SOME HASH FUNCTIONS USING CAYLEY GRAPHS

THESIS
SUBMITTED TO
THE UNIVERSITY OF CALICUT
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN MATHEMATICS
IN THE FACULTY OF SCIENCE
BY
V.VIBITHA KOCHAMANI
UNDER THE GUIDANCE OF
DR.LILLY.P.L

CENTRE FOR RESEARCH IN MATHEMATICAL SCIENCES
DEPARTMENT OF MATHEMATICS
ST. JOSEPH’S COLLEGE (AUTONOMOUS)
IRINJALAKUDA 680121
THRISSUR DISTRICT
KERALA STATE
INDIA
OCTOBER 2019

CERTIFICATE

Dr.Lilly P.LL

Associate Professor

Department of Mathematics
St.Joseph’s College (Autonomous)
Irinjalakuda-680121

This is to certify that the thesis entitled Some Hash Functions Using Cayley
Graphs, submitted by full-time research scholar Ms.V.Vibitha Kochamani, Depart-
ment of Mathematics,St.Joseph’s College (Autonomous), Irinjalakuda to the Univer-
sity of Calicut, in partial fulfillment of requirement for the degree of Doctor of Phi-
losophy in Mathematics, is a bonafide record of research work undertaken by her in
the Centre for Research in Mathematical Science, St.Joseph’s College (Autonomous),
Irinjalakuda, under my supervision during the period 2016-2019 and that no part

thereof has been presented before for any other degree.

Irinjalakuda Dr.Lilly P.LL

October 2019 Research Supervisor

DECLARATION

I hereby declare that this thesis entitled Some Hash Functions Using Cayley
Graphs, is the record of bonafide research I carried out in the Centre for Research
in Mathematical Sciences, St.Joseph’s College (Autonomous), Irinjalakuda, under
the supervision of Dr.Lilly P.L, Associate Professor, Department of Mathematics,
St.Joseph’s College (Autonomous), Irinjalakuda.

I further declare that this thesis, or any part thereof, has not previously formed
the basis for the award of any other degree, diploma, associateship, fellowship or any

other similar title of recognition.

V.Vibitha Kochamani

Full time Research Scholar
Department of Mathematics
St.Joseph’s College (Autonomous)
Irinjalakuda

October 2019

ACKNOWLEDGEMENT

First and foremost, I would like to thank God Almighty for giving me the
strength,knowledge,ability and opportunity to undertake this research study and to
persevere and to complete it satisfactorily. Without his blessings, this achievement

would not have been possible.

In my journey towards this study, I have found a teacher, an inspiration,
a role model and a pillar of support in my guide Dr.Lilly P.L, Associate Professor, De-
partment of Mathematics, St.Joseph’s College (Autonomous), Irinjalakuda, for her
hearfelt support, invaluable guidance, inspiration and suggestions at all times in my
quest for knowledge.She has given me all the freedom to pursue my research, while
silently and discreet, ensuring that I stay on course and do not deviate from the core
of my research.Without her able guidance, this thesis would not have been possible

and I shall eternally be grateful to her for her assistance.

I take pride in acknowledging the insightful guidance of Dr.Joju K. T, As-
sociate Professor,Department of Mathematics,Prajyothi Nikethan College,Pudukad
for sparing his valuable time whenever I approached him and showing me the way
ahead.

I wish to express my sincere thanks to Dr.Tony Thomas,Associate Pro-
fessor,Department of Mathematics,Indian Institute of Technology and Management,

Kerala, for fruitful discussions that I had with him.

My special thanks to Linto V.J, Software Engineer, for clearing all my

doubts regarding the software like Python Programming.

I wish to place on record my sincere thanks to Dr.Sr.Christy former princi-
pal, St.Joseph’s College (Autonomous) and Dr.Sr.Isabel, Principal, St.Joseph’s Col-

lege (Autonomous) for various help and support I received.

The Department of Mathematics, St.Joseph’s College (Autonomous), pro-
vided an excellent atmosphere for my research. I am thankful to Dr.Mangalambal
N.R, former head of the Department of Mathematics and Sherin Jose.T, Assistant
Professor,head of the Department of Mathematics for their encouraging words and
support. Each and every member of the Department of Mathematics, St.Joseph’s
College (Autonomous),who have been so helpful and cooperative in giving their sup-

port at all times to help me to achieve my goal.

I am also thankful to Administrative and Library staff for the support they

have extended.

I have great pleasure to acknowledge my gratitude to my former colleague as
well as my respectable friend, Dr.Sabna K.S, Assitant Professor,Department of Math-
ematics, K.K.T.M Government College,Pullut, Kodungallur and all my dear friends
for their support,encouragement and motivation, which was of great help in achieving

my goal.

My acknowledgement would be incomplete without thanking the biggest source
of my strength,my family.I would dedicated this work to Yateendradas.N, my hus-
band and Azad Maliakkal Y.N, my son for standing up with my craziness and always

being so encouraging, supportive and made a tremendous contribution in helping me

to reach this stage.l thank them for standing by me in all those difficult times.

I would like to convey my special thanks to R.Miruthula kumari my mother,
Padmini.K my mother-in-law and M.D.Narayanan my father-in-law, for their unwa-

vering and unselfish love and support given to me at all times.

I would like to convey my heartful gratitude and sincere appreciation to all

people who have helped and inspired me during my doctoral study.

V.Vibitha Kochamani
Department of Mathematics
St.Joseph’s College (Autonomous)
Irinjalakuda

October 2019

Contents

Notations Used

List of Tables

Introduction

1 Preliminaries

2

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Hash Functions
Cryptographic Hash functions
Mathematical Hash Functions
Cayley Hash Functions
Security Properties of Cayley Hash Functions
Review of Literature,

Mathematical Backgrounds

vi

Hashing with Discrete Heisenberg Group and its Security Aspects 22

2.1
2.2
2.3

Constructing Hash Function
Properties of Hash Function
Efficiency of the Hash function Hy

2.3.1 Observed values for Efficiency

i

22

2.4 Pseudo-Randomness

24.1 Chi-square testo
2.5 Protecting against Different Attacks
2.5.1 Finding elements of small order
2.5.2 Symmetric Matrices
2.5.3 Generic Attack
2.5.4 Subgroup Attack L

2.6 Features Comparison with other Hashing

Algorithms

Vectorial Version of the Cayley Hash Function

3.1 Designing the Vectorial versionof Hy
3.2 Executionof Hy , Hy
3.3 Security Properties
3.4 Efficiency of the Hash function Ho
3.5 Pseudo-Randommness L.

3.5.1 Chi-Square Test
3.6 Comparison of Hy and Hy
3.7 Modified Form of the Hash Function H;

3.7.1 Security Properties
3.8 Efficiency

Neighbourhoods in P?
4.1 Metricin P2
4.2 Neighbourhoods in P2

1ii

5 Free Generators Theorem in Projective General Linear Groups 78

5.1 Free Generators theorem 78
5.2 Statement of the Free Generators Theorem 82
5.3 Proof of the Free Generators Theorem 85

6 Hash function Using Free Generators Theorem 111
6.1 Construction of the Hash Function 112
6.2 Properties of the Hash Function 113
6.2.1 Small Modifications Property 113

6.3 Resistance against different attacks 115
6.4 Consequences of the determinant 117
6.4.1 Attacks through determinant 117

6.4.2 Weakness in the Distribution of the determinant 120

6.4.3 Padding 121

6.5 Condition for opting generators 121
6.6 Security on known attackso 122
6.7 Mlustrations for prime p=3 125
6.7.1 Examplesforp=3. 125
Conclusion 132
Appendices 135
Research Papers 173
Bibliography 175

v

Notations Used

{0,1}* : the set of arbitrary binary strings
{0,1}! : the set of binary strings of length [

x + +y : concatenation of strings x and y
max{z,y} : maximum of z and y

mod : modular reduction

|z| : absolute value of x

| z || : norm of

H: X — Y : the function from set X to set Y
H; : proposed Hash functions

ord(A) : order of the matrix A

det(A) : determinant of the matrix A

F, : the field with prime elements

Fyn @ the field with p™ elements

E

»((z)) : field of formal Laurent series over F,

dlog : discrete logs in Fj.

List of Tables

2.1

3.1
3.2
3.3
3.4

6.1
6.2

Average running time of Hy 29
Execution of Hy , Hy 37
Average running time to execute Hy 39
Comparison of the Hash Functions Hy and Hy 41
Average running time to execute the Hash function Hy 44
Gi(A), G4(B) for simple choices of eigenvectors with d=0 127
Possible choices of f, f', f, [« o o o o 128

vi

Introduction

The expansion and development of human race was all started with communi-
cations and transfer of information through generations which happened both in the
direct ways and the discrete ways.Nations always trusted the discrete ways to commu-
nicate,so that the crucial knowledge,plans,actions were kept secret from enemy states

and protecting their integrity,confidentiality and authenticity of data or information.

Cryptography has a prolonged and interesting history.Cryptography is an
ancient technique of secured communication dates back to 1500 BC [56].Definition
of the cryptography is an art of writing or solving codes.This way of expressing
cryptography does not catch the intrinsic nature of modern cryptography.Until 20"
century,Cryptography was more in the form of an art and it concentrated on the

secret communication problem.

Late 20" century, the perspective of cryptography was changed completely.
The theory permitted the careful study of cryptography as science.The cryptographic
fields concentrated more on message authentication,digital cash,digital signatures and
so on problems rather than secrete communication problems.Since the modern cryp-

tographic fields would work on worldwide webs, it would come under some external

threats.Without attempting to provide a perfect definition of modern cryptography;,
we would say that it is the scientific study of techniques for securing digital informa-

tions, transactions and distributed computations [48].

There are many differences between Classical(says before 1980's) and Modern
cryptography.The important one is who uses it? Nowadays the cryptography is used
for all purposes of security mechanisms in day to day life.Cryptography was initially
formed as an form of art with the purpose of secret communication for military and
intelligence organisations.It further developed to the science which helps the ordinary
people to work in the secured systems across the world. The origin of modern cryp-
tography plays a vital role in mathematics,some of which are taken for the purposes
of cryptographic applications.The basic aim of cryptography is to give the security
characteristics such as confidentiality,integrity and authentication to the data or in-

formation.

In 1953,Hahns Peter Luhn (IBM),introduced the concept of hashing[37].In [52]
the word “hash”means “to chop and mix”which means that cut into pieces and com-
bine them together as a one thing.Hash functions are extremely important for many
cryptographic purposes,namely a system of message authentication over an insecure
channel,detection of modified message,and so on.Hash functions are in simple and
efficient way to evaluate,that compress an arbitrary length input to a fixed size of
output.The idea behind the hash function is to generate a single imprint of a message
and the protection of the single imprint is easier than the protection of the message
itself.If the two distinct messages are unlikely mapped to a same value then we can

say the function as a good hash function.

For the last few years,Cryptology was focused mainly on the privacy problem.
It was extensively accepted at that time that the Authentication problem was a sub-
problem of privacy problem.The security of authenticity would automatically leads
from the privacy problem.W.Diffe and M.Hellman in [64] concluded, The problems
of privacy and authentication are closely related and techniques for solving one can

frequently be applied to the other.

In 1976,seminal paper of W.Diffe and M.Hellman gave a clear picture about
the privacy and authentication problem and they concluded with the result that the
problems are distinct.About the protection of Authenticity, they state that in [64]
Not only must a meddler be prevented from injecting totally new, authentic messages
into a channel,but he must be prevented from creating apparently authentic messages
by combining, or merely repeating, old messages which he has copied in the past.A
cryptographic system intended to guarantee privacy will not, in general,prevent this
latter form of mischief.For the last fifteen years, the significance of research area
in cryptographic field is strongly related to the topics of development in both the-

oretical and practical cryptographic systems which give assurance to the authenticity.

The concealment of information or protection of privacy is as old as writing
itself [64].Ciphers,Codes and stenography are among a few methods that are used to
conceal the information.Communication evolved from letters by post to couriers and
to the emails through computers.Since new communication methods and technology
are all interconnected with worldwide networks and its servers risk associated with
them are increased.Cryptology was the only solution that was able to make the leap

from the closed world of generals and diplomats to worldwide commercial applications

[64].

Apart from the privacy problem, Authentication of a message is highly rele-
vant.Authentication is that modification of both content and the originator of the
information has not changed.An attacker who tries to modify contents or origin of

information is called an Active attacker [64].

Nowadays,Cryptographic hash functions are the basic structure for security
schemes and procedures in most of the computer networks.This function is used to
guarantee authentication,confidentiality and mainly the integrity of data.The cryp-
tographic hash functions are the strongest tool in the design techniques to protect
authenticity of information and threat of reputation. Most of the hash functions
in use today have constructions that apply some sort of iterative design involving
a compression function and a transformation as the Merkle-Damgard [54].But some
hash functions are endangered in modern days which give suggestions to investi-
gate more new cryptographically secured designs.One of them is the Provably Secure
Hash Function, is the function which depends on the difficulty of breaking a known

“hard” problems associated with security.

Provably secured hash functions have many illustrations, one of them is the
Cayley Hash Functions which is related to the Cayley graph of some groups.The
Cayley graphs of the underlying groups of the past proposals are Expander graphs,
thus presenting interesting properties such that of the rapid mixing of Markov chains
[17].Cayley Hash functions are created and their security properties are alleged to the
hardness of the mathematical problem which is related to the Cayley graphs of some

groups.

Gilles Zemor introduced the idea of building Cryptographic hash functions from
Cayley hash functions of large girth [35, 34].In Zemor’s construction, the security
properties of the hash functions are easily stated whose mathematical problems which
were believed to be hard. Zemor’s cryptographic hash functions had the worth and
notable property that any Local modifications of a message text would definitely
change its hashed value.In 1991, Zemor introduced a family of hash functions whose
values correspond to matrix products in groups of the form SLs(F,) for a prime p

35, 12].

In 1994,this occurrence of the Cayley hash functions was broken by Zemor.To
enhance the security properties of the hash function they introduced a new idea which
change the prime field to the field with 2" elements.In other words, the new idea of
Tillich and Zemor hash function with the group SLos(Fyn) where Fy. is a field with
2" elements [46, 45],which was well-accepted for its security for so many reasons.The
Tillich-Zemor cryptographic hash functions, was comparable with the existing cryp-
tographic standards for its efficiency. The properties of the computational speed and
security depends on some mathematical problems of the hash functions,both of them
are not satisfied at a time.But in Tillich-Zemor hash functions have both these prop-

erties.And also it preserves the Local modifications property of the text message.

In [43], Quisquator and Joye showed the Zemor-Tillich hash function would
be ideal for authenticating video sequences.There are some other schemes for Cay-
ley hash functions were encouraged based on the Ramanujan graphs constructed by
Pizer and Lubotzky-Phillips-Sarnak(LPS)[17] and the Ramanujan graphs constructed

by Morgenstern [60].

The study in this thesis is started with an investigation in the Cryptographic
hash functions H; with two generators of the discrete Heisenberg group.To overcome
the flaw we introduced the Vectorial version of H;.Further, the study leads to derive
the Free Generators theorem in Projective General Linear group and its applications
in hashing.

The thesis content is subdivided in this following way.

Chapter 1 deals with some preliminary definitions and results which are required

in further chapters to follow the study in this thesis.

Chapter 2 contains the following study: A new construction of the Crypto-
graphic hash functions with the discrete Heisenberg group that are in related with
directed Cayley graph and the Local Modifications property for the messages are
retained by proving that the girth of the Cayley graph is large.Further,the running
time to execute the Cryptographic hash functions using a discrete Heisenberg group
for the pair of generators over a prime p are computed and the output distribution
of the cryptographic hash functions are uniform which is tested by using Pesudo-
randomness characteristics to reduce the chance of occurring collisions.Also, Verified

the security properties of the hash function using different attacks.

Chapter 3 gives the Vectorial form of the hash function with the discrete Heisen-
berg group which gives the hashed value as in the vector form.Also examine the
Chi-Square Goodness of fit test,that the output distribution of the hashed values in
the defined hash function are uniform.Construct a new hash function which is of dif-

ferent concept to form a Factorisation Problem harder.

In chapter 4, for the construction of the Free generators theorem, the requirement
of the metric and neighbourhoods in P? are defined and their related properties are

proved.

Chapter 5 deals the following study: the construction of the Free Generators the-
orem in projective general linear group.In which a general method to establish free
generators of free subgroups of projective general linear group, PGL3(F,((x))) and
general linear group GLs(F,((x))) where F,((z)) is the field of formal Laurent series

over the prime field.

In Chapter 6 the following ideas are, defining a new construction of the Cayley Hash
functions using the Free generators theorem.For a polynomial generators A and B of
a free subgroup in GLs(F,((x))),when we project their images of A and B into F,
under the quotient by < r,(z) > and clearly says that for which choices of these hash
functions are the best.

The conclusion of the thesis gives insights towards the scope of study in the

future.

Chapter 1

Preliminaries

This chapter deals with some preliminaries of an abstract ideas on Cryptographic
Hash functions,Mathematical Hash Functions, Cayley Hash functions, Review of Lit-

erature and the Mathematical backgrounds required for the next chapters.

1.1. Hash Functions

In [38] given a set, often referred to in this setting as an alphabet,we define a
concatenation of elements in that set as a word or a string.The number of elements
concatenated is referred to as the length of the word. A string with {0, 1} is commonly
referred to as a binary string or a bit string [38].

Now we have the formal definition of the Hash function.

Definition 1.1.1. [10] A hash function H : D — R where the domain D = {0, 1}*,

and the range R = {0, 1}" ,for some n > 1.

Hash functions along with some additional requirements then the function be-

comes Cryptographic Hash functions which is explained in the next section.

1.2. Cryptographic Hash functions

The informal definition of the One-Way Hash function was evidently said by M.Rabin
in [65]

Definition 1.2.1. A One-Way Hash function is a function H satisfying the fol-
lowing conditions:

i. The description of H must be publicly known and should not require any secret
information for its operation.

ii. The argument X can be of arbitrary length and the result H(X) has a fixed length
of n bits (with n > 64).

iii. Given H and X, the computation of H(X) must be easy.

iv. The hash function must be One-Way in the sense that given a Y in the image of
H, it is hard to find a message X such that H(X) =Y and given X and H(X) it is
hard to find a message X' # X such that H(X) = H(X').

The informal definition is given by M.Rabin in [65] for the Collision-Resistant

Hash Function.

Definition 1.2.2. A Collision-Resistant Hash function is a function H satisfying
the following conditions:

i.The description of H must be publicly known and should not require any secret
information for its operation.

ii. The argument X can be of arbitrary length and the result H(X) has a fixed length
of n bits (with n > 128).

iii. Given H and X, the computation of H(X) must be easy.

iv. The hash function must be One-Way in the sense that given a Y in the image of

H, it is hard to find a message X such that H(X) =Y and given X and H(X) it is

9

hard to find a message X # X such that H(X) = H(X').
v. The hash function must be collision resistant: this means that it is hard to find

two distinct messages that hash to the same result.
Now we defined in the formal way.

Definition 1.2.3. [28] A Hash Family consists of three elements (X, Y, H) where
the following conditions are satisfied

(i) X is a set of possible messages.

(ii) Y is a finite set of possible message digests or authentication tags.

(iii) there is a hash function H such that H : X — Y.

Definition 1.2.4. [28] A hash function H : X — Y and an element y € Y, then
find x € X such that H(z) = y. A hash function for which pre-image cannot be

efficiently solved is often said to be one-way or pre-image resistant.

Definition 1.2.5. [28] A hash function H : X — Y and an element = € X, then
find z° € X such that #° # 2 and H(z') = H(x). A hash function for which second

pre-image cannot be efficiently solved is often said to be second pre-image resistant.

Definition 1.2.6. [28] A hash function H : X — Y | then find z, 2 € X such that
r#x and H(z') = H(z).
A hash function for which collision cannot be efficiently solved is often said to be

Collision Resistant.

1.3. Mathematical Hash Functions

[12] Nowadays most of the hash functions are constructed using iterative designs.These

traditionally constructed hash functions are based on performing several rounds of

10

complex bit operations in sequence, with the hope that it is difficult to reverse.The
two most commonly used mathematical hash functions are SHA-1 and MD5 and se-
rious attacks were developed against them.Research community took lots of efforts
to replace such type of hash functions [48].

Some options are proposed to create hash functions using algebraic structures.One
example of a mathematical hash function is the modular arithmetic secure hash algo-
rithm (MASH-1), which follows the Merkle-Damgard transform, but it uses a com-
pression function based on modular arithmetic. MASH-1 involves the use of an RSA-
like modulus N that should be difficult to factor.Its security is based partially on the
difficulty of extracting modular roots.

Other example of the mathematical hash function is the Provably Secure Hash Func-
tion.The security of this hash function is based on some hard mathematical problems
and finding collisions of the hash function is as hard as breaking the underlying prob-
lem.Their security is more than just relying on complex mixing of bits as in the

classical approach.

1.4. Cayley Hash Functions

In [60] describes Cayley hashes as an efficient and provably secure hash functions

constructed from the Cayley graphs of (projective) linear groups.

Definition 1.4.1. [12] A graph is an ordered pair G = (V, E') composed of a vertex
set V' together with an edge multi-set E.The vertex set V' can be any set and the
edge multi-set F is a multi-set whose elements are of the form {v,w} or {v} where v

and w are distinct vertices.An edge of the form {v} is called loop.

Definition 1.4.2. [12] The diameter of G is defined by diam(G) = max, ey dist(v, w),

11

that is the maximal length of the shortest path between any two vertices v and w.
If there is no path connecting two vertices then conventionally the distance is define

infinite.

Definition 1.4.3. [38] The directed girth of a graph G is the largest integer 7 such
that for any distinct vertices v, w there exist at most one path from v to w of length
less than 7.

We note that the directed girth of a graph is different than the girth of a graph, which

is defined as the length of the shortest cycle.

Definition 1.4.4. [12] Let G be a multiplicative group and S = {s1, s,, sx.} be a
subset of G.

A Cayley graph Cgs = (V, E) is a k-regular graph constructed from the group G
with respect to S < G as follows: For each element g € G, V' contains a vertex v,
associated to g. E contains the directed edge (vg,,v,) if and only if there is s; € S
for some i such that go = g15;. The elements of S are called the graph generators.

If S is stable under inversion (S = S™'), then the graph Cg g is undirected.

Cg s is a connected graph if and only if S generates the whole group G.

Definition 1.4.5. [12] Let G be a finite (semi) group with a set of generators S that
has the same size as the text alphabet A.Choose a function 7 : A — S such that

defines an one to one correspondence between A and S.

Algorithm:|[12]
The hash value of the text zyz5......xy is the (semi) group element 7(z1)w(z2).....m(xk).
One of the advantages of this design is that the computation of the hash value can be
easily parallelized due to the associativity property m(xy) = 7(z)m(y) for any x and

y in the (semi) group and if the graph has large girth (length of the smallest cycle in

12

the graph), the hash function is protected against small modifications of the message

input.

1.5. Security Properties of Cayley Hash Functions

Cayley Hash functions are strongly connected to the hardness of the Mathematical

problems.

Definition 1.5.1. [12] Let G be a group and let S = {s1,, sg} = G be a generat-

ing set of G.Let L be of poly logarithmic (small) in the size of G.

(i) Balance Problem: Find an efficient algorithm that returns two words m;....m,
and m).....m;, with [,I' < L, m;,m; € {1,...., k} that yield equal products in G, that

!

: l —_ 77!

(ii)Representation Problem: Find an efficient algorithm that returns a word

my...my with [< L, m; € {1,, k} such that TI'_,s,,, = 1.

(iii) Factorization Problem: Find an efficient algorithm that given any element

g € G returns a words my....m; with [< L, m; € {1,...., k} such that II_,s,,. = g.

The Cayley Hash function is collision resistant if and only if the balance
problem is hard in the defined group.The associated Cayley graph is second pre-
image resistant if the representation problem is hard and it is pre-image resistant
if and only if the corresponding factorization problem is hard in the defined group

(62, 22].

13

1.6. Review of Literature

In the period of time 1990s, Zemor [35] introduced the idea of constructing hash func-
tions from cayley graphs.Zemor’s technique came from a desire to satisfy the following

small modifications property that introduced in [36].

Proposition 1.6.1. [36] [Small Modifications Property] There exists a d € Ny such
that if m' is any modification of m affecting fewer than d consecutive bits then

h(m) # h(m').

[38] The relation between the small modifications property and hash functions
from Cayley graphs is now apparent.Namely, let G be a group with generating set
S = {A, B} and H be the associated hash function.If the directed girth of C'(G,S5)
is 0, then two messages of length less than ¢ cannot form a collision in H.From this

motivation, Zemor present the idea of using hash functions over the group SLy(F,)

with two generators A = and B = for a large prime p which was
01 11

broken by many attacks by their weakness in the factorization.[12] In 1994, Tillich

and Zemor’s [46] paper proposed a family of hash functions that uses the group of

S Ly over a finite field of 2" elements as platform for their design.

[12] Let n be a positive integer and let p,(z) be an irreducible polynomial of degree n

z 1 r x+1
over Fy.Let Ay and A; be defined as follows: Ay = and 4; =

10 1 1

Both Ay and A; have determinant 1 over F,.These matrices are the generators of

14

the Tillich-Zemor hash function.

Let m = myms.....my € {0,1}* be a binary string representation of a message and
K = F)|z]/ < pa(z) >= Fan.

The construction of the Tillich-Zemor hash functions also preserves the small modi-

fications property using degree argument in ([46], lemma 3.5).

Lemma 1.6.2. Suppose that m, m’ are bit strings in {0, 1}* such that H(m) = H(m/').

Then atleast one of m,m’ must have length greater than n.

[22] Finding Collision in the Tillich-Zemor hash function is equivalent to the prob-
lem of finding two products of reasonable length in {A,B} that are equal in G, which
in mathematics sometimes referred to as the “Balance problem”.Similarly we say that
the Pre-image and Second Pre-image resistance are respectively reduced to the “Rep-
resentation Problem”and “Factorization Problem”.These problems are known to be
very hard mathematical problems for many classes of groups [46].

Originally, some modifications of the Tillich-Zemor hash function were suggested
(63, 20, 23] to improve its feasibility.

Later, the construction of the Tillich-Zemor hash function and Zemor’s original idea,
Cayley hashes from expander graphs have also been of great interest.The family of
Ramanujan graphs over PSLy(F},) introduced in [17]. In [60] suggested another con-
struction based on expander graphs, called the Morgenstern hash function which took
values in PSLy(Fyn), but was also constructible over PSLy(Fy).

In [44] Tillich and Zemor presented an attack based on the LPS hash function which
was later extended to a pre-image finding algorithm by Petit in [61] and also alter
the attack to the Morgenstern hash function [61]. Most recently, in [40, 41] suggests
using Chui’s cubic of Ramanujan graphs over PSLy(F),), but immediately finds a

corresponding attack.

15

Note that these expander graph constructions were different from the Tillich-Zemor’s
construction as they used undirected Cayley graphs and were further based on quatern
ion-like algebras.Also the another construction using Pizer graphs over elliptic curves
was given in [44].

The above all discussions exhibits the interest and scope of such constructions in the

following chapters.

1.7. Mathematical Backgrounds

Definition 1.7.1. [13] The Heisenberg group is the group of all 3 x 3 upper

1 a c

triangular matrices of the form | () 1 § | under the operation of matrix multipli-

0 0 1
cation.Elements a,b and ¢ can be taken from any commutative ring with identity,

often taken to be the ring of real numbers (resulting in the “Continuous Heisenberg
group”) or the ring of integers (resulting in the “Discrete Heisenberg group”).

It is denoted by Heis group. From this definition, it is easily seen that the discrete

1 10 1 00

Heisenberg group is generated by A=10 1 oland B= |0 1 1

0 01 00 1
Definition 1.7.2. [38] Let R be a commutative ring.We define the general linear
group of degree k over R as GLi(R) = {g € Myxy : det(g) € R*} is the group of
invertible k x k matrices over R.

Now, we defined the Projective General linear group over R

16

Definition 1.7.3. [38] Let R be a commutative ring.We define the projective gen-
eral linear group of degree k over R is PGLi(R) = GLi(R)/Z, where Z is the
centre of GLi(R) and consists of all scalar matrices. Elements of PG Ly(R) are thus

cosets gZ with g € GL,(R).

