: (37 stress level): 141,143,98,122,110,132,194,155,104,83,125,165,146,100

We fit the inverse Chen distribution to the two data sets separately. The estimated parameters

(based on ml methods), Kolmogorov-Smirinov(K-S) distances between the fitted and the empirical

distribution functions and corresponding p-values are presented in Table 3.5. From the Table it is

Table 3.5 K-S distances and p-values

Data set Shape parameter1 Shape parameter2 K-S distance p-value
1 10697998 3.5936 0.1604 0.6253
2 32610674 3.5936 0.0721 0.9997
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clear that inverse Chen distribution with common second shape parameter fits quite well to both data.

For the above data we observe the lower record values as follows

r : 100,90,59; s : 141,98,83.

We consider the following two cases:

Case 1: Based on these record values and assuming β̂ = 3.5936 we obtain the MLE’s of γ and

δ from (3.10) as 6931942 and 23633076 respectively. Therefore the MLE of R becomes R̂ = 0.2268.

The corresponding 95% confidence interval based on (3.13) is (0.0479,0.6306). By assuming Jeffreys

prior the Bayes estimator is obtained as 0.2587 and the corresponding 95% confidence interval based

on (3.29) is equal to (0.0479,0.6306).

Case II: When β is unknown, we obtain the MLE’s of β ,γ and δ from (3.14) as 3.6453, 8558704

and 29698643 respectively. Thus the MLE of R is obtained as R̂ = 0.2237. The asymptotic 95%

confidence interval of R from (3.17) is obtained as (0, 0.5016). Based on 1000 bootstrap samples, the

95% bootstrap confidence intervals from (3.18) to (3.20) are obtained as (0, 0.5316), (0, 0.4327) and

(0.0146, 0.6618) respectively. We use the hyperparameters a1 = a2 = a3 = 0.5, b1 = b2 = b3 = 1. In

this case we obtain the approximate Bayes estimator of R, R̄B = 0.2506. Also the 95% HPD credible

interval from (3.33) is obtained as (0.0139,0.5720).

The simulated values of R and histogram of R generated by the algorithm of Gibbs sampling are

plotted in Fig.3.4.
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Fig. 3.4 Simulated values of R and Histogram of R

3.6 Exponentiated inverse Chen distribution

We can define an exponentiated family of distributions by adding a parameter as the exponent to the

cdf of the given distribution. Gupta et al. [52] introduced exponentiated exponential (EE) distribution

as a generalization of exponential distribution. Nadarajah [53] introduced exponentiated Gumbel

(GE) distribution. By adding a parameter to the c.d.f of inverse Chen distribution, we can define

exponentiated inverse Chen distribution. The cdf of inverse Chen distribution is given by

F(x) = eγ(1−ex−β
), x > 0,γ,β > 0 (3.34)

where γ and β are two shape parameters. The cdf of an exponentiated inverse-Chen distribution is

defined as

F(x) = [eγ(1−ex−β
)]α , x > 0,α,β ,γ > 0. (3.35)
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The corresponding pdf is given by

f (x) = αβγx−(β+1)ex−β

[eγ(1−ex−β
)]α . (3.36)

3.6.1 Likelihood inference

Let

X ∼ EICD(α1,β ,γ) and

Y ∼ EICD(α2,β ,γ) (3.37)

Then

R = P(X > Y )

=
∫

∞

0

∫ x

−∞

α1βγx−(β+1)[eγ(1−ex−β
)]α1α2βγy−(β+1)[eγ(1−ey−β

)]α2dxdy

=
α1

α1 +α2
(3.38)

We would like to estimate R = P(X > Y ) based on lower records. Let r˜= (r1,r2, ...,rn) be a set

of lower records from the distribution of X and let s˜= (s1,s2, ...,sn) be an independent set of lower

records from the distribution of Y . The likelihood function based on records is given by

L(α1,α2,β ,γ) = f (rn)
n−1

∏
i=1

f (ri)

1−F(ri)
f (si)

m−1

∏
i=1

f (si)

1−F(si)

= α
n
1 γ

n
β

n[eγ(1−er−β
n )]α1

n

∏
i=1

r−(β+1)
i er−β

i

×α
m
2 γ

m
β

m[eγ(1−es−β
m )]α2

m

∏
i=1

s−(β+1)
i es−β

i . (3.39)
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The loglikelihood is given by

l = n logα1 +n logγ +n logβ +α1γ(1− er−β
n )+

n

∑
i=1

[−(β +1) logri + r−β

i ]

+m logα2 +m logγ +m logβ +α2γ(1− es−β
m )+

m

∑
i=1

[−(β +1) logsi + s−β

i ]. (3.40)

When γ and β are known,

∂ l
∂α1

=
n

α1
+ γ(1− er−β

n ) = 0 ⇒ the MLE of α1, α̂1 =
−n

γ(1− er−β
n )

. (3.41)

Similarly, the MLE of α2

α̂2 =
−m

γ(1− es−β
m )

. (3.42)

Therefore the MLE of R is given by

R̂ =
α̂1

α̂1 + α̂2
. (3.43)

When β is unknown and γ is known

∂ l
∂β

=
m+n

β
− ner−β

n r−β
n logrn

1− er−β
n

−
n

∑
i=1

logri(1+ r−β

i )

− mes−β
m s−β

m logsm

1− es−β
m

−
m

∑
i=1

logsi(1+ s−β

i ). (3.44)

Hence β̂ , the MLE of β , can be obtained by solving the non-linear equation of the form

β = h(β ) (3.45)
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where

h(β ) = (m+n)[
ner−β

n r−β
n logrn

1− er−β
n

+
n

∑
i=1

logri(1+ r−β

i )

+
mes−β

m s−β
m logsm

1− es−β
m

+
m

∑
i=1

logsi(1+ s−β

i )]−1. (3.46)

3.6.2 Bayesian inference when β is known

α1 and α2 are assumed to have prior gamma distributions:

α1 ∼ G(a1,b1) ; α2 ∼ G(a2,b2) (3.47)

Using the likelihood and priors we get the joint posterior whose numerator is given by

γ
m+n

β
m+n

α
n+a1−1
1 α

m+a2−1
2 e−(b1−γ(1−er−β

n ))α1

× e−(b2−γ(1−es−β
m ))α2

n

∏
i=1

er−β

i

m

∏
i=1

es−β

i

(
n

∏
i=1

ri

m

∏
i=1

si

)−(β+1)

(3.48)

from which we get the posterior distribution of α1 and α2 as

(α1|r˜)∼ G(n+a1, b1 − γ(1− er−β
n ))

(α2|s˜)∼ G(m+a2, b2 − γ(1− es−β
m )) (3.49)

By transformation r = α1
α1+α2

; t = α1

f (r, t) = Π(α1/r˜)Π(α2/s˜)|J, | |J|= t
r2
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f (r, t) =
An+a1Bm+a2

Γ(n+a1)Γ(m+a2)
e−Attn+a1−1[t

(
1− r

r

)
]m+a2−1e−Bt( 1−r

r ) t
r2

=
An+a1Bm+a2

Γ(n+a1)Γ(m+a2)
e−(A+B( 1−r

r ))ttn+m+a1+a2−1 (1− r)m+a2−1

rm+a2−1 (3.50)

f (r) =
Γ(n+m+a1 +a2)

Γ(n+a1)Γ(m+a2)

An+a1Bm+a2rn+a1−1(1− r)m+a2−1

(Ar+B(1− r))n+m+a1+a2
, (3.51)

where

A = b1 − γ(1− er−β
n ); B = b2 − γ(1− es−β

m ).

