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CHAPTER 1

INTRODUCTION

1.1 Introduction

Reliability theory deals with the interdisciplinary use of probability, statistics and

stochastic modeling, combined with engineering insights into the system design

and the scientific understanding of the failure mechanisms. The study of reliabil-

ity characteristics and performances requires a comprehensive understanding of

many different concepts of the system. System reliability describes the probabil-

ity of completing the mission with in a pre-specified time interval. An engineer

need to find the probability of successful functioning of many engineering systems

such as Airplanes, linear accelerators, power generation system etc. The compu-

tation of reliability or expected system performance is a problem for engineers and

manufacturers. Traditional reliability theory is built on a statistical framework

1



2 Introduction

in which the system and its components can be in one of the two states such as

functioning state or failed state. As a result, the system structure function is a

binary function of binary variables. Reliability calculation is an important task

for increasingly sophisticated technological systems.

The reliability of a unit (a system or a component) is also defined as the

probability that a unit can perform satisfactorily for a specified period of time

without failure. Proper modeling of lifetime with appropriate statistical distribu-

tions makes reliability computation easy. Moreover reliability and maintenance

activities can be planned with the help of distribution of lifetime of the system.

Identification of failure rate model is crucial in reliability analysis to select ap-

propriate distribution for the given data. Many of the distributions available

in literature is not sufficient for explain distributional properties and reliability

analysis for the given data. So searching for more appropriate distributions for

the given data is an open challenge among researchers. Most of the systems are

subjected to certain type of stresses, so reliability computation of stress-strength

models using different distributions is an important research problem. Moreover

identification of failure rate model for the given data or transformed data makes

the selection of distribution for the given data easy. While considering lifetime

data, study on burn-in process is unavoidable to understand the length of time to

burn-in.
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1.2 Binary state system

In the binary state system, the components in the system are assumed to be

in one of the two states, functioning or failed, see Barlow and Proschan (1975).

For a system with n components, let xi indicate the state of the ith component,

i = 1, 2, . . . , n. That is,

xi =


1 if component i is functioning

0 if component i is failed.

for i = 1, 2, . . . , n. Similarly, let Φ be a binary random variable indicating the

state of the system

Φ =


1 if the system is functioning

0 if the system is failed.

We assume that the state of the system is a function of the states of the

components, so that we may write Φ = Φ(x), structure function or structure,

where x = (x1, x2, . . . , xn). For a series system,

Φ(x) =
n∏
i=1

xi = min(x1, x2, . . . , xn)

=


1, if each component is functioning

0, if atleast one of the components is failed.
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For a parallel system,

Φ(x) =
n∐
i=1

xi = max(x1, x2, . . . , xn)

=


1, if atleast one component is functioning

0, if all components are failed

where
∐n

i=1 = 1−
∏n

i=1(1− xi).

A system of components is coherent if its structure function Φ(x) is increasing

in each component and each component is relevant.

The reliability of a system is given by P (Φ(x) = 1) = h = EΦ(x). Under the

assumption of independence of components, we may represent system reliability

as a function of component reliabilities, pi, i = 1, 2, . . . , n. That is h = h(p), p =

(p1, p2, . . . , pn). Accordingly the reliability function of series structure is h(p) =∏n
i=1 pi and the reliability function of parallel structure is h(p) = 1−

∏n
i=1(1−pi).

In Barlow and Proschan (1975), we find that “reliability is the probability of

a device performing its purpose adequately for the period of time intended under

the operating conditions encountered”. Generally the period of time intended is

[0, t]. In many problems, we consider the life lengths of the components of the

system, for the reliability analysis. By lifetime we mean the maximum period for

which the unit can work satisfactorily whereas age of the unit is the time which it

requires for the completion of a particular mission without failure. In general, life

lengths are random variables and therefore lead us to a study of life distributions.

The reliability of a fresh unit corresponding to a mission of duration t is, by
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definition, F̄ (t) = P (T > t) = 1 − F (t), where F is the cumulative distribution

function (cdf) of lifetime of the unit.

There is a reason to believe that in many applications, the lifetime of the

system will be reduced beyond the specified age. That is, survival decreases as

the system ages. If units have this behavior, the corresponding life distributions

are called positive ageing distributions. To understand which real life distributions

are appropriate in reliability data analysis, we need to consider a notion of ageing.

Ageing can be conveniently defined in terms of the failure rate function.

1.2.1 Notion of ageing

The notion of ageing plays a significant role in reliability theory. Several classes

of life distributions based on the notion of ageing have been studied and explored

during the past several years. Most common ageing properties like increasing

failure rate (IFR), decreasing failure rate (DFR), increasing failure rate average

(IFRA), decreasing failure rate average (DFRA), new better than used (NBU),

new worse than used (NWU), new better than used in expectation (NBUE), new

worse than used in expectation (NWUE), increasing mean residual life (IMRL),

decreasing mean residual life (DMRL) etc. are discussed by Barlow and Proschan

(1975) and Deshpande et al. (1986). The discrete and continuous versions of these

classes have become very common in literature. Concepts of ageing describes how

a component or system improves or deteriorates with age. The most popular

lifetime distributions such as Exponential, Weibull, Gamma, Rayleigh, Pareto and

Gompertz have monotonic failure rate functions, see Lawless (1982). If we observe
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a constant failure rate pattern for a data, then Exponential distribution serves as

very useful model for reliability analysis. The Poisson process has many direct

and indirect applications in reliability, especially in formulating shock models. ‘No

ageing’ means that the age of a component does not influence the distribution of

the remaining life of the component or system. Positive ageing means adverse

effect of age exist on the random residual life of the component or system whereas

negative ageing means beneficial effect of age exist on the random residual life

of the component or system. Positive ageing describes the situation where the

residual lifetime tends to decrease, in some probabilistic sense, with increasing age

of the component. This situation is common in reliability engineering, as increased

wear and tear may worsen over time. Negative ageing, on the other hand, has the

opposite effect during the rest of life. Negative ageing is also known as beneficial

ageing. In other words, the residual lifetime is monotonic with respect to age.

However, in many practical applications, the effect of age is initially beneficial

but after a certain period of time, adverse indicating a ‘ware-out’ phase where

age is positive. Certain lifetime data, for example, human mortality, machine life

cycles and data from some biological and medical studies require non-monotonic

shapes like bathtub shape or upside-down bathtub shape. Initially, the failure rate

(death rate) of the newborn babies is very high especially in the first six months

after birth, caused by deformities, heart dysfunctions or other infant diseases.

Then, the risk of death decreases rapidly until it reaches its lowest level and

remains approximately constant for a long period. At some point, during the ages

between 50 and 80 the death risk increases over time. This kind of non-monotonic

ageing phenomenon is often modeled using life distributions that display bathtub
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shaped failure rate (BFR). Model the lifetime data using a distribution with BFR

is important in reliability analysis. An upside-down bathtub shape is analyzed

by Efron (1988) in the context of head and neck cancer data, in which the failure

rate initially increased, reached a maximum and then decreased before it finally

stabilized because of a therapy.

Let X be a continuous non-negative random variable (r.v) representing the

lifetime of a unit which is in operation. This unit may be a living organism, a

mechanical component, a system of components etc. Now we describe the failure

rate function or hazard function, see Barlow and Proschan (1975). Let F (x) be

the cdf of X, then the survival function of a fresh unit is F̄ (x) = 1 − F (x) =

P (X > x). Also let F (x|t) = P (X > t + x|X > t) be the survival probability or

reliability of a unit which has attained the age t. It can be seen that F̄ (x|t) =

F̄ (x+ t)/F̄ (t). Note that this represents the survival function of a unit of age t,

i.e., the conditional probability that a unit of age t will survive for an extra x

units of time. When t = 0, F̄0(x) = F̄ (x) is the survival function of a new unit.

When the derivative F ′(t) = f(t) exists, where f(t) be the probability density

function (pdf), failure rate (hazard rate) of a component is defined as r(t) =

f(t)/F̄ (t), F̄ (t) > 0. This can also be written as r(t) = lim
∆→0

Pr(t≤X<t+∆|t≤X)
∆

.

Thus for small ∆, r(t)∆ is approximately the probability of a failure occurring in

(t, t+ ∆] given no failure has occurred in (0, t].

It follows that, if r(t) exists, then − log F̄ (t) =
∫ t

0
r(x) dx represents the

cumulative failure rate (cumulative hazard rate) which may be denoted by H(t).

Hence F̄ (t) = exp
{
−
∫ t

0
r(x) dx

}
= exp{−H(t)}.
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Now we consider a unit which does not age stochastically, that is, probability

distribution of the residual lifetime at age t of the unit does not depend on t. Hence

F̄t(x) = F̄0(x) ∀ t, x > 0. This is equivalent to F̄ (t+x) = F̄ (t)F̄ (x) ∀ t, x > 0.

It is well known that among the continuous survival functions only the exponen-

tial survival function F̄ (x) = e−λx, x > 0, λ > 0 satisfies the above equation,

and this property is known as lack of memory property or no-ageing property of

Exponential distribution in reliability theory.

We recall the definition of failure rate behaviors IFR, DFR, IFRA, DFRA,

NBU, NWU, NBUE, NWUE, IMRL and DMRL (Barlow and Proschan (1975)).

Definition 1.2.1. When the density exists, IFR (DFR) is equivalent to r(t) =

f(t)/F̄ (t) is increasing (decreasing) in t ≥ 0. When F is not absolutely continu-

ous, F is said to be IFR (DFR) distribution if F̄ (x|t) is decreasing (increasing) in

t, 0 ≤ t <∞ for each x > 0. F is IFR (DFR) iff − log F̄ (t) is convex (concave).

Definition 1.2.2. F is said to be IFRA (DFRA) if and only if
∫ t

0
r(x) dx/t

increasing (decreasing) in t ≥ 0 equivalently −(1/t) log F̄ (t) is increasing (de-

creasing) in t ≥ 0 (This is equivalent to − log F̄ (t) being a star-shaped function)

equivalently F̄ (αt) ≥ F̄α(t), 0 < α < 1, t ≥ 0.

Definition 1.2.3. F is said to be NBU (NWU) if F̄ (x|t) ≤ (≥)F̄ (x) equivalently

F̄ (x+ t) ≤ (≥) F̄ (x)F̄ (t) for x, t ≥ 0 equivalently log F̄ (x+ t) ≤ (≥) log F̄ (x) +

log F̄ (t) equivalently
∫ t

0
r(u) du ≤ (≥)

∫ x+t

x
r(u) du.

Definition 1.2.4. F is said to be NBUE (NWUE) if
∫∞

0
F̄ (x|t) dx ≤ (≥) µ for

t ≥ 0.
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Definition 1.2.5. F is said to be IMRL (DMRL) if µ(t) =
∫∞

0
F̄ (x|t) dx is

increasing (decreasing) in t, i.e., µ(s) ≥ µ(t) for 0 ≤ s ≤ t.

We assume that the failure rate function r(t) is a real-valued differentiable

function r(t) : R+ → R+. As usual, by increasing we mean non-decreasing and

by decreasing, we mean non-increasing. r(t) is said to be

1. strictly increasing if r′(t) > 0 for all t;

2. strictly decreasing if r′(t) < 0 for all t;

3. bathtub shaped if r′(t) < 0 for t ∈ (0, to), r
′(to) = 0, r′(t) > 0 for t > to;

4. upside-down bathtub shaped if r′(t) > 0 for t ∈ (0, to), r
′(to) = 0, r′(t) < 0

for t > to;

5. modified bathtub shaped if r(t) is first increasing and then bathtub shaped;

6. roller-coaster shaped if there exist n consecutive change points 0 < t1 <

t2 < . . . < tn <∞ such that in each interval [tj−1, tj], 1 ≤ j ≤ n+ 1, where

to = 0, tn+1 =∞, r(t) is strictly monotone and it has opposite monotonicity

in any two adjacent such intervals.

A class of life distributions that has received considerable attention is the class of

BFR life distributions, see Rajarshi and Rajarshi (1988) for a systematic review.

We say that F is BFR model, if failure rate decreases first, then remains constant

for a period, and eventually increases over time. In other words, the failure rate

function has bathtub shape. This corresponds to the three distinct phases of a
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unit: early life, useful life and wear out as shown in Figure 1.1. In the initial

region that begins at time zero, product is characterized by a high but rapidly

decreasing failure rate. This region is known as the early failure period (also

referred to as infant mortality period). Next, the failure rate levels off and remain

roughly constant for the majority of the life of the product. This long period of

a constant failure rate is known as the useful period. Many systems spend most

of their lifetimes operating in this flat portion of the bathtub curve. Finally, if

unit remain in use long enough, the failure rate increase as materials wear out and

degradation failures occur at an ever increasing rate. This is called the wear-out

period (Rajarshi and Rajarshi (1988)).

Another important family of life distributions is known as the upside-down

bathtub-shaped failure rate (UBFR) class. Chang (2000) proposed a UBFR

model. We say that F is its upside-down bathtub shaped failure rate, its failure

rate increases first, then remains constant for a period, and eventually decreases

over time.

Figure 1.1: Bathtub failure rate curve
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1.3 Failure Rates of Mixtures of Distributions

Mixture of distributions arise naturally in a number of reliability situations. For

example, suppose a manufacturer produces p100 percent of a certain product in

production line 1 and (1−p)100 percent in production line 2, 0 ≤ p ≤ 1. Suppose,

the life length of a unit produced in production line 1 has distribution F1, where as

the life length of a unit produced in production line 2 has distribution F2(6= F1).

After production, units from both production lines will be allowed to campaign

together, in such a way that outgoing lots consist of a random mixture of the

output of the two production lines. Then, a unit selected at random from a lot

would have life distribution F = pF1 + (1− p)F2, a mixture of the two underlying

distributions. More generally, the distribution being mixed may be uncountably

infinite in number. See Barlow and Proschan (1975) for more details.

Mixtures are important in burn-in procedures. The pdf of a mixture of two sub-

populations with density functions f1 and f2 is f(t) = pf1(t) + (1 − p)f2(t), t ≥

0, 0 ≤ p ≤ 1. Survival function of a mixture is also a mixture of the two

survival functions, i.e., F̄ (t) = pF̄1(t) + (1 − p)F̄2(t). The mixture failure rate is

r(t) = pf1(t)+(1−p)f2(t)

pF̄1(t)+(1−p)F̄2(t)
where fi(t), F̄i(t) are the pdf and survival function of the

distribution having failure rate ri(t), i = 1, 2, see Lai and Xie (2006) for more

details.

Below Lai and Xie (2006) has given some examples in mixture failure rates.

Example 1.3.1. Consider two IFR Weibull distributions with pdfs f1(t) = 2t exp{−t2},

t > 0 and f2(t) = 3t2 exp{−t3}, t > 0. If p = 0.5, r(t) is IFR.
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The next example shows that a mixture of two IFR distributions results in a

DFR distribution.

Example 1.3.2. Let r1(t) = 1 − exp{−5t}, t > 0, r2(t) = 6 − exp{−5t}, t > 0.

We note that r1(t) strictly increases to 1 and r2(t) strictly increases to 6. However,

if p = 0.5, r(t) is DFR and strictly decreases to 1.

Example 1.3.3. Take f1(t) = exp{−t}, t > 0, pdf of exponential distribution,

f2(t) = 16t exp{−4t}, t > 0, pdf of Gamma distribution with IFR property. Let

p = 0.5. In this case, r(t) is UBFR.

Example 1.3.4. Let f1(t) = 4 exp{−4t}, t > 0, pdf of exponential distribution,

f2(t) = t exp{−t}, t > 0, pdf of Gamma distribution with IFR property. Let

p = 0.5. Then r(t) is BFR.

Example 1.3.5. Consider two Weibull distributions, f1(t) = 2t exp{−t2}, t > 0

and f2(t) = 4t3 exp{−t4}, t > 0. Let p = 0.5; both r1(t) and r2(t) increases to ∞.

The mixture failure rate r(t) is BFR, see Jiang and Murthy (1998).

Example 1.3.6. Consider the mixture of two Gamma probability densities: f(t) =

pf1(t) + (1− p)f2(t) where fi(t) = λαi tαi
Γ(αi)

e−λt, t > 0, αi, λ > 0, i = 1, 2. Assum-

ing α1 < α2, Glaser (1980) was able to determine the shape of the failure rate

of the distribution in all cases except for one case: α1 > 1, α2 − α1 > 0 with

α1− 1 < (α2− α1− 1)2/4. For this case, he conjectured that the mixture density

is IFR.

Jiang and Murthy (1998) categorized the possible shapes of failure rate func-

tion for a mixture of two Weibull distributions. The mixture failure rate of two
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strictly IFR Weibull distributions with the same shape parameter can be either

BFR or IFR. The asymptotic behavior of mixtures of exponentials has been stud-

ied by Clarotti and Spizzichino (1990). Al-Hussaini and Sultan (2001) has given

a comprehensive review on reliability and failure rates of mixture models. Finkel-

stein and Esaulova (2001) considered several types of continuous mixtures of IFR

distributions.

1.3.1 Mean Residual Life

Let F̄ be the survival function of an item with a finite first moment µ and X be

the r.v that corresponds to F̄ assuming F (0) = 0. The residual life r.v at age t is

same as the remaining lifetime after the time of inspection. The mean residual life

(MRL) (also known as the mean remaining life) is defined as µ(t) = E(X−t|X > t)

which can be given as

µ(t) = E(X − t|X > t) =

[
1

F̄ (t)

∫ ∞
t

F̄ (x) dx

]
. (1.3.1)

Clearly, µ(0) = µ = E(X). If F has a density f , then we can write

µ(t)− t =

(∫ ∞
t

x f(x) dx

)
/F̄ (t). (1.3.2)

Park (1985) found that, the time at which a bathtub failure rate is a minimum

does not maximize the mean residual life. The mean residual life function µ(t) in

the constant failure rate region of a bathtub shaped failure curve is not constant

but decreasing.
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1.3.2 Decreasing Percentile Residual Life Function

The α-percentile residual life function (α-percentile RLF) was first defined by

Haines and Singpurwalla (1974). Joe and Proschan (1984) showed that this func-

tion may be expressed as

qα,F (t) = F−1(1− (1− α)F̄ (t)). (1.3.3)

A distribution is DFRL-α, if and only if for some α, 0 < α < 1, qα,F (t) decreases

in t.

Launer (1993) has shown that a BFR distribution is DPRL-α for all αo < α < 1

for some αo > 0, provided there exists a to with r(to) ≥ r(0).

1.4 Stress-strength Reliability

The stress-strength reliability model has attracted a great deal of attention in

the fields of reliability engineering, medicine and psychology. In manufactur-

ing process, the information about the mechanical reliability of design through

stress-strength model prior to production can significantly decrease the cost of

production. The concept of stress and strength in engineering devices have been

become the deciding factors of failure of the devices. It has been customary to

define safety factors for longer lives of systems in terms of the inherent strength

that they have and the external stress being experienced by the systems. If x0 is

the fixed strength and y0 is the fixed stress that a system is experiencing, then
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the ratio x0
y0

is called safety factor and the difference x0 − y0 is called safety mar-

gin. Thus in the deterministic stress-strength situation the system survives only

if the safety factor is greater than 1 or equivalently safety margin is positive, see

Pratapa (2012).

In the traditional approach to design a system, the safety factor or the safety

margin is constructed to resolve uncertainties in the values of stress and strength.

Uncertainties in the stress and strength of a system therefore tend to cause the

system life to be viewed as random variables. However, the probabilistic analysis

demands the use of random variables for the concepts of stress and strength for

the evaluation of survival probabilities of such systems. This analysis is particu-

larly useful in situations in which no fixed bound can be put on the stress. For

example, with earthquakes, floods and other natural phenomena, stress can lead

to failures of systems with unusually small strengths. Similarly when economics

is the primary criterion rather than safety, it is best to compare survival perfor-

mance by understanding the increase in the likelihood of failure when stress and

strength are close to each other.

1.5 Total Time on Test Transform

Total time of test (TTT) transform is widely accepted as a statistical tool with

applications in various fields such as reliability analysis, econometrics, crypto-

currency modeling, tail ordering, order of delivery, etc. An important part of the

literature on TTT transformation deals with reliability issues, including the nature

of aging features, model identification, testing of assumptions, age replacement
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policies, adjusting life distributions, and defining new types of life distributions.

TTT transform of a lifetime distribution F is defined as

H−1
F (t) =

∫ F−1(t)

0

(1− F (x)) dx t ∈ [0, 1]

where F−1(t) = inf{x : F (t) ≥ t}. The scaled TTT transform is defined as

φ(t) =
H−1
F (t)

H−1
F (1)

. A detailed description on TTT can be seen in Barlow and Campo

(1975).

1.6 Burn-in

Burn-in is a widely used engineering screening technique to eliminate vulnerable

units. Systems can be electronic systems such as circuit boards having different

types of chips and printed circuits. An air conditioner having a condenser, fan

and circuits is an example for a typical mechanical system. A population of

components may include both strong components with long lifetimes and weak

components with very short lifetimes. To ensure that only strong components

are given to the customer, a manufacturer can subject all components to tests

in normal or harsh use conditions so that the weak components will fail during

the test, leaving only the strong components. This type of test can be performed

on systems to determine weak or strong components or to detect defects during

assembly. These tests are usually called burn-in tests in reliability.

Let the lifetime T of a component have a continuous bathtub shaped failure

rate r(t). This component is required to accomplish a mission which lasts for
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time τ . The reliability of completing the mission is thus F̄ (τ). If we burn-in

the component for a time b and if the component survives the burn-in, then the

conditional reliability of accomplishing the mission is given by

F̄ (b+ τ)

F̄ (b)
= exp

{
−
∫ b+τ

b

r(t) dt

}
.

1.7 Goodness of Fit Tests

There are different methods that can be used for testing whether a given random

sample x1, x2, . . . , xn, of n observations, are coming from a population with specific

distribution or for comparing the underlying distribution with other distributions

for fitting a given data set. Some of the test for the confirmation of distributions

are given below.

1.7.1 Kolmogorov-Smirnov Test

Kolmogorov (1933) proposed the Kolmogorov-Smirnov test (K-S test) for testing

whether a given random sample x1, x2, . . . , xn belongs to a population with a

specific distribution or not. The K-S test calculates the distance between the

empirical distribution function of the given sample and the estimated cdf of the

distribution. The null and alternative hypotheses are H0 : sample follow the

specific distribution versus H1 : H0 is false.

Let F (xi) denote the value of the cumulative distribution function of the can-

didate distribution at xi and F̂ (xi) denote the value of the empirical distribution
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function at xi. The value of the K-S test statistic is defined by

K-S test statistic = max
{
|F (xi)− F̂ (xi)|, |F (xi)− F̂ (xi−1)|

}
,

where F̂ (xi) =
{xj :xj≤xi}

n
.

The computed K-S statistic is then compared with the tabulated K-S value at

a pre-specified significance level to decide whether a distribution is appropriate

or not. Moreover, if there are more than one distributions to be compared, the

distribution with smaller K-S value will be more appropriate to fit the given

sample.

1.7.2 Anderson-Darling Test

The Anderson-Darling (A-D) test is used to test if a sample of data is coming

from a population with a specific distribution. It is a modification of the K-S test

and gives more weight to the tails than does the K-S test. The A-D test makes use

of the specific distribution in calculating critical values. This has the advantage

of allowing a more sensitive test and the disadvantage that critical values must

be calculated for each distribution, see Stephens (1974). The A-D test is defined

as: H0 : The data follow a specified distribution. H1 : The data do not follow the

specified distribution. The test statistic is

A2 = −N − S
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where

S =
N∑
i=1

(2i− 1)

N
[logF (Yi) + log 1− F (YN+1−i)].

F is the cdf of the specified distribution. Note that the Yi are the ordered data.

1.7.3 Akaike’s information criterion

Akaike’s information criterion (AIC) compares the quality of a set of statistical

models to each other. AIC will take each model and rank it from the best to

the worst. The “best” model may be inappropriate or overly compatible. AIC is

usually calculated with software. The basic formula is defined as:

AIC = −2l + 2K,

where:

• K is the number of model parameters.

• l denotes the log-likelihood function. Log-likelihood is a measure of model

fit. The higher the number, the better the fit.

1.7.4 Bayesian information criterion

Bayesian information criterion (BIC) is a criterion for model selection among a

finite set of models. It is based, in part, on the likelihood function, and it is closely
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related to AIC. Mathematically BIC can be defined as

BIC = −2l +K log n,

• K is the number of model parameters.

• l denotes the log-likelihood function. Log-likelihood is a measure of model

fit.

• n is the sample size.

The theory of AIC requires that the log-likelihood has been maximized. When

comparing models fitted by maximum likelihood to the same data, the smaller the

BIC, the better the fit. Standard Normal (SN) distribution is uses for obtaining

asymptotic distribution of estimators.

1.8 Objectives of the Study

The objectives of the study are listed below.

1. To study on bathtub shaped failure rate distributions and its applications

for modeling life time data.

2. To propose new bathtub shaped failure rate models.

3. To compare existing bathtub shaped failure rate distributions.

4. To study on the stress-strength reliability models and its estimation process.
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5. To enhance the application of bathtub shaped failure rate distribution in

system engineering and other scientific area.

6. To develop the theory and application of TTT transformation in identifica-

tion of bathtub shaped failure rate model.

7. To explore the applications of bathtub shaped failure rate models in Burn

in process.

1.9 An Outline of the Present Work

The thesis is arranged into eight chapters. Two new lifetime distributions for

modeling bathtub shaped failure rate distributions and one lifetime distribution

for modeling upside down bathtub shaped failure rate distribution are proposed.

Stress-strength reliability estimation in the context of multi-component reliability

data has been done using Three-Parameter Generalized Lindley (TPGL) distri-

bution and Power Lindley (PL) distribution. Identification procedure of failure

rate distribution of increasing convex (concave) transformation of lifetime data is

given.

The chapters of thesis are organized as below.

In chapter 1, basic concepts and definitions used in this thesis are given.

In chapter 2, extensive reviews of some of these bathtub (or upside down bath-

tub) shaped failure rate distributions have been presented. This review includes

the existing bathtub life distributions that have been proposed in the last several
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years. In order to attain the results of proposed research work, a review study has

been conducted on increasing, decreasing, bathtub shaped, upside down bathtub

shaped and constant failure rate distributions. The importance of bathtub shaped

failure rate distribution and its practical relevance are studied.

In chapter 3, two new bathtub shaped failure rate distributions, Generalized

X-Exponential Distribution and Weibull-Lindley distribution are proposed and

studied in detail. The new distributions provided a better fit than other well

known distributions. Some of the mathematical properties, moments, moment

generating function, characteristics function and order statistics, etc., are studied.

The estimation of parameters by maximum likelihood is discussed. The proposed

distributions are applied to several real data sets and compared with some other

bathtub shaped life distributions.

In chapter 4, a new upside down bathtub shaped failure rate distribution,

based on DUS transformation using Lomax distribution as baseline, is proposed.

A very few study on upside down bathtub shaped failure rate models are available

in literature. The shapes of its probability density and failure rate functions

are investigated. Some of the properties including moments, moment generating

function, characteristic function, quantiles, entropy of DUS Lomax distribution

are studied. Distributions of minimum and maximum are obtained. Estimation

of parameters of the distribution is performed via maximum likelihood method.

Reliability of stress-strength models is derived. Using a simulation study the

performance of the maximum likelihood estimators (MLE) with respect to biases

and mean squared errors are studied. The proposed distribution is applied to

three real data sets and compared with other lifetime distributions.



Introduction 23

In manufacturing, if we have any information about the mechanical reliability

of design through stress-strength model prior to production, a manufacturer can

significantly decrease the cost of production. The inherent strength and external

stress being experienced by the systems are customary to define safety factors for

their long lives. In chapter 5, stress-strength reliability in two different cases using

three parameter Generalized Lindley distribution and Power Lindley distribution

are discussed. The procedure of estimating reliability of single component and

multi-component stress-strength models are considered. Performance of the MLEs

are presented by the way of a simulation study. Two applications are provided to

show how the distribution work in practice using real data sets.

The total time on test transforms is a widely accepted statistical tool, which

has applications in different fields such as reliability analysis, econometrics, stochas-

tic modeling, tail ordering, ordering of distributions, etc. TTT transform tech-

nique is discussed in chapter 6 for the problem of identification of failure rate

behavior of increasing convex (concave) function of random variable based on dis-

tributional properties of the baseline lifetime variable. In this chapter, various

properties of TTT transform of increasing convex (concave) function of random

variable are studied. Some results about the ageing patterns are investigated.

Burn-in is a technology that used to improve the quality of components and

systems which delivered to a customer using the item under normal or accelerated

environmental conditions prior to export. If the burn-in procedure is effective, the

items delivered to the user are better than those delivered without burn-in. In

chapter 7, expression of long run average cost function per unit time for obtaining

optimal burn-in time and optimal age using Weibull Lindley and and Generalized
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X-Exponential distributions are given.

In Chapter 8, the conclusion of the thesis is given and presented possible future

work. The references are appended at the end of the thesis.



CHAPTER 2

REVIEW OF BATHTUB-SHAPED FAILURE

RATE DISTRIBUTIONS

2.1 Introduction

Attempts in modeling or summarizing survival data are mainly based on three

types of distributions: lifetime distributions with constant failure rate, IFR and

DFR. However, there seems to be an increased interest in non-monotone failure

rate distributions, especially BFR distributions and UBFR distributions. These

distributions serve as adequate models for the survival time of many industrial

products. Such failure rate curves are also known as the U-shaped or J-shaped

curves. Many parametric families of BFR distributions have been introduced in

literature during past several years. The BFR distributions are widely used in

25
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reliability engineering and survival analysis. Monotonic ageing concepts are pop-

ular among many reliability engineers. However, in many practical applications,

the effect of age is initially beneficial, but after a certain period of time, it is

effecting adversely. Many products, especially electronic, electro-mechanical and

mechanical items have BFR distribution, see Barlow and Proshan (1975).

Glaser (1980) and Lawless (1982) have been given many examples of BFR life

distributions. Hjorth (1980) described BFR distributions by mixtures of a set of

IFR distribution for competing risk model. Lai et al. (2001) discussed the BFR

distributions. Xie et al. (2002) studied modified Weibull extension models with

BFR function useful in reliability related decision making and cost analysis. Xie

et al. (2003) investigated some models extending the traditional two-parameter

Weibull distribution. Navarro and Hernandez (2004) studied the shape of reliabil-

ity functions by using the s-equilibrium distribution of a renewal process and also

studied how to obtain distribution with BFR using mixture of two positive trun-

cated Normal distributions. Kundu (2004) proposed two parameter exponentiated

Exponential distribution and discussed several properties and different estimation

procedures. Wondmagegnehu et al. (2005) studied the failure rate of the mixture

of an Exponential distribution and a Weibull distribution. Block et al. (2008)

discussed the continuous mixture of whole families of distribution having a BFR

functions. Sarhan and Kundu (2009) derived the generalized linear failure rate

distribution and its properties.

Extension of Weibull distributions to make it compatible with BFR data are

introduced by Mudholkar and Srivastava (1993), Xie and Lai (1995), and Xie

et al. (2002). Chen (2000) also introduced a two parameter BFR model for
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survival data analysis. Wang (2000) studied an additive model based on the Burr

XII distribution for lifetime data with BFR. Wang et al. (2014) derived Weibull

extension with BFR function based on type-II censored samples.

Recently, Lemonte (2013) proposed a new exponential type distribution with

constant failure rate, IFR, DFR, UBFR and BFR function which can be used in

modeling survival data in reliability problems and fatigue life studies. Zhang et

al. (2013) investigated the parameter estimation of 3-parameter Weibull related

model with decreasing, increasing, bathtub and upside-down bathtub shaped fail-

ure rates. Parsa et al. (2014) investigated the difference between the change

points of failure rate and mean residual life functions of some generalized Gamma

type distribution due to the capability of these distribution in modeling various

BFR functions. Wang et al. (2015) discussed new finite interval lifetime distribu-

tion model for fitting BFR curve. Shehla and Ali khan (2016) studied reliability

analysis using an exponential power model with BFR function. Zeng et al. (2016)

derived two lifetime distributions, one with 4 parameters and the other with 5

parameters, for the modeling of BFR data.

Shafiq and Viertl (2017) proposed generalized estimators for the parameters

and failure rates of BFR distributions used to model fuzzy lifetime data. Gauss et

al. (2018) introduced new Lindley Weibull distribution which accommodates uni-

modal and bathtub shaped failure rates. Dey et al. (2019) introduced a new distri-

bution alpha-power transformed Lomax distribution with decreasing and UBFR

distribution. Al-abbasi et al. (2019) proposed a three parameter generalized

Weibull uniform distribution that extends the Weibull distribution to have BFR

or DFR property. Shoaee (2019) investigated two bivariate models, viz., bivariate
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Chen distribution and bivariate Chen-Geometric distribution, that has BFR or

IFR functions. Ahsan et al. (2019) studied the reliability analysis of gas-turbine

engine with BFR distribution. Chen and Gui (2020) discussed the estimation

problem of two parameters of a lifetime distributions with a BFR functions based

on adaptive progressive type-II censored data.

The aim of this chapter is to provide a review of BFR and UBFR models.

Basic definitions and results are given in section 2.2. Construction of BFR or

UBFR model is recalled in section 2.3.

2.2 Definitions and Results

In this section, some definitions of BFR distributions are presented.

Definition 2.2.1. (Glaser, 1980). Let F be a cdf with a failure rate function r(t)

which is continuous. Then F is BFR distribution if there exists a to such that:

(a) r(t) is decreasing for t < to,

(b) r(t) is increasing for t > to. i.e., r′(t) < 0 for t < to, r
′(to) = 0 and r′(t) > 0

for t > to.

Here, when r(t) is increasing (decreasing), it is strictly increasing (decreasing).

The bathtub curves given in this definition would probably represent some U-

shaped tubs. There is no interval for which r(t) is a constant.

Definition 2.2.2. (Deshpande and Suresh, 1990). A life distribution F having

support on [0,∞) is said to be a BFR distribution if there exists a point to such
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that − log F̄ (t) is concave in [0, to) and convex in [t0,∞).

Definition 2.2.3. (Mitra and Basu, 1995). An absolutely continuous life distri-

bution F having support [0,∞) is said to be a BFR distribution if there exists a,

to ≥ 0 such that r(t) is non-increasing for [0, to) and non-decreasing on [to,∞).

Definition 2.2.4. (Mi, 1995). A lifetime distribution F is said to be a BFR

distribution if there exists 0 ≤ t1 ≤ t2 <∞ such that:

(a) r(t) is strictly decreasing if 0 < t < t1;

(b) r(t) is a constant if t1 ≤ t ≤ t2; and

(c) strictly increasing if t > t2.

The points t1 and t2 are the change points of r(t). If t1 = t2 = 0, then r(t)

becomes IFR, and if t1 = t2 → ∞, then r(t) becomes DFR. In general, if t1 = t2

then the interval for which r(t) is constant degenerates to a single point. The

points in the interval (t1, t2) are not change points according to Mi (1995).

If F is not absolutely continuous, then BFR property can be explained through

the conditional reliability function

F̄ (x|t) =
F̄ (t+ x)

F̄ (t)
, F̄ (t) = 1− F (t) > 0, t > 0, x > 0. (2.2.1)

Definition 2.2.5. (Haupt and Scabe, 1997). F is said to be BFR if there exists

a to such that

• F̄ (x|t) is increasing in t for 0 ≤ t < to, 0 ≤ x ≤ (to − t),

• F̄ (x|t) is decreasing in t for to < t <∞, x ≥ 0.
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2.2.1 Some Basic Properties

Mitra and Basu (1996a) presented some basic properties of the survival functions

and moments of a BFR distribution. Let T represent lifetime r.v with cdf F .

