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ABSTRACT

Even though there are a number of electric motors available in the market,

induction motors maintain their superiority over others due to their unique

properties like low cost, ruggedness and reliability. But, the dynamic performance of

induction machines is complex due to the coupling effect between stator and rotor

fluxes. The performance can be improved by decoupling the torque and flux

components of the stator current, which is the basic principle of field-oriented

control(FOC) or vector control. Vector control needs the instantaneous rotor

position for generating the control signal. This necessitates the mounting of speed

sensors on the rotor. Mounting of speed sensors makes the entire system unreliable

and deteriorates its dynamic behaviour. Also mounting of a rotational transducer is

difficult in hostile environments and in high speed applications.In order to improve

the ruggednesss of the system, speed sensors are replaced with speed estimators or

observers. Such systems are named sensorless drives.

The performance of a sensorless drive depends on the accuracy of the observer. The

extended Kalman Filter(EKF) is an efficient algorithm for the state and parameter

estimation of non- linear systems in the presence of noise and uncertainty. Kalman

Filters are known to have a high convergence rate which can improve the transient

performance of stochastic systems. Model uncertainties and non-linearities inherent

in the induction motors are taken into account in Kalman filters. Due to these

properties, they are widely used for the speed sensorless control of induction motors.

The accuracy of an EKF based observer depends on the values of the process and

measurement error covariance matrices. The choice of these matrices is crucial in

the observer design using an EKF.

Smoothing is a process which helps to refine the estimated values of EKF using

some of the measurements of future instants also. Since additional data is made use

of, the estimates are bound to be better. A single-stage smoothing filter is used as

an observer to estimate the rotor speed along with stator and rotor currents, using a

fifth order model of the induction motor. Simulation studies are conducted with

different reference speeds. The observer is implemented in real-time and results

obtained, which are found to be better than those with a conventional extended

Kalman filter(EKF).

The system with observer using a fifth order model is computationally intensive.

Hence the observer is validated for a reduced order model of the system also.

Neural networks having the ability to mimic human brain can learn and process

ix



information and can hence be used advantageously for speed estimation. A

smoothing Kalman filter-trained real-time recurrent neural network is used as an

observer to estimate the rotor speed and fluxes. The implementation results show

the improvement in results compared to those with a conventional EKF-trained

neural observer.
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Chapter 1

Introduction

This chapter provides a brief description of the background, motivation and objectives

of this research work. An outline of this report is also presented.

1.1 Background

Even though there are a number of electric motors available in the market, induction

motors maintain their superiority over others due to their unique properties like low

cost, ruggedness and reliability. But, the dynamic performance of induction machines

is complex due to the coupling effect between stator and rotor phases. In the case

of a dc machine, flux axis and armature axis are inherently orthogonal due to the

presence of commutator. The armature flux in no way affects the main flux in the

case of an armature compensated machine. The dynamic behaviour of the machine can

be controlled by keeping flux constant and controlling armature current. In contrast

to dc machines, asynchronous machines require the control of stator voltages, their

magnitude, phases and frequency, which is quite complex. The independent control

of flux and torque in asynchronous machines can be made possible by resolving the

stator current into two orthogonal components, one controlling the flux and the other

controlling the torque [1]. One stator current component is resolved along the direction

of rotor flux linkages, hence this component controls the flux. But, this requires the

position of rotor flux at every instant. Thus, if this information is available, the

ac machine can be controlled in the same way as a dc machine. This method of

controlling an ac machine is called field oriented control(FOC) or vector control.

Depending on how the position of rotor flux linkages is obtained, vector control can

be divided into direct vector control and indirect vector control. In direct vector

control, rotor field position is calculated from terminal voltages and currents or by

using Hall effect sensors or flux sensing windings. A block diagram representation of

direct vector control is shown in Fig.1.1 [2].
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Calculating the field angle from rotor position information along with partial

estimation with machine parameters and not from any voltages and currents leads

to another group of control called indirect vector control. A block diagram

representation of indirect vector control is given in Fig.1.2

In indirect vector control methods, the instantaneous position of rotor flux is

evaluated from the rotor speed and the required slip for a particular torque
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requirement. Hence, the performance of the system highly depends on the accuracy

of measurement of rotor speed. Speed sensors are mounted on the rotor to obtain

the rotor speed, but this deteriorates the ruggedness of the system. Also mounting

of a rotational transducer is difficult in hostile environments and high speed

applications.In order to improve the ruggednesss of the system, speed sensors are

replaced with speed estimators or observers. Such systems are named as sensorless

drives.

The performance of a sensorless drive depends on the accuracy of the observer. A

very useful insight into the systems used in sensorless speed control of induction

motors is obtained from [3]. A basic approach to sensorless speed control requires a

speed estimation algorithm. Thus, several methods exploiting the fundamental

model of the induction motor, such as open-loop estimators [4], model reference

adaptive systems [5], sliding mode observers [6–8],artificial neural networks(

ANNs) [9,10], fuzzy logic [11,12], Leunberger observer [13,14] and extended Kalman

filter [15] were developed.

The extended Kalman Filter(EKF) is an efficient algorithm for the state and

parameter estimation of non- linear systems in the presence of noise and uncertainty.

Kalman Filters are known to have a high convergence rate which can improve the

transient performance of stochastic systems. Model uncertainties and non-linearities

inherent in the induction motors are taken into account in Kalman filters. Due to

these properties, they are widely used for the speed sensorless control of induction

motors.

The accuracy of an EKF based observer depends on the values of the process and

measurement error covariance matrices. The choice of these matrices is crucial in

the observer design using an EKF.

1.2 Motivation for the present research work

The primary motivations for doing this research work are summarised as follows:

• Indirect vector control scheme is one of the significant methods used in industry

for variation of speed in induction motors along with ac drives

• An accurate measurement of rotor speed is essential for closed loop vector

control.

• Observers are one of the relevant speed estimation techniques for vector control

of drives
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• A reliable control signal is necessary for harmonic free, smooth operation of

observer- based speed control of induction motor.

• Extended Kalman filter is a powerful algorithm which gives an accurate speed

estimate in the presence of noise.

1.3 Objectives

The objectives of this work are to:

• Develop and implement a single- stage smoothing algorithm based extended

Kalman filter for sensorless indirect field- oriented control of three- phase

induction motor, which improves the performance in estimation of rotor speed.

• Compare the performance of the smoothed observer with those of a conventional

EKF based observer, for the same values of process and measurement error

covariance matrices.

• Develop and implement a smoothed EKF for speed estimation of the motor

using a reduced mathematical model.

• Develop and implement a smoothed Kalman trained recurrent neural network

observer to estimate speed of the motor.

• Study the performance of the observer at low and near zero speeds.

1.4 Organization of the thesis

The research work presented in the thesis is organized and structured in the form of

ten chapters, which are briefly described as follows:

i) Chapter 1 gives a brief background of the research work. The motivation which

led to this thesis and the objectives of this work are also presented.

ii) Chapter 2 provides a comprehensive review of literature on sensorless control

of induction motor drives. The review is divided into three sections: sensorless

control based on EKF, sensorless control based on model reference adaptive

systems and those based on artificial intelligent techniques particularly, artificial

neural networks.
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iii) Chapter 3 elaborates the fundamentals of estimation of data. Here, the three

steps in data estimation, namely, prediction, filtering and smoothing are

discussed in detail. The three main smoothing algorithms are explained and

the mathematics involved in single- stage smoothing algorithm is elaborated.

iv) Chapter 4 presents the development of an observer based on smoothed Kalman

filter applied for sensorless control of an indirect vector controlled IM drive.

Simulation studies are performed and results are presented.

v) Chapter 5 deals with a real-time implementation of the smoothed Kalman

observer for speed control of induction motor. The estimated rotor speed from

the observer is fed back to the system in closed- loop control. The system is

tested for various reference speeds and the results are compared with those with

a conventional EKF.

vi) Chapter 6 presents the development of an observer based on smoothed Kalman

filter applied for sensorless control of an indirect vector controlled IM drive. A

reduced order model of the induction motor is used. Simulation studies are

performed and results are presented.

vii) Chapter 7 deals with the real-time implementation of the smoothed Kalman

observer with the reduced order model of induction motor The estimated rotor

speed from the observer is fed back to the system in closed- loop control. The

system is tested for various reference speeds and results are compared with those

of a conventional EKF.

viii) Chapter 8 presents the development of a real-time recurrent neural network

observer based on smoothed Kalman filter applied for sensorless control of an

indirect vector controlled IM drive. A reduced model of the induction motor is

used. Simulation studies are perfomed and results are presented.

ix) Chapter 9 deals with the real-time implementation of a smoothed Kalman

filter trained recurrent neural network observer applied for sensorless control of

an indirect vector controlled IM drive. The results for various reference speeds

are compared with those of a conventional EKF trained recurrent neural network

observer.

x) Chapter 10 concludes the thesis with overall discoveries of the present research

work. The scope for future work is also mentioned.
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Chapter 2

Literature review

This chapter presents a review of the literature available on speed control of three

phase induction motors. Vector control of induction motors requires an accurate

measurement of rotor speed. Mounting speed sensors on the rotor is a bad option in

high speed and high risk applications. Hence sensorless speed control methods are

gaining wide popularity.

2.1 Introduction

Induction motors are widely used in industry due to their advantageous properties

like ruggedness, low cost and reliability compared to dc motors. Speed control of

induction motors have attained greater attention of researchers with the advent of

field oriented control(FOC). V/f control principle adjusts the stator voltage for a

constant Volts/ Hertz ratio, by feedforward control. This method satisfies only

moderate dynamic requirements of the machine, even though the method is simple.

In order to improve the dynamic performance of the machine, field-oriented control

or vector control is adopted. Vector control can be either direct or indirect. In direct

vector control, the rotor flux is measured using Hall effect sensors and manipulated,

whereas in indirect vector control, the rotor speed is measured or estimated and

used to obtain the instantaneous rotor position, required for generating the unit

vectors necessary for the coordinate transformation.

FOC requires the actual speed of the machine to be fed back, which necessitates the

installation of speed sensors. This affects the robustness and reliability of the entire

system. Hence research is focussed on development of speed sensorless methods for

speed control, which has been a hot topic during the past three decades [16]. A very

useful insight into the systems used in sensorless speed control of induction motors

is obtained from [3]. Signal flow graphs of complex space vector quantities are used

to study the various systems involved in sensorless control of induction motors in [3].

A basic approach to sensorless speed control requires a speed estimation algorithm.

Speed sensorless control of induction motors is still an open area to research. Thus,

several methods exploiting the fundamental model of the induction motor, such as
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open-loop estimators [4], model reference adaptive systems [5], sliding mode

observers [6–8],artificial neural networks( ANNs) [9, 10], fuzzy logic [11, 12],

Leunberger observer [13,14] and extended Kalman filter [15] were developed.

In [17], a method of simultaneously estimating the stator and rotor resistances

and rotor speed is presented and verified experimentally. But the method is

validated only for high speeds. In [9,10], a novel method for parameter identification

of induction motors with ANNs is presented and good results are obtained than

those using classical ones. An observer which estimates the speed, based on fuzzy

logic is developed in [11] and is validated using numerical examples, whereas a type-

2 fuzzy model replaces the PI controller in a speed sensorless direct vector control

scheme based on MRAS in [12]. A fuzzy model is found to be robust to load as well

as speed uncertainities. A model reference adaptive system is used for field oriented

control of induction motors in [5]. The problem with these observers is that they fail

to be effective at low speeds, giving results which are inaccurate at these speeds. A

Leunberger observer, used in [13, 14] is a deterministic one, which fails to act under

circumstances of load disturbances or parameter variations or internal noise in the

system.

Even though speed sensorless drives are well established in industry, the operation

at low and persistent zero speeds are still a challenge [18]. This is due to parameter

uncertainties, signal acquisition error, and noise at very low speeds. At zero speed,

the problem encountered is because of the fact that stator current ceases to send

information on rotor angular velocity [3, 18]. Model- based methods using the state

equations of the machine and signal injection methods are used for speed estimation

at low and zero speeds [19]. Speed injection methods are capable of persistent low/

zero speed operation but they are highly sophisticated and computationally

intensive [18]. Model-based estimation methods as in [20]- [21] have been proposed

specifically to deal with low and zero-speed operation of induction motors. In [3], a

stator flux estimator for low and persistent zero speed is designed. The time-variable

dc offset voltage is estimated from the flux drift in a parallel stator model and used

to eliminate the offset by feedforward control. Residual high-frequency disturbances

are compensated by feedback flux amplitude control. The total leakage inductance

as seen from the stator windings is exploited to extract the rotor position angle and

the rotor speed in [22]. This method is found to provide accurate speed estimates

even at standstill. [7, 8] presents a sliding mode observer for sensorless speed control

of induction motor. A stator current observer based on sliding mode principles is

used to estimate speed over a wide range, including above rated speed. Even though
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the dynamic performance is improved, chattering is found to affect the estimates.

A review of sensorless estimation methods for induction motor drives is presented

in [23].

2.1.1 Literature Review on Sensorless Speed Control of

Induction Motors using Extended Kalman Filter

Unlike other methods, extended Kalman filters are stochastic observers which take

into account the process and measurement noises, such that estimation is done even

if the plant is non- linear or noisy [24]. It provides optimal filtering of noises in

measurement and process, provided the covariance matrices of these noises are

known [25]. EKF has a high convergence rate which is capable of improving the

transient performance. EKFs take into account, the uncertainties in the system

model as well as the non- linearities inherent in it. These properties make the EKF

widely acceptable in sensorless speed control applications of induction motors. An

overview of the applications of Kalman filter is presented in [26]. [24] uses EKF to

estimate the speed of an induction motor with a fourth order model of the motor.

