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Abstract 
 

Some Generalizations of Cauchy Distribution 

 

This thesis is mainly concerned with study of some generalizations of Cauchy 

distribution. The distributions commonly used for modelling of insurance losses, 

financial returns, file sizes on the network servers, etc. are subject to some sort 

of deficiencies. Also, there are only few probability distributions capable of 

modelling heavy tailed data sets and none of them are flexible enough to provide 

greater accuracy in fitting complex forms of data. Furthermore, in financial and 

actuarial risk management problems, the data sets are usually unimodal, skewed 

to the right, and possess thick right tail. The distributions that exhibit such 

characteristics can be used quite effectively to model insurance loss data to 

estimate the business risk level.  

To address the problems stated above, we have an interest in defining new 

families of distributions through different approaches such as introducing 

additional, location, scale, shape, and transmuted parameters, to generalize the 

existing distributions.  

We adopted six estimation approaches for estimating parameters of our 

models, and assess the performance of these estimators. Therefore, this study is 

addressed scientific computation challenge by performing numerical comparison 

between several estimators for the model parameters and identified which of them 

perform better in terms of estimation efficiency. The comparison is based on 

Monte Carlo simulations and the outcomes of a real data analysis. The simplicity 

of the proposed distributions and the great flexibility in modelling real life data 

will attract researchers to use these distributions as an alternative of the Cauchy 

distribution in modelling different scenarios. Our proposed families are useful for 

modelling insurance claim data sets, better models for financial returns because 

the normal model does not capture the large fluctuations seen in real assets.  Also, 

our families of distributions have received considerable attention due to the heavy 

tail property. 

 

 



സംഗ്രഹം 

              ക ോഷി  വിതരണത്തിന്‍റെ ചില ന്‍റ ോതുവൽക്കരണങ്ങൾ 

                 

  ഈ പ്രബന്ധം പ്രധാനമായ ം ക ാഷി  വിതരണത്തിന്‍റെ ചില 
ന്‍റരാത വൽക്കരണങ്ങന്‍റെക്ക റിച്ചുള്ള രഠനമാണ്.   ഇൻഷ റൻസ് നഷ്ടം, സാമ്പത്തി  
വര മാനം, ന്‍റനറ്റ വർക്കറ ന്‍റസർവറ  െിന്‍റല കരഖാസമാഹാരങ്ങെുന്‍റെ വല പ്പം 
മ തലായവയ ന്‍റെ മാതൃ യാക്കാൻ സാധാരണയായി ഉരകയാഗിക്ക ന്ന 
വിതരണങ്ങൾ ഒര തരം കരാരായ്മ ൾക്കറ വികധയമാണ്.  ൂൊന്‍റത,   

ദീർഘവാല ള്ള  ദത്ത  ഗണങ്ങന്‍റെ മാതൃ യാക്കാൻ  ഴിവ ള്ള ച ര ക്കം ചില സാധയത 

വിതരണങ്ങൾ മാപ്തകമ ഉള്ളൂ, അവന്‍റയാന്ന ം ദത്തങ്ങെുന്‍റെ  സങ്കീർണ്ണമായ രൂരങ്ങൾ 

ഘെിപ്പിക്ക ന്നതിൽ  ൂെ തൽ  ൃതയത നൽ ാൻ രരയാപ്തമലല.   ൂൊന്‍റത,  സാമ്പത്തി  

മാതൃ  ഉണ്ടാക്കൽ പ്രശ്നങ്ങെിൽ ദത്ത ഗണങ്ങൾ സാധാരണയായി ഏ ീ ൃതവ ം, 

വലത നിന്ന ം  വലിച്ചുള്ളത ം,  ട്ടിയ ള്ള വലത് വാല ള്ളത മാണ്.  അത്തരം 
സവഭാവസവികേഷത ൾ പ്ര െിപ്പിക്ക ന്ന വിതരണങ്ങൾ ഇൻഷ റൻസ് നഷ്ട 
ദത്തങ്ങൾ  മാതൃ യാക്കാൻ  വെന്‍റര ഫലപ്രദമായി ഉരകയാഗിക്കാം. 

 മ  െിൽ രറഞ്ഞിരിക്ക ന്ന പ്രശ്നങ്ങൾ രരിഹരിക്ക ന്നതിന്, നിലവില ള്ള 
വിതരണങ്ങന്‍റെ ന്‍റരാത വൽക്കരിക്കാൻ വയതയസ്ത സമീരനങ്ങെിലൂന്‍റെ 
വിതരണത്തിന്ന്‍ററ ര തിയ   െ ംബങ്ങന്‍റെ നിർവചിക്ക ന്നതിൽ ഞങ്ങൾക്കറ 
താൽപ്പരയമ ണ്ടറ. അതിനാൽ, ക ാഷി വിതരണങ്ങെുന്‍റെ ചില ന്‍റരാത വൽക്കരണങ്ങൾ 
നിർകേേിക്ക  യ ം അതിന്ന്‍ററ ഗ ണങ്ങൾ ചർച്ച ന്‍റചയ്യു യ ം ന്‍റചയ്യുന്ന . 
 

  ൂൊന്‍റത, ഈ വിതരണങ്ങെുന്‍റെ സ്ഥിരരാേി ൾ  ണക്കാക്ക ന്നതിന ം ഈ 
മതിപ്പറ െുന്‍റെ  പ്ര െനം വിലയിര ത്ത ന്നതിന ം ഞങ്ങൾ ആറ് എസ്റ്റികമഷൻ 
സമീരനങ്ങൾ സവീ രിച്ചു. അതിനാൽ, മാതൃ  സ്ഥിരരാേി ൾക്കായി നിരവധി 
മതിപ്പു ൾ  തമ്മില ള്ള സംഖയാരരമായ താരതമയം നെത്തി, അവയിൽ ഏതാണ് 
എസ്റ്റികമഷൻ  ാരയക്ഷമതയ ന്‍റെ  ാരയത്തിൽ മി ച്ച പ്ര െനം 
 ാഴ്ചവയ്ക്ക ന്നന്‍റതന്നറ  ന്‍റണ്ടത്ത ന്നതിലൂന്‍റെ ോസ്പ്തീയമായ 
 ണക്ക  ൂട്ടന്‍റലന്ന  ന്‍റവലലുവിെിന്‍റയ അഭിമ ഖീ രിക്ക ന്ന . കമാന്‍റണ്ട  ാർകലാ 
സിമ കലഷന  െും,  യഥാർത്ഥ ദത്ത വിേ ലനത്തിന്ന്‍ററ ഫലങ്ങെും 
അെിസ്ഥാനമാക്കിയ ള്ളതാണ് താരതമയം. നിർദിഷ്ട വിതരണങ്ങെുന്‍റെ ലാെിതയവ ം 
യഥാർത്ഥ ജീവിത ദത്ത മാതൃ  ന്‍റചയ്യുന്നതിന്‍റല മി ച്ച വഴക്കവ ം വയതയസ്ത 
സാഹചരയങ്ങന്‍റെ മാതൃ യാക്ക ന്നതിൽ ക ാഷി വിതരണത്തിന് ര രമായി ഈ 
വിതരണങ്ങൾ ഉരകയാഗിക്കാൻ ഗകവഷ ന്‍റര ആ ർഷിക്ക ം. 

അതിനാൽ ഞങ്ങെുന്‍റെ നിർേിഷ്ട   െ ംബങ്ങൾ ഇൻഷ റൻസ് നഷ്ട 
ദത്ത  ഗണങ്ങെുന്‍റെ മാതൃ  ന്‍റചയ്യുന്നതിന ം , യഥാർത്ഥ ആസ്തി െിൽ  ാണ ന്ന 
വലിയ ഏറ്ക്ക റച്ചില  ൾ സാധാരണ മാതൃ  രിെിന്‍റച്ചെ ക്ക ന്നിലലാത്ത  ാരണം 
സാമ്പത്തി  വര മാനത്തിനായ ള്ള മി ച്ച മാതൃ  ൊയ ം ഉരകയാഗിക്ക ന്ന . 

ദീർഘവാല ള്ള  സവികേഷത   ാരണം ഞങ്ങെുന്‍റെ വിതരണ   െ ംബങ്ങൾക്കറ 
ഗണയമായ പ്േദ്ധ ലഭിച്ചു. 
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Chapter 1

INTRODUCTION

1.1 Introduction

A statistical distribution is a parameterized mathematical formula that provides the proba-

bilities of various outcomes for a random variable (r.v.). There are discrete and continuous

distributions based on the random value it models. Sampling distributions are crucial in

statistics as they enable us to gather samples and estimate the parameters of the popu-

lation distribution. Therefore, distribution is essential for drawing inferences about the

entire population.

In statistical theory, data modeling is a captivating research subject in engineering,

medical, and financial sciences. Thus, probability distributions are essential for modeling

such datasets. The most commonly used probability distributions include exponential,

Weibull, Rayleigh, gamma, beta, Pareto, log-normal, Lomax, and Burr, among others.

However, these distributions may not adequate for complex datasets. For instance, in

reliability engineering and biomedical sciences, datasets often exhibit a unimodal distri-

bution skewed to the right; see Demicheli et al. (2004), Lai and Xie (2006) and Almalki

and Yuan (2013). Therefore, in such scenarios, commonly used statistical models may not
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be an appropriate option. Conversely, log-normal, gamma and beta distributions do not

have closed forms for the cumulative distribution function (cdf), which posses challenges

in estimation of parameters. Furthermore, the data sets are usually uni-modal, skewed to

the right and possess thick right tail in financial and actuarial risk management problems;

for details see, Cooray and Ananda (2005) and Eling (2012), among others. Distributions

displaying such characteristics can be effectively utilized to model insurance loss data for

estimating the level of business risk. The distributions commonly used in the literature

include Pareto by Cooray and Ananda (2005), Lomax by Scollnik (2007), Burr by Nadara-

jah and Bakar (2014) and Weibull by Bakar et al. (2015), which are particularly suitable

for modeling insurance losses, financial returns, file sizes on network servers, and similar

phenomena. Regrettably, these distributions are susceptible to certain deficiencies. For in-

stance, the Pareto distribution, owing to its monotonically decreasing density shape, may

not offer the optimal fit in numerous applications. Conversely, the Weibull distribution

can effectively capture the behavior of small losses but may fall short in representing the

behavior of large losses. As a result, only a limited number of probability distributions

can effectively model heavy-tailed datasets, and none provide enough flexibility to achieve

high accuracy when fitting complex forms of data.

To address the problems identified above, researchers are keen on defining new families

of distributions by augmenting one or more parameters to the well known distributions.

The new families have been formulated using various methods including the incorpora-

tion of additional parameters such as location, scale, shape, and transmuted parameters,

to generalize the existing distributions. These generalizations are mainly based on the

transformation of the variable and compounding of two or more models.

Distributions obtained by compounding a parent distribution with a discrete distribu-

tion is a common technique in statistics. The fundamental concept behind introducing
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compound families is that in systems with discrete r.v. represented by N components and

a positive continuous r.v., denoted as Xi, the lifetime of the ith component can be ex-

pressed as the non-negative r.v. Y = min(X1, X2, . . . , XN) or Z = max(X1, X2, . . . , XN)

depending on whether the components are structured in series or parallel, respectively.

Many compound classes can be constructed by choosing discrete models namely the

geometric, Poisson, logarithmic, binomial, negative-binomial and power series with prob-

ability mass function (pmf) P (N = n). The r.v.s Y = min(X1, X2, . . . , XN) and Z =

max(X1, X2, . . . , XN) give rise to numerous models applicable to series and parallel sys-

tems with identical components, and they have wide applications in both industrial and

biological contexts.

Heavy-tailed phenomena represent a distinct qualitative behavior of the underlying

models, characterized by deviations from normal behavior, often influenced by extreme

values of the sample. In Probability Theory, heavy-tailed distributions are those whose

tails decay to zero at a slower rate than exponential decay. The exponential distribution

is usually considered as the borderline between heavy and light tails. Among heavy-tailed

distributions, two classes have been particularly successful: distributions with regularly

varying tails and subexponential distributions.

All commonly used heavy-tailed distributions are belong to the subexponential class.

One-tailed distributions include the Weibull distribution with a shape parameter greater

than 0 but less than 1, Pareto distribution, Burr distribution, Log-normal distribution,

Levy distribution, among others. Additionally, two-tailed distributions include Cauchy

distribution (itself a special case of both the stable distribution and t-distribution), the

family of stable distributions, financial models with long-tailed distributions and volatility

clustering, the t-distribution, the skew log-normal cascade distribution, and more.

Statistical modeling plays an important role in engineering problem solving, provid-

3



ing tools to characterize stochastic events and derive theories and methods for sample

processing. Cauchy distribution is particularly advantageous due to its closed form pdf

expression across the whole family, which makes it suitable for modeling various real-life

processes in engineering applications.

Cauchy distribution’s history was first observed and studied in works of Pierre de

Fermat and then studied by prominent researchers such as Isaac Newton, Gottfried Leibniz

and others (see, Johnson et al. (1994)). It was formally introduced and published in 1824

by the French mathematician Poisson (see, Poisson (1827)). According to Johnson et al.

(1994), this distribution is attributed to Cauchy (1853) when Cauchy responded to an

article by Bienayme (1853) criticizing a method of interpolation proposed by Cauchy.

Physicists often refer to Cauchy distribution as Lorentz distribution due to Hendrink

Lorentz. One notable characteristic of Cauchy distribution is its lack of a defined mean,

yet it possesses well defined mode and median values.

The probability density function (pdf) of a r.v. X following a Cauchy distribution,

denoted by C(µ, θ) with parameters µ ∈ R and θ > 0, is given by

g(x) =
1

πθ

1

(1 + (x−µ
θ
)2)

; −∞ ≤ x ≤ ∞,−∞ ≤ µ ≤ ∞, θ > 0 (1.1)

and the cdf of X is

G(x) =
1

π
arctan

(
x− µ

θ

)
+ 0.5, (1.2)

where µ and θ are the location and scale parameters respectively.

Early interest in the distribution focused on its value as a counterexample highlighting

the necessity of regularity conditions for proving important limit theorems (see Stigler

(1974)). While sometimes considered a pathological case, Cauchy distribution finds ap-
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plication in describing a wide range of phenomena. It represents a continuous probability

distribution with heavier tails compared to normal distributions, making it suitable for

modeling scenarios such as the ratio of two normal r.v.s. One of the notable character-

istics of Cauchy distribution is its long-tailed nature, which makes it relevant in various

statistical contexts. Despite its usefulness, Cauchy distribution poses challenges for esti-

mation methods such as method of moments estimation and minimum variance unbiased

estimation due to its long tails and lack of finite moments.

Although a graph of Cauchy density looks like the normal density, the tails of Cauchy

distribution approaches to the x-axis much more slowly than the normal indicating higher

probabilities for extremely large or small values and hence the mean does not exist.

This distribution is a special case of the Pearson type VIII distribution (Johnson et al.

(1994)). Cauchy distribution is a limiting case of a Pearson distribution of type IV. It is

also a special case of a Pearson distribution of type VII. If X and Y are independent and

identically distributed (i.i.d.) standard Cauchy r.v.s C(0, 1), then X + Y is a C(0, 2) r.v..

Cauchy r.v.s are such that the characteristic function of their sum is the product of their

characteristic functions and yet they are not independent. In the case of a sequence of

i.i.d. Cauchy r.v.s, the central limit theorem does not hold. Cauchy distribution belongs

to the class of stable distribution and hence is infinitely divisible. The standard Cauchy

distribution is connected with Student’s t-distribution with one degree of freedom. Several

results in Probability Theory concerning expected values such as the strong law of large

numbers do not apply to Cauchy distribution.

In particle and nuclear Physics, the energy profile of a resonance is explained by Breit-

Wigner distribution, while Cauchy distribution is the BreitWigner distribution. Cauchy

distribution is a singular limit of a hyperbolic distribution. Wrapped Cauchy distribution

taking values on a circle is derived from Cauchy distribution by wrapping it around the
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circle. In spectroscopy, Cauchy distribution describes the shape of spectral lines which

are subject to homogeneous broadening in which all atoms interact in the same way with

the frequency range contained in the line shape. Many mechanisms cause homogeneous

broadening, most notably collision broadening, see Hecht (2002). Applications of Cauchy

distribution can be found in exponential growth fields, see John (1958). Cauchy distribu-

tion is often the distribution of observations for objects that are spinning. In hydrology,

Cauchy distribution is applied to extreme events such as annual maximum one-day rain-

falls and river discharges. Cauchy distributions can be used to model fat tails in compu-

tational finance. It has been applied in various fields such as electrical and mechanical

theory, measurements and calibration problems, physical anthropology, modeling depth

map data and prices of speculative assets such as stock returns and the phase derivative

of air components in an urban environment.

This distribution describes the probability of finding a particle in a particular energy

state in quantum mechanics applicable to both excited states of atoms and resonant states

of elementary particles. It can be shown that whenever one has a state which decays expo-

nentially with time, the energy width of the state is described as Cauchy distribution, see

Roe (1992). Winterton et al. (1992) showed that the source of fluctuations in contact win-

dow dimensions is variation in contact resistivity and the contact resistivity is distributed

as Cauchy r.v.. Kagan (1992) found that Cauchy distribution is the distribution of hypo-

centers on focal spheres of earthquakes. Stapf et al. (1996) described an application of

this distribution to study the polar and non-polar liquids in porous glasses. Min et al.

(1996) described Cauchy distribution is the distribution of velocity differences induced by

different vortex elements.

One of the non-normal distributions used for studying the behavior of price data is

Cauchy distribution. A major difference between normal and Cauchy distributions is
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that the latter has a longer tail than the former. This makes a better modeling of the

price data using Cauchy distribution. General Insurance companies aim to utilize past

or present claim amounts to predict the seriousness of future claims. They must identify

an appropriate statistical distribution for their extensive datasets of claim amounts and

evaluate the goodness of fit of this distribution to their actual claim data. Most data

in general insurance problems exhibit right skewness, distributions with similar charac-

teristics are typically employed to model claim severity. Moreover, insurance data often

consists of large claim amounts and large claims hold significant financial importance.

However, assessing the distribution of these large claims presents challenges. Therefore,

there is a clear necessity to employ statistical distributions that are highly skewed and

exhibit relatively heavy tails.

For these probabilistic models, finite moments of the first order and above do not

exist. But, they still have applications in other areas of science including analysis of

data with extremes and Statistical Inference. Estimating distributional properties such

as reliability, hazard rate and others involves determining suitable parameter estimates

for the distribution model using appropriate estimation methods. Parameter estimation

has recieved significant attention in statistical literature with many researchers conducting

comparative studies to assess the performance of various estimation methods numerically.

See, for example, Gupta and Debasis (2001); Alkasasbeh and Raqab (2009); Mazucheli

et al. (2013); Do Espirito Santo and Mazucheli (2015); Qoshja and Hoxha (2016); Dey

et al. (2017); Balakrishnan and Alam (2019) and Alam and Nassar (2021).

Cauchy probability distribution has special features due to its very thick tails. This

lead to the problem of estimating the center of the distribution from a sample. It’s

known that the sample mean is an inconsistent estimator because its sampling variability

doesn’t decrease as the sample size increases. The maximum likelihood (ML) estimator
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is consistent and efficient asymptotically. The sample median is the simplest consistent

estimator and is inefficient to use in practice. Rothenberg et al. (1964) showed that the

average of the middle one-quarter of the ordered observations is an unbiased estimator of

θ with a smaller variance than the median itself. Blom (1958), Barnett (1966, 1968) and

Bloch (1966) considered the linear estimation of θ based on the sample order statistics,

while Sarhan and Greenberg (1962), Chan (1970) and Balmer et al. (1974) discussed the

estimation of θ and σ based on a small number of the sample quantiles taken from a large

sample.

The one parameter ML estimation is complicated in this case. The joint ML estimation

of both location and scale is often simpler than the estimation of location alone. Ferguson

(1978) discussed closed form solutions when n < 5 for the ML estimators of both θ and

σ. Such closed form solutions are not known to exist for n > 5. Other charecteristics

of ML estimation are discussed in Haas et al. (1970). Koutrouvelis (1982) discussed the

estimation of location and scale using the empirical characteristic function.

Ghosh et al. (1982) gave conditions under which the integrated risk of an approximate

Bayes estimate (calculated as in Lindley (1980)) approximates the Bayes risk. Franck

(1981) considered the problem of testing of normal versus Cauchy and Spiegelhalter (1985)

used the methods of Franck to obtain exact expressions for the Bayes estimators of θ and

σ under a non informative prior density. These exact expressions are fairly complex and

difficult to compute especially for large n. Howlader and Weiss (1985) discussed the exact

expressions due to Spiegelhalter (1985) and the imprecise expressions derived by using a

method due to Lindley (1980) for Bayes estimation of the location and scale parameters

of Cauchy distribution.

Pekasiewicz (2014) introduced the quantile methods to estimate Cauchy distribution.

Mahdizadeh and Zamanzade (2017, 2019) discussed some goodness of fit tests for Cauchy
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distribution and revealed that their tests have a better performance than the existing

tests. Also, Ebner et al. (2022) discussed a new characterization of Cauchy distribution

and proposed a class of goodness of fit tests for Cauchy family. Alam (2022) discussed

another pathological model known as Cauchy Birnbaum-Saunders distribution and some

of its goodness of fit tests.

The absence of moments in Cauchy distribution which leads to the breakdown of the

law of large numbers has motivated researchers to explore and develop generalizations of

this distribution. Indeed, some generalizations of Cauchy distribution have been proposed

and studied in the literature; Rider (1957) proposed a generalization of Cauchy distri-

bution, Batschelet (1981) proposed Wrapped-up Cauchy distribution, the skew-Cauchy

distribution was introduced by Arnold and Beaver (2000), another class of skew Cauchy

distribution was discussed in Behboodian et al. (2006), Huang and Chen (2007) discussed

a generalization of the skew Cauchy distribution and Alshawarbeh et al. (2013) used the

beta family introduced by Eugene et al. (2002) to generate beta Cauchy distribution.

Dahiya et al. (2001) and Nadarajah and Kotz (2006) proposed a truncated Cauchy den-

sity to overcome the problem of the non-existence of the moments and the ML estimates.

Tahir et al. (2017) studied Weibull power-Cauchy distribution.

Indeed, there is a clear need for more extended distributions in many applied areas like

lifetime analysis, insurance and finance where real world data often exhibit high degrees of

skewness and kurtosis. Real-life data analysis often involves highly positively or negatively

skewed data. These datasets frequently contain extreme observations. Many common

distributions lack the flexibility to model these characteristics accurately. As a result,

there is a growing demand for more flexible distributions that can effectively handle such

data. While there are some distributions available that can accommodate either positive

or negative skewness to some extent, there remains a scarcity of distributions that can
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adequately capture both types of skewness simultaneously. This limitation underscores

the necessity for the development of extended forms of distributions that offer greater

flexibility and applicability in diverse fields of study and practice.

In this thesis, we obtain some generalization of Cauchy distribution and investigate the

performance of some estimation methods for the model parameters. The obtained estima-

tors for the model parameters in this study include the maximum likelihood estimators

(MLEs), the least-squares estimators (LSEs), the maximum product spacing estimators

(MPSEs), the Cramer-von Mises estimators (CVMEs), the Anderson-Darling estimators

(ADEs) and Right-tail Anderson-Darling estimators (RTADEs). Thus, our aim of this

study is to tackle this scientific computational challenge by conducting numerical com-

parison among these estimators for the model parameters to identify which ones perform

better in terms of estimation efficiency. This comparison is facilitated through Monte

Carlo simulations and the analysis of real data outcomes.

The present research work is mainly concerned with the study of some generalizations

of Cauchy distribution.

1.2 Review of Literature

Statistical distributions often exhibit heavy tails that are commonly approximated using

either log-normal or power-law functions (Newman (2005)). Since the entries in a heavy

tail have disproportionate significance, understanding the precise shape of the tail is very

important.