• Suppose F is BFR, then F̄ (t) ≤ Ḡ(t) where G is exponential with mean

r(to)
−1. Here to is a change point at which r(t) is minimum.

• E(T k) ≤ Γ(k+1)
{r(to)}k , k > 0.

• A BFR life distribution F with E(T k) = Γ(k+1)
{r(to)}k is necessarily an exponential.

• Convolution of BFR distributions is not necessarily BFR.

• The mixture of BFR distributions need not be BFR.

• Suppose we have a competing risk model: F̄ (t) = F̄1(t)F̄2(t) where the

lifetime of each component is BFR with a common turning point to. Then

the lifetime of the system is again has a BFR distribution with to as one of

its turning points.

• A parallel system of two independent BFR components need not be BFR.

In many distributions, survival functions and failure rate functions do not have

an analytically tractable form. In such cases, Glaser’s technique can be applied,

Glaser (1980).

Assume that the pdf f(t) of T is positive on (0,∞) and that it is twice dif-

ferentiable on (0,∞). Let η(t) = −f ′(t)
f(t)

, g(t) = 1
r(t)

, then, we have following the

results. Clearly g′(t) =
∫∞
t

[f(y)/f(t)] [η(t)− η(y)] dy.
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Theorem 2.2.1. (Glaser, 1980)

(a) If η′(t) > 0 for all t > 0, then F is IFR.

(b) If η′(t) < 0 for all t > 0, then F is DFR.

(c) ∃ to > 0 such that η′(to) = 0, η′(t) < 0 ∀ t ∈ (0, to) and η′(t) > 0 ∀ t > to.

(i) If ∃ yo > 0 such that g′(yo) = 0, then F is BFR.

(ii) If there does not exists yo > 0 such that g′(yo) = 0, then F is IFR.

(d) ∃ to > 0 such that η′(to) = 0, η′(t) > 0 ∀ t ∈ (0, to), and η′(t) < 0 ∀ t > to.

(i) If ∃ yo > 0 such that g′(yo) = 0, then F is UBFR.

(ii) If there does not exists yo > 0 such that g′(yo) = 0, then F is DFR.

We can use η′(t) when the failure rate function is very complicated or not

determined.

Following two results from Glaser further ease the computations by avoiding

the complications which usually arise because of the function g(t).

Lemma 2.2.2. (a) Let ε = lim
t↓0

f(t). If the condition (c) of Theorem 2.2.1 hold

and if ε = ∞, then the corresponding distribution is BFR. If the condition

(d) of Theorem 2.2.1 hold and if ε = 0, then the corresponding distribution

is UBFR.

(b) Let δ = lim
t↓0

g(t)η(t). If the condition (c) of Theorem 2.2.1 hold and if δ > 1,

then the corresponding distribution is BFR. If the condition (d) of Theorem

2.2.1 hold and if δ < 1, then the corresponding distribution is UBFR.
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The conditions on ε and δ in the above results are reflections of the high infant

mortality rate, a characteristic of the bathtub distributions.

2.3 Construction Techniques for Bathtub Distri-

butions

There are lots of ways available for the construction of BFR distribution. Schabe

(1994a) has constructed BFR distributions from DFR distributions by trunca-

tions. Techniques for construction of a BFR model are given below.

1. Convex function: Define a BFR by choosing a positive convex function

r(t) over (0,∞) such that
∫
r(t) dt = ∞ (Rajarshi and Rajarshi, 1988).

The distribution having a failure rate function r(t) = exp{α + βt + γt2}, a

strictly increasing function of BFR function, is BFR.

2. Glaser’s technique: Glaser’s theorem (Theorem 2.2.1 above) can be ap-

plied to derive new bathtub distributions. i.e., we can choose a function η(t)

that satisfies the conditions of the theorem.

3. Function of random variables: This procedure is due to Griffith (1982).

Let T be a continuous r.v and let g(u) be a strictly increasing function which

is differentiable on [0,∞) with g(0) = 0. Let g−1 be the inverse function of

g. Then the failure rate function of g(T ) is given by

rg(T )(t) = rT (g−1(t))[g−1(t)]′ (2.3.1)
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Let T be an exponential r.v and let g(u) be a strictly increasing differentiable

function on [0,∞) with g(0) = 0. If g is a convex on (0, τ ] and concave on

[τ,∞) for a positive τ , then the distribution of g(T ) is a bathtub distribution.

4. Series system (competing risk model): Suppose we have a series system

of two independent components. Everyone knows that the system failure

rate is the sum of the two component failure rates. If one of them has IFR

distribution and the other has DFR distribution, the system distribution

may be BFR. This type of models are obtained by Murthy et al. (1973).

5. Mixtures: Mixtures of distributions often give rise to bathtub distributions.

For example, Glaser (1980) showed that Gamma mixture has BFR distri-

bution. The mixture of the two increasing linear failure rate distributions

provided a BFR distribution, Block et al. (2008).

6. Sectional models: Shooman (1968) reported BFR with piecewise linear

shape in three areas. Other sectional models that give rise to bathtub dis-

tributions were given in Murthy and Jiang (1997).

7. Polynomial of finite order: Jaisingh et al. (1987) suggested a polynomial

of finite order failure model: r(t) = a0 + a1t + . . . + antn. As the constants

ai, i = 0, . . . , n may be positive or negative, bathtub shapes for r(t) can be

achieved.

8. TTT Transform: In Kunitz (1989) and Haupt and Schabe (1997), the

TTT transform was used to construct parametric bathtub life distributions.
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9. Truncation of DFR distribution: Schabe (1994a) has constructed BFR

distributions from DFR distributions by truncations.

2.4 Some BFR and UBFR Distributions

Several parametric families of BFR and UBFR life distributions have been con-

structed in various contexts over the past two decades. Ideally, we should classify

them into groups according to some common characteristics. (1) Lifetime distri-

butions with explicit expressions for failure rates and (2) Lifetime distributions

with inefficient or unknown failure rate functions.

Quadratic model and its generalization

Bain (1978) considered a quadratic failure rate model,

r(x) = α + βx+ γx2, α ≥ 0, − 2(αγ)1/2 ≤ β < 0, γ > 0, x > 0, (2.4.1)

which has a bathtub shape. Here, r(0) = α, r(x) → ∞ as x → ∞. It is easy to

verify that r̂(x) = er(x) also has a bathtub shape if r(x) has a bathtub shape.

A flexible family

Gaver and Acar (1979) have proposed a BFR model with r(x) = λ+ g(x) + k(x)

where g(x) is a non-negative decreasing function of x with lim
x→∞

g(x)→ 0 whereas

k(x) is an increasing function of x such that k(0) = 0, lim
x→∞

k(x) → ∞ and λ is
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any real number such that r(x)→ 0. This is a popular method for making BFR

functions. Several special cases of this family are presented below:

• r(x) = λ + θ
x+φ

+ αxp, x > 0, φ > 0, α > 0, θ > 0, p > 0; the model is

an extension of Murthy et al. (1973). If both g(x) and k(x) are failure rate

functions, then this model is simply a competing risks model involving three

distributions.

• r(x) = θ1α1x
α1−1 + θ2 + θ3α3x

α3−1, α3 > 2, 0 < α1 < 1. r(x)→∞ as x→

0 or ∞, the model is studied by Canfield and Borgman (1975).

Additive Weibull Distribution

Xie and Lai (1995) considered a competing risk model involving two Weibull

distributions. For α > 0, θ > 0, β > 0, γ < 1, pdf, cdf and failure rate function

are

f(x) =
(
αθxθ−1 + βγxγ−1

)
e−αx

θ−βxγ , x > 0,

F (x) = 1− e−αxθ−βxγ , x > 0

and r(x) = αθxθ−1 + βγxγ−1, x > 0. (2.4.2)

The function r(x) has a bathtub shape when α < 1 and β > 1. Also r(0) =

r(∞) =∞. The turning point xo is given by

xo =

[
α(1− α)θα

β(1− β)γβ

] 1
α−β

.
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Additive Burr XII Distribution

Wang (2000) considered an additive Burr XII model that combines two Burr XII

distributions, one with DFR property and another with IFR property. The failure

rate function of the additive Burr XII is given by

r(x) =
k1c1(x/s1)c1−1

s1[1 + (x/s1)c1 ]
+

k2c2(x/s2)c2−1

s2[1 + (x/s2)c2 ]
, x > 0, (2.4.3)

where k1 ≥ 0, k2 ≥ 0, s1 ≥ 0, s2 ≥ 0, 0 < c1 < 1 ≥ 0, c2 > 2. It was shown that

r(x) has bathtub shape.

Modified Weibull Distribution

Lai et al. (2003) proposed a modified Weibull (MW) distribution with cdf

F (x) = 1− e−βxγeλx , β > 0, γ, λ ≥ 0, x > 0,

where at most one of γ, λ is equal to zero. The pdf of the MW distribution is

f(x) = β(γ + λx) xγ−1eλxe−βx
γeλx , β > 0, γ, λ ≥ 0, x > 0.

The corresponding failure rate function is

r(x) = β(γ + λx) xγ−1eλx, β > 0, γ, λ ≥ 0, x > 0. (2.4.4)
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The pdf of the MW distribution can be unimodal or decreasing. The failure rate

function can be increasing or bathtub shaped.

Sectional model with two Weibull Distributions

Murthy and Jiang (1997) have considered two sectional models involving two

Weibull distributions having failure rate function

r(x) =


(α1/β1)(x/β1)α1−1; 0 ≤ x ≤ xo, α1 > 0, β1 > 0

(α2/β2)
(
x−γ
β2

)α2−1

; xo < x <∞, α2 > 0, β2 > 0

with change point xo = [βα1
1 (α/β2)α2 ]1/(α1−α2), γ = (1− α)xo where α = α2

α1
, and

r(x) is continuous at xo. i.e.,

For α1 < α2, r(x) have a bathtub shape if α1 < 1 and α2 > 1.

Exponential power Distribution

Smith and Bain (1975) studied the exponential power model having density func-

tion

f(x) = λα(λx)α−1exp{−(e(λx)α − (λx)α − 1)}, x > 0, α > 0, λ > 0.

The survival function is

F̄ (x) = exp{−(e(λx)α − 1)}, x > 0, α > 0, λ > 0. (2.4.5)
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The failure function is given by

r(x) = λα(λx)α−1e(λx)α , x > 0, α > 0, λ > 0. (2.4.6)

For α < 1, r(x)→∞ when x→ 0 or x→∞, r(x) has bathtub shape.

Weibull Extension Distribution

Consider the case λ = 1 in the exponential power model. Then (2.4.5) becomes

F̄ (x) = exp{−(ex
α − 1)}, α > 0, x > 0. (2.4.7)

Chen (2000) introduced another parameter λ to the distribution specified in

(2.4.7), so that the new cdf becomes

F̄ (x) = exp{−λ(ex
α − 1)}, α > 0, λ > 0, x > 0

with failure rate function

r(x) = λαxα−1ex
α

. (2.4.8)

The parameter λ here does not alter the shape of the failure rate function so

(2.4.8) behaves similarly to the function given in (2.4.6). In particular, r(x) is

increasing for α ≥ 1 and r(x) is bathtub shaped for α < 1.



Review of Bathtub-shaped Failure rate Distribution 39

Double Exponential power Distribution

Paranjpe et al. (1985) considered the following model having failure rate function

r(x) = βαxα−1e(βxα)exp{e(βxα) − 1}, α < 1, β > 0, x > 0. (2.4.9)

The above expression is obviously quite complex. Clearly, r(x)→∞ as x→ 0 or

x→∞, so a bathtub shape is obtained.

Power-function Distribution

Mukherjee and Islam (1983) proposed a finite range distribution with a bathtub

failure rate:

r(x) =
pxp−1

θp − xp
, 0 ≤ x < θ, p < 1, θ > 0 (2.4.10)

and r(x)→∞ when x→ 0 or θ, thus bathtub is obtained.

Beta failure rate Distribution

Moore and Lai (1994) proposed another finite range distribution, an extension of

beta function, with BFR function,

r(x) = c(x+ p)a−1(q − x)b−1, 0 < a < 1, b < −1, 0 ≤ x < q, c > 0, p ≥ 0.

(2.4.11)

Clearly r(0) = cpa−1qb−1, r(x)→∞ as x→ q.
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Integrated beta failure rate Distribution

Lai et al. (1998) considered a lifetime distribution with failure rate function

r(x) = xa−1(1− x)b−1{a− (a+ b)x}, 0 < x < 1, a > 0, b > 0. (2.4.12)

It is obvious that r(x)→∞ as x→ 0 or 1 and hence r(x) is bathtub shaped.

J-shaped Distribution

Topp and Leone (1955) proposed J-shaped distribution. Nadarajah and Kotz

(2003) discussed moments of J-shaped distribution. For 0 < v < 1, b > 0, J-

shaped distribution has pdf and cdf

f(x) =
2v

b

(x
b

)v−1 (
1− x

b

)(
2− x

b

)v−1

, 0 < x < b,

and

F (x) =


(
x
b

)v (
2− x

b

)v
; if 0 ≤ x ≤ b <∞

0; if x < 0

1; if x > b.

The failure rate function r(x) is

r(x) =
2v

b

y(1− y2)v−1

1− (1− y2)v
, (2.4.13)

where y = 1 − (x/b). r(x) → ∞ as x → 0 and x → b for all v ∈ (0, 1) and r(x)

attains a minimum at x = x0, where y0 = 1 − (x0/b) is the root of the equation
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(1− y)v = 1− 2vy/(1 + y).

Beta Distribution

For p > 0, q > 0, 0 < x < 1, the standard beta distribution has pdf and cdf

f(x) =
xp−1(1− x)q−1

B(p, q)

and

F (x) =
Bx(p, q)

B(p, q)

respectively, where Bx(., .) is the incomplete beta function defined by

Bx(p, q) =

∫ x

0

tp−1(1− t)q−1dt, 0 < x < 1, p > 0, q > 0.

The failure rate function r(x) can be expressed as

r(x) =
xp−1(1− x)q−1

B(p, q)−Bx(p, q)
, 0 < x < 1, p > 0, q > 0. (2.4.14)

Ghitany (2004) showed that r(x) is bathtub-shaped if p < 1.

Mukherjee and Roy’s Distribution

Mukherjee and Roy (1993) defined a distribution having pdf

f(x) = (δ(|x− a|+ |x− b|)/(b− a)) exp
[
−δa2/(b− a)− δx+ (−1)k(x−a,|x−a|)]

exp
[
((b− a)δ/4)((|x− a|+ |x− b|)/(b− a)− 1)2

]
, x > 0, 0 < a < b <∞, δ > 0,
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and cdf

F (x) =1− exp
[
− δa2/(b− a)− δx

+ (−1)k(x−a,|x−a|)((b− a)δ/4)((|x− a|+ |x− b|)/(b− a)− 1)2
]
,

where k(x, y) is Kronecker’s function taking the value 1 when x = y and 0

whenever x 6= y. The failure rate function r(x) can be expressed as

r(x) = δ(|x− a|+ |x− b|)/(b− a). (2.4.15)

It is clear that r(x) take bathtub shape for all values of δ, a and b.

Haupt and Schabe’s Distribution

Haupt and Schabe (1992) developed a distribution having pdf

f(x) =


1+2β

2T
√
β2+(1+2β)x/T

; if 0 ≤ x ≤ T, ∞ < β <∞, T > 0,

0; otherwise

and cdf

F (x) =


1; if x ≥ T ,

−β +
√
β2 + (1 + 2β)x/T ; if 0 ≤ x ≤ T,

0; otherwise.
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The failure rate function r(x) can be expressed as

r(x) =


1+2β

2T
√
β2+(1+2β)x/T (1+β−

√
β2+(1+2β)x/T )

; if 0 ≤ x ≤ T,

0; otherwise

(2.4.16)

r(x) is bathtub-shaped if −1/3 < β < 1 and r(x) attaining the minimum at

x0 = T (1 + 2β − 3β2)/[4(1 + 2β)].

Schabe’s Distribution

Schabe (1994a) considered a simple distribution having pdf

f(x) =
2γ + (1− γ)x/θ

θ(γ + x/θ)2
, x ≤ θ, θ > 0, −∞ < γ <∞

and cdf

F (x) =
(1 + γ)x

θγ + x
.

The failure rate function r(x) can be expressed as

r(x) =
1

θ(γ + x/θ)
+

1

θ(1− x/θ)
. (2.4.17)

r(x) is bathtub-shaped if γ < 1 and minimum of r(x) occurring at x0 = (θ/2)(1−

γ). r(x)→∞ as x→∞.
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Hjorth’s Distribution

For δ > 0, β > 0, θ > 0, Hjorth (1980) proposed a distribution with pdf and cdf

f(x) =
[(1 + βx)δx+ θ]exp(−δx2/2)

(1 + βx)
θ

β+1

, x > 0

and

F (x) = 1− exp(−δx2/2)

(1 + βx)
θ
β

, x > 0

respectively. The failure rate function r(x) can be expressed as

r(x) = δx+
θ

1 + βx
. (2.4.18)

It is easily seen that r(x) is bathtub-shaped if 0 < δ < θβ.

Gamma mixture Distribution

Gupta and Warren (2001) examined the mixture of Gamma distributions having

pdf

f(x) =
pxα1−1e−x/β

βα1Γ(α1)
+

(1− p)xα2−1e−x/β

βα2Γ(α2)
,

for x > 0, α1 > 0, α2 > 0, β > 0 and 0 < p < 1. Corresponding failure rate

function is bathtub-shaped if either β1 = β2, α1 > 1 and α2 < 1 or α1 > 2.
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Normal mixture Distribution

Navarro and Hernandez (2004) examined the mixture of truncated Normal distri-

butions with pdf

f(x) =
p√

2Πσ0Φ(µ0/σ0)
exp

[
−(x− µ0)2

2σ2
0

]
+

1− p√
2Πσ1Φ(µ1/σ1)

exp

[
−(x− µ1)2

2σ2
1

]
,

for x > 0, −∞ < µ0 < ∞, −∞ < µ1 < ∞, σ0 > 0, σ1 > 0 and 0 < p < 1, in

which the corresponding failure rate function exhibiting a bathtub shape.

Exponentiated Weibull Distribution

Mudholkar et al. (1995) introduced the exponentiated Weibull distribution with

pdf

f(x) = aαλαxα−1e−(λx)α(1− e−(λx)α)a−1, x > 0, a > 0, α > 0, λ > 0

and cdf

F (x) = (1− e−(λx)α)a, x > 0, a > 0, α > 0, λ > 0

respectively. The failure rate function r(x) can be expressed as

r(x) =
aα(λx)α−1e−(λx)α(1− e−(λx)α)a−1

1− (1− e−(λx)α)a
(2.4.19)

in which r(x) is bathtub-shaped if α > 1 and aα < 1.
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Stacy’s Weibull Distribution

Stacy (1962) proposed a distribution with pdf

f(x) = cβ−cα(Γα)−1xcα−1e−(x/β)c

and cdf

F (x) = (Γα)−1γ

(
α,

(
x

β

)c)
,

where x > 0, c > 0, α > 0, β > 0, γ(·, ·) denotes the incomplete Gamma function

defined by

γ(a, x) =

∫ x

0

ta−1e−tdt, x > 0, a > 0.

The failure rate function r(x) can be expressed as

r(x) =
cβ−cαxcα−1e−(x/β)c

(Γα)−1γ
(
α,
(
x
β

)c) . (2.4.20)

r(x) is bathtub-shaped if c > 1.

Truncated Weibull Distribution

McEwen and Parresol (1991) proposed doubly truncated Weibull distribution hav-

ing pdf

f(x) =
p(x)

P (b)− P (a)

and cdf

F (x) =
P (x)− P (a)

P (b)− P (a)
,
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where 0 ≤ a < x < b <∞, p(x) and P (x) are the pdf and cdf, respectively, of the

traditional Weibull distribution, p(x) = αλ(λx)α−1e−(λx)α , and P (x) = 1−e−(λx)α ,

for x > 0, α > 0 and λ > 0. Corresponding failure rate function has bathtub

shape.

Xie et al.’s Weibull Distribution

Xie et al. (2002) proposed a modification of the Weibull distribution having pdf

f(x) = λβ
(x
α

)β−1

exp

[(x
α

)β
+ λα

{
1− exp

(x
α

)β}]

and cdf

F (x) = 1− exp

[
λα

{
1− exp

(x
α

)β}]
,

where x > 0, λ > 0, α > 0 and β > 0. The failure rate function r(x) can be

expressed as

r(x) = λβ
(x
α

)β−1

exp
(x
α

)β
. (2.4.21)

It is easily seen that r(x) is bathtub-shaped if 0 < β < 1 with r(x) attaining the

minimum at xo = α(1/β − 1)1/β and r(x) increases to ∞ as x→ 0 and ∞.

Generalized Lindley Distribution

Nadarajah et al. (2011) proposed Generalized Lindley (GL) distribution whose

cdf is

F (x) =

[
1− 1 + λ+ λx

1 + λ
e−λx

]α
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for x > 0, λ > 0, and α > 0. The failure rate function is given by

r(x) =
αλ2

1 + λ
(1 + x)

[
1− 1 + λ+ λx

1 + λ
e−λx

]α−1

e−λx[1− V α(x)]−1 (2.4.22)

for x > 0, λ > 0, α > 0, where V (x) =
[
1− 1+λ+λx

1+λ
e−λx

]
. The shape of the failure

rate function appears monotonically decreasing or to initially decrease and then

increase, a bathtub shape if α < 1, the shape appears monotonically increasing if

α ≥ 1.

Burr XII Distribution

The Burr XII distribution was first introduced by Burr (1942). Burr XII distri-

bution having reliability function

F̄ (x) =
1

(1 + xc)k
, k, c > 0, x > 0.

The failure rate function is

r(x) =
kcxc−1

(1 + xc)
(2.4.23)

For c ≤ 1, the slope is always negative, for c > 1 the slope is positive for xc < c−1

and negative for xc > c− 1. Thus r(x) is decreasing for c ≤ 1 and UBFR if c > 2.
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Birnbaum and Saunders Distribution

Birnbaum and Saunders (1969a,b) introduced a lifetime distribution

F (x) = Φ

{
1

α
.

[(
x

β

)1/2

−
(
x

β

)−1/2
]}

= Φ

{
1

α
ξ

(
x

β

)}
, x > 0,

where ξ(x) = x1/2 − x−1/2, α, β > 0 and Φ(.) denotes the cdf of the standard

normal. While the failure rate of Birnbaum and Saunders is zero at x = 0, then

increases to a maximum for some x0 and finally decreases to a finite positive value

(i.e., r(x) is UBFR) when β = 1 and α > 0.8, the failure rate of the log-Normal

also has a UBFR function but decreases to zero.

Inverse Gaussian Distribution

The name ‘inverse Gaussian’ was first applied to a certain class of distributions

by Tweedie (1947). The density function of the inverse Gaussian is

f(x) =

√
λ

2πx3
exp

[
− λ

2µ2x
(x− µ)2

]
, λ > 0, x ≥ 0.

The corresponding distribution function is

F (x) = Φ

{√
λ

x

(
x

µ
− 1

)}
+ e2λ/µΦ

{
−
√
λ

x

(
x

µ
+ 1

)}

and the expression for r(x) is quite complicated. By Glaser’s theorem, r(x) is

UBFR.
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Inverse Weibull Distribution

The cdf of two-parameter inverse Weibull distribution is given by

F (x) = exp

{
−
(α
x

)β}
, α, β > 0, x > 0.

The failure rate function is

r(x) = βαβx−(β+1) exp

[
−
(α
x

)β]{
1− exp

[
−
(α
x

)β]}−1

. (2.4.24)

It has been shown that lim
x→0

r(x) = lim
x→∞

r(x) = 0 and r(x) ∈ UBFR.

Log-Logistic Distribution

The pdf, cdf and failure rate of Log-Logistic distribution are given by

f(x) =
kρ(xρ)k−1

[1 + (ρx)k]2
, x > 0, ρ > 0, k > 0

F (x) = 1− 1

1 + (ρx)k

and

r(x) =
kρ(ρx)k−1

1 + (ρx)k
. (2.4.25)

It can be shown easily that r(x) is DFR when k ≤ 1; r(x) is UBFR when k > 1.
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Log-Normal Distribution

The distribution function and failure rate function of log-Normal distribution are

F (x) = Φ

(
log x− µ

σ

)

and

r(x) =
(1/2πxσ) exp{−(log ax)2/2σ2}

1− Φ{log ax/σ}
, (2.4.26)

where a = e−α. r(0) = 0 and r(x)→ 0 when x→∞.

2.5 Optimal burn-in time

Burn-in plays an important role in reliability engineering, Jensen and Petersen

(1982). In this section, we discuss the concepts of burn-in.

2.5.1 Concepts of burn-in

Due to the high failure rate (most importantly, silicon and integrated circuits) in

the early stages of module life, burn-in is widely accepted as a method of screen-

ing failures before sending or delivering these components to the field operations.

That is, before delivery to the customers, the components are tested in approxi-

mate electrical or thermal conditions that approximate the working conditions in

field operation. The components that fail in the burn-in process are removed or

repaired, and only those that survive the burn-in process are considered to be of

high quality. These are how users send them to the field or to the field function.
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With adequate burn-in, a high initial failure rate results in high maintenance

costs. A general background on burn-in can be found in Kuo and Kuo (1983),

and Kuo (1984).

Estimating change points is particularly relevant for BFR in the context of

maintenance policies, naturally, do not consider replacing a component of such

a life distribution before the ‘threshold’ unknown age to is reached. Kulasekera

and Saxena (1991) have constructed kernel density estimators and empirical cdf

to estimate f , F , r and its change point.

Mitra and Basu (1995) considered the problem of estimating change points

in different monotonic aging models. Suresh (1992) also obtained two estimates

of the change point; one by using the definition of BFR distribution, another by

a characterization of BFR distribution in terms of TTT transform. Nguyen et

al. (1984) considered the estimation of the turning point of a two-step piece-

wise linear failure rate function. Pham and Nguyen (1993) considered estimating

the turning point of a truncated BFR function. Gupta et al. (1999) considered

estimation of the turning point of the failure rate function in the case of the log-

Logistic model. Details about optimal burn-in time can be seen in Myung and

Young (2002). The expressions of long run average cost function per unit time

for obtaining optimal burn-in time and optimal age for various distributions is an

open problem.

This chapter gave a comprehensive review of known BFR and UBFR distri-

butions. Some tools and methods that will be used for data analysis are also

reviewed.



CHAPTER 3

NEW BATHTUB SHAPED FAILURE RATE

DISTRIBUTIONS

3.1 Introduction

1 In many applied sciences such as medicine, engineering, bio statistics, survival

analysis etc modeling and analysis of lifetime data are crucial, Deshpande and

Suresh (1990). In analyzing lifetime data one often uses the Exponential, Gamma,

Weibull and Generalized Lindley distributions. It is well known that Exponential

distribution has constant hazard function, Generalized Lindley distribution has a

BFR function whereas Weibull and Gamma distributions have constant or mono-

tone (increasing/decreasing) failure rate functions. In this chapter we present two

new simple distributions which have BFR function. The proposed distributions

1Some contents of this chapter are based on Chacko and Deepthi (2018 & 2019).

53
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are capable of modeling the real problems.

In this chapter, Generalized X-Exponential distribution and Weibull-Lindley

Distribution are discussed in section 3.2 and 3.3. Summary are given in section

3.4.

3.2 Generalized X-Exponential distribution

Here we consider a new distribution named as Generalized X-Exponential dis-

tribution, having BFR function, which generalizes the distribution having df

F (x) = 1 − (1 + λx2)e−λx, x > 0, λ > 0, Chacko (2016). The failure rate func-

tion of X-Exponential distribution appears monotonically decreasing and bathtub

shape. The generalization considered is the distribution of a series system hav-

ing distribution function F (x) = 1 − (1 + λx2)e−λ(x2+x), x > 0, λ > 0, for its

components.

In section 3.2.1, the distribution function of the Generalized X-Exponential

distribution (GXE) is given. In section 3.2.2 discussed the statistical properties

of the distribution. In section 3.2.3 discussed the distribution of maximum and

minimum to address the reliability problems of parallel system and series system,

respectively. The maximum likelihood estimation of the parameters is explained

in section 3.2.4. In section 3.2.5 discussed the asymptotic confidence bounds of

MLEs of the distribution. In section 3.2.6 a simulation study is given. Two real

data sets are analyzed in section 3.2.7 and the results are compared with some

existing distributions.
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3.2.1 Generalized X-Exponential Distribution

Let X be a life time r.v having cdf with parameter α and λ,

F (x) =
(

1− (1 + λx2)e−λ(x2+x)
)α
, x > 0, α > 0, λ > 0. (3.2.1)

Clearly F (0) = 0, F (∞) = 1, F is non-decreasing and right continuous. More

over F is absolutely continuous. Then the pdf of the r.v X is given by

f(x) = αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx)
(

1− (1 + λx2)e−λ(x2+x)
)α−1

,

x > 0, α, λ > 0. (3.2.2)

Here α and λ are the shape and scale parameters. It is clear that F is a positively

skewed distribution. The distribution with pdf of the form (3.2.2) is named as

GXE distribution with parameters α and λ and denoted by GXE(α, λ). Failure

rate function of GXE distribution is

r(x) =
αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx)

(
1− (1 + λx2)e−λ(x2+x)

)α−1

1− (1− (1 + λx2)e−λ(x2+x))
α ,

x > 0, α, λ > 0. (3.2.3)

Considering the behavior near the change point x0, x0 > 0 and if d
dx
h(x0) = 0.

(i) If 0 < α < 1/2, and 0 < λ < 1, then d
dx
h(x) < 0 when 0 < x < x0 and

d
dx
h(x) > 0 when x > x0, d2

dx2
h(x) > 0 for x = x0.

(ii) If 0 < α < 1/2, and λ > 1, then d
dx
h(x) < 0 when 0 < x < x0, d

dx
h(x) > 0



56 New Bathtub Shaped Failure Rate Distributions

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

x

f(
x)

●

●

●

●

●

●

●

a=0.5,b=1.5
a=2,b=3
a=3,b=4
a=3.5,b=5

a=4,b=6
a=2.5,b=7
a=5,b=7.5

Figure 3.1: PDF of GXE distribution for values of parameters α =
0.5, 2, 3, 3.5, 4, 2.5, 5 and λ = 1.5, 3, 4, 5, 6, 7, 7.5 with color shapes purple, blue,
plum, green, red, black and dark cyan, respectively.

when x > x0, d2

dx2
h(x) > 0 for x = x0.

(iii) If 1/2 < α < 1, and 0 < λ < 1, then d
dx
h(x) < 0 when 0 < x < x0 and

d
dx
h(x) > 0 when x > x0, d2

dx2
h(x) > 0 for x = x0.

(iv) If 1/2 < α < 1, and λ > 1, then d
dx
h(x) < 0 when 0 < x < x0 and d

dx
h(x) > 0

when x > x0, d2

dx2
h(x) > 0 for x = x0.

(v) If α > 1, and λ > 1, then d
dx
h(x) > 0 for x > 0.

The shape of (3.2.3) appears monotonically decreasing or to initially decrease and
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then increase, a bathtub shape if α < 1. GXE(α, λ) allows for monotonically de-

creasing, monotonically increasing and bathtub shapes for its failure rate function.

As α decreases from 1 to 0, the graph shift above whereas if λ increases from 1 to

∞ the shape of the graph concentrate near to 0, see Figures. 3.1, 3.2, 3.3.
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Figure 3.2: CDF of GXE distribution for values of parameters α = 1.5, 2, 3.5, 4.5, 5
and λ = 2.5, 3, 4, 5, 6 with color shapes red, green, plum, dark cyan and orange
respectively.

3.2.2 Moments

In order to calculate moments of X, we require the following lemma.
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Figure 3.3: Failure rate function GXE distribution for values of parameters α =
0.0001, 0.1, 0.5, 2.5, 0.475 and λ = 0.75, 5, 1.5, 7, 8 with color shapes orange, red,
grey, plum and green, respectively.

Lemma 3.2.1. For α, λ > 0, x > 0,

K(α, λ, c) =

∫ ∞
0

xc
(

1− (1 + λx2)e−λ(x2+x)
)α−1

e−λ(x2+x) dx.

Then,

K(α, λ, c) =
α−1∑
i=0

i∑
j=0

(
α− 1

i

)(
i

j

)
(−1)iλj

∫ ∞
0

x2j+ce−λ(x2+x) dx.
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Proof. Using Binomial expansion, (1− z)α−1 =
∑α−1

i=0

(
α−1
i

)
(−1)izi, we have,

K(α, λ, c) =

∫ ∞
0

xc
(

1− (1 + λx2)e−λ(x2+x)
)α−1

e−λ(x2+x) dx

=
α−1∑
i=0

(
α− 1

i

)
(−1)i

∫ ∞
0

xc
[
(1 + λx2)e−λ(x2+x)

]i
e−λ(x2+x) dx

=
α−1∑
i=0

(
α− 1

i

)
(−1)i

∫ ∞
0

xc
i∑

j=0

(
i

j

)
(λx2)je−(i+1)λ(x2+x) dx

=
α−1∑
i=0

i∑
j=0

(
α− 1

i

)(
i

j

)
(−1)iλj

∫ ∞
0

x2j+ce−λ(x2+x) dx.

The result of the lemma follows by the definition of the Gamma function. The

first raw moment is

E(X) = αλK(α, λ, 1) + 2αλ2K(α, λ, 4) + αλ2K(α, λ, 3).

The nth raw moment is

E(Xn) = αλK(α, λ, n) + 2αλ2K(α, λ, n+ 3) + αλ2K(α, λ, n+ 2).

Moment Generating Function

Moment generating function can be obtained from following formula

MX(t) =

∫ ∞
0

etxαe−λ(x2+x)
(
λ+ λx2 + 2λ2x3

) (
1− (1 + λx2)e−λ(x2+x)

)α−1

dx
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=

∫ ∞
0

α
(
λ+ λx2 + 2λ2x3

) (
1− (1 + λx2)e−λ(x2+x)

)α−1

e−λ(x2+x)+tx dx.

Characteristic Function

Characteristic function can be obtained from following formula

φX(t) =

∫ ∞
0

eitxαe−λ(x2+x)
(
λ+ λx2 + 2λ2x3

) (
1− (1 + λx2)e−λ(x2+x)

)α−1

dx

=

∫ ∞
0

α
(
λ+ λx2 + 2λ2x3

) (
1− (1 + λx2)e−λ(x2+x)

)α−1

e−λ(x2+x)+tx dx.

