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Chapter 0

Introduction

The set of all homeomorphisms on a topological space onto itself is a group

under function composition and is called the group of homeomorphisms of the

topological space. The group of homeomorphisms of a topological space (X, τ)

is a subgroup of the group S(X) of all bijections of the set X . Group of home-

omorphisms are very important in the theory of topological spaces. Analogous

to the group of homeomorphisms in topology, the group of L-fuzzy homeomor-

phisms is defined in L-fuzzy topology. The objective of the present thesis is to

study some problems related to the concept of the group of homeomorphisms

of a topological space and the group of L-fuzzy homeomorphisms of an L-fuzzy

topological space.

In the present study we use Set theoretical, Topological, Algebraic and Order

theoretical methods.
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0.1. Motivation and Survey of Literature

0.1 Motivation and Survey of Literature

Several authors studied the concept of the group of homeomorphisms of a

topological space and the relation between the algebraic properties of the group of

homeomorphisms of the topological space X and the topological properties of the

space X . A topological space is said to be rigid if the group of homeomorphisms

of the space is the trivial group. De Groot, V. Kannan, Rajagopalan etc. studied

rigid spaces and have done commendable works in this area [9, 10, 24–26].

In 1920, the concept of homogeneity in topological spaces was introduced by

W. Sierpinski. A topological space (X, τ) is said to be homogeneous if for any

two points x1, x2 ∈ X there exists a homeomorphism h from (X, τ) onto itself

such that h(x1) = x2. In other words a topological space (X, τ) is homogeneous

if the group of homeomorphisms of the space is a transitive permutation group

on X . Ginsburg [14] characterized the finite homogeneous topological spaces.

The various properties related to homogeneity and rigidity were studied in [43].

A topological space X is said to be completely homogeneous if the group

of homeomorphisms of the space is the symmetric group S(X). R. E. Larson

studied the concept of complete homogeneity and characterized the spaces which

are minimum and maximum with respect to a topological property [29]. He also

determined the completely homogeneous topological spaces.

In 1959, J. De Groot proved that any group is isomorphic to the group of

homeomorphisms of a topological space [10]. If two topological spaces are home-

omorphic, then the corresponding groups of homeomorphisms are isomorphic.
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0.1. Motivation and Survey of Literature

But nonhomeomorphic topological spaces can have isomorphic groups of home-

omorphisms.

P. T. Ramachandran studied the problem of representing a subgroup of S(X)

as the group of homeomorphisms of a topological space (X, τ) for some topology

τ on X [34]. He proved that no nontrivial proper normal subgroups of the

symmetric group S(X) can be the group of homeomorphisms of (X, τ) for any

topology T on X [35]. He also showed that if X = {x1, x2, . . . , xm}, m > 2, the

subgroup of the symmetric group S(X) generated by the cycle (x1, x2, . . . , xm)

cannot be represented as the group of homeomorphisms of (X, τ) for any topology

τ on X [34].

In 1965, L. A. Zadeh [46] introduced the theory of fuzzy set describing fuzzi-

ness mathematically for the first time. Later J. A Gougen introduced the con-

cept of L−fuzzy set where L is a semigroup, a partially ordered set, a lattice or

a boolean ring [15]. We can extend most of the mathematical theories using the

concept of a fuzzy set since fuzzy set is a generalization of the fundamental math-

ematical concept of a set. Based on the notion introduced by L. A. Zadeh [46],

C. L Chang introduced fuzzy topology and studied its properties [8].

T. P. Johnson [16] and P. T. Ramachandran [36, 37] considered the problem

of representing a subgroup H of the group S(X) as the group of L- fuzzy homeo-

morphisms of some L- fuzzy topological space (X, δ). In [16,17,19] T. P. Johnson

proved that the subgroups generated by a finite cycle and some proper non-trivial

normal subgroups can be represented as group of L- fuzzy homeomorphisms for

some L- fuzzy topology δ on X , when |X| ≤ |L|. P. T. Ramachandran proved
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0.1. Motivation and Survey of Literature

that the group of permutations on a set X generated by a finite cycle and the

group generated by an arbitrary product of infinite cycles can be represented

as the group of L- fuzzy homeomorphisms for some L- fuzzy topology, if the

membership lattice L 6= {0, 1} [36, 37]. One of our main aim is to continue this

work.

An L- fuzzy topological space (X, δ) is said to be homogeneous if given any

two points x1 and x2 in X , there is an L-fuzzy homeomorphism h of X onto itself

such that h(x1) = x2 [3]. The order of the group of L-fuzzy homeomorphisms

depends on the structure of the L-fuzzy topological space. For example, if the

L-fuzzy topological space is homogeneous, the order of the group of L-fuzzy

homeomorphisms on X is greater than or equal to the cardinality of X . An

L-fuzzy topological space (X, δ) is called completely homogeneous if the group

of L-fuzzy homeomorphisms equals S(X), the set of all permutations of the set

X .

In [16] T. P. Johnson defined the concept of a completely homogeneous fuzzy

topological space analogous to complete homogeneity in topological space. In

[18] the author extended complete homogeneity to L-fuzzy topological spaces.

He generalized the result of R. E. Larson for L-fuzzy topological spaces. He

also considered the lattice of completely homogeneous fuzzy topologies also [18].

In [22] the authors studied complete homogeneity and reversibility in L-fuzzy

topological spaces.
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0.2. Organisation of the Thesis

0.2 Organisation of the Thesis

In this thesis, we are studying the group of homeomorphisms of topological

spaces and the group of L-fuzzy homeomorphisms of L-fuzzy topological spaces.

We are also interested in L-fuzzy topological spaces whose group of L-fuzzy

homeomorphisms is the symmetric group.

The thesis consists of seven chapters besides the introduction.

The first chapter gives a brief account of preliminary definitions, theorems

and results which we used in the forthcoming chapters. Here we discuss some

basics of algebra, set theory, topology and L-fuzzy topology.

The second chapter is concerned with the study of group of homeomor-

phisms of topological spaces. We start with the definition of a t−representable

permutation group. A subgroup H of the symmetric group on a nonempty

set X is called t−representable on X if there exists a topology τ on X such

that the group of homeomorphisms of (X, τ) equals H [39]. Some properties

of t-representable permutation groups are also discussed. Further we determine

t−representability of some permutation groups. Here we prove that the direct

sum of finite t−representable permutation groups is t−representable. Also the

t−representability of transitive permutation groups and some maximal permu-

tation groups are studied.

In the third Chapter, we continue the work carried out in chapter two. Here

we determine the t−representability of some cyclic subgroups of the symmetric

group. It can be seen that if σ is a permutation on a set X which is a product
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0.2. Organisation of the Thesis

of two disjoint cycles, then the permutation group generated by σ, < σ > is

not t-representable on X and whereas if σ is a permutation on X which is an

arbitrary product of more than two disjoint cycles having equal length n, then

the permutation group generated by σ, < σ > is t-representable on X . We also

determined the t−representability of groups generated by a permutation which

is a product of disjoint infinite cycles.

In the fourth chapter we study the group of L-fuzzy homeomorphisms of

an L-fuzzy topological space. Analogous to t−representability in topological

space, here we define Lf -representability of permutation groups. A subgroup

H of the symmetric group on a nonempty set X is called Lf−representable on

X if there exists an L− fuzzy topology δ on X such that the group of L−

fuzzy homeomorphisms on X equals H . Some properties of Lf−representable

permutation groups are also studied.

We establish the Lf -representability of semiregular permutation groups on X

when |L| ≥ |X|. A necessary and sufficient condition for a dihedral group Dn

to be Lf−representable is provided. We also determine the Lf−representability

of all subgroups of Sn when n ≤ 4. In contrast with results in topology, it can

be seen that the group generated by a permutation which is a product of two

disjoint cycles having equal length is Lf−representable.

Chapter five is a study of completely homogeneous L-fuzzy topological

spaces. An investigation is conducted on the relation between the group of L-

fuzzy homeomorphisms of an L−fuzzy topological space and the group of home-

omorphisms of its level topologies. It is also observed that an L-fuzzy topological

6



0.2. Organisation of the Thesis

space is completely homogeneous if and only if its stratification is completely ho-

mogeneous. A characterization of completely homogeneous Alexandroff discrete

L-fuzzy topological spaces is obtained when L is a complete chain. Also we prove

that supersets of a non- zero L-fuzzy open set having the same range are L-fuzzy

open in a completely homogeneous L-fuzzy topology.

A stronger notion of completely homogeneity, called principal completely ho-

mogeneity in topology and L-fuzzy topology are introduced in the sixth chap-

ter. Let f ∈ LX . Then the smallest completely homogeneous L-fuzzy topology

containing f is called the principal completely homogeneous L- fuzzy topology

generated by f and is denoted by CHLFT (f) [42]. A completely homogeneous

L-fuzzy topological space (X, δ) is called principal completely homogeneous L-

fuzzy topological space if δ = CHLFT (f) for some L- fuzzy set f ∈ LX [42].

Some properties of principal completely homogeneous L-fuzzy topological spaces

are also discussed in this chapter. Principal completely homogeneous L-fuzzy

topological spaces are studied when L = {0, 1
2
, 1} with the usual order.

The last chapter contains the conclusion and some unsolved problems. A

bibliography is also given at the end.
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Chapter 1

Preliminaries

1.1 Introduction

In this chapter we give a brief account of the preliminary concepts which are

used in the forthcoming chapters. It includes the basics of Set Theory, Group

Theory, especially Permutation Groups, Topology and L- fuzzy topology.

Through out our discussions X denote a nonempty set. If A is a given set,

we will use |A| to denote the cardinality of A.

1.2 Partially Ordered Sets

Let us start with the definition of a partial ordering.

Definition 1.2.1. [23]

8



1.2. Partially Ordered Sets

Let X be a set and ≤ be a relation on X . Then ≤ is called

1. reflexive if a ≤ a for all a ∈ X .

2. anti-symmetric if for all a, b ∈ X , a ≤ b and b ≤ a implies a = b.

3. transitive if for all a, b, c ∈ X , a ≤ b and b ≤ c implies a ≤ c.

A relation on X which is reflexive, anti-symmetric and transitive is called a

partial order.

A partially ordered set (or a poset) is an ordered pair (X,≤) where X is a

set and ≤ is a partial order on X . The partial order ≤ is said to be linear (or

chain) if for all a, b ∈ X , either a ≤ b or b ≤ a.

Let (X1, ≤1) and (X2, ≤2) be two partially ordered sets and f : X1 → X2 be

a function. Then f is said to be order-preserving if for all a, b ∈ X , a ≤1 b ⇒

f(a) ≤2 f(b). If f is a bijection and f as well as its inverse f−1 are both order

preserving then f is called an order isomorphism from (X,≤1) to (X,≤2) [23].

That is, a bijection f from (X1, ≤1) to (X2, ≤2) is an order isomorphism if and

only if a ≤1 b ⇐⇒ f(a) ≤2 f(b) for all a, b ∈ X1. The set of all order isomor-

phisms of a partially ordered set onto itself forms a group under composition

of functions and is called the group of order isomorphisms, which is denoted by

G(X,≤).

Now we will discuss some terms related to the partial ordering.

Definition 1.2.2. [30]

9



1.2. Partially Ordered Sets

If (X,≤) is a partially ordered set, A is a nonempty subset of X and a ∈ X ,

then

1. a is an upper bound for A if for all x ∈ A, x ≤ a.

2. A is said to be bounded above if A has atleast one upper bound.

Dually we define lower bound and bounded below.

Definition 1.2.3. [23]

Let (X,≤) be a partially ordered set and A ⊆ X

1. An element a of A is said to be maximal element of A if it is not strictly

less than any element of A.

2. a is said to be maximum (largest) element of A if for all x ∈ A\{a}, x < a.

3. An element a ∈ X is said to be the join (or the least upper bound, or the

supremum) of A, denoted by ∨A, if a is an upper bound of A and if b is an

upper bound for A, then a ≤ b.

If A consists of two elements a and b, write a∨ b for ∨{a, b} for convenience.

The concept of a minimal, smallest or minimum element, meet (∧) or greatest

lower bound are dully defined.

Definition 1.2.4. [23]

A partial order (X,≤) is said to be complete if every nonempty subset of A,

which is bounded above has a least upper bound.

10



1.2. Partially Ordered Sets

Definition 1.2.5. [30]

A partially ordered set (X,≤) is called a well-ordered set, if for every nonempty

subset A of X , there exists a0 in A such that a0 ≤ a for every a ∈ A and the

partial order is called a well-order.

Every element in a well-ordered set other than the last element has a unique

immediate successor.

Theorem 1.2.6. [23] Well-ordering Theorem

Every set can be well-ordered.

This can be proved using the Axiom of choice and is equivalent to it.

One of the important facts about well-ordered sets is that we can prove things

about their elements by a process similar to mathematical induction which is

called Principle of Transfinite Induction.

Theorem 1.2.7. [1] Principle of Transfinite Induction

Let W be a well-ordered set and V a subset of W in which, for every element

x ∈ W , satisfies the following condition:

If every predecessor of x belongs to V , then, x belongs to V .

Then V = W .

11



1.3. Lattice Theory

1.3 Lattice Theory

Definition 1.3.1. [23]

Let (L, ≤) be a partially ordered set. Then L is called a lattice, if every two

element subset of L has both a meet and join in L and complete lattice if every

subset of L has a meet and join in L.

The smallest and largest elements of a lattice L are denoted by 0 and 1. A

lattice always be nonempty. A lattice is called trivial if it consist only one ele-

ment. In a trivial lattice the smallest element coincide with the largest element.

This kind of lattice will not be considered in our study. Thus we can assume

that a lattice contain at least two elements 0 6= 1.

Definition 1.3.2. [30]

Let L be a lattice with 0 and 1. An element x ∈ L called complement of an

element y ∈ L, if x ∧ y = 0 and x ∨ y = 1.

A mapping h : L → L is called order-reversing, if for all x, y ∈ L, x ≤ y ⇒

h(y) ≤ h(x) and called an involution on L, if h ◦ h is the identity map on L.

Definition 1.3.3. [30]

Let L be a complete Lattice. L is called completely distributive, if L satisfies the

following two conditions,

for all {{ai,j : j ∈ Ji} ⊆ P(L) \ {∅}, I 6= ∅,

1. ∧
i∈I

( ∨
j∈Ji

ai,j) = ∨
∅∈ΠJi

i∈I

( ∧
i∈I

ai,∅(i)),

12



1.4. Permutation Groups

2. ∨
i∈I

( ∧
j∈Ji

ai,j) = ∧
∅∈ΠJi

i∈I

( ∨
i∈I

ai,∅(i)).

Definition 1.3.4. [30]

A completely distributive lattice L is called an F -lattice, if L has an order

reversing involution h : L → L.

1.4 Permutation Groups

Here are some basic definitions and theorems from Group theory which we will

use in this Thesis. For more details see [12, 32]

Let X be a nonempty set. A bijection of X onto itself is called a permutation

of X . The set of all permutations of X forms a group under composition of

mappings, called the symmetric group on X . We denote the symmetric group by

S(X) and Sn to denote the special group S(X) when n is a positive integer and

X = {1, 2, . . . , n}. A permutation group is a subgroup of the symmetric group.

We know that a binary operation ∗ on a set S is a function mapping S×S into

S. More generally, for any sets A,B and C, we can view a map ∗ : A×B −→ C

as defining a multiplication of an element a ∈ A with an element c ∈ C. The

notion group action is used in the case where X is a set, G is a group and we

have a map ∗ : G×X −→ X .

Definition 1.4.1. [13]

Let (G, .) be a group and X be a set. An action of G on X is a map

13



1.4. Permutation Groups

∗ : G×X −→ X such that

1) ex = x for all x ∈ X .

2) (g1g2)(x) = (g1)(g2x) for all x ∈ X and for all g1, g2 ∈ X.

Under these conditions, X is called a G-set. Here ∗(g, x) is denoted by g(x).

When a group G acts on a set X , a typical point x is moved by some elements

of G to various other points and fixed by some elements of G.

Definition 1.4.2. [12]

Let x ∈ X . Then the orbit of x under G, xG is defined by

xG = {g(x) : g ∈ G}

and the stabilizer of x in G, Gx is defined by

Gx = {g ∈ G : g(x) = x}.

Example 1.4.3. Let X be any set and G be a permutation group on X .

Then G acts naturally on X where g(x) is the image of x under the permutation

g.

We assume that such a group action implicitly in some contexts.

A group G acting on X is said to be transitive on X if it has only one orbit

and so xG = X for all x ∈ X . That is G is transitive if given x, y ∈ X, there

14



1.4. Permutation Groups

exists g ∈ G such that g(x) = y. A group which is not transitive is called

intransitive.

Definition 1.4.4. Semi Regular Permutation Groups [12]

Let X be any set and H be a permutation group on X . Then H is called

semiregular if the identity permutation is the only element in H with any fixed

points.

Definition 1.4.5. Regular Permutation Groups [12]

Let X be any set and H be a permutation group on X . Then H is called regular

if H is transitive and semiregular.

Lemma 1.4.6. [32] Any transitive abelian permutation group is regular.

Let G be a group acting on a set X , k be an integer with 1 ≤ k ≤ |X| and

X(k) denote the set of all k-tuples of distinct points. Then G acts on X(k) in a

natural way, namely g(x1, x1, . . . xk) = (g(x1), g(x2), . . . , g(xk)) where g ∈ G and

(x1, x2, . . . xk) ∈ X(k). If G is transitive on X(k), then we say G is k-transitive.

We say that G is highly transitive if X is infinite and G is k-transitive for all

integers k ≥ 1.

Definition 1.4.7. [12]

Let G be a group acting transitively on a set X . A nonempty subset A of X

is called a block for G if for each g ∈ G, either g(A) = A or g(A) ∩A = ∅.

Every group acting transitively on X has X and the singletons {x} (x ∈ X)

15



1.4. Permutation Groups

as blocks and these blocks are called trivial blocks. Any other block is called

non-trivial block.

Definition 1.4.8. [12]

Let G be a group acting transitively on a set X . We say that the group G is

primitive if G has no nontrivial blocks on X . Otherwise G is called imprimitive.

Example 1.4.9.

• Sn is primitive for n ≥ 2 and An is primitive for n ≥ 3.

• The cyclic group generated by the cycle (1, 2, 3, 4, 5, 6) has five nontrivial

blocks, {1, 3, 5}, {2, 4, 6}, {1, 4}, {2, 5}, {3, 6}. So this group is an imprim-

itive permutation group.

Definition 1.4.10. [12]

Let G be a group acting on a set X and A be a subset of X . Then the setwise

stabilizer of A in G is

G{A} = {g ∈ G : g(A) = A}.

Note that G{A} is a subgroup of G.

1.4.1 Normal Subgroups of Symmetric Groups

Now we consider the normal subgroups of the symmetric groups.
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If X is a finite set then the alternating group An of degree n is the collection

of all even permutations in Sn. It is also a fact that An is the only non-trivial

proper normal subgroups of Sn except when n = 4. If n = 4, Sn has another

non-trivial normal subgroup {I, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

Let X be an infinite set, in order to define the alternating group A(X), we

have to define what we mean by odd and even permutations.

Definition 1.4.11. [32]

Let G be a group acting on a set X and g ∈ G. Then support of g is defined

by

supp(g) = {x ∈ X : g(x) 6= x}.

Thus supp(g) is the set of all points moved by g and |supp(g)| is called the degree

of the permutation g. A permutation having finite degree is called a finitary

permutation. Let FS(X) be the set of all elements in S(X) which have finite

support. Then FS(X) is a primitive normal subgroup of S(X) and is a proper

subgroup when X is infinite. This group is called finitary symmetric group on

X . Let g be an element of a finitary symmetric group FS(X). Then g can be

written as a product of finite number of transpositions. A finitary permutation

g is called even if it can be written as a product of even number of transpositions

and odd if it can be written as a product of odd number of transpositions. Then

the alternating group A(X) is defined as {g ∈ FS(X) : g is even }. Let m

be an infinite cardinal such that ℵ0 ≤ m ≤ |X|. Then we define the bounded
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symmetric group BS(X, m) as follows,

BS(X, m) = {g ∈ S(X) : |supp(g)| < m}.

We end this section by stating a theorem which gives a list of all the normal

subgroups of S(X).

Theorem 1.4.12. [6] Let X be any set with |X| > 4. Then the normal subgroups

of S(X)are precisely : {I}, A(X), S(X) and the subgroups of the form BS(X, m)

with ℵ0 ≤ m ≤ |X|.

1.5 Topology

Now let us go through some basics of topology which will make the reading of

this Thesis easier.

Definition 1.5.1. [45]

If X and Y are topological spaces, a function f from X to Y is a homeomor-

phism if f is one-one, onto, continuous and f−1 is also continuous. When such a

homeomorphism exists, X is said to be homeomorphic to Y .

If we denote X is homeomorphic with Y by X ∼ Y , then ∼ is an eqivalence

relation on any set of topological spaces.

Consider the collection of all homeomorphisms of a topological space onto
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itself, which is denoted by H(X, τ). Let f, g ∈ H(X, τ). Then the composition

of f and g, f ◦ g is also a homeomorphism on X . By definition, the identity map

on X which is denoted by IX is a homeomorphism. It is easy to prove that if h ∈

H(X, τ), then h−1 ∈ H(X, τ). So we can define the group of homeomorphisms

of a topological space as given below.

Definition 1.5.2. [45] Group of Homeomorphisms

Let (X, τ) be any topological space and let H(X, τ) be the set of all home-

omorphisms of (X, τ) onto itself. Then H(X, τ) is a group under function com-

position and it is called the group of homeomorphisms of X onto itself.

Note that the group H(X, τ) of all homeomorphisms of a topological space

(X, τ) onto itself is a subgroup of the symmetric group S(X).

We define several topological properties using the group of homeomorphisms.

Following are some of them.

Definition 1.5.3. [23] Homogeneous Space

A topological space (X, τ) is said to be homogeneous if for any x, y ∈ X ,

there exists a homeomorphism h from X onto itself such that h(x) = y.

Definition 1.5.4. A topological space (X, τ) is said to be rigid if the group

of homeomorphisms, H(X, τ) = {I}.

There is a situation where the group of homeomorphisms equals the set of

all permutations on the underlying set.
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Definition 1.5.5. [29] Completely Homogeneous Topological Space

A topological space (X, τ) is called completely homogeneous if the group of

homeomorphisms of X onto itself is equal to the group of all permutations of X

i.e., H(X, τ) = S(X).

The discrete topological spaces and indiscrete topological spaces are com-

pletely homogeneous space.

Definition 1.5.6. [2] Alexandroff Discrete Space

A topological space (X, τ) is called Alexandroff discrete space if arbitrary

intersections of open sets are open in X .

Any finite topological space and discrete spaces are Alexandroff discrete

space.

A topological space (X, τ) is Alexandroff discrete if and only if it has a minimal

open neighbourhood at every point in X .

1.6 L-fuzzy Topology

Here we give some preliminary results on L-fuzzy topology.

Let X be a nonempty set, L a complete lattice, then an L-fuzzy subset f of

X is a mapping from X to L. The set of all L-fuzzy subsets of X is denoted by

LX , which is called an L-fuzzy space. An L- fuzzy set with constant membership

value α ∈ L is denoted by α.
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1.6. L-fuzzy Topology

Definition 1.6.1. [30]

The L-fuzzy subset xl with x ∈ X and l ∈ L, l 6= 0 defined by

xl(y) =











l if y = x

0 otherwise.

is called an L-fuzzy point in X with support x and value l.