Definition 1.2.1. A function f ≥ 0 is said to be heavy-tailed if and only if

lim sup
x→∞

f(x)emx = ∞ for all m > 0 (1.3)
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In recent years heavy tail distribution have played an important role in fields such

as insurance, finance and risk management. Financial returns are commonly observed to

exhibit heavy tails, leading to a significant impact on risk management strategies, which

often depend on heavy-tail analysis. For an in depth study on heavy-tailed distributions

and their practical applications, we refer to Embrechts et al. (1997), Rachev (2003), New-

man (2005), Bingham et al. (1987), Resnick (2007) and Foss et al. (1970). One of the most

significant classes of heavy tail distributions is the regular variation class encompassing

distributions with tails that exhibit regular variation. This class has been extensivly used

in modeling various heavy-tailed phenomena.

1.2.1 Transmuted family of distributions

Recently there has been interest in adding parameters to a distribution for obtaining more

flexible new families of distributions. Shaw and Buckley (2009) introduced a method

for enhancing the flexibility of existing distributions by adding a new parameter. They

employed the quadratic rank transmutation map (QRTM) to create a flexible family of

distributions. According to this approach, a r.v. X is said to have transmuted probability

distribution if it’s cdf is

F (x) = (1 + λ)G(x)− λG(x)2; |λ| ≤ 1 (1.4)

and the corresponding pdf is

f(x) = g(x)[(1 + λ)− 2λG(x)], (1.5)

where G(x) is the cdf of the base distribution, g(x) and f(x) are the corresponding pdf of

G(x) and F (x) respectively.
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It is note that when λ = 0, (1.4) reduces to G(x).

A transmuted model provide flexibility in modeling different types of real life data

particularly when the parent model fails to provide a better fit. Aryal and Tsokos (2009)

introduced transmuted generalized extreme value distribution. Aryal and Tsokos (2011)

proposed a generalized Weibull distribution called transmuted Weibull distribution. Khan

and King (2012) developed the transmuted generalized inverse Weibull distribution. Aryal

(2013) proposed and studied various structural properties of the transmuted log-logistic

distribution. Khan and King (2013) introduced the transmuted modified Weibull distri-

bution which extends the transmuted Weibull distribution and studied its mathematical

properties. Elbatal (2013) proposed the transmuted modified inverse Weibull distribution.

Elbatal and Aryal (2013) proposed and studied transmuted additive Weibull model.

Many transmuted distributions have been proposed in literature (see, Ashour and

Eltehiwy (2013), Merovci (2013a,b, 2014),Afify et al. (2015), Ahmad et al. (2015), Khan

et al. (2016) and Adeyinka (2019)).

1.2.2 Marshall-Olkin family of distributions

Marshall and Olkin (1997) introduced a family of distributions by adding a new parameter

to an existing one is known as Marshall-Olkin family of distributions.

Let X1, X2, . . . be a sequence of i.i.d. r.v.s with survival function (sf) F̄ (x). Let N be

a geometric r.v. with probability mass function (pmf) P (N = n) = p(1 − p)n−1, for

n = 1, 2, . . . and 0 < p < 1 and independent of X ′
is.

Consider

UN = min(X1, X2, ..., XN). (1.6)

12



Let Ḡ(.) be the sf of UN . Then,

Ḡ(x) = P (UN > x)

= P (min(X1, X2, ..., XN) > x)

=
∞∑
n=1

P (X > x|N = n)P (N = n)

=
∞∑
n=1

P n(X > x)p(1− p)n−1

= pF̄ (x)
∞∑
n=1

[F̄ (x)(1− p)]
n−1

=
pF̄ (x)

1− (1− p)F̄ (x)
. (1.7)

If p > 1 and N is a geometric r.v. with pmf

P (N = n) =
1

p

(
1− 1

p

)n−1

, n = 1, 2, 3, . . . ,

then the r.v.

VN = max(X1, X2, . . . , XN)

also having the sf (1.7).

If X1, X2, . . . is a sequence of i.i.d. r.v.s with distributions from Marshall-Olkin fam-

ily (1.7), and if N follows a geometric distribution on {1, 2, . . .}, then the minimum

min(X1, . . . , XN) and the maximum max(X1, . . . , XN) also have distributions within the

same family. It is evident that when p = 1, we get Ḡ = F̄ . Whenever F has a density,

the sf Ḡ given by (1.7) has easily computable densities. Specifically, if F has a density f
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and hazard rate rF , then G has the density g given by

g(x) =
pf(x)

(1− (1− p)F̄ (x))2
, x ∈ R, p > 0,

and hazard rate

rG(x) =
rF (x)

1− (1− p)F̄ (x)
, x ∈ R, p > 0.

Sankaran and Jayakumar (2008) gave a physical explanation of Marshall-Olkin family of

distributions using proportional odds model. In the analysis of lung cancer data, Bennett

(1983) used a proportional odds model where the odds ratio served as the covariates.

Let X be a random sample with cdf F (x) and pdf f(x). Then the proportional odds

model with covariates can be expressed as

Ḡ(x, p(x))

1− Ḡ(x, p(x))
= p(x)

F̄ (x)

1− F̄ (x)
.

Then

Ḡ(x; p(x)) =
p(x)F̄ (x)

1− (1− p(x))F̄ (x)
,

where p(x) is a non negative function of the covariates and Ḡ(x; p(x)) is the sf incorporating

these covariates. Treating p(x) as a constant p, yields,

Ḡ(x; p) =
pF̄ (x)

1− (1− p)F̄ (x)
.

This representation of the sf of Marshall-Olkin family of distributions demonstrates a

close relationship between Marshall-Olkin family and the proportional odds model in sur-
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vival analysis. Some special cases of Marshall-Olkin distribution in the literature include

Marshall-Olkin extensions of the Weibull by Cordeiro and Lemonte (2013), Pareto by Alice

and Jose (2003) and Ghitany (2005), Logistic by Alice and Jose (2005), Lomax by Ghi-

tany et al. (2007), gamma by Ristic et al. (2007), Burr by Jayakumar and Mathew (2008),

uniform by Jose and Krishna (2011), Frechet distribution by Krishna et al. (2013), gen-

eralized exponential by Ristic and Kundu (2015), additive Weibull by Afify et al. (2018),

inverse power Lindley by Hibatullah et al. (2018), inverse Weibull by Pakungwati et al.

(2018) and half logistic distribution by Yegen and Gamze (2018).

1.2.3 Discrete Mittag-Leffler distribution

The function Eα(z) =
∑∞

k=0
zk

Γ(1+αk)
, z ∈ (0,∞) was first proposed by Mittag-Leffler in

1903 (see Erdelyi et al. (1955)). In Feller (1971), the Laplace transforms of Eα(−xα) with

0 < α ≤ 1, is shown to be λα−1

1+λα , λ > 0. But Eα(−xα) is not a probability distribution.

Pillai (1990) showed that Fα(x) = 1 − Eα(−xα) is a cdf. Hence he named Fα(x) as

Mittag-Leffler distribution. We have

Fα(x) =
∞∑
k=1

(−1)k−1xαk

Γ(1 + αk)
, 0 < α ≤ 1, x ≥ 0 (1.8)

and the corresponding pdf is

fα(x) =
∞∑
k=1

(−1)k−1xαk−1

Γ(αk)
.

The Laplace of transform of (1.8) is

ϕ(λ) =
1

1 + λα
, λ ≥ 0. (1.9)
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Mittag-Leffler distribution has received much attention of many researchers recently (see,

Jaykumar and Suresh (2003), Lin (1998) and the references there in). Note that when

α = 1, equation (1.9) reduces to the Laplace transform of exponential distribution.

A discrete version of Mittag-Leffler distribution was proposed by Pillai and Jayakumar

(1995).

A r.v. X on {0, 1, 2, . . .} is said to follow discrete Mittag-Leffler (DML) distribution if its

pgf is

Φ(s) =
1

1 + c(1− s)α
, 0 < α ≤ 1, c > 0, |s| ≤ 1. (1.10)

The DML distribution can be viewed as the distribution of geometric sum of i.i.d. Sibuya

r.v.s. In a sequence of independent trails of Bernoulli, let α
k
be the success probability

in kth trail. Then the number of trails required to obtain the first success has Sibuya

distribution (see, Devroye (1993)).

DML is a generalization of geometric distribution, since in equation (1.10), when α = 1,

we get geometric. Pillai and Jayakumar (1995) obtained some distributional properties

of the DML. It is geometrically infinitely divisible, falls within the discrete class L and is

normally attracted to stable law. Pillai and Jayakumar (1995) developed autoregressive

models with marginals as DML distribution. Jayakumar and Sreenivas (2003) pointed

out that if X has Mittag-Leffler distribution and Nc(.) is a unit Poisson process with

parameter c, independent of X, then Y = Nc(X) has DML distribution.
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1.3 Some basic statistical concepts

1.3.1 Compounding

Let us consider a discrete r.v. N with the pmf given by P (N = n), n ∈ N∪{0}. Denoted

by Φ(s) = P (N = 0) + sP (N = 1) + s2P (N = 2) + . . . , |s| < 1, the pgf of the r.v. N .

Then the zero truncated distribution of the r.v. Z has the pmf given by

P (Z = z) =
P (N = z)

1− Φ(0)
, z ∈ N.

If, N is a positive r.v., then Φ(0) = 0.

Let F be the parent distribution. Then the sf of the r.v. Y = min(X1, X2, . . . , XZ) is

Ḡ(x) = P (min(X1, X2, . . . , XZ) > x)

=
∞∑
n=1

P (min(X1, X2, . . . , XZ) > x)P (Z = n)

=
∞∑
n=1

(F̄ (x))nP (N = n)

1− Φ(0)

=
Φ(F̄ (x))− Φ(0)

1− Φ(0)
.

The corresponding cdf and pdf are given by

G(x) =
1− Φ(F̄ (x))

1− Φ(0)
(1.11)

g(x) =
f(x)Φ′(F̄ (x))

1− Φ(0)
(1.12)

By inverting the equation (1.11), we reach at the quantile function

G−1(u) = F−1
(
1− Φ−1(1− u(1− Φ(0)))

)
, u ∈ (0, 1),
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where F−1 represents quantile function of the parent distribution F . The function G−1(u)

can be utilized for generating random samples from G. (see, Nadarajah et al. (2013)).

By using (1.12), with substitution v = F (x) and properties of cdf, we get an expression

for the moment of order k ∈ N,

E(Xk) =

∫ b

a

xkg(x)dx =
1

1− Φ(0)

∫ b

a

xkΦ′(F̄ (x))f(x)dx

=
1

1− Φ(0)

∫ 1

0

(
F−1(v)

)k
Φ′(1− v)dv.

Geometric compounding

If X ∼ exponential(λ) with cdf F (x;λ) = 1 − e−λx, then the cdf of the exponential-

geometric model introduced by Adamidis and Loukas (1998) is

G(x; p, λ) =
1− e−λx

1− pe−λx
; x, λ > 0, p ∈ (0, 1).

Extended exponential-geometric by Adamidis et al. (2005), Weibull-geometric by Souza

et al. (2011), beta-exponential geometric by Bidram (2012), generalized linear failure rate-

geometric by Nadarajah et al. (2014), modified Weibull-geometric by Wang and Elbatal

(2014), generalized exponential geometric extreme by Ristic and Kundu (2016), are some

works related to geometric compounding.

Truncated negative binomial compounding

Nadarajah et al. (2013) proposed a family of life time models based on the truncated

negative binomial (TNB) distribution having pmf

P (N = n) =
pν

1− pν

(
ν + n− 1

ν − 1

)
(1− p)n; p ∈ (0, 1), ν > 0, n = 1, 2, . . .
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The authors demonstrated that the random minimum, UN = min(X1, X2, . . . , XN) has

the sf of the form

Ḡ(x; p, ν) =
pν

1− pν
[(F (x) + pF̄ (x))−ν − 1], (1.13)

when X ′
is are i.i.d. r.v.s having cdf F (x) and N is TNB with parameter p and ν. Note

that if p → 1 then Ḡ(x; p, ν) → F̄ (x). When ν = 1, equation (1.13) reduces to equation

(1.7). Thatmeans the family of distributions provided in equation (1.13) constitutes a

generalization of Marshall-Olkin family of distribution.

Using TNB model, Nadarajah et al. (2013) introduced and studied exponential-TNB,

Jose and Remya (2015) studied Rayleigh-TNB, Jayakumar and Sankaran (2016) studied

uniform-TNB, Babu (2016) studied Weibull-TNB and Jayakumar and Sankaran (2017)

studied generalized exponential-TNB distribution.

1.3.2 Regular variation

A positive measurable function f is called regularly varying [at infinity] with index α ∈ R

if

• It is defined on some neighbourhood [x0,∞] of infinity

• limx→∞
f(tx)
f(x)

= tα for all t > 0.

If α = 0, f is said to be slowly varying (at infinity).

Regularly varying random variables

The regular variation appears in different fields of applied probability including queuing

theory, renewal theory, extreme value theory, the theory of summation of r.v.s and point

process theory.
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A non negative r.v. X and its distribution are considered regularly varying with index

α ≥ 0 if the tail distribution F̄X is regularly varying with index −α, where F̄X = 1 −

FX(x), x ∈ R.

Now, we consider the following definitions discussed in Foss et al. (1970) and Omey et al.

(2018).

Definition 1.3.1. An ultimately positive function f is called regularly varying at infinity

with index α ∈ R if for any fixed c > 0,

lim
x→∞

f(cx)

f(x)
= cα. (1.14)

Definition 1.3.2. An ultimately positive function f is said to belongs to the class of long

tailed distribution L if

lim
x→∞

f(x+ y)

f(x)
= 1, for all y > 0. (1.15)

if f exhibits a long-tailed behavior, then we can replace y by −y in (1.15).

Remark 1.3.1. A distribution F ∈ L if and only if limx→∞ h(x) = 0, where h(x) is the

hazard rate function (hrf).

For details, see Kluppelberg (1988).

Definition 1.3.3. An ultimately positive function f belong to the class D of dominated

variation distributions if there exists c > 0

lim
x→∞

f(x)

f(2x)
= c, for all x > 0. (1.16)
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Two distributions F and G are said to be tail-equivalent if

lim
x→∞

F̄ (x)

Ḡ(x)
= c ∈ (0,∞).

An encyclopaedic treatment of regular variation can be found in Bingham et al. (1987).

A survey of regular variation is discussed in Seneta (1976). Additionally, several books

provide surveys on regularly varying functions and their properties; see for example Feller

(1971), Ibragimov (1975), Resnick (1987) and Embrechts et al. (1997).

1.3.3 Subexponential distribution

Let X1, X2, . . . , Xn be i.i.d. non negative regularly varying r.v.s,

Then

P (Sn > x) ∼ nP (X > x) ∼ P (Mn > x), as x→ ∞, n = 2, 3, . . . (1.17)

where

Sn = X1 +X2 + · · ·+Xn and Mn = max1≤i≤nXi.

A non negative r.v. X and its distribution is said to be subexponential if i.i.d. copies Xi

of X satisfy relation (1.17).

That is for large x the event {Sn > x} is fundamentally due to the event {Mn > x}. The

relation P (Mn > x) ∼ nP (X > x) as x → ∞ also implies that Mn is regularly varying

with the index same as X.

The subexponential class of distributions was independently introduced by Chistyakov

(1964) and Chover et al. (1973) in the context of branching processes. A textbook treat-

ment is given in Athreya et al. (2004). An independent introduction of subexponential

distributions through questions in queuing theory is to be found in Borovkov (2012). See
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also Pakes (1975).

1.3.4 Entropy

Entropy is a measure of variation or uncertainty within a system. In information theory

and statistics, entropy quantifies the uncertainty associated with a r.v. or a probabil-

ity distribution. Higher entropy indicates higher uncertainty or unpredictability whereas

lower entropy implies greater predictability or certainty.

The Renyi entropy of a r.v. with pdf f(.) is defined as

IR(γ) =
1

γ
log

∫ ∞

0

fγ(x)dx, γ > 0, γ ̸= 1.

Various entropy measures are developed by Mathematicians, Physicists and Engineers to

discuss several phenomena in the context of communication theory.

The Shannon entropy of a r.v. X is defined by E[− log f(X)]. It is a particular case of

the Renyi entropy for γ = 1. The concept of entropy applied in different fields including

thermodynamics, statistics, queuing theory, image analysis, stock market analysis and re-

liability estimation (see, Kapur (1989)). Ebrahimi (2000) described the maximum entropy

method for life time distributions.

1.3.5 Stochastic ordering

Stochastic orders have been used over the past forty years at an accelerated rate across

numerous areas of probability and statistics. These include reliability theory, survival

analysis, biology, economics, queueing theory, insurance and actuarial science (see, Shaked

and Shanthikumar (2007)).
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Let X and Y be two r.v.s with distribution functions F and G respectively. Denote by F̄

= 1 − F and Ḡ = 1 − G their survival functions with corresponding pdf’s f and g. The

r.v. X is said to be smaller than Y in the the following stochastic orderings:

(i) Stochastic order (denoted as X ≤st Y ) if F̄ (x) ≤ Ḡ(x) for all x;

(ii)Likelihood ratio order (denoted as X ≤lr Y ) if f(x)/g(x) is decreasing in x ≥ 0;

(iii) Hazard rate order (denoted as X ≤hr Y )if F̄ (x)/Ḡ(x) is decreasing in x ≥ 0;

(iv) Reversed hazard rate order (denoted as X ≤rhr Y ) if F (x)/G(x) is decreasing in

x ≥ 0.

The stochastic orders defined above are interconnected, and they have certain implications

among them (see,Shaked and Shanthikumar (2007)):

X ≤rhr Y ⇐ X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y. (1.18)

1.3.6 Information criterion

The fitting of the data set will be usually improved when increasing the number of pa-

rameters and likelihood value will also increase. When comparing statistical models that

may have different numbers of parameters, using ML estimation alone might favor models

with more parameters leading to overfitting. To address this issue, information criteria

such as the Akaike Information Criterion (AIC), Corrected Akaike information criterion

(AICC), Bayesian Information Criterion (BIC) and Hannan-Quinn information criterion

(HQIC) are commonly used. Akaike information criterion due to Akaike (1974) is defined

as

AIC = −2 log L+ 2k,
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where L is the likelihood function evaluated at the ML estimates and k is the number of

unknown parameters. The model which has smallest AIC be the most suitable model to

fit the given data set. When the number of parameters k is large or when the sample size

n is not large, AIC may tend to favor models with more parameters. To address this issue,

Hurvich and Tsai (1989) introduced a corrected version of AIC denoted as AICC which is

defined as follows:

AICC = AIC +
2k(k + 1)

n− k − 1
,

where n is the sample size.

The Bayesian information criteria due to Schwarz (1978) is defined by

BIC = −2 log L+ k log(n).

The Hanna-Quinn information criteria due to Hannan and Quinn (1979) is defined by

HQIC = −2 log L+ 2k log(log(n)).

The Deviance Information Criterion (DIC) serves as a hierarchical modeling generalization

of the AIC. It is employed in Bayesian model selection problems where the posterior dis-

tributions of the models are obtained via Markov chain Monte Carlo (MCMC) simulation.

DIC provides an asymptotic approximation as the sample size becomes large, similar to

AIC. See details in Spiegelhalter et al. (2002) and Spiegelhalter et al. (2014).

1.3.7 Goodness of fit

There are various methods used for testing whether a given random sample is coming from

a specified distribution or for comparing the underlying model for fitting a given data set.
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Cramer-von Mises and Anderson-Darling test

Cramer-von Mises (W ∗) and Anderson-Darling (A∗) statistic are commonly used to assess

the goodness of fit of a specified distribution to a dataset. In general, the smaller the

values of W ∗ and A∗, indicate better fit to the data. Let G(x; θ) be the cdf, where the

form of G is known but the parameter θ is unknown, we compute the statistics W ∗ and

A∗ as follows:

(i) Calculate ψi = G(xi; θ̂), where the x′is are in ascending order;

(ii) Calculate xi = Φ−1(ψi), where Φ(.) is the normal cdf and Φ−1(.) its inverse;

(iii) Calculate ui = Φ{(xi−x̄)/sx}, where x̄ = n−1
∑n

i=1 xi and s
2
x = (n−1)−1

∑n
i=1(xi−x̄)2;

(iv) Compute

W 2 =
n∑

i=1

{
ui −

(2i− 1)

2n

}2

+
1

12n

and

A2 = −n− 1

n

n∑
i=1

{(2i− 1) log (ui) + (2n+ 1− 2i) log (1− ui)};

(v) Modify W 2 into W ∗ = W 2(1+0.5/n) and A2 into A∗ = A2(1+0.75/n+2.25/n2). For

further details, see Chen and Balakrishnan (1995).

Kolmogrov-Smirnov test

Kolmogorov (1933) introduced Kolmogrov-Smirnov (K-S) test for assessing whether a

given random sample x1, x2, . . . , xn belongs to a population with a specific distribution.

K-S test compute the distance between the empirical distribution function of the given

sample and the estimated cdf of the candidate distribution. The null and alternative
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hypothesis are stated as follows:

H0: sample follow specific distribution versus H1 : H0 is false.

Let G(xi) denotes the value of the cdf of the candidate distribution at xi and Ĝ(xi)

denotes the value of the empirical distribution function at xi. The value of K-S test

statistic is defined by

D = sup
xi

(|G(xi)− Ĝ(xi)|); i = 1, 2, . . . , n,

where Ĝ(xi) =
#{xj :xj≤xi}

n
.

After computing K-S statistic, it is compared with the tabulated critical value of K-

S statistic at a significance level α to determine whether to reject the null hypothesis.

Additionally, when comparing multiple distributions, the distribution with the smaller

K-S statistic value is considered more appropriate.

1.4 Objectives of the present work

The present study has been undertaken with the following specific objectives:

1. To develop new families of Cauchy distributions.

2. To study heavy tail properties and different methods of estimation of these proposed

generalized distributions.

3. To introduce new transformation method for generating distributions, study the

estimation and application of this new method of transformation by considering

Cauchy model as a parent distribution.

4. To study the feasibility of these models in modeling real data.
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1.5 Organization of the present work

The present research work is mainly concerned with study of some generalizations of

Cauchy distribution and their applications. Chapter 1 introduces the area of research and

contains review of literature, basic statistical concepts and a brief summary of work done.

In Chapter 2, we study a three parameter Cauchy distribution called transmuted

Cauchy (TC) distribution. We study its tail behavior, discuss truncated TC distribution,

derive the expression for characteristic function, quantiles, mode and mean deviation. We

discuss the estimation methods such as maximum likelihood (ML) estimation, method

of maximum product spacings (MPS), least square (LS) estimation, Cramer-von Mises

(CVM) method, Anderson-Darling (AD) method, right-tail Anderson-Darling estimation

(RTAD) and Bayesian framework for the estimation of parameters of TC distribution.

The mathematical findings are then verified through simulation studies. A first order au-

toregressive (AR(1)) minification model with TC distribution as marginal is developed.

Two real data applications of the TC distribution are presented.

In Chapter 3, we introduce a new generalization of Cauchy distribution as a competitor

for several generalizations of Cauchy distribution. The shape properties, quantiles, mode,

Mean deviation and pdf of order statistics are derived. Study the tail properties of the

model and it is shown that the distribution has regularly varying tail. It belongs to the

class of long-tailed distributions and is a member of the dominated variation distribution.

Hence it belongs to the class of subexponential distributions. ML, MPS, LS, CVM, AD

and RTAD estimation methods are used to estimate the parameters of the new model.

Monte Carlo simulation is conducted to investigate the performance of the estimates. The

existence and uniqueness of the ML estimates are proved. A first order autoregressive

(AR(1)) minification model with GCD as marginal is developed. Two sets of real data are

analyzed to illustrate the use of the proposed distribution.
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We introduce another generalization of Cauchy distribution using truncated discrete

Mittag-Leffler distribution called Discrete Mittag-Leffler Cauchy (DMLC) distribution in

Chapter 4. Expressions for the quantiles, mode, mean deviation and distribution of order

statistics are derived. The tail behaviour of DMLC model is studied. Parameters of

the distribution are estimated by the method of ML, MPS, LS, CVM, AD and RTAD.