Mean Deviation About Mean

The scatter in a population is measured by using Mean deviation about the mean

µ is defined by

MD(mean) = 2µF (µ)− 2µ+ 2

∫ ∞
µ

xf(x) dx

= 2µF (µ)− 2µ+ 2
(
αλL(α, λ, 1, µ) + 2αλ2L(α, λ, 4, µ)

)
+ 2αλ2L(α, λ, 3, µ)

where

L(α, λ, c, µ) =

∫ ∞
µ

xc
(

1− (1 + λx2)e−λ(x2+x)
)α−1

e−λ(x2+x) dx

=
α−1∑
i=0

i∑
j=0

(
α− 1

i

)(
i

j

)
(−1)iλj

(∫ ∞
µ

x2j+c+1e−(j+1)λ(x2+x)dx

)
.
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Similarly, Mean deviation about the Median M is defined by

MD(Median) = −M + 2

∫ ∞
M

xf(x) dx

= −M + 2
(
αλL(α, λ, 1,M) + 2αλ2L(α, λ, 4,M)

)
+ 2αλ2L(α, λ, 3,M).

3.2.3 Distribution of Maximum and Minimum

Series, Parallel, Series-Parallel and Parallel-Series systems are general system

structure of many engineering systems. The theory of order statistics provides

a useful tool for analysing life time data of such systems. Let X1, X2, . . . , Xn be a

random sample from GXE distribution with cdf and pdf as in (3.2.1) and (3.2.2),

respectively. Let X(1), X(2), . . . , X(n) denote the order statistics obtained from this

sample. The pdf of X(r) is given by,

f(r:n)(x) =
1

B(r, n− r + 1)

[(
1− (1 + λx2)e−λ(x2+x)

)α]r−1

[
1−

(
1− (1 + λx2)e−λ(x2+x)

)α]n−r
αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx)(

1− (1 + λx2)e−λ(x2+x)
)α−1

, x > 0, α, λ > 0. (3.2.4)

The cdf of X(r) is given by

Fr:n(x) =
n∑
j=r

(
n

j

)
F j(x)[1− F (x)]n−j

=
n∑
j=r

(
n

j

)[(
1− (1 + λx2)e−λ(x2+x)

)α]j
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[
1−

(
1− (1 + λx2)e−λ(x2+x)

)α]n−j
, x > 0, α, λ > 0. (3.2.5)

The pdf of the smallest and largest order statistics X(1) and X(n) are respectively

given by:

f1(x) =
1

B(1, n)

[
1−

(
1− (1 + λx2)e−λ(x2+x)

)α]n−1 (
1− (1 + λx2)e−λ(x2+x)

)α−1

αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx), x > 0, α, λ > 0, (3.2.6)

and

fn(x) =
1

B(n, 1)

[(
1− (1 + λx2)e−λ(x2+x)

)α]n−1

αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx)
(

1− (1 + λx2)e−λ(x2+x)
)α−1

,

x > 0, α, λ > 0. (3.2.7)

The cdf of the smallest and largest order statistics X(1) and X(n) are respectively

given by

F1(x) = 1−
[
1−

(
1− (1 + λx2)e−λ(x2+x)

)α]n
, x > 0, α, λ > 0

and

Fn(x) =
[(

1− (1 + λx2)e−λ(x2+x)
)α]n

, x > 0, α, λ > 0.
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Reliability of a series system having n components with GXE(α, λ) is

R(x) =
[(

1− (1 + λx2)e−λ(x2+x)
)α]n

.

Reliability of a parallel system having n components having GXE(α, λ) is

R(x) = 1−
[(

1− (1 + λx2)e−λ(x2+x)
)α]n

.

Both the reliability functions can be used in various reliability calculations.

3.2.4 Parameter Estimation

In this section, estimation of the unknown parameters of the GXE by using the

method of moments and method of maximum likelihood is explained.

Let X1, X2, . . . , Xn are random sample taken from GXE. Let m1 = 1
n

∑n
i=1Xi

and m2 = 1
n

∑n
i=1X

2
i . Equating sample moments to population moments we get

moment estimators for parameters.

m1 = αλK(α, λ, 1) + 2αλ2K(α, λ, 4) + αλ2K(α, λ, 3)

m2 = αλK(α, λ, 2) + 2αλ2K(α, λ, 5) + αλ2K(α, λ, 4)

where K(α, λ, 1) =
∑α−1

i=0

∑i
j=0

(
α−1
i

)(
i
j

)
(−1)iλj

∫∞
0
x2j+1e−λ(x2+x) dx. The solu-

tion of these equations are moment estimators.
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To find MLE, consider likelihood function as,

L(x;α, λ) =
n∏
i=1

f(xi)

= αne−λ
∑n
i=1(x2i+xi)

n∏
i=1

(λ(1 + λx2
i )(2xi + 1)− 2λxi)

n∏
i=1

(
1− (1 + λx2

i )e
−λ(x2i+xi)

)α−1

.

The log-likelihood function is,

l = logL(x;α, λ) = n logα +
n∑
i=1

log
(
λ(1 + λx2

i )(2xi + 1)− 2λxi
)

− λ
n∑
i=1

(x2
i + xi) + (α− 1)

n∑
i=1

log
(

1− (1 + λx2
i )e
−λ(x2i+xi)

)
.

The first partial derivatives of the log-likelihood function with respect to the two-

parameters are

∂l

∂α
=
n

α
+

n∑
i=1

log
(

1− (1 + λx2
i )e
−λ(x2i+xi)

)
∂l

∂α
= 0

=⇒ α̂ = − 1

n
log
(

1− (1 + λx2
i )e
−λ(x2i+xi)

)
(3.2.8)

and
∂l

∂λ
= −

n∑
i=1

(x2
i + xi) +

n∑
i=1

((2xi + 1)(1 + 2λx2
i )− 2xi)

(λ(1 + λx2
i )(2xi + 1)− 2λxi)

+ (α− 1)
n∑
i=1

((1 + λx2
i )e
−λ(x2i+xi)(x2

i + xi)− e−λ(x2i+xi)x2
i )(

1− (1 + λx2
i )e
−λ(x2i+xi)

)
∂l

∂λ
= 0
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=⇒
n∑
i=1

(x2
i + xi) =

n∑
i=1

((2xi + 1)(1 + 2λx2
i )− 2xi)

(λ(1 + λx2
i )(2xi + 1)− 2λxi)

+ (α− 1)
n∑
i=1

((1 + λx2
i )e
−λ(x2i+xi)(x2

i + xi)− e−λ(x2i+xi)x2
i )(

1− (1 + λx2
i )e
−λ(x2i+xi)

) .

(3.2.9)

Solving this system of equations (3.2.8) and (3.2.9) in α and λ gives the MLE of

α and λ. Estimates can be obtained by using ‘nlm’ package in R software with

arbitrarily initial values.

3.2.5 Asymptotic Confidence bounds

In this section, since the MLEs of the unknown parameters α > 0 and λ > 0

cannot be obtained in closed forms, we derive the asymptotic confidence intervals

of these parameters when α > 0 and λ > 0, by using variance covariance matrix

I−1, where I−1 is the inverse of the observed information matrix which is defined

as follows

I =

 E(− ∂2l
∂α2 ) E(− ∂2l

∂αλ
)

E(− ∂2l
∂λα

) E(− ∂2l
∂λ2

)



=

 Var(α̂) Cov(α̂, λ̂)

Cov(λ̂, α̂) Var(λ̂)

 .

The second partial derivatives are

∂2l

∂α2
= − n

α2
,
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∂2l

∂λ2
=

n∑
i=0

(
λ(1 + λx2

i )(2xi + 1)− 2λxi

)
[2x2

i (2xi + 1)](
λ(1 + λx2

i )(2xi + 1)− 2λxi

)2

−
n∑
i=0

((2xi + 1)(1 + 2λx2
i )− 2xi)

2(
λ(1 + λx2

i )(2xi + 1)− 2λxi

)2

+
n∑
i=1

(
x2
i e
−λ(x2i+xi) − (1 + λx2

i )e
−λ(x2i+xi)(x2

i + xi)
)

+ e−λ(x2i+xi)(x2
i + xi)(

1− (1 + λx2
i )e
−λ(x2i+xi)

)
−

n∑
i=1

(
(1 + λx2

i )e
−λ(x2i+xi)(x2

i + xi)− x2
i e
−λ(x2i+xi)

)2

(
1− (1 + λx2

i )e
−λ(x2i+xi)

)2

and
∂2l

∂αλ
=

n∑
i=1

(1 + λx2
i )e
−λ(x2i+xi)(x2

i + xi)− x2
i e
−λ(x2i+xi)(

1− (1 + λx2
i )e
−λ(x2i+xi)

) .

We can derive the (1− δ)100% confidence intervals of the parameters α and λ by

using variance matrix as in the form

α̂± Z δ
2

√
Var(α̂), λ̂± Z δ

2

√
Var(λ̂)

where Z δ
2

is the upper ( δ
2
)th percentile of the SN distribution.

3.2.6 Simulation

To understand the performance of the MLEs given by (3.2.8) and (3.2.9) with

respect to sample size n, a simulation study for assessment is considered:

(i) Generate five thousand samples from (3.2.2). Using Newton Raphson method,
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values of the GXE random variable are generated using

(1 + λx2)e−λ(x2+x) = 1− u
1
α

where u ∼ U(0, 1).

(ii) Compute the MLEs for the five thousand samples, say (αi, λi) for i =

1, 2, . . . , 5000.

(iii) Compute the biases of the estimator and mean squared errors using

biash(n) = 1
5000

∑5000
i=1 (ĥi − h) and MSEh(n) = 1

5000

∑5000
i=1 (ĥi − h)2 for h =

(α, λ).

We repeated these steps for n = 10, 20, . . . , 100 with different values of

parameters, for computing biash(n) and MSEh(n) for n = 10, 20, . . . , 100.

3.2.7 Data Analysis

In this section, we present the analysis of a real data for using the GXE(α, λ)

model and compare it with Generalized Lindley (GL) distribution using AIC,

BIC and K-S statistic. We considered the survival data for psychiatric inpatients

(Klein and Moesch Berger (1997)) to estimate the parameter values. The data

are given in Table 3.2. Table 3.3 provides the parameter estimates, standard

errors obtained by inverting the observed information matrix and log-likelihood

values. Table 3.4 provides values of AIC, BIC, and p-values based on the K-S

statistic. The corresponding probability plots and histogram are shown in Figure

3.4 and 3.5. We can see that the GXE distribution provides the smallest AIC
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Table 3.1: Simulation study on different choices of parameter values

α = 2.5 λ = 0.75 α = 0.5 λ = 0.001

n Bias MSE Bias MSE Bias MSE Bias MSE

10 0.37515 1.40735 0.03116 0.00971 0.00256 6.537×10−5 -7.531×10−6 5.6723×10−10

20 0.00777 0.00121 0.00967 0.00187 -0.001132 2.5621×10−5 6.3116×10−6 7.9673×10−10

30 -0.00347 0.000361 -0.00133 5.2976×10−5 0.00992 0.001967 3.9965×10−6 3.1944×10−10

40 0.002158 0.0001863 -0.001515 9.1865×10−5 0.001568 9.8350×10−5 -1.1745×10−6 5.5179×10−11

50 -0.008035 0.003228 0.001646 0.0001354 0.000202 2.0495×10−6 5.5596×10−6 1.5455×10−9

60 0.00111 7.4300×10−5 -7.695×10−6 3.5528×10−9 -0.000341 6.9802×10−6 -2.9708×10−6 5.2953×10−10

70 0.002488 0.0004332 -0.0001722 2.0761×10−6 -0.000331 7.6762×10−6 -3.4171×10−6 8.1738×10−10

80 0.001709 0.0002337 5.6173×10−5 2.5243×10−7 2.4323×10−5 4.7331×10−8 7.1859×10−7 4.1309×10−11

90 0.001912 0.0003292 0.0001403 1.7714×10−6 0.000429 1.6546×10−5 -4.3202×10−7 1.6798×10−11

100 0.001929 0.0003720 0.000216 4.6694×10−6 0.001706 0.0002910 2.5672×10−6 6.5907×10−10

α = 1 λ = 0.5 α = 1.5 λ = 1

10 0.00465 0.000216 -0.00458 0.00021 -0.05683 0.03229 -0.04672 0.02183

20 -0.00292 0.000171 0.02258 0.0102 -0.020347 0.008281 -0.00697 0.000973

30 -9.052×10−5 2.4583×10−7 -0.00184 0.000102 0.001420 6.0464×10−5 0.005746 0.000991

40 -0.000876 3.0695×10−5 -0.000901 3.2446×10−5 -0.003607 0.0005203 0.006072 0.001475

50 0.00128 8.1932×10−5 -0.000622 1.9383×10−5 0.00479 0.001149 0.002649 0.000351

60 0.000594 2.117×10−5 0.00118 8.3813×10−5 0.001702 0.000174 -0.000463 1.288×10−5

70 -0.00155 0.000168 -0.000892 5.5728×10−5 0.003831 0.001027 0.000398 1.1106×10−5

80 -0.000983 7.7277×10−5 -0.000934 6.9806×10−5 0.00285 0.000649 0.000584 2.7314×10−5

90 0.001544 0.000214 -5.4667×10−5 2.6896×10−7 0.000841 6.359×10−5 0.000968 8.4369×10−5

100 0.001396 0.000195 0.000373 1.3918×10−5 0.000537 2.8865×10−5 0.000275 7.5845×10−6

α = 2.5 λ = 1.25 α = 3 λ = 1.75

10 0.008654 0.000749 0.01351 0.001825 0.03068 0.009415 0.02618 0.006855

20 -0.005014 0.000503 -0.00401 0.000321 0.017103 0.00585 0.009213 0.001698

30 0.00994 0.002963 0.002236 0.000149 -0.00845 0.002143 0.00851 0.002172

40 -0.004481 0.000803 -0.000823 2.7113×10−5 -0.00231 0.000213 0.003504 0.000491

50 0.00666 0.002220 -0.000140 9.8505×10−7 0.005896 0.001738 0.000748 2.801×10−5

60 0.000206 2.5387×10−6 0.001005 6.0642×10−5 0.000311 5.7859×10−6 0.002391 0.000343

70 -4.04×10−5 1.1425×10−7 0.000722 3.6513×10−5 0.001375 0.0001324 -0.000786 4.3222×10−5

80 0.000882 6.2230×10−5 0.001149 0.000106 0.001103 9.7265×10−5 0.000192 2.9403×10−6

90 0.000732 4.8281×10−5 -0.000923 7.6744×10−5 -0.000874 6.8733×10−5 -0.000445 1.7813×10−5

100 -0.000957 9.1617×10−5 0.000349 1.2245×10−5 8.322×10−5 6.9256×10−7 -0.000947 8.9755×10−5

Table 3.2: Survival data for psychiatric inpatients

1 1 2 22 30 28 32 11 14 36 31 33 33

37 35 25 31 22 26 24 35 34 30 35 40 39
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value and BIC value, the largest p-value based on the K-S statistic. Hence, the

GXE distribution provides the better fit. The variance covariance matrix I−1 of

Table 3.3: MLEs of parameters, SE and Log-likelihood

Model ML estimates Standard error Log L

GXE
α̂ = 0.6967 0.03313

-99.360
λ̂ = 0.00184 7.852×105

GL
α̂ = 1.0691 0.05637

-107.657
λ̂ = 0.07547 0.00274

Table 3.4: AIC, BIC, K-S Statistic and p-value of the model

Model AIC BIC K-S Statistic p value

GXE 202.721 205.237 0.2113 0.1962

GL 219.315 221.831 0.3011 0.0179

the MLEs of GXE distribution for the data set 1 is computed as

=

 2.8532× 10−2 3.9810× 10−5

3.9810× 10−5 1.6031× 10−7

 .

Thus, the variances of the MLE of α and λ are Var(α̂) = 2.853 × 10−2 and

Var(λ̂) = 1.603 × 10−7, respectively. Therefore, 95% confidence intervals for α

and λ are [0.6417, 0.7507] and [0.0017, 0.00197], respectively. The data set 2

consist of the lifetimes of 50 devices (Aarset (1987)) and it is provided in Table

3.5. The parameter estimates, standard errors of the estimators and the various
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Figure 3.4: Probability plots of data set 1.

Table 3.5: Lifetimes of 50 devices

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18

18 18 18 21 32 36 40 45 46 47 50 55 60 63 63

67 67 67 67 72 75 79 82 82 83 84 84 84 85 85

85 85 85 86 86

measures are given in Table 3.6. The corresponding histogram and probability

plots are shown in Figure 3.6 and 3.7.

We can see again that the GXE distribution gives the smallest AIC value,

the smallest BIC value, and largest p-value based on the K-S statistic, see Table

3.7. Hence, the GXE distribution again provides the better fit. The variance

covariance matrix I−1 of the MLEs under the GXE distribution for the data set
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Figure 3.5: Histogram with fitted Pdfs for the data set 1.

Table 3.6: MLEs of parameters, SE and Log-likelihood

Model ML estimates Standard error Log L

GXE
α̂ = 0.3181 0.00715

-231.609
λ̂ = 0.000302 1.0452×105

GLD
α̂ = 0.4547 0.01123

-238.9909
λ̂ = 0.0278 0.000691

2 is computed as

=

 2.5596× 10−3 1.7080× 10−6

1.7080× 10−6 5.4625× 10−9

 .
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Table 3.7: AIC, BIC, K-S Statistic and p-value of the model

Model AIC BIC K-S Statistic p value

GXE 467.218 471.042 0.1555 0.1783

GLD 481.982 485.806 0.1936 0.0472

Thus, the variances of the MLEs of α and λ are Var(α̂) = 2.56 × 10−3 and

Var(λ̂) = 5.463 × 10−9, respectively. Therefore, 95% confidence intervals for α

and λ are [0.3064, 0.3299] and [0.00029, 0.00032], respectively.
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Figure 3.6: Probability plots of data set 2.
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Figure 3.7: Histogram with fitted Pdfs for the data set 2.

3.3 Weibull-Lindley Distribution

Let X be a random variable with the cdf,

F (x;α, β) = 1− e−α
(

(1+x)e(x)
β−1

)
, x > 0, α, β > 0. (3.3.1)

The r.v X is said to have Weibull-Lindly (WL) distribution if its distribution

function is in the form (3.3.1). It will be denoted by WL(α, β). Then, the pdf
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corresponding to (3.3.1) is given by

f(x;α, β) = α

(
βxβ−1(1 + x)ex

β

+ ex
β

)
e
−α
(

(1+x)ex
β−1

)
,

x > 0, α > 0, β > 0. (3.3.2)

Here β is shape parameter. The pdf of WL distribution can be rewritten as

f(x;α, β) = αβxβ−1(1 + x)ex
β

e
−α
(

(1+x)ex
β−1

)
+ αex

β

e
−α
(

(1+x)ex
β−1

)
,

x > 0, α > 0, β > 0. (3.3.3)

By using the power series expansion for the exponential function, we obtain

e
−α
(

(1+x)ex
β−1

)
=
∞∑
i=0

(−1)iαi

i!

(
(1 + x)ex

β − 1
)i
. (3.3.4)

Substituting (3.3.4) in (3.3.3), we get

f(x;α, β) = αβxβ−1(1 + x)ex
β
∞∑
i=0

(−1)iαi

i!

(
(1 + x)ex

β − 1
)i

+ αex
β
∞∑
i=0

(−1)iαi

i!

(
(1 + x)ex

β − 1
)i
, x > 0, α > 0, β > 0. (3.3.5)

Using the generalized binomial theorem, we have

(
(1 + x)ex

β − 1
)i

=
i∑

j=o

i!

j!(i− j)!

(
(1 + x)ex

β
)i−j

(−1)j. (3.3.6)
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Inserting (3.3.6) in (3.3.5), we get

f(x;α, β) = αβxβ−1(1 + x)ex
β
∞∑
i=0

i∑
j=0

(−1)iαi

j!(i− j)!

(
(1 + x)ex

β
)i−j

+ αex
β
∞∑
i=0

i∑
j=0

(−1)iαi

j!(i− j)!

(
(1 + x)ex

β
)i−j

, x > 0, α > 0, β > 0.

(3.3.7)

The pdf can be further simplified as

f(x;α, β) =
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

(−1)i+jαi+1β(i− j + 1)

j!k!(i− j − k + 1)!
ex

β(i−j+1)xβ+k−1

+
∞∑
i=0

∞∑
j=0

i−j∑
m=0

(−1)i+jαi+1

j!m!(i− j −m)!
ex

β(i−j+1)xm, x > 0, α > 0, β > 0.

(3.3.8)

Figure 3.8 provide the pdfs of WL(α, β) for different parameter values. From the

below figures it is immediate that the pdfs are unimodal. The survival function

S(x), failure rate function r(x), reversed failure rate function h(x) and cumulative

failure rate function H(x) of X are

S(x;α, β) = e
−α
(

(1+x)ex
β−1

)
, x > 0, α > 0, β > 0. (3.3.9)

r(x;α, β) = α

(
βxβ−1(1 + x)ex

β

+ ex
β

)
, x > 0, α > 0, β > 0. (3.3.10)

h(x;α, β) =

α

(
βxβ−1(1 + x)ex

β
+ ex

β

)
e
−α
(

(1+x)ex
β−1

)

1− e−α((1+x)ex
β−1)

, x > 0, α > 0, β > 0.

(3.3.11)
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Figure 3.8: PDF of the WL(α, β).

and

H(x;α, β) =

∫ x

0

r(t;α, β) dt = α(1 + x)ex
β

, x > 0, α > 0, β > 0. (3.3.12)

The failure rate function of the WL(α, β) exhibit increasing, decreasing and bath-

tub shapes. We can see from that

lim
x→0

r(x) =


∞, β < 1

2α, β = 1

α, β > 1.
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Figure 3.9 provide the failure rate functions of WL(α, β) for different parameter

values. From the below figures it is immediate that the failure rate function can

be increasing, decreasing or bathtub shaped. It is clear that the pdf and the
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Figure 3.9: Failure rate function of the WL(α, β).

failure rate function have many different shapes, which allows this distribution

to fit different types of lifetime data. For fixed α, the failure rate function is

non-decreasing function if β > 1 (left) and non-increasing and bathtub function

if β < 1 (right).

3.3.1 Statistical Properties

In this section, we study the statistical properties for the WL(α, β), specially

Quantile function, Median, Mode, Moments etc.
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Quantile and Median

We obtain the 100pth percentile,

(1 + x)ex
β

= − 1

α
log(1− p) + 1. (3.3.13)

Setting in (3.3.13), we get the median of WL(α, β) from

(1 + x)ex
β

=
1

α
log

(
1

1− 0.5

)
+ 1.

xp is the solution of above monotone increasing function. Software can be used

to obtain the Quantiles/Percentiles.

Mode

Mode can be obtained as solution of

[h′(x;α, β)− (h(x;α, β))2].S(x;α, β) = 0. (3.3.14)

It is not possible to get an analytic solution in x for (3.3.14). It can be obtained

numerically by using methods such as fixed-point or bisection method.
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Moments

We obtain the rth moment of WL(α, β) in the form

µ′r =

∫ ∞
0

xrf(x;α, β) dx

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+jαi+1

j!k!(i− j − k + 1)!

∫ ∞
0

xr+β+k−1ex
β(i−j+1) dx

+
∞∑
i=0

∞∑
j=0

∞∑
m=0

(−1)i+jαi+1

j!m!(i− j −m)!

∫ ∞
0

xr+mex
β(i−j+1) dx.

By using the definition of Gamma function, we get

µ′r =
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

(−1)i+j+
β+r+k
β αi+1

j!k!(i− j − k + 1)!

Γ(β+r+k
β

)

β(i− j + 1)
β+r+k
β

+
∞∑
i=0

i∑
j=0

i−j∑
m=0

(−1)i+j+
m+r+1

β αi+1

j!m!(i− j −m)!

Γ(m+r+1
β

)

β(i− j + 1)
m+r+1

β

. (3.3.15)

If (3.3.15) is a convergent series for any r ≥ 0, therefore all the moments exist and

for integer values of α and β, it can be represented as a finite series representation.

Therefore putting r = 1, we obtain the mean as

E(X) =
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

(−1)i+j+
β+k+1
β αi+1

j!k!(i− j − k + 1)!

Γ(β+k+1
β

)

β(i− j + 1)
β+k+1
β

+
∞∑
i=0

i∑
j=0

i−j∑
m=0

(−1)i+j+
m+2
β αi+1

j!m!(i− j −m)!

Γ(m+2
β

)

β(i− j + 1)
m+2
β
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and putting r = 2, we obtain the second moment as

E(X2) =
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

(−1)i+j+
β+k+2
β αi+1

j!k!(i− j − k + 1)!

Γ(β+k+2
β

)

β(i− j + 1)
β+k+2
β

+
∞∑
i=0

i∑
j=0

i−j∑
m=0

(−1)i+j+
m+3
β αi+1

j!m!(i− j −m)!

Γ(m+3
β

)

β(i− j + 1)
m+3
β

.

It can be used to obtain the higher central moments and variance.

Moment Generating Function and Characteristic Function

The moment generating function, MX(t), of WL(α, β) is obtained as

MX(t) =
∞∑
r=0

tr

r!
µ′

=
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

tr(−1)i+j+
β+r+k
β αi+1

r!j!k!(i− j − k + 1)!

Γ(β+r+k
β

)

β(i− j + 1)
β+r+k
β

+
∞∑
i=0

i∑
j=0

i−j∑
m=0

tr(−1)i+j+
m+r+1

β αi+1

r!j!m!(i− j −m)!

Γ(m+r+1
β

)

β(i− j + 1)
m+r+1

β

.

The characteristic function, φX(t), of WL(α, β) is obtained as

φX(t) =
∞∑
i=0

i∑
j=0

i+1−j∑
k=0

(it)r(−1)i+j+
β+r+k
β αi+1

r!j!k!(i− j − k + 1)!

Γ(β+r+k
β

)

β(i− j + 1)
β+r+k
β

+
∞∑
i=0

i∑
j=0

i−j∑
m=0

(it)r(−1)i+j+
m+r+1

β αi+1

r!j!m!(i− j −m)!

Γ(m+r+1
β

)

β(i− j + 1)
m+r+1

β

.
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3.3.2 Distribution of Maximum and Minimum

Let X1, X2, . . . , Xn be a random sample from WL(α, β) with cdf and pdf as in

(3.3.1) and (3.3.2), respectively. Let X(1), X(2), . . . , X(n) denote the order statistics

obtained from this sample. The pdf of X(r) is given by,

f(r:n)(x) =
1

B(r, n− r + 1)

[
1− e−α

(
(1+x)ex

β−1
)]r−1 [

e
−α
(

(1+x)ex
β−1

)]n−r
α

(
βxβ−1(1 + x)ex

β

+ ex
β

)
e
−α
(

(1+x)ex
β−1

)
, x > 0, α > 0, β > 0. (3.3.16)

The cdf of X(r) is given by,

Fr:n(x) =
n∑
j=r

(
n

j

)[
1− e−α

(
(1+x)ex

β−1
)]j [

e
−α
(

(1+x)ex
β−1

)]n−j
,

x > 0, α > 0, β > 0. (3.3.17)

The cdf of X(1) is

FX(1)
(x;α, β) = P (X(1) ≤ x) = 1−

[
1− e−α

(
(1+x)ex

β−1
)]n

, x > 0, α > 0, β >

0.

The cdf of X(n) is

FX(n)
(x;α, β) = P (X(n) ≤ x) =

[
e
−α
(

(1+x)ex
β−1

)]n
, x > 0, α > 0, β > 0.

Reliability of a series system having n components with WL(α, β) is

R(x) =

[
1− e−α

(
(1+x)ex

β−1
)]n

.
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Reliability of a parallel system having n components with WL(α, β) is

R(x) = 1−

[
e
−α
(

(1+x)ex
β−1

)]n
.

3.3.3 Parameter Estimation

In this section, point estimation of the unknown parameters of the WL(α, β) are

conducted using MLE. First partial derivatives of the log-likelihood function with

respect to the two-parameters are

∂L

∂α
=
n

α
−

n∑
i=1

(1 + xi)e
xβi (3.3.18)

and

∂L

∂β
=

n∑
i=1

xβi log xi−α
n∑
i=1

(
(1 + xi)e

xβi xβi log xi

)
+

n∑
i=1

(1 + xi)
[
xβ−1
i + βxβ−1

i log xi

]
βxβ−1

i (1 + xi) + 1
.

(3.3.19)

Setting the left side of the above two equations to zero, we get the likelihood

equations as a system of two non-linear equations in α and β. Solving this system

in α and β gives the MLE of α and β. It is very easy to obtain estimates using R

software by numerical methods.

3.3.4 Asymptotic Confidence bounds

In this section, we derive the asymptotic confidence intervals of the parameters α

and β, since the MLEs of the unknown parameters α and β cannot be obtained
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in closed forms. Let the variance covariance matrix be denoted by I−1, where I−1

is the inverse of the observed information matrix which defined as follows

I−1 =

 E(− ∂2l
∂α2 ) E(− ∂2l

∂αβ
)

E(− ∂2l
∂βα

) E(− ∂2l
∂β2 )



=

 Var(α̂) Cov(α̂, β̂)

Cov(β̂, α̂) Var(β̂)


where the second partial derivatives of log-likelihood function are

∂2l

∂α2
= −n

α
,

∂2l

∂αβ
=

n∑
i=1

(1 + xi)e
xβi xβi log xi

and

∂2l

∂β2
=

n∑
i=1

xβi (log xi)
2 − α

n∑
i=1

(1 + xi)
[
ex

β
i (xβi log xi)

2 + ex
β
i xβi (log xi)

2
]

+
n∑
i=1

(
βxβ−1

i (1 + xi) + 1
)(

βxβ−1
i (1 + xi)(log xi)

2 + 2(1 + xi)x
β−1
i

)
(
βxβ−1

i (1 + xi) + 1
)2

−
n∑
i=1

(
(1 + xi)

[
xβ−1
i + βxβ−1

i log xi

])2

(
βxβ−1

i (1 + xi) + 1
)2 .

We can derive the (1− ξ)100% confidence intervals of the parameters α and β as

α̂± Z ξ
2

√
Var(α̂), β̂ ± Z ξ

2

√
Var(β̂)

where Z ξ
2

is the upper ( ξ
2
)th percentile of the standard Normal distribution.
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3.3.5 Three parameter Weibull-Lindley Distribution

A random variable X is said to have three parameter Weibull-Lindley (3WL)

distribution if its cdf is of the form,

F (x;α, β, λ) = 1− e−α
(

(1+λx)e(λx)
β−1
)
, x > 0, α > 0, β > 0, λ > 0. (3.3.20)

The pdf corresponding to Eq.(3.3.20) is given by

f(x;α, β, λ) = α

(
βλ(λx)β−1(1 + λx)e(λx)β + λe(λx)β

)
e−α
(

(1+λx)e(λx)
β−1
)
,

x > 0, α, β, λ > 0. (3.3.21)

Here β is shape parameter and λ is scale parameter. The distribution of this form

with parameters α, β, and λ will be denoted by 3WL(α, β, λ). The survival func-

tion S(x;α, β, λ), failure rate function r(x;α, β, λ), reversed failure rate function

h(x;α, β, λ) and cumulative failure rate function H(x;α, β, λ) of X are

S(x;α, β, λ) = 1− F (x;α, β, λ) = e−α
(

(1+λx)e(λx)
β−1
)
, x > 0, α, β, λ > 0,

(3.3.22)

r(x;α, β, λ) = α

(
βλ(λx)β−1(1 + λx)e(λx)β + λe(λx)β

)
, x > 0, α, β, λ > 0,

(3.3.23)

h(x;α, β, λ) =

α

(
βλ(λx)β−1(1 + λx)e(λx)β + λe(λx)β

)
e−α
(

(1+λx)e(λx)
β−1
)

1− e−α
(

(1+λx)e(λx)
β−1
) ,

x > 0, α, β, λ > 0 (3.3.24)
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and

H(x;α, β, λ) =

∫ x

0

r(t;α, β, λ)dt = α(1+λx)e(λx)β , x > 0, α, β, λ > 0 (3.3.25)

respectively. Figure 3.10 and Figure 3.11 provide the pdfs and the failure rate

functions of 3WL(α, β, λ) for different parameter values. From the below figures

it is immediate that the pdfs can be unimodal and the failure rate function can

be increasing, decreasing or bathtub shaped. It is clear that the pdf and the
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Figure 3.10: PDF of the 3WL(α, β, λ).

failure rate function have many different shapes, which allows this distribution to

fit different types of lifetime data. For fixed α, F is IFR if β > 1 and λ > 1, (left)
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Figure 3.11: Failure rate function of the 3WLD(α, β, λ).

and DFR and BFR if β < 1 and λ < 1 (right).

Parameter Estimation

In this section, point estimation of the unknown parameters of the 3WL(α, β, λ)

are done by method of maximum likelihood. The first partial derivatives of the

log-likelihood function with respect to the three-parameters are

∂L

∂α
=
n

α
−

n∑
i=0

(
1 + λxi

)
e(λxi)

β

+ n, (3.3.26)

∂L

∂β
=

n∑
i=1

(λxi)
β log(λxi)− α

n∑
i=1

(
(1 + λxi)e

(λxi)
β

(λxi)
β log(λxi)

)
+

n∑
i=1

(1 + λxi)
(
(λxi)

β−1 + β(λxi)
β−1 log(λxi)

)
β(λxi)β−1(1 + λxi) + 1

(3.3.27)
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and

∂L

∂λ
=
n

λ
+

n∑
i=1

xβi βλ
β−1 − α

n∑
i=1

(
(1 + λxi)e

(λxi)
β

xiβ(λxi)
β + xie

(λxi)
β

)
+

n∑
i=1

βxβi

(
(β − 1)λ(β−2) + xiβλ

β−1

)
(
β(λxi)β−1(1 + λxi) + 1

) . (3.3.28)

Setting the left side of the above three equations to zero, we get the likelihood

equations as a system of three non-linear equations in α, β and λ. Solving this

system in α, β and λ gives the MLEs of α, β and λ. It is very easy to obtain

estimates using R software by numerical methods.

3.3.6 Application

In this section, we present the analysis of a real data set using the WL(α, β) and

3WL(α, β, λ) model and compare it with the other bathtub models such as Gen-

eralized Lindley distribution (GL), Nadarajah et al. (2011) and Exponentiated

Weibull distribution (EW), Pal et al. (2006), using K-S statistic. We considered

two sets of data, which are strengths of 1.5 cm glass fibers data, Smith and Naylor

(1987) and infection for AIDS data, Klein and Moesch Berger (1997).

Data Set 1: The data are the strengths of 1.5 cm glass fibers, Smith and Naylor

(1987), measured at the National Physical Laboratory, England. The data set 1

is given in Table 3.8. Table 3.9 gives MLEs of parameters of the WL(α, β), GL,

EW and 3WL(α, β, λ) and goodness of fit statistics.

3WL(α, β, λ) gives the smallest K-S value and largest p-value. The second
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Table 3.8: Strengths of 1.5 cm glass fibres

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68

1.73 1.81 2 0.74 1.04 1.27 1.39 1.49 1.53 1.59

1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42

1.5 1.54 1.6 1.62 1.66 1.69 1.76 1.84 2.24 0.81

1.13 1.29 1.48 1.5 1.55 1.61 1.62 1.66 1.7 1.77

1.84 0.84 1.24 1.3 1.48 1.51 1.55 1.61 1.63 1.67

1.7 1.78 1.89

Table 3.9: MLEs of parameters, Log-likelihood

Model MLEs of Parameters log L K-S p-value

WL
α̂=0.0285

-16.639 0.1368 0.189
β̂=1.893

GL
α̂=26.172

-30.6199 0.2264 0.00314
λ̂=2.9901

EW
α̂=7.285

-14.676 0.146 0.135β̂=0.67122

λ̂=0.582

3WL
α̂=0.000212

-14.4228 0.1256 0.273β̂=0.8378

λ̂=5.3257

smallest K-S value and largest p-value are obtained for the WL distribution. The

second largest log-likelihood value is given by the EW distribution. Fitted pdfs

and probability plots of the three best fitting distributions for data set 1 are given

in Figure 3.12 and 3.13.

