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ABSTRACT

Hyperfunctions are one of the generalisations of generalized function, introduced by

Mikio Sato. Urs Graf applied Laplace transform, Fourier transform, Hilbert trans-

form, Mellin transform and Hankel transform to the hyperfunctions. In this study

Weierstrass transform, Stieltjes transform, L2 transform, Fourier-Laplace transform,

Laplace-Stieltjes transform and Fourier-Stieltjes transform have been developed for

hyperfunctions and some properties of these transforms have also been investigated.

Abelian -Tauberian theorem is proved for Laplace transform, Stieltjes transform and

Laplace-Stieltjes transform of hyperfunctions. The sufficient condition for the exis-

tence of Two Dimensional Laplace transform of hyperfunctions in two variables with

separable defining function is investigated. Some order theoretic properties of the

linear space of hyperfunctions and norm convergence of the sequence of hyperfunc-

tions are also studied. The concept of completely monotonic hyperfunction has been

developed. A partial differential equation involving hyperfunction has been solved

using Weierstrass transform of hyperfunction.

Keywords: Hyperfunction, Laplace Transform,Fourier Transform,Weierstrass Trans-

form, Stieltjes Transform, L2 Transform, Fourier-Laplace Transform, Laplace-Stieltjes

Transform, Fourier-Stieltjes Transform, Two dimensional Laplace Transform, Ordered

linear space, Norm convergence, Completely monotone functions.
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Introduction

History

The basic idea of delta function came in the beginning of 19th century. It was

mainly used by Poisson, Fourier and Cauchy in the mathematical modelling of phys-

ical situations. Kirchhoff and Heaviside [28][35], first tried to give the mathematical

interpretation of delta function. Kirchhoff used the concept of delta function in the

fundamental solution of wave equation. Heaviside[45] used it in Operational Calculus.

Also he expressed delta function as the derivative of unit step function. Heaviside

expressed unit step function as

Y px� cq �

$''&
''%

0, x   c;

1, x ¡ c.

which is not differentiable at x � c.

In 1926, Paul Dirac[17] introduced the notation of delta function and established

some properties of it in his works on quantum field theory. The delta function is

defined as

δpx� cq � 0 @ x � c

viii



» b
a

δpx� cqdx �

$''&
''%

1, c P pa, bq;

0, otherwise.

Physicists like Pauli, Heisenberg and Jordan widely used it for the development

of quantum field theory. Even though the uses of Dirac delta function by Physicists

increased, the classical mathematics fails to explain delta function mathematically,

because using classical integration theory, the integral of a function which is zero

everywhere except exactly at one point, has the integral value zero. Many mathe-

maticians started to think on how to define such singular functions mathematically.

They called such functions (functions like delta function) as ’distributions’ or ’gener-

alized functions’.

In 1932, Bochner S, developed the theory for such situations and in 1935, Sobolev

S.L.[54] gave the definition for distributions in terms of functionals.

Later in 1945, French mathematician Laurent Schwartz [51][52] developed, fur-

ther theory of distributions in an efficient way using the concept of test function

space. The book by L.Schwartz, ”Theory of Distributions” became a foundation for

further development of distribution theory. Then onwards the theory of generalized

functions began to develop intensively. Mathematicians started to investigate this

area because of its wide applications in Mathematical Physics mainly for finding the

solutions of partial differential equations, boundary value problems and initial value

problems that appeared in physical problems.

In 1954, Schwartz[50] published a paper, showing the impossibility of product

of two arbitrary distributions. But, some physical problems required product of dis-

tributions. Hence mathematicians tried to define product of distributions by various

methods. J.F.Colombeau r11s proposed a theory to solve this impossibility through

ix



the introduction of the concept of new generalized functions.

Physics problems involving generalized functions expressed in terms of partial

differential equations or differential equations can be effectively solved using the

application of integral transforms to it. A.H. Zemanian r64s applied several inte-

gral transforms to distributions by the method of adjoints in his book. Also V.S.

Vladimirov [58],[57] developed many properties of integral transforms of generalized

functions and proved Tauberian theorems for the Laplace transform of generalized

functions.

Introduction

Mikio Sato[48], a Japanese mathematician, developed hyperfunctions, which is

more generalised than the concept of generalized functions. Sato applied classical

complex analysis function theory to generalize notion of function of a real variable.

Sato expressed the concept of generalized function in a less abstract way than that

by L.Schwartz. Schwartz defined a generalized function as the limit of sequences

of ordinary functions using the notion of equivalence classes. Sato defined a func-

tion of a real variable as the difference of the boundary values of a complex function,

which is holomorphic and call it a hyperfunction. Hyperfunctions are always infinitely

differentiable. The set of all distributions form a subspace of the linear space of hy-

perfunctions.

Mathematicians like A. Kaneko[32], Mitsuo Morimoto[40] and Isao Imai[30] did

immense work based on this hyperfunction theory. Isao Imai applied Sato’s hyper-

function theory in a non trivial concrete way and showed the computational power of

hyperfunction in his book ’Applied Hyperfunction theory’. Urs Graf[25] further de-

veloped Imai’s work and published a book ’Introduction to Hyperfunctions and Their

Integral Transforms’. He applied Laplace transforms, Fourier transforms, Hilbert

x



transforms, Mellin transforms and Hankel transforms to hyperfunctions and used

them to solve integral equations. He focused more on the practical approach than

the theoretical way.

Research Motivation

Urs Graf’s approach to hyperfunction is the main motivation for this present

work titled ”Some integral transforms of hyperfunctions and their properties”. As

a continuation of the development of application of integral transforms on hyper-

functions by Urs Graf, in the background of no other study in this regard, in this

thesis we have applied the integral transforms such as Weierstrass transform, Stielt-

jes transform, L2-transform, Fourier-Laplace transform, Laplace-Stieltjes transform,

Fourier-Stieltjes transform and Two dimensional Laplace transform to hyperfunctions,

and have proved some Abelian - Tauberian theorems for the integral transforms of

hyperfunctions. In fact the notion of order theoretic and convergence aspects of hy-

perfunctions have been obtained through this present study.

The content of the thesis are organised in the following way.

Chapter 1 contains some preliminary definitions and results necessary to un-

derstand the study taken up in the thesis. Definition of Hyperfunctions and its

properties are included in it.

In chapter 2, the integral transforms like Weierstrass transform, Stieltjes trans-

form and L2 transform are defined for hyperfunctions. Some properties of these

transforms are proved.

Weierstrass transform is applied to a class of hyperfunctions having bounded ex-

xi



ponential growth. We have established some properties of this background using the

relation connecting Weierstrass and Laplace transforms of hyperfunctions.

The following are the main results obtained.

If fpxq � rF pzqs is a hyperfunction with bounded exponential growth then,

•

Wtrfp�xqsp�sq � �Wtrfpxqspsq

• for t ¡ 0,

Wtrfpxqspsq �Wtrfpxqspsq

• for fpxq a real analytic hyperfunction and constant c

Wtrfpx� cqspsq �Wtrfpxqsps� cq, if σ�pfq   Rpsq   σ�pfq.

• The relation connecting Weierstrass and Laplace transform of hyperfunction is

Wtrex
2

4t fpxqspsq � e
�s2

4t?
4πt

Lrfpxqsp�s
2t
q

•

Wtrex
2

4t fnpxqspsq � p�s
2t
qnWtrex

2

4t fpxqspsq

• The inverse Weierstrass transform is defined.

If f̃psq � Wtrfpxqspsq is the Weierstrass transform of fpxq � rF pzqs, a hyper-

function of bounded exponential growth then

fpxq � rF pzqs � lim
tÑ1

1?
4πt

» 8
�8

e
�ps�izq2

4t f̃pisqds
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There exist different methods for defining Stieltjes transform of distributions.

Here the Stieltjes transform of a hyperfunction is defined in the following way.

For a hyperfunction fpxq � rF pzqs of bounded exponential growth the Stieltjes trans-

form is defined by

f̃ptq � Srfpxqsptq �
» 8

0

fpxq
x� t

dx �
» 8

0

F pzq
z � t

dz.

The following results are obtained

• The relation connecting Stieltjes and Laplace transform of hyperfunction is

Srfpxqsptq � LrLrfpxqspsqsptq

if σ�pfq   Rs   σ�pfq and σ�pfq   Rt   σ�pfq

• If fpxq � rF pzqs and gpxq � rGpzqs are any two hyperfunctions having bounded

exponential growth with the Stieltjes transform f̃ptq � Srfpxqsptq and g̃ptq �
Srgpxqsptq respectively, then

» 8
0

fpxqg̃pxqdx �
» 8

0

gptqf̃ptqdt

• If fpxq � rF pzqs is a real valued hyperfunction with bounded exponential growth

and fpxq ¡ 0 for all x ¡ 0 then the Stieltjes transform f̃ptq � Srfpxqsptq ¡ 0

for all t ¡ 0

• If fpxq � rF pzqs is a hyperfunction with bounded exponential growth, f̂psq �
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Lrfpxqspsq exists, then

Srfnpxqsptq � p�1qn d
n

dtn
pLrf̂psqsptqq,

for σ�pfq   Rs   σ�pfq and σ�pf̂q   Rt   σ�pf̂q

• If fpxq � rF pzqs and gpyq � rGpzqs are two hyperfunctions of bounded expo-

nential growth. If support fpxq is a compact subset of p0,8q then

» 8
0

LrfpxqspsqLrgpyqspsqds �
» 8

0

gpyqSrfpxqspyqdy

A.Aghili, A.Ansari, A.Sadghi, David Brown, John Maceli, Osman Yurekli, Scott

Wilson etc[1],[10],[3],[62],[61] developed L2 transform of ordinary functions and solved

differential and integral equations by applying L2 transform. The L2 transform of

hyperfunction is defined by imposing the convergence criterion for the integral of L2

transform.

If fpxq � rF pzqs is a hyperfunction having bounded exponential growth and

σ�pfq   Rps2q   σ�pfq, the L2 transform of fpxq is defined as

L2rfpxqspsq �
» 8

0

xe�x
2s2fpxqdx �

» 8
0

ze�z
2s2F pzqdz,

Found that the following results exists for L2 transform of hyperfunctions also.

• If fpxq � rF pzqs is a hyperfunction having bounded exponential growth and

σ�pfq   Rps2q  σ�pfq, then

L2rfpxqspsq � 1

2
Lrfp?xqsps2q
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• If fpxq � rF pzqs is a holomorphic hyperfunction having bounded exponential

growth, f
1pxq � rF 1pzqs is also holomorphic and σ�pfq   Rps2q   σ�pfq, then

lim
xÑ0

fpxq � lim
sÑ8

2s2L2rfpxqspsq

Also, lim
xÑ8

fpxq � lim
sÑ0

2s2L2rfpxqspsq

• If Lp?sq is a holomorphic function of s (by assuming s � 0 having no branch

point) having finite number of poles which lies to the left side of the line Rs � a

and all F pzq P rF pzqs has a common strip of convergence, L2rfpxqspsq � Lpsq,
then

fpxq � L2
�1pLpsqq � 1

2πi

» a�i8
a�i8

2Lp?sqes2xds

In chapter 3, combined transforms such as Fourier-Laplace, Laplace- Stieltjes and

Fourier-Stieltjes transforms and some of their properties are developed.

Mitusuo Morimoto in his book[40] mentioned about the Fourier-Laplace trans-

form of an entire function of exponential type. Laplace and Fourier transforms are

defined for hyperfunctions. The existence of the combined Fourier-Laplace transform

of hyperfunctions is studied using the convergence criteria for Fourier and Laplace

transform of hyperfunction. We have defined entire hyperfunctions of exponential

type and a norm for such hyperfunctions.

For a convex compact set P subset of C and for the hyperfunction fpxq � rF pZqs
defined ‖ fpxq ‖pP q by

‖ fpxq ‖pP q� supt|F pzq|e�SP pzq : z P C, F pzq P rF pzqsu

xv



For a convex compact set P , we let

EBpC, P q � tfpxq P E :‖ fpxq ‖pP q  8u

and proved that it is a Banach space with respect to ‖ fpxq ‖pP q. Fourier-Laplace

transform is defined for hyperfunction in EBpC, P q.

Laplace-Stieltjes transform is defined for Hyperfunctions with defining func-

tion having bounded variation property. The relation connecting Laplace-Stieltjes

transform and Laplace transform of hyperfunction is proved. The main results ob-

tained are as follows.

• If fpxq � rF pzqs be a hyperfunction of bounded exponential growth and

σ�pfq   Rpsq   σ�pfq then

LSrfpxqspsq � sLrfpxqspsq

• If fpxq � rF pzqs be a hyperfunction of bounded exponential growth and

σ�pfq   Rpsq   σ�pfq with Laplace-Stieltjes transform LSrfpxqspsq, then

LSrf 1pxqspsq � sLSrfpxqspsq � sfp0q � f
1p0q

• If fpxq � rF pzqs be a hyperfunction of bounded exponential growth and

σ�pfq   Rpsq   σ�pfq then for any a P C,

LSreaxfpxqspsq � Lrf 1pxqsps� aq � aLrfpxqsps� aq,

xvi



where σ�pfq �Rpaq   Rpsq  σ�pfq �Rpaq

• Let fpxq � rF pzqs be a hyperfunction of bounded exponential growth having

Laplace-Stieltjes transform LSrfpxqspsq with σ�pfq   Rpsq   σ�pfq then

LSrfnpxqspsq � snLSrfpxqspsq,

if the strip of convergence is same.

We could define inversion formula for the Laplace-Stieltjes transform of hy-

perfunction. Using the connection between Fourier and Laplace transform and by a

change of variable we have obtained Fourier-Stieltjes transform of hyperfunctions.

In Chapter 4, we proved some Abelian -Tauberian type theorems for some

integral transforms of hyperfunctions. Tauberian theory was first developed by Nor-

bert Wiener [63] in 1932. Various types of Abelian Tauberian theorems are proved by

many mathematicians for integral transforms. Using Wiener’s Tauberian theorem,

Shikao Ikehara proved a Tauberian theorem for Dirichlet series, which is known as

Wiener Ikehara Theorem. In 1980, using contour integration, Newmann invented

new method to prove Tauberian theorems. Korevaar further developed Newmann’s

method[36].

In this study, first we have proved Abelian Tauberian theorem for the integral of

Laplace transform for hyperfunction of bounded exponential growth using the Abelian

Tauberian theorem for Laplace transform of measure functions [20].

Secondly, we have proved Abelian -Tauberian theorem for Stieltjes transform

of hyperfunction and Abelian type and Tauberian type theorem for Laplace-Stieltjes

transform of hyperfunction separately.
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The main theorems are

• (Abelian -Tauberian Theorem for Laplace Transform of Hyperfunctions)

Let fpxq � rF pzqs be a measurable, holomorphic hyperfunction on p0,8q having

compact support and bounded exponential growth. If the Laplace transform

f̂psq � rfpxqspsq is bounded for s ¡ 0 then the following conditions are equiv-

alent.

(a)
Lrfpxqspqsq
Lrfpxqspqq Ñ 1

sα�1
as q Ñ 0

(b)
fppxq
fppq Ñ xα as pÑ 8

Also

Lrfpxqspqq � fppqα!, α ¥ 0 is an integer

• (Abelian -Tauberian Theorem for Stieltjes Transform of Hyperfunctions)

Let fpxq � rF pzqs be a holomorphic, measurable, non decreasing hyperfunction

of bounded exponential growth with compact support contained in p0,8q such

that the Stieltjes transform f̃ptq � Srfpxqsptq � ³8
0

fpxq
x�t

dx � ³8
0

F pzq
z�t

dz exists for

all t ¡ 0. Let ρ be a number with 0 ¤ ρ   1, then the following statements

are equivalent

f̃ptq � Ctρ�1 as tÑ 8
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fpxq � C

Γp1� ρqΓp1� ρqx
ρ as xÑ 8

• (Abelian theorem for Laplace-Stieltjes Transformation of Hyperfunctions)

For fpxq P Be�
bv pIq,if

lim
xÑ8

fpxq
xn

� M

n!

then

lim
sÑ0

snf�psq �M,

where n is a non-negative number and M is a constant.

• (Tauberian theorem for Laplace-Stieltjes Transformation of Hyperfunctions)

Let fpxq P Be�
bv pIq with Laplace-Stieltjes transform

f�psq �
» 8

0

e�sxdfpxq,

which converges for some Rpsq ¡ 0 and

lim
sÑ0

snf�psq �M,

for some constant M and n ¡ 0, then

lim
xÑ8

fpxq
xn

� M

n!

In Chapter 5, Two-dimensional Laplace transform of hyperfunctions is defined
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to hyperfunction in two variables. We defined it for hyperfunctions with a separable

defining function. As for the ordinary functions some operational properties of the

two dimensional Laplace transform of hyperfunction are established. In addition two

dimensional inverse transform of Laplace hyperfunction is defined.

The main definitions and results are

• If I1 and I2 are open intervals in R and NpIiq is a complex neighbourhood

of Ii (i.e.NpIiq contains Ii as a closed subset) for i � 1, 2 then the open set

NpI1q �NpI2q in C2 is called a complex neighbourhood of I1 � I2, if I1 � I2 is a

closed subset of NpI1q �NpI2q.

• Two functions F pz1, z2q and Gpz1, z2q in OppNpI1qzI1q � pNpI2qzI2qq are equiv-

alent, if for pz1, z2q P pN1pI1q �N1pI2qq X pN2pI1q �N2pI2qq,

Gpz1, z2q � F pz1, z2q � φ1pz1, z2q � φ2pz1, z2q

with φ1pz1, z2q P OppNpI1qzI1q�NpI2qq and φ2pz1, z2q P OpNpI1q�pNpI2qzI2qq.
Here N1pI1q � N1pI2q and N2pI1q � N2pI2q are the complex neighbourhoods of

I1 � I2 of F pz1, z2q and Gpz1, z2q respectively. We denoted it by F pz1, z2q �
Gpz1, z2q
The relation � is an equivalence relation in OppNpI1qzI1q � pNpI2qzI2qq .

•

FpI1 � I2q � OppNpI1qzI1q � pNpI2qzI2qq

An equivalence class of functions F pz1, z2q P FpI1 � I2q defines a hyperfunction
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fpx, yq on I1 � I2. It is denoted by

fpx, yq � rF pz1, z2qs

F pz1, z2q is called defining or generating function of the hyperfunction fpx, yq.
The set of all hyperfunctions on the set I1 � I2 is denoted by BpI1 � I2q.
Then as a quotient space,

BpI1 � I2q :� OppNpI1qzI1q � pNpI2qzI2qq
OppNpI1qzI1q �NpI2qq �OpNpI1q � pNpI2qzI2qq

• The value of a hyperfunction fpx, yq � rF px, yqs at a point px, yq P I1 � I2 is

defined as

fpx, yq � lim
εÑ0�

tF px� iε, y � iεq � F px� iε, y � iεqu,

provided the limit exists.

• A point px, yq P I1 � I2 is called a regular point of the hyperfunction fpx, yq �
rF pz1, z2qs if lim

εÑ0�
tF px�iε, y�iεq�F px�iε, y�iεqu exists. A point px, yq P I1�I2

is called a singular point if it is not a regular point. Hence at a regular point

the hyperfunction fpx, yq has a value as an ordinary function.

• For fpx, yq � rF pz1, z2qs, gpx, yq � rGpz1, z2qs P BRpI1 � I2q and c P C defined

addition and scalar multiplication as

fpx, yq � gpx, yq � rF pz1, z2q �Gpz1, z2qs,

cfpx, yq � rcF pz1, z2qs
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Then BRpI1 � I2q is a linear space.

• A hyperfunction fpx, yq � rF pz1, z2qs is called holomorphic on I1 � I2 if the

defining function rF pz1, z2qs is holomorphic on U � NpI1q �NpI2q. i.e

(i) For each point a � pa1, a2q P U � C2, F pz1, z2q has a convergent power series

expansion on U ,

F pz1, z2q � Σcn1,n2pz1 � a1qn1pz2 � a2qn2

OR

(ii) If F pz1, z2q is continuous on U and for each variable zj,j � 1, 2, F pz1, z2q
is holomorphic, (i.e.

BF
Bz̄1

n
� 0 and

BF
Bz̄2

n
� 0 by the generalisation of Cauchy-

Riemann equations )

• For a hyperfunction fpx, yq � rF pz1, z2qs in BRpI1 � I2q, sing suppfpx, yq �
suppfpx, yq

• A hyperfunction fpx, yq � rF pz1, z2qs on BRpI1 � I2q is said to be of bounded

exponential growth if there exist real constants M ¡ 0, σ
1
, σ

2
such that

|F pz1, z2q|  Meσ
1Rz1�σ

2Rz2  8

on every compact subset of NpI1q � NpI2q and for every equivalent defining

functions. Bexp
R pI1 � I2q denotes the set of all hyperfunction in BRpI1 � I2q

having bounded exponential growth.

• A hyperfunction fpx, yq � rF pz1, z2qs on Bexp
R pI1 � I2q is said to be separable if

F pz1, z2q � F1pz1qF2pz2q,
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where F1pz1q P OpNpI1qzI1q
ApI1q and F2pz2q P OpNpI2qzI2q

ApI2q
• If fpx, yq � rF pz1, z2qs P Bexp

R pI1 � I2q be a separable hyperfunction with I1 �
r0,8q and I1 � r0,8q the two dimensional Laplace transform of fpx, yq is

defined as

f̂pu, vq � LyLxrfpx, yqspu, vq �
» 8

0

e�vy
» 8

0

e�uxfpx, yqdxdy,

where u and v are complex numbers.