Monte Carlo simulation is carried out to investigate the performance of the estimates.

Applications of two sets of real data are presented to exhibit the performance of the new

model over other generalizations of Cauchy distribution.

In Chapter 5, we introduce a transformation that yields new models by using a given

baseline distribution known as beta transformation. It contains only one new parameter

other than the parameters involved in the baseline distribution. To demonstrate the use

of this new transformation, we choose Cauchy as the baseline distribution namely beta

transformed Cauchy (BTC). We derive the quantiles, mode, mean deviation and pdf of

order statistics. Certain characterizations of the proposed distribution are obtained. We

demonstrate the flexibility of the model using a real data set. The method of ML, LS,

CVM and AD estimation are applied to estimate the model parameters.

The recommendations and future works of the thesis are presented in Chapter 6.
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Chapter 2

ESTIMATION AND

APPLICATIONS OF

TRANSMUTED CAUCHY

DISTRIBUTION

2.1 Introduction

An interesting idea of generalization where the distribution is derived using the QRTM was

introduced by Shaw and Buckley (2009). A theoretical interpretation of the construction

through transmuted mapping was given by Kozubowski and Podgorski (2016). They

showed that the transmuted distributions can be viewed as the distribution of maxima

(or minima) of a random number N of i.i.d. r.v.s with the base distribution G(x), where

N has Bernoulli distribution shifted up by one. So that the transmuted models are the

special case of extremal distributions defined through a more general N.
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More specifically, for λ ∈ [−1, 0],

Y =


max(X1, X2) with probability p = λ

X1 with probability 1− p

(2.1)

and for λ ∈ [0, 1]

Y =


min(X1, X2) with probability p = λ

X1 with probability 1− p

(2.2)

where F(x) is the cdf of Y and X1, X2 are i.i.d. random variables having cdf G(x).

In this chapter, we study a three parameter Cauchy distribution called Transmuted Cauchy

(TC) distribution. The TC distribution was introduced by Ball et al. (2021). They only

studied some mathematical properties and the ML estimation of the unknown parameters.

The aim of this chapter is to study its tail behaviour, discuss truncated TC distribution,

derive the expression for characteristic function, quantiles and mean deviation. Also we

focus on different estimation methods of the TC model. The parameters of the probabil-

ity distributions are estimated using ML, MPS, LS, CVM, AD, RTAD and also Bayesian

framework is explored using different priors upon parameters. An application in autore-

gressive time series modeling is presented. We present two real data applications which

exhibits the performance of TC model compared to other models. Finally, the summary

is presented.
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2.2 Transmuted Cauchy distribution

2.2.1 Probability density function

A r.v X on (−∞,∞) is said to have transmuted Cauchy probability distribution with

parameters −1 ≤ λ ≤ 1, −∞ ≤ µ ≤ ∞ and θ > 0 denoted by TC(λ, µ, θ) if its pdf is

given by

f(x) =
1

πθ

1

(1 + (x−µ
θ
)2)

[
(1 + λ)− 2λ

(
1

π
arctan

(
x− µ

θ

)
+ 0.5

)]
, (2.3)

where λ is the transmutation parameter.

The pdf plots of TC(λ, µ, θ) for various values of the parameters are presented in Figure

2.1.

2.2.2 Distribution function

The cdf of the TC(λ, µ, θ) distribution is given by

F (x) = (1 + λ)

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]
− λ

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]2
. (2.4)

The cdf plots of TC(λ, µ, θ) for various values of the parameters are given in Figure 2.2.

Remark 2.2.1. When λ = 0, TC reduces to Cauchy distribution with parameters µ and

θ.

It can be seen that no moments of TC(λ, µ, θ) distribution exist. However the median

and mode do exist.
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Figure 2.1: Plots of the pdf of TC(λ, µ, θ) distribution

2.2.3 Tail behaviour

The TC distribution has heavy tail, that is it takes extreme values with high probability.

This feature empirically distinguishes TC from the normal and many other distributions.

Figure 2.3 plots the right tails of density of TC and compare it with Cauchy and normal

densities. TC distribution has tails thicker than both Cauchy and normal.

We can easily shows that lim supx→∞ f(x)emx = ∞ for any m > 0, Hence the TC density

f is heavy tailed.

Theorem 2.2.1. The TC distribution belongs to the class of long tailed distribution L.
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Figure 2.2: Plots of the cdf of TC(λ, µ, θ) distribution

Proof.

lim
x→∞

f(x+ y)

f(x)
= lim

x→∞

1
πθ

1

(1+(
(x+y)−µ

θ
)2)
[(1 + λ)− 2λ( 1

π
arctan( (x+y)−µ

θ
) + 0.5)]

1
πθ

1
(1+(x−µ

θ
)2)
[(1 + λ)− 2λ( 1

π
arctan(x−µ

θ
) + 0.5)]

= 1.

Therefore f belongs to the class L, the class of long tailed distributions.

Two distributions F and G are said to be tail-equivalent if

lim
x→∞

F̄ (x)

Ḡ(x)
= c ∈ (0,∞).

Hence it can be shown that TC and Cauchy distribution are tail-equivalent.

35



2 3 4 5 6 7

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

x

f(
x
)

TC
Cauchy

Normal

Figure 2.3: Comparison of right tails of Cauchy, Normal and TC densities.

2.2.4 Characteristic function

Theorem 2.2.2. If X be the TC(λ, µ, θ), then the characteristic function of X is

ϕX(t) = eitµ−θ|t| − 2λ

π2θ

∫ ∞

x=−∞

eitx arctan(x−µ
θ
)

(1 + (x−µ
θ
)2)

dx.

Proof. Let X has TC(λ, µ, θ) distribution, Then the characteristic function of X is

ϕX(t) = E(eitX)

=

∫ ∞

−∞
eitx

1

πθ

1

(1 + (x−µ
θ
)2)

[
(1 + λ)− 2λ

(
1

π
arctan

(
x− µ

θ

)
+ 0.5

)]
dx

=
(1 + λ)

πθ

∫ ∞

−∞

eitx

(1 + (x−µ
θ
)2)
dx− 2λ

π2θ

∫ ∞

−∞

eitx arctan(x−µ
θ
)

(1 + (x−µ
θ
)2)

dx
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− λ

πθ

∫ ∞

−∞

eitx

(1 + (x−µ
θ
)2)
dx

= (1 + λ)[eitµ−θ|t|]− 2λ

π2θ

∫ ∞

−∞

eitx arctan(x−µ
θ
)

(1 + (x−µ
θ
)2)

dx− λ[eitµ−θ|t|]

On simplification, we get

ϕX(t) = eitµ−θ|t| − 2λ

π2θ

∫ ∞

−∞

eitx arctan(x−µ
θ
)

(1 + (x−µ
θ
)2)

dx, (2.5)

which completes the proof.

2.2.5 Quantile function

Theorem 2.2.3. The qth quantile xq of the TC(λ, µ, θ) distribution is given by

xq = µ+ θ tan

[
π

[
(1 + λ)±

√
(1 + λ)2 − 4qλ

2λ
− 0.5

]]
(2.6)

Proof. Let the qth quantile xq of the TC distribution is defined as

q = P (X ≤ xq) = F (xq), xq ∈ R,

which implies

(1 + λ)

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]
− λ

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]2
− q = 0.

That is,

λ

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]2
− (1 + λ)

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]
+ q = 0 (2.7)
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Considering this as quadratic in [ 1
π
arctan(x−µ

θ
) + 0.5], we get

xq = µ+ θ tan

[
π

[
(1 + λ)±

√
(1 + λ)2 − 4qλ

2λ
− 0.5

]]
.

This completes the proof.

Using the inversion method, we can generate r.v.s from the TC distribution by using

equation (2.6) when the parameters λ, µ and θ are known.

The median of TC is given by,

x0.5 = µ+ θ tan

[
π

[
(1 + λ)±

√
(1 + λ)2 − 2λ

2λ
− 0.5

]]
. (2.8)

We consider measures based on quantiles to show the effect of the transmuted parameter

λ on skewness and kurtosis. There are many heavy tailed distributions for which the

measures are infinite and uniformative.

Bowley’s measure of skewness is given by

S =
Q3/4 +Q1/4 − 2Q1/2

Q3/4 −Q1/4

,

and

Moor’s measure of kurtosis is given by

K =
Q3/8 −Q1/8 +Q7/8 −Q5/8

Q6/8 −Q2/8

,

where Q(.) denotes the quantile function of X. These measures are exist even for distri-

butions without moments. Skewness measures the degree of asymmetry or long tail in

the distribution, while kurtosis quantifies the degree of peakedness or fatness in the tails.
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When the distribution is symmetric, S = 0 and when the distribution is right (or left)

skewed, S > 0 (or S < 0). As K increases, the tail of the distribution becomes heavier.

Table 2.1, below presents Bowley’s skewness and Moor’s kurtosis for selected values of

µ, θ and λ. Also, the results from Table 2.1 indicate that the TC distribution can be

left-skewed or right-skewed. Kurtosis of the model showing that the proposed distribution

is leptokurtic.

Table 2.1: Bowley’s skewness and Moor’s kurtosis for some values of µ, θ and λ

µ θ λ Skewness Kurtosis

5 0.5

-0.2
-0.4
-0.6
-0.8

-0.1595
0.0148
0.2596
0.0840

5.5886
4.9669
3.2892
3.1927

4.5 0.2

0.2
0.4
0.6
0.8

-0.0110
0.0609
-0.1424
-0.0768

4.7965
4.0412
4.9449
4.1966

2.2.6 Mode

Theorem 2.2.4. The mode of the TC(λ, µ, θ) is the solution of the equation k(x) = 0,

where

k(x) = π(x− µ)

(
1− 2λ

π
arctan

(
x− µ

θ

))
+ λ.

Proof. The critical point of TC density function are the roots of the equation

∂ log(f(x))

∂x
= 0

That is

∂ log(f(x))

∂x
=

2(x− µ)

θ
+

2λ

π(1− 2λ
π arctan(x−µ

θ
)
)
. (2.9)
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The critical values of equation (2.9) are the solution of k(x) = 0. Hence the proof.

2.2.7 Mean deviation

The mean deviation about the median can be used as measures of the degree of scatter in

a population. Let M be the median of TC distribution given by equation (2.8).

The mean deviation about the median can be calculated as

δ(X) = E|X −M | =
∫ ∞

−∞
|x−M |f(x)dx.

Hence we obtain the mean deviation about median, δ = µ− 2J(M)

where, J(q) is

J(q) =
1

πθ

∫ q

−∞

x

(1 + (x−µ
θ
)2)

[
(1 + λ)− 2λ

(
1

π
arctan

(
x− µ

θ

)
+ 0.5

)]
dx. (2.10)

We can compute this integral numerically using softwares such as R, MATLAB or Mathcad

and hence obtain the mean deviation about the median.

2.2.8 Truncated transmuted Cauchy distribution

A truncation version of Transmuted Cauchy distribution denoted by TTC(λ, µ, θ) has the

pdf given by

f(x) =
1

θ

1

(1 + (x−µ
θ
)2)

[(1 + λ)− 2λ( 1
π
arctan(x−µ

θ
) + 0.5)]

arctan(B−µ
θ

)− arctan(A−µ
θ

)
, (2.11)

for −∞ < A ≤ x ≤ B <∞,−∞ < µ <∞, θ > 0 and −1 ≤ λ ≤ 1.

The pdf plots of TTC(λ, µ, θ) for various values of the parameters are presented in Figure

2.4.
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Figure 2.4: Plots of the pdf of TTC(λ, µ, θ) distribution.

2.3 Estimation of parameters

In this section, we use ML, MPS, LS, CVM, AD, RTAD and Bayesian approach for

estimation.

2.3.1 Maximum likelihood estimation

If the parameters of the TC distribution are unknown, then the ML estimates of the

parameters are given as follows.

Consider a random sample x1, x2, . . . , xn of size n from the TC(λ, µ, θ) distribution. Then,

the log likelihood function is given by,

log(L) = −n log(πθ)−
n∑

i=1

log

(
1 +

(
xi − µ

θ

)2
)
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+
n∑

i=1

log

(
(1 + λ)−

2λ arctan(xi−µ
θ

)

π
− λ

)
. (2.12)

Therefore, the ML estimates of λ,µ and θ are derived from the derivatives of logL. They

should satisfy the following equations:

∂ log(L)

∂λ
= − 2

π

n∑
i=1

arctan(xi−µ
θ

)[
1− 2λ arctan(xi−µ

θ )
π

] = 0, (2.13)

∂ log(L)

∂µ
=

1

θ2

n∑
i=1

2(xi − µ)

1 + (xi−µ
θ

)2
+

1

πθ

n∑
i=1

2λ

(1 + (xi−µ
θ

)2)

[
1− 2λ arctan(xi−µ

θ )
π

]
= 0,

(2.14)

and

∂ log(L)

∂θ
=

−n
θ

+
2

θ3

n∑
i=1

(xi − µ)2

1 + (xi−µ
θ

)2
+

2λ

πθ2

n∑
i=1

(xi − µ)

[1 + (xi−µ
θ

)2]

[
1− 2λ arctan(xi−µ

θ )
π

]
= 0.

(2.15)

These equations do not have exact solutions and they have to be obtained numerically by

using statistical softwares like optim package in R programming.

2.3.2 Method of maximum product spacings

This method was introduced by Cheng and Amin (1983) as an alternative to method of

ML estimation. The cdf of TC distribution is given by equation (2.4), and the uniform

42



spacing are defined as follows:

D1 = F (x1) = (1 + λ)
[
1
π
arctan

(
x1−µ

θ

)
+ 0.5]− λ[ 1

π
arctan(x1−µ

θ
) + 0.5

]2
,

Dn+1 = 1− F (xn) = 1−
[
(1 + λ)

[
1
π
arctan

(
xn−µ

θ

)
+ 0.5

]
− λ

[
1
π
arctan

(
xn−µ

θ

)
+ 0.5

]2]
,

and the general term of spacing is given by

Di = F (xi)− F (xi−1)

such that
∑
Di = 1.

MPS choose the estimates which maximizes the product of spacings or which maximizes

the geometric mean of the spacing. That is, we find estimates suchthat

G =

[
n+1∏
i=1

Di

] 1
n+1

,

is maximized. By taking the logarithm of G, we get

H =
1

n+ 1

n+1∑
i=1

log(Di).

Partially differentiating the above equations with respect to the parameters λ, µ and θ

respectively and equating them to zero, we get the normal equations. These equations

do not have exact solutions and they have to be obtained numerically by using statistical

softwares like optim package in R programming.
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2.3.3 Method of least square estimation

The LS estimators were proposed by Swain et al. (1988) to estimate the parameters of beta

distributions. Here, we use the same technique for the TC distribution. The LS estimators

of the unknown parameters λ, µ and θ of TC distribution can be given by minimizing

∑n
i=1

[
F (xi | λ, µ, θ)− i

n+1

]2
=
∑n

i=1

[(
(1 + λ)

[
1
π
arctan

(
xi−µ
θ

)
+ 0.5

]
− λ

[
1
π
arctan

(
xi−µ
θ

)
+ 0.5

]2)− i
n+1

]2
Partially differentiating the above equations with respect to the parameters λ, µ and θ

respectively and equating them to zero, we get the normal equations. They do not have

exact solutions and have to be obtained numerically by using statistical softwares like

optim package in R programming.

2.3.4 Method of Cramer-von Mises

CVM type minimum distance estimators are based on minimizing the distance between the

theoretical and empirical cumulative distribution functions. Macdonald (1971) provided

empirical evidence that the bias of these estimators is smaller than the bias of other

minimum distance estimators. The CVM estimators λ̂CME, µ̂CME and θ̂CME are the

values of λ, µ and θ minimizing

C(λ, µ, θ) =
1

12n
+

n∑
i=1

[
F (xi | λ, µ, θ)−

2i− 1

2n

]2

=
1

12n
+

n∑
i=1

[(
(1 + λ)

[
1

π
arctan

(
xi − µ

θ

)
+ 0.5

]
− λ

[
1

π
arctan

(
xi − µ

θ

)
+ 0.5

]2)
− 2i− 1

2n

]2
.

Partially differentiating the above equations, with respect to the parameters λ, µ and θ

respectively and equating them to zero, we get the normal equations. They do not have
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exact solutions and have to be obtained numerically by using statistical softwares like

optim package in R programming.

2.3.5 Methods of Anderson-Darling and

right-tail Anderson-Darling

The method of AD test was developed by Anderson and Darling (1952) as an alternative

to statistical tests for detecting sample distributions departure from normality.

The AD estimators λ̂ADE, µ̂ADE and θ̂ADE are the values of λ, µ and θ minimizes

A(λ, µ, θ) = −n− 1

n

n∑
i=1

(2i− 1){logF (xi | λ, µ, θ) + log F̄ (xn+1−i | λ, µ, θ)}

= −n− 1

n

n∑
i=1

(2i− 1)

{
log

[
(1 + λ)

(
1

π
arctan

(
xi − µ

θ

)
+ 0.5

)
− λ

(
1

π
arctan

(
xi − µ

θ

)
+ 0.5

)2]
+ log

[
1−
[
(1 + λ)

(
1

π
arctan

(
xn+1−i − µ

θ

)
+ 0.5

)
− λ

(
1

π
arctan

(
xn+1−i − µ

θ

)
+ 0.5

)2]]}
.
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The RTAD estimators λ̂RTADE, µ̂RTADE and θ̂RTADE are the values of λ, µ, and θ minimizes

R(λ, µ, θ) =
n

2
− 2

n∑
i=1

F (xi | λ, µ, θ)−
1

n

n∑
i=1

(2i− 1) log F̄ (xn+1−i | λ, µ, θ)

=
n

2
− 2

n∑
i=1

[
(1 + λ)

(
1

π
arctan

(
xi − µ

θ

)
+ 0.5

)
− λ

(
1

π
arctan

(
xi − µ

θ

)
+ 0.5

)2]
− 1

n

n∑
i=1

(2i− 1) log

[
1−
[
(1 + λ)

(
1

π
arctan

(
xn+1−i − µ

θ

)
+ 0.5

)
− λ

(
1

π
arctan

(
xn+1−i − µ

θ

)
+ 0.5

)2]]
.

Partially differentiating the above equations with respect to the parameters λ, µ and θ

respectively and equating them to zero, we get the normal equations. These equations

do not have exact solutions and they have to be obtained numerically by using statistical

softwares like optim package in R programming.

2.3.6 Simulation study

By conducting Monte Carlo simulation to compare the performance of the estimators

discussed in the previous sections and the process is repeated 1000 times. We analyze the

performance of the estimators based on bias and mean squared error (MSE). Methods are

compared for sample sizes n = 100, 300 and n = 500.

We calculate the bias, MSE for each estimate. The statistics are obtained by the following

formulae.

Bias(λ̂) = 1
n

∑n
i=1(λ̂− λ) Bias(µ̂) = 1

n

∑n
i=1(µ̂− µ)

Bias(θ̂) = 1
n

∑n
i=1(θ̂ − θ)

MSE(λ̂) = 1
n

∑n
i=1(λ̂− λ)2 MSE(µ̂) = 1

n

∑n
i=1(µ̂− µ)2
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MSE(θ̂) = 1
n

∑n
i=1(θ̂ − θ)2

The bias (estimate-actual) and the MSEs of the parameter estimates for the ML, MPS,

LS, CVM, AD and RTAD estimation are presented in Tables 2.2 and 2.3.

From Table 2.2 and 2.3, we note that the ML method works well for estimating the model

parameters. Also, as the sample size increases the biases and the MSEs of the average

estimates of ML estimates decreases.

The following observations can be drawn from Tables 2.2 and 2.3.

1. All the estimators exhibit the property of consistency, i.e., the MSE decreases as the

sample size increases.

2. The bias of all parameters decreases with an increasing n for all the estimation methods.

3. The bias of λ̂, µ̂ generally increases with an increasing lamda, mu for any given lamda,

mu and n and for all estimation methods.

4. In all the methods of estimation produce smaller MSE for θ̂ compared to that of other

parameters.

Furthermore, the results in these tables are depicted graphically in Figures 2.5 and 2.6

Table 2.2: Simulation results for λ = 0.5, µ = 5, and θ = 0.3.

n Parameters ML MPS LS CVM AD RTAD
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

100
λ
µ
θ

-0.4867
0.0094
-0.0057

0.2371
0.0026
0.0010

1.0365
0.00679
-0.0014

1.1405
0.0040
0.0023

1.1074
0.0290
-0.0115

1.7506
0.0372
0.0027

1.1127
0.0338
-0.0056

1.6970
0.0438
0.0033

0.9364
0.0457
-0.1054

1.1097
0.03307
0.0023

1.1488
0.0103
0.0007

1.5362
0.0013
0.0020

300
λ
µ
θ

-0.4905
0.0013
-0.0039

0.2308
0.0053
0.0004

1.0080
0.0008
-0.0008.

1.0367
0.0013
0.0006

1.0692
0.0151
-0.0030

1.4696
0.0163
0.0007

1.0578
0.0158
-0.0011

1.2996
0.0140
0.0008

0.8697
0.0272
-0.3029

1.0362
0.01934
0.0007

1.1012
0.0068
0.0006

1.3297
0.0062
0.00063

500
λ
µ
θ

-0.4920
0.0002
-0.0009

0.2302
0.0003
0.0002

1.0047
0.00041
0.0011

1.0208
0.0007
0.0003

1.0294
0.0071
-0.0028

1.1528
0.0050
0.0005

1.0476
0.0126
-0.0020

1.2234
0.0089
0.0004

0.7130
0.01728
-0.4702

1.0267
0.0176
0.0006

1.0657
0.0043
0.0010

1.2173
0.0004
0.0006

show respectively the MSE of the simulated estimates of λ, µ and θ.
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Figure 2.5: MSEs of the estimates of λ = 0.5, µ = 5 and θ = 0.3.
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Figure 2.6: MSEs of the estimates of λ = −0.5, µ = 1 and θ = 0.9.
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Table 2.3: Simulation results for λ = −0.5, µ = 1, and θ = 0.9.

n Parameters ML MPS LS CVM AD RTAD
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

100
λ
µ
θ

-0.8036
0.0048
-0.0039

0.6671
0.0237
0.0148

-1.0181
-0.0092
0.0132

1.0999
0.0355
0.0183

-0.9787
0.0146
-0.0256

1.0244
0.0397
0.0190

-0.9866
0.0038
-0.0071

1.0414
0.0386
0.0176

-0.9906
0.0094
-0.0103

1.0383
0.0350
0.0176

-0.9906
0.0079
-0.0044

1.0393
0.0389
0.0168

300
λ
µ
θ

-0.8116
0.0049
-0.0020

0.6587
0.0023
0.0022

-1.0019
0.0026
0.0047

1.0237
0.0109
0.0055

-0.9650
0.0034
-0.0067

1.0113
0.0127
0.0058

-0.9995
-0.0032
0.0012

1.0204
0.0126
0.0061

-0.9989
0.0025
-0.0007

1.0165
0.0112
0.0059

-0.9845
0.0119
0.0029

0.9899
0.0119
0.0057

500
λ
µ
θ

-0.8118
0.0491
-0.0011

0.6570
0.00231
0.0024

-1.0043
-0.0002
0.0009

1.0203
0.0064
0.0034

-0.9941
0.0028
-0.0031

1.0016
0.0076
0.0033

-1.005
-0.0029
0.0035

1.0034
0.0070
0.0033

-0.9940
0.0051
-0.0029

0.9996
0.0071
0.0032

-0.9739
0.0052
0.0001

0.9790
0.0068
0.0033

2.3.7 Bayesian analysis

In this section, we discuss a parameter estimation of the proposed model through

Bayesian techniques. The utility of the Bayesian approach in handling complexities is well

established, see, Zellner (1971) and Khan et al. (2016).

