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CHAPTER 1

Introduction

1.1  History

In the year 1736, the brilliant Swiss mathematician Leonhard Euler introduced
the idea of graph made up of a set of objects called vertices and another set of
objects called edges, which are made up of pairs of vertices. In order to traverse the
seven bridges over the Pregel River, a well-known folklore problem known as the
Konigsberg Bridge Problem, he developed the concept of graphs[I6]. The concept of
graphs was effectively applied in many domains, after Euler. Recent years have seen
an unparalleled rise in graph theory research. Even though graph theory was initially
associated with recreational math problems, it is usually applicable to many areas
of mathematics, including algebra, algebraic topology, number theory, algebraic
geometry, numerical analysis, matrix theory, operations science, etc. Additionally, it
promoted the development of other scientific fields, such as the physical, chemical,
computer, and life sciences, as well as sociology, economics, and social sciences,
as well as geography, genetics, architecture, electrical engineering and other fields.
Numerous studies are being conducted in the area of graph theory, particularly in

the area of domination.
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1.2 Basic definitions

This section handles the basic terminology relevant to the work about graphs. We

start by definition of graphs.

A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a
relation that associates with each edge two vertices called its end vertices[81]. A
graph having finite number of vertices and edges is called finite graph [I8]. The
number of vertices and number of edges of a finite graph G are called the order and
size of G respectively [8I]. When v; is an end vertex of some edge e;, v; and e; are
said to be incident with each other[50]. When u and v are end vertices of an edge,

they are adjacent and are neighbours[81].

An edge having the same vertex as both its end vertices is called loop[50]. More
than one edge associated with a given pair of vertices are called parallel edges[50].
Two nonparallel edges are said to be adjacent if they are incident on a common
vertex[50]. A graph that has neither loops nor parallel edges is called a simple
graph[50]. A graph of size zero is called an empty graph.

The number of edges incident on a vertex v; is called the degree, d(v;) of vertex
v;[50]. The maximum and minimum degrees of a graph G are denoted by A(G)
and §(G) respectively[I8]. A vertex having no incident edge is called an isolated
vertex[h0]. A vertex of degree one is called a pendant vertex[50]. A vertex adjacent
to a pendant vertex is called a support vertex[d]. An edge incident with a pendant

vertex is called a pendant edge.

The distance between two vertices u and v of a graph G written d(u,v), is the
shortest length of a u — v path in G. If G has no such path, then d(u,v) = co.
The eccentricity e(v) of a vertex v is max{d(u,v) : v € V(G)}. Maximum of the
eccentricities of the vertices of G is called the diameter of G. The radius of G is the
minimum of the eccentricities of its vertices, radius(G) = min{e(u) : u € V(G)}.
To denote the diameter and radius of a graph G, the abbreviations diam(G) and
rad(G) are used respectively. The center of a graph G, ¢(G) is the subgraph induced
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by the vertices of minimum eccentricity[81].

The complement G of a simple graph G is the simple graph with vertex set

V(G) defined by uv € E(G) if and only if uv ¢ E(G)[1S].

A graph H is a subgraph of G written H C G if V(H) C V(G) and E(H) C
E(G). A spanning subgraph of G is a subgraph H with V(H) =V(G). If V' is a
nonempty subset of V(G). The subgraph of G whose vertex set is V! and whose edge
set is the set of those edges of G that have both ends in V1 is called the subgraph
induced by V! and is denoted by < V! >[1§].

A walk is defined as a finite sequence of vertices and edges, beginning and
ending with vertices, such that each edge is incident with the vertices preceding
and following it. Vertices with which a walk begins and ends are called its terminal
vertices. A walk which begins and ends at the same vertex is called a closed walk.
A walk that is not closed is called an open walk. An open walk in which no vertex
appears more than once is called a path[50]. A path with u and v as terminal
vertices is called a u — v path. A closed walk in which no vertex, except the initial
and final vertex, appears more than once is called a cycle[50]. A graph with no cycle

is called acyclic.

A graph G is said to be connected if there is at least one path between every
pair of vertices in G. A disconnected graph is a graph which is not connected[50].
A connected acyclic graph is called a tree. The Components of a graph G are its

maximal connected subgraphs[81].

A vertex cut of G is a subset V! of V(G) such that G — V! is disconnected. k-
vertex cut is a vertex cut of k-elements. The connectivity x(G) of G is the minimum

k for which G has a k-vertex cut. A graph G is said to be k-connected if k(G) > k.[18]

If a graph can be disconnected by the deletion of one vertex, that vertex is called
cut vertex. A connected graph that has no cut vertices is called a block. A block of

a graph is a subgraph that is a block and is maximal with respect to this property[I§].
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The path with n vertices is denoted by P,[81]. The cycle with n vertices is
denoted by C,,[81].

A graph is bipartite if its vertex set can be partitioned into two subsets X and
Y so that any edge of G has one end vertex in X and the other end in Y'; such
(X,Y) is called a bipartition of the graph G. A complete bipartite graph is a simple
bipartite graph with bipartition (X,Y") in which each vertex of X is joined to each
vertex of Y. If | X| =m and |Y| = n it is denoted by K,, ,[18].

A complete graph is a simple graph whose vertices are pairwise adjacent. The

complete graph with n vertices is denoted by K, [81].

The open neighborhood of v denoted by N (v) is the set of vertices adjacent to
v, N(v) = {u € V(G) : wv € E(G)}. The closed neighborhood of v denoted by N|v]
is the set N(v) U {v}[69]. For a set S C V of vertices in a graph G = (V, E) and
u € S, vis said to be a private neighbour of w if (with respect to ) N[v]NS = {u}[69].

Coloring all the vertices of a graph with colors so that no two adjacent vertices
have the same color is called the proper coloring. The chromatic number of a graph
G, written x(G), is the minimum number of colors needed for proper coloring of

graph G[50].

A subset M of E(G) is called a matching in G if no two elements of M are
adjacent in GG. A matching M saturates a vertex v, and v is said to be M-saturated,
if some edge of M is incident with v. If every vertex of GG is M-saturated, then the

matching M is perfect[I§].

A property P of sets of vertices is said to be hereditary if whenever a set has
property P, so does every subset S' C S. A property P of sets of vertices is said
to be superhereditary if whenever a set has property P, so does every superset

St > S[69).
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Investigating various graph parameters in various classes of graphs is a chal-
lenging problem. Various classes of graphs were constructed from standard graphs.

Some of them given below.

From a simple graph G, Mycielski’s construction produces a simple graph G*
containing G. Beginning with G having vertex set {vi,vs,...,v,}, add vertices
U = {uy,us, ...,u,} and one more vertex w. Add edges to make u; adjacent to all of

neighbours of v; in G, and finally let N(w) = U[RI].

A subdivision of an edge uv is obtained by removing edge uv, adding a new
vertex w, and adding edges uw and wv[69]. A wounded spider is the graph formed

by subdividing at most n — 2 of edges of a star K, for n —1 > 0[69)].

Given a graph G, Trestled graph of index k denoted by T;(G), is the graph
obtained from G by adding k copies K for each edge uv of G and joining u and v

to the respective end vertices of each K5[69].

Let G and H be two graphs with disjoint vertex sets. Their union G U H has
V(GUH) =V(G)UV(H) and E(GU H) = E(G) U E(H). Then their join is
denoted G + H and consists of G U H and all edges joining V(G) and V(H)[45].
The wheel W, is defined to be the join of K; + C,,. The vertex corresponding to
K is known as apex and vertices corresponding to cycle are known as rim vertices
while the edges corresponding to cycle are known as rim edges[72]. The helm H, is

the graph obtained from wheel W,, by attaching a pendant edge to each rim vertex[72].

The friendship graph F), can be constructed by joining n copies of the cycle

graph C3 with a common vertex, which becomes a universal vertex for the graph.[66]

There are standard graph products, each with its own applications and theoreti-

cal interpretations.

The Cartesian product of G and H is a graph, denoted as GOH, whose ver-

tex set is V(G) x V(H). Two vertices (u1,v1) and (ug,vy) are adjacent precisely
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if u1 = uy and vivy € E(H), or v; = vy and wus € E(G). Thus, V(GOH) =
{(u,v) :u € V(G) and v € V(H)}, E(GOH) = {(u1,v1)(ug,v2) : U = ug, 0109 €
E(H) or UjlUs € E(G),'Ul = UQ}[62]

The strong product of G and H is the graph denoted as GKH, and defined by[62]

VIGKH) = {(u,v):ueV(G)andv e V(H)},
E(GXRH) = {(ur,v1)(ug,ve) : uy = ug,v1v9 € E(H) or ujuy € E(G),v1 = v9}U
{(u1,v1)(ug, v2) : ujug € E(G) and vivy € E(H)}

The composition G[H] is defined as [45],
V(GH]) = {(u,v):ueV(G)andv e V(H)},
E(G[H]) = {(u1,v1)(ug,v2) : ugus € E(G) or uy = ug,v1ve € E(H)}

Corona of graphs is defined by Frucht and Harary[45]. Later the concept of
neighbourhood corona and edge corona of graphs were developed. Corona GG o H, of
two graphs G and H is obtained by taking one copy of G (which has n; vertices)
and n; copies of H (which has n, vertices), and then joining the i vertex of G to

every vertex in the i copy of H[45)].

Let G and H be two graphs on n; and ny vertices, m; and moy edges respectively.
Then the neighborhood corona, Gx H is the graph obtained by taking n; copies of H
and for each i, making all vertices in the i** copy of H adjacent with the neighbors

of v, i =1,2,...,nq[40).

Let G and H be two graphs on disjoint sets of n; and ns vertices, m; and msy
edges, respectively. The edge corona G ¢ H of G and H is defined as the graph
obtained by taking one copy of G and m; copies of H, and then joining two end-

vertices of the i edge of G to every vertex in the i copy of H[S0).

So many graph parameters like Vertex connectivity, matching number, chro-
matic number, and independence number are developed to meet real life applications.
Concept of domination is one among them in which extensive research work is going
on. In the book, domination in Graphs ; Advanced topics[70], surveys of recent

developments are provided.
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A set S C V of vertices in a graph G = (V, ) is called a dominating set if every
vertex v € V is either an element of S or is adjacent to an element of S[69]. The
cardinality of a minimum dominating set of graph G is called domination number

and it is denoted by v(G)[69].

The set of all minimal dominating sets of a graph G is denoted by M DS(G).
Upper domination number I'(G) is the maximum cardinality of a set in M D.S(G)[69).

Cockayne introduced the concept of irredundance in [29].

For a subset S C V(G) and v € S |, private neighbour of v in S, pnv, S] is
defined as N[v] — N[S —{v}]. A set S is irredundant if for every v € S, pn[v, S| # ¢.
The minimum cardinality of a maximal irredundant set of a graph G is called the
irredundance number and it is denoted by ir(G). The maximum cardinality of an

irredundant set is called the upper irredundance number and denoted by IR(G)[69].

An independent set in a graph is a set of pairwise nonadjacent vertices.[81].The
independence number, 5,(G) is the maximum cardinality of an independent set in

G[69).

The minimum cardinality of an independent dominating set is called the inde-

pendent domination number and it is denoted by i(G)[69).

A dominating set S in a graph G is said to be a perfect dominating set if for
every vertex u € V(G) — S, |[N[u] N S| = 1. The cardinality of a minimum perfect

dominating set is called perfect domination number and it is denoted by ,(G)[69)].

A chain named domination chain which is obtained by connecting a chain of

inequalities is given in [29].



Chapter 1. Introduction

This inequality chain is one of the most powerful focuses of research of domina-

tion.

So many bounds were found for domination number. Bound using the degree
and order is a significant result among them. The upperbound was obtained by

berge and lowerbound was obtained by Walikar, Acharya and Sampathkumar. [77, [12]

For any graph G of order n, [1++(G)1 <(G) <n—A(G).

It is proved in [12] that every maximal independent set is a minimal dominating
set. Since then comparing various domination parameters is a focal point in domi-

nation theory.

Nordaus and Gaddum established the following inequalities for chromatic num-
ber 2¢/n < X(G) + x(G) < n+ 1 and ny/n < x(G)x(G) < @ Results related
to sum (product) of a parameter of a graph G and the same parameter of its

complement G is known as Nordaus-Gaddum type results[69].

The concept of P3-convexity, which is more similar to domination, is also studied

in this thesis.

A family C of subsets of a nonempty set X is called a convexity on X if
e pc(C, Xe(l
e (U is stable for intersections, and

e (' is stable for nested unions

(X, C) is called a convexity space and members of C' are called convex sets[53].

Here union of nested family of sets is nested union.
If (X,C) is a convexity space, then for a set S C X convex hull of S, Hg(S) is
the smallest convex set containing .S.

For a graph G, Given two vertices vy, vy € V(G), the Ps- interval
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I[{vi,v2}] = {v €V :vadjacent to both v; and vy}
U{v1, va}.
I[S] - U’Ul,’UQGSI{/U:LJ U2]

S is a P3- convex set, if I[S] = S.
A graph G together with Ps-convex sets in G form Ps-convexity C' in G [36].

The Ps- convex hull can be formed from a sequence I?[S], where p is a non-
negative integer, I°[S] = S, I'[S] = I[S], and I?[S] = I[IP7![S]], for every p > 2.
Let p € N U {0} for which IP[S] = IPT1[S], for all , then I?[S], is a convex set and
S C I?[S]. Hence I?[S] is the convex hull of S[36].

If H;(S) = V(G) then S is a Ps-hull set of G. The cardinality h(G) of a mini-
mum Ps-hull set in G is called the Ps-hull number of G[36]. In this thesis we are
using hull number of G instead of Ps-hull number of G.

Convexity C' on G is joint hull commutative provided that for each nonempty convex

set S in C and for each vertex p € V(G), Hg(S U{p}) = UvesHa({p, u})[74].

The caratheodory number is the smallest integer ¢ such that for every set S of
vertices of G and every vertex u in Hg(S), there is a set F' C S with |F| < ¢ and
u € Hg(F)[35]. In this thesis we are using ¢(G) instead of ¢. A Radon partition of
R is a partition of R into two disjoint sets R; and Ry with Hg(R1) N He(R2) # ¢.
The Radon number r(G) of G is the minimum integer r such that every set of r

vertices of G has a Radon partition [4§].
The following significant results are given in [36].
e Let G and H be nontrivial graphs. If G is connected, then h(G[H]) = 2.
e W(GOH) > max{h(G),h(H)}.
e Let G and H nontrivial connected graphs. Then, h(G X H) = 2.

Caratheodory number and radon number in Ps-convexity were studied in [48] 35]

1.3 Background of the work

A well-researched graph parameter, domination is a classic subject in graph theory.

According to the rules of chess, the queen is the player’s most powerful piece because
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of its freedom or mobility. Since the queen is free to travel across any number of
squares in any direction, the opposition player is constantly watchful about the
moves in the directions dominated by the queen. The study of domination in graphs
started by De Jaenisch in 1850 with a problem of finding the minimum number of
queens that are needed to place on a Chess board such that each field not occupied
by queen can be attacked by at least one[31]. It was proved in 1850’s that, in an 8 x 8
chessboard five queens are required to completely dominate all of the squares[69].
Watkins provides a very thorough overview of the evolution and ongoing growth of
this promising field of domination theory from the chessboard puzzles in [79]. The
study of domination in graphs was further studied in the late 1950s and early 1960s.
In his book [I2]on graph theory, Berge introduced the concept coefficient of external
stability, which is today known as the domination number. The phrases dominating
set and domination number were first used by Oystein Ore [52] in his book on graph
theory in 1962. In a survey published by Cockayne and Hedetniemi[2§], the notation
7(G) for the domination number of a graph G was first used.

Ore presented the first three theorems of dominating sets in his book ” Theory

of Graphs”[52].

e A dominating set S is a minimal dominating set if and only if, for each u € S,

one of the following condition holds

— w 1is an isolate of S.

— there exists a vertex v € V' — S for which N(v) NS = {u}

e Every connected graph G of order n > 2 has a dominating set S whose

compliment V' — S is also a dominating set.

e If a graph G is a graph with no isolated vertices, then the compliment V' — §

of every minimal dominating set S is also a dominating set.

Ore gave an upperbound for domination number v(G). Cockayne, Haynes and
Hedetniemi characterized the graph forwhich v(G) = [§][27] . Later the bounds for
7(G) in terms of degree and order are obtained[12, [67, [77]. Refining the bound, a
domination chain ir(G) < v(G) < i(G) < B,(G) < T'(G) < IR(G) was given in [69)].

10
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Numerous applications in real life situations have led to the introduction of
numerous domination parameters. Total domination number, Roman domination
number and fractional domination number are some of them. A beautiful survey on
topic of domination is given in book Fundamentals of Domination in Graphs done
by Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater[69]. If we can
extend the domination chain using a new domination parameter that will be a a

significant contribution.

One of the famous open problems in Mathematics is Vizing’s conjecture. Vizing’s
conjecture proposed by V. G. Vizing in 1968 leads to the development of studies in
domination number of cartesian product of graphs[76]. Bound for the domination
number of grid graph is obtained by Jacobson and Kinch[46]. The domination
number of cartesian product of specific graphs is an area in which developments
are being made. Thus we are motivated to study domination number of cartesian

product of some specific graphs.

In some reservation systems, reservations from particular special classes are
required. We defined the Reserved Domination Number of Graph in light of the
same motivation. Domination number of cartesian product of graphs is studied

using reserved domination number.

We introduced a particular domination known as a-stable domination for the

purpose of exploring the area of instability of domination in graphs.

In order to solve the problems like spreading a virus, disseminating ideas, and
marketing strategies, we studied Ps-convexity which is more similar to domination
in graphs. The concept of P3-convexity was initially investigated, for directed
graphs [34, 49]. Later Ps-convexity was studied in undirected graphs[24] 25] 26,
33, 11]. Radon number on Ps-convexity was well studied by Mitre C. Dourado,
Dieter Rautenbach, Vinicius Fernandes dos Santos, Philipp M. Schaffer, Jayme L.
Szwarcfiter and Alexandre Tomana in 2012[48]. Ps-convexity in different product
of graphs was well studied by Erika M.M. Coelho, Hebert Coelho, Julliano R.

Nascimento and Jayme L. Szwarcfiter in 2018]36], and caratheodory number in

11



Chapter 1. Introduction

Ps-convexity was well studied by Erika M.M. Coelho, Mitre C. Dourado, Dieter
Rautenbach and Jayme L. Szwarcfiter in 2014[35]. Here we study some properties
of Ps-convexity. Radon number, caratheodory number and hull number of product

graphs is also studied.

1.4 Organization of the Thesis

This thesis is arranged in six chapters. The following provides a chapter-by-chapter

summary of the thesis.

The first chapter is an introductory chapter. A brief introduction, thesis sum-
mary and preliminary concepts are discussed in this chapter. The terminologies and

notations used in the next chapters are described in the section preliminaries.

In the second chapter, the lower bound for domination number of cartesian
product of G and P, is obtained. It is studied for the cartesian product of G and C,,.
Upperbound for v(GOH), when H = P, or H = C,, for which G has a minimum
dominating set D such that D = Dy U Dy, D; N Dy = ¢ and every vertex not in
D has a neighbour in D; and a neighbour in D,, is obtained. These results are

published in [59]

A- Reserved domination number of graph G, which would be useful in reser-
vation systems is defined in the third chapter. A- Reserved domination number of
various product graphs are studied. Generalized concept of A- Reserved domination
number, [A;y, As, ...., Ay]-reserved domination number is defined and studied. The
reserved domination number is used to study the domination number of cartesian

product of graphs. Some of its results are published in [60]

a-d- stable domination number, a-a- stable domination number and a-stable
domination, are introduced in fourth chapter with the aim of studying the stability
of domination in graphs. Its properties are also studied. a-stable domination in

product graphs are studied.

12



Chapter 1. Introduction

In fifth chapter, one section deals with general properties in Ps-convexity. Ps-
convex invariants, P3-hull number, radon number and caratheodory number of some
classes of graphs are obtained. Ps-convexity in strong product, cartesian product
and composition of graphs are studied. P3-convexity in corona related graphs are

also studied. Some of its results are published in [61].

Sixth chapter is a concluding chapter, consisting of summary and scope for

further studies.

13



CHAPTER 2

Bounds of Domination Number of

Cartesian Product of Graphs

2.1 Introduction

How a graph works on graph products is an important problem that is being dis-
cussed in detail. It is logical to assume that the value of the invariant on the product
of two graphs G and H will relate to the value of G and H. This type of problems
are well studied and simple for some invariants and products. The chromatic number
of the Cartesian product of two graphs is maximum of their chromatic numbers is
an illustration of this circumstance. There are still a number of invariants which
has a conjectured behaviour, but not yet been determined. The domination number
on a Cartesian product is an example of same. V. G. Vizing proposed the following

conjecture in 1968 after posing it as a question in [76] v(GOH) > ~v(G)y(H).

