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Chapter 1

Introduction

1.1 Background of the Thesis

The theory of digraphs has undergone rapid development in recent times. The study

of various graph theoretical parameters in products of digraphs becomes significant in

this context, as many of the large digraphs turn out to be the product of two or more

smaller digraphs. It is not very surprising that digraphs have immense applications

in several areas of science and sociology.

A network is a simplified representation of a system which captures only the

basics of connection patterns [56]. It represents the interactions between the parts

of a system. Most common examples of networks in the modern era are the internet

and the World Wide Web. Internet is a network in which a collection of computers is

linked by wired or wireless data connections. The World Wide Web is a network of

information stored on web pages that are connected by hyperlinks which are purely

software constructs.

An undirected network can be represented using vertices and edges connecting the

vertices; that is, a graph. A directed network is a network in which each edge has a

direction, pointing from one vertex to another. They can be represented as digraphs.

The World Wide Web is an example for a directed network. The connections in the

Web are directed; that is, from a link given on page A, one can arrive at page B, but

it is not necessary that page B contains a link back to A.

Sociology can be considered as the field which initiated the empirical study of

networks. The concepts of pattern and communication were used in sociology even

before 1950, see [5]. Many of the mathematical tools which are now used to analyse

networks owes its origin to the study of social networks. Social networks are a col-

lection of people or organisations and connections are the social interactions between

1
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them. Facebook and LinkedIn are some examples of online social networking services.

The study of one-way problem was initiated by Robbins in the article [60]. It deals

with the problem of arranging one-way traffic in a city. For road-traffic networks, the

advantages of a one-way street network over a two-way street pattern was presented

by Stemley in the article [66].

Another scientific field in which networks find their application is biology. In the

nervous system, the neurons are connected in intricate communication networks so

as to convey sensory information from sensory neurons to the central nervous system

and to convey commands from the central nervous system to the various organs [50].

Ecological food webs also form directed biological networks as certain species predate

others in a unidirectional way [67].

Other best known networks are telephone networks, peer-to-peer networks, col-

laboration networks, and disease transmission networks.

Different types of graph products are defined for which the vertex set is the Carte-

sian product of the vertex sets of its factors. These products differ only in the defini-

tion of the adjacency between the vertices. Digraph products can be defined analogous

to graph products. In either case, only twenty of the above-mentioned products sat-

isfy the associative property [36]. A study of products of digraphs was initiated by

Hammack, Imrich, and Klavžar in ‘Handbook of Product Graphs’, and an extensive

study was conducted by Hammack in ‘Digraphs Products’ [37]. The terminology and

notation that we use in this thesis follow mainly the articles [36] and [37] and the

basic graph theory terminology and notation we use here are based on West, D.B.,

2001. Introduction to graph theory (Vol. 2) [71]. Note that the Cartesian product,

the strong product, the lexicographic product, and the direct product are termed as

the four standard graph (digraph) products.

In 1960, Gert Sabidussi introduced the Cartesian product and the strong product

of graphs [63]. The connectedness of Cartesian product was discussed by Harary and

Trauth in [41]. The direct product (or tensor product) of graphs was introduced by

Weichsel, and he characterized connectedness in the direct product of two graphs [70].

Weichsel called it the Kronecker product, because the adjacency matrix of the product

is the Kronecker product of the adjacency matrices of the factors. The lexicographic

product of graphs was introduced as the composition of graphs by Harary [38].

The direct product was extended to digraphs by Mc Andrew, who called it ‘the

product’ [51]. He gave the number of components in the product of ‘k’ strongly

connected digraphs. The lexicographic product of digraphs was introduced by J W

Moon [52].
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The distance notion plays a key role in the theory of graphs and digraphs. The

problem of sending a message from one node to another in a communication network

using the least number of intermediate nodes is equivalent to the problem of finding

a shortest path in a graph or a digraph.

The distance between two vertices of a graph is defined as the number of edges

in the shortest path between the vertices. If there is no such path, then the distance

is defined to be infinity. If two vertices of a graph are joined by an edge, then they

are said to be neighbors of each other. A graph is said to be connected if any two

vertices of the graph are joined by a path. It can be seen that ‘the distance between

two vertices’ satisfies all the properties of a metric in the case of connected graphs.

The number of vertices in a graph (digraph) is called the order of the graph

(digraph). The number of edges in a graph (digraph) is called the size of the graph

(digraph).

The eccentricity of a vertex of a graph is the maximum distance between the

vertex and any other vertex of the graph. The minimum of the eccentricities of

vertices is called the radius, and the maximum is called the diameter of the graph.

The eccentricities of the vertices in a connected graph are termed as the associated

number of points of the graph by Harary in [40].

In the place of edges of a graph, a digraph has directed edges and so the paths

involved are directed paths. A digraph is strongly connected if any two vertices of the

digraph are joined by directed paths in either direction. The directed distance from

a vertex u to a vertex v in a digraph, denoted by
−→
d (u, v) is defined as the length of

the shortest directed path from u to v. As this is not generally the same as
−→
d (v, u),

the directed distance in a strongly connected digraph is not a metric. In Fig. 1.1,
−→
d (u, u1) = 1 whereas

−→
d (u1, u) = 4.

Even though the eccentricity of a vertex, the radius and the diameter of a digraph

D can be defined with respect to directed distance, the inequality diam(D) ≤ 2 rad(D)

is not satisfied. This was proved by Chartrand and Tian in [24] and so they introduced

two metrics in digraphs, namely, the maximum distance and the sum distance in

strongly connected digraphs. As the name indicates, the maximum distance md(u, v)

between two vertices u and v is the maximum of the directed distances in either

direction. The sum distance sd(u, v) between the vertices u and v is the sum of the

directed distances in either direction.

Later, Chartrand et al. defined another metric called the strong distance [21] for

strongly connected digraphs. The strong distance between two vertices u and v in a

digraph D is defined as the size of the smallest strongly connected subdigraph of D
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containing both u and v. Consider the digraph in Fig. 1.1 which is taken from [27].

Here, the smallest strongly connected subdigraph containing both u and v is the union

of the directed paths P and Q, where P = u, u1, u2, u3, u4, v, Q = v, u1, u2, u3, u4, u,

and hence is of size 7. But, P is not the shortest u − v path in the digraph and Q

is not the shortest v − u path. Since the first priority in a communication system is

efficient communication between the nodes in either direction, strong distance is not

a suitable metric in such networks.

u u1 u2 u3 u4 v

Figure 1.1: Example for a directed network

The metrics md and sd find applications in different types of communication

networks depending on the nature of data flow. In digraphs involving communication

in either direction independent of each other, the metric md is the right choice. This

is because minimizing md results in minimizing the distance between the vertices of

the digraph in either direction. Biological neural networks is an example of such a

communication network. The sensory neurons convey electrical signals from the input

such as the eyes or nerve endings in the hand, the brain processes it and produces

output and the motor neurons carry the reverse signal such as reacting to light or

heat.

Studies in metric graph theory are motivated by the concepts such as boundary

sets in geometry. Convexity, which is a fundamental concept in geometry, is extended

to metric spaces. Connected graphs form metric spaces using the metric ‘the length

of the shortest path’ in the set of vertices of the graph. A vertex subset S of a graph

G is said to be convex, if it contains the vertices in all the shortest paths connecting

any pair of vertices in S. An important tool for the study of metric properties of

connected graphs is the interval function. A characterization of the interval function

is given by Mulder in [54].

A set S of vertices of a graph G is a geodetic set if every vertex of G lies in some

shortest u−v path for u, v ∈ S. The cardinality of a minimum geodetic set in G is the
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geodetic number of G. The geodetic number of a graph was introduced by Harary et

al. [39]. The geodetic number of the Cartesian product and the lexicographic product

of graphs was studied in [12] and [13], respectively.

Several distance-related sets are defined in graphs. These definitions can be ex-

tended to digraphs. The center is the set of vertices which are close to all of the

remaining vertices of the graph; that is, the set of vertices with minimum eccentric-

ity. In social networks, a central vertex can be identified as a recognized leader.

The periphery, contour, eccentricity, and boundary sets are four types of distance-

related boundary-type sets of a graph G. This term was first coined by Caćeres et

al. in [18]. They are denoted by Per(G), Ct(G), Ecc(G) and ∂(G), respectively. The

peripheral vertices of a graph are the vertices which have the maximum eccentricity

in the graph. A vertex u is said to be a contour vertex of the graph if the eccentricity

of every neighbor does not exceed the eccentricity of u. The eccentricity and the

boundary sets of a graph consist of the eccentric vertices and the boundary vertices

of the graph, respectively. A vertex v is an eccentric vertex of a graph if there is a

vertex u in the graph such that eccentricity of u is the distance from u to v. A vertex

v is a boundary vertex of a graph G if there is a vertex u in the graph such that no

neighbor of v is further away from u than v.

In [24], Chartrand defined the m-eccentricity of a vertex and the m-radius, m-

diameter, m-center, and m-periphery of a digraph with respect to the metric ‘md’.

All the other boundary-type sets in digraphs that we have listed above can be defined

similarly.

It is very difficult to identify the various distance-related sets in large digraphs. If

it is possible to factorize the digraph into smaller digraphs, it will be easy to identify

these sets, provided they are related to the corresponding sets in the factors. A

graph is said to be prime with respect to a given graph product if it is nontrivial and

cannot be represented as the product of two nontrivial graphs. The problem of prime

factorization of digraphs under various products play a significant role in the study

of digraphs.

Of the four standard graph (digraph) products, the direct product presents sev-

eral issues related to connectivity. The direct product of two connected graphs is

connected only if at least one of them contains an odd cycle [70]. As the study is

based on distance between vertices, only the products which are strongly connected

are of interest. Hence the direct product is not considered in this study of distance-

related sets.
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1.2 Historical Review

The evolution of the theory of digraphs can be traced back to the article on one-way

problem in the year 1939 by Robbins [60]. Some of the earliest works in the field of

digraphs are [4, 7, 8, 61, 62, 65]. These works dealt with tournaments, planar digraphs,

and acyclic digraphs. During 1980’s, the abstract algebra approach applied to graphs

was extended to digraphs. The article ‘Distance transitive digraphs’ by C W Lam [47]

is one of the earliest works of this sort. The study of Hamiltonian paths and cycles in

Cayley digraphs was the most significant study using the group theoretic approach,

see [26, 72]. Later, many research articles which apply the linear algebra approach

on digraphs were published [1, 14, 29, 31, 43, 45, 68]. During this period many

research was also done in the fields like domination, decomposition, and factorization

in digraphs [3, 9, 28, 34, 44, 57, 69, 76]. Many articles dealing with products of

digraphs have come out in the recent years. Some of these articles are related to

determining the chromatic number and domination number in various products of

digraphs, see [48, 49, 64]. There are many articles in which the Hamiltonian and

related properties of various products of digraphs were the topic of study, see for

instance [11, 58, 73].

Alex Bavelas introduced the concept of centrality index in social networks [5].

Several studies have been done related to central vertices of a graph [16, 46, 59]. The

peripheral vertices and eccentric vertices of a graph are part of the literature before

the publication of the book ‘Distance in Graphs’ [15]. The peripheral vertices were

studied by Bielak and Syslo in [10], and eccentric vertices by Chartrand et al. in [23].

In [20], Chartrand et al. defined a new boundary-type set called the boundary of a

graph and studied the relationship between the periphery, eccentricity, and boundary.

The contour set was defined by Caćeres et al. in [19]. All these sets find applications

in problems involving facility location [22], and rebuilding in graphs [17].

Sabidussi showed that every connected graph G has a prime factorization under

Cartesian multiplication that is unique up to the order and isomorphisms of the factors

[63]. After this, some faster factorization algorithms for graphs were developed.

Afterwards, Feigenbaum proved that directed graphs have unique prime factor-

izations under Cartesian multiplication and that the prime factorizations of weakly

connected digraphs can be found in polynomial time [32]. This was improved to a

linear time approach by Crespelle et al. in [25].

Directed graphs have unique prime factorizations under strong product also. Marc

Hellmuth and Tilen Marc developed a polynomial-time algorithm for determining the
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prime factor decomposition of strong product of digraphs [42].

Digraphs can be factored as prime factors with respect to the direct product and

lexicographic product also, but the prime factorizations under the direct product and

lexicographic product are not unique [36].

1.3 Towards the Thesis

In the article [17], Caćeres et al. proved a proposition which presented the results

related to the four boundary-type sets of two connected graphs. The question which

arose was whether these results hold in the case of strongly connected digraphs with

respect to the metric md. It was found that in general, the results did not hold. But, if

the digraph satisfies an additional property which is defined as two-sided eccentricity

property, then two of the results in the proposition hold.

In [13], Brešar et al. proved the relationship between boundary-type sets of

Cartesian product of two graphs and that of their factor graphs. On examining

the boundary-type sets of the Cartesian product of two digraphs with respect to the

metric md, it turned out that the results related to the periphery and the contour

hold if one of the digraphs satisfies the two-sided eccentricity property. Also, the

center of the Cartesian product of two digraphs with respect to the metric md was

studied. Further, the boundary-type sets and the center of the strong product and

the lexicographic product of digraphs were investigated.

Now we present a real life situation involving directed distance between vertices.

The design and analysis of road transportation networks has an inevitable role in

city planning. In the representation of road networks using graphs or digraphs, the

vertices usually represent road intersections, and the edges represent roads [56]. When

one-way traffic is introduced in a road network, the edges between the vertices are

all directed edges and can be represented only using a digraph D. The necessary

condition in planning one-way routes is that each vertex must be reachable from every

other vertex. Thus it is clear that there will be a directed path from every vertex to

every other vertex of the digraph. The problem of finding the shortest path between

two vertices u and v in the digraphD is different from that of graphs. This difference is

due to the lack of symmetry in the case of directed distance, that is,
−→
d (u, v) ̸=

−→
d (v, u)

for two vertices u and v in V (D). The distance md(u, v) = max{
−→
d (u, v),

−→
d (v, u)}

gives the maximum of the directed distances between the vertices in either direction.

Applying the metric md in such situations seems to be the right choice in the practical

sense, because when we think of minimizing the distance between two places in a one-
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way setup, the directed distances between the vertices in both directions should be

minimized.

Finding the maximum distance md between two vertices in large digraphs is a

cumbersome task. We have seen in Section 1.2 that there are several algorithms to

factorize large digraphs into smaller factor graphs. The results presented in this thesis

can be applied to minimize the complexity in finding the distance md between two ver-

tices in the three types of digraph products. The results regarding the boundary-type

sets and the center of digraph products contribute to the analysis of road networks

and thereby help to apply the remedial measures that ensure the most efficient road

transportation system.

1.4 Gist of the Thesis

Distance is one of the most important concepts in Graph Theory. This thesis aims to

study the five distance-related sets in the Cartesian, strong and lexicographic product

of digraphs.

In the present world, we come across various networks; that is linkages connecting

specific objects. The connections may be virtual or physical. The examples vary from

acquaintances in social networks to signal transmission in communication networks. If

the connections in a network are unidirectional, then the network can be represented

using a digraph.

The directed distance
−→
d defined in a digraph is not symmetric and hence it is not a

metric. The distance studied in this thesis is the metric ‘maximum distance’ between

two vertices of a digraph, abbreviated as md. The results regarding the boundary-type

sets and the center of the Cartesian, strong, and lexicographic product of digraphs

with respect to the metric md are derived. The four boundary-type sets considered

are the m-periphery, the m-contour, the m-eccentricity and the m-boundary.

The thesis is organized as follows. The basic definitions, terminology, and notation

used in this thesis are presented in Chapter 2.

In Chapter 3, the geodetic interval and the four boundary-type sets of digraphs

with respect to the metric md are dealt with and it is investigated whether the

results corresponding to that of usual graphs obtained in the article [17] hold. The

significance of the two-sided eccentricity property of digraphs is also presented.

The Cartesian product of digraphs is studied in Chapter 4. The four boundary-

type sets and the center of the Cartesian product of two strongly connected digraphs

are investigated. It is derived that if one of the digraphs satisfies the two-sided
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eccentricity property, then the results for the periphery and the contour sets of the

Cartesian product of two strongly connected digraphs are the same as that in the case

of graphs. The results for the periphery, the contour, and the center are extended to

a finite number of digraphs when all except one of the digraphs have the two-sided

eccentricity property. Also, the results for the four boundary-type sets of a finite

number of digraphs is derived when all except one of the digraphs are either directed

cycles or symmetric digraphs.

In Chapter 5, the strong product of digraphs is studied and the results related to

the four boundary-type sets and the center for the strong product of two arbitrary

strongly connected digraphs are derived. The results for the center and periphery of

the strong product are extended to the case of a finite number of arbitrary digraphs.

The lexicographic product of digraphs is the subject of study in Chapter 6. The

concept of the class of digraphs which satisfy the ‘dicycle distance less than eccen-

tricity’ property or in short the DDLE property is introduced. The dicycle distance

of a vertex is the length of the shortest dicycle containing the vertex. A digraph is

said to satisfy the DDLE property, if the dicycle distance of every vertex is less than

its eccentricity. In Section 6.3, the boundary-type sets except the boundary of the

lexicographic product D1 ◦D2, when D1 is a DDLE digraph are derived, and the four

boundary-type sets of the lexicographic product D1 ◦ D2 are derived for the cases

when D1 is a dicycle on n vertices and a symmetric digraph. In Section 6.4, further

concepts are introduced to give the expressions for the center and the periphery of

any two strongly connected digraphs that cover all the possible cases. The DDLE

property is defined for each vertex and similarly, the ‘dicycle distance equal to eccen-

tricity’ property for a vertex is defined. Based on these definitions, the expressions

for the center of lexicographic product of any two strong digraphs are obtained, de-

pending on the radii of the two digraphs. Also, the expressions for the periphery

of the lexicographic product of two strong digraphs are obtained, depending on the

diameters of the two digraphs.

Finally, in Chapter 7, the concluding remarks and some problems for further study

are given.





Chapter 2

Preliminaries

2.1 Introduction

The purpose of this chapter is to list the definitions, terminology, and notation that

are used in this thesis. Most of the terms used are part of the standard graph theoretic

terminology, and a few terms will be introduced later as and when the situation arises.

2.2 Graph Theory Terminology

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a relation

that associates with each edge two vertices (not necessarily distinct) called its end-

vertices . Each vertex is indicated by a point, and each edge by a line joining the

points representing ends. A graph is finite if its vertex set and edge set are finite.

Every graph mentioned in this thesis is finite. A subgraph of a graph G is a graph

H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) and the assignment of endpoints to

edges in H is the same as in G. It is written as H ⊆ G and is read as G contains H.

A loop is an edge whose endpoints are equal. Multiple edges are edges having the

same pair of endpoints. A simple graph is a graph having no loops or multiple edges.

When u and v are the endpoints of an edge, they are adjacent and are neighbors.

The neighborhood of v, written NG(v) or N(v), is the set of vertices adjacent to v.

A path is a simple graph whose vertices can be ordered so that two vertices are

adjacent if and only if they are consecutive in the list. A cycle is a graph with an equal

number of vertices and edges whose vertices can be placed around a circle so that two

vertices are adjacent if and only if they appear consecutively along the circle. The

path and cycle with n vertices are denoted by Pn and Cn, respectively. A complete

11
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graph is a simple graph whose vertices are pairwise adjacent; the complete graph with

n vertices is denoted by Kn.

A graph G is connected if for each pair of vertices u and v in G, there is at least one

path joining u and v; otherwise, G is disconnected. A maximal connected subgraph

of G is a subgraph that is connected and is not contained in any other connected

subgraph of G. The components of a graph G are its maximal connected subgraphs.

A component (or graph) is trivial if it has no edges; otherwise it is nontrivial. If

vertex v is an endpoint of edge e, then v and e are incident.

The degree of a vertex v in a graph G, written degG(v) or deg(v), is the number

of edges incident to v, except that each loop at v counts twice. An isolated vertex is

a vertex of degree 0.

2.3 Digraph Terminology

The main definitions concerning digraphs used in the thesis are in line with the

terminology used in [2].

Definition 2.3.1. A directed graph or a digraph D = (V,E) or D consists of a non-

empty finite set V (D) called the vertex set of D and a finite set E(D) of ordered pairs

of distinct elements of V (D) called the edge set of D. The elements of V (D) and

E(D) are called vertices and edges, respectively. For an edge (u, v), the first vertex u

of the ordered pair is the tail of the edge and the second vertex v is the head ; together

they are the end-vertices.

This definition of a digraph does not allow loops (edges whose head and tail

coincide) or multiple edges (edges with same tail and same head). If (u, v) is an edge

with tail u and head v, then u is said to be adjacent to v and v is said to be adjacent

from u.

Definition 2.3.2. A subdigraph of a digraphD is a graphD′ such that V (D′) ⊆ V (D)

and E(D′) ⊆ E(D) and the assignment of endpoints to edges in D′ is the same as in

D. It is written as D′ ⊆ D and is read as D contains D′.

For n ∈ N , the notation [n] indicates the set {1, . . . , n}.

Definition 2.3.3. A directed walk is an alternating sequence

W = x1a1x2a2x3 . . . xk−1ak−1xk
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of vertices xi and arcs ai from D such that xi and xi+1 are the tail and head of ai,

respectively, for every i ∈ [k − 1].

If the vertices of the directed walk W are distinct, then W is a directed path.

If the vertices x1, x2, . . . , xk−1 are distinct, k ≥ 3 and x1 = xk, then W is a directed

cycle (dicycle).

Definition 2.3.4. A digraph is strongly connected or strong if, for each ordered pair

(u, v) of vertices, there is a directed path from u to v.

Definition 2.3.5. The underlying graph U of a digraph D is the simple graph with

vertex set V (D) and the edge xy ∈ E(U) if and only if either (x, y) ∈ E(D) or

(y, x) ∈ E(D).

Definition 2.3.6. A digraph is said to be weakly connected if its underlying graph

is connected.

Definition 2.3.7. A digraph D = (V,E) is said to be a symmetric digraph if for

every edge (x, y) ∈ E(D) there is also an edge (y, x) ∈ E(D).

Definition 2.3.8. The length of a path is defined to be the number of edges in the

path.

Definition 2.3.9. Let u and v be vertices of a strongly connected digraph D. A

shortest directed u− v path is called a directed u-v geodesic.

Definition 2.3.10. The number of edges in a directed u − v geodesic is called the

directed distance
−→
d (u, v). If there is no such geodesic, then

−→
d (u, v) is taken to be

infinity.

The directed distance is positive and satisfies the triangle inequality, but it is not a

metric because
−→
d (u, v) ̸=

−→
d (v, u) in general, and so it does not satisfy the symmetry

property. The metric ‘maximum distance’, abbreviated as md was introduced by

Chartrand and Tian in [24]. It is also known as m-distance.

Definition 2.3.11. In a strongly connected digraph, the metric maximum distance

is defined by md(u, v) = max{
−→
d (u, v),

−→
d (v, u)}.

It can be seen that md is a metric. The proof is from [24]. By definition, md is

positive and symmetric. Let u, v, w ∈ V (D). Without loss of generality, suppose that
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max{
−→
d (u, v),

−→
d (v, u)} =

−→
d (u, v). Then

md(u, v) = max{
−→
d (u, v),

−→
d (v, u)}

=
−→
d (u, v)

≤
−→
d (u,w) +

−→
d (w, v)

≤ max{
−→
d (u,w),

−→
d (w, u)}+max{

−→
d (w, v),

−→
d (v, w)}

= md(u,w) + md(w, v).

Thus the distance md satisfies the triangle inequality and so is a metric in a strongly

connected digraph. For a graph G, md is the usual distance between the vertices of

G. Every edge uv in a graph corresponds to two directed edges (u, v) and (v, u) in a

digraph. Hence, a graph is a symmetric digraph.

The interval function of a connected graph was defined and extensively studied

by Mulder [53]. The interval function of a connected graph G is the mapping IG :

V (G)× V (G) → 2V (G) defined by IG[u, v] = {w ∈ V (G) : d(u,w)+ d(w, v) = d(u, v)}
for all u, v ∈ V (G). Each set IG[u, v] is called a geodetic interval or interval in G. The

directed geodetic relation of a strongly connected digraph was defined by Nebeskỳ in

[55]. In this article, Nebeskỳ rephrased the definition of interval function of a graph

by introducing a ternary relation ΓG termed as geodetic relation of G on V (G) which

is defined as follows:

ΓG(u,w, v) if and only if d(u,w) + d(w, v) = d(u, v) for all u, v, w ∈ V (D). Thus,

IG[u, v] = {w ∈ V (G) : ΓG(u,w, v)}. Hence, the directed geodetic relation of a

strongly connected digraph is defined as follows:

Let D be a strong digraph, and let V (D), E(D) and dD denote the vertex set of

D, the edge set of D and the (directed) distance function of D, respectively. The

directed geodetic relation of D is the ternary relation Γdir
D on V (D) defined by

Γdir
D (u,w, v) if and only if dD(u,w) + dD(w, v) = dD(u, v) for all u, v, w ∈ V (D).

Let d denote any metric in a strong digraph. Analogous to the interval function

of a graph, the interval function of a strong digraph D with respect to the metric d

can be defined as the mapping ID : V (D)×V (D) → 2V (D) defined by ID[u, v] = {w ∈
V (D) : Γ(u,w, v)} for all u, v ∈ V (D). So we define the geodetic interval between

two vertices u and v in a digraph D with respect to the metric md.

Definition 2.3.12. The geodetic interval between two vertices u and v in a digraph

D denoted by ID[u, v] is defined as ID[u, v] = {w ∈ V (D) : md(u,w) + md(w, v) =

md(u, v)}.
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If the digraph D is clear from the context, ID[u, v] may be denoted by I[u, v].

Thus all the related concepts can be extended to digraphs.

Definition 2.3.13. For S ⊆ V (D), the geodetic closure I[S] of S is the union of

all geodetic intervals I[u, v] over all pairs u, v ∈ S. So I[S] =
⋃

u,v∈S

I[u, v]. Geodetic

closure of S is also known as interval of S.

Definition 2.3.14. A subset S of vertices of a digraph D is called a geodetic set if

I[S] = V (D).

Definition 2.3.15. A subset S of vertices of a digraphD is called convex if I[u, v] ⊆ S

for any pair of vertices u, v ∈ S.