The likelihood function of the TC distribution is given as

L =
n∏

i=1

1

πθ

1(
1 +

(
x−µ
θ

)2) [(1 + λ)− 2λ

(
1

π
arctan

(
x− µ

θ

)
+ 0.5

)]
(2.16)

The following independent prior densities are assumed: λ → Uniform(l1, l2), µ →

Normal(m1,m2), θ → Lognormal(n1, n2) where l1, l2ϵ[−1, 1], m1ϵR,m2 > 0 and n1, n2

are positive.

The joint posterior density of λ, µ, θ has the form

f(λ, µ, θ | x) = L(x | λ, µ, θ)p(λ)p(µ)p(θ)∫
θ

∫
µ

∫
λ
L(x | λ, µ, θ)p(λ)p(µ)p(θ)dλdµdθ

. (2.17)
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Also the Bayes estimator of transmuting parameter λ under squared error loss function is

λ̂Bayes = E(λ | x) =
∫
θ

∫
µ

∫
λ
λL(x | λ, µ, θ)p(λ)p(µ)p(θ)dλdµdθ∫

θ

∫
µ

∫
λ
L(x | λ, µ, θ)p(λ)p(µ)p(θ)dλdµdθ

. (2.18)

Moreover the Bayes risk λ is estimable through the relationship V ar(λ | x) = E(λ2 |

x)− (E(λ | x))2, where

E(λ2 | x) =
∫
θ

∫
µ

∫
λ
λ2L(x | λ, µ, θ)p(λ)p(µ)p(θ)dλdµdθ∫

θ

∫
µ

∫
λ
L(x | λ, µ, θ)p(λ)p(µ)p(θ)dλdµdθ

. (2.19)

The Bayes estimates for other parameters can also be written in a similar way. We notice

that the estimation is not analytically tractable. Therefore we use adaptive Metropolis

Hasting Algorithm of MCMC to obtain the estimates. The estimation is demonstrated in

the coming section through the use of two data sets.

2.4 Autoregressive TC minification process

In the literature, models with minification structures have been introduced as an alterna-

tive to the non-Gaussian time series models. The study on minification process began with

the work of Tavares (1980). Sim (1986) developed a first order autoregressive Weibull pro-

cess. Jose et al. (2010)developed different types of autoregressive processes with minifica-

tion structure and max-min structure. Jose (2011) considered various Marshall-Olkin dis-

tributions and developed autoregressive minification processes with stationary marginals

as exponential, Weibull, uniform, Pareto, Gumbel etc. We develop an AR(1) minification

process with TC distribution as marginal distribution.
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Consider an AR(1) minification process with structure

Xn =

{
ϵn w.p ρ

min(Xn−1, ϵn) w.p 1− ρ
(2.20)

where 0 < ρ < 1, n ≥ 1 and {ϵn} is a sequence of i.i.d. r.v.s

To develop time series models with TC marginals, we need the following definition.

Definition 2.4.1. A r.v. X on (−∞,∞) is said to have Marshall-Olkin transmuted

Cauchy (MOTC) distribution and write as X
d
= MOTC (p, λ, µ, θ) if it has the sf

F̄ (x) =
p
[
1−(1+λ)[ 1π arctan(x−µ

θ )+0.5]+λ[ 1π arctan(x−µ
θ )+0.5]

2
]

1−(1−p)
(
1−(1+λ)[ 1π arctan(x−µ

θ )+0.5]+λ[ 1π arctan(x−µ
θ )+0.5]

2
) .

Theorem 2.4.1. The AR(1) process given by (2.20) defines a stationary AR(1) mini-

fication process with TC(λ, µ, θ) as marginal distribution if and only if ϵ′ns are i.i.d.

MOTC(ρ−1, λ, µ, θ) with X0
d
= TC(λ, µ, θ).

Proof. We have, sf for TC(λ, µ, θ),

F̄X(x) =
[
1− (1 + λ)

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]
+ λ

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]2]
The model (2.20) can be rewritten in terms of sf as

P (Xn > x) = P (ϵn > x)[ρ+ (1− ρ)P (Xn−1 > x)].

That is,

ḠXn(x) = Ḡϵn(x)[ρ+ (1− ρ)ḠXn−1(x)]. (2.21)
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If {Xn} is stationary with TC(λ, µ, θ) marginals, then

F̄ϵn(x) =
F̄X(x)

ρ+ (1− ρ)F̄X(x)

=

1
ρ

[
1− (1 + λ)

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]
+ λ

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]2]
1− (1− 1

ρ
)
(
1− (1 + λ)

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]
+ λ

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]2) .
That is, ϵ′ns are i.i.d. MOTC(ρ−1, λ, µ, θ).

Conversely, if ϵ′ns are i.i.d. MOTC(ρ−1, λ, µ, θ) with X0
d
= TC(λ, µ, θ), then from (2.21),

we have

F̄X1(x) = ρF̄ϵ1(x) + (1− ρ)F̄ϵ1(x)F̄X0(x)

= ρ

1
ρ

[
1− (1 + λ)

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]
+ λ

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]2]
1− (1− 1

ρ
)
(
1− (1 + λ)

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]
+ λ

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]2)+
(1− ρ)

1
ρ

[
1− (1 + λ)

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]
+ λ

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]2]
1− (1− 1

ρ
)
(
1− (1 + λ)

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]
+ λ

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]2)[
1− (1 + λ)

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]
+ λ

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]2]

=

[
1− (1 + λ)

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]
+ λ

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]2]
.

That is, X1
d
= TC(λ, µ, θ).

If we assume that Xn−1
d
= TC(λ, µ, θ), then by induction, we can establish that Xn

d
=

TC(λ, µ, θ).

Hence the process {Xn} is stationary with TC marginals.

This completes the proof.
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2.5 Applications

In this section, we show how the TC distribution works in practice. For this we consider two

real data sets and compare the fit of the TC distribution with the following distributions:

(a) Two parameter Cauchy distribution having pdf

f(x;µ, θ) =
1

πθ

1

(1 + (x−µ
θ
)2)

;

where −∞ < x <∞,−∞ < µ <∞, θ > 0

(b)Three parameter Skew Cauchy (SC) distribution introduced by Behboodian et al.

(2006) with pdf

f(x;µ, θ, λ) =
1

πθ

1

(1 + (x−µ
θ
)2)

[
1 +

λ(x− µ)√
θ2 + (1 + λ2)(x− µ)2

]
;

where −∞ < x <∞,−∞ < µ, λ <∞, θ > 0.

The values of the log-likelihood functions (− ln(L)), AIC, AICC, and BIC are calculated

for the three distributions in order to verify which distribution fits better to two sets

of data. The better distribution corresponds to smaller − ln(L), AIC, AICC and BIC

values. Under different parameter settings, we quantify Bayes estimates, lower credible

limit (LCL), upper credible limit (UCL) of the credible intervals, whereas DIC is used to

compare the performance of the different competing distributions. The better distribution

corresponds to smaller DIC.

2.5.1 First data set

The first data set (http://www.ibge.gov.br/seriesestatisticas/exibedados.php?

idnivel=-BR&idserie=PRECO101), is the INPC data which represents the national index
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of consumer prices of Brazil since 1979. The INPC index measures the cost of living of

households with heads employees.

The data set is given in Table 2.4. The data is skewed to the right with skewness= 1.800

Table 2.4: INPC data set.

0.69 0.44 0.13 0.03 0.17 0.37 2.47 0.62 0.57 1.39
0.39 0.97 0.42 0.12 -0.11 0.50 0.39 2.70 0.31 0.84
0.30 0.55 0.43 0.49 0.27 0.70 0.73 0.82 3.39 1.07
0.48 -0.05 0.74 0.30 0.62 0.23 0.91 0.50 0.18 1.57
0.74 0.49 0.09 0.07 0.25 0.42 0.38 0.73 0.40 0.04
0.83 1.29 0.77 0.13 0.05 0.59 0.43 0.40 0.44 0.41
-0.06 0.86 0.94 0.55 0.05 0.47 0.32 0.16 0.54 0.57
0.57 0.99 1.15 0.44 0.29 0.61 1.28 0.31 -0.02 0.58
0.86 0.39 1.38 0.61 0.79 0.16 0.74 1.29 0.26 0.11
0.15 0.44 0.83 1.37 0.09 1.11 0.43 0.94 0.65 0.26
-0.07 0.00 0.17 0.54 1.46 0.68 0.60 1.21 0.96 0.42
-0.18 -0.28 0.49 0.15 0.18 0.68 0.34 1.20 0.29 1.51
2.46 0.11 0.15 0.54 0.29 0.35 0.45 0.38 1.33 0.71
1.40 2.18 -0.31 0.72 0.85 0.10 0.11 0.81 0.02 1.28
1.46 1.17 2.10 -0.49 0.45 0.57 -0.03 0.60 0.33 0.50
0.93 1.65 1.02 2.49 1.62 1.01 1.44

and kurtosis= 4.183.

The descriptive statistics of the above data set are given in Table 2.5. Figure 2.7, shows

Table 2.5: Descriptive statistics of first data set.

Min 1st Q Median Mean 3rd Q Max
0.00000 0.290 0.500 0.6646 0.8600 3.3900

the fitted density curves for the data set.

From Tables 2.6 and 2.7, we can see that TC distribution gives a better fit to the data

set.

2.5.2 Second data set

The second real data set corresponds to data set from Nichols and Padgett (2006) on

breaking stress of carbon fibres (in Gba): The second data set is given in Table 2.8. The
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Table 2.6: Parameter estimates for various models fitted for the first data set.

Model parameter estimates log L AIC AICC BIC

Cauchy
µ̂ = 0.4792
θ̂ = 0.2656

-139.3542 284.7083 284.8653 293.8771

SC
λ̂ = 1.1888
µ̂ = 0.2424
θ̂ = 0.3275

-132.7465 271.4929 271.6499 280.6617

TC
λ̂ = 0.2527
µ̂ = 0.4995
θ̂ = 0.1400

-132.0012 270.0025 270.1593 276.1711
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Figure 2.7: Fitted pdf plots of first data set

data is approximately symmetric with skewness=0.541 and kurtosis=0.141.

The descriptive statistics of the above data set are given in Table 2.9. From Table 2.10,

it can be seen that the TC distribution provides best fit to the data set.

Figure 2.8, shows the fitted density curves for the second data set.

In Table 2.7 and 2.11, we present the results of all considered distributions under Bayesian

inference. Here we use adaptive Metropolis Hasting Algorithm of MCMC to obtain the
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Table 2.7: Posterior results of the TC and other models using first data set.

Model parameter estimates LCL UCL DIC

Cauchy
µ̂ = 0.4741
θ̂ = 0.2546

0.4155
0.2052

0.5360
0.3127 658.939

SC
µ̂ = 0.3781
θ̂ = 0.2590
λ̂ = 0.4154

0.3132
0.2099
0.2175

0.4491
0.3152
0.4979

625.076

TC
µ̂ = 2.8004
θ̂ = 0.0662
λ̂ = 0.1783

2.7369
0.0366
0.0128

2.8669
0.1053
0.3996

623.258

Table 2.8: Carbon fibres data set.

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11
4.42 3.22 1.69 3.28 3.09 1.87 3.15 4.90 3.75 2.43
2.95 2.97 3.39 2.67 2.93 3.22 3.39 2.81 4.20 3.33
2.55 3.31 3.31 2.85 2.56 2.35 2.55 2.59 2.38 2.81
2.77 2.17 2.83 1.92 1.41 3.68 2.97 2.76 4.91 3.68
1.84 1.59 3.19 1.57 0.81 5.56 1.73 1.59 2.00 1.71
2.17 1.17 5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38
1.84 2.48 0.85 1.61 2.79 4.70 2.03 1.80 1.57 1.08
2.03 1.61 2.12 1.89 2.05 3.65

Table 2.9: Descriptive statistics of second data set.

Min 1st Q Median Mean 3rd Q Max
0.810 1.875 2.700 2.673 3.257 5.560

Table 2.10: Parameter estimates for various models fitted for the second data set.

Model parameter estimates log L AIC AICC BIC

Cauchy
µ̂ = 2.3966
θ̂ = 0.1000

-239.3104 484.6208 484.9134 491.9838

SC
λ̂ = 0.6136
µ̂ = 2.5586
θ̂ = 0.1100

-136.5362 279.0724 279.365 286.4354

TC
λ̂ = 0.6023
µ̂ = 2.6911
θ̂ = 0.1100

-136.478 278.956 279.2486 286.319
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Figure 2.8: Fitted pdf plots of second data set

Table 2.11: Posterior results of the TC and other models using second data set.

Model parameter estimates LCL UCL DIC

Cauchy
µ̂ = 2.5967
θ̂ = 0.6209

2.3698
0.4703

2.8111
0.7985 711.015

SC
µ̂ = 2.2175
θ̂ = 0.6965
λ̂ = 0.5569

1.8452
0.5165
0.0393

2.6398
0.9133
0.9819

709.135

TC
µ̂ = 2.1981
θ̂ = 0.6884
λ̂ = −0.6485

1.8443
0.5141
−0.9951

2.8354
0.8889
0.3832

706.8782

estimates.

The following independent prior densities are considered: λ → Uniform(−1, 1), µ →

Normal(0, 1), θ → Lognormal(0, 1).

Under different parameter settings, we quantify Bayes estimates, LCL, UCL of the credible

intervals. The value of the DIC statistics for our proposed model is lower than that of the

other models. This finding again emphasizes on the efficient nature of the suggested TC
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distribution.

2.6 Summary

Transmuted family of distributions have been of great attention among researchers. In

the present work, we studied some basic statistical and mathematical properties of the

model. We considered estimation of parameters of TC distribution using ML, MPS, LS,

CVM, AD, RTAD estimation and Bayesian inference. We have performed a simulation

study to compare these methods. The applicability of the model is established by using

two real data sets and this indicates the flexibility and capacity of the distribution in data

modelling.
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Chapter 3

A GENERALIZATION OF

CAUCHY DISTRIBUTION:

ESTIMATION AND

APPLICATIONS

3.1 Introduction

Cauchy distribution is used as the canonical example of pathological distribution in statis-

tics. In mathematics, it is related to Poisson kernel which is the fundamental solution of

Laplace equation. It is one of the distributions that are stable.

Cauchy distribution resembles the normal distribution family of curves, it has a taller

peak than normal. That means it is a heavy tail probability distribution and unlike the

normal distribution its fat tails decay more slowly.

This chapter introduces a new four parameter Cauchy distribution called the new

1This Chapter is based on Jayakumar and Fasna (2022)
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Generalized Cauchy distribution (GCD). The GCD distribution has regularly varying tails,

it belongs to the class of long-tailed distributions and is a member of the dominated

variation distribution. Hence it belongs to the class of subexponential distributions. Also,

it can be seen that limx→∞ h(x) = 0, where h(x) is the hazard rate of GCD.

As a consequence of these, we have the following:

If X1, X2, . . . , Xn are i.i.d. r.v.s and if Sn = X1 +X2 + . . .+Xn,

then

P (Sn > x) ∼ nP (X > x), as x→ ∞.

That is, if

Mn = max
1≤i≤n

Xi,

then

P (Sn > x) ∼ nP (Xi > x) ∼ P (Mn > x).

Hence, for large x, the event {Sn > x} is due to the event {Mn > x}. That is, exceedances

of the high threshold by the sum are due to the exceedances of this threshold by the largest

value in the sample.

One of the applications for subexponential distributions are insurance mathematics.

Such distributions are used as a realistic models for expressing the sizes of real life insurance

claims which can have distributions with heavy tails. This interpretation suggests one way

of defining heavy-tailed distribution.

The importance of subexponential distributions as a useful class of heavy tailed dis-

tribution functions in the context of applied probability and insurance mathematics was

discussed by Teugels (1975). A survey paper is by Goldie and Kluppelberg (1998). A

textbook treatment of subexponential distributions is given in Embrechts et al. (1997).
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The aim of this chapter is to introduce a new generalized Cauchy distribution, discuss

the shape of the density function and distribution function of the model. We derive the

quantiles, mode, Mean deviation and pdf of order statistics. Study the tail properties

of distributions and it is shown that the distribution has a regularly varying tail, and

belongs to the class of subexponential distributions. ML, MPS, LS, CVM, AD and RTAD

estimation methods are explored and we evaluate the performance of these estimates using

simulation. An autoregressive minification process with GCDmarginals are developed. We

analyze two real data sets to discuss the use of proposed distribution. Summary of the

work done is presented.

3.2 New generalized Cauchy distribution

We introduce a new generalization of Cauchy distribution as a competitor for several

generalizations of Cauchy distribution. Marshall and Olkin (1997) introduced a method

of adding parameters to distributions leading to the development of several extensions

of existing distributions in the literature. Building upon this method, Nadarajah et al.

(2013) generalized the Marshall-Olkin scheme and introduced a family of distributions

generated through the TNB distribution. It is note that both Marshall-Olkin scheme and

its generalization via TNB originated from modeling scenarios involving random minimum

or random maximum. For the applications of random minimum or random maximum in

various fields, see Marshall and Olkin (1997).

Some generalizations of Uniform distributions have appeared in the literature. Jose and

Krishna (2011) introduced Marshall-Olkin extended Uniform distribution with pdf

g(y;α, β) =
αβ

(αβ + (1− α)y)2
; 0 ≤ y ≤ 1, α > 0, β > 0, (3.1)
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and expressed it as a mixture distribution with exponential distribution as mixing density.

Nadarajah et al. (2013) introduced a new family of life time models as follows:

Let X1, X2, . . . be a sequence of i.i.d. r.v.s with sf F̄ (x). Let N be a TNB r.v. with

parameters α ∈ (0, 1) and θ > 0. That is,

Pr(N = n) = αθ

1−αθ

(
θ+n−1
θ−1

)
(1− α)n, n = 1, 2, . . .

Consider UN = min{X1, X2, . . . XN}. Then,

Pr(UN > x) = ḠU(x)

=
αθ

1− αθ

∞∑
n=1

(
θ + n− 1

θ − 1

)
((1− α)F̄ (x))n.

That is,

ḠU(x) =
αθ

1− αθ
[(F (x) + αF̄ (x))−θ − 1]. (3.2)

Similarly, if α > 1 and N is a TNB r.v. with parameters 1
α

and θ > 0, then VN =

max{X1, X2, . . . , XN} also has the sf (3.2). Which gives a new family of distributions

given by the sf

ḠU(x;α, θ) =
αθ

1− αθ
[(F (x) + αF̄ (x))−θ − 1]; α > 0, θ > 0 and x ∈ R.

Note that

ḠU(x;α, θ) −→ F̄ (x) as α −→ 1.

This family is reduced to the Marshall-Olkin family of distributions when θ = 1. so this

is a generalization of the Marshall-Olkin family. Using the approach of Nadarajah et al.

(2013), Jayakumar and Sankaran (2016) defined a generalized Uniform distribution with
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pdf

g(y;α, β) =
(1− α)βαβ

(1− αβ)(y(1− α) + α)β+1
; 0 ≤ y ≤ 1, α > 0, β > 0, (3.3)

and studied its properties.

Note that, a uniform r.v. Y can be transformed to a Cauchy r.v X along the transforma-

tion X = µ+ θ tan[(Y − 0.5)π].

By using this transformation, where Y has the pdf (3.3), we obtain a new distribution

which we call Generalized Cauchy distribution denoted by GCD(α, β, µ, θ) with parame-

ters −∞ ≤ µ ≤ ∞, α, β, θ > 0.

3.2.1 Probability density function

The pdf of GCD(α, β, µ, θ) distribution thus obtained is

f(x) =
βαβ(1− α)

π(1− αβ)

[(0.5 + 1
π
arctan(x−µ

θ
))(1− α) + α]−(β+1)

(1 + (x−µ
θ
)2)

, (3.4)

where −∞ ≤ x ≤ ∞,−∞ ≤ µ ≤ ∞, α, β, θ > 0.

The graph of f(x) for different values of parameters are given in Figure 3.1.

3.2.2 Distribution function

The cdf of X is given by

F (x) =
1− αβ[(0.5 + 1

π
arctan(x−µ

θ
))(1− α) + α]−β

1− αβ
. (3.5)
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Figure 3.1: Plots of the pdf of GCD(α, β, µ, θ) distribution

For convenience, let θ = 1 and µ = 0.

Then

f(x) =
βαβ(1− α)

π(1− αβ)

[(0.5 + 1
π
arctan(x))(1− α) + α]−(β+1)

(1 + x2)
, (3.6)

where −∞ ≤ x ≤ ∞, α, β > 0.

The graph of F (x) for different values of parameters are given in Figure 3.2.

Remark 3.2.1. When β = 1 and α → 1, GCD reduces to Cauchy distribution with

parameters µ and θ.

Theorem 3.2.1. The limit of the GCD density function as x→ ±∞ is zero.
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Figure 3.2: Plots of the cdf of GCD(α, β, µ, θ) distribution

Proof. Trivial and hence omitted.

3.2.3 Quantile function

Theorem 3.2.2. The qth quantile xq of the GCD r.v. is given by

xq = µ+ θ tan

[
π

[
α

1− α

[
(1− q(1− αβ))−

1
β − 1

]
− 0.5

]]
. (3.7)

Proof. The qth quantile xq of the GCD r.v is defined as

q = P (X ≤ xq) = F (xq), xq ∈ R
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Using the cdf of the GCD distribution, we have

q = F (xq) =
1− αβ[(0.5 + 1

π
arctan(x−µ

θ
))(1− α) + α]−β

1− αβ

That is,

1− αβ

[(
0.5 +

1

π
arctan

(
x− µ

θ

))
(1− α) + α

]−β

= q(1− αβ) (3.8)

which implies

(
0.5 +

1

π
arctan

(
x− µ

θ

))
=

α

1− α
[(1− q(1− αβ))−

1
β − 1] (3.9)

Hence

xq = µ+ θ tan

[
π

[
α

1− α

[
(1− q(1− αβ))−

1
β − 1

]
− 0.5

]]
This completes the proof.

Using the inversion method, we can generate r.v.s from the GCD distribution. We can

use equation (3.7) to generate random numbers when the parameters α, β, µ and θ are

known.

Hence, the median of GCD is given by,

x0.5 = µ+ θ tan

[
π

[
α

1− α

[
(1− 0.5(1− αβ))−

1
β − 1

]
− 0.5

]]
. (3.10)

Theorem 3.2.3. The mode of the GCD(α, β, µ, θ) is the solution of the equation k(x) = 0,

where

k(x) = 2(µ− x)π

[((
0.5 +

1

π
arctan

(
x− µ

θ

))
(1− α)

)
+ α

]
− θ(1− α)(1 + β).
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Proof. The critical point of GCD density function are the roots of the equation:

∂ log(f(x))

∂x
= 0

But

∂ log(f(x))
∂x

= (1−α)(1+β)

πθ[(0.5+ 1
π
arctan(x−µ

θ
))(1−α)+α](1+(x−µ

θ
)2)

+ 2(x−µ)

θ2(1+(x−µ
θ

)2)
(3.11)

The critical values of (3.11) are the solution of k(x) = 0. Hence the proof.

3.2.4 Mean deviation

Let M be the median of the GCD distribution.

The mean deviation about the median can be calculated as

δ(X) = E|X −M | =
∫ ∞

−∞
|x−M |f(x)dx.

Hence, we obtain the following equation δ = µ− 2J(M) where J(q) is

J(q) =
(1− α)βαβ

π(1− αβ)

∫ q

−∞

x[(0.5 + 1
π
arctan(x−µ

θ
))(1− α) + α]−(β+1)

(1 + (x−µ
θ
)2)

dx. (3.12)

One can easily compute this integral numerically using softwares such as R,MATLAB,

Mathcad and others and hence obtain the mean deviation about the median as desired.
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3.2.5 Reliability function

The Reliability function of GCD(α, β, µ, θ) is given by,

R(t) = 1−

[
1− αβ

[
(0.5 + 1

π
arctan( t−µ

θ
))(1− α) + α

]−β

1− αβ

]
. (3.13)

The plot of reliability function of GCD(α, β, µ, θ) for various choices of the values of the

parameters are presented in Figure 3.3.
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Figure 3.3: Plots of the reliability function of GCD(α, β, µ, θ) distribution
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3.2.6 Hazard rate function

The hrf of GCD(α, β, µ, θ) is

h(t) =

βαβ(1−α)
π(1−αβ)

[(0.5+ 1
π
arctan( t−µ

θ
))(1−α)+α]−(β+1)

(1+( t−µ
θ

)2)

1−
[
1−αβ [(0.5+ 1

π
arctan( t−µ

θ
))(1−α)+α]−β

1−αβ

] . (3.14)

The plot of hrf of GCD(α, β, µ, θ) for various choices of the values of the parameters is

given in Figure 3.4.