• The image function f̂pu, vq � LyLxrfpx, yqspu, vq is a holomorphic function

• If fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyperfunction with I1 �

r0,8q and I1 � r0,8q then

LyLxrfpx, yqspu, vq � LyLxrfpx, yqspū, v̄q

• If fpx, yq � rF pz1, z2qs, gpx, yq � rGpz1, z2qs P Bexp
R pI1 � I2q are two separable

hyperfunctions with I1 � r0,8q and I1 � r0,8q then

LyLxrfpx, yq � gpx, yqspu, vq � LyLxrfpx, yqspu, vq � LyLxrgpx, yqspu, vq

• If fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyperfunctions and c be

a constant then

LyLxrcfpx, yqspu, vq � cLyLxrfpx, yqspu, vq

• If fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyperfunctions and a and
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b are two constants then

LyLxreax�byfpx, yqspu, vq � LyLxrfpx, yqspu� a, v � bq

• If fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyperfunctions and a and

b are two constants then

LyLxreaxfpx, yqspu, vq � LyLxrfpx, yqspu� a, vq

LyLxrebyfpx, yqspu, vq � LyLxrfpx, yqspu, v � bq

• If fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyperfunctions and a and

b are two non zero real constants then

LyLxrfpax, byqspu, vq � 1

ab
LyLxrfpx, yqspu

a
,
v

b
q

• If fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyperfunctions and a and

b are two constants then

LyLxrfpx� a, y � bqspu, vq � eau�bvLyLxrfpx, yqspu, vq

• If fpx, yq � rF pz1, z2qs � rF1pz1qF2pz2qs P Bexp
R pI1 � I2q be a separable hyper-

function, for positive integers m and n,

LyLxrxmynfpx, yqspu, vq � p�1qm�np d
m

dum
pf̂1puqqqp d

n

dvn
pf̂2pvqqq,

Where f̂1puq �
³8
0
e�uz1F1pz1qdz1 and f̂2pvq �

³8
0
e�vz2F2pz2qdz2
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• If fpx, yq � rF pz1, z2qs � rF1pz1qF2pz2qs P Bexp
R pI1 � I2q be a separable hyper-

functions and f̂1puq �
» 8

0

e�uz1F1pz1qdz1, f̂2pvq �
» 8

0

e�vz2F2pz2qdz2 then

(a)LyLxr BBxfpx, yqspu, vq � uf̂1puqf̂2pvq

(b)LyLxr BByfpx, yqspu, vq � vf̂1puqf̂2pvq

(c)LyLxr B
2

Bx2
fpx, yqspu, vq � u2f̂1puqf̂2pvq

(d)LyLxr B
2

By2
fpx, yqspu, vq � v2f̂1puqf̂2pvq

(e)LyLxr B2

BxByfpx, yqspu, vq � LyLxr B2

ByBxfpx, yqspu, vq � uvf̂1puqf̂2pvq

• Inverse of Two Dimensional Laplace Transform of Hyperfunctions

If fpx, yq � rF pz1, z2qs � rF1pz1qF2pz2qs P Bexp
R pI1 � I2q be a separable hyper-

function with two dimensional Laplace transform f̂pu, vq the inverse transform

is defined by

fpx, yq �
» 8

0

evy
» 8

0

euxf̂pu, vqdudv

In chapter 6, some order theoretic properties of hyperfunctions are investi-

gated. Order relation and norm convergence in the linear space of hyperfunctions are

studied. The concept of completely monotone hyperfunctions is defined and some of

their properties are proved.

H. H. Schaefer[49] and Anthony L. Peressini[43] studied the properties of or-

dered topological vector spaces. Using the concept of positive cones an order relation

was introduced. Here we are mainly considering hyperfunctions having bounded ex-

ponential growth and having defining function a complex measurable holomorphic
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function. An order relation is introduced among these types of hyperfunctions us-

ing the defining functions of hyperfunctions. A cone is defined in the linear space

of hyperfunctions and some properties of this cone are studied. An inductive limit

topology is defined on this ordered space and compares it with the order topology on

the space.

Stevan Pilipovic and Bogoljub Stankovic [44] discussed the convergence in the

space of Fourier Hyperfunctions. Using these ideas we defined norm to a subclass of

hyperfunctions and introduced the concept of norm convergence to that subclass of

the linear space of hyperfunctions

The main results are

• If fpxq, gpxq P BRpIq where fpxq � rF pzqs, gpxq � rGpzqs defined the order

relation 1 ¤1 by f ¤ g if fpxq ¤ gpxq for all x P I. In terms of defining functions

pF px � i0q � F px � i0qq ¤ pGpx � i0q � Gpx � i0qqq for all F pzq P rF pzqs and

Gpzq P rGpzqs.
The relation 1 ¤1 is a partial order on BRpIq.
With this order relation BRpIq is an ordered linear space.

• If N̄p0, nq � tz P C : |z| ¤ nu, i.e. N̄p0, nq is a closed complex neighbourhood

of 0 and N a complex neighbourhood of I. For n � 1, 2, ... defined

Kn � N̄p0, nq X tz : |z � w| ¥ 1

n
, @w P CzNu

Then tKnu has the following properties

i) Kn is compact

ii)Kn � Kn�1

iii)If K � N is compact then K � Kn for sufficiently large n.
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On each Kn and fpxq � rF pZqs P BpIq defined

βKn,mpfpxqq � supt| d
m

dzm
F pzq| : @F pzq P rF pzqs, z P Knu,m � 0, 1, 2, ...

BM
B,Kn,m

pIq denotes the subspace of BM
B pIq, consisting of all hyperfunctions with

support contained in Kn. Then tβKn,mu8m�0 is a multinorm on BM
B,Kn,m

pIq. The

defined set of multinorms generates a topology τKn,m on BM
B,Kn,m

pIq.
BM
B pIq assigns the inductive limit topology τ when Kn varies over all compact

sets K1, K2, ...

• BM
B pIq is an ordered topological linear space.

• The Cone, P of BM
B pIq is, when BM

B pIq restricted to the set of all non-negative

hyperfunctions in BRpIq. The Positive Cone in BM
B pIq is P � iP which is

denoted as P

• The cone P in BM
B pIq has the following properties:

i)P � P � P
ii)cP � P for every real number c ¡ 0

iii)P X�P � tr0su.

• P is a convex set in BM
B pIq.

• For fpxq, gpxq P BM
B pIq with f ¤ g, defined the order interval between f and

g by

rf, gs � thpxq P BM
B pIq : fpxq ¤ hpxq ¤ gpxqu
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A subset E of BM
B pIq is order bounded if there exists fpxq, gpxq P BM

B pIqsuch

that E � rf, gs

• The cone P in BM
B pIq is generating.

• For E � BM
B pIq the full hull rEs of E is defined as

rEs � thpxq P BM
B pIq : fpxq ¤ hpxq ¤ gpxq, fpxq, gpxq P Eu

• The cone P in BM
B pIq is normal

• Every order bounded subset of BM
B pIq is τ bounded

• If P is a normal cone in BM
B pIq then P X BM

B,Kn,m
pIq is a normal cone in

BM
B,Kn,m

pIq

• BK
B pIq is a sub family of hyperfunctions having bounded exponential growth

with compact support on I � R

For fpxq � rF pzqs P BK
B pIq the function ||.||K is defined as

||f ||K � sup
K�I

t|Gpx� i0q �Gpx� i0q| : Gpzq P rF pzqs, x P K,K is compact

subset of Iu

Then BK
B pIq is a normed linear space.

• A sequence fnpxq � rFnpxqs is a Cauchy sequence in BK
B pIq if @ ε ¡ 0 there

exists n0 P N satisfying the condition ||fn � fm||K   ε for n,m ¥ n0.

• BK
B pIq is a Banach space

• BK
B pIq is separable.
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• If fpxq � rF pzqs, gpxq � rGpzqs P BK
B pIq are non negative, real valued measur-

able hyperfunctions and if fpxq ¤ gpxq i.e. F pzq ¤ Gpzq and it holds for every

functions in the equivalence classes of F pzq and Gpzq) then

»
fpxqdx ¤

»
gpxqdx

• If fkpxq � rFkpzqs, k � 1, 2, 3, ... be a sequence of measurable hyperfunctions in

BK
B pIq and fpxq � lim fkpxq, fpxq � rF pzqs then

»
||fkpxq � fpxq||KdxÑ 0 as k Ñ 8

in the sense of hyperfunctions.

• A positive real valued hyperfunction fpxq � rF pZqs defined on p0,8q is called

a completely monotone hyperfunction if it satisfies

p�1qnf pnqpxq ¥ 0, @x ¡ 0, n � 0, 1, 2, ...

• A positive real valued hyperfunction fpxq � rF pzqs defined on p0,8q is a com-

pletely monotone hyperfunction if there exists a positive valued hyperfunction

gpxq � rGpzqs on p0,8q with bounded exponential growth such that

fpsq � Lrgpxqspsq, @s ¡ 0

• If fpxq � rF pxqs and gpxq � rGpxqs be two completely monotone hyperfunctions

then fpxqgpxq is a completely monotone hyperfunction whenever the product

is defined and fpsq � Lrhpxqspsq and gpxq � Lrjpxqspsq , where hpxq � rHpzqs
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and jpxq � rJpzqs are two hyperfunctions, s ¡ 0

• If fpxq be a completely monotone hyperfunction and gpxq be a positive val-

ued hyperfunction defined on p0,8q such that g1pxq is a completely monotone

hyperfunction then f � g is also a completely monotone hyperfunction.

In chapter 7, solved an initial value problem involving hyperfunction by applying

Weierstrass transform of hyperfunctions.

The last section consists of further possibilities of the present work.

All hyperfunction integral involved in this study are integrated over curves by taking

suitable curves in the region of integration.
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Chapter 1

Preliminaries

In this chapter some preliminary ideas on Hyperfunctions, Laplace transform of hy-

perfunctions, Fourier transform of hyperfunctions, Weierstrass transform, Stieltjes

transform, Ordered linear space, Topological vector space, Ordered topological vec-

tor space necessary for the coming chapters are included.

1.1. Introduction to Hyperfunctions

Let the upper half plane and lower half-plane of the complex plane C be denoted

by

C� � tz P C : Iz ¡ 0u,

C� � tz P C : Iz   0u

respectively.

Definition 1.1.1. [25] For an open interval I of the real line R, the open subset

NpIq � C is called a complex neighbourhood of I, if I is a closed subset of NpIq.
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Figure 1.1: Complex neighbourhood NpIq

In the above figure the two endpoints of the interval I do not belong to NpIq since

the subset NpIqzI is open in NpIq. Because NpIq is open in C, the subset NpIqzI is

also open in C. The intersection of two or a finite number of complex neighbourhoods

of I, is again a complex neighbourhood of I.

Definition 1.1.2. [25] For any complex neighbourhood NpIq of I the two open sets

N�pIq � NpIq X C� and N�pIq � NpIq X C�

are called upper half-neighbourhood and lower half-neighbourhood of I, respectively.

Definition 1.1.3. [25] OpNpIqq denotes the ring of all holomophic functions in the

complex neighbourhood NpIq of I.

OpNpIqzIq denotes the ring of holomophic functions in NpIqzI. For a given interval

I a function F pzq P OpNpIqzIq can be written as

F pzq �

$''&
''%
F�pzq for z P N�pIq,

F�pzq for z P N�pIq

where F�pzq P OpN�pIqq and F�pzq P OpN�pIqq are called upper and lower compo-

nent of F pzq respectively.
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Remark. [25] In general the upper and lower component of F pzq need not be related

to each other, i.e., they may be independent holomorphic functions. If the upper and

lower components are analytic continuations from each other we call F pzq a global

analytic function on NpIq and we can write

F�pzq � F�pzq � F pzq

Definition 1.1.4. [25] Two functions F pzq and Gpzq in OpNpIqzIq are equivalent,

denoted by F pzq � Gpzq if for z P N1pIq XN2pIq,

Gpzq � F pzq � φpzq,

with φpzq P OpNpIqq, i.e., F pzq and Gpzq differ by a holomorphic function on NpIq.
Here N1pIq and N2pIq are complex neighbourhoods of I of F pzq and Gpzq respectively.

Definition 1.1.5. [25] An equivalence class of functions F pzq P OpNpIqzIq defines

a hyperfunction fpxq on I, which is denoted by fpxq � rF pzqs. If the upper and

the lower component of F pzq should be emphasized, we also use the more explicit

notation fpxq � rF�pzq, F�pzqs. The function

F pzq �

$''&
''%
F�pzq, z P N�pIq,

F�pzq, z P N�pIq

is called a defining or generating function of the hyperfunction fpxq.
The set of all hyperfunctions defined on the interval I is denoted by BpIq.

BpIq � OpNpIqzIq{OpNpIqq
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i.e. the quotient space of all functions holomorphic in a complex neighbourhood

NpIqzI over the space of all holomorphic functions in NpIq.

Remark. [25] There is no reason to prefer a particular choice of neighbourhood NpIq.
Indeed, if N1pIq is another complex neighbourhood of I such that NpIq � N1pIq,
then OpN1pIqzIq{OpN1pIqq works as well. This shows that what is essential to the

definition of hyperfunctions is the behaviour of the defining functions in a narrow

vicinity of I. Now in the above definition let NpIq become narrower and narrower.

Intuitively we then write as the inductive limit

BpIq � limÝÑNpIq�I
OpNpIqzIq{OpNpIqq

and the definition of the space of hyperfunctions has become independent of any par-

ticular complex neighbourhood of I.

Using the intuitive idea of rendering the complex neighbourhoods narrower and nar-

rower around I, leads to another consequence.

A real analytic function φpxq on I is defined by the fact that φpxq can analyt-

ically be continued to a full neighbourhood U � I, i.e. we then have φpzq P OpUq.
For any complex neighbourhood NpIq containing U we may then write

BpIq � OpNpIqzIq{ApIq,

where ApIq denotes the ring of all real analytic functions on I. Thus a hyperfunc-

tion fpxq P BpIq, denoted by fpxq � rF pzqs is determined by a defining function

F pzq which is holomorphic in an adjacent(small) neighbourhood above and below the

interval I, but is only determined upto a real analytic function on I.
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Definition 1.1.6. [25] If

F px� i0q � F px� i0q � lim
εÑ0�

tF�px� iεq � F�px� iεqu

exists for a point x0 P I0 � I then x0 is called a regular point of the hyperfunction.

At regular points, the given function F pzq P OpNpIqzIq defines an ordinary function

x ÞÑ fpxq. Where the function value fpxq is given by fpxq � F px� i0q � F px� i0q,
i.e., the ordinary function is given by the difference of the boundary values of the two

holomorphic functions F�pzq and F�pzq
At a regular point, a hyperfunction fpxq has a function value as an ordinary function.

The value of a hyperfunction fpxq � rF pzqs at a regular point x is

fpxq � F px� i0q � F px� i0q � lim
εÑ0�

tF�px� iεq � F�px� iεqu

Definition 1.1.7. [25] The set of all points IzI0, consisting of real points where one

or both of the limits F�px � i0q and F�px � i0q do not exists is called the singular

points of the hyperfunction.

Examples 1.1.8. [25] A given ordinary function may have more than one hyperfunc-

tion representation

The ordinary constant function x ÞÑ 1, x P I0 � R represented by the hyperfunction

fpxq has three defining functions.

1�pzq �

$''&
''%

1, if Iz ¡ 0;

0, if Iz   0.
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1pzq �

$''&
''%

1
2
, if Iz ¡ 0;

�1
2
, if Iz   0.

1�pzq �

$''&
''%

0, if Iz ¡ 0;

�1, if Iz   0.

Since 1�pzq � 1pzq � 1�pzq,

fpxq � 1 � r1�pzqs � r1pzqs � r1�pzqs

� r1, 0s � r1{2,�1{2s � r0,�1s

Remark. [25] Using the previous example the notation fpxq � rF�pzq, F�pzqs can be

change to fpxq � rF pzqs by defining

F pzq � 1�pzqF�pzq � 1�pzqF�pzq

Definition 1.1.9. [25] Any real analytic function φpxq P ApRq, interpreted as a

hyperfunction again denoted by φpxq

φpxq � rφpzq, 0s � rφpzq1�pzqs

� rφpzq{2,�φpzq{2s � rφpzq1pzqs

� r0,�φpzqs � rφpzq1�pzqs

Also

φpxq � rF pzqs, F pzq � φpzq
2
t1�pzq � 1�pzqu
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Examples 1.1.10. [25] Dirac delta function at x � 0 is represented in terms of

hyperfunction as

δpxq � r �1

2πiz
s.

Here the defining function is

F pzq � �1

2πiz

F pzq is defined except at z � 0. At z � 0, F pzq has an isolated singularity, which is a

pole of order 1. For every real number x � 0, the limit lim
εÑ0�

tF�px� iεq � F�px� iεqu
exists and equal to 0

Remark. [25] Let fpxq � rF�pzq, F�pzqs be a specified hyperfunction. The sequence

of ordinary functions

fnpxq � lim
nÑ8

tF�px� i

n
q � F�px� i

n
qu

is always defined for sufficiently large n. The family of these functions yields, for

increasing n, an intuitive picture of the hyperfunction fpxq.
For the Dirac’s impulse hyperfunction δpxq � r� 1

2πiz
s we have

δnpxq � lim
nÑ8

tF�px� i

n
q � F�px� i

n
qu

� lim
nÑ8

t� 1

2πipx� i
n
q �

1

2πipx� i
n
qu

� n

πp1� n2x2q
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Examples 1.1.11. [25] The representation of ordinary unit-step function or Heavi-

side function Y pxq as hyperfunction is

upxq � r� 1

2πi
logp�zqs

which is vanishing on the negative part of the real axis, and has the constant value 1

on the positive part. In this case we consider only the principal branch. Hence with

F pzq � � 1
2πi
logp�zq, for every real number x � 0,

upxq � lim
εÑ0�

tF�px� iεq � F�px� iεqu

�

$''&
''%

0 if x   0

1 if x ¡ 0

For x � 0 this hyperfunction has no value, it is a singular point of the hyperfunction.

Remark. [25] By a real analytic function φpxq we mean a function which is holomor-

phic in a full neighbourhood of the entire real axis, i.e., φpxq P ApRq. The function ex

is real analytic, for it can be analytically continued to the entire function ez holomor-

phic in the entire complex plane. The same holds for functions such as sinx, cosx,

polynomials and all rational functions having no poles on the real axis.

Definition 1.1.12. [25] The hyperfunction fpxq � rφpzqs, where φpxq P ApRq is

any real analytic function, represents the zero hyperfunction. We denote the zero

hyperfunction by 0 since it can be identified with the ordinary zero function.

Definition 1.1.13. [25] For fpxq, gpxq P BpIq with fpxq � rF pzqs, gpxq � rGpzqs,

fpxq � gpxq � rF pzq �Gpzqs
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Also for any complex constant c,

cfpxq � crF pzqs � rcF pzqs

Proposition 1.1.14. [25] BpIq is a linear space.

Definition 1.1.15. [25] If fpxq � rF pzqs P BpIq is a hyperfunction and φpxq P ApIq
is a real analytic function on I, the product is defined as

φpxqfpxq � rφpzqF pzqs

The product is again a hyperfunction, i.e. φpxqfpxq P BpIq

Remark. [25] We can multiply hyperfunctions with polynomials and functions such

as sinx, cosx, ex and so on and the result is again a hyperfunction.

Definition 1.1.16. [25] Let fpxq � rF�pzq, F�pzqs be a hyperfunction then the hy-

perfunction fpax� bq, with a, b P R is defined by

fpax� bq �

$''&
''%
rF�paz � bq, F�paz � bqs if a ¡ 0

r�F�paz � bq,�F�paz � bqs if a   0

For the special case where the upper and lower components of the defining function

are function elements of the same global analytic function. i.e., fpxq � rF pzqs �
rF pzq, F pzqs then the above definition can be written as

fpax� bq � rsgnpaqF paz � bqs

Where sgnpaq denotes the sign function of a, it has value �1 for a   0 and value 1
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for a ¡ 0

Definition 1.1.17. [25] For any given hyperfunction fpxq � rF�pzq, F�pzqs its deriva-

tive in the sense of hyperfunction is defined and denoted as

Dfpxq � f
1pxq � rdF�

dz
,
dF�
dz

s

Dnfpxq � f pnqpxq � rd
nF�
dzn

,
dnF�
dzn

s

Proposition 1.1.18. [25] Hyperfunctions are always infinitely differentiable.

Examples 1.1.19. [25] The derivative of unit- step hyperfunction is Dirac’s delta

function

u
1pxq � r d

dz
p� 1

2πi
logp�zqqs

� r� 1

2πi

�1

p�zqs

� r� 1

2πi
s

� δpxq

Also,

u
1px� aq � δpx� aq

Proposition 1.1.20. [25] For any hyperfunction fpxq and any real analytic function

φpxq,
Dpφpxqfpxqq � φ

1pxqfpxq � φpxqf 1pxq

Remark. [25] Generally product of two hyperfunctions cannot be defined without

some restrictions.
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Definition 1.1.21. [25] For a given hyperfunction fpxq � rF�pzq, F�pzqs, fp�xq is

defined by

fp�xq � r�F�pzq,�F�pzqs

Definition 1.1.22. [25] If fp�xq � fpxq, the hyperfunction fpxq � rF�pzq, F�pzqs is

said to be an even hyperfunction. If fp�xq � �fpxq, it is called an odd hyperfunction.

Remark. [25] If the upper and lower component of the defining function are restrictions

of one global analytic function, i.e., fpxq � rF pzq, F pzqs � rF pzqs, an odd defining

function defines an even hyperfunction and an even defining function defines an odd

one.

Proposition 1.1.23. [25] Any hyperfunction fpxq � rF�pzq, F�pzqs can be decom-

posed into an even and an odd hyperfunction

fpxq � fepxq � fopxq

where fepxq is even and fopxq is odd.

Definition 1.1.24. [25] If fpxq � rF�pzq, F�pzqs is a given hyperfunction, the com-

plex conjugate hyperfunction of fpxq is defined and denoted by

fpxq � r�F�pzq,�F�pzqs

Definition 1.1.25. [25] A hyperfunction fpxq � rF�pzq, F�pzqs is real, if fpxq � fpxq
and is pure imaginary if fpxq � �fpxq
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Definition 1.1.26. [25] A linear combination with arbitrary coefficients of Dirac’s

impulses and their derivatives at x � a,

δpNqpx� aq � ΣN
j�0cjδ

pjqpx� aq, N P N

is called a generalized delta-hyperfunction of order N at a.

Proposition 1.1.27. [25] If the hyperfunction f1pxq is any particular solution of

equation

px� aqmψpxqfpxq � hpxq,

ψpxq � 0, and real analytic, hpxq is a given hyperfunction then the hyperfunction

fpxq � f1pxq � δpm�1qpx� aq is also a solution

Definition 1.1.28. [25] A hyperfunction fpxq is called holomorphic at x � a, if the

lower and upper component of the defining function can analytically be continued

to a full (two- dimensional) neighbourhood of the real point a i.e. the upper/ lower

component can analytically be continued across a into the lower/upper half-plane.