The L-fuzzy subset xl, with x ∈ X and l ∈ L, l 6= 1 is defined by

xl(y) =











l if y = x

1 otherwise.

Definition 1.6.2. [30]

Let X and Y be two sets and h : X → Y be a function. Then for any L-fuzzy

set f in X , h(f) is an L-fuzzy set in Y defined by

h(f)(y) =











∨

{f(x) : x ∈ X h(x) = y}; h−1(y) 6= ∅

0; h−1(y) = ∅.

For an L-fuzzy set g in Y , we define h−1(g)(x) = g(h(x)) for all x ∈ X .

Definition 1.6.3. L− fuzzy Topological Space [30]

Let X be a nonempty set, L an F -lattice, δ ⊆ LX . Then δ is called an L-fuzzy

topology on X , and (X, δ) is called an L-fuzzy topological space if δ satisfies the

following three conditions.
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1. 0, 1 ∈ δ;

2. f ∧ g ∈ δ for all f, g ∈ δ;

3. ∨A ∈ δ for all A ⊆ δ.

Every element in δ is called an L-fuzzy open subset of X .

Examples 1.6.4. Let X be any set and L an F -lattice

1. Let δ = LX . Then δ is an L-fuzzy topology on X and is called discrete

L-fuzzy topology on X .

2. Let δ = {0, 1} ⊆ LX , then δ is an L-fuzzy topology on X and which is

called the trivial L-fuzzy topology on X .

Definition 1.6.5. [30]

Let (X, δ) be an L-fuzzy topological space, δ0 ⊆ δ. δ0 is called a base of δ, if

δ = {∨A : A ⊆ δ0}.

δ0 is called a subbase of δ, if the family

{∧B : B ∈ [δ0]
<w \ {∅}}

is a base, where [δ0]
<w denote the family of all the finite subsets of δ0.
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1.6.1 L− fuzzy Homeomorphism

Let (X, δ) and (Y, δ′) be any two L−fuzzy topological spaces and h be a

mapping from (X, δ) to (Y, δ′).

Definition 1.6.6. [30]

1. h is said to be an L-fuzzy continuous map from X to Y , if h−1(f ′) ∈ δ for

every f ′ in δ′ where h−1(f ′) means f ′ ◦ h.

2. h is said to be L-fuzzy open if it maps every L-fuzzy open subset of X as an

L−fuzzy open one in Y .

3. h is said to be an L− fuzzy homeomorphism if it is bijective, continuous and

open.

So a necessary and sufficient condition for a permutation h of a set X to be

an L-fuzzy homeomorphism of (X, δ) on to itself is that f ∈ δ if and only if

f ◦ h ∈ δ.

Definition 1.6.7. Group of L− fuzzy homeomorphisms

The set of all L- fuzzy homeomorphisms of an L- fuzzy topological space (X, δ)

onto itself is a group under composition, which is a subgroup of the group of all

permutations on the set X . It is called the group of L- fuzzy homeomorphisms

of (X, δ) and is denoted by LFH(X, δ).
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Chapter 2

Group of Homeomorphisms

Here we study the group of homeomorphisms of topological spaces. We

define the t-representability of permutation groups and study some properties of

the t-representable permutation groups. We determine the t-representability of

all finite transitive permutation groups. Also we study the t-representability of

some maximal subgroups of the symmetric group.

2.1 t−representability of Permutation Groups

We start this section by defining the t−representability of permutation groups.

Some examples and non-examples of t− representable permutations groups are

given.

Definition 2.1.1. t-representable Permutation Group

A subgroup K of S(X) is called t-representable on X if there exists a topology
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τ on X such that H(X, τ) = K.

Examples and non-examples of t−representable permutation groups

1. We have the group of homeomorphisms of the discrete space on X is

the symmetric group S(X) and hence the symmetric group S(X) is a

t−representable permutation group.

2. In [34, 35], P. T. Ramachandran proved that no non-trivial proper normal

subgroups of the group of all permutations of a set X can be the group

of homeomorphisms of (X, τ) for any topology τ on X . So no non-trivial

proper normal subgroup of the Symmetric group is t−representable on X .

3. Let X = {a1, a2, . . . , an}, n ≥ 3, the group of permutations of X gener-

ated by the cycle (a1, a2, . . . , an) cannot be represented as the group of

homeomorphisms of (X, τ) for any topology τ on X [34]. It follows that the

cyclic group generated by the cycle (a1, a2, . . . , an) is not t−representable

on X .

2.2 Properties of t−representable Permutation

Groups

Here we derive two important properties of t−representable permutation

groups.

Definition 2.2.1. [13] Conjugate of a subgroup
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A subgroup H is conjugate to a subgroup K of a group G if there exists an

element g ∈ G such that gHg−1 = K.

Theorem 2.2.2. Let X be any set and H be a permutation group on X. Then

H is t−representable on X if and only if its conjugate is also t-representable on

X.

Proof. Let H be a t-representable permutation group on X . Then there exists a

topology τ on X such that H(X, τ) = H . It follows that

H = {h ∈ S(X) : h(τ) = τ}.

Let g ∈ S(X). Then g(τ) = {g(U) : U ∈ τ} is a topology on X . Now we claim

that H(X, g(τ)) = gHg−1.

Let h ∈ H(X, τ)

⇒ h(τ) = τ

⇒ hg−1g(τ) = τ

⇒ hg−1(g(τ)) = τ

⇒ ghg−1(g(τ)) = g(τ)

⇒ ghg−1 ∈ H(X, g(τ)).

This implies that

gHg−1 ⊆ H(X, g(τ)) (2.1)
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2.2. Properties of t−representable Permutation Groups

For the other way inclusion, let h ∈ H(X, g(τ))

⇒ h(g(τ)) = g(τ)

⇒ hg(τ) = g(τ)

⇒ g−1(hg(τ)) = g−1g(τ)

⇒ g−1hg(τ) = τ

⇒ g−1hg ∈ H(X, τ) = H

⇒ h ∈ gHg−1.

This implies that

H(X, g(τ)) ⊆ gHg−1 (2.2)

From equations 4.1 and 4.2, we get H(X, g(τ)) = gHg−1. Thus the conjugate of

a t-representable permutation group is t-representable on X .

Conversely assume that gHg−1 is a t-representable permutation group on X .

Then by what we have proved above, the conjugate of gHg−1 is a t-representable

permutation group on X . So H is t-representable on X . This completes the

proof.

Note that conjugacy is an equivalence relation on the set of all subgroups

of S(X). Thus in order to determine t−representability of permutation groups,

it suffices to consider the t-representability of conjugacy classes of subgroups of

S(X).
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Definition 2.2.3. Direct Sum

Let {Xi : i ∈ I} be an arbitrary family of mutually disjoint sets and Ki be a

subgroup of S(Xi) for every i ∈ I. Then the direct sum of permutation groups

{Ki : i ∈ I} is the permutation group
⊕

ı∈I

Ki on X =
⋃

i∈I

Xi whose elements are

⊕
i∈I

ki where ki ∈ Ki and the action of ⊕
i∈I

ki is given by ⊕
i∈I

ki(x) = ki(x) if x ∈ Xi,

i ∈ I.

Theorem 2.2.4. Let X be any set and Y be a nonempty subset of X. If H is a

t-representable permutation group on Y , then the permutation group {IX\Y }⊕H

is t-representable on X.

Proof. Let τ1 be the topology on Y such that H(Y, τ1) = H . Define

τ ′ = {(X \ Y ) ∪ U : U ∈ τ1}.

If X \ Y = ∅, there is nothing to prove. Otherwise by using the well-ordering

Theorem, well-order the set X \ Y by the order relation <. Define a topology τ2

on X \ Y as

τ2 = {X \ Y } ∪ {{y ∈ X \ Y : y < x} : x ∈ X \ Y }.

Let

τ = τ2 ∪ τ ′.
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It is easy to see that τ is a topology on X .

Claim: H(X, τ) = {IX\Y } ⊕H .

Let h ∈ {IX\Y } ⊕ H . This gives that h = IX\Y ⊕ h1 for some h1 ∈ H .

Let U ∈ τ . If U ∈ τ2, then h(U) = U and so h(U) ∈ τ . If U ∈ τ ′, then

U = (X \ Y ) ∪ U1 for some U1 in τ1 . Since h1 is a homeomorphism on (Y, τ1),

h1(U1) ∈ τ1 and hence h(U) = (X \ Y ) ∪ h1(U1) ∈ τ . Since U is arbitrary, h is a

homeomorphism on (X, τ). So

{IX\Y } ⊕H ⊆ H(X, τ). (2.3)

Conversely assume that h ∈ H(X, τ). First we prove that h(x) = x for all

x ∈ X \ Y . Let x0 and x1 be the first and the second elements of the set X \ Y

and U = {y ∈ X \ Y : y < x1}. Then U = {x0} and U ∈ τ . Since h is a

homeomorphism, h(U) ∈ τ and hence h(x0) = x0. Let xα be any element of

X \ Y such that h(x) = x for all x in X \ Y such that x < xα.

If xα has an immediate successor xβ in X \ Y , consider U = {x ∈ X \ Y :

x < xβ}, which is an open set and hence h(U) is open in τ . Now

h(U) = {x ∈ X \ Y : x < xα} ∪ {h(xα)}.

By the definition of topology, this gives that h(U) = U and hence h(xα) = xα.

If xα has no immediate successor, then xα is the last element of the set X \Y .
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Since X \ Y ∈ τ2, X \ Y ∈ τ . Therefore h(X \ Y ) ∈ τ and h(X \ Y ) =

(X \ Y ) \ {xα} ∪ {h(xα)}. This implies that h(xα) = xα and hence h(x) = x

for all x ∈ X \ Y . Thus h|X\Y = IX\Y and h|Y will be a homeomorphism of

(Y, τ1). Thus h|Y ∈ H and we get h = IX\Y ⊕ h1 where h1 = h|X\Y ∈ H . So

h ∈ {IX\Y } ⊕H . Thus we get

H(X, T ) ⊆ {IX\Y } ⊕H. (2.4)

From equations 2.3 and 2.4, we have H(X, τ) = {IX\Y } ⊕ H . This completes

the proof.

Remark 2.2.5. Let H be a non-trivial permutation group on a set X . Let

Y = X \ {x ∈ X : h(x) = x for all h ∈ H}. Define H ′ = {h|Y : h ∈ H},

which is a permutation group on Y . Note that H ′ moves all the elements of

Y and H = H ′ ⊕ {IX\Y }. By Theorem 2.2.4, it follows that, if H ′ is a t-

representable permutation group on Y , then H is t-representable on X . So if

(X, τ) is a topological space which is not rigid and H = H(X, τ) then without

loss of generality we can assume that H moves all the elements of X .

Remark 2.2.6. The intersection of two t−representable permutation groups

on X need not be t−representable on X . The following example illustrates this.

Example 2.2.7. Let X = {a, b, c, d} and H1, H2 be two permutation

groups on X defined by

H1 = {I, (a, b), (c, d), (a, b)(c, d), (a, c, b, d), (a, d, b, c), (a, c)(b, d), (a, d)(b, c)}
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and

H2 = {I, (a, c), (b, d), (a, b)(c, d), (a, b, c, d), (a, d, c, b), (a, c)(b, d), (a, d)(b, c)}

respectively. Let τ1 and τ2 be two topologies on X defined by

τ1 = {∅, X, {a, b}, {c, d}}

and

τ2 = {∅, X, {a, c}, {b, d}}.

Then we have H(X, τ1) = H1 and H(X, τ2) = H2.

So H1 and H2 are t−representable permutation groups.

Here H1 ∩ H2 = {I, (a, b)(c, d), (a, c)(b, d), (a, d)(b, c)} which is a normal

subgroup of S4 and hence not t−representable on X .

Remark 2.2.8. The permutation group generated by the union of two

t-representable permutation groups on X need not be t-representable on X .

Example 2.2.9. LetX = {a, b, c, d} andH1, H2 be two permutation groups

on X defined by H1 = {I, (a, b)(c, d)} and H2 = {I, (a, c)(b, d)}.

Let τ1 and τ2 be two topologies on X defined by

τ1 = {X, ∅, {a}, {b}, {a, c}, {b, d}}

and

τ2 = {X, ∅, {a}, {c}, {a, b}, {c, d}}.
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Then H(X, τ1) = H1 and H(X, τ2) = H2. Now the permutation group gener-

ated by the union of H1 and H2 is {I, (a, b)(c, d), (a, c)(b, d), (a, d)(b, c)}, which

is not a t-representable permutation group on X .

2.2.1 t−representability of Direct Sum of Permutation

Groups

Now we investigate the t-representability of a direct sum of t-representable

permutation groups.

Theorem 2.2.10. Let {Xi}i∈I be an arbitrary family of mutually disjoint finite

sets and Ki be a t-representable subgroup of S(Xi) for i ∈ I. Then
⊕

i∈I

Ki is

t-representable on X = ⊕
i∈I

Xi.

Proof. For all i ∈ I, there exists a topology τi on Xi such that H(X, τi) = Ki.

By the well-ordering Theorem, we can choose a well order < on I. Let τ ′i =

{( ∪
j<i

Xj) ∪ U : U ∈ τi} for all i ∈ I. Now define

τ =
⋃

i∈I

τ ′i ∪ {X}.

Claim-I: τ is a topology on X .

Clearly ∅ and X are in τ .

Let U and V be in τ . If U = X or V = X , then U ∩ V ∈ τ . If U 6= X ,

V 6= X , then U =
⋃

j<i

Xj ∪ Ui where Ui ∈ τi and V =
⋃

j<k

Xj ∪ Vk where Vk ∈ τk
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for some i and k. If i = k, then U ∩ V = (
⋃

j<i

Xj) ∪ (Ui ∩ Vi) ∈ τ . If i < k,

U ∩ V = (
⋃

j<i

Xj) ∪ Ui ∈ τ . If k < i, then U ∩ V = (
⋃

j<k

Xi) ∪ Vk) ∈ τ . Thus τ

is closed under finite intersections.

Let {Uα : α ∈ J} be an arbitrary family of sets in τ . If Uα = X for some

α ∈ J , then
⋃

α∈J

Uα = X ∈ τ . Otherwise for all α ∈ J , Uα =
⋃

j<iα

Xj ∪ Uα
iα where

Uα
iα is an open subset of Xiα. Consider the set A = {iα : α ∈ J}. If A is an

unbounded subset of I, then for any i ∈ I, there exists some α ∈ J such that

i < iα. Therefore, for all i ∈ I, Xi ⊆ Uα for some α. Therefore
⋃

α∈J

Uα = X ∈ T .

Now assume that A is a bounded subset of I. Let m be the least upper bound

of A in I.

Case(1): m ∈ A.

Let B = {α ∈ J : iα = m}. Then Uα
iα is an open subset of Xm for all α .

Let W =
⋃

α∈B

Uα
iα . Then W is open in Xm and

⋃

α∈J

Uα = (
⋃

j<m

Xj)∪W ∈ τ .

Case(2): m /∈ A.

For all α, we have iα < m and consequently,
⋃

j<iα

Xj ⊆
⋃

j<m

Xj. Also Uα
iα ⊆

Xiα ⊆
⋃

j<m

Xj . Therefore Uα ⊆
⋃

j<m

Xj , for all α ∈ J . Thus
⋃

α∈J

Uα ⊆

⋃

j<m

Xj. Since m is the least upper bound of A, for all j < m, there

exists αj ∈ J such that iαj
> j. Therefore Xj ⊆

⋃

j<iαj

Xj ⊆ Uαj
. Thus

⋃

j<m

Xj ⊆
⋃

α∈J

Uα. Hence
⋃

α∈J

Uα =
⋃

j<m

Xj ∈ τ .

From the above two cases, it follows that τ is closed under arbitrary union. Hence

τ is a topology on X .

33



2.2. Properties of t−representable Permutation Groups

Claim-II:
⊕

i∈I

Ki = H(X, τ).

Let K = H(X, τ). Let ki ∈ Ki for all i ∈ I and k = ⊕
i∈I

ki. Clearly k is

a bijection of X onto itself. Let U ∈ τ . If U = X , k(X) = X and therefore

k(X) is open in X . If U 6= X , U = (
⋃

j<i

Xj) ∪ Ui where Ui is open in Xi

and k(U) = k(
⋃

j<i

Xj) ∪ k(Ui) = (
⋃

j<i

k(Xj)) ∪ k(Ui) = (
⋃

j<i

Xj) ∪ k(Ui). Since

Ui ⊆ Xi, k(Ui) = ki(Ui), which is open in Xi. Thus k(U) is open in X . Similarly

we can prove that k−1(U) is open in X for every open set U in X . Hence k ∈ K.

Therefore

⊕

i∈I

Ki ⊆ K. (2.5)

Conversely suppose that k ∈ K. Let i0 be the smallest element of I. Assume

that k(Xi0) 6= Xi0 Then there exists x ∈ Xi0 such that k(x) /∈ Xi0 or there exists

x /∈ Xi0 such that k(x) ∈ Xi0 . In the second case also we can see that there exists

x ∈ Xi0 such that k(x) /∈ Xi0 , since Xi0 is finite. Thus without loss of generality

we can assume that there exists x ∈ Xi0 such that k(x) /∈ Xi0 . Since Xi0 is

open in (X, T ), k(Xi0) is an open in X . Also we have that k(x) ∈ k(Xi0) and

k(x) /∈ Xi0. Then by the definition of the topology τ , it follows thatXi0 $ k(Xi0).

Since Xi0 is finite, we get |Xi0 | < |k(Xi0)|. This is a contradiction, since k is an

injection. Thus k(Xi0) = Xi0.

Now assume that j ∈ I and K(Xi) = Xi, for all i ∈ I and i < j. To

prove that k(Xj) = Xj. Assume that k(Xj) 6= Xj. Then arguing as above

there exists x ∈ Xj such that k(x) /∈ Xj . Then k(x) ∈ Xk for some k > j.
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Consider
⋃

i≤j

Xi which is open in X . Therefore k(
⋃

i≤j

Xi) is also open in X . Now

k(
⋃

i≤j

Xi) =
⋃

i<j

k(Xi) ∪ k(Xj) = (
⋃

i<j

Xi) ∪ k(Xj). Since x ∈ Xj, k(x) ∈ k(
⋃

i≤j

Xi)

andXj ⊆
⋃

i<j

Xi∪k(Xj) and hence Xj ⊆ k(Xj). But k(x) ∈ k(Xj) and x /∈ k(Xj).

Thus |k(Xj)| > |Xj |, since Xj is finite. It is also a contradiction, since k is an

injection. Thus k(Xi) = Xi, for all i ∈ I.

Then k|Xi
= ki is a homeomorphism of Xi, for all i ∈ I. Therefore k =

⊕

i∈I

ki,

so that k ∈
⊕

i∈I

Ki and hence

K ⊆
⊕

i∈I

Ki. (2.6)

From the above two inequalities 2.5 and 2.6, we have

K =
⊕

i∈I

Ki.

So
⊕

i∈I

Ki is a t-representable permutation group on X = ∪
i∈I

Xi.

The following example ensures that finiteness of Xi cannot be dropped in the

proof of Theorem 2.2.10 even when I is finite.

Example 2.2.11. Let X1 be the set of all negative integers and τ1 be the

topology on X1 defined by

τ1 = {X1, ∅} ∪ {{a ∈ X1 : a ≤ m} : m ∈ X1}.

Let X2 be the set of all non negative integers and τ2 be the topology on X2
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defined by

τ2 = {X2, ∅} ∪ {{a ∈ X2 : a ≤ m} : m ∈ X2}.

Here H(X1, τ1) = {IX1
} and H(X2, τ2) = {IX2

}. Let X = X1 ∪ X2, the set

of integers. Now define the topology τ on X as in the proof of Theorem 2.2.10.

That is

τ = {X, ∅} ∪ {{a ∈ X : a ≤ m} : m ∈ X}.

Now we can easily prove that H(X, τ) is the group generated by the infinite

cycle

( . . . , −2, −1, 0, 1, 2, . . . )

which is not equal to the direct sum of H(X1, τ1) and H(X2, τ2).

2.3 t−representability of Transitive Permutation

Groups

In this section we consider the t−representability of transitive permutation

groups.

Recall that a topological space (X, τ) is said to be homogeneous if for any

x, y ∈ X , there exists a homeomorphism h from (X, τ) onto itself such that

h(x) = y. From the definition of a homogeneous space, it follows that a topologi-

cal space (X, τ) is homogeneous if and only if H(X, τ) is a transitive permutation

group on X .
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If a topological space (X, τ) is homogeneous, then the order of the group

H(X, τ) is greater than or equal to the cardinality of X . As the homogeneity of

a topological space increases, the number of homeomorphisms are also increase.

But the converse is not true. The following example illustrates this.

Example 2.3.1. Let X be any infinite set and x0 ∈ X . Let τ be a topology

on X defined by

τ = {U ⊆ X : x0 ∈ U} ∪ {∅}.

Then it is easy to prove that

H(X, τ) = {h ∈ S(X) : h(x0) = x0}

= S{x0},

which is the symmetric group on X \{x0}. Here |H(X, τ)| = |S(X)| and (X, τ)

is not a homogeneous space..

Here we need the following result due to J. Ginsburg [14] in which he char-

acterized the finite homogeneous topological spaces.

Theorem 2.3.2. [14] A finite nonempty topological space X is homogeneous if

and only if there exist positive integers m and n such that X is homeomorphic

to D(m) × I(n) where D(k) and I(k) denote the set {1, 2, 3, . . . , k} with the

discrete topology and indiscrete topology respectively.

Using Ginsburg characterization theorem on finite homogeneous space, we
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observe the following results.

Remark 2.3.3. [39] Let (X, τ) be a finite homogeneous space, then

(a) If |X| is a prime, then the topology τ on X is either discrete or indiscrete.

(b) When |X| ≥ 2, there exist at least one transposition which is a homeomor-

phism of (X, τ).

(c) There exists a partition of X using sets with equal number of elements,

which forms a base for the topology on X .

Moreover, the symmetric group is the only t-representable transitive permu-

tation group of prime degree.

Using the above remarks, one can prove the following proposition.

Proposition 2.3.4. A regular permutation group K on a finite set X is not

t-representable on X when |X| ≥ 3.

Proof. Suppose that K is a t-representable permutation group on X . Then there

exists a topology τ on X such that H(X, τ) = K. Since K is transitive, the

topology τ on X is homogeneous. Since |X| ≥ 3, then by Remark 2.3.3(b), there

exists a transposition which is a homeomorphism of (X, τ) onto itself. This

implies that K is not a regular permutation group. This is a contradiction. So a

finite regular permutation groupK is not t-representable onX when |X| ≥ 3.

Remark 2.3.5. A regular permutation group K on a finite set X is

t−representable if and only if |X| < 3.
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2.3. t−representability of Transitive Permutation Groups

Example 2.3.6. Let X = {1, 2, 3, 4, 5, 6} and H = {(1, 2)(3, 4)(5, 6),

(1, 6)(2, 3)(4, 5), (1, 4)(2, 5)(3, 6), (1, 3, 5)(2, 6, 4), (1, 5, 3)(2, 4, 6), I}. Here H is a

regular permutation group on X and |X| = 6. Then by Proposition 2.3.4, H is

not t−representable on X .