The cumulative hrf of GCD distribution H(t) is given by,
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Figure 3.4: Plots of the hazard rate function of GCD(α, β, µ, θ) distribution
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H(t) = − lnR(t)

= − ln

[
1−

[
1− αβ[(0.5 + 1

π
arctan( t−µ

θ
))(1− α) + α]−β

1− αβ

]]
.

(3.15)

Theorem 3.2.4. The limit of the hrf of GCD distribution as t→ ±∞ is zero.

Proof. Trivial and hence omitted.

3.2.7 Order statistics

Let X1, X2, . . . , Xn be a random sample from GCD(α, β, µ, θ) and let X(1), X(2), . . . , X(n)

denote the corresponding order statistics. Then the pdf and cdf of kth order statistics are

given by

fX(x) =
n!

(k − 1)!(n− k)!
[F (x)]k−1 [1− F (x)]n−k f(x)

=
n!

(k − 1)!(n− k)!

1

1− αβ

βαβ[(0.5 + 1
π
arctan( t−µ

θ
))(1− α) + α]−(β+1)(1− α)

π(1 + ( t−µ
θ
)2)[

1− αβ[(0.5 + 1/π arctan(x))(1− α) + α]−β

1− αβ

]k−1

[
1−

1− αβ[(0.5 + 1/π arctan( t−µ
θ
))(1− α) + α]−β

1− αβ

]n−k

(3.16)

and

FX(x) =
n∑

j=k

(
n

j

)
[F (x)]j[1− F (x)]n−j

=
n∑

j=k

(
n

j

)[
1− αβ[(0.5 + 1

π
arctan(x−µ

θ
))(1− α) + α]−β

1− αβ

]j
[
1−

1− αβ[(0.5 + 1
π
arctan(x−µ

θ
))(1− α) + α]−β

1− αβ

]n−j

(3.17)
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respectively

The pdf of the minimum is,

fX(1)
(x) =

nβαβ[(0.5 + 1
π
arctan(x−µ

θ
))(1− α) + α]−(β+1)(1− α)

π(1− αβ)(1 + (x−µ
θ
)2)[

1−
1− αβ[(0.5 + 1

π
arctan(x−µ

θ
))(1− α) + α]−β

1− αβ

]n−1
(3.18)

and the pdf of the maximum is,

fX(n)
(x) =

nβαβ[(0.5 + 1
π
arctan(x−µ

θ
))(1− α) + α]−(β+1)(1− α)

π(1− αβ)(1 + (x−µ
θ
)2)[

1− αβ[(0.5 + 1
π
arctan(x−µ

θ
))(1− α) + α]−β

1− αβ

]n−1

.

(3.19)

3.2.8 Stochastic ordering

The GCD is ordered with respect to the strongest likelihood ratio ordering as shown in

the following theorem.

Theorem 3.2.5. Let X ∼ GCD(α1, β1, 0, 1) and Y ∼ GCD(α2, β2, 0, 1). If β1 = β2 = β

and α1 < α2; then X ≤lr Y hence X ≤rhr Y , X ≤hr Y and X ≤st Y .

Proof. The likelihood ratio is

gX(y)

gY (y)
=
α1

β(1− α1)(1− αβ
2 )[(0.5 +

1
π
arctan(x))(1− α1) + α1]

−(β+1)

α2
β(1− α2)(1− αβ

1 )[(0.5 +
1
π
arctan(x))(1− α2) + α2]−(β+1)

Thus,

d log

dx

[
gX(y)

gY (y)

]
71



= (1+β)
π(1+x2)

[
(1−α2)

[(0.5+ 1
π
arctan(x))(1−α2)+α2]

− (1−α1)

[(0.5+ 1
π
arctan(x))(1−α1)+α1]

]
< 0.

Now, if β1 = β2 = β and α1 < α2, then
d log
dx

[gX(y)
gY (y)

]
< 0, which implies that X ≤lr Y hence

X ≤rhr Y , X ≤hr Y and X ≤st Y .

3.2.9 Tail behaviour

The GCD has heavy tail, that is it takes extreme value with high probability. This feature

empirically distinguishes GCD from the normal and many other distributions.
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Figure 3.5: Comparison of right tails of Cauchy, Normal and GCD densities.

Figure 3.5 plots the right tails of the density of GCD and compare them with Cauchy
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and normal densities. It can be seen that GCD distribution has tails thicker than both

Cauchy and normal.

We can show that lim supx→∞ f(x)emx = ∞ for any m > 0 and hence the density f is

heavy tailed.

The following theorem establishes that the GCD density function given in (3.6) is a

function with regularly varying tails.

Theorem 3.2.6. The density function of GCD distribution is a function with regularly

varying tails.

Proof. Using the density function (3.6), we have

lim
x→∞

f(cx)

f(x)
= lim

x→∞

[(0.5 + 1
π
arctan(cx))(1− α) + α]−(β+1)(1 + x2)

[(0.5 + 1
π
arctan(x))(1− α) + α]−(β+1)(1 + (cx)2)

,

Applying limits, the above simplifies to

lim
x→∞

f(cx)

f(x)
=

1

c2
,

and hence we have the desired result.

Theorem 3.2.7. The GCD distribution belongs to the class of long tailed distribution L.

Proof.

lim
x→∞

f(x+ y)

f(x)
=

[(0.5 + 1
π
arctan(x+ y))(1− α) + α]−(β+1)(1 + x2)

[(0.5 + 1
π
arctan(x))(1− α) + α]−(β+1)(1 + (x+ y)2)

= 1,

and hence f belongs to the class L.

Theorem 3.2.8. The GCD distribution belongs to the class D dominated variation dis-

tributions .
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Proof.

lim
x→∞

f(x)

f(2x)
= lim

x→∞

[(0.5 + 1
π
arctan(x))(1− α) + α]−(β+1)(1 + (2x)2)

[(0.5 + 1
π
arctan(2x))(1− α) + α]−(β+1)(1 + x2)

,

Applying limits, the above simplifies to

lim
x→∞

f(x)

f(2x)
= 4,

and hence f belongs to the class of dominated variation distributions.

Theorem 3.2.9. The GCD distribution belongs to the class of subexponential distribu-

tions.

Proof. A distribution F is subexponential if

lim
x→∞

1− F ∗ F (x)
1− F (x)

= 2;

where ∗ denotes the convolution operation.

From theorem 3.2.7 and theorem 3.2.8, the GCD distribution belongs to D ∩ L. By

Kluppelberg (1988), D∩L ⊂ S, where S is a class of subexponential distributions. Hence

the theorem.

3.3 Estimation of parameters

In this section, we use the ML, MPS, LS, CVM, AD and RTAD estimation to estimate

parameters of GCD distributions.
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3.3.1 Method of maximum likelihood

If the parameters of the GCD distribution are unknown, then the ML estimates of the

parameters can be obtained as follows:

For analytical simplicity, let assume that µ = 0 and θ = 1.

Consider a random sample x1, x2, . . . , xn of size n from the GCD(α, β, µ, θ) distribution

where µ = 0 and θ = 1. Then, the log likelihood function is given by,

logL = n log β − n log(1− αβ) + nβ logα + n log(1− α)− n log π

−(β + 1)
n∑

i=1

log[(0.5 +
1

π
arctan(xi))(1− α) + α] +

n∑
i=1

log(1 + xi
2).

(3.20)

The likelihood equations are,

∂ logL

∂α
=
nβαβ−1

1− αβ
+
nβ

α
− n

1− α
− (β + 1)

n∑
i=1

(0.5− 1
π
arctan(xi))

[(0.5 + 1
π
arctan(xi))(1− α) + α]

= 0,

(3.21)

and

∂ logL

∂β
=
nαβ logα

1− αβ
+
n

β
+ n logα−

n∑
i=1

log[(0.5 +
1

π
arctan(xi))(1− α) + α]

= 0.

(3.22)

These equations do not have explicit solutions and they have to be obtained numerically

using statistical software like optim package in R

Now as in Popovic et al. (2015), we study the existence and uniqueness of the ML estimates

when the other parameters are known (or given).

Theorem 3.3.1. Let g1(α; β, x) denote the function on the right-hand side (RHS) of

equation (3.21) , where β is the true value of the parameter. Then there exists a unique
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solution for g1(α; β, x) = 0, for α̂ ∈ (0,∞).

Proof. We have

g1(α; β, x) =
nβαβ−1

1−αβ + nβ
α
− n

1−α
− (β + 1)

∑n
i=1

(0.5− 1
π
arctan(xi))

[(0.5+ 1
π
arctan(xi))(1−α)+α]

.

Now

lim
α→0

g1(α; β, x) = 0 +∞− n− (β + 1)
n∑

i=1

(0.5− 1
π
arctan(xi))

(0.5 + 1
π
arctan(xi))

= ∞,

On the other hand

lim
α→∞

g1(α; β, x) = −∞.

Therefore there exists atleast one root, say α̂ ∈ (0,∞) such that g1(α; β, x) = 0

To show uniqueness, the first derivative of g1(α; β, x) is

∂g1(α; β, x)

∂α
< 0,

Hence there exist a solution for g1(α; β, x) = 0, and root α̂ is unique.

Theorem 3.3.2. Let g2(β;α, x) = 0 denote the function on the RHS of equation (3.22)

, where α is the true value of the parameter. Then there exists a unique solution for

g2(β;α, x) = 0, for β̂ ∈ (0,∞).

Proof. We have

g2(β;α, x) =
nαβ logα

1− αβ
+
n

β
+ n logα−

n∑
i=1

log[(0.5 +
1

π
arctan(xi))(1− α) + α].
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Now

lim
β→0

g2(β;α, x) = ∞+ n log(α)−
n∑

i=1

log[(0.5 +
1

π
arctan(xi))(1− α) + α] + 0 = ∞,

On the other hand

lim
β→∞

g2(β;α, x) = 0 + n log(α)−
n∑

i=1

log[(0.5 +
1

π
arctan(xi))(1− α) + α] + 0 < 0.

Therefore there exists at least one root, say β̂ ∈ (0,∞) such that g2(β;α, x) = 0

To show uniqueness, the first derivative of g2(β;α, x)0 is

∂g2(β;α, x)

∂β
< 0,

Hence there exists a solution for g2(β;α, x) = 0, and root β̂ is unique.

3.3.2 Method of maximum product spacings

The cdf of GCD distribution is given by equation (3.5), and the uniform spacing are

defined as follows:

D1 = F (x1) =
1− αβ[(0.5 + 1

π
arctan(x1−µ

θ
))(1− α) + α]−β

1− αβ
,

Dn+1 = 1− F (xn) = 1−
[
1− αβ[(0.5 + 1

π
arctan(xn−µ

θ
))(1− α) + α]−β

1− αβ

]
,

and the general term of spacing is given by

Di = F (xi)− F (xi−1)
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such that
∑
Di = 1.

MPS choose the estimates which maximizes the product of spacings or which maximizes

the geometric mean of the spacing. That is, we find estimates such that

G =

[
n+1∏
i=1

Di

] 1
n+1

,

is maximized. Taking the logarithm of G, we get

H =
1

n+ 1

n+1∑
i=1

log(Di).

Differentiating the above equation partially, with respect to the parameters α, β, µ and

θ respectively and them equating to zero, we get the normal equations. These equations

do not have exact solutions and they have to be obtained numerically by using statistical

softwares like optim package in R programming.

3.3.3 Method of least square estimation

The LS estimators of the unknown parameters α, β, µ and θ of GCD distribution can be

obtained by minimizing

n∑
i=1

[
F (xi | α, β, µ, θ)−

i

n+ 1

]2

=
n∑

i=1

[
1− αβ[(0.5 + 1

π
arctan(xi−µ

θ
))(1− α) + α]−β

1− αβ
− i

n+ 1

]2
.

Differentiating the above equation partially, with respect to unknown parameters α, β,

µ and θ respectively and them equating to zero, we get the normal equations. These

equations do not have exact solutions and they have to be obtained numerically by using
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statistical softwares like optim package in R programming.

3.3.4 Method of Cramer-von Mises

The CVM estimators α̂CME, β̂CME, µ̂CME and θ̂CME are the values of α,β,µ and θ mini-

mizing

C(α, β, µ, θ) =
1

12n
+

n∑
i=1

[
F (xi | α, β, µ, θ, )−

2i− 1

2n

]2

=
1

12n
+

n∑
i=1

[(
1− αβ[(0.5 + 1

π
arctan(xi−µ

θ
))(1− α) + α]−β

1− αβ

)
− 2i− 1

2n

]2
.

Partially differentiating the above equations, with respect to the parameters α, β, µ and

θ respectively and equating them to zero, we get the normal equations. These equations

do not have exact solutions and they have to be obtained numerically by using statistical

softwares like optim package in R programming.

3.3.5 Methods of Anderson-Darling and

right-tail Anderson-Darling

The AD estimators α̂ADE, β̂ADE, µ̂ADE and θ̂ADE are the values of α, β, µ and θ minimizes

A(α, β, µ, θ) = −n− 1

n

n∑
i=1

(2i− 1){logF (xi | α, β, µ, θ) + log F̄ (xn+1−i | α, β, µ, θ)}

= −n− 1

n

n∑
i=1

(2i− 1)

{
log

[
1− αβ[(0.5 + 1

π
arctan(xi−µ

θ
))(1− α) + α]−β

1− αβ

]
+ log

[
1−
[
1− αβ[(0.5 + 1

π
arctan(xn+1−i−µ

θ
))(1− α) + α]−β

1− αβ

]]}
.
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The RTAD estimators α̂RTADE, β̂RTADE, µ̂RTADE and θ̂RTADE are the values of α, β, µ

and θ minimizes

R(α, β, µ, θ) =
n

2
− 2

n∑
i=1

F (xi | α, β, µ, θ)−
1

n

n∑
i=1

(2i− 1) log F̄ (xn+1−i | α, β, µ, θ)

=
n

2
− 2

n∑
i=1

[
1− αβ[(0.5 + 1

π
arctan(xi−µ

θ
))(1− α) + α]−β

1− αβ

]
− 1

n

n∑
i=1

(2i− 1) log

[
1−
[
1− αβ[(0.5 + 1

π
arctan(xn+1−i−µ

θ
))(1− α) + α]−β

1− αβ

]]
.

Differentiating the above equation partially, with respect to the parameters α, β, µ, and

θ respectively and them equating to zero, we get the normal equations. These equations

do not have exact solutions and they have to be obtained numerically by using statistical

softwares like optim package in R programming.

3.3.6 Simulation study

We conduct Monte Carlo simulation to compare the performance of the estimators dis-

cussed in the previous sections and the process is repeated 1000 times. We evaluate the

performance of the estimators based on bias and MSE. Methods are compared for sample

sizes n = 150, n = 250 and n = 500.

We calculate the bias, MSE for each estimate. The statistics are obtained using the fol-

lowing formulae.

Bias(α̂) = 1
n

∑n
i=1(α̂− α) Bias(β̂) = 1

n

∑n
i=1(β̂ − β)

Bias(µ̂) = 1
n

∑n
i=1(µ̂− µ) Bias(θ̂) = 1

n

∑n
i=1(θ̂ − θ)

MSE(α̂) = 1
n

∑n
i=1(α̂− α)2 MSE(β̂) = 1

n

∑n
i=1(β̂ − β)2

MSE(µ̂) = 1
n

∑n
i=1(µ̂− µ)2 MSE(θ̂) = 1

n

∑n
i=1(θ̂ − θ)2

The bias (estimate-actual), and the MSE of the parameter estimates for the ML, MPS,

LS, CVM, AD and RTAD methods are presented in Tables 3.1 and 3.2.
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From Tables 3.1 and 3.2 , we note that the ML method performs well for estimating the

model parameters. Also, as the sample size increases, the biases and the MSEs of the

average estimates of ML estimates decrease as expected.

The following observations can be drawn from Tables 3.1 and 3.2.

1. All the estimators show the property of consistency, i.e., the MSE decreases as the

sample size increases.

2. The bias of all parameters decreases with an increasing n for all the methods of esti-

mations.

3. The bias of µ̂, θ̂ generally increases with an increasing mu, theta for any given mu,theta

and n and for all methods of estimation. Figures 3.6 and 3.7 show respectively the MSE

Table 3.1: Simulation results for α = 0.1,β = 0.5,µ = 2 and θ = 0.3.

n Parameters ML MPS LS CVM AD RTAD
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

150

α
β
µ
θ

-0.0399
0.1287
0.0063
-0.0104

0.0049
0.0078
0.0023
0.0037

-0.1424
-1.0147
0.0345
-0.0452

0.0544
3.001
0.0245
0.0054

-0.6971
0.1501
0.6526
0.1474

0.0151
0.0091
0.4355
0.0499

0.0111
0.1798
0.0689
-0.0272

0.0060
0.03715
0.02012
0.0410

-0.0298
-0.0823
0.0383
-0.0154

0.0146
0.6673
0.0161
0.0042

-0.0259
-0.1372
0.0038
-0.0400

0.0164
0.5934
0.0048
0.0042

250

α
β
µ
θ

-0.0175
-0.0380
0.0061
-0.0019

0.0030
0.0014
0.0020
0.0017

0.02606
0.1546
0.0088
0.0055

0.0025
0.1837
0.0047
0.0039

-0.6782
0.0111
0.6294
0.1768

0.0147
0.0073
0.4030
0.0449

0.0368
-0.0152
0.0264
0.1869

0.0029
0.0022
0.0023
0.0398

-0.0743
-0.6317
0.0085
-0.0182

0.0084
0.2129
0.0122
0.0021

-0.0189
-0.1429
0.0092
-0.0039

0.0095
0.5922
0.0046
0.0023

500

α
β
µ
θ

-0.0136
-0.03781
0.0060
-0.0003

0.0028
0.0009
0.0011
0.0007

-0.0435
-0.3627
-0.0247
0.0063

0.0023
0.1607
0.0012
0.0002

-0.6518
-0.0018
0.6193
0.1992

0.0142
0.0004
0.3868
0.0443

-0.0797
-0.0222
-0.1276
-1.1553

0.0079
0.0007
0.0176
0.0304

0.0213
-0.0177
-0.0478
-0.4273

0.0042
0.0020
0.0227
0.0015

-0.0201
-0.1477
0.0034
-0.0046

0.0074
0.4296
0.0025
0.0012

of the simulated estimates of α, β, µ and θ.

3.4 Autoregressive GCD minification process

We develop an AR(1) minification process with GCD distribution as marginal distribution.

Consider an AR(1) minification process with structure

Xn =

{
ϵn w.p ρ

min(Xn−1, ϵn) w.p 1− ρ
(3.23)
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Table 3.2: Simulation results for α = 0.2,β = 0.1,µ = 1 and θ = 0.1.

n Parameters ML MPS LS CVM AD RTAD
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

150

α
β
µ
θ

0.1954
-0.3385
-0.0068
0.0088

0.0382
0.1236
0.0003
0.0001

-0.1660
0.0395
-0.3982
0.1585

-0.0089
0.0003
-0.05115
0.0026

-0.3112
-0.4978
-0.0847
-0.3967

0.0969
0.2480
0.0004
0.0015

-0.0117
0.0291
0.0023
0.0010

0.0908
0.2869
0.0003
0.0003

-0.0919
0.0461
0.0069
0.0011

0.0948
0.2904
0.0003
0.0001

-0.1756
-0.7341
-0.0055
-0.0029

0.0438
0.6505
0.0004
0.0002

250

α
β
µ
θ

0.1945
-0.3451
0.0061
0.0080

0.0378
0.1204
0.0002
0.0001

-0.1057
0.0384
-0.5161
0.1314

-0.0024
0.0002
-0.0018
0.0001

-0.3080
-0.5071
-0.0859
-0.3897

0.0951
0.2077
0.0007
0.0015

-0.1915
0.0716
0.0023
-0.0016

0.0742
0.2821
0.0002
0.0001

0.0202
0.1156
0.0063
0.0010

0.0421
0.2587
0.0002
0.0001

-0.1789
-0.7143
-0.0027
-0.0055

0.0407
0.6096
0.0002
0.0001

500

α
c
µ
θ

0.1933
-0.3605
-0.0061
0.0079

0.0374
0.1054
0.0002
0.0001

-0.0894
0.0381
-0.4279
0.0729

-0.0016
0.0001
-0.0018
0.0001

-0.3114
-0.4981
-0.0844
-0.3970

0.0900
0.2004
0.0004
0.0015

0.0242
0.0955
0.0014
0.0012

0.0074
0.0924
0.0001
0.0007

0.0363
0.1612
0.0059
0.0013

0.0384
0.1709
0.0002
0.0002

-0.1814
-0.7223
-0.0026
-0.0047

0.0372
0.5772
0.0001
0.0008

where 0 < ρ < 1, n ≥ 1 and {ϵn} is a sequence of i.i.d. r.v.s.

In order to develop time series models with GCD marginals, we need the following defini-

tion.

Definition 3.4.1. A r.v. X on (−∞,∞) is said to have Marshall-Olkin generalized

Cauchy (MOGCD) distribution and write as X
d
= MOGCD (p, α, β, µ, θ) if it has the

survival function

F̄ (x) =
p

[
1−

1−αβ [(0.5+ 1
π arctan(

x−µ
θ

))(1−α)+α]−β

1−αβ

]
1−(1−p)

[
1−

1−αβ [(0.5+ 1
π arctan(

x−µ
θ

))(1−α)+α]−β

1−αβ

] .

Theorem 3.4.1. The AR(1) process given by (3.23) defines a stationary AR(1) minifi-

cation process with GCD(α, β, µ, θ) as marginal distribution if and only if ϵ′ns are i.i.d.

MOGCD (ρ−1, α, β, µ, θ) with X0
d
= GCD(α, β, µ, θ).

Proof. We have, sf for GCD(α, β, µ, θ) ,

F̄X(x) =
[
1− 1−αβ [(0.5+ 1

π
arctan(x−µ

θ
))(1−α)+α]−β

1−αβ

]
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Figure 3.6: MSEs of the estimates of α = 0.1, β = 0.5, µ = 2 and θ = 0.3.

The model (3.23) can be rewritten in terms of sf as

P (Xn > x) = P (ϵn > x)[ρ+ (1− ρ)P (Xn−1 > x)].

That is,

ḠXn(x) = Ḡϵn(x)[ρ+ (1− ρ)ḠXn−1(x)]. (3.24)
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Figure 3.7: MSEs of the estimates of α = 0.2, β = 0.1, µ = 1 and θ = 0.1.

If {Xn} is stationary with GCD(α, β, µ, θ) marginals, then

F̄ϵn(x) =
F̄X(x)

ρ+ (1− ρ)F̄X(x)

=

1
ρ

[
1− 1−αβ [(0.5+ 1

π
arctan(x−µ

θ
))(1−α)+α]−β

1−αβ

]
1− (1− 1

ρ
)
[
1− 1−αβ [(0.5+ 1

π
arctan(x−µ

θ
))(1−α)+α]−β

1−αβ

] .
That is, ϵ′ns are i.i.d. MOGCD (ρ−1, α, β, µ, θ).