Definition 1.1.29. [25] Let fpxq � rF�pzq, F�pzqs be a hyperfunction, holomorphic

at both end points of the finite interval ra, bs, then the (definite)integral of fpxq over

ra, bs is defined and denoted by

» b
a

fpxqdx �
»
γ�a,b

F�pzqdz �
»
γ�a,b

F�pzqdz � �
¾
pa,bq

F pzqdz

where the contour γ�a,b runs in N� from a to b above the real axis, and the contour

γ�a,b is in N� from a to b below the real axis.
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Figure 1.2: Contours γ�a,b and γ�a,b

Examples 1.1.30. [25]

» 8
�8

δpxqdx � �
¾ �1

2πiz
dz � 1

Proposition 1.1.31. [25] Let fpxq � rF�pzq, F�pzqs be a hyperfunction, holomorphic

at the finite real points a and b. Then,

» b
a

f
1pxqdx � fpbq � fpaq

1.2. Analytic Properties of Hyperfunctions

Definition 1.2.1. [25] Consider hyperfunctions depending on a continuous parameter

α or an integral parameter k. The continuous parameter α varies in some open region

Ω of the complex plane and α0 is a limit point of Ω. In the case of integral parameter

k may vary in N or Z. Hence,

fpx, αq � rF pz, αqs, α P Ω; fkpxq � rFkpzqs, k P N or k P Z.

We say that a family of holomorphic functions F pz, αq, or a sequence of holomorphic

functions Fkpzq defined on a common domain N � C converges uniformly in the

interior of N to F pzq as αÑ α0, or k Ñ 8, respectively if F pz, αq or Fkpzq converges
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uniformly to F pzq in every compact sub domain of N. This uniform convergence in

the interior of N is also called compact convergence in N.

Definition 1.2.2. [25] Let fpxq � rF�pzq, F�pzqs be a hyperfunction and fpx, αq �
rF pz, αqs a family of hyperfunctions depending on the parameter α. Assume that for

every α an equivalent defining function Gpz, αq of F pz, αq exists, such that G�pz, αq
and G�pz, αq converge uniformly in the interior of N�pIq and N�pIq to F�pzq and

F�pzq, respectively. Then we write

fpxq � lim
αÑα0

fpx, αq

and say that the family of hyperfunctions fpx, αq converges in the sense of hyper-

functions to fpxq.

Definition 1.2.3. [25] Let fpxq � rF�pzq, F�pzqs be a hyperfunction defined on I

such that, for every k, equivalent defining functions Gkpzq of Fkpzq exists, such that

Gk�pzq and Gk�pzq are uniformly convergent in the interior of N�pIq and N�pIq to

F�pzq and F�pzq respectively. Then we write

fpxq � lim
kÑ8

fkpxq,

and say that the sequence of hyperfunctions fkpxq converges in the sense of hyper-

functions to fpxq.

Definition 1.2.4. [25] We write

fpxq � Σ8
k�0fkpxq

if the sequence of partial sums converges in the sense of hyperfunctions to fpxq.
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Proposition 1.2.5. [25] If a limit in the sense of hyperfunctions exists, it is unique.

Definition 1.2.6. [25] A full (two-dimensional) neighbourhood of a real point a P I
is a subset of the form tz P C : |z � a|   ε, ε ¡ 0u
A real neighbourhood of a is a subset of the form tx P R : |x� a|   ε, ε ¡ 0u

Definition 1.2.7. [25] Let the hyperfunction fpxq � rF pzqs be specified on the

interval I. i.e., there is a complex neighbourhood N containing I such that F pzq P
OpNzIq. Then we say that the hyperfunction fpxq � rF pzqs is holomorphic at x �
a P I, if the upper and the lower component F�pzq and F�pzq can analytically be

continued across the real axis to a full neighbourhood of a. A hyperfunction is called

holomorphic or analytic in an open interval J � pa, bq � I, denoted by fpxq P BOpJq,
if it is holomorphic at all x P pa, bq.
This definition implies that if fpxq is a holomorphic hyperfunction at x � a, there

exists a real neighbourhood of a where fpxq is holomorphic.

Definition 1.2.8. [25] A hyperfunction fpxq � rF pzqs is entire if the upper and lower

component of the defining function F pzq are both entire functions.

Definition 1.2.9. [25] A hyperfunction fpxq � rF pzqs is called meromorphic if the

upper and lower component of the defining function F pzq are both meromorphic

functions (having poles on the real axis)

Definition 1.2.10. [25] Let fpxq is a hyperfunction having a compact support ra, bs.
Then it’s defining function F pzq P OpNzra, bsq. It’s upper and lower components are

analytic continuations from each other i.e. we have F�pzq � F�pzq � F pzq. Such a

hyperfunction is called a perfect hyperfunction.
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Definition 1.2.11. [25] Standard defining function of a perfect hyperfunction fpxq
is defined as

F̃ pzq � � 1

2πi

¾
pa,bq

F ptq
t� z

dt

Definition 1.2.12. [25] The hyperfunction fpxq � rF�pzq, F�pzqs is micro-analytic

from above at x � a P I, if the upper component F�pzq can analytically be continued

across the real axis to a full neighbourhood of a. Similarly, fpxq is micro-analytic

from below at x � a P I, if the lower component F�pzq can analytically be continued

across the real axis to a full neighbourhood of a.

Definition 1.2.13. [25] Let Σ0 be the largest open subset of the real line where the

hyperfunction fpxq � rF pzqs is vanishing. Its complement K0 � RzΣ0 is said to be

the support of the hyperfunction fpxq denoted by suppfpxq.

Definition 1.2.14. [25] Let Σ1 be the largest open subset of the real line where the

hyperfunction fpxq � rF pzqs is holomorphic. Its complement K1 � RzΣ1 is said to

be the singular support of the hyperfunction fpxq denoted by sing suppfpxq.

Definition 1.2.15. [25] Let Σ2 be the largest open subset of the real line where

the hyperfunction fpxq � rF pzqs is micro-analytic (from above or from below). Its

complement K2 � RzΣ2 is said to be the singular spectrum of the hyperfunction fpxq
denoted by sing spec f(x).

Proposition 1.2.16. [25] For a hyperfunction fpxq we have

sing spec fpxq � sing supp fpxq � supp fpxq

Proposition 1.2.17. [25] (Theorem of identity for hyperfunctions) If two hyperfunc-

tions f1pxq and f2pxq defined on an open interval I have the same singularities, and
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if there is an open subinterval pa, bq � I where f1pxq � f2pxq, then f1pxq � f2pxq
holds on I

Proposition 1.2.18. [25] (Theorem of analytic continuation of hyperfunctions) Let

f1pxq and f2pxq be hyperfunctions defined on pa1, b1q and pa2, b2q with a non-void

overlap S � pa1, b1q X pa2, b2q � φ. If for any δ¡0

(i) f1pxq is holomorphic in pa1� δ, b1� δq, and f2pxq is holomorphic in pa2� δ, b2� δq
(ii) they are equal in the overlap S

then there exists a unique hyperfunction fpxq such that

fpxq �

$''&
''%
f1pxq, x P pa1, b1q,

f2pxq, x P pa2, b2q.

which is called analytic continuation of f1pxq to f2pxq. The given f1pxq and f2pxq are

said to be the analytic continuation of each other.

Definition 1.2.19. [25] Product of hyperfunctions in the case of disjoint singular

supports:

We assume that the two hyperfunctions fpxq � rF pzqs � rF�pzq, F�pzqs and gpxq �
rGpzqs � rG�pzq, G�pzqs satisfy the condition sing suppfpxq X sing suppgpxq � φ.

Thus, for any x P R at least one of the two hyperfunctions is holomorphic at x.

For definiteness, let I be a real interval where fpxq is holomorphic. i.e., fpxq P BOpIq
then

fpxq.gpxq � tF�pzq � F�pzqurGpzqs

� rtF�pzq � F�pzquG�pzq, tF�pzq � F�pzquG�pzqs
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where the order of the factors is important owing to the lack of symmetry of the

situation. In the above formula the left factor is the holomorphic hyperfunction. In

the event the right factor is the assumed holomorphic hyperfunction, we have

fpxq.gpxq � tG�pzq �G�pzqurF pzqs

� rtG�pzq �G�pzquF�pzq, tG�pzq �G�pzquF�pzqs

Proposition 1.2.20. [25] If fpxq, gpxq P BOpIq, i.e., both factors fpxq and gpxq are

holomorphic hyperfunctions on I, then the defined product becomes commutative, i.e.,

fpxq.gpxq � gpxq.fpxq

1.3. Laplace Transform of Hyperfunctions

Definition 1.3.1. [25] Let t ÞÑ fptq be an ordinary function defined on the entire

real axis, and s a complex variable. The two-sided Laplace transform is defined by

f̂psq �
» 8
�8

e�stfptqdt

provided that the improper integral is convergent for some s.

Definition 1.3.2. [25] Consider open sets J � pa, 0q Y p0, bq with some a   0 and

some b ¡ 0 and compact subsets K � �
a
1
, a

2� Y �b1 , b2� with a   a
1 ¤ a

2   0 and

0   b
1 ¤ b

2  b. Also consider the following open neighbourhoods r�δ,8q � iJ and

p�8, δs � iJ of R� and R� respectively for some δ ¡ 0

Introduce the subclass O pR�q of hyperfunctions fpxq � rF pzqs on R satisfying

(i) The support suppfpxq is contained in r0,8q
(ii) Either the support suppfpxq is bounded on the right by a finite number β ¡ 0 or
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we demand that among all equivalent defining functions, there is one, F pzq defined in

r�δ,8q� iJ such that for any compact subset K � J there exist some real constants

M
1 ¡ 0 and σ

1
such that |F pzq| ¤M

1
eσ

1
Rz holds uniformly for all z P r0,8q � iK

Because suppfpxq � R� and since the singular support sing suppf is a subset of

the support, we have sing suppf� R�. Therefore fpxq is a holomorphic hyperfunction

for all x   0. Moreover, the fact that F�px� i0q �F�px� i0q � 0 for all x   0 shows

that F pzq is real analytic on the negative part of the real axis. Hence fpxq P OpR�q
implies that χp�ε,8qfpxq � fpxq for any ε ¡ 0.

We call the subclass of hyperfunctions OpR�q the class of rightsided originals.

In the case of an unbounded support suppfpxq, let σ� � inf σ
1
be the greatest

lower bound of all σ
1
where the infimum is taken over all σ

1
and all equivalent defining

functions satisfying (ii). This number σ� � σ�pfq is called the growth index of

fpxq P R�. It has the following properties

(i)σ� ¤ σ
1

(ii) For every ε ¡ 0 there is a σ
1

with σ� ¤ σ
1 ¤ σ� � ε and an equivalent defining

function F pzq such that |F pzq| ¤M
1
eσ

1
Rz uniformly for all z P r0,8q � iK.

In the case of a bounded support suppfpxq, we set σ�pfq � �8

Definition 1.3.3. [25] The Laplace transform of a right-sided original fpxq � rF pzqs P
OpR�q is defined by

pfpsq � Lrfpxqspsq � �
» p0�q
8

e�szF pzqdz.

Proposition 1.3.4. [25] The image function pfpsq of fpxq P OpR�q is holomorphic

in the right half-plane Rs ¡ σ�pfq
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Definition 1.3.5. [25] Similarly, we introduce the class OpR�q of hyperfunctions

specified by

(i) The support suppfpxq is contained in R� � p�8, 0s
(ii) Either the support suppfpxq is bounded on the left by a finite number α   0,

or we demand that among all equivalent defining functions there is one, denoted by

F pzq and defined in p�8, δs � iJ such that for any compact subset K � J there are

some real constants M
2 ¡ 0 and σ

2
such that |F pzq| ¤ M

2
eσ

2
Rz holds uniformly for

z P p�8, 0s � iK.

The set OpR�q is said to be the class of left-sided originals.

In the case of an unbounded support let σ� � supσ
2

be the least upper bound

of all σ
2
, where the supremum is taken over all σ

2
and all equivalent defining functions

satisfying (ii). The number σ� � σ�pfq is called the growth index of fpxq P OpR�q.
It has the properties

(i) σ
2 ¤ σ�.

(ii) For every ε ¡ 0 there is a σ
2

such that σ��ε ¤ σ
2 ¤ σ� and a defining function

F pzq such that |F pzq| ¤M
2
eσ

2
Rz uniformly for all z P p�8, 0s � iK.

If the support suppfpxq is bounded, we set σ�pfq � �8

Definition 1.3.6. [25] The Laplace transform of a left-sided original fpxq � rF pzqs P
OpR�q is defined by

pfpsq � Lrfpxqspsq � �
» p0�q
�8

e�szF pzqdz.

Proposition 1.3.7. [25] The image function pfpsq of fpxq P OpR�q is holomorphic

in the left half-plane Rs   σ�pfq
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Examples 1.3.8. [25] δpxq P OpR�q X OpR�q and σ�pδq � �8 and σ�pδq � �8.
For fpxq � upxqe�x we have fpxq P OpR�q and σ�pfq � �1. Similarly, for fpxq �
up�xqex we have fpxq P OpR�q and σ�pfq � �1. Let gpxq be any polynomial, then

h2pxq � upxqgpxq P OpR�q with σ�ph2q � 0, also h1pxq � up�xqgpxq P OpR�q with

σ�ph1q � 0.

Remark. [25] With a left-sided original gpxq P OpR�q with growth index σ�pgq
and a right-sided original fpxq P OpR�q with growth index σ�pfq we form the

hyperfunction hpxq � gpxq � fpxq whose support is now the entire real axis. If

pgpsq � Lrgpxqspsq, Rs   σ�pgq and pfpsq � Lrfpxqspsq, Rs ¡ σ�pfq we may add

the two image functions, provided they have a common strip of convergence, i.e.

σ�pfq   σ�pgq holds.

Definition 1.3.9. [25] With gpxq P OpR�q, fpxq P OpR�q, hpxq � gpxq � fpxq,

Lrhpxqspsq � ygpxqpsq �zfpxqpsq, σ�pfq  Rs   σ�pgq,

provided σ�pfq   σ�pgq.

Definition 1.3.10. [25] Hyperfunctions of the subclass OpR�q are said to be of

bounded exponential growth as xÑ 8 and hyperfunctions of the subclass OpR�q are

said to be of bounded exponential growth as xÑ �8.

Definition 1.3.11. [25] An ordinary function fpxq is called of bounded exponential

growth as xÑ 8, if there are some real constants M
1 ¡ 0 and σ

1
such that |fpxq| ¤

M
1
eσ

1
x for sufficiently large x. It is called of bounded exponential growth as x Ñ

�8, if there are some real constants M
2 ¡ 0 and σ

2
such that |fpxq| ¤ M

2
eσ

2
x, for

sufficiently negative large x.
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Definition 1.3.12. [25] A function or a hyperfunction is of bounded exponential

growth, if it is of bounded exponential growth for xÑ �8 as well as for xÑ 8 .

Thus a hyperfunction or ordinary function fpxq has a Laplace transform, if it is of

bounded exponential growth, and if σ�pfq   σ�pfq

Proposition 1.3.13. [25] If fpxq � rF pzqs is a hyperfunction of bounded exponential

growth which is holomorphic at x � c, then

�
» pc�q
�8

e�szF pzqdz �
» c
�8

e�sxfpxqdx,

�
» pc�q
8

e�szF pzqdz �
» 8
c

e�sxfpxqdx

thus,

�t
» pc�q
�8

e�szF pzqdz �
» pc�q
8

e�szF pzqdzu �
» 8
�8

e�sxfpxqdx

Proposition 1.3.14. [25] Let fpxq � rF pzqs be a hyperfunction of bounded exponen-

tial growth with an arbitrary support and holomorphic at some point x � c. If in

addition

σ� � σ�pχp0,8qfpxqq   σ� � σ�pχp�8,0qfpxqq, then its Laplace transform is given by

Lrfpxqspsq � Lrχp�8,cqfpxqspsq � Lrχpc,8qfpxqspsq

�
» c
�8

e�sxfpxqdx�
» 8
c

e�sxfpxqdx

�
» 8
�8

e�sxfpxqdx
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Proposition 1.3.15. [25] If fpxq � rF pzqs is a hyperfunction with bounded exponen-

tial growth, having arbitrary support and holomorphic at xi,

� 8   x1   x2   ...   xn   8 and such that Lrfpxqspsq � f̂psq has the strip of

convergence σ�   Rs   σ� then its Laplace transform is

Lrfpxqspsq �
» x1
�8

e�sxfpxqdx� Σn�1
k�1

» xk�1

xk

e�sxfpxqdx�
» 8
xn

e�sxfpxqdx

Proposition 1.3.16. [25] If fpxq � rF pzqs be a hyperfunction with an arbitrary

support and which is holomorphic at x � 0, f1pxq � χp�8,0qfpxq P OpR�q and f2pxq �
χp0,8qfpxq P OpR�q with σ� � σ�pf2pxqq and σ� � σ�pf1pxqq, σ�   σ� then

Lrfpxqspsq � Lrf1p�xqsp�sq � Lrf2pxqspsq

with �σ�   Rs, σ�   Rs

Definition 1.3.17. [25] (Canonical splitting)

A given hyperfunction fpxq � rF pzqs can be split into a sum of two hyperfunctions

f1pxq � rF1pzqs P OpR�q and f2pxq � rF2pzqs P OpR�q such that fpxq � f1pxq�f2pxq,
F1pzq � F2pzq � F pzq and σ�pf2q   σ�pf1q. This is achieved by taking if 0 is not an

element in sing supppfq, by forming the projections f1pxq � χp�8,0qfpxq and f2pxq �
χp0,8qfpxq. So if the Laplace transform f̂psq of fpxq exists with strip of convergence

σ�pf2q   Rs   σ�pf1q and pf̂1qpsq � Lrf1pxqspsq and pf̂2qpsq � Lrf2pxqspsq then

f̂psq � pf̂1qpsq � pf̂2qpsq.
But the decomposition fpxq � f1pxq � f2pxq need not be unique and is only

determined upto hyperfunctions concentrated at the point x � 0. Regardless of the

fact that the Laplace transform of a hyperfunction concentrated at a point is not

zero, this arbitrariness generally does not harm for the Laplace transforms.
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Definition 1.3.18. [25] Convolution of hyperfunctions : Let fpxq � rF pzqs and

gpxq � rGpzqs be two given hyperfunctions, their convolution is

hpxq � fpxq � gpxq � rHpzqs

if exists, where

H�pzq �
» 8
�8

F�pz � tqgptqdt, Iz ¡ 0

H�pzq �
» 8
�8

F�pz � tqgptqdt, Iz   0

Proposition 1.3.19. [25] Let the Laplace transforms f̂psq and ĝpsq of the hyperfunc-

tions fpxq and gpxq have a non-void common strip of convergence σ�  Rs   σ�,

and assume further that the convolution hpxq � pf � gqpxq exists and has the Laplace

transform ĥpsq, then

ĥpsq � f̂psqĝpsq.

1.4. Fourier Transform of Hyperfunctions

Definition 1.4.1. [25] Let fpxq � f1pxq � f2pxq be a hyperfunction with f1pxq �
rF1pzqs P OpR�q, f2pxq � rF2pzqs P OpR�q. Moreover, assume �σ�pf1q ¤ 0 ¤
�σ�pf2q holds, then, the Fourier transform of fpxq is defined as being the hyperfunc-

tion f̂pωq � Frfpxqspωq � rH�pζq, H�pζqs, ω P R where the two components of the

defining function are

H�pζq � Lrf1pxqspiζq � �
» 0�

�8

e�iζzF1pzqdz,
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H�pζq � �Lrf2pxqspiζq �
» 0�

8

e�iζzF2pzqdz

1.5. Some Preliminary Definitions

Definition 1.5.1. [36] A function h : p0,8q Ñ p0,8q is said to be slowly varying at

infinity if

lim
pÑ8

hppxq
hppq � 1, @ x ¡ 0

Definition 1.5.2. [25] The conventional generalized Weierstrass transform of fpxq
with parameter t is defined by

gps, tq � 1?
4πt

» 8
�8

e
�ps�xq2

4t fpxqdx, t ¡ 0

Definition 1.5.3. [2] Stieltjes transform of a function fptq is defined as

ρtfptq, yu �
» 8

0

fptqdt
t� y

Definition 1.5.4. [10] L2-transform of fpxq is

L2tfpxq; yu �
» 8

0

xe�x
2y2fpxqdx

Definition 1.5.5. [4] The two dimensional Laplace transform of an ordinary function

fpx, tq is defined as

LtLxfpx, tqpp, sq � F̄ pp, sq �
» 8

0

e�st
» 8

0

e�pxfpx, tqdxdt (1.1)

whenever the integral converges, where x, t ¡ 0 are two independent variables and p, s
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are complex numbers.

If fpx, tq is a continuous function in r0,8q and sup
x¡ 0,t¡ 0

|fpx, tq|
eax�bt

 8 for some a, b P R

then equation (1.1) exists @ p ¡ a and s ¡ b.

The inverse Laplace integral is

fpx, tq � 1

p2πiq2
» c�i8
c�i8

» d�i8
d�i8

F̄ pp, sqepx�stdsdp

where c and d are real constants, c ¡ a and d ¡ b

Definition 1.5.6. [40] The space of hyperfunctions in two variables is defined as

BpR2q � OppCzRq � pCzRqq
OppCzRq � Cq �OpC� pCzRqq

Definition 1.5.7. [43] An ordered vector space is a real vector space E equipped with

a transitive, reflexive, antisymmetric relation ¤ satisfying the following conditions:

• If x, y, z are elements of E and x ¤ y, then x� z ¤ y � z

• If x, y are elements of E and α is a positive real number, then x ¤ y implies

αx ¤ αy

Definition 1.5.8. [43] The Positive cone (or simply the cone) K in an ordered vector

space E is defined by K � tx P E : x ¥ 0u, where 0 denotes the zero element in E.

Definition 1.5.9. [43] A topological vector space Epτq is a vector space E equipped

with a topology τ for which the operations of addition and scalar multiplication in E

are jointly continuous

Definition 1.5.10. [43] An ordered vector space which is also a topological vector

space is called an ordered topological vector space.
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Definition 1.5.11. [43] If A is a subset of a vector space E ordered by a cone K,

the full hull rAs of A is defined by

rAs � tz P E : x ¤ z ¤ y for x P A, y P Au

Definition 1.5.12. [43] Suppose that Epτq is an ordered topological vector space

and that K is the positive cone in Epτq. K is normal for the topology τ if there is a

neighbourhood basis of 0 for τ consisting of full sets.