The rotor speed is considered a constant. A reduced order EKF [27] is also

mentioned so as to reduce the computational complexity of a fifth order

mathematical model. A speed and flux observer based on extended Kalman filter is

presented in [28]. The speed observer is shown to present accurate results over a

wide speed range. Moreover, it is shown to be robust to machine parameter

variations [29]. In [15], an EKF based observer is used to estimate rotor speed in

addition to stator currents and rotor fluxes. Rotor speed is considered as a slow-

varying state variable and hence assumed constant between adjacent time- intervals.

An EKF which estimates load torque in addition to rotor speed, rotor fluxes and

stator currents is presented in [30]. Here, rotor speed is not treated as a constant,

but is dependent on the load torque via the mechanical equation of the motor. This

makes estimation at low speeds possible. In this paper, estimated rotor speed is not

used as a feedback in the closed loop system. A BI- EKF is presented in [31], where

two extended induction motor models are used, with a single EKF for simultaneous

estimation of stator and rotor resistances along with other state variables. A

modification of this bi- input EKF is presented by the same authors in [32]. A

robust estimation of flux and speed of an induction motor is carried out in [33–35],

which uses a fourth- order system to estimate the rotor flux and rotor speed is

estimated using a recursive least squares algorithm. A finite state-predictive torque

controller uses measured stator currents, estimated rotor speed, stator and rotor
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fluxes in the predictive model. Noisy estimates deteriorate the quality of steady

state performance in terms of THD, torque ripple and flux ripple. Hence EKF is

used for estimation in [36] to eliminate noise from estimates.

Recently, EKF has been researched upon widely as a result of which there are many

variations in the conventional EKF. Unscented Kalman filters in [37] are used for

speed estimation, where the unscented transforms are non- linear so that the non-

linear behavior of the system is captured.

The determination of the error covariance matrices has a significant effect on

estimation with EKF. Trial and error method is usually used for assuming these

covariance matrices. This method being a time- consuming method, researches are

proceeding in a direction so as to obtain an optimum value for these matrices. As a

result, there are papers in which optimized values of these matrices are obtained

using genetic algorithms [38] and differential evolution algorithm [39]. However,

optimization methods are to be done offline and are often time- consuming. In [40],

an adaptive fading EKF is designed wherein a fading factor is applied to the

estimated covariance matrix in order to increase the variance of its estimated state

vector. The authors claim an improved performance of the observer compared to the

standard EKF algorithm, with a slight increase in the computational burden. But

the real-time implementation is yet to be done. In [41], an adaptive EKF is used for

speed sensorless control of induction motors. In this algorithm. the covariance

matrix of the output noise is assumed to be known and the covariance matrix of the

system noise is estimated.

2.1.2 Literature Review on Sensorless Speed Control of

Induction Motors based on model reference adaptive

systems

Of the various methods developed in the recent past for speed sensorless IM drives,

model reference adaptive system(MRAS) has gained wide popularity, since they are

simple and easy to implement. Extensive studies on rotor-flux based MRAS has

shown that they can give excellent performance upto 5% of the rated speed [5, 42].

Rotor flux based MRAS suffer from problems due to machine parameter variations,

inverter non-linearity, pure integration effects etc. These problems become dominant

at low speeds. A model based on counter electromotive force, instead of rotor flux is

used in [43]. The authors claim the method to be independent of changes in stator

resistance. A stator current based MRAS estimator is presented in [44–47]. A

reduced order flux observer [48] with stator resistance adaptation is presented
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in [49]. A stator- flux based MRAS presented in [50] incorporates a dc offset

compensator structure in closed loop, so that the problems associated with exiting

stator flux estimators are overcome. Active power, reactive power and two fictitious

quantities are made use of to estimate rotor speed in [51, 52]. This method has the

advantage that no parameters other than the rotor resistance are involved in the

process. In [53], an MRAS which makes use of the error in rotor fluxes of the two

models in addition to the error in electromagnetic torque is described. The observed

rotor speed is used in the sensorless vector control using a sliding mode controller. A

torque model reference adaptive system(TMRAS) is studied in [54] which claims to

give good performance in low and zero speeds. In [55], a Luenberger load torque

estimator based on MRAS is presented. The torque observer is interconnected with

the speed estimator, so as to obtain a robust high performance indirect field oriented

control system. Instability issues associated with adaptive flux observers, especially

in the low speed regions are addressed in [56]. A detailed stability analysis is

presented in the regenerative low speed regions, while using stator resistance and

speed estimators simultaneously.

In almost all these works, a proportional- integral(PI) controller is used as the

adaptation mechanism of the MRAS for speed estimation. Ability of the PI

controller to perform over a wide range of speeds and its simplicity contribute to its

wide usage. But at low speeds, machine parameter variations and inverter

non-linearities give rise to errors. Hence the constant- gain PI controller may not be

able to provide a satisfactory performance. Moreover, tuning of PI controllers itself

is a tedious task. Various approaches to the adaptation mechanism of MRAS

estimators are available in literature. Thus the fixed-gain PI controller is replaced

by various advanced algorithms.

Instead of a PI controller as in classical MRAS, a sliding mode observer is used to

estimate the speed of the motor in [57–63]. Two sliding mode MRAS speed

observers are presented in [61]. The voltage model of the induction motor is used to

generate the reference rotor fluxes and current model is used as the adaptive model.

A sliding- mode pseudo- MRAS observer which estimates the torque and speed of a

three phase induction motor is presented in [63]. Even though this method improves

the dynamic response of the drive system, an intolerable amount of chattering is

produced in the estimates.

Another solution to PI controller is provided in [62, 64], where a fuzzy logic

controller replaces a PI controller. Fuzzy logic controller shows improvement in the

estimator dynamic performance but computational complexity is a major drawback

of this scheme.
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In order to resolve the issues connected with adaptation mechanism, a finite control

set-model predictive control(FCS-MPC) is introduced in [65]. The FCS-MPC is

based on an optimization problem whose objective is to minimize the error signal,

which is used to tune the MRAS estimator. This same method has been applied to

the controller side of sensorless vector control of IM in [66, 67]. [68] presents a

method for estimating the load torque of an indirect vector controlled induction

motor drive, based on MRAS technique. The load torque is estimated using a

Luenberger observer. The MRAS estimation is used to estimate the parameters of

the motor as presented in [69]. Rotor resistance and mutual inductance are

estimated, since they tend to change with changes in temperature and flux level.

A novel hybrid estimator consisting of an extended Kalman filter and an active

power based MRAS is presented in [70], which estimates the stator currents and

flux, rotor speed, load torque and rotor resistance. An improved rotor flux space

vector based MRAS is presented in [71]. This improved performance is obtained by

using a stator voltage reference vector instead of the actual voltage vector. The

reference vector is generated from the errors in the reference and measured current

vectors.

[72] gives a review of various model reference adaptive systems based sensorless

speed control of induction motors.

2.1.3 Literature Review on Sensorless Speed Control of

Induction Motors using artificial neural networks

Neural networks have grown to be a well established methodology in solving very

difficult problems in engineering. They are widely used in identification and control

of nonlinear dynamic systems [73–76] because of their ability to approximate a wide

variety of nonlinear functions to any desired degree of accuracy. They also have the

added advantages of fast parallel computation, immunity from harmonic ripples and

fault tolerance. There are investigations going on in extending the application of

neural networks to identification and control of induction motor drives [20, 77–79].

State estimation using neural networks is also an interesting topic, which has been

studied lately [80, 81]. ANNs are used to replace the PID controller in the vector

controlled IM drive in [82].

Neural network observers have emerged as a promising method, in situations

where the plant dynamics are unknown [83–85]. In most of these a multi-layer

neural network is trained offline using backpropagation algorithm. This gave good
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results in estimation and was robust to parameter variations. But, the network has

to be trained with enough samples. In [86], a neural network speed observer is

presented, where the speed estimation is done online. The network is trained using

the backpropagation algorithm and is shown to give fairly good results with

estimation under load and speed variations. A multilayer neural network for speed

estimation in a rotor flux based MRAS system is proposed in [87, 88]. In [89], the

speed and flux estimation is performed using a multilayer ANN, which is trained

offline using experimental measurements based on current model alone, avoiding the

voltage model. All drive non-linearities are considered and satisfactory performance

results are obtained for low and zero speed operation. But the training of ANN is

computationally intensive and offline also. The structure of the network is chosen by

trial and error considering computational complexity and accuracy. A similar work

involving training of a multilayer neural network using experimental data before

using it online is presented in [90]. [91] presents a rotor speed observer which works

online on least square algorithm implemented by an original neuron. Rotor

resistance and stator resistance for indirect vector controlled IM drive are estimated

using an ANN and fuzzy logic observer in [92–94]

Recurrent neural networks have superior capabilities over multilayer networks in

dynamic system identification [95, 96]. They can be trained online whereas

multilayer networks have to be trained offline with sufficient samples [97,98]. In [10],

two neural networks are used to estimate the speed of an induction motor. The

speed estimated by a multilayer perceptron is corrected using an Elman recurrent

network. In [99], ANN based parameter estimation is performed. ANNs, including

multilayer and recurrent, are used to estimate various parameters of the induction

machine, and is used as a memory to estimate the value during transients.

In [100, 101], a neuro- fuzzy hybrid controller is used as a controller instead of

conventional PI controller and performance compared. The hybrid controller is

found to give better and robust performances compared to conventional and neural

or fuzzy controllers. [102] presents a robust speed estimation and control of an

induction motor based on ANNs. The controller is based on sliding mode principles

and the speed estimator is based on ANN. The rotor speed is derived to be a non-

linear mapping of motor stator voltages and currents. The ANN is trained to

reproduce this mapping.
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2.1.4 Summary

This chapter gives a brief idea about the various observers used in sensorless drives,

their pros and cons. The observers based on extended Kalman filter algorithm is

studied specifically and it is seen that the process and measurement error covariance

matrices play a significant role in the accuracy of the observer. Moreover, these

observers fail to give accurate results in low and zero speeds. It is also noted that, while

using extended Kalman filter algorithm, the covariance matrices vary for different

reference speeds.

The focus of this research work is to incorporate smoothing to the filtering algorithm,

so that the performance of the observer is improved. The covariance matrices are kept

constant for different reference speeds, thus analyzing the effect of these matrices on

estimation.
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Chapter 3

Smoothing Algorithms

This chapter briefly explains the theory behind Kalman filter algorithm and the

different smoothing algorithms. Estimation of data consists of three stages-

prediction, filtering and smoothing. Here, the difference between each stage is

elaborated.

3.1 Introduction

Estimation using extended Kalman filters depends very largely on the values of process

and measurement error covariances. These covariance matrices are usually obtained

by trial and error method, which is very time- consuming. Moreover, filtering operates

on measurements upto the current time. An improved estimation performance can

be obtained through the use of smoothers if some processing delay can be tolerated.

Smoothing is a process which helps to refine the estimated values of EKF using some

of the measurements of future instants also. Since additional data is made use of, the

estimates are bound to be better. The problem of smoothing deals with estimates of

the system’s state, which are of the form,

x̂(k|j) = φk[y(i), i = 1, 2, ...j] (3.1.1)

where j > k, that is, the time at which the estimate is made lies to the left of the

time of last measurement, y(j), on the time scale [103]. Fig.3.1 shows the flow of the

process involved in smoothing.

In this chapter, the three stages in estimation of data are discussed in section 3.2,

smoothing and the three different types of smoothing algorithms are discussed in

section 3.3. In section 3.4, the single-stage smoothing algorithm is derived and

explained. Section 3.5 concludes the chapter.
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Conventional
EKF

ˆ( | )x k k

( )x k

Smoothing
algorithm

ˆ ( 1 | )sx k k

( )y k

( )y k

( )y k

( )u k System

Figure 3.1: Flow Diagram of the smoothing algorithm

3.2 Estimation of data

A dynamic system, S, is considered, whose state is a discrete-time random process of

dimension, n,|x(k), k ∈ I|, where I = k : k = 0, 1, ..., N . x(k)is a function of time.

x(k) for some fixed value of k is to be estimated, assuming that x(k) is not

accessible for direct measurement. But, x(k) is assumed to be causally related to a

sequence of measurements, y(1), y(2), ..., y(j). A measurement system, H relates y(i)

to x(k), as shown in Fig.3.2. y(i), i = 1, 2, ..., j is assumed to be an m-dimensional,

discrete-time random process.

S H

k I 1, 2,...,i j

( )x k
( )y i

Figure 3.2: Block diagram of the dynamic system, S

x(k) is to be estimated based only on the measurements y(i). Hence, it can

be denoted as x̂(k|j) and can be defined as an n-dimensional function, φk of the
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measurements, ı.e

x̂(k|j) = φk[y(i), i = 1, 2, ..., j] (3.2.1)

Thus, estimation is a process of determining φk in some rational and meaningful

manner. If k > j, the problem is one of prediction, if k = j, one of filtering, and if

k < j, one of smoothing or interpolation.