Conversely, if ϵ′ns are i.i.d. MOGCD (ρ−1, α, β, µ, θ) with X0
d
= GCD(α, β, µ, θ) then from
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(3.24), we have

F̄X1(x) = ρF̄ϵ1(x) + (1− ρ)F̄ϵ1(x)F̄X0(x)

= ρ

1
ρ

[
1− 1−αβ [(0.5+ 1

π
arctan(x−µ

θ
))(1−α)+α]−β

1−αβ

]
1− (1− 1

ρ
)
[
1− 1−αβ [(0.5+ 1

π
arctan(x−µ

θ
))(1−α)+α]−β

1−αβ

]+
(1− ρ)

1
ρ

[
1− 1−αβ [(0.5+ 1

π
arctan(x−µ

θ
))(1−α)+α]−β

1−αβ

]
1− (1− 1

ρ
)
[
1− 1−αβ [(0.5+ 1

π
arctan(x−µ

θ
))(1−α)+α]−β

1−αβ

]
[
1−

1− αβ[(0.5 + 1
π
arctan(x−µ

θ
))(1− α) + α]−β

1− αβ

]
=

[
1−

1− αβ[(0.5 + 1
π
arctan(x−µ

θ
))(1− α) + α]−β

1− αβ

]
.

That is, X1
d
= GCD(α, β, µ, θ).

If we assume that Xn−1
d
= GCD(α, β, µ, θ) then by induction, we can establish that

Xn
d
= GCD(α, β, µ, θ).

Hence the process {Xn} is stationary with GCD marginals.

This completes the proof.

3.5 Applications

In this section, we consider two real data sets to compare fit of the GCD distribution with

the following distributions:

(a) Two parameter Cauchy distribution having pdf

f(x;µ, θ) =
1

πθ

1

(1 + (x−µ
θ
)2)
,
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where −∞ < x <∞,−∞ < µ <∞, θ > 0.

(b) Three parameter SC distribution introduced by Behboodian et al. (2006) with pdf

f(x;µ, θ, λ) =
1

πθ

1

(1 + (x−µ
θ
)2)

[
1 +

λ(x− µ)√
θ2 + (1 + λ2)(x− µ)2

]
,

where −∞ < x <∞,−∞ < µ, λ <∞, θ > 0.

(c) TC distribution introduced by Ball et al. (2021) with pdf

f(x;λ, µ, θ) =
1

πθ

1

(1 + (x−µ
θ
)2)

[
(1 + λ)− 2λ

(
1

π
arctan

(
x− µ

θ

)
+ 0.5

)]
,

where −∞ < x <∞,−1 ≤ λ ≤ 1,−∞ < µ <∞, θ > 0.

(d) New generalized Pareto (NGP) distribution introduced by Jayakumar et al. (2020)

with pdf

f(x;α, β, γ, θ) =
αβαθ(1− γ)γθ

1− γθ
xαθ−1

(γxα + (1− γ)βα)θ+1
,

where x > β, α, β, γ, θ > 0

The values of − ln(L), AIC, AICC and BIC are calculated for the five distributions in

order to verify which distribution fits better to data. The better distribution corresponds

to smaller − ln(L), AIC, AICC and BIC values.

3.5.1 First data set

The real data set corresponds to the data set from Nichols and Padgett (2006) on breaking

stress of carbon fibers (in Gba): The data set are given in Table 3.3.

The data is approximately symmetric with skewness= 0.541 and kurtosis= 0.141

The descriptive statistics of the above data set are given in Table 3.4. The values in Table
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Table 3.3: Carbon fibres data set.

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11
4.42 3.22 1.69 3.28 3.09 1.87 3.15 4.90 3.75 2.43
2.95 2.97 3.39 2.67 2.93 3.22 3.39 2.81 4.20 3.33
2.55 3.31 3.31 2.85 2.56 2.35 2.55 2.59 2.38 2.81
2.77 2.17 2.83 1.92 1.41 3.68 2.97 2.76 4.91 3.68
1.84 1.59 3.19 1.57 0.81 5.56 1.73 1.59 2.00 1.71
2.17 1.17 5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38
1.84 2.48 0.85 1.61 2.79 4.70 2.03 1.80 1.57 1.08
2.03 1.61 2.12 1.89 2.05 3.65

3.5 indicate that the GCD distribution provide better fit than other four models.

Figure 3.8, shows the fitted density curves for the first data set.

Table 3.4: Descriptive statistics of first data set.

Min 1st Q Median Mean 3rd Q Max
0.810 1.875 2.700 2.673 3.257 5.560

Table 3.5: Parameter estimates and goodness of fit for various models fitted for the first
data set.

Model parameter estimates log L AIC AICC BIC K-S p-value

Cauchy
µ̂ = 2.3966
θ̂ = 0.1000

-239.3104 484.6208 484.9134 491.9838 0.5806 0.002

SC
µ̂ = 2.5586
θ̂ = 0.1100
λ̂ = 0.6136

-136.5362 279.0724 279.365 286.4354 0.2203 0.004

TC
λ̂ = 0.6023
µ̂ = 2.6911
θ̂ = 0.1100

-136.478 278.956 279.2486 286.319 0.3177 0.005

NGP

α̂ = 0.7017
β̂ = 1.4363
γ̂ = 0.9996
θ̂ = 1.1291

-141.719 291.42 291.913 301.237 0.5060 0.002

GCD

µ̂ = 2.6474
θ̂ = 0.6047
α̂ = 0.9954
β̂ = 10.2729

-134.1803 276.3606 276.8544 286.1776 0.1035 0.3147
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Figure 3.8: Fitted pdf plots of first data set

3.5.2 Second data set

The second data set (http://www.ibge.gov.br/seriesestatisticas/exibedados.

php?idnivel=-BR&idserie=PRECO101), is the INPC data which represents the national

index of consumer prices in Brazil since 1979. The INPC index measures the cost of living

of households with head employees. The data set are given in Table 3.6.

The data is skewed-to-the right with skewness= 1.800 and kurtosis= 4.183.

The descriptive statistics of the above data set are given in Table 3.7. The values in Table

3.8 shows that the GCD distribution provide better fit than other four models.

Figure 3.9, shows the fitted density curves for the second data set.
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Table 3.6: INPC data

0.69 0.44 0.13 0.03 0.17 0.37 2.47 0.62 0.57 1.39 0.39
0.97 0.42 0.12 -0.11 0.50 0.39 2.70 0.31 0.84 0.30 0.55
0.43 0.49 0.27 0.70 0.73 0.82 3.39 1.07 0.48 -0.05 0.74
0.30 0.62 0.23 0.91 0.50 0.18 1.57 0.74 0.49 0.09 0.07
0.25 0.42 0.38 0.73 0.40 0.04 0.83 1.29 0.77 0.13 0.05
0.59 0.43 0.40 0.44 0.41 -0.06 0.86 0.94 0.55 0.05 0.47
0.32 0.16 0.54 0.57 0.57 0.99 1.15 0.44 0.29 0.61 1.28
0.31 -0.02 0.58 0.86 0.39 1.38 0.61 0.79 0.16 0.74 1.29
0.26 0.11 0.15 0.44 0.83 1.37 0.09 1.11 0.43 0.94 0.65
0.26 -0.07 0.00 0.17 0.54 1.46 0.68 0.60 1.21 0.96 0.42
-0.18 -0.28 0.49 0.15 0.18 0.68 0.34 1.20 0.29 1.51 2.46
0.11 0.15 0.54 0.29 0.35 0.45 0.38 1.33 0.71 1.40 2.18
-0.31 0.72 0.85 0.10 0.11 0.81 0.02 1.28 1.46 1.17 2.10
-0.49 0.45 0.57 -0.03 0.60 0.33 0.50 0.93 1.65 1.02 2.49
1.62 1.01 1.44

Table 3.7: Descriptive statistics of second data set.

Min 1st Q Median Mean 3rd Q Max
0.00000 0.290 0.500 0.6646 0.8600 3.3900

Table 3.8: Parameter estimates and goodness of fit for various models fitted for the second
data set.

Model parameter estimates log L AIC AICC BIC K-S p-value

Cauchy
µ̂ = 0.4792
θ̂ = 0.2656

-139.3542 284.7083 284.8653 293.8771 0.5372 0.0303

SC
λ̂ = 1.1888
µ̂ = 0.2424
θ̂ = 0.3275

-132.7465 271.4929 271.6499 280.6617 0.4158 0.2013

TC
λ̂ = 0.2527
µ̂ = 0.4995
θ̂ = 0.1400

-132.0012 270.0025 270.1593 276.1711 0.2076 0.2628

NGP

α̂ = 0.0490
β̂ = 0.0020
γ̂ = 0.0867
θ̂ = 0.0001

-138.308 284.616 284.879 296.840 0.8579 0.3260

GCD

µ̂ = 0.4858
θ̂ = 0.2193
α̂ = 0.9993
β̂ = 3.7722

-125.3175 258.635 258.8982 270.86 0.1249 0.6541
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Figure 3.9: Fitted pdf plots of second data set.

3.6 Summary

In this chapter, we proposed and studied a new family of distribution called the GCD

which extends Cauchy distribution. We studied various distributional characteristics of the

model. The GCD distribution is heavy-tailed and belongs to the class of subexponential

distributions. It has regularly varying tails and is a competitor of a number of existing

generalizations of Cauchy. We considered estimation of parameters of GCD distribution

using the method of ML, MPS, LS, CVM, AD and RTAD estimation. The heavy-tailed

properties of the model make it appropriate for modeling a number of real-life situations.

The applicability of the model is established by using two real data sets. From Tables 3.5

and 3.8, we observed a better performance of our model than the existing distributions.
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Chapter 4

A NEW FAMILY OF CAUCHY

DISTRIBUTION GENERATED

THROUGH DISCRETE MITTAG

LEFFLER DISTRIBUTION

4.1 Introduction

Cauchy distribution is one of the distributions that is stable. Stable distributions are a

particular family of probability distributions suitable for modeling data that are heavy

tailed and skewed. A detailed study of the generalized Cauchy family of distributions

with applications has been studied by Alzaatreh et al. (2016).

Marshall and Olkin (1997) introduced a new family of distributions by adding a pa-

rameter to a given family of distributions. They started with a parent sf F̄ (x) = 1−F (x)

1This Chapter is based on Fasna (2023)
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and considered a family of sf given by

Ḡ(x) =
αF̄ (x)

F (x) + αF̄ (x)
, α > 0. (4.1)

The construction of their family of distributions are in the following way:

Let X1, X2, . . . . be a sequence of i.i.d. r.v.s with sf F̄ (x). Let N be a geometric r.v.

with p.m.f Pr(N = n) = α(1 − α)n−1, for n = 1, 2, . . . and 0 < α < 1. Then the

random variable UN = min{X1, X2, . . . , XN} has the sf given by (4.1). If α > 1 and

N is a geometric r.v. with p.m.f Pr(N = n) = 1
α
(1 − 1

α
)n−1, n = 1, 2, . . . then the r.v.

VN = max{X1, X2, . . . , XN} also has the sf as in (4.1).

Many authors have studied various univariate distributions belonging to the Marshall-

Olkin family of distributions; see Ristic et al. (2007), Jose et al. (2010) and Cordeiro and

Lemonte (2013). Jayakumar and Mathew (2008) proposed a generalization of the family

of Marshall-Olkin distribution as

Ḡ(x;α, γ) =

[
αF̄ (x)

1− (1− α)F̄ (x)

]γ
, for α > 0, γ > 0 and x ∈ R. (4.2)

Nadarajah et al. (2013) introduced a new family of life time models as follows:

Let X1, X2, . . . be a sequence of i.i.d. r.v.s with sf F̄ (x) and N be a TNB r.v. with

parameters α ∈ (0, 1) and θ > 0. That is,

Pr(N = n) = αθ

1−αθ

(
θ+n−1
θ−1

)
(1− α)n, n = 1, 2, . . .

Consider UN = min{X1, X2, . . . , XN}. Then,

Pr(UN > x) = ḠU(x)

=
αθ

1− αθ

∞∑
n=1

(
θ + n− 1

θ − 1

)
((1− α)F̄ (x))n.
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That is,

ḠU(x) =
αθ

1− αθ
[(F (x) + αF̄ (x))−θ − 1]. (4.3)

Similarly, if α > 1 and N is a TNB r.v. with parameters 1
α

and θ > 0, then VN =

max{X1, X2, . . . , XN} also has the sf (4.3). This implies that we can consider a new

family of distributions having the sf

ḠU(x;α, θ) =
αθ

1− αθ
[(F (x) + αF̄ (x))−θ − 1], α > 0, θ > 0 and x ∈ R.

Note that ḠU(x;α, θ) −→ F̄ (x) as α −→ 1. This family is reduced to the Marshall-Olkin

family of distributions, when θ = 1. That means it is a generalization of the Marshall-Olkin

family.

Pillai and Jayakumar (1995) introduced the DML distribution and studied its proper-

ties. The mathematical origin of the DML distribution can be described as follows:

Consider a sequence of independent Bernoulli trails in which the kth trail has probability

of success α
k
with 0 < α < 1 and k = 1, 2, 3, . . .. Let N be the trail number in which the

first success occurs. Then the probability that {N = r} is given by

P (N = r) = (1− α)
(
1− α

2

)(
1− α

3

)
. . .

(
1− α

r − 1

)
α

r

=
(−1)rα(α− 1)(α− 2) . . . (α− r + 1)

r!
.

(4.4)

Probability generating function (pgf) of N is given byG(z) = 1−(1−z)α. LetX1, X2, . . . , Xn

be i.i.d. r.v.s as N and let X0 = 0. Let M be geometric distributed r.v. with parameter p,

ie. Pr(M = k) = qkp, k = 0, 1, 2, . . .; 0 < p < 1, q = 1− p.
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Then X1 +X2 + . . .+XM has generating function

P (z) =
p

1− q(1− (1− z)α)
=

1

1 + c(1− z)α
(4.5)

with p = 1
(1+c)

. The distribution with pgf (4.5) is known as DML distribution with

parameters α and c.

Sankaran and Jayakumar (2016) introduced the truncated DML distribution as follows:

Let a new r.v. Y such that

P (Y = x) =
P (X = x)

1− p0
; x = 1, 2, ...

Then

H(s) = E(sY ) =
∞∑
y=1

syp(X = y)

1− p0

=
1 + c

c

[
1

1 + c(1− s)α

]
− 1

c

Therefore

H(F̄ (x)) =
1 + c

c

[
1

1 + c(1− F̄ (x))α

]
− 1

c
.

Hence the sf of this family of distributions with parameters α and c is given by

Ḡ(x) =
1− Fα(x)

1 + cFα(x)
, (4.6)

The corresponding cdf is given by

G(x) =
(1 + c)Fα(x)

1 + cFα(x)
. (4.7)
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This truncated DML distribution reduces to Marshall-Olkin family when α = 1. So it can

be considered as a generalization of Marshall-Olkin family of distributions. In equation

(4.7), when F(x) is exponential, G(x) becomes the Marshall-Olkin generalized exponential

distribution studied in Ristic and Kundu (2015). When F(x) in equation (4.7) is Weibull,

G(x) reduces to Marshall-Olkin exponentiated Weibull distribution discussed in Bidram

et al. (2015). Hence equation (4.7) is a rich class which leads to various generalizations of

existing distributions that have the capability of modeling real data sets.

In this chapter we introduce a new family of univariate distribution which is a gen-

eralization of Marshall-Olkin family of distribution. We discuss the shape of the density

function and distribution function of the model under study. Also derive its quantiles,

mode, mean deviation and distribution of order statistics. We discuss the tail behaviour

of this new distribution and study the estimation of parameters. The parameters of the

probability distributions are estimated by the method of ML, MPS, LS, CVM, AD and

RTAD estimation. We analyze two real data sets to explore the usefullness of our proposed

distribution and finally conclusions are presented.

4.2 Discrete Mittag- Leffler Cauchy distribution

In this section, we introduce a new four parameter Cauchy distribution called truncated

Discrete Mittag- Leffler Cauchy distribution.

A r.v. X is said to have Cauchy distribution with parameters µ and θ if its pdf is given

by

f(x) =
1

πθ

1

(1 + (x−µ
θ
)2)

; −∞ ≤ x ≤ ∞,−∞ ≤ µ ≤ ∞, θ > 0 (4.8)
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and the cdf of X is given by

F (x) =
1

π
arctan

(
x− µ

θ

)
+ 0.5. (4.9)

4.2.1 Distribution function

Using (4.7), we get the distribution function G(x), for F(x) in (4.9) as

G(x) =
(1 + c)[ 1

π
arctan(x−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan(x−µ

θ
) + 0.5]α

, x ∈ R,−∞ ≤ µ ≤ ∞, α, c, θ > 0. (4.10)

We refer to this distribution as truncated Discrete Mittag- Leffler Cauchy (DMLC) distri-

bution with parameters α, c, µ and θ; and it is denoted by DMLC(α, c, µ, θ).

The cdf plots of DMLC(α, c, µ, θ) for various choices of the values of the parameters are

given in Figure 4.1.

4.2.2 Probability density function

The pdf of DMLC(α, c, µ, θ) is obtained is

g(x) =
α(1 + c)[0.5 + 1

π
arctan(x−µ

θ
)]α−1

πθ(1 + (x−µ
θ
)2)[1 + c[ 1

π
arctan(x−µ

θ
) + 0.5]α]2

. (4.11)

The pdf plots of DMLC(α, c, µ, θ) for various values of the parameters are given in Figure

4.2.

Remark 4.2.1. When α = 1 and c −→ 0, DMLC reduces to Cauchy distribution with

parameters µ and θ.

DMLC(α, c, µ, θ) distribution for the fact that it’s expected value and other moments
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Figure 4.1: Plots of the cdf of DMLC(α, c, µ, θ) distribution

do not exist. The median, mode do exist.

Theorem 4.2.1. The limit of the DMLC density function as x→ ±∞ is zero.

Proof. Trivial and hence omitted.

4.2.3 Quantile function

Theorem 4.2.2. The qth quantile xq of the DMLC r.v. is given by

xq = µ+ θ tan

[
π

[(
q

1 + c− qc

) 1
α

− 0.5

]]
. (4.12)
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Figure 4.2: Plots of the pdf of DMLC(α, c, µ, θ) distribution

Proof. The qth quantile xq of the DMLC r.v. is defined as

q = P (X ≤ xq) = G(xq), xq ∈ R

Using the cdf of the DMLC distribution, we have

q = G(xq) =
(1 + c)

[
1
π
arctan

(
x−µ
θ

)
+ 0.5

]α
1 + c[ 1

π
arctan

(
x−µ
θ

)
+ 0.5]α

That is,

(1 + c)

[
0.5 +

1

π
arctan

(
x− µ

θ

)]α
= q

[
1 + c

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]α]
(4.13)
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Which implies

[
0.5 +

1

π
arctan

(
x− µ

θ

)]
=

[
q

1 + c− qc

] 1
α

(4.14)

We get

xq = µ+ θ tan

[
π

[(
q

1 + c− qc

) 1
α

− 0.5

]]
.

This completes the proof.

Using the inversion method, we can generate r.v.s from the DMLC distribution by

using the equation (4.12) when the parameters α, c, µ and θ are known.

The median of DMLC is given by,

x0.5 = µ+ θ tan

[
π

[(
0.5

1 + 0.5c

) 1
α

− 0.5

]]
. (4.15)

4.2.4 Mode

Theorem 4.2.3. The mode of the DMLC(α, c, µ, θ) is the solution of the equation k(x) =

0, where

k(x) = (α− 1)π

[
0.5 +

1

π
arctan

(
x− µ

θ

)][
1 + c

(
0.5 +

1

π
arctan

(
x− µ

θ

)α)]
− 2cα

[
0.5 +

1

π
arctan

(
x− µ

θ

)]α−1

.

Proof. The critical point of DMLC density function are the roots of the equation

∂ log(f(x))

∂x
= 0
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That is

∂ log(g(x))

∂x
=

(α− 1)

πθ2[0.5 + 1
π
arctan

(
x−µ
θ

)
](1 + (x−µ

θ
)2)

− 1

θ2(1 + (x−µ
θ
)2)

−
2cα[0.5 + 1

π
arctan(x−µ

θ
)]α−1

πθ2(1 + (x−µ
θ
)2)[1 + c[0.5 + 1

π
arctan(x−µ

θ
)]α]

(4.16)

The critical values of equation (4.16) are the solution of k(x) = 0.

Hence the proof.

4.2.5 Mean deviation

Let M be the median of DMLC distribution given by equation (4.15).

The mean deviation about the median can be calculated as

δ(X) = E|X −M | =
∫ ∞

−∞
|x−M |g(x)dx,

Hence we obtain the following equation δ = µ− 2J(M) where J(q) is

J(q) =
α(1 + c)

πθ

∫ q

−∞

x[0.5 + 1
π
arctan(x−µ

θ
)]α−1

(1 + (x−µ
θ
)2)[1 + c[ 1

π
arctan(x−µ

θ
) + 0.5]α]2

dx. (4.17)

One can easily compute this integral numerically in software such as R, MATLAB, Math-

cad, and others and hence obtain the mean deviation about the median.

4.2.6 Reliability function

The reliability function of DMLC(α, c, µ, θ) is given by,

R(t) = 1−

[
(1 + c)[ 1

π
arctan( t−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan( t−µ

θ
) + 0.5]α

]
. (4.18)
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The reliability plot of DMLC(α, c, µ, θ) for various choices of the values of the parameters

are presented in Figure 4.3.
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Figure 4.3: Plots of the reliability function of DMLC(α, c, µ, θ) distribution

4.2.7 Hazard rate function

The hrf of DMLC(α, c, µ, θ) is given by,

h(t) =

α(1+c)[0.5+ 1
π
arctan( t−µ

θ
)]α−1

πθ(1+( t−µ
θ

)2)[1+c[ 1
π
arctan( t−µ

θ
)+0.5]α]2

1−
[
(1+c)[ 1

π
arctan( t−µ

θ
)+0.5]α

1+c[ 1
π
arctan( t−µ

θ
)+0.5]α

] . (4.19)

The plot of hrf of DMLC(α, c, µ, θ) for various choices of the values of the parameters are

presented in Figure 4.4. The cumulative hrf of a DMLC distribution, H(t) is given by,
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Figure 4.4: Plots of the hazard rate function of DMLC(α, c, µ, θ) distribution

H(t) = − lnR(t) = − ln

[
1−

[
(1 + c)[ 1

π
arctan( t−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan( t−µ

θ
) + 0.5]α

]]
. (4.20)

Theorem 4.2.4. The limit of the DMLC hrf as t→ ±∞ is zero.

Proof. Trivial and hence omitted.
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4.2.8 Order statistics

Let X1, X2, . . . , Xn be a random sample from DMLC(α, c, µ, θ) and let X(1), X(2), . . . , X(n)

denote the corresponding order statistics. Then the pdf of kth order statistic is given by

gX(x) =
n!

(k − 1)!(n− k)!
g(x)[G(x)]k−1 [1−G(x)]n−k

=
n!

(k − 1)!(n− k)!

α(1 + c)[0.5 + 1
π
arctan(x−µ

θ
)]α−1

πθ(1 + (x−µ
θ
)2)[1 + c[ 1

π
arctan(x−µ

θ
) + 0.5]α]2[

(1 + c)[ 1
π
arctan(x−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan(x−µ

θ
) + 0.5]α

]k−1 [
1−

(1 + c)[ 1
π
arctan(x−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan(x−µ

θ
) + 0.5]α

]n−k

.

(4.21)

4.2.9 Model identifiability

To prove model identifiability only with respect to the parameters α and c, since the other

two parameters (µ and θ) are from the parent distribution. Suppose that G(x;α1, c1) =

G(x;α2, c2) for all x ∈ R. We have to show this condition implies that α1 = α2 and

c1 = c2.

We know, F is the parent distribution and the mixing distribution is truncated discrete

Mittag-Leffler distribution.

Sankaran and Jayakumar (2016) introduced truncated discrete Mittag-Leffler distributions

with cdf given by

G(x) =
(1 + c)Fα(x)

1 + cFα(x)
. (4.22)

Now, if the parent distribution F transformed to Cauchy distribution by adding parameters

µ and θ, then

G(x) =
(1 + c)[ 1

π
arctan(x−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan(x−µ

θ
) + 0.5]α

, x ∈ R,−∞ ≤ µ ≤ ∞, α, c, θ > 0, (4.23)
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This is the cdf of our proposed distribution.