Data Set 2: Consider times to infection for AIDS for two hundred and ninety five
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Figure 3.12: Fitted Pdfs of the three best fitting distributions for data set 1.

patients, Klein and Moesch Berger (1997). Table 3.10 gives MLEs of parameters

of the WL(α, β), GL, EW and 3WL(α, β, λ) and goodness of fit statistics.

Here, the smallest K-S value and largest p-value are obtained for 3WL(α, β, λ).

EW gives the largest log-likelihood value and second largest p-value. The third

largest log-likelihood value and p-value based are obtained for WL(α, β). It is

observed that 3WL(α, β, λ) fits as the best in the first data set whereas EW fits

as the best in the second data in terms of likelihood and in terms of KS Statistic.

Therefore, it is not guaranteed the 3WL(α, β, λ) will behave always better than

WL(α, β) or EW but at least it can be said in certain circumstances 3WL(α, β, λ)

might work better than WL(α, β) or EW. Fitted pdfs and probability plots of the
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Figure 3.13: Probability plots of the three best fitting distributions for data set 1.

three best fitting distributions for data set 2 are given in Figure 3.14 and 3.15.
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Table 3.10: MLEs of parameters, Log-likelihood

Model MLEs of Parameters log L K-S p-value

WL
α̂=0.0355

-457.302 0.0776 0.0893
β̂=0.5712

GL
α̂=2.414

-453.523 0.717 2.22×10−16

λ̂=0.8929

EW
α̂=1.9566

-450.131 0.064 0.2426β̂=0.9598

λ̂=0.3213

3WL
α̂=8.752×10−04

-451.875 0.0619 0.2755β̂=0.2994

λ̂=15.0999
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Figure 3.14: Fitted Pdfs of the three best fitting distributions for data set 2.
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Figure 3.15: Probability plots of the three best fitting distributions for data set 2.

3.4 Summary

GXE is generalizes the X-Exponential distribution. Several properties of the dis-

tribution, hazard rate function, moments, moment generating function etc are
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derived. Also we presented the maximum likelihood estimation of this distribu-

tion. A simulation study is performed for validate MLE. Two real data sets are

analyzed. The first data set provided smallest AIC and BIC value, the largest

p-value for GXE distribution than GLD distribution. And also the second data

set also provided smallest AIC and BIC value, the largest p-value for GXE distri-

bution than GLD distribution. It shows that the proposed distribution is a better

alternative among BFR models.

We proposed Weibull-Lindley distribution which exhibits bathtub shaped fail-

ure rate function, with high initial failure rate, which decreases rapidly and then

slowly increases. Three parameter Weibull-Lindley distribution (3WLD) is intro-

duced for avoid scale problem. We have studied maximum likelihood estimators

and the parameters estimation is carried out in the presence of real data. We

present two real life data sets, where in one data set it is observed that 3WLD

has a better fit compare to EW or WLD but in the other the EW has a better fit

than 3WLD or WLD.



CHAPTER 4

DUS TRANSFORMATION OF LOMAX

DISTRIBUTION: AN UPSIDE-DOWN BATHTUB

SHAPED FAILURE RATE MODEL

4.1 Introduction

1 A little research works have been discussed on the upside-down bathtub (UBT)

shaped failure rate distributions. Efron (1988) discussed head and neck cancer

data having UBT shape for failure rate because of a therapy. Inverse Lindley (IL)

distribution is used to model UBT data, Sharma et al. (2014 & 2015). In reliability

literature, the stress-strength model describes the life of a component that has a

random strength X and is subjected to random stress Y . The system fails if and

1Some contents of this chapter are based on Deepthi and Chacko (2020).
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only if the stress is greater than strength. The estimation of a stress-strength

model when X and Y are having a specified distribution, has been discussed by

many researchers, Al-Mutairi et al. (2013).

Use of heavy tailed distribution required for many of the lifetime data anal-

ysis. Pareto distribution is one of the heavy tailed distributions which usually

models nonnegative data. It was introduced by Pareto (1897) as a model for the

distribution of incomes. Several different forms of Pareto distribution have been

studied by many authors including Lomax (1954), Davis and Feldstein (1979),

Grimshaw (1993) and Nadarajah and Gupta (2008). One of the popular hier-

archy of Pareto distribution is Pareto Type II which has been named as Lomax

distribution. Lomax distribution has been applied in a variety of fields such as

engineering, reliability and life testing. In statistical literature, there are several

methods to propose new distribution by the use of some baseline distribution.

Dinesh et al. (2015) proposed a method, DUS transformation, to get new distri-

bution by the use of Exponential baseline distribution and studied its properties

with application to survival data analysis. If f(x) and F (x) be the pdf and cdf of

some baseline distribution, then the pdf g(x) of the corresponding DUS Transfor-

mation distribution is given by

g(x) =
1

e− 1
f(x)eF (x). (4.1.1)

The cdf and failure rate function corresponding to the pdf g(x) is given by

G(x) =
1

e− 1
[eF (x) − 1] (4.1.2)
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and

h(x) =
1

e− eF (x)
f(x)eF (x) (4.1.3)

respectively. It is a transformation, not a generalization, hence it produces a

parsimonious distribution in terms of computation and interpretation as it never

contains any new parameter other than the parameter(s) involved in the baseline

distribution.

The aim of this chapter to derive DUS Transformation of Lomax distribu-

tion which possesses the upside-down bathtub-shaped failure rate function. The

proposed distribution is thus capable of modeling the real problems.

The following sections are organized as follows. The pdf, distribution function,

failure rate function and its characteristics are given in section 4.2. In section

4.3, shapes of the pdf and failure rate function are given. Moments, moment

generating function, characteristic function, quantile function, entropy, skewness

and kurtosis are discussed in section 4.4. In section 4.5, distribution of maximum

and minimum order statistics are discussed. The maximum likelihood estimation

is discussed in section 4.6. In section 4.7, stress-strength reliability and its MLE

are derived. In section 4.8, a simulation study is given. Three real data sets are

analyzed in section 4.9. Conclusions are given in section 4.10.

4.2 DUS Transformation of Lomax Distribution

In this section, we consider DUS transformation of Lomax distribution with two

parameters.
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Consider Lomax distribution with pdf,

f(x) = αβ(1 + βx)−(α+1), x > 0, α > 0, β > 0 (4.2.1)

and the corresponding cdf is given by,

F (x) = 1− (1 + βx)−α, x > 0, α > 0, β > 0. (4.2.2)

Using (4.2.1) in (4.1.1), the pdf of DUS transformation of Lomax distribution is

obtained by,

g(x) =
1

e− 1
αβ(1 + βx)−(α+1)e1−(1+βx)−α , x > 0, α > 0, β > 0. (4.2.3)

The distribution having pdf (4.2.3) is named as DUS-Lomax distribution and is

denoted by DUS-Lomax(α, β). Here α and β are the shape and scale parameters

respectively. The cdf and failure rate function of DUS-Lomax(α, β) are, respec-

tively, given by

G(x) =
1

e− 1

[
e1−(1+βx)−α − 1

]
, x > 0, α > 0, β > 0 (4.2.4)

and

r(x) = αβ(1 + βx)−(α+1)
[
e(1+βx)−α − 1

]−1

, x > 0, α > 0, β > 0. (4.2.5)
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4.3 Shapes

Here, we discuss the shapes of the pdf and failure rate function of DUS-Lomax(α, β)

distribution.

4.3.1 Shape of Probability Density Function

We can see from (4.2.3) that

lim
x→0

g(x) =



αβ
(e−1)

, α < 1

β
(e−1)

, α = 1

αβ
(e−1)

, α > 1

and

1

(1 + βx)
tends to zero, as x→∞.

So limx→∞ g(x) = 0. The first derivatives of g(x) is

g′(x) =
e

e− 1
αβe−(1+βx)−α

[
−(α + 1)α(1 + βx)−α−2 + αβ(1 + βx)−2α−2

]
.

So the mode of DUS-Lomax(α, β) is 1
β

[(
1 + 1

α

)− 1
α − 1

]
. Clearly, g(x) is uni-

modal. Figure 4.1 shows the pdf of DUS-Lomax(α, β) for various choices of the

parameters.



DUS Transformation of Lomax Distribution: An Upside-down
Bathtub Shaped failure rate model 99

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

f(
x)

●

●

●

●

a=0.5,b=4.5
a=0.5,b=3.5

a=0.5,b=2.5
a=0.5,b=1.5

0.0 0.2 0.4 0.6 0.8 1.0
0

.0
0

.5
1

.0
1

.5
2

.0
2

.5
3

.0

x

f(
x)

●

●

●

●

●

a=5.5,b=1
a=3.5,b=1
a=2.5,b=1

a=1.5,b=1
a=0.5,b=1

Figure 4.1: PDF of DUS-Lomax(α, β) for values of parameters α = 0.5 and
β = 4.5, 3.5, 2.5, 1.5 with color shapes red, blue, purple, black (left) and α =
5.5, 3.5, 2.5, 1.5, 0.5 and β = 1 with color shapes red, blue, purple, black, dark
cyan, respectively (right).

4.3.2 Shape of Failure Rate Function

For discussing the shape property of failure rate function, we apply Glaser’s tech-

nique, see Glaser (1980). Let η(x) = −g′(x)
g(x)

where g(x) is the density function and

g′(x) is the first derivative of g(x) with respect to x. Then

η(x) =
(α + 1)β(1 + βx)−α−2 − αβ(1 + βx)2α−2

(1 + βx)α+1

and its first derivative is

η′(x) = −(α + 1)β2(1 + βx)−α−2

[
(1 + βx)α − α

]
.
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If α > 1, β > 0, η′(x) > 0 for x ∈ (0, x0), η′(x0) = 0, η′(x) < 0 for x ∈ (x0,∞)

where x0 = α1/α−1
β

, the shape of failure rate function, r(x), appears UBFR shapes

if α > 1. If α ≤ 1, β > 0, η′(x) < 0, the shape of failure rate function appears

monotonically decreasing. The failure rate function of the DUS-Lomax(α, β) dis-

tribution exhibit monotonically decreasing and UBFR shapes, see Figure 4.2.

From (4.2.5),

lim
x→0

r(x) =


αβ(e− 1), α < 1

β(e− 1), α = 1

αβ(e− 1), α > 1

and

1

(1 + βx)
tends to zero, e

1
(1+βx)α tends to 1, as x→∞.

So limx→∞ r(x) = 0.

4.4 Statistical Properties

In this section, we study the statistical properties for the two parameter DUS-

Lomax(α, β) distribution, moments, moment generating function, characteristic

function, quantile function, skewness, kurtosis etc.

4.4.1 Moments

If X be a random variable having the pdf in (4.2.3), then the rth raw moment is
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Figure 4.2: Failure rate function of the DUS-Lomax(α, β) for different parameter
values α = 1, 0.75, 0.5, 0.25 and β = 1 with color shapes purple, blue, red, black
(left) and α = 7, 6, 5, 4 and β = 5.5, 5.5, 4.5, 3.5 with color shapes red, purple,
blue, green respectively (right).

µ′r =
e

e− 1
α
∞∑
j=0

(−1)j
(
α + j

j

)
βj+1

∫ ∞
0

xj+re−(1+βx)−αdx

=
e

e− 1

∞∑
j=0

(−1)j
(
α + j

j

)
βj+1 1

βj+r+1

j+r∑
k=0

(−1)k
(
j + r

r

)∫ 1

0

u−
j+r−k+1

α
−1e−udu

=
e

e− 1

∞∑
j=0

∞∑
n=0

j+r∑
k=0

(−1)j+k+n

(
α + j

j

)(
j + r

r

)
1

n!βr
α

αn− r + k − j − 1
.

The mean µ and variance σ2 of DUS-Lomax(α, β) distribution are, respectively,

µ =
e

e− 1

∞∑
j=0

∞∑
n=0

j+1∑
k=0

(−1)j+k+n

(
α + j

j

)
1

n!β

(j + 1)α

αn+ k − j − 2
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and

σ2 =
e

e− 1

∞∑
j=0

∞∑
n=0

j+2∑
k=0

(−1)j+k+n

(
α + j

j

)(
j + 2

2

)
1

n!β2

α

αn+ k − j − 3

−

(
e

e− 1

∞∑
j=0

∞∑
n=0

j+1∑
k=0

(−1)j+k+n

(
α + j

j

)
1

n!β

(j + 1)α

αn+ k − j − 2

)2

.

The skewness and kurtosis can be obtained using

Skewness =
(µ′3 − 3µµ′2 + 2µ3)

2

(µ′2 − µ2)3 and Kurtosis =
(µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4)

(µ′2 − µ2)2 .

4.4.2 Moment Generating Function

The mgf of DUS-Lomax(α, β) distribution is

MX(t) =
e

e− 1
α
∞∑
k=0

(−1)k
(
α + k

k

)
βk+1

∫ ∞
0

xketxe−(1+βx)−αdx

=
e

e− 1

∞∑
k=0

(−1)k
(
α + k

k

)
1

βm

k+m∑
j=0

(−1)j
(
k +m

j

) ∞∑
m=0

tm

m!∫ 1

0

u−
k+m−j+1

α
−1e−udu

=
e

e− 1

∞∑
k=0

∞∑
n=0

k+m∑
j=0

∞∑
m=0

tm

m!
(−1)k+j+n

(
α + k

k

)(
k +m

j

)
1

n!βm
α

αn+ j − k −m− 1
.
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4.4.3 Characetristic Function

The characteristic function of DUS-Lomax(α, β) distribution is

φX(t) =
e

e− 1
α
∞∑
k=0

(−1)k
(
α + k

k

)
βk+1

∫ ∞
0

xkeitxe−(1+βx)−αdx, i =
√
−1

=
e

e− 1

∞∑
k=0

(−1)k
(
α + k

k

)
1

βm

k+m∑
j=0

(−1)j
(
k +m

j

) ∞∑
m=0

(it)m

m!∫ 1

0

u−
k+m−j+1

α
−1e−udu

=
e

e− 1

∞∑
k=0

∞∑
n=0

k+m∑
j=0

∞∑
m=0

(it)m

m!
(−1)k+j+n

(
α + k

k

)(
k +m

j

)
1

n!βm
α

αn+ j − k −m− 1
.

4.4.4 Quantile Function

For any p ∈ (0, 1), the pth quantile Q(p) of DUS-Lomax(α, β) is

Q(p) =
1

β

[(
1− log(1 + p(e− 1))

)− 1
α − 1

]
. (4.4.1)

Setting p = 0.5 in (4.4.1), we get the median of DUS-Lomax(α, β) as follows

Median =
1

β

[(
1− log(1 + 0.5(e− 1))

)− 1
α − 1

]
. (4.4.2)

Setting p = 1
4

in (4.4.1), we get the 1st quartile of DUS-Lomax(α, β) as follows

Q1 =
1

β

[(
1− log(1 +

1

4
(e− 1))

)− 1
α − 1

]
.
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Setting p = 3
4

in (4.4.1), we get the 3rd quartile of DUS-Lomax(α, β) as follows

Q3 =
1

β

[(
1− log(1 +

3

4
(e− 1))

)− 1
α − 1

]
.

A random sample X with DUS-Lomax(α, β) distribution can be simulated using

X =
1

β

[(
1− log(1 + u(e− 1))

)− 1
α − 1

]
,whereu ∼ U(0, 1). (4.4.3)

4.4.5 Entropy

Suppose X is the DUS-Lomax(α, β), first we consider

∫
fγ(x)dx =

(
e

e− 1

)γ
αγβγ+i

∞∑
i=0

(−1)i
(
γα + γ + i− 1

i

)∫ ∞
0

xie−γ(1+βx)−αdx

=

(
e

e− 1

)γ
αγ−1βγ−1

∞∑
i=0

i∑
k=0

∞∑
m=0

(−1)i+k+m

(
γα + γ + i− 1

i

)(
i

k

)
γm

m!

α

αm+ k + i− 1

where γ > 0 and γ 6= 1. Then the Renyi entropy is

τR(γ) =
1

1− γ
log

{∫
fγ(x)dx

}
=

1

1− γ
log

{(
e

e− 1

)γ
αγ−1βγ−1

∞∑
i=0

i∑
k=0

∞∑
m=0

(−1)i+k+m

(
γα + γ + i− 1

i

)(
i

k

)
γm

m!

α

αm+ k + i− 1

}
.
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4.5 Distribution of Maximum and Minimum

In order to conduct reliability analysis in series structure, parallel structure, series-

parallel structure, parallel-series structure and complex structures, the theory of

order statistics is used as tool for analyzing life time data. Let X1, X2, . . . , Xn be a

random sample of size n from DUS-Lomax(α, β) with cdf and pdf as in (4.2.4) and

(4.2.3), respectively and let X(1), X(2), . . . , X(n) denote the corresponding order

statistics. The pdf of the rth order statistic is

fX(r)
(x;α, β) =

n!

(r − 1)!(n− r)!
f(x;α, β)F r−1(x;α, β)F̄ n−r(x;α, β)

=
n!

(r − 1)!(n− r)!
αβ(1 + βx)−(α+1)

e− 1
e1−(1+βx)−α

[
1

e− 1

(
e1−(1+βx)−α − 1

)]r−1[
1− 1

e− 1

(
e1−(1+βx)−α − 1

)]n−r
,

x > 0, α > 0, β > 0.

The cdf of rth order statistic is

F(r)(x;α, β) =
n∑
j=r

(
n

j

)
F j(x;α, β)[1− F (x;α, β)]n−j

=
n∑
j=r

(
n

j

)[
1

e− 1

(
e1−(1+βx)−α − 1

)]j
[

1− 1

e− 1

(
e1−(1+βx)−α − 1

)]n−j
, x > 0, α > 0, β > 0.
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The pdf of the 1st order statistics X(1), is

fX(1)
(x;α, β) =

nαβ(1 + βx)−(α+1)

e− 1
e1−(1+βx)−α[

1− 1

e− 1

(
e1−(1+βx)−α − 1

)]n−1

, x > 0, α > 0, β > 0.

The pdf of the nth order statistics X(n), is

fX(n)
(x;α, β) =

nαβ(1 + βx)−(α+1)

e− 1
e1−(1+βx)−α[

1

e− 1

(
e1−(1+βx)−α − 1

)]n−1

, x > 0, α > 0, β > 0.

The cdf of X(1) is

FX(1)
(x;α, β) = P (X(1) ≤ x) = 1−

[
1− 1

e−1

(
e1−(1+βx)−α − 1

)]n
, x > 0, α >

0, β > 0.

The cdf of X(n) is

FX(n)
(x;α, β) = P (X(n) ≤ x) =

[
1
e−1

(
e1−(1+βx)−α − 1

)]n
, x > 0, α > 0, β >

0.

Reliability, R(x;α, β), of series and parallel system having n components with

DUS-Lomax (α, β), respectively, are

[
1− 1

e− 1

(
e1−(1+βx)−α − 1

)]n
and 1−

[
1

e− 1

(
e1−(1+βx)−α − 1

)]n
.
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4.6 Parameter Estimation

In this section, we discuss method of moments and method of maximum likelihood

for the estimation of parameters. Asymptotic bounds of the unknown parameter

are also discussed.

Let X1, X2, . . . , Xn be an observed random sample from DUS-Lomax(α, β)

with unknown parameters α and β. Let m1 = 1
n

∑n
i=1 xi and m2 = 1

n

∑n
i=1 x

2
i

be the first two sample moments. Equating sample moments with population

moments, we get the moment estimators of the parameters,

m1 =
e

e− 1

∞∑
j=0

∞∑
n=0

j+1∑
k=0

(−1)j+k+n

(
α + j

j

)
1

n!β

(j + 1)α

αn− r + k − j − 2

and

m2 =
e

e− 1

∞∑
j=0

∞∑
n=0

j+2∑
k=0

(−1)j+k+n

(
α + j

j

)(
j + 2

2

)
1

n!β2

α

αn− r + k − j − 3
.

We derive MLE of the parameters of the DUS-Lomax(α, β) distribution as

below.

The likelihood function is

l(x;α, β) =
∏n

i=1 f(xi;α, β) = enαnβn

(e−1)n
e−

∑n
i=1(1+βxi)

−α∏n
i=1(1 + βxi)

−(α+1),

so that the log-likelihood function becomes

log l = K + n logα+ n log β − (α+ 1)
n∑
i=1

log(1 + βxi)−
n∑
i=1

(1 + βxi)
−α, (4.6.1)
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where K = n log( e
e−1

). Then the partial derivatives of logL with respect to

unknown parameters α and β are

∂ logL

∂α
=
n

α
−

n∑
i=1

log(1 + βxi) +
n∑
i=1

log(1 + βxi)(1 + βxi)
−α (4.6.2)

∂ logL

∂β
=
n

β
− (α + 1)

n∑
i=1

xi
(1 + βxi)

+ α

n∑
i=1

xi(1 + βxi)
−(α+1). (4.6.3)

Setting the left side of the above two equations to zero, we get the likelihood

equations as a system of two non-linear equations in α and β.

n

α
−

n∑
i=1

log(1 + βxi) +
n∑
i=1

log(1 + βxi)(1 + βxi)
−α = 0 (4.6.4)

n

β
− (α + 1)

n∑
i=1

xi
(1 + βxi)

+ α
n∑
i=1

xi(1 + βxi)
−(α+1) = 0. (4.6.5)

Solving these systems, (4.6.4) and (4.6.5), in α and β gives the MLE of α and

β. These equations cannot be solved analytically and statistical software can be

used to solve them numerically, by taking initial value arbitrarily.

4.6.1 Asymptotic distribution and Confidence bounds

In this section, we derived the asymptotic distribution and confidence intervals of

the parameters α > 0 and β > 0, when the MLEs of the unknown parameters α

and β cannot be obtained in closed forms, using variance covariance matrix I−1,

where I−1 is the inverse of the observed information matrix which is defined as
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follows

I−1 =

 E(−∂2 logL
∂α2 ) E(−∂2 logL

∂α∂β
)

E(−∂2 logL
∂β∂α

) E(−∂2 logL
∂β2 )


−1

.

For a large sample, the asymptotic distribution of ĥ, ĥ = (α, β) is defined by

√
n(ĥ− h)→ N(0, I−1). The second partial derivatives are as follows

∂2 logL

∂α2
= − n

α2
−

n∑
i=1

[log(1 + βxi)]
2 (1 + βxi)

−α (4.6.6)

∂2 logL

∂α∂β
=

n∑
i=1

xi(1 + βxi)
−(α+1) − α

n∑
i=1

xi log(1 + βxi)(1 + βxi)
−(α+1) −

n∑
i=1

xi
1 + βxi

(4.6.7)

∂2 logL

∂β2
= − n

β2
+ (α + 1)

n∑
i=1

x2
i

(1 + βxi)2
− α(α + 1)

n∑
i=1

x2
i (1 + βxi)

−(α+2).

(4.6.8)

The approximate 100%(1− η) confidence intervals of the parameters α and β, by

using variance-covariance matrix, are α̂±Z η
2

√
var(α̂) and β̂±Z η

2

√
var(β̂) where

Z η
2

is the upper 100(η
2
)th percentile of the standard Normal distribution.

4.7 Stress-Strength Reliability Estimation

Consider two independent random variables X and Y , where Y represents the

‘stress’ and X represents the ‘strength’. The reliability of the stress-strength

model is R = P (Y < X), which is used in engineering statistics, quality control

and other fields.
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Suppose X and Y have DUS-Lomax(α, β) distribution with parameters (α, β1)

and (α, β2) respectively. The reliability of the system is

R = P [Y < X] =

∫ ∞
0

f(x)FY (x)dx

=

(
e

e− 1

)2

αβ1

∫ ∞
0

(1 + β1x)−(α+1)e−(1+β1x)−α
(
e−(1+β2x)−α − 1

)
dx

=

(
e

e− 1

)2

αβn+1
1

∞∑
n=0

(−1)n
(
α + n

n

)∫ ∞
0

xne−(1+β1x)−α
(
e−(1+β2x)−α − 1

)
dx

=

(
e

e− 1

)2 ∞∑
n=0

(−1)n
(
α + n

n

){ ∞∑
m=0

∞∑
i=0

n+i∑
j=0

∞∑
r=0

βi2
βi1

(−1)m+i+j+r

m!r!

(
αm+ i− 1

i

)
(
n+ i

j

)
α

αr − n+ j − i− 1
−

n∑
k=0

∞∑
l=0

(−1)k+l

l!

(
n

k

)
α

αl − n+ k − 1

}
. (4.7.1)

The Maximum Likelihood Estimation of R

Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Ym) be two independent random samples

from DUS-Lomax(α, β1), and DUS-Lomax(α, β2) respectively. The log-likelihood

function of α, β1 and β2 for the observed samples is

log l(x, y, α, β1, β2) = n log

(
e

e− 1

)
+ (n+m) logα + n log β1

− (α + 1)
n∑
i=1

log(1 + β1xi)−
n∑
i=1

(1 + β1xi)
−α +m log

(
e

e− 1

)
+m log β2

− (α + 1)
m∑
j=1

log(1 + β2yj)−
m∑
j=1

(1 + β2yj)
−α. (4.7.2)
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The estimators α̂, β̂1 and β̂2 of the parameters of α, β1 and β2 respectively can

then be obtained as the solution of the following non-linear equations.

∂ log l

∂α
=
n+m

α
−

n∑
i=1

log(1 + β1xi)−
m∑
j=1

log(1 + β2yj)

+
n∑
i=1

log(1 + β1xi)

(1 + β1xi
)α +

m∑
j=1

log(1 + β2yj)

(1 + β2yj)

α

∂ log l

∂β1

=
n

β1

− (α1 + 1)
n∑
i=1

xi
1 + β1xi

+ α1

n∑
i=1

xi(1 + β1xi)
−(α1+1)

∂ log l

∂β2

=
m

β2

− (α2 + 1)
m∑
j=1

yj
1 + β2yj

+ α2

m∑
j=1

yj(1 + β2yj)
−(α2+1).

MLE of R, denoted by R̂ML, can obtained by replacing α, β1 and β2 by their

MLEs.

Then R̂ML is given by

R̂ML =

(
e

e− 1

)2 ∞∑
n=0

(−1)n
(
α̂ + n

n

){ ∞∑
m=0

∞∑
i=0

n+i∑
j=0

∞∑
r=0

β̂2

i

β̂1

i

(−1)m+i+j+r

m!r!(
α̂m+ i− 1

i

)(
n+ i

j

)
α̂

α̂r − n+ j − i− 1

−
n∑
k=0

∞∑
l=0

(−1)k+l

l!

(
n

k

)
α̂

α̂l − n+ k − 1

}
. (4.7.3)

The asymptotic variance of R̂ML is given by

AV (R̂ML) =
3∑
i=1

3∑
j=1

∂R

∂θi

∂R

∂θj
I−1(θ), (4.7.4)
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where θ = (α, β1, β2) and I−1(θ) is the inverse of Fisher Information Matrix.

Therefore, an asymptotic 100(1 − ν)% confidence interval for R can obtain as

R̂ML ± Z ν
2

√
AV (R̂ML) where Z ν

2
is the upper ν

2
− quantile of standard Normal

distribution.

4.8 Simulation Study

A simulation study is performed to verify the MLEs work for different sample sizes

and different parameter values for the proposed DUS-Lomax(α, β) distribution

using inversion method. Eq. (4.4.3) is used to generate a random sample from

the DUS-Lomax with parameter α and β. The different sample sizes considered

in the simulation are n = 10, 25, 50, 100, 250, 500, 750 and 1000. We have used

‘optim’ package in R language to find the estimate. We replicated the process

5000 times and reported the average estimates and the associated mean squared

errors in Table 4.1, 4.2, 4.3 and 4.4.

The simulation is conducted for four different cases using varying true param-

eter values. The selected true parameter values are α = 0.5 and β = 0.01; α =

1 and β = 0.5; α = 2 and β = 1.5; and α = 0.5 and β = 2 for the first, second,

third and fourth cases, respectively.

As the sample size increases, the mean square error decreases for all selected pa-

rameter values as in Tables 4.1, 4.2, 4.3 and 4.4. The bias caused by the estimates

are nearer to zero. Also, when the sample size increases, absolute bias decreases.

Thus the estimates tends to the true parameter values with the increase in sample

size.
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Table 4.1: Simulation study at α = 0.5 and β = 0.01

n MLE Bias MSE

10
α̂ = 0.4785 -4.299×10−6 9.240×10−8

β̂ = 0.0213 2.252×10−6 2.536×10−8

25
α̂ = 0.5349 6.975×10−6 2.432×10−7

β̂ = 0.0126 5.181×10−7 1.342×10−9

50
α̂ = 0.5222 4.440×10−6 9.857×10−8

β̂ = 0.0105 9.865×10−8 4.866×10−11

100
α̂ = 0.5147 2.939×10−6 4.319×10−8

β̂ = 0.0103 6.017×10−8 1.811×10−11

250
α̂ = 0.5051 1.010×10−6 5.102×10−9

β̂ = 0.0101 2.743×10−8 3.762×10−12

500
α̂ = 0.5032 6.418×10−7 2.06×10−9

β̂ = 0.0100 6.533×10−9 2.134×10−13

750
α̂ = 0.5015 2.986×10−7 4.458×10−10

β̂ = 0.0101 1.305×10−8 8.510×10−13

1000
α̂ = 0.5013 2.529×10−7 3.198×10−10

β̂ = 0.0101 1.067×10−8 5.699×10−13

4.9 Data Analysis

In this section, we illustrate the use of DUS-Lomax(α, β) distribution using three

real data sets. We fit DUS-Lomax(α, β) distribution to these data sets and

compare with Lomax distribution, Gompertz Lomax (GoL) distribution, Ku-

maraswamy Lomax (KL) distribution, DUS-Exponential distribution and Inverse

Lindley (IL) distribution. The first data-sets, considered here, represent the sur-

vival times of two groups of patients suffering from head and neck cancer disease.

The patients in one group were treated using radiotherapy ((RT), see Table 4.5),

whereas the patients belonging to other group were treated using a combined RT
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Table 4.2: Simulation study at α = 1 and β = 0.5

n MLE Bias MSE

10
α̂ = 1.3044 6.088×10−5 1.853×10−5

β̂ = 0.3013 -3.974×10−5 7.897×10−6

25
α̂ = 1.4531 9.061×10−5 4.105×10−5

β̂ = 0.5667 1.334×10−5 8.90×10−7

50
α̂ = 1.1232 2.464×10−5 3.035×10−6

β̂ = 0.5086 1.724×10−6 1.487×10−8

100
α̂ = 1.0526 1.051×10−5 5.528×10−7

β̂ = 0.5074 1.487×10−6 1.106×10−8

250
α̂ = 1.0199 3.975×10−6 7.899×10−8

β̂ = 0.502 3.997×10−7 7.987×10−10

500
α̂ = 1.009 1.798×10−6 1.616×10−8

β̂ = 0.501 2.806×10−7 3.938×10−10

750
α̂ = 1.0060 1.203×10−6 7.237×10−9

β̂ = 0.5012 2.328×10−7 2.711×10−10

1000
α̂ = 1.0033 6.501×10−7 2.113×10−9

β̂ = 0.502 3.128×10−7 4.891×10−10

and chemotherapy ((CT + RT), see Table 4.7) (Efron (1988)). Another one con-

cerns 46 observations reported on active repair times ((hours), see Table 4.9) for

an airborne communication transceiver (Chhikara and Folks (1977)).

The required numerical evaluations are carried out using the R software. Table

4.6, Table 4.8 and Table 4.10 provide the MLEs of the model parameters. The

model selection is carried out using the AIC and the BIC:

AIC = −2l + 2k,

BIC = −2l + k log n,
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Table 4.3: Simulation study at α = 2 and β = 1.5

n MLE Bias MSE

10
α̂ = 19.2540 0.00345 0.05954

β̂ = 2.0681 0.000114 6.455×10−5

25
α̂ = 5.3742 0.000675 0.00228

β̂ = 1.6073 2.147×10−5 2.305×10−5

50
α̂ = 2.9633 0.000193 0.000186

β̂ = 1.5316 6.317×10−6 1.995×10−7

100
α̂ = 2.3108 6.217×10−5 1.933×10−5

β̂ = 1.4932 -1.358×10−6 9.215×10−9

250
α̂ = 2.0899 1.798×10−5 1.616×10−6

β̂ = 1.4981 -3.833×10−7 7.345×10−10

500
α̂ = 2.0414 8.286×10−6 3.433×10−7

β̂ = 1.4984 -3.283×10−7 5.389×10−10

750
α̂ = 2.0269 5.388×10−6 1.452×10−7

β̂ = 1.5023 4.682×10−7 1.096×10−9

1000
α̂ = 2.0191 3.810×10−6 7.260×10−8

β̂ = 1.5004 8.41×10−8 3.536×10−11

where l denotes the log-likelihood function, k is the number of parameters and n

is the sample size. Moreover, perfection of competing models is also tested using

the K-S test. K-S test statistic is

KS = max

{
i

m
− zi, zi −

i− 1

m

}
, i = 1, ..., n,

where m denotes the number of classes and zi = cdf(xi), the x
′
is being the ordered

observations.
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Table 4.4: Simulation study at α = 0.5 and β = 2

n MLE Bias MSE

10
α̂ = 1.0819 0.000116 6.772×10−5

β̂ = 2.9260 0.000185 0.000172

25
α̂ = 0.5657 1.314×10−5 8.636×10−7

β̂ = 2.2879 5.757×10−5 1.657×10−5

50
α̂ = 0.5314 6.276×10−6 1.970×10−7

β̂ = 2.1124 2.248×10−5 2.528×10−6

100
α̂ = 0.5149 2.987×10−6 4.462×10−8

β̂ = 2.0359 7.178×10−6 2.576×10−7

250
α̂ = 0.5045 9.096×10−7 4.137×10−9

β̂ = 2.0277 5.548×10−6 1.539×10−7

500
α̂ = 0.5015 3.093×10−7 4.784×10−10

β̂ = 2.0223 4.457×10−6 9.931×10−8

750
α̂ = 0.5015 3.091×10−7 4.778×10−10

β̂ = 2.0065 1.296×10−6 8.396×10−9

1000
α̂ = 0.5008 1.677×10−7 1.407×10−10

β̂ = 2.0091 1.830×10−6 1.674×10−8

4.9.1 Complete Data radiotherapy (RT)

The data set is given below: The values of the AIC, BIC and K-S Statistic are

Table 4.5: Survival times of patients treated using RT:

6.53 7 10.42 14.48 16.1 22.7 34 41.55 42 45.28

49.4 53.62 63 64 83 84 91 108 112 129

133 133 139 140 140 146 149 154 157 160

160 165 146 149 154 157 160 160 165 173

176 218 225 241 248 273 277 297 405 417

420 440 523 583 594 1101 1146 1417
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listed in Table 4.6. The variance covariance matrix of the MLEs under the DUS-

Table 4.6: MLEs of the parameters, Log-likelihoods, AIC, BIC, K-S Statistics of
the fitted models in Data set 1.