In this chapter bounds for domination number of cartesian product of certain
types of graphs and path are obtained. Bounds of domination number of cartesian
product of some classes of graphs and cycle are also obtained. Examples that tighten

the upper bound are obtained.
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Chapter 2. Bounds of Domination Number of Cartesian Product of Graphs

2.2 Bounds of domination number of cartesian product of a

graph and path

Bounds of domination number of GOP,,, for which G satisfy certain conditions, is

obtained in this section.

Theorem 2.2.1. Let G be any graph and P, be a path having n vertices. Then
37(G) <~(GBFR,).

Proof. Let P, be the path with V(P,) = {v1, v, ..., Up }.

Let D be a dominating set of GOP, . Then, let D; = DN (V(G) x {v;}).

Take m(D;) = {u € V(Q) : (u,v;) € D;}.

If ue V(G) — (m(Dy) Um(Ds)) then (u,v1) ¢ D and (u,v9) ¢ D. Since D is a
dominating set (u,v;) must be adjacent to a vertex (w,v;) € D. Then w € m(Dy).
Hence u has a neighbour, w € m1(D;). Thus m (D) U (D) is a dominating set of
G. Thus v(G) < |m(Dy) Umi(D2)].

Hence v(G) < |Dy U D).

IfueV(G)— (m(Dyp-1)Um(D,)) then (u,v,_1) ¢ D and (u,v,) ¢ D. Since
D is a dominating set (u,v,) must be adjacent to a vertex (w,v,) € D. Then
w € m(D,,). Hence u has a neighbour, w € m1(D,,). Thus m(D,,_1) Um(D,) is a
dominating set of G. Thus v(G) < |m1(Dy—1) Ui (Dy)]-

Hence, ~(G) < |Dy—1U D,]|.

Ifi € 23,.....,n—1and u € V(G) — (m(D;—1) Um(D;) Umi(D;11)), then
(u,v;-1) ¢ D, (u,v;) ¢ D and (u,vi41) ¢ D. Then there is a vertex(w,v;) € D such
that (w,v;) is adjacent to (u,v;). Hence w € m(D;) and w is adjacent to u in G.
Thus m1(D;—1) Um(D;) U (D;41) is a dominating set of G.

Hence v(G) < |D;j—1 U D; U Djy4].

Thus we can see that

=
8
A

| Dy U Dy
|Dn71UDn|
Y(G) < |DisiUD;UD|,\Vi=2,...,n—1

=
8
I

Summing up all these inequalities we can see that
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Chapter 2. Bounds of Domination Number of Cartesian Product of Graphs

ny(G) < 2|Ds| + 2|Dy| + 33207 D; = 2|D| + |Dy| + | Ds| + ....... + | Dyl

Hence, ny(G) + |D:| + |Dn| < 3|D|.

Then two cases arise.

Case 1 |Dy| #0or |D,| #0
ny(G) < 3|D|

Case 2 |Dy| =0
Then Dy = V(G) and since v(G) < ‘V(zG)

Then Dy U D3 = V(@) and since y(G) < |V(2€)|

24(G) < |DyUD,UDy|
YG) < [DnoiUDy|
Y(G) < |DisiUD;UDi|,Vi=2,...,n—1

Summing up all these inequalities we can see that

ny(G) +3v(G) <331, D

Hence, |D] = 24(G) + 1(G).
Thus [D] > 5v(G).

Thus if D is a dominating set of GOP, then |D| > 2v(G). Hence, v(GOP,) > §v(G)
[

Theorem 2.2.2. Let G be any graph and P, be a path having n vertices. If G has
a minimum dominating set D such that D = Dy U Dy, D1 N Dy = ¢ and every
vertex not in D has a neighbour in Dy and a neighbour in Dy, and if n is even then

Y(GOP,) < 54(G).

Proof. Let D be a minimum dominating set of G' such that D = D1UDy, D1NDy = ¢
and every vertex not in D has a neighbour in D; and a neighbour in D, and
V(P,) = {v1,v2, ..., v }, m is even.

Then D' = (D x {v1}) U (Dg x {v2}) U (D1 x {v3}) U (Dg X {v4})..... U(Dg x {v,,})

16



Chapter 2. Bounds of Domination Number of Cartesian Product of Graphs

is a dominating set of GOP,,.
For, if (u,v;) € GOP, and 7 is odd. Then, there are three possibilities.

Case 1 If u € Dy, then (u,v;) € D!
Case 2 If u € Dy, then (u,v;) is adjacent to (u,v;y;) € D?

Case 3 If u ¢ Dy U Dy, then u is adjacent to wy € Dy. Therefore (u,v;) is adjacent to
(wy,v;) € D' in GOP,.

Thus D! can dominate (u,v;).

If (u,v;) € V(GOP,) and i is even. Then, there are three possibilities.
Case 1 If u € Dy, then (u,v;) € D!
Case 2 If u € Dy, then (u,v;) is adjacent to (u,v;_;) € D*

Case 3 If u ¢ Dy U D,, then u is adjacent to we € Dy. Thus (u,v;) is adjacent to
(wo,v;) € D' in GOP,,.

Thus D' can dominate (u, v;).

Therefore D! is a dominating set of GOP,.

Also
IDY = |(Dy x{v1})U(Dy x {vo}) U .o, U (D, x {v,})]
= lD1UD2|+ ......... \DluDzl
%t;nes
= 37(G)

Hence, 7(GOP,) < §7(G).

]

Corollary 2.2.3. Let G be any graph and P, be a path having n vertices. If G
has a minimum dominating set D such that D = Dy U Dy, D1 N Dy = ¢ and every

vertex not in D has a neighbour in Dy and a neighbour in Dy, and if n is even then

£7(G) <~4(GOP,) < 37(G)

Remark 2.2.1. There are graphs G which attains sharp upper bound in[2.2.3 For
the graph G m v(GOPR,) = 5v(G).
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U3
U2
V2
Uy
U1

Figure 2.1

The sequential join G; + G2 + .... + G, is obtained by joining all vertices of G;
to all the vertices of G4, for i = 1,2, ..., (n — 1)[53].

Definition 2.2.4. Define Wave graph,
W(n,m) =K, + K, + K, + K, + K+ Ko+ Ky Koy + o A K+ K+ K+

(n—2)times

K+ Ky forn >3, m>2. Then G =W (4,3) is the graph described in the figure

Uy Ug Us Uy
Uu U
Uz 8 9 U10 U11 U12 U3 U14 U
U7 U8
U9
Figure 2.2

Remark 2.2.2. Strict inequality may occur in upper bound of[2.2.2. For the graph

18



Chapter 2. Bounds of Domination Number of Cartesian Product of Graphs

G =W(4,3), 7(GOP;) < 37(Q).

Proof. Here D = {uy, ug, us, ug, U7, u1s, U19} is & minimum dominating set of G. If
Dy = {uq,ug,us, us}, Dy = {uy7, 18, u19} then D = Dy U Dy is a minimum dominat-
ing set, D1N Dy = ¢ and every vertex not in D has a neighbour in D; and a neighbour
in Dy. Then D' = (Dy x {v1})U(D; X {ve})U(Dg x {v4})U (D7 x {vs})U(Dg X {vg})
is a dominating set of GOF .

For if (u,v) € GOP;, then consider the possiblity v = v;. Then if u € Dy
then (u,v) € D'. If u € V — D then there is a w € Dy such that w is adjacent
to v in G. Then (w,v;) € D'is adjacent to (u,v) in GOPs. If v € D then,
(u,v2) € Dy x {va} C D'. And (u,v) is adjacent to (u,vs) € D'. Hence D' can dom-
inate all the vertices in GO{v;} . Similarly D! can dominate GO{v;},Vi = 1,2, ......6.
Thus D! is a dominating set of GOP.

ID'| =20
But v(G).n =3 x7=21

Hence, 7(GOPs) < |D| < 21 = v(G)n. O

Corollary 2.2.5. Let G be any graph and P, be a path having n vertices. If G has
a minimum dominating set D such that D = Dy U Dy, D1 N Dy = ¢ and every vertex
not in D has a neighbour in Dy and a neighbour in Dy, then 3v(G) < v(GOP,) <

[5](G).

2.3 Domination number of cartesian product of a graph and

cycle

Bounds of domination number of GOC,,, for which G satisfy certain conditions, is

obtained in this section.

Theorem 2.3.1. Let G be a graph having a minimum dominating set D which can
be partitioned into two nonempty sets Dy and Do with the property every vertex not

i D 1s adjacent with atleast one vertex in Dy and atleast one vertex in Do. Then

1(GOC) < 29(G).
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Proof. Let G be a graph having a minimum dominating set D which can be par-
titioned into two nonempty sets D; and D, with the property every vertex not in
D is adjacent with atleast one vertex in D; and atleast one vertex in D,. Let the
vertices of Cy be vy, vq, v3,v4 with v; adjacent to v;y1 ( addition is with respect to
addition modulo 4).

If D' = (D x {v1}) U (Dg x {vo}) U (Dy x {w3}) U (Dy x {v4}), then we claim that
D' is a dominating set of GOC,. For, if (u,v) € V(GOC,), then we distinguish into

four cases.

Case 1 If v = vy,

If u € Dy then (u,v) € D*
If u € Dy then (u,v;) € D' and adjacent to (u,v).
If u ¢ D then there is some u! in Dy which is adjacent to u. Then (u',v;) € D!

is adjacent to (u,v).

Similarly we can prove in all other cases that (u,v) is adjacent to atleast one

vertex in D?.

Thus D! is a dominating set of GOCy with |D!| = 2v(G). Hence 7(GOCY) < 2v(G).
[l

This theorem can be generalized as follows.

Theorem 2.3.2. Let G be any graph and C,, be a cycle having n vertices. If G has
a minimum dominating set D such that D = D1 U Dy, D1 N Dy = ¢ and every vertex

not in D has a neighbour in Dy and a neighbour in D, then v(GOC,) < [2]v(G).

Proof. Let D be a minimum dominating set of G such that D = D1UDsy, D1NDy = ¢
and every vertex not in D has a neighbour in D; and a neighbour in Dy and
V(Cy) = {v1,vg,......, v, }, n is even.

Then D' = (D; x {v1}) U (D3 x {ve}) U (D; x {v3}) U (Da x {vg}).... U (D2 x {v,})
is a dominating set of GOC),.

For, if (u,v;) € V(GOC,,) and i is odd. Then ,there are three possibilities.

Case 1 If u € Dy, then (u,v;) € D!
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Case 2 If u € Dy, then (u,v;) is adjacent to (u,v;y1) € D*

Case 3 If u ¢ Dy U Do, then u is adjacent to wy € D;. Therefore (u,v;) is adjacent to
(wl,vi) S l)1 in GDCn

Thus D! can dominate (u, v;) .

If (u,v;) € V(GOC,) and i is even. Then, there are three possibilities.
Case 1 If u € Dy, then (u,v;) € D!
Case 2 If u € Dy ,then (u,v;) is adjacent to (u,v; ;) € D*

Case 3 If u ¢ Dy U Dy , then u is adjacent to we € Dy. Thus (u,v;) is adjacent to
(wo,v;) € D' in GOC,,.

Thus D' can dominate (u,v;) .

Hence D! is a dominating set of GOC,,.

DY = |(Dyx {v1})U(Dyx {to}) U ovcivnon U (Dy, % {v,})]
- ’\D1UD2|+ ......... ‘D1UD21|
%t;;zes
= 37(G)

Hence, v(GOC,,) < 5v(G).
Similarly, if n is odd v(GOC,,) < [2] ~(G).
[

Theorem 2.3.3. Let G be any graph and C,, be a cycle having n vertices, then
57(G) < 4(GAC,).

Proof. Let C,, be the cycle with V(C,,) = {vy, va, ...... ,Un}
Let D be a dominating set of GOC,,. Then, let D; = DN (V(G) x {v;}).
Take 7T1(Di) = {u S V(G) . (U,Uz‘) € Dl}

If 7 € 2,3,....,77, — 1 and u € V(G) — (7T1(DZ'_1) U 7T1<Di) U 7T1(D7;+1)), then
(u,v;-1) & D, (u,v;) ¢ D and (u,vi41) ¢ D. Then there is a vertex(w,v;) € D such
that (w,v;) is adjacent to (u,v;). Hence w € m(D;) and w is adjacent to u in G.

Thus m1(D;—1) Um(D;) U (D;41) is a dominating set of G.
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Hence, 7(G) < |D;—1 UD; U D; 4], Vi=2,.....,n — 1.
Similarly, v(G) < |D,—1 U D,, U Dy|.

Summing up all these inequalities we can see that

ny(G) < 32?:1 | D

Hence, ny(G) < 3|D| for a dominating set D of GOC,,.
Thus, 1(GOC,) > 2(G). 0

Corollary 2.3.4. Let G be any graph and C,, be a cycle having n vertices. If
G has a minimum dominating set D such that D = Dy U Dy, D1 N Dy = ¢
and every vertex not in D has a neighbour in Dy and a neighbour in Dy, then

29(G) < (GOC,) < [5]4(G).

Remark 2.3.1. Converse of theorem [2.3.9 is not true. There exists graphs G with
~(GOC,) < (%W Y(G) but G has no minimum dominating set D with the property,
D can be partitioned such that D = Dy U Dy, D1 N Dy = ¢ and every vertexr not
i D has a neighbour in Dy and a neighbour in Ds. In G has no minimum
dominating set D with the property, D can be partitioned as such that D = Dy U Do,

Dy N Dy = ¢ and every vertex not in D has a neighbour in Dy and a neighbour in

D5 but v(GOC,) < [2]4(G).

(%] Uy
Vg
Vg Us
U1 U1
Figure 2.3

Remark 2.3.2. In [69] we can see that if D is a minimum dominating set of a

graph G, then at least one vertex in V' — D is dominated by no more than two vertices
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in D. Hence, it is not possible to partition, a minimum dominating set D into more

than three disjoint sets each vertex not in D has atleast one neighbour in each sets.

2.4 Conclusion

In this chapter the lower bound for domination number of cartesian product of G
and P, is obtained. It is studied for the cartesian product of G and C),. Upperbound
for v(GOH), when H = P, or H = C,, for which G has a minimum dominating set
D such that D = Dy U Dy, D1 N Dy = ¢ and every vertex not in D has a neighbour

in Dy and a neighbour in D,, is obtained.
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CHAPTER 3

Reserved Domination in Graphs

3.1 Introduction

The variety of applications to ’coverage’ or ’location’ problems in mathematics and
in the real world causes for the majority of the sudden increase in the number
of domination parameters. Recently many new domination parameters have been
developed.

In certain reservation systems allocations are compulsorily made from some
special classes. Motivated from the same, Reserved domination number of graph G
is defined in this chapter. This chapter is divided into seven sections. A-reserved
domination number is introduced in the second section of this chapter. In the
third Section, A-reserved domination number in various product graphs are studied.
A-reserved domination number in corona of graphs are studied in the fourth section.
In the fifth section, [A;, As, ...., A,]-reserved domination number is defined and
studied. In the sixth section, the reserved domination number is used to study the
domination number of cartesian product of graphs. Seventh section is a concluding

section
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3.2 A-Reserved domination number

In this section, A-reserved domination is introduced and characterization of minimal
A-reserved dominating set is obtained. The special cases for which the A-reserved
domination domination number exceeds domination number is obtained. Calculating
the precise value of A- reserved domination number is a hard problem for specific
classes of graphs. Here A- reserved domination number for some classes of graphs

are obtained.
3.2.1 A-reserved domination

Definition 3.2.1. Let A C V(G), A # ¢, a dominating set D of a graph G is an
A- reserved dominating set, if DN A # ¢. The A-reserved domination number of G,

rva(G) is the cardinality of a minimum A-reserved dominating set.

V2

U3

V4

Us

Figure 3.1

For illustration , consider the graph G in

If A= {vy,vq,v3}, then {u,v;} is a minimum A- reserved dominating set .
Hence, ry4(G) =2 =~(G) + 1.

If B = {u,vy,v9,v3}, then {u} is a minimum B- reserved dominating set .

Hence, my5(G) =1 = v(G).

Remark 3.2.1. There are graphs with ry4(G) = v(G) for any A C V(G). For any
symmetric graph rya(G) = v(G) for every A C V(G). For Petersen graph G and
for every A C V(G), rya(G) =3 =~(G).

25



Chapter 3. Reserved Domination in Graphs

Proof. Let A C V(G). Choose any v € A, and choose two vertices v and w so that
D = {u,v,w} is an independent set. Then D is a minimum A-reserved dominating

set. Hence ry4(G) = 3 =~(G). O

U7

/]
xq» Ve

V10

Figure 3.2
Theorem 3.2.2. For any Graph G and A C V(G),
V(G) <71a(G) <~(G) + 1

Proof. Every A-reserved dominating set is a dominating set of G. Thus v(G) <
r74(G). A minimum dominating set together with an element in A form an A-
reserved dominating set. Hence G has an A-reserved dominating set with cardinality
Y(G) + 1. Thus ry4(G) < ~(G) + 1.

]

Theorem 3.2.3. An A-reserved dominating set D is a minimal A-reserved dom-

inating set if and only if for each vertex v in D one of the following conditions

holds
1. v s an isolate of D.
2. v has a private neighbour uw in 'V — D.
3. DNA={v}.

Proof. If an A-reserved dominating set D is minimal, then D is an A-reserved

dominating set and for each vertex v in D, D — {v} is not an A-reserved dominating
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set. This means that some vertex w in (V' — D) U {v} is not dominated by D — {v}
or (D—{v})NnA=¢.

Now if some vertex u in (V —D)U{v} is not dominated by any vertex in D —{v},
either © = v, means v is an isolate of D or u € V — D. If u is not dominated by
D — {v}, then u is adjacent only to vertex v in D. ie, v has a private neighbour u

inV —D.

If (D—{v})NA=¢,since D is an A-reserved dominating set, D N A # ¢.
Hence DN A = {v}.

Conversely, suppose that D is an A-reserved dominating set and for each vertex
v € D, one of the three statements holds. We show that D is a minimal A-reserved
dominating set. If D is not a minimal A-reserved dominating set, then there exists a
vertex v € D such that D — {v} is an A-reserved dominating set. Then each vertex
win (V — D) U {v} is adjacent with atleast one vertex in D — {v}. Then v is not
an isolate of D and condition 1 does not hold. And v has no private neighbour in
V' — D and condition 2 does not hold. D — {v} is an A-reserved dominating set
implies (D — {v}) N A # ¢. Hence condition 3 does not hold. Hence D is a minimal

A-reserved dominating set.

Theorem 3.2.4. If A C B, then rya(G) > ryp(G).

Proof. If A C B, then every A-reserved dominating set is a B-reserved dominating

set. Thus ry4(G) > ryp(G).

Remark 3.2.2. ry4(G) = 1 if and only if A contains a universal vertex of G.
Remark 3.2.3. ry4(G) = n if and only if G = K,,.

Proof. 1f G has atleast one edge uv, choose any w € A. If {w} N{u,v} = ¢, then
D = (V(G) — {u}) is an A-reserved dominating set. If {w} N {u,v} = {v}, then

27



Chapter 3. Reserved Domination in Graphs

D = (V(G) — {u}) is an A-reserved dominating set. Hence ry4(G) < n. Thus
rv4(G) = n if and only if G = K. O

Definition 3.2.5. [75] core(G) is defined as the set of all vertices belonging to all
v-set of G. core(G) =N{S : S € Q(G)}, where Q(G) is the family of all v-sets of
G.

Definition 3.2.6. [75] anticore(Q) is defined as the set of all vertices not belonging
to any v-set of G. anticore(G) = V(G) —U{S : S € Q(G)}, where Q(G) is the
family of all v-sets of G..

Definition 3.2.7. [75] Given G = (V, E), G, +u foru ¢V andv € V, is defined
as G, +u = (V1 EY), where V1 =V U{u} and E' = E U {uv}.

Theorem 3.2.8 ([73]). v € anticore(G) if and only if v(G, + u) = v(G) + 1.
Remark 3.2.4. For a graph G and A C V(G),

e 1v4(G) = v(G) + 1 if and only if A C anticore(G).

e 7y4(G) = ~(G) if and only if AN (anticore(G)) # phi.

Remark 3.2.5. For graph G, rya(G) = v(G) for every A C V(G) if and only if
every vertex of G can be a part of a minimum dominating set. Thus ry4(G) = v(G)

for every A C V(G) if and only if anticore(G) = ¢.

Theorem 3.2.9. For a graph G and A C V(G),
o ry4(G) =v(G) + 1 if and only if v(G, +u) = v(G) + 1 for every v € A.
o mv4(G) = v(G) if and only if v € A satisfying v(G, + u) # v(G) + 1.

Proof. From theorem [3.2.4] rv4(G) = v(G) + 1 if and only if A C anticore(G).
From theorem v € anticore(Q@) if and only if v(G, +u) = 7(G) + 1. Hence
rv4(G) = v(G) + 1 if and only if v(G, + u) = y(G) + 1 for every v € A.