Definition 1.7.4. [38] Let p be a prime and F, be the field with p-elements and

F,((z)) be the field of formal Laurent series over F,.The elements of F,((x)) are

series of the form f(z) = X fra*, for fi € F, and m € Z.
Because we want to see the elements of F,((x)) as elements of an abstract field,not

as functions and we will write f~! to mean the multiplicative inverse of f € F,((x)).

Definition 1.7.5. [38] Let M € M3.3(R). We then define deg(M) to be the maximum

degree of the entries of M.

Definition 1.7.6. [26, 70| Valuation v(f) of an element f € F,((x)) as in the

min{k : g, # 0} ifg #0
standard way, namely, v(f) =
o0 ifg=0
Definition 1.7.7. [26, 70] The absolute value of [€ F,((x)) as |f| = p~*/)

Example 1.7.8. If f = 23 + 2% then |f| = p 3.

If g=a7*+ 27! then | f] = p*.
Remark. [26, 70]
e |.| is multiplicative, that is, |fg| = |f||g| for any f,g € F,((z))

e |.| is non-Archimedean, it means that it satisfies the Ultra-metric or

Non-Archimedean Triangle inequality,

|f + gl < maz{|f],|g]} for all f,ge F,((x))

17

e |.|is non-Archimedean, for z,y € F,((z)) then |z| # |y| = |z +y| = maz{|z|, |y|}.

Definition 1.7.9. [26, 70] The ring of integers of F},((x)) with respect to the valuation

and Absolute values is denoted and defined by
O = Ff[z]] = {f € Fp((x)) s v(f) = 0} = {f € F,((z)) : | f| < 1}

Its multiplicative group of O is,

0" = {fe F((x)) s v(f) = 0} = {f € Fp((x)) : [f] = 1}.

Definition 1.7.10. [42] The two-dimensional projective space is defined over
F((@)) as

P2 = P*(F,((z))) = V — {(0,0,0)}/ ~ , where ~ is the equivalence relation as
(w1, ug,u3) ~ (v1,v9,v3), if there exist k € F,((x))* 3 (u1, uz, us) = (kvy, kv, kvs).

If for (uy,us,u3) # (0,0,0), then define [u] = [u; : us : uz] € P? to be the equivalence

class {k(u1,ug,u3) € V : ke Fy((x))*}.

Remark. (i) [e1] =[1:0:0], [ea] =[0:1:0],and [e3] =[0:0: 1]

(i) [f:g:h]=[1:gf :hf] for f#£0

(iii)) [f:g:h]=[fg7':1:hg™'] for g # 0

(V) [f:g:h]l=[fht:gh™" 1] for h #0

Definition 1.7.11. [38] Consider the group GL3(F,((z)) and its subgroups are act-

ing on V' by matrix multiplication on the left,

@11 a2 Q13

that is, for g = | ay; a9y a9y | € GLs(Fp((x))) and u = (u1, us, u3) € V then

a31 dzz (33

18

a11U1 + a12U2 + a13u3

g = | agiuy + asus + aszus |-This gives the action of GL3(F,((x))) and its sub

a31uy + az2Uz + aszus
groups on P2 by g.[u] = [g.u]

Definition 1.7.12. [38] The elements of PGLs(F,((x))) are cosets of the form
gZ where Z is the centre of GL3(F,((x))) and g € GL3(F,((z))).For ease of notation,

11 aiz2 A3

for an element gZ € PGL3(F,((x))) where g = denote it as

Q21 dAg22 (23

a31 daz2 G33
aix aiz2 a3

9Z = | ag agy aoz |- Weknow that Z acts trivially on P2.So consider PG L3(F,((x)))

a31 dasz2 G33

and its subgroups as acting on P? in the same way as GL3(F,((z))) by left matrix

multiplication.

Definition 1.7.13. [66] A primitive root of a field Fx is an element whose powers

constitute all of F% . That is, the roots is a generator of the cyclic group F*
p P

Remark. In [66] (i) An element g € F. is a primitive root if and only if gW* a1,
for every prime ¢ dividing p* — 1.
(ii) If g is a primitive root modulo p* then ¢" is a primitive root if and only if

ng(r7pk - 1) =1

Definition 1.7.14. [5] For a fixed point a € X. Let S = {f € F(X) 3 f(a) # 0} be

the set of all polynomial functions that do not vanish at a.Then the fraction i for
g

19

f e F(X) and g € S can be thought of as rational functions that are well defined at

a is called the Localization where F'(X) is the ring of polynomial functions on X.

Definition 1.7.15. [38] Let (uy, us,u3) € V then the oco-norm is defined as

I (ur, ug, us) [|= maz{ual, [usl, us|}

Remark. [38] For any u = (uy, ug,uz) € V with u # (0,0, 0) then we get that |u,|, |us|
and |uz| must all be the zero or power of p which says that || u ||=| (u1,ug,us) ||

must also be a power of p.

The metric is defined in [32]

Definition 1.7.16. Let [u], [v] € P? such that [u] = [u; : ug : u3] and

[v] = [v1 : v2 : v3] then the standard metric on P? is defined as,

| unol
| w [vl
mazx; ;j{|uiv; — uvl}

max{|ui, [ug|, [us|ymaz{|vi], [va|, [vs|}

Remark. Here,Non-Archimedean local fields of characteristic p is the field of formal
Laurent series F,((x)) over the finite field F,.So we provide, V' A V with co- norm ,
so that || u A v ||= max; ;j{|uv; — ujv;|}.

Definition 1.7.17. [53] Let X be an arbitrary set.A word in X is a finite sequence

of elements w which we write as w = y1ys.....y,(y; € X).The number n is called the

length of the word.The unit is the empty word.
Remark. [53] If z € X then symbols z and x™! are called literals in X

Definition 1.7.18. [53] An expression of the type w = zj xi).....25" (z;; € X,

117712

ej € {1, —1}), is called the group word in X.

20

Definition 1.7.19. [53] A group word w = y;....4, , (y; € X ™) is reduced if for any
i1=1,...n—1,y # yi;ll.(i.e) w does not contain a sub word of the type yy ! for a

literal y € X+

Definition 1.7.20. [53, 25] The free group over X is the set F(X) endowed with
the product defined by:w*w’ is the unique reduced word equivalent to the word ww’.

The unit is the empty word.

Definition 1.7.21. [53] The cardinality of X is called the rank of the free group
F(X).

Remark. [53] (i) If X € G then every group word w = z{'z2.....z" in X determines

117712

a unique element from G which is equal to the product zj xj>......z;" of the elements
z;) € G.
(ii) The set X is called the free basis of G and G is called free on X or freely

generated by X

Definition 1.7.22. [71] If G1,Gs are subgroups of G, then G is said to be free
product of GG; and G If for every group H and homomorphisms 6; : G; — H, there

is a unique homomorphism 0 : G — H so that 0|g, = 6;, for i = 1, 2.

21

Chapter 2

Hashing with Discrete Heisenberg

Group and its Security Aspects

Introduced a new Cryptographic Hash Function which is in correspondence with
directed Cayley graph.Here we are showing why a large girth is needed to satisfy the
local modifications of a text.We execute the average running time of various binary
strings of different length and evaluate the other useful characteristics of a hash
function which is Pseudo-Randomness of a hash function.Pseudo-Randomness of a
hash function can be assigned uniformly over the range [0,p) to reduce the chance
of occurring collisions.The security properties of the hash function using different

attacks are verified.

2.1. Constructing Hash Function

Now, we are designing a Hash Function as follows: to an arbitrary text of

{0,1}* associate the string of {A,B} obtained by substituting 0 for A and 1 for B,

22

then assign to A and B values of adequately chosen matrices of Heisenberg group over

1 10 1 00
integers Z,those could be A= |9 1 0|land B= |9 1 1 | then evaluate the

001 0 01

product associated with the string of A’s and B’s in the group Heis(F),), where
F, is the field on p elements, p being chosen large prime number. The hashed value
is the computed product.A multiplication by A or B in Heis(F}) requires essentially
4 additions, so hashing an n bit text requires 4n additions of log p bits. The hashed
value related with the length of the input message would grow to an unlimited extent
and that hashed values would lie in the matrix ring with unique factorization.Hence
the message is retained digit by digit from right to left.Now, by applying the modular
reductions in the hashed value which is the computed product.It loses some informa-

tion and so, there is no longer factorization is trivial [22].

110 1 00
Definition 2.1.1. Let A=]1(9 1 o|and B=](0 1 1 | be a pair of generators of

001 0 01

A if b;=0,

B it b=1

This hash function is strongly related to the Cayley graph associated with Heis(F),)

of generators A, B and denoted by G .

23

2.2. Properties of Hash Function

Recall that the hash function construction presented above is directly associated with

the Cayley graph G(G,S), where G is a group generated by the elements of the set
S.

Proposition 2.2.1. If we replace 'u’ consecutive elements of the product,

T = X1Ta...... TiLi L eeenenn TituTitui1----T¢ where x; € S,5 = 1 to t with v’ consecutive
elements of yix1....... Yizy € S such that x = x1To.....ZYiv1....... YicoTitutl----L¢ have
the same hashed value,then max(u,v) = g.

In other words, if we can obtain Cayley graph with a large g, we protect against local

modifications of the text.
1 10 100
Lemma 2.2.2. Let A=l 1 0|land B=|l0 1 1| LetSi,5,...... Sy € {A, B}

0 01 0 01

a b c

with M = 515;.....5: = | d e f | with matriz multiplication over Heis(Fy,). Then
g h i

a7b7c7d7€7f7g7h7i < 2t

Proof. We prove the lemma by using induction on t.
Suppose t=1, then M = S; = A or B.
In both cases all the entries of the matrix A and matrix B are less than 2, which gives

that the induction is true for t=1.

24

Assume that the lemma holds for [< ¢, then we get a, b, c,d, e, f, g, h,i < 2!
Next, we need to prove the induction is true for t.

Let S1, 59, Sy e {A, B}
a b ¢

Define M = 5155....5-1=|d e f|anda,b.cde, fghi<2""

Q
>
-~

a a+b c
If S, =A then M.S; = [d d+e f|<2

.

g g+h

Since, all the entries in the matrix M are less than 2t ! and all entries in the matrix

A are less than 2, so their product M.S; < 2

a b c+b
Similarly, If Sy = B, then M.S; = | d ¢ f+e|<2

g h i+h

Since, all the entries in the matrix M are less than 2/=! and all entries in the matrix

B are less than 2, so their product M.S, < 2

Hence in both cases, by induction hypothesis the lemma holds for t. |

25

110
Proposition 2.2.3. Let the bit '0° be mapped to the matric A= |0 1 0| and the

0 01

1 00

bit '1° be mapped to the matrix B= |0 1 1| If two distinct messages "u’ and v’

0 01

hashes to the same value, then the length of either u or v is atleast logs(p).

Proof. Suppose the length of the messages u is ’t’ and length of the message v is < ¢.

1 a b

If |]o 1 ¢ |isthe hashed value of u then by lemma 2.2.2, all entries are less

0 01

than or equal to 2¢.

Therefore, if 2° < p then the hashed values of u and v cannot be equal because if it
is equal over Z, will also equal over Z, which is impossible.

Hence, if the two binary strings have length less than log,(p), then their hashes cannot

be equal over Z, [|

Remark. (i) We can say the proposition 2.2.3 in other words, that the girth of the

Cayley graph of Heis(F,) with generators A and B is atleast loga(p).
(i) If we choose p is of order 22°6 then the above proposition 2.2.3 says that the

hash function does not exist collisions unless the length of atleast one colliding bit

strings is atleast 256 which have a close similarity to a lower bound of the girth of

26

1 10 100
the Cayley graph generated by A= |0 1 o|land B= |0 1 1 |over F,.

0 01 0 01

2.3. Efficiency of the Hash function H;

1 10 1 00
Let A=10 1 0oland B=]0 1 1 | Dbe the two generators of Heis(F),)

0 01 0 01

and let m = boby........ b, be a binary string.Then Hi(m) = m(by)m(b1)........ 7(by)

where, for 0 < i < n,

A if b=0,

B if b=1

This hash function is strongly related to the Cayley Graph associated with Heis(Z,)

and generators {A, B} denoted by G.

Computing the hash values H;(m) by using the matrix multiplication modulo
p indexed by m.Then Hy(m) = {(a,b,c) 5 for some a,b,c € Z,}. That is, we use the
generators of the discrete Heisenberg group to construct the whole hash values of
Hi(m). In this way we compute the matrix multiplication of a bit strings of length

n, it is essential to attain 5n multiplications and 4n additions modulo p.

In [3] Z,, each addition requires O(logp) and each multiplication requires

O(log*p) bit operations. Thus, if p ~ 2! for some i, each process modulo p is O(i?).

27

Thus, the performance of the number of bit strings of length n to compute H;(m) is

O(i*.n).

Here all the executions are done in Z, and since we are using the elemen-
tary generator matrix A or matrix B, we can reduce the multiplication and addition
operations.Here we are dealing with the upper triangular matrices with main diagonal
1 so that, we need to attain 4n additions and n multiplications to hash a bit string

of length n.

2.3.1 Observed values for Efficiency

Here we tabulated the average running time to execute the hash values Hy(m)

for 100 random binary strings of same length.In our observations we apply only the

1 10 1 00

matrix multiplication for the pair of generators, A= |0 1 oland B=|0 1 1

0 01 0 01

for 100,200,400,800,1000,2000,5000 length of binary strings.The tests were executed
in Intel(R) Core (TM) i3 2.00GHZ computer with 4GB of RAM using python 2.7.1

code in Table 2.1.
Hence, we determined that our defined hash function with large prime (22°% — 1053)

without any parallelism hashes to a 5000 length of bit strings in 0.083 seconds in

average.

28

Table 2.1: Average running time of H;

prime,p Length of the binary strings

100 200 500 800 1000 | 2000 | 5000
2121 1 0.002s| 0.003s| 0.009s| 0.013s| 0.018s| 0.033s| 0.084s
2137 — 555 | 0.002s| 0.003s| 0.008s| 0.013s| 0.017s| 0.033s| 0.083s
2147 — 387 | 0.002s| 0.003s| 0.009s | 0.013s| 0.017s| 0.033s| 0.084s
2157 — 213 | 0.002s| 0.003s| 0.014s| 0.013s| 0.016s| 0.033s| 0.082s
2167 — 771 | 0.002s| 0.0035% 0.009s | 0.013s| 0.017s| 0.033s| 0.083s
2177 919 | 0.002s| 0.003s| 0.019s| 0.013s| 0.018s| 0.033s| 0.084s
2187 477 1 0.002s| 0.003s| 0.011s| 0.013s| 0.019s | 0.033s| 0.084s
2197 775 1 0.002s| 0.003s| 0.009s | 0.013s| 0.021s| 0.034s| 0.083s
2297 — 429 | 0.002s| 0.003s| 0.009s | 0.013s| 0.019s| 0.033s| 0.082s
2217 — 675 | 0.002s| 0.003s| 0.009s | 0.013s| 0.021s| 0.033s| 0.082s
2227 — 721 | 0.002s| 0.003s| 0.009s| 0.013s| 0.018s| 0.033s| 0.082s
2257 — 949 | 0.002s| 0.003s| 0.009s| 0.013s| 0.016s| 0.033s| 0.087s
2247 309 | 0.002s| 0.003s| 0.010s| 0.014s| 0.016s| 0.033s| 0.082s
2250 1053 | 0.002s| 0.003s| 0.009s | 0.013s| 0.016s| 0.033s| 0.082s

2.4. Pseudo-Randomness

A good hash function must produce an output distribution as random as
possible.Chi-square goodness-of-fit test is a non-parametric test that is used to get
the observed elements of a given situation is importantly different from the expected
value.Here we exercised the chi-square goodness-of-fit test for the output distribution
of the hashed values.We know that the elements of Z, are uniformly distributed [3],we
tested using the chi-square test that the output distribution of hashed values are also

uniform.

2.4.1 Chi-square test

The test is very important to check whether the observed frequencies of the

given input data satisfies the expected frequencies of that data.

29

Usually, the output distribution of the hashed values for the corresponding input
binary strings attained in our hash function must be distributed uniformly over its

range.

To check the chi-square goodness of fit test, the following conditions should be true:

e The observed frequencies are attained from the randomly chosen binary strings.

(i.e) our sample in this test should be random to obtain the observed frequencies.
e Expected frequencies in every distribution should be greater than or equal to 5.

The above conditions are satisfied then we can check that the chi-square distribution
r (0= E)°
i=1 Ez

frequencies obtained from each input binary strings and E; denotes the expected fre-

with k-1 degrees of freedom is, y? = Y| ,where O; denotes the observed
quencies of the corresponding distributions of each category and k denotes the number
of categories.

Null Hypothesis (Hp) is the Output distribution of the hashed values are uniformly

distributed and level of significance o = 0.01 is fixed for all the distributions.

In this test, the above conditions for the chi-square test,we choose input as
random number of binary strings in the hash function H; to get the output as ran-
dom distribution of a,b and ¢ values from the corresponding matrices of the discrete
Heisenberg group and if p > 3 , then the expected frequencies for each category is
greater than or equal to 5.

By the definition of x%(k — 1) the probability of rejecting Hy when Hy is true, is

P(x* > x%2(k — 1)) = «, which is a type-I error.

30

The test of various distribution of the hashed values for every prime p was performed
100 times and each time with new distribution of hashed values was checked.The
average pass proportion of the 100 random distributions of a,b and ¢ are 100%, which
strongly says that hashed values of the hash function H; from random binary strings
are uniformly distributed.Hence,the tests were executed in Intel(R) Core (TM) i3
2.00GHZ computer with 4GB of RAM using python (x,y) code.

2.5. Protecting against Different Attacks

2.5.1 Finding elements of small order

This attack is based on the structure of the Discrete Heisenberg group.It is
performed by computing the value of hash function (message digest) of random num-
bers of binary strings.This attack is performed until obtaining a random output as
hashed values of the hash function Hy, which is a diagonalizable matrix.Now we have
to find the hashed values of small order for a particular binary string and it has to
be applied number of times into the hash of another binary string. This is equivalent
to insert the identity matrix in the hash value and consequently obtaining a collision

with the corresponding binary strings of the messages.

In our case, the minimal polynomial has a repeated root.So that there is no
diagonalizable matrix except the identity matrix in the group. So, this attack is in-
consistent to find a matrix of such small order. The possibility of getting a matrix of

small order is infinitesimal.

31

2.5.2 Symmetric Matrices

This attack is based on the generators of the group. The preference of gen-
erators in the group can affect the security aspects of the hashing algorithm. In our

case, both the generators are not symmetric matrices. So, this attack is inconsistent.

2.5.3 Generic Attack

In [22, 68] this kind of contest, involves a Birthday Paradox (Brute Force)

search for all binary strings of length contingent on the size of the chosen field.

In our case, the length of the colliding bits strings is at least 256 (if p is of order
2256) and this way implies the brute force search over binary strings of length mini-
mum 128, which is computationally inconsistent. So that the reduction of birthday
paradox is just not sufficient to create the attack consistent with our recommended

size of a prime p.
2.5.4 Subgroup Attack
This attack is obstructed by selecting the group cautiously.The minimal re-

quirement is that the cardinality of group has a large factor [45]. In our case, the

cardinality of our group is very large (if p is of order 22°%).

32

2.6.

Features Comparison with other Hashing
Algorithms

Cryptographic hash functions like SHA — 256 and SHA — 512 have maximum
input message size of 2% — 1 and 2'?® — 1 bits respectively [67]. But in our
hash functions H; has arbitrary input message size to output the hashed value

of fixed size which is the advantage to our hash function.

Now compare the Tillich-Zemor hash function [46] to our hash function H; with
the output size of the hashed value, if one uses p is order 225, then the size of
the hashed values of Tillich-Zemor is 1024 bits while our H; is 768 bits which

says that our hash function H; also has another advantage.

The number of bit operations in SHA-3 is 2!6% bit operations while we used in
our hash function H; is 4n additions and n multiplications, which will enhance

the efficiency of the hash function H;.

According to [27], SHA-1 hashes approximately 153 MiB/seconds (MiB stands
for mebibyte and IMiB = 22 bytes) and so this is approximately 8388600
bits per second.Our proposed hash function H; hashes 8388600 bits in 156

= 225 _ 1053 without any parallelization.Our

MiB/seconds for a large prime p
proposed hash function is less efficient than other hash algorithms because the
efficiency can be further improved if we use the latest features in the comput-

ers.Here the tests were executed in Intel(R) Core (TM) i3 2.00GHZ computer

with 4GB of RAM using python 2.7.1 code.

33

Hence our proposal is modest and efficient.It is performed in 4n additions and n
multiplications over F), to hash a bit strings of length n.This defined proposal of the
hash function H; has the output size of length 3logp while other hash functions using
matrices over F), to hashes the output size of length 4logp.Also the randomness of the
output distribution in H; was tested by the Chi-Square: Goodness of fit test.Hence
our proposal Hj is resistant to the known attacks in Cayley hash functions which says

that our defined H; has no visible threat to the security.

34

Chapter 3

Vectorial Version of the Cayley

Hash Function

We defined the new version of the Cayley Hash Function using discrete Heisenberg
group which gives solution to the weakness in the defined hash function H;.The
vectorial version of the hash function which we defined is very efficient and also as
fast as the provably secure hash function H;.We examine the Chi-Square Goodness
of fit test,that the output distribution of the hashed values in the hash function H,
are uniform, that is, the output distribution is uniformly distributed,which reduce
the chance of occurring collisions.We compared the results with our hash function H;

gives the in-depth study of both the functions.

3.1. Designing the Vectorial version of H;

One essential weakness in the defined hash function H; is that for short messages the

pre-images can be computed easily.

35

This weakness can be overcome by one solution is using padding method and the
other solution is by using the vectorial form of Hj.

We defined a new vector form of the hash function Hy: {0,1}* — F? as
Hy(m) = vecy, (m)H;(vecy, (m) @ C) where vecy, (m) is the first row of Hy and C'is
the random binary strings.

Like Hi(m), the function Hs(m) also computed one bit at a time and every
matrix-by-matrix multiplication can now be replaced by a vector-by-matrix multi-
plication which says that Hy(m) is as fast as Hy(m).Hence the function Hy is very
efficient. The second event of H;(vecy, (m) @ C) having only p additional vector-by-
matrix multiplication for the bits of length n.It is insignificant for long messages.

Many bits of the hash values of vecy, (m) and wvecy, (m') are different.So
H,(vecy, (m) @ C) and Hy(vecy, (m') @ C) will also differ by many bits. Then H,(m)

and H;(m') are also completely different.

Without inverting vecy,, finding a pair vecy, (m) and vecy, (m’) are equal,
for some particular messages m and m' which means they changed only in the last
bit seems to be a hard problem and the messages m and m’ with more than one bits
are different then also Hy(m) and Hy(m') are completely different.

Hence the hash function Hy will not affect by the malleability properties like the hash

values of two or more messages tends to a same output.

3.2. Execution of H; , Hs

Here we executed the different hashed values of H; and H, using different test

vectors of different length for fixed prime p. The tests were executed in Intel(R) Core

36

(TM) i3 2.00GHZ computer with 4GB of RAM using python (x,y) code.

Table 3.1: Execution of H; , Hy

Message m length of strings | H; H,
1 13 11
“ empty string 0 1 4 (1, 28, 75)
0 0 1
1 28 29
“abc” 44 0 1 16 (1, 31, 737)
0 0 1
1 43 67
123456789 80 0 1 37 (1, 89, 1128)
0 0 1
1 71 24
123456789 “abc” | 125 0 1 54 (1, 118, 1728)
0 0 1
1 109 141
abcdefghijkl 234 0 1 125 (1, 155, 2976)
mnopqrstu- 0 0 1
VWXYZ
1 211 104
abcdefghijedefg | 386 0 1 175 (1, 258, 5214)
hidefghijk 0 O 1
Imnopaaaaa
abbbbb
1 279 444
bbbbbbbbbbbbb | 521 0 1 242 (1,325, 7294)
bbbbbbbbcccce 0 O 1
CCCCCCCCCCCCCCC-
ceeeeeeeeeeeeee

3.3. Security Properties

The following propositions says that the H, is collision resistant if the original function

Hj is collision resistant.

37

Proposition 3.3.1. Let m, m’ be the two distinct messages.If Hy is collision resistant

then Hy is also collision resistant.

Proof. Let m # m’ be the two messages. Then,

7

= wvecy, (m) = vecy, (m') (3.1)

If we choose, m; = vecy, (m) @ Oy # vecy, (m') @ Cy = my, then by our hypothesis,

Hi(veey, (m) @ Cy) = Hy(vecy, (m) @ Cy) (3.2)

Multiplying (3.1) and (3.2), we get,

vecy, (m)Hy(vecy, (m) ® Ch) vecy, (m,)Hl (vecy, (ml) @ Cs)

!

Hy(m) = Hy(m)

Proposition 3.3.2. Let m, m’ be the two distinct messages.If Hy is collision resistant

with vecy, (m) = vecy, (m') then Hy is also collision resistant.

Proof. Let m # m’ be the two messages.

Since by our hypothesis we have,

Hy(m) = Hg(m') = wvecy, (m)H;(vecy,(m) @ Cy) = vecy, (m,)Hl (vecy, (ml) @ Cs)

= Hi(vecy,(m) @ Cy) = Hy(vecy, (m/) @ Cs)

38

. !
For our convenience, we represent Hqi(m) = Hi(m) where, m = vecy,(m) @ Cy and

m' = vecy, (m') ® Cy |

3.4. Efficiency of the Hash function H

Here we tabulated the average running time to execute the hash values Hy(m)
for 100 random binary strings of same length in Table 3.2. In our observations, we
apply the vector-by-matrix multiplication for different length of binary strings. We
completed all these calculation using python (x,y) program code in Intel(R) Core

(TM) i3 2.00GHZ computer with 4GB of RAM. We determined that our proposed

Table 3.2: Average running time to execute Hy

p Number of Binary Strings

100 200 400 800 1000 | 2000 | 5000
2127 1 0.022s | 0.023s| 0.029s| 0.032s| 0.034s| 0.051s| 0.100s
2137 — 555 | 0.021s| 0.024s| 0.028s| 0.034s| 0.034s| 0.051s| 0.100s
2147 387 | 0.023s| 0.026s| 0.027s| 0.031s| 0.038s| 0.051s| 0.099s
2157 213 | 0.022s| 0.025s| 0.028s| 0.031s| 0.035s| 0.051s| 0.099s
2167 771 1 0.023s| 0.024s| 0.029s | 0.031s| 0.034s| 0.050s| 0.098s
2177 — 919 | 0.022s| 0.026s| 0.027s| 0.031s| 0.035s| 0.050s| 0.100s
2187 — 477 1 0.021s| 0.028s| 0.030s| 0.032s| 0.034s| 0.052s| 0.099s
2197 — 775 1 0.021s| 0.027s| 0.027s| 0.031s| 0.034s| 0.050s| 0.103s
2297 — 429 | 0.020s| 0.027s| 0.026s | 0.032s| 0.034s| 0.051s| 0.105s
2217 — 675 | 0.021s| 0.026s| 0.026s | 0.031s| 0.037s| 0.050s| 0.098s
2221 — 721 | 0.020s| 0.024s| 0.026s | 0.031s| 0.034s| 0.050s| 0.106s
2231 — 949 | 0.021s| 0.025s| 0.027s| 0.031s| 0.035s| 0.050s| 0.100s
2247 — 309 | 0.021s| 0.023s| 0.026s| 0.031s| 0.034s| 0.050s| 0.099s
2256 — 1053 | 0.02s | 0.022s| 0.028s| 0.033s| 0.034s| 0.051s| 0.100s

hash function H, with large prime (22°® — 1053) without any parallelism, hashes to a

5000 length of bit strings in 0.100 seconds in average.

39

3.5. Pseudo-Randomness

3.5.1 Chi-Square Test

The output distribution of the hashed values of the hash functions are uniformly
distributed then we say that the hash function is of high quality. The purpose of the
Chi-Square Goodness-of-Fit test is to find out the randomness in the output distri-
bution of the hashed values in the hash function.

We know that the Output distribution of the hashed value of the hash function H; is
uniformly distributed. We need to check vectorial version H, of the provably secure
hash function H;, output distributions are also uniformly distributed.The efficiency
of this test is to find out whether the observed frequencies of the given input binary
strings satisfies the expected frequencies of that input.

The following conditions are satisfied to check the chi-square goodness of fit test

(i) Observed frequencies are the hashed values of the randomly chosen messages
(input binary strings).

(ii) Expected frequencies in every distribution should be greater than or equal to 5.