1.6. Supporting Theorems

Note: In the following theorems spνq denotes the Stieltjes transform of the function

F ptq

Theorem 1.6.1. [36] Let spνq vanish for ν   0, be a non decreasing, continuous from

the right and such that

F ptq �
» 8�

0�

e�tνdspνq �
» 8

0�

e�tνdspνq

exists for t ¡ 0. Suppose that for some constant α ¡ 0,

F ptq � A

tα
as tÑ 0 ror as tÑ 8s

Then

spuq � A

Γpα � 1q as uÑ 8 ror as uÑ 0, respectivelys.
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Theorem 1.6.2. [36] Let spνq vanish for ν   0, be non decreasing, continuous from

the right and such that the Stieltjes transform gpxq �
» 8�

0�

dspνq
x� ν

exists for x ¡ 0.

Suppose that for some number α P r0, 1q,

gpxq � Axα�1as xÑ 8

Then

spuq � A

Γp1� αqΓp1� αqu
α as uÑ 8.

Theorem 1.6.3. [36] Let spνq vanish for ν   0, be non decreasing, continuous from

the right and such that the Stieltjes transform Fρpxq �
» 8

0�

dspνq
px� νqρ exists for every

x ¡ 0. Let Lpxq be slowly varying and 0 ¤ α   ρ. Then for xÑ 8,

spxq � AxαLpxq if and only if

Fρpxq � A
Γpα � 1qΓpρ� αq

Γpρq xα�ρLpxq
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Chapter 2

Weierstrass, Stieltjes and L2

Transforms of Hyperfunctions

In this chapter integral transforms like Weierstrass transform, Stieltjes transform

and L2-transform are defined for hyperfunctions. Some operational and theoretic

properties are established.

2.1. Weierstrass Transform of Hyperfunctions

The Weierstrass transform of Sato’s hyperfunctions and some of its properties are

studied here using the concept of defining function of hyperfunctions and the Laplace

transform of hyperfunctions.

In this study we consider hyperfunctions of bounded exponential growth.

Definition 2.1.1. Let fpxq � rF pzqs be a hyperfunction of bounded exponential

growth. The generalized Weierstrass transform of fpxq with parameter t ¡ 0 is defined
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by

Wtrfpxqspsq � 1?
4πt

» 8
�8

e
�ps�xq2

4t fpxqdx � 1?
4πt

» 8
�8

e
�ps�zq2

4t F pzqdz,

if it exists in the sense of hyperfunction.

Proposition 2.1.2. The image function Wtrfpxqspsq is a holomorphic function.

Proof. The Kernel of the transformation e
�ps�zq2

4t is holomorphic for all t ¡ 0. Hence

the integrand becomes a well defined hyperfunction whose integral is a number de-

pending on s holomorphically.

Proposition 2.1.3. The Weierstrass transform of hyperfunction is injective.

Proof. Suppose that fpxq � rF pzqs and gpxq � rGpzqs are two hyperfunctions of

bounded exponential growth with Wtrfpxqspsq �Wtrgpxqspsq

Wtrfpxqspsq �Wtrgpxqspsq ñ 1?
4πt

» 8
�8

e
�ps�xq2

4t fpxqdx � 1?
4πt

» 8
�8

e
�ps�xq2

4t gpxqdx

ñ 1?
4πt

» 8
�8

e
�ps�zq2

4t F pzqdz � 1?
4πt

» 8
�8

e
�ps�zq2

4t Gpzqdz

ñ 1?
4πt

» 8
�8

e
�ps�xq2

4t pF pzq �Gpzqqdz � 0

ñ F pzq �Gpzq � 0

ñ rF pzqs � rGpzqs

ñ fpxq � gpxq

Remark. The following proposition establishes the relation between Weierstrass trans-

form and Laplace transform of a hyperfunction of bounded exponential growth.
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Proposition 2.1.4. Let fpxq � rF pzqs is a hyperfunction with bounded exponential

growth. If σ�pfq  Rp�s2t
q   σ�pfq then

Wtrfpxqspsq � e
�s2

4t?
4πt
Lre�x

2

4t fpxqsp�s
2t
q, t ¡ 0

Proof.

Wtrfpxqspsq � 1?
4πt

» 8
�8

e
�ps�xq2

4t fpxqdx

� 1?
4πt

» 8
�8

ep
�s2

4t
�xs

2t
�x2

4t
qfpxqdx

� e
�s2

4t?
4πt

» 8
�8

e�
p�sqx

2t pe�x
2

4t fpxqqdx

� e
�s2

4t?
4πt
Lre�x

2

4t fpxqsp�s
2t
q if σ�pfq  Rp�s

2t
q   σ�pfq, t ¡ 0

Proposition 2.1.5. Let fpxq � rF pzqs is a hyperfunction, holomorphic at x � c

having bounded exponential growth with an arbitrary support, t ¡ 0, satisfies

σ� � σ�pχp0,8qe�x
2

4t fpxqq   σ� � σ�pχp�8,0qe�x
2

4t fpxqq then

Wtrfpxqspsq �Wtrχp�8,cqfpxqspsq �Wtrχpc,8qfpxqspsq

Proof. If σ� � σ�pχp0,8qe�x
2

4t fpxqq   σ� � σ�pχp�8,0qe�x
2

4t fpxqq then by 1.3.14

we have

Lre�x
2

4t fpxqsp�s
2t
q � Lrχp�8,cqe�x

2

4t fpxqsp�s
2t
q � Lrχpc,8qe�x

2

4t fpxqsp�s
2t
q
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Applying this result and the proposition 2.1.4 we get

Wtrfpxqspsq � e
�s2

4t?
4πt
Lre�x

2

4t fpxqsp�s
2t
q

� e
�s2

4t?
4πt

rLrχp�8,cqe�x
2

4t fpxqsp�s
2t
q � Lrχpc,8qe�x

2

4t fpxqsp�s
2t
qs

� e
�s2

4t?
4πt

Lrχp�8,cqe�x
2

4t fpxqsp�s
2t
q � e

�s2

4t?
4πt

Lrχpc,8qe�x
2

4t fpxqsp�s
2t
q

� Wtrχp�8,cqfpxqspsq �Wtrχpc,8qfpxqspsq

Proposition 2.1.6. Let fpxq � rF pzqs is a hyperfunction with bounded exponen-

tial growth, holomorphic at xi, �8   x1   x2  ...  xn  8, with an arbitrary support

and such that Lpfpxqq � f̂psq has the strip of convergence σ�pfq   Rp�s2t
q   σ�pfq,

for t ¡ 0, then the Weierstrass transform

Wtrfpxqspsq � 1?
4πt

r
» x1
�8

e
�ps�xq2

4t fpxqdx�
» x2
x1

e
�ps�xq2

4t fpxqdx�...�
» 8
xn

e
�ps�xq2

4t fpxqdxs

Proof. By proposition 1.3.15

Lre�x
2

4t fpxqsp�s
2t
q �

» x1
�8

e�p
�s
2t
qxe

�x2

4t fpxqdx�Σn�1
k�1

» xk�1

xk

e�p
�s
2t
qxe

�x2

4t fpxqdx�
» 8
xn

e�p
�s
2t
qxe

�x2

4t fpxqdx

Then using proposition 2.1.4,

Wtrfpxqspsq � e
�s2

4t?
4πt
Lre�x

2

4t fpxqsp�s
2t
q
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� e
�s2

4t?
4πt

r
» x1
�8

e�p
�s
2t
qxe

�x2

4t fpxqdx�

Σn�1
k�1

» xk�1

xk

e�p
�s
2t
qxe

�x2

4t fpxqdx�
» 8
xn

e�p
�s
2t
qxe

�x2

4t fpxqdxs

� 1?
4πt

r
» x1
�8

e
�ps�xq2

4t fpxqdx�
» x2
x1

e
�ps�xq2

4t fpxqdx� ...�
» 8
xn

e
�ps�xq2

4t fpxqdxs

Proposition 2.1.7. Let fpxq � rF pzqs is a hyperfunction with bounded exponential

growth. Then

Wtrfp�xqsp�sq � �Wtrfpxqspsq

Proof.

Wtrfp�xqsp�sq � 1?
4πt

» 8
�8

e
�p�s�xq2

4t fp�xqdx

� 1?
4πt

» 8
�8

e
�p�s�zq2

4t F p�zqdz

By putting �z � ζ, we have

Wtrfp�xqsp�sq � � 1?
4πt

» 8
�8

e
�p�s�ζq2

4t F pζqdζ

� � 1?
4πt

» 8
�8

e
�ps�ζq2

4t F pζqdζ

� �Wtrfpxqspsq
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Proposition 2.1.8. Let fpxq � rF pzqs is a hyperfunction with bounded exponential

growth, holomorphic at x � 0 having an arbitrary support. Let

f1pxq � χp�8,0qe
�x2

4t fpxq P OpR�q and f2pxq � χp0,8qe
�x2

4t fpxq P OpR�q

with σ� � σ�pf2pxqq and σ� � σ�pf1pxqq. If σ�pfq   σ�pfq then the Weierstrass

transform

Wtrfpxqspsq �Wtrf1p�xqsp�sq�Wtrf2pxqspsq with �σ�pfq   Rp s
2t
q, σ�   Rp�s

2t
q, t ¡ 0

Proof. By proposition 1.3.16 we have

Lre�x
2

4t fpxqsp�s
2t
q � Lre�x

2

4t f1p�xqsp s
2t
q � Lre�x

2

4t f2pxqsp�s
2t
q

Using proposition 2.1.4 we get,

Wtrfpxqspsq � e
�s2

4t?
4πt
Lre�x

2

4t fpxqsp�s
2t
q

� e
�s2

4t?
4πt

rLre�x
2

4t f1p�xqsp s
2t
q � Lre�x

2

4t f2pxqsp�s
2t
qs

� e
�s2

4t?
4πt
Lre�x

2

4t f1p�xqsp s
2t
q � e

�s2

4t?
4πt
Lre�x

2

4t f2pxqsp�s
2t
q

� Wtrf1p�xqsp�sq �Wtrf2pxqspsq

Proposition 2.1.9. If fpxq � rF pzqs is a hyperfunction having bounded exponential

growth, then for t ¡ 0,

Wtrfpxqspsq �Wtrfpxqspsq
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Proof. By Proposition 3.7[25], Lrfpxqspsq � Lrfpxqpsqs. Then

Lre�x
2

4t fpxqsp�s
2t
q � Lre�x24t fpxqsp�s

2t
q

Hence

Wtrfpxqspsq � 1?
4πt

» 8
�8

e
�ps�xq2

4t fpxqdx

� e
�s2

4t?
4πt

Lre�x
2

4t fpxqsp�s
2t
q

� e
�s2

4t?
4πt

Lre�x24t fpxqsp�s
2t
q

� Wtrfpxqspsq

Examples 2.1.10. Weierstrass transform of Dirac’s delta function as a hyperfunc-

tion

Wtrδpxqspsq � 1?
4πt

» 8
�8

e
�ps�xq2

4t δpxqdx

� 1?
4πt

» 8
�8

e
�ps�zq2

4t
�1

2πiz
dz

� �1

2πi
?

4πt

» 8
�8

e
�ps�zq2

4t
1

z
dz

� �1

2πi
?

4πt
Resz�0re

�ps�zq2

4t

z
s

� �1

2πi
?

4πt
re�ps�zq

2

4t sz�0

� �1

2πi
?

4πt
e
�s2

4t
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Remark. The classical Laplace transform of a negative integral power does not exist,

but the Laplace transform of negative integral power of a hyperfunction exist. Hence

we can find Weierstrass transform of the negative integral power of a hyperfunction

using the relation connecting Weierstrass and Laplace transform. Also the classical

Laplace transform of a non-integral power of unit step function uptqtα exists only for

α ¡ �1, but the Laplace transform of that hyperfunction exists for any non-integral

power α

2.1.1 Operational Properties

Proposition 2.1.11. Let f1pxq � rF1pzqs and f2pxq � rF2pzqs are any two hyperfunc-

tions having bounded exponential growth with Weierstrass transforms Wtrf1pxqspsq,
Wtrf2pxqspsq. If the two image functions have a non empty intersection then for

constants c1, c2,

Wtrc1f1pxq � c2f2pxqspsq � c1Wtrf1pxqspsq � c2Wtrf2pxqspsq,

where s belongs to the common strip of convergence.

Proof.

Wtrc1f1pxq � c2f2pxqspsq � 1?
4πt

» 8
�8

e
�ps�xq2

4t pc1f1pxq � c2f2pxqqdx

� 1?
4πt

» 8
�8

e
�ps�zq2

4t pc1F1pzq � c2F2pzqqdz

� 1?
4πt

p
» 8
�8

e
�ps�zq2

4t c1F1pzqdz �
» 8
�8

e
�ps�zq2

4t c2F2pzqdzq
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� 1?
4πt

p
» 8
�8

e
�ps�xq2

4t c1f1pxqdx�
» 8
�8

e
�ps�xq2

4t c2f2pxqdxq

� c1
1?
4πt

» 8
�8

e
�ps�xq2

4t f1pxqdx� c2
1?
4πt

» 8
�8

e
�ps�xq2

4t f2pxqdx

� c1Wtrf1pxqspsq � c2Wtrf1pxqspsq

Proposition 2.1.12. If the hyperfunction fpxq � rF pzqs has the Weierstrass trans-

form Wtrfpxqspsq and has the canonical splitting fpxq � f1pxq � f2pxq, then

Wtrfpxqspsq �Wtrf1pxqspsq �Wtrf2pxqspsq,

if σ�pf2q  Rp�s2t
q   σ�pf1q

Proof. If the hyperfunction fpxq � rF pzqs has the canonical splitting,

fpxq � f1pxq � f2pxq then

Lrfpxqspsq � Lrf1pxqspsq � Lrf2pxqspsq, if σ�pf2q  Rs   σ�pf1q

Hence

Wtrfpxqspsq � e
�s2

4t?
4πt
Lre�x

2

4t fpxqsp�s
2t
q

� e
�s2

4t?
4πt

tLre�x
2

4t f1pxqsp�s
2t
q � Lre�x

2

4t f2pxqsp�s
2t
qu

� e
�s2

4t?
4πt
Lre�x

2

4t f1pxqsp�s
2t
q � e

�s2

4t?
4πt
Lre�x

2

4t f2pxqsp�s
2t
q

� Wtrf1pxqspsq �Wtrf2pxqspsq, ifσ�pf2q  Rp�s
2t
q   σ�pf1q
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Proposition 2.1.13. Let fpxq � rF pzqs is a real analytic hyperfunction having

bounded exponential growth and c be a constant, then

Wtrfpx� cqspsq �Wtrfpxqsps� cq,

if σ�pfq   Rpsq   σ�pfq.

Proof.

Wtrfpx� cqspsq � 1?
4πt

» 8
�8

e
�ps�xq2

4t fpx� cqdx

� 1?
4πt

» 8
�8

e
�ps�zq2

4t F pz � cqdz

By putting z � c � ζ, we have

Wtrfpx� cqspsq � 1?
4πt

» 8
�8

e
�ps�c�ζq2

4t F pζqdζ

� Wtrfpxqsps� cq

Proposition 2.1.14. Let fpxq � rF pzqs is a hyperfunction of bounded exponential

growth and the Weierstrass transform Wtrfpxqspsq exists. Then

Wtrex
2

4t fpxqspsq � e
�s2

4t?
4πt

Lrfpxqsp�s
2t
q

Proof.

Wtrex
2

4t fpxqspsq � 1?
4πt

» 8
�8

e
�ps�xq2

4t e
x2

4t fpxqdx
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� 1?
4πt

» 8
�8

e
�ps�zq2

4t e
z2

4t F pzqdz

� 1?
4πt

» 8
�8

e
�ps�zq2

4t
� z2

4t F pzqdz

� 1?
4πt

» 8
�8

e
�s2

4t
� sz

2tF pzqdz

� e
�s2

4t?
4πt

» 8
�8

e�p
�s
2t
qzF pzqdz

� e
�s2

4t?
4πt

Lrfpxqsp�s
2t
q

Proposition 2.1.15. Let fpxq � rF pzqs is a hyperfunction having bounded exponen-

tial growth with Weierstrass transform Wtrfpxqspsq. Then

Wtrex
2

4t fnpxqspsq � p�s
2t
qnWtrex

2

4t fpxqspsq

Proof.

Wtrex
2

4t fnpxqspsq � 1?
4πt

» 8
�8

e
�ps�zq2

4t e
z2

4t F npzqdz

� e
�s2

4t?
4πt

» 8
�8

e�p
�s
2t
qzF npzqdz

� e
�s2

4t?
4πt

Lrfnpxqsp�s
2t
q

� e
�s2

4t?
4πt

p�s
2t
qnLrfpxqsp�s

2t
q

� p�s
2t
qn e

�s2

4t?
4πt

Lrfpxqsp�s
2t
q

� p�s
2t
qnWtrex

2

4t fpxqspsq

39



Proposition 2.1.16. Let fpxq � rF pzqs is a hyperfunction with bounded exponential

growth. Then

Wtrex
2

4t xnfpxqspsq � p�1qne�s
2

4t
dn

dsn
re s

2

4tWtrex
2

4t fpxqspsqs

Proof.

Wtrex
2

4t xnfpxqspsq � 1?
4πt

» 8
�8

e
�ps�zq2

4t e
z2

4t znF pzqdz

� 1?
4πt

» 8
�8

e
�s2

4t
� sz

2t znF pzqdz

� e
�s2

4t?
4πt

» 8
�8

e�p
�s
2t
qzznF pzqdz

� e
�s2

4t?
4πt

Lrxnfpxqsp�s
2t
q

� e
�s2

4t?
4πt

p�1qn d
n

dsn
Lrfpxqsp�s

2t
q

� e
�s2

4t?
4πt

p�1qn d
n

dsn
pWtrex

2

4t fpxqspsq
?

4πte
s2

4t q

� p�1qne�s
2

4t
dn

dsn
re s

2

4tWtrex
2

4t fpxqspsqs

2.1.2 Inverse Weierstrass Transform of Hyperfunctions

In [33] V.Karunakarn and T.Venugopal gave inversion formula for Weier-

strass Transform for a class of generalized functions. In this study, the inversion

formula for Weierstrass transform of Hyperfunction can be defined as follows:
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Definition 2.1.17. If f̃psq � Wtrfpxqspsq is the Weierstrass transform of fpxq �
rF pzqs, a hyperfunction of bounded exponential growth then

fpxq � rF pzqs � lim
tÑ1

1?
4πt

» 8
�8

e
�ps�izq2

4t f̃pisqds

2.2. Stieltjes Transform of Hyperfunctions

We define Stieltjes transform for hyperfunctions having bounded exponential growth.

Some properties of Stieltjes transform of hyperfunctions are proved.

2.2.1 Stieltjes Transformation of Hyperfunctions

Definition 2.2.1. For a hyperfunction fpxq � rF pzqs of bounded exponential growth

the Stieltjes transform is defined by

f̃ptq � Srfpxqsptq �
» 8

0

fpxq
x� t

dx �
» 8

0

F pzq
z � t

dz, where t P R

if it exists.

Remark. As for the normal functions, the Stieltjes transform of hyperfunction is also

the second iterate of Laplace transform of hyperfunction if it is of bounded exponential

growth.

Proposition 2.2.2. Let fpxq � rF pzqs is a hyperfunction with bounded exponential

growth then

Srfpxqsptq � LrLrfpxqspsqsptq

if σ�pfq   Rs   σ�pfq and σ�pfq   Rt   σ�pfq
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Proof. Let fpxq � rF pzqs is a hyperfunction with bounded exponential growth and

σ�pfq   Rs   σ�pfq and σ�pfq   Rt   σ�pfq.

LrLrfpxqspsqsptq �
» 8

0

e�stLrfpxqspsqds

�
» 8

0

e�tsr
» 8

0

e�sxfpxqdxsds

�
» 8

0

r
» 8

0

e�sx�stdssfpxqdx

�
» 8

0

r
» 8

0

e�px�tqsdssfpxqdx

�
» 8

0

r
» 8

0

e�pz�tqζdζsF pzqdz

�
» 8

0

F pzq
z � t

dz

�
» 8

0

fpxq
x� t

dx

� Srfpxqsptq

Examples 2.2.3. Consider the delta function as a hyperfunction δpxq � r �1
2πiz

s

Lrδpxqspsq � 1,

LrLrδpxqspsqsptq �
» 8

0

e�tsLrδpxqspsqds �
» 8

0

e�tsds � 1

t

Also

Srδpxqsptq � 1

t

Proposition 2.2.4. Let fpxq � rF pzqs is a hyperfunction with bounded exponential

growth then the Stieltjes transform f̃ptq � Srfpxqsptq is a holomorphic function
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Proof. Since the image of Laplace transform of a hyperfunction is a holomorphic func-

tion the double Laplace transform is again a holomorphic function. Hence Srfpxqsptq
is a holomorphic function of t.

Proposition 2.2.5. Let fpxq � rF pzqs and gpxq � rGpzqs are any two hyperfunctions

having bounded exponential growth with the Stieltjes transform f̃ptq � Srfpxqsptq and

g̃ptq � Srgpxqsptq respectively, then

» 8
0

fpxqg̃pxqdx �
» 8

0

gptqf̃ptqdt

Proof.

»
fpxqg̃pxqdx �

» 8
0

fpxqp
» 8

0

gptq
t� x

dtqdx

�
» 8

0

gptqp
» 8

0

fpxq
x� t

dxqdt

�
» 8

0

gptqf̃ptqdt

Proposition 2.2.6. Let fpxq � rF pzqs is a real valued hyperfunction with bounded

exponential growth and fpxq ¡ 0 for all x ¡ 0 then the Stieltjes transform

f̃ptq � Srfpxqsptq ¡ 0

for all t ¡ 0

Proof. Since the integral of a positive valued function in p0,8q is always positive we

have f̃ptq � Srfpxqsptq ¡ 0 for all t ¡ 0 .
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2.2.2 Operational Properties

Proposition 2.2.7. Let fpxq � rF pzqs is a hyperfunction with bounded exponential

growth and c ¡ 0 be a constant then

Srfpcxqsptq � cSrfpxqspctq

Proof.

Srfpcxqsptq �
» 8

0

fpcxq
x� t

dx

�
» 8

0

F pczq
z � t

dz

�
» 8

0

F pζq
ζ
c
� t

dζ, by letting ζ � cz

� c

» 8
0

F pζq
ζ � ct

dζ

� c

» 8
0

fpxq
x� ct

dx

� cSrfpxqspctq

Proposition 2.2.8. Let fpxq � rF pzqs and gpxq � rGpzqs are two hyperfunctions

having bounded exponential growth then

Srfpxq � gpxqsptq � Srfpxqsptq � Srgpxqsptq

Proof.