From theorem , rv4(G) = v(G) if and only if AN (anticore(G)) # ¢. Hence

rv4(G) = v(Q) if and only if v € AN (anticore(G)). Thus ry4(G) = v(G) if and
only if there exists v € A satisfying v(G, + u) # v(G) + 1.
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Theorem 3.2.10. For cycle C,, and any A C V(C,,), mya(Cy) = [5] = 7(G).

Proof. It AC V(C,) and u € A, then D = {v € V(C,,) : d(u,v) = 3k,k € N} is an
A-reserved dominating set with |D| =[] = 7(G). Hence, ry4(Cy) = [§] = v(G).

[
Theorem 3.2.11. For complete graph K,, and any A C V(K,,), rya(K,) = 1.

Proof. It A C V(K,), then choose any u € A. Then D = {u} is an A-reserved
dominating set with |D| = 1. Hence ry4(K,) = 1.

O

Theorem 3.2.12. For complete bipartite graph K,,, with 2 < m,n and any A C
V(Kimn), ry7a4(Kpn) = 2.

Proof. Let X,Y be the bipartition of K,,,. Let A C V(K,,,), u € A, ifue X
choose any vertex v from the other partition Y. Then D = {u, v} is an A-reserved

dominating set with |D| = 2. Hence rya(K,,,) = 2.

Theorem 3.2.13. If n = 1(mod3) and A C V(P,), then rya(P,) = [5] = v(Py).
Proof. Let V(P,) = {v1,vq,...,0,}, A C V(P,) and choose any u € A.

Case 1 u=wg41,l € N0 <L L%J
Then let D = {v € V(P,) : d(u,v) = 3k,k € N} U {u}. Then D is an
A-reserved dominating set and |D| = [3] = rya(F,).

Case 2 u=wvg,l e N,0<I < [%J
Then let D' = {v € V(P,) : d(u,v) = 3k,k € N}. Then |D'| = [2] —2. Then
D={veV(P,):d(u,v) =3k ke N} U{u,u;} is an A-reserved dominating
set and [D| =[] = ry4(F).

Case 3 u = w342, € N,0<1 < [ 7]
Then let D' = {v € V(P,) : d(u,v) = 3k,k € N}. Then |D| = [%] — 2. Then
D={veV(P,) :d(u,v)=3k,k e N} U{u,u,} is an A-reserved dominating
set and |D| = [2] = rya(Py).

29



Chapter 3. Reserved Domination in Graphs

Hence ry4(P,) = [2] = Y(Py)- O

Theorem 3.2.14. If n = 0(mod3) and A C V(P,), then
2 ifAN{v; i =2(mod3)} # ¢
7 +1 Otherwise

Proof. Let A C V(P,)

Case 1 AN{v;:i=2(mod3)} # ¢
Let u € AN{v; : i = 2(mod3)}, then D = {v; € V(P,) : i = 2(mod3)} is
minimum dominating set of P, and u € DN A. Then D is an A-reserved

dominating set and |D| = [3] = rya(F,).

Case 2 AN{v; :i=2(mod3)} = ¢
D ={v; € V(P,) : i = 2(mod3)} is the unique minimum dominating set of P,
and DN A = ¢. Hence rya(P,) = [5] + 1.

Theorem 3.2.15. If n = 2(mod3) and A C V(P,), then
(5] ifAN{v; i =1,2(mod3)} # ¢

rya(Fn) = ,

[2]+ 1 Otherwise

Proof. Let A C V(P,)

Case 1 AN{v; :i=1,2(mod3)} # ¢
Let u € AN{v; : i = 1(mod3)}, then D = {v; € V(P,) : i = 1(mod3)} is
a minimum dominating set of P, and u € D N A. Then D is an A-reserved
dominating set and |D| = [3] = rva(F,).
Let uw € AN{v; : i = 2(mod3)}, then D = {v; € V(P,) : i = 2(mod3)} is
minimum dominating set of P, and v € D N A. Then D is an A-reserved

dominating set and |D| = [§] = rya(P,).

Case 2 AN{v;:i=1,2(mod3)} = ¢
D ={v; € V(P,) : i = 2(mod3)} and D' = {v; € V(P,) : i = 1(mod3)} are
the minimum dominating sets of P, and DN A = ¢, D'N A = ¢. Hence
rya(P) = [5] + 1.
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Remark 3.2.6. ry4,5(G) = min {rya(G),rvs(G)}.

Proof. Every A- reserved dominating set is an A U B- reserved dominating set too.
Hence, my4u5(G) < r74(G).

Similarly, ryaus < rv8(G).

If D is a minimum AU B- reserved dominating set. Then it is an A-reserved domi-
nating set or a B-reserved dominating set. Hence ry4,5(G) > min {ry4(G),rv5(G)}.
Thus, rv4up(G) = min {ry4(G), rvs(G)}.

3.3 A-Reserved domination in graph products

A-reserved domination in cartesian products is studied in the first section. A-reserved

domination in strong products is studied in the second section.
3.3.1 A-Reserved domination in cartesian products

Theorem 3.3.1. Let G and H be two graphs of order ny and ns, then for any
ACV(G) and BCV(H), ryaxs(GOH) < min{nyryg(H),narva(G)}.

Proof. Let Sy be a minimum B-reserved dominating set of H. Let us see that
S =V(G) x Sy is an A x B-reserved dominating set of GOH. If (u,v) € (V(G) X
V(H))—S. Then (u,v) is adjacent to atleast one vertex in S. And since BN Sy # ¢
and V(G) D A, (A x B)N(V(G) x Sg) # ¢. Hence S is an A x B-reserved
dominating set of GOH.

Similarly, if Sg is a minimum A-reserved dominating set of G, then § =
Se¢ x V(H) is an A x B-reserved dominating set of GOH.
Thus,

Tyaxp(GOH) < min{niryg(H),narya(G)}.

]

Remark 3.3.1. The bound in theorem 18 tight. For example for the graphs
G and H given in ﬁgure with A = {v1}, B = {1}, ryaxp(GOH) = 2 =
min{niryg(H),narya(G)}.
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And the strict inequality in theorem[3.53.1] attains for the graphs G and H given in fig-
ure[3.4 with A = {vs}, B = {u1}, ryax5(GOH) = 3 < min{niryp(H), narva(G)}.

(ug,v3) (u1,v2)

(Ul, Uy, 1, U5)
(O V2
U (UQ, U3) (U27 UQ)
1
V4 Vs Us (ug, vy

Figure 3.3

A graph G satisfies Vizing’s conjecture, if the inequality v(GOH) > ~(G)y(H)
is true for arbitrary graph H. [19]

Theorem 3.3.2. If a graph G satisfy the inequality ryaxg(GOH) > ry4(G)ryp(H),
for every graph H and for Ax B = {(u,v)} where (u,v) is an element in a minimum

dominating set of GOH. Then G satisfies Vizing’s inequality.

Proof. 1f a graph G satisfy the inequality ryaxp(GOH) > rya(G)ryp(H), for every
graph H and for A x B = {(u,v)} where (u,v) is an element in a minimum domi-
nating set of GOH. Then,

v(GOH) = ryaxp(GOH)
> rya(G)rys(H) -
Gy (H).

Thus, v(GOH) > v(G)y(H) for every graph H and G satisfies Vizing’s conjec-

V

v

ture.

]

We can see graphs G and H and A C V(G), B C V(H) satisfy the inequality
Tyaxp(GOH) < rya(G)ryp(H). For example in ﬁgure if A={n},B={u},
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then ryaxp(GOH) < rya(G)rys(H).

There are graphs G and H so that ryaxg(GOH) = rya(G)rvyg(H), for every
ACV(G)and B C V(H).
For example, if G = Cy and H = Kj, then for every A C V(G) and B C V(H),
y4(G) =2, ryp(H) = 1 and ryaxp(GOH) = 2 = ry4(G)ryp(H).

We can see graph G, H , A C V(G) and B C V(H) for which rysxp(GOH) >
rya(G)rye(H) -
For example, if G = K, 4 and H = K as given in figure , then for A = {v3} and for
any B C V(H), rya(G) =2, ryg(H) = 1 and ry4xp(GOH) = 3 > ry4(G)ryp(H).

Theorem 3.3.3. Let G be a graph that satisfies ryaxg(GOH) > rya(G)rys(H),
for every A C V(G) and for every graph H and B C V(H), and let G* be a
spanning subgraph of G such that ry4(G) = rya(G'). Then G' also satisfies
rvaxg(G'OH) > rya(GY)ryp(H), for every A C V(G) and for every graph H and
B C V(H).

Proof. Let A C V(G) and B C V(H), then

ryaxg(G'OH) > ryaxp(GOH)
> rya(G)rys(H)
> rya(GY)ryp(H)

O

Theorem 3.3.4. If n is an odd integer and x1, o, .....,x, be the vertices in the first

copy of P, in P,0OP, and 1,3, ....., Yy, be the vertices in the second copy of P, in
P,0OP,, then for any A C V(P,0PF,),

(28] ifAN{z,y i =2k+1,1<i<n}#¢

nt1
rya(P,0R,) = 2
’ [2£2] Otherwise
Proof. Let A C V(P,0P)

Case 1 HAN{x;,y;:i=2k+1,1<i<n}=¢
Choose any zg, € DNA. Then D = {z; : i = 1(modd)} U{y; : j =
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Case 2

3(mod4)} U {zy} is an A-reserved dominating set with |[D| = [2£2]. Thus
rya(P,OP) < [H2].

Let D be a minimum A-reserved dominating set. Then v € DN A and u = x4
or Yor,2 < k < ”TH

If 291, € DN A, then removing xo, U {24, y;,1 > 2k} from D and if necessary,
replacing yor—1 by Yax_o the resulting set D' would dominate the induced sub-
graph < {1, y1, T2, Y2....., Top—2, Y22} >. Since y(Pop_oOP,) = (%1 =k,
|D'| > k.

And removing xop U {x;,y;,7 < 2k} from D and if necessary, replacing
Yoks1 DY Yorso the resulting set DM would dominate the induced subgraph
< A{@okt2, Yok+2, ooy Ty Yn } >. Since Y(Pr_(op41)OPs) = [%1 = ["%%17
D > [252].

Hence,
D] > |[DY+ DY +1

> k4 [22E] +1
- hrnl Thus ry4(P,0P;) > [%2].
- ntl | q
5 T
> al

Hence ry4(P,0P) = [2£2].

HAN{x;,y;:i=2k+1,1<i<n}#¢

Choose any u € AN{x;,y; i =2k+ 1,1 <i<n}.

If u=m941,3 < k< "T_l, then let D = {z; : 1 < i < 2k,d(z;, xop11) =
0(mod4)} U{y; : 1 <i <n,d(yag—1,y:) = 0(mod4)} U {xoki1, Yor—1}-

If u=xq, then let D = {z; : i = 1(mod4)} U {y; : j = 3(mod4)}.

If u=yoy1,3 < k < 255 then let D = {y; : 1 <4 < 2k, d(yi, yors1) =
0(mod4)} U{y; : 1 <i <n,d(xek_1,2;) = 0(mod4)} U {yok+1, Tok—1}-

If u =y, then let D = {y; : i = 1(mod4)} U{z; : j = 3(mod4)}.

Then D is an A-reserved dominating set with |D| = [21]. Thus ry4(P,0PF) <
[2£1]. Since v(P,0P,) = [2], rya(P,0R,) > [2£].
Hence ry4(P,0P) = [2%].
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Theorem 3.3.5. If n is an even integer , then for any A C V(P,0P,),

n+1
ryaA(P,0P) = |

]

Proof. Let A C V(P,0P)

Case 1l WAN{x;,y;:i=2k+1,1<i<n}#¢

Choose any v € AN{z;,y; :i=2k+1,1 <i<n}.

If u = wop41,3 < k < %, thenlet D = {z; : 1 < i < n,d(vy, v0041) =
0(modd)} U{y; : 1 <i <n,d(yor—1,y:;) = 0(modd)} U{zok+1, Yok—1,Tn}-

If u =y, then let D = {z; : i = 1(mod4)} U{y; : j = 3(mod4)} U {z,}.
If u = yous1,3 <k < %, thenlet D = {y; : 1 < i < 2k, d(yi, Yort1)
(0Omod4)} U{y; : 1 <i<n,d(zop_1,2;) = (0modd) } U {yok+1, Tok—1,Tn}-
If u=y, thenlet D = {y; : i = 1(mod4)} U{z; : j = 3(mod4)} U {x,}.

Then D is an A-reserved dominating set with [D| = [22]. Thus ry4(P,0P,)
[nTHW Since v(P,0P) = ["TH], rya(P,0P) > ["THW Hence ry4(P,0P,) =

(%541

IN

Case 2 f AN{wj,y;:i=2k+1,1<i<n}=¢
Choose any u € D N A.
If u = l‘2k72 S k S % s then let D = {xz o1 S 1 S nad(xia‘r?k) =

0(modd)} U{y; : 1 <i < n,d(yok—2,y;) = 0(modd)} U {zap, Yor_2, 71}

If u=uay, thenlet D ={x;: 1 <i<n,i=2modd)}U{y;:1<i<n,i=
0(mod4)} U {x1}.
Ifu =yu,2 < k< 5, thenlet D = {y; 0 1 <4 < nd(ys,yer) =

0(mod4)} U{z; : 1 < n,d(x9,_o,x;) = 0(modd)} U {xyox, Top_2, 1}

If u=1yso, thenlet D ={y; : 1 <i<m,i=2(modd)} U{x;:1<1i<n,i
0(mod4)} U {x,}.

Then D is an A-reserved dominating set with [D| = [22]. Thus ry4(P,0P,)
(2417, Since v(P,0OP,) = [M], rya(P,0PF;) > [®H]. Hence ry4(P,0P;) =

2],

IN
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]

Theorem 3.3.6. If A C V(P,0P;),

n—1

_ -t

4

1
n—| | <rva(P,OP;) <n+1-—|

Proof. From [46], v(P,0P;) =n — |2:*|. Using n— 23] < rya(P,0P;) <
n+1— 2]

Theorem 3.3.7. I[f A C V(P,0F,),

n+1<rya(POP) <n+2 if n=1,2,3,4,56 or 9
n <rya(P,0P;) <n-+1 Otherwise

Proof. From [46],
v(P,0P;)) =n+1 ifn=1,2,3456 or 9
v(P,OF)) =n Otherwise

Using B22

n+1<rya(P,0P) <n+2 ifn=123456 or 9
n <rya(P,0P;) <n+1 Otherwise

]

Theorem 3.3.8. For any A C V(K,,) and B C V(K,),m <n, ryaxp(K,0K,) =

m.

Proof. Let uy,us, ...., u,, be the vertices of K,, and vy, v, ...., v, be the vertices of K.
Choose any (u;, v;) € AxB, then D = {(uy, v;), (ug,v;), (U3, v;), .oy (U, V5), .. (Upn, V) }
is an (A x B)-reserved dominating set with |D| = m. Hence rya.p(K,,0K,) < m.
Since y(K,,0K,) = m, ryaxp(K,OK,) > m. Thus ryaxp(K,,0K,) = m.

0

Theorem 3.3.9. Forany A C V(P,,) and B C V(K,),m,n > 2 € N, ryaxp(Pn,0K,) =

m.
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Proof. Let uq,us, ...., u,, be the vertices of P,, and vy, v, ...., v, be the vertices of K.
Choose any (u;,v;) € AxB, then D = {(uy, v;), (ug,v;), (U3, 0;), ..oy (Ui, V5), ... (U, V) }
is an (A x B)-reserved dominating set with |D| = m. Hence ryaxp(P,0K,) < m.

Since v(P,,0K,) = m, ryaxp(PnOK,) > m. Thus ryaxp(P,0K,) = m.

]

Theorem 3.3.10. Forany A C V(C,,) and B C V(K,,),m,n >2 € N, ryaxp(Cr,OK,) =

m.

3.3.2 Reserved domination in strong products

Theorem 3.3.11. For any two nontrivial graphs G and H and for every A C V(QG)
and B CV(H), ryaxpg(GR H) < rya(G)ryg(H).

Proof. Let Dy be the minimum A-reserved dominating set of G and D, be the
minimum B-reserved dominating set of H.

Then there are vertices u,v such that v € D; N A and v € Dy N B. Hence
(u,v) € (D1 x Dy) N (A x B)

Let (u1,v1) € V(GX H) so that (uy,v1) ¢ Dy x Dy, then

Case 1 u; € Dy and vy € Do,
then v, is dominated by vy € Dy. Hence (u1,v;) is dominated by (u1,v9) €

D1 X DQ.

Case 2 uy ¢ Dy and vy € Do,
then u; is dominated by us € Dy. Hence (ug,v1) is dominated by (ug,v1) €

D1 X DQ.

Case 3 Uy ¢ D1 and (1 ¢ DQ,
then u; is dominated by uy € D; and v; is dominated by vy, € Dy. Hence

(u1,v1) is dominated by (ug, ve) € Dy X Ds.

Thus Dy x Dy is an (A x B)-reserved dominating set and ryaxp(G X H) <
rya(G)rys(H).
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]

We can see graphs for which rya.p(GRH) = ry4(G)rvyp(H),YA C V(G),VB C
V(H). f G = Cyand H = Ky, then for every A C V(G) and B C V(H), rya(G) = 2,
ryp(G) =1 and ryaxp(GXR H) = 2 = rya(G)ryp(H).

We can see graphs G and H and A C V(G), B C V(H) for which ry4xp(G X
H) <rya(G)ryg(H),YACV(G),YBCV(H). If G=Pyand H=P; , A= {v}
and B = {uy} the pendant vertices of G and H respectively, then ry4(G) = 2,
r15(G) = 2 and ry45(G B H) = 3 < r74(G)r5(G).

3.4 Reserved domination in the corona of graphs

Theorem 3.4.1. Let G be a graph order n and H be a graph order m and H; be
the copy of H corresponding to v; € G, then for AC V(G o H),

n if AN (V(GQ) UA{v : vis a universal vertex of H;}) # ¢
n+1 Otherwise

rya(Go H) = {

Proof. Let AC V(GoH)

Case 1 If AN (V(G)U{v: v is a universal vertex of H;}) = ¢,

Let D be an A-reserved dominating set of G o H. Since D is a dominating set

of Go H,|DN(V(H)U{v})| >1,¥i=1,2,...n.

And if | DN (V(H;)) U{v;})|=1,Vi=1,2,...,n, then w; € DN (V(H;) U{v;})
dominates V(H;) and there exist a vertex wy € AN (Hg U {v}) for some
k€ {1,2,..n} and wy dominates Hy. Then, either wy = vy, or wy, is a universal
vertex of Hy, which is not possible. Hence |D N (V(H;) U {v;})| > 1 for some
je{1,2,...,n}. Thus |D| >n+1and rys(Go H) > n+ 1.

Choose any w € A, then {vy,ve,....,v,} U{w} is an A-reserved dominating set
of GoH. Hence rya(GoH) <n+ 1.

Thus rya(GoH) =n + 1.
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Case 2 If AN (V(G)U{v: v is a universal vertex of H;}) # ¢,

Let w € AN(V(G)U{wv : v is a universal vertex of H;} and w € V(H)U{v},
k€ {1,2,..n}. Let D be an A-reserved dominating set of GoH. Since D is
a dominating set of Go H, |[D N (V(H;) U{v;})| > 1,Vi=1,2,....,n. Hence
|D| >n and rya(Go H) >n

Hence {w}U ({v1, v, ....., v, } —{vx}) is an A- reserved dominating set of Go H.
Hence ry4(Go H) <n

Thus ry4(GoH) =n

3.5 [A4, Ay, ....., Ai]-reserved domination

[Ay, As, ..., Ag]-reserved domination as a generalized concept of A-reserved nomina-

tion number is defined in this section and studied it.

Definition 3.5.1. Let Ay, Ay, ..., A, C V(G). If D C V(G) is a dominating set with

the property DN A; # ¢,¥i =1,2,.....k, then D is said to be an [Ay, A, .......... Agl-
reserved dominating set of G. Cardinality of a minimum [Ay, Ag, .......... Ay]- reserved
dominating set is called the [Ay, Ag, .......... Ag]-reserved domination number denoted

by Y4, Ao, ..., Ak](G) .

For example , consider the graph fig[3.4] .

If Ay = {v1, v}, Ay = {vr}, Then {vy,vq, v5,v7}s @ minimum [A;, As]- reserved
dominating set.

Hence r7}4,,4,(G) = 4.
If By = {vy,v9,06}, By = {v3,v4,v5}, Then {vs, v6} is a minimum [By, By]- reserved
dominating set.

Here ry(5,,8,(G) = 2.
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U1
Ve
(%) U7
U3
Vs
(2
Figure 3.4

Remark 3.5.1. For any G and any Ay, Ao, ...... A CV(GQ), v(G) < rya,,4s,..,4,)(G) <
v(G) + k.