For proving model identifiability, we use Theorem 2.4 of Chandra (1977)

Proposition 4.2.1. The class of all mixing distributions relative to the DMLC distribution

is identifiable.

Proof. If Ni is truncated discrete Mittag-Leffler r.v., then the pgf is

ϕi(s) =
1

1 + c(1− s)α
, i = 1, 2

From the cdf of Ni, we have

G1 < G2 when c1 = c2 and α1 < α2

and

G1 < G2 when α1 = α2 and c1 < c2.

Let the domain of definition Dϕ1(s) = (−∞, c1), Dϕ2(s) = (−∞, c2) and s = 1 + ( 1
c1
)

1
α1 .

Hence,

lim
s→1+( 1

c1
)

1
α1

ϕ1(s) =
1

1 + c1(1− (1 + ( 1
c1
)

1
α1 ))α1

= ∞

When α1 = α2, and c2 < c1, we obtain

lim
s→1+( 1

c1
)

1
α1

ϕ2(s) =
1

1 + c2(1− (1 + ( 1
c1
)

1
α1 ))α1

> 0

So

lim
s→1+( 1

c1
)

1
α1

ϕ2(s)

ϕ1(s)
= 0,

and thus the model identifiability is proved. Hence the cdf G is identifiable with respect
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to α and c.

This completes the proof.

4.2.10 Tail behaviour

In this section, we study the tail behaviour of DMLC distribution. Figure 4.5 plots the
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Figure 4.5: Comparison of right tails of Cauchy, Normal and DMLC densities.

right tails of density of DMLC and compare them with Cauchy and normal densities.

DMLC distribution has tails thicker than both Cauchy and normal.

We can easily shows that lim supx→∞ g(x)emx = ∞ for any m > 0, Hence the density f is

heavy tailed.

The following theorem establishes that the density function given in equation (4.11) is a
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function with regularly varying tails.

Theorem 4.2.5. The density function of DMLC distribution is a function with regularly

varying tails.

Proof. Using the density function (4.11), we have

lim
x→∞

g(ax)

g(x)
= lim

x→∞

α(1+c)[0.5+ 1
π
arctan(ax−µ

θ
)]α−1

πθ(1+(ax−µ
θ

)2)[1+c[ 1
π
arctan(ax−µ

θ
)+0.5]α]2

α(1+c)[0.5+ 1
π
arctan(x−µ

θ
)]α−1

πθ(1+(x−µ
θ

)2)[1+c[ 1
π
arctan(x−µ

θ
)+0.5]α]2

.

Applying limits, the above simplifies to

lim
x→∞

g(ax)

g(x)
=

1

a2
,

Hence we arrive at the desired result.

Theorem 4.2.6. The DMLC distribution belongs to the class long tailed distribution L.

Proof.

lim
x→∞

g(x+ y)

g(x)
=

α(1+c)[0.5+ 1
π
arctan(

(x+y)−µ
θ

)]α−1

πθ(1+(
(x+y)−µ

θ
)2)[1+c[ 1

π
arctan(

(x+y)−µ
θ

)+0.5]α]2

α(1+c)[0.5+ 1
π
arctan(x−µ

θ
)]α−1

πθ(1+(x−µ
θ

)2)[1+c[ 1
π
arctan(x−µ

θ
)+0.5]α]2

= 1,

then f belongs to the class L, the class of long tailed distributions.

Theorem 4.2.7. The DMLC distribution belongs to the class D dominated variation dis-

tributions.

Proof.

lim
x→∞

g(x)

g(2x)
= lim

x→∞

α(1+c)[0.5+ 1
π
arctan(x−µ

θ
)]α−1

πθ(1+(x−µ
θ

)2)[1+c[ 1
π
arctan(x−µ

θ
)+0.5]α]2

α(1+c)[0.5+ 1
π
arctan( 2x−µ

θ
)]α−1

πθ(1+( 2x−µ
θ

)2)[1+c[ 1
π
arctan( 2x−µ

θ
)+0.5]α]2

,

Applying limits, the above simplifies to

lim
x→∞

g(x)

g(2x)
= 22,
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then f belongs to the class of dominated variation distributions.

Two distributions G and F are said to be tail-equivalent if

lim
x→∞

Ḡ(x)

F̄ (x)
= a ∈ (0,∞).

Hence it can be shown that DMLC and Cauchy distribution are tail-equivalent.

4.3 Estimation of parameters

In this section, we use ML, MPS, LS, CVM, AD and RTAD procedure for estimation.

4.3.1 Method of maximum likelihood

If the parameters of the DMLC distribution are unknown, then the ML estimates of the

parameters are given as follows. For analytical simpilicity, let assume that µ = 0 and

θ = 1.

Consider a random sample x1, x2, . . . , xn of size n from the DMLC(α, c, µ, θ) distribution

where µ = 0 and θ = 1. Then, the log likelihood function is given by

logL = n logα + n log(1 + c)− n log(πθ) + (α− 1)
n∑

i=1

log[0.5 +
1

π
arctan(xi)]

−
n∑

i=1

log(1 + x2i )− 2
n∑

i=1

log[1 + c[0.5 +
1

π
arctan(xi)]

α].

(4.24)

The likelihood equations are,

∂ logL

∂α
=
n

α
+

n∑
i=1

log[0.5 +
1

π
arctan(xi)]

[
1−

2c(0.5 + 1
π
arctan(xi))

α

1 + c(0.5 + 1
π
arctan(xi))α

]
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= 0, (4.25)

and

∂ logL

∂c
=

n

1 + c
−

n∑
i=1

2
[
0.5 + 1

π
arctan(xi)

]α
1 + c

[
0.5 + 1

π
arctan(xi)

]α = 0. (4.26)

These equations do not have exact solutions and they have to be obtained numerically by

using statistical softwares like optim package in R programming.

4.3.2 Method of maximum product spacings

The cdf of DMLC distribution is given by equation (4.10), and the uniform spacing are

defined as follows:

D1 = F (x1) =
(1 + c)[ 1

π
arctan(x1−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan(x1−µ

θ
) + 0.5]α

,

Dn+1 = 1− F (xn) = 1−
[
(1 + c)[ 1

π
arctan(xn−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan(xn−µ

θ
) + 0.5]α

]
,

and the general term of spacing is given by

Di = F (xi)− F (xi−1)

such that
∑
Di = 1.

Method of product spacing choose the estimates which maximizes the product of spacings

or which maximizes the geometric mean of the spacing. That is, we find estimates such

that

G =

[
n+1∏
i=1

Di

] 1
n+1

,
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is maximized. Taking the logarithm of G, we get

H =
1

n+ 1

n+1∑
i=1

log(Di).

Differentiating the above equation partially, with respect to the parameters α, c, µ and

θ respectively and them equating to zero, we get the normal equations. These equations

do not have exact solutions and they have to be obtained numerically by using statistical

softwares like optim package in R programming.

4.3.3 Method of least square estimation

The LS estimators of the unknown parameters α, c, µ and θ of DMLC distribution can

be obtained by minimizing

n∑
i=1

[
F (xi | α, c, µ, θ)−

i

n+ 1

]2

=
∑n

i=1

[
(1+c)[ 1

π
arctan(

xi−µ

θ
)+0.5]α

1+c[ 1
π
arctan(

xi−µ

θ
)+0.5]α

− i
n+1

]2
.

Partially differentiating the above equation with respect to unknown parameters α, c,

µ and θ respectively and equating them to zero, we get the normal equations. These

equations do not have exact solutions and they have to be obtained numerically by using

statistical softwares like optim package in R programming.
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4.3.4 Method of Cramer-von Mises

The CVM estimators α̂CME, ĉCME, µ̂CME and θ̂CME are the values of α, c, µ and θ

minimizing

C(α, c, µ, θ) =
1

12n
+

n∑
i=1

[
F (xi | α, c, µ, θ, )−

2i− 1

2n

]2

=
1

12n
+

n∑
i=1

[
(1 + c)[ 1

π
arctan(xi−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan(xi−µ

θ
) + 0.5]α

− 2i− 1

2n

]2
.

Differentiating the above equation partially, with respect to the parameters α, c, µ and

θ respectively and equating them to zero, we get the normal equations. These equations

do not have exact solutions and they have to be obtained numerically by using statistical

softwares like optim package in R programming.

4.3.5 Methods of Anderson-Darling and

right-tail Anderson-Darling

The AD estimators α̂ADE,ĉADE,µ̂ADE and θ̂ADE are the values of α, c, µ and θ minimizes

A(α, c, µ, θ) = −n− 1

n

n∑
i=1

(2i− 1){logF (xi | α, c, µ, θ) + log F̄ (xn+1−i | α, c, µ, θ)}

= −n− 1

n

n∑
i=1

(2i− 1)

{
log

[
(1 + c)[ 1

π
arctan(xi−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan(xi−µ

θ
) + 0.5]α

]
+ log

[
1−
[

(1 + c)[ 1
π
arctan(xi−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan(xn+1−i−µ

θ
) + 0.5]α

]]}
.

110



The RTAD estimators α̂RTADE,ĉRTADE,µ̂RTADE and θ̂RTADE are the values of α, c, µ and

θ minimizes

R(α, β, µ, θ) =
n

2
− 2

n∑
i=1

F (xi | α, c, µ, θ)−
1

n

n∑
i=1

(2i− 1) log F̄ (xn+1−i | α, c, µ, θ)

=
n

2
− 2

n∑
i=1

[
(1 + c)[ 1

π
arctan(xi−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan(xi−µ

θ
) + 0.5]α

]
− 1

n

n∑
i=1

(2i− 1) log

[
1−
[
(1 + c)[ 1

π
arctan(xi−µ

θ
) + 0.5]α

1 + c[ 1
π
arctan(xi−µ

θ
) + 0.5]α

]]
.

Partially differentiating the above equation with respect to the parameters α, c, µ and

θ respectively and them equating to zero, we get the normal equations. These equations

do not have exact solutions and they have to be obtained numerically by using statistical

softwares like optim package in R programming.

4.3.6 Simulation study

By conducting Monte Carlo simulation to compare the performance of the estimators dis-

cussed in the previous sections and the process is repeated 1000 times. We evaluate the

performance of the estimators based on bias and MSE. Methods are compared for sample

sizes n = 100, n = 250 and n = 500.

For each estimate we calculate the bias, MSE. The statistics are obtained using the fol-

lowing formulae.

Bias(α̂) = 1
n

∑n
i=1(α̂− α) Bias(ĉ) = 1

n

∑n
i=1(ĉ− c)

Bias(µ̂) = 1
n

∑n
i=1(µ̂− µ) Bias(θ̂) = 1

n

∑n
i=1(θ̂ − θ)

MSE(α̂) = 1
n

∑n
i=1(α̂− α)2 MSE(ĉ) = 1

n

∑n
i=1(ĉ− c)2

MSE(µ̂) = 1
n

∑n
i=1(µ̂− µ)2 MSE(θ̂) = 1

n

∑n
i=1(θ̂ − θ)2

The biases and the MSEs of the parameter estimates for the ML, MPS, LS, CVM, AD
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and RTAD estimation are presented in Table 4.1 and 4.2.

From Table 4.1 and 4.2, we can see that the ML method performs well for estimating

the model parameters. Also, as the sample size increases the biases and the MSEs of the

average estimates of ML estimates decrease as expected.

The following observations can be drawn from Tables 4.1 and 4.2.

1. All the estimators exhibit the property of consistency, i.e., the MSE decreases as the

sample size increases.

2. The bias of all parameters decreases with an increasing n for all the methods of esti-

mations.

3. The bias of µ̂,ĉ increases with an increasing mu, c for any given mu, c and n and for

all the methods of estimation.

4. All the methods of estimation produce smaller MSE for θ̂ than that of other parameters.

Table 4.1: Simulation results for α = 0.8, c = 1.2, µ = 0.6, and θ = 0.2.

n Parameters ML MPS LS CVM AD RTAD
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

100

α
c
µ
θ

-0.0039
1.0581
0.0128
0.0026

0.03201
1.1196
0.0026
0.0012

-0.0353
-0.5985
0.0010
-0.0022

0.0152
4.5855
0.0053
0.0018

0.0659
0.1349
0.0195
-0.0033

0.0456
1.7005
0.0043
0.0017

0.0571
0.0469
0.0199
0.00217

0.0399
1.8266
0.0044
0.0016

-0.0044
-0.3503
0.0030
0.0009

0.0332
2.8755
0.0034
0.0015

0.0258
-0.2966
0.0046
0.0037

0.0510
3.2983
0.0040
0.0017

250

α
c
µ
θ

-0.0014
-0.1832
0.0052
0.0015

0.0103
0.8025
0.0012
0.0003

0.0028
-0.0979
0.0066
-0.0015

0.0245
1.1546
0.0024
0.0007

0.0364
0.0881
0.0124
-0.0018

0.02149
0.9199
0.0021
0.00068

0.0271
0.0338
0.0093
-0.0008

0.0200
0.8894
0.0019
0.0007

-0.0009
-0.1514
0.0008
0.0014

0.0127
0.8455
0.0014
0.0006

0.0203
-0.0847
0.0043
0.0019

0.0275
1.2252
0.0018
0.0006

500

α
c
µ
θ

0.0026
-0.0005
0.0007
0.0005

0.0058
0.3019
0.0009
0.0001

0.0185
0.0588
0.0096
-0.0017

0.0181
0.5977
0.0017
0.0003

0.0278
0.0842
0.0082
0.0009

0.0113
0.4717
0.0011
0.0003

0.0101
-0.0183
0.0040
-0.0002

0.0108
0.4675
0.0010
0.0003

0.0044
-0.0382
0.0008
0.0001

0.0071
0.3599
0.0008
0.0003

0.0158
-0.0006
0.0014
0.0014

0.0147
0.5492
0.0043
0.0003

Figures 4.6 and 4.7 show respectively the MSE of the simulated estimates of α, c, µ

and θ for different values of n. Based on these figures, the MSEs of all estimates tends to

zero for large n.
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Table 4.2: Simulation results for α = 0.5, c = 2, µ = 1, and θ = 1.5.

n Parameters ML MPS LS CVM AD RTAD
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

100

α
c
µ
θ

-0.0017
-0.1709
0.0408
-0.0128

0.0059
2.3902
0.1670
0.1039

0.0044
-0.2943
0.3427
-0.0829

0.0117
5.5597
1.9234
0.3078

0.0348
0.1846
0.2493
-0.2101

0.0097
2.6119
0.6126
0.4661

0.0128
-0.1844
0.1917
-0.1354

0.0100
3.6851
0.6366
0.4405

-0.0013
-0.2986
0.0678
-0.0702

0.0081
3.1976
0.3273
0.2092

0.0060
-0.3446
0.0935
-0.0194

0.011
4.2437
0.22719
0.1864

250

α
c
µ
θ

0.0019
-0.0596
0.0315
-0.0039

0.0021
0.7301
0.1000
0.0581

0.03124
0.2396
0.4622
-0.1012

0.0110
2.9268
1.0162
0.1951

0.0206
0.1581
0.1369
-0.1147

0.0054
1.2398
0.3061
0.1980

0.0108
0.0150
0.1248
-0.0873

0.0053
1.4775
0.2705
0.1816

0.0022
-0.0600
0.0446
-0.0314

0.0028
0.8655
0.1269
0.0871

0.0035
-0.1153
0.0324
-0.0139

0.0042
1.1827
0.1008
0.0731

500

α
c
µ
θ

0.0011
-0.0561
0.0214
-0.0045

0.0019
0.5992
0.0466
0.0290

0.0429
0.4201
0.5353
-0.1252

0.0109
2.3069
0.0795
0.1594

0.0200
0.2139
0.1387
-0.1234

0.0045
0.8504
0.2330
0.1481

0.0134
0.1369
0.1269
-0.1250

0.0040
0.8475
0.2348
0.1523

0.0003
-0.0490
0.0099
-0.0138

0.0015
0.4275
0.0594
0.0398

0.0003
-0.0243
0.0236
-0.0165

0.00236
0.5673
0.0549
0.03858

4.4 Applications

In this section we considered two sets of real data and compare the fit of the DMLC

distribution with the following distributions:

(a) Two parameter Cauchy distribution having pdf

f(x;µ, θ) =
1

πθ

1

(1 + (x−µ
θ
)2)

;

where x ∈ R,−∞ < µ <∞, θ > 0,

(b) Three parameter SC distribution introduced by Behboodian et al. (2006) with pdf

f(x;µ, θ, λ) =
1

πθ

1

(1 + (x−µ
θ
)2)

[
1 +

λ(x− µ)√
θ2 + (1 + λ2)(x− µ)2

]
;

where x ∈ R,−∞ < µ, λ <∞, θ > 0.

The values of − ln(L), AIC, AICC and BIC are calculated for the three distributions to

verify which distribution fits better to real data set. The better distribution corresponds

to smaller − ln(L), AIC, AICC and BIC values.
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Figure 4.6: MSEs of the estimates of α = 0.8,c = 1.2,µ = 0.6, and θ = 0.2.

4.4.1 First data set

The real data set corresponds to data set from Weisberg (2005) represents the sum of skin

folds in 102 male and 100 female athletes collected at the Australian Institute of Sports.

The data set is given in Table 4.3. The data is skewed to the right with skewness=1.175

and kurtosis=1.365.

The descriptive statistics of the first data set are given in Table 4.4. The values in Table

4.5 shows that the DMLC distribution gives a better fit than other two models.

Figure 4.8 shows the fitted density curves for the first data set. Figure 4.9 shows the

empirical and the fitted cdfs for the first data set.
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Figure 4.7: MSEs of the estimates of α = 0.5,c = 2,µ = 1, and θ = 1.5.

Table 4.3: Skin folds data.

28 98 89 68.9 69.9 109 52.3 52.8 46.7 82.7 42.3 109.1 96.8 98.3 103.6
110.2 98.1 57 43.1 71.1 29.7 96.3 102.8 80.3 122.1 71.3 200.8 80.6 65.3 78
65.9 38.9 56.5 104.6 74.9 90.4 54.6 131.9 68.3 52 40.8 34.3 44.8 105.7 126.4
83 106.9 88.2 33.8 47.6 42.7 41.5 34.6 30.9 100.7 80.3 91 156.6 95.4 43.5
61.9 35.2 50.9 31.8 44 56.8 75.2 76.2 101.1 47.5 46.2 38.2 49.2 49.6 34.5
37.5 75.9 87.2 52.6 126.4 55.6 73.9 43.5 61.8 88.9 31 37.6 52.8 97.9 111.1
114 62.9 36.8 56.8 46.5 48.3 32.6 31.7 47.8 75.1 110.7 70 52.5 67 41.6
34.8 61.8 31.5 36.6 76 65.1 74.7 77 62.6 41.1 58.9 60.2 43.0 32.6 48
61.2 171.1 113.5 148.9 49.9 59.4 44.5 48.1 61.1 31.0 41.9 75.6 76.8 99.8 80.1
57.9 48.4 41.8 44.5 43.8 33.7 30.9 43.3 117.8 80.3 156.6 109.6 50.0 33.7 54.0
54.2 30.3 52.8 49.5 90.2 109.5 115.9 98.5 54.6 50.9 44.7 41.8 38.0 43.2 70.0
97.21 23.6 181.7 136.3 42.3 40.5 64.9 34.1 55.7 113.5 75.7 99.9 91.2 71.6 103.6
46.1 51.2 43.8 30.5 37.5 96.9 57.7 125.9 49.0 143.5 102.8 46.3 54.4 58.3 34.0
112.5 49.3 67.2 56.5 47.6 60.4 34.9
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Table 4.4: Descriptive statistics of first data set.

Min 1st Q Median Mean 3rd Q Max
28.00 43.85 58.60 69.02 90.35 200.80

Table 4.5: Parameter estimates for various models fitted for the first data set.

Model parameter estimates − logL AIC AICC BIC

Cauchy
µ̂ = 55.5789
θ̂ = 16.9283

1011.7310 2027.4630 2027.5223 2034.0785

SC
µ̂ = 30.1404
θ̂ = 27.9345
λ̂ = 29.6768

972.6959 1951.3920 1957.8225 1977.2414

DMLC

µ̂ = −10.2494
θ̂ = 11.6394
α̂ = 82.2378
ĉ = 85.5034

964.0236 1936.047 1936.2088 1949.2802

4.4.2 Second data set

Here, we consider a heavy-tailed real data set from the insurance field to explore the

usefulness of the DMLC distribution. This data set represents monthly metrics on un-

employment insurance from July 2008 to April 2013 including 58 observations, and it is

reported by the Department of Labor, Licensing and Regulation, State of Maryland, USA.

The data consist of 21 variables and we particularly analyze the variable number 13(% of

claims filed via the internet). The data are available at: https://catalog.data.gov/d

ataset/unemployment-insurance-data-july-2008-to-april-2013.

The data is skewed to the left with skewness=-1.3764 and kurtosis=2.8259.

The descriptive statistics of the second data set are given in Table 4.6. The values in Table

4.7 shows that the DMLC distribution gives a better fit than other two models.

Figure 4.10 shows the fitted density curves for the second data set.

Figure 4.11 shows the empirical and the fitted cdfs for the second data set.

116

https://catalog.data.gov/dataset/unemployment-insurance-data-july-2008-to-april-2013
https://catalog.data.gov/dataset/unemployment-insurance-data-july-2008-to-april-2013


x

D
e
n
s
it
y

0 50 100 150 200 250

0
.0

0
0

0
.0

1
0

0
.0

2
0 Cauchy

SkewCauchy

DMLC

Figure 4.8: Fitted pdf plots of first data set

Table 4.6: Descriptive statistics of second data set.

Min 1st Q Median Mean 3rd Q Max
18.80 40.00 44.00 43.22 48.98 54.50

4.5 Summary

In this chapter, we introduced and studied a new family of distribution called the DMLC

distribution which extends Cauchy distribution. In the present work, we studied some

basic statistical and mathematical properties of this new model. The DMLC distribution

is heavy-tailed and it has regularly varying tails. The model parameters are estimated by

the methods of estimation namely ML, MPS, LS, CVM, AD and RTAD. We performed

simulation study to compare these methods. The simulation results showed that ML
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Figure 4.9: Empirical and the fitted cdfs for the first data set

Table 4.7: Parameter estimates for various models fitted for the second data set.

Model parameter estimates − logL AIC AICC BIC

Cauchy
µ̂ = 3.9147
θ̂ = 43.6130

201.1985 406.3969 406.6151 410.5178

SC
µ̂ = 41.4275
θ̂ = 0.5385
λ̂ = 3.8896

200.9152 407.8305 408.2748 414.0117

DMLC

µ̂ = 52.7924
θ̂ = 7.5182
α̂ = 3.3043
ĉ = 120.6444

193.6542 395.3085 396.0631 403.550

estimators are the better performing estimator in terms of biases and MSEs. Fitting

the DMLC model with real data sets indicates the flexibility and capacity of this new

distribution in data modeling.

118



x

D
e
n
s
it
y

0 10 20 30 40 50 60 70

0
.0

0
.2

0
.4

Cauchy

SkewCauchy

DMLC

Figure 4.10: Fitted pdf plots of second data set
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Figure 4.11: Empirical and the fitted cdfs for the second data set
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Chapter 5

A NEW METHOD FOR

GENERATING DISTRIBUTIONS

WITH AN APPLICATION TO

CAUCHY DISTRIBUTION

5.1 Introduction

The development of new methods of elaborating the existing distributions is a wide area

in distribution theory. Various approaches have been proposed in statistical literature to

generate new distributions based on a baseline distribution. This has been accomplished

through various approaches.

In Statistical literature, number of transformations are accessible to produce new cdf

corresponding to a given cdf. Suppose, we have a cdf F(x), then the related proposed cdf

will be Gi(x).