3.2.1 Prediction

Consider the system,

x(k + 1) = φ(k + 1, k)x(k) + Γ(k + 1, k)w(k) (3.2.2)

y(k + 1) = H(k + 1)x(k + 1) + v(k + 1) (3.2.3)

where x is an n-vector, the state; w is a p-vector, the disturbance; y is an m-vector,

the measurement(system output); v is an m-vector, the measurement error; and k =

0, 1, ..., is the discrete time index. Also, φ is an nxn state transition matrix, Γ is

an nxp disturbance transition matrix; and H is an mxn measurement matrix. The

process w(k), k = 0, 1, ... is a p-dimensional Gaussian white sequence for which

E[w(k)] = 0

for all k = 0, 1, ..., and

E[w(j)w′(k)] = Q(k)δjk

for all j, k = 0, 1, ..., ,where Q(k) is a positive semi-definite p x p matrix.

The process v(k + 1), k = 0, 1, ... is a m-dimensional Gaussian white sequence for

which

E[v(k + 1)] = 0

for all k = 0, 1, ..., and

E[v(j + 1)v′(k + 1)] = R(k + 1)δjk

for all j, k = 0, 1, ..., ,where R(k + 1)is a positive semi-definite m x m matrix. The

random processes, w and v are non-correlated, so that

E[v(j)w′(k)] = 0 (3.2.4)
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for all j = 1, 2, ..., and k = 0, 1, .... The initial state, x(0) is a Gaussian random

n-vector with mean

E[x(0)] = 0

and covariance,

E[x(0)x′(0)] = P (0)

where, P (0) is an n x n positive semi-definite matrix. Now the algorithm for optimal

predicted estimate, x̂(k|j), k > j, j = 0, 1, ..., can be developed. It is assumed that

the optimal filtered estimate, x̂(j|j) and the n x n covariance matrix,E[x̃(j|j)x̃′(j|j) =

P (j|j) is available for some j = 0, 1, ... [103]. Now,

x̂(j|j) = E[x(j)|y(1), ..., y(j)] (3.2.5)

is the optimal filtered estimate x(j) for j = 1, 2, .... For j = 0, we have no

measurements, and it follows that

x̂(0|0) = E[x(0)] = 0 (3.2.6)

Thus, x̂(j|j) is a Gaussian with zero mean. Also, the filtering error,

x̃(j|j) = x(j)− x̂(j|j) (3.2.7)

is a zero mean Gaussian random vector whose covariance matrix, P (j|j) is assumed

to be known. For j = 0, we have

x̃(0|0) = x(0)− x̂(0) = x(0) (3.2.8)

so that

P (0|0) = E[x̃(0|0)x̃′(0|0)] = E[x(0)x′(0)] (3.2.9)

or

P (0|0) = P (0) (3.2.10)

The optimal predicted estimate for all k > j can be given by,

x̂(k|j) = φ(k, j)x̂(j|j) (3.2.11)

From this equation, the single stage optimal predicted estimate is given by the

expression,

x̂(k + 1|k) = φ(k + 1, k)x̂(k|k) (3.2.12)
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x̃(k + 1|k) = x(k + 1)− x̂(k + 1|k)is the single-stage prediction error. x̃(k + 1|k) has

a covariance matrix, given by

P (k + 1|k) = φ(k + 1, k)P (k|k)φ′(k + 1|k) + Γ(k + 1, k)Q(k)Γ′(k + 1, k) (3.2.13)

3.2.2 Filtering

The filtering algorithm for the system given by eqns.(3.2.2) and (3.2.3) are developed

based on the following assumptions:

• the initial estimate, x̂(0|0) = 0

• the covariance matrix of the filtering error at the initial time,

P (0|0) = E[x̃(0|0)x̃′(0|0)] = E[x(0)x′(0)] = P (0) (3.2.14)

• the set of measurements, y(1), ..., y(k), y(k + 1), k is a non-negative integer.

The optimal estimate of the filter, x̂(k+1|k+1) is given by the recursive relation [?],

x̂(k+ 1|k+ 1) = φ(k+ 1, k)x̂(k|k) + K(k+ 1)[y(k+ 1)−H(k+ 1)φ(k+ 1, k)x̂(k|k)]

(3.2.15)

for k = 0, 1, ... where x̂(0|0) = 0. K(k+ 1) is an nxm matrix which can be described

by the equations,

K(k + 1) = P (k + 1)H ′(k + 1)[H(k + 1)P (k + 1|k)H ′(k + 1) +R(k + 1)]−1 (3.2.16)

P (k + 1|k) = φ(k + 1, k)P (k|k)φ′(k + 1, k) + Γ(k + 1, k)Q(k)Γ′(k + 1, k) (3.2.17)

P (k + 1|k + 1) = [I −K(k + 1)H(k + 1)]P (k + 1|k) (3.2.18)

for k = 0, 1, ..., where I is the nxn identity matrix and P (0|0) = P (0) is the initial

condition for eqn.(3.2.17).

The algorithm for recursive filtering , described by eqns.(3.2.15) to (3.2.18) is called

the Kalman filter.

The recursive nature of Kalman filter, makes it possible to process measurements
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to obtain the optimal filtered estimate. The information flow in the filter can be

represented in a simple form using the block diagram of Fig.3.3.

K(k+1)

H(k+1) Delay( 1, )k k 

ˆ( | )x k k

ˆ( 1| )x k k
ˆ( 1| )y k k

( 1)y k 

( 1| )y k k
ˆ( 1| 1)x k k +

-

+

+

ˆ(0 | 0) 0, 0,1,...x k 

Figure 3.3: Block diagram of Kalman filter

The estimate, x̂(k|k) is premultiplied by the state transition matrix, φ(k + 1, k).

This gives the predicted estimate,x̂(k+1|k). Premultiplying x̂(k|k) by H(k+1), gives

ŷ(k + 1). This, when subtracted from y(k + 1), the actual measurement, gives the

measurement residual, z̃(k+1|k). x̂(k+1|k+1) is obtained by adding K(k+1) times

this residual to x̂(k+ 1|k). x̂(k+ 1|k+ 1) is stored till the next measurement, and the

cycle is repeated.

The correction term, K(k+1)ỹ(k+1|k) is added to the predicted estimate, x̂(k+1|k),

to determine the filtered estimate. The correction term involves a weighting of the

measurement residual by the matrix. K(k + 1). This weighting matrix is referred to

as the Kalman gain matrix.

3.3 Smoothing

Smoothing deals with estimates of the system’s state, which are of the form,

x̂(k|j) = φk[y(i), i = 1, ..., j] (3.3.1)

where j > k; that is, the time at which it is desired to estimate the state lies behind

the time of last measurement, y(j), on the time scale. The optimal smoothed estimate

is given by

x̂(k|j) = E[x(k)|y(1), ..., y(j)] (3.3.2)
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3.3.1 Classification of Smoothing Algorithms

The three main classes of smoothing algorithms of the states of a system are:

1. Fixed- Interval Smoothed Estimate: x̂(k|N), k = 0, 1, ......N − 1, where N is a

fixed positive integer.

2. Fixed- Point Smoothed Estimate: x̂(k|j), j = k+1, k+2, ......, where k is a fixed

positive integer. Also termed as single- point smoothed estimate.

3. Fixed- Lag Smoothed Estimate: x̂(k|k + N), k = 0, 1, ......, where N is a fixed

positive integer.

Fixed- Interval Smoothing

This algorithm is for retrospective data analysis, where measurements recorded over

an interval,(0, N) are used to obtain the improved estimates. The smoothed estimate

is expressed as:

x̂(k|N) = E[x(k)|y(1), y(2), ......y(N)] (3.3.3)

where, k = 0, 1, 2, ...., N .

In eqn(3.3.3), only the filtered estimate, x̂(N |N) is available from EKF. Hence, this

forms the starting point of the algorithm and it is backward recursive in time and

can be used only for offline estimation problems where a set of measurement data is

available a priori.

Fixed- Point Smoothing

This algorithm gives an estimate of the system states at a fixed point in time, which

is based not only on measurements upto that time, but also on measurements taken

beyond it. Mathematically, the fixed- point smoothed estimate can be expressed as:

x̂(k|j) = E[x(k)|y(1), y(2), ......y(j)] (3.3.4)

for some fixed k, with j > k.

Fixed- Lag Smoothing

In this algorithm, the time- point at which the smoothed estimate of the system state

is required, lags behind the time point of the most recent measurement by a fixed

interval of time, N, that is, tk+N − tk =a constant, for all k = 0, 1, 2.... The optimal
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fixed- lag smoothed estimates are given by the relation,

x̂(k|k +N) = E[x(k)|y(1), y(2), ......y(k), y(k + 1), ....y(k +N)] (3.3.5)

A forward- time recursive algorithm can be obtained for optimal fixed- lag smoothing.

This algorithm can be obtained online in estimation problems, where a lag between

measurements and estimations is permissible. The fixed- lag smoothed estimate can

be considered as an extension of the optimal filtered estimate, x̂(k|k), where the

time at which estimate of the state is desired is same as the time of most recent

measurement.

3.4 Single- Stage Smoothing

In fixed- lag smoothing algorithm, if the lag is just one time instant, we can name it

as single- stage smoothing. In this case, the estimate of interest will be expressed as

x̂(k|k+1), for every k = 0, 1, 2..... To derive the algorithm, we take the measurements,

y(1), y(2).......y(k), ỹ(k + 1|k). Now,

ỹ(k + 1|k) = y(k + 1)− ŷ(k + 1|k)

= y(k + 1)−H(k + 1)x̂(k + 1|k)

= H(k + 1)x̃(k + 1|k) + v(k + 1)

(3.4.1)

ỹ(k + 1|k) is independent of the set of measurements [y(1), y(2)...y(k)]. Hence,

x̂(k|k + 1) = E[x(k)|y(1), y(2), ......y(k), ỹ(k + 1|k)]

= E[x(k)|y(1), y(2)......y(k)] + E[x(k)|ỹ(k + 1|k)]
(3.4.2)

The first term on the RHS of this equation is x̂(k|k), while the second term is

PyỹPỹỹ−1(ỹk + 1|k). This follows because x(k) and ỹ(k + 1|k) are jointly Gaussian,

each with zero mean. Pyỹ = E[x(k)ỹ′(k + 1|k)] and Pỹỹ = E[ỹ(k + 1|k)ỹ′(k + 1|k)].

Hence,

x̂(k|k + 1) = x̂(k|k) + PyỹMỹỹ−1 ỹ(k + 1|k) (3.4.3)

It can be shown that

Pyỹ = E[x(k)x̃′(k|k)]φ′(k + 1, k)H ′(k + 1) (3.4.4)

22



Since x(k) = x̃(k|k) + x̂(k|k), eqn.3.4.4 reduces to

Pyỹ = E[x̃(k|k)x̃′(k|k)]φ′(k + 1, k)H ′(k + 1) = P (k|k)φ′(k + 1, k)H ′(k + 1) (3.4.5)

where P (k|k) is the optimal filtering error covariance matrix. Also,

Pỹỹ = E[ỹ(k + 1|k)ỹ′(k + 1|k)] = H(k + 1)P (k + 1|k)H ′(k + 1) +R(k + 1) (3.4.6)

where P (k + 1|k) is the optimal prediction error covariance matrix. The smoothing

filter gain matrix,PyỹPỹỹ−1 , can be denoted as M(k|k+1), where the two time instants

represent the estimate and measurement time instants respectively. This gain can be

shown to be equal to

M(k|k+ 1) = P (k|k)φ′(k+ 1, k)H ′(k+ 1)[H(k+ 1)P (k+ 1|k)H ′(k+ 1) +R(k+ 1)]−1

(3.4.7)

Now eqn.(3.4.3) can be written as:

x̂(k|k + 1) = x̂(k|k) +M(k|k + 1)[y(k + 1)−H(k + 1)φ(k + 1, k)x̂(k|k)] (3.4.8)

for k = 0, 1, 2..., with x̂(0|0) = x̃(0) = 0, as the initial condition. Eqn.(3.4.8) is the

optimal single- stage smoothing algorithm. Here, the correction term is added to the

corrected( filtered) estimate instead of to the predicted estimate as in KF. The gain

matrix, M(k|k + 1) is different from the Kalman gain, K(k + 1). It can be shown

that K(k + 1) is a factor of M(k|k + 1). From eqn.( 3.4.8), it is clear that x̂(k|k) is

an input of the smoothing filter at each instant. also, the computation of M(k|k+ 1)

requires P (k|k) and P (k + 1|k) from the optimal Kalman filter. Hence, single- stage

smoothing has to be accompanied by optimal filtering algorithm. Upon simplification,

eqn.(3.4.7) can be expressed as

M(k|k + 1) = A(k)K(k + 1) (3.4.9)

where,

A(k) = P (k|k)φ′(k + 1, k)P−1(k + 1|k) (3.4.10)

It is obvious from eqn. (3.4.9) that K(k + 1) is a factor of M(k|k + 1). From eqns.

(3.4.9) and (3.4.8), we can write

x̂(k|k + 1) = x̂(k|k) + A(k)K(k + 1)[y(k + 1)−H(k + 1)φ(k + 1, k)x̂(k|k)] (3.4.11)
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K(k + 1)[y(k + 1) − H(k + 1)φ(k + 1, k)x̂(k|k) can be directly obtained from the

optimal filter. A block diagram representing the single- stage smoothing algorithm is

shown in Fig.3.4.