Model MLEs log L AIC BIC KS-Statistic p-value

DUS-Lomax
α̂ = 4.195

-370.85 745.7 749.82 0.139 0.210
β̂ = 0.0018

Lomax
α̂ = 6.668

-371.61 747.219 751.34 0.145 0.175
β̂ = 0.00078

KL

â = 27.93

-371.01 750.03 758.27 0.154 0.126b̂ = 112.22

α̂ = 0.1851

λ̂ = 0.0085

GoL

θ̂ = 0.0042

-372.381 752.76 761.004 0.158 0.111α̂ = 0.689

β̂ = 1.812

γ̂ = 1.405

DUS-E(θ) θ̂ = 0.0056 -373.82 749.647 751.71 0.201 0.0188

ILD θ̂ = 60.094 -385.70 773.41 775.47 22.629 2.2×10−16

Lomax distribution for the Data set 1 is computed as

=

 3.2382 −0.001953

−0.001953 1.0991× 10−6

 .

Thus, the variances of the MLE of α and β is Var(α̂) = 3.2382 and Var(β̂) =

1.0991× 10−6. Therefore, 95% confidence intervals for α and β are [1.235, 7.155]

and [0.000107, 0.00356] respectively. Histogram and Empirical cdf of DUS-Lomax

(α, β) are given in Figure 4.3.
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Figure 4.3: Histogram with fitted pdfs (left) and Empirical cdf with fitted cdfs
(right) for the Data set 1.

4.9.2 Complete Data RT and chemotherapy (RT+CT)

The data set is given below: The values of the AIC, BIC and K-S Statistic are

Table 4.7: Survival times of patients treated using RT+CT:

12.2 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46

58.36 63.47 68.46 78.26 74.47 81.43 84 92 94

110 112 119 127 130 133 140 146 155

159 173 179 194 195 209 249 281 319

339 432 469 519 633 725 817 1776

listed in Table 4.8. The variance covariance matrix of the MLEs under the DUS-
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Table 4.8: MLEs of the parameters, Log-likelihoods, AIC, BIC, K-S Statistics of
the fitted models in Data set 2.

Model MLEs log L AIC BIC KS-Statistic p-value

DUS-Lomax
α̂ = 3.165

-279.91 563.81 567.38 0.093 0.806
β̂ = 0.0028

Lomax
α̂ = 4.40

-280.45 564.91 568.48 0.104 0.695
β̂ = 0.0013

KL

â = 23.902

-281.91 571.82 578.95 0.211 0.034b̂ = 0.125

α̂ = 8.675

λ̂ = 44.97

GoL

θ̂ = 0.0185

-281.77 571.54 578.68 0.1297 0.414α̂ = 0.467

β̂ = 0.719

γ̂ = 1.99

DUS-E(θ) θ̂ = 0.0056 -283.91 569.82 571.60 0.198 0.0208

IL θ̂ = 77.68 -279.58 561.16 562.94 29.01 5.551×10−16

Lomax distribution for the Data set 2 is computed as

=

 41.1184 −0.05016

−0.05016 6.0923× 10−5

 .

Thus, the variances of the MLE of α and β is Var(α̂) = 41.118 and Var(β̂) =

6.0923×10−5. Therefore, 95% confidence intervals for α and β are [-7.382, 13.713]

and [-0.0101, 0.0156] respectively. Histogram and Empirical cdf of DUS-Lomax

(α, β) are given in Figure 4.4.



120
DUS Transformation of Lomax Distribution: An Upside-down

Bathtub Shaped failure rate model

Density Plot

x

D
e

n
si

ty

0 500 1000 1500

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

DUS−Lomax
Lomax
Go−Lom

Kum−GL
DUS−Exponential

0 500 1000 1500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Empirical CDF

x

F
n

(x
)

DUS−Lomax
Go−Lom
Kum−GL

Lomax
DUS−Exponential

Figure 4.4: Histogram with fitted pdf (left) and Empirical cdf with fitted cdf
(right) for the Data set 2.

4.9.3 Complete Data Repair Time

The data set is given below:

Table 4.9: Repair Time:

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6

0.7 0.7 0.7 0.8 0.8 1.0 1.0 1.0

1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0

2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3

4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0

7.5 8.8 9.0 10.3 22.0 24.5

The values of the AIC, BIC and K-S Statistic are listed in Table 4.10. The variance
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Table 4.10: MLEs of the parameters, Log-likelihoods, AIC, BIC, K-S Statistics of
the fitted models in Data set 3.

Model MLEs log L AIC BIC KS-Statistic p-value

DUS-Lomax
α̂ = 2.610

-102.70 209.40 213.06 0.118 0.548
β̂ = 0.227

Lomax
α̂ = 3.549

-102.95 209.91 213.57 0.127 0.446
β̂ = 0.108

GoL

θ̂ = 1.776

-102.95 213.96 221.27 0.129 0.432α̂ = 1.165

β̂ = 0.189

γ̂ = 0.245

DUS-E(θ) θ̂ = 0.344 -107.66 217.31 219.14 0.211 0.033

ILD θ̂ = 1.577 -101.17 204.34 206.17 0.883 2.2×10−16

covariance matrix of the MLEs under the DUS-Lomax distribution for the Data

set 3 is computed as

=

 1.3693 −0.15959

−0.15959 0.0203

 .

Thus, the variances of the MLE of α and β is Var(α̂) = 1.369 and Var(β̂) = 0.0203.

Therefore, 95% confidence intervals for α and β are [0.6855, 4.535] and [-0.00767,

0.4610] respectively. Histogram and Empirical cdf of DUS-Lomax (α, β) are given

in Figure 4.5.

Table 4.6, Table 4.8 and Table 4.10 show that, DUS-Lomax (α, β) has lowest

AIC, BIC, KS-Statistic, and largest Log-likelihood value and p-value based on

K-S Statistic. The second lowest AIC, BIC, K-S Statistic and second largest

log-likelihood value and p value are obtained by the Lomax distribution. The
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Figure 4.5: Histogram with fitted pdfs (left) and Empirical cdf with fitted cdfs
(right) for the Data set 3.

proposed distribution, DUS-Lomax (α, β) can be used when failure rate pattern

of lifetime distribution is upside-down bathtub shaped. In Data set 1, 2 and 3

seems that DUS-Lomax (α, β) is more appropriate than Lomax distribution, GoL

distribution, KL distribution, DUS-Exponential distribution and IL distribution.

So DUS-Lomax (α, β) is better alternative in the situations in which upside-down

bathtub distributions arises.

4.10 Summary

DUS-transformation is a kind of parsimonious distribution. That is, we can do

computation and interpretation very easily even without changing the parame-
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ters. Then if we apply this transformation into Lomax, its failure rate behaviour

is changing into an upside down bathtub one. A new distribution, DUS-Lomax

(α, β) distribution, is proposed and its properties are studied. The DUS-Lomax

(α, β) has UBFR function. We derived the moments, moment generating func-

tion, characteristic function, quantiles, entropy etc., of the proposed distribution.

Distributions of minimum and maximum are obtained. Estimation of parameters

of the distribution is performed via maximum likelihood method. Reliability of

stress-strength models is derived. A simulation study is performed for validate

the MLE. DUS-Lomax (α, β) distribution is applied to three real data sets and

shows that DUS-Lomax (α, β) distribution is a better fit than other well-known

distributions.



CHAPTER 5

STRESS-STRENGTH RELIABILITY

5.1 Introduction

1 The estimation of stress-strength reliability is a very common problem in

statistical literature. This model is used in many applications of physics and

engineering such as strength failure and the system collapse. In many practi-

cal situations, the components of a system are of different structure so that the

assumption of identical strength distributions may not be quite realistic.

The term stress is defined as a failure inducing variable. It is defined as stress

(load) which tends to produce a failure of a component or of a device of a material.

The term load may be defined as mechanical load, environment, temperature and

electric current etc.

1Some contents of this chapter are based on Deepthi and Chacko (2020).
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The term strength is defined as it is failure resisting variable. The ability

of component, device or a material to accomplish its required function (mission)

satisfactorily without failure when subjected to the external loading and environ-

ment.

In reliability and survival analysis, the stress-strength model describes the

probabilistic behavior of life of a component that has a random strength X and is

subjected to random stress Y . The system fails if and only if the stress is greater

than strength at any time. The reliability parameter, for a single component

stress-strength (SSS) model, is

R = P (Y < X) =

∫ ∞
−∞

∫ x

−∞
f(x, y) dy dx,

where f(x, y) is the joint pdf of X and Y . If the r.v’s X and Y are independent,

then f(x, y) = f(x) g(y), where f(x) and g(y) are the marginal pdfs of X and Y ,

so that

R =

∫ ∞
−∞

∫ x

−∞
f(x) g(y) dy dx.

Let Gy(x) =
∫ x
−∞ g(y) dy, then R becomes

R =

∫ ∞
−∞

Gy(x)f(x) dx.

The survival probability of a SSS model has been considered by several authors

for different distributions. Birnbaum (1956) introduced the stress-strength model

and proposed a non-parametric estimator of R. Guttman et al. (1988) and Weer-

ahandi and Johnson (1992) considered the estimation of R, and also obtained the
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associated confidence interval of R, when both stress and strength depend on some

known covariates. Sun et al. (1998) obtained a Bayesian approach for estimating

stress-strength reliability.

Raqab and Kundu (2005) studied the estimation of stress-strength reliability,

when Y and X two independent scaled Burr type X distribution. Kundu and

Gupta (2005) studied stress-strength reliability based on independent generalized

exponential distributions with different shape parameters but having the same

scale parameters. Kundu and Gupta (2006) studied the estimation of R based od

Weibull distribution. Baklizi and Eidous (2006) proposed an estimator of stress-

strength reliability based on kernel estimators. Raqab et al. (2008) discussed

estimation of R based on three-parameter generalized Exponential distribution.

Zhou (2008) illustrated estimation of stress-strength reliability using bootstrap

method. Jing et al. (2009) estimated stress-strength reliability using empirical

likelihood method. Kundu and Raqab (2009) proposed estimation of R based on

three-parameter Weibull distribution. Rezaei et al. (2010) studied the estimation

of stress-strength reliability based on two independent generalized Pareto random

variables. Baklizi (2012) studied inference on stress-strength reliability in the

two-parameter Weibull model.

Recently Jose et al. (2019) and Xavier and Jose (2020) studied the stress-

strength reliability estimation of single and multi-component systems using var-

ious generalizations of half logistic distribution. Joby et al. (2020) studied esti-

mation of stress-strength reliability of single and multi-component systems based

on discrete phase type distribution. Domma et al. (2019) proposed the stress-

strength reliability based on the m-generalized order statistics and the correspond-
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ing concomitant. Krishna et al. (2019) studied estimation of R using inverse

Weibull distribution based on progressive first failure censoring. Kohansal and

Nadarajah (2019) considered estimation of R using Kumaraswamy distribution

based on Type-II hybrid progressive censored samples. Musleh et al. (2019)

studied inference on R in bivariate Lomax model.

Bai et al. (2018) considered reliability inference of stress-strength model under

progressively Type-II censored samples when stress and strength have truncated

proportional hazard rate distributions. Asgharzadeh et al. (2017) considered

estimation of stress-strength reliability based on the generalized exponential dis-

tribution. Bi and Gui (2017) studied Bayesian estimation of R using inverse

Weibull distribution. Estimation of stress-strength parameter using record values

from proportional hazard model was considered by Basirat et al. (2016). Two-

parameter bathtub shaped life time distribution based on upper record values

was presented by Tarvirdizade and Ahmadpour (2016). Ghitany et al. (2014)

discussed inference on stress-strength reliability based on Power Lindley distribu-

tions. Sharma (2014) proposed an upside-down bathtub shape distribution and

estimate of stress-strength reliability of inverse Lindley distribution.

But, in reality, many of the system consist of two or more components. The re-

liability analysis of multi-component system having various lifetime distributions

for the strength of its components is important for the researchers and engineers.

The multi-component stress-strength (MSS) reliability modeling is quite desirable

in various real life situations. Bhattacharyya and Johnson (1974) observed the

performance of a system depends on more than one component and these compo-

nents have their own strength. For example, an aircraft generally contains more
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than one engines (k) and assume that for take off at least s(1 ≤ s ≤ k) engines

are needed. So, the aircraft will take off smoothly, if s out of k engines work. In

engineering, a power system powering a manufacturing unit has k fuse cut-outs

arranged in a parallel way. The power system will keep powering the manufactur-

ing unit as long as at least s(1 ≤ s ≤ k) fuse cut-outs are working. In suspension

bridges, the deck is supported by a series of vertical cables hung from the tow-

ers. Suppose a suspension bridge consists of k number of vertical cable pairs. The

bridge will only survive if a minimum s number of vertical cables through the deck

are not damaged when subjected to stresses due to wind loading, heavy traffic,

corrosion etc.

To find the reliability of a k component system, let the random samples

Y,X1, X2, . . . , Xk be independent, G(y) be the continuous distribution function

of stress Y and F (x) be the common continuous distribution function of strength

X1, X2, . . . , Xk of components 1, 2, . . . , k respectively. The reliability in a MSS

model developed by Bhattacharyya and Johnson (1974) is given by

Rs,k = P [at least s of the (X1, X2, . . . , Xk) exceed Y ]

=
k∑
i=s

(
k

i

)∫ ∞
−∞

[1− F (y)]i[F (y)]k−idG(y), s = 1, 2, . . . , k

where X1, X2, . . . , Xk independent and identically distributed (iid) with common

distribution function F (x) and subjected to the common random stress Y . Sev-

eral researchers developed inferential procedures for the reliability of MSS model.

Mokhlis and Khames (2011) studied the reliability of some parallel and series MSS

model using multivariate Marshall-Olkin Exponential distribution. Rao (2012)
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developed the MSS reliability based on Generalized Exponential distribution.

Recently, Rao et al. (2015) discussed the MSS reliability with the Burr-XII

distribution. Dey et al. (2016) studied the estimation of reliability of a MSS model

based on Kumaraswamy distribution. The MSS model using Lindley distribution,

when the system consists of k components experiencing a random stress is consid-

ered by Khalil (2017). Kohansal (2017) investigated the estimation of MSS relia-

bility by assuming the Kumaraswamy distribution based on progressively Type-II

censored samples. Abouelmagd et al. (2018) studied the estimation of reliability

of a MSS model based on both classical and Bayesian approaches assuming that

the components follow power Lindley model. Hassan and Alohal (2018) studied

estimation of MSS reliability based on generalized linear failure rate distribution.

Pandit and Joshi (2018) studied estimation of MSS reliability based on gen-

eralized Pareto distribution. Fatma (2019) studied estimation of MSS reliability

using Topp-Leone distribution. Jamal et al. (2019) studied estimation of MSS

reliability using Pareto distribution based on upper record values. Pak et al.

(2019) investigated Bayesian estimation of the reliability of an MSS system for

the bathtub-shaped distribution when the available data are reported in terms

of record values. Jha et al. (2020) investigated the Bayesian estimation of MSS

reliability under progressive Type II censoring when stress and strength variables

follow unit Gompertz distributions. Hassan et al. (2020) studied Bayesian es-

timation of the reliability of a MSS system with Weibull distribution based on

upper record values.

In this chapter, we consider the two different cases for stress-strength reliability
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• Case 1: If X ∼ TPGL(α, β1, λ1) and Y ∼ TPGL(α, β2, λ2).

• Case 2: If X ∼ TPGL(α, β, λ1) and Y ∼ PL(α, λ2).

The procedure of estimating reliability of SSS model is considered in section 5.2.

In section 5.3, estimating reliability of MSS model is considered. In section 5.4, a

simulation study to investigate the merits of the proposed methods is given. Real

data sets are analyzed in section 5.5. Conclusions are given in section in 5.6.

The aim of this chapter is to develop the inferential procedure for estimating

the stress-strength reliability R = P [X > Y ], where X represents the strength

and Y denotes the stress. It is further assumed that X and Y are independent

Three Parameter Generalized Lindley (TPGL) and Power Lindley (PL) random

variables, having bathtub shaped failure rate function. Stress-strength reliability

plays a very important role in the reliability analysis, and has nice probabilistic

interpretation. The reliability R = P [X > Y ] is the probability that failure

will occur a high stress. Many authors developed the estimation procedures for

estimating the stress-strength reliability from various lifetime models. In this

chapter we discuss stress-strength reliability analysis of bathtub shaped failure

rate models.

5.2 Estimation of SSS Reliability

In this section, the procedure of estimating reliability of SSS model using two

different cases. That is, when X ∼ TPGL(α, β1, λ1), Y ∼ TPGL(α, β2, λ2) and

X ∼ TPGL(α, β, λ1), Y ∼ PL(α, λ2). The system fails if and only if the applied
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stress is greater than its strength. In section 5.2.1 and 5.2.2 obtain the MLE of R

in both cases and obtain its asymptotic distribution in both cases in section 5.2.3.

The asymptotic distribution has been used to construct an asymptotic confidence

interval.

Case 1: Suppose X and Y are random variables independently distributed as

X ∼ TPGL(α, β1, λ1) and Y ∼ TPGL(α, β2, λ2).

Nosakhare and Opone (2018) introduced a TPGL distribution, which exhibits

bathtub shape for its failure rate function. These distributions are generated us-

ing the exponentiation and power transformations to the Lindley distribution.

Reliability estimation of SSS and MSS model using TPGL distribution is an un-

explored problem.

The pdf of TPGL distribution is

f(x;α, β, λ) =
αλ2

1 + λβ
(β + xα)xα−1e−λx

α

, x > 0, α > 0, β > 0, λ > 0.

Here β and λ are scale parameters, and α is the shape parameter. The cdf is given

by

F (x;α, β, λ) = 1−
(

1 + βλ+ λxα

1 + βλ

)
e−λx

α

, x > 0, α > 0, β > 0, λ > 0

and the reliability function is given by

R(x;α, β, λ) =

(
1 + βλ+ λxα

1 + βλ

)
e−λx

α

, x > 0, α > 0, β > 0, λ > 0.
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The failure rate function of TPGL distribution is

r(x;α, β, λ) =
αλ2(β + xα)xα−1

1 + βλ+ λxα
, x > 0, α > 0, β > 0, λ > 0.

Then, SSS reliability is

R = P (Y < X) =

∫ ∞
0

f(x)Fy(x) dx

=
αλ2

1

1 + β1λ1

∫ ∞
0

(
β1x

α−1e−λ1x
α

+ x2α−1e−λ1x
α) [

1−
(

1 +
λ2x

α

1 + β2λ2

)
eλ2x

α

]
dx

=
λ2

1λ2

(1 + β1λ1)(1 + β2λ2)(λ1 + λ2)

[
(1 + β1)

(
1 +

1

λ1 + λ2

)
+

2

(λ1 + λ2)2

]
.

(5.2.1)

Case 2: Suppose X follows TPGL distribution with parameters (α, β, λ1) and Y

follows PL distribution with parameters (α, λ2) and they are independent random

variables. The PL distribution proposed by Ghitany et al. (2013) an extension of

the Lindley distribution. The pdf of PL distribution is

f(x;α, λ) =
αλ2

1 + λ
(1 + xα)xα−1e−λx

α

, x > 0, α > 0, λ > 0. (5.2.2)

Here λ and α are scale and shape parameters. The corresponding cdf is given by

F (x;α, λ) = 1−
(

1 +
λxα

1 + λ

)
e−λx

α

, x > 0, α > 0, λ > 0. (5.2.3)
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Suppose that X represent the strength of a component exposed to Y stress, then

the single component stress-strength reliability is obtained as follows,

R = P (X > Y ) =

∫ ∞
0

P [X > Y |Y = y]fy(y) dy

=

∫ ∞
0

αλ2
2

1 + λ2

{∫ x

0

(1 + yα)yα−1eλ2y
α

dy

}
αλ2

1

1 + βλ1

(β + xα)xα−1e−λ1x
α

dx

=
αλ2

2

1 + λ2

αλ2
1

1 + βλ1

∫ ∞
0

{
e−λ2x

α

αλ2

+
xαe−λ2x

α

αλ2

− e−λ2x
α

αλ2
2

}(
(β + xα)xα−1e−λ1x

α)
dx

=
α2λ2

1λ
2
2

(1 + βλ1)(1 + λ2)

{
β

αλ2

∫ ∞
0

xα−1e−(λ1+λ2)xα dx+
1

αλ2

∫ ∞
0

x2α−1e−(λ1+λ2)xα dx

+
β

αλ2

∫ ∞
0

x2α−1e−(λ1+λ2)xα dx+
1

αλ2

∫ ∞
0

x3α−1e−(λ1+λ2)xα dx

− β

αλ2
2

∫ ∞
0

xα−1e−(λ1+λ2)xα dx− 1

αλ2
2

∫ ∞
0

x2α−1e−(λ1+λ2)xα dx

}

=
λ2

1λ2

(1 + βλ1)(1 + λ2)(λ1 + λ2)

{(
2 + β − 1

λ2

)(
1 +

1

λ1 + λ2

)
+

2

(λ1 + λ2)2

}
.

(5.2.4)

Remark 5.2.1. • The stress-strength reliability parameter R in (5.2) and

(5.2.4) does not depend on the common shape parameter α.

• If R = 0.5 which means there is an equal chance that strength X is greater

than stress Y .

• If R > 0.5 which means there is a small chance that X is greater than Y .

• If R < 0.5 which means there is a high chance that X is greater than Y .
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5.2.1 Maximum Likelihood Estimation of R (Case 1:)

Let X be the strength r.v following TPGL (α, β1, λ1) distribution and Y be

the stress r.v. following TPGL(α, β2, λ2) distribution. Let X1, X2, . . . , Xn and

Y1, Y2, . . . , Ym be two ordered random samples of size n, m respectively, taken

from TPGL distribution. Then the likelihood function based on the combined

random sample is given by

L =
n∏
i=1

αλ2
1

1 + β1λ1

(β1 + xαi )xα−1
i e−λ1x

α
i

m∏
j=1

αλ2
2

1 + β2λ2

(β2 + yαj )yα−1
j e−λ2y

α
j .

The log-likelihood function is

l = log L = (n+m) logα + 2n log λ1 − n log(1 + β1λ1) +
n∑
i=1

log(β1 + xαi )

+ (α− 1)
n∑
i=1

log xi − λ1

n∑
i=1

xαi + 2m log λ2 −m log(1 + β2λ2)

+
m∑
j=1

log(β2 + yαj ) + (α− 1)
m∑
j=1

log yj − λ2

m∑
j=1

yαj .

The MLE of the parameters is the solution of following non-linear equations

∂l

∂β1

= − nλ1

1 + β1λ1

+
n∑
i=1

1

β1 + xαi
(5.2.5)

∂l

∂β2

= − mλ2

1 + β2λ2

+
m∑
j=1

1

β2 + yαj
(5.2.6)
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∂l

∂λ1

=
2n

λ1

− nβ1

1 + β1λ1

−
n∑
i=1

xαi (5.2.7)

∂l

∂λ2

=
2m

λ2

− mβ2

1 + β2λ2

−
m∑
j=1

yαj (5.2.8)

and
∂l

∂α
=
n+m

α
+

n∑
i=1

xαi log xi
(β1 + xαi )

+
n∑
i=1

log xi − λ1

n∑
i=1

xαi log xi

+
m∑
j=1

yαj log yj

(β2 + yαj )
+

m∑
j=1

log yj − λ2

m∑
j=1

yαj log yj. (5.2.9)

The second partial derivatives are

∂2l

∂β2
1

=
nλ2

1

(1 + β1λ2
1)2
−

n∑
i=1

1

(β1 + xαi )2
,

∂2l

∂β1∂α
= −

n∑
i=1

xαi log xi
(β1 + xαi )2

,

∂2l

∂β2
2

=
mλ2

2

(1 + β2λ2
2)2
−

m∑
j=1

1

(β2 + yαj )2
,

∂2l

∂β2∂α
= −

m∑
j=1

yαj log yj

(β2 + yαj )2
,

∂2l

∂β1∂β2

=
∂2l

∂β1∂λ2

=
∂2l

∂λ1∂λ1

= 0,

∂2l

∂λ2
1

=
nβ2

1

(1 + β1λ1)2
− 2n

λ2
1

,
∂2l

∂β1∂λ1

= − n

(1 + β1λ2
1)2
,

∂2l

∂λ1∂α
= −

n∑
i=1

xαi log xi,

∂2l

∂λ2
2

=
mβ2

2

(1 + β2λ2)2
− 2m

λ2
2

,
∂2l

∂β2∂λ2

= − m

(1 + β2λ2
2)2
,

∂2l

∂λ2∂α
= −

m∑
j=1

yαj log yj

and

∂2l

∂α2
= −n+m

α2
+

n∑
i=1

{
xαi log2(xi)

β1 + xαi
− x2α

i log2 xi
(β1 + xαi )2

}
− λ1

n∑
i=1

xαi log2(xi)− λ2

m∑
j=1

yαj log2(yj) +
m∑
j=1

{
yαj log2(yj)

β2 + yαj
−
y2α
j log2 yj

(β2 + yαj )2

}
.
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The MLE of SSS reliability R is obtained by

R̂ML =
λ̂1

2
λ̂2

(1 + β̂1λ̂1)(1 + β̂2λ̂2)(λ̂1 + λ̂2)

[
(1 + β̂1)

(
1 +

1

λ̂1 + λ̂2

)
+

2

(λ̂1 + λ̂2)2

]
.

(5.2.10)

5.2.2 Maximum Likelihood Estimation of R (Case 2:)

Suppose X1, X2, . . . , Xn is a random sample of size n from TPGL(α, β, λ1) and

Y1, Y2, . . . , Ym is a random sample of size m from PL(α, λ2). Then the likelihood

function is given by

L =
n∏
i=1

αλ2
1

1 + βλ1

(β + xαi )xα−1
i e−λ1x

α
i

m∏
j=1

αλ2
2

1 + λ2

(1 + yαj )yα−1
j e−λ2y

α
j .

Then the log-likelihood function is

l = log L = (n+m) logα + 2n log λ1 − n log(1 + βλ1) +
n∑
i=1

log(β + xαi )

+ (α− 1)
n∑
i=1

log xi − λ1

n∑
i=1

xαi + 2m log λ2 −m log(1 + λ2)

+
m∑
j=1

log(1 + yαj ) + (α− 1)
m∑
j=1

log yj − λ2

m∑
j=1

yαj . (5.2.11)

The MLE of the parameters is the solution of non-linear equations as follows

∂l

∂β
= − nλ1

1 + βλ1

+
n∑
i=1

1

β + xαi
(5.2.12)
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∂l

∂λ1

=
2n

λ1

− nβ

1 + βλ1

−
n∑
i=1

xαi (5.2.13)

∂l

∂λ2

=
2m

λ2

− m

1 + λ2

−
m∑
j=1

yαj (5.2.14)

and

∂l

∂α
=
n+m

α
+

n∑
i=1

xαi log xi
(β + xαi )

+
n∑
i=1

log xi − λ1

n∑
i=1

xαi log xi

+
m∑
j=1

yαj log yj

(1 + yαj )
+

m∑
j=1

log yj − λ2

m∑
j=1

yαj log yj. (5.2.15)

The second partial derivatives are

∂2l

∂β2
=

nλ2
1

(1 + βλ2
1)2
−

n∑
i=1

1

(β + xαi )2
,

∂2l

∂β∂α
= −

n∑
i=1

xαi log xi
(β + xαi )2

,

∂2l

∂λ2
1

=
nβ2

(1 + βλ1)2
− 2n

λ2
1

,
∂2l

∂β∂λ1

= − n

(1 + βλ2
1)2
,

∂2l

∂λ1∂α
= −

n∑
i=1

xαi log xi,

∂2l

∂λ2
2

=
m

(1 + λ2)2
− 2m

λ2
2

,
∂2l

∂β∂λ2

= 0,
∂2l

∂λ2∂α
= −

m∑
j=1

yαj log yj

and

∂2l

∂α2
= −n+m

α2
+

n∑
i=1

{
xαi log2(xi)

β + xαi
− x2α

i log2 xi
(β + xαi )2

}
− λ1

n∑
i=1

xαi log2(xi)− λ2

m∑
j=1

yαj log2(yj) +
m∑
j=1

{
yαj log2(yj)

1 + yαj
−
y2α
j log2 yj

(1 + yαj )2

}
.
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The MLE of single component stress-strength reliability R is obtained by

R̂ML =
λ̂1

2
λ̂2

(1 + β̂λ̂1)(1 + λ̂2)(λ̂1 + λ̂2)

{(
2 + β̂ − 1

λ̂2

)(
1 +

1

λ̂1 + λ̂2

)
+

2

(λ̂1 + λ̂2)2

}
.

(5.2.16)

5.2.3 Asymptotic distribution and Confidence Intervals

In this section, the asymptotic distribution and confidence interval of the MLE

of R is obtained from case 1. To find an asymptotic variance of the R̂ML in

(5.2.10), let us denote the Fisher information matrix of θ = (α, β1, β2, λ1, λ2) as

I(θ) = [Iij(θ); i, j = 1, 2, . . . , 5], i.e.,

I(θ) = E



− ∂2l
∂α2 − ∂2l

∂α∂β1
− ∂2l
∂α∂β2

− ∂2l
∂α∂λ1

− ∂2l
∂α∂λ2

− ∂2l
∂β1∂α

− ∂2l
∂β2

1
− ∂2l
∂β1∂β2

− ∂2l
∂β1∂λ1

− ∂2l
∂β1∂λ2

− ∂2l
∂β2∂α

− ∂2l
∂β2∂β1

− ∂2l
∂β2

2
− ∂2l
∂β2∂λ1

− ∂2l
∂β2∂λ2

− ∂2l
∂λ1∂α

− ∂2l
∂λ1∂β1

− ∂2l
∂λ1∂β2

− ∂2l
∂λ21

− ∂2l
∂λ1∂λ2

− ∂2l
∂λ2∂α

− ∂2l
∂λ2∂β1

− ∂2l
∂λ2∂β2

− ∂2l
∂λ2∂λ1

− ∂2l
∂λ22


.

In order to establish the asymptotic Normality of R, we further define

d(θ) =

(
∂R

∂α
,
∂R

∂β1

,
∂R

∂β2

,
∂R

∂λ1

,
∂R

∂λ2

)′
= (d1, d2, d3, d4, d5)′,

where

∂R

∂α
= 0,

∂R

∂β1

= −λ
2
1λ2 ((λ1 − 1)λ2

2 + (2λ2
1 − λ1 − 1)λ2 + λ3

1 + λ1)

(1 + β1λ1)2(1 + β2λ2)(λ1 + λ2)3
,



Stress-Strength Reliability 139

∂R

∂β2

= − λ2
1λ

2
2

(1 + β1λ1)(1 + β2λ2)2(λ1 + λ2)

[
(1 + β1)

(
1 +

1

λ1 + λ2

)
+

2

(λ1 + λ2)2

]
,

∂R

∂λ1

= λ1λ2

[
((β2

1 + β1)λ2 − β2
1 + 1)λ3

1 + ((2β2
1 + 2β1)λ2

2 + (4β1 + 4)λ2 − 4β1)λ2
1

(1 + β1λ1)2(1 + β2λ2)(λ1 + λ2)4

+
((β2

1 + β1)λ3
2 + (β2

1 + 6β1 + 5)λ2
2 + (4β1 + 2)λ2 − 2)λ1

(1 + β1λ1)2(1 + β2λ2)(λ1 + λ2)4

+
(2β1 + 2)λ3

2 + (2β1 + 2)λ2
2 + 4λ2

(1 + β1λ1)2(1 + β2λ2)(λ1 + λ2)4

]

and

∂R

∂λ2

= −λ2
1

[
(1 + β1)β2λ

4
2 + ((2β1 + 2)β2λ1 + (2β1 + 2)β2)λ3

2

(1 + β1λ1)(1 + β2λ2)2(λ1 + λ2)4

+
((−2β1 − 2)λ2

1 + 4)λ2 − 2λ1

(1 + β1λ1)(1 + β2λ2)2(λ1 + λ2)4

+
((1 + β1)β2λ

2
1 + ((2β1 + 2)β2 − β1 − 1)λ1 + 6β2 + β1 + 1)λ2

2

(1 + β1λ1)(1 + β2λ2)2(λ1 + λ2)4

+
(−β1 − 1)λ3

1 + (−β1 − 1)λ2
1

(1 + β1λ1)(1 + β2λ2)2(λ1 + λ2)4

]
.

We obtain the asymptotic distribution of R̂ML as

√
n+m(R̂ML −R)

d−→ N(0, d′(θ)I−1(θ)d(θ)).

Asymptotic variance of R̂ML is obtained as

AV (R̂ML) =
1

n+m
d′(θ)I−1(θ)d(θ)
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AV (R̂ML) = V (α̂)d2
1 + V (β̂1)d2

2 + V (β̂2)d2
3 + V (λ̂1)d2

4 + V (λ̂2)d2
5

+ 2d1d2Cov(α̂, β̂1) + 2d1d3Cov(α̂, β̂2) + . . .+ 2d4d5Cov(λ̂1, λ2).

(5.2.17)

Asymptotic 100(1− γ)% confidence interval for R can be obtained as

R̂ML ± Z γ
2

√
AV (R̂ML),

where Z γ
2

is the upper γ
2

quantile of the standard Normal distribution.

Case 2: To find an asymptotic variance of R̂ML in (5.2.16). Let us denote the

Fisher information matrix of θ = (α, β, λ1, λ2) as I(θ) = Iij(θ); i, j = 1, 2, 3, 4.

I(θ) = E



− ∂2l
∂α2 − ∂2l

∂α∂β
− ∂2l
∂α∂λ1

− ∂2l
∂α∂λ2

− ∂2l
∂β∂α

− ∂2l
∂β2 − ∂2l

∂β∂λ1
− ∂2l
∂β∂λ2

− ∂2l
∂λ1∂α

− ∂2l
∂λ1∂β

− ∂2l
∂λ21

− ∂2l
∂λ1∂λ2

− ∂2l
∂λ2∂α

− ∂2l
∂λ2∂β

− ∂2l
∂λ2∂λ1

− ∂2l
∂λ22


.

In order to establish the asymptotic normality of R, we further define

d(θ) =

(
∂R

∂α
,
∂R

∂β
,
∂R

∂λ1

,
∂R

∂λ2

)′
= (d1, d2, d3, d4)′,

where ∂R
∂α

= 0,

∂R

∂β
=
−λ2

1 ((2λ1 − 1)λ3
2 + (4λ1 − λ1 − 1)λ2

2 + (2λ3
1 − λ2

1)λ2 − λ3
1 − λ2

1)

(1 + λ2)(λ1 + λ2)3(1 + βλ1)2
,



Stress-Strength Reliability 141

∂R

∂λ1

= λ1

[
((β2 + 2β)λ2

2 + (−β2 − 2β + 2)λ2 + β − 1)λ3
1

(1 + λ2)(λ1 + λ2)4(1 + βλ1)2

+
((2β2 + 4β)λ3

2 + (2β + 8)λ2
2 + (−4β − 4)λ2)λ2

1

(1 + λ2)(λ1 + λ2)4(1 + βλ1)2

+
((β2 + 2β)λ4

2 + (β2 + 6β + 10)λ3
2 + (3β − 1)λ2

2 − 4λ2)λ1

(1 + λ2)(λ1 + λ2)4(1 + βλ1)2

+
(2β + 4)λ4

2 + (2β + 2)λ3
2 + 2λ2

2

(1 + λ2)(λ1 + λ2)4(1 + βλ1)2

]
,

∂R

∂λ2

= −λ2
1

[
(β + 2)λ4

2 + ((2β + 4)λ1 + 2β + 2)λ3
2

(1 + βλ1)(1 + λ2)2(λ1 + λ2)4

+
((β + 2)λ2

1 + (β − 3)λ1 + β + 4)λ2
2

(1 + βλ1)(1 + λ2)2(λ1 + λ2)4

+
((−2β − 8)λ2

1 − 6λ1 + 2)λ2 + (−β − 3)λ3
1 + (−β − 4)λ4

1 − 4λ1

(1 + βλ1)(1 + λ2)2(λ1 + λ2)4

]
.