Definition 2.3.16. For a vertex v in a digraph D = (V,E), the neighborhoods are

defined as follows:

N+
D (v) = {w ∈ V : (v, w) ∈ E}, N−

D (v) = {u ∈ V : (u, v) ∈ E}.
The sets N+

D (v), N−
D (v), and ND(v) = N+

D (v)
⋃
N−

D (v) are called the out-

neighborhood, in-neighborhood, and neighborhood of v. These neighborhoods are

called open neighborhoods of v. The closed neighborhood of v, ND[v] is defined by

ND[v] = ND(v)∪ {v}. If the digraph D is clear from the context, the open neighbor-

hood and the closed neighborhood of v are denoted by N(v) and N [v], respectively.

The following definitions are from [24].

The m-eccentricity of a vertex u ∈ V (D) denoted as meccD(u) is defined by

meccD(u) = max {md(u, v)|v ∈ V (D)}. If the digraph D is clear from the context,

then meccD(u) is denoted as mecc(u).

Definition 2.3.17. The m-radius , mrad(D) of a digraph D is defined by

mrad(D) = min{mecc(v) : v ∈ V (D)}.

Definition 2.3.18. The m-diameter , mdiam(D) of a digraph D is defined by

mdiam(D) = max{mecc(v) : v ∈ V (D)}.

A vertex v ∈ V (D) is called an m-central vertex of D if its m-eccentricity is the

minimum over all vertices in D; that is, if the m-eccentricity of v is equal to the

m-radius of D.

Definition 2.3.19. The m-center , mCen(D) of a strongly connected digraph D is

the set of all of its m-central vertices;

mCen(D) = {v ∈ V (D) : mecc(v) ≤ mecc(u),∀u ∈ V (D)}

= {v ∈ V (D) : mecc(v) = mrad(D)}.
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In a strongly connected digraph, the m-distance between every pair of vertices

and the m-eccentricity of every vertex is finite.

Now the definitions for the boundary-type sets of a digraph D with respect to the

metric ‘maximum distance’ are introduced. Most of the definitions are analogous to

the definitions in [20] and the definition of m-contour is analogous to the definition

of contour in [19].

Let D be a strong digraph and u, v ∈ V (D). The vertex v is said to be an

m-boundary vertex of u if no neighbor of v is further away from u than v.

A vertex v ∈ V (D) is called an m-boundary vertex of D if it is the m-boundary

vertex of some vertex u ∈ V (D).

Definition 2.3.20. The m-boundary , m∂(D) of a strong digraph D is the set of all

of its m-boundary vertices;

m∂(D) = {v ∈ V (D)|∃u ∈ V (D), ∀w ∈ N(v) : md(u,w) ≤ md(u, v)}.

Given u, v ∈ V (D), the vertex v is called an m-eccentric vertex of u if no vertex

in V (D) is further away from u than v; that is, if md(u, v) = mecc(u).

A vertex v ∈ V (D) is called an m-eccentric vertex of D if it is the m-eccentric

vertex of some vertex u ∈ V (D).

Definition 2.3.21. The m-eccentricity , mEcc(D) of a digraph D is the set of all of

its m-eccentric vertices;

mEcc(D) = {v ∈ V (D)|∃u ∈ V (D),mecc(u) = md(u, v)}.

In a similar way, the m-eccentricity of any proper subset W of the vertex set V (D)

can be defined; mEcc(W ) = {v ∈ V (D)|∃u ∈ W,mecc(u) = md(u, v)}.
A vertex v ∈ V (D) is called an m-peripheral vertex of digraph D if no vertex in

V (D) has an m-eccentricity greater than mecc(v), that is, if the m-eccentricity of v

is exactly equal to the m-diameter of D.

Definition 2.3.22. The m-periphery , mPer(D) of a strongly connected digraph D

is the set of all of its m-peripheral vertices;

mPer(D) = {v ∈ V (D) : mecc(u) ≤ mecc(v),∀u ∈ V (D)}

= {v ∈ V (D) : mecc(v) = mdiam(D)}.

A vertex v ∈ V (D) is called an m-contour vertex of digraph D if no neighbor

vertex of v has an m-eccentricity greater than mecc(v).
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Definition 2.3.23. The m-contour, mCt(D) of a digraph D is the set of all of its

m-contour vertices;

mCt(D) = {v ∈ V (D)|mecc(u) ≤ mecc(v), ∀u ∈ N(v)}.

As given in [17] in the case of a graph, the following results hold for a digraph

also.

1. mPer(D) ⊆ mCt(D) ∩mEcc(D)

2. mEcc(D) ∪mCt(D) ⊆ m∂(D).

This is because an m-peripheral vertex has the largest m-eccentricity among the

vertices of D and hence it is an m-contour vertex of D as well as an m-eccentric

vertex of an m-peripheral vertex in D. If v is an m-eccentric vertex of a vertex

u, then v is also an m-boundary vertex of u. If v is an m-contour vertex, then

mecc(u) ≤ mecc(v) for all u ∈ N(v). Hence there exists some vertex w ∈ V (D) such

that md(w, u) ≤ md(w, v) for all u ∈ N(v) and hence v is an m-boundary vertex of

w.

The m-eccentricity of a vertex of a digraph is one-sided, in the sense that the

m-distance to the farthest vertex may occur only in one direction unlike in the case

of usual graphs. So we introduce the following definition for strongly connected

digraphs.

Definition 2.3.24. A strongly connected digraph D is said to satisfy the two-sided

eccentricity property , if for all ui ∈ V (D), there exist vertices uj, uk ∈ V (D) (not

necessarily distinct) such that mecc(ui) =
−→
d (ui, uj) =

−→
d (uk, ui).

Directed cycles
−→
Cn (n ≥ 2) constitute an infinite family of digraphs that satisfy the

two-sided eccentricity property. Let Cn be a directed cycle v1 → v2 → · · · → vn → v1.

Then
−→
d D(vi, vi−1) =

−→
d D(vi+1, vi) = n − 1, where v0 = vn and vn+1 = v1. Thus

meccCn(vi) = n− 1, for i = 1, 2, . . . , n

The following definitions are from [37].

Definition 2.3.25. The Cartesian product of two digraphs D1 = (V1, E1) and D2 =

(V2, E2) with vertex sets V1 = {u1, u2, . . . , um} and V2 = {v1, v2, . . . , vn} is a digraph

D = D1□D2 with vertex set V (D) = V1 × V2 in which there is an edge from vertex

(ui, vr) to the vertex (uj, vs) if either ui = uj and (vr, vs) ∈ E2 or vr = vs and

(ui, uj) ∈ E1.

In a similar manner, the Cartesian product of n digraphs can be defined.
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Definition 2.3.26. The Cartesian product of n digraphs D1, . . . , Dn is the digraph

D = D1□D2□ · · ·□Dn with vertex set V (D) = {(x1, x2, . . . , xn)|xi ∈ V (Di)} and

there is an edge from the vertex x = (x1, x2 . . . , xn) to the vertex y = (y1, y2, . . . , yn),

when (xi, yi) ∈ E(Di) for exactly one index i (i = 1, . . . , n) and xj = yj for each index

j ̸= i.

Cartesian product of digraphs is commutative and associative [36].

Definition 2.3.27. The direct product D1 × D2 of two digraphs D1 and D2 with

vertex sets V (D1) = {u1, u2, . . . , um} and V (D2) = {v1, v2, . . . , vn} is the digraph

having the vertex set V (D1)×V (D2) and with arc set E(D1×D2) defined as follows.

(ui, vr), (uj, vs) ∈ E(D1 ×D2) if (ui, uj) ∈ E(D1) and (vr, vs) ∈ E(D2).

Definition 2.3.28. The direct product of n digraphs D1, . . . , Dn is the digraph D =

D1 ×D2 × · · · ×Dn with vertex set V (D) = {(x1, x2, . . . , xn)|xi ∈ V (Di)} and there

is an edge from the vertex x = (x1, x2 . . . , xn) to the vertex y = (y1, y2, . . . , yn), when

(xi, yi) ∈ E(Di) for every index i (i = 1, . . . , n).

Definition 2.3.29. The strong product D1 ⊠ D2 of two digraphs D1 and D2 with

vertex sets V (D1) = {u1, u2, . . . , um} and V (D2) = {v1, v2, . . . , vn} is the digraph

having the vertex set V (D1) × V (D2) and arc set E(D1 ⊠ D2) defined as follows.

There is an edge from the vertex (ui, vr) to (uj, vs) in D1 ⊠D2 if either

1. (ui, uj) ∈ E(D1), vr = vs, or

2. ui = uj, (vr, vs) ∈ E(D2), or

3. (ui, uj) ∈ E(D1), (vr, vs) ∈ E(D2).

The strong product of digraphs is commutative and associative [36].

Definition 2.3.30. The strong product of n digraphs D1, . . . , Dn is the digraph

D = D1 ⊠D2 ⊠ · · · ⊠Dn with vertex set V (D) = {(x1, x2, . . . , xn)|xi ∈ V (Di)} and

there is an edge from a vertex (x1, x2 . . . , xn) to the vertex (y1, y2, . . . , yn) provided

xi = yi or (xi, yi) ∈ E(Di) for all i ∈ [n] and (xi, yi) ∈ E(Di) for at least one i ∈ [n].

Definition 2.3.31. The lexicographic product of two digraphs D1 and D2 is the

digraph D1 ◦D2, having the vertex set V (D1)×V (D2) and arc set defined as follows.

There is an edge from the vertex (ui, vr) to the vertex (uj, vs) in D1 ◦D2 if either

1. (ui, uj) ∈ E(D1), or

2. ui = uj, (vr, vs) ∈ E(D2).
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The lexicographic product of directed graphs is not commutative [36].

Definition 2.3.32. The lexicographic product of n digraphs D1, . . . , Dn is the di-

graph D = D1◦D2◦· · ·◦Dn with vertex set V (D) = {(x1, x2, . . . , xn)|xi ∈ V (Di)} and
for which there is an edge from a vertex (x1, x2, . . . , xn) to the vertex (y1, y2, . . . , yn),

when (xi, yi) ∈ E(Di) for exactly one index i ∈ [n] and xj = yj for each index

1 ≤ j < i.

The trivial digraph K1 is a unit for the Cartesian product, the strong product

and the lexicographic product; that is, for any digraph D, K1□D = D, K1 ⊠D = D

and K1 ◦ D = D. This can be verified by taking the single vertex in K1 as 1 and

identifying the vertex (1, x) = x = (x, 1) for all vertices x in D. But for the direct

product, the unit is K∗
1 , where K∗

1 is a loop on one vertex; see [37].

Definition 2.3.33. A digraph D is prime over the product ∗ if D is non-trivial , and

for any factoring D = D1 ∗D2, one factor D1 is isomorphic to D and the other is K1.

We require the following definitions to analyze the structural properties that dis-

tinguish the four products defined above from other products of graphs and digraphs.

Definition 2.3.34. A digraph homomorphism ϕ : D → D′ is a map ϕ : V (D) →
V (D′) for which (x, y) ∈ E(D) implies (ϕ(x), ϕ(y)) ∈ E(D′).

A map ϕ : V (D) → V (D′) contracts an edge (x, y) ∈ E(D) if ϕ(x) = ϕ(y).

ϕ is called a weak homomorphism if (x, y) ∈ E(D) implies (ϕ(x), ϕ(y)) ∈ E(D′)

or ϕ(x) = ϕ(y).

Thus a weak homomorphism either preserves edges or contracts edges. Clearly,

every digraph is weakly homomorphic to K1, the complete graph with a single vertex.

This idea parallels the concept of trivial homomorphism in group theory.

Definition 2.3.35. For each k ∈ [n], the projection πk : V (D1) × · · · × V (Dn) →
V (Dk) is defined as πk(x1, . . . , xn) = xk.

Each projection πk : D1□ · · ·□Dn → DK and πk : D1 ⊠ · · ·⊠Dn → DK is a weak

homomorphism. Each projection πk : D1×· · ·×Dn → DK is indeed a homomorphism.

In general, only the first projection π1 : D1 ◦ · · · ◦Dn → D1 of a lexicographic product

is a weak homomorphism [37].

There are twenty associative products defined for graphs and digraphs having the

vertex set as the Cartesian product of the vertex sets of the factors [36]. Of these,

the only products for which at least one projection is a weak homomorphism (or
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homomorphism) and which employ the adjacency structure of both the factors are

the Cartesian product, the strong product, the direct product, and the lexicographic

product; see [36]. Hence these four products are called the standard products for

graphs and digraphs.

Our study is restricted to strongly connected digraphs. Because of the connectivity

issues of the direct product given in Section 1.1, we restrict our study in this thesis

to the remaining three standard digraph products.



Chapter 3

Geodetic Interval and

Boundary-type Sets of a Digraph

3.1 Introduction

The geodetic interval between two vertices in a graph have been studied extensively

since the interval function was introduced by Mulder [53]. Also, the various boundary-

type sets were introduced and studied by Chartrand et al. and Cáceres et al. [19, 20].

In this chapter, the variations in the distance-related properties of digraphs from that

of usual graphs are studied. In the case of graphs, the eccentricities of two adjacent

vertices differ by at most one. But this is not the case for digraphs with respect

to the metric md. The m-eccentricities of two adjacent vertices may differ by more

than one. See the digraph D′ in the Figure 3.3. Here, y is adjacent to the vertices

v and w, mecc(y) = 2 whereas mecc(v) = 4 and mecc(w) = 4. Consequently, many

of the distance-related properties of graphs do not hold for digraphs with respect

to the metric ‘md’. Thus an attempt was made to identify the digraphs other than

symmetric digraphs for which the m-eccentricities of two adjacent vertices differ by at

most one. It was observed that if a digraph satisfy the two-sided eccentricity property,

then the m-eccentricities of two adjacent vertices differ by at most one. Consequently,

some of the results related to the geodetic interval and distance-related sets hold for

such digraphs.

21
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v3v2v1

u v

v4v5v6

Figure 3.1: Geodetic interval in a directed cycle

3.2 Geodetic Interval in a Digraph

The geodetic interval between two vertices u and v in a digraph D, denoted by ID[u, v]

is defined as ID[u, v] = {w ∈ V (D) : md(u,w) + md(w, v) = md(u, v)}. The geodetic

interval between two vertices in a digraph have many variations from that of graphs.

If G is a cycle, then for any two non-adjacent vertices u and v, I[u, v] consists of

the vertices which lie in a shortest path from u to v. But for the directed cycle
−→
Cn,

I−→
Cn
[u, v] = {u, v} for any two vertices u, v ∈ V (D). To see this, consider the digraph

−→
C8 in Figure 3.1. In the underlying graph G, IG[u, v] = V (G), because dG(u, v) = 4

and dG(u, vi) + dG(vi, v) = 4 for i = 1, 2, . . . , 6. But none of these vertices lie in

I−→
Cn
[u, v]. For example, consider the vertex v1. md−→

Cn
[u, v] = max{

−→
d (u, v),

−→
d (v, u)} =

4, but md−→
Cn
(u, v1)+md−→

Cn
(v1, v) = 7+5 = 12. Similar is the case of the other vertices.

3.3 Boundary-type Sets of a Digraph

Cáceres et al. proved the following proposition for a connected graph in [17].

Proposition 3.3.1 (Proposition 8 of [17]). Let G = (V,E) be a connected graph.

1. If Ct(G) = Per(G), then I[Ct(G)] = V (G).

2. If |Ct(G)| = |Per(G)| = 2, then either |∂(G)| = 2 or |∂(G)| ≥ 4.

3. If |Ecc(G)| = |Per(G)|+ 1, then |∂(G)| > |Ecc(G)|.
4. If |Ecc(G)| > |Per(G)|, then |∂(G)| ≥ |Per(G)|+ 2.

The digraph analogue of Proposition 3.3.1 does not hold with respect to the metric

md. To see that (1) and (2) need not hold, consider the digraph D in Figure 3.2.

There is only a directed edge from the vertex v to the vertex w even though all

other edges are two-way edges. Here mCt(D) = mPer(D) = mEcc(D) = {w, z} but
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v /∈ I[w, z]. This is because
−→
d (w, z) = 3,

−→
d (z, w) = 3 giving md(w, z) = 3 whereas

the w − z directed path passing through v is of length 4 and hence is not a directed

w − z geodesic. Also m∂(D) = {v, w, z} as v is an m-boundary vertex of w while x

and y are not m-boundary vertices of any vertex in D.

w

3

x

2

y

2

z v

3 2

Figure 3.2: Example for a digraph D that violates the results (1) and (2) of Propo-
sition 3.3.1.

To see that (3) and (4) does not hold in general, see the digraph D′ in Figure 3.3.

w

4

x

3

y

u

t

2

z v

3

3

2

4

Figure 3.3: Example for a digraph that violates the results (3) and (4) of Proposition
3.3.1.

Here mPer(D′) = {w, v}, mEcc(D′) = {w, v, u}, since u is an m-eccentric vertex

of the vertex t. |mEcc(D′)| = |mPer(D′)|+ 1, but m∂(D′) = {w, v, u}.
The above variations from that of graphs were the motivation to investigate the

cases in which the results related to the boundary-type sets hold. As illustrated in

the introduction, the m- eccentricities of adjacent vertices in a digraph differ by more

than one. The difference of the m-eccentricities of two adjacent vertices in a digraph

D with n vertices can be any number no greater than ⌊n−1
2
⌋. The upper bound is
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the largest possible difference between the m-diameter and the m-radius of D. If

|V (D)| = n, then mdiam(D) ≤ n− 1. It is proved in [24] that since md is a metric,

mdiam(D) ≤ 2 mrad(D). Thus mrad(D) ≥ mdiam(D)

2
. If mdiam(D) = n− 1, then

mrad(D) ≥ ⌈n−1
2
⌉ and hence it follows that mdiam(D) − mrad(D) ≤ ⌊n−1

2
⌋. In the

following lemma, we prove that if a digraph satisfy the two-sided eccentricity property,

then the m-eccentricities of adjacent vertices differ by at most one.

Lemma 3.3.2. Let D be a strong digraph that satisfy the two-sided eccentricity

property. Then the m-eccentricities of two adjacent vertices differ by at most one.

Proof. If possible, suppose that the m-eccentricities of two adjacent vertices u and v

in the strong digraph D differ by more than one. Let mecc(u) = k and mecc(v) = r,

where r > k+1. As u and v are adjacent vertices in the digraph D, three cases arise.

(1) There is a directed edge from u to v.

(2) There is a directed edge from v to u.

(3) There is a directed edge from u to v and a directed edge from v to u.

Since D satisfies the two-sided eccentricity property, there exist vertices v′, v′′ ∈ V (D)

such that
−→
d (v, v′) = r and

−→
d (v′′, v) = r.

Case 1: Suppose that (u, v) ∈ E(D). Let P be a directed geodesic from the

vertex v′′ to the vertex v of length r. Then there are two possibilities. Either u ∈ P

or u /∈ P . If u ∈ P , then since P is the shortest directed path from v′′ to v, the part of

the directed path P from v′′ to u must be a shortest directed path from v′′ to u. Thus
−→
d (v′′, v) = r gives

−→
d (v′′, u) = r − 1 which contradicts the fact that mecc(u) = k

and k < r − 1. If u /∈ P , then since D is strongly connected, there is a directed

path from v′′ to u. Let P ′ be a directed geodesic from v′′ to u. Since mecc(u) = k,
−→
d (v′′, u) ≤ k. If v ∈ V (P ′), then

−→
d (v′′, v) ≤ k − 1. Otherwise, the directed path

obtained by concatenating the directed edge (u, v) to the path P ′, is a directed path

from v′′ to v of length less than or equal to k+1. In either case, length of the directed

geodesic from v′′ to v is at most k + 1 which contradicts the fact that
−→
d (v′′, v) = r,

since r > k + 1.

Case 2: Suppose that (v, u) ∈ E(D). Let Q be a directed geodesic from the

vertex v to the vertex v′ of length r. Then there are two possibilities. Either u ∈ Q

or u /∈ Q. If u ∈ Q, then since Q is the shortest directed path from v to v′, the part

of the directed path Q from v to u must be a shortest directed path from u to v′.

Thus
−→
d (v, v′) = r gives

−→
d (u, v′) = r−1 which contradicts the fact that mecc(u) = k

and r − 1 > k. If u /∈ Q, then since D is strongly connected, there is a directed

path from u to v′. Let Q′ be a directed geodesic from u to v′. Since mecc(u) = k,
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−→
d (u, v′) ≤ k. If v ∈ V (Q′), then

−→
d (v, v′) ≤ k − 1. Otherwise, the directed path

obtained by concatenating the directed edge (v, u) to the path Q′, is a directed path

from v to v′ of length less than or equal to k+1. In either case, length of the directed

geodesic from v to v′ is at most k + 1 which contradicts the fact that
−→
d (v, v′) = r,

since r > k + 1.

As Case 3 is the combination of the Cases 1 and 2, the result follows.

The converse of Lemma 3.3.2 does not hold. That is, if the m-eccentricities of

two adjacent vertices differ by at most one, the digraph need not satisfy the two-

sided eccentricity property. To see this, consider the digraph in Figure 3.4. Here,

mecc(u1) = mecc(u3) = 2 and mecc(u2) = 1, since md(u1, u2) = md(u2, u3) = 1 and

md(u1, u3) = 2. But
−→
d (u1, u3) = 1,

−→
d (u3, u1) = 2. Hence this digraph does not

satisfy the two-sided eccentricity property.

u1 u2 u3

2 1 2

Figure 3.4: Example for a digraph that does not satisfy the two-sided eccentricity
property

It can be seen from the digraph D given in Figure 3.2 that even if the digraph

satisfy the two-sided eccentricity property, the results (1) and (2) of Proposition 3.3.1

need not hold. But, the results (3) and (4) of Proposition 3.3.1 hold for strong

digraphs satisfying the two-sided eccentricity property. This is due to the fact that

by Lemma 3.3.2 the m-eccentricities of two adjacent vertices differ by at most one.

The proof is similar to that of parts (3) and (4) of Proposition 8 of [17]. However for

the sake of completeness, we include it below.

Proposition 3.3.3. Let D = (V,E) be a strongly connected digraph that satisfy the

two-sided eccentricity property.

1. If |mEcc(D)| = |mPer(D)|+ 1, then |m∂(D)| > |mEcc(D)|.

2. If |mEcc(D)| > |mPer(D)|, then |m∂(D)| ≥ |mPer(D)|+ 2.

Proof. 1. Let x be the unique vertex in mEcc(D) which does not lie in mPer(D).

Take W as the set of vertices in D for which x is an m-eccentric vertex. That

is, W = {y ∈ V (D) : md(y, x) = mecc(y)}. Then W ∩ mPer(D) = ∅, since
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x /∈ mPer(D). Also, W ∩mEcc(D) = ∅, since mEcc(D) = mPer(D) ∪ {x}. Let
z ∈ W be such that mecc(z) = max

y∈W
mecc(y).

Claim: z is an m-boundary vertex of x. To this end, suppose that there exists

a vertex w ∈ N(z) such that md(w, x) = md(z, x) + 1. Since D satisfies the

two-sided eccentricity property, the m-eccentricities of two adjacent vertices in

D differ by at most one. Since z ∈ W , md(z, x) = mecc(z). Thus the only

possibility is that mecc(w) = mecc(z) + 1. This yields a contradiction, for then

w ∈ W has greater m-eccentricity than z. Hence, z ∈ m∂(D).

2. mPer(D) ⊆ mEcc(D) ⊆ m∂(D). Hence the result follows from part 1 of the

proposition.



Chapter 4

Boundary-type Sets and Center in

Cartesian Product

4.1 Introduction

Cartesian product is the product having the most real life applications among the

various graph products and is widely used in metric graph theory. Hypercubes are

Cartesian powers of K2, the complete graph with 2 vertices. Hamming graphs are

Cartesian products of complete graphs and grid graphs are Cartesian product of

paths.

The boundary-type sets of Cartesian product of graphs was studied in [12] and the

center of Cartesian product of graphs was studied in [75]. In this chapter, a similar

attempt is made for strongly connected digraphs and the distance considered is md.

The relationship between the m-periphery, m-contour, m-eccentricity, m-boundary,

and m-center of two digraphs and their Cartesian product is investigated here.

The results in this chapter if combined with methods for prime factorization

of digraphs can be applied to find the m-periphery, m-contour, m-eccentricity, m-

boundary, and m-center sets of very large strongly connected digraphs.

4.2 Basic Results

The Fundamental Theorem of prime factorization of digraphs under Cartesian Prod-

uct proved by Feigenbaum in [32] is as follows.

Theorem 4.2.1. [32] For any weakly connected digraph D, there exists a unique

n ≥ 1 and a unique tuple (D1, . . . , Dn) of digraphs up to reordering and isomorphism

27
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of the factors Di, such that each Di has at least two vertices, each Di is prime for

the Cartesian product and D = D1□D2□ · · ·□Dn. (D1, . . . , Dn) is called the prime

decomposition of D.

The following proposition was proved by Harary in [41].

Proposition 4.2.2. D1□D2 is strongly connected if and only if both D1 and D2 are

strongly connected.

We can extend this to get the following immediate corollary.

Corollary 4.2.3. D1□D2□ · · ·□Dn is strongly connected if and only if

D1, D2, . . . , Dn are strongly connected.

As in the case of graphs, it is easy to see that ND1□D2(ui, vr) = [{ui} ×
ND2(vr)]

⋃
[ND1(ui)× {vr}] for any two digraphs D1 and D2.

4.3 Distance Between Two Vertices

All the digraphs considered are strongly connected and hence the directed distance

between any two vertices is finite.

The distance between two vertices in the Cartesian product of two graphs is given

in [36]. Adapting this proof, the directed distance between two vertices in the Carte-

sian product of n digraphs, D1□ · · ·□Dn is proved in the following proposition in

[37].

Proposition 4.3.1. [37] In a Cartesian product D = D1□ · · ·□Dn, the distance

between vertices (x1, . . . , xn) and (y1, . . . , yn) is
−→
d D((x1, . . . , xn), (y1, . . . , yn)) =

Σ1≤i≤n

−→
d Di

(xi, yi).

Using this result, we derive the formula for the maximum distance between two

vertices in the Cartesian product of two digraphs.

Lemma 4.3.2. Let D1 and D2 be two strong digraphs with vertex sets

{u1, u2, . . . , um} and {v1, v2, . . . , vn}, respectively. Then mdD1□D2((ui, vr), (uj, vs)) =

max{
−→
d D1(ui, uj) +

−→
d D2(vr, vs),

−→
d D1(uj, ui) +

−→
d D2(vs, vr)} for all ((ui, vr), (uj, vs) ∈

V (D1□D2).