Srfpxq � gpxqsptq �
» 8

0

pfpxq � gpxqq
x� t

dx
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�
» 8

0

pF pzq �Gpzqq
z � t

dz

�
» 8

0

F pzq
z � t

dz �
» 8

0

Gpzq
z � t

dz

� Srfpxqsptq � Srgpxqsptq

Proposition 2.2.9. Let fpxq � rF pzqs is a hyperfunction with bounded exponential

growth and c ¡ 0 be a constant then

Srfpx� cqsptq � Srfpxqspt� cq

Proof.

Srfpx� cqsptq �
» 8

0

fpx� cq
x� t

dx

�
» 8

0

F pz � cq
z � t

dz

�
» 8

0

F pζq
ζ � c� t

dζ, by putting z � c � ζ

�
» 8

0

fpxq
x� pt� cqdx

� Srfpxqspt� cq

Proposition 2.2.10. Let fpxq � rF pzqs is a hyperfunction with bounded exponential

growth, f̂psq � Lrfpxqspsq exists and c be a constant then

Srecxfpxqsptq � Lrf̂ps� cqsptq
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if σ�pfq �Rc   Rs   σ�pfq �Rc and σ�pf̂q   Rt   σ�pf̂q

Proof. Suppose that σ�pfq �Rc   Rs   σ�pfq �Rc and σ�pf̂q   Rt   σ�pf̂q.
Then

Srecxfpxqsptq � LrLrecxfpxqspsqsptq

� Lrf̂ps� cqsptq

Proposition 2.2.11. Let fpxq � rF pzqs is a hyperfunction with bounded exponential

growth, f̂psq � Lrfpxqspsq exists, then

Srf pnqpxqsptq � p�1qn d
n

dtn
pLrf̂psqsptqq

if σ�pfq   Rs   σ�pfq and σ�pf̂q   Rt   σ�pf̂q

Proof. Suppose that σ�pfq   Rs   σ�pfq and σ�pf̂q   Rt   σ�pf̂q. Then

Srf pnqpxqsptq � LrLrf pnqpxqspsqsptq

� Lrsnf̂psqsptq

� p�1qn d
n

dtn
pLrf̂psqsptqq

Proposition 2.2.12. Let fpxq � rF pzqs and gpyq � rGpzqs are two hyperfunctions

of bounded exponential growth. If support fpxq is a compact subset of p0,8q then

» 8
0

LrfpxqspsqLrgpyqspsqds �
» 8

0

gpyqSrfpxqspyqdy
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Proof.

» 8
0

LrfpxqspsqLrgpyqspsqds �
» 8

0

Lrfpxqspsqp
» 8

0

e�sygpyqdyqds

�
» 8

0

gpyqp
» 8

0

e�syLrfpxqspsqdsqdy

�
» 8

0

gpyqLrLrfpxqspsqspyqdy

�
» 8

0

gpyqSrfpxqspyqdy

Proposition 2.2.13. Let fpxq � rF pzqs and gpyq � rGpzqs are two hyperfunctions

of bounded exponential growth and support fpxq is a compact subset of p0,8q. If the

Laplace transforms Lrfpxqspsq and Lrgpyqspsq of fpxq and gpxq have a common strip

of convergence, then

» 8
0

Lrpf � gqpxqspsqds �
» 8

0

gpyqSrfpxqspyqdy

Proof. If the Laplace transforms Lrfpxqspsq and Lrgpyqspsq of fpxq and gpxq have a

common strip of convergence, then LrfpxqspsqLrgpyqspsq � Lrpf � gqpxqspsq
Then using previous proposition we have,

» 8
0

Lrpf � gqpxqspsqds �
» 8

0

LrfpxqspsqLrgpyqspsqds

�
» 8

0

gpyqSrfpxqspyqdy
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2.2.3 Inverse Stieltjes Transform of Hyperfunctions

A complex inversion formula for Stieltjes transform is defined by A. Aghili and A.

Ansari in [2]. In this study we see that the inverse formula exists for Stieltjes transform

of hyperfunction.

Definition 2.2.14. If fpxq is a hyperfunction of bounded exponential growth, with

Stieltjes transform f̃ptq then

fpxq � S�1rf̃ptqs � 1

2π

» a�i8
a�i8

p
» b�i8
b�i8

f̃ptqetydtqexydy

Where a and b are two positive constants chosen suitably.

The above integral is an improper integral which can be evaluated as a contour

integral. It can be integrated along vertical lines t � b � iβ and y � a � iα in the

complex plane.

If fpxq is a hyperfunction of bounded exponential growth inverse Stieltjes trans-

form of a hyperfunction can also be defined in terms of the inverse Laplace transform

as

fpxq � S�1rf̃ptqs � L�1rL�1rf̃ptqspyqspxq

2.3. L2� Transform of Hyperfunctions

O.Yurekli and I.Sadek in 1991 introduced the Laplace transform like L2-transform

for solving partial differential equations and integral equations. Here we define L2

transform for Hyperfunctions having bounded exponential growth. Since the L2 -

transform integral converges for hyperfunctions of bounded exponential growth.
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2.3.1 L2 Transform of Hyperfunctions

Definition 2.3.1. Let fpxq � rF pzqs is a hyperfunction having bounded exponential

growth, the L2 transform of fpxq is defined as

L2rfpxqspsq �
» 8

0

xe�x
2s2fpxqdx �

» 8
0

ze�z
2s2F pzqdz,

if σ�pfq  Rps2q   σ�pfq

Proposition 2.3.2. The image function L2rfpxqspsq is holomorphic

Proof. Since the kernel of the transform is a holomorphic function and the defining

function F pzq is holomorphic, L2rfpxqspsq is holomorphic.

As for ordinary function the relation connecting L2 transform and Laplace trans-

form of hyperfunction exists.

Proposition 2.3.3. If fpxq � rF pzqs is a hyperfunction having bounded exponential

growth and σ�pfq  Rps2q   σ�pfq, then

L2rfpxqspsq � 1

2
Lrfp?xqsps2q

Proof. Let fpxq � rF pzqs is a hyperfunction having bounded exponential growth and
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σ�pfq  Rps2q   σ�pfq.

L2rfpxqspsq �
» 8

0

xe�x
2s2fpxqdx

�
» 8

0

ze�z
2s2F pzqdz

� 1

2

» 8
0

e�ζs
2

F p
a
ζqdζ, by putting z2 � ζ

� 1

2
Lrfp?xqsps2q

Examples 2.3.4.

L2rδpxqspsq �
» 8

0

xe�x
2s2δpxqdx

�
» 8

0

ze�z
2s2p �1

2πiz
qdz

� �1

2πi

» 8
0

e�z
2s2dz

� �1

4πis

» 8
0

u
1
2
�1e�udu, by putting z2ζ2 � u

� �1

4πis
Γp1

2
q

� i

4
?
π
s

Examples 2.3.5.

L2rxmspsq �
» 8

0

xe�x
2s2xmdx

�
» 8

0

ze�z
2s2zmdz

� Γpm
2
� 1q

2sm�2
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Remark. We show that the initial value and final value type theorem also exist for

L2-transform of hyperfunctions

Proposition 2.3.6. If fpxq � rF pzqs is a holomorphic hyperfunction having bounded

exponential growth, f
1pxq � rF 1pzqs is also holomorphic and σ�pfq  Rps2q   σ�pfq,

then

lim
xÑ0

fpxq � lim
sÑ8

2s2L2rfpxqspsq

Also, lim
xÑ8

fpxq � lim
sÑ0

2s2L2rfpxqspsq

Proof. We have

» 8
0

e�s
2x2f

1pxqdx �
» 8

0

e�s
2z2F

1pzqdz

� 2s2L2rfpxqspsq � fp0q

But

lim
sÑ8

» 8
0

e�s
2x2f

1pxqdx � 0

Therefore

lim
sÑ8

2s2L2rfpxqspsq � fp0q � 0

Since fpxq is holomorphic,

fp0q � lim
xÑ0

fpxq

Thus,

lim
sÑ8

2s2L2rfpxqspsq � fp0q � lim
xÑ0

fpxq
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Letting sÑ 0 in

» 8
0

e�s
2x2f

1pxqdx we have

lim
sÑ0

» 8
0

e�s
2x2f

1pxqdx �
» 8

0

f
1pxqdx

�
» 8

0

F
1pzqdz

� lim
xÑ8

fpxq � fp0q

Thus

lim
sÑ0

p2s2L2rfpxqspsq � fp0qq � lim
xÑ8

fpxq � fp0q

i.e. lim
sÑ0

2s2L2rfpxqspsq � lim
xÑ8

fpxq

Proposition 2.3.7. If fpxq � rF pzqs and gpxq � rGpzqs are hyperfunctions of

bounded exponential growth and σ�pf � gq  Rps2q   σ�pf � gq then

L2rfpxq � gpxqspsq � L2rfpxqspsq � L2rgpxqspsq,

Proof.

L2rfpxq � gpxqspsq �
» 8

0

xe�x
2s2pfpxq � gpxqqdx

�
» 8

0

ze�z
2s2pF pzq �Gpzqqdz

�
» 8

0

ze�z
2s2F pzqdz �

» 8
0

ze�z
2s2F pzqdz

� L2rfpxqspsq � L2rgpxqspsq
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Proposition 2.3.8. Let fpxq � rF pzqs is a hyperfunctions of bounded exponential

growth and c be a non zero constant. If σ�pfq  Rp s2c2 q   σ�pfq then

L2rfpcxqspsq � 1

c2
L2rfpxqsps

c
q

Proof.

L2rfpcxqspsq �
» 8

0

xe�x
2s2fpcxqdx

�
» 8

0

ze�z
2s2F pczqdz

� 1

c2

» 8
0

ζe�ζ
2p s
c
q2F pζqdζ, by putting cz � ζ

� 1

c2
L2rfpxqsps

c
q

2.3.2 Inverse L2 Transform of Hyperfunctions

A. Aghili, A. Ansari and A. Sedghi defined a complex inversion formula for L2 trans-

form in r3s. The inverse formula for L2- transform of hyperfunctions exist only when

the inverse Laplace transform of Lrfp?xqsps2q exist.

Definition 2.3.9. If Lp?sq is a holomorphic function of s (by assuming s � 0 having

no branch point) having finite number of poles which lies to the left side of the line

Rs � a and all F pzq P rF pzqs has a common strip of convergence, L2rfpxqspsq � Lpsq,
then

fpxq � L2
�1pLpsqq � 1

2πi

» a�i8
a�i8

2Lp?sqes2xds

The above complex integral can be evaluated using the residue method.
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Chapter 3

Fourier-Laplace, Laplace-Stieltjes

and Fourier-Stieltjes Transforms of

Hyperfunctions

In this chapter combined transforms like Fourier-Laplace transform, Laplace-Stieltjes

transform and Fourier-Stieltjes transform of hyperfunctions are studied.

3.1. Fourier-Laplace Transform of Hyperfunctions

Laplace and Fourier transforms exist for hyperfunctions. Here we have studied the

existence of Fourier- Laplace transform of entire hyperfunction with exponential type

defining function.

Mitusuo Morimoto in his book[40]has mentioned about the Fourier-Laplace

transform of an entire function of exponential type. The existence of the combined

Fourier-Laplace transform of hyperfunctions is studied using the convergence criteria
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for Fourier and Laplace transform of hyperfunction.

Definition 3.1.1. A hyperfunction fpxq � rF pzqs P BpRq is called an entire hyper-

function if the defining function of the hyperfunction F pzq is an entire function

in C.

Definition 3.1.2. An entire hyperfunction fpxq � rF pzqs P BpRq is called an entire

hyperfunction of exponential type if there exists M ¥ 0 and n ¡ 0 such that

|F pzq| ¤Men|z| for all F pzq P rF pzqs.

Definition 3.1.3. For a convex compact set P subset of C support function SP of P

is defined by

SP pγq � suptRepzγq : z P P u, γ P C

Note:Let E denotes the linear space of entire hyperfunctions of exponential type

with compact support.

Definition 3.1.4. For a convex compact set P subset of C and for the hyperfunction

fpxq � rF pZqs define ‖ fpxq ‖pP q by

‖ fpxq ‖pP q� supt|F pzq|e�SP pzq : z P C, F pzq P rF pzqsu

Definition 3.1.5. For a convex compact set P define

EBpC, P q � tfpxq P E :‖ fpxq ‖pP q  8u

Proposition 3.1.6. EBpC, P q is a Banach space with respect to the norm ‖ fpxq ‖pP q.

Proof. Clearly EBpC, P q is a normed linear space.

Suppose that sequence pfnpxqq is a Cauchy sequence in EBpC, P q.
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Then ‖ fnpxq ‖pP q  8, @n � 1, 2, 3...

Let fnpxq � rFnpzqs, for n � 1, 2, 3...

Let ε¡0

Since pfnpxqq is a Cauchy sequence in EBpC, P q for ε¡0 there exists N P N such that

‖ fnpxq � fmpxq ‖pP q  ε for all n,m ¥ N .

i.e. sup |Fnpzq � Fmpzq|e�SP pzq ε for all n,m ¥ N .

So we get pFnpzqq is a Cauchy sequence in C. But C is complete.

Hence Fnpzq Ñ F pzq as nÑ 8.

Let fpxq � rF pzqs. Then fpxq P EBpC, P q and fnpxq Ñ fpxq with respect to

‖ fpxq ‖pP q in the sense of convergence of hyperfunctions.

Definition 3.1.7. For γ P C, with |γ| � 1 define

V pγq � tz P C : SP pγq Repzγqu

Then V pγq is an open half plane in C.

For a given fpxq � rF pzqs P EBpC, P q and η¡0 there exists Mη ¥ 0 such that

|F pγq| ¤Mηe
SP pγq�η|γ| for γ P C.

Hence if fpxq P EBpC, P q, σ�pfq and σ�pfq always exists.

Remark. We are going to define Fourier-Laplace transform for entire hyperfunctions

of exponential type.

Definition 3.1.8. Let fpxq � f1pxq � f2pxq P EBpC, P q be an entire hyperfunction

of exponential type with f1pxq � rF1pzqs P OpR�q, f2pxq � rF2pzqs P OpR�q and if
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�σ�pf1q ¤ 0 ¤ �σ�pf2q then Fourier-Laplace transform of fpxq is defined as

FLrfpxqspz, γq � rG�pz, γq, G�pz, γqs

where

G�pz, γq � �1

2πi

»
R�γ

e�zτF1pτqdτ � �1

2πi

» �8
0

e�ztγF1ptγqγdt, R�γ � ttγ : t   0u,

and

G�pz, γq � �1

2πi

»
R�γ

e�zτF2pτqdτ � �1

2πi

» 8
0

e�ztγF2ptγqγdt, R�γ � ttγ : t ¡ 0u,

for z P V pγq

Proposition 3.1.9. For a fixed γ the function hpzq � FLrfpxqspz, γq is holomorphic

on V pγq

Proof. Let fpxq � rF pzqs.
For η ¡ 0, take

V
1

η pγq � tz P C : SP pγq � η ¤ Repzγqu

Then for z P V 1

η pγq we have

|F ptγqe�ztγγ| ¤Mη

2

e

�ηt
2

Hence the integral in the above definition converges absolutely and uniformly @z P V 1

η

But V pγq � �V
1

η pγq.
Therefore FLrfpxqspz, γq is holomorphic on V pγq.
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Proposition 3.1.10. For z P V pγq X V pζq, FLrfpxqspz, γq � FLrfpxqspz, ζq

Proof. Applying Cauchy’s integral theorem for the Fourier-Laplace integral of hyper-

functions we get the required result.

Proposition 3.1.11. If fpxq � rF pzqs P EBpC, P q is a measurable hyperfunction

then there exists a unique GpZq P OpCzP q such that Gpzq � FLrfpxqspz, γq on V pγq,
where Gpzq vanishes at infinity.

Proof. Since P is convex and compact,
�
|γ|�1 V pγq � CzP .

Then using proposition 3.1.9, 3.1.10 and Lebesgue convergence theorem the result

follows.

Proposition 3.1.12. For f1pxq, f2pxq P EBpC, P q,
FLrc1f1pxq � c2f2pxqspz, γq � c1FLrf1pxqspz, γq � c2FLrf2pxqspz, γq provided the two

integrals on the left has a common strip of convergence.

Proof. Follows from definition.

Proposition 3.1.13. Let fpxq � rF pzqs P EBpC, P q, holomorphic at x � d and

�σ� � σ�pχp�8,0qfpxqq   0   � σ�pfq � σ�pχp0,8qfpxqq, then

FLrfpxqspz, γq � FLrχp�8,dqfpxqspz, γq � FLrχpd,8qfpxqspz, γq

Proof. Follows from proposition 1.3.14.

3.2. Laplace-Stieltjes Transform of Hyperfunctions

We define Laplace-Stieltjes transform for Hyperfunctions with defining function hav-

ing bounded variation property.
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3.2.1 Laplace-Stieltjes Transform of Hyperfunctions

Definition 3.2.1. A hyperfunction fpxq � rF pzqs P BpIq, where I is a closed subset

of R is said to be of bounded variation if all the functions Gpzq P rF pzqs are of

bounded variation (i.e. ReGpzq and ImGpzq are real functions of bounded variation)

Definition 3.2.2. Let fpxq � rF pzqs P BpIq, where I � r0,8q is a closed , be a

measurable, non decreasing, exponentially bounded hyperfunction and of bounded

variation. For the complex variable s the Laplace-Stieltjes transform is defined as

LSrfpxqspsq � f�psq �
» 8

0

e�sxdfpxq �
» 8

0

e�szdF pzq,

provided the integral converges at some point s0. Then it converges @s withRs ¡Rs0

(Here the integral is Stieltjes Integral)

Proposition 3.2.3. LSrfpxqspsq is strictly positive.

Proof. If fpxq ¡ 0, clearly LSrfpxqspsq ¡ 0.

Examples 3.2.4. Consider the hyperfunction fpxq � xn. In terms of the defining

function fpxq � rF pzqs, where F pzq � zn. Then

f�psq � LSrfpxqspsq

�
» 8

0

e�sxdpxnq

�
» 8

0

e�szdpznq

�
» 8

0

e�sznzn�1dz

� n!

sn
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Remark. Next proposition is the relation connecting Laplace-Stieltjes transform and

the Laplace transform of a hyperfunction

Proposition 3.2.5. Let fpxq � rF pzqs be a hyperfunction of bounded exponential

growth and σ�pfq  Rpsq  σ�pfq. Then

LSrfpxqspsq � sLrfpxqspsq

Proof. Suppose that fpxq � rF pzqs be a hyperfunction of bounded exponential growth

and σ�pfq  Rpsq   σ�pfq.

LSrfpxqspsq �
» 8

0

e�sxdfpxq

�
» 8

0

e�szdF pzq

�
» 8

0

e�szF
1pzqdz

� Lrf 1pxqspsq

� sLrfpxqspsq

Proposition 3.2.6. Let fpxq � rF pzqs and gpxq � rGpzqs be a hyperfunction of

bounded exponential growth with Laplace-Stieltjes transforms f�psq and g�psq respec-

tively. Then

LSrfpxq � gpxqspsq � LSrfpxqspsq � LSrgpxqspsq

Also for some constant c,

LSrcfpxqspsq � cLSrfpxqspsq
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Proof. Suppose that fpxq � rF pzqs and gpxq � rGpzqs be a hyperfunction of bounded

exponential growth with Laplace-Stieltjes transforms f�psq and g�psq respectively.

LSrfpxq � gpxqspsq �
» 8

0

e�sxdpfpxq � gpxqq

�
» 8

0

e�szdpF pzq �Gpzqq

�
» 8

0

e�szpF 1pzq �G
1pzqqdz

�
» 8

0

e�szF
1pzqdz �

» 8
0

e�szG
1pzqdz

� LSrfpxqspsq � LSrgpxqspsq

Also for any constant c,

LSrcfpxqspsq �
» 8

0

e�sxdpcfpxqq

�
» 8

0

e�szdpcF pzqq

�
» 8

0

e�szcF
1pzqdz

� c

» 8
0

e�szF
1pzqdz

� cLSrfpxqspsq

Proposition 3.2.7. Let fpxq � rF pzqs be a hyperfunction of bounded exponential

growth and σ�pfq  Rpsq   σ�pfq with Laplace-Stieltjes transform LSrfpxqspsq. Then

LSrf 1pxqspsq � sLSrfpxqspsq � sfp0q � f
1p0q

Proof. Suppose that fpxq � rF pzqs be a hyperfunction of bounded exponential growth
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and σ�pfq  Rpsq   σ�pfq with Laplace-Stieltjes transform LSrfpxqspsq.

LSrf 1pxqspsq �
» 8

0

e�sxdpf 1pxqq

�
» 8

0

e�szdpF 1pzqq

�
» 8

0

e�szF
2pzqdz

� Lrf 2pxqspsq

� s2Lrfpxqspsq � sfp0q � f
1p0q

� sLSrfpxqspsq � sfp0q � f
1p0q

Proposition 3.2.8. Let fpxq � rF pzqs be a hyperfunction of bounded exponential

growth and σ�pfq  Rpsq   σ�pfq. Then for any a P C,

LSreaxfpxqspsq � Lrf 1pxqsps� aq � aLrfpxqsps� aq,

where σ�pfq �Rpaq  Rpsq   σ�pfq �Rpaq

Proof. Let fpxq � rF pzqs be a hyperfunction of bounded exponential growth and

σ�pfq  Rpsq   σ�pfq.
Also let a P C be a constant with σ�pfq �Rpaq  Rpsq   σ�pfq �Rpaq

LSreaxfpxqspsq �
» 8

0

e�sxdpeaxfpxqq

�
» 8

0

e�szdpeazF pzqq

�
» 8

0

e�szpeazF 1pzq � aeazF pzqqdz
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�
» 8

0

e�szeazF
1pzqdz � a

» 8
0

e�szeazF pzqdz

�
» 8

0

e�ps�aqzF
1pzqdz � a

» 8
0

e�ps�aqzF pzqdz

� Lrf 1pxqsps� aq � aLrfpxqsps� aq

Proposition 3.2.9. Let fpxq � rF pzqs be a hyperfunction of bounded exponential

growth having Laplace-Stieltjes transform LSrfpxqspsq with σ�pfq  Rpsq   σ�pfq.
Then

LSrfnpxqspsq � snLSrfpxqspsq,

if the strip of convergence is same.