Observe that, in Proposition 2.3.4, the condition of finiteness of X cannot be

relaxed.

Example 2.3.7. Consider Z, the set of all integers with the topology τ

consisting precisely of Z, ∅, and all the subset of Z of the form {x ∈ Z : x ≤ m}

for some m ∈ Z. Then H(Z, τ) is the group generated by the infinite cycle

( . . . , −2, −1, 0, 1, 2, . . . ). Obviously, H(Z, τ) is a regular permutation group

on Z. So there exists t-representable regular permutation group on an infinite

set X .

Remark 2.3.8. Any transitive abelian permutation group on a finite set X

is not t-representable when |X| ≥ 3.

Proof. We have that any transitive abelian permutation group is regular by

Lemma 1.4.6. Proof follows from Proposition 2.3.4.

Next we consider the t-representability of the dihedral group Dn. Let us start

with the following Lemma.

Lemma 2.3.9. Let X be a finite set with a partition topology τ having a partition

B consisting of m sets each with n elements as a base. Then the order of the
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group of homeomorphisms of (X, τ) is (m!)(n!)m

Proof. Let B = {A1, A2, A3, . . . , Am} where |Ai| = n for all i = 1, 2, . . . m.

Then a homeomorphism h of (X, τ) onto itself maps each Ai onto some Aj where

i, j ∈ { 1, 2, . . . , m}. Then the order of H(X, τ) is the number of bijections

on X such that, for every i, h(Ai) = Aj for some j. Now elements of Ai can be

permuted in n! ways for every i = 1, 2, . . . , m and elements of B can be

permuted in m! ways. Thus the order of the group of homeomorphisms of (X, τ)

is (m!)(n!)m

For n ≥ 3, the dihedral group Dn is defined as the rigid motions of the

plane preserving a regular n-gon with the operation being composition [13]. The

order of the dihedral group Dn is 2n.

Theorem 2.3.10. The dihedral group Dn is not t-representable for n ≥ 5

Proof. The generators of the dihedral group Dn on X = {1, 2, 3, . . . , n} are

the cycle (1, 2, 3, . . . , n) and






1 2 3 4 5 . . . i . . . n− 1 n

1 n n− 1 n− 2 n− 3 . . . n + 2− i . . . 3 2






. Hence Dn is a

transitive permutation group on X . If Dn is t-representable on X , there ex-

ists a topology τ on X such that H(X, τ) = Dn. Since Dn is transitive, (X, τ)

is a homogeneous topological space. Consider the following cases.

Case(1): n is a prime number.

In this case, by Remark 2.3.3(a), (X, τ) is discrete or indiscrete and the
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group of homeomorphisms of (X, τ) is S(X), which is not possible. Thus

Dn is not t-representable on X .

Case(2): n is not a prime number.

Then by Lemma 2.3.9, the order of H(X, τ) is of the form k!(m!)k for some

positive integers k and m such that n = km. Clearly k ≥ 2 and m ≥ 2,

since (X, τ) is neither discrete nor indiscrete. But when n ≥ 5, k > 2 or

m > 2. Then the order of Dn,

o(Dn) = k!(m!)k

= mk(k − 1)!mk−1((m− 1)!)k.

This implies that the order of (Dn) is greater than 2n. This is a con-

tradiction, since order of Dn is 2n. Hence Dn is not t-representable for

n ≥ 5.

Remark 2.3.11. The Theorem 2.3.10 is not true for n < 5.

Proof. Consider X = {1, 2, 3, 4} and τ = {X, ∅, {1, 3}, {2, 4}}. Then

H(X, τ) = {I, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2), (1, 2)(3, 4), (1, 4)(2, 3),

(1, 3), (2, 4)} = D4. Hence D4 is t-representable on X . Since D3 = S3, D3 is

also t-representable on a set with 3 elements.

Thus the dihedral group Dn is t-representable for n < 5.
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As an immediate consequence, we have the following remark.

Remark 2.3.12. The dihedral group Dn is t−representable on X if and

only if n ≤ 4.

Now we consider the t−representability of finite primitive permutation groups.

First we recall the definition of minimal open sets.

Definition 2.3.13. [33] Minimal open set

Let (X, τ) be a topological space. Then a minimal open set in (X, τ) is a

nonempty open set having no proper nonempty open subset.

Theorem 2.3.14. Let X be a finite set and H be a primitive permutation group

on X. Then H is t−representable on X if and only if H = S(X).

Proof. If H = S(X), then clearly H is t-representable on X . Conversely assume

that H is t−representable on X . Then there exist a topology τ on X such that

H(X, τ) = H . Let U be a minimal open set in X . Now any homeomorphism

on X maps minimal open set to minimal open set. So h(U) is also a minimal

open set for all h ∈ H . Then either h(U) = U or h(U) ∩ U = ∅. Otherwise U

is not a minimal open set. Thus U is a block for H. But H is a primitive group.

So H has no proper non-trivial block on X and hence either U is a singleton or

U = X . This implies that either τ is discrete or indiscrete topology and hence

H = S(X).

Now we characterize t−representable imprimitive permutation group on a
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finite set X .

Theorem 2.3.15. Let H be an imprimitive permutation group on a finite set

X. Then H is t−representable on X if and only if H is the stabilizer of some

partition of X into parts of equal size k where 1 < k < |X|.

Proof. Let H be a t−representable permutation group on X . Since H is transi-

tive, the corresponding topology τ on X is homogeneous. Hence by Remark 2.3.3

(c), B = {A1, A2, A3, . . . , Am} form a base for τ where |Ai| = k, 1 ≤ k ≤ |X|

for all i = 1, 2, . . . , m and
m
∪
i=1

Ai = X . So

H(X, τ) = {h ∈ S(X) : h(Ai) = Aj, i, j = 1, 2, . . .m}.

Since H is an imprimitive permutation group, |Ai| = k, 1 < k < |X| for all

i = 1, 2, . . . , m. Hence H is the stabilizer of some partition of X into parts of

equal size k where 1 < k < |X|.

Conversely assume that H is the stabilizer of some partition of X into equal

parts of size k. Then clearly H is t−representable on X .

Example 2.3.16. Let X = {1, 2, 3, 4, 5, 6} and H = {I, (1, 2, 3, 4, 5, 6),

(1, 3, 5)(2, 4, 6), (1, 4)(2, 5)(3, 6), (1, 5, 3)(2, 6, 4), (1, 6, 5, 4, 3, 2)}.HereH is

an imprimitive group, but not t−representable on X

From Theorems 2.3.14 and 2.3.15, we conclude the following Remark.

Remark 2.3.17. Let H be a transitive subgroup of Sn. Then H is t-
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representable on X if and only if H is one of the following.

1. H = Sn

2. H is the stabilizer of some partition of X into equal parts of size k where

1 < k < n.

This follows that a transitive subgroup of Sn is t-representable on X if and

only if H is the stabilizer of some partition of X into equal parts of size k where

1 ≤ k ≤ n.

2.4 t−representability of Maximal Subgroups of

the Symmetric Groups

By a maximal subgroup, we mean a maximal element of the collection of all

proper subgroups of the symmetric group S(X). In this section our main aim

is to determine the t−representability of maximal subgroups of the symmetric

group.

First we consider the t−representability of maximal subgroups of S(X) when

X is a finite set.
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2.4.1 t−representability of Maximal Subgroups of the Fi-

nite Symmetric Groups

The maximal subgroups M of Sn are the following [12].

1. M is the set stabilizer of some set V with |V | = m, 1 ≤ m < n
2
, which is

an intransitive permutation group.

2. M is the stabilizer of some partition of X into m equal parts of size k with

1 < m < n.

3. M = An or any proper primitive group.

Now we characterize t−representable maximal permutation groups on a finite

set.

Theorem 2.4.1. Let X be any finite set and H be a maximal subgroup of S(X).

Then H is not t−representable on X if and only if H is a proper primitive

permutation group on X.

Proof. Let H be a maximal subgroup of S(X). By Theorem 2.3.14, the maximal

subgroups of the form An or any proper primitive group are not t−representable

on X .

Now assume that H is maximal and not a primitive permutation group on

X .
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Case 1: H is the stabilizer of a subset A of X .

Here we have H = {h ∈ S(X) : h(A) = A}.

Now define τ on X as

τ = {∅} ∪ {U ⊆ X : A ⊆ U}.

Then clearly τ is a topology on X and it follows that H(X, T ) = H . So

H is a t−representable permutation group on X .

Case 2: H is the stabilizer of some partition of X into m equal parts of size k

with 1 < k < |X|.

Let B = {A1, A2, . . . , Am} be the partition of X and τ be the topology

having base B where |Ai| = k for all i = 1, 2, . . . m and mk = |X|.

Then H(X, τ) consisting of all permutations which preserve the partition.

So H is a t−representable permutation group on X .

So the only finite maximal subgroup of S(X) which are not t−representable

are of the form An or any proper primitive subgroup of S(X).
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2.4.2 t−representability of Maximal Subgroups of the In-

finite Symmetric Groups

If X is an infinite set, we cannot list all maximal subgroup of S(X) as in the

case of finite symmetric groups. But Ball, Richman, Neumann, Macpherson etc.

found some classes of maximal subgroups of infinite symmetric group [5,7,31,38].

Now we study the t−representability of these maximal subgroups.

Theorem 2.4.2. [31] If A is a nonempty finite subset of X then S{A} is a

maximal subgroup of S(X). Any maximal subgroup of S(X) which is not of

the form S{A} for some nonempty subset A of X contains FS(X) and therefore

highly transitive.

Obviously any maximal subgroup of S(X) of the form S{A} is t−representable

on X by defining a topology τ on X as τ = {U ⊆ X : A ⊆ U} ∪ {∅}.

Remark 2.4.3. [12]

1. If X is an infinite set, then the symmetric group S(X) has no imprimitive

maximal subgroups.

2. If A and X \ A are infinite sets, then the stabilizer of A is not a maximal

subgroup of S(X). But the stabilizer of A is a t−representable permutation

group on X .

If F is a filter on a nonempty set X , then we define the stabilizer [31] of F
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by

S{F} = {h ∈ S(X) : h(A) ∈ F ⇔ A ∈ F for every A ⊆ X}.

We also define

S(F ) = {h ∈ S(X) : {x ∈ X : h(x) = x} ∈ F}.

Obviously S(F ) is a subgroup of S{F} [31].

Proposition 2.4.4. The stabilizer of a filter on a set X is a t−representable

permutation group on X.

Proof. If F is a filter, then clearly F ∪ {∅} is a topology τ on X . It is easy to

prove that H(X, τ) = S{F}. This completes the proof.

Definition 2.4.5. [45] Ultrafilter

A filter F is an ultrafilter if there is no filter G strictly finer than F .

In [31], H. D. Macpherson and P. M. Neumann proved the following Theorem.

Theorem 2.4.6. [31] Let F is an ultrafilter on an infinite set X. Then S{F}

is a maximal subgroup of S(X). Furthermore S{F} = S(F ).

Using the above Theorem we can easily prove the following Theorem.

Theorem 2.4.7. Let X be an infinite set with |X| = k. Then there are 22
k

maximal permutation groups on X which are t-representable.
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Proof. We have the cardinality of the set of all ultrafilters on an infinite set X

is 22
k

. By Theorem 2.4.6, the stabilizer of an ultrafilter F on an infinite set

is a maximal subgroup of S(X). We also have S{F} = S(F ) by Theorem 2.4.6.

It follows that distinct ultrafilters have distinct stabilizers. Thus there are 22
k

maximal subgroups in S(X) which are t-representable on X .

We know that the cardinality of the set of all topologies on an infinite set

X is 22
|X|

. So from Theorem 2.4.7, it follows that the number of t-representable

maximal subgroups of S(X) are as many as the number of topologies on X when

X is an infinite set.

Definition 2.4.8. [12] Almost Stabilizer

LetX be an infinite set and Y be a nonempty subset ofX with |Y | = λ < |X|.

Then the almost stabilizer of Y is defined by

AStab(Y ) = {g ∈ S(X) : |Y∆g(Y )| < λ}

where ∆ denotes the symmetric difference of Y and g(Y ).

Theorem 2.4.9. [5] If Y is a nonempty subset of an infinite set X with |Y | =

λ < |X|. Then the almost stabilizer of Y , AStab(Y ) = {g ∈ S(X) : |Y∆g(Y )| <

λ} is a maximal subgroup of S(X).

Now we investigate the t−representability of the almost stabilizer of a subset

of X .
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Proposition 2.4.10. Let Y be a nonempty subset of an infinite set X with

|Y | = λ < |X|. Then AStab(Y ) is a t−representable permutation group on X.

Proof. Let Y be a finite set, then AStab(Y ) = S{Y }, which is a t−representable

permutation group on X by defining a topology τ on X as

τ = {∅} ∪ {U ⊆ X : Y ⊆ U}.

Let Y be an infinite subset of X with |Y | < |X|. Define

τ = {∅} ∪ {U ⊆ X : |U ′ ∩ Y | < λ}

where U ′ denotes the complement of U in X .

Claim I: τ is a topology on X .

Clearly ∅ and X are in τ .

Let U1, U2, . . . Un are in τ and U = U1 ∩ U2 . . . ∩ Un. We have

U ′ ∩ Y = (U ′
1 ∪ U ′

2 ∪ . . . ∪ U ′
n) ∩ Y

= (U ′
1 ∩ Y ) ∪ (U ′

2 ∩ Y ) ∪ . . . ∪ (U ′
n ∩ Y ).

Since |U ′
i ∩ Y | < λ for all i = 1, 2, . . . n, it follows that |U ′ ∩ Y | < λ.

Let {Ui : i ∈ I} be an arbitrary collection in τ and U = ∪
i∈I

Ui. Then

U ′ ∩ Y = ( ∪
i∈I

Ui)
′ ∩ Y
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= ( ∩
i∈I

U ′
i) ∩ Y

⊆ U ′
i ∩ Y for all i ∈ I.

This implies that |U ′ ∩ Y | < λ. So τ is a topology on X .

Claim II: H(X, τ) = AStab(Y ).

Let h ∈ H(X, τ). Since Y ′ ∩ Y = ∅, we have Y ∈ τ and hence h(Y ) is open

in (X, τ). This implies that |h(Y )′ ∩ Y | < λ. So

|Y \ h(Y )| < λ. (2.7)

Similarly we have h−1(Y ) is in τ . This implies that |h−1(Y )′ ∩ Y | < λ and hence

|Y \ h−1(Y )| < λ. Now we have [h(Y ) \ h(h−1(Y )] ⊆ h(Y \ h−1(Y )) and so

|h(Y ) \ Y | < |h(Y \ h−1(Y ))| = |Y \ h−1(Y )| < λ. This follows that

|h(Y ) \ Y | < λ (2.8)

From inequalities 2.7 and 2.8, it follows that |Y∆h(Y )| < λ and hence h ∈

AStab(Y ).

Conversely assume that h ∈ AStab(Y ). Now we claim that h is a homeo-

morphism on (X, τ). Let U ∈ τ . Then |Y \ U | = |U ′ ∩ Y | < λ and hence

|h(Y ) \ h(U)| ≤ |h(Y \ U)| = |Y \ U | < λ. Since h ∈ AStab(Y ), we have
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|Y \ h(Y )| < λ. Now

Y \ h(U) = [(Y \ h(Y ) \ h(U)] ∪ [(Y \ h(Y )) ∩ (h(Y ) \ h(U))].

Since λ is an infinite cardinal, |Y \ h(U)| < λ and hence h(U) ∈ τ . Similarly we

get |Y \h−1(U)| < λ. So h is a homeomorphism on (X, τ). Hence the claim.

A topological space (X, τ) is said to be hereditarily homogeneous [27] if every

subspace of (X, τ) is homogeneous. In [27], V. Kannan and P. T. Ramachandran

proved that (X, τ) is hereditary homogeneous space if and only if every permuta-

tion ofX which moves only a finite number of elements ofX is a homeomorphism

of (X, τ) onto itself. That is, (X, τ) is a hereditarily homogeneous space if and

only if the finitary symmetric group FS(X) is contained in H(X, τ).

Remark 2.4.11. Let M be a highly transitive maximal subgroup of S(X).

Then by Theorem 2.4.2, the finitary symmetric group FS(X) is contained in M

and M 6= S(X). If M is t−representable on X , then by Lemma 1.2.3 in [34], the

corresponding topology τ on X satisfy the following.

(a) Supersets of nonempty open sets of (X, τ) are open.

(b) Every finite subset of (X, τ) is closed.

(c) Intersection of nonempty open sets of (X, τ) is non- empty.

(d) There exist no non- empty finite open set.

(e) (X, τ) is a T1 hereditarily homogeneous space.
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Now we can show that there exists topological space (X, τ) which satisfies all

the above conditions but the group of homeomorphisms H(X, τ) is not maximal

in S(X).

The following example illustrates this

Example 2.4.12. Let X be any infinite set and X = A1 ∪ A2 where A1

and A2 are disjoint subsets of X such that |A1| = |X| = |A2|. Define

τ = {U ⊆ X : |(X \ U) ∩A1| < |X|} ∪ {∅}.

By using similar arguments as in the Proposition 2.4.10, one can easily verify

that τ is a topology on X and H(X, τ) = {h ∈ S(X) : |h(A)∆A| < |X|}.

Note that H(X, τ) satisfies all the properties in Remark 2.4.11. Here H(X, τ)

is not a maximal subgroup of S(X) since H(X, τ) ⊆ AStabP where

AStabP = {g ∈ S(X) : for all i there exist j such that |g(Ai)∆Aj | < |X|}

and P = {A1, A2}.
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Chapter 3

t−representability of Cyclic

Group of Permutations

In this Chapter, we continue the work carried out in second chapter. Here

we determine the t−representability of some cyclic subgroups of the symmetric

group S(X) using an order theoretic method.

If σ is a permutation on a set X , then the subgroup of S(X) generated by σ

is denoted by < σ >.

3.1 Preliminaries

Definition 3.1.1. [23] Preorder

A reflexive transitive relation ≤ on a set X is called a preorder on X . The

ordered pair (X, ≤) is called a preordered set.
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S. J. Andima and W. J. Thron [2] associated with each topology T on a

set X with a preorder relation ‘≤’ on X defined by a ≤ b if and only if every

open set containing b contains a. Then any homeomorphisms of (X, τ) onto

itself is also an order isomorphism of (X,≤). Also we have that the group of

homeomorphisms of the topological space (X, τ) is equal to the group of order

isomorphisms of the preordered set (X,≤) if X is finite.

Definition 3.1.2. [45] T0 Space

A topological space (X, τ) is said to be a T0 space if given any two distinct

points in X , there exists an open set which contains one of them but not the

other.

From the definition of a T0 space, it follows that a topological space (X, τ)

is a T0 space if and only if (X, ≤) is a partially ordered set.

If X is a finite nonempty set, then the partially ordered set (X, ≤) has

both maximal and minimal elements. Also an order isomorphism of (X, ≤)

maps maximal elements to maximal elements and minimal elements to minimal

elements.

Remark 3.1.3. Let X be a finite set. Then there is a one-to-one correspon-

dence between the set of all T0 topologies on X and the set of all partial orders

on X [2].
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3.2 Groups Generated by a Product of Disjoint

Cycles Having Equal Length

We investigate the t−representability of cyclic subgroups of S(X) generated

by a product of disjoint cycles having equal length.

Theorem 3.2.1. [39] Let X be any set. Then every subgroup K of S(X) of

order two is t-representable on X.

So cyclic subgroups of S(X) generated by a product of disjoint cycles having

length 2 (transpositions) are t-representable on X .

Now we determine the t−representability of permutation group generated by

a permutation which is a product of two disjoint cycles that have equal length n

where n ≥ 3.

Theorem 3.2.2. Let X be any set such that |X| = 2n, where n ≥ 3 and σ be a

permutation on X which is a product of two disjoint cycles having equal length

n, then the group generated by σ is not t−representable on X.

Proof. Let X = {a1, a2, a3, . . . , an, b1, b2, . . . , bn} and

σ = (a1, a2, . . . , an)(b1, b2, . . . , bn).

Let K be the group generated by σ. Decompose X as X1 ∪X2 where

X1 = {a1, a2, . . . an} and X2 = {b1, b2, . . . bn}.
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Assume that K is t−representable permutation group on X . Then there ex-

ists a topology τ onX such that the group of homeomorphisms onX , H(X, τ) =

K. Since there exist no transposition on X which is a homeomorphism of (X, τ),

the space (X, τ) must be T0. Let (X, ≤) be the corresponding partially ordered

set. Since X is a finite set, (X, ≤) has both maximal and minimal elements. If

an element is both minimal and maximal, then all the elements are minimal and

maximal and hence G(X, ≤) = S(X). This implies that the topology is discrete

and H(X, τ) = S(X), which is not possible. So a minimal element can not be a

maximal element and conversely. Then either X1 or X2 is the set of all minimal

elements.

Assume that X1 is the set of all minimal elements. Then X2 is the set

of all maximal elements. Thus the elements of Xi are incomparable to each

other for i = 1, 2. So there exists at least one aj ∈ X1 and bi ∈ X2 such

that bi succeeds aj . Otherwise all elements of X are minimal and maximal,

which is a contradiction. Since G(X, ≤) = K, if bi succeeds aj , then σh(bi)

succeeds σh(aj) for h = 1, 2, . . . , n− 1 and this gives aj⊕(h−1) < bi⊕(h−1) where

⊕ denotes addition modulo n. So without loss of generality we can assume that

b1 at least succeeds a1. If b1 succeeds only a1, then each bj succeeds only aj

for j = 1, 2, . . . , n. In this case (a1, ai)(b1, bi), where i = 2, 3, . . . n are order

isomorphisms, which is not possible.

Now assume that b1 succeeds k elements in X1 namely a1, a2, . . . , ak where

1 < k ≤ n. Then each bi ∈ X2 exactly succeeds k elements in X1 namely
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ai, ai⊕1, . . . , ai⊕(k−1). Then

B = {{ai}, {ai, ai⊕1, . . . , ai⊕k−1, bi}, i = 1, 2, . . . , n}

form a base for T .

If k = n, then H(X, T ) = S(X1)⊕S(X2), which is not possible. So assume that

1 < k < n

For j = 1, 2, . . . n, define h : X → X as

h(x) =











aj⊕n−(i−1) if x = ai, 1 ≤ i ≤ n

bj⊕n−(k+i−2) if x = bi, 1 ≤ i ≤ n.

Now we claim that h is a is a homeomorphism on (X, τ) onto itself. For let

U ∈ B. Then either U is a singleton or U = {al, al⊕1, . . . , al⊕(k−1), bl}, where

1 ≤ l ≤ n. If U is a singleton, then h(U) ∈ B. Now let

U = {al, al⊕1, . . . , al⊕(k−1), bl}.

Then

h(U) = {aj⊕n−(l−1), aj⊕n−l, aj⊕n−(l+1), . . . ,

aj⊕n−(l+k−2), bj⊕n−(l+k−2)}

= {aj⊕(n−l)+1), aj⊕n−l, aj⊕(n−l)−1), . . . ,
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aj⊕(n−(l+k)+2), bj⊕(n−(l+k)+2)}

= {aj⊕n−(l+k)+2, aj⊕n−(l+k)+3, . . . ,

aj⊕n−(l+k)+k, aj⊕n−(l+k)+(k+1), bj⊕n−(l+k)+2)}

= {ap, ap⊕1, ap⊕2, . . . ap⊕(k−1), bp},

where p = j ⊕ n− (l + k) + 2.