Theorem 3.5.2. If A;, As, ...... A C V(G) then an [Ay, As, ..., Ag]-reserved domi-
nating set D is a minimal [Aq, Ag, ..., Ag]-reserved dominating set if and only if for

each vertex v in D one of the following conditions holds

1. v is an isolate of D.

2. v has a private neighbour w in V. — D.

3. There exists | € {1,2, ...k} such that DN A, = {v}.

Proof. 1If an [Aj, Ag, ..., Ag]-reserved dominating set D is minimal, then D is an
[Ay, Asg, ..., Ag]-reserved dominating set and for each vertex v in D, D — {v} is
not an Ay, As, ..., Ag]-reserved dominating set. This means that some vertex u in

(V — D) U {v} is not dominated by D — {v} or there exists [ € {1,2, ...k} such that
(D—A{v})NA =9¢.

Now if some vertex u in (V —D)U{v} is not dominated by any vertex in D —{v},
either © = v, means v is an isolate of D or u € V — D. If u is not dominated by
D — {v}, then u is adjacent only to vertex v in D. ie, v has a private neighbour u

inV —D.
If there exists [ € {1,2,...k} such that (D — {v}) N A4, = ¢, but since D is

an [Ay, Ag, ..., Ag]-reserved dominating set, D N A; # ¢,Vi € {1,2,...k}. Hence
DN A; = {v}. Thus there exists [ € {1,2,...k} such that DN A; = {v}.
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Conversely, suppose that D is an [Ay, As, ..., Ag]-reserved dominating set and
for each vertex v € D, one of the three statements holds. We show that D is a mini-
mal [A, Ay, ..., Ag]-reserved dominating set. If D is not a minimal [A;, Ag, ..., Agl-
reserved dominating set, then there exists a vertex v € D such that D — {v} is an
[Ay, Ag, ..., Ag]-reserved dominating set. Then each vertex u in (V — D) U {v} is
adjacent with atleast one vertex in D — {v}. Then v is not an isolate of D and
condition 1 does not hold. Then v has no private neighbour in V' — D and condition
2 does not hold. D — {v} is an [A;, Ay, ..., Ag]-reserved dominating set implies
(D —A{v})NA; # ¢,Vi e {1,2....,n}. Hence condition 3 does not hold. Hence D is

a minimal [A;, Ag, ..., Ag]-reserved dominating set.

3.6 Domination number of cartesian product of graphs using

reserved domination number

In this section, domination number of cartesian product of graphs are studied using

reserved domination number.

Theorem 3.6.1. Let G = K, with u as center and V(G) = {u,u1,ug, ......... U}
and let H be any graph. Let D C V(GOH) such that D dominates {u}OH. Then,
|D| > 2y(H) —~v(< F >) , where F = {v € H : (u;,v) is not adjacent to D for
some i} U{v € H : (u;,v) ¢ D,Vi}.

Proof. Define , 7 : (GOH) — H as w(u,v) = v,¥(u,v) € (GOH)
Then, 7(S) ={ve H : (u,v) € S}.
Dy=({u} x H)NnD
Dy = DA ({u} % (H — =(N(Dp)))
Dy = DN ({us} X (H—7(N(DoU Dy))))
D3 = DN ({us} X (H—7(N(DyU Dy U Dy))))

Then 7(Dy) Un(Dy) Un(D3).......... 7(Dn) dominates H
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Therefore,
> IDi| > ~y(H) (3.6.1)
i=0
Now, let D! = D — (DyUD; U......... UD,) and K = {v € H : v is not dominated
by 7(D')}

Then, K C {v € H : (u;,v) is not dominated by D for some u;} U{v € H :

(uz,v) ¢ D,Vi}

For, Let v € K and if v ¢ {v € H : (u;,v) is not dominated by D for some i}
ie, (u;,v) is dominated by D, Vi

Then, (u;,v) is dominated by {DyU Dy U ....... D,}

If (u;,v) € D; .Then for [ different from i, (u;, v) is not dominated by Dy U Dy U
D,, and hence not dominated by D.

Hence (u;,v) ¢ D;, Vi

Therefore , v € N(n(D;)) for i =0,1,...,n

Since (u;,v) is not dominated by D',Vi =1,2,.....n

We have , (u;,v) ¢ D! for i =1,2,...n

Hence , (u;,v) ¢ D for i =1,2,....,n

Hence, K C {v € H : (u;,v) is not dominated by D for some w;} U{v € H :

(ug,v) & D,Yi}.

Put FF = {v € H : (u;,v) is not dominated by D for some u;} U {v € H :

(ug,v) ¢ D,Vi}

Then , D] + (< K >) > 7(H)
And so ,
DY +~(< F>)>~(H) (3.6.2)

From equation 1 and 2 ,
St o|Dil + | DY 4+~v(< F>) > ~y(H) +~(H)
Therefore , |D| > 2y(H) — y(< F >)

Hence , the result.

The following result generalizes theorem [3.6.1

Theorem 3.6.2. Let G be any graph with v(G) = 1 and N C V(G) such that
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ryn(G) > 1.And let H be any graph. Let D C GOH with the property that D
dominates (G— N)OH .Then, |D| > 2vy(H) —~v(< F >) , where F ={v € H : (u,v)
is not dominated by D for someu e N}yU{v € H : (u,v) ¢ D,Yue N} .

Theorem 3.6.3. Let G = K,y with u as center and V(G) = {u} U N where
N =N UNyU..... Ny, INi| > 2,N; = {up, o, ... Uiy fori = 1,2, ..k and
H be any graph. If D C V(GOH) so that D dominates {u}0OH , then |D| >
(k+1)y(H) =8 v(< Fy >) , where F; = {v € H : (uy,v) is not dominated by D
for some j} U{v € H : (u;j,v) ¢ DN N;,Vj} .

Proof. We are using induction on k. As by above theorem , we can see that the
result is true for k£ = 1.

Assume the result is true for k — 1,

Now, let Ny = {ug1, urg, oevo... Uk

Dy =N,ND

B ={v € H : (u,v) is only dominated by Dy}
And let,

Dy = Dy N{up } x B
DkQ = Dk N ({ng} X (B — ’/T(N(Dkl))

Dy = D N ({ure} x (B = m(N(Dg1)) U (N (Dg2)).... UT(N(Dgr-1y)))
And D} = Dyy U Dga U ... Dy,
Then ,
D > (< B >) (3.6.3)

Also

Let , Cy = {v € H : v is not dominated by 7((Dy) — (D}))}
Then

Cy C F}, where

F, ={v € H : (uy;,v) is not dominated by D for some j}
Uf{v e H : (ugj,v) € DN N, Vj}

Therefore,
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(D) = (D)l = 7 (H) = y(< Fi >) (3.6.4)

From equation 3 and 4
Dy = 7(< B >) +~(H) —v(< Fy, >) (3.6.5)

Now, (D — Dy) together with y(< B >) elements in {u}0H dominates {u}0H
Therefore by induction hypothesis ,
k—1

D= Dy +7(< B>) > (ky(H) - S A(< F, >) (3.6.6)

i=1
where F; = {v € H : (u;;,v) is not dominated by D for some j}U{v € H : (u;;,v) ¢
DN N;,Vy}

Therefore , from equation 5 and 6

D = (k+1)y(H) =Y y(< F;>) (3.6.7)

=1

Hence , the result.

3.7 Conclusion

The concept of A-reserved domination number in graphs is introduced in this chapter.
Necessary and sufficient condition for an A-reserved dominating set to be a minimal
A-reserved dominating set is obtained. A-reserved domination number in some
classes of graphs are obtained. These parameters in certain product graphs are
studied. Generalized concept of A-reserved domination number is studied. In the
sixth section domination number of cartesian product of graphs is studied using

reserved domination number.
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CHAPTER 4

Stability of Domination in Graphs

4.1 Introduction

Motivated by numerous applications various types of dominating sets such as Roman
domination, Total domination, fractional domination were introduced and studied
in graph theory. For the purpose of studying stability of domination in graphs,
one such domination called a-stable domination is introduced in this chapter. This
chapter is divided into seven sections. In the second Section of this Chapter, the
concept of a-d- stable domination number of a graph G is introduced. The concept
of a-a- stable domination number of a graph G is introduced in the third section. In
section four, a- stable domination number of a graph G is introduced. In the fifth
section a-stable domination in product graphs are studied. a-stable domination in
corona of graphs is studied in sixth section. Seventh section is a concluding section.

In this chapter the elements of a dominating set are called donors and the other
vertices are called acceptors. A subset D of vertices in a social network graph with
the condition that each member in D dominates almost equally many members
in V — D, or that each member in V — D is dominated by almost equally many
members in D, or both, plays a key role. This concept of equitable domination in

graphs was defined and studied by A Anitha, S Arumugam and Mustapha Chellali[2].
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In social network problems related to marketing, banking and others the instability
affects the system when adjacent acceptors are dominated by unequal number of
donors or adjacent donors dominates unequal number of acceptors. This situation
become worse when the instability is large. Motivated from this idea the concept of

a-stable of domination number is being introduced.

4.2 «-d-stable domination

In this section, a-d-stable domination is introduced and characterization of a minimal
a-d-stable dominating set is obtained. And relation between a-d-stable domination
number and independent domination number is obtained. Nordhaus-Gaddum type
result is obtained. For any non negative integer 3, graph G with 7%(G) > v}(G) >
V2(@)...... > 72(G) is constructed.

Definition 4.2.1. Let D be a dominating set. For a vertex w in D let ¥p(u) =
IN(u) N (V — D)|. The donor instability or d-instability of an edge e connecting
two donor vertices u and v, d2 (e)= |¢Yp(u) —¢Yp(v)|. Let D C V, the d-instability

inst

of D, is the sum of d-instabilities of all edges connecting vertices in D, ¥q4(D) =
ZeE<D> diDnst(e) .

Definition 4.2.2. Let D be a dominating set. Given a non negative inleger o,
D is an a-d-stable dominating set, if d2 .(e) < a for any edge e connecting two
donor vertices. Cardinality of a minimum «a-d-stable dominating set is the a-d-stable

domination number and denoted by 5 (G).

Definition 4.2.3. A dominating set D is d-stable if 14(D) = 0. Cardinality of a

minimum d-stable dominating set is the d-stable domination number and denoted by

79(G).

Remark 4.2.1. If a > 3, then v(G) < 73(G) < 75(G).
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O Uy Uy Uusg
\ f :
ur () U2
O ue
Figure 4.1

Example 4.2.1. In Figure D = {uy,us} is the minimum dominating set.
Yp(uy) = 4 and Yp(ug) = 2. And dP _,
stable dominating set. And for a > 2, v$(G) = 2.

If S = {uy,ur,us}, vs(u) = 3, ¥s(uy) = 0 and Pg(ug) = 0. And S is an

independent set. Hence v}(G) = 7%(G) = 3.

(urug) = 2. Hence D is a minimum 2-d-

Remark 4.2.2. Property of being a-d-stable dominating set is neither superheredi-

tary nor hereditary.

Theorem 4.2.4. An a-d- stable dominating set D is a minimal a-d- stable dom-
wnating set if and only if for each verter v in D one of the following conditions

holds
1. v is an isolate of D.
2. v has a priwvate neighbour v in'V — D.

3. There exist two adjacent vertices uy; and usg different from v in D, uy adjacent

to v, ug not adjacent to v and ¥p(uy) = Yp(uz) + .

Proof. If an a-d- stable dominating set D is minimal, then D is an a-d- stable
dominating set and for each vertex v in D, D — {v} is not an a-d- stable domi-
nating set. This means that some vertex u in (V' — D) U {v} is not dominated by

D — {v} or there exist two adjacent vertices u; and uy different from v in D with

[Wp(ur) — ¥p(ug)| < abut [Yp_qy(ur) — Yooy (ug)| > a.

Now if some vertex u in (V' — D)U{v} is not dominated by any vertex in D —{v},
either u = v, means v is an isolate of D or u € V — D. If u is not dominated by

D — {v}, then u is adjacent only to vertex v in D. ie, v has a private neighbour u
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inV —D.

If [¢p(u1) — ¥p(u2)| < o and |[Yp_gy(u1) — Yp_uy(u2)| > «, let o = 0, then
Yp(ur) = ¥p(uz) and [Yp_uy(ur) — Yp_(u(u2)| = a + 1. Assume ¢p_qoy(ur) >
Yp_(wy(uz). Then u; is adjacent to v but uy is not adjacent to v and ¥p(u1) =
Yp(ug) + a. If @ > 0, then assume ¥p(uy) > ¥p(uz2). Then Yp_rn(u1) —

’l/}D—{”U}(u2> = a+ 1. Then u; is adjacent to v but us is not adjacent to v and

Yp(u1) = ¥pluz) + a.

Conversely, suppose that D is an a-d-stable dominating set and for each vertex
v € D, one of the three statements holds. We show that D is a minimal a-d-stable
dominating set. If D is not a minimal a-d-stable dominating set, then there exists a
vertex v € D such that D — {v} is an a-d-stable dominating set. Then each vertex
win (V — D)U{v} is adjacent with atleast one vertex in D — {v}. Then v is not an
isolate of D and condition 1 does not hold. And v has no private neighbour in V' — D
and condition 2 does not hold. D — {v} is an a-d-stable dominating set implies
for any two adjacent vertices u; and uy in D — {v}, ¥p_guy(w1) — Yooy (u2) < a.

Hence condition 3 does not hold. Hence D is a minimal a-d-stable dominating set.

O

Remark 4.2.3. For non negative integer a,, 7$(G) =1 <= ~(G) = 1.

'02 ‘ ,U5

U3

O v
Figure 4.2

Theorem 4.2.5. For a graph G and non negative integer o, B,(G) > v3(G).

Proof. Let S be a maximum independent set. Then, every vertex in V' — .5 is adjacent

with atleast one vertex in S. Thus S is a dominating set. No two vertices in S are
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adjacent. It follows that S is an a-d-stable dominating set. Hence, 3,(G) > v3(G).
And this bound is sharp. In figure 1.2, 7$(G) =2 = 5,(G).

Theorem 4.2.6. For a graph G and non negative integer o, i(G) > 5 (G).

Proof. Let S be a minimum independent dominating set. No two vertices in S are
adjacent. It follows that S is an a-d-stable dominating set. Hence, i(G) > 73(G).
And this bound is sharp. In figure .2 75(G) = 2 = i(G).

Proposition 4.2.7. The domination chainir(G) < v(G) < i(G) < 5,(G) < T'(G) <
IR(G) can be extended asir(G) < v(G) < 73(G) < i(G) < B,(G) <T'(G) < I

Theorem 4.2.8. For any graph G of order n > 2 and non negative integer a,

3<A3(G) +75(G) <n+1.

Proof. Let a be any non negative integer and GG be any graph order n > 2, since

7$(G) <i(G) and i(G) < n — A(G)

73(G) +15(G) < i(G) +i(G)
< (n=A(G) + (n—AG)) -
< n+1

Let G be a graph order n > 2. If v3(G) = 1, then there is a vertex u of degree
n —11in G. Hence u will be an isolated vertex in G. Hence 7§(G) > 2.. In a similar
way if 7$(G) = 1 then v§(G) > 2. Hence 75 (G) + ~v$(G) > 3. And the lower bound
is obviously obtained if v§(G) > 1.

[]

The bounds given in the above theorem are sharp. For G = K,,, 73(G) = 1 and
73(G) = n and Y$(G) +15(G) =n + 1. For K1,,_1 , 7$(G) =1 and 75(G) = 2

Theorem 4.2.9. For a connected triangle free graph G with |V (G)| > 2 and any

non negative integer o, 75(G) = 2.
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Proof. Since G is a connected graph there is an edge uv in G. If G is isomorphic to
K then G is an empty graph with two vertices. Hence 1$(G) = 2. If |V(G)| > 2,
then each vertex of G is not adjacent to at least one of v or v. Hence u and v are
non adjacent vertices in G and every other vertices are adjacent with either u or v
or both. Hence {u, v} is an a-d-stable dominating set of G. Since G has no isolated

vertex 75(G) # 1. Hence 75(G) = 2.

]

Theorem 4.2.10. If D is an a-d-stable dominating set of a graph G and u and v
are adjacent vertices in D with d(v) = d(u) + k+ o, k € Z*, then D contains at
least k elements from (N[v] — Nlu]).

Proof. If D is an a-d-stable dominating set of a graph G and u and v are adjacent
vertices in D with d(v) = d(u) + k + a, k € ZT, then [p(v) — ¥p(u)| < o. Hence
IN[v]n(V =D)| < |N[u]n(V —D)|+a. Thus, d(v)—d(u) < |(N[v]— Nu])ND|+«.

Hence D contains at least k elements from (N[v] — Nul).

]

Corollary 4.2.11. If D is a d-stable dominating set of a graph G and u and v
are adjacent vertices in D with d(v) > d(u), then D contains at least d(v) — d(u)
elements from (N[v] — N[u]).

Corollary 4.2.12. If u is a pendant vertex adjacent to v, D is a d-stable dominating

set and u,v € D, then N[v] C D.

Theorem 4.2.13. For any non negative integer 3, there exist graph G with v9(G) >
74(G) > 73(G)-. > 7 (G)

Proof. Take k =+ 1

Construct G as follows,

Step 1:- Let H be the complete graph with vertex set {ay, as, ..., ax}.
Step 2:- Let A; = {a;1,0,9,...,a;41} for i = 1,2, .. k.

Form G by joining each vertices in A; with a; in H for i = 1,2..., k.
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Let D be a d-stable dominating set, B; = {a;, a;1, @;2, ..., ;i1 } and C; = B;ND.

If a,,as € D with r < s then by corollary 1.11, D contains s — r elements from

A, and hence by corollary 1.12, Nlas] C D. Thus B, C D. Thus C; = B; for all
i=1,2,.k

Hence D = V(G) or D = AJUAUA3U.....UA, jUA, 1U....UA, 1UALU{as}.
Hence we take D = Ay U Ay U A3 U ... UA, 1 UA U U A, 1 UApU{as}.

Thus |C;| =i+ 1 for i # s and |C,| = 1. Then,

D] = 243+...+(s)+1+(s+2)+....+(k+1)
(k+1)2(k:+2) . (S + 1)

Hence |D| is minimum when w — (s + 1) is minimum. That is when s = k.

And D= A UAUA3U ... U Ag—1 U {ay} will form a d- stable dominating set
with |D| = &20+D (1 4 1)

Hence VS(G) = % _ (k + 1) _ (Ic)(l2<:+1)‘

Similarly,

7(G) =

W@ = St

75(G> _ (k—5+;)(k—5)+5'

Figure |4.3| illustrates the graph with 79(G) > 7}(G) > v3(G).
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a3;3

23

@ 222

a2

Figure 4.3

4.3 «a-a-stable domination

In this section, a-a-stable domination is introduced and characterization of minimal
a-a-stable dominating set is obtained. And relation between a-a-stable domination

number and perfect domination number is obtained. For any non negative integer

B, graph G with 12(G) > 7X(G) > v2(G)...... > 742(G) is obtained.

Definition 4.3.1. Let D be a dominating set. For a vertex u not in D, let ¢pp(u)
= |N(u) N D|. The Acceptor Instability or a-instability of an edge e connecting
two acceptor vertices u and v is, aP ,(e) = |¢p(u) — ¢p(v)|. The a-instability of

D, ¢.(D) is the sum of a-instabilities of all edges connecting vertices in V — D,

¢a(D) = Zee<V7D> azj'?zst(e)'

Definition 4.3.2. Let D be a dominating set. Given a non negative integer o,
D is an a-a-stable dominating set, if al .(e) < a for any edge e connecting two
acceptor vertices. Cardinality of a minimum «-a-stable dominating set is a-a-stable

domination number and denoted by v (G).

Definition 4.3.3. The dominating set D is a-stable if ¢,(D) = 0 . Minimum
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cardinality of an a-stable dominating set is a-stable domination number and denoted

by 19(G).

Remark 4.3.1. If a > f3, then v(G) < 73(G) < 2(G)

— a

Example 4.3.1. In Figure D = {uy,us} is the minimum dominating set.
¢p(u3) = ¢p(us) = ¢p(us) = ¢p(ug) = ¢p(ur) = ¢p(ug) = 1. Hence D is a

minimum a-stable dominating set and v$(G) = 2 for all non negative integer a.

Remark 4.3.2. Property of being a-a-stable dominating set is neither superheredi-

tary nor hereditary.

Theorem 4.3.4. An a-a- stable dominating set D is a minimal a-a- stable dom-

wnating set if and only if for each verter v in D one of the following conditions

holds
1. v is an isolate of D.
2. v has a private neighbour w in V. — D.

3. There exist two adjacent vertices uy and ug in V-D, uy adjacent to v, us not

adjacent to v and ¢p(us) = ¢p(ur) + a.

Proof. If an a-a- stable dominating set D is minimal then D is an a-a- stable
dominating set and for each vertex v in D, D — {v} is not an a-a- stable dominating
set. This means that some vertex u in (V' — D) U {v} is not dominated by D — {v}

or there exist two adjacent vertices u; and us in V' — D with |¢p(u1) — ép(us)| < «

but |¢p—uy(u1) = dp—quy (uz)| > .