Proof. Let fpxq � rF pzqs be a hyperfunction of bounded exponential growth having

Laplace-Stieltjes transform LSrfpxqspsq with σ�pfq  Rpsq   σ�pfq.

LSrfnpxqspsq �
» 8

0

e�sxdpfnpxqq

�
» 8

0

e�szdpF npzqq

�
» 8

0

e�szF n�1pzqdz

� Lrfn�1pxqspsq

� sn�1Lrfpxqspsq

� snLSrfpxqspsq

Remark. We prove the existence Laplace-Stieltjes transform for convolution of hyper-

functions
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Proposition 3.2.10. Let fpxq � rF pzqs and hpxq � rHpzqs be two hyperfunctions

having bounded exponential growth with compact support ra, bs and rc, ds respectively.

If f�psq � LSrfpxqspsq and h�psq � LSrhpxqspsq exists then the Laplace-Stieltjes

transform of the convolution fpxq � hpxq exists.

LSrfpxq � hpxqspsq � 1

s
LSrfpxqspsqLSrhpxqspsq

Proof. Suppose that fpxq � rF pzqs and hpxq � rHpzqs be two hyperfunctions having

bounded exponential growth with compact support ra, bs and rc, ds respectively.

Then the convolution fpxq � hpxq of fpxq and hpxq is exists as a hyperfunction with

compact support contained in ra� c, b� ds.
In general,

fpxq � hpxq �
» 8

0

F pz � τqHpτqdτ

Hence

LSrfpxq � hpxqspsq � LSr
» 8

0

F pz � τqHpτqdτ spsq

� sLr
» 8

0

F pz � τqHpτqdτ spsq

� s

» 8
0

e�szp
» 8

0

F pz � τqHpτqdτqdz

� s

» 8
0

Hpτqdτ
» 8

0

e�szF pz � τqdz

Putting z � τ � ρ we get

LSrfpxq � hpxqspsq � s

» 8
0

Hpτqdτ
» 8

0

e�spτ�ρqF pρqdρ
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� s

» 8
0

e�sτHpτqdτ
» 8

0

e�sρF pρqdρ

� s.LrF pxqspsq.Lrhpxqspsq

� s.
1

s
LSrfpxqspsq.1

s
LSrhpxqspsq

� 1

s
LSrfpxqspsqLSrhpxqspsq

3.2.2 Inversion formula for Laplace-Stieltjes Transform of

Hyperfunction

D. Salltz[46] defined an inversion formula for the Laplace-Stieltjes transform of ordi-

nary functions. The inversion formula for Laplace-Stieltjes transform of a hyperfunc-

tion we defined as follows.

Definition 3.2.11. The inversion formula for the Laplace-Stieltjes transform of the

hyperfunction of bounded exponential growth is defined as

fpxq � lim
bÑ8

» a�ib
a�ib

esx

s
f�psqds

where a ¡ 0 is greater than the radius of convergence.

3.3. Fourier- Stieltjes Transform of Hyperfunctions

Using the relation connecting Fourier transform and Laplace transform of hyperfunc-

tions, the Fourier-Stieltjes transform of hyperfunction can be defined as follows.

Definition 3.3.1. Let fpxq � rF pzqs P BpIq, where I � r0,8q is a closed , be a
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measurable, non decreasing, exponentially bounded hyperfunction and of bounded

variation. For the complex variable s the Fourier-Stieltjes transform is defined as

FSrfpxqspsq � LSrfpxqspisq, s P R

The operational properties of Fourier-Stieltjes transform of hyperfunctions can be

established using the operational properties of Laplace-Stieltjes transform of hyper-

functions.
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Chapter 4

Abelian - Tauberian Theorems for

Some Integral Transforms of

Hyperfunctions

In this chapter we have proved Abelian - Tauberian theorem for Laplace transform of

Hyperfunctions, Abelian - Tauberian theorem for Stieltjes transform of Hyperfunc-

tions and Abelian - Tauberian theorem for Laplace-Stieltjes transform of Hyperfunc-

tions.

4.1. Abelian -Tauberian theorem for Laplace Trans-

form of Hyperfunctions

We first develops the background for deriving the Continuity theorem of Hy-

perfunctions which then leads to the Abelian -Tauberian theorem for Hyperfunctions.
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4.1.1 Measurable Hyperfunctions

Definition 4.1.1. A hyperfunction fpxq � rF pZqs � rF�pzq, F�pzqs is said to be

a measurable hyperfunction if the defining function F pzq P rF pzqs are all complex

Lebesgue measurable functions.

Remark. We consider sequence of hyperfunctions pfnpxqq � prFnpzqsq, where the se-

quence of defining functions pFnpzqq are defined on a common domain N � C for the

following theorems.

Lemma 4.1.2. Let pfnpxqq � prFnpzqsq be a sequence of non-negative, real valued,

holomorphic, measurable hyperfunctions with compact support and having bounded

exponential growth. Then

lim inf

»
fnpxqdx ¥

»
lim inf fnpxqdx

Proof. Applying Fatou’s lemma for measurable functions to the sequence of defining

functions of pfnpxqq we have

lim inf

»
Fnpzqdz ¥

»
lim inf Fnpzqdz

Also it holds for every Gnpzq P rFnpzqs.
Hence the result follows.

Theorem 4.1.3. Let pfnpxqq � prFnpzqsq be a sequence of non-negative, real valued,

holomorphic, measurable hyperfunctions with compact support and having bounded

exponential growth. If pfnpxqq is monotonic increasing and pfnpxqq Ñ fpxq, where

fpxq � rF pxqs then »
fpxqdx � lim

»
fnpxqdx
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Proof. Let fpxq � lim
nÑ8

fnpxq. Then by Lemma (4.1.2) we have

»
fpxqdx �

»
lim fnpxqdx

�
»

lim inf fnpxqdx

�
»

lim inf Fnpzqdz

¤ lim inf

»
Fnpzqdz

� lim inf

»
fnpxqdx

Since pfnpxqq is monotonic increasing and pfnpxqq Ñ fpxq in the sense of hyperfunc-

tion we have fnpxq ¤ fpxq.
Hence »

fnpxqdx ¤
»
fpxqdx

Then

lim sup

»
fnpxqdx ¤

»
fpxqdx

So »
fpxqdx ¤ lim inf

»
fnpxqdx ¤ lim sup

»
fnpxqdx ¤

»
fpxqdx

Thus »
fpxqdx � lim

»
fnpxqdx

Theorem 4.1.4. Let pfnpxqq � prFnpzqsq be a sequence of non-negative, real valued,

holomorphic, measurable hyperfunctions with compact support and having bounded ex-

ponential growth. If |fnpxq| ¤ gpxq, where gpxq � rGpzqs is a real valued hyperfunction
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and

lim
nÑ8

fnpxq � fpxq, fpxq � rF pzqs

then fpxq is integrable and

lim

»
fnpxqdx �

»
fpxqdx

Proof. Applying Dominated convergence theorem for measurable functions to the

sequence pFnpzqq of defining functions of pfnpxqq we have F pzq is integrable and

lim

»
Fnpzqdz �

»
F pzqdz

Then using the convergence in the sense of hyperfunctions we get fpxq is integrable

and

lim

»
fnpxqdx �

»
fpxqdx.

Theorem 4.1.5. Let pfnpxqq � prFnpzqsq be a sequence of non-negative, real valued,

holomorphic, measurable hyperfunctions with compact support and having bounded

exponential growth, defined on p0,8q. If |fnpxq| ¤ P and lim
nÑ8

fnpxq � fpxq, fpxq �
rF pzqs then

lim

» 8
0

fnpxqdx �
» 8

0

fpxqdx

Proof. Follows from Bounded convergence theorem for real valued measurable func-

tions and using the convergence in the sense of hyperfunctions.
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4.1.2 Continuity Theorem for Hyperfunction

Lemma 4.1.6. Let fpxq � rF pzqs and gpxq � rGpzqs are two holomorphic hyper-

functions of bounded exponential growth with Laplace transforms f̂psq � Lrfpxqspsq
and ĝpsq � Lrgpxqspsq. If they have a common vertical strip of convergence then

f̂psq � ĝpsq implies fpxq � gpxq

Proof. Suppose that f̂psq � ĝpsq.

f̂psq � ĝpsq ñ Lrfpxqspsq � Lrgpxqspsq

ñ
» 8

0

e�szF pzqdz �
» 8

0

e�szF pzqdz

ñ
» 8

0

e�szpF pzq �GpZqqdz � 0

ñ F pzq �Gpzq � 0

ñ rF pzqs � rGpzqs

ñ fpxq � gpxq

Theorem 4.1.7. (Continuity theorem for Hyperfunctions)

Let pfnpxqq � prFnpzqsq be a sequence of non-negative, real valued, holomorphic, mea-

surable hyperfunctions with compact support and having bounded exponential growth,

defined on p0,8q.
(a) Let fpxq � rF pzqs be a measurable hyperfunction with support contained in p0,8q
such that fnpxq Ñ fpxq for all points x at which fn’s and f are holomorphic. If there

exists t ¥ 0 such that sup
n¥1
Lrfnpxqsptq   8 then

Lrfnpxqspsq Ñ Lrfpxqspsq
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as nÑ 8 for all s ¡ t

(b) Suppose there exists t ¥ 0 such that Lrfnpxqspsq Ñ Lrfpxqspsq as n Ñ 8 for all

s ¡ t then

fnpxq Ñ fpxq

for all points x at which fn’s and f are holomorphic if the Laplace transforms of fn’s

and f have a common vertical strip of convergence.

Proof. (a) Let

M � sup
n¥1
Lrfnpxqsptq   8.

Then for any s ¡ t and x P p0,8q,

» 8
0

e�sxfnpxqdxÑ
» 8

0

e�sxfpxqdx

by proposition 4.1.5.

Let s ¡ t and ε ¡ 0 such that f is holomorphic at y P p0,8q with Me�ps�tqy ¤ ε.

» y
0

e�sxfnpxqdx ¤ Lrfnpxqspsq

¤
» y

0

e�sxfnpxqdx� e�ps�tqy
» 8
y

e�txfnpxqdx

¤
» y

0

e�sxfnpxqdx� ε

Then

» y
0

e�sxfpxqdx ¤ lim inf
nÑ8

Lrfnpxqspsq

¤ lim sup
nÑ8

Lrfnpxqspsq
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¤
» y

0

e�sxfpxqdx� ε

Letting y Ñ 8 along holomorphic points of fpxq � rF pzqs

» 8
0

e�sxfpxqdx ¤ lim inf
nÑ8

Lrfnpxqspsq

¤ lim sup
nÑ8

Lrfnpxqspsq

¤
» 8

0

e�sxfpxqdx� ε

i.e.Lrfpxqspsq ¤ lim inf
nÑ8

Lrfnpxqspsq ¤ lim sup
nÑ8

Lrfnpxqspsq ¤ Lrfpxqspsq � ε

Since ε ¡ 0 is arbitrary,

Lrfnpxqspsq Ñ Lrfpxqspsq, as nÑ 8 for all s ¡ t

(b) Suppose that

Lrfnpxqspsq Ñ Lrfpxqspsq

as n Ñ 8 for all s ¡ t and the Laplace transforms of fn’s and f have a common

vertical strip of convergence. By Lemma (4.1.6) and proposition (4.1.5)

fnpxq �
» 8

0

esxLrfnpxqspsqds

Ñ
» 8

0

esxLrfpxqspsqds

� fpxq
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4.1.3 Abelian -Tauberian Theorem for Laplace Transform of

Hyperfunctions

We now prove Abelian -Tauberian theorem for the Laplace transform of hy-

perfunctions. To avoid formulas consisting of reciprocals we introduce two positive

variables p and q such that pq � 1. Then q Ñ 0 when pÑ 8

Theorem 4.1.8. Let fpxq � rF pzqs be a measurable, holomorphic hyperfunction

on p0,8q having compact support and bounded exponential growth. If the Laplace

transform f̂psq � rfpxqspsq is bounded for s ¡ 0 then the following conditions are

equivalent.

(a)
Lrfpxqspqsq
Lrfpxqspqq Ñ 1

sα�1
as q Ñ 0

(b)
fppxq
fppq Ñ xα as pÑ 8

Also Lrfpxqspqq � fppqα!, α ¥ 0 is an integer

Proof. (a)ñ (b)

Suppose

Lrfpxqspqsq
Lrfpxqspqq Ñ 1

sα�1
as q Ñ 0.

Then by Continuity theorem for hyperfunctions

fppxq
Lrfpxqspqq Ñ

xα

α!
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Letting x � 1, we have

fppq
Lrfpxqspqq Ñ

1

α!
.......p1q

Hence

α!fppq
Lrfpxqspqq Ñ 1 as pÑ 8.

Thus

Lrfpxqspqq � fppqα!.......p2q

Substituting (2) in (1)

fppxq
fppqα!

Ñ xα

α!
as pÑ 8,

i.e.
fppxq
fppq Ñ xα, as pÑ 8

(b)ñ (a)

Suppose

fppxq
fppq Ñ xα as pÑ 8

Then by again by Continuity theorem for hyperfunctions,

Lrfpxqspqsq
fppq Ñ α!

sα�1
........p3q
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But

fppq � Lrfpxqspqq
α!

........p4q

Substituting (4) in (3)

Lrfpxqspqsqα!

Lrfpxqspqq Ñ α!

sα�1
,

i.e.
Lrfpxqspqsq
Lrfpxqspqq Ñ 1

sα�1
as q Ñ 0.

We can express the above theorem in terms of slowly varying function also.

Theorem 4.1.9. Let fpxq � rF pzqs be a measurable, holomorphic hyperfunction

on p0,8q having compact support and bounded exponential growth. If the Laplace

transform f̂psq � rfpxqspsq is bounded for s ¡ 0 then the following conditions are

equivalent.

(a) Lrfpxqspsq � 1
sα�1hp1

s
q as sÑ 0�

(b)fpxq � xα�1

α!
hpxq as xÑ 8

where h : p0,8q Ñ p0,8q is a slowly varying function at infinity and α ¥ 0 is

an integer
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Proof. (a)ñ (b)

Suppose

Lrfpxqspsq � 1

sα�1
hp1
s
q as sÑ 0� .

Then

Lrfpxqsp s
t
q

Lrfpxqsp1
t
q � 1

sα�1

hp t
s
q

hptq
� 1

sα�1
as tÑ 8

Using previous theorem and putting q � 1
t

we have

fptq � Lrfpxqsp1
t
q

α!

� tα�1

α!
hptq as tÑ 8

Similarly we can prove (b)ñ (a)

4.2. Abelian -Tauberian Theorem for Stieltjes Trans-

form of Hyperfunctions

In the case of hyperfunctions we prove an Abelian -Tauberian type theorem for

Stieltjes transform of hyperfunction by imposing certain additional conditions in

Karamata’s[36] Abelian -Tauberian theorem for the Stieltjes transform.

Proposition 4.2.1. Let fpxq � rF pzqs be a holomorphic, measurable, non decreasing

hyperfunction of bounded exponential growth with compact support contained in p0,8q
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such that the Stieltjes transform

f̃ptq � Srfpxqsptq �
» 8

0

fpxq
x� t

dx �
» 8

0

F pzq
z � t

dz

exists for all t ¡ 0. Let ρ be a number with 0 ¤ ρ   1. Then the following statements

are equivalent

f̃ptq � Ctρ�1 as tÑ 8

fpxq � C

Γp1� ρqΓp1� ρqx
ρ as xÑ 8

Proof. Suppose that

f̃ptq � Ctρ�1 as tÑ 8

Using the result » 8
0

e�px�tqudu � 1

x� t

we have

f̃ptq �
» 8

0

fpxq
x� t

dx

�
» 8

0

p
» 8

0

e�px�tquduqfpxqdx

�
» 8

0

e�tugpuqdu, where gpuq �
» 8

0

e�xufpxqdx

Since g ¥ 0, the integral of g will be non-decreasing. So by theorem 1.6.1 we get

» x
0

gpνqdν � c

Γp�ρ� 1� 1qx
�ρ�1 as xÑ 0

i.e.

» x
0

gpνqdν � c

Γp2� ρqx
�ρ�1 as xÑ 0
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Differentiating with respect to x,

gpxq � C

Γp2� ρqp1� ρqx1�ρ�1 as xÑ 0

i.e.gpxq � C

Γp1� ρqx
�ρ as xÑ 0

Applying theorem 1.6.1, we have

fpxq � C

Γp1� ρqΓp1� ρqx
ρ as xÑ 8

Conversely suppose that

fpxq � C

Γp1� ρqΓp1� ρqx
ρ as xÑ 8

Then by letting Lpxq � 1 in theorem 1.6.3 we get

f̃ptq � Ctρ�1 as tÑ 8

4.3. Abelian -Tauberian Theorem for Laplace-Stieltjes

Transform of Hyperfunctions

Let Be�
bv pIq denote the set of all non-decreasing, non-negative, real valued, holomor-

phic, measurable, exponentially bounded hyperfunction of bounded variation defined

on the closed subset I � r0,8q
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Lemma 4.3.1. Let fpxq � rF pzqs, gpxq � rGpzqs are in Be�
bv pIq with Laplace-Stieltjes

transforms f�psq � LSrfpxqspsq and g�psq � LSrgpxqspsq. If they have a common

vertical strip of convergence and if f�psq � g�psq then fpxq � gpxq

Proof. Suppose that f�psq � g�psq.

f�psq � g�psq ñ LSrfpxqspsq � LSrgpxqspsq

ñ
» 8

0

e�sxdfpxq �
» 8

0

e�sxdgpxq

ñ
» 8

0

e�szdF pzq �
» 8

0

e�szdGpzq

ñ
» 8

0

e�szdpF pzq �Gpzqq � 0

ñ dpF pzq �Gpzqq � 0

ñ rF 1pzqs � rG1pzqs

ñ rF pzqs � rGpzqs

ñ fpxq � gpxq

Theorem 4.3.2. Let pfnpxqq � prFnpzqsq be a sequence of hyperfunction in Be�
bv pIq

with compact support.

(a) Let fpxq � rF pzqs be a measurable hyperfunction with support contained in

p0,8q such that fnpxq Ñ fpxq for all points x at which fn’s and f are holomorphic.

If there exists t ¥ 0 such that sup
n¥1

LSrfnpxqsptq   8 then LSrfnpxqspsq Ñ LSrfpxqspsq
as nÑ 8 for all s ¡ t

(b) Suppose there exists t ¥ 0 such that LSrfnpxqspsq Ñ LSrfpxqspsq as n Ñ 8

80



for all s ¡ t then fnpxq Ñ fpxq for all points x at which fn’s and f are holomorphic,

if the Laplace-Stieltjes transforms of fn’s and f have a common vertical strip of

convergence.

Proof. (a) Let

A � sup
n¥1

LSrfnpxqsptq   8.

Then for any s ¡ t and x P p0,8q,

» 8
0

e�sxdfnpxq Ñ
» 8

0

e�sxdfpxq

by proposition (4.1.4).

Let s ¡ t and ε ¡ 0 such that f is holomorphic at y P p0,8q with Ae�ps�tqy ¤ ε.

» y
0

e�sxdfnpxq ¤ LSrfnpxqspsq

¤
» y

0

e�sxdfnpxq � e�ps�tqy
» 8
y

e�txdfnpxq

¤
» y

0

e�sxdfnpxq � ε

Then

» y
0

e�sxdfpxq ¤ lim inf
nÑ8

LSrfnpxqspsq

¤ lim sup
nÑ8

LSrfnpxqspsq

¤
» y

0

e�sxdfpxq � ε
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Letting y Ñ 8 along holomorphic points of fpxq � rF pzqs

» 8
0

e�sxdfpxq ¤ lim inf
nÑ8

LSrfnpxqspsq

¤ lim sup
nÑ8

LSrfnpxqspsq

¤
» 8

0

e�sxdfpxq � ε

i.e.LSrfpxqspsq ¤ lim inf
nÑ8

LSrfnpxqspsq ¤ lim sup
nÑ8

LSrfnpxqspsq ¤ LSrfpxqspsq � ε

Since ε ¡ 0 is arbitrary,

LSrfnpxqspsq Ñ LSrfpxqspsq

as nÑ 8 for all s ¡ t

(b) Suppose that

LSrfnpxqspsq Ñ LSrfpxqspsq

as n Ñ 8 for all s ¡ t and the Laplace-Stieltjes transforms of fn’s and f have a

common vertical strip of convergence.

By previous Lemma and proposition (4.1.4)

fnpxq �
» 8

0

esxLSrfnpxqspsqds

Ñ
» 8

0

esxLSrfpxqspsqds

� fpxq
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Proposition 4.3.3. (Abelian theorem for Laplace-Stieltjes Transformation of Hyper-

functions)

For fpxq P Be�
bv pIq, if

lim
xÑ8

fpxq
xn

� M

n!

then

lim
sÑ0

snf�psq �M,

where n is a non-negative number and M is a constant.

Proof. Let fpxq P Be�
bv pIq, n is a non-negative number and M be a constant.

Suppose that

lim
xÑ8

fpxq
xn

� M

n!

Then

fpxq Ñ Mxn

n!
as xÑ 8

Hence by the previous proposition 4.3.2

f�psq Ñ M

n!
.
n!

sn
as sÑ 0

i.e.snf�psq ÑM as sÑ 0

Hence lim
sÑ0

snf�psq �M

Proposition 4.3.4. (Tauberian theorem for Laplace-Stieltjes Transformation of Hy-

perfunctions)

Let fpxq P Be�
bv pIq with Laplace-Stieltjes transform f�psq �

» 8
0

e�sxdfpxq, which con-

verges for some Rpsq ¡ 0 and lim
sÑ0

snf�psq � M, for some constant M and n ¡ 0.
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Then

lim
xÑ8

fpxq
xn

� M

n!

Proof. Let fpxq P Be�
bv pIq with Laplace-Stieltjes transform f�psq �

» 8
0

e�sxdfpxq,
which converges for some Rpsq ¡ 0 and lim

sÑ0
snf�psq � M, for some constant M and

n ¡ 0.

i.e.snf�psq ÑM as sÑ 0

i.e.
f�psq
M

Ñ 1

sn
as sÑ 0

Then by proposition 4.3.2 we have

fpxq
M

Ñ xn

n!
as xÑ 8

fpxq
xn

Ñ M

n!
as xÑ 8

Hence

lim
xÑ8

fpxq
xn

� M

n!
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Chapter 5

Two Dimensional Laplace

Transform of Hyperfunctions

Urs Graf applied Laplace transform to Sato’s hyperfunctions. In this chapter we have

applied two dimensional Laplace transform to hyperfunctions in two variables. We

have established some properties of this transform and defined the inverse transform.