Thus h(U) ∈ B. Observe that h is the disjoint product of transpositions and

hence h−1 = h. Consequently, we have h−1(U) ∈ B. This is true for all U ∈ B.

So h is a homeomorphism on (X, τ), which is a contradiction to the fact that

H(X, τ) = K. This completes the proof.

The following example illustrates the Theorem 3.2.2.

Example 3.2.3. Let X = {a1, a2, a3, b1, b2, b3} and

σ = (a1, a2, a3)(b1, b2, b3).

Then the cyclic group generated by σ is,

< σ >= {I, (a1, a2, a3)(b1, b2, b3), (a1, a3, a2)(b1, b3, b2)}.

Suppose < σ > is a t−representable permutation group on X , then there

exists a topology τ on X such that H(X, τ) =< σ >. Consider (X,≤), then ar-

guing as in the proof of Theorem 3.2.2 either X1 = {a1, a2, a3} orX2 = {b1, b2, b3}
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is the set of all minimal elements. Without loss of generality we can assume that

X1 is the set of all minimal elements. So the possible partial orders on X are

essentially as in the following figure.

a3 

b3

a1 a2

b1 b2

a1 a2 a3 

b1 b2 b3

a1 a2 a3 

b1 b2 b3

(X,≤1) (X,≤2) (X,≤3)

Then

G(X,≤1) = {I, (a1, a2)(b1, b2), (a1, a3)(b1, b3), (a2, a3)(b2, b3),

(a1, a2, a3)(b1, b2, b3), (a1, a3, a2)(b1, b3, b2)},

G(X,≤2) = {I, (a1, a2)(b1, b3), (a1, a3)(b2, b3), (a2, a3)(b1, b2),

(a1, a2, a3)(b1, b2, b3), (a1, a3, a2)(b1, b3, b2)},

and G(X,≤3) = S(X1)⊕ S(X2).

So there exists no partial order on X such that the group of order isomorphisms

is the group generated σ. Then by Remark 3.1.3, there exists no topology τ on

X such that H(X, τ) =< σ >. Hence < σ > is not t−representable on X .
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Now we consider the t−representability of the cyclic group generated by a

permutation on X which is an arbitrary product of more than two disjoint cycles

having equal lengths n where n > 2 . Here we prove that such cyclic subgroups

of the symmetric group S(X) are t−representable on X .

Theorem 3.2.4. Let X be any set and σ be a permutation on X which is an

arbitrary product of more than two disjoint cycles having equal length n where

n > 2, then the group generated by σ, < σ > is t−representable on X.

Proof. Let

σ = Π
i∈I

Ci

where {Ci : i ∈ I} be an indexed family of disjoint cycles having equal length

n where n > 2 and |I| > 2. Let Ci = (ai 1, ai 2, . . . , ai n) for every i ∈ I. By

Theorem 2.2.4 without loss of generality we can assume that X = ∪
i∈I

Xi where

Xi = {ai 1, ai 2, . . . , ai n}.

By the well-ordering Theorem, well-order the set I by the order relation <.

We can use the ordinals to index the members of I. Let i0 be the first element

of I and i1 denote the first element of the set I \ {i0}. In general iγ denote the

first element of the set I \ {iα : α < γ} provided I \ {iα : α < γ} 6= ∅.

Define a base B by

B = {Aiα j : iα ∈ I, j = 1, 2, . . . , n} ∪ {Aj : j = 1, 2, . . . , n}
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where

Aiα j =











{aik j : ik<iα} if iα ≤ i2

{ak j : ik<iα} ∪ {ai0 j⊕(n−1)} if i2 < iα.

and

Aj = {ai j : i ∈ I} ∪ {ai0 j⊕(n−1)}.

Here ⊕ denotes addition modulo n. Now τ be the topology on X having the

base B. Since B is a collection of subsets of X such that for each x ∈ X there

is a minimal set M(x) ∈ B containing x, τ is an Alexandroff discrete topology

on X .

It can be verify that σ is a homeomorphism of (X, τ). Then all powers of σ

are homeomorphisms of (X, T ). Hence < σ >⊆ H(X, τ)

Conversely let h ∈ H(X, τ). We have to prove that h is of the form σm

for some m such that 1 ≤ m ≤ n. Since h is a homeomorphism on (X, τ),

h(Ai1 1) = Ai1 m for some m, 1 ≤ m ≤ n. Thus h(ai0 1) = ai0 m. Now consider

the minimal open set Ai2 1 containing ai1 1. Then h(Ai2 1) is a minimal open set

containing h(ai1 1) and which contains ai0 m. It follows that h(ai1 1) = ai1 m. Next

we consider the minimal open set Ai3 1 = {ai0 1, ai1 1, ai2 1, ai0 n}. Now h(Ai3 1)

is a minimal open set containing h(ai2 1) and which contains ai0 m and ai1 m. This

implies that h(Ai3 1) = Ai3 m and hence h(ai0 n) = ai0 m⊕(n−1).

Assume that h(aiα 1) = aiα m for all α < γ. If iγ has an immediate succes-

sor iδ in I, consider Aiδ 1 = {ai0 1, ai1 1, . . . , aiγ 1} ∪ {ai0 n}. Then h(Aiδ 1) =
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{ai0 m, ai1 m, . . . , h(aiγ m)} ∪ {ai0 m⊕(n−1)}. Here h(Aiδ 1) is a minimal open set

containing h(aiγ 1) and Aiγ m ⊆ h(Aiδ 1). So h(Aiδ 1) = Aiδ m and h(aiγ 1) = aiγ m.

If iγ has no immediate successor, then iγ is the last element of I. Now A1 is

the minimal open set containing aiγ 1 and h(A1) = Aiγ 1 ∪ h(aiγ 1). This implies

that h(aiγ 1) = aiγ m and hence h(ai 1) = aim for all i ∈ I.

Now let h(ai0 2) = ai0 p. Then arguing as above, we get h(ai 2) = ai p for all

i ∈ I and h(ai0 2⊕(n−1)) = ai0 p⊕(n−1). That is h(ai0 1) = ai0 p⊕(n−1). By the fact

that h(ai0 1) = ai0 m we have that m = p⊕ (n−1). This implies that p = m⊕1.

So h(ai 2) = aim⊕1 for all i ∈ I.

Now assume that h(ai0 q) = ai0 r for some q and r. Then h(ai q) = ai r

for all i ∈ I and h(ai0 q⊕(n−1)) = ai0 r⊕(n−1). Now let h(ai0 q⊕1) = ai0 s. Then

h(ai0 q⊕1⊕(n−1)) = ai0 s⊕(n−1), which implies that h(ai0 q) = ai0 s⊕(n−1). Thus we

obtain that r = s ⊕ (n− 1) and so s = r ⊕ 1. Consequently we get h(ai q⊕1) =

ai r⊕1 for all i ∈ I and so h(ai k) = ai k⊕(m−1) for all i ∈ I and 1 ≤ k ≤ n. Hence

h(ai k) = σm(ai k) for all i ∈ I and 1 ≤ k ≤ n. This follows that h = σm. Thus

h ∈< σ >. So H(X, τ) ⊆< σ >. This completes the proof.

The following Theorem is used to prove our next result.

Theorem 3.2.5. [35] Let X = {a1, a2, . . . an}, n ≥ 3 and H be the group

of permutations on X generated by the cycle (a1, a2, . . . an). Then H is not

t−representable on X.

Here we characterize t-representable cyclic groups generated by a permutation
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which is a product of disjoint cycles having equal length.

Theorem 3.2.6. Let X be any set and H be the group on X generated by σ =

Π
i∈I

Ci where where {Ci, i ∈ I} be an indexed family of disjoint cycles having equal

length n. Then

1. H is t−representable if |I| > 2 or n < 3.

2. H is not t−representable if |I| ≤ 2 and n ≥ 3.

Proof. In Theorem 3.2.1, it is proved that every permutation group of order two

is t−representable on X . So if the length of each cycle of the permutation σ is

less than three, then < σ > is t−representable on X . Thus H is t−representable

if n < 3. Now H is t−representable if I > 2 by Theorem 3.2.4 and H is not

t−representable if |I| ≤ 2 and n ≥ 3 by Theorems 3.2.1 and 3.2.2. Hence the

theorem.

Remark 3.2.7. Let

H1 = {I, (a1, a2, a3)(a4, a5, a6), (a1, a3, a2)(a4, a6, a5)} and

H2 = {I, (a1, a2, a3)(a4, a5, a6)(a7, a8, a9), (a1, a3, a2)(a4, a6, a5)(a7, a9, a8)}.

Observe that H1 and H2 are isomorphic permutation groups. Here H1 is not

a t−representable permutation group by Theorem 3.2.2. In the case of H2,

by using the proof of Theorem 3.2.4, we can define a topology τ on X =
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{a1, a2, a3, a4, a5, a6, a7, a8, a9} having the base

B = {{a1}, {a2}, {a3}, {a1, a4}, {a2, a5}, {a3, a6}, {a1, a4, a7, a3},

{a2, a5, a8, a1}, {a3, a6, a9, a2}}.

So H2 is a t-representable permutation group on X .

3.3 Groups Generated by a Product of Two

Disjoint Cycles Having Finite Length

In this section we investigate the t−representability of cyclic groups generated

by a permutation which is a product of two disjoint cycles. The main result in

this section is, if σ is a permutation on a set X which is a product of two disjoint

cycles having finite length, then the cyclic group generated by σ, < σ > is not

t−representable on X provided the length of at least one of them is greater than

two.

Theorem 3.3.1. Let X be any set such that |X| = m1 + m2 and σ be a per-

mutation on X which is a product of two disjoint cycles having lengths m1 and

m2 respectively where (m1, m2) = 1, then the cyclic group generated by σ is not

t−representable on X.

Proof. Let σ1 = (a1, a2, . . . , am1
) and σ2 = (b1, b2, . . . , bm2

) and σ = σ1σ2.
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Since (m1, m2) = 1, we have

< σ >=< σ1 > ⊕ < σ2 >

Let X = X1∪X2 where Xi is the set of all elements in the cycle σi for i = 1, 2.

Assume that < σ > is a t-representable permutation group on X and τ be the

corresponding topology.

Now we have two possible cases.

Case 1: m1, m2 > 2

If m1, m2 > 2, the topology on X is T0 and so consider the partially

ordered set (X, ≤). If an element in X is both minimal and maximal, then

all the elements ofX are minimal and maximal and hence H(X, τ) = S(X),

which is not possible. So a minimal element can not be a maximal element.

Then either X1 or X2 is the set of all minimal elements. Assume that X1

is the set of all minimal elements. Then there exists at least one ai ∈ X1

and bj ∈ X2 such that ai precedes bj . Now ai < bj gives p(ai) < p(bj) for

all p ∈< σ >. Since < σ >=< σ1 > ⊕ < σ2 >, any p ∈< σ > is of the

form p = p1 ⊕ p2 where p1 ∈< σ1 > and p2 ∈< σ2 >. Therefore

ai < bj =⇒ (IX1
⊕ p2)(ai) < (IX1

⊕ p2)(bj) for all p2 ∈< σ2 >

=⇒ ai < p2(bj) for all p2 ∈< σ2 >

=⇒ ai < bk for k = 1, 2, . . .m2
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So ai precedes all the elements ofX2 and hence every element inX1 precedes

all the elements of X2. Thus we get G(X, ≤) = S(X1) ⊕ S(X2), this is

not possible.

Case 2: m1 or m2 = 2

Let m1 = 2. Assume that X1 = {a1, a2} and σ1 = (a1, a2). Since

< σ >=< σ1 > ⊕ < σ2 >, σ1 is a homeomorphism on X and so the

space (X, T ) need not be T0. If the space is T0, then arguing as above,

we can prove that < σ > is not t-representable on X . Assume that the

space is not T0. Since the transposition (a1, a2) is a homeomorphism on

the space (X, τ), the subspace (X1, τ/X1
) has either the discrete topology

or indiscrete topology.

Now if the subspace (X1, τ/X1
) has the discrete topology, then there exist

open sets of the form U = U1∪{a1} and V = V1∪{a2} where U1 and V1 are

subsets of X2. Since (X, τ) is not T0, there exist two distinct points x and

y such that every open set in (X, τ) contains both x and y or else contain

neither of them. Since the topology on (X1, τ/X1
) is discrete, we have at

least one of x, y does not belongs to X1. Hence we get a transposition

(x, y) other than (a1, a2), which is a homeomorphism on X . This is not

possible since H(X, τ) =< σ >.

If the subspace (X1, τ/X1
) has the indiscrete topology, then every open set

in (X, τ) contains both a1 and a2 or else contain neither of them. Now

consider the subspace (X2, τ/X2
). Since < σ2 >⊆ H(X2, τ/X2

), (X2, τ/X2
)
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is a homogeneous space and hence there exists a partition B of X2 consist-

ing sets with equal number of elements, which forms a base for (X2, τ/X2
).

Also there exists a transposition p which is a homeomorphism on (X2, τ/X2
).

Now any base element of (X, τ) is of the form B or B ∪X1 where B ∈ B.

Suppose there exist a B in B such that B is a base element for (X, τ), then

since H(X, τ) =< σ >, each B ∈ B is also a base element for (X, τ). Sim-

ilarly if B ∪X1 is a base element for (X, τ), then for each B ∈ B, B ∪X1

is also a base element for (X, τ). Hence p is also a homeomorphism on

(X, τ), which is a contradiction. Thus in both cases we get < σ > is not a

t-representable permutation group on X .

Theorem 3.3.1 can be extended to a cyclic group generated by a permutation,

which is a product of more than two cycles by similar arguments.

Corollary 3.3.2. Let X be any set such that |X| = m1 + m2 + . . . mn and

σ be a permutation on X which is a product of disjoint cycles having lengths

m1, m2, . . . , mn such that gcd of any two of them is one, then the cyclic group

generated by σ is not t−representable on X.

Proof. Proof is obvious since we have

< σ >=< σ1 > ⊕ < σ2 > ⊕ . . .⊕ < σn > .
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Theorem 3.3.3. Let X be a set such that |X| = m1+m2 and σ be a permutation

on X which is a product of two disjoint cycles having different lengths m1 and

m2 respectively where (m1, m2) = d > 1, then the cyclic group generated by σ

is not t−representable on X.

Proof. Let m1 < m2. We have (m1, m2) = d > 1 and hence m1 = ld and

m2 = kd, where l and k are positive integers. Assume that

σ = (a1, a2, . . . , am1
)(b1, b2, . . . , bm1

, bm1+1, . . . , bm2
)

and< σ > be the cyclic group generated by σ. Suppose< σ > is a t-representable

permutation group on X . Then the corresponding topology τ on X is T0 and

by a similar argument as in Theorem 3.3.1, we get (ai, ai⊕d, . . . , ai⊕(l−1)d), i =

1, 2 . . .m1 and (bj , bj⊕d, . . . , bj⊕(k−1)d), j = 1, 2, . . . m2 are homeomorphisms on

X , which is a contradiction to the fact that < σ >= H(X, τ).

Combining previous results, we get the following theorem.

Theorem 3.3.4. Let X be any set such that |X| = m1 +m2, σ be a permuta-

tion on X which is a product of two disjoint cycles having lengths m1 and m2

respectively and H be the cyclic group generated by σ. Then the group H is

t-representable on X if and only if order H is less than three.

Proof. This follows directly from the Theorems 3.2.1, 3.2.5, 3.3.1 and 3.3.3.
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3.4 Groups Generated by a Product of Disjoint

Infinite Cycles

We now turn our attention to the t−representability of infinite cyclic sub-

groups of symmetric groups. Here we prove that if X is an infinite set and σ

is a permutation on X which can be written as an arbitrary product of disjoint

infinite cycles, then the cyclic group generated by σ, < σ > is t−representable

on X .

Let X be the infinite set {. . . , a−2, a−1, a0, a1, a2, . . .} and σ be the infinite

cycle (. . . , a−2, a−1, a0, a1, a2, . . .) on X . Then the group generated by σ is t-

representable on X by defining a topology τ = {∅, X} ∪ {{aj : j ≤ i} : i ∈ Z}

where Z is the set of integers [37].

First we consider the t−representability of cyclic group generated by a per-

mutation which is a product of two disjoint infinite cycles. In contrast with

result in finite case, here we can prove that the subgroup of S(X) generated by a

permutation which is a product of two disjoint infinite cycles is t−representable

on X .

Theorem 3.4.1. Let X be an infinite set and σ be a permutation on X which

can be written as a product of two disjoint infinite cycles. Then the cyclic group

generated by σ, < σ > is t−representable on X.
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Proof. Let σ = σ1σ2 where

σ1 = (. . . , a−1, a0, a1, . . .) and σ2 = (. . . , b−1, b0, b1, . . .).

By Theorem 2.2.4, without loss of generality we can assume that X = X1 ∪X2,

where X1 = {ai : i ∈ Z} and X2 = {bi : i ∈ Z}. Now define a base B by

B = {U ⊆ X : U ∩X1 = Ai and (U ∩X2 = ∅ or U ∩X2 = Bi) for some i ∈ Z}

where

Ai = {aj ∈ X1 : j ≤ i} and Bi = {bj ∈ X2 : j ≤ i}

and τ be the topology having base B. Here B is a collection of its subsets such

that for each x ∈ X , there is a minimal set M(x) in B containing x. So (X, τ)

is an Alexandroff discrete space. We prove that H(X, τ) =< σ >.

Let V be an open set. Then V can be written as the union of some members

of B, say, V = ∪
i∈I

Bi where I is an index set and Bi ∈ B for all i ∈ I. We have

σ(V ) = ∪
i∈I

σ(Bi). So if we show that σ(B) = B and σ−1(B) = B, then σ is a

homeomorphism on (X, τ).

Let U ∈ B. Recall that U ∩X1 = Ai and U ∩X2 = ∅ or Bi. If U ∩X1 = Ai

and U ∩ X2 = ∅, then σ(U) = Ai+1 and σ−1(U) = Ai−1. So σ(U) and σ−1(U)

belongs to B. Now consider the next case, U ∩X1 = Ai and U ∩X2 = Bi 6= ∅.

We have σ(Ai) = Ai+1 and σ(Bi) = Bi+1 and hence σ(U) = Ai+1 ∪ Bi+1, which
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implies that σ(U) ∈ B. Similarly σ−1(U) = Ai−1 ∪ Bi−1 ∈ B. So in both cases

σ ∈ H(X, τ). Hence

< σ >⊆ H(X, τ). (3.1)

Let h ∈ H(X, τ). First we prove that h maps Xi to Xi for i = 1, 2. Suppose

that h(X1) 6= X1. Then either X1 $ h(X1) or h(X1) $ X1.

If X1 $ h(X1), then there exists an ai in X1 such that h(ai) ∈ X2. Let

h(ai) = bk for some k and U = Ai. Then U is a minimal open set containing ai.

This implies that h(U) is a minimal open set containing bk. This follows that

h(U) = Ak ∪ Bk. Let V = Ai+1. Since V is a minimal open set containing ai+1,

h(V ) = Ak ∪ Bk ∪ h(ai+1) is also a minimal open set. This implies that Bk = ∅,

which leads to a contradiction.

Now consider the case h(X1) $ X1. Then there exists aj ∈ X1 such that

h−1(aj) ∈ X2. Since h is a homeomorphism on X , h−1 is also a homeomorphism

on X . So in this case also we get a contradiction. Thus h(Xi) = Xi for i = 1, 2.

Let h(a0) = aj for some j. Now consider the minimal open set A0 containing

a0. Then h(A0) = Aj. This implies that h(A1) = Aj+1 and hence h(a1) = aj+1.

Now assume that h(an) = am for some n and m. Then we can easily show that

h(an+1) = am+1. Thus get h(ai) = ai+j for all i ∈ Z.

Consider b0 ∈ X2. Now h(A0 ∪ B0) = h(A0) ∪ h(B0) = Aj ∪ h(B0), which

belongs to B. This implies that h(B0) = Bj . Also h(b0) = bj . Since h(a1) = aj+1,

72



3.4. Groups Generated by a Product of Disjoint Infinite Cycles

we get h(b1) = bj+1 and so on. Hence h = σj for some j ∈ Z . So

H(X, τ) ⊆< σ > . (3.2)

From equations 3.1 and 3.2, we get H(X, τ) =< σ >. This completes the

proof.

If σ is a permutation on X which is a product of more than two disjoint

infinite cycles, we can define a topology τ on X such that H(X, τ) is the group

generated by σ.

Theorem 3.4.2. If σ is a permutation on X which is a product of more than

two disjoint infinite cycles, then the cyclic group generated by σ, < σ > is

t−representable on X.

Proof. Let σ = Π
ı∈I

Ci where I be an indexed set, |I| > 2 and

Ci = (. . . , ai−2, ai−1, ai 0, ai 1, ai 2, . . .)

which is an infinite cycle. Let Xi be the set which consists of all the elements of

the cycle Ci. In view of Theorem 2.2.4 without loss of generality we can assume

that X = ∪
i∈I

Xi. By the well-ordering Theorem, well-order the set I by an order

relation <. We can use the ordinals to index the members of I. Let i0 be the

first element of I and i1 denote the first element of the set I \ {i0}. In general iβ

denote the first element of the set I \{iα : α < β} provided I \{iα : α < β} 6= ∅.
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Define a base B by

B = {Biγ j : iγ ∈ I, j ∈ Z} ∪ {Bj : j ∈ Z}

where

Biγ j =











{aik j : ik<iγ} if iγ ≤ i2

{aik j : ik<iγ} ∪ {ai0 j−1)} if i2 < iγ

and

Bj = {ai j : i ∈ I} ∪ {ai0 j−1)}.

Let τ be the topology having base B. It is straight forward to check that σ is a

homeomorphism on (X, τ) and hence all powers of σ are also homeomorphisms.

So

< σ >⊆ H(X, τ). (3.3)

For the other way inclusion, let h ∈ H(X, τ). Since h is a homeomorphism

on (X, τ), h(Bi1 1) = Bi1 m for some m ∈ Z. Thus h(ai0 1) = ai0 m. Now consider

the minimal open set Bi2 1 containing ai1 1. Then h(Bi2 1) is a minimal open set

containing h(ai1 1) and which contains ai0 m. It follows that h(ai1 1) = ai1 m. Next

we consider the minimal open set Bi3 1 = {ai0 1, ai1 1, ai2 1, ai0 0}. Now h(Bi3 1) is

a minimal open set containing h(ai2 1) and which contains ai0 m and ai1 m. This

implies that h(Bi3 1) = Bi3 m and hence h(ai0 0) = ai0 m−1).

Assume that h(aiα 1) = aiα m for all α < γ. If iγ has an immediate successor iδ
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in I, consider Biδ 1 = {ai0 1, ai1 1, . . . , aiγ 1} ∪ {ai0 0}. Here h(Biδ 1) is a minimal

open set containing h(aiγ 1) and Biγ m ⊆ h(Biδ 1). So h(Biδ 1) = Biδ m and

h(aiγ 1) = aiγ m.

If iγ has no immediate successor, then iγ is the last element of I. Then

h(B1) = h({ai 1 : i ∈ I} ∪ {ai0 0}) = Biγ m ∪ h(aiγ 1). So the only possibility is

h(B1) = Bm and hence h(aiγ 1) = aiγ m. Thus we get h(ai 1) = aim for all i ∈ I.