A(k)
( 1) ( 1| )K k y k k 

ˆ( | )x k k
(From optimal filter)

ˆ( | 1)x k k 

+
+

(From optimal filter)

Figure 3.4: Block Diagram of Single- Stage Smoothing

3.5 Summary

In this chapter, a brief description of the three stages of estimation, namely,

prediction, filtering and smoothing is given. The different types of smoothed

estimates are outlined. Single-stage smoothing, which is the algorithm used in this

thesis work is explained in the latter section of this chapter.
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Chapter 4

Full Order Smoothed Observer for Speed

Estimation of Three Phase Induction

Motor

This chapter explains the speed estimation of the three phase induction motor using

a full order observer. The observer is based on a smoothed Kalman filter. A fourth

order model of the induction motor is used for this purpose. The stator currents and

rotor currents in the dq reference frame are also estimated along with the rotor speed.

The estimation results are compared with those obtained without smoothing.

4.1 Introduction

The dynamic performance of an induction motor can be improved by field- oriented

control. By this method, the three phase induction machine is made to behave as a

separately excited dc motor. The basic idea is to decompose the three phase voltage

and current components into two phase quantities, thus reducing the number of

voltages and currents to be controlled to four. The two stator current components

are phase shifted by 90o and hence decoupled control is possible. Moreover, one

component aligned along the d- axis(flux axis) controls the flux and the other

aligned along the q-axis(torque axis) controls the torque.

Based on these transformations, a mathematical model of the machine can be

obtained in the stator reference frame. This is suitable when the analysis of the

machine fed from an inverter is to be carried out. In this model, the stator and rotor

voltages are expressed in terms of the stator and rotor currents.

Observers are essential in field- oriented control of induction machines. This is

because mounting of speed sensors on the rotor makes the system unreliable and

unstable. Moreover, it is not advisable in high speed and high risk applications. A

full- order observer estimates all the states of the system irrespective of whether it is

measurable or not.

This chapter presents a full order observer for indirect field oriented control of

induction motor. The observer is based on smoothed Kalman filter algorithm and
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the simulation results are compared with those obtained with conventional extended

Kalman filter.

The chapter is organised as follows: Section 4.2 elaborates the mathematical model

of the three phase induction motor, section 4.3 explains the indirect field oriented

control of induction motor using the full-order model of the machine, section 4.4

illustrates the estimation results which are obtained offline, using the conventional

extended Kalman filter algorithm (section 4.4.1) and smoothed Kalman filter

algorithm (section 4.4.2). Section 4.5 summarises the chapter.

4.2 Mathematical Model of Induction Motor

To begin with, the fourth order mathematical model of induction motor in the dq

reference frame is considered. This model has four state variables, which are

• d- axis stator current, ids

• q- axis stator current, iqs

• d- axis rotor current, idr

• q- axis rotor current, iqr

The basic equation representing this model is given in eqn.(4.2.4). The stator voltage

components are the inputs and the stator current components are the outputs.

x =
[
ids iqs idr iqr

]
(4.2.1)

u =
[
vds vqs

]
(4.2.2)

y =
[
ids iqs

]
(4.2.3)

26
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and

y =

[
1 0 0 0

0 1 0 0

]
∗ x (4.2.5)

To this fourth order system, the rotor speed, ωr is added as a fifth state variable,

thus making the system fifth order. The rotor speed is not considered as a constant,

instead it is governed by the mechanical equation of the motor, given by

Te = J
dωr
dt

+Bωr + TL (4.2.6)

where, J is the moment of inertia, B is the viscous friction coefficient and TL is the

load torque. Addition of ωr to the state matrix, gives rise to a system matrix involving

multiplication of states, which makes the system non- linear. This model can now be

converted into a discrete time- varying model as given in eqns. (4.2.7) and (4.2.8) [24].

x(k + 1) = f(x((k), u(k))

= f(x(k))x(k) + gu(k)
(4.2.7)

y(k) = h(x(k))x(k)

= Hx(k)
(4.2.8)

where

x(k) =
[
ids(k) iqs(k) idr(k) iqr(k) ωr(k)

]
(4.2.9)

u(k) =
[
vds(k) vqs(k)

]
(4.2.10)
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y(k) =
[
ids(k) iqs(k)

]
(4.2.11)



ids(k + 1)

iqs(k + 1)

idr(k + 1)

iqr(k + 1)

ωr(k + 1)


︸ ︷︷ ︸

x(k+1)

=



a11 a12ωr(k) a13 a14ωr(k) 0

a21ωr(k) a22 − a23ωr(k) a24 0

a31 − a32ωr(k) a33 − a34ωr(k) 0

a41ωr(k) a42 a43ωr(k) a44 0

−a51iqr(k) 0 a51iqs(k) 0 1


︸ ︷︷ ︸

f(x(k))



ids(k)

iqs(k)

idr(k)

iqr(k)

ωr(k)


︸ ︷︷ ︸

x(k)

+

[
a15 0 a35 0 0

0 a25 0 a45 0

]T
︸ ︷︷ ︸

B

[
vds(k)

vqs(k)

]
︸ ︷︷ ︸

u(k)

+w(k)

(4.2.12)

[
ids(k)

iqs(k)

]
︸ ︷︷ ︸

y(k)

=

[
1 0 0 0 0

0 1 0 0 0

]
︸ ︷︷ ︸

H

x(k) + v(k) (4.2.13)

a11 = 1− RsLrts
a0

; a12 =
L2
mts
a0

; a13 =
RrLmts
a0

; a14 =
−LsLmts

a0
; a15 =

Lrts
a0

;

a21 =
−L2

mts
a0

; a22 = 1− RsLrts
a0

; a23 =
−LmLrts

a0
; a24 = a13; a25 = a15;

a31 =
LmRsts
a0

; a32 =
−LmLsts

a0
; a33 = 1− −LsRrts

a0
; a34 =

−LsLrts
a0

; a35 =
−Lmts
a0

;

a41 = −a32; a42 = a31; a43 = −a34; a44 = a33; a45 = −a35;

a51 =
3

2

P

2

Lm
J
ts; a0 = LsLr − Lm2

Since ids(k) and iqs(k) are the output variables, the matrix, H is,

H =

[
1 0 0 0 0

0 1 0 0 0

]
(4.2.14)

Rs, Rr and Ls, Lr are the resistances and inductances of the stator and rotor

respectively. Lm is the mutual inductance, ωr is the rotor speed in rad/sec and ts is

the sampling time in seconds. The parameters of the induction motor used in the

experimental work are given in Table. 4.1.
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Table 4.1: Parameters of the Induction Motor

Parameter Value

Power 0.75KW
Rated Speed, N 1390 rpm

Stator Resistance,R1 10.5Ω
Rotor Resistance,R2 10.03Ω

Stator Inductance, L1 0.5926mH
Rotor Inductance, L2 0.5863mH

Mutual Inductance, Lm 0.5495mH
Moment of Inertia, J 0.0013kgm2

Number of poles, P 4
Frequency, f 50Hz

4.3 Indirect field-oriented sensorless control of

three-phase induction motor

The sensorless control of three phase induction motor is accomplished using an

observer. Extended Kalman filters are very advantageous in estimation, especially in

the presence of noise. The induction motor is prone to noise in the form of

measurement noise and process noise. This is taken into account while modelling

the machine. The process noise and measurement noise are added to the

mathematical equation of the motor as shown in equation 4.3.1 and 4.3.2, thus

making the model stochastic.

x(k + 1) = f(x((k), u(k)) + w(k)

= f(x(k))x(k) + gu(k) + w(k)
(4.3.1)

y(k) = h(x(k))x(k) + v(k)

= Hx(k) + v(k)
(4.3.2)

w(k) and v(k) are Gaussian white noises having Q and R as the covariance matrices,

which are characterized by

E(w(i)) = 0 (4.3.3a)

E(v(i)) = 0 (4.3.3b)
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E(w(i)w(j)T ) = Qδ(i, j) (4.3.3c)

E(v(i)w(j)T ) = Rδ(i, j) (4.3.3d)

A block diagram of the proposed drive system is shown in Fig.4.1. The reference

speed is compared with the actual speed of the machine. This error drives a speed

controller, which generates the reference torque . The reference q-axis stator current

is calculated from the reference torque using the relation,

I∗qs =
2

3

2

P

Lr
Lm
∗ Te (4.3.4)

The reference d and q axes stator currents are converted to three phase abc reference

currents, using the 2-3-phase transformation and fed to a hysteresis current

controller. The hysteresis current controller compares the reference currents with

the actual currents of the motor and generate the gate signals for the inverter.

Induction
MotorV

dc

Current and
Voltage Sensors

i
sa

i
sb

v
sa

v
sb

Hysteresis
Current

Controller

PI
Controller

2 2

3
r
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L

P L

dq-
abc

-
+

+
+

dt

ref

ˆr

*
eT

*
qsI

*
dsI

*
abcI
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*
qsI

r
m

r

R
L

L

*
sl

e
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transform

Smoothed Kalman
Observer

d̂ri q̂ri d̂si q̂si ˆr

Rectifier Inverter

Three-phase
ac supply

dsv
qsv dsi qsi

Figure 4.1: Block diagram of the proposed drive system
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4.4 Offline Estimation Results

In the offline analysis, the induction machine is made to run in indirect vector control

mode and the stator voltages, currents and rotor speed are measured. Fig.4.2 shows

the d and q axis components of the measured stator voltage for a small period of time.

Figure 4.2: The stator stationary axis components of measured stator voltages, vds
and vqs

Fig.4.3 shows the corresponding d and q axis components of stator currents for

the same time period.

Figure 4.3: The stator stationary axis components of measured stator currents ids
and iqs
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4.4.1 Estimation using conventional extended Kalman

observer

The stator voltages and currents measured from the indirect vector controlled IM

drive are given as inputs to the observer based on conventional extended Kalman

filter algorithm and all the state variables are estimated. The algorithm is tested for

two different reference rotor angular velocities- one, a step reference of magnitude

75rad/s at t=0 and the second one a step whose magnitude changes from 20rad/s

to 75rad/s at t=2s and then to 50rad/s at t=4.5s. The estimation results with the

conventional EKF observer for the first reference speed are shown in Figs.4.4- 4.7.

Fig.4.4 shows the estimated and measured rotor speed. It can be seen that even

though the observer is tracking the measured speed in steady state, the estimation in

the transient region is erroneous.

Figure 4.4: Estimated and measured ωr for a reference speed of 75 rad/s(mech.) at
t=0s and with a conventional EKF observer

Figs.4.5 and 4.6 depicts the estimated and measured stator current components

at this reference speed.
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Figure 4.5: Estimated and measured ids for a reference speed of 75 rad/s(mech.) at
t=0s and with a conventional EKF observer

Figure 4.6: Estimated and measured iqs for a reference speed of 75 rad/s(mech.) at
t=0s and with a conventional EKF observer

Figure 4.7: Estimated idr and iqr for a reference speed of 75 rad/s(mech.) at t=0s
and with a conventional EKF observer

Fig.4.7 shows the observed values of rotor currents, as obtained from the

observer. The error between the measured and estimated values of rotor speed and

stator d and q axes components of currents are shown in Figs.4.8a,4.8b and 4.8c
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respectively.

(a)

(b)

(c)

Figure 4.8: Error between the measured and estimated values of a) ωr b)Ids and
c)Iqs using conventional Kalman observer
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As a second experiment, a time- varying reference speed is applied. Figs.4.9,

4.10,4.11, 4.12 show the estimated and measured values of ωr, the d and q axes stator

currents and the d and q axes rotor currents, respectively.

Figure 4.9: Estimated and measured ωr for reference speed of 20 rad/s(mech.)
from 0s to 2s and 75 rad/s from t=2s to 4.5s and 50rad/s from t=4.5s to 7s with
conventional EKF observer

Figure 4.10: Estimated and measured ids for reference speed of 20 rad/s(mech.)
from 0s to 2s and 75 rad/s from t=2s to 4.5s and 50rad/s from t=4.5s to 7s with
conventional EKF observer
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Figure 4.11: Estimated and measured iqs for reference speed of 20 rad/s(mech.)
from 0s to 2s and 75 rad/s from t=2s to 4.5s and 50rad/s from t=4.5s to 7s with
conventional EKF observer

Figure 4.12: Estimated idr and iqr for reference speed of 20 rad/s(mech.) from 0s
to 2s and 75 rad/s from t=2s to 4.5s and 50rad/s from t=4.5s to 7s with conventional
EKF observer

The error between the measured and estimated values of rotor speed and stator d

and q axes components are shown in Figs.4.13a,4.13b and 4.13c.
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(a)

(b)

(c)

Figure 4.13: Error between the measured and estimated values of a)ωr b)Idsand
c)Iqs using conventional Kalman observer
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4.4.2 Estimation using smoothed Kalman observer

Estimation is done using the smoothed Kalman observer, with the same values of

process and measurement noise covariance matrices. Fig.4.14 shows the measured and

estimated values of rotor speed. The estimated and measured stator currents as well

as the estimated rotor currents are shown in Figs.4.15,4.16 and 4.17 respectively. The

results show a noticeable improvement in the estimates using the smoothed algorithm,

which is prominent in the transient region.

Figure 4.14: Simulation results for a reference speed of 75 rad/s(mech.) at t=0s
and with smoothed Kalman observer

Figure 4.15: Estimated and measured ids for a reference speed of 75 rad/s(mech.)
at t=0s and with a smoothed Kalman observer
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Figure 4.16: Estimated and measured iqs for a reference speed of 75 rad/s(mech.)
at t=0s and with a smoothed Kalman observer

Fig.4.17 shows the estimates of rotor currents as obtained from the observer.