1This Chapter is based on Fasna (2022)
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• The power transformation initiated by Gupta et al. (1998) having cdf of the form

G1(x) = [F (x)]α;α > 0

• QRTM introduced by Shaw and Buckley (2009) having cdf of the form

G2(x) = (1 + λ)F (x)− λF 2(x); | λ |≤ 1

• DUS transformation proposed by Kumar et al. (2015a) having cdf of the form

G3(x) =
eF (x) − 1

e− 1
; e = exp(1)

• SS-transformation proposed by Kumar et al. (2015b) having cdf of the form

G4(x) = sin
(π
2
F (x)

)

• Minimum Guarantee (MG) distribution introduced by Kumar et al. (2017) having

the form

G5(x) = e1−
1

F (x)

• Log-transformation proposed by Maurya et al. (2016) and having cdf of the form

G6(x) = 1− ln(2− F (x))

ln 2

• Transformation based on the generalization of Kumar et al. (2015a) called GDUS

122



transformation proposed by Maurya et al. (2017) having cdf of the form

G7(x) =
eF

α(x) − 1

e− 1
;α > 0

• New transformation proposed by Kyurkchiev (2017) to develop a sigmoid family of

functions for Verhulst Logistic function is

G9(x) =
2F (x)

1 + F (x)

• New trigonometry transformation called PCM proposed by Kumar et al. (2021) and

having cdf of the form

G10(x) = tan
(π
4
F (x)

)

In this continuation after taking motivations and ideas from the above discussed transfor-

mations, we introduce a new transformation called the beta transformation for x ∈ R is

given below

G(x) =


β

β−1
[1− β−F (x)] if β > 0, β ̸= 1

F (x) if β = 1

(5.1)

Where, G(x) and F (x) are the cdfs of this new transformation and baseline distribution.

On differentiating (5.1) with respect to x, we get the pdf g(x) and is given by

g(x) =


β log β
β−1

f(x)β−F (x) if β > 0, β ̸= 1

f(x) if β = 1

(5.2)
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For β ̸= 1, g(x) is a weighted version of f(x), where the weight function

w(x) = β−F (x),

and g(x) can be written as

g(x) =
f(x)w(x)

c
.

where constant c = E(w(X)),

Here c = β−1
β log β

.

The sf s(x) and the hrf h(x) are obtained as

s(x) =


β1−F (x)−1

β−1
if β ̸= 1

1− F (x) if β = 1

(5.3)

and

h(x) =


f(x) log ββ

1−F (x)

β1−F (x)−1
if β ̸= 1

f(x)
S(x)

if β = 1

(5.4)

Lifetime models are widely used in various fields to analyze and explain the lifespan or

failure behavior of systems or devices. These models are apt in biological field, reliability,

insurance, engineering, etc. The motivations for introducing our beta transformed model is

that it is efficient to analyze lifetime data and very easy method of inducting an additional

parameter to a family of distributions functions. It improve the characteristics, bring more

flexibility to the given family and provide better fits than the other models having the

same or higher number of parameters. The proposed method is very interesting with a

closed form for the cdf and capable of modeling heavy tailed data sets.
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The aim of this chapter is to introduce a transformation that yields new distributions

by using a given baseline distribution. It contains only one new parameter other than the

parameters involved in the baseline distribution. To illustrate the usefulness of this new

transformation, we choose Cauchy as the baseline distributions in the present work.

This chapter is organized as follows. We introduce a special sub-case of (5.1) called

a beta transformed Cauchy (BTC) distribution by considering Cauchy model as a parent

distribution and discuss the shape of the density function and distribution function of the

model. We derive the quantiles, mode and pdf of order statistics. Certain characterizations

of the proposed distribution are to be addressed. The method of ML, CVM, AD and LS

estimations are discussed. We examine the usefulness of the proposed distribution by

means of real data set which exhibits the performance of BTC model compared with

other Cauchy generated models. Estimation techniques are applied to calculate the model

parameters. Finally, the summary is presented.

5.2 Beta transformed Cauchy distribution

In this section, a sub model of the beta transformed family called the beta transformed

Cauchy (BTC) distribution is proposed.

5.2.1 Distribution function

Let F (x;µ, θ) be cdf of Cauchy r.v. given by F (x) = 1
π
arctan(x−µ

θ
) + 0.5. Using this in

equation (5.1), then the cdf of the BTC for x ∈ R with the parameters µ ∈ R, θ > 0 and
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β > 0 denoted by BTC(µ, θ, β) has the following form

G(x) =


β

β−1
[1− β−( 1

π
arctan(x−µ

θ
)+0.5)] if β ̸= 1

1
π
arctan(x−µ

θ
) + 0.5 if β = 1

(5.5)

Figure 5.1 provides the plots of the cdf of the model for various choices of the values of

the parameters.
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Figure 5.1: Plots of the cdf of BTC(µ, θ, β) distribution
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5.2.2 Probability density function

The pdf g(x) is given by

g(x) =


log β

πθ(β−1)
1

1+(x−µ
θ

)2
β0.5− 1

π
arctan(x−µ

θ
) if β ̸= 1

1
πθ

1
(1+x−µ

θ
)2

if β = 1

(5.6)

Figure 5.2 provides the plots of the pdf of the model for various choices of the values of

the parameters.
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Figure 5.2: Plots of the pdf of BTC(µ, θ, β) distribution
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5.2.3 Survival function

The sf s(x) is obtained as

s(x) =


β0.5− 1

π arctan(
x−µ
θ

)−1
β−1

if β ̸= 1

0.5− 1
π
arctan(x−µ

θ
) if β = 1

(5.7)

Figure 5.3 provides the plots of the sf of the model for various choices of the values of the

parameters.
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Figure 5.3: Plots of the survival function of BTC(µ, θ, β) distribution
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5.2.4 Hazard rate function

The hrf h(x) is

h(x) =


log β
πθ

β0.5− 1
π arctan(

x−µ
θ

)

(1+(x−µ
θ

)2)(β0.5− 1
π arctan(

x−µ
θ

)−1)
if β ̸= 1

1
πθ

1
(1+(x−µ

θ
)2)(0.5− 1

π
arctan(x−µ

θ
))

if β = 1

(5.8)

Figure 5.4 provides the plots of the hrf of the model for various choices of the values of

the parameters.
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Figure 5.4: Plots of the hazard rate function of BTC(µ, θ, β) distribution
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5.2.5 Quantile function

Theorem 5.2.1. The qth quantile xq of the BTC r.v. is given by

xq = µ− θ tan

π log
(

β−q(1−β)√
β

)
log β

 . (5.9)

Proof. The qth quantile xq of the BTC r.v is defined as

q = P (X ≤ xq) = G(xq), xq ∈ R

Using the cdf of the BTC distribution, we have

q = G(xq) =
β

β − 1
[1− β−( 1

π
arctan(x−µ

θ
)+0.5)]

That is,

β−( 1
π
arctan(x−µ

θ
)+0.5) = 1− q(β − 1)

β

Hence

xq = µ− θ tan

π log
(

β−q(1−β)√
β

)
log β

 .

This completes the proof.

Using the inversion method, we can generate r.v.s from the BTC distribution. We

can use equation (5.9) to generate random numbers when the parameters µ, θ and β are

known.
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Hence, the median of BTC is given by,

x0.5 = µ− θ tan

π log
(

β−0.5(1−β)√
β

)
log β

 . (5.10)

It can be seen that BTC(µ, θ, β) is a uni-modal function with mode at µ− θ log β
2π

.

5.2.6 Order statistics

Let X1, X2, . . . , Xn be a random sample from BTC(µ, θ, β) . Also, let X(1), X(2), . . . , X(n)

denote the corresponding order statistics. Then the pdf and cdf of kth order statistics are

given by

gX(x) =
n!

(k − 1)!(n− k)!
[G(x)]k−1 [1−G(x)]n−k g(x)

=
n!

(k − 1)!(n− k)!

log β

πθ(β − 1)

1

1 + (x−µ
θ
)2
β[0.5−

1
π
arctan(x−µ

θ
)]

[
β

β − 1

[
1− β−( 1

π
arctan(x−µ

θ
)+0.5)

]]k−1 [
1−

[
β

β − 1

[
1− β−( 1

π
arctan(x−µ

θ
)+0.5)

]]]n−k

(5.11)

and

GX(x) =
n∑

j=k

(
n

j

)
[G(x)]j[1−G(x)]n−j

=
n∑

j=k

(
n

j

)[
β

β − 1

[
1− β−( 1

π
arctan(x−µ

θ
)+0.5)

]]j
[
1−

[
β

β − 1

[
1− β−( 1

π
arctan(x−µ

θ
)+0.5)

]]]n−j

(5.12)

respectively.

The pdf of the minimum and maximum of order statistics are obtained by putting X = X1
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and X = Xn respectively in equation (5.11).

5.3 Characterizations of beta transformed Cauchy dis-

tribution

In this section, we discuss certain characterizations of the BTC distribution based on

a relationship between two truncated moments. This characterization result employs a

theorem due to Glanzel (1987) which stated as follows:

Theorem 5.3.1. Let (Ω,F , P) be a given probability space and let H = [a, b] be an

interval for some a < b (a = −∞, b = ∞ might as well be allowed). Let X : Ω → H be

a continuous r.v. with the distribution function F and let q1 and q2 be two real functions

defined on H such that

E[q2(X)|X ≥ x] = E[q1(X)|X ≥ x]η(x), x ∈ H,

is defined with some real function η. Assume that q1, q2 are continuous functions, η

has continuous derivative and F is twice continuously differentiable and strictly monotone

function on the set H. Finally, assume that the equation ηq1 = q2 has no real solution in

the interior of H. Then F is uniquely determined by the functions q1, q2 and η particularly

F (x) =

∫ x

a

C | η
′
(µ)

η(µ)q1(u)− q2(u)
| exp(−s(u))du,

where the function s is a solution of the differential equation s
′
= η

′
q1

ηq1−q2
and C is a constant,

chosen to make
∫
H
dF = 1.

Proposition 5.3.1. Let X : Ω → (0,∞) be a continuous r.v. and let q1(x) = e−x(1 + (x−µ
θ
)2)
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β−(0.5− 1
π
arctan(x−µ

θ
)) and q2(x) = 2q1(x)e

−x for x ∈ R. The r.v X has pdf (5.6) if and only

if the function η defined in Theorem 5.3.1 has the form

η(x) = 4e−x, x ∈ R

Proof. Let X be a r.v with pdf (5.6), then

(1−G(x))E[q1(X) | X ≥ x] = log β
πθ(β−1)

e−x, x ∈ R

and

(1−G(x))E[q2(X) | X ≥ x] = 4 log β
πθ(β−1)

e−2x, x ∈ R

and finally

η(x)q1(x)− q2(x) = 2q1e
−x, for x ∈ R.

Conversely, if η is given as above, then

s′(x) =
η

′
(x)q1(x)

ηq1(x)− q2(x)
= −2, x ∈ R

and hence

s(x) = −2x, x ∈ R, or e−s(x) = e2x, x ∈ R. Now, in view of Theorem 5.3.1, X has density

(5.6).

Corollary 5.3.1. Let X : Ω → (0,∞) be a continuous r.v. and let q1(x) be as in

Proposition 5.3.1. The pdf of X is (5.6) if and only if there exist functions q2 and η

defined in Theorem 5.3.1 satisfying the differential equation

η
′
(x)q1(x)

ηq1(x)− q2(x)
= −2, x ∈ R
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Remark 5.3.1. The general solution of the differential equation in Corollary 5.3.1 is

η(x) = 2e−2x

[∫
(e2x)[q1(x)]

−1q2(x)dx+D

]

where D is a constant. Note that a set of functions satisfying the above differential equation

is given in Proposition 5.3.1 with D = 0. However, it should be also noted that there are

other triplets (q1, q2, η) satisfying the conditions of Theorem 5.3.1.

5.4 Estimation of parameters

In this section, we describe the methods of ML, CVM, AD and LS estimation to estimate

the parameters µ, θ and β of BTC distribution.

5.4.1 Method of maximum likelihood

If x1, x2, . . . , xn is a random sample of size n from the BTC distribution with unknown

parameters µ, θ and β. Then its log likelihood function will be as follows

logL = n log

(
log β

β − 1

)
− n log(πθ) +

n∑
i=1

log
1

1 + (xi−µ
θ

)2

+ log β
n∑

i=1

(
0.5− 1

π
arctan

(
xi − µ

θ

))
.

(5.13)

The likelihood equations are,

∂ logL

∂µ
=

2

θ2

n∑
i=1

xi − µ

1 + (xi−µ
θ

)2
− log β

πθ

n∑
i=1

1

1 + (xi−µ
θ

)2
= 0, (5.14)

∂ logL

∂θ
= −n

θ
+

2

θ3

n∑
i=1

(xi − µ)2

1 + (xi−µ
θ

)2
+

log β

πθ2

n∑
i=1

xi − µ

1 + (xi−µ
θ

)2
= 0, (5.15)
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and

∂ logL

∂β
=

n

β log β
− n

β − 1
+

1

β

n∑
i=1

(
0.5− 1

π
arctan

(
xi − µ

θ

))

= 0. (5.16)

These equations do not have exact solutions and they have to be obtained numerically by

using statistical softwares like optim package in R programming.

5.4.2 Method of Cramer-von Mises

The CVM estimators µ̂CME, θ̂CME and β̂CME are the values of µ, θ and β minimizing

C(µ, θ, β) =
1

12n
+

n∑
i=1

[
F (xi | µ, θ, β)−

2i− 1

2n

]2

=
1

12n
+

n∑
i=1

[(
β

β − 1
[1− β−( 1

π
arctan(

xi−µ

θ
)+0.5)]

)
− 2i− 1

2n

]2
.

Partially differentiating the above equations, with respect to the parameters µ, θ and β

respectively and equating them to zero, we get the normal equations. These equations

do not have exact solutions and they have to be obtained numerically by using statistical

softwares like optim package in R programming.
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5.4.3 Method of Anderson-Darling

The AD estimators µ̂ADE, θ̂ADE and β̂ADE are the values of µ, θ and β minimizes

A(µ, θ, β) = −n− 1

n

n∑
i=1

(2i− 1){logG(xi | µ, θ, β) + log Ḡ(xn+1−i | µ, θ, β)}

= −n− 1

n

n∑
i=1

(2i− 1)

{
log

(
β

β − 1
[1− β−( 1

π
arctan(

xi−µ

θ
)+0.5)]

)
+ log

(
1− β

β − 1
[1− β−( 1

π
arctan(

xn+1−i−µ

θ
)+0.5)]

)}
.

Partially differentiating the above equations, with respect to the parameters µ, θ and β

respectively and equating them to zero, we get the normal equations. These equations

do not have exact solutions and they have to be obtained numerically by using statistical

softwares like optim package in R programming.

5.4.4 Method of least square estimation

The LS estimators of the unknown parameters µ, θ and β of BTC distribution can be

obtained by minimizing

n∑
i=1

[
F (xi | µ, θ, β)−

i

n+ 1

]2

=
n∑

i=1

[(
β

β − 1
[1− β−( 1

π
arctan(

xi−µ

θ
)+0.5)]

)
− i

n+ 1

]2
with respect to unknown parameters µ, θ and β.

Differentiating the above equation partially with respect to the parameters µ, θ and β

respectively and equating them to zero, we get the normal equations. These equations

do not have exact solutions and they have to be obtained numerically by using statistical
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softwares like optim package in R programming.

5.5 Applications

In this section, we consider a real life data set to explore the importance of our proposed

model. We compare the fit of the BTC distribution with different transformation of

distribution where Cauchy distribution as the baseline distribution.

1. Two parameter Cauchy distribution having pdf

f(x;µ, θ) =
1

πθ

1

(1 + (x−µ
θ
)2)
,

where −∞ < x <∞,−∞ < µ <∞, θ > 0.

2. The pdf of the new distribution obtained by DUS transformation by Kumar et al.

(2015a), is the DUS Cauchy (DUSC) distribution having pdf

f(x;µ, θ) =
1

πθ(e− 1)

1

1 + (x−µ
θ
)2
e(0.5+

1
π
arctan(x−µ

θ
)),

where −∞ < x <∞,−∞ < µ <∞, θ > 0.

3. The pdf of the distribution obtained by minimum guarantee (MG) distribution by

Kumar et al. (2017), is the MG Cauchy (MGC) distribution with pdf

f(x;µ, θ) =
1

πθ

e

(
1− 1

0.5+ 1
π arctan(

x−µ
θ

)

)

(1 + (x−µ
θ
)2)(0.5 + 1

π
arctan(x−µ

θ
))2
,

where −∞ < x <∞,−∞ < µ <∞, θ > 0.

137



4. The pdf of the distribution obtained by Pi-Exponentiated Transformation (PET) by

Lone and Jan (2023), is the PET Cauchy (PETC) distribution with pdf

f(x;α, µ, θ) = α log π
πθ(π−1)

π(0.5+ 1
π
arctan(x−µ

θ
))α
(
0.5 + 1

π
arctan

(
x−µ
θ

))α−1
,

where −∞ < x <∞, α > 0,−∞ < µ <∞, θ > 0.

5. The pdf of the distribution obtained by QRTM suggested by Shaw and Buckley

(2009), is the TC distribution with pdf

f(x;λ, µ, θ) = 1
πθ

1
(1+(x−µ

θ
)2)

[
(1 + λ)− 2λ

(
1
π
arctan

(
x−µ
θ

)
+ 0.5

)]
,

where −∞ < x <∞,−1 < λ < 1,−∞ < µ <∞, θ > 0.

6. The pdf of the distribution obtained by Alpha power transformation (APT) by

Mahdavi and Kundu (2017), is the Alpha power transformed Cauchy distribution

with pdf

f(x;α, µ, θ) =


logα

πθ(α−1)
1

1+(x−µ
θ

)2
α(0.5+

1
π
arctan(x−µ

θ
)) if α > 0, α ̸= 1

1
πθ

1
(1+x−µ

θ
)2

if α = 1

where −∞ < x <∞,−∞ < µ <∞, θ > 0

For the data set, we estimate the unknown parameters of each distribution by the method

of CVM, ML, AD and LS. With these obtained estimates, we obtain the values of − ln(L),

AIC, AICC and BIC as well as Kolmogorov-Smirnov statistic (K-S), Cramer-von Mises

statistic (W ∗), Anderson Darling statistic (A∗) and their corresponding p-values. The

required computations are carried out in the R-language introduced by Team (2009).
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5.5.1 Data set

The real data set corresponds to data set from Nichols and Padgett (2006) on breaking

stress of carbon fibres (in Gba): The data set is given in the Table 5.1.

The data is approximately symmetric with skewness=0.541 and kurtosis=0.141.

Table 5.1: Carbon fibres data set

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11
4.42 3.22 1.69 3.28 3.09 1.87 3.15 4.90 3.75 2.43
2.95 2.97 3.39 2.67 2.93 3.22 3.39 2.81 4.20 3.33
2.55 3.31 3.31 2.85 2.56 2.35 2.55 2.59 2.38 2.81
2.77 2.17 2.83 1.92 1.41 3.68 2.97 2.76 4.91 3.68
1.84 1.59 3.19 1.57 0.81 5.56 1.73 1.59 2.00 1.71
2.17 1.17 5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38
1.84 2.48 0.85 1.61 2.79 4.70 2.03 1.80 1.57 1.08
2.03 1.61 2.12 1.89 2.05 3.65

The descriptive statistics of this data set are given in Table 5.2. The ML estimate for µ, θ

and β are given in Table 5.3 along with their standard errors (S.E.). The values in Table

5.4 expose that the BTC model leads to a better fit than the other models. Based on the

values of the AIC, AICC and BIC criteria, we observe that the BTC model provides the

best fit for these data among all the models considered.

Table 5.2: Descriptive statistics of second data set.

Min 1st Q Median Mean 3rd Q Max
0.810 1.875 2.700 2.673 3.257 5.560

Table 5.3: ML Estimates and S.E for µ, θ and β

Parameters ML Estimate S.E.
µ 2.6479 0.2685
θ 0.6047 0.0853
β 1.0543 0.9856

Figure 5.5 shows the fitted density curves for the data set. Figure 5.6, shows the
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Table 5.4: Parameter estimates for various models fitted for the data set.

Model parameter estimates log L AIC AICC BIC

Cauchy
µ̂ = 2.3966
θ̂ = 0.1000

-239.3104 484.6208 484.9134 491.9838

DUSC
µ̂ = 2.900
θ̂ = 0.05

-187.471 378.942 381.235 383.850

MGC
µ̂ = 1.749
θ̂ = 0.362

-175.036 354.071 354.215 358.98

PETC
α̂ = 5.371
µ̂ = 3.649
θ̂ = 2.079

-155.458 316.916 317.21 324.277

TC
λ̂ = 0.689
µ̂ = 3.100
θ̂ = 0.95

-138.752 281.504 281.648 286.412

APTC
α̂ = 0.9484
µ̂ = 2.647
θ̂ = 0.6047

-137.62 279.16 281.532 288.603

BTC
β̂ = 1.0543
µ̂ = 2.6479
θ̂ = 0.6047

-136.48 278.96 279.252 286.323

empirical and the fitted cdfs for the data set.

The goodness of fit of CVM, ML, AD and LS methods are observed by the test statistics

values and their p-values for K-S, W ∗ and A∗ for the dataset which are displayed in Table

5.5. Figure 5.7 shows fitted distribution’s histogram and the density function using CVM,

Table 5.5: Statistics values and their associated p-values for the dataset

Estimation method Estimates K-S(p-value) W ∗(p-value) A∗ (p-value)

CVM
2.7058
0.5889
1.2645

0.1063(0.285) 0.1397(0.423) 1.3776(0.2086)

ML
2.6479
0.6047
1.0543

0.1035(0.3146) 0.1417(0.4165) 1.416(0.1979)

AD
2.1711
0.5480
1.2961

0.1002(0.3535) 0.1471(0.3989) 1.333(0.2219)

LS
2.7025
0.6020
1.2483

0.1081(0.2671) 0.1404(0.4027) 1.4088(0.1998)
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Figure 5.5: Fitted pdf plots of data set

ML, AD and LS estimation methods for the data set of BTC distribution.

5.6 Summary

In this chapter, we discussed beta transformation to get a transformed distribution of some

available baseline distribution. Beta transformation of Cauchy distribution considered

to check its application to the real problem called the BTC distribution. We provided

expressions for quantiles, hazard rates and order statistics. A useful characterizations

based on truncated moments are stated for the BTC distribution. The advantage of these

characterizations is that the cdf is not required to have a closed form and are given in

terms of an integral whose integrand depends on the solution of a first order differential
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Figure 5.6: Empirical and the fitted cdfs for the data set

equation.

The applicability of the model is validated by using a real data set. From Table 5.4,

we observed a better performance of our distribution than the other competing models.

Based on these, the new suggested model can be considered as a more efficient, flexible

and therefore may be an alternative to other distributions for modeling real data sets.

The model parameters are estimated by CVM, ML, AD and LS method of estimation.

Estimation of the model parameters under the Bayesian Inference is currently underway.

We hope that our new model will attract extensive application in various fields.
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Figure 5.7: Fitted distribution’s histogram and the density function using CVM, ML, AD
and LS estimation methods for the data set.
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Chapter 6

RECOMMENDATIONS

Large number of probability distributions are developed in the literature. However, there

still remains various practical problems that could not be modelled using any of the ex-

isting probability distributions. This necessitates the introduction of new probability

distributions.

In this thesis, we have studied some generalizations of Cauchy distribution namely

Transmuted Cauchy distribution, Generalized Cauchy distribution, Discrete Mittag-Leffler

Cauchy distribution and Beta transformed Cauchy distribution. These distributions are

recommended for data modelling when the data is heavy tailed and could not be mod-

elled using the usual heavytailed distributions such as Laplace distribution, t distribution,

logistic distribution, extreme value distribution, etc.

We hope that our proposed models will attract extensive applications in the insur-

ance and financial sciences and would be more helpful for the new comers in the field of

distribution theory.

Some future works to be carried out are given below:

• Characterizations of the proposed models are to be addressed.
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• Extend the models to multivariate case.

• We have mainly concentrated on non-censored data alone. Future studies should

consider the use of censored data in establishing the applications of the developed

models.

• Bayesian estimation of the parameters under different types of loss functions based

on complete and censored samples will be addressed.
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