Now let h(ai0 2) = ai0 p. Then arguing as above, we get h(ai 2) = ai p for

all i ∈ I and h(ai0 1)) = ai0 p−1. By the fact that h(ai0 1) = ai0 m we have that

m = p− 1. This implies that p = m+ 1. So h(ai 2) = aim+1 for all i ∈ I.

Now assume that h(ai0 q) = ai0 r for some q and r. Then h(ai q) = ai r for

all i ∈ I and h(ai0 q−1) = ai0 r−1. Now let h(ai0 q+1) = ai0 s. Then h(ai0 q+1−1) =

ai0 s−1, which implies that h(ai0 q) = ai0 s−1 and we obtain that r = s − 1 and

so s = r + 1. Consequently we get h(ai q+1) = ai r+1 for all i ∈ I and so

h(ai k) = ai k+m for all i ∈ I and k ∈ Z. Hence h(ai k) = σm(ai k) for all i ∈ I and

k ∈ Z. This follows that h = σm−1 for some m ∈ Z and hence h ∈< σ >. Thus

< σ >⊆ H(X, τ). (3.4)

From equations 3.3 and 3.4, we get < σ >= H(X, τ). Hence < σ > is a

t−representable permutation group on X .

We conclude this section by the following theorem.
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Theorem 3.4.3. Let X be an infinite set and σ be a permutation on X which

can be written as an arbitrary product of disjoint infinite cycles. Then the cyclic

group generated by σ, < σ > is t−representable on X.

Proof. Proof follows from Theorems 3.4.1 and 3.4.2
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Chapter 4

Group of L-fuzzy

Homeomorphisms

In this chapter we study the problem of representing a subgroup of the sym-

metric group S(X) as the group of homeomorphisms of an L-fuzzy topological

space (X, δ).

Similar to the definition of a t-representable permutation group, here we

define an Lf -representable permutation group. Properties of Lf -representable

permutation groups are discussed. Further we investigate the Lf -representability

of semiregular permutation group, dihedral group, alternating group etc. Lf -

representability of some cyclic subgroup of the symmetric group.

The simplest F -lattice other than L = {0, 1} is L = {0, a, 1} with the order

0 < a < 1. Also note that any F -lattice other than {0, 1} contains a sublattice

isomorphic to L = {0, a, 1}.
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4.1 Lf−representability of Permutation Groups

Analogous to t−representability in topology, here we define Lf− representabil-

ity of permutation groups.

Definition 4.1.1. Lf−representable permutation Groups

A subgroup K of the group S(X) of all permutations of a set X is called

Lf−representable on X if there exists an L-fuzzy topology δ on X such that the

group of L-fuzzy homeomorphisms of (X, δ) = K.

If we take L as the lattice containing only two elements 0 and 1, then in

view point of lattice theory LX is isomorphic to the power set of X and hence

topologies and topological spaces become special cases of L-fuzzy topologies and

L-fuzzy topological spaces. So every t−representable permutation group on a set

X is also Lf− representable on X . But an Lf -representable permutation group

need not be t-representable on X .

4.2 Properties of Lf−representable Permutation

Groups

In this section, some properties of Lf− representable permutation groups are

discussed.

The following theorem plays a major role in proving results related to Lf -
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4.2. Properties of Lf−representable Permutation Groups

representability of permutation groups.

Theorem 4.2.1. [36] Let L and L′ be complete and distributive lattices such that

L is isomorphic to a sublattice of L′. Then if H is a subgroup of S(X) which can

be represented as the group of homeomorphisms of an L-fuzzy topological space

(X, δ) for some L-fuzzy topology δ on X, then H can also be represented as the

group of L′-fuzzy homeomorphisms of the L′-fuzzy topological space (X, δ′) for

some L′-fuzzy topology δ′ on X.

Using the above Theorem we have the following Remark.

Remark 4.2.2. Let L and L′ be two F -lattices such that L is isomorphic

to a sub lattice of L′. Then if a permutation group H is Lf−representable on an

arbitrary set X , then H is also L′
f−representable on X .

So if we prove a permutation group H is Lf -representable on a set X by

taking L = {0, a, 1} with the usual order, then H is Lf -representable on X for

any F -lattice L 6= {0, 1}.

As in the case of t-representable permutation groups, here we prove that

conjugate of an Lf− representable permutation group is Lf− representable.

Theorem 4.2.3. Let X be any set and H be a subgroup of the symmetric group

S(X). Then H is Lf−representable on X if and only if its conjugate is also

Lf−representable on X.

Proof. Let H be a Lf -representable permutation group on X . Then there exists
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4.2. Properties of Lf−representable Permutation Groups

an L-fuzzy topology δ on X such that LFH(X, δ) = H . It follows that

H = {h ∈ S(X) : δ ◦ h = δ}.

Let g ∈ S(X). Then δ ◦ g = {f ◦ g : f ∈ δ} is an L-fuzzy topology on X . Now

we claim that LFH(X, δ ◦ g) = gHg−1.

Let h ∈ LFH(X, δ)

⇒ δ ◦ h = δ

⇒ δ ◦ gg−1h = δ

⇒ (δ ◦ g) ◦ g−1h = δ

⇒ (δ ◦ g) ◦ g−1hg = δ ◦ g

⇒ g−1hg ∈ LFH(X, δ ◦ g).

This implies that

g−1Hg ⊆ LFH(X, δ ◦ g) (4.1)

For the other way inclusion,

let h ∈ LFH(X, δ ◦ g)

⇒ δ ◦ g ◦ h = δ ◦ g

⇒ δ ◦ ghg−1 = δ

⇒ ghg−1 ∈ LFH(X, δ) = H
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4.2. Properties of Lf−representable Permutation Groups

⇒ h ∈ g−1Hg.

This implies that

LHH(X, δ ◦ g) ⊆ g−1Hg (4.2)

From equations 4.1 and 4.2, we get LFH(X, δ◦g) = g−1Hg. Thus the conjugate

of an Lf -representable permutation group is Lf -representable on X .

Conversely assume that g−1Hg is Lf -representable on X . Then by what we

have proved above, the conjugate of g−1Hg is Lf -representable on X . So H is

Lf -representable on X . This completes the proof.

Remark 4.2.4. So it suffices to determine the conjugacy classes of sub-

groups of S(X) which are Lf−representable on X .

Our next Theorem is a generalization Theorem 2 of [36].

Theorem 4.2.5. Let X be any set and Y ⊆ X. Let H be a permutation group

on Y . If H is Lf -representable on Y , then the permutation group H ⊕{IX\Y } is

Lf -representable on X where IX\Y is the identity permutation on X \ Y .

Proof. Let δ be the L-fuzzy topology on Y such that LFH(Y, δ) = H . Now for
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any f ∈ δ, let f ′ : X → L defined by

f ′(x) =











1 if x ∈ X \ Y

f(x) if x ∈ Y.

By the well-ordering Theorem, well-order the set X \ Y with the order relation

‘ <′. Now for a ∈ X \ Y , define fa : X → L as

fa(x) =











1 if x ∈ X \ Y and x < a

0 otherwise.

Let

δ1 = {f ′ : f ∈ δ} and δ2 = {fa : a ∈ X \ Y }.

Using δ1 and δ2 we define an L- fuzzy topology δ′ on X as follows.

δ′ = δ1 ∪ δ2

Now we claim that LFH(X, δ′) = H ⊕ {IX\Y }.

Let h ⊕ IX\Y ∈ H ⊕ {IX\Y } and g ∈ δ′. If g = fa for some a ∈ X \ Y , then

(h⊕ IX\Y )
−1(fa) = fa ◦ (h⊕ IX\Y ). Now

(h⊕ IX\Y )
−1(fa)(x) =











fa(x) if x ∈ X \ Y

fa(h(x)) if x ∈ Y.

82



4.2. Properties of Lf−representable Permutation Groups

=











fa(x) if x ∈ X \ Y

0 if x ∈ Y.

=











1 if x ∈ X \ Y and x < a

0 otherwise

= fa(x).

Thus if g = fa, then (h⊕ IX\Y )
−1(g) = g, which belongs to δ′.

If g = f ′, then (h⊕ IX\Y )
−1(f ′) = f ′ ◦ (h⊕ IX\Y ) and

(h⊕ IX\Y )
−1f ′(x) =











(f ◦ h)(x) if x ∈ Y

1 if x ∈ X \ Y.

= (f ◦ h)′(x)

Observe that f ∈ δ and h ∈ H . So f ◦ h ∈ δ and hence (h ⊕ IX\Y )
−1(f ′) =

(f ◦ h)′ ∈ δ′. So (h⊕ IX\Y )
−1(g) ∈ δ′ for all g ∈ δ′. Thus h⊕ IX\Y is an L-fuzzy

continuous map on X onto itself. Similarly we can prove that (h⊕IX\Y )(f
′) ∈ δ′

for all f ′ ∈ δ′ and hence (h⊕ IX\Y )
−1 is also an L-fuzzy continuous map on X .

Thus h⊕ IX\Y is an L-fuzzy homeomorphism on (X, δ′) for all h ∈ H . So

H ⊕ {IX\Y } ⊆ LFHT (X, δ′). (4.3)

Conversely let h be an L-fuzzy homeomorphism on (X, δ′) onto itself. Let

x0 be the first element of the set X \ Y and x1 be the first element of the set
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(X \ Y ) \ {x0}. Now consider h−1(fx1
), which takes the value 1 at exactly one

point h−1(x0) and 0 elsewhere. Since fx1
∈ δ′, h−1(fx1

) ∈ δ′. This implies that

h−1(fx1
) = fx1

and so h(x0) = x0. Let xα be any element of X \ Y such that

h(x) = x for all x in X \ Y , x < xα. Now we claim that h(xα) = xα. If xα has

no immediate successor in X \ Y , xα be the last element of the set X \ Y . Since

f = 0 ∈ δ, f ′ : X → L defined by

f ′(x) =











0 if x ∈ Y

1 if x ∈ X \ Y

belongs to δ′. So

h−1(f ′)(x) = (f ′ ◦ h)(x)

=











1 for all x ∈ X \ Y such that x < xα and h−1(xα)

0 otherwise

and h−1(f ′) ∈ δ′. This implies that h−1(f ′) = f ′ and hence h(xα) = xα.

If xα has an immediate successor xβ in X \ Y , then consider fβ in δ′. We

have that h−1(fβ) ∈ δ′ and

h−1(fβ)(x) = (fβ ◦ h)(x)

=











1 for all x < xα and h−1(xα)

0 otherwise
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This gives that h−1(fβ) = fβ and hence h(xα) = xα. It follows that h(x) = x

for all x ∈ X \ Y and h(Y ) = Y . So h|Y is a homeomorphism on (Y, δ). Hence

h ∈ H ⊕ IX\Y . Since h is arbitrary, we have

LFH(X, δ′) ⊆ H ⊕ {IX\Y }. (4.4)

From equations 4.3 and 4.4, we get LFH(X, δ′) = H ⊕ {IX\Y }

Remark 4.2.6. Let H be a non-trivial permutation group on a set X . Let

Y = X \ {x ∈ X : h(x) = x for all h ∈ H}. Define H ′ = {h|Y : h ∈ H},

which is a permutation group on Y . Note thatH ′ moves all the elements of Y and

H = H ′ ⊕ {IX\Y }. By Theorem 4.2.5, it follows that, if H ′ is Lf -representable

on Y , then H is Lf -representable on X . So if (X, δ) is an L-fuzzy topological

space which is not rigid and H = H(X, δ) then without loss of generality we

can assume that H moves all the elements of X .

4.2.1 Lf−representability of Direct Sum of Lf−representable

Permutation Groups

Now we turn our attention to the Lf−representability of direct sum of finite

Lf−representable subgroups of symmetric groups. In chapter two it is proved

that the direct sum of finite t−representable permutation groups is t− repre-

sentable. Here we prove analogues result in the case of L- fuzzy topological

spaces.
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Theorem 4.2.7. Let {Xi}i∈I be an arbitrary family of mutually disjoint finite

sets and Ki be a Lf -representable subgroup of S(Xi) for i ∈ I. Then
⊕

i∈I

Ki is

Lf−representable on X =
⋃

i∈I

Xi.

Proof. Since Ki is Lf− representable on Xi for all i ∈ I, there exists an L-

fuzzy topology δi on Xi such that the group of L- fuzzy homeomorphisms,

LFH(Xi, δi) = Ki. By the well-ordering Theorem, we can choose a well-order <

on I. For each f ∈ δi, i ∈ I define f ′ : X → L as follows

f ′(x) =































1 if x ∈ ∪
j<i

Xj

f(x) if x ∈ Xi

0 otherwise

and let

δ′i = {f ′
i : fi ∈ δi}.

Using this δ′, we can define δ on X as follows.

δ = {1} ∪ ∪
i∈I

δ′i.

Then δ is an L- fuzzy topology on X . We claim that LFH(X, δ) = K where

K =
⊕

i∈I

Ki.

Let ki ∈ Ki for all i ∈ I and k = ⊕
i∈I

ki. Clearly k is a bijection of X onto

itself. Let f ∈ δ. If f = 1, then k−1(f) = f ◦ k = f . Suppose f 6= 1, then f = f ′
i
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for some i ∈ I. consider k−1(f ′
i).

Now

k−1(f ′
i)(x) = (f ′

i ◦ k)(x)

= f ′
i(k(x))

=































1 if k(x) ∈ ∪
j<i

Xj

fi(k(x)) if k(x) ∈ Xi

0 otherwise

=































1 if x ∈ ∪
j<i

Xj

(fi ◦ ki)(x)) if x ∈ Xi

0 otherwise

= (fi ◦ ki)
′(x).

Since fi ∈ δi and ki ∈ Ki, we have that fi ◦ ki ∈ δi and hence (fi ◦ ki)
′ ∈ δ. This

implies that k−1(f ′
i) belongs to δ. Similarly we can prove that f ′

i ◦ k
−1 ∈ δ. So

K ⊆ LFH(X, δ)

Conversely suppose that k ∈ LFH(X, δ). Let i0 be the smallest element of

I. Since 1 ∈ δi0 , Consider f
′
i0 defined by

f ′
i0(x) =











1 if x ∈ Xi0

0 otherwise
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which takes the value 1 at exactly |Xi0| points and belongs to δ. Since k ∈

LFH(X, δ), k(f ′
i0
) ∈ δ. Also we have that

k(f ′
i0
)(x) = (f ′

i0
◦ k−1)(x)

=











1 if k−1(x) ∈ Xi0

0 otherwise

=











1 if x ∈ k(Xi0)

0 otherwise.

Note that k(f ′) takes the value 1 at |Xi0 | points and hence the only possibility

is k(f ′
i0
) = f ′

i0
. Thus we get k(Xi0) = Xi0 .

Now assume that j ∈ I and k(Xj) = Xj for all j ∈ I and j < i. We prove that

k(Xi) = Xi. Suppose k(Xi) 6= Xi, then there exists x in Xi such that k(x) /∈ Xi

or there exists x /∈ Xi such that k(x) ∈ Xi. In the second case also we can see

that, there exists x ∈ Xi such that k(x) /∈ Xi, since Xi is finite. Thus without

loss of generality, we can assume that there exists x in Xi such that k(x) /∈ Xi.

Then k(x) ∈ Xk for some k > i. Consider f = f ′
i where

f ′
i(x) =















1 if x ∈ ∪
j≤i

Xj

0 otherwise

which is an L-fuzzy open set in δ. Therefore k(f) is also an L-fuzzy open set in

X .
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Let x ∈ X . Then

k(f)(x) = (f ◦ k−1)(x)

= f(k−1(x))

=















1 if k−1(x) ∈ ∪
j≤i

Xj

0 otherwise

=















1 if x ∈ k( ∪
j≤i

Xj)

0 otherwise

=















1 if x ∈ ∪
j<i

Xj ∪ k(Xi)

0 otherwise.

This is true for all x ∈ X . Since k(x) ∈ Xk for some x ∈ Xi and k(f) ∈ δ, we get

|k(Xi)| > |Xi|, which is a contradiction. Hence k(Xj) = Xj for all j ∈ I. Thus

k|Xj
= kj is an L-fuzzy homeomorphism of Xj for all j ∈ I and k = ⊕

i∈I
ki. So

k ∈ K =
⊕

i∈I

Ki. Thus LFH(X, δ) = K and hence
⊕

i∈I

Ki is an Lf−representable

permutation group on X .

4.3 Lf−representability of Semiregular Permu-

tation Groups

In this section we prove that semiregular permutation groups on a nonempty

set X are Lf -representable on X provided |X| ≤ L.
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Recall that a permutation group H on a nonempty set X is called semiregular

if the identity permutation is the only element in H with any fixed points.

Theorem 4.3.1. Let X be any set and L be an F−lattice such that |X| ≤ |L|.

Let H be a semiregular permutation group on X. Then H is Lf− representable

on X.

Proof. Let f : X → L be an L- fuzzy set such that f is one-one and f takes the

value 0 and 1. We can define such a one-one function since |X| ≤ |L|. By the

well-ordering Theorem, well-order the group H with order relation <. Define

S = {fi = f ◦ hi : hi ∈ H}. Let δ be the L-fuzzy topology generated by S.

Then any element of δ is of the form ∨
i∈I

( ∧
j∈Ji

fj) where I is an index set and Ji is

finite for each i ∈ I.

Claim: LFH(X, δ) = H

Let h ∈ H and fi ∈ S. Then h−1(fi) = fi ◦ h = (f ◦ hi) ◦ h = f ◦ (hi ◦ h). Since

H is a group and h, h1 ∈ H , hi ◦ h is in H . Let hi ◦ h = hk for some k. Then it

follows that h−1(fi) = f ◦ hk = fk. Hence h−1(fi) is in δ. By similar arguments

we can prove that h(fi) ∈ δ. So h is an L-fuzzy homeomorphism on X .

H ⊆ LFH(X, δ) (4.5)

Conversely assume that h ∈ LFH(X, δ). Then h−1(f) ∈ δ. Now h−1(f) =

f ◦ h = ∨
i∈I

( ∧
j∈Ji

fj). Note that f takes the value 0 and hence f ◦ h also takes the

value 0 at some x ∈ X . It follows that for all i ∈ I, there exists a ji ∈ Ji such
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that fji(x) = 0. Now f takes the value 1 implies that there exists some y ∈ X

such that f ◦ h(y) = 1. This implies that there exists some i0 ∈ I such that

∧
j∈Ji0

fj(y) = 1. It follows that |Ji0| = 1 and hence ji = k for all i ∈ I.

f ◦ h = ∨
i∈I

( ∧
j∈Ji

fj)

= [ ∨
i∈I\{i0}

( ∧
j∈Ji

fj)] ∨ ( ∧
j∈Ji0

fj)

= ∨
i∈I\{i0}

( ∧
j∈Ji

fj) ∨ fk

= ∨
i∈I\{i0}

(( ∧
j∈Ji\{k}

fj) ∧ fk) ∨ fk

= fk

= f ◦ hk.

Thus we get h = hk and hence h ∈ H . So

LFH(X, δ) ⊆ H (4.6)

From Equations 4.5 and 4.6, it follows that H is Lf -representable on X .

A permutation group is regular if and only if it is both semiregular and

transitive.

Corollary 4.3.2. Let X be any set and L-be any F -lattice such that |X| ≤ |L|.

Then every regular permutation group on X is Lf−representable.

Proof. We have a regular permutation group is semiregular. Proof follows from
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Theorem 4.3.1.

Let X be any set on X such that |X| ≤ |L|. Then any transitive abelian

permutation group on a finite set X is regular and hence Lf -representable on X .

4.4 Lf−representability of Cyclic Group of Per-

mutations

Now we investigate the Lf−representability of the cyclic permutation groups.

We need the following theorem taken from [36]

Theorem 4.4.1. [36] Let X be any set and L be any complete distributive lat-

tice containing more than two elements. Then the group of permutations of X

generated by any finite cycle on X can be represented as the group of homeo-

morphisms of the L-fuzzy topological space (X, δ) for some L-fuzzy topology δ on

X.

Now using Theorems 4.2.5, 4.2.7 and 4.4.1, we can easily prove the following

Corollary.

Corollary 4.4.2. Let X be any set and L be an F -lattice containing more than

two elements. If σ is any permutation on X, which is a product of n disjoint

cycles having lengths m1, m2, . . . , mn where (mi, mj) = 1 for i, j = 1, 2, . . . , n

and i 6= j, then the permutation group generated by σ is Lf−representable on X

.
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Proof. Let σ = σ1σ2 . . . σmn where σi is a cycle of length mi where 1 ≤ i ≤ n.

Since (mi, mj) = 1 for i, j = 1, 2, . . . , n and i 6= j, we have that

< σ >=< σ1 > ⊕ < σ2 > ⊕ . . .⊕ < σn > .

By Remark 4.2.6, without loss of generality we can assume that X = X1∪X2 ∪

. . . ∪Xn where Xi is the set of all elements of the cycle σi for 1 ≤ i ≤ n. Then

by theorem 4.4.1, < σi > is Lf−representable on Xi for all i, 1 ≤ i ≤ n when

L 6= {0, 1}. So from Theorem 4.2.7, it follows that < σ > is Lf−represenable

on X .

In Chapter 2, it is proved that the above group is not t−representable on X .

Corollary 4.4.3. If X is any set and σ is any permutation on X, which is a

product of n disjoint cycles having lengths m1, m2, . . . , mn where (mi, mj) = 1

for i, j = 1, 2, . . . , n and i 6= j. Then the permutation group generated by σ is

Lf−representable on X if and only if L 6= {0, 1}.

Proof. Proof follows from Corollaries 3.3.2 and 4.4.2.

In Theorem 3.2.2, we proved that the permutation group generated by a

permutation which is a product of two disjoint cycles having equal length n, n ≥

3 is not t−representable. Here we prove such groups are Lf−representable on X

when |L| 6= 2.
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Theorem 4.4.4. Let X be any set and L = {0, 1
2
, 1}. Let σ be a permutation

on X such that σ can be written as a product of two disjoint cycles having equal

length n. Then the permutation group generated by σ is Lf - representable on X.

Proof. Let σ = σ1σ2 where

σ1 = (x1 1, x1 2, . . . , x1n), σ2 = (x2 1, x2 2, . . . , x2n)

and L = {1, .5, 0} with the usual order. By Remark 4.2.6, without loss of gener-

ality we assume that X = X1 ∪X2 where Xi is the elements in the cycle σi for

i = 1, 2.

Define δ = {f ∈ LX : f(xij⊕1) ≥ f(xij) − .5 for every j = 1, 2, . . . , n and

i = 1, 2 and if f(x2j) = 1, then f(x1j) = 1 for all j = 1, 2, . . . n}, where ⊕

denote addition modulo n. Then δ is an L-fuzzy topology on X .