Using the Python (z,y) code,the test is conducted for the random distributions
of hashed values from random binary strings are uniform. The test of various dis-
tribution of the hashed values was performed 100 times and each time with new
distribution of hashed values was checked.The average pass proportion of the 100
random distributions of a and b are 100%, which strongly says that hashed values of

the hash function H, from random binary strings are uniformly distributed.

40

3.6. Comparison of H; and H,

Here we are doing the comparison of H; and Hy which helps us to understand more

about the designs, efficiency and also the security aspects of both hash functions.

Table 3.3: Comparison of the Hash Functions H; and Hs

Hash function H;

Hash function H,

One bit at a time to compute matrix-
by-matrix multiplication

One bit at a time and replace
the matrix-by-matrix multiplication by
vector-by-matrix multiplication

The function H; is associated to both
Algebraic and Graph theoretical prob-
lems

This vectorial function Hs also related
to both Algebraic and Graph theoreti-
cal problems

H;(m) needs to attain 4n additions and
n multiplications to hash a bit strings
of length n

Hy(m) has p-additional vector-by-
matrix multiplication of bit strings of
length n, which is negligible for long
messages

In our provably secure hash function
H, ,for large prime (22°°—1053) without
any parallelism hashes to a 10° length
of bit strings in 17.63 seconds

In this H; without any parallelism
hashes to a 10° length of bit strings in
18.24 seconds for large prime (2%°¢ —
1053)

Output distribution of the hashed val-
ues of the hash function are uniformly
distributed

Hashed Values in the output distribu-
tion of Hy from random binary strings
are uniform

If the order of the prime is 2%°° then
there is no collision for the hash func-
tion Hy, except the length of atleast one
of the colliding bit strings is atleast 256

Without inverting vecy,, finding a pair
vecy, (m) and vecy, (m') very close to
each other for some particular messages
m and m’ seems to be a hard problem,
which says that Hy(m) and Hy(m') are
completely different. This will give that
our defined vectorial version of the hash
function H, are collision resistant.

41

3.7. Modified Form of the Hash Function H;

One essential weakness in the hash function H; for short messages has the
solution by changing the matrix form to a vector form Hs and this Hs is safer than
H, particularly for the short messages.This new idea will make the mathematical
problem, especially factorization problems more harder and hold an efficient way to

impose limits on the type of factorisations for attacking H;.

Definition 3.7.1. Let an integer, g > 1.Let C' € Heis(F,) —{I, A, B}, where I is the
identity element of Heis(F),). Define Hy : {0,1}* — Heis(F,) by Hs(m) = [[;_, D;

where

(b)) ifgti

w(b)C ifg|i

3.7.1 Security Properties

First, we say that Hj is atleast as secure as H;

Proposition 3.7.2. If we know a message b, such that Hi(b) = h, then we can

efficiently find a message ©, for every message x such that Hs(z) = Hy(z').

Proof. Let b be a binary string such that Hy(b) = h.Let x = z129......7,
and assume z = T1%2...TgbTg41...... TogbTogst .o ... T,

Then we can simply says that Hy(x) = Hy(z") |

Theorem 3.7.3. Breaking the pre-image and collision resistance of Hs respectively

leads to breaking the pre-image and collision resistance of H.

Proof. Let h € Heis(F,) — {I, A, B} then H3(m) = h.By the Proposition 3.7.2, there

exist m’ such that H,(m') = Hs(m) = h.Hence it says that pre-image resistant of Hs

42

gives the pre-image resistant of H;.Thus, the first part of the theorem holds.

Second Part of the theorem proves that, let m # m; with Hy(m) = Hs(m;).By
proposition 3.7.2, there exist m’ and m" such that Hs(m) = H;(m') and
Hs(my) = Hy(m"). So Hy(m') = Hs(m) = Hs(m1) = Hy(m").Thus the collision for

Hj; is also the collision for Hj. [|

Now we assert that the hash function Hj is safer than hash function H;.
Let g < loga(p), proposition 2.2.3, gives that there is no collision of length < ¢ for the
hash function H;y, which says that the collision for H; cannot be directly used to find
a collision for H3.There are many attacks in [58] that are based on the factorization
of elements over F,, are not practical in our hash function Hj, because they need to
find a new special form of factorization as

(g,)T (M)T (M) e (M,) O (M)T (M) oo (M,) O (M) v

3.8. [Efficiency

Suppose we take an input binary strings of length n with a prime number p (is of order
226) and fix g (for example g = |log2(p)| — 1) and we use C' € Heis(F,) — {I, A, B}
as fixed matrix (or we can assume C as one of the smallest hashed value of binary
strings of length [< n).

Using these above parameters, we can compute the hashed value of H3 of length n
with |n/g] matrix multiplications which is less than Hj, since it has n matrix multi-
plication.

Here, in all the observations, we apply the Hjs for different length of binary strings.

We did all these calculation using python (x,y) program code in Intel(R) Core(TM)

43

i3 2.00GHZ computer with 4GB of RAM.

Table 3.4: Average running time to execute the Hash function Hj

p Number of Binary Strings

100 500 800 1000 | 2000 | 5000
2127 1 0.002s| 0.01s | 0.023s| 0.03s | 0.044s| 0.09s
2137 — 555 | 0.002s| 0.01s | 0.021s| 0.03s | 0.046s | 0.09s
2147 387 | 0.002s| 0.01s | 0.023s| 0.03s | 0.04s | 0.10s
2157 213 | 0.002s| 0.01s | 0.023s| 0.03s | 0.04s | 0.09s
2167 771 [0.002s| 0.01s | 0.023s| 0.03s | 0.046s| 0.09s
2177 — 919 | 0.002s| 0.01s | 0.023s| 0.03s | 0.046s| 0.09s
2187 — 477 1 0.002s| 0.01s | 0.023s| 0.03s | 0.04s | 0.09s
2197 — 775 1 0.002s| 0.01s | 0.023s| 0.03s | 0.04 | 0.09s
2297 — 429 | 0.002s| 0.01s | 0.023s| 0.03s | 0.044s | 0.09s
2217 — 675 | 0.002s| 0.01s | 0.021s| 0.03s | 0.046s| 0.09s
2221 — 721 | 0.002s| 0.01s | 0.035s| 0.03s | 0.045s| 0.09s
2257 — 949 [0.002s| 0.01s | 0.034s| 0.03s | 0.04s | 0.09s
2247 — 309 | 0.002s| 0.01s | 0.033s| 0.03s | 0.04s | 0.09s
22°6 — 1053 | 0.002s| 0.01s | 0.032s| 0.03s | 0.05s | 0.09s

Thus, our defined hash function Hy with large prime (2% — 1053) without any

parallelism hashes to a 5000 length of bit strings in 0.09 seconds in average.

Hence, we overcome the weakness in the hash function H; by introducing the vector
form of the hash function H,, which is very efficient and requires only p-additional
vector-by-matrix multiplication,which is negligible for long messages. The modified
form of H; is defined as Hj, which gives the factorisation problem more harder and
there is no known factorisation attacks of this type.Both Hy and Hj is atleast as

secure as the hash function H;.

44

Chapter 4

Neighbourhoods in P?

Using the Metric, we proved that the elements of GL3(Q) act by isometrics on P2
We defined the e-Neighbourhood of an element in P? and we picture out how the
neighbourhoods related to metric will look like in P2, We also proved some results in

Neighbourhoods in P2,

The following shows that GL3(Q) acts transitively on P2.

Lemma 4.0.1. Suppose that [v] € P? then there exists an element g € GL3(Q) such
that g.[v] = [es].

In other words, shows that GL3(0Q) acts transitively on P?

Proof. Let v = (v, v2,v3) € V and assume that v # (0,0, 0)

Notice if maz{|vi], |val, [vs]} = |v1| = p'

= |zlv| =1

= z'v; € O* and |2'vy| < 1, |2lvs| < 1 which says that zlv,, 2'vs € O.
Similarly, for max{|vi], [val, [vs|} = |va| = p!

= |2lvy| = 1

45

= z'vy, € O* and |2'v1| < 1, |2lvs| < 1 which says that zlv;, 2'vs € O.
and also, for maz{|vi|, |val, [vs|} = |vs| = p'

= |zlvg] =1

= zlvz € O* and |2lv;| < 1, |2'vs] < 1 which says that xlvy, zlv, € O.

Thus we have [v] = [2lv] = [2lv1 : 2'vy @ 2l0s]

Assume that there exist a representative v of [v] such that [v] = [a: 5 : 7]

for some «, 3,7 € @ and either a € O* or § € O* or v € O* or all the three in O*.

6 —a 0

IfaeOQ* theng=| ~ 0 —a|€GL3(0),a=#0,then g.[v] = [es]
at 0 0
-6 a 0

If3e0* theng=| 0 ~ —pB|eGL3(0), B+ 0, then g.[v] = [es]

0 B! 0

v 0 «

IfyeO* theng=10 — B |€GL3(0),~#0, then g.[v] = [es]

0 0 ~¢

If a, 8,7 € O then g = -y 0 o EGL3(©)7O[7/3777&07

then g.[v] = [es]

46

4.1. Metric in P2

The lemma shows that co-norm is invariant under the action of elements of GL3(Q)
on V.

Lemma 4.1.1. Let g e GL3(0). Then || g.u ||=|| u ||, for all w = (uy,uz,u3) € V.

ail a2 Aais

Proof. Let g = | ag; agg ag3 | € GL3(0) and let u = (uq, ug, usz)

ag1 asz g3

11Uy + a12U2 + a13U3
then, g.u = | agyu; + agous + assus

agiuy + azals + a33us

Since,the absolute value is non-Archimedean triangular inequality then we have,

lgul = | (a11w1 + ar2us + ar3us, a2y + axts + a3z, Az + asats + assus) ||
= maz{|anur + a12us + ai3usl, [a21tus + azus + asgus|,

lasiur + agaus + assusl|}

N

maz{maz{|anul, |argusl, lazus|}, maz{lagiuil, lagzus|, [assusl},

maz{|aziuil, [asausl, [azsus|}} (4.1)

We know that for a € O then |a| < 1 which gives |af| < |f| for all f € F,((x)).

Hence equation (4.1) becomes,

lgull < maz{maz{fwl, |usl, [us]}, maw{lual, [us, lus|}, maz{lui], Jusl, [us[}}

< maxflual, [ugl, lus|} =] w || (4.2)

47

since g € GL3(Q) then g~! exist that also satisfies equation (4.2) as,

| g to|<]|v] forallveV.

Let take v = g.u which gives the inequality,

[fI<[g-u] (4.3)

From (4.2) and (4.3) || g.u ||=] « || |
Our distance is invariant under the action of elements of GL3(Q) on P?

Lemma 4.1.2. Let g € GL3(0) then d([u], [v]) = d(g.[u], g-[v]) for any [u], [v] € P2

In other words, the elements of GL3(0) act isometrics on P?.

a1x Qa2 Q13

Proof. Let g = | ay; asy ags | € GL3(0) and
a31 a3z 0as3
let [u] = [u; : ug : ug] and [v] = [v1 : ve : v3] then
g.[u] = [a11u1 + a12us + a13us : as uy + agus + aszus : aziuy + assus + azzus]

g[U] = [CZH’Ul + A12V2 + Q1303 : G21V1 + A2V + A23V3 : A31V1 + A32Vy + a33’03]

Now, || g.[u] A g.[v] [[= maz{|A|,|B],|C|} where,

|A| = |(G21CL32 - CL31G22)(U1U2 - U27J1) + (a21a33 - a31a23)(U103 - U3U1) +

(a2zas3 - 032023)(U2U3 - U3“2)|>

|B| = |(a31a12 - a11a32)(u102 - U2U1) + (a13a31 - CL116L33)(U1U3 - U3U1) +
(CL326L13 - CL126Lz-53)(uzv3 - U3U2)|,

48

IC] = |(a11622 — a12a21) (u1v2 — ugvy) + (ar1a93 — a13a92) (ugv3 — u3vy) +

(a12a23 - alsazz)(U2U3 - U302)|

Hence,maxz{|A|,|B|, |C|} is either greater than or equal to maz; ;{|uv; — ujv;|} or

less than or equal to maz; j{|u;v; — w;v;|}

Case(i): maz{|Al, |Bl,|C]} = maz; j{|uiv; — ujvil}

lg-lu] ~glvlll =

>

=

Let g € GL3(0) then g ! exist that also satisfies equation (4.4) as,

maz{|Al,|Bl,|C[}

maz; j{|uivy — ujvil} =[uAv |

g [zl A g™ [yl IZI 2] A Tyl I for [2], [y] € P2

Now take [x] = g.[u] and [y] = g¢.[v] then,

| [u] A [o] [IZ]] g-[ul A g-[o] |

From (4.4) and (4.5) we have,

Ig-[u] A g.[o] 1=l Tul A [o]]

Case(ii): maz{|Al,|B|, |C|} < maz; ;{|jwv; — uvi|}

Ig-[u] A g.[o]

maz{|Al,|Bl,|C[}
maz;;{|uv; — u;vil}

luno]

49

(4.4)

(4.5)

(4.6)

(4.7)

Let g € GL3(0Q) then ¢! exist that also satisfies equation (4.7) as,

lg "Lzl A g "yl Il 2] A Tyl || Sfor [«], [y] € P2

Now take [x] = g.[u] and [y] = ¢.[v] then,

[ul A Tol NIl g-Tul A g.[0]] (4.8)

From (4.7) and (4.8) we have,

Ig-[ul A g.[ol I=]l Tul A [o]] (4.9)

We know that, || g.[u] [[=] w || and || g.[v] [|=[[v .
Hence in both (4.6) and (4.9) we get,

g ful A gl
o lul- g o) = T o Rl |

[[ul A [o]]

[([} o]

= d([u], [v])

Remark. (1) We used this result with lemma 4.0.1 in the remaining proofs.
(ii) We know that the field F' is Non-Archimedean then the metric is Ultra-Metric.
That is, d([u], [w]) < maz{d([u], [v]), d([o], [«])} , for any [u], [v], [«] € P?

20

Lemma 4.1.3. If [u],[v] € P? then 0 < d([u],[v]) < 1 and also, if d([u],[v]) # O
then d([ul, [v]) =]% for some d € Ny

Proof. Let [u], [v] € P? then by lemma 4.0.1, we assume that [v] = [e3].
Fix [u] = [a : b :] then,
id

d([u],[v]) =d([a:b:c],[0:0:1]) = maz{lal, D11 (4.10)

We know that d([u], [v]) = 0.
Now, if max{|al, ||, |c|} = |a| then (4.10) becomes, d([u],[v]) =1 or

if maz{|al, |b|, |c|} = |b] then (4.10) becomes, d([u],[v]) <1 or

if maz{|al, |b|, |c|} = |c| then (4.10) becomes, d([u], [v]) < 1.

Hence in all cases we have 0 < d([u], [v]) < 1.

Now if d([u], [v]) # 0 then by (4.10) and all the three above cases, we get the absolute
value |.| is always zero or a power of p.

So, the distance d([u], [v]) is always zero or non-positive power of p.

1
Hence, d([u], [v]) =] for some d € Ny]

4.2. Neighbourhoods in P?

With respect to our metric, we defined the e-Neighbourhoods in P? and visualize the

neighbourhoods elements in P2

o1

pd < y| |61 f2
pd >y 6] > 1 fo

pd =1 > |yl |b] fo

pd < [y[*|6] fr
pd > [yl ‘|6] > 1 /o

pd =1 4| |6] fo

‘snyp, [z o:

d
< [yl *|6] fo [} 0 {pd < ol € [v 1]} = (K[gmuoppy

{[*2} N {pd <|v| €g:
s([e:1:0][y:1:6)pelq:

S([g:1:v][y:1:6])pelq:

{[#a]} n {pd < [v| e q:
S([g:v:1]ly:6:1])pelq:

S(g:v:1][y:6:1]pelq:

1

1yt = A?v&ﬁsumnlvz

uatyy ON 3 p 92] puv g 3 [y :1: 6] [y 6:1] 127 "¢ gy uorpsodorg

ol UL SPOOYINOQUSION 0} 10} [€9] YIIM SUO[R SIUOWD[D 997} IOPISUOD

[:x] pue [y : b6 : 1] waioy oyy sey {[¢9]} — . ur juowoe Aue jo darjejuosordor oy) jey) mous| opn (1r)

(3‘[n]) A veuy yons O 3 p JeY) 90130U oM UOTITUGLP oY) WOL] (1) "YW

‘zd Ut [1] Jo pooqmoqustoN-> o3 st {5 > ([a] *[n])p € od 3 [a]} = (G[n])N 108 UL [8€] *T°g"Y uonUYeQ

52

We prove the proposition as the following three lemmas

Lemma 4.2.3. Let [1:g:h],[g:1:h]€P? and let d € Ny then
(i) If lg], |1 < 1 < p? then

1
N(l:g:h],——)={[1:a:b]2d([l:g:h],[1:a:0]) <

? md+1
p+

1
)

for all a,b with the property |a| < p?, |b] < p?
(i) If |gl, || < 1 < p? then

1 1
N([g:l:h],pd+1) ={la:1:0]3d([g:1:h],[a:1:b]) gW}

for all a,b with the property |a| < p?, |b] < p?

maz{|gb — ah|,|h —b|,|a — g|}

Proof. (i) We know that d([1:g: h],[1:a:b]) = maz{L gl [hlymaz{L. al]}
Since |g|, |h] < 1 < p? then max{1,|g|,|h|} =1

Now, assume that |a| < 1, |b| < 1

Case(i): Suppose |a| > 1, |b| < 1 then

max{1,|a|,|b|} = |a| and

max{|gb — ah|,|h —b|, |a — g|} = max{|gb— ah|,|h —b|,|a|} > 1

(since |a — g| = |a|,|gb — ah| = |ah| < |a| or |gb — ah| = |gb| < 1 and

|h — b| < 1). Hence,

maz{|gb — ah|,|h —b|,|a — g|}
maz{l,|g|, [h[}maz{1, |al, b}

d([1:g:h],[1:a:0]) =

Case(ii): Suppose |a| < 1,|b| > 1 then
max{1,|a|,|b|} = |b] and

93

max{|gb - ah|> |h o b|7 |CL - g|} = max{|gb - CLh|, |b|7 |CL - g|} >1

(since |h — b| = |b], |gb — ah| = |gb| < |b| or |gb — ah| = |ah| < 1 and
la—gl <1)

Hence,

maac{|gb - CLh|, |h _ b|7 |CL - g|}
maz{1, |g|, |h[ymaz{1, |a], |b]}

L
1]

d([1:g:h],[1:a:0b]) =

Case(iii): Suppose |a| > 1, |b| > 1 then

max{l,|al,|b]} = maz{|al|, |b|} and

maz{|gb — ahl, |h — b, la — g|} = max{|gb — ahl,al, [b]} > 1,
(since,la — g| = |a|,|h — b] = |b] and |gb — ah| = |gb| < |b] or
|gb — ah| = |ah| < |al).

Hence we have,

mazx{|gb — ah|, |h — b|,|a — g|}
max{l,|g|, |h|}max{1, |al, |b]}

d([l1:g:h],[1:a:0]) =

- 1 1 1
_ = —Oor—
max{|al,[b]} |a| " [b]

1 1
= ﬁ = pitl
(.- lal, b] < p?)

Thus in all the three cases, we get contradiction that [1 : a : b] is not in the

o4

1
N)
Hence, |a| < 1, |b] <1, |g|,|h| <1 < p?, then
1

1
d([1:g:h],[L:a:b]) < - which says that [1:a:b] € N([1:g:h], ——)
p

d+1
p+

ma${|b _ h|> |CLh — gb|7 |g - a|}
maz{l, |g|, |h[ymaz{l, |al, b}

(ii) We know that d([g:1:h],[a:1:0]) =

since, |g|,|h| < 1 < p? then max{1,|g|, |h|} =1

Now, assume that |a| < 1, b < 1

Case(i): Suppose |a| > 1, |b| < 1 then

max{1,|a|,|b|} = |a| and

max{|b — hl|,|ah — gb|, |g — a|} = max{|b— hl|,|ah — gb|,|a|} > 1
(since,|b — h| < 1, |g — a| = |a] and |ah — gb| = |ah| < |a| or

lah — gb| = |gb| < 1).

Hence,

ma:L'{|b — h|7 |ah - gb|a |g - a|}
maz{l, |g|, |h[ymaz{1, |al, 0]}

- 1 - 1 - 1
Lla| ~ pd = pil
(. lal < p)

Case(ii): Suppose |a| < 1,|b| > 1 then

max{1,|a|,|b|} = |b] and

maz{|b — hl,|ah — gbl, |g — al} = maz{[b], lah — gbl,|g —al} > 1
(since,|b — h| = 1b], |¢§ — a| < 1 and |ah — gb| = |ah| < 1 or

|ah — gb| = |gb] < [bl)

95

Hence,

ma:L'{|b — h|7 |ah - gb|a |g - a|}
maz{l, |g], |h[ymaz{1, |al, 0]}

- 1 - 1 < 1
1.|b| pd = pd+1
(. o] < p)

Case(iii): Suppose |a| > 1,|b| > 1 then max{l, |al,|b|} = max{|a|, |b|} and
maz{|b — hl,lah — gbl, |g — al} = max{[b], |ah — gbl, [a]} > 1.
(since,|b — h| = 10| > 1,|g — a|] = |a] > 1 and |ah — gb| = |ah| < |a| or

lah — gb] = |gb| < |b]). Hence we have,

max{|b — h|7 |a’h - gb|a |g - a|}

dllg: L bl laz 1bD) = ol amae L, al, o)

1

maz{lal, [b}

1 1 - 1 - 1
= —0r—>— = —
jal o]~ p? T ptH!

(since, |al, [b] < p*)

Thus in all the three cases, we get contradiction that [a : 1: b] is not in the
1

N([g:1: h],de)

Solal <1, [b| <1, |g|,|h] <1<p? then
1

1 .
d([g:1:h],Ja:1:0]) < e which says that [a:1:b] e N([g:1: h],pd+1)

o6

Lemma 4.2.4. Let [1:g: h],[g:1:h] € P? and let d € Ny then

(i) If 1 < |gl,|h| < p? then

1 1
N([l:g:h],W)z{[l:a:b]ad([l:g:h],[l:a:b])<m}
for all a,b with the property |a| < p?, |b] < p?

Further,if |g| = |a| and |h| = |b|, then

1
d([l:g:h],[l:a:b])é}w
= |gb — ah| < |g[*p~"*Y or |gb — ah| < |h|?p~(**Y
(ii) If 1 < |gl, |h| < p? then

1
N([g:l:h],}m) ={la:1:0]3d([g:1:h],[a:1:D]) < de}

for all a,b with the property |a| < p?, |b] < p?
Further,if |g| = |a| and |h| = |b|, then
d([g:l:h],[a:l:b])<zm

= |ah — gb| < |g|*p~ Y or ah — gb] < [A[*p~(*+Y)

—_

maz{|gb — ah|,|h —b|,|a — g|}

Proof. (i) We know that d([1:¢g: h],[1:a:0]) = maz {1, |g|, [h|ymaz {1, [a], o]}

since, 1 < [g|, |1 < p? then max{1, |g], |h]} = max{|g], |h]} < p*

Now, assume that |a| > 1, |b] > 1

Case(i): Suppose |a| > 1, |b| < 1 then max{1,|a|, |b|} = |a| and

maz{|gb — ahl,|h —b|,|a —gl} > maz{|b—ahl|,|h],[1 - g[}

= max{lahl, |hl, |9} = maz{|ahl, |g[}

27

(since, [—b] = [h], |a — g > |1 — g| = |g| and
|gb — ah| > |b — ah| = |ah| > |h| > 1) Hence,

maz{|gb — ah|,|h —b|,|a — g}
1:9: l:a: =
d([L:g:h],[1:a:b]) maz{1, |g|,|h|ymaz{1, |al,|b|}

maz{|ahl, |g|}
|almaz{]g], [n]}

Subcase(i): If |g| > |ah| > |h| then

D masilabl,lol} _ lol 1
Atz bl [Vzazb) > g Gl bl Jagl ~ Tl

1 1
A
(. lal < p%)
Subcase(ii): If |g| < |h| < |ah| then
maz{|ah], |g]}
d([1:g:h],[1:a:0])
lalmaz{]gl, |hl}
= 2] = 107“M > lor
maz{|ahl, |agl} 91
1 1

Case(ii): Suppose |a| < 1,|b| > 1 then
maz{1, |af, [b]} = |b] and
maz{|gb — ahl, |h —b], |a — g[} > max{|gbl, |b], 9]} = |gb].

o8

1
9]

(since, |[h — b > |1 —b] = |b| > 1,]a — g| = |g| and
gb— ah] > gb — bl = |gb| > 1)
Hence,

maz{|gb — ah|,|h —b|,|a — g|}
mazx{l,|g|, |h|}mazx{l, |al, |b|}

d([l1:g:h],[1:a:0]) =

90|
blmazx{|g|, |h|}

> 1 1
—O0oTr
Al

1 1

J— > JR—

pd = piHl

(. [hl < p7)

Case(iii): Suppose |a| < 1,]b| < 1 then maz{l,|al,|b|} <1 and

(since, |h —b| = |h|,|a — g| = |g| and |gb — ah| > |b — ah| > |b — h| = |h]).
Hence,

max{|gb — ah|,|h — b, |a — g}
max{l,|g|, |h|}max{1, |al, |b]}

d([1:g:h],[1:a:0]) =

mazx{|g], [h]}
maz{|gl, [h[}.1

> 1> 1 = 1
pt T pitl

29

Thus in all the three cases, we get contradiction that [1: a : b] is not in the
1
) W)

N([1:9:h]

Hence,we consider |a] > 1, |b| > 1,1 < |g],|h| < p? then
1

1 :
d([L:g:h],[1:a:0]) < T which says that [1: a : b] EN([l:g:h],de)

Now see that, if |g| # |a| and |h| # |b| or if |g| # |a| and |h| = |b| or if |g| = |a]
and |h| # |b|, then

max{|gb — ah|,|h — b|,|a — g}
maz{l, g, |h|}maz{l,lal, b]}

d([l1:g:h],[1:a:0]) =

|gb — ah|
maz{|g|, |h|}maz{|al, [b]}

lg — ahl

maz{|g|, [h[}maz{lal, |b[}

maz{|g|, lah|}

maz{|gl, |hlymaz{al, b}
Case(i): If |g| > |ah| > |h| then

d([1:g:hl,[1:a:b]) > max{|gl, lah|}

mazx{|g|, |h[}maz{lal, |b]}

1 1
9] RS

lglmaz{lal, bl} — p? — pT*

Case(ii): If |g| < |h| < |ah| then

60

d([L:g:h],[1:a:0]) > maz{|g|, |ahl}

mazx{|g|, [h[}maz{|al, [b]}

_ lah|
|hlmax{]al, [b]}

- 1
maz{|al, |b]}
1 1

> ﬁ =]ﬁ

Hence in both cases,for |g| # |a| and |h| # |b|,for |g| # |a| and |h| = |b| and
1

for |g| = |a| and |h| # |b],we get d([1:¢g: h],[1:a:b]) = prrse

which is a contradiction.