Figure 4.17: Estimated idr and iqr for a reference speed of 75 rad/s(mech.) at t=0s
and with a smoothed Kalman observer

The error between the measured and estimated values of rotor speed and stator d

and q axes components are shown in Figs.4.18a,4.18b and 4.18c.
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(a)

(b)

(c)

Figure 4.18: Error between the measured and estimated values of a)ωr b)Ids and
c)Iqs using smoothed Kalman observer
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Figs.4.19 shows the speed estimates for a varying reference speed. The

corresponding stator and rotor current estimates are shown in Fig.4.20,4.21,4.22

respectively.

Figure 4.19: Simulation Results for reference speed of 20 rad/s(mech.) from 0s to 2s
and 75 rad/s from t=2s to 4.5s and 50rad/s from t=4.5s to 7s with smoothed Kalman
observer

Figure 4.20: Estimated and measured ids for reference speed of 20 rad/s(mech.)
from 0s to 2s and 75 rad/s from t=2s to 4.5s and 50rad/s from t=4.5s to 7s with
smoothed Kalman observer
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Figure 4.21: Estimated and measured iqs for reference speed of 20 rad/s(mech.)
from 0s to 2s and 75 rad/s from t=2s to 4.5s and 50rad/s from t=4.5s to 7s with
smoothed Kalman observer

Figure 4.22: Estimated idr and iqr for reference speed of 20 rad/s(mech.) from 0s
to 2s and 75 rad/s from t=2s to 4.5s and 50rad/s from t=4.5s to 7s with smoothed
Kalman observer

The error between the measured and estimated values of rotor speed and stator

dand q axes components are shown in Figs.4.23a,4.23b and 4.23c.
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(a)

(b)

(c)

Figure 4.23: Error between the measured and estimated values of a)ωr b)Ids and
c)Iqs using smoothed Kalman observer
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A plot of the rotor flux estimate is shown in Fig. 4.24.

Figure 4.24: Plot of the d and q axis components of rotor flux using smoothed
Kalman observer

A load was applied to the machine through a resistive load connected to the dc

generator coupled to the induction motor. A resistor connected to the terminals of

the dc machine armature is used to vary the load torque applied to the induction

motor, based on TL =
K2

t ω

R
, where Kt is the torque constant of the dc machine, ω is

the angular velocity and R is the total resistance. The induction motor is run in

closed loop with a reference speed of 75rad/s and a load torque od 4Nm was applied

at 3s. The stator currents measured in this context were applied offline to the

conventional and smoothed Kalman observers for speed estimation. Fig.4.25a shows

the estimation performance with a conventional Kalman observer and Fig.4.25b

shows the improvement in the estimate with a smoothed Kalman observer. As can

be seen, the sped estimate with the conventional observer shows a reversal of speed,

whereas the smoothed estimate is found to track the measured speed except for an

initial overshoot. Here also, the covariance matrices are maintained the same.The

values of the noise covariance matrices used throughout the simulation are:

Q =



10−8 0 0 0 0

0 10−8 0 0 0

0 0 10−8 0 0

0 0 0 10−8 0

0 0 0 0 10−8


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and

R =

[
300 0

0 300

]

(a)

(b)

Figure 4.25: Simulation results for reference speed of 75 rad/s(mech.) with a torque
applied at t= 3s a) conventional and b) smoothed Kalman Observer
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4.5 Summary

This chapter presents a smoothed Kalman observer for estimating the rotor speed of

a three phase induction motor. A fifth order mathematical model of the motor is

used. The rotor speed, ωr is considered as a state variable and is governed by the

mechanical equation of the motor, rather than a constant. Single- stage smoothing

is applied to the extended Kalman filter algorithm and is used as an observer for

estimation of all the state variables. The stator currents, which are the output

variables are also observed, thus making the observer full- order.

The estimation results obtained with the smoothed Kalman observer are

compared with those obtained with a conventional extended Kalman observer.

Estimation results for two different reference speeds are presented. On comparison

of figures, 4.4 and 4.14, it can be seen that the speed estimation has improved on

incorporating smoothing. Smoothing has also given a better result in estimation of

the stator currents, ids and iqs also. This is evident from the error curves of Fig.

4.8a-4.8c and Fig. 4.18a-4.18c. Similar betterment is obtained for a varying

reference speed also. The improvement in the speed estimation is mainly in the

transient region of response, thus improving the dynamic response of the system.
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Chapter 5

Real-time implementation of the

smoothed Kalman algorithm based

full-order observer

This chapter presents the real- time implementation of the smoothed Kalman filter

based observer for indirect field-oriented control of three-phase induction motor. The

closed loop observer based system is implemented using the full-order model of the

machine. The results are compared with those of a conventional EKF based observer.

5.1 Introduction

The simulation studies performed in the previous chapter are validated experimentally.

The real- time implementations are performed with the help of a data acquisition card

of National Instruments. The full- order observer algorithm is tested for indirect field-

oriented control of induction motor in closed loop. The efficacy of the algorithm is

confirmed for various reference speeds, including low and zero speeds.

This chapter is organised as follows: Section 5.2 explains the hardware set up of the

system, section 5.3 shows the results of closed loop performance of the system with a

smoothed Kalman based observer. The performance of the system with a conventional

EKF based observer is elaborated in section 5.4. Section 5.5 summarises the chapter.

5.2 Experimental Setup

For the experimental validation of the offline estimation results, the speed estimate

given by the observer is used as feedback in the indirect field-oriented control of the

motor. A block diagram of the experimental set up is shown in Fig.5.1.
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Figure 5.1: Block diagram of the experimental set up

The following components are used for conducting the experimental validation of

sensorless indirect field- oriented control of induction motor drive.

• 3- phase, 4- pole, squirrel cage induction motor with parameters given in table

4.1

• a PC- based NI PCIe-6351X series board
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• a level- shifter board

• INST 2IV- sensor board is used for measuring the stator currents and voltages.

• a voltage source inverter stack of Semikron.

• a tachogenerator with 15V/1500rpm, measures the rotor speed, which is used

only to confirm the estimations.

The control and estimation algorithms are implemented using Real- Time Windows

Target of Matlab/ Simulink. An INST 2IV- sensor board of Entuple Technologies

is used to measure the instantaneous values of stator voltages and currents of the

motor. These analog voltages and currents are converted into digital form and fed to

the computer via the NI PCIe- 6351 X- Series card. The rotor speed estimate from

the observer is fed back to the FOC closed loop system, after converting to digital

form. The error between the reference and actual speed is given to PI controller and

is used to generate the q- axis component of stator current. The d-axis component

is kept constant proportional to the motor rated flux. These currents are converted

into stationary abc reference frame by the dq- abc block. The error between these

reference stator currents and the actual measured currents is given to a hysteresis

current controller (HC) which generates the firing pulses for the voltage source inverter

(VSI), which drives the motor. The actual test bed is displayed in Fig.5.2.

Experiments are conducted with various reference speeds, ranging from high to very

low, including persistent zero speed. The estimates obtained from the observer based

on smoothed Kalman filter algorithm and conventional Kalman filter algorithm are

discussed in sections 5.3 and 5.4.
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Figure 5.2: Experimental set up

5.3 Experimental results of field-oriented control

based on a fifth order smoothed Kalman

observer

The full order observer based on smoothed Kalman filter algorithm is tested online

for an indirect field- oriented control of induction motor. The closed loop system is

checked for various reference speeds. A tacho-generator measures the actual speed of

the machine, which is used for comparison purpose only. Figs.5.3- 5.8 show the rotor

speed estimated using the proposed observer for different reference speeds.

In Fig.5.3, the estimates of rotor speed, ωr, and stator currents, Ids, Iqs are shown.

Fig.5.3c shows a plot of the rotor fluxes, ψdr and ψqr.
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(a)

(b)

(c)

Figure 5.3: Experimental results for a reference speed of 75rad/s(mech.) a) Rotor
speed, ωr b)Îds & Îqs c)Îdr & Îqr

51



(a)

(b)

(c)

Figure 5.4: Experimental results for a reference speed of 30rad/s(mech.)a) ωr b)Îds
& Îqs c)Îdr & Îqr
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(a)

(b)

(c)

Figure 5.5: Experimental results for a reference speed of 10rad/s(mech.)a) ωr b)Îds
& Îqs c)Îdr & Îqr
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(a)

(b)

(c)

Figure 5.6: Experimental results for a reference speed of 5 rad/s(mech.)a) ωr b)Îds
& Îqs c)Îdr & Îqr
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(a)

(b)

(c)

Figure 5.7: Experimental results for a reference speed which changes from
75rad/s(mech) to 30rad/s(mech) at 3s and then to 75rad/s(mech) at 6s a) ωr b)Îds &
Îqs c)Îdr & Îqr
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(a)

(b)

(c)

Figure 5.8: Experimental results for a reference speed which changes from
75rad/s(mech) to 0rad/s(mech) at 5s and continues at zero speed for 5s) a) ωr b)Îds
& Îqs c)Îdr & Îqr
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5.4 Experimental results of field-oriented control

based on a fifth order conventional Kalman

observer

The same experiment is conducted with a conventional EKF based observer and

results are obtained. The conventional EKF has stages of prediction and filtering

only. Thus the outputs till the present instant of time only are utilized for estimation.

The estimation results are compared with those obtained with the proposed smoothed

Kalman observer. The estimation with conventional EKF is done with the same

process and measurement error covariance matrices as is used with the proposed

observer. The results for the same reference speeds are depicted in Figs.5.9-5.14.

It can be seen that the estimation is better with the smoothed observer and the

improvement is prominent in the transient region. The steady state results are more

or less the same.

To validate the superiority of the smoothed Kalman observer, the mean square errors

in both the cases are calculated and compared. Table 5.1 consolidates the mean

squared errors(MSE) of these estimations.

Table 5.1: Mean Square Errors of estimation with and without smoothing (fifth
order model of IM)

Ref.Speed(rad/s) Mean Squared Error(rad/s) % Decrease

CEKF SKF

75 85.74 31.51 63.2%

30 57.55 5.086 91.1%

10 10.21 5.541 45.72%

5 10.01 7.719 22.70%

75- 0 101.6 85.36 15.9%

75-30-75 36.56 24.9 11.66%
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(a)

(b)

(c)

Figure 5.9: Experimental results for a reference speed of 75rad/s(mech.) a) Rotor
speed, ωr b)Îds & Îqs c)Îdr & Îqr
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(a)

(b)

(c)

Figure 5.10: Experimental results for a reference speed of 30rad/s(mech.)a) ωr b)Îds
& Îqs c)Îdr & Îqr
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(a)

(b)

(c)

Figure 5.11: Experimental results for a reference speed of 10rad/s(mech.) a) ωr
b)Îds & Îqs c)Îdr & Îqr
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(a)

(b)

(c)

Figure 5.12: Experimental results for a reference speed of 5 rad/s(mech.) a) ωr
b)Îds & Îqs c)Îdr & Îqr
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(a)

(b)

(c)

Figure 5.13: Experimental results for a reference speed which changes from
75rad/s(mech) to 30rad/s(mech) at 3s and then to 75rad/s(mech) at 6s) a) ωr b)Îds
& Îqs c)Îdr & Îqr
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(a)

(b)

(c)

Figure 5.14: Experimental results for a reference speed which changes from
75rad/s(mech) to 0rad/s(mech) at 5s and continues at zero speed for 5s) a) ωr b)Îds
& Îqs c)Îdr & Îqr
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5.5 Summary

This chapter presents the results of real- time implementation of a smoothed

Kalman observer based indirect field-oriented control of induction motor. The

results obtained are compared with those obtained with a conventional EKF based

observer. Table 5.1 consolidates the mean squared errors(MSE) of these estimations.

Considering the performances of the two observers- one, based on conventional EKF

and the second one which incorporates a single-stage smoothing algorithm, the

following comments can be made:

• The performances of estimation at steady-state of both the algorithms are close

to each other.

• The goodness of the smoothing algorithm over the conventional one is evident

during the transient states, such as a sudden change in reference speed.

• The measurement and process error covariances used throughout the

experiments are the same. Hence the improvement in estimation is solely due

to the additional data included in the smoothing algorithm.

• Improved results are obtained at low and zero- speeds.
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Chapter 6

Smoothed Observer for a reduced model

of the induction motor

This chapter explores the application of the smoothed Kalman observer algorithm for

a reduced order model of the induction motor. The full- order observer presented in

chapter 4 is of fifth order and hence the complete closed loop system implementation

is computationally intensive. Hence a reduced order system is used here, which is of

third order.

6.1 Introduction

An accurate information of rotor speed is desired for operation of vector controlled

induction motor drive. The rotor speed can be estimated using voltage and current

signals. One of the popular model- based estimation methods is the model reference

adaptive system(MRAS). Numerous MRAS methods based on rotor flux, back emf

and reactive power [5, 43, 104–106] are proposed in literature. However, the

rotor-flux MRAS introduced by Schauder [5] remains the most popular and a lot of

work is focussed on improvement of its performance. Parameter sensitivity and pure

integration problems limit its performance at low and zero speed.

Extended Kalman filter(EKF) filters the system from noise and uncertainties.

MRAS with EKF is found to give a high dynamic response in the presence of noise

and parameter variations. Two mathematical models of the induction motor are

used to estimate the flux and speed of the rotor. Both the models are of second

order, making computation easy. The first model, which is called the voltage model,

is independent of the rotor speed. Hence, this model is used as the reference model

from which the reference values of rotor fluxes are calculated using the stator

voltages and currents. The current model is dependent on rotor speed, which makes

it apt to be used as the observer. This second order model is made third order and

non- linear, by choosing the rotor speed also as a state variable. The smoothed

Kalman algorithm is used to estimate the rotor fluxes and speed.