The constant functions 0 and 1 belongs to δ. Let f1, f2 ∈ δ. Then

(f1 ∨ f2)(xij⊕1) = f1(xij⊕1) ∨ f2(xij⊕1)

≥ (f1(xij)− .5) ∨ (f2(xij)− .5)

≥ (f1 ∨ f2)(xij)− .5

and (f1 ∨ f2)(x2j) = 1 gives f1(x2j) = 1 or f2(x2j) = 1. If f1(x2j) = 1, then

f1(x1j) = 1. Similarly if f2(x2j) = 1, then f2(x1j) = 1. Thus if (f1∨f2)(x2j) = 1
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then (f1 ∨ f2)(x1j) = 1. Now

(f1 ∧ f2)(xij⊕1) = f1(xij⊕1) ∧ f2(xij⊕1)

≥ (f1(xij)− .5) ∧ (f2(xij)− .5)

≥ (f1 ∧ f2)(xij)− .5

Now (f1∧f2)(x2j) = 1 gives f1(x2j) = 1 and f2(x2j) = 1. Thus (f1∧f2)(x1j) = 1.

So δ is an L-fuzzy topology on X .

Now we prove that σ is an L-fuzzy homeomorphism on X . Let f ∈ δ. Then

σ−1(f) = f ◦ σ and for every i = 1, 2

f ◦ σ(xi,j⊕1) = f(xi,j⊕1⊕1)

≥ f(xij⊕1)− .5

= f ◦ σ(xi,j)− .5

and

f ◦ σ(x2,j) = 1

⇒ f(x2,j⊕1) = 1

⇒ f(x1j⊕1) = 1

⇒ f ◦ σ(x1,j) = 1.
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Hence f ◦ σ ∈ δ. Similarly σ(f) = f ◦ σ−1 ∈ δ. Hence σ is an L- fuzzy

homeomorphism on (X, δ) and consequently all the powers of σ are also L-fuzzy

homeomorphisms on X . Thus

K ⊆ LFH(X, δ). (4.7)

Conversely let h ∈ LFH(X, δ). For i = 1, 2 and j = 1, 2, . . . n,

Define fij : X → L as follows

fij(x) =



























1 if x = xkj , k ≤ i

.5 if x = xkj⊕1, k ≤ i

0 otherwise.

Then fij ∈ δ for all i = 1, 2 and j = 1, 2, . . . , n. Since h is an L-fuzzy homeo-

morphism, h(fij) = fij ◦ h
−1 ∈ δ for all i = 1, 2 and j = 1, 2, . . . , n. Consider

h(f11). We have f11◦h
−1(x) = 1 for an unique element ofX namely h(x11). Then

h(x11) = x1k for some k. Now f11 ◦ h−1(x1k) = 1 gives f11 ◦ h−1(x1k⊕1) = .5

and f11 ◦ h−1(x) = 0 for all other values of X . Thus f11 ◦ h−1 = f1k. Also

f11◦h
−1(x1k⊕1) = f1k(x1k⊕1) = .5 and hence h−1(x1k⊕1) = x12 or h(x12) = x1k⊕1.

Now we prove that if h(x1α) = x1β for some α and β, then h(x1α⊕1) = x1β⊕1.

Note that h(f1α) = f1α ◦ h−1 ∈ δ. Now f1α ◦ h−1(x1β) = 1 and this gives

f1α ◦ h−1(x1β⊕1) = 0.5. So h−1(x1β⊕1) = x1α⊕1 or h(x1α⊕1) = x1β⊕1 . Thus

h(x1j) = x1j⊕(k−1) for all j = 1, 2, ..., n. So h(x1j) = σk−1(x1j) and h maps
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(x11, x12, . . . , x1n) on to itself cyclically.

Let h(x2i) = x2ρ. We claim that ρ = i⊕(k−1). Suppose ρ 6= i⊕(k−1). Now

f2i ◦ h
−1(x2ρ) = f2i(x2i) = 1 and this gives f2i ◦ h

−1(x1ρ) = 1. Now h−1(x1ρ) =

x1ρ⊕(n−k)⊕1 and so, f2i(x1ρ⊕n−k⊕1) = 1, which is a contradiction to the fact that

f2i ∈ δ. So ρ = i ⊕ (k − 1) and hence h(x2i) = x2i⊕(k−1) = σk−1(x2i) and it

follows that h = σk−1. Thus

LFH(X, δ) ⊆ K. (4.8)

From equations 4.7 and 4.8 we get LFH(X, δ) = K. This completes the proof.

So if X is any set and L be any F -lattice containing more than two elements,

then the group generated by a permutation which is a product of two disjoint

cycles having equal length is Lf−representable on X .

Theorem 4.4.5. Let X be any set and σ be a permutation on X such that σ

can be written as a product of two disjoint cycles having equal length n where

n ≥ 3. Then the group generated by σ is Lf - representable on X if and only if

L 6= {0, 1}.

Proof. Proof follows from Theorems 4.2.2, 3.2.2 and 4.4.4.

If σ is a permutation on X which is an arbitrary product of more than two

disjoint cycles having equal length n, then the cyclic group generated by σ, < σ >
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is t−representable on X by the Theorem 3.2.4. So by using Theorem 4.4.4, we

conclude the following Theorem.

Theorem 4.4.6. If X is any infinite set and if σ is any permutation on X,

which is an arbitrary product of disjoint cycles having equal lengths. Then the

permutation group generated by < σ > is Lf−representable on X.

Proof. Proof follows from Theorems 3.2.4 and 4.4.4.

Corollary 4.4.7. Let X be any set. Then every permutation group of prime

order is Lf−representable on X.

Proof. Let H be a permutation group on X having order p where p is a prime

number. By Remark 4.2.6, without loss of generality we can assume that H

moves all the elements of X . Since H is of order p, H is a cyclic group generated

by a permutation σ which is of order p. This implies that σ is a product of disjoint

cycles having equal length p. So by Theorem 4.4.6, H is Lf−representable on

X .

4.5 Lf−representability of Dihedral Groups

In chapter two, we determined the t-representability of dihedral group Dn.

We proved that Dn is not t-representable if and only if n > 5.

We investigate the Lf−representability of dihedral groups when |L| ≥ 3.
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Lemma 4.5.1. Let X = {1, 2, . . . n} and L = {0, 1
2
, 1} with the usual order.

Then the dihedral group Dn is Lf−representable for all n.

Proof. Recall that the group Dn has 2n elements generated by the cycle r =

(1, 2, . . . n) and the permutation

s =







1 2 3 4 . . . i . . . n− 1 n

n n− 1 n− 2 n− 3 . . . n+ 1− i . . . 2 1






.

Let δ be the L-fuzzy topology having base B = {gi : i = 1, 2, . . . n} ∪ {fi :

i = 1, 2, . . . n} where gi and fi are functions from X to L defined by

gi(j) =











.5 if i = j

0 otherwise

and

fi(j) =



























1 if i = j

.5 if j = i⊕ 1, i⊕ (n− 1)

0 otherwise.

where ⊕ denotes addition modulo n.

Now we prove that LFH(X, δ) = Dn. First we claim that the rotation r and

reflection s are homeomorphisms.
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Consider fi ◦ r and gi ◦ r. Now

(fi ◦ r)(x) =



























1 if r(x) = i

.5 if r(x) = i⊕ 1, i⊕ (n− 1)

0 otherwise

=



























1 if x = i⊕ (n− 1)

.5 if x = i, i⊕ (n− 2)

0 otherwise

and

gi ◦ r(x) =











.5 if r(x) = i

0 otherwise

=











.5 if x = i⊕ (n− 1)

0 otherwise.

Thus fi ◦ r = fi⊕(n−1) and gi ◦ r = gi⊕(n−1), which belongs to δ. Now consider

fi ◦ s and gi ◦ s

(fi ◦ s)(x) =



























1 if s(x) = i

.5 if s(x) = i⊕ 1, i⊕ (n− 1)

0 otherwise
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=



























1 if x = (n− i)⊕ 1

.5 if x = (n− i), (n− i)⊕ 2

0 otherwise

and

gi ◦ s(x) =











.5 if s(x) = i

0 otherwise

=











.5 if x = (n− i)⊕ 1

0 otherwise.

Thus fi◦s = fi⊕(n−1) and gi◦s = gi⊕(n−1), which belongs to δ for all i = 1, 2, . . . n.

So r and s belongs to LFH(X, δ) and hence

Dn ⊆ LFH(X, δ). (4.9)

Let h ∈ LFH(X, δ). Consider f1 ◦h
−1 which takes the value 1 at h(1) and .5

at h(n) and h(2). Let h(1) = k. Then either h(2) = k⊕1 and h(n) = k⊕ (n−1)

or h(2) = k ⊕ (n− 1) and h(n) = k ⊕ 1.

Case(1): h(2) = k ⊕ 1 and h(n) = k ⊕ (n− 1).

Consider f2 ◦ h−1. Now f2 ◦ h−1 takes the value 1 at h(2) and .5 at h(1)

and h(3), which gives f2 ◦h
−1 = fk⊕1 and hence h(3) = k⊕ 2. Similarly by

considering f3, f4, . . . fn , we get h(i) = k ⊕ (i− 1). That is h(i) = rk−1(i)
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for all i = 1, 2, . . . n.

Case(2): h(2) = k ⊕ (n− 1) and h(n) = k ⊕ 1.

Then f2 ◦ h
−1 takes the value 1 at h(2) = k ⊕ (n − 1) and .5 at h(1) = k

and h(3) which implies that f2 ◦ h−1 = fk⊕(n−1) and h(3) = k ⊕ (n − 2).

Similarly by considering f3, f4, . . . fn we get h(i) = k ⊕ (n− (i− 1)). That

is h = (1, k)(2, k − 1) . . . (k ⊕ 1, n)(k ⊕ 2, n− 1) . . . = rn−ks ∈ Dn.

So in both cases h ∈ Dn and hence

LFH(X, δ) ⊆ Dn. (4.10)

From equations 4.9 and 4.10, we get LFH(X, δ) = Dn. This completes the

proof.

So if X is any set and L be any F -lattice containing more than two elements,

then the dihedral group Dn is Lf−representable on X , by Remark 4.2.2. An

immediate consequence of Theorem 2.3.10 and Lemma 4.5.1 is the following.

Theorem 4.5.2. Let X be any set such that |X| = n > 4. Then the dihedral

group Dn on X is Lf−representable on X if and only if L 6= {0, 1}.

Proof. If L 6= {0, 1}, then Dn is Lf -representable by Lemma 4.5.1 and Remark

4.2.2. Now assume that L = {0, 1}, which means the crisp case. In this case Dn

is not t−representable when n > 4 by Theorem 2.3.10. So the dihedral group

Dn on X is Lf−representable on X if and only if L 6= {0, 1}.
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4.6 Lf− representability of Alternating Groups

Here we enquire the Lf -representability of A(X) when |X| > |L|.

Theorem 4.6.1. If X is any set such that |X| ≥ 4 and |L| < |X|, then the

alternating group A(X) is not Lf -representable on X.

Proof. Suppose that A(X) is Lf−representable on X . Then A(X) = LFH(X, δ)

for some L- fuzzy topology δ on X .

Now we claim that if (x, y) ◦ h ∈ LFH(X, δ) for every transposition (x, y)

in X , then h ∈ LFH(X, δ). Let h /∈ A(X). It follows that h is not an L-

fuzzy homeomorphism on (X, δ). Then there exists at least one f ∈ δ such that

f ◦ h /∈ δ or f ◦ h−1 /∈ δ. Now since |L| < |X| and f ∈ δ implies that there exist

at least two points x0, y0 ∈ X such that f(x0) = f(y0). Suppose f ◦ h /∈ δ. Since

h is a permutation on X and x0, y0 ∈ X gives that there exist x1, y1 ∈ X such

that h(x1) = x0 and h(y1) = y0 and hence (f ◦ h)(x1) = (f ◦ h)(y1).

Consider (x0, y0) ◦ h. Here we prove that f ◦ ((x0, y0) ◦ h) = f ◦ h.

For, if x ∈ X , x 6= x1, y1,

f ◦ ((x0, y0) ◦ h)(x) = f ◦ (x0, y0)(h(x)) = f ◦ h(x).

If x = x1, then

f ◦ ((x1, y1) ◦ h)(x) = f ◦ ((x0, y0) ◦ h)(x1)
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= f(y0)

= f(x0)

= f ◦ h(x1)

= f ◦ h(x).

Similarly if x = y1 we get f ◦ ((x0, y0) ◦ h)(y1) = f ◦ h(y1). Thus

f ◦ (x0, y0) ◦ h(x) = f ◦ h(x) for all x ∈ X.

It follows that there is an f ∈ δ such that f ◦ (x0, y0) ◦ h /∈ δ. So there is a

transposition (x0, y0) such that (x0, y0) ◦ h /∈ LFH(X, δ).

Similarly if f ◦ h−1 /∈ δ, then we can prove that f ◦ h−1 ◦ (x2, y2) = f ◦ h−1

where x0 = h−1(x2) and y0 = h−1(y2). Thus in this case also there exists f ∈ δ

such that f ◦ (h−1 ◦ (x2, y2)) /∈ δ. Hence ((x2, y2)◦σ))
−1 /∈ LFH(X, δ). Here also

there is a transposition (x2, y2) such that ((x2, y2) ◦ σ)−1 /∈ LFH(X, δ). So if

(x, y) ◦h ∈ LFH(X, δ) for every transposition (x, y) in X , then h ∈ LFH(X, δ),

which is a contradiction since LFH(X, δ) = A(X) and the alternating group

A(X) does not satisfy this if |X| > 3. So there exist no L- fuzzy topology δ on

X such that the group of L- fuzzy homeomorphisms of (X, δ) is the Alternating

group.
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4.6.1 Lf-representability of Normal Subgroups of Sn

Now we investigate the Lf−representability of normal subgroups of Sn when

|L| = 3. If n ≥ 3 and n 6= 4, the only proper non-trivial normal subgroup

of Sn is the alternating group An and by Theorem 4.6.1 we determined Lf -

representability of An. If n = 4, then Sn has another normal subgroup and we

can determine the Lf−representability of that subgroup.

Theorem 4.6.2. Let H be the normal subgroup of S4 given by H = {I, (1, 2)(3, 4),

(1, 3)(2, 4), (1, 4)(2, 3)}. Then H is Lf−representable if and only if the member-

ship lattice L 6= {0, 1}.

Proof. Assume that L 6= {0, 1}. Let L = {1, .5, 0} and δ be the L-fuzzy topology

having base

B = {f1, f2, f3, f4}

where

f1(1) = .5, f1(2) = 0, f1(3) = .5, f1(4) = 0

f2(1) = 0, f2(2) = .5, f2(3) = 0, f2(4) = .5

f3(1) = 1, f3(2) = .5, f3(3) = .5, f3(4) = 1

f4(1) = .5, f4(2) = 1, f4(3) = 1, f4(4) = .5

Now we claim that LFH(X, δ) = H . Reader can easily verify that every element

of H is an L-fuzzy homeomorphism of (X, δ) onto itself. Hence H ⊆ LFH(X, δ).
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Let h be an L-fuzzy homeomorphism on X . Then h−1(f) and h(f) are in δ

for all f ∈ δ. Now consider h−1(f1) and h−1(f2). Then either h−1(f1) = f1 and

h−1(f2) = f2 or h−1(f1) = f2 and h−1(f2) = f1.

Case 1: h−1(f1) = f1 and h−1(f2) = f2

That is f1 ◦ h = f1 and f2 ◦ h = f2, which implies that h(1) = 1 or 3 and

h(2) = 2 or 4. If h(1) = 1, then h(3) = 3. Suppose h(2) = 4. So h(4) = 2.

Hence h = (2, 4). Then f3 ◦ h 6= f3 or f4. Hence h is not an L-fuzzy

homeomorphism on X , which is a contradiction. So if h(1) = 1, then h is

the identity permutation.

Now suppose h(1) = 3, then h(3) = 1. Suppose h(2) = 2. So h(4) = 4.

Hence h = (1, 3). Then f3 ◦ h 6= f3 or f4. Hence h is not an L-fuzzy

homeomorphism, which is also a contradiction. So if h(1) = 3, then h =

(1, 3)(2, 4).

Case 2 : h−1(f1) = f2 and h−1(f2) = f1

In this case h(1) = 2 or 4 and h(2) = 3 or 1. If h(1) = 2, then h(3) = 4.

Suppose h(2) = 3. So h(4) = 1. Hence h = (1, 2, 3, 4). Then f3 ◦h 6= f3 or

f4. Hence h is not an L-fuzzy homeomorphism, which is a contradiction.

So if h(1) = 2, then h = (1, 2)(3, 4).

Now suppose h(1) = 4, then h(3) = 2. Suppose h(2) = 1. So h(4) = 3.

Hence h = (1, 4, 3, 2). Then f3 ◦ h 6= f3 or f4. Hence h is not an L-

fuzzy homeomorphism, which is a contradiction. So if h(1) = 4, then
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h = (1, 4)(2, 3).

So if h is an L-fuzzy homeomorphism on X , then h ∈ H . Thus LFH(X, δ) ⊆ H

Then LFH(X, δ) = H .

If L = {0, 1}, H cannot be represented as the group of homeomorphisms

of any topological space (X, T ) for any topology T on X [34]. So if H is

Lf−representable, then L 6= {0, 1}. This completes the proof.

Remark 4.6.3. T. P. Johnson [16] proved that the above group H is

Lf−representable if |L| ≥ 4. Here we get H is Lf−representable on X if L 6=

{0, 1}

4.7 t-representability and Lf-representability of

Subgroups of Sn when n ≤ 4

Here we determine the Lf - representability of all subgroups Sn when n ≤ 4

and |L| < 4.

If n < 3, all subgroups on Sn are t− representable and hence Lf−representable.

If n = 3, then the only subgroup which is not t−representable on X is A3,

which is Lf−representable by Theorem 4.4.1. So all subgroups of S3 are also

Lf−representable.

Now we consider the case of S4. The symmetric group S4 has exactly 30

subgroups and there are exactly 11 conjucacy types of subgroups of S4.
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1. H1={I}

2. H2 = {I, (1, 2)}

3. H3 = {I, (1, 2)(3, 4)}

4. H4 = {I, (1, 2, 3), (1, 3, 2)}

5. H5 = {I, (1, 2), (3, 4), (1, 2)(3, 4)}

6. H6 = {I, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

7. H7 = {I, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}

8. H8 = {I, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}

9. H9 = {I, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2), (3, 4), (1, 4, 2, 3), (1, 3, 2, 4)}

10. H10=A4

11. H11= S4

First we investigate the t-representability of subgroups of S4.

Here H4 and H7 are cyclic groups generated by cycles having length 3 and

4 respectively. So they are not t-representable by Theorem 3.2.5. Now H6 and

H10 are normal subgroups of S4 and hence not t-representable on X . Thus there

are four subgroups of S4 that do not arise as the group of homeomorphisms of

any topology.

Clearly H1 is the group of homeomorphisms of the space

{∅, {1}, {1, 2}, {1, 2, 3}, X}.
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Let τ be the topology defined by {X, ∅, {3}, {3, 4}, {1, 3, 4}, {2, 3, 4}}. Then

H(X, τ) = H2. Consider the topology τ defined by

{∅, {1}, {2}, {1, 3}, {2, 4}, {1, 2, 4}, {1, 2, 3}, X}. Then H(X, τ) = H3. Let τ be

the topology defined by {∅, X, {1}, {2}, {3, 4}, {1, 3, 4}, {2, 3, 4}.

Then H(X, τ) = H5.

Let τ be the topology {∅, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}, {2, 3, 4}, {1, 3, 4}, X}

H(X, τ) = H8.

If we define τ = {∅, X, {1, 2}, {3, 4}}, then H(X, τ) = H9. Now H11 is the group

of homeomorphisms of discrete and indiscrete space. So exactly 7 of them are

the group of homeomorphism for some topology on X .

Now we get all but one of thirty subgroups arise as the group of fuzzy home-

omorphisms for some L-fuzzy topology where |L| = 3.

In the above 11 groups, H4 and H7 are cyclic. So we can apply Theorem 4.4.1

and hence H4 and H7 are Lf−representable. H6 is Lf -representable on X by

Theorem 4.6.2. Our Theorem 4.6.1 applies to exclude H10. So the only subgroup

of S4 which is not Lf− representable is A4 when |L| = 3.
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Table 4.1: t-representability and Lf -representability of Subgroups of S4

SlNo. Permutation group t-repre Lf -repre
sentability sentability

1 {I} Yes Yes
2 {I, (1, 2)} Yes Yes
3 {I, (1, 2)(3, 4)} Yes Yes
4 {I, (1, 2, 3), (1, 3, 2)} No Yes
5 {I, (1, 2), (3, 4), (1, 2)(3, 4)} Yes Yes
6 {I, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} No Yes
7 {I, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)} No Yes
8 {I, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)} Yes Yes
9 {I, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3),

(1, 2), (3, 4), (1, 4, 2, 3), (1, 3, 2, 4)} Yes Yes
10 A4 No No
11 S4 Yes Yes
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Chapter 5

Completely Homogeneous

L-fuzzy Topological Spaces

Larson studied the concept of complete homogeneity in topological spaces [29].

In [16] T. P. Johnson defined the concept of a completely homogeneous fuzzy

topological space in an analogous way. In [18] the author extended complete ho-

mogeneity to L-fuzzy topological spaces. He considered the lattice of completely

homogeneous fuzzy topologies also [18].

In this chapter we continue the study of completely homogeneous L-fuzzy

topological spaces. Some properties of completely homogeneous L-fuzzy topo-

logical space are discussed. We characterize Alexandroff discrete completely ho-

mogeneous L- fuzzy topological spaces when L is a complete chain. Also we study

the completely homogeneous L-fuzzy topological spaces when L = {0, a, 1}.
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5.1. Completely Homogeneous L- fuzzy Topological Spaces

5.1 Completely Homogeneous L- fuzzy Topo-

logical Spaces

In his paper on Some problems on Lattice of L-Fuzzy Topologies [18], Johnson

T. P. introduced the concept of completely homogeneous L-fuzzy topological

spaces and is defined as below.

Definition 5.1.1. [18] Completely homogeneous L-fuzzy topological spaces

An L-fuzzy topological space (X, δ) is called a completely homogeneous if every

bijection of X onto itself is an L-fuzzy homeomorphism.

So an L-fuzzy topological space is completely homogeneous on X if and only

if the group of L- fuzzy homeomorphisms of L-fuzzy topological space onto itself

is the symmetric group S(X).

Here we are listing some examples of completely homogeneous L-fuzzy topo-

logical spaces.

Example 5.1.2. From the definition of completely homogeneous L-fuzzy

topological space we immediately see that the following are completely homoge-

neous.

1. Indiscrete space {0, 1}.

2. Discrete space 2X .

3. Discrete L-fuzzy space LX .
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Notations

Throughout this chapter we use the following notations.

If (X, δ) is an L-fuzzy topological space, then define

1. δ = δ \ {1, 0}.

2. Λf = {f(x) : x ∈ X}.

3. Λδ = {f(x) : x ∈ X, f ∈ δ}.

4. ΛX
f = {g : X → Λf}.

If L is a F -lattice, then define

1. Lc = {l ∈ L : l is comparable to each element in L}.

2. L′ = {l ∈ Lc : if l1 > l and l2 > l, then l1 ∧ l2 > l}.

When L is a complete chain, we have that L′ = L.

5.2 Properties of Completely Homogeneous L-

fuzzy Topological Spaces

In this section we study some properties of completely homogeneous L-fuzzy

topological spaces.

First we recall the definition of level topologies of an L-fuzzy topology.
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Definition 5.2.1. [28] Level Topology

Let X be a set and f ∈ LX . We define for c ∈ L \ {1}, the set f[c] = {x ∈ X :

f(x) > c}. Then f[c] is called a c- level of f .