Thus, from all the three above cases we can conclude that

1
[1:a:b] € N([1:g:h],) implies that |g| = |a| and [h| = |b].
p

Thus,we assume that |g| = |a| and |h| = |b| then we get

1 ~ |gb — ah| - 1

l:q9: l:a: < <
d([9 h]’[a b]) pd+1 maw{|g|2,|h|2} pd+1

= |gb— ah| < max{|gP, [n*}p TV

= |gb—ah| < |g|*’p " or

= |gb—ah| < |hf*p (Y

61

max{|b — al, |ah — gb|, |g — al}
maz{1,|g|, |h|}max{1,|al, [b]}

(ii))We know that d([g : 1: h],[a:1:b]) =

since, 1 < [g], |k < p? then max{1, |g], |h]} = max{|g], |h]} < p*

Now, assume that |a| > 1, |b] > 1

Case(i): Suppose, |a| > 1,]b| < 1 then mazx{l,|al|, |b|} = |a| > 1 and

maz{|b — h|,[ah — gbl,|g —al} > maz{[h],|ah —g], |1 = al}

> max{|h|,|ah|} = |ah| > 1

since, |b— h| = |h|,|g —a] > |1 —a|] = |a| > 1 and
lah — gb| > |ah — g| = |ah| > |al.
Hence,

ma${|b — h|7 |a’h - gb|a |g - CL|}
maz{l, |g|, |h[ymaz{1, |al, [b]}

d([g:1:h],[a:1:b]) =

o lanl |
|almaz{lgl, |n[} = maz{|g|, |h[}
- 1
maz{|gl, |hl}
1 1
>]ﬁ = W

Case(ii): Suppose, |a| < 1, |b| > 1 then max{1, |a|, |b|} = |b|] and

62

since, |b—h| > |1 —h|=1|h| > 1, |g —a|] = |g| > 1 and
|ah — gb| > |a — gb| = |gb| > 1

Hence,

ma${|b B h|7 |Cl,h — gb|a |g — CL|}

dlg =1zl las 10D = T T A Tmar (1, [l 0]}

maz{|h|, |gbl}
|blmaz{]gl, |h[}

Subcase(i): If |h| > |gb| > |g| then,

o mar(bl ot} b 1
Aoz tehlles Lt > o Qo Tl ™ ol ~ o

1 1
= ﬁ > pitl
Subcase(ii): If |gb| > |g| > |h| then,
maz{|h|, |gb|}
d(lg:1:h],[a:1:0])
|bjmaz{|g], [h[}
90| 9|

>
|blmaz{lgl, [n]} ~ maz{lg|, |hl}

1 1 1

- 0> >
max{|gl, [h[} = p? — pitt

Case(iii): Suppose, |a| < 1,|b| <1 then maz{l,|al, |b]} <1 and
maz{|b — h|,|ah — gbl, |g — al} > maz{|h],|g]} > 1.

since, |b— h| = |h|, |g — a| = |g|, and |ah — gb| > |a — g| = |g|.

63

Hence,

:h],[a:1:b])

ma:zc{|b — h|7 |ah - gb|a |g - a|}
maz{l, |g], |h[ymaz{1, |al, 0]}

mazflgl |hl}
maz{lg], |1} .1

1 1
nd = d+1
p p

Thus in all the three cases, we get contradiction that [a: 1:b] is

1

not in the N([g: 1: h], W)

Hence,|a| > 1, [b| > 1, 1 < |g|,|h| < p?, then

d([g:1:h],Ja:1:0]) <

d+1
p+

Now see that, if |g| # |a| and |h| # |b] or if |g| # |a| and |h| = |b] or

if |g| = |a| and |h| # |b], then

d([g:1:h],[a:1:b]) =

1 : 1
—— which says that [a:1:b] e N([g:1: h],}m)

mal‘“a’h — gb|a |b B h|a |g - a|}
maz{1, |g|, |h[ymaz{1, |a], o[}

_ |ah — gb|
mazx{|g|, [h[}maz{]al, [b]}

- |h — gb|
maz{|g|, [h[}maz{]al, [b]}

o masflle) 1 1
maz{lg|, |h[ymaz{lal, [b[} ~ p? = p*!

64

Case(i): If |h| > |gb| > |g| then

maz{|hl, |gb[}
mazx{|g|, [h[}maz{|al, [b]}

d([1:g:h],[1:a:0]) >

1]
|hfmaz{]al, |b]}

1 1
nd = d+1
p p

Case(ii): If |h| < |g| < |gb| then

maz{|hl, |gb]}

R N R v | A e AN

|gb|
|glmax{|al, |b]}

1
maz{|al, [b[}

1 1
—_ > —
pd pd+1

Hence in all cases,for |g| # |a| and |h| # |b|.for |g| # |a| and |h| = |b] and
for |g| = |a| and |h| # |b],we get

1
d(lg:1:h],[a:1:b]) > ——, which is a contradiction.
p

Thus, from all the three above cases, we can conclude that,

1
l[a:1:0] € N([g:1:h],) implies that |g| = |a| and [h| = |b].
p

65

Thus,we assume that |g| = |a| and |h| = |b| then we get

1 lah — gb| 1
dllg:1:h 1) € — <
(lg I [a 1) pi+1 = maz{|g?, |h2} pitt

= |ah — gb| < maz{|g|?, |h[*}p= Y

lah — gb| < |g|*p~“*Vor|h|?p= @+

Remark. (i) If d([1 : g : h],Jur : ug : ug]) <

—— then by ultra-metric triangle

inequality and lemma 4.2.5,we have

d([es], [u]) < max{d([es],[1: g :h]),d([1:g:h],[u])} <]#

and [u] = [uy : ug @ ug]

1
(i)If d([es], [u]) < —7 then by ultra-metric triangle inequality and lemma 4.2.5,we
p

have
1
ALt =g+ h], [u]) < maztd([L: g:], les]), dllesl, [} < g
1
(iii) If d([g : 1 : A], [ur : u2 : uz]) < — then by ultra-metric triangle inequality and
p

lemma 4.2.5,we have

d([es], [u]) < max{d([es],[g : 1:R]),d([g:1:h],[u])} <]#

66

and [u] = [uy : ug @ ug]

1
iv)If d([es], [u]) < then by ultra-metric triangle inequality and lemma 4.2.5,we
pi+l

have

d(lg : 1+ k], [u]) < maz{d([g: 1:] [es]), d([es], [u])} <]#

Hence from these observations,we know that lemma 4.2.5 follows the results.

Lemma 4.2.5. Let [1:g: h],[g:1:h] eP? and let d € Ny.

If g],|n| > p* and |g| < |h| then

(i) N([1: g h],]%) [a:Bsd([1:g: L[l a: b)) < pd1+1} O {[es]}

(i) N([g: 1 h],pdlﬂ) _(Mablad(1g B[a:b]) < pdlﬂ} O {[es]}

(7i) N(|es], pd1+1) ={[l:a:0]3d([1:9:h],[1:a:b]) <]#} U {[es]}

max{|gb — ah|,|h — b, |a — g}
mazx{l,|g|, |h|}mazx{l, |al, |b|}

Proof. (i) We know that d([1: g : h],[1:a:0]) =

since |g|, |h| > p? and |g| < |h| then max{1,|g|,|h|} = ||

Now, assume that |a| > p?, [b] > p?

Case(i): Suppose |a| > p?, |b| < p? then max{1, |a|,|b|]} = |a| and

max{|gb - CLh|, |h - b|7 |CL - g|} > TTLCL.CL’{“?— ah|7 |h|7 |CL _g|}

> max{lah|,], |ahl} = |ah]

67

(since, |gb — ah| > |b — ah| = |ah|,|h — b| = |h| < |ah| and
la — g| > |a — h| > |a + ah| = |ah]).

Hence,

maz{|gb — ah|,|h —b|,|a — g|}

d([L:g:h],[1:a:b]) = maz{1, |g|, |[}maz{1, |a], b}

1 1
nd & pitl

V

U

jah| p
Case(ii): Suppose |a| < p?, |b| > p? then maz{1, |a|,|b]} = |b] and

ma${|gb - ah|7 |h - b|a |CL - g|} > ma:zc{|a - bh|7 |6L - bh|a |g|}

> maz{|bhl, |bh],|g} = |bh|

(since, |gb — ah| > |a — ah| > |a — bh| = |bh], |a — g| = |g| > p? and
|h —b] > |a —b| > |a — bh| = |bh| > p?)
Hence,

maz{|gb — ah|,|h —b|,|a — g|}
maz{l,|g|, [k[}maz{1, |al, b}

d([1:g:h],[1:a:0]) =

bRl _ 11
|bh| - pd pd+1

Case(iii): Suppose, |a| < p?, |b] < p? then maz{1,a|,|b|]} < p? and
max{|gb — ah|,|h —b|,|a — g|} > maz{|h|p?, |hl, |g]} > p?.

(since,|gb — ah| > [b— ah| > [b— hp?| > [hlp®,|h —b] = |A] and |a — g| = |g]).

68

Hence,

maz{|gb — ah|,|h —b|,|a — g|}
maz{l,|g|, [h[}maz{1, |al, b}

d([1:g:h],[1:a:0]) =

Thus in all the three cases, we get contradiction that [1: a : b] is not in the

1
N RL i),
Hence, [a| > p?, |b] > p? , |g|, |h] > p? and |g| < |h[,then
1 1
d([1:g:h],[1:a:b]) < - which says that [1:a:b]e N([1:g:h], ——)
p p

(i) Similarly, |g|, |h| > p?,
max{|b _ ah|7 |h — gb|7 |gCL _ 1|}

then d(fg + 1+ b, [1ea b)) = = o L el)

Now, assume that |a| > p?, [b] > p?

Case(i): Suppose, |a| > p?,|b| < p? then

maz{l,al,[b]} = |a| and

max{|b—ah|,|h—gb|,|ag—1|} > mam{|ah|,|ah|,|ag|}
= mazflah], |ag|}

= |almaz{lg], |h]} = |ah]

(since, |h — gb| > |h — ag| > |h — ah| = |ah]).

69

Hence,

max{|b — ah|7 |h - gb|7 |ga — 1|}
maz{l, |g], |h[ymaz{1, |al, 0]}

d([1:g:h],[1:a:0])

lah| - 11
|ah| - pd = pd+1

Case(ii): Suppose |a| < p?, |b| > p? then maz{1, |a|,|b]} = |b|] and

(since,|b — ah| > |a — ah| > |a — bh| = |bh|,
lga — 1| > |a — 1| = |a| < |bh| or 1 < |bh| and
|l — gb] > |a — gb| > |a — bh| = [bh])

Hence,

max{|b — ah|7 |h _ gb|7 |ga B 1|}
maz{l,|gl, |h|}maz{l, |al, |b[}

d((1:g:hl,[1:a:0]) =

- |bh|>1> 1 - 1
[bh] p

Case(iii): Suppose, |a| < p?, |b] < p? then maz{1,]al, |b|} < p? and

maz{[b— ah|, |h — gbl,|ga — 1|} > maz{|h|p?, |a|} > |h[p?.

(since,|b — ah| > |b— hp?| > |h|p?, |ga — 1| = |ga| > |a| and

|h — gb| > |h — gp?| > |h|p?)

70

Hence,

max{|b— ah|7 |h - gb|7 |ga — 1|}

d([1:g:h],[1:a:0]) = max{l,|g|, |h|}max{1,|al,|b]}

1 S
|h|pd pd = pd+1

Thus in all the three cases, we get contradiction that [1: a : b] is not in the
1
Hence, la| > p?, [b| > p* , |g], |h| > p?, and |g| < || then
1
d(lg:1:h],[1:a:b]) < —=, which says that
p

[1:a:0leN(lg:1:h]

’pd+1)

iii) Next we need to prove that, if |g|, |h| > p? then an element
g

es] = 1050+ 1) & N([1 - g bl) for ol < I
We know that
e masllghll g
40011129 hD) =TT T mazllgl Al

for |g], || > p*

By the hypothesis, |g| < |h

1 1
(i.e) if max{l,|g|,|h|} = |h| then d([0: 0 : 1],[1:g: h]) = |h| IS which says
that [0 : 0 : 1] is in the neighbourhood of [1 : g : k], for |g], |h| > p®.
1
Therefore, d([es],[1:g: h]) < S S for |g|, |h| > p? and |g| < |h| |

71

1
Remark. We note that —— neighbourhoods of [es],[1: g : h],[g: 1: h] are equal if
p

1
g, |h| > p?. We can write the elements of P? as [1: g : h] = [h g 1] and
lg:1:h] =]+ 1] and choose large |h| and greater than |g|,the points
9 9
— =1L =

1] tends to [e3] = [0:0: 1]

:‘.l. S =

Proposition 4.2.6. For any point [u] € P? and for each d € Ny then there exist
1 1
1+ 4p*¥+2 disjoint —— neighbourhoods. More Precisely, N([ul, d_+1) is one of these
p p
neighbourhoods.

Further, these neighbourhoods cover P?

Proof. Let us fixed d € Ny and consider [1 : g : h] € P? such that |g| < 1 < p?,
lh|<1<piand g=go+ g1z + + gaxd + ...,
h=hy+hx+ ... + hgz? + ...

Then by proposition 4.2.2

N([l;g;h],ﬁ):{[1:a:b]ad([l:g:h],[l:a:b])<}%}

So we have,

1

d([1:g:h],[1:a:0]) = max{|gb— ahl,|h—0b|,|a—g|} < o

(since, |gl, [l |a], |b] < 1)

If max{|gb — ah|,|h —b|, |a — g|} = |gb — ah| or |h —b| or |a — ¢

+1

That is, |a — g| < says that, all the terms of degree less than x9*! are zero or

pitl
|h — b] < — 7 says that, all the terms of degree less than 2@t are zero or
pt

lgb — ah| < — - says that all the terms of degree less than 29! are zero.
ptt

72

Since , a = go+ g1+ +gaxd+r b= ho+hz+..... + hgxd 47, for some r € 2410

With this in mind, for each ag, a1, as....,aq € F), and by, by,, 04 € I,

Consider the set

S = {[1:a:b]3a=ay+ax+ax®+ ... aqgx® +r,

b=0by+ byx + box® +bgx? + 7} (4.11)

for some r € x4+1Q.

Hence for any point [1 : g : h] € P? such that [g| < 1 < p?|h] < 1 < p? with
ao = go, a1 = g1,aq = gq and by = hg,by = hy,.....bqg = hy

We observe that for any element [1:a:b] e S.

Thus,N([1: g : h] =5

aW)

d+1

Note that,there are p*** distinct choices of ag, a1, as...., aq € F, and by, by,, b4 € F),

So, there are (p?t1)? = p?*2 different sets of the form (4.11).

Similarly,by proposition 4.2.2,

L):{[azlzb]ad([g:1:h],[a:1:b])<L

N([g N i h]7 pd+1 pd-i-l}

So we have,

1

d([g:1:h],[a:1:0]) = m(w{|ah—gb|,|b—h|,|g—a|}<derl

(since, |g|,], |a], 0] < 1)

If max{|lah — gb|,|b — h|,|g — a|} = |ah — gb| or |b— h| or |g — a]

73

1
That is, |9 — a| < — 7 says that, all the terms of degree less than 2%+ are zero or
p

|b—h| < — says that, all the terms of degree less than 241 are zero or
p

ah — gb| < —— says that all the terms of degree less than z?*! are zero.
pitl

Since , a = go+ T+ 4+ ggx? 47 b= ho+hiz+...... + hgx®+r for some r € 2410
With this in mind, for each ag, ai, as....,aqs € F, and by, b1,, b4 € F),

Consider the set

S = {la:1:b]3a=ag+ax+a@® + ...agzx* +r,

+r} (4.12)

for some r € z71Q.
Hence for any point [¢g : 1 : h] € P? such that |g] < 1 < p% |h] < 1 < p? with
ag = Go, a1 = §1,.....aqg = gq and by = hg, by = hq,.....bqg = hy
We observe that for any element [a: 1:b] € S.
1

Thus N([g:l:h],}w) =S

d+1

Note that,there are p®** distinct choices of ag, a1, as....,as € F, and

So, there are (p?1)? = p?+2 different sets of the form (4.12).

Now,consider [1: g : h] € P? such that 1 < |g] < p?,1 < |h] < p?, and

g=0go+ qx+ +gaxt+ ..., h=ho+hz+ ... + hgx® 4 ...

Then the neighbourhoods becomes,

L = {[1:a:b]3d([1:g:h],[1:a:b]) <

V(<AL) et

74

So, assume that |g| = |al, |h| = || ,

1 ma${|gb_ah|7|h_b|7|a_g|} 1
d([1:qg:h]|,|1:a:0b]) < <
([L:g:h][L:a:b]) pi+1 maz{|g|?, |h|?} pi+1

|gb — ahl| _ L
maz{lgl?, |h]?} ~ ptH!

1

= |gb—ah| < prr

(since, lgl, [h] > 1).

d+1

If |gb — ah| < says that all the terms of degree less than x“"" are zero.Since

d+1
p
a=go+ qgr+.... +gax?+r ,b=ho+hiz+ ... + hgz® + r for some r € 2410

With this in mind, we choose for each ag, a1, as....,aq € F, and by, by,, b5 € IF,,

Consider the set,

S = {[l:a:b]3a=ay+ax+ax®+ ... agz? + 7,

+r} (4.13)

for some r € x?*1'Q. Hence for any point [1 : g : h] € P? such that 1 < |g] < p?,
1 < |h| < p? with ag = go, a1 = g1,aq = gq and by = hg, by = hy,.....bg = hq

We observe that for any element [1:a:b] € S.

1
Thus, N([1:¢: h],ﬁ) =9
Therefore, there are p?*! distinct choices of ag, a1, as...., aq € Fp, 00,01,, 04 € Fp.

So, there are pX4+1) different sets of the form (4.13).

5

Similarly,by proposition 4.2.2,
Consider [g: 1: h] € P? such that 1 < |g| < p?, 1 < |h| < p?, and

g=go+ T+ +gext+ ..., h=ho+hz+ ... + hgxd + ...

Then the neighbourhoods becomes,

Nllgs 10— = (o0 3d 1 s ALl 16 <)

So, assume that |g| = |al|, |h| = 10| ,

1 max{|ah—gb|,|b—h|,|g—a|} 1
dllg:1:h 1:0]) < <
(g=t=nllot:0) < = AL i

lah — gb| L
maz{lgl?, [h]?} ~ ptH!

1
pd+1

= |ah — gb| <

(since,|gl, |h| > 1).

L are zero.Since

1
If Jah — gb| < —— says that all the terms of degree less than ¥
p

a=go+ giT + + gax®+71 ,b=ho+hx+ ... + hgz? + r, for some r € 210
With this in mind, we choose for each ag, a1, as....,aq € F, and by, by,,bg € IF,,

Consider the set,

S = {[a:1:b]3a=ay+ax + ayx® +agz" +r,

+ r} (4.14)

76

for some r € x?*1'Q. Hence for any point [g : 1 : h] € P? such that 1 < |g] < p?,
1 < |h| < p? with ag = go, a1 = g1, ..., ag = gg and by = hg, by = hy,......,bg = hg

1
We observe that for any element [a :1:b] € S. Thus, N([g:1:h], —) =S
p

d+1
Therefore, there are p?*! distinct choices of ag, ay, as...., aq € Fp, by, by, ..., bg € F,.

So, there are p*9+1) different sets of the form (4.14).

Finally, by the remark,if [u] € P? such that [u] = [e3] or [u] = [1 : g : h] or
1

[u] = [g:1: A, for some |h| > p? and |g| > p?, then N([u], e}
p

) is exactly the set
S={[1:a:b] 3 |a] > p% |b| > p} U {[es]} (4.15)

Hence, for all [u] € P?, there exist a set S of the form (4.11), (4.12), (4.13), (4.14)
and (4.15) such that [u] € S and N(|u]

) W)
Additionally, there are 2p?¢™? neighbourhoods of the form ((4.11), (4.12)), 2p??*+2
neighbourhoods of the form ((4.13), (4.14)) and one neighbourhood of the form (4.15).
Thus, we have totally, 2p*¥2 + 2p?¥*2 4+ 1 = 1 + 4p?¥*2 neighbourhoods and these

taken sets are all disjoint which is understood from the construction. [

We discussed the co-norm with some intermediary results and using the co-norm
or max-norm,we defined the metric in P? and their related properties are proved and
we show that the points of neighbourhoods in P? with respect to the metric.The
notation of the distance between two points in P? (i.e), d(z,y) is used in the next

chapter.

7

Chapter 5

Free Generators Theorem in

Projective General Linear Groups

We desire to obtain conditions for which elements A, B € PGL3(F,((x))) will freely
generate a free subgroup of PGL3(F,((x))). To get into the above result, we need to

consider the action of A and B on P? by seeing the action of the pre-images of A and

B in PGL3(F,((x))) on P2

5.1. Free Generators theorem

Before stating the Free Generators Theorem, we need to find out the general form of

A, B € PGLs(F,((z))) in terms of eigenvalues and eigenvectors of A, B € GLs(F,((z))).

Lemma 5.1.1. Let A, B are the elements in G Ls(F,((x))).Suppose that A has distinct
eigenvectors [a : b :c|,[1:g: h],[d:1:e] with corresponding eigenvalues

z,y,2 € Fy((x)) and that B has distinct eigenvectors [1:b: &,[1:§: h],[d:1:¢é]

with corresponding eigenvalues x' .y , 2 € F,((z))

78

Gp—1)2+ (fo—Jup)a+ (Ju— fG2) (1= N2+ —vyp2+ (S —Huz (1- P+ (f—1Db2+ (- Sy

(f =19+ =Nbpg+ (=6 (fop—fR+@-yp)g+ (Jy—J62) (f-Pl+T-Hya+ ([-1)b2 || =g

(f=Ppg+{f —1)+ (1= .Dbp =D+ (f—Dup+ (-2 (fop—fe+(f2— Jup)g+ (y — 52)

puv
Bp— 1)+ (f2— fup)a+ (Ju— foo)0 (1= Po+(f —Dyp+ (f =Py (1= P+ (f —1)60 + ([— fyaq \ |
(f—Da+ T —=£bpe+(f = Hbv (fbp— fo+ @ —yp)a+ (fy—fo)p (f =)o+ (1— fug+ (f —1)b2q =y
(f=Hpa+(f —1)o+ (1~ f)bpo (= Hpo+(f=Dupr+ (1= fov - (fp— [+ (f> = Jup)a+ (y—b2)v] |

20 (((2))4)¢THJ wr sabvwir 901909dsa.L 2y U2y

79

Proof. We know that using eigenvalues and eigenvectors of A, we can write it as

a 1 d\f{z 0 O (eg—h) (dh—e) (1—dg)
b g 11|10 v O (c—be) (ae—cd) (bd—a)|=QArQ"

¢c h e/\0O 0O 2/ \(bh—cg) (c—ah) (ag—0)
a 1 d
where () = [b ¢ 1 | be the 3 x 3 matrix whose jt-column is the eigenvectors
c h e
of the matrix A4,
z 0 0
A=10 y 0 [Dbethediagonal matrix whose diagonal elements is the corresponding
0 0 =

eigenvalues A; = A; and

(eg—h) (dh—e) (1—dg)
Q!'= (c—be) (ae—cd) (bd— a) | be the inverse of the matrix) whose

(bh —cg) (c—ah) (ag—"b)
elements are necessarily distinct eigenvectors and non-zero.
So,the matrix Q' is scaled by det(Q) = a(eg — h) + b(dh — €) + ¢(1 — dg), which is
also non-zero.So,the scaled value is not needed here to get into the form of A.

Since,the eigenvalues of A € GLs(F,((x))) are non-zero.

1
In particular z # 0,— exist.
x

80

z 0 0 10 0
Thus,the matrix A will become as,A =10 y 0[=]0 f 0

00 =z 00 f

where [= g,f’ _—
x x

Hence, we solve these matrices which gives the matrix A in PGL3(F,((x))) as,

a 1 dYf{1 0 O (eg—h) (dh—e) (1—dg)
b g 1[0 5 0 (c—be) (ae—cd) (bd—a)|=A
c h ef\o 0 f)]\(h—cg) (c—ah) (ag—0)

Similarly,we know that using eigenvalues and eigenvectors of B, we can write it as,

»—~
—
SH
&\
o
o

(€g—h) (dh—@) (1-dg)

b g 1|0 4 ol @=be) (—cd) (bd—1) [=Q Q7"
¢ héel\o o Z)\(bh—¢§) (@E—h) (G-0)
11 d
where () = [p g 1 | be the 3 x 3 matrix whose jt-column is the eigenvectors

(@}
>
QR

of the matrix B,

!

x 0 0
A=10 v 0 |Dbethe diagonal matrix whose diagonal elements is the
0 0 2

corresponding eigenvalues A; = A; and

81

elements are necessarily distinct eigenvectors and non-zero.

So,the matrix Q' is scaled by det(Q) = (¢§ — h) + b(dh — &) + &(1 — dg), which is
also non-zero.So,the scaled value is not needed here to get into the form of B.
Since,the eigenvalues of B € G Ls(F,((x))) are non-zero.

, I
In particular # 0,— exist.
x

x 0 0 1 0 0
Thus,the matrix A will become as,A = [0 ¢ 0 =10 f 0 |,
00 ¢ 00 f

7 I

~ (T z
where f = —, "= —.
X

Hence, we solve these matrices which gives the matrix B in PG L3(F,((x))) as,

1 1d\{1t 0 0)[(eg—h) (dh—¢é) (1-dg)
b g 1|lo F o] @-te) (E-ed) (bd—1)|=B n
¢ heéel\oo fl\eh-cg) @—h) (G0

Remark. Tf we assume that the six distinct elements of P? are of the form
[@:b:cl[1:g:h,[d:1:€,1:b:¢&,[1:§:hl[d:1: ¢ for some

a,b,c,g.h,d,e,b,é d, é g, he F,((x)), then the lemma 5.1.1 gives the general form of

d,
A and B in PGL3(F,((z)))

5.2. Statement of the Free Generators Theorem

The proof of the theorem will use the Proposition 1.1 (Ping-Pong Lemma) in [73]

82

ON 2 p pup wiid v s1 d asoym “(((2))4])sTHJ ur dnoibgns va.f v 29v19uUb

(Op =12+ (f2 = fup)a+ (Ju— f62) (1— 22+ —Dyp+(f—Hyz (1—PHu+ (f—1Db2+(f —)

(f=Da+a=Nopa+ (S = N6 (fOp— e+ @-yp)a+ (Jy—f62) (f—=DHO2+ (01— Huya+(f—1)629 | =g

(f=Hpra+(—1)+ - N)bp =D+ (f—Dup+ 1 -f2 (fop—)+ (f2— fup)e+ (4 —b2)

pun

(bp =102+ (fo— Juyp)a+ (Jy — f6o)v (1 — floo+(f —Dypo+ (f = fyov (1= Ly + (f — 1)+ (f — f)yaq
(f—1Da+0—=Dbpg+(f = HHoo (fbp— fo+@—yp)g+ (fy—foo)0 (f =)o+ (1— HHyg+ (f —1)b2q |=y
(f—=hpg+(f —1)o+ (1~ f)bpp (f = Ppo+(f=1Dypo+ (1= fov (fbp— [+ (fo— Jyp)q+ (y — ba)p

‘soorugpw ayp uayy {[2: T E hE 1b]

‘g1l le:1:pl[y:06:1][:q: 0]} u [n] yovo uof vt < ([n]“[4Dp 1041 yons g 3 [y] 15122 240yp (111)

~ 1

d d d d
e Ry e (W IR W e (R)

{lo:71 E hE SR I NPE q: I':1:p]y:6:1]2:q:0]} w [a]‘[n] fo wvd yovo x&;% < ([o]‘[n])p (»)

oyp yons L(2) 3 f 0 FF pun ((2)U 2y 6°2°pa'q'a’p iy 60 v gs1z0 auvyp JT *T°g"G WBI0AY],

83

Exactly, for any pre-images of A and B in GL3(F,((z))) also generate a free
subgroup.
The following proposition tells about for which prime p and an integer d, the Free

Generators Theorem will work.

Proposition 5.2.2. Let p be a prime and d € Ny, if p = 2 and d = 0 then there
exist a,b,c,q,h,d,e,b,¢,d,é, g, h € F,((z)) and f, .1, f’ € F,((x))* such that the
following conditions (i) and (ii) of the Free Generators theorem are satisfied.

Further, if a,b,c,g,h,d, e, b,¢,d,é,q,h € F,((x)),satisfy condition (i) then there exist

[k] € P? such that satisfies the condition (i11) of the Free Generators Theorem.

Proof. We need to choose f, f', f, f are sufficiently small elements of F,((z)) to sat-
isfy the condition (ii).

So,we assume that |f| = |f'| = |f] = |f | = d_+1 of Fy((x))

Suppose if p > 2 and d = 0 and we take these vectors [a:b:c],[1:g: h],
[d:1:e],[1: b cl,[1:g: iz],[az 1 : €] where a,b,c,g,h,d, e, b,¢,d,é, g, he {0,1,2}
then each pair of their distance must be greater than or equal to 1 and note that
1>]%forp>2andd>0

Suppose, if p = 2 and d = 0 and we take these vectors [1:1: z], [z :1:1],
[1:0:0],[0:0:1],]0:1:0],[1:1:1],[1:1:0],[1:2:0],[0:1:x], for each pair
of vectors is of distance greater than or equal to 1. Hence 1 >]
By the proposition 4.2.6, we know that each of these [a:b:c],[1:¢g: h],
[d:1:e],[1:b:¢],[1:§:h],[d:1:é] must each have l%—neighbourhoods.

If d =0 and p > 2, we see that 1 4+ 4p?¥*2 =1+ 4p? > 6

and if d > 0 and p > 2, we see that 1 + 4p*>¥*2 > 6.