This chapter is organized as follows: Section 6.2 explains the dynamic model of the

65



induction motor, section 6.3 elaborates the application of the smoothed Kalman

observer in indirect field oriented control of induction motor. Section 6.4 gives the

offline estimation results of the extended Kalman-MRAS system for various

reference speeds, using the conventional method (6.4.1) and with smoothing

incorporated (6.4.2). Section 6.5 concludes the chapter.

6.2 Dynamic Model of the Induction Motor

The voltage model of the induction motor given in eqn(6.2.1) [86], being independent

of rotor speed, is used to generate the reference fluxes of the machine. The current

model(eqn.6.2.2) is dependent on the rotor speed. Hence this model is used to estimate

the rotor fluxes and speed.[
pψsdr

pψsqr

]
=

Lr
Lm

[[
vsds

vsqs

]
−

[
Rs + σLsp 0

0 Rs + σLsp

][
isds

isqs

]]
(6.2.1)

[
pψsdr

pψsqr

]
=

Lr
Lm

[
−1
Tr
−ωr

ωr
−1
Tr

][
ψsdr

ψsqr

]
+
Lm
Tr

[
isds

isqs

]
(6.2.2)

(6.2.2) is extended to include ωr also as a state variable, thus making the system third

order. These models are discretized using Euler’s backward formula,

x(k + 1)− x(k)

ts
= ẋ(t) (6.2.3)

The discretised augmented state model is given in (6.2.4).
ψsdr(k + 1)

ψsqr(k + 1)

ωr(k + 1)

 =


1− RrTs

Lr
−ωrTs 0

ωrTs 1− RrTs
Lr

0

Ktiqs −Ktids 1



ψsdr(k)

ψsqr(k)

ωr(i)

 +


LmRr

Lr
Ts 0

0 LmRr

Lr
Ts

0 0


[
isds(k)

isqs(k)

]

(6.2.4)

6.3 Indirect field-oriented control of induction

motor with a smoothed Kalman observer

A stochastic model is used to consider the uncertainties and noise involved in a

practical machine. w and v in eqns. 6.3.1 and 6.3.2 are the Gaussian white noises
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added to accomplish this.

x(k + 1) = f(x(k), u(k)) + w(i) (6.3.1)

y(k) = H(x(k)) + v(k) (6.3.2)

w(k) and v(k) have covariance matrices, Q and R which are characterised by

E(w(i)) = 0 (6.3.3a)

E(v(k)) = 0 (6.3.3b)

E(w(i)w(j)T ) = Qδ(i, j) (6.3.3c)

E(v(i)w(j)T ) = Rδ(i, j) (6.3.3d)

The rotor fluxes calculated from the voltage model in equation (6.2.1) are taken

as the reference fluxes. The third- order current model(eq.6.2.4) is the adjustable

model, since it is dependent on rotor angular velocity, ωr. Since reference values of

the rotor fluxes are available, they are chosen as outputs of the system. The direct

and quadrature axis rotor fluxes, ψdr and ψqr are the outputs. Hence the output

matrix, H is

H =

[
1 0 0

0 1 0

]
The error between the reference and actual fluxes are used in the implementation of

the extended Kalman filter algorithm. Fig.6.1 illustrates the structure of the proposed

speed estimator using smoothed Kalman observer.

Voltage
Model

Current
Model

+
-

Smoothed
EKF

Induction
Motor

Vs

Is

ˆ r

*
r

ˆr

Vs

Figure 6.1: Structure of the estimator using smoothed Kalman observer
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In Fig.6.1, voltage equations and current equations are as defined in equations

6.2.1 and 6.2.2 respectively.

6.4 Results of Offline Estimation

In the offline estimation, the machine runs in vector control mode without the

observer and the stator voltages, currents and rotor speed are measured. The

measured stator voltages and currents are given as inputs to the observers using

conventional EKF and EKF with smoothing algorithm. The estimated rotor speed

in both cases are compared with the measured speed. The comparison is done for

two different reference speeds. Speed estimates for these reference speeds with the

conventional EKF algorithm and the smoothed EKF, along with the estimated and

calculated rotor fluxes are given in sections 6.4.1 and 6.4.2 respectively.

6.4.1 Speed and flux estimation using conventional Extended

Kalman observer

During the offline estimation process, the motor is subjected to two different reference

speeds- one, a step reference of magnitude 75rad/s at t=0 and the second one a step

whose magnitude changes from 20rad/s to 75rad/s at t=2s and then to 50rad/s at

t=4.5s. The rotor speed to be fed back in the closed loop indirect FOC is estimated

using a conventional EKF. This involves only the prediction and filtering stages. The

process and measurement error covariance matrices are selected to be diagonal to

simplify the determination process. Estimation is done with two different reference

speeds. The estimated rotor speed and measured speed for a reference speed of

75rad/s., using the conventional Kalman observer are shown in Fig.6.2a. The d and

q-axes components of the rotor fluxes as observed from the extended Kalman observer

are compared with those calculated from the voltage model of the machine (equation

6.2.1). The corresponding results are shown in Figs. 6.2b and 6.2c.
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(a)

(b)

(c)

Figure 6.2: Simulation results for a reference speed of 75 rad/s(mech.) at t=0s and
with a conventional Kalman observer a) Estimated and measured ωr ,Estimated and
calculated values of rotor fluxes, b)ψdr & ψ̂dr and c)ψqr & ψ̂qr
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The error in estimation of rotor speed and the d and q- axis rotor fluxes are shown

in Fig.6.3

(a)

(b)

(c)

Figure 6.3: Error in estimation of a)ωr b)ψdrc)ψqr

Estimation with the conventional EKF at a changing reference speed is performed
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next. This is a varying reference speed- a step whose magnitude changes from 20rad/s

to 75rad/s at t=2s and then to 50rad/s at t=4.5s. The observations are depicted in

figures 6.4a, 6.4b and 6.4c.

(a)

(b)

(c)

Figure 6.4: Estimated and measured values of a) rotor speed, ωr ,rotor fluxes,b) ψdr
& ψ̂dr and c) ψqr & ψ̂dr
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The errors in estimation are shown in Fig.6.5.

(a)

(b)

(c)

Figure 6.5: Error in estimation of a)ωr b)ψdrc)ψqr

72



The process and noise covariance matrices used for estimation are

Q =


0.0000001 0 0

0 0.0000001 0

0 0 0.0000001

 (6.4.1)

R =

[
150 0

0 150

]
(6.4.2)

These matrices are used in estimation with smoothed Kalman observer also.

6.4.2 Smoothed Kalman observer for a reduced model of

three phase induction motor

A smoothed Kalman filter based observer is used to estimate the states of the motor.

Smoothing is performed with one stage of output. The outputs at the (k+1)st instant

are used to smooth those at the kth instant. Here also, the simulation is conducted

for the same sets of reference speed and the same voltage and current measurements

used with the conventional EKF. The values of the process and measurement noise

covariance matrices are the same as those used in section 6.4.1. The estimated value

of rotor speed, ωr for a reference speed of 75rad/s is shown in Fig. 6.6. The estimated

and calculated rotor fluxes, ψdr and ψqr for this reference speed are shown in figures

6.7a and 6.7b.

Figure 6.6: Estimated and measured values of rotor speed, ωr, for a reference speed
of 75rad/s
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(a)

(b)

Figure 6.7: Estimated and calculated values of rotor fluxes a)ψdr and b) ψqr

The corresponding error in estimation is shown in Fig. 6.8. It is clear from the

error graphs that the errors with a smoothed Kalman observer are less compared to

that with a conventional EKF. Since all other parameters are maintained constant,

this improvement in estimation is due to the additional data made use of in smoothing.

74



(a)

(b)

(c)

Figure 6.8: Error in estimation of a)ωr b)ψdrc)ψqr
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The simulation with a different reference speed was done with the smoothed

Kalman observer also. The results of estimation are shown in figures 6.9a, 6.9b and

6.9c.

(a)

(b)

(c)

Figure 6.9: Estimated and calculated values of a) rotor speed, ωr and rotor fluxes,
b) ψdr c) ψqr
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The corresponding errors are shown in Fig.6.10.

(a)

(b)

(c)

Figure 6.10: Error in estimation of a) ωr b) ψdrc) ψqr
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6.5 Summary

This chapter presents the offline estimation performances of an indirect vector

controlled induction motor drive using observers based on conventional EKF and

smoothing based Kalman algorithm. The observer is based on a reduced order

mathematical model of the induction motor. The results obtained show an

improvement in the estimation with smoothing algorithm. The improvement is

prominent in the transient region. Since the error covariance matrices are kept

constant, the betterment is due to the additional data considered for smoothing.
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Chapter 7

Real-time implementation of the

smoothed Kalman observer based on a

reduced order model of induction motor

This chapter presents the real- time implementation of the smoothed Kalman filter

based observer for indirect field-oriented control of three-phase induction motor. The

closed loop observer based system is implemented using the reduced-order model of the

machine. The results are compared with those of a conventional EKF based observer.

7.1 Introduction

The experimental validation of the simulation studies performed in the previous

chapter (chapter 6) is done. The experimental set up of the previous experiment

itself is used here also. The use of a reduced model of the induction motor alleviates

the computational complexity of a fifth order system. The efficiency of the

algorithm is confirmed for various reference speeds, including low and zero speeds.

This chapter is organised as follows: Section 7.2 explains the hardware set up of the

system and section 7.3 shows the results of closed loop performance of the system

with a smoothed Kalman based observer. The performance of the system with a

conventional EKF based observer is elaborated in section 7.4. Section 7.5

summarises the chapter.

7.2 Experimental Setup

A block diagram of the experimental set up is shown in Fig.7.1. The hardware setup

is the same as that used for validating the fifth order observer in chapter 5.

79



Rectifier
Three-phase

Inverter

R

Y

B

Voltage
Sensors

Current
Sensors

Interfacing Circuit

Tacho
generator

Gate Driver

A/ D

Hysteresis Current
Controller

Digital
I/ O

dq - abc

abc- dq

Smoothened
Kalman Observer

*
dsI

*
qsI

PC with NI PCIe
6351X Series Card

ˆ
r

dsv qsv
dsi qsi

*
abcI

abcI &abc abcI V

Speed
Controller

ref

dt

sl drqr

Figure 7.1: Block diagram of the experimental set up

Reference flux is generated using the voltage model of eqn.(6.2.1). The third-

order observer model will give the same values of flux only when the rotor speed is

the actual speed of the motor. Thus the error between the reference flux and the

estimated flux is used as the error in the EKF algorithm.

7.3 Experimental results of field-oriented control

based on a reduced order smoothed Kalman

observer

The smoothed Kalman filter algorithm is tested online for various challenging reference

speeds, in closed loop. The speed estimate from the observer is used as feedback

signal to complete the closed loop of the indirect vector controlled machine. A tacho-

generator measures the actual speed of the machine which is used for comparison

purpose only.

The estimation results for various reference speeds are shown in Figs. 7.2- 7.7
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(a)

(b)

(c)

Figure 7.2: Experimental results for a reference speed of 75rad/s(mech.) a) ωr b)
ψdr c) ψqr
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(a)

(b)

(c)

Figure 7.3: Experimental results for a reference speed of 30rad/s(mech.)a) ωr b) ψdr
c) ψqr
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(a)

(b)

(c)

Figure 7.4: Experimental results for a reference speed of 10rad/s(mech.)) a) ωr b)
ψdr c) ψqr
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(a)

(b)

(c)

Figure 7.5: Experimental results for a reference speed of 5rad/s(mech.) a) ωr b) ψdr
c) ψqr
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(a)

(b)

(c)

Figure 7.6: Experimental results for a reference speed of 75rad/s(mech) changes to
30 rad/s at 3s and back to 75 rad/s at 6s a) ωr b) ψdr c) ψqr
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(a)

(b)

(c)

Figure 7.7: Estimated Speed from the closed loop observer for a reference speed
which changes from 75rad/s(mech) to 0rad/s(mech) at 5s and continues at zero speed
for 5s a) ωr b) ψdr c) ψqr
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7.4 Experimental results of field-oriented control

based on a reduced order conventional Kalman

observer

A comparison of the results obtained with smoothed Kalman observer is done with

those obtained with a conventional Kalman observer. The experiments are conducted

(a)

(b)

(c)

Figure 7.8: Experimental results for a reference speed of 75rad/s(mech.)a) ωr b) ψdr
c) ψqr
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for the same reference speeds and same values of process and measurement noise

covariance matrices. The results obtained are depicted in Figs. 7.8-7.13.

(a)

(b)

(c)

Figure 7.9: Experimental results for a reference speed of 30rad/s(mech.)a) ωr b) ψdr
c) ψqr
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(a)

(b)

(c)

Figure 7.10: Experimental results for a reference speed of 10rad/s(mech.)) a) ωr b)
ψdr c) ψqr
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(a)

(b)

(c)

Figure 7.11: Experimental results for a reference speed of 5rad/s(mech.) a) ωr b)
ψdr c) ψqr
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(a)

(b)

(c)

Figure 7.12: Experimental results for a reference speed of 75rad/s(mech) changes
to 30 rad/s at 3s and back to 75 rad/s at 6s a) ωr b) ψdr c) ψqr
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(a)

(b)

(c)

Figure 7.13: Estimated Speed from the closed loop observer for a reference speed
which changes from 75rad/s(mech) to 0rad/s(mech) at 5s and continues at zero speed
for 5s a) ωr b) ψdr c) ψqr
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7.5 Summary

In this chapter, a smoothed Kalman observer for indirect field-oriented control of

three phase induction motor, based on a reduced order model is discussed. The

results obtained are compared with those obtained with a conventional Kalman filter.