Proof. Let D = D1□D2. By the definition of maximum distance between two

vertices, mdD((ui, vr), (uj, vs)) = max{
−→
d D((ui, vr), (uj, vs)),

−→
d D((uj, vs), (ui, vr))}.
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From Proposition 4.3.1,
−→
d D((ui, vr), (uj, vs)) =

−→
d D1(ui, uj) +

−→
d D2(vr, vs). Similarly,

−→
d D((uj, vs), (ui, vr)) =

−→
d D1(uj, ui)+

−→
d D2(vs, vr). Therefore, mdD((ui, vr), (uj, vs)) =

max{
−→
d D1(ui, uj) +

−→
d D2(vr, vs),

−→
d D1(uj, ui) +

−→
d D2(vs, vr)}.

Figure 4.1 illustrates the determination of distances inD1□D2. Them-eccentricity

of each vertex is displayed near the vertex so that the boundary type sets can

be easily identified. In general, the metric ‘maximum distance’ does not satisfy

mdD1□D2((ui, vr), (uj, vs)) = mdD1(ui, uj) + mdD2(vr, vs), which is true in the case

of Cartesian product of two graphs. Consider the vertices (u1, v1) and (u3, v3) in the

Cartesian product D = D1□D2.

mdD((u1, v1), (u3, v3)) = max{
−→
d D1(u1, u3) +

−→
d D2(v1, v3),

−→
d D1(u3, u1) +

−→
d D2(v3, v1)}

= max{2 + 1, 1 + 2} = 3 ̸= mdD1(u1, u3) + mdD2(v3, v1).

Consequently, meccD1□D2(ui, vr) ̸= meccD1(ui) + meccD2(vr) unlike in the case of

graphs. But we prove that mdD1□D2((ui, vr), (uj, vs)) ≤ mdD1(ui, uj) + mdD2(vr, vs)

and meccD1□D2(ui, vr) ≤ meccD1(ui) + meccD2(vr).

Theorem 4.3.3. Let D1 and D2 be two strongly connected digraphs. Then

mdD1□D2((ui, vr), (uj, vs)) ≤ mdD1(ui, uj) + mdD2(vr, vs) for all (ui, vr), (uj, vs) ∈
V (D1□D2).

Proof. mdD1□D2((ui, vr), (uj, vs)) = max{
−→
d D1(ui, uj) +

−→
d D2(vr, vs),

−→
d D1(uj, ui) +

−→
d D2(vs, vr)}. mdD1(ui, uj) = max{

−→
d D1(ui, uj),

−→
d D1(uj, ui)} and mdD2(vr, vs) =

max{
−→
d D2(vr, vs),

−→
d D2(vs, vr)}. Hence

−→
d D1(ui, uj) ≤ mdD1(ui, uj),

−→
d D2(vr, vs) ≤

mdD2(vr, vs),
−→
d D1(uj, ui) ≤ mdD1(ui, uj) and

−→
d D2(vs, vr) ≤ mdD2(vr, vs). Thus,

−→
d D1(ui, uj) +

−→
d D2(vr, vs) ≤ mdD1(ui, uj) + mdD2(vr, vs) and

−→
d D1(uj, ui) +

−→
d D2(vs, vr) ≤ mdD1(ui, uj) + mdD2(vr, vs). Hence max{

−→
d D1(ui, uj) +

−→
d D2(vr, vs),

−→
d D1(uj, ui) +

−→
d D2(vs, vr)} ≤ mdD1(ui, uj) + mdD2(vr, vs) which gives

mdD1□D2((ui, vr), (uj, vs)) ≤ mdD1(ui, uj) + mdD2(vr, vs).

Corollary 4.3.4. Let D1 and D2 be two strongly connected digraphs. Then

meccD1□D2(ui, vr) ≤ meccD1(ui) + meccD2(vr) for all ui ∈ V (D1), vr ∈ V (D2).

Proof. Let (uj, vs) be an eccentric vertex of (ui, vr) in D1□D2. Then

meccD1□D2(ui, vr) = mdD1□D2((ui, vr), (uj, vs)) ≤ mdD1(ui, uj) + mdD2(vr, vs) ≤
meccD1(ui) + meccD2(vr).

Now we give the necessary and sufficient condition for every vertex (ui, vr) ∈
V (D1□D2) to satisfy meccD1□D2(ui, vr) = meccD1(ui) + meccD2(vr).
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Proposition 4.3.5. Let D1 and D2 be two strongly connected digraphs. A nec-

essary and sufficient condition for every vertex (ui, vr) ∈ V (D1□D2) to satisfy

meccD1□D2(ui, vr) = meccD1(ui) + meccD2(vr) is that either D1 or D2 satisfy the

two-sided eccentricity property.

Proof. Let D = D1□D2. To show that the condition is sufficient; without loss of

generality suppose that D1 satisfy the two-sided eccentricity property and uj, uk

are the eccentric vertices of ui in D1 in the two directions respectively. Hence

meccD1(ui) =
−→
d D1(ui, uj) =

−→
d D1(uk, ui).

Case 1: Suppose uj ̸= uk.

Let meccD1(ui) = ℓ. Then
−→
d D1(ui, uj) =

−→
d D1(uk, ui) = ℓ. Let vr ∈ V (D2) and

vs be an eccentric vertex of vr. Consider (ui, vr) ∈ V (D1□D2). Let meccD2(vr) = ℓ′.

Then there are three subcases.

Subcase 1.1:
−→
d D2(vr, vs) = ℓ′ and

−→
d D2(vs, vr) < ℓ′. In this case,

mdD((ui, vr), (uj, vs)) = max{
−→
d D1(ui, uj) +

−→
d D2(vr, vs),

−→
d D1(uj, ui) +

−→
d D2(vs, vr)}

= ℓ+ ℓ′

= meccD1(ui) + meccD2(vr).

Subcase 1.2:
−→
d D2(vr, vs) < ℓ′ and

−→
d D2(vs, vr) = ℓ′. Then

mdD((ui, vr), (uk, vs)) = max{
−→
d D1(ui, uk) +

−→
d D2(vr, vs),

−→
d D1(uk, ui) +

−→
d D2(vs, vr)}

= ℓ+ ℓ′

= meccD1(ui) + meccD2(vr).

Subcase 1.3:
−→
d D2(vr, vs) =

−→
d D2(vs, vr) = ℓ′. Then as in the above two subcases

mdD((ui, vr), (uk, vs)) = mdD((ui, vr), (uj, vs))

= ℓ+ ℓ′

= meccD1(ui) + meccD2(vr).

Case 2: Suppose that uj = uk.−→
d D1(ui, uj) =

−→
d D1(uj, ui) = ℓ. Then as in the Subcases of Case 1, it can be proved

that mdD1□D2((ui, vr), (uj, vs)) = meccD1(ui) + meccD2(vr), irrespective of whether

md(vr, vs) is
−→
d D2(vr, vs) or

−→
d D2(vs, vr). Thus in all cases, there is a vertex in D1□D2

whose distance from (ui, vr) equals meccD1(ui) + meccD2(vr).

Since meccD1□D2(ui, vr) ≤ meccD1(ui) + meccD2(vr), the result follows.
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Now to prove the necessary part, suppose that both D1 and D2 do not satisfy the

two-sided eccentricity property. So there exists at least one vertex ui ∈ V (D1) and at

least one vertex vr ∈ V (D2) such that meccD1(ui) =
−→
d D1(ui, uj) >

−→
d D1(uk, ui) for all

uk ∈ V (D1) and meccD2(vr) =
−→
d D1(vq, vr) >

−→
d D2(vr, vs) for all vs ∈ V (D2). Then for

any vertex (uk, vs) ∈ V (D1□D2), mdD1□D2((ui, vr), (uk, vs)) = max {
−→
d D1(ui, uk) +−→

d D2(vr, vs),
−→
d D1(uk, ui) +

−→
d D2(vs, vr)}. Now since

−→
d D1(ui, uk) +

−→
d D2(vr, vs) <

meccD1(ui) + meccD2(vr) and
−→
d D1(uk, ui) +

−→
d D2(vs, vr) < meccD1(ui) + meccD2(vr),

it follows that mdD1□D2((ui, vr), (uk, vs)) < meccD1(ui) +meccD2(vr) for all (uk, vs) ∈
V (D1□D2) and so meccD1□D2(ui, vr) < meccD1(ui) + meccD2(vr).

4.4 Boundary-type Sets of Cartesian Product of

Digraphs

Boundary-type sets of Cartesian product of two connected graphs have been studied

by Brešar et al. in [12]. The following theorem was proved in [12].

Theorem 4.4.1. For any graphs G and H,

1. ∂(G□H) = ∂(G)× ∂(H),

2. Ct(G□H) = Ct(G)× Ct(H),

3. Ecc(G□H) = Ecc(G)× Ecc(H),

4. Per(G□H) = Per(G)× Per(H).

In the general case, the digraph analogue of the theorem is not expected to hold

with respect to the metric maximum distance owing to the fact that for vertices

(ui, vr) and (uj, vs) in D1□D2, mdD1□D2((ui, vr), (uj, vs)) ̸= md(ui, uj) + md(vr, vs)

and meccD1□D2(ui, vr) ̸= meccD1(ui) + meccD2(vr). There are a number of variations

in the properties of boundary-type vertices of Cartesian product of digraphs from

that of usual graphs. The most significant among these variations are given below.

1. If ui is an eccentric vertex of uj in D1 and vr is an eccentric vertex of vs in D2,

then (ui, vr) need not be an eccentric vertex of (uj, vs) in D1□D2. To see this,

consider the digraphs in Figure 4.1. u1 is an eccentric vertex of u3 inD1 and v3 is

an eccentric vertex of v1 in D2. But (u1, v1) is not an eccentric vertex of (u3, v3)

since meccD1□D2(u3, v3) = mdD1□D2((u3, v3), (u1, v2)) = max{
−→
d D1(u3, u1) +−→

d D2(v3, v2),
−→
d D1(u1, u3) +

−→
d D2(v2, v3)} = max{1 + 1, 2 + 2} = 4, whereas

mdD1□D2((u3, v3), (u1, v1)) = max{
−→
d D1(u3, u1) +

−→
d D2(v3, v1),

−→
d D1(u1, u3) +

−→
d D2(v1, v3)} = max{1 + 2, 2 + 1} = 3.
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2. A vertex (ui, vr) may be an m-eccentric vertex in D1□D2, without satisfying

ui ∈ mEcc(D1) and vr ∈ mEcc(D2).

This behaviour of vertices is illustrated in Figure 4.2. It can be seen that u2

is not an eccentric vertex in D1 but (u2, v1) is an eccentric vertex of (u4, v3) in

D1□D2.

The m-diameter of the Cartesian product of digraphs can be seen to be additive in

the following sense.

Proposition 4.4.2. Let D1 and D2 be two strong digraphs. Then mdiam(D1□D2) =

mdiam(D1) + mdiam(D2).

Proof. Let mdiam(D1□D2) = k, mdiam(D1) = n1, and mdiam(D2) = n2.

Let (ui, vr) ∈ V (D1□D2) be such that meccD1□D2(ui, vr) = k. By Corollary

4.3.4, meccD1□D2(ui, vr) ≤ meccD1(ui) + meccD2(vr). Thus meccD1□D2(ui, vr) ≤
maxui∈V (D1){meccD1(ui)} + maxvr∈V (D2){meccD2(vr)}. That is, mdiam(D1□D2) ≤
mdiam(D1) + mdiam(D2).

Conversely, let uj ∈ V (D1) be such that
−→
d D1(uj, uk) = n1 and let vs ∈ V (D2) be

such that
−→
d D2(vs, vt) = n2. Thus

−→
d D1(uj, uk) +

−→
d D2(vs, vt) = n1 + n2. Hence,

mdD1□D2(uj, vs), (uk, vt) ≥ n1 + n2 which implies meccD1□D2(uj, vs) ≥ n1 + n2.

Thus mdiam(D1□D2) ≥ mdiam(D1) + mdiam(D2). Hence, mdiam(D1□D2) =

mdiam(D1) + mdiam(D2).

As a consequence of this result, the following theorem holds for any two strong

digraphs D1 and D2.

Theorem 4.4.3. Let D1 and D2 be two strongly connected digraphs. Then

mPer(D1□D2) ⊆ mPer(D1)×mPer(D2).

Proof. Let (uj, vs) ∈ mPer(D1□D2). Then meccD1□D2(uj, vs) = mdiam(D1□D2) =

mdiam(D1) + mdiam(D2). Applying the results meccD1□D2(uj, vs) ≤
meccD1(uj) + meccD2(vs) and mdiam(D1) = max

ui∈V (D1)
{meccD1(ui)},

mdiam(D2) = max
vr∈V (D2)

{meccD2(vr)}, it follows that meccD1(uj) + meccD2(vs) ≥

meccD1□D2(uj, vs) = max
ui∈V (D1)

{meccD1(ui)}+ max
vr∈V (D2)

{meccD2(vr)} and hence nec-

essarily meccD1(uj) = max
ui∈V (D1)

{meccD1(ui)} = mdiam(D1) and meccD2(vs) =

max
vr∈V (D2)

{meccD2(vr)} = mdiam(D2).

Therefore uj ∈ mPer(D1) and vs ∈ mPer(D2). Hence the result.

Generally, for any two strong digraphs D1 and D2,
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1. mPer(D1)×mPer(D2) ⊈ mPer(D1□D2)

2. mCt(D1)×mCt(D2) ⊈ mCt(D1□D2)

3. mEcc(D1)×mEcc(D2) ⊈ mEcc(D1□D2)

4. m∂(D1)×m∂(D2) ⊈ m∂(D1□D2).

(u1, v1) (u2, v1) (u3, v1)

(u1, v2) (u2, v2) (u3, v2)

(u1, v3) (u2, v3) (u3, v3)

3 4 4

4 3 4

4 4 4

2 2 2

2

2

2

u1 u2 u3

v1

v2

v3

D1□□□D2

D2

D1

Figure 4.1: An example in which mPer(D1)×mPer(D2) ⊈ mPer(D1□D2), mCt(D1)×
mCt(D2) ⊈ mCt(D1□D2), mEcc(D1) × mEcc(D2) ⊈ mEcc(D1□D2), m∂(D1) ×
m∂(D2) ⊈ m∂(D1□D2)

In Figure 4.1, mPer(D1) = mCt(D1) = mEcc(D1) = m∂(D1) = {u1, u2, u3} and

mPer(D2) = mCt(D2) = mEcc(D2) = m∂(D2) = {v1, v2, v3} but (u1, v1) and

(u2, v2) do not belong to any of the sets mPer(D1□D2), mCt(D1□D2), mEcc(D1□D2),

m∂(D1□D2). This is because the m-eccentricities of these two vertices are 3. The

m-eccentric vertices of (u1, v1) are (u3, v2) and (u2, v3) and the m-eccentric vertices

of (u2, v2) are (u1, v3) and (u3, v1). Also, they do not form the m-boundary vertices

of any vertex in D1□D2.

For two strongly connected digraphs, generally
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1. mCt(D1□D2) ⊈ mCt(D1)×mCt(D2)

2. mEcc(D1□D2) ⊈ mEcc(D1)×mEcc(D2)

3. m∂(D1□D2) ⊈ m∂(D1)×m∂(D2).

(u1, v1) (u2, v1) (u3, v1) (u4, v1)

(u1, v2) (u2, v2) (u3, v2) (u4, v2)

(u1, v3) (u2, v3) (u3, v3) (u4, v3)

(u1, v4) (u2, v4) (u3, v4) (u4, v4)

4 5 5 6

5 4 4 5

5 4 3 4

6 5 4 5

3 2 2 3

3

2

2

3

u1 u2 u3 u4

v1

v2

v3

v4

D1□□□D2

D2

D1

Figure 4.2: An example in which mCt(D1□D2) ⊈ mCt(D1) × mCt(D2),
mEcc(D1□D2) ⊈ mEcc(D1)×mEcc(D2), m∂(D1□D2) ⊈ m∂(D1)×m∂(D2)

In Figure 4.2, mCt(D1) = mEcc(D1) = m∂(D1) = {u1, u4} and mCt(D2) =

mEcc(D2) = m∂(D2) = {v1, v4}. But, it can be seen that (u2, v1) and (u1, v2) are

in mCt(D1□D2). Also, (u2, v1) and (u1, v2) are both m-eccentric vertices and hence

m-boundary vertices of the vertices (u3, v3), (u3, v4), (u4, v3) and (u4, v4).

The following proposition deals with the m-periphery and m-contour of the Carte-

sian product of two strongly connected digraphs, if at least one of them satisfies the

two-sided eccentricity property.

Proposition 4.4.4. Let D1 and D2 be two strongly connected digraphs such that at

least one of D1 and D2 satisfies the two-sided eccentricity property.Then

1. mPer(D1□D2) = mPer(D1)×mPer(D2)

2. mCt(D1□D2) = mCt(D1)×mCt(D2).
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Proof. Given, D1 and D2 are two strongly connected digraphs such that at least one

of D1 and D2 satisfy the two-sided eccentricity property.

1. By theorem 4.4.3, mPer(D1□D2) ⊆ mPer(D1) × mPer(D2) for every strongly

connected digraphs D1 and D2. Thus it remains to prove that mPer(D1) ×
mPer(D2) ⊆ mPer(D1□D2).

Let ui ∈ mPer(D1) and vr ∈ mPer(D2). Thus meccD1(ui) ≥ meccD1(uj) for

all uj ∈ V (D1) and meccD2(vr) ≥ meccD2(vs) for all vs ∈ V (D2). Hence

meccD1(ui)+meccD2(vr) ≥ meccD1(uj)+meccD2(vs) for all uj ∈ V (D1) and for

all vs ∈ V (D2). At least one of D1 and D2 satisfies the two-sided eccentricity

property. Therefore, by Proposition 4.3.5, meccD1□D2(ui, vr) = meccD1(ui) +

meccD2(vr) for all (ui, vr) ∈ V (D1□D2). This implies, meccD1□D2(ui, vr) ≥
meccD1□D2(uj, vs) for all (uj, vs) ∈ V (D1□D2) and hence by the definition of

m-periphery, it follows that (ui, vr) ∈ mPer(D1□D2).

2. Let (ui, vr) ∈ mCt(D1□D2). If possible, let ui /∈ mCt(D1). Then there is a ver-

tex uj ∈ ND1(ui) such that meccD1(uj) > meccD1(ui). Therefore meccD1(uj) +

meccD2(vr) > meccD1(ui) + meccD2(vr) and hence meccD1□D2(uj, vr) >

meccD1□D2(ui, vr), which is a contradiction, since (uj, vr) ∈ ND1□D2(ui, vr).

Similarly it can be shown that vr ∈ mCt(D2). This implies, (ui, vr) ∈
mCt(D1)×mCt(D2). Hence mCt(D1□D2) ⊆ mCt(D1)×mCt(D2).

Conversely, suppose that ui ∈ mCt(D1) and vr ∈ mCt(D2). If possible, let

(ui, vr) /∈ mCt(D1□D2). Then there is a vertex (uj, vs) ∈ ND1□D2(ui, vr) such

that meccD1□D2(uj, vs) > meccD1□D2(ui, vr). Since (uj, vs) ∈ ND1□D2(ui, vr),

without loss of generality, assume that ui = uj and vs ∈ ND2(vr).

Thus meccD1(ui) + meccD2(vs) > meccD1(ui) + meccD2(vr) which implies,

meccD2(vs) > meccD2(vr), which is a contradiction. Hence mCt(D1) ×
mCt(D2) ⊆ mCt(D1□D2).

We have seen the results for mPer(D1□D2) and mCt(D1□D2), when D1 and D2

are two strong digraphs such that at least one of D1 and D2 satisfies the two-sided

eccentricity property. But only the inclusion mEcc(D1□D2) ⊆ mEcc(D1)×mEcc(D2)

holds when at least one of D1 and D2 satisfies the two-sided eccentricity property.

Also, nothing could be said about the m-boundary of D1□D2 in connection with the

two-sided eccentricity property.
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Proposition 4.4.5. Let D1 and D2 be two strong digraphs such that at least one

of D1 and D2 satisfies the two-sided eccentricity property. Then mEcc(D1□D2) ⊆
mEcc(D1)×mEcc(D2).

Proof. Let (ui, vr) ∈ mEcc(D1□D2). Hence, there exists a vertex (uj, vq) such that

meccD1□D2(uj, vq) = mdD1□D2((uj, vq), (ui, vr)). But mdD1□D2((uj, vq), (ui, vr)) ≤
mdD1(uj, ui) +mdD2(vq, vr) ≤ meccD1(uj) +meccD2(vq). Since at least one of the di-

graphs satisfies the two-sided eccentricity property, meccD1□D2(uj, vq) = meccD1(uj)+

meccD2(vq). Thus meccD1(uj) + meccD2(vq) = mdD1(uj, ui) + mdD2(vq, vr) which

implies, meccD1(uj) = mdD1(uj, ui) and meccD2(vq) = mdD2(vq, vr). This implies,

ui ∈ mEcc(D1) and vr ∈ mEcc(D2).

Remark 4.4.6. In general, mEcc(D1□D2) ̸= mEcc(D1) × mEcc(D2) and

m∂(D1□D2) ̸= m∂(D1) × m∂(D2) even if both D1 and D2 satisfy the two-sided

eccentricity property. To see this, consider the digraphs in Figure 4.3. Here,

mEcc(D1) = m∂(D1) = {u1, u3, u4, u5} and mEcc(D2) = m∂(D2) = {v1, v3, v4, v5},
but (u3, v3) /∈ mEcc(D1□D2) as (u3, v3) is not an m-eccentric vertex or m-boundary

vertex of any vertex in D1□D2.

(u1, v1) (u2, v1) (u3, v1) (u4, v1) (u5, v1)

(u1, v2) (u2, v2) (u3, v2) (u4, v2) (u5, v2)

(u1, v3) (u2, v3) (u3, v3) (u4, v3) (u5, v3)

(u1, v4) (u2, v4) (u3, v4) (u4, v4) (u5, v4)

(u1, v5) (u2, v5) (u3, v5) (u4, v5) (u5, v5)

6 5 5 6 5

5 4 4 5 4

5 4 4 5 4

5 5 5 6 5

5 4 4 5 4

3 2 2 3 2

3

2

2

3

2

u1 u2 u3 u4 u5

v1

v2

v3

v4

v5

D1□□□D2

D2

D1

Figure 4.3: An example in which D1 and D2 satisfy two-sided eccentricity property,
but mEcc(D1□D2) ̸= mEcc(D1)×mEcc(D2), m∂(D1□D2) ̸= m∂(D1)×m∂(D2)
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But in the following proposition, it is proved that if one of the digraphs is a directed

cycle or a Cartesian product of directed cycles, then mEcc(D1□D2) = mEcc(D1) ×
mEcc(D2) and m∂(D1□D2) = m∂(D1)×m∂(D2).

Before proving the proposition, some characteristics of vertices of directed cycles

and products of directed cycles are considered. Let D be a directed cycle u1 → u2 →
· · · → um → u1. Then

−→
d D(ui, ui−1) =

−→
d D(ui+1, ui) = m−1, where um+1 = u1. Thus

meccD(ui) = m − 1, for i = 1, 2, . . . ,m and so ui ∈ mPer(D) and ui ∈ mCt(D) for

i = 1, 2, . . . ,m. Since each ui is an m-eccentric vertex and so an m-boundary vertex

of ui−1 and ui+1, it follows that ui ∈ mEcc(D) and ui ∈ m∂(D) for i = 1, 2, . . . ,m.

Thus, mPer(D) = mCt(D) = mEcc(D) = m∂(D) = V (D).

Now let D be the Cartesian product of directed cycles D1 and D2. Let D1

be the directed cycle u1 → u2 → · · · → um → u1 and D2 be the directed cy-

cle v1 → v2 → · · · → vn → v1. Then in D1□D2,
−→
d D1□D2((ui, vr), (ui−1, vr−1) =

−→
d D1□D2((ui+1, vr+1), (ui, vr) = (m − 1) + (n − 1), where um+1 = u1, vn+1 = v1.

Thus meccD1□D2(ui, vr) = m + n − 2, for i = 1, 2, . . . ,m, r = 1, 2, . . . , n and so

mPer(D) = mCt(D) = mEcc(D) = m∂(D) = V (D) = V (D1)× V (D2).

Again consider D1□D2□D3 where D1, D2, D3 are directed cycles u1 → u2 →
· · · → um → u1, v1 → v2 → · · · → vn → v1 and w1 → w2 → · · · →
wℓ → w1, respectively. As already seen in D1□D2,

−→
d D1□D2((ui, vr), (ui−1, vr−1) =

−→
d D1□D2((ui+1, vr+1), (ui, vr)) = m + n − 2 = meccD1□D2(ui, vr), for all (ui, vr) ∈
V (D1□D2). Now in D1□D2□D3,

−→
d D1□D2□D3((ui, vr, wp), (ui−1, vr−1, wp−1)) =

−→
d D1□D2□D3((ui+1, vr+1, wp+1), (ui, vr, wp)) = m + n − 2 + ℓ − 1 = m + n + ℓ − 3 =

meccD1□D2□D3(ui, vr, wp) for all (ui, vr, wp) ∈ V (D1□D2□D3).

Continuing like this, it can be seen that mPer(D) = mCt(D) = mEcc(D) =

m∂(D) = V (D) for any digraph D which is the Cartesian product of a finite number

of directed cycles.

Proposition 4.4.7. If one of the digraphs D1 and D2 is a directed cycle or a

Cartesian product of directed cycles, then m∂(D1□D2) = m∂(D1) × m∂(D2) and

mEcc(D1□D2) = mEcc(D1)×mEcc(D2).

Proof. Without loss of generality, suppose thatD1 is the Cartesian product of directed

cycles and D2 is an arbitrary strong digraph. Then mEcc(D1) = m∂(D1) = V (D1).

Let meccD1(ui) = ℓ, for all ui ∈ V (D1). Also, if vr is an m-boundary vertex of vs in

D2, then for every ui ∈ V (D1), (ui, vr) is an m-boundary vertex of either (uj, vs) or

(uk, vs) in D1□D2, where uj, uk ∈ V (D1) are such that
−→
d (ui, uj) =

−→
d (uk, ui) = ℓ,

and vice versa.
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Similarly, if vr is an m-eccentric vertex of vs in D2, then for every ui ∈ V (D1), (ui, vr)

is an m-eccentric vertex of either (uj, vs) or (uk, vs) in D1□D2 and vice versa.

Thus m∂(D1□D2) = V (D1)×m∂(D2) and mEcc(D1□D2) = V (D1)×mEcc(D2) and

hence the result.

Now we prove the necessary and sufficient condition for the Cartesian product

D1□D2 to satisfy the two-sided eccentricity property.

Theorem 4.4.8. D1□D2 satisfies the two-sided eccentricity property if and only if

both D1 and D2 satisfy the two-sided eccentricity property.