Now if some vertex u in (V' —D)U{v} is not dominated by any vertex in D —{v},
either v = v, means v is an isolate of D or u € V — D. If u is not dominated by
D — {v}, then u is adjacent only to vertex v in D. ie, v has a private neighbour u

inV —D.

If [¢p(u1) — ép(uz)| < o and |pp—(y(w1) — dp—(3(ua)| > @, let v = 0, then
ép(u1) = ¢p(uz) and [pp_(u1) — dp_fuy(u2)] = a+ 1. Assume ¢p_g) (u2) >
¢p—{v}(u1). Then u; is adjacent to v but wuy is not adjacent to v and ¢p(ug) =

¢p(ur) + . If @ > 0, then assume ¢p(uz) > ¢p(u1). Then ¢p(us) — dp(ur) =
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and ¢p_(v3(u2) — dp—fvy(u1) = a+1. Then u, is adjacent to v but us is not adjacent

to v and ¢p(uz) = ¢p(u1) + .

Conversely, suppose that D is an a-a-stable dominating set and for each vertex
v € D, one of the three statements holds. We show that D is a minimal a-a-stable
dominating set. If D is not a minimal a-a-stable dominating set,then there exists a
vertex v € D such that D — {v} is an a-a-stable dominating set. Then each vertex
win (V — D)U{v} is adjacent with atleast one vertex in D — {v}. Then v is not an
isolate of D and condition 1 does not hold. And v has no private neighbour in V' — D
and condition 2 does not hold. If D — {v} is an a-a-stable dominating set then
for any adjacent vertices u; and ug in (V' — D) U {v}, ¢p_uy(u2) — dp—guy(w1) < a.

Hence condition 3 does not hold. Hence D is a minimal a-a-stable dominating set.

[
Remark 4.3.3. For non negative integer o, 72(G) =1 <= ~(G) =1
Theorem 4.3.5. For a > 1, 7%(G) =2 <= (G) =2

Proof. If v(G) = 2, then for a minimum dominating set D, |D| = 2
D|=2 = ¢p(v)=1 or ¢pv)=2 YveV-D

= |¢p(v1) — dp(v2)| < 1, Vv, v €V — D

= 7.(G) =2

Conversely, if v(G) = 2, then y(G) # 1. If D is a minimum a-a- stable
dominating set , then |D| = 2, and D is a dominating set. Thus, v(G) = 2
[l

Theorem 4.3.6. For any graph G and non negative integer o, 73 (G) < 7,(G). And

this bound s sharp.

Proof. 1f D is a perfect dominating set, then every vertex in V' — D is adjacent with

exactly one vertex in D. And hence ¢p(v) = 1, for all v € (V — D). And so D
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is an a-stable dominating set . Thus every perfect dominating set is an a-stable
dominating set . Hence, 7$(G) < 7,(G).
For G = Ps,, 7,(G) = n =~%(G). So we can see that the bound is sharp.

Theorem 4.3.7. For any positive integer 3, there exist graph G with v°(G) >
YHG) > 2(G)...... > Y5(@).

Proof. Let k=0+1
Construct G as follows
Step 1:Let H be the complete graph with vertex set {ay, as, ..., ax}

Step 2: For each i take i copies of P with vertex set {b; b;;"} for j=1,2,...,1

’L]7 1]7

and join b ; with a; for each j =1,2,....i.

Let AJ {bij, b5, 0457} for j =1,2,..i and A; = {a;} U U _1{b;
i€ {1,2, . k).
Let D be an a-stable dominating set. If a; € D then |A; N D| > i+ 1.
Let r be the smallest integer such that a, ¢ D. Then |A, N D| > r.

b;;"} for all

’l]? ’Lj’

If s >rand a, ¢ D, since 7}, ,(a,,as) = 0, b; € D for atmost r values of j. And if
there exist j for which b; ¢ D then by, bs;” € D.

[Asn D] = r+2(s—7)
= 25—r>s+1

Hence,|D| > |[AiND|+|AsND|+|AsND|+ ...+ |A,_1 N D]+
|A, N D|+ |A, ;1N D|+ ...+ |A, N D
243+ +(r—-1+D)+r+(r+2)+....+(k+1) .

= 14+24+...+k+k—-1

_ k(k+1) (k—1)
Thus, 7(G) > (kH) + (k—1).
And D' = {ay,....;ap_1} UUL {bly, V), ...b};} is an a-stable dominating set with
D) = MED 4k —1).
Hence, ’ya(G) < M +(k—1)
Thus, 2(G) = E&H 4 (k — 1)
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Similarly,
%(G) =
%G =
1(G) =

Yo (G) =
12(G) =

k(k+1)
MEED 4+

k(k+1)
2

Figure [4.4] illustrates the graph with 12(G) > v}(G) > v2(G).

4.4 «-stable domination

b271”

Figure 4.4

In this section, the concept of a -stable domination and stable dominating index

is introduced and bound for « -stable domination number is obtained. a-stable
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domination number for standard graphs are obtained.

Definition 4.4.1. A dominating set D is stable, if 1q(D) = 0 and ¢,(D) = 0.
Minimum cardinality of a stable dominating set is called stable domination number

and denoted by v°(G).

Definition 4.4.2. If a dominating set D is an a-d-stable dominating set and a-a
-stable dominating set, then D 1s called an a-stable dominating set and cardinality
of a minimum a-stable dominating set is defined as a-stable domination number and

denoted by v*(G)

Remark 4.4.1. If a minimum o -a-stable dominating set is an a-d-stable dominating
set, then v*(G) = v2(Q). And if a minimum a-d- stable dominating set is an a-a-

stable dominating set, then v*(G) = ~v$(G).
Remark 4.4.2. If a > 3, then v(G) < v%(G) < +(G).

Definition 4.4.3. Minimum « so that v*(G) = v(G) is called stable dominating
index and denoted by I;4(G).

Example 4.4.1. In ﬁgure the minimum d-stable dominating set {uy,uy, ug} is
an a-stable dominating set. Hence {u1,ur, us} is a minimum stable dominating set
and Y°(G) = 3.

A minimum 1-d-stable dominating set {uy,ur,ug} form a 1-a- stable dominating set
and hence {uy,ur,ug} is a minimum 1-stable dominating set and v*(G) = 3.

And minimum dominating set {uy,us} is a 2-a- stable dominating set and a 2-d-
stable dominating set. {uy,us} form a minimum 2-stable dominating set. Hence,
7(G) =2.

AndNa > 2, v(G) =2 = v(G). Hence, 14(G) = 2.

Compliment of a minimum a-stable dominating set need not be an a-stable
dominating set. In graph figure , {u1,ug,us} is a minimum 1-stable dominating

set but its compliment is not a 1-stable dominating set.

Remark 4.4.3. Property of being a-stable dominating set is neither superhereditary

nor hereditary.

Theorem 4.4.4. For any graph G and for any non-negative integer o, v(G) =
1 <= *(G) =1
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Proof. If v(G) = 1, then the single vertex set {v} which dominates all vertices of G,
is an a-d-stable dominating set and an a-a-stable dominating set. Then v*(G) = 1.

Also any a-stable dominating set is a dominating set. So, if y*(G) = 1 then v(G) = 1.

O

Lemma 4.4.5. For any graph G and for any non negative integer o, v*(G) =
n < G=K,.

Proof. If G # K,, there is atleast one vertex v with d(v) > 1. Then V — {v} is an
a-stable dominating set. This means that v*(G) < n — 1. Hence if v*(G) = n, then
G =K,. If G = K,, then 7*(G) = n trivially.

[
Theorem 4.4.6. For a graph G with 6(G) > 1, v*(G) <n — 1.
Proof. From lemma it is clear that v*(G) < n — 1.

[

Theorem 4.4.7. For every graph G of order n and mazimum degree A and for any

non negative integer a, v*(G) > F-

Proof. Since v*(G) > v(G) and 4(G) > 3%, 7*(G) > {45

]

Theorem 4.4.8. For any non negative integer a, v*(G) = v(Q) for the following
Graphs

e Complete graph K,
e Path P,

e Cycle C,

e Wheel graph W,
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e Helm graph H,

Proof. In these graphs minimum dominating set D, form an a-stable dominating

set. Hence a-stable domination number is same as its domination number.

O

Remark 4.4.4. If G is the corona C, o K1, then for any non negative integer a,
i(G) =4 (G) =14 (G) =1%(G) =~(G) = p.

Proof. Clearly the pendant vertices will form an a-stable dominating set and inde-

pendent dominating se. Hence i(G) =13 (G) = 7¢(G) = v*(G) =v(G) = p.

]

Theorem 4.4.9. For complete bipartite graph G = K, ,, m < n and non-negative
mteger o

Ya(G) =2
{ m{n—m—i—2—a) m} ifn—m+2—a>2

otherwise
{ ifn—m <«

otherwise

Proof. Let X = {vy,vq,....;v5,} and Y = {uy, ug, ...., u, } be the bipartition of V(G).
Then {v1,u;} is a minimum «a-a- stable dominating set of G. Hence v2(G) = 2.

Let D be a minimum a-d-stable dominating set.

Case 1

Let D intersects both X and Y and |[DN X| =1 and |[DNY| = k. Then
4D(€) = |(n — k) — (m — 1)]. Thus d2,,(¢) < a only if |(n — k) — (I — m)| < a.
Then (n — k) —(l—m) < aor (n—k)— (Il —m) > —a. Since D is minimum
a-d-stable dominating set (n — k) — (m —1) < a. Thus (m—1) —(n—k) < «. Hence
k>n—m+1!—«. Thus k and [ are minimum whenl=1and k=n—-m+1— «.
Thus [D| >n—m+2—a. And D = {u1,v1,02....., Up—mt1-a} 1S an a-d-stable
dominating set of |D| =n —m +2 — a. Hence 7$(G) =n—m+2 — a.

Case 2

Let D intersects with X only. Then |D| =

59



Chapter 4. Stability of Domination in Graphs

Case 3

Let D intersects with Y only. Then |D| = n.

Thus*yg‘(G):{ min{(n —m+2—a),m} ifn—m+2—a>2

m otherwise
Let D be a minimum a-stable dominating set. Case 1

Let |[DNX| =1and |[DNY| = k. Since d? ,(e) < aand aP ,(e) < o, |l—k| <
and [(n—k)—(m—1) <a. Henceifn—m >a, k=0and l=m andif n —m < «

N 2 ifn—m<a«
,kzlandlzl.ThuS,v(G):{ -
m  otherwise

4.5 a-stable domination in product graphs

4.5.1 «-stable domination in cartesian product of graphs

Theorem 4.5.1. Let G and H be two graphs of order ny and ny , then for any

non-negative integer o ,
e 74 (GOH) < min{n1yg (H), n27g (G)}
e 73 (GUH) < min{n1vg(H), n273(G)}
e v (GUOH) < min{niy*(H),nay*(G)}.

Proof. Let Sy be a minimum a-a-stable dominating set of H. Let us see that S =
V(G) x Sy is an a-a-stable dominating set of GOH. If (u,v) € (V(G) x V(H)) - S.
Then (u,v) is adjacent to atleast one vertex in S. And if (uy,v1) € (V(G)xV(H))—S
and (ug,v2) € (V(G) x V(H)) — S and (uy,v;) adjacent to (ug,ve). Then,
ds(ur,v1) = |{(u,v) € S: (ug,v1) adjacent to (u,v)}
= (u,v) € S:uy =u and vy adjacent to v}U
{(u,v) € S:uy adjacent to u and v, =v}|

Since {(u,v) € S:uy adjacent to u and vy =v}=¢

os(ur,v1) = |{(u,v) € S:uy=u and vy adjacent to v}|

¢SH (Ul)‘

60



Chapter 4. Stability of Domination in Graphs

Similarly ¢g(ug, v2) = ¢, (v2). And
|@s(ur,v1) = @s(uz, v2)| = [ds,(v1) = Dy (v2)
< a.
Hence S is an a-a-stable dominating set of GLIH.

Similarly, if Sg is a minimum a-a-stable dominating set of G, then Sg x V(H) is
an a-a-stable dominating set of GLIH.
Thus,

Vo (GOH) < min{nvg (H), nav5 (G)}-

Let Sy be a minimum «-d-stable dominating set of H. Let S = V(G) x Sy. If
(u,v) € (V(G) x V(H)) — S, then (u,v) is adjacent to atleast one vertex in S. And
if (ug,v1) € S and (ug,ve) € S and (uy,v;) adjacent to (ug,vq). Then,

Ys(uy,v) = [(u,v) € (V(G) x V(H)) =5 (ur,v1) adjacent to (u,v)}]
H{(u,v) € (V(G)x V(H))—S:u; =u and v, adjacent to v}U
{(u,v) € (V(G) x V(H)) =S :u1 adjacent to u and vy = v}

Since, {(u,v) € (V(G) x V(H)) =S :u1 =u and v, adjacent to v} = ¢

Ys(up,v1) = |[{(u,v) € (V(G)xV(H))—S:u1=u and v, adjacent to v}
77Z}SH(Ul>'
Similarly 1g(ug, v9) = Vg, (v2).
Thus
[s(ur, v1) = hs(uz, v2)| = |ihsy, (v1) — sy (v2)

< o
Thus S is an a-d-stable dominating set of GOH.

Similarly, if Sg is a minimum «-d-stable dominating set of G, S¢ x V(H) is an
a-d-stable dominating set of GOH. Thus,
7d (GBH) < min{niyg(H),navg (G}

Hence, v*(GOH) < min{ny*(H),nyy*(G)}.

]

Remark 4.5.1. The bound in theorem is attained if G = K,, and H = Ky;
because v*(K,0K3) = 2 = min{27y*(K,),ny*(K>3)}.
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Theorem 4.5.2. For any graph G of order m and any non negative integer a,

4 (C,0G) >

IN(SE=E

Proof. Since A(C,0G) = A(G) + 2 and |V(C,0G)| = mn, by theorem
v*(C,0G) >

G)+3

O
Theorem 4.5.3. If m,n > 2 for any non negative integer o, v*(C,, 0C,,) > .
Proof. By theorem {4.5.2]
1(CaDC) > x 2 .

mn
5

Theorem 4.5.4. If m,n > 2 for any non negative integer o, v*(C,,0C,) >
YO )7 (Cr).

Proof. By theorem {4.5.3]

Y(CrOCy,) > %

> 31051

= YCrn)v*(Cy)
Hence, v*(C,,8C,,) > v*(Cy)v*(Ch)

Theorem 4.5.5. For non-negative integer o, v*(P,0F,) = [%].

Proof. Let x1,x,,.....,z, be the vertices in the first copy of P, and y1,ys, ....., y, be
the vertices in the second copy of P,.

Case 1

If nis odd, D consists of those vertices x;, y; where i = 1(mod4) and j = 3(mod4)
will form an a-stable dominating set with |D| = [{z; : i = 1(mod4)}| + {y; : j =
3(mod4)}| = [21]. Hence y*(P0P,) < [®H]. Since v*(PR,0F,) > v(P,0P,) =
(%51, 1 (ROF,) = ["5H].

Case 2

If n is even and n = 0(mod4) then D = {x; : i = 1(mod4)} U {x,_2} U {y; :
Jj = 3(modd)&j < n —5}U{y,} is an a-stable dominating set with |D| = |{z; :
i = Lmodd)}| + [{a 2} + gy : § = 3(modd)ej < n — 5} + |{ya}| = 2+ 1+ 8 —
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1+1= f”THW Hence v*(P,0P,) < [”THW Since v*(R,0P,) > v(R,OPR,) = [”THL
7 (ROP,) = [%£].

Case 3

If nis even and n = 2(mod4) then D = {z; : i = 1(mod4)&i < n—5}U{z, }U{y; :
Jj = 3(mod4)} U {y,—2} is an a-stable dominating set with |D| = [{x; : i =
Lmodd)i < n—5}+ [{za} + 1y - § = 3modd)}+ [y o} = 2] 141+ (2] +
1 = [22]. Hence v*(P0OP,) < [®2]. Since y*(PR0OP,) > v(PR,0OP,) = [%],
VH(POP) = ["5]. O

4.6 «a-stable domination in corona of graphs

Theorem 4.6.1. For any two graphs G and H and non negative integer o, a-stable

domination number of its corona, v*(GoH) = |V (G)|.

Proof. Let {v1,vs, .....,v,} be the vertices of G and {uy, us, ....u;,} be the vertices
of H. H; be the i copy H in GoH. To make sure that each vertex of H; is
dominated, we need atleast one vertex of H; or v;. Thus the dominating set contains
atleast n vertices. Let D = {vq, vy, ....... ,Un}. Then each vertex of V' — D is adjacent
with exactly one vertex of D and each vertex of D dominates exactly m vertices
in V. —D. And so ¥p(v) =m, Yo € D and ¢p(v) = 1, Yo € V — D. Therefore,
lop(v1) — dp(ve)| = 0,Vvy,v9 € V — D and |¢hp(v1) — ¥p(ve)| = 0,Vv1,v5 € D. And

so D is a minimum a-stable dominating set. Thus v*(GoH) = n = |V(G)|.

4.7 Conclusion

Any real life situation in social network such as banking and marketing, can be
modelled by Graphs. In this chapter, to study the stability of domination in Graphs
the concept of a-d-stable domination number, a-a-stable domination number and
a-stable domination number are introduced. Necessary and sufficient condition for

an a-d-stable dominating set to be a minimal a-d-stable dominating set is obtained.
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Necessary and sufficient condition for an a-a-stable dominating set to be a minimal
a-a-stable dominating set is obtained. The relation between a-d-stable domination
number and independent domination number is discussed. And these parameters in

certain product graphs are studied.

Since the parameters introduced here have large scale of applications, this area

has great scope for further studies.
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CHAPTER 5

Ps;- Convexity in graphs

5.1 Introduction

Any network can be modelled by graphs. If a set of vertices S initially possessing a
property spreads the property to the vertices having two neighbours S, then finding
the minimum number of vertices required to spread the property to all vertices in
the graph is an important problem in the field of Graph theory. Sharing an idea
or spreading a virus or the strategy in some sort of marketing are some examples
of this. We can approach the problem through P;-convexity. The Ps-convexity
was first studied for directed graphs [34] 49]. Later Ps-convexity considered for
undirected graphs [24, 25, 206], 33, [[1]. As the adjacency is the main property dis-
cussed in Ps-convexity, the concept of P3- convexity resembles domination in graphs.
This motivated us to study Ps- convexity in graphs. In this chapter the concept
Ps-convexity C, exclusively P3-convex invariants P3-hull number, radon number and

caratheodory number is studied.
This chapter is divided into six sections. In which first one is an introductory

section. Second section deals with general properties in P3-convexity. Third section

contains P3-convex invariants, P3-hull number, radon number and caratheodory
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number of some classes of graphs. And fourth section deals with Ps-convexity on
strong product, cartesian product and composition of graphs. Ps-convexity in corona

related graphs are studied in fifth section. And sixth section is a concluding section.

For a graph G, Given a set S C V(G), the Ps- interval I[S] = S U {v :
IN(v) N S| > 2}. S is a P3- convex set, if I[S] = S. A graph G together with
Ps-convex sets in G form Ps-convexity C' in G[36].

The P3- convex hull Ho(S) of S in G is the smallest Ps- convex set containing
S. [36] Ps-convexity C' is uniquely determined by the Ps-convexity in a graph G.
Hence in this chapter we are using Hq(.S) instead of Ho(.S).

The P;- convex hull can be formed from a sequence I?[S], where p is a nonnega-
tive integer, I°[S] = S, I'[S] = I[S], and I?[S] = I[IP7'[S]], for every p > 2. When,
for some p € N we have if 19[S] = I?[S], for all ¢ > p, then I?[S], is a convex set.

If Hz(S) = V(G) then S is a Ps-hull set of G. The cardinality h(G) of a mini-
mum Ps-hull set in G is called the Ps-hull number of G.[36] In this chapter we are

using hull number of G instead of P3-hull number of G.

The caratheodory number is the smallest integer ¢ such that for every set S of
vertices of G and every vertex u in Hg(S), there is a set F' C S with |F| < ¢ and
u € Hg(F)[35]. In this chapter we are using ¢(G) instead of c.

A Radon partition of R is a partition of R into two disjoint sets Ry and Ry with
Hg(Ry) N Hg(R2) # ¢ . The Radon number r(G) of G is the minimum integer r

such that every set of r vertices of G has a Radon partition. [48]

An outerplanar graph is a planar graph that allows an embedding in the plane
such that all vertices are on the outer face. A maximal outerplanar graph is an
outerplanar graph with a maximum number of edges. In the plane embedding
the boundary of the outer face, provided it has at least three vertices, is then a

hamiltonian cycle. All other edges form a triangulation of this outer cycle.[44]
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Convexity C' on G is joint hull commutative provided that for each nonempty

convex set S in C' and for each vertex p € V(G), Hg(SU{p}) = UuesHe({p, u})[74].