The comparison is done from the mean squared errors obtained in both the cases.

The mean squared errors for various reference speeds are shown in table 7.1. Since

the Q and R values are same in both SKF and CEKF, the steady state performances

are more or less same, but there is prominent improvement in the transient response.

Table 7.1: Comparison of estimation results using a smoothed and conventional
EKF (reduced order model of motor)

Ref. Speed(rad/s) Mean Squared Error(rad/s) % decrease

CEKF SKF

75rad/s 341.7 5.53 98.3%

30rad/s 22.13 15.03 32.1%

10rad/s 6.25 3.41 45.44%

5rad/s 4.12 2.13 48.3%

75- 0 974.36 300.98 69.2%

75-30-75 573.15 241.08 57.93%
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Chapter 8

A Smoothed Kalman Filter-trained

Recurrent Neural Network for Speed

Estimation of Induction Motor

This chapter explores the application of a smoothed Kalman-trained neural network

observer for a reduced order model of the induction motor. The recurrent neural

network, unlike feedforward neural netwoks, has atleast one feedback loop, which makes

it suitable for systems which are time-varying. The recurrent neural-network gets

trained continuously, making the system real-time.

8.1 Introduction

Neural networks having the ability to mimic human brain can learn and process

information and can hence be used advantageously for speed estimation. Different

types of neural networks in a variety of configurations are available in the

literature [107]. Most widely used classes of networks in the area of identification are

i) multilayer networks and ii) recurrent networks. Multilayer networks, in which

information flow in the forward direction only are successful in pattern recognition

problems while recurrent networks have been useful in associative memories as well

as for solutions of optimisation problems. Multilayer networks represent static

nonlinear maps whereas recurrent networks represent nonlinear dynamic feedback

systems. A multilayer neural network will have an input layer, a hidden layer and an

output layer. The neurons in all these layers are interconnected by means of

weights, which are measures of the information flowing through the network. All

neurons except those in the input layer will have an activation function, like a

sigmoidal function. The weights of the networks are adjusted to minimise a suitable

function of the error between the actual output and the desired output. This results

in a mapping function between the outputs and inputs. Hence, multilayer networks

provide versatile input-output maps with the elements of the weight matrices as

parameters.

Recurrent neural networks, on the other hand, are not feedforward networks. They

95



will have atleast one feedback loop. These networks have the ability to deal with

time-varying input or output through its own temporal operation [95, 96]. A

recurrent neural network, with its training operation running continuously is called

a real-time recurrent neural network.

A smoothed Kalman filter based algorithm is used here to train the recurrent neural

network for speed and flux estimation of three phase induction motor. The learning

process starts at the onset of estimation process and the duration of training in

every step is definite, which is equal to the duration of execution of training

algorithm, once. This makes the estimation process feasible with real-time

applications.

This chapter is organized as follows: Section 8.2 explains the structure of a general

real-time recurrent neural network. The training algorithm is explained in section 8.3.

Section 8.4 explains the application of the proposed training algorithm on the three

phase induction motor model. Section 8.5 elaborates the offline estimation results with

a conventional EKF algorithm (8.5.1) and the proposed algorithm(8.5.2). Section 8.6

concludes the chapter.

8.2 A General Real-time Recurrent Neural

Network

The structure of a real-time recurrent neural network is depicted in Fig.8.1. This

network has a total of N neurons. The outputs of these N neurons are fedback with

a unit time-delay. In addition, there are M external inputs. Thus, there are (M+N)

inputs to the network. Out of the total N neurons, P neurons may be considered as

output neurons and the remaining (N-P) neurons act as hidden neurons.

X(k) denotes the Mx1 external input vector applied to the network at the kth discrete

instant and Y (k+1) denotes the corresponding output vector produced one time-step

later, at the time instant, (k+ 1). The external input vector, X(k) and the one time-

step delayed output vector together form the (M + N)x1 input vector, U(k). Thus,

U(k) =
[
Y1(k) Y2(k) ...Yn(k) X1(k) X2(k)...XM(k)

]T
The output of any neuron, j at a discrete time, (k + 1) is given by

Yj(k + 1) = f(netj(k)) (8.2.1)
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Figure 8.1: A Real-time Recurrent Neural Network

where, f(.) is the activation function of the neuron and

netj(k) =

(M+N)∑
i=1

wjiUi(k) (8.2.2)

denotes the net input into the jth neuron. These two equations together constitute

the entire dynamics of the network.
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8.3 Parameter Based Smoothed Kalman Filter

Algorithm for Training Recurrent Neural

Network

A parameter estimation problem is similar to training a neural network where the

error between the actual and the desired outputs are minimised, based on some error

function.

Consider a real-time recurrent neural network, without any hidden neurons as shown

in Fig. 8.2.

1z

1

N

1( )x k

( )Mx k

External
Inputs

Outputs

1z

Figure 8.2: A real-time recurrent neural network without hidden neurons

The desired values of the output at the kth instant is given by a column vector,

d(k) =
[
d1(k) d2(k) ...dN(k)

]T
(8.3.1)

f(k) =
[
f1(net1) f2(net2)...fN(netN)

]T
(8.3.2)

denotes a vector of outputs of the neurons. Error vector can be written as

e(k) = f(k)− d(k) (8.3.3)
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This error can be minimised by defining a training cost function, defined by

E(k) =
1

2
e(k)TS(k)e(k) (8.3.4)

where S(k) is a user specified non- negative definite weighting matrix. W (k) represents

the weights of the network which can be trained, and is of dimension, M . The updated

estimate of the weight vector at instant, k is denoted by Ŵ (k). P (k), the error

covariance matrix is updated at each step and stored. This covariance matrix is made

use of to model the interaction among weights in the network. P(k) at the onset of

training procedure is set as P (0), which is diagonal. Training algorithm consists of

the following steps:

1. At the kth step, the inputs and outputs of recurrent nodes are transmitted

through the network and f(k) is computed.

2. e(k), the error vector, is computed and the dynamic derivatives of each

component of f(k), with respect to the current weight estimate, ŵ(k) are

evaluated.

3. These derivatives are arranged into an MXN matrix, H(k) as

H(k) =



δf1(net1)
δW1

........ δfn(netn)
δW1

.

.

.

.
δf1(net1)
δWm

........ δfn(netn)
δWm


(8.3.5)

4. The updated weights, ŵ(k) and error covariance matrix, P (k) are obtained by

the recursive Kalman filter algorithm:

A(k) = [η(k)S(k)−1 +H(k)TP (k)H(k)]−1 (8.3.6)

K(k) = P (k)H(k)A(k) (8.3.7)

Ŵ (k + 1) = Ŵ (k) +K(k)e(k) (8.3.8)

P (k + 1) = P (k)−K(k)H(k)TP (k) +Q(k) (8.3.9)
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η(k) is the learning rate of the neural network.

5. The weights updated using EKF are refined using the smoothing algorithm.

The smoothed estimate of weight is obtained using the following equations:

M(k) = P (k)HTP−1 (8.3.10)

Ŵs(k) = Ŵ (k) +M(k)(Ŵ (k)−W (k)) (8.3.11)

where M(k) is the smoothing gain matrix.

8.4 Speed Estimation Using Real-Time Recurrent

Neural Network

Speed estimation makes use of two mathematical models for rotor flux calculation.

First one relates rotor flux to terminal voltages and current and is independent of

speed. The second one represents the rotor as a state space model and contains rotor

speed variable. These two models are:[
pψsdr

pψsqr

]
=

Lr
Lm

[[
vsds

vsqs

]
−

[
Rs + σLsp 0

0 Rs + σLsp

][
isds

isqs

]]
(8.4.1)

[
pψsdr

pψsqr

]
=

Lr
Lm

[
−1
Tr
−ωr

ωr
−1
Tr

][
ψsdr

ψsqr

]
+
Lm
Tr

[
isds

isqs

]
(8.4.2)

ψdr and ψqr at any instant can be calculated from the first model. The second model

will give the same values of ψdr and ψqr, only if ωr is the actual speed of the machine.

The actual speed of the machine can be obtained by adjusting the value of ωr until

the two fluxes become equal. This is accomplished by discretizing eqn(8.4.2) and

representing it as a real- time recurrent network. The outputs of the network are the

fluxes calculated using eqn(8.4.2) and the reference outputs are the fluxes computed

using eqn(8.4.1). Discretization of eqn(8.4.2) yields[
ψdr(k + 1)

ψqr(k + 1)

]
=

[
1− R1ts

Lr
−ωrts

ωrts 1− R1ts
Lr

][
ψdr(k)

ψqr(k)

]
+

[
RrLmts
Lr

0

0 RrLmts
Lr

][
ids(k)

iqs(k)

]
(8.4.3)

A recurrent neural network for this system will have the structure given in Fig.8.3.

There are two neurons, whose outputs are time- delayed and fed back as inputs, along

with two external inputs. The external inputs are the stator currents, ids and iqs. The
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outputs of the network are the rotor fluxes, ψdr and ψqr. The weights of the network

are identified from eqn(8.4.3) and are shown in Fig.8.3.
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Figure 8.3: Real-time Recurrent Neural Network for Speed Estimation

The outputs of the network can be expressed as

y1(k + 1) = ψdr(k + 1) = f1(net1) (8.4.4)

y2(k + 1) = ψqr(k + 1) = f2(net2) (8.4.5)

where,

net1 = w11ψdr(k) + w12ψqr(k) + w13ids(k) (8.4.6)

net2 = w21ψdr(k) + w22ψqr(k) + w23iqs(k) (8.4.7)

f1 and f2 are the non-linear activation functions, which in this case are taken as linear

functions with unity gain. Thus,the output vector can be written as,

Y (k + 1) =
[
y1(k + 1) y2(k + 1)

]T
(8.4.8)
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The desired output vector can be identified as

D(k + 1) =
[
ψdr(k + 1) ψqr(k + 1)

]T
(8.4.9)

from eqn.8.4.1. Error vector,

e(k) = Y (k)−D(k) (8.4.10)

Among the six weights involved, only two are dependent on speed and hence only these

two weights need to be considered as trainable, keeping the other weights constant,

during the estimation process. The weight matrix is

w(k) =
[
w11(k) w12(k) w13(k) w21(k) w22(k) w23(k)

]T
(8.4.11)

The dynamic derivative matrix is

H(k) =



δy1
δw11

0
δy1
δw12

0
δy1
δw13

0

0 δy2
δw21

0 δy2
δw22

0 δy2
δw23


(8.4.12)

where,
δy1
δw11

=
δf1(net1)

δnet1
.
δnet1
δw11

= ψdr(k) (8.4.13)

δy1
δw12

=
δf1(net1)

δnet1
.
δnet1
δw12

= ψqr(k) (8.4.14)

δy1
δw13

=
δf1(net1)

δnet1
.
δnet1
δw13

= ids(k) (8.4.15)

δy2
δw21

=
δf2(net2)

δnet2
.
δnet2
δw21

= ψdr(k) (8.4.16)

δy2
δw22

=
δf2(net2)

δnet2
.
δnet2
δw22

= ψqr(k) (8.4.17)

δy2
δw23

=
δf2(net2)

δnet2
.
δnet2
δw23

= ıqs(k) (8.4.18)
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Now, rotor speed can be estimated as

ωr(k + 1) =
w21(k + 1)

ts
(8.4.19)

8.5 Offline estimation

To test the observer, the voltages and currents measured from the indirect field-

oriented controlled induction motor are used. These voltages and currents are the

inputs to the observer. As in the previous studies, two different reference voltages are

used for testing- one, a step speed of 75rad/s at t=0, and a second one which is 20rad/s

till t=2s, then changes to 75rad/s and then jumps to 50rad/s at t=4.5s. Initially, the

results with a conventional EKF trained recurrent neural network is observed. The

change in estimation when smoothing is incorporated is then observed. The values of

the process and measurement noise covariance matrices, Q and R, used are

Q =

[
10−6 0

0 10−6

]

and

R =

[
150 0

0 150

]

8.5.1 Conventional EKF trained recurrent neural network

observer

Here, a conventional EKF algorithm is used to train the recurrent neural network.

The updation of weights is done according to equations 8.3.6 - 8.3.9. The results

obtained for a step reference speed of 75rad/s are shown in Fig.8.4.
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(a)

(b)

(c)

Figure 8.4: Estimation results with a conventional EKF trained recurrent neural
network a)ωr & ω̂r b) ψdr & ψ̂dr c) ψqr & ψ̂qr

The errors in estimation of rotor speed, ωr, d and q axis rotor fluxes, ψdr and ψqr

are shown in Figs.8.5a, 8.5b and 8.5c respectively.
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(a)

(b)

(c)

Figure 8.5: Error in estimation of a)ωr b) ψdr and c) ψqr

The algorithm is tested for a varying reference speed, which changes from 20rad/s

to 75 rad/s at t=2.5s, and then to 50rad/s at t=4.5s. The estimation results are

shown in Figs. 8.6a, 8.6b and 8.6c.
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(a)

(b)

(c)

Figure 8.6: Estimation results with a conventional EKF trained recurrent neural
network a)ωr & ω̂r b) ψdr & ψ̂dr c) ψqr & ψ̂qr

The error in estimation of the three quantities are shown in Figs.8.7a, 8.7b and

8.7c.
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(a)

(b)

(c)

Figure 8.7: Error in estimation of a)ωr b) ψdr and c) ψqr with a varying reference
speed

107



8.5.2 Smoothed Kalman filter trained recurrent neural

network observer

The recurrent neural network is trained by incorporating single-stage smoothing into

the EKF algorithm. This is based on the equations, 8.3.10- 8.3.11. The output

measurement of the present instant is used to smooth the estimation of the previous

instant. This additional data involved is bound to make the estimate better. This

can be verified from the estimation results as well as the error.