Proof. Suppose that both D1 and D2 satisfy the two-sided eccentricity property.

For every ui ∈ V (D1), vr ∈ V (D2), there exist vertices uj, uk ∈ V (D1) such that

meccD1(ui) =
−→
d D1(ui, uj) =

−→
d D1(uk, ui), and vq, vs in V (D2) such that meccD2(vr) =−→

d D2(vr, vq) =
−→
d D2(vs, vr). By Proposition 4.3.5, meccD1□D2(ui, vr) = meccD1(ui) +

meccD2(vr), if at least one of D1 and D2 satisfy the two-sided eccentricity property.

Hence meccD1□D2(ui, vr) = meccD1(ui) + meccD2(vr) =
−→
d D1(ui, uj) +

−→
d D2(vr, vq) =−→

d D1□D2((ui, vr), (uj, vq)) and also meccD1□D2(ui, vr) = meccD1(ui) + meccD2(vr) =
−→
d D1(uk, ui) +

−→
d D2(vs, vr) =

−→
d D1□D2((uk, vs), (ui, vr)). Thus D1□D2 satisfies the

two-sided eccentricity property.

Now to prove the converse part, suppose that at least one of D1 and D2 does

not satisfy the two-sided eccentricity property. Assume that D1 does not satisfy

the two-sided eccentricity property. Then there exists a vertex ui ∈ V (D1) such

that meccD1(ui) =
−→
d D1(ui, uj) >

−→
d D1(uk, ui) for every uj, uk ∈ V (D1). D2 may

or may not satisfy the two-sided eccentricity property. Let vr ∈ V (D2) such that

meccD2(vr) =
−→
d D2(vr, vq) ≥

−→
d D2(vs, vr), for every vs ∈ V (D2). In either case,

meccD1□D2(ui, vr) =
−→
d D1(ui, uj) +

−→
d D2(vr, vq) >

−→
d D1(uk, ui) +

−→
d D2(vs, vr). That is,

meccD1□D2(ui, vr) =
−→
d D1□D2((ui, vr), (uj, vq)) >

−→
d D1□D2((uk, vs), (ui, vr)), for every

(uk, vs) ∈ V (D1□D2) and so D1□D2 does not satisfy the two-sided eccentricity prop-

erty. Thus D1□D2 satisfies the two-sided eccentricity property only if both D1 and

D2 satisfy the two-sided eccentricity property.

Clearly, Theorem 4.4.8 can be extended to the case of a finite number of digraphs

and hence, we get the following corollary.

Corollary 4.4.9. Let D1, D2, . . . , Dn be n strongly connected digraphs such that all

except one satisfy the two-sided eccentricity property. Then

1. mPer(D1□D2□ · · ·□Dn) = mPer(D1)×mPer(D2)× · · · ×mPer(Dn),
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2. mCt(D1□D2□ · · ·□Dn) = mCt(D1)×mCt(D2)× · · · ×mCt(Dn).

Proof. Since the Cartesian product of digraphs is commutative and associative,

D1, D2, . . . , Dn may be arranged such that the first n− 1 digraphs D1, D2, . . . , Dn−1

satisfy the two-sided eccentricity property. As Theorem 4.4.8 can be extended for a

finite number of digraphs, D′ = D1□D2□ · · ·□Dn−1 is strongly connected and sat-

isfy the two-sided eccentricity property. Hence it follows from Proposition 4.4.4 that

mPer(D′□Dn) = mPer(D′) × mPer(Dn) and mCt(D′□Dn) = mCt(D′) × mCt(Dn).

Since D1, D2, . . . , Dn−1 satisfy the two-sided eccentricity property, mPer(D′) =

mPer(D1) ×mPer(D2) × · · · ×mPer(Dn−1) and mCt(D′) = mCt(D1) ×mCt(D2) ×
· · · ×mCt(Dn−1). Hence the result.

The following proposition deals with the m-distance between two vertices in the

Cartesian product of two strong digraphs if one of them is a symmetric digraph.

Proposition 4.4.10. Let D1 and D2 be two strong digraphs such that one of them

is a symmetric digraph. Then in D1□D2,

mdD1□D2((ui, vr), (uj, vs)) = mdD1(ui, uj) + mdD2(vr, vs),

for every ui, uj ∈ V (D1) and for every vr, vs ∈ V (D2).

Proof. Since Cartesian product is commutative, without loss of generality, suppose

that D1 is a symmetric digraph. Then
−→
d D1(ui, uj) =

−→
d D1(uj, ui) = mdD1(ui, uj) for

every ui, uj ∈ V (D1).

mdD1□D2((ui, vr), (uj, vs)) = max{
−→
d D1(ui, uj) +

−→
d D2(vr, vs),

−→
d D1(uj, ui) +

−→
d D2(vs, vr)}

= max{
−→
d D1(ui, uj) +

−→
d D2(vr, vs),

−→
d D1(ui, uj) +

−→
d D1(vs, vr)}

=
−→
d D1(ui, uj) + max{

−→
d D2(vr, vs),

−→
d D2(vs, vr)}

= mdD1(ui, uj) + mdD2(vr, vs).

Thus we can see that if one of the digraphs is a symmetric digraph, then we get

the same results for the boundary-type sets of the Cartesian product of two strong

digraphs as in the case of the Cartesian product of two connected graphs.

Proposition 4.4.11. Let D1 and D2 be two strong digraphs such that one of them

is a symmetric digraph. Then
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1. m∂(D1□D2) = m∂(D1)×m∂(D2),

2. mEcc(D1□D2) = mEcc(D1)×mEcc(D2),

3. mPer(D1□D2) = mPer(D1)×mPer(D2),

4. mCt(D1□D2) = mCt(D1)×mCt(D2).

Proof. Since Cartesian multiplication of digraphs is commutative, without loss of

generality, suppose that D1 is a symmetric digraph.

1. Let (ui, vr) ∈ m∂(D1□D2). If possible let ui /∈ m∂(D1). Then for every uj ∈
V (D1), there exists uk ∈ ND1(ui) such that mdD1(uj, uk) > mdD1(uj, ui). Let vq

be an arbitrary vertex in V (D2). Consider the vertex (uk, vr) ∈ ND1□D2(ui, vr).

Then by Proposition 4.4.10, mdD1□D2((uj, vq), (uk, vr)) = mdD1(uj, uk) +

mdD2(vq, vr) > mdD1(uj, ui) + mdD2(vq, vr) = mdD1□D2((uj, vq), (ui, vr)) which

is a contradiction to (ui, vr) ∈ m∂(D1□D2). Hence ui ∈ m∂(D1). Similarly it

can be proved that vr ∈ m∂(D2).

Conversely, let ui ∈ m∂(D1) and vr ∈ m∂(D2). This implies that there ex-

ists vertices uj ∈ V (D1) and vq ∈ V (D2) such that for every uk ∈ ND1(ui),

mdD1(uj, ui) ≥ mdD1(uj, uk) and for every vs ∈ ND2(vr), mdD2(vq, vr) ≥
mdD2(vq, vs). Consider an arbitrary vertex (uk, vs) ∈ ND1□D2(ui, vr). With-

out loss of generality assume that uk is adjacent to ui in D1 and vr = vs in

D2. Then by Proposition 4.4.10, mdD1□D2((uj, vq), (uk, vs)) = mdD1(uj, uk) +

mdD2(vq, vs) ≤ mdD1(uj, ui) + mdD2(vq, vr) = mdD1□D2((uj, vq), (ui, vr)) which

gives (ui, vr) is an m-boundary vertex of (uj, vq) in D1□D2.

2. Since D1 is a symmetric digraph, meccD1□D2(ui, vr) = meccD1(ui)+meccD2(vr),

for every (ui, vr) ∈ V (D1□D2). Let (ui, vr) ∈ mEcc(D1□D2). So there ex-

ists a vertex (uj, vq) such that meccD1□D2(uj, vq) = mdD1□D2((uj, vq), (ui, vr)).

Hence meccD1(uj) + meccD2(vq) = mdD1(uj, ui) + mdD2(vq, vr). This implies,

meccD1(uj) = mdD1(uj, ui) and meccD2(vq) = mdD2(vq, vr), which implies

ui ∈ mEcc(D1) and vr ∈ mEcc(D2).

Conversely if ui ∈ mEcc(D1) and vr ∈ mEcc(D2), then there are vertices uj ∈
V (D1) and vq ∈ V (D2) such that meccD1(uj) = mdD1(uj, ui) and meccD2(vq) =

mdD2(vq, vr). Hence by Proposition 4.4.10, meccD1□D2(uj, vq) = meccD1(uj) +

meccD2(vq) = mdD1(uj, ui) + mdD2(vq, vr) = mdD1□D2((uj, vq), (ui, vr)) which

gives (ui, vr) is an m-eccentric vertex of (uj, vq) in D1□D2.

Since D1 satisfies the two-sided eccentricity property, mPer(D1□D2) = mPer(D1) ×
mPer(D2) and mCt(D1□D2) = mCt(D1) × mCt(D2). Hence items 3 and 4 of the

proposition holds.
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Combining propositions 4.4.4, 4.4.7 and 4.4.11 yields the following corollary.

Corollary 4.4.12. Let D1(V1, E1), D2(V2, E2), . . . , Dn(Vn, En) be n strong digraphs.

If all except one of D1, D2, . . . , Dn are either directed cycles or symmetric digraphs,

then

1. mPer(D1□D2□ · · ·□Dn) = mPer(D1)×mPer(D2)× · · · ×mPer(Dn),

2. mCt(D1□D2□ · · ·□Dn) = mCt(D1)×mCt(D2)× · · · ×mCt(Dn),

3. mEcc(D1□D2□ · · ·□Dn) = mEcc(D1)×mEcc(D2)× · · · ×mEcc(Dn),

4. m∂(D1□D2□ · · ·□Dn) = m∂(D1)×m∂(D2)× · · · ×m∂(Dn).

4.5 Center of Cartesian Product of Digraphs

For any two graphs G and H, it is evident that Cen(G□H) = Cen(G) × Cen(H).

But it can be seen that the result mCen(D1□D2) = mCen(D1) × mCen(D2) is not

generally true in the case of two strong digraphs. For the digraphs D1 and D2 in

Figure 4.4, mCen(D1) = {u2, u3}, mCen(D2) = {v2, v3}, and mCen(D1□D2) =

{(u2, v2), (u3, v2), (u2, v3), (u3, v3), (u3, v4)}. Hence mCen(D1□D2) ⊈ mCen(D1) ×
mCen(D2). Also, it can be seen from Figure 4.1 that in general, mCen(D1) ×
mCen(D2) ⊈ mCen(D1□D2), in general as mCen(D1) = {u1, u2, u3}, mCen(D2) =

{v1, v2, v3}, but mCen(D1□D2) = {(u1, v1), (u2, v2)}.
We prove that if at least one of D1 and D2 satisfies the two-sided eccentricity

property, then mCen(D1□D2) = mCen(D1)×mCen(D2).

Proposition 4.5.1. Let D1 and D2 be two strongly connected digraphs such that

at least one of D1 and D2 satisfies the two-sided eccentricity property. Then

mCen(D1□D2) = mCen(D1)×mCen(D2).

Proof. First, to show that mCen(D1□D2) ⊆ mCen(D1) × mCen(D2), suppose

that (ui, vr) ∈ mCen(D1□D2). Then meccD1□D2(ui, vr) = mrad(D1□D2) =

min
(uj ,vs)∈V (D1□D2)

meccD1□D2(uj, vs) = min
uj∈V (D1),vs∈V (D2)

[meccD1(uj) + meccD2(vs)]. Since

at least one of D1 and D2 satisfies the two-sided eccentricity property, by Propo-

sition 4.3.5, meccD1□D2(ui, vr) = meccD1(ui) + meccD2(vr). Thus it follows that

meccD1(ui) + meccD2(vr) = min
uj∈V (D1)

meccD1(uj) + min
vs∈V (D2)

meccD2(vs).

Then necessarily meccD1(ui) = min
uj∈V (D1)

meccD1(uj) and meccD2(vr) =

min
vs∈V (D2)

meccD2(vs).

Therefore ui ∈ mCen(D1) and vr ∈ mCen(D2).
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Now, to prove that mCen(D1)×mCen(D2) ⊆ mCen(D1□D2), let ui ∈ mCen(D1)

and vr ∈ mCen(D2). Thus, meccD1(ui) ≤ meccD1(uj) for all uj ∈ V (D1) and

meccD2(vr) ≤ meccD2(vs) for all vs ∈ V (D2). Hence meccD1(ui) + meccD2(vr) ≤
meccD1(uj) +meccD2(vs) for all uj ∈ V (D1) and for all vs ∈ V (D2). But by Proposi-

tion 4.3.5, meccD1□D2(ui, vr) = meccD1(ui) +meccD2(vr) for all (ui, vr) ∈ V (D1□D2).

This implies, meccD1□D2(ui, vr) ≤ meccD1□D2(uj, vs) for all (uj, vs) ∈ V (D1□D2), and

hence (ui, vr) ∈ mCen(D1□D2).

(u1, v1) (u2, v1) (u3, v1) (u4, v1)

(u1, v2) (u2, v2) (u3, v2) (u4, v2)

(u1, v3) (u2, v3) (u3, v3) (u4, v3)

(u1, v4) (u2, v4) (u3, v4) (u4, v4)

5 5 5 6

5 4 4 5

5 4 4 5

6 5 4 5

3 2 2 3

3

2

2

3

u1 u2 u3 u4

v1

v2

v3

v4

D1□□□D2

D2

D1

Figure 4.4: An example in which mCen(D1□D2) ⊈ mCen(D1)×mCen(D2)

Extending Proposition 4.5.1 to a finite number of digraphs, we get the following

corollary.

Corollary 4.5.2. Let D1, . . . , Dn be n strongly connected digraphs such that at most

one of these digraphs does not satisfy the two-sided eccentricity property. Then

mCen(D1□ · · ·□Dn) = mCen(D1)× · · · ×mCen(Dn).

Proof. Since Cartesian product of digraphs is commutative and associative, with-

out loss of generality, suppose that D1, . . . , Dn−1 satisfy the two-sided eccentric-

ity property, and Dn does not satisfy the two-sided eccentricity property. Then
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D′
2 = D1□D2 is strongly connected and satisfies the two-sided eccentricity prop-

erty, by Theorem 4.4.8. Also, by Proposition 4.5.1, mCen(D1□D2) = mCen(D1) ×
mCen(D2) and mCen(D1□D2□D3) = mCen(D′

2□D3) = mCen(D′
2) × mCen(D3) =

mCen(D1) × mCen(D2) × mCen(D3). Now, let D′
3 = D1□D2□D3 = D′

2□D3.

Then D′
3 is strongly connected and satisfies the two-sided eccentricity property,

and so mCen(D1□D2□D3□D4) = mCen(D′
3□D4) = mCen(D′

3) × mCen(D4) =

mCen(D1) × mCen(D2) × mCen(D3) × mCen(D4), and so on. Continuing like this,

taking D′
n−1 = D1□ · · ·□Dn−1, it follows that mCen(D1□ · · ·□Dn) = mCen(D′

n−1)×
mCen(Dn) = mCen(D1)× · · · ×mCen(Dn).





Chapter 5

Boundary-type Sets and Center in

Strong Product

5.1 Introduction

The boundary-type sets and the center of the strong product of digraphs is studied in

this chapter. In Section 5.2, the expressions for the m-distance between two vertices,

them-eccentricity of a vertex, them-radius, and them-diameter of the strong product

of two strongly connected digraphs are derived. In Section 5.3, the expressions for

the four boundary-type sets of the strong product of two strongly connected digraphs

are obtained. Finally, in Section 5.4, the m-center and the m-periphery of the strong

product of a finite number of strongly connected digraphs are obtained.

The open neighborhood N(v) can be replaced by the closed neighborhood N [v]

in the definitions of the boundary and the contour sets. This does not affect the

definitions, but it is necessary for proving the relationship between the m-boundary

and the m-contour sets of the strong product of two digraphs and its factors.

5.2 Distance Between Two Vertices

The distance between two vertices (g, h) and (g′, h′) in the strong product G⊠H of

two graphs G and H is given in [36] as follows:

dG⊠H((g, h), (g
′, h′)) = max {dG(g, g′), dH(h, h′)}.

So in the case of two digraphs D1 and D2, it follows that the directed distance
−→
d D1⊠D2((ui, vr), (uj, vs)) = max {

−→
d D1(ui, uj),

−→
d D2(vr, vs)}. Hence we derive the fol-

lowing results for the metric md.

45
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Lemma 5.2.1. Let D1 and D2 be two strongly connected digraphs. Then

mdD1⊠D2((ui, vr), (uj, vs)) = max {mdD1(ui, uj),mdD2(vr, vs)},

meccD1⊠D2(ui, vr) = max {meccD1(ui),meccD2(vr)}.

Proof. mdD1⊠D2((ui, vr), (uj, vs))

= max {
−→
d D1⊠D2((ui, vr), (uj, vs)),

−→
d D1⊠D2((uj, vs), (ui, vr))}

= max {max {
−→
d D1(ui, uj),

−→
d D2(vr, vs)},max {

−→
d D1(uj, ui),

−→
d D2(vs, vr)}}

= max {max {
−→
d D1(ui, uj),

−→
d D2(vr, vs),

−→
d D1(uj, ui),

−→
d D2(vs, vr)}}

= max {max {
−→
d D1(ui, uj),

−→
d D1(uj, ui)},max {

−→
d D2(vr, vs),

−→
d D2(vs, vr)}}

= max {mdD1(ui, uj),mdD2(vr, vs)}.
Hence it follows that

meccD1⊠D2(ui, vr)

= max {mdD1⊠D2((ui, vr), (uj, vs)) : (uj, vs) ∈ V (D1 ⊠D2)}
= max {max {mdD1(ui, uj),mdD2(vr, vs)} : uj ∈ V (D1), vs ∈ V (D2)}
= max {max {mdD1(ui, uj) : uj ∈ V (D1)},max {mdD2(vr, vs) : vs ∈ V (D2)}}
= max {meccD1(ui),meccD2(vr)}.

Corollary 5.2.2. Let D1 and D2 be two strongly connected digraphs. Then

mrad(D1 ⊠D2) = max {mrad(D1),mrad(D2)},

mdiam(D1 ⊠D2) = max {mdiam(D1),mdiam(D2)}.

Proof.

mrad(D1 ⊠D2) = min
(ui,vr)∈V (D1⊠D2)

{meccD1⊠D2(ui, vr)}

= min
ui∈V (D1),
vr∈V (D2)

{max {meccD1(ui),meccD2(vr)}}

= max { min
ui∈V (D1)

{meccD1(ui)}, min
vr∈V (D2)

{meccD2(vr)}}

= max {mrad(D1),mrad(D2)}.

mdiam(D1 ⊠D2) = max
(ui,vr)∈V (D1⊠D2)

{mecc(ui, vr)}

= max
ui∈V (D1),
vr∈V (D2)

{max {meccD1(ui),meccD2(vr)}}

= max { max
ui∈V (D1)

{mecc(ui)}, max
vr∈V (D2)

{mecc(vr)}}

= max {mdiam(D1),mdiam(D2)}.
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The following results are given in the book ‘Handbook of Product Graphs’ [36].

1. The strong product of two directed graphs is strongly connected if and only if

both the digraphs are strongly connected.

2. If G and H are two graphs, then NG⊠H [(g, h)] = NG[g]×NH [h].

For a fixed vertex (ui, vr) ∈ V (D1⊠D2), the only possible vertices in ND1⊠D2 [(ui, vr)]

are those vertices in NG⊠H [(ui, vr)] = NG[ui] × NH [vr] = ND1 [ui] × ND2 [vr],

where G and H are the underlying graphs of D1 and D2, respectively. If

uk ∈ ND1(ui) and vq ∈ ND2(vr), then the vertex (uk, vq) need not belong to

ND1⊠D2(ui, vr). But for all vertices (uj, vs) ∈ V (D1 ⊠ D2), at least one of the fol-

lowing inequalities must be satisfied. That is, either mdD1⊠D2((uj, vs), (uk, vq)) ≤
mdD1⊠D2((uj, vs), (uk, vr)) or mdD1⊠D2((uj, vs), (uk, vq)) ≤ mdD1⊠D2((uj, vs), (ui, vq)).

This is because mdD1⊠D2((uj, vs), (uk, vq)) = max{mdD1(uj, uk),mdD2(vs, vq)}.
It is either mdD1(uj, uk) or mdD2(vs, vq) and in any case, it cannot

be greater than both mdD1⊠D2((uj, vs), (uk, vr)) and mdD1⊠D2((uj, vs), (ui, vq)).

Hence, if mdD1⊠D2((uj, vs), (ui, vr)) ≥ mdD1⊠D2((uj, vs), (uk, vq)) for all ver-

tices (uk, vq) ∈ ND1⊠D2 [(ui, vr)], then max{mdD1(uj, ui),mdD2(vs, vr)} ≥
{mdD1(uj, uk),mdD2(vs, vq)} for all vertices uk ∈ ND1 [ui] and vq ∈ ND2 [vr].

Hence it follows that, if meccD1⊠D2(ui, vr) ≥ meccD1⊠D2(uk, vq) for all vertices in

ND1⊠D2 [(ui, vr)], then max{meccD1(ui),meccD2(vr)} ≥ max{meccD1(uk),meccD2(vq)}
for all vertices uk ∈ ND1 [ui], vq ∈ ND2 [vr]. These results are applied in the upcoming

proofs.

5.3 Boundary-type Sets of Strong Product of Di-

graphs

In [18], Cáceres et al. presented a description of the boundary-type sets of two graphs

and their description of the boundary is as follows.

For two graphs G and H, ∂(G⊠H) =
[
∂(G)× V (H)

]⋃ [
V (G)× ∂(H)

]
.

But this result does not hold in the case of two digraphs with respect to the metric

md.

Consider the strong product, D1 ⊠ D2 of the digraphs D1 and D2 in

Figure 5.1. The eccentricity of each vertex is displayed near the vertex.
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mPer(D1) = mEcc(D1) = mCt(D1) = {u1, u4}, mPer(D2) = mEcc(D2) =

mCt(D2) = {v1, v2}, and mPer(D1 ⊠ D2) = mEcc(D1 ⊠ D2) = mCt(D1 ⊠

D2) = {(u1, v1), (u4, v1), (u1, v2), (u4, v2)}. Also, m∂(D1) = {u1, u4}, m∂(D2) =

{v1, v2}, and m∂(D1 ⊠ D2) = {(u1, v1), (u4, v1), (u1, v2), (u4, v2)}. The reason for

(u2, v1), (u2, v2), (u3, v1), (u3, v2) /∈ m∂(D1 ⊠D2) is explained after the proof of Theo-

rem 5.3.1.
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Figure 5.1: Example for strong product of digraphs

The results concerning the boundary-type sets of the strong product of two

strongly connected digraphs are presented below. In all these results, D1 and D2

can be interchanged due to the commutativity of strong product of digraphs.

Claim: m∂(D1 ⊠D2) ⊆ [m∂(D1)× V (D2)]
⋃
[V (D1)×m∂(D2)].

To this end, let (ui, vr) ∈ m∂(D1 ⊠ D2). Then there exists a vertex (uj, vs) ∈
V (D1 ⊠ D2) such that mdD1⊠D2((uj, vs), (ui, vr)) ≥ mdD1⊠D2((uj, vs), (uk, vq)) for

every (uk, vq) ∈ ND1⊠D2 [(ui, vr)]. This implies, max {mdD1(uj, ui),mdD2(vs, vr)} ≥
max {mdD1(uj, uk),mdD2(vs, vq)} for every uk ∈ ND1 [ui] and for every vq ∈ ND2 [vr].

Hence mdD1(uj, ui) ≥ mdD1(uj, uk) for every uk ∈ ND1 [ui], or mdD2(vs, vr) ≥
mdD2(vs, vq) for every vq ∈ ND2 [vr]. Thus, ui ∈ m∂(D1) or vr ∈ m∂(D2) or both.

That is, if (ui, vr) ∈ m∂(D1⊠D2), then at least one of the vertices ui and vr must be

a boundary vertex in the corresponding factor graph.

The following theorem gives the expression for the m-boundary of the strong
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product of two strongly connected digraphs.

Theorem 5.3.1. Let D1 and D2 be two strongly connected digraphs.

Then m∂(D1 ⊠D2) = A1

⋃
A2

⋃
A3, where

A1 = m∂(D1)×m∂(D2),

A2 = {(ui, vr) ∈ V (D1 ⊠ D2) : ui ∈ m∂(D1), vr /∈ m∂(D2), and ∃vt ∈
V (D2) such that mdD2(vt, vq) ≤ meccD1(ui), ∀vq ∈ ND2 [vr]}, and
A3 = {(ui, vr) ∈ V (D1 ⊠ D2) : ui /∈ m∂(D1), vr ∈ m∂(D2), and ∃uℓ ∈
V (D1) such that mdD1(uℓ, uk) ≤ meccD2(vr), ∀uk ∈ ND1 [ui]}.

Proof. Suppose that (ui, vr) ∈ m∂(D1 ⊠D2).

Then there exists a vertex (uj, vs) ∈ V (D1 ⊠ D2) such that

mdD1⊠D2((uj, vs), (ui, vr)) ≥ mdD1⊠D2((uj, vs), (uk, vq)) for all vertices (uk, vq) ∈
ND1⊠D2 [(ui, vr)]. Since mdD1⊠D2((uj, vs), (ui, vr)) = max {mdD1(uj, ui),mdD2(vs, vr)}
and mdD1⊠D2((uj, vs), (uk, vq)) = max {mdD1(uj, uk),mdD2(vs, vq)}, it follows that
max {mdD1(uj, ui),mdD2(vs, vr)} ≥ max {mdD1(uj, uk),mdD2(vs, vq)} for all

uk ∈ ND1 [ui], vq ∈ ND2 [vr]. Four cases are distinguished.

Case 1: max {mdD1(uj, ui),mdD2(vs, vr)} = mdD1(uj, ui) and mdD2(vs, vr) ≥
mdD2(vs, vq) for all vq ∈ ND2 [vr]

Case 2: max {mdD1(uj, ui),mdD2(vs, vr)} = mdD1(uj, ui) and mdD2(vs, vr) ≥
mdD2(vs, vq) does not hold for all vq ∈ ND2 [vr]

Case 3: max {mdD1(uj, ui),mdD2(vs, vr)} = mdD2(vs, vr) and mdD1(uj, ui) ≥
mdD1(uj, uk) for all uk ∈ ND1 [ui]

Case 4: max {mdD1(uj, ui),mdD2(vs, vr)} = mdD2(vs, vr) and mdD1(uj, ui) ≥
mdD1(uj, uk) does not hold for all uk ∈ ND1 [ui]

In Cases 1 and 3, mdD1(uj, ui) ≥ mdD1(uj, uk) for all uk ∈ ND1 [ui] and

mdD2(vs, vr) ≥ mdD2(vs, vq) for all vq ∈ ND2 [vr]. So ui ∈ m∂(D1), vr ∈ m∂(D2),

and hence (ui, vr) ∈ A1.