A wounded spider is the graph formed by subdividing at most n — 2 edges of

star K ,,—1.

5.2 General properties in P3-convexity

This section deals with characterization of graphs with certain hull number. Charac-
terization of tree using Ps-convexity is given in this section. Joint hull commutative

property in Ps-convexity is discussed.

Theorem 5.2.1. h(G) = n if and only if each vertex has degree less than or equal
to 1.

Proof. Let G be a graph with each vertex has degree less than or equal to 1. If S
is a proper subset of V(G), then Hg(S) = S. Thus minimum Ps- hull set is V(G)
itself. Hence h(G) = n.

If h(G) = n, then no vertex is adjacent to more than two vertex. Each vertex

is adjacent to atmost on vertex. Hence degree of each vertex is less than or equal to 1.

[
Theorem 5.2.2. Let G be a star with atleast 3 vertices, then h(G) =n — 1.

Proof. If G is a star K;,_1, then all the pendant vertices must be there in mini-
mum Ps- hull set. And set of all pendant vertices will form a P;- hull set. Hence

h(Kl’nfl) =n-—1.
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V2
Uy
U3
U1
Figure 5.1
U2
V4 Vs
U3
U1
Figure 5.2

Theorem 5.2.3. Let G be a graph with |V (G)| > 4 and h(G) = n — 1, then the
graphs isomorphic to graphs given in figure[5.1, Py, m > 5 and[5.3 are forbidden
subgraphs.

Proof. If G has a subgraph isomorphic to graphs given in figure 5.1 or P,,,m > 5 or
figure [5.2

Case 1 G has a subgraph isomorphic to figure [5.1]
If S =V(G) — {vq,v3}, then Hg(S) = V(G). Hence h(G) <n —2.

Case 2 G has a subgraph isomorphic to P,,,m > 5.
Let vq,vg, ..., vy, the vertices of P,,. If S = (V(G) —{v; : i = 0(mod2)}) U{vn,},
then Hg(S) = V(G). Hence h(G) <n — 2.

Case 3 G has a subgraph isomorphic to figure [5.2]
If S=V(G)—{vs3,vs4}, then Hg(S) = V(G). Hence h(G) <n — 2.

Thus if A(G) = n — 1, then then graphs given in figure P,,,m > 5 and figure
are forbidden subgraphs. O

Corollary 5.2.4. Let G be a graph with order n and h(G) =n — 1
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o [fn =3, then either G is a triangle or a star.
e [fn =4, then either G is a path or a star.
e [fn>5, then G is a star.
Proof. Let G be a graph with order n and h(G) =n — 1.

If n=3 Then it is clear that either G is a triangle or a star.

If n=4 Graph which has no subgraph as stated in theorem [5.2.3| is either a path or a

star.

If n > 5 Graph which has no subgraph as stated in theore [5.2.3]is a star.

Theorem 5.2.5. Let G be a 2-connected graph with a universal vertexr. Then

hG) = 2.

Proof. Let v be a universal vertex of G and u be any vertex in V(G) which has
eccentricity e in G — u.

Then, I[{u,v}] = Nlu|

I[{u, v}] = N?[u]

FPl{u,v}] = N*[u]

I‘'l{u,v}] = V(G).
Hence Hg({u,v}) = V(G) and h(G) =2 O

The condition given in is not necessary. For the graph in |5.3[h(G) = 2 but

GG has no universal vertex.

Figure 5.3

There are 1-connected graphs with universal vertex, but A(G) > 2. Figure

is a 1- connected graph having universal vertex. But h(G) = 3.
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Figure 5.4

Remark 5.2.1. The minimum size of a graph G for which order(G) = n and
h(G) =2 is 2(n — 2).

Proof. Let G be a graph of order n. If h(G) = 2, then there exists two vertices u
and v so that Hz({u,v}) = V(G). Let S = {u,v} and d be the minimum integer
so that I9[{u,v}] = V(G). Then every vertex in I'[S] — S is incident with at least
two vertices in S. And every vertex in I*[S] — I*71S is incident with at least two
vertices in I*1S Vk € {1,2,...,d}. Hence there should be at least 2(n — 2) edges.

Figure [5.3 illustrates a graph having minimum size of graph with order 7 and

h(G) = 2. Here order(G) =7 and size(G) = 2(7 — 2)

]

Theorem 5.2.6. For2 < a < n—1, there exist a connected graph G with |V (G)| =n
and h(G) = a.

Proof. When a =n — 1, if G = Ky ,,—1 then h(G) =n —1 and |V(G)| = n.

Fora <n —2,
Let Kj,-1 is the star with centre v and pendant vertices vy, v, ...... , Un—1. And
let G be the graph obtained from the star K;,_; by joining vertices x;_1,x; for

1<i<n-—a. Then x,,_1,2_9,...... , Tn_q Will be a minimum Ps- hull set of G

and hence h(G) = a and |V(G)| = n.

]

Remark 5.2.2. Being a Ps-convex set is neither hereditary nor superhereditary

property.
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Theorem 5.2.7. If G is disconnected with atleast two components Gi and G,

V(G| = 2, [V(Ga)| = 2. Then h(G) = 2.

Proof. K,,, r,s > 2 is a spanning subgraph of G. Also h(K,,) =2, r,s > 2 and

hence h(K, ) > h(G). Hull number of a graph is always greater than or equal to 2.

Thus h(G) = 2.

O

Theorem 5.2.8. Let G be a tree with n vertices. Then there exist a sequence of

sets V(G) =V, D Vo1 Do D Vi where for each i, V; is conver and |V;| =i.

Proof. Let G be a tree. Let V(G) =V,, and v; be a pendant vertex of the tree G. If
Vo1 =V, —{v1}. Then clearly V,,_; is convex in G. Let vy be a pendant vertex of
G — vy and V,,_o = V,,_; — {ve}. Then clearly V,,_5 is convex in G and so on . The
sets V;, thus formed have the property V(G) =V, DV, 1D ......... O V; where

for each i, V; is convex and |V;| = i.

]

For the graph G in figure [5.5| there exist a sequence of sets V(G) =V, D V,,_1 D
......... D Vi where for each i, V; is convex and |V;| = i. But G is not a tree.

Hence converse may not be true in theorem |5.2.8|

Figure 5.5

Theorem 5.2.9. Let G be a connected graph. Then G s a tree if and only if for
each connected subgraph H of G, V(H) is a convez set of G.

Proof. Let G be a connected graph. Suppose that for each connected subgraph H
of G, V(H) is a convex set of G. If G has a cycle C then C' — v is a connected
subgraph of G. But V(C —wv) not convex. Thus G contains no cycle. Thus G is a tree.
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Let G be a tree and H be a connected subgraph of G. If V(H) is not a
convex set there exists a vertex u € V(G) — V(H) which is adjacent to two vertices
v1,vy € V(H). Then there exists two vyvy paths in G. Since G is a tree it is not
possible. Hence for each connected subgraph H of G, V(H) is a convex set of G.

O

Theorem 5.2.10. If G is a graph having no cycle with length < 4 and |V (G)| > 4,
then h(G) > 3.

Proof. Let G be a graph, having no cycle with length < 4 and |V(G) > 4. If
S = {uy,us} C V(G), then we distinguish into three cases.

Case 1 If d(u,v) =1,
Since G is triangle free, I'[S] = S. Hence Hg(S) = S.

Case 2 If d(u,v) =2,
Then if v, w,v be the minimum wv path in G. Then I'[S] = {u,v,w} and

I?[S] = {u,v,w}. Hence Hg(S) = {u,v,w}.

Case 3 If d(u,v) > 3,
Then I'[S] = S. Hence Hg(S) = S.

Thus Hg(S) = I'[S] and |T'[S]| < 3. Hence Hg(S) # V(G) and S cannot be a hull
set. Thus, h(G) > 3.

]

Theorem 5.2.11. If G is a graph with the property I'[S] = Hg(S), VS C V(G),

then G has joint hull commutative propery.

Proof. Let G be a graph with the property I'[S] = Hg(S), VS C V(G).
For any convex set C' and p € V(G), if w € Hg(C U {p}) — (C U {p}), then
w € I'(C'U{p}). Then there exists v; € C such that w is adjacent to v; and p.

Then Yw € Hg(C U {p}) — (C U {p}), there is some v; € C such that
w € He({v1,p}).
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Hence, Hz(C U {p}) = U{H({c,p}) : c € C'}. Thus, G has joint hull commu-
tative property.

Following theorem shows that converse may not be true.

Theorem 5.2.12. If G is a mazximal outer planar graph with diam(G) > 2, then
G has joint hull commutative property. But there are S C V(G) such that I'[S] #
Hq(S).

Proof. In maximal outer planar graph G, convex sets are singleton sets or V(G) or
vertex set S having property distance between any two vertices is at least 3.

Let p € V(G),

If S is either singleton or V(G) then trivially it satisfy the property Hg(S U {p}) =
U{Hc({v,p}) : v € S}.

If S is a vertex set in which any two distinct distance are at distance at least 3,

If there is a vertex v € S, such that d(v,p) = 2, then Hg({v,p}) = V(G). And so,
Ha(S U {p}) = U{Ha({v,p}) - v € S},

If there is no vertex v € S, such that d(v,p) = 2, then Hg({v,p}) = {v,p} for all
veS. And so Hg(SU{p}) = SU{p} = U{Hz({v,p}) : v € S}. Thus maximal

outer planar graphs have joint hull commutative P3- convex property.

Also, if |[V(G)| > 5, then for any adjacent vertices u and w in V(G), Hg({u,v}) =
V(G) and I'[{u,v}] # Ha(S).

]

Theorem 5.2.13. Let H be a connected subgraph of a graph G. Then if V(H) is
the only nontrivial convex set of H, then H is a block. In particular, if V(G) is the

only nontrivial conver set of G, then G is a block.

Proof. Let H be a connected subgraph of a graph G and V(H) is the only nontrivial
convex set of H. If w is a cut vertex of H and H; and H, are the components of
H —w. Let v € Hy, then convex hull of {v,w} C V(H;) which is a contradiction.
Thus, H is a block.
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m
Theorem 5.2.14. Fvery block in a graph G is a P3- convex set.

Proof. Let B be a block which is not Ps-convex set. Then, there exist a vertex
u € B such that u has two neighbours v; and v, in B. < B U {u} > is a non
separable subgraph containing B which is a contradiction to B is a block. Thus B

is a P3-convex set.

]

Theorem 5.2.15. Let G' be the graph generated by Mycielski’s construction of a
graph G. Then h(G") < h(G) + 1.

Proof. Let V(G) = {v1,v9,...., 05}, n > 2 and uq, ug, us, ...., u,, v be the vertices
added for Mycielski’s construction. If S is a minimum Ps- hull set of a graph G.
Then if S = SU{v}. Then V(G) C Hg(S'). Each vertex in {uy, us, ...., u, } has
atleast two neighbours in V(G). Hence {uy, us, ....,u,} C Hg(S'). And v has is
adjacent to every vertices in {uy, ug, ..., u, }. Thus Hg(S) = V(G'). Hence, S' is a
P3-convex hull set of G'. And h(G') < h(G) + 1.

If G = P, then h(G) = 2. And if G' is the graph generated by Mycielski’s
construction of a graph G, then h(G*') = 3. Thus, this bound is sharp.

If G = K, then h(G) = 2. And if G' is the graph generated by Mycielski’s

construction of a graph G, then h(G') = 2. Thus, strict inequality may occur.

O

Theorem 5.2.16. Let G be a graph of order n > 3 and size m, T(G) the trestled
graph of G with k > 2, then h(Tx(G)) = km.

Proof. Let uflu?l be the p'* copy of K, added to the edge e; with end vertices
vv;.  Let {v1,v9,......... .. ,Un(c)} be a minimum P; -hull set. Choose an
edge e; incident with v;. Inductively choose e; incident with v; which is differ-
ent from eq,eq,........ e;i_1 for 1 < i < h(G). Rename the remaining edges as

Ch(G)+15 ER(G) 42, --r €m- Take S = {uh : 1 < 4,1 < h(G);1 < p < k}. Choose v,
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a vertex incident with e; for h(G) +1 < [ < m. Then take T' = {ufll 1< p<
kih(G)+1 <1 <m}. Then Hp)(SUT) = V(Tr(G)). Thus |SUT| = km and
these km vertices of SUT will form a convex hull set of T;.(G). Hence h(T;(G)) < km.

We need atleast one vertex from each copy of K5 to form the convex hull set. Thus

hTx(G)) > km . Thus h(T}(G)) = km.

5.3 P3-Convexity in some classes of graphs

Ps-convex invariants- hull number, radon number and caratheodory number of some

classes of graphs are obtained in this section.

Theorem 5.3.1. For a path P, with n > 3, c¢(P,) = 2, r(P,) = |5] +2 and
h(P,) = [5]+1.

Proof. Let U C V(G), consider v € H(U).

If |[U| <2 orwve U, there is nothing to prove.

Otherwise, if u € IP[U] — IP7'[U] for some p > 1, then there exists two vertices v;
and vy in [P7[U] which are adjacent to v. But d(v;) < 2 and d(vy) < 2. Hence
p = 1. Thus, if F = {v;, v}, v € Hg(F) and F C U. Hence ¢(P,) = 2.

Let vy, vq, ..., v, be the vertices of P,.
Then if R = {v,} U {v; : i = 1(mod2),1 < i < n} has no radon partition in P,.
Hence r(P,) > [ 5] + 2.
And if |[R| > | 5] +2, then there exists i € {1,2,..., (n—2)} so that v;, viy1,viy2 € R.
Then R; = {vit1} and Ry = R — {v;1} is a radon partition of R. Hence
HP) < (2] +2.
Thus 7(P,) = [5] + 2.

If S ={v,} U{v; : i = 1(mod2),1 < i < n}, then Hg(S) = V(P,). Hence
AP < [3)+1.
If |S| < [§] + 1, then there exist i € {1,2,...,n — 1} so that v;,v;y1 ¢ S. Hence
there exist i € {1,2,...,n — 1} so that v, v;11 ¢ Hg(S). Thus h(P,) > 5] + 1.
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Hence h(P,) = |5] + 1.

]

Theorem 5.3.2. For a complete graph K, with n > 3, ¢(K,) =2, r(K,) =3 and
h(K,) =2.

Proof. Let U C V(G), consider v € Hg(U). If F = {vy,v} C U, then Hg(F) =
V(G). Thus, v € h(F). Hence ¢(K,) = 2.

P3-Convex hull of every set having atleast two elements contain all the other
vertices. Thus every three element set can be partitioned into two sets for which the

convex hull of one set contains the vertex from the other set. Hence r(K,) = 3.

Choose any vertices u,v € V(K,) and let S = {u,v} then Hg(S) = V(K,).
Hence h(K,) = 2.

O]
Theorem 5.3.3. For a cycle Cy,, ¢(Cy) =2, r(Cy) = [5] + 1 and h(C,) = [5].

Proof. Let U C V(G), consider v € Hg(U). If v € Hg(U) — U, since the degree of
each vertex is 2, v € I'[U]. Thus there exists two vertices vy and vy in U which are

adjacent to v. Thus, if F = {v;,v2} C U, v € Hg(F). Hence ¢(C,,) = 2.

Let vy, v9, ..., v, be the vertices of C,,.
Then choose R = {vy, v3,vs,....0,}, if n is odd and choose R = {vy, v3, 5, ....0,_1},
if n is even. Then R has no radon partition in C,. Thus r(C,) > [5] + L.
And if |[R| > [§]+1, then there exists 7 € {1,2, ..., (n —2)} so that v;, vi;1, V0 € R
or Uy_1,Vp,v1 € R or v,,v1,v9 € R. Then, if v;,v;41,v42 € R, Ry = {v;41} and
Ry = R — {v;31} is a radon partition of R. If v,,_1,v,,v; € R then Ry = {v,} and
Ry = R — {v,} is a radon partition of R. If v,,v1,v2 € R then R; = {v;} and
Ry = R — {v1} is a radon partition of R. Hence r(C,) < [§] + 1.
Thus r(C,) = [5] + 1.
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Choose S = {v1,v3,vs,....0, }, if n is odd and choose S = {vy,v3, v, ....v,_1}, if
n is even. Then Hg(S) = V(C,). Hence h(C,) < [5].
If [S| < [5], then vi,v, ¢ S or there exist i € {1,2,...,n — 1} so that v;,v;y1 ¢ S.
Hence vy, v, ¢ Hg(S) or there exist i € {1,2,...,n — 1} so that v;,v;41 ¢ Ha(S).
Thus h(Cy) > [5].
Thus h(Cy) = [F]. O

Theorem 5.3.4. For a star Ki,-1, n > 4, ¢(Ki,-1) = 2, 7(K1-1) = 4, and
h(Kl,n—l) ="Nn.

Proof. Let U C V(G), consider v € h(U). If v € Hz(U) — U, then since the only
one vertex having degree greater than 2 is the center, v € I'[S] and v is the center.
Thus there exists two vertices u; and uy in U which are adjacent to v. Thus, if

F = {u1,us},v € Hg(F). Hence ¢(Ky,-1) = 2.

Every four element set can be partitioned into two sets having two elements for
which the centre as the common element of convex hull. And for the set containing

three vertices having degree one has no radon partition. Thus r(K;,_1) = 4.

Let vy, v9, ....,v,—1 be the pendant vertices of K ,_;. Then every Ps-hull set
contains vy, Vg, ...., vp—1. Hence h(K;,—1) >n— 1.
And {vy,vs,....,v5_1} is a Ps-hull set. Hence h(K,-1) <n — 1.
Thus h(K; 1) =n—1

]

Theorem 5.3.5. For a complete bipartite graph K, ,, m,n > 2, r(K,,,) = 3,
(Kmn) =2, h(Kp,) =2.

Proof. Every three element set contains atleast two vertices which are independent.
And the convex hull of these two vertices contain all the other vertices. Thus every
three element set can be partitioned into two sets for which the convex hull of one

set contains the vertex from the other set. Hence r(K,,,) = 3.

Let U C V(Kpny) and v € Hg(U). If v € U, then there is a subset F' C U with
|F| <2and v e Hg(F).
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If v € Hg(U) — U, then there exist two vertices in vy, vy € U so that I'[{vy,ve}] #
{vi,v2}. Then I*[{vi,va}] = V(K,,,). Hence there is a subset F' = {vy, v} C U
with |F| <2 and v € Hg(F).

Thus ¢(Kpn) = 2.

Let v1,v5 be two vertices from one partite set of K,,,, then Hg({v1,v2}) =

V(Kmn). Hence h(Kp,,) = 2.

0
Theorem 5.3.6. For a wounded spider G,
A(G) if centre is incident with more than one pendant vertex
h(G) = { .
A(G) +1 otherwise
Proof. If {vy,vg,............ , 0} be the pendant vertices of the graph. Then
{v1,v9, oo , v } must be contained in a minimum Ps- hull set. If atleast two

vertices from this set is adjacent to the vertex with degree A(G). Then this set is
a minimum Pj3 -hull set and h(G) = A. Otherwise, {vi,va,............ v U {v}

where v is the vertex with degree A, will form a minimum P3- hull set. Thus,

nG) = {

A if centre is incident with more than one pendant vertex

A+1 otherwise

5.4 P;3-Convexity in product graphs

A detailed study in the P3-convex invariants- hull number, radon number and
caratheodory number of product graphs-strong product of graphs, cartesian product

of graphs and composition of graphs- is done in this section.
5.4.1 P;-Convexity in strong product of graphs

Hull number in strong product of graphs were studied in [36] and theorem m
is obtained in [36]. Here we deal with caratheodory number and radon number of

strong product of graphs.
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If V(G) = {u1,ug, ..., u, } and V(H) = {vy, vg, ..., v, }. Here we refer the set of
vertices {(u;, v1), (4, v2), ...., (i, v,) } as line L; and set of vertices { (u1, v;), (ug, vj), ...... ,

(wm,v;)} as column Cj.[36]

Theorem 5.4.1. [36] Let G and H be nontrivial connected graphs. Then, h(GKH) =
2.

Lemma 5.4.2. [36] Let G and H be nontrivial connected graphs, S C V(GOH).
Let L} C L;, for somei € {1,2,...m} and C’} C Cj, for some j € {1,2,...,n}, such
that Lj and C} induce connected graphs and Li 0 Cj # ¢. Let R = {(uy,v;) €
V(GOH) : (ug,v;) € Cland(us,v) € Li}. If Ly UC) C IP[S] for some integer p > 0,
then R C Heop(S).

We are using lemma from [36] to obtain 5.4.3]

Lemma 5.4.3. Let G and H be nontrivial connected graphs, S C V(GX H). Let
L} C Ly, for some i € {1,....,m} and C} C Cj, for some j € {1,...,n}, such that L;
and C} induce connected graphs and L NC} # ¢. Let R = {(ug,v;) € V(GRH) :
(uk,v;) € Cjand(us,v) € Li}. If L} UC} C IP[S] for some integer p > 0, then
R C Homn(S).