(a)

(b)

(c)

Figure 8.8: Estimation results with a smoothed EKF trained recurrent neural
network a)ωr & ω̂r b) ψdr & ψ̂dr c) ψqr & ψ̂qr

The estimated rotor speed and rotor fluxes for a step reference speed of 75rad/s
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are shown in Fig.8.8. The rotor fluxes are compared with those obtained from the

voltage model. These are taken as the true fluxes for error calculation in the EKF

algorithm. The corresponding errors are shown in Figs.8.9a, 8.9b and 8.9c.

(a)

(b)

(c)

Figure 8.9: Error in estimation of a)ωr b) ψdr and c) ψqr
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The estimation is performed for a second reference speed also. This reference is the

same as that was used in the previous section with conventional EKF. The reference

is a varying step- the speed is 20rad/s from 0 to 2s, then the reference value jumps

to 75rad/s at t=2s and continues at this speed till t= 4.5s. At t= 4.5s, the reference

speed becomes 50rad/s and continues at this speed till t = 7s. The estimation results

are shown in Figs. 8.10a, 8.10b and 8.10c.

(a)

(b)

(c)

Figure 8.10: Estimation results with a smoothed EKF trained recurrent neural
network a)ωr & ω̂r b) ψdr&ψ̂dr c) ψqr&ψ̂qr

The corresponding errors are shown in Figs.8.11a, 8.11b and 8.11c.
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(a)

(b)

(c)

Figure 8.11: Error in estimation of a)ωr b) ψdr and c) ψqr
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Finally, a load was applied to the machine through a resistive load connected to

the dc generator coupled to the induction motor. The same load as was applied in

the previous cases was used here also. The induction motor is run in closed loop

with a reference speed of 75rad/s and the load was applied at 3s. The stator

currents measured in this context were applied offline to the conventional and

smoothed Kalman observers for speed estimation. Fig.8.12a shows the estimation

performance with a conventional Kalman observer and Fig.8.12b shows the

improvement in the estimate with a smoothed Kalman observer. As can be seen, the

speed estimate with the smoothed Kalman trained RNN based observer is found to

give a good tracking performance compared to that with a conventional EKf trained

RNN. This also shows the superiority of the smoothing algorithm. The same values

of covariance matrices are used in this case as well.

(a)

(b)

Figure 8.12: Speed estimation results when a load is applied at t=3s a)smoothed
EKF trained RNN b) conventional EKF trained RNN

112



8.6 Summary

This chapter presents the performance of offline estimation of an indirect vector

controlled induction motor drive using recurrent neural network observer which is

trained using a smoothed Kalman filter algorithm. The results are compared with

those obtained using a conventional EKF-trained neural network observer. The

observer trained using smoothed Kalman filter algorithm is found to give better

results, especially in the transient region.
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Chapter 9

Real-time implementation of the

smoothed Kalman trained neural observer

for IFOC of three phase induction motor

This chapter presents the real- time implementation of the smoothed Kalman filter

trained neural observer for indirect field-oriented control of three-phase induction

motor. The closed loop observer based system is implemented using the reduced-order

model of the machine. The results are compared with those of a conventional EKF

trained observer.

9.1 Introduction

The simulation studies performed in chapter(8) are validated experimentally. The

real- time implementations are performed using the hardware set up used in earlier

experiments. The algorithm is tested for indirect field- oriented control of induction

motor in closed loop. The efficacy of the algorithm is confirmed for various reference

speeds, including low and zero speeds.

This chapter is organised as follows: Section 9.2 explains the hardware set up of

the system, 9.3 shows the results of closed loop performance of the system with a

smoothed Kalman trained recurrent neural observer. The performance of the system

with a conventional EKF trained observer is elaborated in section 9.4. Section 9.5

summarises the chapter.

9.2 Experimental Setup

A block diagram of the experimental set up is shown in Fig.9.1. The actual test bed

is the same as that used in chapter 5.
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Figure 9.1: Block diagram of the experimental set up

9.3 Experimental results of field-oriented control

based on smoothed Kalman filter trained

recurrent neural network

The results of estimation of the proposed smoothed Kalman trained recurrent neural

network are illustrated in Figs. 9.2- 9.6.
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(a)

(b)

(c)

Figure 9.2: Estimation results for a reference speed of 75rad/s a) ωr b) ψdr c) ψqr
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(a)

(b)

(c)

Figure 9.3: Estimation results for a reference speed of 30rad/s a) ωr b)ψdr c) ψqr
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(a)

(b)

(c)

Figure 9.4: Estimation results for a reference speed of 5rad/s a) ωr b) ψdr c) ψqr
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(a)

(b)

(c)

Figure 9.5: Estimation results for a reference speed which changes from 75rad/s to
30rad/s at t=2.5s and then to 50rad/s at t=5s a) ωr b) ψdr c) ψqr
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(a)

(b)

(c)

Figure 9.6: Estimation results for a reference speed which changes from 75rad/s to
0 at t=4.5s and continues at zero speed till 7s a) ωr b) ψdr c) ψqr
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9.4 Experimental results of field-oriented control

based on conventional Kalman filter trained

neural network

The estimation results corresponding to the same reference speeds, with a conventional

Kalman filter trained recurrent neural network observer are shown in Figs.9.7-9.11.

The same process and measurement noise covariance matrices are used here also.

(a)

(b)

(c)

Figure 9.7: Estimation results for a reference speed of 75rad/s a) ωr b)ψdr c) ψqr
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(a)

(b)

(c)

Figure 9.8: Estimation results for a reference speed of 30rad/s a) ωr b)ψdr c) ψqr
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(a)

(b)

(c)

Figure 9.9: Estimation results for a reference speed of 5rad/s a) ωr b)ψdr c) ψqr
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(a)

(b)

(c)

Figure 9.10: Estimation results for a reference speed which changes from 75rad/s
to 30rad/s at t=2.5s and then to 50rad/s at t=5s a) ωr b) ψdr c) ψqr
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(a)

(b)

(c)

Figure 9.11: Estimation results for a reference speed which changes from 75rad/s
to 0 at t=4.5s and continues at zero speed till 7s a) ωr b) ψdr c) ψqr

126



9.5 Summary

The experimental validation of the smoothed Kalman trained recurrent neural network

is done in this chapter. The results are compared with the estimates obtained from a

neural network observer trained by a conventional Kalman filter algorithm The mean

square errors of the estimates of rotor speed using both the algorithms are tabulated

in Table 9.1. It can be seen that there is a prominent decrease in the mean squared

error while using the smoothing algorithm.

Table 9.1: Comparison of estimation results using a smoothed and conventional
EKF - trained recurrent neural observer

Ref. Speed(rad/s) Mean Squared Error(rad/s) % decrease

CEKF SKF

75rad/s 212.91 104.81 50.77%

30rad/s 99.41 5.86 94.1%

5rad/s 2.15 2.10 5%

75- 0 94.25 72.63 23%

75-30-50 118.02 55.99 52.63%
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Chapter 10

Conclusions and future directions

10.1 Conclusions

The research work embodied in this thesis has addressed the problem of estimating

the rotor speed of a three-phase induction motor for use in indirect vector controlled

drive. The main aim was to improve the estimates obtained using an extended Kalman

filter by incorporating smoothing. A fixed-lag smoothing filter, with a lag of one time

instant is used to obtain the improved estimates. The main findings are summarized

below.

• An extended Kalman filter with single- stage smoothing is used as an observer

for estimating the rotor speed along with rotor currents and fluxes of three phase

induction motor.

• The observer is implemented in real-time in a closed loop indirect vector

control scheme and estimation is performed for various reference speeds, using

two different models of the motor. Initially, a fifth order model is used and

results are obtained. As a next step, a reduced order model of the machine is

attempted.

• Estimates obtained with the smoothed observer are compared with a

conventional EKF keeping the values of process and measurement error

covariance matrices same.

• The observer is found to perform well even when the process and measurement

error covariance matrices are varied over a wide range.

• The smoothed Kalman algorithm is used to train a real-time recurrent neural

network observer for indirect vector controlled drive. In this case also, the

results are compared with those of a conventional EKF. The results are found

to be better than those with conventional EKF. This is validated using the mean

squared errors in both the cases.
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• The performance of the observer is satisfactory at very low and near zero speeds

also.

• Comparing the mean square errors of the full- order and reduced order models

of the motor, mean squared error of rotor speed is more with the reduced order

model. This trend is seen for all reference speeds, including very low and zero

speeds. This increase may be attributed to the reduction in order of the system,

by which some of the pertinent data may be lost. The parameters considered

are less in case of the reduced model.

• Comparison of percentage decrease also shows that the full- order observer is

more robust compared to the reduced order one, which is evident from the

response to sudden changes in reference speeds.

• The MSE of recurrent neural network trained observer is lesser than that with

the reduced motor model. This is be due to the inherent capability of neural

networks to adapt to non-linearities and sudden changes. The robustness of

recurrent neural network is also evident from the percentage decrease in

estimation errors.

10.2 Scope for future study

This work was performed by smoothing the estimates using only one data ahead of

time.

• The work may be extended to include two stages or rather a fixed time-lag, so

as to obtain better results.

• The variations in machine parameters can also be incorporated.
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Capolino. An adaptive speed observer based on a new total least-squares neuron

for induction machine drives. IEEE Transactions on Industry Applications,

42(1):89–104, jan 2006.

[92] B. Karanayil, M. F. Rahman, and C. Grantham. Investigation of an on-line

rotor resistance identification with a new stator resistance observer for induction

motor drive using artificial neural networks. PESC Record - IEEE Annual Power

Electronics Specialists Conference, 4(1):1883–1888, 2003.

[93] Baburaj Karanayil, Muhammed Fazlur Rahman, and Colin Grantham. Stator

and rotor resistance observers for induction motor drive using fuzzy logic and

artificial neural networks. IEEE Transactions on Energy Conversion, 20(4):771–

780, 2005.

[94] Baburaj Karanayil, Muhammed Fazlur Rahman, Senior Member, and Colin

Grantham. Online Stator and Rotor Resistance Estimation Scheme Using

Artificial Neural Networks for Vector Controlled Speed Sensorless Induction

Motor Drive. 54(1):167–176, 2007.

[95] E. K. Geetha, T. Thyagarajan, and Vedam Subrahmanyam. Robust speed

sensorless induction motor drives. 7th Internatonal Conference on Power

Electronics, ICPE’07, 35(2):806–810, 2007.

[96] Seok Oh Won, Sol Kim, Min Cho Kyu, Gak In Chi, and Eul Yeon Jae. Load

variation compensated neural network speed controller for induction motor

drives. In SPEEDAM 2008 - International Symposium on Power Electronics,

Electrical Drives, Automation and Motion, pages 1141–1145. IEEE, jun 2008.

[97] J. Campbell and M. Sumner. Practical sensorless induction motor drive

employing an artificial neural network for online parameter adaptation. IEE

Proceedings: Electric Power Applications, 149(4):255–260, jul 2002.

[98] Tien Chi Chen and Tsong Terng Sheu. Model reference robust speed control

for induction-motor drive with time delay based on neural network. IEEE

Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans.,

31(6):746–752, nov 2001.

142



[99] Miroslaw Wlas, Zbigniew Krzeminski, and Hamid A. Toliyat. Neural-network-

based parameter estimations of induction motors. IEEE Transactions on

Industrial Electronics, 55(4):1783–1794, 2008.

[100] Besir Dandil. Fuzzy neural network IP controller for robust position control of

induction motor drive. Expert Systems with Applications, 36(3 PART 1):4528–

4534, apr 2009.

[101] K. Bouhoune, K. Yazid, M. S. Boucherit, and A. Chériti. Hybrid control of the

three phase induction machine using artificial neural networks and fuzzy logic.

Applied Soft Computing Journal, 55:289–301, 2017.

[102] Oscar Barambones, Aitor J. Garrido, and Izaskun Garrido. Robust speed

estimation and control of an induction motor drive based on artificial neural

networks. International Journal of Adaptive Control and Signal Processing,

22(5):440–464, jun 2008.

[103] J. S. Meditch. Stochastic Optimal Linear Estimation and Control. McGraw Hill

Book Company, USA., 1969.

[104] Dan Simon. Kalman Filtering. Embedded Systems Programming, (June):73–79,

2001.

[105] S. Maiti, C. Chakraborty, Y. Hori, and M. C. Ta. Model reference adaptive

controller-based rotor resistance and speed estimation techniques for vector

controlled induction motor drive utilizing reactive power. IEEE Transactions

on Industrial Electronics, 55(2):594–601, Feb 2008.

[106] A. V. Ravi Teja, Chandan Chakraborty, Suman Maiti, and Yoichi Hori. A new

model reference adaptive controller for four quadrant vector controlled induction

motor drives. IEEE Transactions on Industrial Electronics, 59(10):3757–3767,

2012.

[107] Vimlesh Verma, Chandan Chakraborty, Suman Maiti, and Yoichi Hori. Speed

Sensorless vector controlled induction motor drive using single current sensor.

IEEE Transactions on Energy Conversion, 28(4):938–950, dec 2013.

[108] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall

PTR, USA, 1st edition, 1994.

143