5.1. Hyperfunctions in Two Variables

Definition 5.1.1. Let I1 and I2 are open intervals in R and NpIiq is a complex

neighbourhood of Ii (i.e.NpIiq contains Ii as a closed subset) for i � 1, 2 then the

open set NpI1q �NpI2q in C2 is called a complex neighbourhood of I1 � I2, if I1 � I2

is a closed subset of NpI1q �NpI2q.

Definition 5.1.2. Two functions F pz1, z2q andGpz1, z2q in OppNpI1qzI1q�pNpI2qzI2qq
are equivalent, if for pz1, z2q P pN1pI1q �N1pI2qq X pN2pI1q �N2pI2qq,
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Figure 5.1: Complex neighbourhood NpI1XI2q

Gpz1, z2q � F pz1, z2q � φ1pz1, z2q � φ2pz1, z2q

with φ1pz1, z2q P OppNpI1qzI1q�NpI2qq and φ2pz1, z2q P OpNpI1q� pNpI2qzI2qq. Here

N1pI1q � N1pI2q and N2pI1q � N2pI2q are the complex neighbourhoods of I1 � I2 of

F pz1, z2q and Gpz1, z2q respectively. We denoted it by F pz1, z2q � Gpz1, z2q

Proposition 5.1.3. The relation � defined above is an equivalence relation

Proof. Since the zero function is a holomorphic function in OppNpI1qzI1q � NpI2qq
and OpNpI1q � pNpI2qzI2qq we have F pz1, z2q � F pz1, z2q. Hence � is reflexive.

Suppose

Gpz1, z2q � F pz1, z2q � φ1pz1, z2q � φ2pz1, z2q.

If φ1pz1, z2q P OppNpI1qzI1q � NpI2qq and φ2pz1, z2q P OpNpI1q � pNpI2qzI2qq then
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�φ1pz1, z2q P OppNpI1qzI1q �NpI2qq and �φ2pz1, z2q P OpNpI1q � pNpI2qzI2qq.
Hence

F pz1, z2q � Gpz1, z2q � φ1pz1, z2q � φ2pz1, z2q.

Thus F pz1, z2q � Gpz1, z2q ñ Gpz1, z2q � F pz1, z2q.
Therefore � is symmetric.

Suppose that F pz1, z2q � Gpz1, z2q and Gpz1, z2q � Hpz1, z2q.Then

Gpz1, z2q � F pz1, z2q � φ1pz1, z2q � φ2pz1, z2q,

Hpz1, z2q � Gpz1, z2q � φ
1

1pz1, z2q � φ
1

2pz1, z2q

where φ1pz1, z2q, φ1

1pz1, z2q are in OppNpI1qzI1q � NpI2qq and φ2pz1, z2q, φ1

2pz1, z2q are

in OpNpI1q � pNpI2qzI2qq.
Since the sum of two holomorphic functions is again holomorphic,

φ1pz1, z2q � φ
1

1pz1, z2q P OppNpI1qzI1q �NpI2qq,

φ2pz1, z2q � φ
1

2pz1, z2q P OpNpI1q � pNpI2qzI2qq

Hence

Hpz1, z2q � Gpz1, z2q � φ
1

1pz1, z2q � φ
1

2pz1, z2q

� F pz1, z2q � φ1pz1, z2q � φ2pz1, z2q � φ
1

1pz1, z2q � φ
1

2pz1, z2q

� F pz1, z2q � pφ1pz1, z2q � φ
1

1pz1, z2qq � pφ2pz1, z2q � φ
1

2pz1, z2qq

So F pz1, z2q � Hpz1, z2q.
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Hence � is transitive.

Therefore � is an equivalence relation.

Definition 5.1.4. Define

FpI1 � I2q � OppNpI1qzI1q � pNpI2qzI2qq

Definition 5.1.5. An equivalence class of functions F pz1, z2q P FpI1 � I2q defines a

hyperfunction fpx, yq on I1 � I2. It is denoted by

fpx, yq � rF pz1, z2qs

F pz1, z2q is called defining or generating function of the hyperfunction fpx, yq.

The set of all hyperfunctions on the set I1 � I2 is denoted by BpI1 � I2q.
Then as a quotient space,

BpI1 � I2q :� OppNpI1qzI1q � pNpI2qzI2qq
OppNpI1qzI1q �NpI2qq �OpNpI1q � pNpI2qzI2qq

There is no importance in the choice of neighbourhood NpI1q � NpI2q. If N
1pI1q �

N
1pI2q is any other complex neighbourhood of I1 � I2 such that N

1pI1q � N
1pI2q �

NpI1q �NpI2q. Then

OppN 1pI1qzI1q � pN1pI2qzI2qq
OppN 1pI1qzI1q �N 1pI2qq �OpN 1pI1q � pN 1pI2qzI2qq

works as well. This means that the behaviour of the hyperfunction depends on the

defining function in a small neighbourhood of I1 � I2 in C2.
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As an inductive limit

BpI1 � I2q :� limÝÑNpI1q�NpI2q�I1�I2

OppNpI1qzI1q � pNpI2qzI2qq
OppNpI1qzI1q �NpI2qq �OpNpI1q � pNpI2qzI2qq

By making complex neighbourhoods smaller and smaller around I1 � I2 leads to the

following concept:

A real analytic function φpx, yq on I1�I2 is defined with the understanding that φpx, yq
can analytically be continued to a full complex neighbourhood Ω in C2, Ω � I1 � I2.

So if any complex neighbourhood NpI1q �NpI2q containing Ω. Then φpx, yq P OpΩq.
Let

BRpI1 � I2q :� OppNpI1qzI1q � pNpI2qzI2qq
ApI1 � I2q

Where ApI1 � I2q denotes the ring of real analytic functions on I1 � I2.

Thus as in the case of hyperfunction of one variable here also fpx, yq �
rF pz1, z2qs P BRpI1�I2q is determined by the defining function F pz1, z2q, holomorphic

in an adjacent complex neighbourhood of I1 � I2. It is determined only upto a real

analytic function on I1 � I2.

Note:Now by a hyperfunction we mean a hyperfunction in BRpI1 � I2q

Definition 5.1.6. The value of a hyperfunction fpx, yq � rF px, yqs at a point px, yq P
I1 � I2 is defined as

fpx, yq � lim
εÑ0�

tF px� iε, y � iεq � F px� iε, y � iεqu,

provided the limit exists.

The above definition is well defined.

Consider Gpz1, z2q P rF pz1, z2qs. Then
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lim
εÑ0�

tGpx� iε, y � iεq �Gpx� iε, y � iεqu

� lim
εÑ0�

tF px� iε, y � iεq � φpx� iε, y � iεq � F px� iε, y � iεqu � φpx� iε, y � iεq

� lim
εÑ0�

tF px� iε, y � iεq � F px� iε, y � iεqu � lim
εÑ0�

tφpx� iε, y � iεq � φpx� iε, y � iεqu

� lim
εÑ0�

tF px� iε, y � iεq � F px� iε, y � iεqu � 0

� fpx, yq, where φpz1, z2q P ApI1 � I2q

Definition 5.1.7. A point px, yq P I1�I2 is called a regular point of the hyperfunction

fpx, yq � rF pz1, z2qs if lim
εÑ0�

tF px � iε, y � iεq � F px � iε, y � iεqu exists. A point

px, yq P I1 � I2 is called a singular point if it is not a regular point.

Hence at a regular point the hyperfunction fpx, yq has a value as an ordinary function.

Examples 5.1.8. The Dirac’s delta function in two dimension is δpx, yq � 0 for

x � 0 and y � 0, and has value 1 otherwise.

» »
δpx, yqdxdy � 1

Then δpx, yq � δpxqδpyq.
In terms of the defining function

δpx, yq � r �1

4π2z1z2

s

Then » 8
�8

» 8
�8

δpx, yqdxdy � �1

4π2

»
1

z1

dz1

»
1

z2

dz2 � 1,

considering z1, z2 as two independent variables.
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Definition 5.1.9. The hyperfunction fpx, yq � rφpz1, z2qs, φpx, yq P ApR2q, repre-

sents the zero hyperfunction in two variables. φpx, yq P rOs, where O denotes the zero

function.

Definition 5.1.10. For fpx, yq � rF pz1, z2qs, gpx, yq � rGpz1, z2qs P BRpI1 � I2q and

c P C define

fpx, yq � gpx, yq � rF pz1, z2q �Gpz1, z2qs,

cfpx, yq � rcF pz1, z2qs

We can prove the definition of addition and scalar multiplication on BRpI1 � I2q
is well defined by taking representatives from the corresponding equivalence classes.

Let F 1pz1, z2q P rF pz1, z2qs and G1pz1, z2q P rGpz1, z2qs. Then

F 1pz1, z2q � F pz1, z2q � φ1pz1, z1q and

G1pz1, z2q � Gpz1, z2q � φ2pz1, z1q

Then

rF 1pz1, z2q �G1pz1, z2qs � rF pz1, z2q � φ1pz1, z1q �Gpz1, z2q � φ2pz1, z1qs

� rF pz1, z2q �Gpz1, z2q � φ1pz1, z1q � φ2pz1, z1qs

� rF pz1, z2q �Gpz1, z2q �Os

� rF pz1, z2q �Gpz1, z2qs

� fpx, yq � gpx, yq
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Also

rcF 1pz1, z2qs � rcpF pz1, z2q � φ1pz1, z1qqs

� rcF pz1, z2q � cφ1pz1, z1qs

� rcF pz1, z2q �Os

� rcF pz1, z2qs

� cfpx, yq

Proposition 5.1.11. BRpI1 � I2q is a linear space.

Proof. With the addition and scalar multiplication defined on BRpI1 � I2q as above

all the properties required for a linear space can be verified.

Definition 5.1.12. A hyperfunction fpx, yq � rF pz1, z2qs is called holomorphic on

I1 � I2 if the defining function rF pz1, z2qs is holomorphic on U � NpI1q �NpI2q. i.e

(i) For each point a � pa1, a2q P U � C2, F pz1, z2q has a convergent power series

expansion on U ,

F pz1, z2q � Σcn1,n2pz1 � a1qn1pz2 � a2qn2

OR

(ii) If F pz1, z2q is continuous on U and for each variable zj,j � 1, 2, F pz1, z2q is

holomorphic, (i.e.
BF
Bz̄1

n
� 0 and

BF
Bz̄2

n
� 0 by the generalisation of Cauchy-Riemann

equations )

Definition 5.1.13. Let S0 be the largest open subset of R2 where the hyperfunction

fpx, yq � rF pz1, z2qs has zero value. Then the support of the hyperfunction fpx, yq is

R2zS0. It is denoted by suppfpx, yq
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Definition 5.1.14. Let S1 be the largest open subset of R2 where the hyperfunction

fpx, yq � rF pz1, z2qs is holomorphic. Then the singular support of the hyperfunction

fpx, yq is R2zS1. It is denoted by sing suppfpx, yq

Proposition 5.1.15. For a hyperfunction fpx, yq � rF pz1, z2qs, sing suppfpx, yq �
suppfpx, yq

Proof. Since S0 � S1, we have pS1qC � pS0qC

Hence sing suppfpx, yq � suppfpx, yq

5.2. Two Dimensional Laplace Transform of Hy-

perfunctions

Definition 5.2.1. We say that a hyperfunction fpx, yq � rF pz1, z2qs on BRpI1 � I2q
is said to be of bounded exponential growth if there exist real constants M ¡ 0, σ

1
, σ

2

such that

|F pz1, z2q|  Meσ
1Rz1�σ

2Rz2  8

on every compact subset of NpI1q�NpI2q and for every equivalent defining functions.

Let Bexp
R pI1� I2q denotes the set of all hyperfunction in BRpI1� I2q having bounded

exponential growth.

Definition 5.2.2. A hyperfunction fpx, yq � rF pz1, z2qs on Bexp
R pI1 � I2q is said to

be separable if

F pz1, z2q � F1pz1qF2pz2q,

where F1pz1q P OpNpI1qzI1q
ApI1q and F2pz2q P OpNpI2qzI2q

ApI2q
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Now we define the two dimensional Laplace transform of hyperfunction in two

variables.

Definition 5.2.3. Let fpx, yq � rF pz1, z2qs P Bexp
R pI1� I2q be a separable hyperfunc-

tion with I1 � r0,8q and I1 � r0,8q. The two dimensional Laplace transform of

fpx, yq is defined as

f̂pu, vq � LyLxrfpx, yqspu, vq �
» 8

0

e�vy
» 8

0

e�uxfpx, yqdxdy,

where u and v are complex numbers.

The above integral can be evaluated in the following way.

f̂pu, vq � LyLxrfpx, yqspu, vq

�
» 8

0

e�vy
» 8

0

e�uxfpx, yqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1F pz1, z2qdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1F1pz1qF2pz2qdz1dz2

� p
» 8

0

e�uz1F1pz1qdz1qp
» 8

0

e�vz2F2pz2qdz2q,

exists for all Ru ¡ σ
1
, Rv ¡ σ

2
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Examples 5.2.4.

LyLxrδpx, yqspu, vq �
» 8

0

e�vy
» 8

0

e�uxδpx, yqdxdy � 1

Proposition 5.2.5. The image function f̂pu, vq � LyLxrfpx, yqspu, vq is a holomor-

phic function

Proof. We have

f̂pu, vq � p
» 8

0

e�uz1F1pz1qdz1qp
» 8

0

e�vz2F2pz2qdz2q

Since fpx, yq is hyperfunction of bounded exponential growth F1pz1q and F1pz1q are

bounded exponential holomorphic functions in one variable. Hence the Laplace trans-

form F1pz1q and F1pz1q are holomorphic. Also the product of two holomorphic func-

tion is holomorphic. Therefore f̂pu, vq is a holomorphic function.

Proposition 5.2.6. Let fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyper-

function with I1 � r0,8q and I1 � r0,8q then

LyLxrfpx, yqspu, vq � LyLxrfpx, yqspū, v̄q

Proof.

LyLxrfpx, yqspu, vq �
» 8

0

e�vy
» 8

0

e�uxfpx, yqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1F pz1, z2qdz1dz2
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�
» 8

0

e�vz2
» 8

0

e�uz1F1pz1q F2pz2qdz1dz2

�
» 8

0

e�uz1F1pz1qdz1

» 8
0

e�vz2F2pz2qdz2

�
» 8

0

e�ūz1F1pz1qdz1

» 8
0

e�v̄z2F2pz2qdz2,

Since by proposition 3.7 [25] Lrfpxqspsq � Lrfpxqsps̄q

�
» 8

0

e�v̄z2
» 8

0

e�ūz1F1pz1qF2pz2qdz1dz2

�
» 8

0

e�v̄y
» 8

0

e�ūxfpx, yqdxdy

� LyLxrfpx, yqspū, v̄q

5.3. Operational Properties

Proposition 5.3.1. Let fpx, yq � rF pz1, z2qs, gpx, yq � rGpz1, z2qs P Bexp
R pI1�I2q are

two separable hyperfunctions with I1 � r0,8q and I1 � r0,8q then

LyLxrfpx, yq � gpx, yqspu, vq � LyLxrfpx, yqspu, vq � LyLxrgpx, yqspu, vq
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Proof.

LyLxrfpx, yq � gpx, yqspu, vq �
» 8

0

e�vy
» 8

0

e�uxpfpx, yq � gpx, yqqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1pF pz1, z2q �Gpz1, z2qqdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1F pz1, z2qdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1Gpz1, z2qdz1dz2

� LyLxrfpx, yqspu, vq � LyLxrgpx, yqspu, vq

Proposition 5.3.2. Let fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyper-

functions and c be a constant then

LyLxrcfpx, yqspu, vq � cLyLxrfpx, yqspu, vq

Proof.

LyLxrcfpx, yqspu, vq �
» 8

0

e�vy
» 8

0

e�uxpcfpx, yqqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1pcF pz1, z2qqdz1dz2

� c

» 8
0

e�vz2
» 8

0

e�uz1F pz1, z2qdz1dz2
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� cLyLxrfpx, yqspu, vq

Proposition 5.3.3. Let fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyper-

functions and a and b are two constants then

LyLxreax�byfpx, yqspu, vq � LyLxrfpx, yqspu� a, v � bq

Proof.

LyLxreax�byfpx, yqspu, vq �
» 8

0

e�vy
» 8

0

e�uxpeax�byfpx, yqqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1peaz1�bz2F pz1, z2qqdz1dz2

�
» 8

0

e�vz2ebz2
» 8

0

e�uz1eaz1F pz1, z2qdz1dz2

�
» 8

0

e�pv�bqz2
» 8

0

e�pu�aqz1F pz1, z2qdz1dz2

� LyLxrfpx, yqspu� a, v � bq

Corollary 5.3.4. Let fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyperfunc-

tions and a and b are two constants then

(a)

LyLxreaxfpx, yqspu, vq � LyLxrfpx, yqspu� a, vq
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(b)

LyLxrebyfpx, yqspu, vq � LyLxrfpx, yqspu, v � bq

Proposition 5.3.5. Let fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyper-

functions and a and b are two non zero real constants then

LyLxrfpax, byqspu, vq � 1

ab
LyLxrfpx, yqspu

a
,
v

b
q

Proof.

LyLxrfpax, byqspu, vq �
» 8

0

e�vy
» 8

0

e�uxfpax, byqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1F paz1, bz2qdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1F1paz1qF2pbz2qdz1dz2

�
» 8

0

e�uz1F1paz1qdz1

» 8
0

e�vz2F2pbz2qdz2

�
» 8

0

e�u
ζ1
a F1pζ1q1

a
dζ1

» 8
0

e�v
ζ2
b F2pζ2q1

b
dζ2,

by putting az1 � ζ1 and bz2 � ζ2

� 1

ab

» 8
0

e�p
v
b
qζ2

» 8
0

e�p
u
a
qζ1F1pζ1qF2pζ2qdζ1dζ2
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� 1

ab
LyLxrfpx, yqspu

a
,
v

b
q

Proposition 5.3.6. Let fpx, yq � rF pz1, z2qs P Bexp
R pI1 � I2q be a separable hyper-

functions and a and b are two constants then

LyLxrfpx� a, y � bqspu, vq � eau�bvLyLxrfpx, yqspu, vq

Proof.

LyLxrfpx� a, y � bqspu, vq �
» 8

0

e�vy
» 8

0

e�uxfpx� a, y � bqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1F pz1 � a, z2 � bqdz1dz2

�
» 8

0

e�vpζ2�bq
» 8

0

e�upζ1�aqF pζ1, ζ2qdζ1dζ2,

By putting z1 � a � ζ1 and z2 � b � ζ2

�
» 8

0

ebve�vζ2
» 8

0

eaue�uζ1F pζ1, ζ2qdζ1dζ2

� eau�bv
» 8

0

e�vζ2
» 8

0

e�uζ1F pζ1, ζ2qdζ1dζ2

� eau�bvLyLxrfpx, yqspu, vq
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Proposition 5.3.7. Let fpx, yq � rF pz1, z2qs � rF1pz1qF2pz2qs P Bexp
R pI1 � I2q be a

separable hyperfunction. For positive integers m and n,

LyLxrxmynfpx, yqspu, vq � p�1qm�np d
m

dum
pf̂1puqqqp d

n

dvn
pf̂2pvqqq,

Where f̂1puq �
³8
0
e�uz1F1pz1qdz1 and f̂2pvq �

³8
0
e�vz2F2pz2qdz2

Proof.

LyLxrxmynfpx, yqspu, vq �
» 8

0

e�vy
» 8

0

e�uxxmynfpx, yqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1zm1 z
n
2F1pz1qF2pz2qdz1dz2

�
» 8

0

e�uz1zm1 F1pz1qdz1

» 8
0

e�vz2zn2F2pz2qdz2

� p�1qm dm

dum
p
» 8

0

e�uz1F1pz1qdz1qp�1qn d
n

dvn
p
» 8

0

e�vz2F2pz2qdz2q

� p�1qm�np d
m

dum
pf̂1puqqqp d

n

dvn
pf̂2pvqqq

Proposition 5.3.8. Let fpx, yq � rF pz1, z2qs � rF1pz1qF2pz2qs P Bexp
R pI1 � I2q be a

separable hyperfunctions and f̂1puq �
» 8

0

e�uz1F1pz1qdz1, f̂2pvq �
» 8

0

e�vz2F2pz2qdz2

Then

(a)LyLxr BBxfpx, yqspu, vq � uf̂1puqf̂2pvq
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(b)LyLxr BByfpx, yqspu, vq � vf̂1puqf̂2pvq

(c)LyLxr B
2

Bx2
fpx, yqspu, vq � u2f̂1puqf̂2pvq

(d)LyLxr B
2

By2
fpx, yqspu, vq � v2f̂1puqf̂2pvq

(e)LyLxr B2

BxByfpx, yqspu, vq � LyLxr B2

ByBxfpx, yqspu, vq � uvf̂1puqf̂2pvq

Proof. (a)

LyLxr BBxfpx, yqspu, vq �
» 8

0

e�vy
» 8

0

e�ux
B
Bxpfpx, yqqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1
B
Bz1

pF pz1, z2qqdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1
d

dz1

pF1pz1qF2pz2qqdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1
d

dz1

pF1pz1qqF2pz2qdz1dz2

� p
» 8

0

e�uz1
d

dz1

pF1pz1qqdz1qp
» 8

0

e�vz2F2pz2qdz2q

� up
» 8

0

e�uz1F1pz1qdz1qp
» 8

0

e�vz2F2pz2qdz2q

� uf̂1puqf̂2pvq
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(b)

LyLxr BByfpx, yqspu, vq �
» 8

0

e�vy
» 8

0

e�ux
B
By pfpx, yqqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1
B
Bz2

pF pz1, z2qqdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1
d

dz2

pF1pz1qF2pz2qqdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1F1pz1q d
dz2

pF2pz2qqdz1dz2

� p
» 8

0

e�uz1F1pz1qdz1qp
» 8

0

e�vz2
d

dz2

pF2pz2qqdz2q

� vp
» 8

0

e�uz1F1pz1qdz1qp
» 8

0

e�vz2F2pz2qdz2q

� vf̂1puqf̂2pvq

(c)

LyLxr B
2

Bx2
fpx, yqspu, vq �

» 8
0

e�vy
» 8

0

e�ux
B2

Bx2
pfpx, yqqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1
B2

Bz2
1

pF pz1, z2qqdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1
d2

dz2
1

pF1pz1qF2pz2qqdz1dz2
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�
» 8

0

e�vz2
» 8

0

e�uz1
d2

dz2
1

pF1pz1qqF2pz2qdz1dz2

� p
» 8

0

e�uz1
d2

dz2
1

pF1pz1qqdz1qp
» 8

0

e�vz2F2pz2qdz2q

� u2p
» 8

0

e�uz1F1pz1qdz1qp
» 8

0

e�vz2F2pz2qdz2q

� u2f̂1puqf̂2pvq

(d)

LyLxr B
2

By2
fpx, yqspu, vq �

» 8
0

e�vy
» 8

0

e�ux
B2

By2
pfpx, yqqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1
B2

Bz2
2

pF pz1, z2qqdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1
d2

dz2
2

pF1pz1qF2pz2qqdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1F1pz1q d
2

dz2
2

pF2pz2qqdz1dz2

� p
» 8

0

e�uz1F1pz1qdz1qp
» 8

0

e�vz2
d2

dz2
2

pF2pz2qqdz2q

� v2p
» 8

0

e�uz1F1pz1qdz1qp
» 8

0

e�vz2F2pz2qdz2q

� v2f̂1puqf̂2pvq
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(e)

LyLxr B2

BxByfpx, yqspu, vq �
» 8

0

e�vy
» 8

0

e�ux
B2

BxBy pfpx, yqqdxdy

�
» 8

0

e�vz2
» 8

0

e�uz1
B2

Bz1Bz2

pF pz1, z2qqdz1dz2

�
» 8

0

e�vz2
» 8

0

e�uz1
B2

Bz1Bz2

pF1pz1qF2pz2qqdz1dz2

� p
» 8

0

e�uz1
d

dz1

pF1pz1qqdz1qp
» 8

0

e�vz2
d

dz2

pF2pz2qqdz2q

� uvp
» 8

0

e�uz1F1pz1qdz1qp
» 8

0

e�vz2F2pz2qdz2q

� uvf̂1puqf̂2pvq

Similarly, LyLxr B2

ByBxfpx, yqspu, vq � uvf̂1puqf̂2pvq

5.4. Inverse of Two Dimensional Laplace Trans-

form of Hyperfunctions

If fpx, yq � rF pz1, z2qs � rF1pz1qF2pz2qs P Bexp
R pI1 � I2q be a separable hyperfunction

with two dimensional Laplace transform f̂pu, vq the inverse transform is defined by

fpx, yq �
» 8

0

evy
» 8

0

euxf̂pu, vqdudv
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Chapter 6

Ordered Linear Space of

Hyperfunctions, Norm

Convergence and Completely

Monotone Hyperfunctions

In this chapter some order theoretic properties of hyperfunctions are investigated.