Proof. GOH is a spanning subgraph of G X H. Hence for any U C V(G) x V(H),
Heon(U) C Heru(U).

Here, L} and C} induce connected subgraphs of L; and C; respectively and L; NC} #
¢. And L} U C} C I?[S] for some integer p > 0. Then by [36],

R = {(uy,v) € V(GOH) : (ug,v;) € Cjand(u;,v;) € Li} C Haou(S).

Since Haop(S) C Hexu(S), R C Hexg(S).

]

Lemma 5.4.4. Let G and H be non trivial connected graphs. Then, for S C
V(G X H) either HggH(S) = V(GIE H) or HggH(S) =G.

Proof. Let S C V(GX H) and Hexp(S) # S. Then there exists a vertex (a,b) €
I'[S] and (a,b) ¢ S. Thus there exist two vertices (a1, b;) and (as, by) adjacent to
(a,b) in GX H.
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Case 1 a; adjacent to a and b; adjacent to b.
Rename aq, by, a and b as uq, v, us, v9 respectively. And remaining vertices

of G as ug, ug,....,u,, and remaining vertices of H as vs, vy,....,v, respectively.

Then {(uy,v1), (uz, va), (U1, va), (ug, v1)} C I%[S].

There is a path from wu;(ug) to u;, Vi € {3,4,....,m}. Thus each vertices
(ug, v1), (u,v2) € Hemp(S), Vi € {3,4,....,m}. And There is a path from
v1(ve) to v;, Vj € {3,4,....,n}. Thus each vertices (uy,v;), (u2,v;) € Hempu(S),
Vj € {3,4,....,n}. Hence Ly and C; C Hgxu(95).

Hence by lemmam Hewu(S) =V(GX H).

Case 2 a; adjacent to a and by = b.
Rename aq,a and b; as uy, us and vy respectively. Choose any vertex adjacent
to v; and rename it as vo. And rename remaining vertices of G as us, uq,....,Un,

and remaining vertices of H as v3, wy,....,v, respectively.

Then {(uy,v1), (ug,v1)} C I2[S] and {(u1,v1), (ug,v2), (u1,v2), (ug,v1)} C
I3[S].

There is a path from wu;(ug) to u;, Vi € {3,4,....,m}. Thus each vertices
(ui, v1), (ui,v2) € Heru(S), Vi € {3,4,.....,m}. And there is a path from
v1(v2) to vy, Vj € {3,4,....,n}. Thus each vertices (u1,v;), (u2,v;) € Hexpu(95),
Vj € {3,4,....,n}. Hence L; and C, C Hegu(9S).

Hence by lemma [5.4.3] Houpn (S) = V(G X H).
Thus, if S C V(GX H) and Hexp(S) # S, then Heru(S) = V(G X H). Hence,
either HggH(S) = V(G X H) or HggH(S) =GS.

]

Theorem 5.4.5. Let G and H be nontrivial connected graphs, then ¢(GX H) = 2.
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Proof. Let S be a subset of V(GX H) and (u,v) € Heru(5).
Case 1 (u,v) € S, then there is ' C S with |F| =1 and (u,v) € Hexu (F).

Case 2 (u,v) ¢ S and (u,v) € Hggp(S). Choose any (a,b) € I'[S], but (a,b) & S.
Then there exist vertices (ai,b1), (az,b2) € S which are adjacent to (a,b).
Take F = {(a1,b1), (as,b2)} € S. Then H[F] # F. Hence by lemma.4.4]
Hewu(F) =V(GX H). Hence (u,v) € Hogu(F), F C S and |F| = 2.

Thus ¢(GX H) < 2. Since G and H are nontrivial connected graphs, ¢(GX H) > 2.

Thus ¢(GX H) = 2.

O

Theorem 5.4.6. Let G and H be nontrivial connected graphs, then r(GX H) >

max{ [

diam(G)+4 diam(H)+4
(Gt ety

Proof. Let diam(G) = k and diam(H) = [, and vy, vg, ....., v;11 be a maximum path
in H. If u € V(G), then if R = {(u,v1), (u,v4), (u,v7), ..., (u, v[z%q)}, then, each ver-
tex in V(GXH) is adjacent to atmost one vertex in R. Hence, for any partition Ry, Ry
of R, Horu(R1) = Ry and Hegpy(R2) = Re. And thus Hexy (R1) N Hexp (R2) = ¢.
Thus R with |R| = [%!] has no radon partition in GKH. Hence r(GRH) > [H1]+1.
Similarly r(G X H) > [2] + 1. Thus r(G X H) > max{[2] + 1, [H1] + 1}.

Hence ?"(G X H) > rnax{"diaméG)-i-4“7 "diamgH)+4-|}.

O

This bound is sharp since r(GX H) = ["%41 = max{[diam(gc’)ﬂ]’ "diamgH)Jrﬁl‘l}’
when G = P, and H = K,,.

ForG=Pyand H = P, r(GKH) =4 > max{(dmmgG)HL [di“mgH)’Lﬁ}. Hence

strict inequality may occur in the above result.
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5.4.2 P;-Convexity in cartesian product of graphs

P; hull number of cartesian product of graphs were well studied in [36]. In this
section bounds for caratheodory number and radon number of cartesian product of

graphs are obtained.

Theorem 5.4.7. Let G and H be connected graphs different from complete graph
with caratheodory number ¢(G) and c(H) respectively. Then ¢(GOH) > maz{c(G) +
1,c(H)+1}.

Proof. Let |V(G)| = m, |V(H)| = n and V(H) = {u1,u, ...., Uy, }. Choose S =
{v1,v2, ..., v} C V(G) and vyey41 € He(S), but S has no subset F' such that
|F| < e(G)—1and vycy+1 € Hg(F). Then, let u;, u; be vertices in H with d(w;, u;) =
2 and u, € Nu;,u;]. Take ST = {(us,v1), (wi, va), (Ui, v3), ..., (Ui, V() (U5, V() }-
Then (up, vec)+1) € Heon(S') and S* has no subset F' such that |F| < ¢(G) and
(Ups Ve()11) € Haom(F). Hence ¢(GOH) > ¢(G) + 1. Similarly, we can show that
c¢(GOH) > ¢(H) + 1. Hence ¢(GOH) > max{c(G) + 1,c(H) + 1}.

]

The bound is sharp, since ¢(GOH) = 3 = max{c(G) + 1,¢(H) + 1}, when
G:.PgandH:P3.

For G = Py and H = P;, ¢(GOH) = 8 > max{c(G) + 1,¢(H) + 1}. Hence strict

inequality may occur in the above result.

Remark 5.4.1. If G = K,,, and H = K,, then ¢(GOH) =2 = ¢(G) = ¢(H).
Proof. For any S C V(K,,0K,) with |S| > 2, Hg, ok, (S) = V(K,,0K,). Hence
o(K,O0K,) = 2.

[
Remark 5.4.2. Let G and H be connected graphs and G is different from complete

graph. If caratheodory number of G is ¢(G), then ¢(GOH) > ¢(G) + 1.
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Theorem 5.4.8. Let G and H be connected graphs with radon number r(G) and r(H)
respectively. Then r(GOH) > max{ LWJ (r(G) —1) + 1, LWJ (r(H) —
1) +1}.

Proof. Let diam(H) = | and vy, vs,...,v;41 be a maximum path of H. Choose
R = {uy,us,.....;u -1} C V(G) which has no radon partition in G. Then

RY = {uy, ug, oo, upy—1} X {v1, 04,07, ...,0,121, } has no radon partition in GOH.
[5]

If B! has a partition R}, R} and Hgog(Ri) N Hoom(RY) # ¢. Let R} N
(R x {v;}) = R, RAn (R x {v;}) = RY¥ and R' N (R x {v;}) = RY. Then
Haon(RY) = UL} Hoon(R®), Hoon(RY) = U} Hoon (RY) and Hoon(RY) =
UZ-L:T;JHGDH(R?). Hence Heop(Ri') N Heon(RY') # ¢ for some i € {1,3, ..., 1]}
If B = {u: (u,v) € RI"} and Ry = {u : (u,v) € RY}, then Ry, Ry is a radon
partition of R in G, which is a contradiction. Hence R' has no radon partition in
GOH.

Hence r(GOH) > L%J(T(G) —-1)+1.

In a similar way, r(GOH) > [%j (r(H)—1)+1.

Thus r(GOH) > max{| 24| (1(G) — 1) + 1, [ LG5 () — 1) + 1},

]

FOI'G:PH andH:P4,
r(GOH) > maz{| 2 (1(G) — 1) + 1, | 22D | ((H) — 1) +1}. Hence strict

inequality may occur in the above result.

5.4.3 P;-Convexity in composition of graphs

The composition of graphs G and H can be defined as follows: every vertex v; € V(G),
for every 1 < i < |V(G)], is replaced by a copy of H, denoted by G, and if there
exists an edge v;v; € E(G), every vertex of G; is adjacent to every vertex of Gj,

for all 4,5 € {1,...,|[V(G)|}, i # j. Fori # j,i,5 € {1,...,|V(G)|} if there exists a
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path from v; to v; in G, then a subgraph G; of G[H], is said to be reachable from a
subgraph G;.[30]

The Ps-convex hull number of composition of graphs is obtained in [36] and
it is obtained that h(G[H]|) = 2, when G and H are nontrivial graphs and G is
connected. In this section caratheodory number and radon number of composition

of graphs is studied.

Lemma 5.4.9. Let G and H be non trivial connected graphs. Then, for S C V(G[H])
either Hgip)(S) = V(G[H]) or Hea(S) = S.

Proof. Let V(G) = {uy,ug, ..., un,} and V(H) = {vy,vq,....,v,}. Let U C V(G[H])
and Hgm(U) # U. Then choose any vertex v € I'[U]. Then there exists two

vertices x,y € U which are adjacent to v.

Ifz,y € G;fori e {1,...,|V(G)|}, then for some j € {1,..., |[V(G)|}, viv; € E(G)
and z and y is adjacent every vertices of G;. Hence V(G;) C I'[{z,y}]. And
V(G;) C I*[{z,y}]. Since G is connected, every subgraph G, is reachable from G,
for kK # j, k € {1,2,...,|V(G)|}. Hence Hgm({z,y}) = V(G[H]).

IfxeG,andyeGj,1# 7.
Then if v € G;, V(G;) C I*[{z,y}]. Since for k # j, k € {1,2,...,|V(G)|}, every
vertex of G, is reachable from G;, Hom({z,y}) = V(G[H]).
If v e Gy, p#i,j, then G, C I’l{z,y}]. And G}, is reachable from G, Vk # p,
ke{l,2,..,|V(G)|}. Hence Hgy({z,y}) = V(G[H)).

Hence Hgim({z,y}) = V(G[H]).
Hence if S C V(G[H]) then either Hey(S) = V(G[H]) or Hem)(S) = S.

[
Theorem 5.4.10. Let G and H be nontrivial connected graphs. Then ¢(G[H]) = 2.

Proof. Let S be a subset of V(G[H]) and (u,v) € Hem(S).
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Case 1 (u,v) € S, then there is F' C S with |F| =1 and (u,v) € Haxu(F).

Case 2 (u,v) ¢ S and (u,v) € Hg(S). Choose any (a,b) € I'[S], but (a,b) ¢ S.
Then there exist vertices (ai,b;1), (az,b2) € S which are adjacent to (a,b).
Take F = {(a1,b1), (az,05)} C S. Then Hey)[F] # F. Hence by lemma5.4.9]
Hep(F) = V(G[H]). Hence (u,v) € Hgm)(F), F C S and [F| = 2.

Thus ¢(G[H]) < 2. Since G and H are nontrivial connected graphs, ¢(G[H]) > 2.

Thus ¢(G[H]) = 2. O

Theorem 5.4.11. Let G and H be nontrivial connected graphs. Then r(G[H]) =
maz{3, L%J + 1}

Proof. Let V(G) = {uy,ug, ..., un}, LWJ > 2 and vy, vy, ...., 0141 be a maxi-

mum path in G.

If R = {(uy,v1), (g, v1), ...y (ULH-TlJ,'Ul)}. Then no two vertices in R has common
neighbour in V(G[H]). Hence Hgu(R) = R and R has no radon partition in G[H].
Hence r(G[H]) > | Zem@tL) 4,

Let R C V(G[H]) with |R| > |22+ 41,

If |GiNR| > 2 for some ¢ € {1,2,..m} and z,y € G; N R. Then by [.4.9|
Hem({z,y}) = V(G[H]). Hence Ry = {x,y} and R, = R — {z,y} is a radon
partition of R.

If |GiNR|<1forallie{1,2,..m}, since |R| > LWJ + 1, there exists two
vertices © € G; and y € G, with z,y has a common neighbour w € G}, for some

k#1,5,k€{1,2,..m}. Thus by Hem({z,y}) = V(G[H]). Then Ry = {z,y}
and Ry = R — {z,y} is a radon partition of R.

Hence r(G[H]) < | %eml@t | 4 1,

Thus (G[H]) = |4 | 4 g,

If | 4eSFL | < 9 then Let R C V(G[H]) with |R| > 3.
Then, if |G; N R| > 2 for some i € {1,2,...m} and =,y € G; N R. Hem({z,y}) =
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V(G[H]). Hence Ry = {z,y} and Ry = R — {x,y} is a radon partition of R.

If |G,NR| <1forallie {12 ..m}, since |[R| > L%(G)J + 1, there exists two
vertices v € G; and y € G, with z,y has a common neighbour w € G, for some
k#i,5, k€ {1,2,..m}. Thus Hem({z,y}) = V(G[H]). Then R, = {z,y} and
Ry = R — {x,y} is a radon partition of R. Hence r(G[H]) = 3.

Thus r(G[H]) = max{3, | #emD*L | 4 1, O

5.5 P3;-Convexity in corona related graphs

Study in the P3-convex invariants- hull number and radon number of corona related

graphs is done in this section.
5.5.1 P;3-Convexity in corona of graphs

Detailed study on hull number and radon number of corona of graphs is done in

this section.

Theorem 5.5.1. Let G be a graph with radon number r, and |V(G)| = n, then
2r—1<r(GoH)<r+n.

Proof. Let V(G) = {v1,va, ..., v}, V(H) = {uy,us,....,u,} and copy of H corre-
sponding to v; be H;.
Let R! be any subset of V(G o H) with |R'| > r + n.

Case 1 If [R*'NV(G)| > r. Then R N V(G) has a radon partition in G, say R} and
R}. Then R{ U (R' — V(G)) and R} is a radon partition of G ® H.

Case 2 If [R* N V(G)| < r. Then |R* NU™,V(H;)| > n + 1. Hence there is some
k€ {1,2,...,n} such that |V (Hy) N R > 2.

If |(V(Hg) U{ve}) N RY > 3, say {wy,we, w3} C (R' NV (Hy)). Then
{wy,wy}, {ws}is a radon partition of {wy,ws, w3} and R' — {ws3} and

{w3} is a radon partition of R'.
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Otherwise |(V(H;) U {v;}) N R'] < 2,Vi € {1,2,....,n}. Then since
|RY| > r 4 n, there are atleast » number of H; where i € {1,2,...,n} with
|(V(H;) U{v;}) N RY =2, say for i = 1,2,.....,r. Since, |R'NV(G)| =
t < r, there are atleast r — ¢t number of H; where i € {1,2,...r} with
|[V(H)NRY =2,say fori=t+1,t+2,.....,r and ¢t number of H; with
|(V(H)U{v;})NRY| =2, say fori =1,2,....,t. Let T, = (V(H;)U{v;})N
RY,Vi=1,2,..,tand T, = (V(H;) N R"), Vi =t + 1,t +2,..r. Then
{v1,vg, ....., v} has a radon partition say Ry and Ry. Let A= {i:i € Ry}
and B = {i : i € Ry}. Then R{ = UjeaT; and R} = U;cpT; is a radon
partition of R'.

Hence, r(Go H) <1 +n.

Choose R = {vy, v, ....,v._1} so that R has no Radon partition in G. Then take

u},u? any two vertices in V(K;). Then R' = U/—{{u},u?} has no Radon partition

1) 1)

in GoH. Thus 2r — 1 <r(Go H).

Strict inequality may occur in the above result.

For G =Friendship graph F3 and H = K,,,, r(Go H) =9 <44+ 7=r(G) +n,
G =Friendship graph F3 and H = K,,, is an example for (G o K) < r + n.

And for G=Csand H = K,,,, 7(Go K,,) =13 >2x5—1=2r(G) — 1. Hence
G = Cs and H = K, is an example for 2r — 1 < r(G o H).

And upper bound may attain. Since for G = C,, and H = K,,, r(G o K;;) =
21+ 1+n=r(G)+n, G=C, and H = K,, is an example.

Lower bound may also attain. Since for G = K,, and H = K,,, r(Go K,,) =5 =
2x3—-1=2r(G)—1,G =K, and H = K,, is an example.

Theorem 5.5.2. For any two graphs G and H, h(Go H) = |V(G)| + 1.
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Proof. Let G and H be graphs with V/(G) = {v1, va, ...., v, } and V(K) = {uy, ug, ..., U, }
and H; be the copy of H corresponding to v;, Vi = 1,2, ....,n.

Let ST = {v }U{ub,ud, ..., ul} where u! is any vertex from H;, Vi = 1,2, .....,n.

Let | = eccentricity(vy) in G and p = diameter(H).Then,

I1S"] D Nlv| U{uf,ud,....,ul}
r’ISY o N2 U {ui,ud, . ul}
'Syt o V(G) u{ul,ul, .l
I"?[S1] = V(GoH)

Hence h(G o H) < |V(G)| + 1.

Conversely, let S* C V(G o H), with |S'| < |V(G)| + 1. Then, |S'| < |V(G)]
and hence |S* N (UL, V(H;))| < |[V(G)] or S'NV(G) = ¢.

If |STN(UL,V(H;))| < |[V(G)|, there is some k € {1,2,...n} with V (H,)NS! = ¢.
Then HGOH[Sl] 2 V(Hk>

If S'NV(G) = ¢. Then,

Case 1 |[V(H,)NSY=1,Vi=1,2,...,n.

Then HGOH[SI] = Sl 7é V(GO H)

Case 2 |V(Hy) N St =0 for some k € {1,2,....,n}.
Then HGOH[Sl] 2 V(Hk>
Hence Hgop[S'] # V(G o H).

Thus, h(Go H) > |V(G)| + 1.

Hence it follows that h(G o H) = |[V(G)| + 1.
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5.5.2 P;-Convexity in neighbourhood corona of graphs

In this section bounds for hull number and radon number of neighbourhood corona

of graphs are obtained.

Theorem 5.5.3. Let G and H be nontrivial graphs with hull number h(G) and h(H)
respectively and 6(G) > 2. Then h(G = H) < h(QG).

Proof. Let S = {v1,v2, ..., upe) } be a minimum Ps-convex hull set and I9[S] D V(G)
for some d. Since GG has no pendant vertex every vertex in GG x H is adjacent with

atleast two vertices in G. Hence [9t1[S] = V(G x H). Hence h(G x H) < h(G).

O

The bound given in [5.5.3| is sharp, since the bound is attained for G = Cyg and
H = P;. Here h(Gx H) =4 = h(G).

Following remark shows that the difference in the inequality |5.5.3| may be large.

Remark 5.5.1. For any integer a > 2 there exists graph G and H with h(G* H) =
h(G) + a.

Proof. Let n = a — 2, G be the friendship graph F,, and H be any graph with
|[V(H)| > 2. Then h(G x H) = 2 and h(G) = n.
O

Following remark shows that theorem |5.5.3] may not hold for graph G with

pendant vertices.
Remark 5.5.2. For the graph G = Ps and H = K3, h(G x H) = 4 while h(G) = 3.
Theorem 5.5.4. Let G be any graph and |V (H)| > 2, then

diam(G) + 1

r(GxH)>2x| 3

|+1

Proof. Let vy, v, ...,u51 be a maximum path in G and remaining vertices of V(G)

be {vj12, U143, ..., vp }.Let H; be the copy of H corresponding to v;, Vi € {1,2,...,n}
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in G« H. Choose two vertices v;1,v;2 from H;, Vi € A ={1,4,7, ..., L%J}
Then R = U;ea{vi1,v;2} has no radon partition in G « H. Hence r(G x H) >

2XLWJ+1.

5.5.3 P;-Convexity in edge corona of graphs

In this section bounds for hull number and radon number of edge corona of graphs

are obtained.

Theorem 5.5.5. Let G and H be nontrivial graphs with hull number h(G) and h(H)
respectively. Then h(G o H) < h(G).

Proof. Let S = {vy, vy, ...,v5} be a minimum Ps-convex hull set of G' and I¢[S] D

V(G) for some d. Then every vertex in G ¢ H is adjacent with atleast two vertices

in G. Hence I'[S] = V(G o H). Hence h(G o H) < h(G).