To find the Bayes estimator, we use Lindley’s method which is obtained as

R̄B = R̂+ R̂(1− R̂)
[

1−R
m

− R
n
+

(a1 −b1α1)

n
− (a2 −b2α2)

m

]
(3.52)

From 3.49 we get

2(n+a1)Aα1 ∼ χ
2(2(n+a1))

2(m+a2)Bα2 ∼ χ
2(2(m+a2)). (3.53)

Hence

2(m+a2)Bα2/2(m+a2)

2(n+a1)Aα1/2(n+a1)
∼ F(2(m+a2),2(n+a1)). (3.54)

Therefore, a 100(1−α)% CI for R is given by

[(
1+

A
B

F1−α/2

)−1

,

(
1+

A
B

Fα/2

)−1
]
. (3.55)
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3.6.3 Bayesian inference when β is unknown

α1 & α2 are assumed to have gamma priors

α1 ∼ G(a1,b1); α2 ∼ G(a2,b2) (3.56)

β is assumed to have Jeffreys non-informative prior

π(β )∝ 1/β , β > 0. (3.57)

Then the joint posterior distribution whose numerator is given by

γ
m+n

β
m+n−1

α
n+a1−1
1 α

m+a2−1
2 e−(b1−γ(1−er−β

n ))α1

× e−(b2−γ(1−es−β
m ))α2

n

∏
i=1

er−β

i

m

∏
i=1

es−β

i

[
n

∏
i=1

ri

m

∏
i=1

si

]−(β+1)

. (3.58)

It is not possible to obtain explicit expressions for the posterior distributions. So, we apply Gibbs

sampling which uses the posterior distributions of each parameters conditional upon the others. The

conditional posterior distributions are

(α1|α2,β )∼ G(n+a1,A) (3.59)

(α2|α1,β )∼ G(m+a2,B) (3.60)

and π(β ) ∝ β
m+n−1e−γα1er−β

n e−γα2es−β
m

[
n

∏
i=1

rieri
m

∏
i=1

siesi

]−β

(3.61)
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We can easily generate sample of α1 & α2 from their posterior distributions. To generate samples

from the posterior distribution of β , we use MCMC method which uses Metropoles-Hasting algorithm

with q(.) as proposal density. The algorithm is given as follows

Step 1: Start with β (0)=β̂ as an initial guess and set t = 1.

Step 2: Generate α
(t)
1 from Gamma(n+a1, A)

Step 3: Generate α
(t)
2 from Gamma(m+a2, B)

Step 4: Using Metropoles-Hasting method, generate β (t) from π(β |α1,α2) with the proposal distribu-

tion as q(β ) ∝ N(β (t−1),0.25) (β > 0)

Step 5: Compute R(t) =
α
(t)
1

α
(t)
1 +α

(t)
2

Step 6: Set t = t +1

Step 7: Repeat steps 2-6, N times

Now the approximate posterior mean gives the Bayes estimator given by

Ê(R|r˜,s˜) = 1
N −M

N

∑
t=M+1

R(t), (3.62)

where M is the burn in period.

3.6.4 Numerical example

In this section we present the analysis of a data generated from exponentiated inverse Chen distribution

to illustrate the proposed methods. First we generate 20 observations from EICD(γ = 4,α = 1,β = 2)

and 20 observations from EICD(γ = 4,α = 3,β = 2) reported in Table 3.6.
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Table 3.6 Exponentiated inverse Chen data

x y x y x y x y
1.6 1.24 3.61 1.42 1.81 1.33 1.54 2.51

1.94 2.69 1.41 1.51 2.56 1.21 5.11 1.23
1.84 1.22 23.46 3.61 5.43 2.53 3.77 1.81
1.37 1.46 4.55 1.57 1.13 8.54 3.22 0.86
1.22 1.08 21.76 1.2 3.41 1.09 1.91 1.22

The lower records from these two sets of data are

r : 1.60,1.37,1.22,1.13.

s : 1.24,1.22,1.08,0.86.

It is assumed that γ and β are known and are equal to 4 & 2 respectively. Then the MLE of α1

and α2 are 1.1883 and 2.8656 respectively. Hence the MLE of R is 0.2931 . The Bayes estimator of R

using the conjugate prior is computed as 0.3154.

When β is assumed to be unknown the MLE of β is computed to be 3.3034. The MLE’s of α1

and α2 are obtained as 0.9499 and 4.1852 respectively. Hence the MLE of R is 0.1849.

3.7 Conclusion

This chapter deals with the estimation of the stress-strength reliability R = P(X > Y ) based on lower

record values where X and Y are independent random variables from an inverse Chen distribution

with the same second shape parameter but different first shape parameters. The maximum likelihood

and Bayesian methods is used for estimation of R when the shape parameter is known and unknown

separately. To investigate different proposed methods, a Monte Carlo simulation study is conducted.

A real data analysis is also done. All computations are done in R software. From the simulation



84 Estimation of stress-strength reliability for inverse Chen distribution based on lower record values

results, it is observed that the MSE’s of the estimators for all the methods decrease as the sample size

increase. Thus the consistency property of the estimators is found to be satisfied. It is also observed

that the interval based on MLE is maximized when R = 0.5 and it becomes shorter and shorter as we

move away to smaller and larger values. Increasing the sample size on either variable also results in

shorter interval. We also observe that the Bayesian credible interval performs well when the true value

of R is close to both 0 and 1. Further the inference of R for exponentiated inverse Chen distribution is

discussed. A numerical example is also presented to illustrate the proposed methods.



Chapter 4

Estimation of stress-strength reliability

for inverse Weibull distribution based on

lower records

4.1 Introduction

The convenient structure of the distribution function has made the Weibull distribution to be used very

effectively in studying various life-time data. We note that the hazard function of Weibull distribution

is decreasing or increasing depending on the shape parameter. But this distribution cannot be used

when the data has a non-monotone hazard function and the inverse Weibull may be an appropriate

model (Kundu et al. [54]).
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If T has a Weibull distribution with a pdf,

f (t) =
α

θ
tα−1e

−tα
θ , t > 0.

where α > 0 is the shape parameter and θ > 0 is the scale parameter, then the random variable X = 1
T

has an inverse Weibull distribution with pdf

f (x) =
α

θ
x−α−1e

−x−α

θ , x > 0,α > 0,θ > 0.

The cdf is given by

F(x) = e
−x−α

θ , x > 0,α > 0,θ > 0. (4.1)

Moreover the inverse Weibull distribution plays some important role in other areas such as describing
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Fig. 4.1 pdf of inverse Weibull distribution

the degradation phenomena of components, describing the context of a load-strength relationship for
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a component and providing a good fit to survival data (Kundu et al.[54]). It is a lifetime distribution

which can be used in the reliability engineering. This distribution has the ability to model failure

rates which is common in reliability and biological studies (Kundu and Howalder [55]). Estimation of

stress-strength reliability for inverse-Weibull distribution under progressive Type II censoring scheme

was considered by Abhimanyu et al. [56]. Inference on stress-strength model for this distribution

was done by Li and Hao [57] using random samples. Here we propose to study the inference of

stress-strength model using lower record values from inverse Weibull distribution.