Let δ be an L- fuzzy topology on X . Then for each c ∈ L′ \ {1}, the family

T[c] = {f[c] : f ∈ δ}

is a topology on X and is called c− level topology of X .

The relation between the group of all L- fuzzy homeomorphisms LFH(X, δ)

of an L-fuzzy topological space (X, δ) and the group of homeomorphisms of its

level topologies is given in the following Theorem.

Theorem 5.2.2. Let (X, δ) be an L-fuzzy topological space. Then the group of

all L- fuzzy homeomorphisms LFH(X, δ) of an L-fuzzy topological space (X, δ)

is a subgroup of the group of homeomorphisms of each c-level topology where

c ∈ L′ \ {1}.

Proof. We have h ∈ LFH(X, δ) if and only if h is a bijection and both h(f)

and h−1(f) are in δ for all f ∈ δ. Let (X, T[c]) be a level topology of (X, δ) and

U ∈ T[c] where c ∈ L′ \ {1}. Then U = f[c] for some f in δ and

h(U) = h(f[c])

= {h(x) : f(x) > c}
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= {x ∈ X : f(h−1(x)) > c}

= {x ∈ X : f ◦ h−1(x) > c}

= {x ∈ X : h(f)(x) > c}

= h(f)[c]

and hence h(U) ∈ T[c]. Similarly

h−1(U) = h−1(f[c])

= {h−1(x) : f(x) > c}

= {x ∈ X : f(h(x)) > c}

= {x ∈ X : f ◦ h(x) > c}

= {x ∈ X : h−1(f)(x) > c}

= (h−1(f))[c].

So h is a homeomorphism on (X, T[c]). Thus the group of L- fuzzy homeomor-

phisms of an L-fuzzy topological space is a subgroup of the group of homeomor-

phisms of the level topologies.

Remark 5.2.3. The inclusion in the Proposition 5.2.2 may proper.

Example 5.2.4. Let X = {a, b, c}, L = {1, .5, 0} with usual order and δ be
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the L- fuzzy topology having base

B = {f1, f2, f3, g1, g2, g3}

where

f1(a) = .5, f1(b) = 0, f1(c) = 0,

f2(a) = 0, f2(b) = .5, f2(c) = 0,

f3(a) = 0, f3(b) = 0, f3(c) = .5,

g1(a) = 1, g1(b) = .5, g1(c) = 0,

g2(a) = 0, g2(b) = 1, g2(c) = .5,

and g3(a) = .5, g3(b) = 0, g3(c) = 1.

It is easy to verify that LFH(X, δ) = {(a, b, c), (a, c, b), I} where I is the identity

permutation on X and the level topologies T[ 1
2
] and T[0] are the discrete topology

on X . So the group of homeomorphisms of the level topologies are the symmetric

group S(X).

Theorem 5.2.5. [42] Let (X, δ) be an L-fuzzy topological space which is com-

pletely homogeneous, then all the level topologies of δ are completely homoge-

neous.

Corollary 5.2.6. Let (X, δ) be an L-fuzzy topological space and Λf ⊆ {0, c}

for every f ∈ δ \ {1}, where c is a non-zero element in L. Then the group L-
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fuzzy homeomorphisms of an L-fuzzy topological space is equal to the group of

homeomorphisms of the level topology T[0].

Proof. We have the group of L- fuzzy homeomorphisms LFH(X, δ) of an L-

fuzzy topological space (X, δ) is a subgroup of the group of homeomorphisms

H(X, T[0]) of the level topology. Let h ∈ H(X, T[0]) and f ∈ δ. Then f[0] ∈ T[0]

and consequently h(f[0]) and h−1(f[0]) are in T[0]. But h(f[0]) = (h◦ f)[0]. Since f

takes only one non zero value, h(f) ∈ δ. Similarly we can prove that h−1(f) ∈ δ.

Thus h is an L- fuzzy homeomorphism and so H(X, T[0]) ⊆ LFH(X, δ). Hence

the theorem.

An immediate consequence of the Theorem 5.2.5 is the following.

Remark 5.2.7. Observe that if (X, δ) is an L-fuzzy topological space and

Λf ⊆ {0, c} for every f ∈ δ \ {1}, where c is a non-zero element in L, then the

L-fuzzy topological space (X, δ) is completely homogeneous if and only if the

level topology T[0] is completely homogeneous.

The next definition appears in [14].

Definition 5.2.8. t−complete Subset

A subset A of L is said to be t−complete if A is closed under finite (nonempty)

meet and arbitrary join operations.

Remark 5.2.9. Using a t−complete subset of L, we can define more than

one completely homogeneous L- fuzzy topology on X . Let A be a t-complete
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subset of L such that 1 ∈ A. Define

1. δ1 = {f ∈ LX : f(x) ∈ A for all x ∈ X}.

2. δ = {l : l ∈ A}.

Here both δ1 and δ2 are clearly completely homogeneous L-fuzzy topology on X .

For any t−complete subset A of L, there exist at least two completely homo-

geneous L- fuzzy topologies on X .

Remark 5.2.10. If L is a finite chain, then any subset of L containing 0 is a

t-complete subset of L. Hence we can define two more completely homogeneous

L-fuzzy topologies on X for each t-complete subset A of L such that 1 ∈ A.

δ = {f ∈ LX : f(x) ∈ A \ {0} for all x ∈ X} ∪ {0}.

δ′ = {f ∈ LX : f(x) ∈ A \ {1} for all x ∈ X} ∪ {1}.

This is not true in the case of a general lattice L. The following example illus-

trates this.

Example 5.2.11. Let L be the diamond type lattice {0, a, b, 1} where

a ∧ b = 0 and a ∨ b = 1
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0

1

a b

Figure 5.1: Diamond-type lattice

Then δ = {f ∈ LX : f(x) ∈ A \ {0} for all x ∈ X} ∪ {0} and δ′ = {f ∈ LX :

f(x) ∈ A \ {1} for all x ∈ X} ∪ {1} are not even L- fuzzy topology on X where

A is L itself.

Let δ be an L-fuzzy topology on X . Then clearly {f(x) : x ∈ X, f ∈ δ} is a

t−complete subset of L. Then by Remark 5.2.9, corresponding to each L-fuzzy

topology δ on X , we can define at least two completely homogeneous L-fuzzy

topology on X .

Definition 5.2.12. [30] Stratification

Let(X, δ) be an L-fuzzy topology on X . Then the L- fuzzy topology δ′ on X

generated by δ ∪ {α : α ∈ L} is called the stratification of δ and (X, δ′) is called

the stratification of (X, δ).

Proposition 5.2.13. Let (X, δ) be an L-fuzzy topological space. Then δ is a

completely homogeneous L-fuzzy topology on X if and only if the stratification of

δ is a completely homogeneous L-fuzzy topology on X.
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Proof. Let (X, δ′) be the stratification of an L-fuzzy topological space (X, δ).

Then every f ∈ δ′ is of the form g ∨ α or g ∧ β where g ∈ δ and α, β ∈ L. So for

any h ∈ S(X), h(f) = h(g) ∨ α or h(g) ∧ β.

First assume that (X, δ) is a completely homogeneous L- fuzzy topological

space. Then h(g) and h−1(g) are in δ for all g ∈ δ. So h(f) ∈ δ′. Similarly

we can prove that h−1(f) ∈ δ′. Thus δ′ is a completely homogeneous L-fuzzy

topological space on X . Now assume that δ′ is completely homogeneous L-fuzzy

topological space, then clearly δ is a completely homogeneous L-fuzzy topology

on X .

In a completely homogeneous topological space, supersets of nonempty open

sets are open [34]. But this is not true in the case of an L- fuzzy topology. See

the following example.

Example 5.2.14. Let X = {a, b} and L = {0, 1
4
, 1
2
, 3
4
, 1} with the usual

ordering and the involution ′ given by l′ = 1− l for all l ∈ L.

Define

δ = {0, 1, a 1

4

, b 1

4

,
1

4
,
1

2
,
3

4
, f, g}.

where f and g are L- fuzzy sets of X defined by

f(a) =
1

2
, f(b) =

3

4

and g(a) =
3

4
, g(b) =

1

2
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Here δ is a completely homogeneous L- fuzzy topology. Let h be an L- fuzzy set

defined by

h(a) =
1

2
, h(b) =

1

4
.

Here h is a super set of a 1

4

but h /∈ δ.

Thus supersets of nonempty L-fuzzy open sets need not be L-fuzzy open in

a completely homogeneous L-fuzzy topological space.

Now we prove that super sets of L-fuzzy open sets having the same range are

open in a completely homogeneous L- fuzzy topological space as we see in the

next Theorem.

Theorem 5.2.15. Let (X, δ) be a completely homogeneous L- fuzzy topological

space and f ∈ δ such that f 6= 0. Let g be an L- fuzzy set such that g ≥ f and

Λg ⊆ Λf . Then g ∈ δ.

Proof. If g = f , there is nothing to prove. So assume that f < g. Let Y = {x ∈

X : f(x) < g(x)}. Now choose two points y and z such that y ∈ Y and z ∈ X

where f(z) = g(y). We can choose such a point z since f 6= 0 and range of g is

a subset of range of f . Now define fy = f ◦ hy where hy is a function from X to

X such that

hy(x) =



























z if x = y

y if x = z

x for all x ∈ X \ {y, z}.
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Then fy ∈ δ and hence f ∨ fy ∈ δ. Observe that

fy(x) =



























f(x) for all x ∈ X \ {y, z}

f(z) if x = y

f(y) if x = z.

Consequently

(f ∨ fy)(x) =



























f(x) for all x ∈ X \ {y, z}

f(y) ∨ f(z) if x = y

f(z) ∨ f(y) if x = z.

=











f(x) for all x ∈ X \ {y}

g(y) if x = y.

Similarly for each y in Y , we define fy such that (f ∨ fy) ∈ δ. Since δ is an

L-fuzzy topology, we have
∨

y∈Y

(f ∨ fy) ∈ δ. Now

∨

y∈Y

(f ∨ fy)(x) =











f(x) for all x ∈ X \ Y

g(x) if x ∈ Y.

= g(x) for all x ∈ X

Thus
∨

y∈Y

(f ∨ fy) = g and hence g ∈ δ. This completes the proof.

That is if (X, δ) is a completely homogeneous L-fuzzy topological space, then

122



5.3. Completely Homogeneous Alexandroff Discrete L-fuzzy Topological Space

{g ∈ LX : g ≥ f and Λg ⊆ Λf} ⊆ δ for all f ∈ δ.

Remark 5.2.16. Converse of the Theorem 5.2.15 is not true.

Example 5.2.17. Let X = {x, y} and L = {0, 1
2
, 1} with the usual order.

Consider the following L-fuzzy topology

δ = {0, 1,
1

2
, x 1

2

, x1, y
1

2 , x
1

2}

on X . Here for every element f in δ \ {0}, {g ∈ LX : g ≥ f and Λg ⊆

Λf} ⊂ δ. But δ is not a completely homogeneous L-fuzzy topology on X since

LFH(X, δ) = {I}.

5.3 Completely Homogeneous Alexandroff Dis-

crete L-fuzzy Topological Space

Recall that a topological space (X, τ) is an Alexandroff discrete space if

arbitrary intersection of open sets are open. Note that the only completely

homogeneous Alexandroff discrete topologies on a set X are the discrete topology

and the indiscrete topology.

In this section we study completely homogeneous Alexandroff discrete L-

fuzzy topological spaces when L is a complete chain. An L- fuzzy topological

space (X, δ) is said to be Alexandroff discrete L- fuzzy topological space if ∧A ∈ δ

for all A ⊆ δ.
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Next we give a characterization for a completely homogeneous Alexandroff

discrete L- fuzzy topological space when L is a complete chain.

Theorem 5.3.1. Let (X, δ) be an Alexandroff discrete L-fuzzy topological space

where L is a complete chain. Then (X, δ) is a completely homogeneous L-fuzzy

topological space on X if and only if ΛX
f ⊆ δ for all f ∈ δ.

Proof. Let (X, δ) be a completely homogeneous Alexandroff discrete L-fuzzy

topological space where L be a complete chain and f ∈ δ. Define l1 = ∧
l∈Λf

l

and

x′
l(y) =











l y = x

l1 otherwise.

where l ∈ Λf and l 6= l1.

We claim that x′
l ∈ δ for all l ∈ Λf . Since δ is a completely homogeneous

Alexandroff L-fuzzy topology on X , we have that l1 ∈ Λδ. Here we consider two

cases.

Case(1): l1 ∈ Λf .

Since l1 ∈ Λf , there exists an element x0 in X such that f(x0) = l1. For

each x ∈ X \ {x0}, define fx = f ◦ hx where hx is a function from X onto

itself which maps x to x0, x0 to x and keeping all other elements fixed.

Then

fx(y) =



























l1 y = x

f(x0) y = x0

f(x) otherwise.
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Here fx ∈ δ for all x ∈ X \ {x0}. Let l ∈ Λf . Then there exists an element

z in X such that f(z) = l. Now
∧

x∈X\{z}

fx ∈ δ and

∧

x∈X\{z}

fx(y) =











f(x0) y 6= z

f(z) y = z.

=











l1 y 6= z

l y = z.

= x′
l.

Thus we get x′
l ∈ δ.

Case(2): l1 /∈ Λf .

In this case first we construct an L- fuzzy set f ′ using f such that l1 ∈ Λf ′ .

Fix some x′ in X . Let f(x′) = l. Now define fx = f ◦ hx for all x ∈ X

where hx is a function from X onto itself which maps x to x′, x′ to x

and keeping all other elements fixed. Let f ′ =
∧

x∈X

fx. Since (X, δ) is

Alexandroff discrete, we have that f ′ ∈ δ and

f ′(y) =











l1 y = x′

l ∧ f(x) otherwise.

Thus we get an L- fuzzy open subset of X which takes the value l1. If

l ∈ Λf ′ , proceeding as in the Case (1), we can easily prove that x′
l ∈ δ.
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Now suppose that l /∈ Λf ′ . This implies that f−1(l) is the singleton set

{x′}. Then choose a point z in X such that f(z) < f(x′). We can choose

such a point since l1 /∈ Λf . Define g : X → L by

g(y) =











l y = z

f(y) otherwise.

Then g > f and Λg ⊆ Λf . So by Theorem 5.2.15, it follows that g ∈ δ .

Now using the L-fuzzy set g, we can construct an L-fuzzy open set g′ such

that l1 ∈ Λg′ and l ∈ Λg′. Now we arrive at Case 1 and hence x′
l ∈ δ.

So in both Cases x′
l ∈ δ for all l ∈ Λf . Now any f ∈ ΛX

f can be expressed as a

join of x′
l. So ΛX

f ⊆ δ for all f ∈ δ.

Conversely assume that ΛX
f ⊆ δ for all f ∈ δ. So f ◦h ∈ δ for all f ∈ δ. Thus

δ is a completely homogeneous L- fuzzy topology on X. Hence the result.

An L-fuzzy topological space (X, δ) is said to be finite if the underlying set

X is finite.

With the characterization theorem of completely homogeneous Alexandroff

discrete L- fuzzy topological space, we list finite completely homogeneous L-

fuzzy topological spaces when the membership lattice L = {0, 1
2
, 1} with the

usual order.

Corollary 5.3.2. Let X be a finite set and L = {0, 1
2
, 1}. Then the only com-

pletely homogeneous L-fuzzy topology on X are the following.
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1. The indiscrete topology, {1, 0}.

2. {1, 0, 1
2
}.

3. The discrete topology, 2X .

4. {1} ∪ {f ∈ LX : f(x) ≤ 1
2
for all x ∈ X}.

5. {0} ∪ {f ∈ LX : f(x) ≥ 1
2
for all x ∈ X}.

6. The discrete L- fuzzy topology LX .

7. {1
2
} ∪ {f ∈ {0, 1}X}.

8. {f ∈ LX : f(x) ≤ 1
2
for all x ∈ X} ∪ {f ∈ LX : f(x) ≥ 1

2
for all x ∈ X}.

Proof. Let δ be a completely homogeneous L-fuzzy topology on X . If Λδ = ∅,

then δ is the indiscrete topology. Clearly Λδ cannot be equal to {0} or {1}. If

Λδ = {1
2
}, then δ is of the form (2). Let Λδ = {0, 1

2
}. Then there exist at least

one f in δ such that Λf = {0, 1
2
} and hence {0, 1

2
}X ⊆ δ by Theorem 5.3.1. In this

case δ = {1}∪{f ∈ LX : f(x) ≤ 1
2
for all x ∈ X}. Similarly if Λδ = {0, 1}, then δ

is the discrete topology 2X and if Λδ = {1
2
, 1}, then δ = {0}∪{f ∈ LX : f(x) ≥ 1

2

for all x ∈ X}.

Now assume that Λδ = {0, 1
2
, 1}. Suppose there exists an L- fuzzy set f

in δ such that Λf = {0, 1
2
, 1}. Then again by Theorem 5.3.1, {0, 1

2
, 1}X ⊆ δ

and hence δ = LX . Otherwise there exist no f in δ such that Λf = {0, 1
2
, 1}.

But we have Λδ = {0, 1
2
, 1}. So there exist at least two functions f1 and f2
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such that either Λf1 = {0, 1
2
} and Λf1 = {1, 1

2
} or Λf1 = {0, 1} and Λf2 = {1

2
}.

If Λf1 = {0, 1
2
} and Λf1 = {1, 1

2
}, we get δ = {f ∈ LX : f(x) ≤ 1

2
for all

x ∈ X} ∪ {f ∈ LX : f(x) ≥ 1
2
for all x ∈ X}. Now assume that Λf1 = {0, 1}

and Λf2 = {1
2
}. In this case δ = {1

2
} ∪ {f ∈ {0, 1}X}.

Remark 5.3.3. It is not possible to drop the chain condition on the lattice

from the hypothesis of the Theorem 5.3.1. The following example illustrates this.

Example 5.3.4. Let X = {x, y} and L be the diamond type lattice L =

{0, a, b, 1}. Define

δ = {1, 0, f1, f2}

where

f1(x) = a, f1(y) = b

and f2(x) = b, f2(y) = a.

Here δ is a completely homogeneous L- fuzzy topology on X , but ΛX
f1

* δ.
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Chapter 6

Principal Completely

Homogeneous L-fuzzy

Topological Spaces

6.1 Introduction

In this Chapter, we define the principal completely homogeneous topology

generated by a set. The completely homogeneous topology generated by a sin-

gle set is called principal completely homogeneous topology. We also introduce

principal completely homogeneous L- fuzzy topology generated by an L-fuzzy set

and study some of its properties. Also we characterize the principal completely

homogeneous L-fuzzy topological space generated by an L- fuzzy set when the

membership lattice L = {0, 1
2
, 1} with the usual order. .
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6.2 Principal Completely Homogeneous Topo-

logical Space

Among the crisp topologies R. E Larson [29] characterized the completely

homogeneous topological spaces.

Theorem 6.2.1. [29] The only completely homogeneous topologies on X are

the following.

1. The indiscrete topology.

2. The discrete topology.

3. Topologies of the form Tm = {G ⊆ X : |X \ G| < m} ∪ {∅} where ℵ0 ≤

m ≤ |X|.

Now we define the term principal completely homogeneous topology gener-

ated by a set.

Definition 6.2.2. Principal completely homogeneous topology

Let A ⊆ X. Then the smallest completely homogeneous topology containing A

is called the principal completely homogeneous topology generated by A. Here the

set A is called the generator of the principal completely homogeneous topology.

Here we investigate the principal completely homogeneous topologies on an

arbitrary set X .
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Obviously the indiscrete topology is generated by the whole set X and the

discrete topology is generated by any singleton. So the indiscrete topology and

discrete topology are principal completely homogeneous topologies on X .

Now we consider the completely homogeneous topologies of the form Tm =

{G ⊆ X : |X \G| < m} ∪ {∅} where ℵ0 ≤ m ≤ |X|.

We need the following definition for proving our next theorem.

Definition 6.2.3. [11] Limit Cardinal

The successor of a cardinal m is the least cardinal greater than m. A cardinal

is said to be a limit cardinal if it is not the successor of a cardinal.

The cardinals 0, ℵ0,ℵω etc. are limit cardinals. An uncountable cardinal ℵγ

will be a limit cardinal if and only if γ is a limit ordinal [11].

In the following theorem we characterize principal completely homogeneous

topology generated by a set.

Theorem 6.2.4. Let X be an infinite set and and Tm = {G ⊆ X : |X \ G| <

m} ∪ {∅} where ℵ0 ≤ m ≤ |X|. Then Tm is a principal completely homogeneous

topology on X if and only if m is not a limit cardinal.

Proof. Assume thatm is not a limit cardinal, then there exists an infinite cardinal

m′ such that m is the immediate successor of m′. Choose a subset A of X

such that |X \ A| = m′. Since Tm is completely homogeneous, it follows that

{B ⊆ X : |B| = |A| and |X \ B| = |X \ A|} ⊆ Tm. Also we have super sets of
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nonempty open sets are open in X . So Tm is a principal completely homogeneous

topology generated by A.

Conversely assume that m is a limit cardinal. Suppose that Tm is generated

by subset A of X . Then |X \ A| < m. Then there exists an infinite cardinal

number m′ such that |X \ A| < m′ < m. Then A ∈ Tm′ and hence the principal

completely homogeneous topology generated by A is contained in Tm′ , which is

a contradiction. This completes the proof.

Now we list the principal completely homogeneous topologies on an infinite

set X .

Corollary 6.2.5. The only principal completely homogeneous topologies on X

are the following.

1. The indiscrete topology.

2. The discrete topology.

3. Topologies of the form Tm = {G ⊆ X : |X \ G| < m} ∪ {∅} where ℵ0 ≤

m ≤ |X| and m is not a limit cardinal.

Remark 6.2.6. If X is a finite set, we have the only completely homo-

geneous topologies on X are the discrete topology and the indiscrete topology.

Hence all completely homogeneous topologies on a finite set are principal.
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6.3 Principal Completely Homogeneous L-fuzzy

Topological Space

We have that the intersection of all completely homogeneous L- fuzzy topolo-

gies containing an L- fuzzy set f is a completely homogeneous L-fuzzy topology

δ on X . Then S = {foh : h ∈ S(X)} forms a sub-base for δ (see [16, 18]).

Here we define a principal completely homogeneous L-fuzzy topology.

Definition 6.3.1. Principal completely homogeneous L- fuzzy topology

Let f ∈ LX . Then the smallest completely homogeneous L- fuzzy topology

containing f is called the principal completely homogeneous L- fuzzy topology

generated by f and is denoted by CHLFT (f).

Here the L- fuzzy set f is called the generator of the principal completely homo-

geneous L- fuzzy topology.

A completely homogeneous L-fuzzy topological space (X, δ) is called principal

completely homogeneous L-fuzzy topological space if δ = CHLFT (f) for some

L- fuzzy set f ∈ LX .

Here we list some examples of principal completely homogeneous L-fuzzy

topological spaces.

1. Indiscrete space {0, 1}.

2. Discrete Crisp topology 2X .
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3. The L-fuzzy topological space generated by an L-fuzzy point.

Now we investigate the L-fuzzy discrete space LX is principal completely

homogeneous L-fuzzy topology or not.