84

1
Hence, in both cases, we see that there exist atleast one non-empty ﬁ—neighbourhood,
p

1
namely N which is disjoint from the other ——-neighbourhoods such as [a : b : ¢],
p
[1:g:h],[d:1:e],[1:l;:é],[l:gzﬁ],[dvz 1:¢] and we can say that [k] € P? be

any element in N. Hence the condition (iii) is satisfied, [

5.3. Proof of the Free Generators Theorem

The following Ping-Pong Lemma in [73] will give the proof of the Free Generators
Theorem

Ping-Pong Lemma states that, “Let P be a set, L an index set, G a group acting
on P, (G;)ir, a family of subgroups generating G. (P,);er, a family of subsets of P
and [k] a point of P — {U;erP;}. Assume that for all ¢,7 € L with ¢ # j and all
g € G; — {1}, one has g(P; u{[k]}) < P,. Then G is the free product of the subgroups
Gi(ie L)

Here,let us take that P =P? L = {A, B}, Gy =< A > and G =< B >,

G to be a subgroup of PGLs(F,((x))) generated by G4 and Gp.

Let (P)er be a family of subsets of P = P? (i.e) P4 and Pg subsets of P = P?
A+

! rs rd]- o . .o .
For our discussion,let us assume |f|, |f |, |f|, |f | < —— by condition (ii) in
p

theorem 5.2.1.

Let A and B be the pre-images of A and B in GLs(F,((x))) and from lemma 5.1.1,

we get that, A has distinct eigenvectors [a : b : ¢],[1: g : h],[d : 1 : €] with (upto

scalar multiple) corresponding eigenvalues z,y, z € F,((z)) such that y_ fs S f
T x

Similarly, B has distinct eigenvectors [1:b: &],[1:§: h],[d: 1 : &] with correspond-

85

-z,
ing eigenvalues 7,9, Z € F,((x)) such that % =f,—=f
T T
1 ' 1
Since we assume that the case |f| < —— and [f | < ——, we get that the absolute

value of the eigenvalue corresponding to |a : b : ¢] is large, compared to the corre-

sponding eigenvalue of [1: b : ¢].Thus, A will map elements of P? towards [a : b : c].

- . : = 1= 1
A similar observation can be made for B, as we are assuming |f| < ——.[f'| < ——.
p p

That is,B will map elements of P? towards [1:b: ¢].

From the above eigenvectors, we will define,
1 1
Nigig = N([a : b : €], W),N[lzg:h] = N([1:g:h], W)

1
)

and N[d:l:e] = N([d 21 6],

. = 01 I
Slmllarly,N[LB:&] =N([1:0:¢], F),N[Lg:ﬁ] = N([1:9:h], pd+1)

1

and Nygy.q = N([d: 1:¢], de)

Then we can choose, Py = Ng:p:¢) W NV[1:9:n] Y N[a:1.¢] and Pp = N[l:B:a] UN[l;g;ﬁ] uN[szl:é]
Now, we want a point, [k] in P — {U,e, P} = P — {P4 v Pg} which is clear that the

point exists from the condition (iii) in theorem 5.2.1.

To show that the conditions of Ping-Pong lemma are satisfied and to prove theo-
rem 5.2.1, we need to prove for all 4, j € L with i # j and all g € G; — {I},

one has ¢g(P; u {[k]}) € P,. That is, g € G4 — I, one has g(Pg u {[k]}) € P4 and
g€ Gp —{I}, one has g(Ps v {[k]}) < Ps

Note that if we replace [a:b:¢] with [1:0:¢,[1:¢g:h] with [1:§:h], [d:1: €]

86

with [d: 1: €] and f with f and f with f', we obtain B from A.Thus, B has same
form of A. So, we need to show that g € G4 — {I},one has g(Pg u {[k]}) < Pa.

We need to prove for any g € G4 — {I}, one has g(Pg u {[k]}) < Pa

which leads to the strong property to prove as,
AP?—{N([1:g:h])UN([d:1:¢€])}) < N([a:0b:c]) and to prove that the inverse
is like A7L (P2 —{N(Ja:b:c])}) S {N([1L:g:Rh]) UN([d:1:¢€])}

We prove the above results by the following sequence of lemmas.

Lemma 5.3.1. [f Ae PGL3(F,((x))) is taken from Theorem 5.2.1 such that

lgl, 1h], |d], le] < p? and [es] e P2 —{N([1:g:h]) U N([d:1:e])}.If any one of the
conditions

(i) |b], || < |a| with the property p? < |a| < |dg| < p*%, |b], |c|] < 1

(ii) |al, |c| < |b| with the property p® < |b] < |dg| < p*,al, |c| <1, and

(iii) |a|, |b| < |c| with the property p? < |c| < |dg| < p*%, |al, |b| < 1 are satisfied,

then A.[es] € Nigp.q

Proof. We know that,

aleg—h)+b(dhf —ef)+c(f—dgf) ae(f—l)—i—adh(l—f/)—&-cd(f,—f) adg(],‘/—1)+a(1—f)+bd(f—f:)
A= beg(1=P)+bh(f ~1)+eg(f—f") alegf—hf Jrbldh—e)+e(s —dgf) ag(f'—)+bdg(f—1)+b(1—f")
beh(f,—f)-i-ceg(l—f Y+ch(f—1) aeh(f—f)+tcdh(1—f)+ce(f —1) alegf —hf)+b{dhf—ef)+c(1—dg)

1 , 1
We note that, |f|<W<1J |f|<W<1

bd(f — f) —adg(1 + f') + a(l — f) v
Now, Ales] = | bdg(f = 1) +b(1—=f)+ag(f =) |= |
b(dhf —ef) + (1 —dg) + alegf — hf) Vs

where, v; = bd(f—f/) —adg(1 + f,) +a(l - f),
vy = bdg(f —1) +b(1 — f') + ag(f — f) and

87

v3 = b(dhf —ef) + c(1 —dg) + alegf — hf)

We know that the distance between two vectors are

d(la:b:c],Ales]) = d(la:b:c],|v1:ve:wvs])

max{|bvs — cvg|, |cv1 — avs|, |avy — buy |}

maz{|al, [b], |c[ymaz{|v.], |va], [vs]}

Since, by the non-Archimedean property, |z| # |y| then |z + y| = maz{|z|, |y|} we get

the values of vy, vy and vg

Now,Jvi| = maz{[bd(f — f)|,ladg(1 +)],]a(l =)} = maz{|pd(f — f')].]adg], |al}
(since, |adgf'| < |adg], |af| < |a])
Thus, |v1] = maz{[bd(f — f')].]adg]. al}

Similarly for,

lva| = maz{|bdg(f —1)|,|b(1 — £, |ag(f —)]}

— maz{|bdgl, b, lag(f — f)|}

lvs] = max{|b(dhf —ef)|, lc(1 —dg)|, lalegf — hf)|}

maz{|bdhf|, bef'|,|c|, |cdg], |aegf |, |ah f|}

We know that |dg| > 1 then |adg| > |al,|bdg| > |b| and |cdg| > |¢|. Now

maz{|vi], |val, [vs|} = max{ladgl, |al, [bdgl, [b], |edg], |c[}

maz{|adgl, [bdg], |cdgl} (5.1)

88

Since,[bd(f — f)] < [b], [bdhf| < [ol, be | < o], lag(f — F)] < lal,

|aegf’| < |al, |ahf] < |a|

Now to find the max{|bvs — cvs|, |cvy — avs], |avy — buy|}

lbvs — cvg| = |b*(dhf — ef/) + be(l — dg) + ab(egf, — hf)—cbdg(f —1)
—cb(1 = f') —acg(f — f)l

= lacg(f — f) —bedgf + ablegf — hf) + b*(dhf —ef) + bef|

N

maz{|acg(f — f)|, [bedg], lablegf — hf)], [b*(dhf —ef)|, [bef |}

< maa{lacl, [bedg]. |ab], 0], |bel} < maz{]ac], |bedg], |abl, |¢2]}

(since,|dg| > 1 = |bedg| > |be|)

vy —avs| = |bed(f — f) —acdg(1 +) + ac(1 — f) — ab(dhf — ef)
+ac(l — dg) + a*(egf — hf)|

— |be(df —df) + a®(hf —egf) + ab(ef — dhf) — acdgf — acf]

maz{|be(df — df)|, |a*(hf — egf)], |ablef — dhf)l|, |acdgf |, |acf|}

N

< maa{lbel, a2 |ab, lacdg|, lacl} < maz{lacdg], be], [ab], |a?]}

(since,|dg| > 1 = |acdg| > |ac|)

89

lavy —bvr| = |abdg(f —1) + ab(1 = f) + a*g(f — f) = b*d(f = f)
—abdg(1+ f) + ab(1 — f)|

= |ab(f — f) +abdg(f + f) + V*(df —df) + a’g(f — f)|

N

maz{|ab(f — f')|, labdg(f +)|, [b*(df —df)],|a’g(f — f)I}

< maz{|abdg), |a®|, |b*|}

(since,|dg| > 1 = |abdg| > |abg| > |ab|)

Thus, we have,
maz{|bvs — cvy), |cvr — avs], |avy — bui|} < max{|bedg|, |acdgl, |abdgl, |a?|, |b?|}

(since,|bedg| > |be|, |acdg| > |ac|, |abdg| > |ab]).

Hence, we are using (5.1)

d(la:b:c],Ales]) = d(Ja:b:c],[v1:ve:v3])

max{|bvs — cvs|, |cvr — avs|, |avy — buy |}

ma${|a|7 |b|7 |c|}mam{|v1|, |U2|, |U3|}

maz{|bedg|, |acdgl, |abdgl, |a?|, ||}
mazx{lal, bl [c[}maz{|adg], [bdg|, |cdg[}

AN

max{|bedg|, |acdgl, |abdg|, |a?|, |b?|}
max{|adg|, |b?dg|, |c?dg|}

90

Case(i):1If |b], |¢| < |a| with the property p? < |a| < |dg| < p*?, |b], |¢| < 1 then

maz{|a®|, |acdg|, |abdgl|}

d(la:b:c],Ales]) < la2dyg]|

maz{lal, |cdgl, |bdgl} _ max{|al,|dgl]} _ |dg|

|adg| h |adg| |adg|
.1 b
|CL| pd pd+1

Case(ii):If |al, |c| < |b] with the property p? < |b| < |dg| < p*?, |al,|c| < 1 then

max{|b?], |bedgl, labdg|}
|b2dg]

d([a:b:c],Ales]) <

maz{|b], |cdg|, |adgl} _ max{[b], [dgl} <:|dg|
|bdg| |bdg| |bdg|
11 1

< =< =< —
b] " pd T pd+l

Case(iii):If |al, |b] < || with the property p? < |¢| < |dg| < p*?,]al, |b] < 1 then

max{|bcdgl|, |lacdgl}
|c2dg|

d(la:b:c],Ales]) <

max{|bdg|, |adg|} < maz{|dgl|}

|cdy| T edy]
11 1

o] S pi S i

Hence if any one of the conditions are satisfied then,we get

1
d([a:b:c], Ales]) < ——. Therefore,we get A.[es] € Ngp.q-

= d+1
p“r

91

pue A\QSI\M._.@EQI%mmﬁ._.w&l&ﬁv._.ﬁl\Q._.xmwlmwv@._.ﬁdgm._.:\HQI%&@S@._.Qamﬁlkm._.k,mlwav = 2n

(Jlip—flip+ fo— Jup)q+ (ffi—fi+Aibp— [fibp+ [ryp—zyp+ [ro+y—ba)o+(fap— [rp+ [Op—[)o = Tas1eym

(fofi—ffiyp+foy— fou)q+(ffiy— fhibo+ [owy—[oxy)o+(fibp—fitzo— [rot+[ryp—wyp+y—[y+ fb2—b2)>
| = (flirfitfibp—[hibptox—ayp+1— [y+[62—02)q+(fAib+ [ry—fwab)v+(fxbp— [o+ [6—[b) =i:z:1]y
(ffip—ffip+fo— fup)a+({fi—fithbp— [fibp+ [ryp—zyp+frot+y—b2)v+(fzp— [xp+ [6p—f)o

‘MON

(bp =)o+ (fo = fyp)g + (fy — f6o)p (1 — floo+(f —T)ypo + (f — Hlyor (1= Hyo+ (f — 1) + (f — f)yaq
(f—1)9+a—=Lbpe+(f = Hoo (Jbp— [lo+ @ —yp)g+ (fy—f62)o (=)o + (01— [lug+ (§ —1)b2q —v
(f=Hpg+(f —1)o+(1— f)bpp (f = p+(J—Dupr+(1— oo (fOp—)P+ (fo— [uyp)q + (y — G2)p

‘peT[) MOUY AN JOOIJ

Pamlpr 3 [i:x: 1]y uayp ‘poryfsyms aun T |q| ‘|p| el > lyp| > || > pd fizaadosd oy ypm 12| = |q] ‘|| (12)
puv 1 [[p]‘ped = |yp| > [q] > pd firaadosd ayp ypm |q| > o] ‘|v] (1)

TS Plal ped > |yp| > [v] > pd figsadoid ayp ypm o] = 2| ‘[q] (1)

suorpuod ayy fo auo fiuv fr{([o:1:phDN O ([y: 0 IIN} — @2 [z 1]

puv pd s o] *|p| “[y| *|6] wyp yons [7g ¢ waroay, woif uayvy st (((2))°F)¥TOL 2V 19T "¢'€"g ewwoy

92

v3 = cleg—egf +hf —h+dhx —dhaf +exf —ex +y—dgy) + alhzef — hxef
+egyf —hyf) +bhef —hef +dhyf —yef)
We first noted that the point [1:z:y]isin P2 —{N([1:g:h]) U N([d:1:€])},
if |g],|hl,|d|, |e| < p? and |x| > 1,]y| < 1 and

1 /
assume that |f|<W<1,|f|< <1

Pl
Since, by the non-Archimedean property |z| # |y| then |z + y| = maz{|z|, |y|},

we get the values of vy, v, and v3. Now,

i| = |e(f —dgf +dof —daf) +aleg—h+exf + dhe — dhaf +
dgyf —dgy +y—yf) +b(dhf —ef +dyf —dyf)|
= |c(f —dgf) + cxd(f — f) +ae(g — xf) + adhz(1 — f) + adgy(f — 1)
+ay(L — f) +b(dhf —ef) +bdy(f —)]
= max{|adhz|, |adgyl, lacg], ledz(f" = f)], bdy(f = [, |e(f = dgf)]}

= maz{|adhal, [bdyf|, lcdg |}
Similarly, for |vs| and |vs]

oo = lelgf —gf +ef —dgaf) +algexf —haf +gyf) +bleg — egf +hf —h
+dha — ze + dgyf — dgy +y —yf)|
= leg(f = f) +clef —dga) + ax(gef — hf') + agyf + beg(1 - f) +
bh(f —1) + bx(dh — e) + bdgy(f — 1) + by(1 — f)]
= max{|begl. [bh], bdgyl. [by, [bdha|, lax(gef — hf)].|edgz], [cg(f — [}

= maz{|beg|, [bdgyl, [bdhz], lagex], cef |, legfl, lcg f]}

93

lus| = |cleg—egf +hf —h+dhe —dhaf +exf —ex +y—dgy) +a
(haef —haef +egyf —hyf) +blhef — hef +dhyf —yef)|
= Jeeg(1 — f) + ch(f — 1) + edha(1 — f) + cex(f —1) + cy(1 — dg)
tazeh(f — f) +ay(egf —hf)+bhe(f — f) +by(dhf —ef)|
= max{|ceg|, |ch|, |edhz|, [cxel, |cy|, |ahex(f — [, lay(egf — hf),
[bhe(f = F)l; [by(dhf —ef)]}
= maxz{|ceg|, |cdhz|, |azehf|, |axehf |, |bhef], |bhef |}

Hence

maz{Jvil, [val, lvs]} = maz{maz{ladhz], |bdyf|, ledg ']},

max{|begl, |bdgyl|, |bdhx|, |agez f|, |cef,|, lcg f1, |cgf'|},
maz{|cegl, |cdhx]|, lazehf|, |azehf |, |bhef|, |bhef |}}

= max{|adhz|, |bdhz|, |cdhx|}
We know that the distance between two vectors are,

d(la:b:c|,All:z:y])

d(la:b:c],|vr:vg:vs])

max{|bvs — cvg|, |cvy — avs|, |avy — buy |}

max{|a|, |b|7 |c|}max{|v1|, |U2|7 |U3|}

max{|bvs — cvs|, |cvy — avs|, |avy — buy |}

max{|al, |b], |c[}maz{|adhzx]|, |bdhx|, |cdhz|}

Now we have to find the max{|bvs — cvs|, |cv1 — avs|, |avy — buy |}

94

:Hmo_ n_%u@_ “_Hma_ F_H@@_ F_HQEQQ_WH@S

{|fiov| |(fy — fab)xon)|
fopx ol | fo ol ((f — DB o — fup)fial |(f — Fayal‘|(fy — Jd)fiqo|

U(Sup — fya)wqol *|(fo — Jyp)rog|*|(ffibp — [y — [bo+ [bo — [y)oq|}rvw

| [fibon — ([y
— fob)xov + [bpr o+ [o.0—(f — [0+ (fo—Jup)ia+ ([— [oua+ (Ju

— J69)fiqo + (fyo — [ya)xqv + (fo — Jyp)xoq + (fibp — [y — [bo+ [bo— [1)q]

C,mI\M..mmﬁlggmﬁ._.mﬁlﬁ%._.cl \%Q.Tk,mmlmwvoo._. (frb
+ Jay — Jrab)on + (fabp — [o+ [6— [6)0—(foli — [fiyp + foy — [oy).q + (ffiy

— Jhiba + [oxy — [oay)qv + (fibp — fi+ 2o — [xo + fryp —wyp + 1y — [y + [0 —62)oq|

v/

v/

00 — g

95

{|zqo] ‘|z ,p| |2ypov| ‘|zoq| |z 2] favw

{I(yp — fo)fiqu| ‘|(foy — fay)qo|‘|(fb02
—)il |(Joy — foy)xpl‘|(o+ fo— [yp)won| |(fy — fb2)ov||(Jp — fp)fiog]

1(fo = Jyp)aq|“|(f — fop)fioo|‘|(fyp — Jo)zoo|‘|(fzp — [zp+ [bp — [)2l}zow

[(yp — Jo)fiqo + (foy — fay)qv + (f02
—Jy)fip + (Joy — [oy)xw+ (0+ [o— [yp)rov+ (fy— [b2)o0 + (Jp — [p)fing

+ (fo— fup)oq + (f — fOp)fiov + (fyp — f2)xom + (fap — [ap+ [6p — [) 2]

|(Jofi — [fiyp + foy — foyyoq + (ffiy — [hifo + [owy — [owy) v + (fibp — fi + 22
— Jwo+ Jayp —wyp +y — [y + [b2—ba)ov — ([lip — [fip+ [2— [yp)oqg+ (ffi

— fi+ fibp — [fibp + [xyp — xyp + [x2 + 1y — 62)o0 + (fop — [xp+ [6p — [) 2]

v/

v/

= _maa — Tao

96

{|z 4| |zoq| |xypqv] ‘|z | |ToD|}TDWk

{I(ffip + flip— fyp
— 9) Al *[(b — [xy)pgo|*|(1 — [)zaqo|‘|(fzp + [xp — [— [0Op)oq|*[(f1i

— A6+ {62 — [y)qv| |fA6 0| *|(fy — fab)z 0| |(f2bp — f2)om|‘|(f — f)bov[}avw

|(ffip + Jfip
— Jyp — f2) 9 + (Ji6 — [xy)pgo + (1 — [)waqv — (fap + [ap — [— [bp)og+ ([fi

— 6+ f05 — fy)qv + fib v + (fy — fob)zp + (fabp — [o)ov+(f — f)bo)|

|(flip = flip+ f2 — Jup)q+ (Jfi—fi+ fibp — [hibp + [ayp
— xYp + fxo + 1y — 62)qp + (Jap — [xp + [bp — [)oq — ([fi —fi + fibp — [fibp + ox

—xyp + 1 — [y + [bo —6o)qo + ([A6 + [ry — [x26), 0+ (fxbp — [o+ [6— [6)ov)|

v/

v/

[tag — %an|

97

Hence,we have

d(la:b:c], Al :z:y])

d([a:b:c],|vr:vg:vs])

max{|bvs — cus|, |cvr — avs|, |avy — bu |}

max{|a|7 |b|7 |c|}ma${|vl|, |U2|, |U3|}

mazx{|a®|, |b?|, |?|, |abdhx], |acdhz|, |bedhz|, |abx|, |acx], |bcx|}
max{l|al,|b|, |c[}mazxf{|adhzx|, |bdhz|, |cdhz|}

Case(i): If |b], |c| < |a| with the property p? < |a| < |dh| < p®?, |b|, |c| < 1 then

d([a:b:c], Al :z:y])

N

N

d([a:b:c], vy :vg:v3])

max{|a®|, |b?|, |?|, |abdhx], |acdhz|, |bedhz|, |acz|, |abx], |bcx|}
max{l|al,|b|, |c[}mazxf{|adhz|, |bdhz|, |cdhz|}

mazx{|a?|, |abdhz|, |acdhz|, |acz|, |abx|}
|a2dhx|

max{|adh|, |abdhx|, |acdhz|} _ max{|dh|, |bdhz|, |cdhz|}
|a2dhx| ladhx|

(since,|dh| > 1 = |abdhz| > |abx|, |acdhz| > |acx|)

maz{l, [br|, |cxl} _ max{l, |of} 1 x|

~
lax| lax| lax| " |az|
(since, |ax| > |al)
1 1 1 1

—or— <
ja] " Ja] = pt T

98

Case(ii): If |al, |c| < |b| with the property p? < |b| < |dh| < p*?,]al, |c| < 1 then

d(la:b:c],All:xz:y]) = d(la:b:c],[v1:vy:v3])

maz{|a®|, |b?|, |c?|, |abdhz|, |acdhx|, |bedhz|, |acx], |abz|, |bex|}

<
max{|al, |b], |c|}maz{|adhzx]|, |bdhx|, |cdhx|}
_ mazx{|b?|, |abdhz|, |bcdhz|, |bex], |abx|}
s b2 dha)|
_ max{|bdh|, |abdhx|, |bcdhx|}
|b2dhz|
(since,|dh| > 1 = |abdhz| > |abx|, |bcdhz| > |bcx]|)
_ max{|dh|, |adhz|, |cdhz|}
lbdhz|
_ maxi{l,|azx|,|cx|} = mazx{l,|z|}
|z T b
|bx| " |bx|
(since, |bx| > |b])
- 1 1
o] [l
1 1
<]ﬁ < W

99

Case(iii): If |a|, |b| < |¢| with the property p? < |c| < |dh| < p*?, |a], [b] < 1 then

d(la:b:c],All:z:y]) = d(la:b:c],[v1:vy:v3])

maz{|a®|, |b?|, |c?|, |abdhz|, |acdhx|, |bedhz|, |acx], |abz|, |bex|}

<
max{|al, |b], |c|}maz{|adhzx]|, |bdhx|, |cdhx|}
B mazx{|c?|, |acdhz], |bcdhz|, |bex], |acz|}
h |c2dhz|
_ max{|cdhl,|acdhx|, |becdhx|}
|c2dhz|
(since,|dh| > 1 = |acdhz| > |acx|, |bcdhz| > |bex|)
_ max{|dh|, |adhz|, |bdhx|}
|cdhx|
_ maz{l faz|, bz[} maz{l, |z[}
|z T e
1 |z
< —or——:
lcx| " |ez|

(since, |cx| > |c|)

_1 o1 11
e[fel pt T ptH

Hence in all cases with any one of the conditions in the hypothesis are satisfied, then

1
dla:b:c],All:z:y]) < prESE Therefore,we get A.[1: 2 : y] € Nja:q-

100

(fOp— J+ Jab— [ab)o+ ([i—Ti+fibp— [ibp+o—yp+xy— [xy+ [xbo—xbo)q+ (Jib— [fib+ [y— [ob)p =T

(fp— Jp+ fabp—[x)o+(flip—[lip+fro— [xyp)q+(ffi—fi+libp— [fibp+ [yp—yp+o—[o+yr—Dbox)p = Ta ‘D1oym

€n
(o— fo+fyp—up+zy—fay+ [wab—xab)ot(fhio—[fiyp+[axy— [axy)q+(ffiy— [fiab+ [oy—[ay)D

0 | = | (fBp= J+ JabJuB)ot(Jimfitibp—[ABp+o—yp+ay— [oy+[abo—ab)q+(fA6— [R6+ Jy—fob)o | = [fi:] : x|y
(Jp— Jp+ Jabp—fx)o+(ffip—flip+fro— fryp)q+(fAi—fitfibp— [hlp+ fyp—yp+o—fot+yr—boz)v

Tn

‘MON pue

(bp =)o+ (Jfo = Jyp)g + (fy — f6o)p (1 — floo+(f —1)ypo+ (f — Hlyoo (1= Hyo+ (f — 1) + (f — f)yaq
(f=1a+a—=£bpe+(f— oo (fbp— fPo+ @ —yp)a+ (fy—Jb2)p (=)o + (1 — Sug+ (f —1)b2 —v
(f=pg+(f —1)o+ (1~ f)bpp f = po+(f=Dypo+ (1= floo (fbp— [P+ (fo— Jyp)q+ (y — ba)v

‘yeT[) MOUY dA\ JOOI]

Davlzr s [1 2]y ‘wayp parfsums aum 1 |q| ‘|| ppd S 63| > | > ,d firsadosd ayy ypm [o] s |q| ‘|v| (1)
puv 1 [*[p]‘ped = |63] > [q] > pd fipaadosd ayp ypm |q| > [of ‘|v] (1)

T Pl a]ped > [62] > |p| > pd figsadoud oy ypm [v] > P[*lq] (1)

“ suowupuoo buwmopjof ayy fo auo fiuv 1 {([p:1:pINO(y: 6 : TN} —d2[A: 11 7]

puv pd s o[*|p| || *|6] yp yons g ¢ waroay, woif uayvy st (((2))°F)¥TOL 2V 197 "€°€"g ewrwoy

([o:q:p)N 3 |[fi:1: x|y 10] ynsorx oy oaoxd ueo om A[reqruurg

101

v3 = a(hef — hef +geyf —hyf) +b(haef —hxef +dhyf —eyf)+ c(gex — gexf +
haf —ha + dh —dhf +ef —e)

1 , 1
1 <Ll < o5

if |gl, A, |d], [e] < p® and || > 1, |y| < L and |f] < S S

Since, by the non-Archimedean property |z| # |y| then |z + y| = mazx{|z|, |y|},

we get the values of vy, vy and vs.