]

Theorem 5.5.6. Let G be a graph having perfect matching and |V (H)| > 2, then
r(Go H) > |V(G)| + 1.

Proof. Let ey, eq, ....,eq be a perfect matching in G' and eg11, €449, ..., €, be the re-
maining edges of G. Let H; be the copy of H in G ¢ H corresponding to e; ,
Vi e {1,2,...,r}. Then [{e1,eq,....,e,}] = @ Choose two vertices v; 1, v; o from
H;, Vi e {1,2,..,q}. Let R = UL {vi1,v;2}. Then |R| = |[V(G)| and R has no
radon partition in G o H. Hence (G o H) > |V(G)| + 1.

]

Since r(Go H) =7 =|V(G)| + 1, for G = Cy and for any graph H, the bound
given in theorem is sharp.
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5.6 Conclusion

The concept of P3- convexity is studied here. The motivation behind this is the
problem like sharing an idea or marketing, having the property:- a set of vertices
S initially possessing a property spreads the property to the vertices having two
neighbours in S. These problems like sharing or marketing can be extended in a
way that set of vertices having the property a set of vertices S initially possessing a
property spreads the property to the vertices having k neighbours in S. Thus there

is a large scale of application and scope in this area.
This chapter includes general properties in P3-convexity, Ps-convex invariants,

hull number, radon number and caratheodory number of some classes of graphs,

strong product, cartesian product, composition of graphs. and corona related graphs.
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CHAPTER 6

Conclusion and Results

6.1 Conclusion

This thesis is an attempt to introduce various types of domination parameters and
study their properties. And domination number of cartesian product of graphs is

studied using one of this domination parameter.

First chapter is an introductory chapter in which background information and

preliminary information about the work are provided.

In the second chapter a study of domination number of cartesian product of
graphs is done. Main results from this chapter are listed below. These results are

published in [59]

1. Let G be any graph and P, be a path having n vertices. Then £7(G) <
v(GOP,).

2. Let G be any graph and P, be a path having n vertices. If G has a minimum
dominating set D such that D = DU Dy, D1 N Dy = ¢ and every vertex not in

D has a neighbour in D; and a neighbour in Dy, then v(GOP,) < [2] v(G).
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3. Let G be a graph having a minimum dominating set D which can be partitioned
into two nonempty sets D; and Dy with the property every vertex not in D
is adjacent with atleast one vertex in D; and atleast one vertex in Dy. Then

v(GOC) < 2v9(G).

4. Let G be any graph and C, be a cycle having n vertices, then $v(G) <
(GOC,).

5. Let G be any graph and C), be a cycle having n vertices. If G has a minimum
dominating set D such that D = D; U Dy, Dy N Dy = ¢ and every vertex not
in D has a neighbour in D; and a neighbour in Ds, then 7(GOC,,) < [2] ~(G).

In the third chapter Reserved domination number is introduced and some of
its properties are studied. Result on domination number of cartesian product
of graphs is obtained using reserved domination number. Some of the results

from third chapter is published in [60]

Let A C V(G), A # ¢, a dominating set D of a graph G is an A- reserved
dominating set, if DN A # ¢. The A-reserved domination number of G, ry4(G)

is the cardinality of minimum A-reserved dominating set.

Let Ay, Ag, ..., Ay CV(G), A; # ¢,Vi=1,2,....k. If D C V(G) is a dominat-
ing set with the property DN A; # ¢,Vi = 1,2, ..., k, then D is said to be

6. For any Graph G and A C V(G), 7(G) < ry4(G) <~(G) + 1

7. An A-reserved dominating set D is a minimal A-reserved dominating set if

and only if for each vertex v in D one of the following conditions holds

(a) v is an isolate of D.
(b) v has a private neighbour u in V' — D.
(c) DNA={v}.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

If A C B, then rya(G) > ry(G).

. 7y4(G) = 1 if and only if A contains a universal vertex of G.

rva(G) = n if and only if G = K,,.
For a graph G and A C V(G),

e 7y4(G) =~v(G) + 1 if and only if A C anticore(G).

o 74(G) =~v(G) if and only if AN (anticore(G)) # phi.
For a graph G and A C V(G),

e ry4(G) =~(G) + 1 if and only if v(G, + u) = v(G) + 1 for every v € A.

e ry4(G) = (@) if and only if Jv € A satistying v(G, + u) # v(G) + 1.
For cycle C,, and any A C V(C,), r74(Cy) = [5] = v(G).
For complete graph K, and any A C V(K,), rya(K,) = 1.

For complete bipartite graph K,,, with 2 < m,n and any A C V(K,,.),
YA (Kmn) = 2.

If n = 1(mod3) and A C V(P,), then rya(P,) = [5] = 7(Py).
If n =0(mod3) and A C V(P,), then
(P = { (2] ifAN {v :i = 2(mod3)} # ¢
[5] +1 Otherwise
If n =2(mod3) and A C V(P,), then
ra(Py) = { (5] ifAN {vZ 21 =1,2(mod3)} # ¢
[5]+1 Otherwise

r740B(G) = min {ry4(G),ry5(G)}.

Let G and H be two graphs of order ny and ny, then for any A C V(G) and
B CV(H), ryaxp(GOH) < min{nryg(H),narva(G)}.

If a graph G satisfy the inequality ryaxp(GOH) > ry4(G)rvyp(H), for every
graph H and for A x B = {(u,v)} where (u,v) is an element in a minimum

dominating set of GOH. Then G satisfies Vizing’s inequality.

94



Chapter 6. Conclusion and Results

22. Let G be a graph that satisfies ryaxg(GOH) > ry4(G)ryp(H), for every A C
V(G) and for every graph H and B C V(H), and let G' be a spanning subgraph
of G such that ry4(G) = ry4(G'). Then G' also satisfies ryaxp(G'OH) >
rya(GY)ryg(H), for every A C V(G') and for every graph H and B C V(H).

23. If n is an odd integer and x1, xs, ....., T, be the vertices in the first copy of P,
in P,0P, and ¥, ¥s, ....., y, be the vertices in the second copy of P, in P,0PF;,
then for any A C V(P,0P,),

(2] GfAN sy i=2k+1,1<i<n}#¢

ntl
2
[2£2] Otherwise

rya(P,0PR,) = {

24. If n is an even integer , then for any A C V(P,0P;),

n+1

rya(P,0P) = [ —|

25. If A C V(P,0Py),

n—1
T

n—1
n — LTJ <rya(P,OP;) <n+1—|

26. If A C V(P,OPy),

n+1<rya(P0OP) <n+2 ifn=123456o0r9
n <rya(P,0P;) <n+1 Otherwise

27. For any A C V(K,,) and B C V(K,),m < n ryaxp(K,0K,) =m.
28. For any A C V(P,,) and B C V(K,,),m,n > 2 € N, ryaxp(P,0K,) = m.
29. For any A C V(C,,,) and B C V(K,,),m,n > 2 € N, ryaxp(Cr,OK,) = m.

30. For any two nontrivial graphs G and H and for every A C V(G) and B C V(H),
ryaxp(G X H) < ry4(G)ryp(H).
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31. Let G be a graph order n and H be a graph order m and H; be the copy of H
corresponding to v; € G, then for A C V(GoH),

n if AN(V(G)U{v:vis a universal vertex of H;}) # ¢

rya(GoH) =
n+1 Otherwise

32. If Ay, Ao, ... A C V(G) then an [A;, As, ..., Ag]-reserved dominating set D is
a minimal [A;, As, ..., Ag]-reserved dominating set if and only if for each vertex

v in D one of the following conditions holds

(a) v is an isolate of D.
(b) v has a private neighbour u in V' — D.

(¢) A €{1,2,...k} such that DN A; = {v}.

33. Let G = K, with u as center and V(G) = {u,uy,ug, ......... un} and let H
be any graph . Let D C V(GOH) such that D dominates {u}0H . Then ,
|D| > 2v(H) —v(< F >) , where F = {v € H : (u;,v) is not adjacent to D
for some i} U{v € H : (u;,v) ¢ D,Vi}.

34. Let G be any graph with v(G) =1 and N C V(G) such that ryy(G) > 1.And
let H be any graph. Let D C GOH with the property that D dominates
(G— N)OH .Then, |D| > 2y(H) —v(< F >) , where F'={v € H : (u,v) is
not dominated by D for some u € N} U{v € H : (u,v) ¢ D,Yu € N} .

35. Let G = K n with u as center and V(G) = {u} U N where N = N; U
Ny U ....... Ny, |Ni| > 2, N; = {up, uig, ... ,up b for i = 1,2,...k and H be
any graph. If D C V(GOH) so that D dominates {u}0H , then |D| >
(k+1)y(H) = F  v(< F; >) , where F; = {v € H : (u;;,v) is not dominated
by D for some j} U{v e H : (u;;,v) ¢ DN N;, Vj}.
a-stable domination number is introduced and some of its properties are

studied in the fourth chapter. Main results from the chapter are listed below.

Let D be a dominating set. For a vertex uw in D let ¢p(u) = |N(u) N (V — D)].
The donor instability or d-instability of an edge e connecting two donor ver-

tices u and v, dP ,(e)= |[¢Yp(u) — ¥p(v)]. Let D C V, the d-instability

inst
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36.

37.

38.

of D, is the sum of d-instabilities of all edges connecting vertices in D,
va(D) = > dP .(e). Let D be a dominating set. Given a non neg-

ec<D> “inst

ative integer o, D is an a-d-stable dominating set, if d? (e) < « for any

inst
edge e connecting two donor vertices. Cardinality of a minimum a-d-stable
dominating set is the a-d-stable domination number and denoted by 75 (G). A
dominating set D is d-stable if ¢4(D) = 0. Cardinality of a minimum d-stable

dominating set is d-stable domination number and denoted by 79(G).

For a vertex u not in D, let ¢p(u) = |N(u) N D|. The Acceptor Instability or
a-instability of an edge e connecting two acceptor vertices u and v is, a? ()
= |¢p(u) — ¢p(v)|. The a-instability of D, ¢,(D) is the sum of a-instabilities
of all edges connecting vertices in V' — D, ¢o(D) = 3.y p- abrg(€). Let
D be a dominating set. Given a non negative integer a;, D is an a-a-stable
dominating set, if a2 ,(e) < « for any edge e connecting two acceptor vertices.
Cardinality of a minimum a-a-stable dominating set is a-a-stable domination
number and denoted by v¢(G). The dominating set D is a-stable if ¢,(D) =0
. Minimum cardinality of an a-stable dominating set is a-stable domination

number and denoted by 12(G).

A dominating set D is stable, if ¢4(D) = 0 and ¢,(D) = 0. Minimum car-
dinality of a stable dominating set is called stable domination number and
denoted by 7°(G). If a dominating set D is an a-d-stable dominating set
and a-a -stable dominating set, then D is called an a-stable dominating set
and cardinality of a minimum a-stable dominating set is defined as a-stable

domination number and denoted by v*(G) .

If a > f, then 4(G) < 15(G) < 74(G).

Property of being a-d-stable dominating set is neither superhereditary nor

hereditary.

An a-d- stable dominating set D is a minimal a-d- stable dominating set if

and only if for each vertex v in D one of the following conditions holds
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39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

0.

ol.

(a) v is an isolate of D.
(b) v has a private neighbour v in V' — D.
(¢) There exist two adjacent vertices u; and wuy different from v in D, u,
adjacent to v, us not adjacent to v and ¢ p(uy) = ¥p(us) + a.
For non negative integer o, 7§(G) =1 <= ~(G) = 1.
For a graph G and non negative integer «, 5,(G) > 73(G).

For a graph G and non negative integer «, i(G) > v3(G).

ir(G) < 7(G) <7§(G) <i(G) < Bo(G) <T(G) < IR(G).

For any graph G of order n > 2 and non negative integer «, 3 < ~79(G) +

73(G) <n+1.

For a connected triangle free graph G with |V (G)| > 2 and any non negative

integer av, v$(G) = 2

If D is an a-d-stable dominating set of a graph GG and u and v are adjacent
vertices in D with d(v) = d(u) + k+ «, k € ZT, then D contains at least k
elements from (N[v] — Nu).

If D is a d-stable dominating set of a graph GG and u and v are adjacent vertices
in D with d(v) > d(u), then D contains at least d(v) — d(u) elements from
(N[v] = Nlu]).

If v is a pendant vertex adjacent to v, D is a d-stable dominating set and u, v
€ D, then N[v] C D.

For any non negative integer 3, there exist graph G with 79(G) > 7}(G) >
VHG).ocoo. > 7S (G)

If a > B, then ¥(G) < 1¢(G) <17(G)

a

Property of being a-a-stable dominating set is neither superhereditary nor

hereditary.

An a-a- stable dominating set D is a minimal a-a- stable dominating set if

and only if for each vertex v in D one of the following conditions holds
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52.

93.

o4.

95.

96.

57.

58.

59.

60.

61.

62.

(a) v is an isolate of D.
(b) v has a private neighbour v in V' — D.

(c) There exist two adjacent vertices u; and us in V-D, u; adjacent to v, uy

not adjacent to v and ¢p(uz) = dp(uy) + .
For non negative integer o, 7%(G) =1 <= ~(G) =1
Fora>1,v4G) =2 <= (G) =2

For any graph G and non negative integer o, v3(G) < 7,(G). And this bound

is sharp.

For any positive integer 3, there exist graph G with 79(GQ) > ~v}(G) >
Y2(Q)...... > 5(@G).

If a > B, then 7(G) < 1*(G) < +°(G).

Property of being a-stable dominating set is neither superhereditary nor

hereditary.

For any graph G and for any non-negative integer a, v(G) =1 <= ~*(G) =
1.

For any graph G and for any non negative integer o, Y(G) = n <= G = K,,.
For a graph G with §(G) > 1, v*(G) <n — 1.

For every graph G of order n and maximum degree A and for any non negative

integer a, Y(G) > 35

For any non negative integer o, v*(G) = v(G) for the following Graphs

Complete graph K,

Path P,

Cycle C,

Wheel graph W,

Helm graph H,
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63. If G is the corona C),0 K7, then for any non negative integer «, i(G) = v(G) =
Ya(G) =1%(G) =(G) = p.

64. For complete bipartite graph G = K, »,, m < n and non-negative integer o
Va(G) =2

min{(n —m+2—a«a),m} ifn—-m+2—-—a>2

m otherwise

VO‘(G):{; ifn—m < «

otherwise
65. Let G and H be two graphs of order n; and ny , then for any non-negative
integer « ,
7. (GOH) < min{mg(H),ny75(G)}
o ¢ (GUH) < min{nivg(H), na73(G)}

e Y (GOH) < min{ny*(H),ny*(G)}.
This bound is sharp.

66. For any graph G of order m and any non negative integer «, v*(C,0G) >

mn
AG)+3°

67. If m,n > 2 for any non negative integer o, v*(C,,0C,,) > ™"
68. If m,n > 2 for any non negative integer o, v*(C,,,0C,,) > Y*(Cp)7*(Cy).
69. For non-negative integer o, v*(P,0F,) = [%].

70. For any two graphs G and H and non negative integer «, a-stable domination

number of its corona, Y*(GoH) = |V (G)].

Chapter five deals with the concept of P3-convexity. Radon number, caratheodory
number and hull number of some classes of graphs are obtained. Ps-convexity
in product graphs and corona related graphs are well studied. A part of this

chapter is published in [61]

71. h(G) = n if and only if each vertex has degree less than or equal to 1.
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72.

73.

74.

75.

76.

e

78.

79.

80.

81.

82.

83.

84.

Let G be a star with atleast 3 vertices, then h(G) =n — 1.
Let G be a graph with order n and A(G) =n — 1

e [f n = 3, then either G is a triangle or a star.
o If n =4, then either G is a path or a star.

e If n > 5, then (G is a star.

Let G be a 2-connected graph with a universal vertex. Then

hG) = 2.

The minimum size of a graph G for which order(G) = n and h(G) = 2 is
2(n —2).

For 2 < a < n — 1, there exist a connected graph G with |V(G)| = n and
h(G) = a.

Being a Ps-convex set is neither hereditary nor superhereditary property.

If G is disconnected with atleast two components G; and Ga, |V(Gy)| > 2,

|[V(G2)| > 2. Then h(G) = 2.

Let G be a tree with n vertices. Then there exist a sequence of sets V(G) =

| T VA s S D Vi where for each i, V; is convex and |V;| = i.

Let G be a connected graph. Then G is a tree if and only if for each connected

subgraph H of G, V(H) is a convex set of G.
If G is a graph having no cycle with length < 4 and |V(G)| > 4, then h(G) > 3.

If G is a graph with the property I'[S] = Hg(S), VS C V(G), then G has

joint hull commutative propery.

If G is a maximal outer planar graph with diam(G) > 2, then G has joint hull
commutative property. But there are S C V(@) such that I'[S] # Hg(S).

Let H be a connected subgraph of a graph G. Then if V(H) is the only
nontrivial convex set of H, then H is a block. In particular, if V(G) is the

only nontrivial convex set of (G, then G is a block.

101



Chapter 6. Conclusion and Results

85. Every block in a graph G is a Ps- convex set.

86. Let G' be the graph generated by Myecielski’s construction of a graph G. Then
h(GY) < h(G) + 1.

87. Let G be a graph of order n > 3 and size m, Tj(G) the trestled graph of G
with k > 2, then h(T,(G)) = km.

88. For a path P, with n >3, ¢(P,) =2, r(P,) = | %] + 2 and h(P,) = [%] + 1.
89. For a complete graph K,, with n > 3, ¢(K,) =2, r(K,) = 3 and h(K,) = 2.
90. For a cycle Cy, ¢(Cy) = 2, r(C) = [§] 4+ 1 and h(C,) = [5].

91. For a star Ky ,,_1, n >4, ¢(Ky,-1) =2, r(Ky 1) =4, and h(K;,—1) = n.

92. For a complete bipartite graph K, ,,, m,n > 2, 7(Ky,,) = 3, ¢(Kmn) = 2,
WK pn) = 2.

93. For a wounded spider G,

e { A(G) if centre is incident with more than one pendant vertex

A(G)+1 otherwise

94. Let G and H be nontrivial connected graphs. Then, h(G X H) = 2.

95. Let G and H be non trivial connected graphs. Then, for S C V(G X H) either
HggH(S) = V(G X H) or HggH(S) =S.

96. Let G and H be nontrivial connected graphs, then ¢(G X H) = 2.

97. Let G and H be nontrivial connected graphs, then r(GRH) > max{ (dmmgG)HL fdmmgH)H} }.

98. Let G and H be connected graphs different from complete graph with caratheodory
number ¢(G) and ¢(H) respectively. Then ¢(GOH) > max{c(G)+1,c(H)+1}.

99. If G = K,,, and H = K, then ¢(GOH) =2 = ¢(G) = ¢(H).

100. Let G and H be connected graphs and G is different from complete graph. If
caratheodory number of G is ¢(G), then ¢(GOH) > ¢(G) + 1.

101. Let G and H be connected graphs with radon number r(G) and r(H) respec-
tively. Then r(GOH) > max{ L%J (r(G) —1)+1, L%J (r(H) —
1)+ 1}
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102. Let G and H be non trivial connected graphs. Then, for S C V(G[H]) either
HG[H](S) = V(G[H]) or HG[H}(S) = S.

103. Let G and H be nontrivial connected graphs. Then ¢(G[H]) = 2.

104. Let G and H be nontrivial connected graphs. Then r(G[H]) = max{3, L%j +
1}.

105. Let G be a graph with radon number r, and |V(G)| = n, then 2r — 1 <
r(GoH) <r+n.

106. For any two graphs G and H, h(G o H) = |V(G)| + 1.

107. Let G and H be nontrivial graphs with hull number h(G) and h(H) respectively
and 6(G) > 2. Then h(G* H) < h(G).

108. Let G be any graph and |V (H)| > 2, then

diam(G) + 1

r(GxH)>2x| 3

|+1

109. Let G and H be nontrivial graphs with hull number A(G) and h(H) respectively.
Then h(G o H) < h(G).

110. Let G be a graph having perfect matching and |V (H)| > 2, then r(G o H) >
V(G)| + 1.

6.2 Proposals for further study

We are aware that the research done for this work is not complete. Even so, it
continues to be a vibrant and accessible area for research. Some of the problems on

our thoughts that are still open are listed here.

1. Characterize the graphs G and A C V(G) for which ry4(G) = v(G) in terms

of degree.

,,,,,

3. Study the change of reserved domination number of a graph with the atomic

variations of graph, such as vertex removal, edge removal.
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. To study the stability of domination in real life problems it is more beneficial

to define a-stable domination for weighted graph and study it in detail.
. Characterize the graphs with 7°(G) = v(G).

. Characterize the graphs for which the compliment of minimum a-stable domi-

nating set is an a-stable dominating set.
. Develop an algorithm to find the a-stable domination number of a graph.

. Study the change of hull number of a graph with the atomic variations of

graph, such as vertex removal, edge removal.
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