In Case 2, ui ∈ m∂(D1) and vr is not a boundary vertex of vs in D2. If there

exists any vertex vt such that vr is a boundary vertex of vt, then (ui, vr) ∈ A1.

Otherwise, since vr /∈ m∂(D2), for every vertex vt ∈ V (D2), there exists some

vertex vq ∈ ND2 [vr] such that mdD2(vt, vr) < mdD2(vt, vq). Hence if (ui, vr) is a

boundary vertex of a vertex (uℓ, vt) in D1 ⊠ D2, then mdD1⊠D2((uℓ, vt), (ui, vr)) =

max {mdD1(uℓ, ui),mdD2(vt, vr)} = mdD1(uℓ, ui) > mdD2(vt, vr), for otherwise
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mdD1(uℓ, ui) ≤ mdD2(vt, vr) and hence mdD1⊠D2((uℓ, vt), (ui, vr)) = mdD2(vt, vr) <

mdD2(vt, vq) = mdD1⊠D2((uℓ, vt), (ui, vq)), where (ui, vq) ∈ ND1⊠D2 [(ui, vr)].

Let (uk, vq) ∈ ND1⊠D2 [(ui, vr)]. Then mdD1⊠D2((uℓ, vt), (uk, vq)) =

max {mdD1(uℓ, uk),mdD2(vt, vq)}. If (ui, vr) is a boundary vertex of (uℓ, vt), then

max {mdD1(uℓ, ui),mdD2(vt, vr)} ≥ max {mdD1(uℓ, uk),mdD2(vt, vq)}. So the neces-

sary condition for the vertex (ui, vr) such that ui ∈ m∂(D1) and vr /∈ m∂(D2) to be a

boundary vertex of the vertex (uℓ, vt) in D1⊠D2 is mdD1(uℓ, ui) ≥ mdD2(vt, vq) for all

vq ∈ ND2 [vr]. Since meccD1(ui) ≥ mdD1(uℓ, ui) for all uℓ ∈ V (D1), the necessary con-

dition becomes meccD1(ui) ≥ mdD2(vt, vq) for all vq ∈ ND2 [vr]. Thus, (ui, vr) ∈ A2.

Thus in Case 2, (ui, vr) ∈ A1 ∪ A2.

In Case 4, vr ∈ m∂(D2) and ui is not a boundary vertex of uj in D1. As in Case

2, it follows that (ui, vr) ∈ A1 ∪ A3.

Thus in all cases, m∂(D1 ⊠D2) ⊆ A1

⋃
A2

⋃
A3.

Conversely, suppose that (ui, vr) ∈ A1

⋃
A2

⋃
A3. First let (ui, vr) ∈

A1. Then ui ∈ m∂(D1) and vr ∈ m∂(D2). So there exists vertices

uj ∈ V (D1), vs ∈ V (D2) such that mdD1(uj, ui) ≥ mdD1(uj, uk) for ev-

ery uk ∈ ND1 [ui], and mdD2(vs, vr) ≥ mdD2(vs, vq) for every vq ∈ ND2 [vr].

Hence in D1 ⊠ D2, mdD1⊠D2((uj, vs), (ui, vr)) = max {mdD1(uj, ui),mdD2(vs, vr)} ≥
max {mdD1(uj, uk),mdD2(vs, vq)} = mdD1⊠D2((uj, vs), (uk, vq)) for all vertices

(uk, vq) ∈ ND1⊠D2 [(ui, vr)]. Thus, A1 ⊆ m∂(D1 ⊠D2).

Now let (ui, vr) ∈ A2. Then ui ∈ m∂(D1), vr /∈ m∂(D2) and there ex-

ists some vertex vt ∈ V (D2) such that mdD2(vt, vq) ≤ meccD1(ui), for all vq ∈
ND2 [vr]. Since ui ∈ m∂(D1), there exists at least one vertex uj ∈ V (D1)

such that mdD1(uj, ui) ≥ mdD1(uj, uk) for every uk ∈ ND1 [ui]. Of these

vertices, let ub be a vertex such that mdD1(ub, ui) = meccD1(ui). Hence

in D1 ⊠ D2, mdD1⊠D2((ub, vt), (ui, vr)) = max {mdD1(ub, ui),mdD2(vt, vr)} ≥
max {mdD1(ub, uk),mdD2(vt, vq)} = mdD1⊠D2((ub, vt), (uk, vq)) for all (uk, vq) ∈
ND1⊠D2 [(ui, vr)], since mdD2(vt, vq) ≤ meccD1(ui) = mdD1(ub, ui) for all vq ∈ ND2 [vr].

Thus, (ui, vr) is a boundary vertex of (ub, vt) in D1⊠D2 and hence A2 ⊆ m∂(D1⊠D2).

By analogous arguments and since the strong product of digraphs is commutative,

it follows that A3 ⊆ m∂(D1 ⊠D2).

Hence A1

⋃
A2

⋃
A3 ⊆ m∂(D1 ⊠D2).

Now consider Figure 5.1. Here, meccD2(v1) = meccD2(v2) = 1. ND1 [u2] =

ND1 [u3] = {u1, u2, u3, u4}, mdD1(u1, u4) = 3, mdD1(u1, u2) = mdD1(u1, u3) =

mdD1(u2, u4) = mdD1(u3, u4) = 2, and mdD1(u2, u3) = 1. u2 /∈ m∂(D1) and

hence (u2, v1), (u2, v2) /∈ m∂(D1 ⊠ D2), since there is no vertex uℓ ∈ V (D1)
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such that mdD1(uℓ, uk)) ≤ 1 for all uk ∈ ND1 [u2]. For similar reasons, (u3, v1),

(u3, v2) /∈ m∂(D1 ⊠D2).

Consider the strong product of two connected graphs. Since the distance between

any two distinct vertices are dealt with, it doesn’t matter whether the graphs are

simple or not; that is, whether they contain loops or parallel edges. So the result for

any two connected nontrivial (not equal to K1) graphs is deduced in Corollary 5.3.3.

Remark 5.3.2. The description for the boundary set of the strong product of two

graphsG andH presented in [18] holds only for the product of two nontrivial graphs

G and H. To this end, let H = K1 = ({v}, ∅). m∂(K1) = {v} (since all vertices of a

complete graph are boundary vertices of the graph), and hence m∂(G)=̂m∂(G⊠K1) =[
m∂(G) × {v}

]⋃ [
V (G) × {v}

]
=̂V (G), which is not true in general. (The notation

=̂ denotes ‘supposed to be equal to, but is not so’.)

Corollary 5.3.3. Let D1 and D2 be two nontrivial connected graphs. Then

m∂(D1 ⊠D2) =
[
m∂(D1)× V (D2)

]⋃[
V (D1)×m∂(D2)

]
.

Proof. By Theorem 5.3.1, if D1 and D2 are two strongly connected digraphs, then

m∂(D1 ⊠ D2) = A1

⋃
A2

⋃
A3. Since D1 and D2 are given to be two nontrivial

graphs, meccD1(ui) ≥ 1 for all ui ∈ V (D1), meccD2(vr) ≥ 1 for all vr ∈ V (D2),

mdD1(ui, uk) = 1 for all uk ∈ ND1(ui), and mdD2(vr, vq) = 1 for all vq ∈ ND2(vr).

Thus, A1 = m∂(D1) × m∂(D2), A2 = {(ui, vr) ∈ V (D1 ⊠ D2) : ui ∈ m∂(D1), vr /∈
m∂(D2), and ∃vt ∈ V (D2) such that mdD2(vt, vq) ≤ meccD1(ui), ∀vq ∈ ND2(vr)} =

m∂(D1) × V (D2), and A3 = {(ui, vr) ∈ V (D1 ⊠ D2) : ui /∈ m∂(D1), vr ∈
m∂(D2), and ∃uℓ ∈ V (D1) such that mdD1(uℓ, uk) ≤ meccD2(vr), ∀uk ∈ ND1(ui)} =

V (D1)×m∂(D2).

Therefore, m∂(D1⊠D2) = A1∪A2∪A3 =
[
m∂(D1)×V (D2)

]⋃ [
V (D1)×m∂(D2)

]
.

The results for the m-periphery and the m-eccentricity of the strong product of

two strongly connected digraphs are derived in the following two theorems. We can see

that they are the same as the descriptions for the m-periphery and the m-eccentricity

of the strong product of two graphs which are given in [18].

Theorem 5.3.4. Let D1 and D2 be two strongly connected digraphs.

1. If mdiam(D1) < mdiam(D2), then mPer(D1 ⊠D2) = V (D1)×mPer(D2).
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2. If mdiam(D1) = mdiam(D2), then mPer(D1 ⊠ D2) =
[
mPer(D1) ×

V (D2)
]⋃ [

V (D1)×mPer(D2)
]
.

Proof. 1. Let mdiam(D2) = n. Let vr ∈ mPer(D2).

Then for all ui ∈ V (D1), meccD1⊠D2(ui, vr) = max {meccD1(ui),meccD2(vr)} =

n. Hence (ui, vr) ∈ mPer(D1 ⊠ D2). Also if vr /∈ mPer(D2), then since

meccD1⊠D2(ui, vr) < n, (ui, vr) /∈ mPer(D1 ⊠ D2). Hence it follows that

mPer(D1 ⊠D2) = V (D1)×mPer(D2).

2. Let mdiam(D1) = mdiam(D2) = n. If ui ∈ mPer(D1), then for

all vr ∈ V (D2), (ui, vr) ∈ mPer(D1 ⊠ D2), since meccD1⊠D2(ui, vr) =

max {meccD1(ui),meccD2(vr)} = n. Hence (ui, vr) ∈ mPer(D1⊠D2). Similarly,

if vr ∈ mPer(D2), then for all ui ∈ V (D1), (ui, vr) ∈ mPer(D1 ⊠D2). Hence it

follows that
[
mPer(D1)× V (D2)

]⋃ [
V (D1)×mPer(D2)

]
⊆ mPer(D1 ⊠D2).

Conversely, if (ui, vr) ∈ mPer(D1 ⊠ D2), then meccD1⊠D2(ui, vr) =

max {mdiam(D1),mdiam(D2)} = n. Thus, at least one of meccD1(ui) and

meccD2(vr) must be necessarily equal to n. Hence ui ∈ mPer(D1) or vr ∈
mPer(D2), and therefore, mPer(D1 ⊠D2) ⊆

[
mPer(D1)× V (D2)

]⋃ [
V (D1)×

mPer(D2)
]
.

Theorem 5.3.5. Let D1 and D2 be two strongly connected digraphs.

1. If mrad(D1) = mrad(D2), then

mEcc(D1 ⊠D2) =
[
mEcc(D1)× V (D2)

]⋃[
V (D1)×mEcc(D2)

]
.

2. If mrad(D1) < mrad(D2), then

mEcc(D1 ⊠D2) =
[
mEcc(W )× V (D2)

]⋃[
V (D1)×mEcc(D2)

]
,

where W = {ui ∈ V (D1) : mecc(ui) ≥ mrad(D2)}.

Proof. 1. First step is to prove that mEcc(D1 ⊠ D2) ⊆
[
mEcc(D1) ×

V (D2)
]⋃ [

V (D1) × mEcc(D2)
]
. Let (ui, vr) ∈ mEcc(D1 ⊠ D2). Then

there exists a vertex (uj, vs) ∈ V (D1 ⊠ D2) such that meccD1⊠D2(uj, vs) =

mdD1⊠D2((uj, vs), (ui, vr)) = max {mdD1(uj, ui),mdD2(vs, vr)}. Since

meccD1⊠D2(uj, vs) = max {meccD1(uj),meccD2(vs)}, meccD1(uj) ≥
mdD1(uj, ui), and meccD2(vs) ≥ mdD2(vs, vr), it follows that at least one
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of the two cases meccD1(uj) = mdD1(uj, ui) and meccD2(vs) = mdD2(vs, vr)

must hold. So it is necessary that either ui is an m-eccentric vertex of uj, or vr

is an m-eccentric vertex of vs.

Hence (ui, vr) ∈
[
mEcc(D1)× V (D2)

]⋃ [
V (D1)×mEcc(D2)

]
.

Let mrad(D1) = mrad(D2) = n. Let ui ∈ mEcc(D1). Then there ex-

ists a vertex uj ∈ V (D1) such that meccD1(uj) = mdD1(uj, ui). Con-

sider the vertex (ui, vr) ∈ V (D1 ⊠ D2), where vr is an arbitrary vertex in

D2. Since mrad(D2) = n, there exists a vertex vs ∈ V (D2) such that

meccD2(vs) = n. Hence mdD2(vs, vr) ≤ n and so meccD1⊠D2(uj, vs) =

max {meccD1(uj),meccD2(vs)} = max {meccD1(uj), n} = meccD1(uj). Thus,

mdD1⊠D2((uj, vs), (ui, vr)) = max {mdD1(uj, ui),mdD2(vs, vr)} = meccD1(uj) =

meccD1⊠D2(uj, vs). Hence (ui, vr) is an m-eccentric vertex of (uj, vs). Thus if

ui ∈ mEcc(D1), then (ui, vr) ∈ mEcc(D1 ⊠ D2) for all vr ∈ V (D2). Similarly,

it can proved that if vq ∈ mEcc(D2), then (uk, vq) ∈ mEcc(D1 ⊠ D2) for all

uk ∈ V (D1).

Hence
[
mEcc(D1)× V (D2)

]⋃ [
V (D1)×mEcc(D2)

]
⊆ mEcc(D1 ⊠D2), and so

the result holds.

2. Let mrad(D1) < mrad(D2) = n. Let ui ∈ V (D1), vr ∈ V (D2). Here two cases

arise:

Case 1. vr ∈ mEcc(D2).

Then there exists a vertex vs ∈ V (D2) such that meccD2(vs) = mdD2(vs, vr).

Let up ∈ V (D1) be such that meccD1(up) = mrad(D1). Then since mrad(D2) >

meccD1(up), meccD1⊠D2(up, vs) = max {meccD1(up),meccD2(vs)} = meccD2(vs).

Also, mdD1⊠D2((up, vs), (ui, vr)) = max {mdD1(up, ui),mdD2(vs, vr)} =

meccD2(vs). Thus, (ui, vr) is an m-eccentric vertex of (up, vs). So in this case,

V (D1)×mEcc(D2) ⊆ mEcc(D1 ⊠D2).

Case 2. vr /∈ mEcc(D2).

Let vq ∈ V (D2) be such that meccD2(vq) = mrad(D2). Let uk ∈
mEcc(W ). Then there exists a vertex up ∈ V (D1) such that meccD1(up) ≥
mrad(D2) and meccD1(up) = mdD1(up, uk). Then mdD1⊠D2((up, vq), (uk, vr)) =

max {mdD1(up, uk),mdD2(vq, vr)} = mdD1(up, uk) = meccD1(up) =

meccD1⊠D2(up, vq) and hence (uk, vr) is an m-eccentric vertex of (up, vq). Hence

in this case, mEcc(W )× V (D2) ⊆ mEcc(D1 ⊠D2).

Thus,
[
mEcc(W )× V (D2)

]⋃ [
V (D1)×mEcc(D2)

]
⊆ mEcc(D1 ⊠D2).
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Conversely, let (uk, vr) ∈ mEcc(D1 ⊠D2). Then there exists a vertex (uj, vs) ∈
V (D1 ⊠ D2) such that meccD1⊠D2(uj, vs) = mdD1⊠D2((uj, vs), (uk, vr)) =

max {mdD1(uj, uk),mdD2(vs, vr)} = max {meccD1(uj),meccD2(vs)}. If vr ∈
mEcc(D2), then (uk, vr) ∈ V (D1)×mEcc(D2).

Hence suppose that (uk, vr) ∈ mEcc(D1 ⊠ D2) and vr /∈ mEcc(D2).

Then for all vs ∈ V (D2), meccD2(vs) > mdD2(vs, vr). Thus,

meccD1⊠D2(uj, vs) = meccD1(uj) = mdD1(uj, uk). If possible, suppose

that uk /∈ mEcc(W ). Thus, there is no vertex uj in D1 such that

meccD1(uj) = mdD1(uj, uk) and meccD1(uj) ≥ mrad(D2). Hence if uk

is an m-eccentric vertex of uj in D1, then mdD1(uj, uk) < mrad(D2).

mrad(D1 ⊠ D2) = max{mrad(D1),mrad(D2)} = mrad(D2). Thus,

(uk, vr) cannot be the m-eccentric vertex of any vertex (uj, vs) ∈ D1 ⊠

D2, since mdD1⊠D2((uj, vs), (uk, vr)) = max {mdD1(uj, uk),mdD2(vs, vr)} ̸=
meccD1⊠D2(uj, vs) in this case. This is a contradiction, and hence uk ∈
mEcc(W ). Hence (uk, vr) ∈ mEcc(W ) × V (D2). Hence mEcc(D1 ⊠ D2) ⊆[
mEcc(W )× V (D2)

]⋃ [
V (D1)×mEcc(D2)

]
.

Now we derive the expression for the m-contour of D1 ⊠D2.

Theorem 5.3.6. LetD1 andD2 be two strongly connected digraphs. Then mCt(D1⊠

D2) = A1 ∪ A2 ∪ A3, where A1 =
[
mCt(D1)×mCt(D2)

]
,

A2 = {(ui, vr) ∈ V (D1 ⊠ D2) : ui ∈ mCt(D1), vr /∈ mCt(D2), and meccD2(vq) ≤
meccD1(ui) for all vq ∈ ND2 [vr]},
A3 = {(ui, vr) ∈ V (D1 ⊠ D2) : ui /∈ mCt(D1), vr ∈ mCt(D2), and meccD1(uk) ≤
meccD2(vr) for all uk ∈ ND1 [ui]}.

Proof. (ui, vr) ∈ mCt(D1 ⊠D2) if and only if meccD1⊠D2(ui, vr) ≥ meccD1⊠D2(uk, vq)

for all (uk, vq) ∈ ND1⊠D2 [(ui, vr)];

if and only if max {meccD1(ui),meccD2(vr)} ≥ max {meccD1(uk),meccD2(vq)} for all

uk ∈ ND1 [ui] and vq ∈ ND2 [vr];

if and only if one of the following three cases holds.

Case 1: max {meccD1(ui),meccD2(vr)} = meccD1(ui) = meccD2(vr). Then

meccD1(ui) ≥ meccD1(uk) and meccD2(vr) ≥ meccD2(vq) for all uk ∈ ND1 [ui]

and vq ∈ ND2 [vr].

Case 2: max {meccD1(ui),meccD2(vr)} = meccD1(ui) > meccD2(vr). Then

meccD1(ui) ≥ meccD1(uk) for all uk ∈ ND1 [ui] and meccD2(vr) < meccD1(ui),
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meccD2(vq) ≤ meccD1(ui) for all vq ∈ ND2(vr).

Case 3: max {meccD1(ui),meccD2(vr)} = meccD2(vr) > meccD1(ui). Then

meccD2(vr) ≥ meccD2(vq) for all vq ∈ ND2 [vr] and meccD1(ui) <

meccD2(vr), meccD1(uk) ≤ meccD2(vr) for all uk ∈ ND1(ui).

In Case 1, (ui, vr) ∈ mCt(D1)×mCt(D2).

In Case 2, (ui, vr) ∈ A2 = {(ui, vr) ∈ V (D1 ⊠ D2) : ui ∈ mCt(D1), vr /∈
mCt(D2), and meccD2(vq) ≤ meccD1(ui) for all vq ∈ ND2 [vr]}.

In Case 3, (ui, vr) ∈ A3 = {(ui, vr) ∈ V (D1⊠D2) : ui /∈ mCt(D1), vr ∈ mCt(D2),

and meccD1(uk) ≤ meccD2(vr) for all uk ∈ ND1 [ui]}.
Thus, mCt(D1 ⊠D2) = A1

⋃
A2

⋃
A3.

Consider the contour of the strong product of two connected graphs. As in the

case of the boundary set, the result for the contour holds even when the two graphs

are not simple.

Corollary 5.3.7. Let D1 and D2 be two connected graphs. Then mCt(D1 ⊠D2)

= {(ui, vr) ∈ V (D1 ⊠D2) : ui ∈ mCt(D1), vr /∈ mCt(D2), and meccD2(vr) < meccD1(ui)}⋃
{(ui, vr) ∈ V (D1 ⊠D2) : ui /∈ mCt(D1), vr ∈ mCt(D2), and meccD1(ui) < meccD2(vr)}⋃[
mCt(D1)×mCt(D2)

]
.

Proof. By Theorem 5.3.6, when D1 and D2 are two strongly connected digraphs,

mCt(D) = A1

⋃
A2

⋃
A3. Since D1 and D2 are two connected graphs, the m-

eccentricity of two adjacent vertices differ by at most one. Let D = D1 ⊠D2.

Hence A1 = mCt(D1)×mCt(D2),

A2 ={(ui, vr) ∈ V (D) : ui ∈ mCt(D1), vr /∈ mCt(D2), and

meccD2(vq) ≤ meccD1(ui) for all vq ∈ ND2 [vr]}

={(ui, vr) ∈ V (D) : ui ∈ mCt(D1), vr /∈ mCt(D2), and

meccD2(vr) + 1 ≤ meccD1(ui)}

={(ui, vr) ∈ V (D) : ui ∈ mCt(D1), vr /∈ mCt(D2), and meccD2(vr) < meccD1(ui)},

and A3 = {(ui, vr) ∈ V (D) : ui /∈ mCt(D1), vr ∈ mCt(D2), and meccD1(ui) <

meccD2(vr)}, since max
uk∈ND1

[ui]
{meccD1(uk)} = meccD1(ui) + 1. Thus the expression for

mCt(D1 ⊠D2) when D1 and D2 are two connected graphs is given by
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{(ui, vr) ∈ V (D) : ui ∈ mCt(D1), vr /∈ mCt(D2), and meccD2(vr) < meccD1(ui)}⋃
{(ui, vr) ∈ V (D) : ui /∈ mCt(D1), vr ∈ mCt(D2), and meccD1(ui) < meccD2(vr)}⋃
[mCt(D1)×mCt(D2)].

5.4 Center and Periphery of the Strong Product

of a Finite Number of Digraphs

The directed distance between two vertices in the strong product of n strongly con-

nected digraphs is obtained from [37] as follows.

Proposition 5.4.1. [37] For the strong product D = D1 ⊠ · · · ⊠ Dn, the

directed distance between two vertices (x1, . . . , xn), (y1, . . . , yn) ∈ V (D) is
−→
d D((x1, . . . , xn), (y1, . . . , yn)) = max

1≤i≤n

−→
d Di

(xi, yi).

Based on this result, we derive the formula for m-distance between two vertices

(x1, . . . , xn) and (y1, . . . , yn), and the m-eccentricity of a vertex in the strong product

D = D1 ⊠ · · ·⊠Dn.

Proposition 5.4.2. Let D1, . . . , Dn be n strongly connected digraphs. Then

mdD1⊠···⊠Dn((x1, . . . , xn), (y1, . . . , yn)) = max
1≤i≤n

{mdDi
(xi, yi)},

meccD1⊠···⊠Dn(x1, . . . , xn) = max
1≤i≤n

{meccDi
(xi)}.

Proof. Let D = D1 ⊠ · · · ⊠ Dn. By the definition of m-distance,

mdD((x1, . . . , xn), (y1, . . . , yn))

= max {
−→
d D((x1, . . . , xn), (y1, . . . , yn)),

−→
d D((y1, . . . , yn), (x1, . . . , xn))}

= max

{
max
1≤i≤n

{
−→
d Di

(xi, yi)}, max
1≤i≤n

{
−→
d Di

(yi, xi)}
}

= max

{
max
1≤i≤n

{
−→
d Di

(xi, yi),
−→
d Di

(yi, xi)}
}

= max
1≤i≤n

{max{
−→
d Di

(xi, yi),
−→
d Di

(yi, xi)}}

= max
1≤i≤n

{mdDi
(xi, yi)}.



5.4. CENTER AND PERIPHERY OF THE STRONG PRODUCT 57

meccD(x1, . . . , xn) = max {mdD((x1, . . . , xn), (y1, . . . , yn)) : (y1, . . . , yn) ∈ V (D)}

= max

{
max
1≤i≤n

{mdDi
(xi, yi) : yi ∈ V (Di)}

}
= max

1≤i≤n
{max {mdDi

(xi, yi) : yi ∈ V (Di)}}

= max
1≤i≤n

{meccDi
(xi)}.

Thus, the m-radius and the m-diameter of D1 ⊠ · · ·⊠Dn is obtained as follows.

Proposition 5.4.3. Let D1, . . . , Dn be n strongly connected digraphs. Then

mrad(D1 ⊠ · · ·⊠Dn) = max
1≤i≤n

{mrad(Di)},

mdiam(D1 ⊠ · · ·⊠Dn) = max
1≤i≤n

{mdiam(Di)}.

Proof. Let D = D1 ⊠ · · ·⊠Dn.

mrad(D) = min
(x1,...,xn)∈V (D)

{meccD(x1, . . . , xn)}

= min
(x1,...,xn)∈V (D)

{
max
1≤i≤n

meccDi
(xi)

}
= max

1≤i≤n

{
min

xi∈V (Di)
meccDi

(xi)

}
= max

1≤i≤n
{mrad(Di)}.

mdiam(D) = max
(x1,...,xn)∈V (D)

{meccD(x1, . . . , xn)}

= max
(x1,...,xn)∈V (D)

{
max
1≤i≤n

meccDi
(xi)

}
= max

1≤i≤n

{
max

xi∈V (Di)
meccDi

(xi)

}
= max

1≤i≤n
{mdiam(Di)}.

The strong product of n digraphs is strongly connected if and only if all the

n digraphs are strongly connected [36]. Also, since strong product of digraphs is

commutative, we can interchange the order of the digraphs in the product.
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5.4.1 Center of the Strong Product

The m-center of the strong product of two strongly connected digraphs D1 and D2

are obtained here. Further, the m-center of the strong product of a finite number

of strongly connected digraphs is derived. These results hold for graphs also, with

m-distance replaced by the usual distance in graphs.