)| = la(zeg —xh +ef —e+dh—dhf +dgyf —dgy + vy —yf) + b(dhaf
—eaf +dyf —dyf) + c(ef — dgaf +df — df)
= |az(eg — h) + ae(f — 1) + adh(1 — ') + adgy(f — 1) + ay(1 — f)
+oa(dhf —ef) +bgy(f = f) + ca(f —dgf) + cd(f — f)]
= maz{|acl, [az(eg —)|, |adhl, |adgy], |ay|, [bx(dhf" — ef)|, lbdgy(f = f')],
e (f —dg [, led(f" = f)I}
= max{|aegz|, |bxdhf |, |cxdgf |}

Similarly for |vs], |vs| ,

oo = lalgef —hf + gyf — gyf) + blegr — egaf + haf — hx + dh — ¢
+dgyf —dgy +y—yf)+ clgef —gzf + f —dgf)]
— la(egf — hf') + agy(f — f) + begz(1 — f) + bha(f — 1) + bdh — be +
bdgy(f —1) +by(L =) +cga(f — f) +e(f —dgf)
= mazx{|begx|, [bha|, [bdh|, |bel, [bdgyl, by, |a(gef — hf) lagy(f = £)],
ledg 1, lega(f — [, lef [}

= maz{|begz|, lagef], lagyf |, lagyf|, lcdg f|}

102

and

lvs| = la(hef — hef + geyf — hyf) + b(haef — hxef + dhyf
—eyf) + c(gex — gexf + haf —hx + dh — dhf +ef —e)|
= lahe(f — ') + ay(f ge = hf) + bhxe(f — f) + by(dhf —ef')
tegex(1—) + cha(f —1) + edh(1 — f) + ce(f —1)]
= max{|cegzl,|chal, |cdhl, |cel, [ahe(f — [)], |ay(egf = hf),
bhe(f = £l lby(dhf —ef)]}
= maz{|cegzl|, |cdhl, |achf|, lahef|, layeg f |, [behef|, |brhef |}

Hence,

maz{maz{|acgz], [brdhf'|, |cxdg f']},

mazx{|v1], |va], |vs|}

maz{|begz|, lage f|, lagy/ |, lagy f|, |edg f|}, maz{|cegz],

\cdh|, laehf|, |ahef |, |ayegf |, |bxhef|, |bxhef |}}

~ maz{|acgal, [begel, |cegal}
We know that the distance between two vectors are,

dla:b:c],Alx:1:y]) = d(la:b:c],[v1:vy:v3])

max{|bvs — cvs|, |cvy — avsl, |ave — buy |}

max{|a|, |b|7 |C|}maI{|U1|7 |U2|7 |U3|}

max{|bvs — cvs|, |cvy — avs|, |avy — buy|}

max{|al,|b|, |c|}mazx{|aegx]|, |begx|, |cegx|}

Now we have to find the max{|bvs — cvs|, |cv1 — avs|, |avy — buy |}

103

{2l ool ql *lqv] “|xbaoq|yrow

{|(fbp J — fxb — [xb)o]*|(ffib
— Jh6 — [y — fob)oo|‘|(ffi+ fi — [fibp — fibp + Jyp — [2)oq|‘|(fy — Jb2 + [y

— Jab)xoq|“|(fo — Juyp)iql“|(f — Floxy gl |(fy — fab)fiqo]*|(f — f)oygo|}aw

\(f6p [— fab — fab)
T+ (JAB — [A5 — [y — [ob)ov + ([fi+fi— [Bp — A6p + fyp — [2)oq+ (fy — 6

+ fy — Jab)roq + (Jo— [yp)ig+ (f — [lawyq+ (Jy— fab)fiqu + ([— [)oyqo]

(((fp — f + Jab — fab)o + (fi—fi+ fibp — [fibp + 2 —yp + 2y — [2y
+ fabo —abo)q + (fb6 — [hb+ [y — fob)v)o —((o— fo+ Jyp —yp + vy — fry

+ Jwal —xab)o + ([fio — [fiyp + fory — [oxy)q + (ffiy — [liob + [oy — [oy)v)q]

V/

v/

200 — faq)

104

:aed_ ﬁ_ms_ “_&mmus_ “_&ua_ “_&No_stE

{(f = D2l (e = |
[0S = Hlipog| “[(fo — Fup)agq| |(f — Dfion|*|(1 = S)ibpoo|*[(fup — 2+ Jo— [yp)ov]

1(fy = Jab)aow|*[(ffiyp — [ha)qo|*[(f — [)owyqo|‘|(Jy — [fab)iv|*|(f — [)oy,n}jrow

(f = D2+ (Jp—Hzp+(f
— Dfipoq + (f2 — fyp)xoq + (f — 1)fiov + (1 — [)fibpov + (fyp — fo+ [o — [yp)ov

+ (Jy — fob)aov + (Jliyp — [fid)qo + (f — [lowyqo + (fy — fob)i v+ (f — [)oy, vl

(e = Jo+ Jup —yp + 2y — fry + [wab — xab)> + ([fio — [fiyp + [ory
= Jory)q + (ffiy — [fiob + [oy — [oy)v)p — ((fp — Jp + Jabp — [x)o + (Jlip — [fip

+ fwo — [ayp)q+ (Jfi—fi+ fibp — [bp + [yp —yp + o — [2 +yx — box)v)o|

V/

v/

_maa — Tao

105

:H%_ n_&u@_ N_ng@_ s_ “_Ho@_v.&ég

“_N
{C4 = Dol *|(f = Jop)g|*|(f — fip |
I fup — o)z ql [ffiqo] *|(J — 1)fibpo] *[(fyp — fa)qo|‘|(f6p — [)ov|*|([— [)zbo]

| fhiqol*|(1 — f)fibpeo| ‘| fy — fba)xqv| ‘|(f — [)ib,o]‘|(fy — Jab) p|}rvw

(S = Dpog+ (f = Jop)xog + (f — [fipa+ (fyp
— fo)wq + [fign + (J — 1)fibpo + (fyp — [2)qv + (f6p — [)ovo + ([— J)xboo

+ Jhiqu + (1 — [)fibpqv + ([y — f02)xqv + (f — [)fib v + ([y — [ab) D)

[((fp — Jp+ Jabp
— fx)p + (fhip— [lip+ fra — [oyp)q + (ffi —fi+ libp — [fibp + [yp
—yp +9— [o+yr—box)v)g — ((fbp— [+ Jab— [xb)o+ ([fi —fi+ fibp

— [fibp + 92 —yp + 2y — \&Q._.\Hmmlam@v@._. (fhib — Jh6 + \QIK@S@V@_

V/

v/

[tag — %an|

106

Hence,we have

d(la:b:c],Alx:1:y]) = d(la:b:c],[v1:vy:v3])

max{|bvs — cvs|, |cvy — avs|, |avy — buy |}

max{|a|, |b|7 |C|}max{|vl|7 |U2|a |U3|}

mazx{|a®|, |b*x|, |c*x|, |abegz|, |acegz|, |beegzx|, |abz], lacz|, |bex|}

N

max{|al,|b|, |c[}mazx{|aegx]|, |begx]|, |cegx|}

(since, |abz| > |ab|, |acz| > |ac|)

Case(i): If |b], |c| < |a| with the property p? < |a| < |eg| < p??, |b],|c| < 1 then

d([a:b:c],Alx:1:y]) = d(la:b:c],[v1:vy:v3])

maa{|a?],|1?], 2] labega], |acega], [beegal, lacal, |abe], [bea]}

<
max{l|al,|b|, |c|}mazx{|aegz|, |begx|, |cegx|}
_ maa{|a?].Jabege], aceg], lace],laba }
- laegx|
_ max{lacgl, |abegx|, |acegz|}
|a?egz]
(. leg| > 1 = |abegx| > |abzx|, |acegx| > |acz])
_ marfleg| pegr].Jcegal) _ maz(1, [be], eal
laegz| jazx]
< maztljalp 1 e
laz| lax| " |ax]
. 1 1
(since, |ax| > |a|then— < —)
jaz| |al
1 1
< —or—
jal lal
1 1
< ﬁ < pitl

107

Case(ii): If |al, |c| < |b| with the property p? < [b| < |eg| < p*?, |al, |c| < 1 then

d(la:b:c],Alz:1:y]) = d(la:b:c],[v1:vy:v3])

maa{|a?],|1?], 2] labega], |acegal, [beegal, lacal, |abe], [bea}

<
max{l|al,|b|, |c|}maz{|aegzx|, |begx|, |cegx|}
_ maa{|i?], labegal, pcegal, [beal, Jabal)
h |b2egz|
_ max{lbeg|, |abegz], [beegr|}
|b2egx|

(since,|eg| > 1 = |abegx| > |abz|, |beegzx| > |bex|)

_ maz{|eg|, |aegx|, |cegz|}
|begzr|
_ maxi{l,|azx|,|cx|}
||

maz{l, |z} 1 x|

< <
bz ba] " Jbal
(since, ba] > tfthen— < =)
since, |bx en— < —
b 0]

- 1 1

o] [}

1 1
< I? < pitl

108

Case(iii): If |a|, |b| < |¢| with the property p? < || < |eg| < p??,|al, |b| < 1 then

d(la:b:c],Alz:1:y]) = d(la:b:c],[v1:vy:v3])

maz{|a?],|1?], ¢}, labegal, |acegal, [beegal, lacal, |abe], [bea}

<
max{|al, |b], |c|ymaz{|aegz]|, |begx|, |cegx|}
B mazx{|c?|, |acegz|, |beegz], |bex|, |acx|}
h |c2egz]
_ max{|ceg]|, |acegz], [beegz|}
|c?egx]
(since,|eg| > 1 = |acegx| > |acz|, |beegx| > |bex|)
_ max{leg|, |aegx|, [begz|}
cegal
_ maz{l faz|, ba[} maz{l |z} 1 2]
|cx| D |cx| x| |cx]
. 1 1
(since,|cx| > |e[then— < —)
jex| d]
1 1
< —or—
e[|e]
1 1
<]ﬁ < W

Hence in all cases with any one of the conditions in the hypothesis are satisfied, then,

1
d(la:b:c],Alz:1:y]) < prESE Therefore,we get A.[z : 1:y] € Nigpq-

109

Corollary 5.3.4. If Ae PGL3(F,((x))) is taken from Theorem 5.2.1 then
AAil(}P>2 - N[a:b:c]) - {N[lzg:h] o N[d:l:e]}

P’I"OOf. 8111313()Se7/4_1(]I])2 - N[a:b:c]) ¢ {N[lzg:h] o N[d:l:e]}'

Consider an element, [t] € P? — { N[y}, which says that

Ail'[t] ¢ {N[ltg:h] o N[d:l:e]}

Thus,

Ail'[t] eP” — {N[I:g:h] v N[d:l:e]} (52)

By lemma 5.3.1 to 5.3.3, the equation (5.2) will be changed as,
A(AL[t]) = [t] € Njab:q which is a contradiction to [t] € P? — { N }-

Therefore our assumption is wrong. [|

Thus the Free generators theorem is proved and it provides a great choices of gen-
erators.It says that the pre-images of any pair of matrices in PGL3(F,((x))) gen-
erates a free subgroup in PGL3(F,((x))) and also it generates a free subgroup in

GL3(F,((x))).Its application in Cayley hash function is discussed in the next chapter.

110

Chapter 6

Hash function Using Free

Generators Theorem

We are recollecting the facts that the pre-images of any pair of matrices generating a
free subgroup in PG L3(F,((x))) and it generates a free subgroup in GL3(F,((z))).We
desire to obtain such a pair of matrices over Msy3(F),|[z]) that were free generators of
the subgroups of GL3(F,((x))) and define the projection mapping from an algebraic
structure to quotient structure which gives the images in GL3(F).

By using Free Generators Theorem,we obtain the collection of pair of matrices with
entries in F,[x] which is defined in set D.We work with the elements in D to construct
the Cayley Hash function and the security properties like protection of the local
modifications of a text, of the corresponding hash function.We can create an infinite
number of hash functions using the Free Generators Theorem by varying values of
p and n and here we clearly says that for what choices of parameters these hash

functions are the best.

111

6.1. Construction of the Hash Function

We require the following definitions to construct the Hash Function

Definition 6.1.1. Let p be a prime and we define the set as
D = {(A, B) 3 A, B € Ms,3(F,((2))) are pre-images of A and B in PGLs(F,((x)))}
That is, we define the set of all pair of matrices (A, B) such that A, B € G Ls(F,[z])

are pre-images of A and B in PGL3(F,((z)))} given by the theorem 5.2.1

Definition 6.1.2. Given a prime p and an irreducible polynomial r,(z) in Fp,[x] of
degree n and F, = F,|z]/ < r,(x) >.Let us define the projection function

T, + S —> GL3(F,) be the mapping from the set

S = {M € Msy3(Fp|x]) 3 rn(x) 1 det(M)} to the group GL3(F,).

That is,the map yields the matrix entries to their projection in F;.For ease of notation,

we will write 7, as m , when r,(z) is not mentioned.

Remark. If det(A) and det(B) are not divisible by 7,(x) then the construction of the
hash function using the projection map from a choice of generators (fl, B) in D to

elements of GL3(F,).

Formal definition of the hash function is defined as follows,

Definition 6.1.3. Let p be a prime and an irreducible polynomial r,(x) in F,[z] of
degree n.Let us choose the matrices (A, B) € G such that det(A) { r,(z) and
det(B) { r,(z), then the associated hash function Hy : {0,1}* — GLs(F,) are as fol-

lows,if m = myms.......m,, be a binary string. Then Hy(m) = h(my)h(ma).......... h(my)

h(m,, (A) ifm; =0
where, h(m;) =

h(m, (B)) ifm;=1

112

We denote the set of all associated hash functions of (4, B) € D and r,(z) as H.
The hash function H4, which defined here is resistant to the previous attacks on the

Tillch-Zemor hash function and possesses some strong properties.

6.2. Properties of the Hash Function

Now first we scrutinize the properties of the elements in H.To obtain the local modifi-
cations property,we need the degrees of the entries of A and B which are small when

compared to n.

6.2.1 Small Modifications Property

The main goal of our hash function H, is to protect the small modifications property
by using degree argument.

Suppose that A and B generates a free monoid in Ms,s(F,[2]), for any polynomial
generators in D.We need to prove the following results,

(i) part(a), which is related to the degree argument in the Tillich-Zemor’s
construction.

(i) part(b) and part(c) gives that our matrices in D satisfy a strong property.

Proposition 6.2.1. Let (A, B) € Ms,3(F,[z]) such that A, B generates the free
monoid Msys(Fy[x]) and let r,(z) be an irreducible polynomial in F,[x].Suppose H,
be the associated hash function defined in 6.1.3 for (A, B) and ry(x).Assume that

7 = maz{deg(A),deg(B)} and that m € {0,1}' and m' € {0,1}* are different bit

strings for some 0 < I,k <n | 1. Then

113

o Hy(m) # Hy(m')

o If (A, B) € D then Hy(m) # a.Hy(m') for any a € F, such that inspecting 'a’ as

an element of F,|z], (deg(a) + kT) <n
o Hy(m) # a.I for any a € Fy.

Proof. Let M and M’ be the product of A’s and B’s respectively produce Hy(m) and
Hy(m') in Msy3(F,[x]),before projecting M and M into GL3(F,).So that

m(M) = Hy(m) and 7(M') = Hy(m'). Since I,k < n | 7 then M has degree atmost I7
and M’ has degree atmost k7. We know that, each of the entries of M and M has a de-

gree less than n then 7(M) = n(M') € Gl3(F,) if and only if M = M' € Ms,3(F,[x]).

(i) Since m and m’ are distinct messages then the products of A’s and B’s are also
distinct. Clearly , M, M’ € (A, B) and by our hypothesis A and B generates a free
monoid. So,

= M = x129......... Ty YLY2erreaann yr = M, where z;,y; € {A, B},
foralli=1tol,j =1 to k.

— M # M in Ms,3(F,[x])

— 7(M) # (M) in GL3(F,)

— Hy(m) # Hy(m')

(i) Since, A, B in D then their pre-images are in PGLs(F,((x))) generates a free
subgroup of PGLs(F,((z))) which implies that [M] # [M']

= M # aM’ for any a € F,[z]

Suppose,m(M) = arx(M") for some a € F, in GL3(F,), inspecting ’a’ as an element in

E,[x], then M = aM' + r,(x)M" for some M" € Ms,3(F,[z])

114

By hypothesis, deg(a) + deg(M') < n = deg(aM') < n and M has all the entries,
each of degree less than n, which says that M~ =0
Therefore, M = aM’', which is a contradiction.

Hence 7(M) # arn(M'). Thus, Hy(m) # aHy(m') for any a € F,.

(iii) It is not possible for the products in 7(M) and 7(M') of length less than n | 7
to get the identity.
Therefore, Hy(m) # al for any a € F,

Hence, m(M) and 7(M') must have order atleast n | 7 |

6.3. Resistance against different attacks

(i) To avert the collisions of the form m(A) ™ A) = | and w(B)rd=®B) = I we

consider that 7(A) and 7(B) must be of large order.

(i) If det(m(A)) is primitive root then order(w(A)) = q —1
However, avoiding short relations attack is of the form W (r(A), n(B)) = kI, where
ke Fr and W(n(A),7(B)) € {n(A),7(A™"),n(B),7(B~")} be a non-trivial word.To

avoid such relations we proved the proposition.

Proposition 6.3.1. Let (A, B) € D and let W(A, B) € {A, A", B, B~} be a non-

trivial word then there exist a choice of r,(x) such that if F, = F,[z] |< rp(x) >,then

W(r,, (A), 7, (B)) # kI € GL3(Fy) for any k € F}

Proof. Let ¢ = det(AB) = det(A)det(B) € F,|x]

t
We define,the localization of F,[x] at ¢ as Fp[x]i/s = {¢—m 1t e Flz],m =0}

Sime’% - det({ZlB) B (detl(fl)> <det1(3)>

115

we have, #(fl) € Fplx]i/s and ﬁ([}) € Fplx]i/s

We know that,Fp[x]y/4 is contained in the fraction field of Fy,[x] and also in F},((z)).
Therefore, A, B € GL3(F,[2])1/s = GLs(F,((x)))

We define the ideal < r >= {rt 5t € F,[z]} for any irreducible polynomial r € F,[x].
Assume,r { ¢ and let 1,4 be the localization of 7 at ¢.

(.e) ryjo = {;—fn Ste Fyle],m > 0}

Now,let us consider a surjective homomorphism from F,[z],/, to F, under the irre-

ducible polynomial.

(i.e) n : Fplx)i/y — F induced by x — a, where a is a root of 7 and has a kernel

7'1/¢.

E,|x
Thus,by the first isomorphism theorem gives as,M = Fy.

T1/¢

Under this homomorphism, the natural images of A and B in GLs(F,) is m,.(A)
and 7,(B) respectively.

Since A, B € D, then their images A, B € PGLs(F,((x))) also generate a free sub-
group,this says that no freely reduced (non-trivial) word in {A, A=, B, B~'} can be
[or any scalar multiple kI of I for any k € F.

But we observe that images of A, B in GLs(F,) under homomorphism may have

W(m,(A),n,(B)) = kI for some k € F* if and only if inspecting k € F,[z] < Fy[z]i/s

k+a p 0
(i.e) if W= 6 k+pu X |, wherea,B,0,7, 1) 0,w,ve Fy[r]y,

0 w k+v

116

and 7,(a) = n.(8) = 0,(0) = () = (1) = 0 (A) = (0) = np(w) =1 (v) = 0
Hence,we choose 7,(z) € Fp|x] such that any one of the 7, (i),
i€{a,B,0,7, A\ 0,w, v} must be non-zero.

We need to choose r,(z) very carefully to avert from a small set of relations. [

6.4. Consequences of the determinant

We find unexpectedly that the leakage of the knowledge about the original bit strings
by choosing f and f will leads to the potential issues.We suggested the padding

method to avoid these potential issues.

Suppose that 7(A), 7(B) € GL3(F,) such that det(r(A)) = Q and det(n(B)) = w.
If m € {0,1}' be the message of length [and M = H(m) € GL3(F,) be the hashed
values of message m,then we assume that [= [y + I3 where [;-number of zeros in m

and ls-number of ones in m.

6.4.1 Attacks through determinant

The leakage of any information by the determinant will leads to (our construction)

some potential issues.We mean the notation dlog,(y) such that 2% =y for z,y € Fy

and ke {1,2,...q— 1}

(i) Finding length of the message [is efficient,when Q = w.

If Q@ = w and also we find out the relation dlogq(det(M)) = I(mod(p™ — 1)) ,
where [is the length of the message.

= Q! = det(M),which says that | << p” — 1 (since p"” — 1 is much larger than any

117

message length).
So,that there is a possibility that the hackers can simply compute the discrete log of

() to determine the message length 1.

(ii)Leaking knowledge about [; or Iy is efficient when ged(ord(f2),ord(w)) is near
to ord(Q2) or ord(w).

We know that [; is the number of zeros in m,l, is the number of ones in
m and also l; + lo = [,length of the message.
Assume that ord(Q) = s and ord(w) = t with ged(s,t) = k
we know that, s and t must divide the order of the group F;. (i.e) ord(F;) = p" — 1
Since,det(M) = Qhw'2
= det(M?®) = Q1w (since, Q° = 1)
= det(M?) = w*®
Thus, det(M?®) =1 if and only if ¢ | sl which is true % | 15
Hence a hacker can determine det(M*) and able to conclude that the ly-number of

t
ones in m is divisible by z if det(M?®) =1
DN t . t
(i.e) if det(M?) =1 then Z | I3 and if det(M?®) # 1 then z 11y
This attack would be difficult if ged(s,t) is large in comparison to s and t.

(i.e) ged(s,t) > s or ged(s,t) >t and ged(s,t) # s ort

For example,if w is a primitive root.So ord(w) =t = p" — 1 and also

no1
ord(QY) = s = b 5 then the hackers can arrive at a conclusion that the fact of

being odd or even of lp-number of ones in m,by finding out whether det(M?) is 1 or

118

not.
We observe that the strategy of this attack does not give any information if 2 and w

are primitive roots.

(iii) If © is a primitive root and w = " for some r such that [; < r and
l1 +rly < p™ —1 then
(a) find out I} and Iy

(b) find out the parity of [or I3

(a) We know that det(M) = QF for some k
= det(M) = QF = QL Qrl
— k=1 + rly(mod(p™ — 1))
Since l; + rly < p™ — 1 then k = l; + rly and since [y < r then é = l?l + 1y
where [5 is an integer and l?l <1
If a hacker can able to find out these dlogg(det(M)) = k(mod(p™ — 1)) and
dloga(det(w)) = r(mod(p" — 1))

(i.e) he can efficiently able to determine dlogg, then he can get the k and r val-

k
ues.Using these values he can find out the |—| to get ls.
r

k
From these [, and r and also using the relation L lo = — he can easily compute [y
r r
also.

Thus,he would know [;-number of zeros and ls-number of ones in m.

(b) Since € is a primitive root, we know that w = Q" for some r and also we
know that det(M) = QF where k = [; + rly.(by part(a))

sincel=l1+l2:>l2=l—ll

119

Sk=bL+r(l—=0L)=rl+ (1 —r)h(mod(p" — 1)).

Hence the hackers can efficiently find out dlogq to get the k and r values.We choose
p is odd then p™ — 1 is even.Therefore,if k is even and r is even then [; is even and if
k is odd and r is odd then [; is odd.

Similarly, if k is even and r is odd then [is even, and if k is odd and r is odd then [
is odd

Thus,it is efficient to find out the parity of [or ;.

Again, we notice that the above attack part(a) and part(b) can be protected by
choosing €2 be a primitive root and w = Q" | for some r such that ged(r,p™ — 1) =1
then w is also a primitive root.

We suggested earlier that both 2 and w be a primitive root then these above attacks
are also avoided and also these attacks depends on being able to compute discrete

logs in F.

6.4.2 Weakness in the Distribution of the determinant

Assume that 2 and w are primitive roots and w = " for some r > 1 and

ged(r,p™ —1) = 1.

Let m be a bit strings of length [and det(H (m)) = QF where k = I, +rly(mod(p™—1))
for some 1,1 € Ng and [= 1] + [y

Now.fix | then ord({l1,lo e Ny and | =1, + lo}) =1+ 1.

Hence the possible values of the determinants of the hashed values of bit strings of
fixed length [is [+ 1.

Therefore, we know that the messages of length [of the hashed values are not dis-

tributed uniformly between all possible determinants, since their determinants of the

120

hashed values must lie on a subset of [+ 1 possible values of GL3(Fy).

6.4.3 Padding

There is a common possibility in Cryptography to averting attacks like the weakness
in the determinant as mentioned above.That weakness is cleared by padding messages
with some bits to vague the original determinant of the hashed value.

For example,choose one of the standard padding scheme (PKCS-5) which multiple
the message block length and added the amount of padding as required [48].

We suggested our padding as follows:

Let the elements are taken from DD and let [be the length of the message.Now we
pad our length [messages to length 2/ bit strings with [-ones and [-zeros.Then the
determinant values M of message m is det(M) = QF = Q0+ Hence all the output
of the determinant values are Q1+

Thus, the padding will completely remove the weakness of the determinant on security
and also the distribution problem in determinant.

If choose 7(A), 7(B) € D generates all of GLs(F,) , then the number of hash values
will be ord({M € GL3(F,) 3 det(M) = Q0+Y) = ¢*(¢® — 1)(¢* — 1).

If 2 = w, then any type of padding to a fixed length would remove both the weakness

on security and also the distribution issues.

6.5. Condition for opting generators

Let D = (A, B) € D,det(n(A)) = Qand det(n(B)) = w and 7 = max{deg(A), deg(B)},

then if opting A, B then the following conditions are to be satisfied,

121

(i) n/7 is chosen to be large.

(i) Q,w are primitive roots.

(iii) n is prime and either f, f* or f , f’ are primitive roots of Fj.
(

iv) 2 or w is not square in Fj,.

Here, condition(iv) is satisfied, if the Q,w are primitive roots and prime p is odd.
Suppose,prime p is odd and Q = s? for some s € F,.(i.e) Q is a square in F},.
Since s € F then s77' = 1.

a1 a1
Therefore,Q< 2) = (52)< 2) = 1.So0 ord(92) | (%) which implies that
() is not the primitive root,which is a contradiction. Hence, 2 or w is not square in

F,.

Finding a primitive root of small degree is not easy for a general case of finite field and
noted that the maximum degree of such a primitive root is indeed bounded [74].For
definite possibility of r,(z) will make this part easier.There are many software pack-
ages will help us to select the r,(z) as a Conway polynomial for r,,(z) which assurance

that the x is the primitive root.

6.6. Security on known attacks

The attacks on the Tillich-Zemor hash function are considered to verify the hash

function in Hjy.

(i) The attack which depends on 7,(z) such that A or B had small order.Thus,the

122

probability of randomly chosen 7,(z) such that A and B with large order is really
high for Tillich and Zemor’s generators [1].
Here in our case the elements are taken from ID,we know that by choosing

det(m(A)) and det(m(B)) to be primitive roots, will ensure that 7(A) and 7(B) have

order atleast (¢ — 1).

(ii) In [7], says, to prove that the small order attack presented by steinwandt et.al is
also extendable to larger characteristics. The attack says that the r,(x) is analysable,in
the sense that the polynomial is composed into the two non-trivial polynomials.
However, it proves that in F5, the probability that the randomly chosen irreducible
polynomial of degree n is analysed tends to 0 as n tends to infinity. These methods
also extend to irreducible polynomials over F), [8].

Hence, steinwandt et, al. noted that the small order attack could be avoided by sim-
ply choosing n to be a prime [69].

Here in our case, choosing n to be prime will exclude from the small order attack.

(ili) In [61] Petit, Lauter and Quisquater referred about that the attack used on the
Morgestern hash function could possibly be used for the Zemor-Tillich hash function
and similar construction by embedding the associated Cayley graphs into Morgestern
graphs.But no other details of this attacks were given and this construction is not

analysed further.So, this type of attack will not explored.

(iv) Geiselmann’s Embedding attack was independent of the choice of irreducible poly-
nomial 7, (z) and the alternative description of this attack was discussed in [7].This

attacks computing time depends on the computation time of computing the discrete

123

logs in GL3(Fon). We know that in [4] , the discrete log problem in G L3(F,») can be

reduced to the problem of computing discrete log in F(,n)>.

By applying Coppersmith’s algorithm [31] the computation of the discrete logs in
F

»» when p=2 is made faster and also this algorithm applies in the case that p is

fixed and n tends to infinity, and runs in subexponential time [30]. Now, Copper-
smith’s algorithm is the fastest known algorithm for computing discrete logs in Fjn,
and in F(,»)® where n is prime and p is not close to n in size [2].

Generally, the computation of the discrete logs in F,» with odd characteristics is
examine to be more difficult [6]. Hence this attack is efficient but not practical. Be-
cause it produces the collisions only for the long strings of zeros and ones, which is

not helpful in practice.

Hence all the attacks which we discussed here are the standard attacks.These attacks
have no advantage and may be even more difficult for our hash function Hy. All the
attacks we discussed are runs in exponential time,choosing parameters comparable
to those in cryptographic standards is expected to be sufficient to provide a secure
hash function [38]. Now the NIST approved hash algorithms are SHA3-224, SHA3-
256,SHA3-384,SHA3-512 [57] and these algorithms have their security strength in bits
related to the numbers. For example, SHA3-512 gives 512 bits of security against a
preimage or second preimage finding algorithm and 256 security bits against a col-
lision finding algorithm.But,Mullans attack in [58] had a running time O(,/g) and
produce collisions of length O((logq)?/log(logq)), which is the fastest known attack.

If we choose p" ~ 2°'2 will provide equivalent security as a SHA3 family.

124

By choosing some suitable and satisfiable conditions to our hash functions H4.They
are secure against all the previous attacks on the Zemor-Tillich hash function and
also by using padding method the potential weakness in our hash functions H, are
removed.Thus, for a suitable choices of parameters, our hash function H, are collision

resistant,pre-image resistant and second pre-image resistant.