Let X1,X2, . . . ,Xn be a random sample from the distribution of X ∼ IW (α,θ1) and Y1,Y2, . . . ,Yn

be an independent random sample from the distribution of Y ∼ IW (α,θ2). Then,

R = P(X < Y ) =
∫

∞

0
FX(z|θ) fY (z|θ)dz =

θ1

θ1 +θ2
.

4.2 Likelihood inference

Let r˜= (r1,r2, . . . ,rn) be a set of lower records from X ∼ IW (α,θ1) and s˜= (s1,s2, . . . ,sn) be an

independent set of lower records from Y ∼ IW (α,θ2). The joint likelihood function and log joint

likelihood function based on r˜ and s˜ are given respectively by

L(α,θ1,θ2,r˜,s˜) =
αn

θ n
1

e−
r−α
n
θ1

n

∏
i=1

r−α−1
i

αn

θ n
2

e−
s−α
m
θ2

m

∏
i=1

s−α−1
i . (4.2)

l(α,θ1,θ2,r˜,s˜) = n logα −n logθ1 −
r−α

n

θ1
+

n

∑
i=1

−(α +1) logri +m logα −m logθ2 −
s−α

m

θ2

+
m

∑
i=1

−(α +1) logsi. (4.3)
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δ l
δθ1

= 0 ⇒ −n
θ1

+
r−α

n

θ 2
1

= 0. (4.4)

δ l
δθ2

= 0 ⇒ −m
θ2

+
s−α

m

θ 2
2

= 0. (4.5)

δ l
δα

=
(m+n)

α
+n logrn +m logsm −

(
n

∑
i=1

logri +
m

∑
i=1

logsi

)
= 0 (4.6)

4.2.1 When shape parameter α is known

Under the assumption that the shape parameter α is known, the MLE’s of θ1 and θ2 respectively can

be obtained from (4.4) and (4.5) as

θ̂1 =
r−α

n

n
; θ̂2 =

s−α
m

m
(4.7)

Then the MLE of R is given by

R̂ =
θ̂1

θ̂1 + θ̂2
.

In order to study the distribution of R̂ one should first obtained the distribution of

θ̂1 =
r−α

n

n
.

The pdf of Rn is given by

fRn(rn) =
1

(n−1)!
f (rn) [− logF(rn)]

n−1

=
1

(n−1)!

(
r−α

n

θ1

)n−1
α

θ1
r−(α+1)

n e
−r−α

n
θ1 , rn > 0. (4.8)
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Therefore the pdf of Z1 = θ̂1 is given by

fZ1(z1) =
1

(n−1)!

(
n
θ1

)n

zn−1
1 e

−nz1
θ1 , z1 > 0. (4.9)

This is identified as the gamma distribution. ie

Z1 ∼ G
(

n,
n
θ1

)
.

Similarly, for Z2 = θ̂2, we can obtain

Z2 ∼ G
(

m,
m
θ2

)
.

Therefore we can find the pdf of

R̂ =
θ̂1

θ̂1 + θ̂2
=

Z1

Z1 +Z2
=

1
1+ Z2

Z1

.

We have

nz1

θ1
∼ G(n,1);

mz2

θ2
∼ G(m,1).

Hence

2nz1

θ1
∼ χ

2
2n;

2mz2

θ2
∼ χ

2
2m.
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Clearly by the independence of two χ2 random variables, we have

2nz1/2nθ1

2mz2/2mθ2
=

θ2z1

θ1z2
=

1−R
R

∼ F(2n,2m).

This fact leads us to the construction of the following 100(1− γ)% confidence interval for R as

follows. (1+
θ̂2F1− γ

2 ,2n,2m

θ̂1

)−1

,

(
1+

θ̂2Fγ

2 ,2n,2m

θ̂1

)−1
 . (4.10)

4.2.2 When shape parameter α is unknown

In this subsection we discuss likelihood inference of R when all of the parameters θ1,θ2 and α are

unknown. In this case by using (4.4) and (4.5) we obtain

θ̂1 =
r−α̂

n

n
; θ̂2 =

s−α̂
m

m
(4.11)

where α̂ is the MLE of the parameter α which is obtained by solving the following equation.

(m+n)
α

+n logrn +m logsm −

(
n

∑
i=1

logri +
m

∑
i=1

logsi

)
= 0. (4.12)

Therefore α̂ can be obtained as a solution of the equation

α̂ = (m+n)

[
n

∑
i=1

logri +
m

∑
i=1

logsi −n logrn −m logsm

]−1

. (4.13)
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Once we obtain α̂, θ̂1 and θ̂2 can be deduced from (4.11) and therefore the MLE of R is computed to

be

R̂ =
θ̂1

θ̂1 + θ̂2
.

4.3 Bayesian inference

In this section we deal with the Bayesian method for making inference of R based on lower record

values. We consider two cases (i) The shape parameter α is known and (ii) α is unknown.

4.3.1 Known shape parameter α

When α is known we assume two priors; namely conjugate prior and non-informative prior.

Conjugate prior: We assume conjugate prior of inverse gamma distribution to each of the parameters.

θ1 ∼ InvG(a1, b1), a1 > 0,b1 > 0.

θ2 ∼ InvG(a2, b2), a2 > 0,b2 > 0.

Using these priors and the likelihood function (4.2), we get the joint posterior density

Π(θ1,θ2|r˜,s˜) = L(r˜,s˜;θ1,θ2)π(θ1)π(θ2)∫
L(r˜,s˜;θ1,θ2)π(θ1)π(θ2)dθ1dθ2

,

where the numerator is given by

ba1
1 e

−(r−α
n +b1)

θ1

Γ(a1)θ
n+a1+1
1

ba2
2 e

−(s−α
m +b2)

θ2

Γ(a2)θ
m+a2+1
2

α
n+m

(
n

∏
i=1

ri

m

∏
i=1

si

)−(α+1)

.
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The posterior distribution of θ1 and θ2 are obtained to be

θ1|r˜∼ InvG(n+a1, r−α
n +b1)

θ2|s˜∼ InvG(m+a2, s−α
m +b2).

(4.14)

Since the priors θ1 and θ2 are independent, then using standard transformation technique and after

some manipulations the posterior pdf of R will be

fR(r) =C
rm+a2−1(1− r)n+a1−1

[(1− r)(r−α
n +b1)+ r(s−α

m +b2)]n+m+a1+a2

where

C =
Γ(n+m+a1 +a2)

Γ(n+a1)Γ(m+a2)

(
r−α

n +b1
)n+a1

(
s−α

m +b2
)m+a2 .

Under squared error loss function, the Bayes estimate of R is the expected value of R and this can be

derived as

R̂B =
∫ 1

0
r fR(r)dr =

m+a2

n+m+a1 +a2

(
s−α

m +b2

r−α
n +b1

)m+a2

× F2.1

(
n+m+a1 +a2,m+a2 +1,n+m+a1 +a2,1−

s−α
m +b2

r−α
n +b1

)
. (4.15)

By the properties of the inverted gamma distribution and its relation with gamma distribution, we

have from (4.14)

(r−α
n +b1)

θ1
∼ Gamma(n+a1, 1)

(s−α
m +b2)

θ2
∼ Gamma(m+a2, 1).
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Thus

2(r−α
n +b1)

θ1
∼ χ

2 (2(n+a1))

2(s−α
m +b2)

θ2
∼ χ

2 (2(m+a2)) ,

from which we get an F variable,

F =
2(r−α

n +b1)/2(n+a1)θ1

2(s−α
m +b2)/2(m+a2)θ2

∼ F (2(n+a1), 2(m+a2)) .