The asymptotic variance of R̂ML is obtained as

AV (R̂ML) =
1

n+m
d′(θ)I−1(θ)d(θ)

= V (α̂)d2
1 + V (β̂)d2

2 + V (λ̂1)d2
3 + V (λ̂2)d2

4

+ 2d1d2Cov(α̂, β̂) + . . .+ 2d3d4Cov(λ̂1, λ2).

Hence, an asymptotic 100(1− η)% confidence interval for R can be obtained as

R̂ML ± Z η
2

√
AV (R̂ML),

where Z η
2

is the upper η
2

quantile of the standard Normal distribution.
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5.3 Estimation of Reliability in MSS Model

Suppose that Y,X1, X2, . . . , Xk are independent, G(y) is the cdf of Y and F (x)

is the common cdf of X1, X2, . . . , Xk. The reliability of MSS model with TPGL

distribution is

Rs,k =
αλ2

2

1 + β2λ2

k∑
i=s

(
k

i

)∫ ∞
0

[(
1 +

λ1x
α

1 + β1λ1

)
e−λ1x

α

]i
[
1−

(
1 +

λ1x
α

1 + β1λ1

)
e−λ1x

α

]k−i
(β2 + xα)xα−1e−λ2x

α

dx.

Expanding the terms inside the integral, we get

=
αλ2

2

1 + β2λ2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ1

1 + β1λ1

)l1+l3

∫ ∞
0

β2x
α(l1+l3+1)−1e−x

α[λ1(i+l2)+λ2] dx+

∫ ∞
0

xα(l1+l3+1)−1e−x
α[λ1(i+l2)+λ2] dx.

After the simplification, we get

Rs,k =
αλ2

2

1 + β2λ2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ1

1 + β1λ1

)l1+l3

{
β2(l1 + l3)!

α [λ1(i+ l2) + λ2]l1+l3+1
+

(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2

}
. (5.3.1)
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By using the invariance property, MLE of MSS reliability Rs,k, s = 1, 2, . . . , k, is

obtained by

R̂ML
s,k =

α̂λ̂2

2

1 + β̂2λ̂2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ̂1

1 + β̂1λ̂1

)l1+l3

{
β̂2(l1 + l3)!

α̂
[
λ̂1(i+ l2) + λ̂2

]l1+l3+1
+

(l1 + l3 + 1)!

α̂
[
λ̂1(i+ l2) + λ̂2

]l1+l3+2

}
. (5.3.2)

In order to establish the asymptotic Normality of Rs,k, 1 ≤ s ≤ k, we further

define

d(θ) =

(
∂Rs,k

∂α
,
∂Rs,k

∂β1

,
∂Rs,k

∂β2

,
∂Rs,k

∂λ1

,
∂Rs,k

∂λ2

)′
= (d1, d2, d3, d4, d5)′,

where,
∂Rs,k
∂α

= 0,

∂Rs,k

∂β1

=
αλ2

2

1 + β2λ2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ1

1 + β1λ1

)l1+l3+1

(−(l1 + l3))

{
β2(l1 + l3)!

α [λ1(i+ l2) + λ2]l1+l3+1
+

(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2

}
,

∂Rs,k

∂β2

= α
k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ1

1 + β1λ1

)l1+l3

[
−λ2

(1 + β2λ2)

{
β2(l1 + l3)!

α [λ1(i+ l2) + λ2]l1+l3+1
+

(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2

}

+
λ2

2

(1 + β2λ2)

(l1 + l3)!

α [λ1(i+ l2) + λ2]l1+l3+1

]
,
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∂Rs,k

∂λ1

=
αλ2

2

1 + β2λ2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ1

1 + β1λ1

)l1+l3

[
(l1 + l3)(β1 − 1)

λ1(1 + β1λ1)

{
β2(l1 + l3)!

α [λ1(i+ l2) + λ2]l1+l3+1
+

(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2

}

+ (i+ l2)

{
β2(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2
+

(l1 + l3 + 2)!

α [λ1(i+ l2) + λ2]l1+l3+3

}]
,

∂Rs,k

∂λ2

= α
λ2

2 + 2λ2

1 + β2λ2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ1

1 + β1λ1

)l1+l3

[
(β2 − 1)

{
β2(l1 + l3)!

α [λ1(i+ l2) + λ2]l1+l3+1
+

(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2

}

+

{
β2(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2
+

(l1 + l3 + 2)!

α [λ1(i+ l2) + λ2]l1+l3+3

}]
.

Asymptotic variance of R̂ML
s,k is

AV (R̂ML
s,k ) =

5∑
i=1

5∑
j=1

∂Rs,k

∂θi

∂Rs,k

∂θj
I−1(θ) (5.3.3)

where θ = (α, β1, β2, λ1, λ2) and I−1(θ) is the Fisher Information Matrix. There-

fore, asymptotic 100(1 − ν)% confidence interval for Rs,k can be obtained as

R̂ML
s,k ± Z ν

2

√
AV (R̂ML

s,k ) where Z ν
2

is the upper ν
2
− quantile of standard Normal

distribution.

Case 2: Suppose that Y,X1, X2, . . . , Xk are independent, G(y) is the cumula-

tive function of Y and F (x) is the common cumulative function of X1, X2, . . . , Xk.

Here, X ∼ TPGL(α, β, λ1) and Y ∼ PL(α, λ2). The reliability in multi-component
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stress strength is

Rs,k =
αλ2

2

1 + λ2

k∑
i=s

(
k

i

)∫ ∞
0

[(
1 +

λ1x
α

1 + βλ1

)
e−λ1x

α

]i
[
1−

(
1 +

λ1x
α

1 + βλ1

)
e−λ1x

α

]k−i
(1 + xα)xα−1e−λ2x

α

dx.

Expanding the terms inside the integral, we get

Rs,k =
αλ2

2

1 + λ2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ1

1 + βλ1

)l1+l3

∫ ∞
0

xα(l1+l3+1)−1e−x
α[λ1(i+l2)+λ2] dx+

∫ ∞
0

xα(l1+l3+1)−1e−x
α[λ1(i+l2)+λ2] dx

=
αλ2

2

1 + λ2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ1

1 + βλ1

)l1+l3

{
(l1 + l3)!

α [λ1(i+ l2) + λ2]l1+l3+1
+

(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2

}
. (5.3.4)

By using the invariance property, MLE of Rs,k is obtained by

R̂ML
s,k =

α̂λ̂2

2

1 + λ̂2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ̂1

1 + β̂λ̂1

)l1+l3

{
(l1 + l3)!

α̂
[
λ̂1(i+ l2) + λ̂2

]l1+l3+1
+

(l1 + l3 + 1)!

α̂
[
λ̂1(i+ l2) + λ̂2

]l1+l3+2

}
. (5.3.5)

In order to establish the asymptotic Normality of Rs,k, we further define

d(θ) =

(
∂Rs,k

∂α
,
∂Rs,k

∂β
,
∂Rs,k

∂λ1

,
∂Rs,k

∂λ2

)′
= (d1, d2, d3, d4)′,
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where,
∂Rs,k
∂α

= 0

∂Rs,k

∂β
=

αλ2
2

1 + λ2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ1

1 + βλ1

)l1+l3+1

(−(l1 + l3))

{
(l1 + l3)!

α [λ1(i+ l2) + λ2]l1+l3+1
+

(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2

}

∂Rs,k

∂λ1

=
αλ2

2

1 + λ2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ1

1 + βλ1

)l1+l3

[
(l1 + l3)(β − 1)

λ1(1 + βλ1)

{
(l1 + l3)!

α [λ1(i+ l2) + λ2]l1+l3+1
+

(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2

}

+ (i+ l2)

{
(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2
+

(l1 + l3 + 2)!

α [λ1(i+ l2) + λ2]l1+l3+3

}]

∂Rs,k

∂λ2

= α
λ2

2 + 2λ2

1 + λ2

k∑
i=s

i∑
l1=0

k−i∑
l2=0

l2∑
l3=0

(
k

i

)(
i

l1

)(
k − i
l2

)(
l2
l3

)
(−1)l2

(
λ1

1 + βλ1

)l1+l3

{
(l1 + l3 + 1)!

α [λ1(i+ l2) + λ2]l1+l3+2
+

(l1 + l3 + 2)!

α [λ1(i+ l2) + λ2]l1+l3+3

}
.

The asymptotic variance of R̂ML
s,k is

AV (R̂ML
s,k ) =

4∑
i=1

4∑
j=1

∂Rs,k

∂θi

∂Rs,k

∂θj
I−1(θ) (5.3.6)

where θ = (α, β, λ1, λ2) and I−1(θ) is the Fisher Information Matrix. There-

fore, an asymptotic 100(1 − ζ)% confidence interval for Rs,k can be obtained as

R̂ML
s,k ± Z ζ

2

√
AV (R̂ML

s,k ) where Z ζ
2

is the upper ζ
2
− quantile of standard Normal
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distribution.

5.4 Simulation Study

This section consists a simulation study to compare the performances of the es-

timators proposed in the previous sections. Here, we studied the behavior of the

estimators of parameters, R and Rs,k on the basis of simulated sample with vary-

ing sample size and various combinations of the parameters. All the results are

based on 1000 replications.

For this purpose, we need a simulation algorithm for generating a random

sample from TPGL and PL distributions. The simplest method used for this

purpose is inverse cdf method that utilizes probability integral transformation.

Since the probability integral transformation under TPGLD and PLD cannot be

applied explicitly, one can apply either Newton’s method to solve the the Lambert

W function as suggested by (Jorda (2010)). First, we perform the simulation study

when X ∼ TPGL(α, β1, λ1) and Y ∼ TPGL(α, β2, λ2) distributions (case 1) in

section 5.4.1. Second, we perform the simulation study when X ∼ TPGL(α, β, λ1)

and Y ∼ PL(α, λ2) distributions (case 2) in section 5.4.2.

5.4.1 MLE of R and Rs,k (Case 1)

In this section, we perform simulation study R and Rs,k when (s, k) = (1,3) and

(2,4) respectively, when X ∼ TPGL(α, β1, λ1) and Y ∼ TPGL(α, β2, λ2). Now to

study the behavior of R̂ML and R̂ML
s,k we use the following algorithm.
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Algorithm

1. For given values of (α, β1, β2, λ1, λ2) compute R, R1,3 and R2,4 from (5.2.1)

and (5.3.1).

2. Using Newton-Raphson formula to generate 1000 random sample.

3. Compute β̂1, β̂2, λ̂1, λ̂2 and α̂ from (5.2.5) to (5.2.9).

4. Compute R̂ML and R̂ML
s,k .

5. Compute the average bias, average MSE and asymptotic 95% confidence in-

terval ofR, R1,3 andR2,4. Bias1 = 1
N

∑N
i=1(R̂ML−R), Bias2 = 1

N

∑N
i=1(R̂ML

s,k −

Rs,k), MSE1 = 1
N

∑N
i=1(R̂ML − R)2, MSE2 = 1

N

∑N
i=1(R̂ML

s,k − Rs,k)
2 when

(s, k) = (1,3) and (2,4). Compute asymptotic 95% confidence interval of R

and Rs,k.

We considered two sets of parameter values (α, β1, λ1) and (α, β2, λ2): (3,5.5,1.25)

and (3,0.5,2.5), (2.5,4.5,1.75) and (2.5,3,1), (2,2.5,1.5) and (2,0.5,1.5), (1.5,6,1)

and (1.5,0.05,2), and different choice of sample sizes (n,m)= (10,10), (15,15),

(15,25), (25,25), (25,30), (30,50), (50,50). From each samples, we compute the es-

timates of (α, β1, λ1, β2, λ2) using ML estimation. Once we estimate (α, β1, λ1, β2, λ2),

we obtain the estimates of R by substituting in (5.2.1). Also obtain the estimates

of Rs,k by substituting in (5.3.1) for (s, k)=(1,3) and (2,4) respectively. These

parameter values correspond to the R values 0.492 (moderate), 0.244 (small),

0.662 (high) and 0.827 (high), respectively. When (s, k) = (1,3), corresponding

Rs,k values are 0.858 (high), 0.540 (moderate), 0.662 (high) and 0.799 (high) re-
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spectively. When (s, k) = (2,4), corresponding Rs,k values are 0.73 (high), 0.386

(small), 0.489 (small) and 0.631 (high) respectively.

5.4.2 MLE of R and Rs,k (Case 2)

In this section, we perform our simulation study of R and Rs,k when (s, k) = (1,3)

and (2,4) respectively, when X ∼ TPGL(α, β, λ1) and Y ∼ PL(α, λ2). To study

the behavior of R̂ML and R̂ML
s,k we use the following algorithm.

Algorithm

1. For given values of (α, β, λ1, λ2) compute R, R1,3 and R2,4 from (5.2.4) and

(5.3.4).

2. Using Newton-Raphson formula to generate 1000 random sample.

3. Compute β̂, λ̂1, λ̂2 and α̂ from (5.2.12) to (5.2.15)

4. Compute R̂ML and R̂ML
s,k .

5. Compute the average bias, average MSE and asymptotic 95% confidence

interval of R, R1,3 and R2,4. Where, Bias1,3 = 1
N

∑N
i=1(R̂ML −R), Bias2,4 =

1
N

∑N
i=1(R̂ML

s,k −Rs,k), and MSE1,3 = 1
N

∑N
i=1(R̂ML−R)2, MSE2,4 = 1

N

∑N
i=1(R̂ML

s,k −

Rs,k)
2 when (s, k) = (1,3) and (2,4), and asymptotic 95% confidence interval

of R and Rs,k.

We considered two sets of parameter values (α, β, λ1) and (α, λ2): (2.5,5,1.5)

and (2.5,0.5), (3,0.5,2) and (3,1.5), (3.5,2,1.25) and (3.5,1.75), (2.75,1,2) and

(2.75,2.25), and different choice of sample sizes (n,m)= (10,10), (15,15), (15,25),
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(25,25), (25,30), (30,50), (50,50). From each samples, we compute the estimates of

(α, β, λ1, λ2) using ML estimation. Using the estimate of (α, β, λ1, λ2), we obtain

the estimates of R by substituting in (5.2.4). Also obtain the estimates of Rs,k by

substituting in (5.3.4) for (s, k) = (1,3) and (2,4) respectively. These parameter

values correspond to the R values 0.353 (small), 0.864 (high), 0.454 (moderate)

and 0.710 (high), respectively. When (s, k) = (1,3), corresponding Rs,k values

are 0.257 (small), 0.682 (high), 0.823 (high) and 0.788 (high) respectively. When

(s, k) = (2,4), corresponding Rs,k values are 0.153 (small), 0.530 (moderate), 0.687

(high) and 0.646 (high) respectively.

In Tables 5.1-5.16, the average biases, MSE and confidence intervals of the

estimates of R and Rs,k based on MLE method are given.

Table 5.1: MLE of R̂ML, Bias and MSE using X ∼ TPGL(3, 5.5, 1.25) and Y ∼
TPGL(3, 0.5, 2.5)

(n,m) R̂ML Bias MSE 95% ACI

(10,10) 0.6893 0.000197 0.0000388 (0.6459, 0.7327)
(15,15) 0.4669 -0.0000255 0.0000065 (0.4464, 0.4874)
(15,25) 0.6679 0.000176 0.0000308 (0.6371, 0.6987)
(25,25) 0.6455 0.000153 0.0000234 (0.6248, 0.6662)
(25,30) 0.9421 0.000450 0.000202 (0.9259, 0.9583)
(30,50) 0.3931 -0.0000993 0.0000099 (0.3720, 0.4142)
(50,50) 0.7441 0.0000252 0.0000634 (0.7136, 0.7746)

From the simulation results, it is observed that as the sample size (n,m) in-

creases, the biases and the MSEs decreases. That means when the sample size

increases, then the estimated reliability reaches nearest to true value. Thus the

consistency properties of all the methods are verified.
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Table 5.2: MLE of R̂ML
s,k , Bias and MSE using X ∼ TPGL(3, 5.5, 1.25) and Y ∼

TPGL(3, 0.5, 2.5)

(s, k) (n,m) R̂ML
s,k Bias MSE 95% ACI

(1,3) (10,10) 0.7101 -0.000148 0.0000219 (0.6875, 0.7327)
(15,15) 0.9426 0.0000845 0.00000714 (0.9135, 0.9717)
(15,25) 0.9447 0.0000866 0.00000749 (0.9287, 0.9607)
(25,25) 0.8788 0.0000207 0.00000043 (0.8511, 0.9065)
(25,30) 0.9563 0.0000982 0.00000964 (0.9315, 0.9811)
(30,50) 0.8861 0.000028 0.00000078 (0.8499, 0.9223)
(50,50) 0.8824 0.0000243 0.00000059 (0.8463, 0.9185)

(2,4) (10,10) 0.5592 -0.000171 0.0000292 (0.5366, 0.5818)
(15,15) 0.8707 0.000141 0.0000198 (0.8548, 0.8866)
(15,25) 0.8780 0.000148 0.0000219 (0.8609, 0.8951)
(25,25) 0.7664 0.0000364 0.00000133 (0.7315, 0.8013)
(25,30) 0.8914 0.000162 0.0000261 (0.8731, 0.9097)
(30,50) 0.7730 0.000043 0.00000185 (0.7371, 0.8089)
(50,50) 0.7707 0.0000407 0.00000165 (0.7586, 0.7828)

Table 5.3: MLE of R̂ML, Bias and MSE using X ∼ TPGL(2.5, 4.5, 1.75) and
Y ∼ TPGL(2.5, 3, 1)

(n,m) R̂ML Bias MSE 95% ACI

(10,10) 0.6649 0.000421 0.000178 (0.6431, 0.6867)
(15,15) 0.4039 0.000160 0.0000257 (0.3824, 0.4254)
(15,25) 0.2758 0.0000322 0.00000104 (0.2613, 0.2903)
(25,25) 0.4273 0.000184 0.0000338 (0.4079, 0.4467)
(25,30) 0.4380 0.000915 0.0000378 (0.4188, 0.4572)
(30,50) 0.7933 0.000550 0.000302 (0.7844, 0.8022)
(50,50) 0.2079 -0.0000357 0.00000127 (0.1919, 0.2239)
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Table 5.4: MLE of R̂ML
s,k , Bias and MSE using X ∼ TPGL(2.5, 4.5, 1.75) and

Y ∼ TPGL(2.5, 3, 1)

(s, k) (n,m) R̂ML
s,k Bias MSE 95% ACI

(1,3) (10,10) 0.6012 0.0000608 0.0000037 (0.5855, 0.6169)
(15,15) 0.5200 -0.0000204 0.00000042 (0.5054, 0.5346)
(15,25) 0.6060 0.0000657 0.00000431 (0.5912, 0.6208)
(25,25) 0.4636 -0.0000768 0.00000589 (0.4477, 0.4795)
(25,30) 0.6754 0.000135 0.0000182 (0.6432, 0.7076)
(30,50) 0.5294 -0.0000110 0.000000121 (0.5066, 0.5522)
(50,50) 0.5534 0.0000131 0.000000171 (0.5433, 0.5635)

(2,4) (10,10) 0.4405 0.0000543 0.00000295 (0.4200, 0.4610)
(15,15) 0.3851 -0.0000011 0.0000000011 (0.3532, 0.4170)
(15,25) 0.4491 0.0000629 0.00000396 (0.4282, 0.4700)
(25,25) 0.3212 -0.0000650 0.00000422 (0.3076, 0.3348)
(25,30) 0.5194 0.000133 0.0000178 (0.4947, 0.5441)
(30,50) 0.3566 -0.0000296 0.000000879 (0.3373, 0.3759)
(50,50) 0.4000 0.0000138 0.000000191 (0.3839, 0.4161)

Table 5.5: MLE of R̂ML, Bias and MSE using X ∼ TPGL(2, 2.5, 1.5) and Y ∼
TPGL(2, 0.5, 1.5)

(n,m) R̂ML Bias MSE 95% ACI

(10,10) 0.6598 -0.0000019 0.0000000036 (0.6347, 0.6849)
(15,15) 0.6370 -0.0000247 0.00000061 (0.6199, 0.6541)
(15,25) 0.4395 -0.000222 0.0000494 (0.4109, 0.4681)
(25,25) 0.6120 -0.0000497 0.00000247 (0.6004, 0.6236)
(25,30) 0.7054 0.0000437 0.00000191 (0.6893, 0.7215)
(30,50) 0.5911 -0.0000706 0.00000498 (0.5799, 0.6023)
(50,50) 0.7032 0.0000415 0.00000172 (0.6871, 0.7193)

5.5 Data Analysis

In this section, we consider two real data sets of the breaking strengths of jute

fiber at two different gauge lengths (see Xia et al. (2009)). Two sets of real data
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Table 5.6: MLE of R̂ML
s,k , Bias and MSE using X ∼ TPGL(2, 2.5, 1.5) and Y ∼

TPGL(2, 0.5, 1.5)

(s, k) (n,m) R̂ML
s,k Bias MSE 95% ACI

(1,3) (10,10) 0.4161 -0.000246 0.0000603 (0.3896, 0.4426)
(15,15) 0.5462 -0.000115 0.0000133 (0.5202, 0.5722)
(15,25) 0.6214 -0.0000402 0.00000162 (0.6098, 0.6330)
(25,25) 0.4636 -0.0000768 0.00000589 (0.4358, 0.4914)
(25,30) 0.5353 -0.000126 0.0000160 (0.5180, 0.5526)
(30,50) 0.6482 -0.0000135 0.000000182 (0.6205, 0.6759)
(50,50) 0.7806 0.000119 0.0000142 (0.7754, 0.7858)

(2,4) (10,10) 0.3018 -0.000188 0.0000352 (0.2928, 0.3108)
(15,15) 0.3706 -0.000119 0.0000141 (0.3662, 0.3750)
(15,25) 0.4569 -0.0000324 0.00000105 (0.4129, 0.5009)
(25,25) 0.4839 -0.0000054 0.000000029 (0.4665, 0.5013)
(25,30) 0.3693 -0.000120 0.0000144 (0.3544, 0.3842)
(30,50) 0.5052 0.000016 0.00000025 (0.4907, 0.5197)
(50,50) 0.6299 0.000141 0.0000198 (0.6069, 0.6529)

Table 5.7: MLE of R̂ML, Bias and MSE using X ∼ TPGL(1.5, 6, 1) and Y ∼
TPGL(1.5, 0.05, 2)

(n,m) R̂ML Bias MSE 95% ACI

(10,10) 0.3659 -0.000462 0.000213 (0.3422, 0.3896)
(15,15) 0.4616 -0.000366 0.000134 (0.4404, 0.4828)
(15,25) 0.5579 -0.000269 0.0000726 (0.5484, 0.5674)
(25,25) 0.8876 0.0000603 0.00000363 (0.8610, 0.9146)
(25,30) 0.7866 -0.0000407 0.00000166 (0.7780, 0.7952)
(30,50) 0.6834 -0.000144 0.0000206 (0.6726, 0.6942)
(50,50) 0.9782 0.0001508 0.0000228 (0.9632, 0.9932)

are shown as follows:

Data set I: Breaking strength of jute fiber length 10 mm (variable

X). 693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48, 108.94, 50.16,
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Table 5.8: MLE of R̂ML
s,k , Bias and MSE using X ∼ TPGL(1.5, 6, 1) and Y ∼

TPGL(1.5, 0.05, 2)

(s, k) (n,m) R̂ML
s,k Bias MSE 95% ACI

(1,3) (10,10) 0.6560 -0.000143 0.0000206 (0.6405, 0.6715)
(15,15) 0.8787 0.0000793 0.0000063 (0.8544, 0.9030)
(15,25) 0.8064 0.0000070 0.00000079 (0.7975, 0.8153)
(25,25) 0.7580 -0.0000414 0.00000171 (0.7479, 0.7681)
(25,30) 0.9255 0.000126 0.0000159 (0.9190, 0.9320)
(30,50) 0.8522 0.0000528 0.00000278 (0.8387, 0.8657)
(50,50) 0.8405 0.0000411 0.00000169 (0.8293, 0.8517)

(2,4) (10,10) 0.4984 -0.000133 0.0000176 (0.4844, 0.5124)
(15,15) 0.7533 0.000122 0.0000149 (0.7324, 0.7742)
(15,25) 0.6674 0.0000363 0.00000132 (0.6331, 0.7017)
(25,25) 0.5816 -0.0000496 0.00000256 (0.5618, 0.6014)
(25,30) 0.8290 0.000198 0.0000391 (0.8131, 0.8449)
(30,50) 0.7182 0.0000870 0.00000757 (0.7005, 0.7359)
(50,50) 0.7021 0.0000709 0.00000503 (0.6902, 0.7140)

Table 5.9: MLE of R̂ML, Bias and MSE using X ∼ TPGL(2.5, 5, 1.5) and Y ∼
PL(2.5, 0.5)

(n,m) R̂ML Bias MSE 95% ACI

(10,10) 0.1381 -0.000215 0.0000462 (0.0119, 0.2643)
(15,15) 0.2229 -0.00013 0.0000169 (0.1768, 0.2690)
(15,25) 0.3503 -0.0000026 0.0000000068 (0.1614, 0.5392)
(25,25) 0.3240 -0.0000289 0.00000084 (0.1139, 0.5342)
(25,30) 0.4003 0.0000474 0.00000225 (0.0956, 0.7050)
(30,50) 0.3607 0.00000772 0.000000060 (0.2117, 0.5097)
(50,50) 0.3663 0.0000134 0.000000179 (0.0601, 0.6726)

671.49, 183.16, 257.44, 727.23, 291.27, 101.15, 376.42, 163.40, 141.38, 700.74,

262.90, 353.24, 422.11, 43.93, 590.48, 212.13, 303.90, 506.60, 530.55, 177.25.
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Table 5.10: MLE of R̂ML
s,k , Bias and MSE using X ∼ TPGL(2.5, 5, 1.5) and Y ∼

PL(2.5, 0.5)

(s, k) (n,m) R̂ML
s,k Bias MSE 95% ACI

(1,3) (10,10) 0.1339 -0.000123 0.0000151 (0.1187, 0.1491)
(15,15) 0.1509 -0.000106 0.0000112 (0.1268, 0.1750)
(15,25) 0.2363 -0.0000206 0.000000422 (0.2014, 0.2712)
(25,25) 0.2274 -0.0000294 0.000000863 (0.1860, 0.2688)
(25,30) 0.3359 0.0000791 0.00000626 (0.2917, 0.3801)
(30,50) 0.3061 0.0000493 0.00000243 (0.2445, 0.3677)
(50,50) 0.3110 0.0000632 0.00000399 (0.2780, 0.3440)

(2,4) (10,10) 0.0747 -0.0000785 0.00000617 (0.0015, 0.1479)
(15,15) 0.0884 -0.0000648 0.0000042 (0.0361, 0.1407)
(15,25) 0.1418 -0.0000114 0.00000013 (0.0463, 0.2327)
(25,25) 0.1367 -0.0000165 0.000000272 (0.1110, 0.1624)
(25,30) 0.2238 0.0000706 0.00000498 (0.2037, 0.2439)
(30,50) 0.1949 0.0000417 0.00000174 (0.1589, 0.2309)
(50,50) 0.2152 0.0000620 0.00000384 (0.1717, 0.2587)

Table 5.11: MLE of R̂ML, Bias and MSE using X ∼ TPGL(3, 0.5, 2) and Y ∼
PL(3, 1.5)

(n,m) R̂ML Bias MSE 95% ACI

(10,10) 0.7027 -0.000162 0.0000261 (0.6816, 0.7238)
(15,15) 0.6747 -0.000190 0.0000359 (0.6259, 0.7235)
(15,25) 0.5274 -0.000337 0.000113 (0.5078, 0.5470)
(25,25) 0.5548 -0.000309 0.0000957 (0.5271, 0.5825)
(25,30) 0.6049 -0.000259 0.0000672 (0.5886, 0.6212)
(30,50) 0.7467 -0.000117 0.0000138 (0.7061, 0.7873)
(50,50) 0.9789 0.000115 0.0000132 (0.9624, 0.9954)

Data set II: Breaking strength of jute fiber length 20 mm (variable

Y). 71.46, 419.02, 284.64, 585.57, 456.60, 113.85, 187.85, 688.16, 662.66, 45.58,

578.62, 756.70, 594.29, 166.49, 99.72, 707.36, 765.14, 187.13, 145.96, 350.70,
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Table 5.12: MLE of R̂ML
s,k , Bias and MSE using X ∼ TPGL(3, 0.5, 2) and Y ∼

PL(3, 1.5)

(s, k) (n,m) R̂ML
s,k Bias MSE 95% ACI

(1,3) (10,10) 0.6085 -0.0000733 0.00000538 (0.5736, 0.6434)
(15,15) 0.7038 0.0000221 0.000000486 (0.6903, 0.7173)
(15,25) 0.6388 -0.000043 0.00000185 (0.6128, 0.6648)
(25,25) 0.7109 0.0000292 0.00000085 (0.6849, 0.7369)
(25,30) 0.6632 -0.0000185 0.000000344 (0.6313, 0.6951)
(30,50) 0.6898 0.00000801 0.000000064 (0.6505, 0.7291)
(50,50) 0.6575 -0.0000242 0.000000587 (0.6372, 0.6778)

(2,4) (10,10) 0.4486 -0.0000815 0.00000664 (0.4006, 0.4966)
(15,15) 0.5475 0.0000174 0.000000304 (0.5134, 0.5816)
(15,25) 0.4765 -0.0000536 0.00000287 (0.4370, 0.5160)
(25,25) 0.5522 0.0000221 0.000000486 (0.5340, 0.5704)
(25,30) 0.5011 -0.0000290 0.000000843 (0.4810, 0.5212)
(30,50) 0.5375 0.00000744 0.000000055 (0.5077, 0.5673)
(50,50) 0.5085 -0.0000216 0.000000466 (0.4774, 0.5396)

Table 5.13: MLE of R̂ML, Bias and MSE using X ∼ TPGL(3.5, 2, 1.25) and
Y ∼ PL(3.5, 1.75)

(n,m) R̂ML Bias MSE 95% ACI

(10,10) 0.4557 0.0000018 0.0000000031 (0.4194, 0.4920)
(15, 15) 0.3193 -0.000135 0.0000181 (0.0512, 0.5875)
(15,25) 0.4487 -0.00000527 0.000000028 (0.4160, 0.4814)
(25,25) 0.3450 -0.000109 0.0000119 (0.3287, 0.3613)
(25,30) 0.4061 -0.0000478 0.00000229 (0.3851, 0.4271)
(30,50) 0.5237 0.0000698 0.00000487 (0.5186, 0.5288)
(50,50) 0.4074 -0.0000466 0.00000217 (0.0337, 0.7810)

547.44, 116.99, 375.81, 581.60, 119.86, 48.01, 200.16, 36.75, 244.53, 83.55.

These data were first used by Xia et al. (2009) and later by Saracoglu et al.
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Table 5.14: MLE of R̂ML
s,k , Bias and MSE using X ∼ TPGL(3.5, 2, 1.25) and

Y ∼ PL(3.5, 1.75)

(s, k) (n,m) R̂ML
s,k Bias MSE 95% ACI

(1,3) (10,10) 0.9414 0.000118 0.0000140 (0.9183, 0.9645)
(15, 15) 0.8443 0.0000212 0.000000448 (0.8050, 0.8836)
(15, 25) 0.8390 0.0000159 0.000000252 (0.7921, 0.8859)
(25, 25) 0.8435 0.0000204 0.00000042 (0.8019, 0.8851)
(25,30) 0.9196 0.0000965 0.00000932 (0.8867, 0.9525)
(30,50) 0.7758 -0.0000473 0.00000224 (0.7120, 0.8396)
(50,50) 0.7610 -0.0000621 0.00000385 (0.7289, 0.7931)

(2,4) (10, 10) 0.8723 0.000185 0.0000343 (0.8376, 0.9070)
(15,15) 0.7118 0.0000248 0.00000061 (0.6949, 0.7287)
(15,25) 0.7091 0.0000221 0.000000488 (0.6899, 0.7283)
(25,25) 0.7118 0.0000247 0.00000061 (0.7003, 0.7233)
(25,30) 0.8327 0.000146 0.0000212 (0.8131, 0.8523)
(30,50) 0.6278 -0.0000592 0.00000351 (0.5919, 0.6637)
(50,50) 0.6059 -0.0000811 0.00000659 (0.5855, 0.6263)

Table 5.15: MLE of R̂ML, Bias and MSE using X ∼ TPGL(2.75, 1, 2) and Y ∼
PL(2.75, 2.25)

(n,m) R̂ML Bias MSE 95% ACI

(10,10) 0.4675 -0.000242 0.0000587 (0.2107, 0.7243)
(15, 15) 0.6207 -0.0000890 0.00000793 (0.4591, 0.7823)
(15, 25) 0.7498 0.0000401 0.00000161 (0.7164, 0.7832)
(25, 25) 0.7738 0.0000641 0.00000411 (0.5773, 0.9703)
(25, 30) 0.5643 -0.000145 0.0000212 (0.4451, 0.6835)
(30, 50) 0.8633 0.000154 0.0000236 (0.8399, 0.8867)
(50, 50) 0.7907 0.0000810 0.00000655 (0.7292, 0.8522)

(2012). Shahsanaei and Daneshkhah (2013) used the data to study the estimation

of stress-strength parameter for generalized linear failure rate (GLFR) distribution

under progressive type-II censoring and studied the validity of GLFR for both data
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Table 5.16: MLE of R̂ML
s,k , Bias and MSE using X ∼ TPGL(2.75, 1, 2) and Y ∼

PL(2.75, 2.25)

(s, k) (n,m) R̂ML
s,k Bias MSE 95% ACI

(1,3) (10, 10) 0.9482 0.000160 0.0000255 (0.9136, 0.9828)
(15,15) 0.8412 0.0000528 0.00000279 (0.7914, 0.8910)
(15,25) 0.8527 0.0000643 0.00000413 (0.8170, 0.8884)
(25,25) 0.7268 -0.0000616 0.00000379 (0.7095, 0.7441)
(25,30) 0.7535 -0.0000349 0.00000122 (0.7165, 0.7905)
(30,50) 0.7748 -0.0000136 0.000000185 (0.7291, 0.8205)
(50,50) 0.7402 -0.0000482 0.00000233 (0.7008, 0.7796)

(2,4) (10,10) 0.8830 0.000237 0.0000560 (0.8079, 0.9581)
(15,15) 0.7142 0.0000679 0.00000461 (0.6931, 0.7353)
(15,25) 0.7349 0.0000886 0.00000785 (0.6990, 0.7708)
(25,25) 0.5745 -0.0000718 0.00000516 (0.5246, 0.6244)
(25,30) 0.6007 -0.0000456 0.00000208 (0.5895,0.6119)
(30,50) 0.6312 -0.0000151 0.000000229 (0.6018, 0.6606)
(50,50) 0.5897 -0.0000567 0.00000321 (0.5425, 0.6369)

sets.