6.7. Illustrations for prime p=3

For an odd prime, p=3 we consider how the polynomial generators A, B € D for some
simple choices of eigenvectors will look like and we note that our examples are too

small to apply the hash function H, along with the padding using the python code

(x,y)-

6.7.1 Examples for p=3

For an odd prime, p=3 we consider how the polynomial generators A, B € D
look like for some simple choices of eigenvectors [a:b:c|,[1:b:¢],[1:g: h],
[Lb:e [1:g:
[1:b:c][1:g:n] L 5],[1;@;%],[&:1:«5] as [1:0:0],[0:1:0],[1:1:1],
[1:1:2],[1:2:1]
These possible choices of [1 : b : ¢],[1: g : Al [1:b:é&,[1:§:hl,[d:1:¢

hl[d:1:¢. Wefix[a:b:¢ =1[0:0:1], and choose

in some order.

gives 6 different pairs of (A, B) which are shown in table 6.1. We name these choices

of (A, B) as Gi(f, f. [, f’) Here, for our convenience, we denote G;(f, f', f, f’) as

We know that the elements [1:0:0[,[0:1:0],[1:1:1],[1:1:2],[1:2:1]€P?

which are all distance 1 apart. So these values satisfies the condition (i) of theorem

125

5.2.1.
If we choose d = 0 then for any f, [, f, f’ € F,|z] such that f, .1, f’ have a non-zero

constant term which satisfy the condition (ii) of theorem 5.2.1.

For prime p > 2, the condition (iii) of theorem 5.2.1 is satisfied by the proposi-
tion 5.2.2.

Hence these choices for prime p=3, satisfies all the conditions of the theorem 5.2.1 and
thus any pair of matrices (A, B) in table 6.1 generates a free subgroup in G'Ls(F,((z)))

for a prime p=3.

Let p® = p® and denote the image of x under the projection mapping as o.With
the help of the Conway polynomial algorithm, we choose r,(z) = 23 — x + 1, which
guarantees that the image of x in F, (i.e) a is both the root of r,(z) and also the

primitive root of F,.We know that F,[z]/ < r,(x) >= Fn|a].
Using the table 6.1 in the case p=3, G4(A, B) then their determinant is det(A) = 2f f

and det(B) = 2f f' Now we have the choice of generators of Ge(f, f) were in table

6.1,

126

I 0 0 ¢ S+ 1+ /+

[o:r:0] | [0:0:1] | [@wan) | [1men) | [rigen] | [1:0:0] =1 Jc 0 0 e+ Je+Jc (gv)o
/-1 0 Jt o S+ Jc+/
o 0 0 ¢ S+ 1+ 4]

lo:T:0] | [eimet] [lowoet) | [1meT) | [Tt | [1:0:0] Je+.f 4t 0 0 fet+f Jetle (g 7)o
JT+1 0 ¢ o S+ Jc+/f
4 e+ f e+ I 0 0

[eeret) | [teen] | leiren] [fom1:0]) | [0:0:1] | [1:0:0] e+ F+) fe+a 0 4 0 (g'v)s
et Jfe+ [+ 00 f
Jetfe Je+r et/ 1 0 0

e [levtl [(vt [orol |[oo:t) [[r:o0] | | Je+df Je+T fe+1 0o 4 0 (V)
Je+f Je+1 t+ie 00 f
JH4 fre Jet T 0 0

[t (e | [eet] | [oreo] | [o:0:1] | [1:0:0] Je+f f+1 e+ S 0o 4 0 (V)
Je+f e+f S+1 00 f
¢t Je e+f Je+ S I 00

[er] | [veet] | [ool | [o:0:1] | [T:0:0] et ctie Je+f 0 4 0 (@'v)'o
0 et+d S+S 00 f

prpl [[yf:a] | Rrer] | [ws:a] | Pra:t] | [Prqie] q v (@)D (V)'D

0=P UHM SI0300AULSID Jo seotoyp ofdwuts 10§ (g)'H ‘(V)'H 19 9[qel,

127

We know that —2% = 2%, —2* = —22 + 2 = 27, —2'0 = —22 — 2 = 2?3, Since
p" — 1 = 26 then det((A)) and det(n(B)) are distinct primitive roots.
Now using padding in the input binary strings, we execute the hash function H,.The
simple padding method is as follows, Let m = m;....m,, be a binary strings of length
n.We define the padding of m bit strings as mj...... MM ... m, where m; = 1 if

m; = 0 and m; = 0 if m; = 1 for all 1 < ¢ < n.This padding method will remove the

weakness in the determinant and exist same the determinant.

Table 6.2: Possible choices of f, f', f, f~'

f £ f [| det(A)] det(B)
x x x? x? 2 | 27
x? x? T x 2217 | P
2x x x? x? b 7
x? x? 21 x 217 22
22 22?2 T T 2217 221
222 x? T 2x 2 221
T T 212 222 215 2
x 2 202 x? b 22
x x z? x 21 | 2?3
x? x T x 2x% | 221

Here along with the above parameters, we executed the hashed value of Hy
for an empty string as a test vector. The tests were executed in Intel(R) Core (TM)

i3 2.00GHZ computer with 4GB of RAM using python (x,y) code.

128

T 2gVE€ Tt P00 + 120 + gP0T + ogVCT + 1gV8 + ggOTC + VST + (gVCC + 1¢VET + ggVT + ¢PVC + 1¢0C + gPTC + ogPF

T 1gOVT + gg00C + 6000 + pPL + (yP0C + 509 + PET + 09T + ST + ;06 + V¢ + gOTT + V6T = o

gPC T PG+ VG + 09T + gVG + 008 + gVTC + 6VIC + o1 V8 + (V€ + V€ + ¢106 + 1 VGC + o VLT + o0 + ,PET + ¢ V0T
T 61U8T + 0gPTC + 1zP€ T ¢gP0C + ¢gPL + 5206 + ¢gP6 + ggPLT + 1506 + ggPL + o¢P€ + 1¢V6 + ¢¢PCT + ¢¢PET + g0 G + PG

+ 9001 + 160TT + geP8 + V€T + ;P91 + V0T + 00T + 09T + V8T + V€ + 00T + V0T + V8T = £lo

VL + g00C + ,0CC + gVTIC + 1P1C + 11OF + ;1060 + o109 + 1OCT + OVC + oP0C + ;04T
T g1V6T + gP1C + 1gP9 + P90 T V8 + 1g0TC + ¢gPET + ggV6T + gPIC + 65018 + ggPIT + gV + 2600 + ¢¢VL + 1cVET

T 9g0GC T 1g00C + ggOT + 605 + (0T + V€ + 50T + g OF + OV T + OTT + o001 + ,0F + ¢ OF + 071 = o

J\ONH + ¢OLT + ¢O8T + ,00C + gOTC + gOTC + £1OTC + ¢1P9T + 510G + 1OGT + ¢1O8T + ,10¢ + gOLT + 61 OTT + (OF1
T 1gPGT + ggP8 + V6T + g VE + ¢gPGC + 9gPIT + P9 + ggP61T + gL + P91 + 1¢P6T + ggVIT + ¢ePCT + 3¢V8T + VLT

+ 9e0C + 1ePET + geP9 + eOLT + 306 + 1308 + 5VET + 00T + 13001 + ;00T + ,OFT + gVET + 07 = 0'9YM

€€ ¢t I€po

®o o Teo | ge vy ur onpea poysey oYy 308 om ¢, Surns Lydume ue 10

W

€T <¢Ilp Ilp

129

gV8FVVC+ VE+ gUTE+ ,VE+ VET + OV + (V6T + VL + g PV + ¢ PTG+ 1 VTC+ VT + oV TC+ 1 PTT + g VL4 6 VGC+ (VL
T 1001 + ggPVC + ¢gP0C + 1gPEC + ¢gPVC + ggPT + 1gPT + gg08 + VT + g¢VLT + 1g09 + £¢VET + ¢¢P0T + 3OV T + V81

+ 9gV8T + ;0L + geDOGT + VT + (VST + VT + g0ET + 0T + 130CT + 06 + o0 + 1 VTT + 0T + V8 = “0

OV 1 000 + 00T 4 ¢OGT + gOTT + ,0CC + gU8 + 09T + (1 OF T + 1108 + 100 T + ¢10€ + 1OV + ¢ OTT + ;098 + ,10CT + 4100
T 61U8T + gP9 + 1gVGC + V€ + gVEC T 320G + ggVIT + 9gPIT + 150 + ggVET + V8T + ogP0T + 1gV9C + V8T + V1T

+ 160G + gPG + ggO0T + ,gVET + geVTT + 606 + 00T + 20T + 06 + VT + ¢ OTT + VT + 13 OLT + VT + 6 0€ = 0

m@ﬁ._”+mdw+w@w+mwOONnTwwOw;vnd@nTm@ﬁNndew._”IT:dm.mITNﬂdﬁITmeOmﬁnTdemnngNmnTbﬂdm.mn_nwﬁdﬂn_lgdm._”ITONNOMNITHNVOW._”
T P18 + P91 + 3gPTT + gOTC + 9gP5C + 1g08 + V8T + zPVT + o¢P61 + (¢PTT + ¢P0C + ¢¢VEC + 1¢PVC + V6

T 960+ 1gVET + ggP0C + 01T + V€T + V€ + OTT + OTT + P01 + VLT + 5001 + VTT + 00T = o
JOTT+ OTT + OS]+, 06+ OTT + 0%+ 01 PGT + [PV T+ ¢ OTT + 06T + g O8T + o V6 + , (06T + g 0T + 610CT + 0208+ 1707 T
T 2gVE€ Tt ¢gP0C + 120 + gP0T + 9gVCT + 1gV8 + ggOTC + VST + gVCC + 1gVET + ggVT + gPVC + 3¢0C + gPCC + ogPF

T 1OVT + ge00C + 6000 + PL + P00 + 509 + VET + 09T + 10T + VCT + 50T + VT + V8T = o

wdﬁ.mnmeO.:”n_nwwOWﬁIT\GmnTwwON.HImeONITE@N.HIT:MGUW.HnTmKGﬁ.Hn_nwﬂd@.HITmﬁdw.mITSQOQITNH\GAJ;nTwH\G._”NITQH\GmNITON\GwlT !

130

“UoI3oUNg YSey I0WeZ-UDI[[L], 93 U0 syorjje snotaaid ay) 09
9OUR)SISOI AJLIMNDOS 9T SUOI}OUN] [SRY 9SO [,"SUOIOUI] SR 1S9 9} 93eaId [[IM oM ‘sIojourered o[qelIns Jo Sed10yd [Yons

sursooy)sonea u pue d Surdrea Aq suorouny ysey Jo IoquINu ojIUGul UR 9)RIOUSS UL dM TOI0A} SI0JRIdUDS 991 SUIS()

0T +OTT+ 06T+ 0L+ 06+ OLT+ OET+ , 06T+ O+ 100+ 11OF T+ ;P08 + ¢ PEG+ 3108+ 1 OGT + 0G4, 1 OTT + o100 T
T 61000+ 0gP Gt 1gVL+ ggPV T+ ggPVC + 35098+ g PTG+ 9gP0C+ 1gP T+ 6P LT + g9 + (gD T+ V8 + ¢V + 36090 + o VET

F9gOLT + 1OTT + 609 + 6081 + (00T + VL + g VET + ¢ PIT + 1011 + VT + VL + V1T + g OVC + V1T = Fo

131

Conclusion

Cayley Hash functions are efficient cryptographic hash functions constructed from

Cayley graphs.Hashing zero’s and one’s to the discrete Heisenberg group over F), with

1 10 100
the generators A= |0 1 0|land B=]9 1 1| The proposal which defined here

0 01 0 01

is efficient and it attains 4n additions and n multiplications to hash a binary string of
length n.Additionally, one of the computational properties of the Cayley hash func-
tions are parallizable, which can enhance the efficiency of the defined proposal.Also,
evaluated the randomness of the output distribution of the hashed values are uniform
which reduced the occurrence of collisions.The girth of the hash function in discrete
Heisenberg group over F), gives the lower bound of the hash function H; is logs(p).For
example,if choose p is of order 22°¢ then the defined hash functions with two gener-
ators does not have collisions except if one of the colliding bit strings of length is
atleast 256.Finally, analysed the hash function with known attacks like generic at-
tacks,subgroup attacks, elements of small order which can be averted which says that
our hash function H; has no visible threat.

Even though the defined hash function H; is secured,it has one important weak-

132

ness, for short messages the pre-image can be calculated. The one solution is the
padding method.The other solution for this weakness in H; is to introduce a new
vectorial version of the hash function H,.This function Hj is very efficient and the
computation of the vector-by-matrix multiplication takes only p additional require-
ments, which is negligible for long messages.Here also, the output distribution of the
hash functions are uniform which reduce the occurrence of collisions.
The elements of neighbourhoods in P? with respect to the metric are proved.Several
intermediary results were obtained during the above studies.Free Generators theorem
are proved as an application of Ping-Pong lemma in [73] and Free Generators theorem
is applicable for a prime p > 2 and d > 0.This theorem provides an extensive choice
of such generators.
Applying the Free Generators theorem,the hash functions are constructed and it re-
tains its Modifications property using degree argument.Also verify the security prop-
erties of the hash functions using different attacks.The padding will completely remove
the weakness of the determinant on security and also the distribution problem in de-
terminant.
Finally, Cryptographic hash functions like SHA-256 and SHA-512 have a maximum
input message size of 264 — 1 bits and 2!%® — 1 bits, respectively [67].Here our defined
proposals of hash functions in the above context, takes arbitrary input to output the
fixed length hash values.

There is sufficient extent for the future studies in the context of above investiga-

tions

e Keyed version of the hash function using discrete Heisenberg group can be

defined and analysed along with its security.

133

Cryptanalysis of the hash functions discussed in chapter 2 and chapter 5 can

be determined.

Finding condition for which < w(A), 7(B) > generate all of GL3(F}) is upto the

future work.

The proper choosing of padding and finding out the small modifications property

are existing in PGL3(F,((x))) are to be analysed in future.

The speed and distribution of the elements in D are to be examined in the

future.

The method appears in chapter 4 can be non-trivially extended for finding
generators of free groups in GL,(F,((x))) or PGL,(F,((z))) for r > 3 could be

developed.

Applying the ideas of Free Generators theorem to construct free generators G' L3
over the local field like (), provided by its appropriate distance is left to the

future work.

Keyed version of the hash function can be produced and analysed using the

ideas in chapter 5.

134

Appendices

Appendix A:Average Running time of the Hash func-
tion H;

a=((1,1,0), # matrix A #

(0,1,0),

(0,0,1))

b=((1,0,0), # matrix B #

(0,1, 1),

(0,0,1))

#inputString = raw-input(“InputString.”)
print("Keep input string in a file called data.txt’)
#with open(’data.txt’, 'r’) as myfile:
#inputString=myfile.read().replace(’/n’,)
#myfile.close()

lines = [line.rstrip(’/n’) for line in open(’data.txt’)]
modval = input(“Mod Value.”)

def MatrixMul(mtx-a, mtx-b):

tpos-b = zip(*mtx-b)

135

rtn = [[sum(ea*eb for ea,eb in zip(a,b)) for b in tpos-b] for a in mtx-a]
return rtn

def MatrixMod(mtx-v, modvall):

rtn=[[0, 0, 0], # matrix B #

[0,0,0],

[0,0,0]]

1=0

while 7 < 3 :

=0

while j < 3:

rtnfi][j]J=mtx-v[i][j]%modvall

ji+=1
i+=1
return rtn

f=open(“result.txt”, “a+")

E Wit “A ot
o o 3= S
T
+++++++++++++++++ /17 %(str(datetime.datetime.now())))
fwrite(“A:%s B:%s Mod:%d /r /n” %(str(a),str(b),modval))
timelist = []

for inputString in lines:

start = time.time()

i=0

x=((1,0,0), # matrix #

136

(0,1,0),

(0,0,1))

while i < len(inputString) :
if inputString [i] == 0"
y=a

elif inputString [i] == "1"
y=b

v = MatrixMul(x, v)

w = MatrixMod(v,modval)

done = time.time()

elapsed = float(done) - float(start)
#print("Time:’)

#print (elapsed)

f.write(“InputStr:%s Len:%d MulMatrix:%s
ModMatrix:%s Time:%f /r /n” %(inputString,
len(inputString),str(v),str(w),elapsed))
timelist.append(elapsed)

averTime = sum(timelist) / len(timelist)
print averTime

f.write(“averTime: %f /r /n”%(averTime))

f.close().

137

Appendix B: Chi-Square Test Code for H;

import time

import datetime

from scipy.stats

import chisquare

a = ((1,1,0), # matrix A #

(0,1,0),

(0,0,1))

b= ((1,0,0), # matrix B #

0,1,1),

(0,0,1))

list12=] |

list13=[|

list23=[]

al2RejNo = 0

al3RejNo = 0

a23RejNo = 0

#inputString = raw-input(“InputString. ”)
#print(’Keep input string in a file called data.txt’)
#with open(’data.txt’, 'r’) as myfile:
#inputString=myfile.read().replace(’ /n’, ”)
#myfile.close()

def MatrixMul(mtx-a, mtx-b):

tpos-b = zip(*mtx-b)

rtn = [[sum(ea*eb for ea,eb in zip(a,b)) for b in tpos-b] for a in mtx-a]

138

return rtn

def MatrixMod(mtx-v, modvall):
rtn=[[0, 0, 0], # matrix B #
[0,0,0],

[0,0,0]]

i=0

while ¢ < 3:

=0

while j < 3:

rtnfi][j]l=mtx-v[i][j] % modvall

7+ =1
1+ =1
return rtn

def MatrixOp(cnt,inputString,modvall):

start = time.time()

i=0

x=((1, 0, 0), # matrix X #
(0, 1, 0),

(0,0, 1))

while i < len(inputString):
if inputString]i] == "0":
y=a

elif inputString[i] == "1"
y=Db

v = MatrixMul(x, y)

139

X=V

i+=1

w = MatrixMod(v,modvall)

done = time.time()

elapsed = done - start

#print * Time:.format(cnt, elapsed)

#print(elapsed)

f=open(“result.txt”, “a+”)

#f.write(“%d InputStr:%s Len:%d MulMatrix:

%s ModMatrix:%s Time:%.10f /r / n”%(cnt,inputString,
len(inputString),str(v),str(w),elapsed))

fwrite(“%d InputStr:%s Len:%d MulMatrix:%s ModMatrix:%s /r /n”
% (cnt,inputString,len(inputString),str(v),str(w)))
f.close()

list12.append(w|[0][1])

list13.append(w][0][2])

list23.append(w[1][2])

return

modval = input(“Mod Value.”)

categ = input(“Categories Value.”)

d = input(“Number of distributions ? (Above 1)”)
notice = 'Keep input strings in a files named datal-+ str(d) +’.txt’
print notice

n = modval*modval*modval

expFre = n/float(categ)

140

f-expl = [expFre for i in range(categ)]

print “expkre(SHOULD BE ABOVE 5):” format(expFre)
#print expFre

f=open(“result.txt”, “a+")

f.write(“ Yos -

-/t /n” % (str(datetime.datetime.now())))
f.write(“A:%s B:%s Mod:%d Categories:%d expFre:%f No Distribution:%d /r /n”
%(str(a),str(b),modval,categ,expFre,d))
f.close()
i=1
while ¢ <= d:
list12=] |
list13=[|
list23=[]
filepath = ’data’+str(i)+’.txt’
f=open(“result.txt”, “a+")
f.write(“Set : %d %s /r /n”%(i,filepath))
f.close()
print “Set:” i
with open(filepath) as fp:
line = fp.readline()
cnt =1
while line:

#print(“Line : 7 .format(cnt, line.strip()))

141

MatrixOp(cnt,line.strip(),modval)

line = fp.readline()

cnt +=1

fp.close()

f=open(“result.txt”, “a+”)

fowrite(“list12:%s list13:%s list23:%s /r /n” %(list12,list13,list23))
chil2 = chisquare(list12,f-exp = f-expl)

chil3 = chisquare(list13,f-exp = f-expl)

chi23 = chisquare(list23,f-exp = f-expl)

c12,p12 = chil2

s12 = “HO REJECTED”if c12 > p12 else “HO ACCEPTED”
cl3,p13 = chil3

s13 = “HO REJECTED”if ¢13 > p13 else “HO ACCEPTED”
c23,p23 = chi23

s23 = “HO REJECTED”if ¢23 > p23 else “H0 ACCEPTED”
f.write(“list12:%s chisquare12:%s %s /r /n” %(list12,chil2,s12))
f.write(“list13:%s chisquarel3:%s %s /r /n”%(list13,chil3,s13))
f.write(“list23:%s chisquare23:%s %s /r /n” %(list23,chi23,523))
print chil2,s12

print chil3,s13

print chi23,s23

if s12 == “HO REJECTED”:

al2RejNo +=1

if s13 == “HO REJECTED”:

al3RejNo +=1

142

if s23 == “HO REJECTED”:

a23RejNo +=1

f.close()

=1

f=open(“result.txt”, “a+”

fwrite(“al2RejNo: %d al2RejNo:%d a23RejNo:

%d /r /n”%(al2RejNo,al3RejNo, a23RejNo))
f.write(“pass proportion of al2: %f al3:%f a23:%f /r /n”
% (float(al2RejNo) /float(d),
float(al3RejNo)/float(d), float(a23RejNo) /float(d)))
f.close()

print “al2RejNo:” ;al2RejNo

print “al3RejNo:”,al3RejNo

print “a23RejNo:” ;a23RejNo

print('Finish’).

143

Appendix C: Average Running time of the Hash
function H,

a=((1,1,0), # matrix A #
(0,1,0),

0,0,1))

b=((1,0,0), # matrix B #
(0,1,1),

(0,0,1))

#inputString = raw-input(“InputString. ”)

print(’Keep input strings in a file called data.txt’)

lines = [line.rstrip(’/n’) for line in open(’data.txt’)]

print(’Keep random const in a file called ranconst.txt’)

with open(‘ranconst.txt’, ’/r’) as myfilel:
Crnd=myfilel.read().replace(’/n’, ”)

myfilel.close()

#print “inputString=",inputString

#print “Crand=", Crnd

modval = input(“Mod Value. ”)

def MatrixMul(mtx-a, mtx-b):

tpos-b = zip(*mtx-b)

rtn = [[sum(ea*eb for ea,eb in zip(a,b)) for b in tpos-b] for a in mtx-a]
return rtn

#3*3 Matrix mode

def MatrixMod(mtx-v, modvall):

144

rtn=[[0, 0, 0], # matrix B #
[0,0,0],

[0,0,0]]

i=0

while 4 < 3 : j=0

while 7 < 3:

rtnfi][jl=mtx-v[i][j] %modvall

j=1
1+=1
return rtn

#1*3 matrix mode

def MatrixMod1(mtx-v, modvall):

rtn=[0, 0, 0]

i=0

while ¢ < 3 :
rtn[i]=mtx-v[i]%omodvall
i4+=1

return rtn

def binaryString(arr):
binstr=""

for x in arr:

binstr+= str(“0:b”.format(x))
#print binstr

return binstr

def Xor(al,bl):

145

#print “xor 7, a , b, bool(a)! = bool(b)

res = bool(al)! = bool(b1)

return str(int(res == True))

def str2bool(v):

return v.lower() in (“yes”, “true”, “t”, “1”)
def prependZeros(str,no):

while no > 0 :

str = “0”+ str
no-=1
return str

def hashFunction(a, b, inputString, modval):
i=0

x=((1,0,0), # matrix X #
(0,1,0),

(0,0,1))

while i < len(inputString) :
if inputString]i] == "0":
y=a

elif inputString[i] == "1"
y=b

v = MatrixMul(x, v)

X=V

i+=1

w = MatrixMod(v,modval)

return v,w

146

f=open(“result.txt”, “a+”)

f.write(“ Yos

/r/n”

% (str(datetime.datetime.now())))

f.write(“A:%s B:%s Mod:%d Crand:%s /r/n”%(str(a),str(b),modval,Crnd))
timelist = []

for inputString in lines:

start = time.time()

v,w = hashFunction(a, b, inputString, modval)

w0 = w[0]

binStr = binaryString(w0)

hvecm-len=len(binStr)

crnd-len=len(Crnd)

if hveem — len > crnd — len :

Crnd = prependZeros(Crnd, hvecm-len - crnd-len)

elif crnd — len > hveecm — len :

binStr = prependZeros(binStr, crnd-len - hvecm-len)

#print “hvecm=", binStr

#print “Crand=", Crnd

if len(binStr)! = len(Crnd) :

print “Error len(binStr)! = len(Crnd)”

lenStr = len(Crnd)

1=0
exorResult=""

while ¢ < lenStr :

147

#print binStr(i], Crnd[j]

exorResult = exorResult + Xor(str2bool(binStr[i]),str2bool(Crnd]i}))
i+=1

#print “exorResult”, exorResult

vl,wl = hashFunction(a, b, exorResult, modval)
#print type(wO0)

#print type(wl)

t1=[[0,0,0]]

£1[0]=w0

#print t1

mulmat2=MatrixMul(t1,w1)

#print mulmat?2

#modmat2 = MatrixMod1(mulmat2[0],modval)
#print modmat2

done = time.time()

elapsed = float(done) - float(start)
#print("Time:’)

#print(elapsed)

f.write(“InputStr:%s Len:%d MulMatrix:

%s ModMatrix:%s %s /r”%(inputString,
len(inputString),str(v),str(w),str(w0)))
fowrite(“HVec(M): %s binStr: %s exorResult:
%s MulMatrix:%s ModMatrix:%s H1(M)(MUL):
%s Time:%f /r/n” %(str(t1), binStr,exorResult,str(vl),str(wl),

str(mulmat2),elapsed))

148

timelist.append(elapsed)

averTime = sum(timelist) / len(timelist)
print averTime

f.write(“averTime: %f /r/n”%(averTime))

f.close().