The distribution of R is equal to the distribution of 1
1+AF where

F ∼ F (2(n+a1),2(m+a2)) .

Hence a 100(1− γ)% credible interval for R is

(
(1+AF1− γ

2
)−1, (1+AFγ

2
)−1)

)
(4.16)

where A = s−α
m +b2

r−α
n +b1

.

Non-informative prior

We use Jeffreys non informative prior.

π(θ1)∝
1
θ1

, θ1 > 0;
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π(θ2)∝
1
θ2

, θ2 > 0.

Then the posterior distributions of θ1 and θ2 are obtained as

θ1|r˜∼ invG
(
n , r−α

n
)

θ2|s˜∼ invG
(
m , s−α

m
)
.

(4.17)

Using transformation the posterior pdf of R is obtained as

fR(r) =C
(1− r)n−1rm−1

[rs−α
m +(1− r)r−α

n ]n+m , 0 < r < 1

where C = Γ(n+m)
Γ(n)Γ(m)

(
s−α

m
r−α

n

)m
.

Then the Bayes estimator R̄B relative to squared error loss function is given by the expected

value of fR(r).

R̄B =
∫ 1

0
r fR(r)dr =

m
n+m

(
s−α

m

r−α
n

)m

× F2.1

(
n+m, m+1, n+m+1, 1− s−α

m

r−α
n

)
. (4.18)

By the properties of inverse gamma and its relation with gamma distribution from (4.17) we have

r−α
n

θ1
∼ Gamma(n, 1)

s−α
m

θ2
∼ Gamma(m, 1).

Thus

2r−α
n

θ1
∼ χ

2 (2n)
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2s−α
m

θ2
∼ χ

2 (2m) ,

from which we get an F variable,

F =
2r−α

n /2nθ1

2s−α
m /2mθ2

∼ F (2n,2m)) .

The distribution of R is equal to the distribution of 1
1+AF where

F ∼ F (2n,2m) .

Hence a Bayesian 100(1− γ)% credible interval for R is given by

((
1+AF1− γ

2 ,2n,2m

)−1
,
(

1+AFγ

2 ,2n,2m

)−1
)

(4.19)

where A = ns−α
m

mr−α
n
.

4.3.2 Unknown shape parameter α

We assume conjugate priors of inverse gamma distribution for θ1 and θ2. α is assumed to follow

gamma distribution. That is

θ1 ∼ InvG(a1,b1)

θ2 ∼ InvG(a2,b2)

α ∼ G(a3,b3)
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Using these priors and the likelihood function, we get the joint posterior distribution

Π
(
θ1,θ2,α;r˜,s)̃= L

(
θ1,θ2,α;r˜,s)̃π(θ1)π(θ2)π(α)∫

L
(
θ1,θ2,α;r˜,s)̃π(θ1)π(θ2)π(α)dθ1dθ2dα

where the numerator is

ba1
1

Γa1

e−(r−α
n +b1)/θ1

θ
n+a1+1
1

ba2
2

Γa2

e−(s−α
m +b2)/θ2

θ
m+a2+1
2

ba3
3

Γa3
α

n+m+a3−1e−(b3+∑
n
i=1 logri+∑

m
i=1 logsi)α

(
n

∏
i=1

ri

m

∏
i=1

si

)−1

.

To compute the Bayes estimate of R, we use Gibbs sampling method which uses the posterior

distribution of each parameter conditional on others( Gelfand et al. [51]). The conditional posterior

distributions of θ1,θ2 and α can be obtained as follows.

(θ1|θ2,α,r˜,s˜) ∼ InvG
(
n+a1, r−α

n +b1
)

(4.20)

(θ2|θ1,α,r˜,s˜) ∼ InvG
(
m+a2, s−α

m +b2
)

(4.21)

Π(α|θ1,θ2,r˜,s˜) ∝ e−(r−α
n +b1)/θ1e−(s−α

m +b2)/θ2α
n+m+a3−1e−(b3+∑

n
i=1 logri+∑

m
i=1 logsi)α . (4.22)

Though it is easy to generate samples of θ1 and θ2 from gamma distributions, it is not possible to

sample directly from the conditional posterior distribution of α . So we use MCMC technique in

which Metropolis Hastings algorithm with q(.) as a proposal distribution is applied (Metropolis et al.

[20] and Hastings [21]).

Now the approximate posterior mean of R is given by

Ê(R|r˜,s˜) = 1
N −M

N

∑
t=M+1

R(t) (4.23)
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where R(t) is the value of R for the ith iteration, N is the number of iterations and M is the burn-in

period (that is the number of iterations before the stationary distribution is achieved).

Based on N and R(t) values, using the method proposed by Chen and Shao [24], a 100(1− γ)% HPD

credible interval can be constructed as

(
R[ γ

2 N],R[(1− γ

2 )N]

)
(4.24)

where R[ γ

2 N] and R[(1− γ

2 )N] are the [ γ

2 N]th smallest integer and the [(1− γ

2)N] th smallest integer of

{R(t), t = M+1,M+2, . . . ,N}, respectively.

4.4 Numerical example

In this section we present the analysis of a data generated from inverse Weibull distribution to illustrate

the proposed methods. First we generated 20 observations from invWeibul(θ = 1,α = 2) and 20

observations from invWeibul(θ = 2,α = 2) and is reported in Table 4.1.

The lower records from these two sets of data are

r : 1.0760,0.7941,0.6939

s : 1.5888,0.4499,0.4246.

It is assumed that α is known and is equal to 2. Then the MLE of R is 0.3545 and the corresponding

confidence interval is (0.086250, 0.761735). The Bayes estimator of R using the conjugate prior

is computed as 0.37414 and the corresponding confidence interval is (0.086255, 0.761733). For
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Table 4.1 Inverse Weibull data

x y x y x y x y
1.076 0.8353 1.1207 0.6607 1.692 1.4757 0.6939 0.5143

0.7941 0.5369 5.8659 1.9002 1.7987 1.4649 1.3549 0.7207
3.0363 1.0283 3.4299 0.7631 1.2163 0.8523 3.937 0.6536
1.0379 0.6617 3.1152 1.3921 1.1658 0.5734 2.2469 0.6148
2.4776 0.5411 1.1378 1.1653 1.3286 1.6536 6.8603 0.895

non-informative prior the Bayes estimator is 0.37413 and the corresponding confidence interval is

(0.08625, 0.761735).

When α is assumed to be unknown the mle is computed to be 0.1636 and the Bayes estimator is

obtained as 0.2604. The HPD interval is computed as (0.0045, 0.6298).

4.5 Conclusion

This chapter deals with the estimation of the stress-strength reliability R = P(X < Y ) based on lower

record values where X and Y are independent random variables from inverse Weibull distribution with

the same shape parameter but different scale parameters. The maximum likelihood estimator, Bayes

estimator and the corresponding confidence intervals of R are obtained when the shape parameter is

known. When the shape parameter is unknown maximum likelihood estimator, Bayes estimator using

MCMC method and the HPD interval are found. A numerical example is done using R software to

illustrate the proposed methods presented in this chapter.



Chapter 5

Summary and final conclusions

This thesis deals with estimation of stress strength reliability for some distributions based on records.