In Table 5.17 we provided the MLEs of the parameters of TPGL and PL, i.e.,

α, β, λ as well as the results of K-S and A-D goodness of fit tests.

The unknown parameters of case 1 are α̂=0.928, β̂1=1.492, β̂2=3.495, λ̂1=0.0085

and λ̂2=0.00895. The MLE of R becomes R̂=0.2388 and the 95% interval of R is

(0.2110, 0.2576). The MLEs and 95% confidence interval of Rs,k are provided in

Table 5.18.

The unknown parameters of case 2 are α̂=0.9232, β̂=2.112, λ̂1=0.00878 and

λ̂2=0.00933. The MLE of R becomes R̂=0.0117 and the 95% interval of R is

(0.0078, 0.0156). The MLEs and 95% confidence interval of Rs,k are provided in
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Table 5.18.

Table 5.17: MLEs and K-S and A-D tests

Plane Model MLEs K-S p-value A-D p-value

length 10 mm (X)

TPGL
α̂ = 0.954

0.1005 0.8928 0.4573 0.7893β̂ = 0.9845

λ̂ = 0.0073

PL
α̂ = 0.954

0.1005 0.8931 0.4573 0.7893
λ̂ = 0.0073

length 20 mm (Y)

TPGL
α̂ = 0.889

0.1523 0.4456 0.7577 0.5114β̂ = 0.985

λ̂ = 0.0115

PL
α̂ = 0.889

0.1523 0.4457 0.7578 0.5112
λ̂ = 0.011

Table 5.18: Estimates of Rs,k

Case 1 Case 2

(s, k) R̂ML
s,k 95% ACI R̂ML

s,k 95% ACI

(1, 3) 0.7705 (0.7103, 0.8307) 0.7712 (0.7042, 0.8382)
(2, 4) 0.6257 (0.6067, 0.6497) 0.6253 (0.5957, 0.6549)
(3, 5) 0.5268 (0.4758, 0.5778) 0.5253 (0.4188, 0.6318)

5.6 Summary

We estimated R = P (Y < X) in two cases. First, when Y and X both follow

TPGL distribution. Second, when Y and X follows PL distribution and TPGL

distribution, respectively. We provided MLE to estimate the unknown parameters



160 Stress-Strength Reliability

and used this to estimate of Rand Rs,k. Also obtained asymptotic 100(1 − ν)%

CI for the reliability parameter. Also obtain asymptotic CI for the reliability

parameter. The simulation results indicate that, when increasing the sample sizes,

MSE caused by the estimates are nearer to zero. The MLE of R is 0.2388 in case

1, which means there is a small chance that strength is greater than stress. Then

the SSS reliability in case 2 is comparatively low than in case 1.

The MLE of MSS reliability is 0.771 in both cases for (1,3) component system,

which means there is a high chance that strength is greater than stress. The

MLE of MSS reliability is 0.527 in case 1 and 0.525 in case 2 for (3,5) component

system, which means there is an equal chance that strength is greater than stress.



CHAPTER 6

TOTAL TIME ON TEST TRANSFORM AND

ORDERING OF LIFE DISTRIBUTIONS

6.1 Introduction

1 The concept of total time on test (TTT) transform was studied in the early

1970s (see Barlow and Campo (1975)). When several units are tested for study-

ing their life lengths, some of the units would fail while others may survive the

test duration. The sum of all observed and incomplete life lengths is generally

visualized as the TTT statistic. When the number of items placed on test tends

to infinity, the limit of this statistic is called the TTT transform. The plots pro-

vided information about the identification of failure rate model of the lifetime r.v.

Incomplete censored data can be analyzed using TTT transform.

1Some contents of this chapter are based on Deepthi and Chacko (2021).
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Many research papers on TTT concentrate on its engineering applications.

Aarset (1985) derived the exact distribution of TTT transform under the null

hypothesis of exponentiality. Gupta and Michalek (1985) developed an explicit

method to determine the reliability function by using the TTT transform. Abouam-

moh and Khalique (1997) investigated the properties of scaled TTT for some test

statistics for testing exponentially against all these mean residual life criteria.

Bergman (1977) studied the exact and asymptotic distributions of the number of

crossings are given under the hypothesis of exponentiality.

Recently, Vera and Lynch (2005) introduced higher-order TTT transforms by

applying definition of TTT recursively to the transformed distributions. Nair et

al. (2008) studied the properties of TTT transform of order n and examined

their applications in reliability analysis. Nair and Sankaran (2013) listed some

known characterizations of common aging notions in terms of the TTT transform

function. Franco-Pereira and Shaked (2013) derived two characterizations of the

decreasing percentile residual life (DPRL(α)) of order and aging notion in terms

of the TTT function.

TTT transform provide the central value of censored data. In order to get

the dispersion values in the censored situation, we need the distributions of the

increasing convex (concave) functions of lifetime random variables. The problem

of fitting an appropriate distribution for the function of r.v can be addressed

through the identification of failure rate model. The problem of identification

of failure rate behavior of increasing convex (concave) function of r.v based on

distributional properties of the lifetime variable is also an unexplored one. So, we

consider TTT transform of increasing convex (concave) function of r.v and study
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its properties. The behavior of TTT transform of increasing convex (concave)

function with the behavior of failure rate function of the lifetime r.v need to be

undergo more investigation.

In this chapter, we considered increasing convex (concave) total time on test

(ICXTTT (ICVTTT)) transform of a lifetime r.v and its properties. In section

6.2, ordering of life distribution is discussed. In section 6.3, the concept of the

TTT processes is discussed. In section 6.4, we defined increasing convex (concave)

TTT (ICXTTT (ICVTTT)) transform of the random variable. Some results about

the ageing patterns are given in section 6.5. In section 6.6, we defined ICXTTT

(ICVTTT) transform order and obtained its relationship with stochastic ordering.

Illustrative examples are given in section 6.7.

6.2 Ordering of life distributions

By the ageing of a mathematical unit, component or some other physical or bio-

logical system, we mean the phenomenon by which an older system has a shorter

remaining lifetime, in some stochastic sense, than a newer or younger one. Many

criteria of ageing have been developed in the literature. The stochastic compari-

son of distributions has been an important area of research in many diverse areas

of statistics and probability. We are comparing two lifetime variables X and Y

in terms of their failure rates rF (t) and rG(t), density functions f(t) and g(t),

survival functions F̄ (t) and Ḡ(t), mean residual lives µF (t) and µG(t) or other

ageing characteristics. Ageing classes can often be characterized by some partial

ordering. For example, in Barlow and Proschan (1975), IFR and IFRA classes
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are characterized by convex ordering and star-shaped ordering respectively. Many

different types of stochastic orders have been studied in the literature; for example

Deshpande et al. (1986) and a comprehensive discussion of ordering is available in

Shaked and Shanthikumar (2007). It is often easy to make value judgements when

such ordering exist. Stochastic ordering between two probability distributions, if

it holds, is more informative than simply comparing their means or medians only.

Similarly, if one wishes to compare the dispersion or spread between two distribu-

tions, the simplest way would to be to compare their standard deviations or some

such other measures of dispersion.

6.2.1 Stochastic order

The r.v X is stochastically larger than the random variable Y , written X ≥st Y ,

if

P (X > a) ≥ P (Y > a), ∀ a. (6.2.1)

If X and Y have distributions F and G respectively, then (6.2.1) is equivalent to

F̄ (a) ≥ F̄ (a), ∀ a

denoted by X ≤st Y .

6.2.2 Hazard rate order

Let X and Y be two nonnegative r.v’s with absolutely continuous distribution

functions and with failure rate functions r and q, respectively, such that
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r(t) ≥ q(t), t ∈ R. (6.2.2)

Then X is said to be smaller than Y in the hazard rate order (denoted as

X ≤hr Y ).

The hazard rate order can be trivially (but beneficially) used to characterize

IFR random variables.

6.2.3 Convex (Concave) order

If two variables have the same mean, they can still be compared by how spread out

the distributions are. This is captured to limit extend by the variance, but more

fully by a range of stochastic orders. Convex order is a special kind of variability

order.

Definition 6.2.1. Let X and Y be two random variables such that

E[φ(X)] ≤ E[φ(Y )] for all increasing convex [concave] functions φ : R→ R,

(6.2.3)

provided the expectations exist. Then X is said to be smaller than Y in the in-

creasing convex [concave] order (denoted by X ≤icx Y [X ≤icv Y ]).

Roughly speaking, if X ≤icx Y then X is both smaller and less variable than

Y in some stochastic sense. Similarly, X ≤icv Y then X is both smaller and more

variable than Y in some stochastic sense. Decreasing convex (concave) order by

requiring (6.2.1) to hold for all decreasing convex (concave) functions φ (denoted
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as X ≤dcx Y [X ≤dcv Y ]). The term decreasing convex and decreasing concave are

counter intuitive in the sense that if X is smaller than Y in the sense of either of

these two orders then X is larger than Y in some stochastic sense.

6.3 Total Time on Test Transform

The concept of the TTT transform processes was first defined by Barlow and

Campo (1975). Given a sample of size n from the non-negative r.v X having

distribution F , let X(1) ≤ X(2) ≤ . . . ≤ X(k) ≤ . . . ≤ X(n) be the order statistics

corresponding to the sample. Total time test to the rth failure is,

T (X(r)) = nX(1) + (n− 1)(X(2) −X(1)) + . . .+ (n− r + 1)(X(r) −X(r−1))

=
r∑
i=1

X(i) + (n− r)X(r).

Let H−1
n ( r

n
) = 1

n
T (X(r))

i.e., H−1
n (

r

n
) =

∫ F−1
n ( r

n
)

0

(1− Fn(u))du.

The empirical distribution function defined in terms of the order statistics is

Fn(u) =


0, u < X(i)

i
n
, X(i) ≤ u < X(i+1)

1, X(n) > u.
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If there exist an inverse function F−1
n (x) = inf{x : Fn(x) ≥ u}, the fact that

Fn(u)
a.s.−−→ F (u) implies, by Glivenko Candelli theorem,

lim
r
n
→t

n→∞

∫ F−1
n ( r

n
)

0

(1− Fn(u)) du =

∫ F−1(t)

0

(1− F (u)) du (6.3.1)

uniformly in t ∈ [0, 1]. Barlow and Campo (1975) defined TTT transform of F as

H−1
F (t) =

∫ F−1(t)

0

(1− F (u)) du t ∈ [0, 1]. (6.3.2)

There is a one to one correspondence between distribution F and their transform

H−1
F . Suppose F has density f , then

d

dt
H−1
F (t) =

d

dt

∫ F−1(t)

0

(1− F (u)) du

= (1− t) d
dt
F−1(t).

So that

d

dt
F−1(t) =

d
dt
H−1
F (t)

(1− t)
.

Note that HF is a distribution with support on [0, µ], where µ is the mean of

F, since

H−1
F (1) =

∫ F−1(1)

0

(1− F (u)) du

= µ, when F̄ (0) = 0.
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It is easy to verify that the scaled TTT transform is

φ(t) =
H−1
F (t)

H−1
F (1)

=
H−1
F (t)

µ

is continuous increasing function on [0, 1] which is 0 at t = 0 and 1 at t = 1.

The curve φ(t) versus 0 ≤ t ≤ 1 is called the scaled TTT transform curve.

Using the scaled TTT transform curve, the shape of the failure rate function of

the distribution can be classified as one of the following.

• If the scaled TTT transform curve is concave above the 45o line, the failure

rate is increasing.

• If the scaled TTT transform curve is convex below the 45o line, then the

failure rate is decreasing.

• If the scaled TTT transform curve is first convex below the 45o line then

concave above the line the shape of the failure rate is a bathtub shaped.

• The shape of the failure rate will be unimodal shaped if the scaled TTT

transform curve is first concave above the 45o line followed by convex below

the 45o line.

Figure 6.1 summarizes the different shapes of the scaled TTT transform curve

for distributions with increasing, decreasing, bathtub and unimodal failure rate

functions. For an ordered sample x0:n, x1:n, x2:n, . . . , xn:n, the total time one test
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Figure 6.1: Theoretical aspects of TTT plots.

statistics is given by

TTTr =
r∑
i=1

(n− i+ 1)(xi:n − xi−1:n), r = 1, 2, . . . , n.

The empirical scaled TTT transform is

TTT ∗r =
TTTr
TTTn

,

where 0 ≤ TTTn ≤ 1. The TTT-plot can be drawn by plotting ( r
n
) against TTT ∗r .
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6.4 Increasing Convex (Concave) TTT transform

Let g(x) be an increasing convex (concave) function of X. Let G(x) be the dis-

tribution function of g(X). Total observed values of transformed variables g(X)

under type 2 censored scheme is

Tg(X(r)) = n g(X(1)) + . . .+ (n− r + 1)
(
g(X(r))− g(X(r−1))

)
=

r∑
i=1

g(X(i)) + (n− r)g(X(r)).

For g(x), define

(H−1
n )g

(
r

n

)
=

∫ (H−1
n ( r

n
))

0

(
1−Hn(w)

)
dw =

∫ g(F−1
n ( r

n
))

0

(
1− Fn(u)

)
du

where

Hn(u) =


0, g(u) < g(X(i))

i
n
, g(X(i)) ≤ g(u) < g(X(i+1))

1, g(X(n)) > g(u).

H−1
n (x) = inf{x : Hn(x) ≥ g(u)} and the fact that Fn(u)

a.s.−−→ F (u) implies,

g(F−1
n (u))

a.s.−−→ g(F−1(u)), then by Glivenko Candelli theorem,

lim
r
n
→t

n→∞

∫ g(F−1
n ( r

n
))

0

(1− Fn(u)) du =

∫ g(F−1(t))

0

(1− F (u)) du.
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We define TTT transform of increasing convex (concave) function g(X) as

(H−1
F )g(t) =

∫ g(F−1(t))

0

(1− F (u)) du t ∈ [0, 1]. (6.4.1)

But,
d
dt
H−1
F (t)

1−t = d
dt
F−1(t) and d

dt
H−1
F (t)|t=F (x) = 1

r(x)
. Then

d

dt
(H−1

F )g(t) =
d

dt

∫ g(F−1(t))

0

(1− F (u)) du

=

[
1−

∫ g(F−1(t))

0

f(u) du

]
g′(F−1(t))

d

dt
F−1(t)

=

[
1−

∫ g(F−1(t))

0

f(u) du

]
g′(F−1(t))

d
dt
H−1
F (t)

1− t
d

dt
(H−1

F )g(t)|t=F (x) =

[
1−

∫ g(x)

0

f(u) du

]
g′(x)

F̄ (x)r(x)
.

That is,

d

dt
(H−1

F )g(t)|t=F (x) =
F̄ (g(x))

F̄ (x)
.
g′(x)

r(x)
. (6.4.2)

Note that HFg(.) (the inverse of H−1
F g(.)) is a distribution with support on [0, µ],

(H−1
F )g(1) =

∫ g(F−1(1))

0

(1− F (u)) du = µ.

It is easy to verify that the scaled transform
(H−1

F )g(t)

(H−1
F )g(1)

is continuous increasing

function on [0, 1].
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Example 6.4.1. Let g(x) = x2, then

(H−1
F )2(t) =

∫ (F−1(t))2

0

(1− F (u)) du t ∈ [0, 1]. (6.4.3)

Then,
d

dt
(H−1

F )2(t) =
d

dt

∫ (F−1(t))2

0

(1− F (u)) du

=

[
1−

∫ (F−1(t))2

0

f(u) du

]
2 F−1(t)

d
dt
H−1
F (t)

1− t
d

dt
(H−1

F )2(t)|t=F (x) =

[
1−

∫ x2

0

f(u) du

]
2x

F̄ (x)r(x)
.

That is,

d

dt
(H−1

F )2(t)|t=F (x) =
F̄ (x2)

F̄ (x)
.

2x

r(x)
.

Note that (H2
F ) (the inverse of (H−1

F )2) is a distribution with support on [0, µ].

(H−1
F )2(1) =

∫ (F−1(1))2

0

(1− F (u)) du = µ.

It is easy to verify that the scaled TTT transform is
(H−1

F )2(t)

(H−1
F )2(1)

is continuous in-

creasing function on [0, 1].

Example 6.4.2. Let F (x) = 1− e−x/θ, x > 0, θ > 0 be the distribution function

of Exponential distribution with mean θ. Then

(H−1
F )2(t) =

∫ (F−1(t))2

0

(1− F (x)) dx
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=

∫ (F−1(t))2

0

e−x/θ dx

=

∫ (F−1(t))2

0

θ dF (x)

(H−1
F )2(t)|t=F (x) = θF ((F−1(t))2)

∴
(H−1

F )2(t)

(H−1
F )2(1)

= F ((F−1(t))2).

Now, we consider simulated data and plot TTT transform of Exponential dis-

tribution and its convex transform g(x) = x2. From Figure 6.2, the TTT trans-

form plot of Exponential data set indicates constant failure rate, but ICXTTT

transform plot indicates that the transformed data follows the decreasing failure

rate pattern.

So that, square of Exponential r.v follows some decreasing failure rate model.

Thus we can choose any DFR model to square of Exponential data.

6.5 Ageing Properties

We prove some general results about the ageing patterns of function g(X) using

(H−1
F )g(t)/(H−1

F )g(1), which is based on the failure rate function r(x) of X having

distribution F .

Proposition 6.5.1. G is IFR if rate of increase of g′(x) F̄ (g(x))

F̄ (x)
is smaller than the

rate of increase of r(x). G is DFR if r(x) is decreasing in x ≥ 0.

Proof. Clearly d
dt

(H−1
F )g(t) is decreasing in t ∈ [0, 1], if rate of increase of g′(x) F̄ (g(x))

F̄ (x)
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Figure 6.2: TTT plot (top) and ICXTTT plot (bottom) for the Exponential
Simulated data with parameter θ=2.

is smaller than the rate of increase of r(x) ⇒ (H−1
F )g(t)

(H−1
F )g(1)

is concave in t ∈ [0, 1], if

rate of increase of g′(x) F̄ (g(x))

F̄ (x)
is smaller than the rate of increase of r(x). Hence

G is IFR, if rate of increase of g′(x) F̄ (g(x))

F̄ (x)
is smaller than the rate of increase of

r(x).

Similarly,

d
dt

(H−1
F )g(t) is increasing in t ∈ [0, 1], if r(x) is decreasing in x ≥ 0.
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That is,
(H−1

F )g(t)

(H−1
F )g(1)

is convex in t ∈ [0, 1], if r(x) is decreasing in x ≥ 0. G is

DFR, if r(x) is decreasing in x ≥ 0.

Proposition 6.5.2. Let X has distribution F and Y = g(X) has distribution

G(y). G is IFRA (DFRA) ⇒ (H−1
F )g(t)

F (g(F−1(t))) (H−1
F )g(1)

is decreasing (increasing) in

t ∈ [0, 1].

Proof. Let Y = g(X) and G(y) be the distribution function of Y . G has IFRA

⇒ 1
y

∫ y
0
r(u) du is increasing in y ≥ 0.

Let T (y) =
∫ y

0
Ḡ(u) du. T (y)

y
is decreasing in y ≥ 0, since it is an average of

the decreasing function Ḡ(y).

Then,
∫ y
0 r(u) dT (u)

T (y)
is increasing in y ≥ 0. Hence

G(y)∫ y
0
Ḡ(u) du

is increasing in y ≥ 0

and ∫ y
0
Ḡ(u) du

G(y)
is decreasing in y ≥ 0.

Then, ∫ y
0
Ḡ(u) du

G(y)
=

∫ g(x)

0
F̄ (w) dw

F (g(x))
is decreasing in x ≥ 0

since Ḡ(u) = P (g(X) > u) = P (X > w) = F̄ (w) for w = g−1(u) corresponding

to u.

Now make the change of variables t = F (x) and x = F−1(t) and finally we

have ∫ g(F−1(t))

0
F̄ (w) dw

F (g(F−1(t)))
=

(H−1
F )g(t)

F (g(F−1(t)))
is decreasing in t ∈ [0, 1].
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⇒ (H−1
F )g(t)

F (g(F−1(t))) (H−1
F )g(1)

is decreasing in t ∈ [0, 1].

Similarly, for G is DFRA,

(H−1
F )g(t)

F (g(F−1(t)))
is increasing in t ∈ [0, 1].

⇒ (H−1
F )g(t)

F (g(F−1(t))) (H−1
F )g(1)

is increasing in t ∈ [0, 1].

6.6 Increasing Convex (Concave) TTT transform

order

In this section we defined the increasing convex (concave) TTT transform order.

Let X and Y be two nonnegative random variables with distributions F and H

respectively. If

∫ F−1(t)

0

(1− F (u)) du ≤
∫ H−1(t)

0

(1−G(u)) du t ∈ [0, 1] (6.6.1)

then X is said to be smaller than Y in the TTT order (denoted by X ≤ttt Y ). A

sufficient condition for the order ≤ttt is the usual stochastic order:

X ≤st Y =⇒ X ≤ttt Y. (6.6.2)
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In order to verify (6.6.2) one may just notice that if X ≤st Y , then F−1(u) ≤

G−1(u) for all u ∈ (0, 1) (see, Shaked and Shanthikumar (2007)). By letting

u→ 1 in (6.6.2) it is seen that

X ≤ttt Y =⇒ E(X) ≤ E(Y ). (6.6.3)

Let X and Y be two random variables such that Tg(X(n)) ≤ Tg(Y(n)) for all

increasing convex (concave) functions g : R→ R and all samples of size n. Then

X is smaller than Y in some stochastic sense, since 1
n
Tg(X(n)) is average of total

observed increasing convex (concave) transformed time of a test.

Definition 6.6.1. Let X and Y be two non-negative random variables with ab-

solutely continuous distribution functions F and H respectively. If

(H−1
F )g(t) ≤ (H−1

H )g(t) ∀ t ∈ [0, 1]

where g is an increasing convex (concave) function, then X is smaller than Y

in increasing convex (concave) TTT transform order (denoted as X ≤icxttt Y

(X ≤icvttt Y )).

Now we prove the relationship of ICXTTT (ICVTTT) transform orders to

stochastic orders.

Theorem 6.6.1. Let X and Y be two non-negative random variables having ab-

solutely continuous distribution functions F and G respectively. Then

X ≤st Y =⇒ X ≤icxttt Y.
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Proof. Let g be the increasing convex (concave) function g : R → R. Since,

X ≤st Y , g(F−1(t)) ≤ g(G−1(t)) for all t ∈ [0, 1].

Hence,

∫ g(F−1(t))

0

(1− F (u)) du ≤
∫ g(G−1(t))

0

(1−G(u)) du, ∀t ∈ [0, 1]

then X ≤icxttt Y.

6.7 Examples

Usually the TTT transform plot is drawn by plotting T ( r
n
) =

∑r
i=1X(i)+(n−r)X(r)∑r

i=1X(i)

against ( r
n
), where i = 1, 2, . . . , r and r = 1, 2, . . . , n. A TTT transform curve

may be concave (convex) if corresponding distribution is IFR (DFR) distribution.

A TTT transform curve is straight line if the distribution is exponential. If the

shape of TTT transform is concave (convex) and then convex (concave), then the

distribution has a bathtub (upside down bathtub) shaped failure rate function.

Then the ICXTTT (ICVTTT) transform plot is drawn by plotting Tg( r
n
) =∑r

i=1 g(X(i))+(n−r)g(X(r))∑r
i=1 g(X(i))

against ( r
n
), where i = 1, 2, . . . , r and r = 1, 2, . . . , n,

Figure 6.3 and 6.4 shows scaled TTT transforms and scaled ICXTTT trans-

forms of bathtub shaped failure rate data (Aarset data (Aarset (1987))) and

Weibull simulated data respectively. From Figure 6.3, the failure rate pattern

of transformed data still shows bathtub shape. It means that, even after transfor-

mation, we may be able to identify the failure rate pattern. It is useful because,

selection of statistical distribution to the transformed variables is a problem for
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Figure 6.3: TTT plot (left) and ICXTTT plot (right) for the Aarset data.

many researchers. The researchers need only to search for a particular class of dis-

tribution, if they could identify the failure rate pattern using ICXTTT (ICVTTT)

transform.

Another advantage of defining ICXTTT (ICVTTT) transform is that, the

transform statistic can be used for estimating the dispersion parameters, variance

etc of censored data.

(H−1
n )g

(
r

n

)
=

∫ (H−1
n ( r

n
))

0

(
1−Hn(w)

)
dw =

∫ g(F−1
n ( r

n
))

0

(
1− Fn(u)

)
du

is actually mean of censored-transformed data from F . This can be used for the

purpose of estimation and testing the parameters of distribution of transformed

data. Figure 6.4, shows that the TTT transform plot of Weibull(α = 1.5, λ = 1)

data set indicates IFR behavior, but ICXTTT transform plot for Weibull(α =

1.5, λ = 1) indicates an upside down BFR pattern for the failure rate. The TTT
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Figure 6.4: TTT plot (top) and ICXTTT plot (bottom) for the Weibull Simulated
data with parameter α = 1.5, 0.5 and λ=1 respectively.

transform plot of Weibull(α = 0.5, λ = 1) shows F (t) has decreasing failure rate

(DFR) while ICXTTT transform plot based on a Weibull(α = 0.5, λ = 1) shows

decreasing behavior for failure rate.

6.8 Summary

We defined increasing convex (concave) TTT transform. The procedure of iden-

tification of the failure rate model of functions of random variables, using failure

rate function of random variable is discussed. IFR (DFR) and IFRA (DFRA)
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properties of distribution of increasing convex (concave) transformations of the

variable are explained. Illustrative examples are provided.



CHAPTER 7

BURN-IN PROCESS USING BFR

DISTRIBUTIONS

7.1 Introduction

Burn-in testing (BIT) is a widely accepted method for many years to detect and

eliminate early failures. BIT is mandatory in high-reliability storage contracts

such as military and aerospace applications, and is also essential for automotive,

medical, long-distance telecommunications, and other electronic materials, pack-

ages and systems. BIT is usually performed at the component level because the

cost involved in inspecting and replacing parts is small.

Testing plays an important role in controlling and ensuring the required qual-

ity and reliability of built-in integrated circuits (IC). The IC fabrication process
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involves several tests at different stages: pre-burn-in, burn-in and final test (see

Kececioglu and Sun (1997)). The four main types of burn-in tests used in the

industry are static, dynamic, monitored and test-in burn-in (TIBI) (Ooi et al.

(2007)). In static burn-in (also known as traditional burn-in) equipment under

test (EUT) is subjected to high temperatures. Dynamic burn-in is similar to static

one which involves exercising EUTs by applying test vectors or stimulus sets to

toggle the device’s internal nodes. Static or dynamic burn-in types provide no

monitoring of EUT responses. Consequently faulty ICs are not detected until a

subsequent final test stage.

The burn-in procedure stops when we get pre-determined reliability. In Mi

(1994a) it was shown that the optimal burn-in time, say b∗, for maximizing the

mean residual life function µ(b) = E(X−b|X > b) satisfies b∗ ≤ t1, where t1 is the

first change point, if F is BFR. Since burn-in is usually expensive, an important

issue is deciding how long the procedure should continue. The time to stop the

burn-in process to optimize a given criterion is known as optimal burn-in time

(see, Jensen and Petersen (1982)).

For burn-in to be effective, it must have a high failure rate early in life. Items

that survive the burn-in have burn-in effect that eliminates the part of the lifetime

with a high initial risk of failure. A class of life time distributions with bathtub-

shaped failure rates has this property. Some other mechanical and electronic

lifetimes can also be analyzed by BFR distributions.

An engineer thinking about burn-in use needs to answer a number of questions

related to the purpose of the burn-in test, the type of lifetime supply, the avail-
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ability of data, and the logistics of running the procedure. Lawrence (1966) and

Chandrasekaran (1977) investigated the burn-in problems. Park (1985) learned

about the mean residual life of the product. Plaser and Fied (1977), and Nguyen

and Murthy (1982) studied the Economic design of burn-in procedures. Li and

Cheng (2010) studied the best designs of accelerated life tests for lives that are

distributed as exponential under advanced censoring.

In this chapter we discussed optimal burn-in process and expression of long

run average cost function per unit time for obtaining optimal burn-in time and

optimal age using WL and GXE distribution.

7.2 Optimal Burn-in

Traditionally, burn-in has been used to increase the mean residual life of items that

survive the burn period. There are situations where increasing the mean residual

life expectancy is not an appropriate criterion. For example, when considering

an item going on a space mission, the goal is to minimize the chances of failing

on a mission over a period of time. The optimal burn-in time may be different

from the optimal burn-in time with the maximum mean residual life. Another

goal of burn-in is to achieve a certain degree of reliability. Costs often need to be

considered in the goal of a burn-in procedure. The cost of a component failure is

higher for a satellite than for a vehicle battery (see, Myung and Young (2002)).

In this section some basic criteria for determining the optimal burn-in time for

a lifetime is discussed. In Section 7.3.1 performance based criteria is discussed.
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The maintenance policy in burn-in is considered in Section 7.3.2.

7.2.1 Performance-Based Criteria

Consider the performance-based criteria by maximizing the average remaining life,

in which there is no more general understanding of the cost structure. We now

list several criteria for determining burn-in (see, Block and Savits (1997)).

C1: Let T be a fixed mission time and let F̄ be the survival function of the

lifetime random variable. Find b which maximizes F̄ (b + T )/F̄ (b), that is,

find b such that, given survival to time b, the probability of completing the

mission is as large as possible.

C2: Let X be a lifetime random variable. Find the burn-in time b which maxi-

mizes E(X− b|X > b), that is, find the burn-in time which gives the largest

mean residual life.

C3: Let {Nb(t), t ≥ 0} be a renewal process of lifetimes which are burned in

for b units of time (i.e., if F is the original lifetime distribution and the

inter-arrival distribution has survival function F̄b(t) = F̄ (b+ Tt)/F̄ (b). For

fixed mission time T , find b which minimizes E [Nb(t)], which is the mean

number of burn-in components which fail during the mission time T.

C4: For a fixed α, 0 < α < 1, find the burn-in time b which maximizes T = qα(b),

where qα(b) = F−1
b (α) = inf{x ≥ 0 : F̄b(x) ≤ 1− α} is α-percentile residual

life (see Joe and Proschan(1984)), i.e., find the burn-in time which gives the

maximal warranty period T for which at most α% of items will fail.
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Criteria C1, C2, and C4 deal with only one component. Criterion C3 deal with re-

placement components with other similar components when they fail. Mi (1994b)

achieved similar results to the C1 and C3 criteria. Launer (1993) showed that

optimal burn-in time occurs before t1.

7.2.2 Burn-in and Maintenance Policy

The most common replacement policy would be age replacement policy, in which

component is replaced at time T or at the time of failure which occurs first.

Once a cost structure has been established, to model the total cost related to the

maintenance policy adopted, an optimal T is determined (denoted by T ∗ and is

called optimal maintenance policy) such that costs will be minimized. Assuming

that the failure rate increases, Barlow and Proschan (1975) have shown that an

optimal age replacement policy exists, but it may be infinite. The optimal main-

tenance policy, however, depends on the distribution of the component used in

the operation.

Mi (1994a) consider the following procedure. Consider burn-in a new compo-

nent. If the component fails before burn-in time b, repair it, and then re-burn the

component. If this element survives the time b, it can be used for operation. Cha

(2000) adopted a block replacement policy with fewer failures.

For new component having burn-in time b, if failure occurs before the b, then

minimal repair will carry out with cost cs > 0, and the burn-in procedure will

continue for the repaired component. Let co be the cost to burn which is calculated

in proportion to the total burn-in time, the total expected cost incurred by burn-
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in is the sum of the cost for burn-in cob, and the expected cost of minimal repairs

cs
∫ b

0
r(t) dt.

i.e., C1(b) = cob+ cs

∫ b

0

r(t) dt (7.2.1)

where
∫ b

0
r(t) dt is the expected no.of minimal repairs during the burn-in period.

Let cf indicates the cost incurred by the replacement at age T and cr be

the cost incurred by failure replacement before T ∗, 0 < cr < cf . Then the total

expected replacement cost is the sum of the expected cost incurred by replacement

at age T and the expected cost incurred by failure replacement before T ∗,

C2(T ) = cfFb(T ) + crF̄b(T ) (7.2.2)

where F̄b(T ) is the conditional survival function F̄ (b+T )

F̄ (b)
, then Fb(T ) = 1− F̄b(T ).

The mean residual life function for a general repairable product is µ(b) =∫∞
b F̄ (t) dt

F̄ (b)
. The total expected cycle length is the sum of the expected length of a

replacement for non-failed item and the expected length of failure cycle;

T F̄b(t) +

∫ T

0

tfb(t) dt =

∫ T

0

F̄b(t) dt. (7.2.3)

Hence, from (7.2.1), (7.2.2) and (7.2.3) the long-run average cost per unit time

C(b, T ) is

C(b, T ) =
co + cs

∫ b
0
r(t) dt+ cfFb(T ) + crF̄b(T )∫ T

0
F̄b(t) dt

=

(
co + cs

∫ b
0
r(t) dt

)
F̄ (b) + cf

(
F̄ (b)− F̄ (b+ T )

)
+ crF̄ (b+ T )∫ T

0
F̄ (b+ t) dt

.
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The optimal burn-in time b∗ and the optimal age T ∗ which satisfy C(b∗, T ∗) =

minb≥0,T>0C(b, T ).

7.3 Optimal Burn-in Procedure for WL and GXE

distributions

WL Distribution:- Let X be a lifetime r.v. following WL distribution with

failure rate function

r(x) = α

(
βxβ−1(1 + x)ex

β

+ ex
β

)
, x > 0, α > 0, β > 0

and cdf

F (x;α, β) = 1− e−α
(

(1+x)ex
β−1

)
, x > 0, α > 0, β > 0.

The total expected cost incurred by burn-in is

C1(b) = cob+ cs

∫ b

0

α

(
βtβ−1(1 + t)et

β

+ et
β

)
dt

= cob+ cs{α(1 + b)eb
β} (7.3.1)

F̄b(T ) =
e
−α
(

(1+(b+T ))e(b+T )β−1
)

e−α((1+b)eb
β−1)

(7.3.2)

Fb(T ) = 1−

e
−α
(

(1+(b+T ))e(b+T )β−1
)

e−α((1+b)eb
β−1)

 . (7.3.3)

Substituting (7.3.2) and (7.3.3) in (7.2.2), we get total expected replacement
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cost as

C2(T ) = cf

1−

e
−α
(

(1+(b+T ))e(b+T )β−1
)

e−α((1+b)eb
β−1)


+ cr

e
−α
(

(1+(b+T ))e(b+T )β−1
)

e−α((1+b)eb
β−1)

 .

(7.3.4)

The total expected cycle length is

T
e
−α
(

(1+(b+t))e(b+t)
β−1

)
e−α((1+b)eb

β−1)
+

∫ T

0

tα
[
β(b+ t)β−1(1 + (b+ t))e(b+t)β

]
× e

−α
(

(1+(b+t))e(b+t)
β−1

)
e−α((1+b)eb

β−1)
dt =

∫ T

0

F̄b(t) dt. (7.3.5)

Hence, from (7.3.1), (7.3.4) and (7.3.5), the long-run average cost per unit time is

C(b, T ) =

(
co + cs{α(1 + b)eb

β}
)
e
−α
(

(1+b)eb
β−1

)
∫ T

0
e−α((1+(b+t))e(b+t)

β−1) dt

+

cf

(
e
−α
(

(1+b)eb
β−1

)
− e−α

(
(1+(b+T ))e(b+T )β−1

))
∫ T

0
e−α((1+(b+t))e(b+t)

β−1) dt

+
cre
−α
(

(1+(b+T ))e(b+T )β−1
)

∫ T
0
e−α((1+(b+t))e(b+t)

β−1) dt
.