Proposition 6.3.2. Let X be any finite set and L be an F -lattice such that

|X| ≥ L. Then LX is a principal completely homogeneous L-fuzzy topology on

X.

Proof. Let f be an L-fuzzy set such that Λf = L and δ = CHLFT (f). Since

|X| ≥ L, such an L-fuzzy set exists. Now we claim that for each l ∈ L \ {0},

xl ∈ δ. Let l ∈ L. Since Λf = L, there exist some x0 and z in X such that

f(x0) = 0 and f(z) = l. For each x in X , let hx be a function from X onto

itself which maps x to x0, x0 to x and keeping all other elements fixed. Define

fx = f ◦ hx. Now

fx(y) =



























0 y = x

f(x) y = x0

f(y) y ∈ X \ {x, x0}.

Since X is finite,
∧

x∈X\{z}

fx ∈ δ and

∧

x∈X\{z}

fx(y) =











l y = z

0 otherwise.

= zl.

This is true for all l ∈ L \ {0}. So all L-fuzzy points are in δ. This completes
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the proof.

Remark 6.3.3. If |X| < L, LX need not be a principal completely homo-

geneous L-fuzzy topology.

The following examples illustrate this.

Examples 6.3.4.

1. Let X = {a, b} and L = {0, 1
2
, 1} with the usual order. Let f ∈ LX \

{0, 1, 1
2
}. If Λf = {0, 1

2
}, then CHLFT (f) = {1} ∪ {f ∈ LX : f(x) ≤ 1

2
}.

If Λf = {1, 1
2
}, then CHLFT (f) = {0} ∪ {f ∈ LX : f(x) ≥ 1

2
}. If

Λf = {0, 1}, then CHLFT (f) is the discrete topology 2X . This follows

that there exist no L-fuzzy set f such that CHLFT (f) = LX . So LX is

not a principal completely homogeneous L-fuzzy topology on X .

2. Let X = {a, b, c} and L be the diamond type lattice. Let f : X → L be

the L-fuzzy set defined by f(a) = 0, f(b) = l1 and f(c) = l2. Here we

can show that CHLFT (f) = LX . Let h1 and h2 be two permutations on

X defined by h1(a) = b, h1(b) = a and h1(c) = c and h2(a) = c, h2(b) =

b and h2(c) = a. Then f◦h1 and f◦h2 are in CHLFT (f). Now f∧(f◦h1) =

cl2 and f ∧ (f ◦ h2) = bl1 . So xl1 and xl2 are in CHLFT (f) for all x ∈ X .

Now we have that al1 ∨ al2 = a1. This follows that all the L-fuzzy points

are in CHLFT (f) and hence CHLFT (f) = LX .
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6.4 Properties of Principal Completely Homo-

geneous L-fuzzy Topological Space

We now prove two important properties of the principal completely homoge-

neous L-fuzzy topological space.

For proving the subsequent theorems, we need the following set theoretic

results.

Let P and Q be two subsets of set X and |P | = |Q|, it does not necessarily

follow that there exists a bijection of X which maps P onto Q. In order to exist

such a function, we must also have that |X \ P | = |X \ Q|. If X is an infinite

set, it is possible to choose P and Q such that P ∪ Q = X , P ∩ Q = ∅ and

|P | = |X| = |Q| since for any infinite cardinal number α, we have α+α = α [44].

Theorem 6.4.1. Let X be an infinite set and f be an L-fuzzy subset of X such

that |f−1(0)| = |X|. Then CHLFT (f) is ΛX
f ∪ {1}.

Proof. Let δ = CHLFT (f), X1 = f−1(0) and X2 = X \ X1. Given that

|X1| = |X|. Now we consider the following cases.

Case (1) : |X2| = |X|.

Here X1∪X2 = X , X1∩X2 = ∅ and |X1| = |X| = |X2|. Hence there exists

a bijection h of X which maps X1 onto X2 and X2 onto X1. Since (X, δ) is

a completely homogeneous L-fuzzy topological space, h−1(f) = f ◦ h ∈ δ.

Let g = f ◦ h and l ∈ Λf , l 6= 0. Then there exists x0 in X2 such that
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f(x0) = l. We have

g−1(0) = (f ◦ h)−1(0)

= (h−1 ◦ f−1)(0)

= h−1(X1)

= X2.

So we can choose y0 in X1 such that g(y0) = f(x0). Now consider the L-

fuzzy set g ◦ hx0
where hx0

is a function from X onto itself which maps x0

to y0, y0 to x0 and keeping all the other elements fixed. Set f1 = f and

f2 = g ◦ hx0
. Then

(f1 ∧ f2)(x) =











l x = x0

0 otherwise.

= x0l

Case(2) : |X2| < |X|.

If X2 = ∅, there is nothing to prove. Suppose that X2 6= ∅. In this case

we can find a subset Y1 of X1 such that |X2| = |Y1|. Then |X \ X2| =

|X| = |X \ Y1|. So there exists a bijection h from X onto X such that

h(Y1) = X2 and h(X2) = Y1. Then as in the case(1), consider g = f ◦ h.

Now (f ◦ h)(x) = f(h(x)) 6= 0 for x ∈ Y1. Now let l ∈ Λf \ {0}. Then

there exists x0 in X2 such that f(x0) = l. We have X2 ⊆ g−1(0). So we
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can choose y0 in Y1 such that g(y0) = f(x0). Now consider the L- fuzzy

set g ◦ hx0
where hx0

is the function as defined in the case (1) above. Set

f1 = f and f2 = g ◦ hx0
.

Then

(f1 ∧ f2)(x) =











l x = x0

0 otherwise.

= x0l

So in both cases, x0l ∈ δ. Since x0 is arbitrary, {xl : x ∈ X} ⊆ δ. This is true

for all l ∈ Λf and hence δ = Λf
X ∪ {1}.

Theorem 6.4.2. Let (X, δ) be a completely homogeneous L-fuzzy topological

space where X is an infinite set and δ = CHLFT (f) for some f ∈ LX such that

|f−1(0)| < α, ℵ0 ≤ α < |X|. Then |g−1(0)| < α for all g ∈ δ \ {0}.

Proof. Let g ∈ δ \ {0}. Since δ = CHLFT (f), S = {f ◦ h : h ∈ S(X)} forms

a sub-base for δ. So g can be written as ∨
i∈I

gi where I is an index set and for

each i ∈ I, gi can be written as the meet of finitely many members of S, say

si1 ∧ si2 . . . ∧ siri where ri ∈ N and sij ∈ S, 1 ≤ j ≤ ri. Now (si1 ∧ si2 . . . ∧

siri)
−1(0) = (si1)

−1(0) ∪ (si2)
−1(0) ∪ . . . ∪ (siri)

−1(0). We have |(sij)(0)| < α for

all j, 1 ≤ j ≤ ri. Since α is an infinite cardinal, we get |(g−1
i )(0)| < α. Now

|g−1(0)| = |( ∨
i∈I

gi)
−1(0)| = | ∩

i∈I
(g−1

i (0))| < α. Hence the theorem.

138



6.4. Properties of Principal Completely Homogeneous L-fuzzy Topological
Space

Theorem 6.4.3. Let X be an infinite set. Then δ is a completely homogeneous

L-fuzzy topology on X where Λδ = {0, l}, l ∈ L \ {0, 1} if and only if δ is one of

the following.

1. {1} ∪ {0, l}X .

2. {0, 1} ∪ {f ∈ {0, l}X : |f−1(0)| < α} where ℵ0 ≤ α ≤ |X|.

Proof. Clearly the above two L-fuzzy topologies are completely homogeneous.

Now assume that δ is a completely homogeneous L-fuzzy topological space and

Λδ = {0, l}. Then there exist at least one f ∈ δ such that {f(x) : x ∈ X} =

{0, l}. Let X1 = f−1(0). If |X1| = |X|, then by the Theorem 6.4.1, δ = {1} ∪

{0, l}X . Otherwise |X1| < |X|. In this case consider the level topology T[0] of

δ. Then T[0] is a completely homogeneous topology on X by Theorem 5.2.6 and

X \X1 is open in T[0]. So T[0] = {A ⊆ X : |X \A| < α}∪{∅} where ℵ0 ≤ α ≤ |X|.

Hence δ = {0, 1} ∪ {f ∈ {0, l}X : |f−1(0)| < α} where ℵ0 ≤ α ≤ |X|.

Corollary 6.4.4. Let X be an infinite set and f ∈ LX where Λf = {0, l}, l 6= 0.

Then δ = CHLFT (f) if and only if δ is one of the following.

1. {1} ∪ {0, l}X .

2. {0, 1} ∪ {f ∈ {0, l}X : |f−1(0)| < α} where ℵ0 ≤ α ≤ |X| and α is not a

limit cardinal.

Proof. Let f ∈ LX where Λf = {0, l}, l 6= 0. By the Theorem 6.4.3 we have

that the only completely homogeneous topologies on X are the following.
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1. {1} ∪ {f ∈ {0, l}X}.

2. {0, 1} ∪ {f ∈ {0, l}X : |f−1(0)| < α} where ℵ0 ≤ α ≤ |X|.

We have the L-fuzzy topology {1} ∪ {f ∈ {0, l}X} is generated by any L-fuzzy

point xl in LX . Let δ = {0, 1} ∪ {f ∈ {0, l}X : |f−1(0)| < α} where ℵ0 ≤ α ≤

|X|. Now we claim that δα = {0, 1}∪ {f ∈ {0, l}X : |f−1(0)| < α} is a principal

completely homogeneous L-fuzzy topology if and only if α is not a limit cardinal.

Assume that α is not a limit cardinal. Then there exists a cardinal α1 such

that α is the immediate successor of α1. Now choose an L-fuzzy set f ∈ {0, l}X

such that |f−1(0)| = α1. Since (X, δ) is completely homogeneous, it implies that

{g ∈ {0, l}X : |g−1(0) = |f−1(0)| and |g−1(l) = |f−1(l)|} ⊆ δα. Also we have

{g ∈ {0, l}X : g ≥ f} ⊆ δα. So δα is a principal completely homogeneous L-fuzzy

topology on X generated by f .

Conversely assume that α is a limit cardinal. Suppose that δα is generated

by an L-fuzzy set f of X . Then |f−1(0)| < α. Then there exists an infinite

cardinal number α′ such that |f−1(0)| < α′ < α. Then f ∈ δα′ and hence the

principal completely homogeneous L-fuzzy topology generated by f is contained

in δα′ , which is a contradiction. This completes the proof.

Now we consider principal completely homogeneous L-fuzzy topology on a

finite set.
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Example 6.4.5. Let X = {a, b, c}, L = {0, 1
2
, 1} and f ∈ LX defined by

f(a) = 0, f(b) =
1

2
and f(c) = 1.

Then {f ◦h : h ∈ S(X)} form a sub-base for CHLFT (f). So x 1

2

and x1 belongs

to CHLFT (f) for all x ∈ X and hence CHLFT (f) = LX .

Now we observe that there exists non principal completely homogeneous L-

topology on a finite set. See the following example.

Example 6.4.6. Let L = {0, 1
2
, 1} with usual order and X = {a, b}. Now

define

δ = {0, 1, a 1

2

, b 1

2

,
1

2
, a

1

2 , b
1

2}.

Then δ is a completely homogeneous L-fuzzy topology on X . We have

CHLFT (a 1

2

) = {0, 1, a 1

2

, b 1

2

,
1

2
},

CHLFT (a
1

2 ) = {0, 1, a
1

2 , b
1

2 ,
1

2
}.

Here

δ = CHLFT (a 1

2

) ∪ CHLFT (a
1

2 ).

Note that (X, δ) is a finite completely homogeneous L-fuzzy topological

space. But as you see here (X, δ) is not a principal completely homogeneous

L-fuzzy topological space.
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Let X be any set and L = {0, a, 1} with the order 0 < a < 1. Define

δ = {0, a}X ∪{a, 1}X . It is easy to prove that δ is a completely homogeneous L-

fuzzy topology on X . Any F -lattice L 6= {0, 1} contains a sublattice isomorphic

to L = {0, a, 1}. If L 6= {0, 1}, there exists non principal completely homogeneous

L-fuzzy topology on X .

Remark 6.4.7. Let X be a finite set. Then every completely homogeneous

L- fuzzy topology on X is principal if and only if L = {0, 1}.

6.5 Principal Completely Homogeneous L-fuzzy

Topological Space when L = {0, 12, 1}

Here we consider the principal completely homogeneous L-fuzzy topological

space generated by an L- fuzzy set when the membership lattice L = {0, 1
2
, 1}

with the usual order.

Remark 6.5.1. Let X be an infinite set and f ∈ LX such that Λf =

{0, 1
2
}. Then by the Corollary 6.4.4, we have that δ is a principal completely

homogeneous L- fuzzy topology generated by f if and only if δ is one of the

following.

1. {1} ∪ {f ∈ LX : f(x) ≤ 1
2
for all x ∈ X}.

2. {0, 1} ∪ {f ∈ {0, 1
2
}X : |f−1(0)| < α} where ℵ0 ≤ α ≤ |X| and α is not a

limit cardinal.
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Theorem 6.5.2. Let X be an infinite set and f ∈ LX such that Λf = {1, 1
2
}.

Then δ is a principal completely homogeneous L- fuzzy topology generated by f

on X if and only if δ is one of the following.

1. {0} ∪ {f ∈ LX : f(x) ≥ 1
2
for all x ∈ X}.

2. {0} ∪ {f ∈ {1, 1
2
}X : |f−1(1

2
)| < α} where ℵ0 ≤ α ≤ |X| and α is not a

limit cardinal.

Proof. Let X1 = f−1(1
2
), X2 = f−1(1) and X1 ∪ X2 = X . Now we take the

following three cases.

Case(1): |X1| = |X| = |X2|.

In this case we show that δ is of type (1). Since |X1| = |X| = |X2|, there

exists a bijection h from X to X such that h maps X1 onto X2 and X2

onto X1. Then

(f ◦ h)(x) =











1 if x ∈ X1

1
2

if x ∈ X2.

Now choose two points x0 ∈ X2 and y0 ∈ X1 and define h′ : X → X as

follows.

h′(x) =



























x0 if x = y0

y0 if x = x0

x otherwise.

Consider g = f ◦ h ◦ h′. Since δ is a completely homogeneous L-fuzzy
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topology on X , we get g ∈ δ and

g(x) =











1
2

if x ∈ (X2 \ {x0}) ∪ {y0}

1 if x ∈ (X1 \ {y0}) ∪ {x0}.

Now let fx0
= g ∧ f . Then fx0

∈ δ and

fx0
=











1 if x = x0

1
2

otherwise.

Thus for each x ∈ X there is an L- fuzzy set fx in δ such that f takes the

value 1 at x and 1
2
at all other points in X .

Let µ = {f ∈ LX : f(x) ≥ 1
2
}. Now we claim that µ ⊆ δ. Consider f ∈ µ.

Let Y = {x ∈ X : f(x) = 1}. Then f = ∨
x∈Y

fx and hence f ∈ δ. Thus we

get δ = µ.

Case(2): |X1| = |X| and |X2| < |X|.

Since (X, δ) is completely homogeneous, by applying Theorem 5.2.15, {g ∈

LX : g ≥ f and Λg ⊆ Λf} ⊆ δ. So any f in LX such that |X1| = |X| = |X2|

are in δ. So by case (1), δ = µ.

Case(3): |X1| < |X| and |X2| = |X|.

Since δ = CHLFT (f), {f ◦ h : h ∈ S(X)} is a subbase for δ. So any

element g in δ is of the form g = ∨
i∈I

(
ni

∧
j=1

fij) where fij = f ◦hij , hij ∈ S(X).

Now for each i ∈ I, (
ni

∧
j=1

fij)
−1(1

2
) = (fi1)

−1(1
2
) ∪ (fi2)

−1(1
2
) ∪ . . . f−1

ini
(1
2
). So
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we get |(
ni

∧
j=1

fij)
−1(1

2
)| ≤ |X1|.

Now

g−1(
1

2
) = ( ∨

i∈I
(
ni

∧
j=1

fij))
−1(

1

2
)

= ∩
i∈I

(
ni

∧
j=1

fij)
−1(

1

2
)

= ∩
i∈I

(

ni

∪
j=1

f−1
ij (

1

2
)

)

.

and hence

|g−1(
1

2
)| = | ∩

i∈I

(

ni

∪
j=1

f−1
ij (

1

2
)

)

|

≤ |
ni

∪
j=1

f−1
ij (

1

2
)|

≤ |X1|.

Thus δ = {0} ∪ {f ∈ {1, 1
2
}X : |f−1(1

2
)| < α} where ℵ0 ≤ α ≤ |X| and α is

not a limit cardinal.

Conversely assume δ is one of the form

1. {0} ∪ {f ∈ LX : f(x) ≥ 1
2
for all x ∈ X},

2. {0} ∪ {f ∈ {1, 1
2
}X : |f−1(1

2
)| < α} where ℵ0 ≤ α ≤ |X| and α is not a

limit cardinal.

Then it is easy to verify that these are the completely homogeneous L-fuzzy
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topologies on X . Hence the theorem.

Theorem 6.5.3. Let X be an infinite set and f ∈ LX where Λf = {1, 1
2
, 0}. Then

δ is a principal completely homogeneous L-fuzzy topological space generated by f

on X if and only if δ is one of the following.

1. The discrete L-fuzzy topology LX .

2. {0} ∪ {f ∈ LX : |f−1(0)| < α}.

3. {0} ∪ {f ∈ LX : |f−1(0)| = |f−1(1
2
)| < α}.

4. {0} ∪ {f ∈ LX : |f−1(0)| < |f−1(1
2
)| < α},

where ℵ0 ≤ α ≤ |X| and α is not a limit cardinal.

Proof. Obviously the above L-fuzzy topologies are principal completely homo-

geneous. Conversely let f ∈ LX , X1 = f−1(0), X2 = f−1(1
2
) and X3 = f−1(1).

If |X1| = |X|, then by Theorem 6.4.1, it follows that δ = LX . Otherwise

|X1| = α < |X|. In this case by Theorem 6.4.2, we have

|f−1(0)| < α for every f ∈ δ \ {0} (6.1)

where ℵ0 ≤ α ≤ |X|. Since |X1| < |X|, |X2 ∪X3| = |X|.

Case(1): |X2| = |X| and |X3| ≤ |X|.

In this case, by Theorem 5.2.15, there exists an L- fuzzy set g in δ such
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6.5. Principal Completely Homogeneous L-fuzzy Topological Space when
L = {0, 1

2
, 1}

that |g−1(1
2
)| = |g−1(1)| = |X| and X = g−1(1

2
)∪g−1(1). Then by Theorem

6.5.2, it follows that

{0} ∪ {f ∈ LX : f(x) ≥
1

2
for all x ∈ X} ⊆ δ. (6.2)

From Equations (6.1) and (6.2), we get δ = {0} ∪ {f ∈ LX : |f−1(0)| < α}

where ℵ0 ≤ α ≤ |X| and α is not a limit cardinal.

Case(2): |X2| < |X| and |X3| = |X|.

Let |X1| < |X2|. In this case δ = {0}∪ {f ∈ LX : |f−1(0)| < |f−1(1
2
)| < α}

where ℵ0 ≤ α ≤ |X|. Suppose that |X1| = |X2|. Then δ = {0}∪{f ∈ LX :

|f−1(0)| = |f−1(1
2
)| < α} where ℵ0 < α ≤ |X| and α is not a limit cardinal.

If |X2| < |X1|, then by Theorem 5.2.15 there exists an L-fuzzy set g in δ

such that |g−1(0)| < |g−1(1
2
)|. So in this case also we get δ = {0} ∪ {f ∈

LX : |f−1(0)| < |f−1(1
2
)| < α} where ℵ0 ≤ α ≤ |X|.

Thus we determined the principal completely homogeneous L- fuzzy topolo-

gies on an infinite set X when L = {0, 1
2
, 1}. We conclude this section by list-

ing all the principal completely homogeneous L-fuzzy topologies on X when

L = {0, 1
2
, 1}.

Corollary 6.5.4. Let X be an infinite set. Then the only principal completely

homogeneous L-topologies on X when L = {0, 1
2
, 1} are the following.
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6.5. Principal Completely Homogeneous L-fuzzy Topological Space when
L = {0, 1

2
, 1}

1. The trivial L-fuzzy topology, {0, 1}.

2. {0, 1
2
, 1}.

3. The discrete crisp topology, 2X .

4. L-topologies of the form {χG : |X \G| < α} ∪ {0}.

5. {1} ∪ {f ∈ LX : f(x) ≤ 1
2
for all x ∈ X}.

6. {0, 1} ∪ {f ∈ {0, 1
2
}X : |f−1(0)| < α}.

7. {0} ∪ {f ∈ LX : f(x) ≥ 1
2
for all x ∈ X}.

8. {0} ∪ {f ∈ {1, 1
2
}X : |f−1(1

2
)| < α}.

9. The discrete L-fuzzy topology LX .

10. {0} ∪ {f ∈ LX : |f−1(0)| = |f−1(1
2
)| < α}.

11. {0} ∪ {f ∈ LX : |f−1(0)| < |f−1(1
2
)| < α}

where ℵ0 ≤ α ≤ |X| and α is not a limit cardinal.

Proof. Proof follows from Remark 6.5.1 and Theorems 6.5.2 and 6.5.3.
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Chapter 7

Conclusion

In this thesis we studied the group of homeomorphisms of a topological space

and the group of L- fuzzy homeomorphisms of an L-fuzzy topological space.

One of the questions we tried to answer in this thesis is “Which permutation

groups can be represented as the group of homeomorphisms of a topological

space or the group of L-fuzzy homeomorphisms of an L-fuzzy topological space ”.

We determined the t−representability of some interesting permutation groups

and an analogous study carried out in the case of L-fuzzy topological spaces.

The properties of t-representable and Lf -representable permutation groups are

investigated.

Further we continued the works of T. P. Johnson on completely homogeneous

L-fuzzy topological spaces. We studied some properties of completely homo-

geneous L-fuzzy topological spaces. A characterization of completely homoge-

neous Alexandroff discrete L-fuzzy topological space is obtained. In addition to

the study of completely homogeneous L-fuzzy topological spaces, the concept of
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principal completely homogeneous L− fuzzy topological space is introduced and

investigation on the properties of these spaces are conducted.

7.1 Further Scope of Research

Here we describe some open problems that are to be solved.

Some of the problems studied in this thesis has obtained only a partial so-

lution. We have proved several results on finite permutation groups, but in

the case of infinite permutation groups analogous problems remain unsolved.

For example, we proved that the direct sum of finite t−representable permuta-

tion group is t−representable. But the condition under which the direct sum

of infinite t−representable permutation groups become t−representable is not

yet obtained. We determined the t−representability of finite transitive permu-

tation groups, but we are not able to determine the t−representability of all

infinite transitive permutation groups. We determined t-representability of some

cyclic permutation groups. Characterization of t-representable cyclic permuta-

tion groups is an open problem.

We studied the t-representability of transitive and maximal subgroups of

symmetric group. The Lf -representability of these permutation group remain

unsolved

We proved a characterization theorem of completely homogeneous Alexan-

droff discrete L-fuzzy topological spaces when L is a complete chain, but we are

not able to give a complete characterization for a completely homogeneous L-
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topological space. We characterized principal completely homogeneous L-fuzzy

topologies when L = {0, 1
2
, 1} and the characterization of the same in the case of

general F -lattice is still open.
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