In reliability engineering, if the stress experienced by a system is greater than the strength of the

system, the system fails. Then the probability of not failing is called stress-strength reliability. This

probability can be expressed by P(X<Y) or P(X>Y) according to the representation of X and Y. This

probability has applications in industry, medical science, life testing etc. In life testing when X and

Y represent the life lengths of two devices, P(X < Y ) gives the probability that the device with life

length X fails before the other. In medical science if X and Y represents the remission times of two

treatments P(X < Y ) represents the probability that one is better than other. Moreover it can be used

as a general measure of difference between two populations under various conditions and situations.

Estimation of stress-strength reliability has been considered for many common distributions like

exponential, Weibull, Chen, Rayleigh etc. based on random samples as well as record values. Here we

present the estimation procedures for stress-strength reliability for some distributions namely Pareto
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Type I, Type II and Type IV, inverse Chen, exponentiated inverse Chen and inverse Weibull based on

record values.

In real life we observe lower records as well as upper records. For example in the case of

temperature and rainfall we note down lower and upper records where as in sports for events like

long jump, high jump and shot put upper records are reported; but for race items lower records are

reported.

Upper records were used for estimation of stress-strength parameter in Chen distribution by

Tarvirdizade and Ahmadpour [42] and for Burr Type XII distribution by Nadar et al. [43] and in

the present work for Pareto distribution while inference on stress strength reliability in Burr Type

X [58], inverse Chen, and inverse Weibull in the present work were considered using lower records.

Analytical tractability is essentially the basis of choosing upper or lower records for estimation in

different distributions. We can select appropriate distributions according as the data is lower records

or upper records. The work done is presented as follows.

Chapter 1 is an introductory chapter with a brief description of the stress-strength reliability,

some distributional results of record values, and the theory of methods used for estimation of R, the

stress-strength parameter followed by a review of the literature.

Chapter 2 describes the estimation of R = P(X > Y ) based on upper record values when X and

Y are independent Pareto Type I random variables with same scale parameter and different shape

parameters. In manufacturing industry when we have to compare between the life lengths of two

products with same guarantee period it can be well described by Pareto Type I distribution where the

guarantee period is represented by the scale parameter. Maximum likelihood and Bayesian methods

are used for the estimation of R when the scale parameter is known. The corresponding confidence

intervals are also found. From the simulation study we observe that the point estimators are consistent.
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The interval estimators perform well in terms of expected length. A real data analysis is done to

illustrate the methods proposed. Further we have presented the likelihood inference of R based on

upper records from Pareto Type II and Type IV distributions. Numerical examples are presented to

illustrate the methods. A proposed future work is the estimation of R in the case of exponentiated

Pareto Type I distribution based on records.

Chapter 3 deals with the estimation of R = P(X > Y ) when X and Y are from inverse Chen

distribution with different first shape parameters and same second shape parameter based on lower

record values. The MLE, Bayes estimator and the corresponding confidence intervals of R are derived

when the second shape parameter β is known. When β is unknown MLE, asymptotic confidence

interval, Bayes estimator using MCMC method, HPD interval and bootstrap intervals are obtained.

The results of the simulation study give good performance for the estimators. A real data analysis

is presented for illustrative purpose. As an extension to inverse Chen distribution the exponentiated

inverse Chen distribution is introduced. Likelihood inference and Bayesian inference of R = P(X >Y )

is considered when the second shape parameter beta is known as well as unknown. The work can be

extended to the estimation of this parameter based on lower records when X and Y are from inverse

Chen distribution with same first shape parameters and different second shape parameters.

Chapter 4 considers inverse Weibull distribution with same shape parameter and different scale

parameters for estimation of R = P(X < Y ) based on lower record values. When the shape parameter

is known MLE, Bayes estimator and the corresponding confidence intervals are derived. For unknown

shape parameter MLE, Bayes estimator using MCMC method and HPD interval are obtained. To

illustrate the methods proposed a numerical example is presented. This study can be extended to

the estimation of R for inverse Weibull distribution with same scale parameter and different shape

parameters.
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All the models considered in this thesis have explicit form for distribution function. This was

used to express the likelihood function directly. However there are a number of important probability

models in which we have only explicit density functions. In these cases likelihood functions will

consist of product of integrals. Obtaining MLE’s in these situations will be far more challenging. One

may use E M algorithm to find MLE. Bootstrap procedure may be used for doing further statistical

inference. The same is true for mixture models.
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Appendix A

R Codes for Pareto distribution

A.1 R Code of simulation for estimation of R for Pareto

distribution

asim<-2000

beta1hat<-rep(NA,asim)

beta2hat<-rep(NA,asim)

rhat<-rep(NA,asim)

nrec<-rep(NA,asim)

mrec<-rep(NA,asim)

rbays0<-rep(NA,asim)

rbays1<-rep(NA,asim)

ll<-rep(NA,asim)
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ul<-rep(NA,asim)

ln<-rep(NA,asim)

ll0<-rep(NA,asim)

ul0<-rep(NA,asim)

ln0<-rep(NA,asim)

A0<-rep(NA,asim)

llb0<-rep(NA,asim)

ulb0<-rep(NA,asim)

lnb0<-rep(NA,asim)

llb1<-rep(NA,asim)

ulb1<-rep(NA,asim)

lnb1<-rep(NA,asim)

for(j in 1:asim){

set.seed(j)

n=10

alpha=1

beta1=1

x=rep(0,n)

u=runif(1)

x[1]=alpha/(u^(1/beta1))

for(i in 2:n){

u=runif(1)

x[i]=x[i-1]/(u^(1/beta1))
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}

m=10

alpha=1

beta2=9

y=rep(0,m)

u=runif(1)

y[1]=alpha/(u^(1/beta2))

for(i in 2:m){

u=runif(1)

y[i]=y[i-1]/(u^(1/beta2))

}

nrec[j]<-x[n]

mrec[j]<-y[m]

beta1hat[j]<-n/(log(nrec[j]/alpha))

beta2hat[j]<-m/(log(mrec[j]/alpha))

rhat[j]<-beta2hat[j]/(beta1hat[j]+beta2hat[j])

gamma10<-0.5

theta10<-0.5

gamma20<-0.5

theta20<-0.5

rbays0[j]<-rhat[j]+rhat[j]*(1-rhat[j])*(((1-rhat[j])/n)-(rhat[j]/m))

rbays1[j]<-rhat[j]+rhat[j]*(1-rhat[j])*(((1-rhat[j]-

gamma10+(beta1hat[j]*theta10))/n)+((gamma20-rhat[j]-
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(beta2hat[j]*theta20))/m))

f1<-qf(0.025,2*m,2*n)

ll[j]<-(1+(beta1hat[j]/(beta2hat[j]*f1)))^-1

f2<-qf(0.975,2*m,2*n)

ul[j]<-(1+(beta1hat[j]/(beta2hat[j]*f2)))^-1

ln[j]<-ul[j]-ll[j]

f10<-qf(0.05,2*m,2*n)

ll0[j]<-(1+(beta1hat[j]/(beta2hat[j]*f10)))^-1

f20<-qf(0.95,2*m,2*n)

ul0[j]<-(1+(beta1hat[j]/(beta2hat[j]*f20)))^-1

ln0[j]<-ul0[j]-ll0[j]