Theorem 5.4.4. Let D1 and D2 be two strongly connected digraphs with vertex sets

V (D1) = {u1, . . . , um} and V (D2) = {v1, . . . , vn}.

1. If mrad(D1) < mrad(D2), then mCen(D1 ⊠D2) = A ×mCen(D2), where A =

{ui ∈ V (D1) : mecc(ui) ≤ mrad(D2)}.

2. If mrad(D1) = mrad(D2), then mCen(D1 ⊠D2) = mCen(D1)×mCen(D2).

Proof. 1. Let mrad(D2) = n. Then mrad(D1 ⊠D2) = n.

(ui, vr) ∈ mCen(D1 ⊠ D2) if and only if meccD1⊠D2(ui, vr) =

max {meccD1(ui),meccD2(vr)} = n;

if and only if meccD1(ui) ≤ n and meccD2(vr) = n;

if and only if ui ∈ A and vr ∈ mCen(D2);

if and only if (ui, vr) ∈ A×mCen(D2). Hence it follows that mCen(D1⊠D2) =

A×mCen(D2).

2. Let mrad(D1) = mrad(D2) = n. Then mrad(D1 ⊠D2) = n.

(ui, vr) ∈ mCen(D1 ⊠ D2) if and only if meccD1⊠D2(ui, vr) =

max {meccD1(ui),meccD2(vr)} = n;

if and only if meccD1(ui) = n and meccD2(vr) = n;

if and only if ui ∈ mCen(D1) and vr ∈ mCen(D2);

if and only if (ui, vr) ∈ mCen(D1) × mCen(D2). Hence it follows that

mCen(D1 ⊠D2) = mCen(D1)×mCen(D2).

Corollary 5.4.5. Let D1 and D2 be two strongly connected digraphs such that

mdiam(D1) ≤ mrad(D2), then mCen(D1 ⊠D2) = V (D1)×mCen(D2).

Theorem 5.4.6. Let D1, . . . , Dn be n strongly connected digraphs which are ar-

ranged such that mrad(D1) ≤ · · · ≤ mrad(Dn). Let mrad(Dk) = mrad(Dk+1) =

· · · = mrad(Dn) = a for some k ≥ 1. Then mCen(D1⊠ · · ·⊠Dn) = A1×· · ·×Ak−1×
mCen(Dk)× · · · ×mCen(Dn), where Ai = {xi ∈ V (Di) : mecc(xi) ≤ a}.
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Proof. mrad(D1 ⊠ · · · ⊠ Dn) = max{mrad(D1), . . . ,mrad(Dn)} = a. Hence

(x1, . . . , xn) ∈ mCen(D1 ⊠ · · ·⊠Dn)

if and only if mecc(x1, . . . , xn) = max{mecc(x1), . . . ,mecc(xn)} = a;

if and only if mecc(xi) ≤ a for i = 1, 2, . . . , k − 1, and mecc(xi) = a for

i = k, k + 1, . . . , n;

if and only if xi ∈ Ai for i = 1, 2, . . . , k−1, and xi ∈ mCen(Di) for i = k, k+1, . . . , n;

if and only if (x1, . . . , xn) ∈ A1 × · · · × Ak−1 ×mCen(Dk)× · · · ×mCen(Dn).

5.4.2 Periphery of the Strong Product

We have derived the expression for the m-periphery of the strong product of two

strongly connected digraphs. In this section, we consider the m-periphery of the

strong product of a finite number of strongly connected digraphs.

Theorem 5.4.7. Let D1, . . . , Dn be n strongly connected digraphs which are

arranged such that mdiam(D1) ≤ · · · ≤ mdiam(Dn). Let mdiam(Dk) =

mdiam(Dk+1) = · · · = mdiam(Dn) = a for some k ≥ 1. Then mPer(D1⊠ · · ·⊠Dn) =[
V (D1) × · · · × V (Dk−1) × mPer(Dk) × V (Dk+1) × · · · × V (Dn)

]⋃ [
V (D1) × · · · ×

V (Dk−1) × V (Dk) ×mPer(Dk+1) × · · · × V (Dn)
]⋃

· · ·
⋃[

V (D1) × · · · × V (Dk−1) ×
V (Dk)× V (Dk+1)× · · · ×mPer(Dn)

]
.

Proof. mdiam(D1 ⊠ · · · ⊠ Dn) = max{mdiam(D1), . . . ,mdiam(Dn)} = a. Hence

(x1, . . . , xn) ∈ mPer(D1 ⊠ · · ·⊠Dn)

if and only if meccD1⊠···⊠Dn(x1, . . . , xn) = max{meccD1(x1), . . . ,meccDn(xn)} = a;

if and only if meccDi
(xi) = a for at least one of i = k + 1, k + 2, . . . , n;

if and only if at least one of xi, i = k, k + 1, . . . , n lies in mPer(Di);

if and only if

(x1, . . . , xn) ∈
[
V (D1)× · · · × V (Dk−1)×mPer(Dk)× V (Dk+1)× · · · × V (Dn)

]⋃ [
V (D1)× · · · × V (Dk−1)× V (Dk)×mPer(Dk+1)× · · · × V (Dn)

]⋃
· · ·

⋃[
V (D1)× · · · × V (Dk−1)× V (Dk)× V (Dk+1)× · · · ×mPer(Dn)

]
.





Chapter 6

Boundary-type Sets and Center in

Lexicographic Product

6.1 Introduction

The significance of the lexicographic product is that if the edge relations of the two

graphs are order relations, then the edge relation of their lexicographic product is the

corresponding lexicographic order [36]. The study of lexicographic product of two

graphs was initiated by Frank Harary in 1959. In [38], he defined a binary operation

on graphs, which was called composition, such that the group of the composition of

two graphs is permutationally equivalent to the composition of their groups. This

problem was suggested by the work of Frucht [33] who gave the result for the case

that the first graph in the composition is totally disconnected.

The chapter is organized as follows. The m-distance between two vertices and the

m-eccentricity of a vertex in the lexicographic product of two digraphs are derived in

Section 6.2. The four boundary-type sets of lexicographic product of two digraphs is

investigated for certain classes of digraphs in Section 6.3. The concept of a DDLE

digraph is introduced and the results related to the four boundary-type sets of the

lexicographic product D1 ◦ D2 of two digraphs D1 and D2 are considered in the

following cases. The case when D1 is a digraph satisfying the DDLE property is

considered in Subsection 6.3.1. The cases whenD1 is a directed cycle and a symmetric

digraph are dealt with in Subsections 6.3.2 and 6.3.3, respectively. The concepts of

vertices satisfying the DDLE property and the DDEE property are introduced in

Section 6.4 to obtain the expressions for the center and periphery of two strong

digraphs. The center and periphery of the lexicographic product of two strongly

61
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connected digraphs is investigated in Subsections 6.4.1 and 6.4.2, respectively. Finally,

in Section 6.5, the center and periphery of two graphs are considered. The results

for the center and periphery of two graphs was already given in [75]. Some minor

mistakes are pointed out, and the actual expressions for the center and the periphery

are provided with proofs.

6.2 Distance Between Two Vertices

The distance between two vertices (ui, vr) and (uj, vs) in the lexicographic prod-

uct G ◦ H of a connected graph G and a graph H is obtained from [36] as:

dG◦H((ui, vr), (uj, vs)) =

dG(ui, uj) if ui ̸= uj,

min{2, dH(vr, vs)} if ui = uj.

Prior to the definition of the distance between two vertices in the lexicographic

product of two digraphs, several other notions from [37] need to be introduced.

Definition 6.2.1. Let D be a digraph. Given a vertex x of a digraph D, the dicycle

distance of x inD, denoted by ξD(x), is the length of a shortest dicycle inD containing

x, or infinity if no such dicycle exists.

Consider two digraphs D1 and D2 with vertex sets V (D1) = {u1, u2, . . . , um} and

V (D2) = {v1, v2, . . . , vn}, respectively. Let (ui, vr), (uj, vs) ∈ V (D1◦D2). The formula

for the directed distance from (ui, vr) to (uj, vs),
−→
d D1◦D2((ui, vr), (uj, vs)) is obtained

from [37] as follows:

−→
d D1◦D2((ui, vr), (uj, vs)) =


−→
d D1(ui, uj) if ui ̸= uj,

min{ξD1(ui),
−→
d D2(vr, vs)} if ui = uj.

Now we derive the expressions for the m-distance between two vertices and the

m-eccentricity of a vertex in V (D1 ◦D2).

mdD1◦D2((ui, vr), (uj, vs))

= max{
−→
d D1◦D2((ui, vr), (uj, vs)),

−→
d D1◦D2((uj, vs), (ui, vr))}

=

max{
−→
d D1(ui, uj),

−→
d D1(uj, ui)} if ui ̸= uj,

min{ξD1(ui),max{
−→
d D2(vr, vs),

−→
d D2(vs, vr)}} if ui = uj.

=

mdD1(ui, uj) if ui ̸= uj,

min{ξD1(ui),mdD2(vr, vs)} if ui = uj.

The approach in [37] is followed to draw all the digraph products. This alignment

is helpful to find the m-eccentricity of vertices in the lexicographic product of two di-
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graphs. Consider the lexicographic productD = D1◦D2 of the digraphsD1 = (V1, E1)

and D2 = (V2, E2) with vertex sets V1 = {u1, . . . , um} and V2 = {v1, . . . , vn}. The

first digraph D1 is aligned parallel to the x-axis and the second digraph D2 is aligned

parallel to the y-axis, D1 below and D2 to the left of the vertex set V (D) = V1×V2 so

that the vertex (ui, vr) in the product projects vertically to ui ∈ V1 and horizontally

to vr ∈ V2, see Figure 6.1. Thus, for a vertex (ui, vr) ∈ V (D1 ◦ D2), the maximum

possible distance to any other vertex in the horizontal direction is meccD1(ui) and

that in the vertical direction is min{ξD1(ui),meccD2(vr)}. If meccD1(ui) = 1, then

ξD1(ui) = 2 and hence the expression reduces to min{meccD2(vr), 2}. Hence it follows
that

meccD1◦D2(ui, vr) =

min{meccD2(vr), 2} if meccD1(ui) = 1,

max{meccD1(ui),min{ξD1(ui),meccD2(vr)}} if meccD1(ui) ≥ 2.

As the digraphs under consideration are clear from the vertex labelling, mdD1(ui, uj)

may be denoted by md(ui, uj), mdD1◦D2((ui, vr), (uj, vs)) by md((ui, vr), (uj, vs)), and

meccD1◦D2(ui, vr) by mecc(ui, vr).

For every vertex x of a strongly connected digraph D with at least two vertices,

there exists a dicycle in D containing x. So ξD(x) is finite for every vertex x in D.

Also, meccD(x) is finite for every vertex x of a strongly connected digraph D.

(u1, v1) (u2, v1) (u3, v1) (u4, v1)

(u1, v2) (u2, v2) (u3, v2) (u4, v2)

(u1, v3) (u2, v3) (u3, v3) (u4, v3)

2 2 2 2

1 2 2 2

2 2 2 2

1 2 2 2

2

1

2

u1 u2 u3 u4

v1

v2

v3

D1 ◦D2

D2

D1

Figure 6.1: Example for lexicographic product of digraphs
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Consider the lexicographic product of the digraphs D1 and D2 in Figure 6.1. The

number in red color beside each vertex indicates the m-eccentricity of the vertex.

To reduce the complexity of the drawing without affecting the understanding of the

lexicographic product, a bi-directed edge is drawn instead of two edges with opposite

directions and D2 is taken as a symmetric digraph. The lexicographic product can be

obtained from D1 by substituting a copy of D2u of D2 for every vertex u of D1 and

then assigning edges joining all vertices of D2u to all vertices of D2u′
if uu′ ∈ E(D1)

[36].

6.3 Boundary-type Sets of Lexicographic Product

of Digraphs

We make the following definition to begin with the study of the boundary vertices of

the lexicographic product of two digraphs.

Definition 6.3.1. A strong digraph D is said to satisfy the dicycle distance less

than eccentricity property or in short the DDLE property, if for every vertex

x ∈ V (D), meccD(x) > ξD(x). A digraph D which satisfy the DDLE property is

called a DDLE digraph.

In the general case, the m-eccentricity of a vertex (ui, vr) ∈ V (D1 ◦D2) depends

upon the values of meccD1(ui), meccD2(vr), and ξD1(ui). But ifD1 is a DDLE digraph,

then meccD1◦D2(ui, vr) = meccD1(ui) for all (ui, vr) ∈ V (D1 ◦ D2) as illustrated in

Section 6.3.1. Hence all the boundary-type sets of the lexicographic product D1 ◦D2,

except ∂(D1 ◦D2) depend only on the digraph D1. This is the significance of a DDLE

digraph.

If D1 is a DDLE digraph, then meccD1(ui) > 2 for all ui ∈ V (D1), and hence

meccD1◦D2(ui, vr) = meccD1(ui) > ξD1(ui) for all (ui, vr) ∈ V (D1 ◦ D2). Let G and

H be the underlying graphs of the digraphs D1 and D2, respectively. From [36],

NG◦H(ui, vr) =
[
NG(ui) × V (H)

]⋃ [
{ui} × NH(vr)

]
. The neighbors of (ui, vr) are

exactly the same in D1 ◦ D2 and its underlying graph G ◦ H. Thus it follows that

ND1◦D2(ui, vr) =
[
ND1(ui)×V (D2)

]⋃ [
{ui}×ND2(vr)

]
. The lexicographic product of

two digraphs D1 and D2 is strongly connected if and only if D1 is strongly connected

[36]. All digraphs D for which the m-radius is greater than 2 and such that there is

at least one two-way edge incident to every vertex of the digraph are DDLE digraphs.

Examples of digraphs that do not satisfy the DDLE property are the directed cycles
−→
Cn and the complete graphs Kn, where n ≥ 2.
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6.3.1 D1 ◦D2, D1 is a DDLE Digraph

As D1 is a DDLE digraph, meccD1(ui) > ξD1(ui) for all ui ∈ V (D1). Also since

meccD1(ui) > 2, meccD1◦D2(ui, vr) = max{meccD1(ui),min{ξD1(ui),meccD2(vr)}} =

meccD1(ui) for all (ui, vr) ∈ V (D1 ◦ D2). Thus if D1 is a DDLE digraph, then the

following results regarding the m-periphery, m-contour and m-eccentricity sets of

D1 ◦D2 are obtained. Since the DDLE property is related to the m-eccentricity of a

vertex, nothing could be inferred about the m-boundary, m∂(D1 ◦D2).

Proposition 6.3.2. Let D1 be a strongly connected DDLE digraph and D2 be an

arbitrary digraph. Then

1. mPer(D1 ◦D2) = mPer(D1)× V (D2),

2. mCt(D1 ◦D2) = mCt(D1) × V (D2),

3. mEcc(D1 ◦D2) = mEcc(D1)× V (D2).

Proof. Given D1 is a DDLE digraph. Let ui ∈ V (D1) and vr ∈ V (D2). Then

meccD1◦D2(ui, vr) = meccD1(ui).

1.(ui, vr) ∈ mPer(D1 ◦D2) ⇐⇒ meccD1◦D2(ui, vr) ≥ meccD1◦D2(uk, vq)

for all (uk, vq) ∈ V (D1 ◦D2)

⇐⇒ meccD1(ui) ≥ meccD1(uk) for all uk ∈ V (D1)

⇐⇒ ui ∈ mPer(D1).

Thus, mPer(D1 ◦D2) = mPer(D1)× V (D2).

2. ND1◦D2(ui, vr) =
[
ND1(ui)× V (D2)

]⋃ [
{ui} ×ND2(vr)

]
.

(ui, vr) ∈ mCt(D1 ◦D2) ⇐⇒ meccD1◦D2(ui, vr) ≥ meccD1◦D2(uk, vq)

for all (uk, vq) ∈ ND1◦D2(ui, vr)

⇐⇒ meccD1(ui) ≥ meccD1(uk) for all uk ∈ ND1(ui)

⇐⇒ ui ∈ mCt(D1).

Hence it follows that mCt(D1 ◦D2) = mCt(D1)× V (D2).

3. (ui, vr) ∈ mEcc(D1 ◦ D2) if and only if there exists (uj, vs) ∈ V (D1 ◦ D2)

such that meccD1◦D2(uj, vs) = meccD1(uj) = mdD1◦D2((uj, vs), (ui, vr)). Since

D1 is a DDLE digraph, meccD1◦D2(uj, vs) = meccD1(uj), and uj ̸= ui. Thus,

mdD1◦D2((uj, vs), (ui, vr)) = mdD1(uj, ui). Hence it follows that (ui, vr) ∈ mEcc(D1 ◦
D2) if and only if there exists a vertex uj in D1 such that meccD1(uj) = mdD1(uj, ui);

if and only if ui ∈ mEcc(D1). Thus, mEcc(D1 ◦D2) = mEcc(D1)× V (D2).
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A digraph D is said to be symmetric if (u, v) ∈ E(D) if and only if (v, u) ∈ E(D),

and so the maximum distance md is the usual distance d and likewisem-eccentricity is

the usual eccentricity and so on. Thus the prefix m can be avoided for boundary-type

sets also. If D is a connected symmetric digraph, then ξD(x) = 2 for all x ∈ V (D).

Hence the DDLE property for D is ecc(x) > 2 for all x ∈ V (D); that is, rad(D) > 2.

Thus, an immediate corollary follows from Proposition 6.3.2.

Corollary 6.3.3. Let D1 be a connected symmetric digraph with rad(D1) > 2 and

D2 be an arbitrary digraph. Then

1. mPer(D1 ◦D2) = Per(D1)× V (D2),

2. mCt(D1 ◦D2) = Ct(D1) × V (D2),

3. mEcc(D1 ◦D2) = Ecc(D1)× V (D2).

6.3.2
−→
Cn ◦D2

In this section, we derive the expressions for all the four boundary-type sets of the

lexicographic product
−→
Cn ◦D2.

Proposition 6.3.4. Let
−→
Cn be the dicycle on n vertices and D2 be an arbitrary

digraph.

1. If mrad(D2) ≥ n or mdiam(D2) < n, then m∂(
−→
Cn ◦ D2) = mCt(

−→
Cn ◦ D2) =

mEcc(
−→
Cn ◦D2) = mPer(

−→
Cn ◦D2) = V (

−→
Cn)× V (D2).

2. If mrad(D2) < n and mdiam(D2) ≥ n, then mPer(
−→
Cn ◦D2) = mCt(

−→
Cn ◦D2) =

V (
−→
Cn) × I, and mEcc(

−→
Cn ◦ D2) = m∂(

−→
Cn ◦ D2) = V (

−→
Cn) × V (D2), where

I = {vr ∈ V (D2) : meccD2(vr) ≥ n}.

Proof. meccD1(ui) = n− 1 and ξ−→
Cn
(ui) = n for all ui ∈

−→
Cn. Hence

mecc−→
Cn◦D2

(ui, vr) =

n− 1 if meccD2(vr) ≤ n− 1,

n if meccD2(vr) ≥ n.

1. If mrad(D2) ≥ n, then mecc−→
Cn◦D2

(ui, vr) = n for all (ui, vr) ∈ V (
−→
Cn ◦ D2). If

mdiam(D2) < n, then mecc−→
Cn◦D2

(ui, vr) = n − 1 for all (ui, vr) ∈ V (
−→
Cn ◦ D2).

So in both the cases, m∂(
−→
Cn ◦ D2) = mCt(

−→
Cn ◦ D2) = mEcc(

−→
Cn ◦ D2) =

mPer(
−→
Cn ◦D2) = V (

−→
Cn)× V (D2).
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2. If mrad(D2) < n and mdiam(D2) ≥ n, then mPer(
−→
Cn ◦ D2) consists of all

those vertices (ui, vr) such that mecc−→
Cn◦D2

(ui, vr) = n. Hence mPer(
−→
Cn ◦D2) =

V (
−→
Cn)× I. Since mPer(

−→
Cn ◦D2) ⊆ mCt(

−→
Cn ◦D2), V (

−→
Cn)× I ⊆ mCt(

−→
Cn ◦D2).

If vr ∈ V (D2) is such that meccD2(vr) < n, then mecc−→
Cn◦D2

(ui, vr) = n − 1 for

all ui ∈ V (
−→
Cn). N−→

Cn
(ui) × V (D2) ⊆ N−→

Cn◦D2
(ui, vr). Since mdiam(D2) ≥ n,

there exists a vertex (uk, vq) ∈ N−→
Cn◦D2

(ui, vr) such that mecc−→
Cn◦D2

(uk, vq) = n.

Hence if meccD2(vr) < n, then (ui, vr) /∈ mCt(
−→
Cn ◦D2). Hence mCt(

−→
Cn ◦D2) =

V (
−→
Cn)× I.

Let ui ∈ V (
−→
Cn) and vr ∈ V (D2). If meccD2(vr) < n, then mecc−→

Cn◦D2
(ui, vr) =

n − 1 and there exists uj ̸= ui such that md−→
Cn◦D2

((uj, vr), (ui, vr)) = n −
1 = mecc−→

Cn◦D2
(uj, vr) and hence (ui, vr) is an m-eccentric vertex of (uj, vr).

If meccD2(vr) ≥ n, then mecc−→
Cn◦D2

(ui, vr) = n and there exists a vertex

vs ∈ V (D2) such that mdD2(vs, vr) ≥ n and so mecc−→
Cn◦D2

(ui, vs) = n. Thus

mecc−→
Cn◦D2

(ui, vs) = md−→
Cn◦D2

((ui, vs), (ui, vr)) = n and hence (ui, vr) is an m-

eccentric vertex of (ui, vs). Hence mEcc(
−→
Cn ◦ D2) = V (

−→
Cn) × V (D2). Since

mEcc(
−→
Cn ◦D2) ⊆ m∂(

−→
Cn ◦D2), m∂(

−→
Cn ◦D2) = V (

−→
Cn)× V (D2).

If D1 is not a DDLE digraph, then the boundary-type sets are no longer char-

acterized by the m-radius or m-diameter of the two digraphs. This is because

meccD1◦D2(ui, vr) depends on ξD1(ui), in addition to meccD1(ui) and meccD2(vr).

To see this, consider the digraphs D1 and D′
1 in Figure 6.2. The m-eccentricity

of each vertex is displayed near the vertex. Here, mdiam(D1) = mdiam(D′
1) = 2.

Let D2 be the symmetric dipath P4 with labels v1, v2, v3, v4 in order. Then

meccD2(v1) = meccD2(v4) = 3 and meccD2(v2) = meccD2(v3) = 2. In D1,

ξD1(u1) = ξD1(u3) = 3 and ξD1(u2) = ξD1(u4) = 2.

meccD1◦D2(ui, vr) =

min{meccD2(vr), 2} if meccD1(ui) = 1,

max{meccD1(ui),min{ξD1(ui),meccD2(vr)}} if meccD1(ui) ≥ 2.

Hence in D1 ◦ D2, mecc(u1, v1) = mecc(u3, v1) = mecc(u1, v4) = mecc(u3, v4) = 3

and the m-eccentricity of all the other vertices is 2. Thus, mPer(D1 ◦ D2) =

{(u1, v1), (u3, v1), (u1, v4), (u3, v4)}. In D′
1, mecc(u′

1) = 1 and hence mecc(u′
1, v1) = 2.

The m-eccentricities of every other vertex is 2, and dicycle distance of every vertex is

2. Since the m-eccentricity of every vertex in D2 is greater than or equal to 2, the m-

eccentricity of every vertex in D′
1◦D2 is 2 and hence mPer(D′

1◦D2) = V (D1)×V (D2).

Hence, the remaining discussion on boundary-type sets as a whole is restricted to

the case when D1 is a symmetric digraph. In Subsection 6.4.2, the expression for
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Figure 6.2: Two digraphs D1 and D′
1 with diameter 2, but with different m-periphery

for lexicographic product with D2 = P4

the m-periphery of the lexicographic product of two strongly connected digraphs is

derived.

6.3.3 D1 ◦D2, D1 is a Symmetric Digraph

Suppose that D1 is a symmetric digraph. Then ξD1(ui) = 2 for all ui ∈ V (D1).

Thus, mdD1◦D2((ui, vr), (uj, vs)) =

mdD1(ui, uj) if ui ̸= uj,

min{2,mdD2(vr, vs)} if ui = uj.

and meccD1◦D2(ui, vr) =

eccD1(ui) if eccD1(ui) ≥ 2

min{meccD2(vr), 2} if eccD1(ui) = 1.

Them-distance between two vertices inD1◦D2, whereD1 is a symmetric digraph is

analogous to the distance between two vertices in the case of the lexicographic product

of two symmetric digraphs. So all the results for the boundary type sets happens to be

the same. The description of the boundary-type sets of the lexicographic product of

two symmetric digraphs is given in [18]. In this section, the results for the boundary-

type sets are proved, when D1 is a symmetric digraph and D2 is an arbitrary digraph.

It is proved in [24] that mdiam(D) ≤ 2 mrad(D), for all digraphs D.

Now we consider the m-periphery, m-contour, and m-eccentricity of the lexico-
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graphic product Kn ◦D2, where Kn is the complete graph on n vertices. If D1 = Kn,

n ≥ 2, then ecc(ui) = 1 for all ui ∈ V (D1).

Hence, mdKn◦D2((ui, vr), (uj, vs)) =

1 if ui ̸= uj,

min{2,mdD2(vr, vs)} if ui = uj.

Also, meccKn◦D2(ui, vr) = min{meccD2(vr), 2}.

Proposition 6.3.5. Let Kn be the complete symmetric digraph on n vertices and

D2 be an arbitrary digraph. Then

1. mPer(Kn ◦D2) = mCt(Kn ◦D2) =



V (Kn)× V (D2) if mrad(D2) ≥ 2 or

D2 = Km,

V (Kn)×B′ if mrad(D2) = 1 and

D2 ̸= Km,

where B′ = V (D2)\mCen(D2).

2. mEcc(Kn ◦D2) = V (Kn)× V (D2).

Proof.

1. If mrad(D2) ≥ 2, then meccD1◦D2(ui, vr) = 2 for all (ui, vr) ∈ V (Kn ◦ D2). If

D2 = Km, then meccD1◦D2(ui, vr) = 1 for all (ui, vr) ∈ V (Kn ◦ D2). Thus in

both the cases, mPer(Kn ◦D2) = mCt(Kn ◦D2) = V (Kn)× V (D2).