Order relation and norm convergence in the linear space of hyperfunctions are stud-

ied. The concept of completely monotone hyperfunctions is defined and some of its

properties are proved.

6.1. Ordered Linear Space of Hyperfunctions

We establish an order relation in the linear space of hyperfunctions by defining a

cone in it. Some properties of this cone are studied by introducing a topology to it.
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Let the set of all real valued hyperfunctions be denoted by BRpIq. Then BRpIq
is a linear space over R and it is a subspace of BpIq.

Definition 6.1.1. Let fpxq, gpxq P BRpIq where fpxq � rF pzqs, gpxq � rGpzqs.
Define the order relation 1 ¤1 by f ¤ g if fpxq ¤ gpxq for all x P I. In terms

of defining functions pF px � i0q � F px � i0qq ¤ pGpx � i0q � Gpx � i0qqq for all

F pzq P rF pzqs and Gpzq P rGpzqs.

Proposition 6.1.2. The above defined relation 1 ¤1 is a partial order on BRpIq.

Proof. Using the above definition of 1 ¤1, for fpxq � rF pzqs, gpxq � rGpzqs,
and hpxq � rHpzqs P BRpIq
(1)fpxq ¤ fpxq, the relation is reflexive

(2)fpxq ¤ gpxq and gpxq ¤ fpxq implies fpxq � gpxq. It is symmetric

(3)fpxq ¤ gpxq and gpxq ¤ hpxq implies fpxq ¤ hpxq. It is transitive

Thus the relation 1 ¤1 is a partial order relation on BRpIq.

Proposition 6.1.3. BRpIq is an ordered linear space

Proof. Clearly BRpIq is a linear space on R with respect to the addition and scalar

multiplication defined on BpIq. Also by the previous proposition 1 ¤1 is a partial

order on BRpIq. Hence it is an ordered linear space.

Note: For the following results, consider I as a subset of R� � p0,8q.

Let BM
B pIq denotes the linear subspace of BRpIq of hyperfunctions of bounded ex-

ponential growth and has a complex measurable holomorphic function as defining

function .
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Let

N̄p0, nq � tz P C : |z| ¤ nu,

i.e. N̄p0, nq is a closed complex neighbourhood of 0.

Definition 6.1.4. Let N be a complex neighbourhood of I. For n � 1, 2, ... define

Kn � N̄p0, nq X tz : |z � w| ¥ 1

n
, @w P CzNu

Then tKnu has the following properties

i) Kn is compact

ii)Kn � Kn�1

iii)If K � N is compact then K � Kn for sufficiently large n.

On each Kn and fpxq � rF pZqs P BpIq define

βKn,mpfpxqq � supt| d
m

dzm
F pzq| : @F pzq P rF pzqs, z P Knu,m � 0, 1, 2, ...

Let BM
B,Kn,m

pIq denotes the subspace of BM
B pIq, consisting of all hyperfunctions with

support contained in Kn. Then tβKn,mu8m�0 is a multinorm on BM
B,Kn,m

pIq. The

defined set of multinorms generates a topology τKn,m on BM
B,Kn,m

pIq.
BM
B pIq assigns the inductive limit topology τ when Kn varies over all compact sets

K1, K2, ...
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Proposition 6.1.5. BM
B pIq is an ordered topological linear space.

Proof. Since BM
B pIq is a subspace of the ordered linear space BRpIq, it is also an

ordered linear space. By the above definition BM
B pIq assigns the inductive limit

topology generated by multinorms. Hence BM
B pIq is an ordered topological linear

space.

Definition 6.1.6. The Cone, P of BM
B pIq is, when BM

B pIq restricted to the set of all

non-negative hyperfunctions in BRpIq. The Positive Cone in BM
B pIq is P � iP which

is denoted as P

Proposition 6.1.7. The cone P in BM
B pIq has the following properties:

i)P � P � P

ii)cP � P for every real number c ¡ 0

iii)P X�P � tr0su.

Proof. (i) Since the sum of two non-negative hyperfunction is again non-negative we

have P � P � P
(ii) Let fpxq P P and c ¡ 0. Then the hyperfunction cfpxq is clearly non negative.

Hence cP � P for every real number c ¡ 0

(iii) All real functions belonging to the equivalence class of zero in the sense of hy-

perfunction is P X�P

Proposition 6.1.8. P is a convex set in BM
B pIq.

Proof. Let fpxq � rF pzqs, gpxq � rGpzqs P P and choose γ with 0  γ   1. Then

γfpxq � p1� γqgpxq is again a non negative hyperfunction in BM
B pIq.
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Definition 6.1.9. For fpxq, gpxq P BM
B pIq with f ¤ g, define the order interval

between f and g by

rf, gs � thpxq P BM
B pIq : fpxq ¤ hpxq ¤ gpxqu

Definition 6.1.10. A subset E of BM
B pIq is order bounded if there exists fpxq, gpxq P

BM
B pIqsuch that E � rf, gs

Proposition 6.1.11. The cone P in BM
B pIq is generating.

Proof. Since every complex measurable function F � F� � F�,

we have P � P � BM
B pIq

Definition 6.1.12. For E � BM
B pIq the full hull rEs of E is defined as

rEs � thpxq P BM
B pIq : fpxq ¤ hpxq ¤ gpxq, fpxq, gpxq P Eu

Proposition 6.1.13. The cone P in BM
B pIq is normal

Proof. The neighbourhood basis of 0 for τ consisting of real holomorphic hyperfunc-

tions is a neighbourhood basis of 0 consisting of full sets. Hence the cone P is a

normal cone.

Proposition 6.1.14. Every order bounded subset of BM
B pIq is τ bounded

Proof. Proposition 1.4 in [43] states that if the cone K in an ordered topological vector

space Epτq is normal for τ , then every order bounded subset of E is τ� bounded.

Proposition 6.1.15. If P is a normal cone in BM
B pIq then P X BM

B,Kn,m
pIq is a

normal cone in BM
B,Kn,m

pIq
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Proof. Proposition 1.8 in [43] is: if K is a normal cone in an ordered topological

vector space Epτq and M is a linear subspace of E then K XM is a normal cone in

M for the subspace topology. The result follows from this proposition.

6.2. Norm Convergence in the Linear Space of Hy-

perfunctions

We define a norm to a subfamily of hyperfunctions having bounded exponential

growth with compact support. We have established some properties of this conver-

gence using the defining function of such hyperfunctions.

We consider a sub family of hyperfunctions having bounded exponential growth

with compact support on I � R. We denote it by BK
B pIq

Definition 6.2.1. For fpxq � rF pzqs P BK
B pIq the function ||.||K is defined as

||f ||K � sup
K�I

t|Gpx� i0q �Gpx� i0q| : Gpzq P rF pzqs, x P K,K is compact subset of

Iu

Proposition 6.2.2. BK
B pIq is a normed linear space.

Proof. Let fpxq � rF pzqs, hpxq � rHpzqs P BK
B pIq

For fpxq � rF pzqs P BK
B pIq, ||f ||K ¥ 0

||f ||K � 0 ô sup
K�I

t|Gpx� i0q �Gpx� i0q| : Gpzq P rF pzqs, x P K,Kis compact subset ofIu � 0

ô |Gpx� i0q �Gpx� i0q| � 0, @Gpzq P rF pzqs

ô Gpx� i0q �Gpx� i0q � 0, @Gpzq P rF pzqs
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ô Gpzqis a real analytic function, @Gpzq P rF pzqs

ô Gpzq P r0s

ô fpxq � r0s

Let c be a constant. Then

||cf ||K
� sup

K�I
t|cGpx� i0q � cGpx� i0q| : Gpzq P rF pzqs, x P K,K is compact subset of Iu

� |c| sup
K�I

t|Gpx� i0q �Gpx� i0q| : Gpzq P rF pzqs, x P K,K is compact subset of Iu
� |c|.||f ||K
Also for all F pzq P rF pzqs and Gpzq P rGpzqs,

|F px�i0q�F px�i0q�Hpx�i0q�Hpx�i0q| ¤ |F px�i0q�F px�i0q|�|Hpx�i0q�Hpx�i0q|

Hence we have

||f � h||K ¤ ||f ||K � ||h||K

Thus ||.||K is a norm on BK
B pIq.

Definition 6.2.3. A sequence fnpxq � rFnpxqs is a Cauchy sequence in BK
B pIq if

@ ε ¡ 0 there exists n0 P N satisfying the condition ||fn � fm||K   ε for n,m ¥ n0.

Proposition 6.2.4. BK
B pIq is a Banach space

Proof. Let sequence pfnpxqq is a Cauchy sequence in BK
B pIq where fnpxq � rFnpzqs.

Let ε ¡ 0.

There is n0 P N satisfying ||fn � fm||K   ε, for n,m ¥ n0.
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Then

|Fnpx� i0q � Fnpx� i0q � Fmpx� i0q � Fmpx� i0q| ¤ ||fn � fm||K
  ε, @n,m ¥ n0, and for all

Fnpzq P rFnpzqsandFmpzq P rFmpzqs

From this relation we have pFnpx� i0qq and pFnpx� i0qq are Cauchy sequences in C.

But C is complete. Hence we get Fnpx� i0q Ñ F px� i0q and Fnpx� i0q Ñ F px� i0q
in C.

Define fpxq � rF pzqs
Then fnpxq Ñ fpxq as nÑ 8 in the sense of hyperfunction.

Hence BK
B pIq is a Banach space.

Proposition 6.2.5. BK
B pIq is separable.

Proof. Set of all hyperfunction in BK
B pIq taking rational points values will be a count-

able dense subset of BK
B pIq

Proposition 6.2.6. Let fpxq � rF pzqs, gpxq � rGpzqs P BK
B pIq are non negative,

real valued measurable hyperfunctions and if fpxq ¤ gpxq i.e. F pzq ¤ Gpzq and it

holds for every functions in the equivalence classes of F pzq and Gpzq) then

»
fpxqdx ¤

»
gpxqdx

Proof.

»
fpxqdx �

»
F pzqdz
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¤
»
Gpzqdz

�
»
gpxqdx

Proposition 6.2.7. Let fkpxq � rFkpzqs, k � 1, 2, 3, ... be a sequence of measurable

hyperfunctions in BK
B pIq and fpxq � lim fkpxq, fpxq � rF pzqs. Then

»
||fkpxq � fpxq||KdxÑ 0 as k Ñ 8

in the sense of hyperfunctions.

Proof. Let fkpxq � rFkpzqs, k � 1, 2, 3, ... be a sequence functions in BK
B pIq and

fpxq � lim fkpxq, fpxq � rF pzqs.
Then ||fkpxq � fpxq||K Ñ 0 as k Ñ 8
Applying the properties of integrals of measurable functions we get the result.

6.3. Completely Monotone Hyperfunctions

Definition 6.3.1. A positive real valued hyperfunction fpxq � rF pZqs defined on

p0,8q is called a completely monotone hyperfunction if it satisfies

p�1qnf pnqpxq ¥ 0, @x ¡ 0, n � 0, 1, 2, ...

Proposition 6.3.2. A positive real valued hyperfunction fpxq � rF pzqs defined on

p0,8q is a completely monotone hyperfunction if there exists a positive valued hyper-
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function gpxq � rGpzqs on p0,8q with bounded exponential growth such that

fpsq � Lrgpxqspsq, @s ¡ 0

Proof. Suppose there exists a positive valued hyperfunction gpxq � rGpzqs on p0,8q
with bounded exponential growth such that fpsq � Lrgpxqspsq, @s ¡ 0. Then

p�1qnf pnqpsq � p�1qn d
n

dsn
Lrgpxqspsq

�
» 8

0

xne�sxgpxqdx

¥ 0, @s ¡ 0

Hence fpxq is a completely monotone hyperfunction.

Proposition 6.3.3. Let fpxq � rF pxqs and gpxq � rGpxqs be two completely mono-

tone hyperfunctions. Then fpxqgpxq is a completely monotone hyperfunction when-

ever the product is defined and fpsq � Lrhpxqspsq and gpxq � Lrjpxqspsq , where

hpxq � rHpzqs and jpxq � rJpzqs are two hyperfunctions, s ¡ 0

Proof. Product of fpxq and gpxq is defined when sing supp fpxqX sing supp gpxq � φ

If s is not an element in sing supp fpxq X sing supp gpxq then

fpsqgpsq � LrhpxqspsqLrjpxqspsq

� Lrhpxq � jpxqspsq

Then by previous proposition the result follows.

Proposition 6.3.4. Let fpxq be a completely monotone hyperfunction and gpxq be a

positive valued hyperfunction defined on p0,8q such that g1pxq is a completely mono-
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tone hyperfunction. Then f � g is also a completely monotone hyperfunction.

Proof. We are going to prove the result using mathematical induction

Clearly pf � gqpxq ¥ 0 for x ¡ 0

pf � gq1 � pf 1 � gqg1 ¤ 0, since p�1qf 1 ¥ 0 and g1 ¥ 0

Hence the result true for k � 1

Suppose that the result is true for k � n

i.e. p�1qkpf � gqk ¥ 0 for all k � 0, 1, 2, ..., n

Since �f 1 and g1 are completely monotone

p�1qn�1pf � gqn�1 � p�1qnrpp�f 1q � gqg1spnq

� p�1qnΣn
0nckpp�f 1q � gqpkqpg1qpn�kq

� Σn
0nckrp�1qkpp�f 1q � gqpkqsrp�1qn�kpg1qpn�kqs

¥ 0

Hence the result is true for k � n� 1 also.
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Chapter 7

Application

In this chapter we find solutions of partial differential equations involving hyperfunc-

tions using the Weierstrass transforms defined in the previous chapter.

7.1. Application of Weierstrass Transform of Hy-

perfunction

Weierstrass transform can be used to find the solution of partial differential equation

problems having hyperfunction solution and also for initial value problems having

initial value a hyperfunction.

We can see from the following problem how Weierstrass transform can be used to find

the solution of initial value problems having initial value a hyperfunction.

Examples 7.1.1. Consider the equation pD2
x �Dtqψpx, tq � 0,�8   x   8,

t ¡ 0 with initial condition ψpx, 0q � fpxq� c where the initial value function fpxq is

a hyperfunction.

Solution:
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Let the Fourier transform with respect to x of ψ and f denoted by

ψ̂pζ, tq � Frψpx, tqspζq, f̂pζq � Frfpxqspζq

respectively.

Applying Fourier transform with respect to x to the given differential equation we have

piζq2ψ̂ �Dtψ̂ � 0

i.e.pDt � ζ2qψ̂ � 0

Then the general solution is

ψ̂pζ, tq � φpζqe�tζ2

Applying the initial condition ψ̂pζ, 0q � φpζq � f̂pζq
Hence

ψ̂pζ, tq � f̂pζqe�tζ2

� f̂pζqFr 1?
4πt

e
�x2

4t spζq

� Frfpxqspζq.Fr 1?
4πt

e
�x2

4t spζq

� Frfpxq � 1?
4πt

e
�x2

4t spζq

by convolution property.
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Taking inverse Fourier transform on both sides

ψpx, tq � fpxq � 1?
4πt

e
�x2

4t

� 1?
4πt

» 8
�8

e
�ps�xq2

4t fpxqdx

� Wtrfpxqspsq

If

ψpx, tq � Wtrδpx� 1qspsq

� 1?
4πt

» 8
�8

e
�ps�xq2

4t δpx� 1qdx

� 1?
4πt

e
�x2

4t � δpx� 1q

� 1?
4πt

e
�px�1q2

4t

Also for x � 1, ψpx, 0q � 0 � δpx� 1q
Hence fpxq � δpx � 1q is a hyperfunction satisfying ψpx, 0q � 0 � fpxq. Thus the

solution is

ψpx, tq � 1?
4πt

e
�px�1q2

4t ,�8   x   8, t ¡ 0
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Conclusion

The concept of hyperfunction is the contribution by the Japanese mathemati-

cian Mikio Sato. Hyperfunctions are the generalisation of generalized functions or

distributions. The space of distributions forms a subspace of the linear space of hy-

perfunctions. The mathematical impossibility of explaining the concept of integration

of certain generalized functions can be overcome through the introduction of hyper-

functions with the help of classical complex analysis.

Sato focused more on developing the theoretical concept of hyperfunctions. But

Iso Imai discovered the computational power of hyperfunctions in solving partial dif-

ferential equations. Inspired by Iso Imai’s work, Urs Graf in his book ’Introduction to

hyperfunctions and their integral transforms’, extended different integral transforms

like Laplace transform, Fourier transform, Mellin transform, Hilbert transforms and

Hankel transforms to the linear space of hyperfunctions. He investigated on the prac-

tical approach than the theoretical concepts of hyperfunctions. The work in this

thesis contains application of more different and combined integral transforms on hy-

perfunctions and their properties.

Chapter 1, consists of some preliminary definitions.

In Chapter 2, new integral transforms are applied to hyperfunctions. Integral

transforms such as Weierstrass transform, Stieltjes transform and L2 are extended to
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the subclasses of hyperfunctions. The inverse transforms are also obtained. Various

operational properties of these transforms are also studied.

In Chapter 3, the combined transforms for hyperfunctions are investigated. The

concepts of Fourier-Laplace transform, Laplace-Stieltjes transform and Fourier-Stieltjes

transform are defined for hyperfunctions satisfying certain properties. Operational

properties of these transforms are also obtained. The inverse transforms for Laplace-

Stieltjes transform and Fourier-Stieltjes transform of hyperfunctions have been estab-

lished.

In Chapter 4, Abelian - Tauberian type theorems are proved for Laplace trans-

form of hyperfunctions, Stieltjes transform of hyperfunctions and Laplace- Stieltjes

transform of hyperfunctions. Some supporting results are also proved for proving

these theorems.

In Chapter 5, the concept of two dimensional Laplace transform of hyperfunc-

tions is introduced. The idea of hyperfunctions in two variables are developed as in

the case of hyperfunctions of one variable introduced by Urs Graf. Two dimensional

Laplace transform is defined for hyperfunctions in two variables having a separable

defining function. Some operational properties of this two dimensional transforms

are obtained. Also the two dimensional inverse Laplace transform of hyperfunctions

is defined. Using this two dimensional Laplace transform of hyperfunctions second

order partial differential equations involving hyperfunctions can be solved without

reducing it into first order equations.

In Chapter 6, the order relation in the linear space of real hyperfunctions has

been studied. Also the concept of multinorm and cone are defined for the linear

space of hyperfunctions. It is proved that every order bounded subset of the linear
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space of hyperfunctions having bounded exponential growth and compact support is

topologically bounded with the topology generated by the set of multinorms. Some

properties of these concepts are proved. The concept of completely monotone hyper-

functions is also defined.

In Chapter 7, as an application, an initial value problem involving hyperfunction

is solved by applying Weierstrass transform for hyperfunction.

Future Study

In this present study only some basic concepts of these newly defined integral

transforms for hyperfunctions have been established. Since hyperfunctions are in-

finitely differentiable we can establish many more results based on these integral

transforms.

The following investigations are possible.

• Theoretical concepts of the above transforms can be developed through the

Sheaf theoretic approach to hyperfunctions

• Support Kernel type theorems can be proved for these integral transforms with

the help of Sheaf theory

• Application of numerical methods to the integral transform of hyperfunctions

to solve partial differential equations and integral equations

• The existence of Abelian - Tauberian theorems for other transforms of hyper-

functions can be investigated

• Connection between hyperfunctions and Colombeau’s generalized functions

• Embedding the space of Fourier distribution in the space of Fourier hyperfunc-

tion
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• Mellin-Stieltjes transform of hyperfunctions

• Wavelet transform of hyperfunctions

• Existence of transforms in hyperfunctions in several variables

• Application of hyperfunctions in signal and image processing
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