A0[j]<-((n+gamma10)*(theta20+log(mrec[j]/alpha)))/((m+gamma20)*

(theta10+log(nrec[j]/alpha)))

f1b0<-qf(0.975,2*(n+gamma10),2*(m+gamma20))

f2b0<-qf(0.025,2*(n+gamma10),2*(m+gamma20))

llb0[j]<-(1+A0[j]*f1b0)^-1

ulb0[j]<-(1+A0[j]*f2b0)^-1

lnb0[j]<-ulb0[j]-llb0[j]

f1b1<-qf(0.95,2*(n+gamma10),2*(m+gamma20))

f2b1<-qf(0.05,2*(n+gamma10),2*(m+gamma20))

llb1[j]<-(1+A0[j]*f1b1)^-1

ulb1[j]<-(1+A0[j]*f2b1)^-1

lnb1[j]<-ulb1[j]-llb1[j]



A.1 R Code of simulation for estimation of R for Pareto distribution 111

}

avrg<-mean(rhat)

rexact<-beta2/(beta1+beta2)

bias<-avrg-rexact

mser<-mean((rhat-rexact)^2)

avrg

bias

mser

avrgb0<-mean(rbays0)

biasb0<-avrgb0-rexact

mseb0<-mean((rbays0-rexact)^2)

avrgb0

biasb0

mseb0

avrgb1<-mean(rbays1)

biasb1<-avrgb1-rexact

mseb1<-mean((rbays1-rexact)^2)

avrgb1

biasb1

mseb1

Eln<-mean(ln)

Eln

y0<-ifelse(ll<rexact&rexact<ul,1,0)
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p0<-length(subset(y0,y0==1))

p0

cp0<-p0/asim

cp0

Eln1<-mean(ln0)

Eln1

y1<-ifelse(ll0<rexact&rexact<ul0,1,0)

p1<-length(subset(y1,y1==1))

p1

cp1<-p1/asim

cp1

Elnb0<-mean(lnb0)

Elnb0

yb0<-ifelse(llb0<rexact&rexact<ulb0,1,0)

pb1<-length(subset(yb0,yb0==1))

pb1

cpb1<-pb1/asim

cpb1

Elnb1<-mean(lnb1)

Elnb1

yb1<-ifelse(llb1<rexact&rexact<ulb1,1,0)

pb2<-length(subset(yb1,yb1==1))

pb2
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cpb2<-pb2/asim

cpb2

A.2 R code of data analysis for Pareto distribution

x<-c(60,51,83,140,109,106,119,76,68,67)

y<-c(100,90,59,80,128,117,177,98,158,107)

r<-c(60,83,140)

s<-c(100,128,177)

n=3

m=3

alpha=60

nrec<-140

mrec<-177

beta1hat<-n/log(nrec/alpha)

beta2hat<-m/log(mrec/alpha)

rhat<-beta2hat/(beta1hat+beta2hat)

rhat

f1<-qf(0.025,6,6)

f2<-qf(0.975,6,6)

ll=(1+(beta1hat/(beta2hat*f1)))^-1

ul=(1+(beta1hat/(beta2hat*f2)))^-1

ll

ul
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gamma10<-0.5

theta10<-0.5

gamma20<-0.5

theta20<-0.5

rbays0<-rhat+rhat*(1-rhat)*(((1-rhat-gamma10+ <-

(beta1hat*theta10))/n)+((gamma20-rhat-(beta2hat*theta20))/m))

rbays1<-rhat+rhat*(1-rhat)*(((1-rhat)/n)-(rhat/m))

rbays0

rbays1

A1<-(n+gamma1)*(theta2+log(mrec/alpha))/(m+gamma2)*

(theta1+log(nrec/alpha))

f1b<-qf(0.975,2*(n+gamma1),2*(m+gamma2))

f2b<-qf(0.025,2*(n+gamma1),2*(m+gamma2))

llb1<-(1+A1*f1b)^-1

ulb1<-(1+A1*f2b)^-1

llb1

ulb1

A2<-(n/m)*((log(mrec/alpha))/(log(nrec/alpha)))

llb2<-(1+A2/f1)^-1

ulb2<-(1+A2/f2)^-1

llb2

ulb2
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R codes for inverse Chen distribution

B.1 R Code of simulation for estimation of R for inverse

Chen distribution

B.1.1 Shape parameter beta known

asim=2000

gammahat<-rep(NA,asim)

deltahat<-rep(NA,asim)

rhat<-rep(NA,asim)

nrec<-rep(NA,asim)

mrec<-rep(NA,asim)

rbays0<-rep(NA,asim)



116 R codes for inverse Chen distribution

rbays1<-rep(NA,asim)

ll<-rep(NA,asim)

ul<-rep(NA,asim)

ln<-rep(NA,asim)

A0<-rep(NA,asim)

llb0<-rep(NA,asim)

ulb0<-rep(NA,asim)

lnb0<-rep(NA,asim)

A1<-rep(NA,asim)

llb1<-rep(NA,asim)

ulb1<-rep(NA,asim)

lnb1<-rep(NA,asim)

for(j in 1:asim){

set.seed(j)

n=3

gamma=1

beta=2

x=rep(0,n)

u=runif(1)

x[1]=(log(1-(log(u)/gamma)))^-(1/beta)

for(i in 2:n){

u=runif(1)

x[i]=(log(1-((log(u)+gamma*(1-exp((x[i-1])^-beta)))/gamma)))^-(1/beta)}
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m=3

delta=4

beta=2

y=rep(0,m)

u=runif(1)

y[1]=(log(1-(log(u)/delta)))^-(1/beta)

for(i in 2:m){

u=runif(1)

y[i]=(log(1-((log(u)+delta*(1-exp((y[i-1])^-beta)))/delta)))^-(1/beta)

}

nrec[j]<-x[n]

mrec[j]<-y[m]

gammahat[j]<--n/(1-exp(nrec[j]^-beta))

deltahat[j]<--m/(1-exp(mrec[j]^-beta))

rhat[j]<-gammahat[j]/(deltahat[j]+gammahat[j])

a1=0.5

b1=0.5

a2=0.5

b2=0.5

rbays0[j]<-rhat[j]*(1+(1-rhat[j])*(((1-rhat[j])/m)-(rhat[j]/n)+

((a1-(b1*gammahat[j]))/n)-((a2-(b2*deltahat[j]))/m)))

rbays1[j]<-rhat[j]*(1+(1-rhat[j])*(((1-rhat[j])/m)-(rhat[j]/n)))

f1=qf(0.025,2*n,2*m)
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f2=qf(0.975,2*n,2*m)

ll[j]=(1+(deltahat[j]/(gammahat[j]*f1)))^-1

ul[j]=(1+(deltahat[j]/(gammahat[j]*f2)))^-1

ln[j]=ul[j]-ll[j]

A0[j]=((m+a2)*(exp(nrec[j]^-beta)+b1-1))/((n+a1)* <-

(exp(mrec[j]^-beta)+b2-1))

f1b0=qf(0.025,2*(n+a1),2*(m+a2))

f2b0=qf(0.975,2*(n+a1),2*(m+a2))

llb0[j]=(1+(A0[j]/f1b0))^-1

ulb0[j]=(1+(A0[j]/f2b0))^-1

lnb0[j]=ulb0[j]-llb0[j]

A1[j]=(m*(exp(nrec[j]^-beta)-1))/(n*(exp(mrec[j]^-beta)-1))

f1b1=qf(0.025,2*n,2*m)

f2b1=qf(0.975,2*n,2*m)

llb1[j]=(1+(A1[j]/f1b1))^-1

ulb1[j]=(1+(A1[j]/f2b1))^-1

lnb1[j]=ulb1[j]-llb1[j]