If mrad(D2) = 1 and D2 ̸= Km, then meccD1◦D2(ui, vr) = 1 for all vr ∈
mCen(D2) and meccD1◦D2(ui, vr) = 2 for all vr ∈ V (D2)\mCen(D2). Thus,

mPer(Kn ◦D2) = V (Kn)× (V (D2)\mCen(D2)). If meccD1◦D2(ui, vr) = 1, then

(ui, vr) /∈ mCt(Kn◦D2), because there exists vq ∈ N(vr) such that meccD2(vq) =

2 and hence meccD1◦D2(uk, vq) = 2, where (uk, vq) ∈ ND1◦D2(ui, vr). Since every

vertex withm-eccentricity 2 is in mPer(Kn◦D2), it follows that mPer(Kn◦D2) =

mCt(Kn ◦D2) = V (Kn)× (V (D2)\mCen(D2)).

2. First, suppose that mrad(D2) = 1. If vs ∈ mCen(D2), then meccD2(vs) = 1,

and hence meccD1◦D2(ui, vs) = 1 = mdKn◦D2((ui, vs), (ui, vr)) for all (ui, vr) ∈
V (Kn ◦D2).

Now, if mrad(D2) ≥ 2, then for all vs ∈ V (D2), meccD2(vs) ≥ 2, and hence

meccD1◦D2(ui, vs) = 2 = mdKn◦D2((ui, vs), (ui, vr)) for all (ui, vr) ∈ V (Kn ◦D2).

Hence in both the cases, mEcc(Kn ◦D2) = V (Kn)× V (D2).
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From Corollary 6.3.3, if mrad(D1) > 2, then mPer(D1◦D2) = mPer(D1)×V (D2).

In the next two propositions, mPer(D1 ◦ D2) is obtained for mdiam(D1) ≥ 3 and

mdiam(D1) = 2. mdiam(D1) = 1 is the case when D1 = Kn, which was already

discussed.

Proposition 6.3.6. Let D1 be a connected symmetric digraph with diam(D1) ≥ 3,

and D2 be an arbitrary digraph. Then mPer(D1 ◦D2) = Per(D1)× V (D2).

Proof. If diam(D1) = n ≥ 3, then mdiam(D1 ◦D2) = n, since meccD1◦D2(ui, vr) = n

for all vertices (ui, vr) in D1 ◦ D2 such that ui ∈ Per(D1), vr ∈ V (D2) and

meccD1◦D2(ui, vr) < n for the remaining vertices. Hence mPer(D1 ◦D2) = Per(D1)×
V (D2).

Proposition 6.3.7. Let D1 be a connected symmetric digraph with diam(D1) = 2,

and D2 be an arbitrary digraph. Then

mPer(D1 ◦D2) =

V (D1)× V (D2) if mrad(D2) ≥ 2,[
Per(D1)× V (D2)

]⋃ [
V (D1)×B′] if mrad(D2) = 1,

where B′ = V (D2)\mCen(D2).

Proof. If diam(D1) = 2 and mrad(D2) ≥ 2, then meccD1◦D2(ui, vr) = 2 for all

(ui, vr) ∈ V (D1 ◦D2). Hence in this case, mPer(D1 ◦D2) = V (D1)× V (D2).

If diam(D1) = 2 and mrad(D2) = 1, then

(ui, vr) ∈ mPer(D1 ◦D2) ⇐⇒ meccD1◦D2(ui, vr) = 2

⇐⇒ either ecc(ui) = 2 or meccD2(vr) = 2

⇐⇒ either ui ∈ Per(D1) or vs ∈ V (D2)\mCen(D2).

Hence mPer(D1 ◦D2) =
[
Per(D1)× V (D2)

]⋃ [
V (D1)×B′].

The m-contour and the m-eccentricity sets of D1 ◦D2 depends on the m-radii of

both D1 and D2, unless mrad(D1) ≥ 3.

Proposition 6.3.8. Let D1 be a connected symmetric digraph different from Kn and

D2 be an arbitrary digraph. Then

mCt(D1 ◦ D2) =



Ct(D1)× V (D2) if rad(D1) ≥ 2,

V (D1)× V (D2) if rad(D1) = 1 and

mrad(D2) ≥ 2,[
(V (D1)\Cen(D1))× V (D2)

]⋃ [
Cen(D1)×B′] if rad(D1) = 1 and

mrad(D2) = 1,

where B′ = V (D2)\mCen(D2).
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Proof. Let ui ∈ V (D1) and vr ∈ V (D2).

Suppose that rad(D1) ≥ 2. If rad(D1) > 2, then by Corollary 6.3.3, mCt(D1 ◦
D2) = Ct(D1) × V (D2). Let rad(D1) = 2. Then meccD1◦D2(ui, vr) = eccD1(ui)

for all (ui, vr) ∈ V (D1 ◦ D2). Also, ND1◦D2(ui, vr) =
[
ND1(ui) × V (D2)

]⋃ [
{ui} ×

ND2(vr)
]
. If ui ∈ Ct(D1), then eccD1(ui) ≥ eccD1(uk) for all uk ∈ ND1(ui).

Thus, meccD1◦D2(ui, vr) ≥ meccD1◦D2(uk, vs) for all (uk, vs) ∈ ND1◦D2(ui, vr). Hence

Ct(D1) × V (D2) ⊆ mCt(D1 ◦ D2). If ui /∈ Ct(D1), then there exists uq ∈ ND1(ui)

such that eccD1(uq) > eccD1(ui). Hence there exists (uq, vs) ∈ ND1◦D2(ui, vr) such

that meccD1◦D2(ui, vr) < meccD1◦D2(uq, vs) and thus (ui, vr) /∈ mCt(D1 ◦D2). Hence

mCt(D1 ◦D2) = Ct(D1)× V (D2).

Suppose that rad(D1) = 1 and mrad(D2) ≥ 2. Thus, diam(D1) ≤ 2, and

eccD1(ui) = 1 or 2. Since meccD2(vr) ≥ 2 for all vr ∈ V (D2), meccD1◦D2(ui, vr) = 2

for all (ui, vr) ∈ V (D1 ◦D2). Hence in this case, mCt(D1 ◦D2) = V (D1)× V (D2).

Consider the case, rad(D1) = mrad(D2) = 1. In this case, meccD1◦D2(ui, vr) = 1 or

2 for all (ui, vr) ∈ V (D1◦D2). Let ui ∈ V (D1) and vr ∈ V (D2). If meccD1◦D2(ui, vr) =

2, then (ui, vr) ∈ mCt(D1◦D2). meccD1◦D2(ui, vr) = 2 only in the following two cases.

Case 1: eccD1(ui) = 2 and meccD2(vr) ≥ 1

Case 2: eccD1(ui) = 1 and meccD2(vr) = 2

Since D1 ̸= Kn, diam(D1) = 2 and so the first possibility is ui ∈ V (D1)\Cen(D1)

and vr ∈ V (D2). The second possibility is ui ∈ Cen(D1) and vr ∈ V (D2)\mCen(D2).

meccD1◦D2(ui, vr) = 1 if and only if eccD1(ui) = meccD2(vr) = 1. As D1 ̸= Kn

and eccD1(ui) = 1, there is at least one uk ∈ ND1(ui) such that ecc(uk) = 2. Hence

mecc(uk, vr) = 2 and since (uk, vr) ∈ ND1◦D2(ui, vr), it follows that (ui, vr) /∈ mCt(D1◦
D2). Hence in this case, mCt(D1 ◦D2) =

[
(V (D1)\Cen(D1))×V (D2)

]⋃ [
Cen(D1)×

(V (D2)\mCen(D2))
]
.

To derive the expressions for mEcc(D1 ◦ D2) for the cases when D1 is either a

symmetric digraph with mrad(D1) = 2 or a symmetric digraph with mrad(D1) = 1

and D1 ̸= Kn, we require the following lemma.

Lemma 6.3.9. Let D1 be a connected symmetric digraph and D2 be an arbitrary

digraph. Then Ecc(D1)× V (D2) ⊆ mEcc(D1 ◦D2).

Proof. Let ui ∈ V (D1) and vr ∈ V (D2). Whenever ui ∈ Ecc(D1), there exists a

vertex uj ∈ V (D1) such that eccD1(uj) = dD1(uj, ui). If rad(D1) ≥ 2, then in D1 ◦D2,
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meccD1◦D2(uj, vr) = eccD1(uj) = dD1(uj, ui) = mdD1◦D2((uj, vr), (ui, vr)) and hence

(ui, vr) ∈ mEcc(D1 ◦D2). If rad(D1) = 1 and if ui ∈ Ecc(D1), let uj ∈ V (D1) be such

that eccD1(uj) = 1 = dD1(uj, ui). Then there are two cases.

If meccD2(vr) = 1, then meccD1◦D2(uj, vr) = mdD1◦D2((uj, vr), (ui, vr)) = 1 and

so (ui, vr) ∈ mEcc(D1 ◦ D2). If meccD2(vr) ≥ 2, then there exists a vertex vs ∈
V (D2) such that in D1 ◦D2, meccD1◦D2(ui, vs) = mdD1◦D2((ui, vs), (ui, vr)) = 2 and so

(ui, vr) ∈ mEcc(D1◦D2). So in both the cases, Ecc(D1)×V (D2) ⊆ mEcc(D1◦D2).

Proposition 6.3.10. Let D1 be a connected symmetric digraph with rad(D1) = 2,

and D2 be an arbitrary digraph. Then

mEcc(D1 ◦D2) =


[
Ecc(D1)× V (D2)

]⋃ [
Cen(D1)×B′] if mrad(D2) = 1,[

Ecc(D1)
⋃

Cen(D1)
]
× V (D2) if mrad(D2) ≥ 2,

where B′ = V (D2)\mCen(D2).

Proof. By Lemma 6.3.9, Ecc(D1) × V (D2) ⊆ mEcc(D1 ◦ D2). Now, it is enough to

find the vertices (ui, vr) ∈ mEcc(D1 ◦D2) such that ui /∈ Ecc(D1).

First, suppose that mrad(D2) = 1. If ui ∈ Cen(D1), then ecc(ui) = 2 and hence

mecc(ui, vr) = 2 for all vr ∈ V (D2). If vr /∈ mCen(D2), then mecc(vr) ≥ 2

and so there exists a vertex vs ∈ V (D2) such that mdD2(vs, vr) ≥ 2 and hence

mdD1◦D2((ui, vs), (ui, vr)) = 2. But, if vr ∈ mCen(D2), mdD2(vs, vr) = 1 for

all vs ∈ V (D2). Hence there exists no vertex (ui, vs) in D1 ◦ D2 such that

mdD1◦D2((ui, vs), (ui, vr)) = 2. Thus if ui /∈ Ecc(D1), then (ui, vr) ∈ mEcc(D1 ◦ D2)

if and only if ui ∈ Cen(D1) and vr /∈ mCen(D2). Hence mEcc(D1 ◦ D2) =[
Ecc(D1)× V (D2)

]⋃ [
Cen(D1)× (V (D2)\mCen(D2))

]
.

Next, suppose that mrad(D2) ≥ 2. Let vr ∈ V (D2). Since rad(D1) = 2 and

mrad(D2) ≥ 2, mecc(ui, vs) =

ecc(ui) if ui /∈ Cen(D1),

2 if ui ∈ Cen(D1).

(ui, vr) ∈ mEcc(D1 ◦ D2) if and only if there exists a vertex (uj, vs) ∈ V (D1 ◦ D2)

such that mecc(uj, vs) = mdD1◦D2((uj, vs), (ui, vr)). If vs ∈ V (D2) is such that

mdD2(vs, vr) ≥ 2, then meccD1◦D2(ui, vs) = 2 = mdD1◦D2((ui, vs), (ui, vr)) for

all ui ∈ Cen(D1). Thus besides Ecc(D1) × V (D2), all elements (ui, vr), where

ui ∈ Cen(D1) are also m-eccentric vertices in D1 ◦ D2. For vertices ui such that

ui /∈ Ecc(D1) and ui /∈ Cen(D1), ecc(ui) > 2 and there exist no vertex uj ∈ V (D1)

such that ecc(uj) = dD1(uj, ui). Hence in D1 ◦ D2, there exist no vertex (uj, vs)

such that meccD1◦D2(uj, vs) = mdD1◦D2((uj, vs), (ui, vr)). That is, (ui, vr) is not

an m-eccentric vertex of any vertex (uj, vs) in D1 ◦ D2. Thus mEcc(D1 ◦ D2) =[
Ecc(D1)

⋃
Cen(D1)

]
× V (D2).
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Proposition 6.3.11. Let D1 be a connected symmetric digraph with rad(D1) = 1

different from Kn and D2 be an arbitrary digraph. Then

mEcc(D1◦D2) =



[
Ecc(D1)× V (D2)

]⋃ [
Cen(D1)×B′] if mrad(D2) = 1 and

|Cen(D1)| = |mCen(D2)| = 1

Ecc(D1)× V (D2) if mrad(D2) = 1 and

|Cen(D1)| ≥ 2[
Ecc(D1)

⋃
Cen(D1)

]
× V (D2) if either mrad(D2) ≥ 2 or

mrad(D2) = 1, |Cen(D1)| = 1,

and |mCen(D2)| ≥ 2

where B′ = V (D2)\mCen(D2).

Proof. By Lemma 6.3.9, mEcc(D1)× V (D2) ⊆ mEcc(D1 ◦D2).

Thus, it is enough to find the remaining vertices in Ecc(D1 ◦D2) in each of the four

cases.

Case 1: mrad(D2) = 1 and |Cen(D1)| = |mCen(D2)| = 1. Let vr ∈ V (D2).

meccD1◦D2(ui, vs) =

eccD1(ui) if ui /∈ Cen(D1),

min{meccD2(vs), 2} if ui ∈ Cen(D1).

Thus if ui /∈ Ecc(D1), then (ui, vr) ∈ mEcc(D1 ◦ D2) only if ui ∈ Cen(D1)

and vr /∈ mCen(D2). For, if vs ∈ V (D2) is such that mdD2(vr, vs) = 2, then

meccD1◦D2(ui, vs) = 2. Thus meccD1◦D2(ui, vs) = mdD1◦D2((ui, vs), (ui, vr)) = 2 for

ui ∈ mCen(D1) and vr /∈ mCen(D2), and there exists only one vertex in D1 ◦ D2

having m-eccentricity 1 (the single vertex in Cen(D1) × mCen(D2)). This vertex

cannot be the m-eccentric vertex of any vertex in D1 ◦D2. Hence mEcc(D1 ◦D2) =[
Ecc(D1)× V (D2)

]⋃ [
Cen(D1)× (V (D2)\mCen(D2))

]
.

Case 2: mrad(D2) = 1 and |Cen(D1)| ≥ 2. If ui ∈ Cen(D1), then there exists

another vertex uj ∈ Cen(D1) such that ecc(uj) = dD1(uj, ui) = 1. Hence ui ∈
Ecc(D1). Thus, mEcc(D1 ◦D2) = Ecc(D1)× V (D2).

Case 3: mrad(D2) = 1, |Cen(D1)| = 1 and |mCen(D2)| ≥ 2. For

each vr ∈ mCen(D2), there exists another vertex vs ∈ mCen(D2) such that

mecc(vs) = mdD2(vs, vr) = 1. Thus, if ui ∈ Cen(D1), then mecc(ui, vs) =

mdD1◦D2((ui, vs), (ui, vr)) = 1. That is, every vertex (ui, vr) such that ui ∈
Cen(D1), vr ∈ mCen(D2) is an m-eccentric vertex in D1 ◦ D2. But all vertices in

Cen(D1) × (V (D2)\mCen(D2)) are in mEcc(D1 ◦ D2), as proved in the first case.

Since no other vertex could be an m-eccentric vertex in D1 ◦ D2, it follows that

mEcc(D1 ◦D2) =
[
Ecc(D1)

⋃
Cen(D1)

]
× V (D2).
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Case 4: mrad(D2) ≥ 2.

Then meccD1◦D2(ui, vs) =

eccD1(ui) if ui /∈ Cen(D1),

2 if ui ∈ Cen(D1).

Hence if ui ∈ Cen(D1), then meccD1◦D2(ui, vs) = mdD1◦D2((ui, vs), (ui, vr)) = 2 for

all vr ∈ V (D2). So the vertices (ui, vr) ∈ Cen(D1)× V (D2) are the other vertices in

mEcc(D1 ◦D2). Thus, mEcc(D1 ◦D2) =
[
Ecc(D1)

⋃
Cen(D1)

]
× V (D2).

The m-boundary of D1 ◦D2 when D1 is a connected symmetric digraph is consid-

ered below.

Proposition 6.3.12. Let D1 be a connected symmetric digraph and D2 be an arbi-

trary digraph. Then

1. m∂(D1 ◦ D2) = V (D1) × V (D2), if mrad(D2) ≥ 2 or mrad(D2) = 1 and

|mCen(D2)| ≥ 2.

2. m∂(D1 ◦ D2) =
[
V (D1) × B′]⋃ [

∂(D1) × mCen(D2)
]
, if mrad(D2) = 1 and

|mCen(D2)| = 1, where B′ = V (D2)\mCen(D2).

Proof. Let ui ∈ V (D1) and vr ∈ V (D2).

1. Suppose that mrad(D2) ≥ 2.

Then meccD1◦D2(ui, vr) =

eccD1(ui) if eccD1(ui) ≥ 2,

2 if eccD1(ui) = 1.

Since mdD1◦D2((uj, vs), (ui, vr)) =


dD1(uj, ui) if ui ̸= uj,

1 if ui = uj and mdD2(vs, vr) = 1,

2 if ui = uj and mdD2(vs, vr) > 1,

it follows that if vs ∈ V (D2) is a vertex such that mdD2(vs, vr) > 1,

then mdD1◦D2((ui, vs), (ui, vr)) = 2. If (uk, vq) ∈ ND1◦D2(ui, vr), then

mdD1◦D2((ui, vs), (uk, vq)) =


1 if uk ∈ ND1(ui),

1 if uk = ui and mdD2(vs, vq) = 1,

2 if uk = ui and mdD2(vs, vq) > 1,

as ND1◦D2(ui, vr) =
[
ND1(ui) × V (D2)

]⋃ [
{ui} × N(vr)

]
. Hence (ui, vr) is a

boundary vertex of (ui, vs). Thus, V (D1)× V (D2) ⊆ m∂(D1 ◦D2).

Now suppose that mrad(D2) = 1 and |mCen(D2)| ≥ 2. Let va ∈ mCen(D2).

So mdD2(va, vr) = 1 for all vr ∈ V (D2). Then mdD1◦D2((ui, va), (ui, vr)) =

1, and mdD1◦D2((ui, va), (uk, vq)) = 1 for all (uk, vq) ∈ ND1◦D2(ui, vr), since
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dD1(ui, uk) = 1 for all uk ∈ ND1(ui). Since |mCen(D2)| ≥ 2, there exist vb ∈
mCen(D2) such that mdD2(vb, va) = 1. Thus we get mdD1◦D2((ui, vb), (ui, va)) =

1, and also mdD1◦D2((ui, vb), (uk, vq)) = 1 for all (uk, vq) ∈ ND1◦D2(ui, va). So in

this case also, V (D1)× V (D2) ⊆ m∂(D1 ◦D2).

2. Suppose that mrad(D2) = 1 and |mCen(D2)| = 1. So there is only one ver-

tex va such that mdD2(va, vr) = 1 for all vr ∈ V (D2). Hence every vertex

(ui, vr) ∈ V (D1 ◦ D2) is a boundary vertex of (ui, va). Also, (ui, va) is not

a boundary vertex in D1 ◦ D2 unless ui is a boundary vertex in D1. For, if

ui ∈ ∂(D1), then ui is a boundary vertex of uj ∈ V (D1), and hence (ui, va)

is a boundary vertex of (uj, va) in D1 ◦ D2. So in this case, m∂(D1 ◦ D2) =[
V (D1)× (V (D2)\mCen(D2))

]⋃ [
∂(D1)×mCen(D2)

]
.

6.4 Center and Periphery of the Lexicographic

Product

The study of the center and periphery of the lexicographic product of any two strong

digraphs is the highlight of this chapter. The expressions for the m-center of the lexi-

cographic product of any two strong digraphs is obtained as various cases, depending

on the m-radii of D1 and D2 in Subsection 6.4.1. In the previous sections, the vari-

ous boundary-type sets of lexicographic product of digraphs were studied in certain

particular cases. The expressions for the m-periphery of the lexicographic product of

any two strong digraphs are obtained in Subsection 6.4.2.

Two new concepts are to be introduced to obtain the m-center and the m-

periphery of two arbitrary strongly connected digraphs D1 and D2. The DDLE

property already defined for a digraph as a whole is now defined for each vertex

in the digraph. Also, the ‘dicycle distance equal to eccentricity property’ or in short

the DDEE property for a vertex in the digraph is defined.

Definition 6.4.1. Let D be a digraph. A vertex x ∈ V (D) is said to satisfy

the dicycle distance less than eccentricity property (DDLE property), if

mecc(x) > ξD(x).

Definition 6.4.2. Let D be a digraph. A vertex x ∈ V (D) is said to satisfy

the dicycle distance equal to eccentricity property (DDEE property), if

mecc(x) = ξD(x).
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Lemma 6.4.3. Let D be any digraph. If x1 ∈ V (D) is such that x1 does not satisfy

the DDLE property and the DDEE property, then ξD(x1) = mecc(x1) + 1.

Proof. Given x1 ∈ V (D) does not satisfy the DDLE property and the DDEE property.

So ξD(x1) ≥ mecc(x1)+1. Let the shortest dicycle containing x1 be x1a1x2 . . . xkakx1.

Suppose that ξD(x1) ≥ mecc(x1) + 2. Then
−→
d (x1, xk) ≥ mecc(x1) + 1, which gives

md(x1, xk) ≥ mecc(x1) + 1, which is not possible. Hence ξD(x1) = mecc(x1) + 1.

6.4.1 Center of the Lexicographic Product of Two Digraphs

The m-center of the lexicographic product of two strongly connected digraphs D1

and D2 with vertex sets V (D1) = {u1, . . . , um}, V (D2) = {v1, . . . , vn} is investigated

here. It is seen that the m-center of the lexicographic product depends upon the

m-radii of the two digraphs. The following sets are defined to obtain the explicit

representations for the m-center in various cases.

A = {ui ∈ V (D1) : meccD1(ui) = mrad(D1) + 1},
B = {ui ∈ V (D1)\mCen(D1) : ξD1(ui) = mrad(D1) + 1},
E = {vr ∈ V (D2) : meccD2(vr) ≤ mrad(D1)},
F = {ui ∈ mCen(D1) : ui is either DDLE or DDEE}.

First, we consider the case when mrad(D1) = 1.

Proposition 6.4.4. LetD1 andD2 be strongly connected digraphs. If mrad(D1) = 1,

then

mCen(D1 ◦D2) =


mCen(D1)×mCen(D2) if mrad(D2) = 1,[
A′ ×mCen(D2)

]⋃ [
(mCen(D1)

⋃
B)× V (D2)

]
if mrad(D2) = 2,[

(mCen(D1)
⋃

B
]
× V (D2) if mrad(D2) ≥ 3,

where A′ = V (D1)\mCen(D1).

Proof. As md is a metric, it satisfies the inequality mdiam(D1) ≤ 2 mrad(D1). Thus

meccD1(ui) = 2 for all vertices ui ∈ V (D1)\mCen(D1) and hence in this case, equation

(6.1) reduces to

meccD1◦D2(ui, vr) =

min{meccD2(vr), 2} if meccD1(ui) = 1,

max{2,min{ξD1(ui),meccD2(vr)}} if meccD1(ui) = 2.
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Case 1: mrad(D2) = 1.

Since mrad(D1) = mrad(D2) = 1, it follows that mrad(D1 ◦D2) = 1. Let (uj, vs) ∈
mCen(D1◦D2). Then meccD1◦D2(uj, vs) = 1 and hence meccD1(uj) = meccD2(vs) = 1.

Thus, (uj, vs) ∈ mCen(D1)×mCen(D2).

Conversely, if (uj, vs) ∈ mCen(D1) × mCen(D2), then uj ∈ mCen(D1) and vs ∈
mCen(D2) and hence meccD1◦D2(uj, vs) = 1. Therefore, (uj, vs) ∈ mCen(D1 ◦D2).

Case 2: mrad(D2) = 2.

Since mrad(D1) = 1, and mrad(D2) = 2, it follows that mrad(D1 ◦ D2) = 2. If

(uj, vs) ∈ mCen(D1 ◦ D2), then meccD1◦D2(uj, vs) = 2 and this happens only in the

following cases.

1. uj ∈ mCen(D1) and vs is any vertex in V (D2); that is, (uj, vs) ∈ mCen(D1) ×
V (D2)

2. uj /∈ mCen(D1) and vs ∈ mCen(D2); that is, (uj, vs) ∈ (V (D1)\mCen(D1)) ×
mCen(D2)

3. uj /∈ mCen(D1), ξD1(uj) = 2, and vs is any vertex in V (D2); that is, (uj, vs) ∈
B × V (D2)

Thus, (uj, vs) ∈
[
mCen(D1) × V (D2)

]⋃ [
(V (D1)\mCen(D1)) × mCen(D2)

]⋃ [
B ×

V (D2)
]
.

Conversely, if (uj, vs) belongs to any one of the sets mCen(D1) × V (D2),

(V (D1)\mCen(D1))×mCen(D2) or B × V (D2), then meccD1◦D2(uj, vs) = 2. There-

fore, (uj, vs) ∈ mCen(D1◦D2). Hence
[
mCen(D1)×V (D2)

]⋃ [
(V (D1)\mCen(D1))×

mCen(D2)
]⋃ [

B × V (D2)
]

⊆ mCen(D1 ◦ D2). Thus, mCen(D1 ◦ D2) =[
mCen(D1) × V (D2)

]⋃ [
(V (D1)\mCen(D1)) × mCen(D2)

]⋃ [
B × V (D2)

]
=[

(V (D1)\mCen(D1))×mCen(D2)
]⋃ [

(mCen(D1)
⋃
B)× V (D2)

]
.

Case 3: mrad(D2) ≥ 3.

Since mrad(D1) = 1 and mrad(D2) ≥ 3, it follows that mrad(D1 ◦ D2) = 2. Let

(uj, vs) ∈ mCen(D1 ◦D2). Then meccD1◦D2(uj, vs) = 2. meccD1◦D2(uj, vs) = 2 only in

the following cases.

1. uj ∈ mCen(D1) and vs is any vertex in V (D2); that is, (uj, vs) ∈ mCen(D1) ×
V (D2)

2. uj /∈ mCen(D1), ξD1(uj) = 2, and vs is any vertex in V (D2)

Thus, (uj, vs) ∈
[
mCen(D1)× V (D2)

]⋃ [
B × V (D2)

]
.