149

Appendix D: Chi-Square Test Code for H,

import time

import datetime

from scipy.stats import chisquare

a=((1, 1, 0), # matrix A #

(0, 1, 0),

(0, 0, 1))

b=((1, 0,0), # matrix B #

(0, 1, 1),

(0,0, 1))

list12=] |

list13=[]

al2RejNo = 0

al3RejNo = 0

#inputString = raw-input(“InputString.”)
#print(’Keep input string in a file called data.txt’)
#with open(’data.txt’, "\r’) as myfile:

inputString=myfile.read().replace(\n’, ”)
#myfile.close()

print("Keep random const in a file called ranconst.txt’)
with open(‘ranconst.txt’, "\r’) as myfilel:
Crnd=myfilel.read().replace(\n’, ")
myfilel.close()

#print “inputString=",inputString

#print “Crand=", Crnd

150

modval = input(“Mod Value.”)

categ = input(“Categories Value.”)

d = input(“Number of distributions ? (Above 1)”)
notice = 'Keep input strings in a files named datal-+ str(d) +.txt’
print notice

n = modval*modval*modval

expFre = n/float(categ)

f-expl = [expFre for i in range(categ)]

print “expFre(SHOULD BE ABOVE 5):” format(expFre)
def MatrixMul(mtx-a, mtx-b):

tpos-b = zip(*mtx-b)

rtn = [[sum(ea*eb for ea,eb in zip(a,b)) for b in tpos-b] for a in mtx-a]
return rtn

#3*3 Matrix mode

def MatrixMod(mtx-v, modvall):

rtn = [[0,0,0], # matrix B #

[0,0,0],

[0,0,0]]

i=0

while 7 < 3:

=0

while 7 < 3:

rtnfi][j]l=mtx-v[i][j] %modvall

j+=1

i4=1

151

return rtn
#1*3 matrix mode

def MatrixMod1(mtx-v, modvall):

rtn=|0, 0, 0]
1=0
while ¢ < 3:

rtnfi]=mtx-v[i] %modvall
i+=1

return rtn

def binaryString(arr):
binstr=""

for x in arr:

binstr+= str(“0:b”.format(x))

#print binstr

return binstr

def Xor(al,bl):

#print “xor”, a , b, bool(a) != bool(b)
res = bool(al) != bool(b1)

return str(int(res == True))

def str2bool(v):

return v.lower() in (“yes”, “true”, “t”, “17)
def prependZeros(str,no):

while no > 0:

str = “07+ str

no-=1

152

return str

def hashFunction(a, b, inputString, modval):
i=0

x=((1, 0, 0), # matrix X #

(0, 1, 0),

(0,0, 1))

while i < len(inputString):

if inputString]i] == "0":

y=a

elif inputString[i] == "1"

y=Db

v = MatrixMul(x, y)

X=v

i+=1

w = MatrixMod(v,modval)

return v,w

def oneLine(cnt,inputString,Crnd):
start = time.time()

v,w = hashFunction(a, b, inputString, modval)
w0 = w[0]

binStr = binaryString(w0)
hvecmlen=len(binStr)
crndlen=len(Crnd)

if hvecmlen > crndlen:

Crnd = prependZeros(Crnd, hvecmlen - crndlen)

153

elif erndlen > hvecmlen:

binStr = prependZeros(binStr, crndlen - hvecmlen)
#print “hvecm=", binStr

#print “Crand=", Crnd

if len(binStr) != len(Crnd):

print “Error len(binStr) != len(Crnd)”
lenStr = len(Crnd)

1=0
exorResult=""

while ¢ < lenStr:

#print binStr(i], Crnd[i]

exorResult = exorResult + Xor(str2bool(binStr(i]),str2bool(Crnd]i]))
i+=1

#print “exorResult”, exorResult

vl,wl = hashFunction(a, b, exorResult, modval)

#print type(w0)

#print type(wl)

t1=[[0,0,0]]

t1[0]=w0

#print t1

mulmat2=MatrixMul(t1,w1)

#print mulmat?2

#modmat2 = MatrixMod1(mulmat2[0],modval)

#print modmat2

done = time.time()

154

elapsed = done - start

#print cnt, "Time:’, elapsed

#print(elapsed)

#print str(datetime.datetime.now())

f=open(“result.txt”, “a+”)

fowrite(“~%d— \r"%(cnt))

f.write(“InputStr:%s Len:%d MulMatrix:%s ModMatrix:%s
%s \r” %(inputString,len(inputString),str(v),str(w),str(w0)))
fwrite(“HVec(M): %s %s Crand:%s exorResult:%s MulMatrix:
%s ModMatrix:%s H1(M)(MUL):%s Time:%f \rsetminusn”

% (str(t1), binStr,Crnd,exorResult,str(vl),str(wl), str(mulmat2), elapsed))
f.close()

list12.append (mulmat2[0][1])

list13.append(mulmat2[0][2])

f=open(“result.txt”, “a+")
fwrite(“++++++++++++++++++++++++
++++++++ -+ s
T
ot A

\r” % (str(datetime.datetime.now())))

f.write(“A:%s B:%s Mod:%d Categories:%d expFre:%f No Distribution:%d \r\n”
%(str(a),str(b),modval,categ,expFre,d))

f.close()

i=1

while 7 <= d:

155

list12=[|

list13=[]

filepath = "data’+str(i)+’.txt’

f=open(“result.txt”, “a+")

f.write(“Set @ %d %s \rsetminusn”%(i,filepath))
f.close()

print “Set:” i

with open(filepath) as fp:

line = fp.readline()

cnt =1

while line:

#print(“Line : 7 .format(cnt, line.strip()))
oneLine(cnt,line.strip(),Crnd)

line = fp.readline()

cnt +=1

fp.close()

f=open(“result.txt”, “a+")

f.write(“list12:%s list13:%s \rsetminusn” %(list12,list13))
chil2 = chisquare(list12,f-exp = f-expl)

chil3 = chisquare(list13,f-exp = f-expl)

¢12,p12 = chil2

s12 = “HO REJECTED”if c12 > p12 else “HO ACCEPTED”
cl13,p13 = chil3

s13 = “HO REJECTED”if c13 > pl13 else “HO ACCEPTED”

fowrite(“list12:%s chisquarel2:%s %s \r\n” %(list12,chil2,s12))

156

f.write(“list13:%s chisquarel3:%s %s \r\n” %(list13,chil3,s13))

print chil2,s12

print chil3,s13

if s12 == “HO REJECTED”:

al2RejNo +=1

if s13 == “HO0 REJECTED”:

al3RejNo +=1

f.close()

i+=1

f=open(“result.txt”, “a+”)

f.write(“al2RejNo: %d al2RejNo:%d \r\n” %(al2RejNo,al3RejNo))
f.write(“pass proportion of al2: %f al3:%f \r\n” %(float(al2RejNo)/float(d),
float(al3RejNo)/float(d)))

f.close()

print “al2RejNo:”,a12RejNo

print “al3RejNo:",al3RejNo

print(’Finish’).

157

Appendix E: Average running time of the Hash
Function H;

import time

import datetime

a=((1,1,0), # matrix A #

(0,1,0),

0,0,1))

b=((1,0,0), # matrix B #
1

71)7

d=((1, 1, 1), # matrix D DeprecationWarning #
(0, 1, 1),

(0,0, 1))

#inputString = raw-input(“InputString.”)
print("Keep input string in a file called data.txt’)
#with open(’data.txt’, "\r’) as myfile:
#inputString=myfile.read().replace("\n’,)
#myfile.close()

lines = [line.rstrip("\n’) for line in open(’data.txt’)]|
print("Keep Matrix C in a file called matc.txt’)
matlines = [line.rstrip("\n’) for line in open(’matc.txt’)]
#inputString = lines[0]

c= [[0,0,0], # matrix C #

[0,0,0],

158

[0,0,0]]

i=0

for x in matlines:

numbers = map(int, x.split())
c[j] = numbers

j+=1

print d

modval = input(“Mod Value.”)
gval = input(“Integer.”)

def MatrixMul(mtx-a, mtx-b):
tpos-b = zip(*mtx-b)

rtn = [[sum(ea*eb for ea,eb in zip(a,b)) for b in tpos-b]
for a in mtx-a|

return rtn

#3*3 Matrix mode

def MatrixMod(mtx-v, modvall):
rtn=[[0, 0, 0], # matrix B #
[0,0,0],

[0,0,0]]

1=0

while ¢ < 3:

=0

while j < 3:
rtnfi][j]=mtxv[i][j]%modvall

j=1

159

i4+=1
return rtn
#1*3 matrix mode

def MatrixMod1(mtx-v, modvall):

rtn=|0, 0, 0]
i=0
while 7 < 3:

rtnfi]=mtx-v[i]%modvall
i+=1

return rtn

def binaryString(arr):
binstr=""

for x in arr:

binstr+= str(“0:b”.format(x))

#print binstr

return binstr

def Xor(al,bl):

#print “xor”, a , b, bool(a)! = bool (b)

res = bool(al)! = bool(bl)

return str(int(res == True))

def str2bool(v):

return v.lower() in (“yes”, “true”, “t”, “17)
def prependZeros(str,no):

while no > 0:

str = “0”+ str

160

no -=1

return str

def hashFunction(a, b, inputString, modval):
i=0

x=((1, 0, 0), # matrix X #
(0,1,0),

(0,0, 1))

while i < len(inputString):
if inputString]i] == "0":
y=a

elif inputString[i] == 1"
y=b

v = MatrixMul(x, v)

X=v

i+=1

w = MatrixMod(v,modval)
return v,w

def MulFunction(inputString):
i=0

x=((1, 0, 0), # matrix X #
(0, 1, 0),

(0, 0, 1))

while i < len(inputString):
if inputString]i] == "0":

y=a

161

elif inputString[i] == 1"
y=Db

v = MatrixMul(x, vy)
X=v

if True == devides(i+1,gval):
#print gval, “devides”, i+1
y=c

v = MatrixMul(x, v)
X=v

i+=1

#print v

#print modval

w = MatrixMod(v,modval)
#print w

return v,w

def MatrixBinaryStr(mtx):
#assume 3*3 matrix

val = u”

i=0

while 7 < 3:

=0

while 7 < 3:

val += bin(mtx[i][j])[2:]
j+=1

i4=1

162

return val

def devides(x,y):

if(x%y == 0):

return True

else:

return False
f=open(“result.txt”, “a+")

f.write(“ Yos -

\r\n” %(str(datetime.datetime.now())))
f.write(“a:%s b:%s ¢:%s modval:%d g:%d \r\n”
%(str(a),str(b),str(c),modval,gval))

timelist = |]

for inputString in lines:

start = time.time()

index =1

v,w = MulFunction(inputString)

done = time.time()

elapsed = float(done) - float(start)
print(’Time:”)

print(elapsed)

print v, w

f.write(“Mul: %s ModMul:%s Time :%s \r\n” %(str(v),str(w), str(elapsed)))
timelist.append(elapsed)

averTime = sum(timelist) / len(timelist)

163

print averTime
f.write(“averTime: %f \r\n”%(averTime))

f.close().

164

Appendix F: Execution of H,

import time

import datetime

import numpy as np

AA = (([3,0], [2,0], [0]),
([4,0 , [3,0], [0]),

([2.1], [2,0], [2]))

BB = (([2,0,0], [0], [2,0,1]),
([0], [2,0,0], [2,0,1]),

([0, [0], 2]))

result =[[[0], [0], [0]],
[[0], [0], [O]],

L[0], [0], [0]]]

print("Keep input strings in a file called data.txt’)
#inputString = raw-input(“InputString. ”)

lines = [line.rstrip(’\n’) for line in open(’data.txt’)|
#print “inputString=",inputString

pVal = input(“p Value.”)

cp = np.polyld([1,0,—1,1])

print “Conway Polynomial:”

print cp

nVal = 3

print “n:” nVal

def polyMultiply(x,y):

pl = np.polyld(x)

165

p2 = np.polyld(y)

#print(pl)

#print(p2)

mul = np.polymul(pl, p2)

#print “MUL:”, mul

return mul

def MatrixMul(mtx-a, mtx-b):

tpos-b = zip(*mtx-b)

rtn =[[sum(ea = ebforea, ebinzip(a, b)) forbintpos — b| forainmtx — a
return rtn

def MatrixMulPolyTestFail(mtx-a, mtx-b):

tpos-b = zip(*mtx-b)

rtn = [[np.polyadd(poly Multiply(ea, eb) forea, ebinzip(a, b))
forbintposy| forainmtx — af

return rtn

def MatrixMulPoly(A,B):

iterating by row of A

result = [[[0], [0], [0]],

for i in range(len(A)):
iterating by coloum by B
for j in range(len(B[0])):

iterating by rows of B

166

for k in range(len(B)):

#print “polyMul:”, polyMultiply (A[i][k],B[k][j]

sm = np.polyadd(result]i][j],polyMultiply (A[i][k],B[k][j]))
result[i][j] = sm #np.array(sm)

#print “sm”, result|i][j]

#print “ELEMENT” | result][i](j]

return result

def PrintPolyMatrix(A,f):

iterating by row of A

print 'Mod Matrix \n ’

f.write(“Mod Matrix \n ”)

i=0

while ¢ < 3:

j=0

while j < 3:

aa = Ali][]]

kk = np.polyld(aa)

print “Matrix Position:(“,i+1,j+1,”) \n”, kk

fwrite(“\nMatrix Position:(%d %d) \n %s \r”%(i+1,j+1,kk))
j+=1

P+=1

print \n

f.write(“\n ")

#3*3 Matrix mode

def MatrixMod(mtx-v, modvall):

167

rtn=[[0, 0, 0], # matrix B #
[0,0,0],

[0,0,0]]

i=0

while ¢ < 3:

j=0

while 7 < 3:

rtnfi][j]=mtx-v[i][j]%modvall

j+=1
i+=1
return rtn

#3*3 Matrix mode

def MatrixModPoly(mtx-v, modvall):

rtn=[[[0], [0], [0]],

i=0
while ¢ < 3:
j=0
while 7 < 3:

rtnli)[j]=np.mod(mtx-v[i][j|, modvall)

j+=1
1+ =1
return rtn

#1*3 matrix mode

168

def MatrixMod1(mtx-v, modvall):
rtn=|0, 0, 0]

i=0

while 7 < 3:
rtn[i]=mtx-v[i]%modvall

i+=1

return rtn

def binaryString(arr):

binstr=""

for x in arr:

binstr+= str(“0:b”.format(x))

#print binstr

return binstr

def Xor(al,bl):

#print “xor”, a , b, bool(a)! = bool(b)

res = bool(al)! = bool(bl)

return str(int(res == True))

def str2bool(v):

return v.lower() in (“yes”, “true”, “t”, “17)
def prependZeros(str,no):

while no > 0:

str = “0”+ str
no— =1
return str

def hashFunction(a, b, inputString, modval):

169

i=0

x=((1, 0, 0), # matrix X #
(0, 1, 0),

(0, 0, 1))

while i < len(inputString):
if inputString]i] == "0":
y=a

elif inputString[i] == 1"
y=b

v = MatrixMul(x, y)

X=V

i+=1

w = MatrixMod(v,modval)

return v,w

def polyProduct(a, b, inputString, modval):

i=0

x =[[[1], [0], [0]],

({01, [1], [o]],

[[0], [0], [1]]]

while i < len(inputString):
if inputStringli] == '0":
y=AA

elif inputString|i] == '1":
y=BB

v = MatrixMulPoly(x, y)

170

w = MatrixModPoly(v,modval) return v,w
def notString(inputString):
i=0

outStr ="

while i < len(inputString):
if inputString]i] == "0":
outStr += "1

elif inputString[i] == 1"
outStr += "0’

i+=1

return outStr

modval = pow(pVal, nVal)

f=open(“result.txt”, “a+”)

f.write(“ Yos

\r\n”

% (str(datetime.datetime.now())))

fowrite(“A:%s \nB:%s \np:

%d n:%d Mod:%d \nConvey Poly: \n%s \r”%(str(AA),str(BB),pVal,nVal, modval,
str(cp)))

timelist = |]

for inputString in lines:

print “inputString ”,inputString

171

f.write(“\n inputString:%s Len:%d \r” %(inputString,len(inputString)))
start = time.time()

inputString += notString(inputString)

print “m 7 inputString

remul,remod = polyProduct(AA,BB,inputString, modval)

done = time.time()

elapsed = float(done) - float(start)

#print remod

print(’Elapsed Time:’)

print (elapsed)

f.write(“m:%s Len:%d \r” % (inputString,len(inputString)))
fowrite(“remul:%s \nremod:%s \nTime:%f\r” %(str(remul),str(remod),elapsed))
PrintPolyMatrix(remod,f)

timelist.append(elapsed)

averTime = sum(timelist) / len(timelist)

print “averageTime:”, averTime

f.write(“\n averageTime: %f \r\n”%(averTime))

f.close().

172

Research Papers

1. V.Vibitha Kochamani, Lilly P.LL and Joju.K.T, Hashing with discrete Heisenberg
group and graph with large girth,In International Journal of Theoretical Physics and

Cryptography, IJTPC Publication,Vol 11, May 2016.

2. Lilly P.L,V.Vibitha Kochamani, Hashing with discrete Heisenberg group Using
new generators,In International Journal of Theoretical and Computational Mathe-

matics,ISSN: 2395-6607,Vol 2, Issue 2, Nov.2016,pp 14-18.

3. V.Vibitha Kochamani, Lilly P.L, Modified Form of Cayley Hash Function, In
Asian Journal of Engineering and Applied Technology ,The Research Publication,
ISSN 2249-068X,Vol. 8 No. 2,April 2019 ,pp 34-36.

4. V.Vibitha Kochamani, Lilly P.L, Security Aspects of the Cayley Hash Function
using discrete Heisenberg group,In Journal of Discrete Mathematical Sciences and
Cryptography,ISSN:0972-0529 (Print) , ISSN:2169-0065 (On-line),Doi:10.1080/09720

529.2019.1638613,September 2019.

173

5. V.Vibitha Kochamani, Lilly P.L, Neighbourhoods in P? In International Jour-
nal of Research and Analytical Reviews, E-ISSN 2348-1269, P- ISSN 2349-5138,
vol.6,issue.2,June 2019.

6. V.Vibitha Kochamani, Lilly P.L, Vectorial version of the Cayley Hash Function

using discrete Heisenberg group, Accepted in Malaya Journal of Matematik.

7. V.Vibitha Kochamani, Lilly P.L, Free Generators Theorem in projective general

linear groups, Communicated.

8.V.Vibitha Kochamani, Lilly P.L., Hash Functions Using Free Generators Theorem

over projective general linear group, Communicated.

9.V.Vibitha Kochamani, Lilly P.L., Guarding against different attacks, Communicated.

174

Bibliography

1]

Abdukhalikov Kanat and Chul Kim (1998),0n the security of the hashing scheme

based on SLs,Fast Software Encryption,Springer, 93-102.

G.Adj,Alfred Menezes, Thomaz Oliveira and Francisco Rodriguez-Henriquez
(2015),Computing discrete logarithms using Joux’s algorithm,ACM

Comm.Computer Algebra, 49,2,60.

B.Albright (1994), Essentials of Mathematical Statistics,Jones and Bartlett Pub-

lishers.

Alfred J.Menezes and Yi-Hong Wu (1997),The discrete logarithm problem in
GL(n,q),Ars Combin,A7,23-32.

Andreas Gathmann (2013),Class Notes on Commutative Algebra,Technische

Universitat, Kaiserslautern.

Andrew M Odlyzko (1984),Discrete logarithms in finite fields and their crypto-
graphic significance, Workshop on the theory and Applications of Cryptographic

Techniques,Springer,224-314.

Andrew Richard Regenscheid (2007),An algebraic hash function based on

S Ly, Ph.D. thesis,Lowa state University.

175

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Aschbacher Michael (1984),0n the maximal subgroups of the finite classical

groups, Inventiones mathematicae,76,3,469-514.

E.Bach and J.O Shallit (1996),Algorithmic number theory:Efficient algo-
rithms,MIT Press,1.

Bart Van Rompay (2004),Analysis and design of Cryptographic Hash Func-
tions: MAC algorithms and Block Ciphers,Ph.D. thesis, KU Leuven, 240.

M.Bellare and P.Rogaway (1997),Collision-resistant hashing:Towards making
UOWHFs practical, Advances in Cryptology-CRYPTO’97 Springer,470-484.

Bianca Sosnovski (2016),Cayley graphs of semi-groups and Applications to Hash-

ing,Ph.D. thesis,City University of New York.

Brian C Hall (2004),Lie Groups, Lie Algebras, and Representations: An Elemen-

tary Introduction,Berlin:Springer.

Bomberg Lisa, Valdimir Shpilrain and Alina Vdovina (2017),Navigating
in the Cayley graph of SLy(F,) and applications to hashing,Semi-group
Fourm,94,2,314-324.

C.Caldwell (2018),The prime pages:Prime number research,records and re-

sources,[Available at:https://primes.utm.edu/primes/1994-2018|.

J.Cassaigne, T.Harju and J.Karhumaki (1999),0n the undecidability of free-
ness of matrix semi-groups, International Journal of Algebra and Computation

9,3/4,295-305.

D.X Charles, K.E Lauter and E.Z. Goren (2009), Cryptographic Hash functions

from expander graphs,Journal of Crytology,22,1,93-113.

176

[18]

[19]

[21]

[22]

[23]

[24]

[25]

Charnes chris and Josef Pieprzyk (1995),Attacking the SL, hashing
scheme, ASTACRYPT"94:Advances in Cryptology,322-330.

Christophe Petit, Jean-Jacques Quisquater (2016), Cryptographic Hash func-
tions and Expander graphs:The end of the Story?, The New Code break-

ers, Lecture notes in Computer Science,9100,304-311.

Christophe Petit,Jean-Jacques Quisquater,Jean-Pierre Tillich and Gilles Ze-
mor (2009),Hard and easy components of collision search in the Zemor-
Tillich hash function: New attacks and reduced variants with equivalent se-

curity, Cryptographers Track at the RSA Conference,182-194.

Christophe Petit, Jean-Jacques Quisquater (2010), Pre-images for the
Tillich-Zemor hash function,International Workshop on Selected Areas in

Cryptography,Springer,282-301.

Christophe Petit and Jean-Jacques Quisquater (2013),Rubik’s for cryptogra-

phers, Notices of the American Mathematical Society,60,6,733-739.

Christophe Petit, Jean-Jacques Quisquater (2016),ZesT:an all-purpose
hash function based on Zemor-Tillich,[Accessed from:https://www.cs.bham.

ac.uk/petitcz.september 2016].

Clara Loh (2017),Geometric Group Theory-An Introduction,Springer Interna-

tional Publishing.

Cornelia Drutu,Michael Kapovich (2013),Lectures on Geometric Group The-

ory,UC Davis Mathematics.

177

[26]

[27]

28]

[29]

[30]

[31]

F.Crivelli (2008),Absolute Values, Valuations and Completion, Lecture

Notes, ETH Zurich University.

W.Dai (2009),Crypto++ 5.6.0 benchmarks,[Available at: http://www. cryptopp

.com/benchmarks.html].

Daugles Stinson R (1995), Cryptography theory and practice,Second Edi-
tion,Chapman and Hall/CRC.

De la Harpe. P (2000), Topics in Geometric Group Theory,University of Chicago

Press.

Don Coppersmith, Andrew M Odlzyko and Richard Schroeppel (1986),Discrete

logarithms in GF(p),Algorithmica,Springer, 1 ,1-4,1-15.

Don Coppersmith (1984),Fast evaluation of logarithms in fields of characteristic

two,[EEE transactions on information theory,30,4,587-594.

Emmanuel Breuillard and Tsachik Gelander (2003),0n dense free subgroups of
Lie groups,Journal of Algebra,261,2,448-46.

Geiselmann Willi (1995),A Note on the hash function of Tillich and Ze-
mor, Cryptography and coding,Proceedings of the 5th IMA conference on Cryp-
tography and Coding,C.Boyd(Ed.),Springer, Berlin, LNCS 1025,257-263.

Gilles Zemor (1994),Hash functions and Cayley Graph, Designs, Codes and

Cryptography,Springer,4,3,381-394.

Gilles Zemor (1991),Hash functions and graphs with large girths, EUROCRYPT
(Donald W. Davies, ed.),Lecture Notes in Computer Science,Springer, LNCS
547,508-511.

178

[36]

[37]

[38]

[40]

[41]

[42]

[43]

[44]

Ph.Godlewski and P.Camion (1988),Manipulations and errors,detection and lo-
calization,Advances in cryptology-EUROCRYPT’88 (Davos Ed.),Lecture Notes

in Comput.Sci.,Springer,Berlin,330,97-106.

Hallam Stevens (2018),Hans Peter Luhn and the birth of the hashing algo-
rithm, IFEE Spectrum,55,2,44-49.

Hayley Tomkins (2018), Alternative Generators of the Zemor-Tillich Hash Func-

tion:A Quest for Freedom in Projective Linear Groups,University of Ottawa.

S.Hoory , N.Linial and A.Wigderson (2006),Expander graphs and their applica-

tions, Bulletin of the American Mathematical Society,43,4,439-561.

Hyungrok Jo (2017),Cryptanalysis on Hash functions Based on Ramanujan

Graphs,Ph.D. thesis,Kyushu University.

Hyungrok Jo (2018),Hash function based on Ramanujan graphs, Mathematical

Modelling for Next-Generation Cryptography,Springer,63-79.

Jean Galleir (2011),Geometric Methods and Applications for Computer Science

and Engineering,Second-Edition, Springer.

Jean-Jacques Quisquater and Marc Joye (1997), Authentication of Sequences
with the SLs hash function:Application to video sequences,Journal of computer

security,b,3,213-223.

Jean-Pierre Tillich and Gilles Zemor (2008), Collisions for the LPS expander
graph hash function, Annual International Conference on the theory and applica-

tions of Cryptographic Techniques,Springer,254-269.

179

[45]

[46]

[47]

[50]

[51]

[52]

[53]

Jean-Pierre Tillich and Gilles Zemor (1994),Group-Theoretic Hash Func-

tions, Algebraic coding:First French-Iseraeli workshop,Springer,90-110.

Jean-Pierre Tillich and Gilles Zemor (1994),Hashing with S L,, Advances in Cryp-

tology Lecture Notes in Computer Science,Springer-Verlag,839,40-49.

Jeffrey Hoffstein, Jill Pipher and Joseph.H.Silverman (2014),An Introduction to

Mathematical Cryptography,Springer.

Jonathan Katz and Yehuda Lindell (2007), Introduction to Modern Cryptogra-
phy,Chapman and Hall/CRC.

Joseph.A Gallian (2005),Contemporary — Abstract — Algebra-Ninth — Edi-
tion,University of Minnesota,Cengage learning, ISBN-10: 1133599702 —
ISBN-13: 9781133599708.

Luca Capogna, Danielli Donatella, Pauls Scott D and Tyson Jeremy (2007),An
Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimet-

ric,Springer Science and Business Media, Mathematics ,224.

Lyoden R.C. and Schupp P.E (1997),Combinatorial Group Theory,Ergebnisse

der Matematik undihrer Grenzgebiete,Springer-Verlag,89.

Maike Massierer (2006),Provably Secure Cryptographic Hash Functions,The uni-

versity of New South Wales.

Mark Brittenham,Free groups, University of Nebraska,Department of Mathemat-
ics,Lincoln.[Available at:https://www.math.unl.edu/mbrittenham2/classwk/

990s08 /public/myasnikov.1.free.groups.pdf]

180

[54]

[55]

[58]

[61]

A.J. Menezes , P.C. Van Oorschot, and S.A Vanstone (2001), Handbook of applied

cryptography, CRC press.

Meulenaer De Giacomo , Christophe Petit and Jean-Jacques Quisquater
(2009),Hardware implementations of a variant of the Zemor-Tillich hash func-
tion:Can a provably secure hash function be very efficient?, JACR Cryptology

eprint Archive,229.
R.A. Mollin (2001),An introduction to cryptography,Chapman and Hall/CRC.

Morris J Dworkin (2018),SHA-3 standard:Permutation-based hash and
extendable-output functions, Technical — report, NIST-FIPS,(Accessed from:
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-

and -extendable-output-functions,june2018).

C.Mullan and B.Tsaban (2016),5Ls; homomorphic hash functions:Worst case
to average case reduction and short collision search,Designs,Codes and

Cryptography,Springer,81,1,83-107.
J.Neukrich (1999),Algebraic Number Theory, Springer-Verlag.

C.Petit, K.E.Lauter —and Jean-Jacques Quisquater (2007),Cayley
hashes:A class of efficient graph-based hash functions,[Available at:

http://perso.uclouvain.be/christophe.petit /files /Cayley.pdf,2007.

C.Petit, K.E.Lauter and Jean-Jacques Quisquater (2008),Full cryptoanalysis of
LPS and Morgenstern hash functions, International Conference on Security and

Cryptography for Networks,Springer,263-277.

181

[62]

[63]

[64]

[65]

[66]

[67]

C.Petit (2009),0n graph-based cryptographic hash functions,Ph.D. the-

sis,Universit catholique de Loyvain.

C.Petit, Nicolas Veyrat-Charvillon and Jean-Jacques Quisquater (2008),Effi-
ciency and pseudo randomness of a variant of Zemor-Tillich hash function,/[FEFE

International Conference on FElectronics, Circuts and systems ICECS 2008, 906-
909.

Preneel.B (2003),Analysis and Design of Cryptographic Hash Functions,Ph.D

thesis,K.U.Leuven.

M.O.Rabin (1978),Digitalized signatures, Foundations of Secure computa-
tion,R.Lipton and R.DeMillo,Eds., Academic Press,New York,155-166.

Richard Crandall, Carl Pomerance (2005),Prime Numbers: A Computational

Perspective,Second Edition,Springer.

Quynh H.Dang (2015),Secure Hash Standards (SHS),Federal Information
Processing Standards Publication,FIPS PUB 180-4,[Available at:http://dx.
doi.org/10.6028 /NIST.FIPS. 180-4].

[68] V.Shpilrain (2006),Hashing with polynomials, Proceedings of the 9th interna-

[69]

[70]

tional conference on Information Security and Cryptology,Springer,4296,2228.

Steinwandt Rainer,Markus Grassl,Willi Geiselmann and Thomas Beth
(2000),Weakness in the SLo(Fyn) hashing scheme,Annual International Cryp-

tology Conference,Springer,287-299.

H.Stichtenoth (1993),Algebraic function fields and codes,Springer.

182

[71] B.Sury (2010),Free groups-basics, Lecture Notes in Advanced Training in Mathe-

matical Schools,Statistical -Math Unit,Indian Statistical Institute,Bangalore.
[72] M.Suzuki (1982),Group Theory: Volume-1,Springer-verlag,New York.

(73] Tits Jacques (1972),Free Subgroups in linear groups, Journal of Algebra,20,2,250-
270.

[74] Victor Shuop (1990),Searching for primitive roots in finite fields, Proceedings of
the twenty-second annual ACM symposium on theory of computing, ACM, 546-
554.

[75] J.Walker,Chi-square Calculator,[Available at:https://www.forumilab.ch.rpkp

.experiments.analysis.chiCalc.html].

183