}

avrg<-mean(rhat)

rexact=gamma/(delta+gamma)

bias<-avrg-rexact

mser<-mean((rhat-rexact)^2)

avrg
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bias

mser

avrgb0<-mean(rbays0)

biasb0<-avrgb0-rexact

mseb0<-mean((rbays0-rexact)^2)

avrgb0

biasb0

mseb0

avrgb1<-mean(rbays1)

biasb1<-avrgb1-rexact

mseb1<-mean((rbays1-rexact)^2)

avrgb1

biasb1

mseb1

Eln<-mean(ln)

Eln

y<-ifelse(ll<rexact&rexact<ul,1,0)

p<-length(subset(y,y==1))

p

cp<-p/asim

cp

Elnb0<-mean(lnb0)

Elnb0
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yb0<-ifelse(llb0<rexact&rexact<ulb0,1,0)

pb0<-length(subset(yb0,yb0==1))

pb0

cpb0<-pb0/asim

cpb0

Elnb1<-mean(lnb1)

Elnb1

yb1<-ifelse(llb1<rexact&rexact<ulb1,1,0)

pb1<-length(subset(yb1,yb1==1))

pb1

cpb1<-pb1/asim

cpb1

B.1.2 Shape parameter beta unknown

asim=2000

betahat<-rep(NA,asim)

betahat1<-rep(NA,asim)

gammahat<-rep(NA,asim)

deltahat<-rep(NA,asim)

rhat<-rep(NA,asim)

nrec<-rep(NA,asim)

mrec<-rep(NA,asim)
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sigma<-rep(NA,asim)

lla<-rep(NA,asim)

ula<-rep(NA,asim)

lna<-rep(NA,asim)

for(j in 1:asim){

set.seed(j)

n=3

gamma=1

beta=3

x=rep(0,n)

u=runif(1)

x[1]=(log(1-(log(u)/gamma)))^-(1/beta)

for(i in 2:n){

u=runif(1)

x[i]=(log(1-((log(u)+gamma*(1-exp((x[i-1])^-beta)))/gamma)))^-(1/beta)

}

m=3

delta=4

beta=3

y=rep(0,m)

u=runif(1)

y[1]=(log(1-(log(u)/delta)))^-(1/beta)

for(i in 2:m){



122 R codes for inverse Chen distribution

u=runif(1)

y[i]=(log(1-((log(u)+delta*(1-exp((y[i-1])^-beta)))/delta)))^-(1/beta)

}

nrec[j]<-x[n]

mrec[j]<-y[m]

Inputs = 0.1

nleqn=function(beta){

n=length(x)

m=length(y)

h=(m+n)*((n*(x[n]^-beta)*exp(x[n]^-beta)* <-

log(x[n])/(1-exp(x[n]^-beta)))+(m*(y[m]^-beta)*exp(y[m]^-beta)*

log(y[m])/(1-exp(y[m]^-beta)))+sum(log(x)*(1+(x^-beta)))+

sum(log(y)*(1+(y^-beta))))^-1

}

A = FixedPoint(nleqn, Inputs, Method = "Aitken", Dampening = 0.5)

A

B = FixedPoint(nleqn, Inputs, Method = "Anderson", Dampening = 1.0)

B

betahat[j]<-A$FixedPoint

gammahat[j]<--n/(1-exp(nrec[j]^-betahat[j]))

deltahat[j]<--m/(1-exp(mrec[j]^-betahat[j]))

rhat[j]<-gammahat[j]/(deltahat[j]+gammahat[j])

}
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rhat1<-rhat[!is.na(rhat)]

avrg<-mean(rhat1)

rexact=gamma/(delta+gamma)

bias<-avrg-rexact

mser<-mean((rhat1-rexact)^2)

avrg

bias

mser

gammahat1<-gammahat[!is.na(gammahat)]

deltahat1<-deltahat[!is.na(deltahat)]

sigma<-sqrt(((gammahat1*deltahat1)^2/(gammahat1+deltahat1)^4)*

((1/n)+(1/m)))

z=qnorm(0.975)

z

lla=rhat1-(z*sigma)

ula=rhat1+(z*sigma)

lna=ula-lla

Elna<-mean(lna)

Elna

ya<-ifelse(lla<rexact&rexact<ula,1,0)

pa<-length(subset(ya,ya==1))

pa

cpa<-pa/length(rhat1)
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cpa

B.2 R code for MCMC simulation for inverse Chen

posterior.density=function(param,a3,b3,n,m,nrec,mrec){

param=c(gamma,delta,beta)

n=length(x)

m=length(y)

nrec=x[n]

mrec=y[m]

loglike.beta=(n+m+b3-1)*log(param[3])-a3*param[3]-param[1]*

exp(nrec^-param[3])-param[2]*exp(mrec^-param[3])+

sum(-(param[3]+1)*log(x)+(x^-param[3]))+

sum(-(param[3]+1)*log(y)+(y^-param[3]))

exp(loglike.beta)

}

n=3

gamma=1

beta=2

x=rep(0,n)

u=runif(1)

x[1]=(log(1-(log(u)/gamma)))^-(1/beta)

for(i in 2:n){
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u=runif(1)

x[i]=(log(1-((log(u)+gamma*(1-exp((x[i-1])^-beta)))/gamma)))^-(1/beta)

}

m=3

delta=4

beta=2

y=rep(0,m)

u=runif(1)

y[1]=(log(1-(log(u)/delta)))^-(1/beta)

for(i in 2:m){

u=runif(1)

y[i]=(log(1-((log(u)+delta*(1-exp((y[i-1])^-beta)))/delta)))^-(1/beta)

}

Inputs = 0.1

nleqn=function(beta){

n=length(r)

m=length(s)

h=(m+n)*((n*(x[n]^-beta)*exp(x[n]^-beta)*

log(x[n])/(1-exp(x[n]^-beta)))+(m*(y[m]^-beta)*exp(y[m]^-beta)*

log(y[m])/(1-exp(y[m]^-beta)))+sum(log(x)*(1+(x^-beta)))+

sum(log(y)*(1+(y^-beta))))^-1

}

A = FixedPoint(nleqn, Inputs, Method = "Aitken", Dampening = 0.5)
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A

B = FixedPoint(nleqn, Inputs, Method = "Anderson", Dampening = 1.0)

B

betahat=FixedPoint$A

gammahat=-n/(1-exp(x[n]^-betahat))

deltahat=-m/(1-exp(y[m]^-betahat))

gammahat

deltahat

rhat=gammahat/(deltahat+gammahat)

rhat

nrec=x[n]

mrec=y[m]

nmc=2000

samples<-array (dim = c(3 ,nmc), dimnames =

list( c("gamma", "delta","beta"),NULL))

samples[3,1]=3.6453

betahat=samples[3,1]

a1=0.5

b1=0.5

a2=0.5

b2=0.5

a3=0.5

b3=0.5
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gammahat<-rgamma(1,(n+a1),exp(nrec^-betahat)+b1-1)

deltahat<-rgamma(1,(m+a2),exp(mrec^-betahat)+b2-1)

samples[,1] = c(gammahat,deltahat,betahat)

for ( i in 2:nmc ) {

samples[,i]=samples[,i-1]

for ( j in rownames(samples)) {

proposal = samples[3,i]

proposal = proposal + rnorm (n = 1 , mean = 0, sd = 0.1)

if (proposal<0){

next

}

new.likelihood = posterior.density (param =c(samples[c(1:2),i],

proposal),a3,b3,n,m,nrec,mrec)

old.likelihood = posterior.density (param =samples[,i],a3,b3,n,m,nrec,mrec)

likelihood.ratio = new.likelihood / old.likelihood

if (runif(1) < likelihood.ratio) {

samples[3,i]= proposal

}else {

samples[3,i] = samples[3,i - 1]