Conversely, if (uj, vs) belongs to any one of the sets mCen(D1) × V (D2) and B ×
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V (D2), then meccD1◦D2(uj, vs) = 2 and hence
[
mCen(D1)×V (D2)

]⋃ [
B×V (D2)

]
⊆

mCen(D1 ◦ D2). Thus, mCen(D1 ◦ D2) =
[
mCen(D1) × V (D2)

]⋃ [
B × V (D2)

]
=[

mCen(D1)
⋃

B
]
× V (D2).

Now, we consider the case when mrad(D1) ≥ 2.

Proposition 6.4.5. Let D1 and D2 be two strongly connected digraphs and

mrad(D1) ≥ 2.

1. If mrad(D2) ≤ mrad(D1), then mCen(D1 ◦ D2) =
[
mCen(D1) × E

]⋃ [
F ×

V (D2)
]
.

2. If mrad(D2) = mrad(D1) + 1, then

mCen(D1 ◦D2) =

F × V (D2) if F is non-empty,[
A×mCen(D2)

]⋃ [
X × V (D2)

]
otherwise,

where X = mCen(D1)
⋃
(A ∩B).

3. If mrad(D2) ≥ mrad(D1) + 2, then

mCen(D1 ◦D2) =

F × V (D2) if F is non-empty,[
mCen(D1)

⋃
(A ∩B)

]
× V (D2) otherwise.

Proof. meccD1◦D2(ui, vr) = max{meccD1(ui),min{ξD1(ui),meccD2(vr)}} for all

(ui, vr) ∈ V (D1 ◦D2).

1. mrad(D2) ≤ mrad(D1).

Since meccD1◦D2(ui, vr) ≥ meccD1(ui) for all (ui, vr) ∈ V (D1 ◦ D2), it fol-

lows that mrad(D1 ◦ D2) is mrad(D1). Let (uj, vs) ∈ mCen(D1 ◦ D2). Then

meccD1◦D2(uj, vs) = mrad(D1). meccD1◦D2(uj, vs) = mrad(D1) only in the fol-

lowing cases.

(a) uj ∈ mCen(D1) and vs ∈ E

(b) uj ∈ F and vs is any vertex in V (D2)

Thus, (uj, vs) ∈
[
mCen(D1)× E

]⋃ [
F × V (D2)

]
.

Conversely, if (uj, vs) belongs to any one of the sets mCen(D1) × E or F ×
V (D2), then meccD1◦D2(uj, vs) = mrad(D1) and hence

[
mCen(D1)×E

]⋃ [
F ×

V (D2)
]
⊆ mCen(D1 ◦D2). Thus, mCen(D1 ◦D2) =

[
mCen(D1) × E

]⋃ [
F ×

V (D2)
]
.
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2. mrad(D2) = mrad(D1) + 1.

Case 1: F is non-empty.

Since there is at least one vertex u ∈ mCen(D1) such that ξD1(u) ≤ meccD1(u),

it follows that the minimum possible m-eccentricity of a vertex in D1 ◦ D2 is

mrad(D1); that is, mrad(D1 ◦D2) = mrad(D1). Let (uj, vs) ∈ mCen(D1 ◦D2).

Then meccD1◦D2(uj, vs) = mrad(D1). meccD1◦D2(uj, vs) = mrad(D1) only in the

case uj ∈ F and vs is any vertex in V (D2). Thus, (uj, vs) ∈ F × V (D2).

Conversely, if (uj, vs) belongs to the set F × V (D2), then meccD1◦D2(uj, vs) =

mrad(D1) and hence F × V (D2) ⊆ mCen(D1 ◦ D2). Thus, mCen(D1 ◦ D2) =

F × V (D2).

Case 2: F is empty.

For all vertices u ∈ mCen(D1), ξD1(u) > meccD1(u) (ξD1(u) = meccD1(u) + 1 =

mrad(D1) + 1) and since mrad(D2) = mrad(D1) + 1, min{meccD2(v)} =

mrad(D1) + 1. So it follows that if u ∈ mCen(D1), meccD1◦D2(u, v) =

max{meccD1(u),min{ξD1(u),meccD2(v)}} = max{mrad(D1),mrad(D1) + 1}}
for every vertex v ∈ V (D2). So the minimum possible m-eccentricity of a ver-

tex in D1 ◦D2 is mrad(D1) + 1; that is, mrad(D1 ◦D2) = mrad(D1) + 1.

Let (uj, vs) ∈ mCen(D1 ◦ D2). Then meccD1◦D2(uj, vs) = mrad(D1) + 1.

meccD1◦D2(uj, vs) = mrad(D1) + 1 is attained by vertices in V (D1 ◦ D2) in

exactly three different ways.

(a) If ui ∈ A and vr ∈ mCen(D2), then meccD1(ui) = mrad(D1) + 1 and

meccD2(vr) = mrad(D1) + 1. Thus, meccD1◦D2(ui, vr) = mrad(D1) + 1 for

all ui ∈ A, vr ∈ mCen(D2).

(b) If ui ∈ mCen(D1), then since F is empty, ξD1(ui) = meccD1(ui) + 1 and

hence meccD1◦D2(ui, vr) = mrad(D1) + 1 for all ui ∈ mCen(D1), vr ∈
V (D2).

(c) If ui ∈ A ∩B, then meccD1◦D2(ui, vr) = mrad(D1) + 1 for all vr ∈ V (D2).

Since meccD1◦D2(uj, vs) > mrad(D1) + 1 for all other vertices (uj, vs) ∈ V (D1 ◦
D2), it follows that mCen(D1 ◦ D2) ⊆

[
A × mCen(D2)

]⋃ [
(mCen(D1)

⋃
(A ∩

B))× V (D2)
]
.

Conversely, if (uj, vs) belongs to any one of the sets A×mCen(D2), mCen(D1)×
V (D2), and (A∩B)×V (D2), then meccD1◦D2(uj, vs) = mrad(D1)+1 and hence[
A×mCen(D2)

]⋃ [
(mCen(D1)

⋃
(A∩B))×V (D2)

]
⊆ mCen(D1◦D2). Thus if F

is empty, mCen(D1◦D2) =
[
A×mCen(D2)

]⋃ [
(mCen(D1)

⋃
(A∩B))×V (D2)

]
.
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3. mrad(D2) ≥ mrad(D1) + 2.

Case 1: F is non-empty.

As in the case mrad(D2) = mrad(D1) + 1, it follows that mrad(D1 ◦ D2) =

mrad(D1). Let (uj, vs) ∈ mCen(D1 ◦D2). Then meccD1◦D2(uj, vs) = mrad(D1).

meccD1◦D2(uj, vs) = mrad(D1) only in the case uj ∈ F and vs is any vertex in

V (D2). Thus, (uj, vs) ∈ F × V (D2).

Conversely, if (uj, vs) belongs to the set F × V (D2), then meccD1◦D2(uj, vs) =

mrad(D1) and hence F × V (D2) ⊆ mCen(D1 ◦ D2). Thus, mCen(D1 ◦ D2) =

F × V (D2).

Case 2: F is empty.

Similar to the case mrad(D2) = mrad(D1)+ 1, mrad(D1 ◦D2) is mrad(D1)+ 1.

Let (uj, vs) ∈ mCen(D1 ◦ D2). Then meccD1◦D2(uj, vs) = mrad(D1) + 1. Here

meccD1◦D2(uj, vs) = mrad(D1) + 1 is attained by vertices in V (D1 ◦D2) in only

two different ways. This is because the vertices in mCen(D2) have m-radius

greater than or equal to mrad(D1)+2 and so meccD1◦D2(uj, vs) = mrad(D1)+1

only in the following two cases.

(a) If ui ∈ A ∩B, then meccD1◦D2(ui, vr) = mrad(D1) + 1 for all vr ∈ V (D2).

(b) If ui ∈ mCen(D1), then since F is empty, ξD1(ui) = meccD1(ui) + 1 and

hence meccD1◦D2(ui, vr) = mrad(D1) + 1 for all ui ∈ mCen(D1), vr ∈
V (D2).

Since meccD1◦D2(uj, vs) > mrad(D1) + 1 for all other vertices (ui, vr) ∈ V (D1 ◦
D2), it follows that mCen(D1 ◦D2) ⊆

[
mCen(D1)

⋃
(A ∩B)

]
× V (D2).

Conversely, if (uj, vs) belongs to any one of the sets mCen(D1) × V (D2)

or (A ∩ B) × V (D2), then meccD1◦D2(uj, vs) = mrad(D1) + 1 and hence[
mCen(D1)

⋃
(A ∩ B)

]
× V (D2) ⊆ mCen(D1 ◦ D2). Thus, mCen(D1 ◦ D2) =[

mCen(D1)
⋃
(A ∩B)

]
× V (D2).

6.4.2 Periphery of the Lexicographic Product of Two Di-

graphs

The m-periphery of the lexicographic product of two strongly connected digraphs

D1 and D2 with vertex sets V (D1) = {u1, . . . , um} and V (D2) = {v1, . . . , vn} is

investigated here. The m-periphery of the lexicographic product of digraphs D1 and

D2 is already obtained in Section 6.3 in certain cases.
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Expressions for the m-periphery of the lexicographic product are obtained, de-

pending upon the m-diameters of the two digraphs. The following sets are defined

for this purpose.

G = {ui ∈ mPer(D1) : ui is neither DDLE nor DDEE},
H = {ui ∈ V (D1) :

[
meccD1(ui) = mdiam(D1)− 1

]
&

[
ξD1(ui) = mdiam(D1)

]
},

I = {vr ∈ V (D2) : meccD2(vr) ≥ mdiam(D1) + 1},
J = {vr ∈ V (D2) : meccD2(vr) ≥ mdiam(D1)}.

Proposition 6.4.6. Let D1 and D2 be two strongly connected digraphs.

1. If mdiam(D2) ≥ mdiam(D1), then

mPer(D1 ◦D2) =

G× I if G and I are non-empty,[
mPer(D1)× V (D2)

]⋃ [
H × J

]
otherwise.

2. If mdiam(D2) < mdiam(D1), then mPer(D1 ◦D2) = mPer(D1)× V (D2).

Proof. meccD1◦D2(ui, vr) = max{meccD1(ui),min{ξD1(ui),meccD2(vr)}} for all

(ui, vr) ∈ V (D1 ◦D2).

1. mdiam(D2) ≥ mdiam(D1).

In this case, the maximum m-eccentricity of the vertices in V (D1 ◦D2) is either

mdiam(D1) + 1 or mdiam(D1) depending on whether G and I are non-empty

or not.

Case 1: G and I are non-empty.

Here, the maximum possible m-eccentricity of a vertex in D1 ◦ D2, which

is mdiam(D1) + 1 is attained. So mdiam(D1 ◦ D2) = mdiam(D1) + 1.

Let (uj, vs) ∈ G × I. Then ξD1(uj) = meccD1(uj) + 1 = mdiam(D1) + 1

and meccD2(vs) ≥ mdiam(D1) + 1. Thus, meccD1◦D2(uj, vs) =

max{mdiam(D1),min{mdiam(D1) + 1,meccD2(vs)}} = mdiam(D1) + 1.

Hence (uj, vs) ∈ mPer(D1 ◦D2). Thus G× I ⊆ mPer(D1 ◦D2).

Conversely, let (uj, vs) ∈ mPer(D1 ◦ D2). Then meccD1◦D2(uj, vs) =

mdiam(D1) + 1. The m-eccentricity mdiam(D1) + 1 is attained only by those

vertices uj ∈ mPer(D1) for which ξD1(uj) = meccD1(uj) + 1, and vs ∈ V (D2)

for which meccD2(vs) ≥ mdiam(D1) + 1. Since the m-eccentricity of all other

vertices is less than mdiam(D1) + 1, mPer(D1 ◦D2) ⊆ G× I.

Hence mPer(D1 ◦D2) = G× I.

Case 2: Either G or I is empty.
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If G is empty, then since no vertex in V (D1 ◦ D2) has m-eccentricity

mdiam(D1) + 1, it follows that mdiam(D1 ◦ D2) = mdiam(D1). If G is

non-empty and I is empty, then also mdiam(D1 ◦ D2) = mdiam(D1) (since

there is no vertex vr ∈ V (D2) for which meccD2(vr) ≥ mdiam(D1) + 1). So

mdiam(D1 ◦D2) = mdiam(D1).

Let (uj, vs) ∈ mPer(D1 ◦ D2). Then meccD1◦D2(uj, vs) = mdiam(D1). In this

case, the m-eccentricity of mdiam(D1) is attained by two types of vertices

in V (D1 ◦ D2). These are the vertices in mPer(D1) × V (D2) and all the

vertices in H × J and hence (uj, vs) ∈
[
mPer(D1)× V (D2)

]⋃ [
H × J

]
. Thus,

mPer(D1 ◦D2) ⊆
[
mPer(D1)× V (D2)

]⋃ [
H × J

]
.

Conversely, if (uj, vs) ∈
[
mPer(D1) × V (D2)

]⋃ [
H × J

]
, then

meccD1◦D2(uj, vs) = mdiam(D1) and hence (uj, vs) ∈ mPer(D1 ◦ D2).

Thus,
[
mPer(D1) × V (D2)

]⋃ [
H × J

]
⊆ mPer(D1 ◦ D2). Hence

mPer(D1 ◦D2) =
[
mPer(D1)× V (D2)

]⋃ [
H × J

]
.

2. mdiam(D2) < mdiam(D1).

Since meccD2(vr) < mdiam(D1) for all vr ∈ V (D2), mdiam(D1 ◦ D2) =

mdiam(D1). Let (uj, vs) ∈ mPer(D1 ◦ D2). Then meccD1◦D2(uj, vs) =

mdiam(D1), which is attained by all vertices in mPer(D1) × V (D2). Since

meccD1◦D2(uj, vs) < mdiam(D1) for all other vertices (uj, vs) ∈ V (D1 ◦ D2), it

follows that mPer(D1 ◦D2) ⊆ mPer(D1)× V (D2).

Conversely, let (uj, vs) ∈ mPer(D1) × V (D2). Then meccD1◦D2(uj, vs) =

mdiam(D1) and hence (uj, vs) ∈ mPer(D1 ◦ D2). Thus, mPer(D1) × V (D2) ⊆
mPer(D1 ◦D2). Hence mPer(D1 ◦D2) = mPer(D1)× V (D2).

It can be seen that the results obtained for the m-periphery of the lexicographic

product of any two digraphs D1 and D2 are in line with the results obtained when D1

is either a DDLE digraph, or a dicycle, or a symmetric digraph. To see this, consider

the results of Proposition 6.4.6 in the following five cases.

1. D1 is a DDLE digraph.

If mdiam(D2) < mdiam(D1), then mPer(D1 ◦ D2) = mPer(D1) × V (D2). If

mdiam(D2) ≥ mdiam(D1), then mPer(D1 ◦D2) =
[
mPer(D1)×V (D2)

]⋃ [
H×

J
]
, since G is empty. As H is empty, this expression also reduces to mPer(D1 ◦

D2) = mPer(D1)× V (D2).
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2. D1 is the dicycle
−→
Cn.

Here mdiam(
−→
Cn) = n− 1. Thus, there arises the following three cases.

(a) If mrad(D2) ≥ n, then mdiam(D2) ≥ mdiam(
−→
Cn) and hence, mPer(D1 ◦

D2) = G× I = V (
−→
Cn)× V (D2).

(b) If mdiam(D2) < n; that is, mdiam(D2) < mdiam(D1). Then mPer(D1 ◦
D2) = mPer(D1)× V (D2) = V (

−→
Cn)× V (D2).

(c) If mrad(D2) < n and mdiam(D2) ≥ n, then since G and I are non-empty,

mPer(D1 ◦D2) = G× I = V (
−→
Cn)× I.

3. D1 is the complete graph Kn.

Here diam(D1) = 1 and hence mdiam(D2) ≥ diam(D1). G = V (D1) and I =

{vr ∈ V (D2) : meccD2(vr) ≥ 2}. Thus there are three cases. Either D2 = Km,

or mrad(D2) ≥ 2, or mrad(D2) = 1, mdiam(D2) = 2 (since mdiam(D2) ≤
2 mrad(D2)).

(a) If D2 = Km, then I is empty and hence mPer(D1 ◦ D2) = mPer(D1) ×
V (D2) = V (Kn)× V (D2), since H is empty.

(b) If mrad(D2) ≥ 2, then I = V (D2). Thus mPer(D1◦D2) = V (Kn)×V (D2).

(c) If mrad(D2) = 1 and mdiam(D2) = 2, then I = V (D2)\mCen(D2). Thus

mPer(D1 ◦D2) = V (Kn)× [V (D2)\mCen(D2)].

4. D1 is a symmetric digraph with diam(D1) ≥ 3.

ξD1(ui) = 2 for all ui ∈ V (D1). Hence G and H are empty.

(a) If mdiam(D2) < diam(D1), then mPer(D1 ◦D2) = Per(D1)× V (D2).

(b) If mdiam(D2) ≥ diam(D1), then since G and H are empty, mPer(D1 ◦
D2) = Per(D1)× V (D2).

5. D1 is a symmetric digraph with diam(D1) = 2.

In this case, three subcases arise.

(a) If mrad(D2) ≥ 2, then mdiam(D2) ≥ diam(D1). G is empty.

Thus mPer(D1 ◦ D2) =
[
Per(D1) × V (D2)

]⋃ [
H × J

]
=

[
Per(D1) ×

V (D2)
]⋃ [

V (D1)\Per(D1)× V (D2)
]
= V (D1)× V (D2).

(b) If mrad(D2) = 1 and mdiam(D2) = 2, then mdiam(D2) ≥ diam(D1). G is

empty. Thus mPer(D1◦D2) =
[
Per(D1)×V (D2)

]⋃ [
H×J

]
=

[
Per(D1)×

V (D2)
]⋃ [

V (D1)\Per(D1)× V (D2)
]
= V (D1)× (V (D2)\mCen(D2)).
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(c) If mrad(D2) = 1 and mdiam(D2) = 1; that is D2 = Km, then

mdiam(D2) < diam(D1). Thus mPer(D1 ◦D2) = Per(D1)× V (D2). Here

B′ is empty. So the result agrees with the earlier result.

6.5 Center and Periphery of the Lexicographic

Product of Two Graphs - An Erratum

Finally, we consider the center and periphery of the lexicographic product of two

graphs. The descriptions for the center and periphery of two graphs is given in [75]

by Zarah Yarahmadi and Sirous Moradi. Some minor mistakes in these descriptions

are rectified. The eccentricity of a vertex in the lexicographic product G ◦H of two

graphs G and H (notation used in the article is G[H]) is given in article [30] which

deals with the eccentric connectivity index for several families of composite graphs.

For a vertex (u, v) ∈ V (G[H]),

eccG[H](u, v) =


1 if eccG(u) = 1, eccH(v) = 1,

2 if eccG(u) = 1, eccH(v) ≥ 2,

eccG(u) if eccG(u) ≥ 2.

(6.1)

Based on the results 6.1, the expressions for the center and the periphery of lexico-

graphic product of two graphs is given in [75]. Item 6 of Theorem 3.2 of the article

[75] is as follows.

Theorem 6.5.1. Let G and H be graphs. Then

Cen(G[H]) =

Cen(G)× Cen(H) if rad(G) = 1 and rad(H) = 1,

Cen(G)× V (H) otherwise.
(6.2)

Similarly, item 6 of Theorem 3.12 of the article [75] is as follows.

Theorem 6.5.2. Let G and H be graphs. Then

Per(G[H]) =


V (G)× V (H) if diam(G) = 1 and diam(H) = 1,

V (G)× A if diam(G) = 1 and diam(H) ≥ 1,

P er(G)× V (H) if diam(G) ≥ 2,

(6.3)

where A = {b ∈ V (H) : eccH(b) ≥ 2}.
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Consider the lexicographic product of the graphs G and H in Figure 6.3. Here,

rad(G) = 1 and rad(H) = 2 and Cen(G◦H) = V (G)×V (H). According to Theorem

6.5.1 from article [75], Cen(G ◦ H) = Cen(G) × V (H), which is not true in this

example.

(u1, v1) (u2, v1) (u3, v1)

(u1, v2) (u2, v2) (u3, v2)

(u1, v3) (u2, v3) (u3, v3)

2 2 2

(u1, v4) (u2, v4) (u3, v4)

2 2 22

2

2

2 2 2

u1 u2 u3

2 1 2

v1

v2

v3

v4

3

2

2

3

H

G

G ◦H

Figure 6.3: An example for G ◦H with rad(G) = 1 and rad(H) ≥ 2.

Thus we can see that the case when rad(G) = 1 and rad(H) ≥ 2 was not mentioned

in Theorem 6.5.1. So we give the corrected version of Theorem 6.5.1 below.

Theorem 6.5.1′. Let G and H be two graphs. Then

Cen(G ◦H) =


Cen(G)× Cen(H) if rad(G) = 1 and rad(H) = 1,

V (G)× V (H) if rad(G) = 1 and rad(H) ≥ 2,

Cen(G)× V (H) otherwise.

Proof. Consider Cen(G ◦ H) in different cases using result 6.1. Note that when

rad(G) = 1, diam(G) ≤ 2.

1. If rad(G) = 1 and rad(H) = 1, then eccG◦H(u, v) = 1 for all (u, v) ∈ Cen(G)×
Cen(H) and eccG◦H(u, v) = 2 for all (u, v) /∈ Cen(G)×Cen(H). Hence Cen(G◦
H) = Cen(G)× Cen(H).
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2. If rad(G) = 1 and rad(H) ≥ 2, then eccG◦H(u, v) = 2 for all (u, v) ∈ V (G) ×
V (H). Therefore, Cen(G ◦H) = V (G)× V (H).

3. If rad(G) ≥ 2, then eccG◦H(u, v) = eccG(u) for all (u, v) ∈ V (G) × V (H) and

hence it follows that Cen(G ◦H) = Cen(G)× V (H).

Now consider the periphery of G ◦H for the graphs G and H in Figure 6.3. Here,

Per(G ◦H) = V (G) × V (H). As per Theorem 6.5.2 from article [75], Per(G ◦H) =

Per(G)×V (H) which is not true. Thus for periphery of G◦H, the case diam(G) = 2

has to be considered separately. The corrected version of Theorem 6.5.2 is as follows.

Theorem 6.5.2′. Let G and H be two graphs. Then

Per(G ◦H) =



V (G)× V (H) if diam(G) = 1, diam(H) = 1,

V (G)× A if diam(G) = 1, diam(H) ≥ 2,[
Per(G)× V (H)

]⋃ [
V (G)× V (H)\Cen(H)

]
if diam(G) = 2, rad(H) = 1,

V (G)× V (H) if diam(G) = 2, rad(H) ≥ 2,

Per(G)× V (H) if diam(G) > 2,

where A = {b ∈ V (H) : eccH(b) ≥ 2}.

Proof. Using result 6.1, Per(G ◦H) is determined in all cases.

1. If diam(G) = 1 and diam(H) = 1, then eccG◦H(u, v) = 1 for all (u, v) ∈
V (G)× V (H). Hence when both G and H are complete graphs, Per(G ◦H) =

V (G)× V (H).

2. If diam(G) = 1 and diam(H) ≥ 2, then eccG◦H(u, v) = 2 for all (u, v) ∈
V (G)× A. Therefore, Per(G ◦H) = V (G)× A.

3. If diam(G) = 2 and rad(H) = 1, then eccG◦H(u, v) = 1 only when eccG(u) = 1

and eccH(v) = 1; that is if u /∈ Per(G) and v ∈ Cen(H). Thus, if u ∈ Per(G)

or v /∈ Cen(H), then eccG◦H(u, v) = 2. Hence it follows that Per(G ◦ H) =[
Per(G)× V (H)

]⋃ [
V (G)× V (H)\Cen(H)

]
.

4. If diam(G) = 2 and rad(H) ≥ 2, then eccG◦H(u, v) = 2 for all (u, v) ∈ V (G)×
V (H). Therefore, Per(G ◦H) = V (G)× V (H).



6.5. CENTER AND PERIPHERY . . . OF TWO GRAPHS 87

5. If diam(G) > 2, then since rad(G) > 1, eccG◦H(u, v) = eccG(u) for all (u, v) ∈
V (G)× V (H). So it follows that Per(G ◦H) = Per(G)× V (H).





Chapter 7

Concluding Remarks

In this thesis, the four boundary-type sets and the center of the three products,

namely, the Cartesian, strong, and lexicographic products of two strongly connected

digraphs are subjected to study. The results are extended to a finite number of di-

graphs in the case of the two commutative products, the Cartesian and the strong

product. The results obtained for digraphs are compared to the earlier results ob-

tained for graphs. It is ensured that all the possible cases coming under the scope of

this research is covered.

In the study of large networks, the determination of the boundary-type sets and

center has important applications. In certain cases involving designing of one-way

networks, it helps in an optimal construction of a network. Even in the case of

internet and other biological networks, the information about boundary-type sets can

be used to determine both the local and global efficiency of the network. The center

vertices of a digraph can be considered as the most prominent vertices. Determination

of the center vertices in large digraphs also has several applications which varies from

selecting a leader in a community to finding the location for emergency facilities. The

results for various digraph products, combined with prime factorization of digraphs

make the determination procedure simpler. This is accomplished by first applying

any of the algorithms for finding the prime factor decomposition and then applying

these results to find the boundary-type sets and center, in all possible cases.

Problems for Further Study

• A study of the boundary-type sets and the center of the various digraph products

with respect to the metric ‘sum distance’.

89



90 CHAPTER 7. CONCLUDING REMARKS

• A study of the boundary-type sets and the center of the various digraph products

with respect to the metric ‘strong distance’.

• A study of the boundary-type sets and the center of the other digraph products

like corona product and cardinal product with respect to the metric ‘maximum

distance’.

• A study of the boundary-type sets and the center of the direct product with

respect to the metric ‘maximum distance’ on the class of digraphs with loops

allowed.

• The linear algebra approach may be extended to digraphs to study the spectral

properties based on the metric md. A similar study was recently conducted

based on the sum distance in digraphs [74].

• Eccentric sequences of graphs and digraphs have been already studied [6, 35].

A study of m-eccentric sequences of digraphs is aimed at.

• A study of self-centered digraphs and the problem of embedding a digraph D

in a digraph D′ containing D such that mCen(D′) is isomorphic to D. Such

studies have already been made in the case of graphs.
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[12] Boštjan Brešar, Sandi Klavžar, and Aleksandra Tepeh Horvat, On the geodetic number and
related metric sets in cartesian product graphs, Discrete Mathematics 308 (2008), no. 23, 5555–
5561.
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strong product, 18
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