}

beta=samples[3,i]

gamma<-rgamma(1,(n+a1),exp(nrec^-beta)+b1-1)

delta<-rgamma(1,(m+a2),exp(mrec^-beta)+b2-1)
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samples[,i] = c(gamma,delta,beta)

}

}

R<-c(NA,nmc)

for(i in 1:nmc){

R[i]<-samples[1,i]/(samples[1,i]+samples[2,i])

}

R1=R[c(501:2000)]

Rb<-mean(R1)

Rb

B.3 R code of data analysis for inverse Chen distribution,

β known

Inputs=0.1

nleqn=function(beta){

n=length(x)

m=length(y)

h=(m+n)*((sum(n*(x^-beta)*exp(x^-beta)*log(x))/sum(1-exp(x^-beta)))+

(sum(m*(y^-beta)*exp(y^-beta)*log(y))/sum(1-exp(y^-beta)))+

sum(log(x)*(1+(x^-beta)))+sum(log(y)*(1+(y^-beta))))^-1

}
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x<-c(100,90,59,80,128,117,177,98,158,107,125,118,99,186,66,132,

97,87,69,109)

y<-c(141,143,98,122,110,132,194,155,104,83,125,165,146,100,

318,136,200,201,251,111)

B = FixedPoint(nleqn, Inputs, Method = "Anderson", Dampening = 1.0)

B

A = FixedPoint(nleqn, Inputs, Method = "Aitken", Dampening = 0.5)

A

beta=3.5936

n=length(x)

gammahat=-n/sum(1-exp(x^-beta))

gammahat

cdf=function(x){exp(gammahat*(1-exp(x^-beta)))

}

ks.test(x,cdf)

beta=3.5936

m=length(y)

deltahat=-m/sum(1-exp(y^-beta))

deltahat

cdf=function(y){exp(deltahat*(1-exp(y^-beta)))

}

ks.test(y,cdf)

r=c(100,90,59)
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s=c(141,98,83)

n=3

m=3

beta=3.5936

gammahat=-n/(1-exp(r[n]^-beta))

deltahat=-m/(1-exp(s[m]^-beta))

gammahat

deltahat

rhat=gammahat/(deltahat+gammahat)

rhat

a1=2

b1=3

a2=2

b2=3

rb1=rhat*(1+(1-rhat)*(((1-rhat)/m)-(rhat/n)+

((a1-(b1*gammahat))/n)-((a2-(b2*deltahat))/m)))

rb1

rb2=rhat*(1+(1-rhat)*(((1-rhat)/m)-(rhat/n)))

rb2

f1=qf(0.025,6,6)

ll=(1+(deltahat/(gammahat*f1)))^-1

ll

f2=qf(0.975,6,6)



B.4 R code of data analysis for inverse Chen distribution, β unknown 131

ul=(1+(deltahat/(gammahat*f2)))^-1

ul

A1=((m+a2)*(exp(r[n]^-beta)+b1-1))/((n+a1)*(exp(s[m]^-beta)+b2-1))

f1b=qf(0.025,7,7)

llb=(1+(A1/f1b))^-1

llb

f2b=qf(0.975,7,7)

ulb=(1+(A1/f2b))^-1

ulb

A2=(m*(exp(r[n]^-beta)-1))/(n*(exp(s[m]^-beta)-1))

llb1=(1+A2/f1)^-1

llb1

ulb1=(1+A2/f2)^-1

ulb1

B.4 R code of data analysis for inverse Chen distribution,

β unknown

Inputs = 0.1

nleqn=function(beta){

n=length(r)

m=length(s)

h=(m+n)*((n*(r[n]^-beta)*exp(r[n]^-beta)*
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log(r[n])/(1-exp(r[n]^-beta)))+(m*(s[m]^-beta)*

exp(s[m]^-beta)*log(s[m])/(1-exp(s[m]^-beta)))+sum(log(r)*

(1+(r^-beta)))+sum(log(s)*(1+(s^-beta))))^-1

}

r=c(100,90,59)

s=c(141,98,83)

A = FixedPoint(nleqn, Inputs, Method = "Aitken", Dampening = 0.5)

A

B = FixedPoint(nleqn, Inputs, Method = "Anderson", Dampening = 1.0)

B

betahat=3.6453

gammahat=-n/(1-exp(r[n]^-betahat))

deltahat=-m/(1-exp(s[m]^-betahat))

gammahat

deltahat

rhat=gammahat/(deltahat+gammahat)

rhat

n=3

m=3

sigsqr=((gammahat*deltahat)^2/(gammahat+deltahat)^4)*((1/n)+(1/m))

sigma=sqrt(sigsqr)

sigma

z=qnorm(0.975)
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z

lla=rhat-(z*sigma)

lla

ula=rhat+(z*sigma)

ula

B.5 R Code for MCMC - real data from inverse Chen

posterior.density=function(param,a3,b3,n,m,nrec,mrec){

param=c(gamma,delta,beta)

n=length(r)

m=length(s)

nrec=r[n]

mrec=s[m]

loglike.beta=(n+m+a3-1)*log(param[3])-b3*param[3]-param[1]*

exp(nrec^-param[3])-param[2]*exp(mrec^-param[3])+

sum((-(param[3]+1)*log(r))+(r^-param[3]))+

sum((-(param[3]+1)*log(s))+(s^-param[3]))

exp(loglike.beta)

}

nmc=2000

r<-c(100,90,59)

s<-c(141,98,83)

samples<-array (dim = c(3 ,nmc), dimnames =
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list( c("gamma", "delta","beta"),NULL))

samples[3,1]=3.6453

betahat=samples[3,1]

a1=2

b1=3

a2=2

b2=3

a3=2

b3=3

gammahat<-rgamma(1,(n+a1),exp(nrec^-betahat)+b1-1)

deltahat<-rgamma(1,(m+a2),exp(mrec^-betahat)+b2-1)

samples[,1] = c(gammahat,deltahat,betahat)

for ( i in 2:nmc ) {

samples[,i]=samples[,i-1]

for ( j in rownames(samples)) {

proposal = samples[3,i] + rnorm (n = 1 , mean = 0, sd = 0.1)

if (proposal<0){

next

}

new.likelihood = posterior.density (param =c(samples[c(1:2),i],

proposal),a3,b3,n,m,nrec,mrec)

old.likelihood = posterior.density

(param =samples[,i],a3,b3,n,m,nrec,mrec)
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likelihood.ratio = new.likelihood / old.likelihood

if (runif(1)<likelihood.ratio){

samples[3,i]= proposal

}else{

sample[3,i]=sample[3,i-1]

}

beta=samples[3,i]

gamma<-rgamma(1,(n+a1),exp(nrec^-beta)+b1-1)

delta<-rgamma(1,(m+a2),exp(mrec^-beta)+b2-1)

samples[,i]=c(gamma,delta,beta)

}

}

R<-c(NA,nmc)

for(i in 1:nmc){

R[i]<-samples[1,i]/(samples[1,i]+samples[2,i])

}

R1=R[c(501:2000)]

Rb<-mean(R1)

Rb

hdi(R1, credMass = 0.95)
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