GXE Distribution:- Let X be a lifetime r.v. following the failure rate function

GXE distribution with x > 0, α, λ > 0,

r(x) =
αe−λ(x2+x)(λ(1 + λx2)(2x+ 1)− 2λx)

(
1− (1 + λx2)e−λ(x2+x)

)α−1

1− (1− (1 + λx2)e−λ(x2+x))
α
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and cdf

F (x) =
(

1− (1 + λx2)e−λ(x2+x)
)α
, x > 0, α > 0, λ > 0.

The total expected cost incurred by burn-in is

C1(b) = cob

+ cs

∫ b

0

αe−λ(t2+t)(λ(1 + λt2)(2t+ 1)− 2λt)
(

1− (1 + λt2)e−λ(t2+t)
)α−1

1− (1− (1 + λt2)e−λ(t2+t))
α dt

(7.3.6)

F̄b(T ) =
1−

(
1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))

)α
1− (1− (1 + λb2)e−λ(b2+b))

α (7.3.7)

Fb(T ) = 1−

1−
(

1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))
)α

1− (1− (1 + λb2)e−λ(b2+b))
α

 . (7.3.8)

Substitute these two results in Eq.(7.2.2), we get total expected replacement cost

as

C2(T ) = cf

1−

1−
(

1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))
)α

1− (1− (1 + λb2)e−λ(b2+b))
α




+ cr

1−
(

1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))
)α

1− (1− (1 + λb2)e−λ(b2+b))
α

 . (7.3.9)
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The total expected cycle length is

T
1−

(
1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t))

)α
1− (1− (1 + λb2)e−λ(b2+b))

α

+

∫ T

0

tαe−λ((b+t)2+(b+t))
(

1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t))
)α−1

[
(λ(1 + λ(b+ t)2)(2(b+ t) + 1)− 2λ(b+ t))

1− (1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t)))
α

]

×
1−

(
1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t))

)α
1− (1− (1 + λb2)e−λ(b2+b))

α dt

=

∫ T

0

F̄b(t) dt. (7.3.10)

Hence, from (7.3.6), (7.3.9) and (7.3.10) the long-run average cost per unit time

is

C(b, T ) =

(
co + cs

∫ b
0

αe−λ(t
2+t)(λ(1+λt2)(2t+1)−2λt)

(
1−(1+λt2)e−λ(t

2+t)
)α−1

1−(1−(1+λt2)e−λ(t2+t))
α dt

)
∫ T

0

(
1− (1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t)))

α

)
dt

×
(

1−
(

1− (1 + λb2)e−λ(b2+b)
)α)

+

cf

(
1−

(
1− (1 + λb2)e−λ(b2+b)

)α)
∫ T

0

(
1− (1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t)))

α

)
dt

−
cf

(
1−

(
1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))

)α)
∫ T

0

(
1− (1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t)))

α

)
dt
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+

cr

(
1−

(
1− (1 + λ(b+ T )2)e−λ((b+T )2+(b+T ))

)α)
∫ T

0

(
1− (1− (1 + λ(b+ t)2)e−λ((b+t)2+(b+t)))

α

)
dt

7.4 Summary

We discussed about burn-in process. Expressions for obtain optimal Burn-in time

and optimal age under age replacement policy are derived for WL and GXE

distributions.



CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

The theory of reliability is well established scientific discipline with its own prin-

ciples and methods of problem solving. Probability theory and mathematical

statistics play an important role in most problems in reliability theory. Many

authors discussed the benefits of ageing properties like increasing failure rate,

decreasing failure rate, etc. The bathtub failure rate distributions are widely

used to address the lifetime inference and testing problems. The bathtub shape

is ‘characteristic of the failure rate curve of many well designed products and

components including the human body’. Many bathtub shaped failure rate dis-

tributions are available in literature, but some of them are appropriate for given

data. So identification of distribution or failure rate model shall lead to more
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accurate probability computations. In the present work we tried to enhanced the

application of bathtub shaped failure rate distribution, proposed new BFR and

UBFR distributions, compared existing bathtub shaped failure rate models, stud-

ied on the stress-strength reliability models, developed the theory and application

of TTT transform in identification of BFR model of increasing convex (concave)

function of lifetime random variable, and derived expression for optimal burn-in

time and optimal age using proposed distributions.

In Chapter 1, the relevance and scope of the study and basic information about

concepts are given. In Chapter 2 presented the review of various bathtub shaped

distributions.

In Chapter 3, two new distributions viz., GXE Distribution and WL distribu-

tion have been proposed and its properties studied. We shows that these distri-

butions exhibits bathtub shaped failure rates. For avoiding the scale problem, a

three parameter WL Distribution is introduced and shown that this distribution

had BFR function. The flexibility of these two proposed distributions are illus-

trated using two real data sets. For each data set, the proposed distributions was

shown to give better fit than several other competitors exhibiting BFR function.

In Chapter 4, a new distribution, based on DUS transformation using Lomax

distribution as baseline has been proposed and its properties are studied. This dis-

tribution exhibited UBFR function. This situation was analyzed by Efron (1988)

in the context of head and neck cancer data, in which the failure rate initially

increased, attended a maximum and then decreased before it finally stabilized

because of a therapy. Three data sets are considered and shown that DUS-Lomax
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is more appropriate than some other well-known distributions (Lomax distribu-

tion, Gompertz Lomax distribution, Kumaraswamy Lomax distribution, DUS-

Exponential distribution and Inverse Lindly distribution). We have shown that,

DUS-Lomax has the lowest AIC, BIC, KS-Statistic, and highest Log-likelihood

value and p-value. Therefore DUS-Lomax is a better alternative in situations

where upside-down bathtub shaped distributions occur.

In Chapter 5, we compare two methods of estimating R = P (Y < X) in two

cases. First, when Y and X both follow three parameter generalized Lindley

distribution. Second, when Y and X follows Power Lindley distribution and

three parameter generalized Lindley distribution. We provide MLE procedure to

estimate the unknown parameters and use this to estimate of R. Also obtain

asymptotic 100(1 − ν)% CI for the reliability parameter. The simulation results

indicate that MLE in the average bias and average MSE for different choices of

the parameters.

Whereas to estimate the multi-component stress-strength reliability in two

cases. First, when Y and X both follow three parameter generalized Lindley

distribution. Second, when Y and X follows Power Lindley distribution and

three parameter generalized Lindley distribution. We provide MLE procedure to

estimate the unknown parameters and use this to estimate of Rs,k. Also obtain

asymptotic CI for the reliability parameter. The simulation results indicate that

MLE in the average bias and average MSE for different choices of the parameters.

When increasing the sample sizes, MSE caused by the estimates are nearer to zero

by extensive simulation.
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Two sets of data are considered and shown that TPGL and PL distributions

are fit with this data. For analysis, the stress-strength reliability result for the

case 1 is a value of 0.2388, and for case 2, the stress-strength reliability result

is 0.012, which means there is a small chance that X is greater than Y . For

case 1, when (s, k) = (1, 3) and (2, 4) corresponding multi-component stress-

strength reliability value are 0.7705 and 0.6257 respectively, and for case 2 also

when (s, k) = (1, 3) and (2, 4) corresponding multi-component stress-strength re-

liability value are 0.7712 and 0.6253 respectively, which means there is a high

chance that X is greater than Y . If we consider (s, k) = (3, 5) corresponding MSS

are for case 1 is 0.5268 and for case 2 is 0.5253, which means there is a equal

chance that X is greater than Y .

In Chapter 6, we defined the increasing convex (concave) TTT transformation.

The procedure for identifying the failure rate model is illustrated with example.

If we take lifetime random variables which follows bathtub shaped failure rate

distribution and we need to check whether the result is same when we apply

concave and convex transformations. If yes, can the same distribution be used to

fit g(X). Those reasons are explained hereby using failure rate patterns. ICXTTT

(ICVTTT) transform can be used for estimating the dispersion parameters, of

censored data.

Finally, we discussed the burn-in process and maintenance policy often used in

field work. Optimal Burn-in time and optimal age under age replacement policy

for WL and GXE distributions can be obtained using the derived expression.
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8.2 Future Work

On the basis of the present study some important questions are: If the distribution

of system lifetime is Bathtub shaped failure rate model, identification of change

points (from decreasing to constant and constant to increasing), is crucial to the

system engineering. In industry burn in process, the change point estimation is

very important to separate week and strong components, before send into market.

We can answer questions like, how long the burn-in process needs to be contin-

ued? What is the period of useful life? etc. In inventory theory, the number of

inventory to be kept for repair or replacement can be decided according to the

failure behavior.

Possible future works are to (i) provide a review of known upside-down bathtub

shaped distributions; (ii) develop the problem of classical and Bayesian estima-

tion of stress-strength reliability life distribution based on upper record values;

(iii) develop time-dependent stress-strength reliability models subject to random

stresses at random time cycles. Each run of the system changes the power of

the system over time; (iv) examine ICXTTT transformation ordering and express

the hazard ordering, likelihood ratio ordering and mean residual ordering, their

mutual relationships and expressions for the ICXTTT transform in terms of these

ordering; (v) derive the upper and lower bounds for the optimal burn-in time. It

is also desirable to study on MCMC methods for censored data, regression issues

with covariates.



BIBLIOGRAPHY

[1] Aarset, M.V. (1987). How to identify bathtub hazard rate. IEEE Transactions

on Reliability, 36, pp. 106-108.

[2] Aarset, M.V. (1985). The null distribution of a test of constant versus bathtub

failure rate. Scandinavian Journal of Statistics, 12, pp. 55-62.

[3] Abouammoh, A.M. and Khalique, A. (1997). Some tests for mean residual

life criteria based on the total time on test transform. Reliability Engineering,

19, pp. 85-101.

[4] Abouelmagd, T.H.M., Al-mualim, S., Afify, A.Z., Ahmad, M. and Al-Mofleh,

H. (2018). The odd Lindley Burr XII distribution with applications. Pakistan

Journal of Statistics, 34(1), pp. 15-32.

[5] Ahsan, S., Lemma, T.A. and Gebremariam, M.A. (2019). Reliability analysis

of gas turbine engine by means of Bathtub shaped failure rate distribution.

198



Bibliography 199

Process safety progress, 39, DOI: 10.1002/prs.12115.

[6] Al abbasi, J.N., Khaleel, M.A., Abdal-hammed, M.Kh., Loh, Y.F. and Ozel,

G. (2019). A new Uniform distribution with Bathtub shaped failure rate with

simulation and application. Mathematical Sciences, 13(2), pp. 105-114.

[7] Al-Hussaini, E.K. and Sultan, K.S. (2001). Reliability and hazard based on

finite mixture models. In Balakrishnan, N. and Rao, C.R. (Editors), Advances

in Reliability, Elsevier Science, Amsterdam, 20, pp. 139-183.

[8] Al-Mutairi, D.K., Ghitany, M.E. and Kundu, D. (2013). Inferences on stress-

strength reliability from weighted Lindley distributions. Communications in

Statistics Theory and Methods, 42(8), pp. 1443-1463.

[9] Asgharzadeh, A., Valiollahi, R. and Raqab, M.Z. (2017). Estimation of

P (Y < X) for the two-parameter of generalized Exponential records. Com-

munications in Statistics - Simulation and Computation, 46(1), pp. 379-394.

[10] Bai, X., Shi, Y., Liu, Y. and Liu, B. (2018). Reliability inference of stress-

strength model for the truncated proportional hazard rate distribution under

progressively Type-II censored samples. Applied Mathematical Modelling, 65,

pp. 377-389.

[11] Bain, L.J. (1978). Statistical Analysis of Reliability and Life-Testing Models.

Marcel Dekker, New York.

[12] Baklizi, A. (2012). Inference on P (X < Y ) in the two-parameter Weibull

model based on records, ISRN Probability and Statistics, pp. 1-11.



200 Bibliography

[13] Baklizi, A. and Eidous, O. (2006). Nonparametric estimation of P (X < Y )

using kernel methods. Metron-International Journal of Statistics, 64(1), pp.

47-60.

[14] Barlow, R.E. and Campo, R.A. (1975). Total time on test processes and

applications to failure data analysis. Reliability and Fault Tree Analysis (Eds:

Barlow, R.E., Fussel, R., and Singpurwalla, N.D.), Society for Industrial and

Applied Mathematics, pp. 451-481, Philadelphia.

[15] Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability and

Life Testing. Holt, Rinehart and Winston, New York.

[16] Basirat, M., Baratpour, S. and Ahmadi, J. (2016). On estimation of stress-

strength parameter using record values from proportional hazard rate models.

Communications in Statistics - Theory and Methods, 45(19), pp. 5787-5801.

[17] Bergman, B. (1977). Crossings in the total time on test plot. Scandinavian

Journal of Statistics, 4, pp. 171-177.

[18] Bhattacharyya, G.K. and Johnson, R.A. (1974). Estimation of reliability in

multicomponent stress-strength model. Journal of the American Statistical

Association, 69, pp. 966-970.

[19] Bi, Q. and Gui, W. (2017). Bayesian and classical estimation of stress-

strength reliability for Inverse Weibull lifetime models. Algorithms, 10(2),

pp. 1-16.

[20] Birnbaum, Z.W. (1956). On a use of the Mann-Whitney statistic. Contribu-

tions to the theory of statistics, Proceedings of the Third Berkeley Symposium



Bibliography 201

on Mathematical Statistics and Probability, University of California, 1, pp.

13-17.

[21] Birnbaum, Z.W. and Saunders, S.C. (1969a). Estimation for a family of life

distributions with applications to Fatigue. Journal of Applied Probability, 6,

pp. 328-347.

[22] Birnbaum, Z.W. and Saunders, S.C. (1969b). A new family of life distribu-

tions. Journal of Applied Probability, 6, pp. 319-327.

[23] Block, H.W. and Savits, T.H. (1997). Burn-in. Statistical Science, 12, pp.

1-19.

[24] Block, H.W., Li, Y., Savits, T.H. and Wang, J. (2008). Continuous mixtures

with Bathtub shaped failure rates. Journal of Applied Probability, 45(1), pp.

260-270.

[25] Burr, I.W. (1942). Cumulative frequency functions. Annals of Mathematical

Statistics, 13, pp. 215-232.

[26] Canfield, R.V. and Borgman, L.E. (1975). Some distributions of time to fail-

ure for reliability applications. Technometrics, 17(2), pp. 263-268.

[27] Cha, J.H. (2000). On a better burn-in procedure. Journal of Applied Proba-

bility, 37(4), pp. 1099-1103.

[28] Chacko, V.M. (2016). X-Exponential Bathtub failure rate model. Reliability:

Theory and Application, 43(4), pp. 55-66.



202 Bibliography

[29] Chandrasekaran, R. (1977). Optimal policies for burn-in procedures.

Opsearch, 4, pp. 149-160.

[30] Chang, D.S. (2000). Optimal burn-in decision for products with an Unimodal

failure rate function. European Journal of Operational Research, 126(3), pp.

534-540.

[31] Chen, S. and Gui, W. (2020). Statistical analysis of a lifetime distribution

with a Bathtub shaped failure rate function under adaptive progressive type-

II censoring. Mathematics, 8(5), pp. 670-691.

[32] Chen, Z. (2000). A new two-parameter lifetime distribution with Bathtub

shape or increasing failure rate function. Statistics and Probability Letters,

49(2), pp. 155-161.

[33] Chhikara, R.S. and Folks, J.L. (1977). The inverse Gaussian distribution as

a lifetime model. Technometrics, 19, pp. 461-468.

[34] Clarotti, C.A. and Spizzichino, F. (1990). Bayes burn-in decision procedures.

Probability in the Engineering and Information Sciences, 4, pp. 437-445.

[35] Davis, H.T. and Feldstein, M.L. (1979). The generalized Pareto law as a

model for progressively censored survival data. Biometrika, 66(2), pp. 299-

306.

[36] Deshpande, J.V. and Suresh, R.P. (1990). Non-monotonic ageing. Scandina-

vian Journal of Statistics, 17, pp. 257-262.



Bibliography 203

[37] Deshpande, J.N., Kochar, S.C. and Singh, H. (1986). Aspects of positive

aging. Journal of Applied Probability, 22, pp. 748-758.

[38] Dey, S., Mazucheli, J. and Anis, M.Z. (2016). Estimation of reliability of

multicomponent stress-strength for a Kumaraswamy distribution. Communi-

cations in Statistics - Theory and Methods, 46(4), pp. 1560-1572.

[39] Dey, S., Nassar, M., Kumar, D., Alzaatreh, A. and Tahir, M.H. (2019). A

new lifetime distribution with decreasing and upside-down Bathtub shaped

hazard rate function. Statistica, 79(4), pp. 399-426.

[40] Dinesh, K., Umesh, S. And Sanjay Kumar, S. (2015). A method of proposing

new distribution and its application to bladder cancer patients data. Journal

of Statistics Application and Probability Letters, 2(3), pp. 235-245.

[41] Domma, F., Eftekharian, A. and Razmkhah, M. (2019). Stress-strength based

on m-generalized order statistics and concomitant for dependent families.

Applications of Mathematics, 64, pp. 437-467.

[42] Efron, B. (1988). Logistic regression, survival analysis, and the kaplanmeier

curve. Journal of the American Statistical Association, 83, pp. 414-425.

[43] Fatma, G.A. (2019). Reliability estimation in multicomponent stress-strength

model for Topp-Leone distribution. Journal of Statistical Computation and

Simulation, 89(15), pp. 2914-2929.

[44] Finkelstein, M.S. and Esaulova, V. (2001). Why the mixture failure rate

decreases. Reliability Engineering and System Safety, 71, pp. 173-177.



204 Bibliography

[45] Franco-Pereira, A.M. and Shaked, M. (2013). The total time on test transform

and the decreasing percentile residual life aging notion. Statistical Methodol-

ogy, 18, pp. 32-40.

[46] Gauss, M.C., Afify, A.H., Yousof, H.M. and Cakmakyapan, S. and Gamze,

O.K. (2018). The Lindley Weibull Distribution: properties and applications.

Proceedings of the Brazilian Academy of Sciences, 90(3), pp. 2579-2598.

[47] Gaver, P.D. and Acar, M. (1979). Analytical hazard representation for use in

reliability, mortality and simulation studies. Communications in Statistics -

Simulation and Computation, 8(2), pp. 91-111.

[48] Ghitany, M.E. (2004). The monotonicity of the reliability measures of the

beta distribution. Applied Mathematics Letters, 17, pp. 1277-1283.

[49] Ghitany, M.E., Al-Mutairi, D.K. and Aboukhamseen, S.M. (2014). Estima-

tion of the reliability of a stress-strength system from Power Lindley dis-

tributions. Communications in Statistics - Theory and Methods, 44(1), pp.

118-136.

[50] Ghitany, M.E., Al-Mutairi, D.K., Balakrishnan, N. and Al-Enezi, I. (2013).

Power Lindley distribution and associated inference. Computational Statistics

and Data Analysis, 64, pp. 20-33.

[51] Glaser, R.E. (1980). Bathtub and related failure rate characterizations. Jour-

nal of American Statistical Association, 75, pp. 667-672.



Bibliography 205

[52] Griffith, W.S. (1982). Representation of distributions having monotone or

bathtub shaped failure rates. IEEE Transactions on Reliability, 31(1), pp.

95-96.

[53] Grimshaw, S.D. (1993). Computing maximum likelihood estimates for the

generalized Pareto distribution. Technometrics, 35(2), pp. 185-191.

[54] Gupta, R.C. and Michalek, J.E. (1985). Determination of reliability functions

by the TTT transform. IEEE Transactions on Reliability, 34(2), pp. 175-176.

[55] Gupta, R.C. and Warren, R. (2001). Determination of change points of non-

monotonic failure rates. Communications in Statistics - Theory and Methods,

30, pp. 1903-1920.

[56] Gupta, R.C., Akman, H.O. and Lvin, S. (1999). A study of log-logistic model

in survival analysis. Biometrical Journal, 41(4), pp. 431-443.

[57] Guttman, I., Johnson, R.A., Bhattacharyya, G.K. and Reiser, B. (1988).

Confidence limits for stress-strength models with explanatory variables. Tech-

nometrics, 30(2), pp. 161-168.

[58] Haines, A.L. and Singpurwalla, N.D. (1974), Some contributions to stochastic

characterizations of wear. Relaibility and Biometry: Statistical Analysis of

Life length. F. Procshan and R.J. Serfling (Eds), Society for Industrial and

Applied Mathematics, Philadelphia, Pennsylvenia, pp. 46-80.

[59] Hassan, A.S., Nagy, H.F., Muhammed, H.Z., and Saad, M.S. (2020). Estima-

tion of multicomponent stress-strength reliability following Weibull distribu-



206 Bibliography

tion based on upper record values. Journal of Taibah University for Science,

14(1), pp. 244-253.

[60] Hassan, M.K.H. and Alohali, M.I. (2018). Estimation of reliability in a mul-

ticomponent stress-strength model based on generalized linear failure rate

distribution. Hacettepe Journal of Mathematics and Statistics, 47(6), pp.

1634-1651.

[61] Haupt, E. and Schabe, H. (1992). A new model for a lifetime distribution with

Bathtub shaped failure rate. Microelectronics Reliability, 32, pp. 633-639.

[62] Haupt, E. and Schabe, H. (1997). The TTT transformation and a new Bath-

tub distribution model. Journal of Statistical Planning and Inference, 60, pp.

229-240.

[63] Hjorth, U. (1980). A reliability distribution with increasing, decreasing, con-

stant and Bathtub shaped failure rate. Technometrics, 22, pp. 99107.

[64] Jaisingh, L.R., Kolarik, W.J. and Dey, D.K. (1987). A flexible Bathtub haz-

ard model for non-repairable systems with uncensored data. Microelectronics

Reliability, 27(1), pp. 87-103.

[65] Jamal, Q.A., Arshad, M. and Nancy, K. (2019). Multicomponent stress-

strength reliability estimation for Pareto distribution based on upper record

values. arXiv:1909.13286.

[66] Jensen, F. and Ptersen, N.E. (1982). Burn-in: An Engineering Approach to

the Design and Analysis of Burn-in Processes, John Willey & Sons, New

York.



Bibliography 207

[67] Jha, M.K., Dey, S., Refah, M.A. and Yogesh, M.T. (2020). Reliability estima-

tion of a multicomponent stress-strength model for unit Gompertz distribu-

tion under progressive type II censoring. Quality and Reliability Engineering

International, 36(3), pp. 1-23.

[68] Jiang, R. and Murthy, D.N.P. (1998). Mixture of Weibull distributions-

Parametric characterization of failure rate function. Applied Stochastic Mod-

els and Data Analysis, 14, pp. 47-65.

[69] Jing, B.Y., Yuan, J. and Zhou, W. (2009). Jackknife empirical likelihood.

Journal of American Statistical Association, 104, pp. 1224-1232.

[70] Joby, K.J, Drisya, M. and Manoharan, M. (2020): Estimation of

stress-strength reliability using discrete phase type distribution. Com-

munications in Statistics - Theory and Methods, pp. 1-19. DOI:

10.1080/03610926.2020.1749663.

[71] Joe, H. and Proschan, F. (1984). Percentile residual life. Operation Research,

32, pp. 668-677.

[72] Jorda, P. (2010). Computer generation of random variables with Lindley or

Poisson-Lindley distribution via the Lambert W function. Mathematics and

Computers in Simulation, 81, pp. 851-859.

[73] Jose, J.K., Xavier, T. and Drisya, M. (2019). Estimation of stress-strength

reliability using Kumaraswamy half Logistic distribution. Journal of Proba-

bility and Statistical Science, 17(2), pp. 141-154.



208 Bibliography

[74] Kececioglu, D. and Sun, F.B. (1997). Burn-in Testing: Its Quantification and

Optimization, DEStech Publications Inc., UK.

[75] Khalil, M. (2017). Estimation a stress-strength model for using the Lindley

distribution. Colombian Journal of Statistics, 40(1), pp. 105-121.

[76] Klein, J.P. and Moesch Berger, M.L. (1997). Survival Analysis Techniques

for Censored and Truncated Data, Springer Verlag, New York.

[77] Kohansal, A. (2017). On estimation of reliability in a multicomponent stress-

strength model for a Kumaraswamy distribution based on progressively cen-

sored sample. Statistical Papers, 60, pp. 2185-2224.

[78] Kohansal, A. and Nadarajah, S. (2019). Stress-strength parameter estimation

based on type-II hybrid progressive censored samples for a Kumaraswamy

distribution. IEEE Transactions on Reliability, 68(4), pp. 1296-1310.

[79] Kolmogorov, A.N. (1933). On the empirical determination of a distribution

law. Journal of the Italian Institute of Actuaries, 4, pp. 83-91.

[80] Krishna, H., Dube, M. and Garg, R. (2019). Estimation of stress-strength

reliability of Inverse Weibull distribution under progressive first failure cen-

soring. Austrian Journal of Statistics, 48, pp. 14-37.

[81] Kulasekera, K.B. and Saxena, L.K.M. (1991). Estimation of change point in

failure rate models. Journal of Statistical Planning and Inference, 29, pp.

111-124.



Bibliography 209

[82] Kundu, D. (2004). Exponentiated Exponential distribution. Encyclopedia of

Statistical Sciences, 2nd edition, Wiley, New York.

[83] Kundu, D. and Gupta, R.D. (2005). Estimation of P [Y < X] for generalized

Exponential distribution. Metrika, 61, pp. 291-308.

[84] Kundu, D. and Gupta, R.D. (2006). Estimation of R = P [Y < X] for Weibull

distributions. IEEE Transactions on Reliability, 55, pp. 270-280.

[85] Kundu, D. and Raqab, M.Z. (2009). Estimation of R = P (Y < X) for three-

parameter Weibull Distribution. Statistics and Probability Letters, 79, pp.

1839-1846.

[86] Kunitz, H. (1989). A new class of Bathtub shaped hazard rates and its ap-

plication in a comparison of two test-statistics. IEEE Transactions on Relia-

bility, 38(3), pp. 351-353.

[87] Kuo, W. (1984). Reliability enhancement through optimal burn-in. IEEE

Transactions on Reliability, 33, pp. 145-156.

[88] Kuo, W. and Kuo, Y. (1983). Facing the headaches of early failures: A state

of the art review of burn-in decisions. Proceeding of the IEEE, 71(11), pp.

1257-1266.

[89] Lai, C.D., Moore, T. and Xie, M. (1998). The beta integrated failure rate

model, Proceedings of the International Workshop on Reliability Modelling

and Analysis from Theory to Practice, National University of Singapore, Sin-

gapore, pp. 153-159.



210 Bibliography

[90] Lai, C.D., Xie, M. and Murthy, D.N.P. (2001). Bathtub shaped failure rate

life distributions. Balakrishnan, N. and Rao, C.R. (Editors), Elsevier Science,

Amsterdam. Handbook of Statistics: Advances in Reliability, 20, pp. 69-104.

[91] Lai, C.D., Xie, M. and Murthy, D.N.P. (2003). Modified Weibull model. IEEE

Transactions on Reliability, 52, pp. 33-37.

[92] Lai, C.D. and Xie, M. (2006). Stochastic Ageing and Dependence for Relia-

bility, Spring Street, New York.

[93] Launer, R.L. (1993). Graphical techniques for analyzing failure data with the

percentile residual-life function. IEEE Transactions on Reliability, 42(1), pp.

71-75.

[94] Lawless, J.F. (1982). Statistical Models and Methods for Life Time Data,

Wiley, New York.

[95] Lawrence, M.J. (1966). An investigation of the burn-in problem. Tech-

nomtrics, 8(1), pp. 61-71.

[96] Lemonte, A.J. (2013). A new Exponential-type distribution with constant,

decreasing, increasing, upside-down bathtub and Bathtub shaped failure rate

function. Computational Statistics and Data Analysis, 62, pp. 149-170.

[97] Li, X. and Cheng, Y.M. (2010). Optimal design of step-stress accelerated life

testing with progressive censoring. Chinese Journal of Applied Probability

and Statistics, 26(1), pp. 35-46.



Bibliography 211

[98] Lomax, K. (1954). Business failures: Another example of the analysis of

failure data. Journal of the American Statistical Association, 49, pp. 847-

852.

[99] McEwen, R.P. and Parresol, B.R. (1991). Moment expressions and summary

statistics for the complete and truncated Weibull distribution. Communica-

tions in Statistics - Theory and Methods, 20, pp. 1361-1372.

[100] Mi, J. (1994a). Burn-in and maintenance policies. Advances in Applied Prob-

ability, 26, pp. 207-221.

[101] Mi, J. (1994b). Maximization of a survival probability and its applications.

Journal of Applied Probability, 31, pp. 1026-1033.

[102] Mi, J. (1995). Bathtub failure rate and upside-down bathtnb mean residual

life. IEEE Transactions on Reliability, 44(3), pp. 388-391.

[103] Mitra, M. and Basu, S.K. (1995). Change point estimation in non-monotonic

aging models. Annals of the Institute of Statistical Mathematics, 47, pp. 483-

491.

[104] Mitra, M. and Basu, S.K. (1996a). On some properties of the Bathtub failure

rate family of life distributions. Microelectronics Reliability, 36(5), pp. 679-

684.

[105] Mokhlis, N.A. and Khames, S.K. (2011). Reliability of multi-component

stress-strength models. Journal of the Egyptian Mathematical Society, 19,

pp. 106-111.



212 Bibliography

[106] Moore, T. and Lai, C.D. (1994). The beta failure rate distribution, Pro-

ceedings of 30th Annual Conference of Operational Research Socirty of New

Zealand, 45th, Palmerston, New Zealand, pp. 339-344.

[107] Mudholkar, G.S. and Srivastava, D.K. (1993). Exponentiated Weibull family

for analyzing Bathtub failure rate data. IEEE Transactions on Reliability,

42(2), pp. 299-302.

[108] Mudholkar, G.S., Srivastava, D.K. and Freimer, M. (1995). The Exponenti-

ated Weibull family. Technometrics, 37, pp. 436-445.

[109] Mukherjee, S.P. and Islam, A. (1983). A finite-range distribution of failure

times. Naval Research Logistics Quarterly, 30, pp. 487-491.

[110] Mukherjee, S.P. and Roy, D. (1993). A versatile failure time distribution.

Microelectronics Reliability, 33, pp. 1053-1056.

[111] Murthy, D.N.P. and Jiang, R. (1997). Parametric study of sectional mod-

els involving two Weibull distributions. Reliability Engineering and System

Safety, 56, pp. 151-159.

[112] Murthy, V.K., Swartz, G. and Yuen, K. (1973). Realistic models for mor-

tality rates and their estimation. Technical Reports I and II, Department of

Biostatistics, University of California at LosAngeles.

[113] Musleh, R.M., Helua, A. and Samawib, H. (2019). Inference on P (X < Y )

in bivariate Lomax Model. Electronic Journal of Applied Statistical Analysis,

13(3), pp. 619-636.



Bibliography 213

[114] Myung, H.N. and Young, N.S. (2002). On optimal burn-in and maintenance

policy. Korean Communication in Statistics, 9(3), pp. 865-870.

[115] Nadarajah, S. and Gupta, A.K. (2008). A product Pareto distribution.

Metrika, 68(2), pp. 199-208.

[116] Nadarajah, S. and Kotz, S. (2003). Moments of some J-shaped distributions.

Journal of Applied Statistics, 30, pp. 311-317.

[117] Nadarajah, S., Bakouch, H. and Tahmasbi, R. (2011). A generalized Lindley

distribution. Sankhya B-Applied and Interdisciplinary Statistics, 73, pp. 331-

359.

[118] Nair, N.U. and Sankaran, P.G. (2013). Some new applications of the total

time on test transforms. Statistical Methodology, 10, pp. 93-102.

[119] Nair, N.U., Sankaran, P.G. and Vinesh Kumar, B. (2008). TTT transforms

of order n and their implications in reliability analysis. Journal of Applied

Probability, 46, pp. 1127-1139.

[120] Navarro, J. and Hernandez, P.J. (2004). How to obtain Bathtub shaped

failure rate models from normal mixtures. Probability in the Engineering and

Informational Sciences, 18, pp. 511-531.

[121] Nguyen, D.G. and Murthy, D.N.P. (1982). Optimal burn-in time to mini-

mize cost for products sold under warranty. IEEE Transactions on Reliability,

14(3), pp. 167-174.



214 Bibliography

[122] Nguyen, H.T., Rogers, G.S. and Walker, E.A. (1984). Estimation in change

point hazard rate models. Biometrika, 71(2), pp. 299-304.

[123] Nosakhare, E. and Opone, F. (2018). A three parameter generalized Lindley

distribution: Properties and application. Statistica, 78(3), pp. 233-249.

[124] Ooi, M.P.L., Abu Kassim, Z. and Demidenko, S. (2007). Shortening burn-In

test: Application of HVST Weibull statistical analysis. IEEE Transactions

on Instrumentation and Measurement, 56(3), pp. 990-999.

[125] Pak, A., Khoolenjani, N.B. and Rastogi, M.K. (2019). Bayesian inference on

reliability in a multicomponent stress-strength Bathtub shaped model based

on record values. Pakistan Journal of Statistics and Operation Research, 5(2),

pp. 431-444.

[126] Pal, M., Ali, M.M. and Woo, J. (2006). Exponentiated Weibull Distribution.

Statistica, 66(2), pp. 139-147.

[127] Pandit, P.V. and Joshi, S. (2018). Reliability estimation in multicompo-

nent stress-strength model based on generalized Pareto distribution. Ameri-

can Journal of Applied Mathematics and Statistics, 6(5), pp. 210-217.

[128] Paranjpe, S.A., Rajarshi, M.B. and Gore, A.P. (1985). On a model for failure

rates. Biometrical Journal, 27, pp. 913-917.

[129] Pareto, V. (1897). The new theories of economics. IEEE Transactions on

Reliability, 5(4), pp. 485-502.



Bibliography 215

[130] Park, K.S. (1985). Effect of burn-in on mean residual life. IEEE Transactions

on Reliability, 34(5).

[131] Parsa, M., Motashami Borzadaran, G.R. and Rezaei Roknabadi, A.H.

(2014). On the change points of mean residual life and failure rate func-

tions for some generalized Gamma type distributions. International Journal

of Metrology and Quality Engineering, 5(1), DOI: 10.1051/ijmqe/2014002.

[132] Pham, T.D. and Nguyen, H.T. (1993). Bootstrapping the change-point of

a hazard rate. Annals of the Institute of Statistical Mathematics, 45(2), pp.

331-340.

[133] Plesser, K.T. and Fied, T.O. (1977). Cost-Optimized burn-in duration for

repairable electronic systems. IEEE Transactions on Reliability, 26(3), pp.

195-197.

[134] Pratapa, R.J. (2012). Quality control methods and Reliability estimation

based on Inverse Rayleigh Distribution, Published Ph.D. Thesis, Acharya

Nagarjuna University, http://hdl.handle.net/10603/8131.

[135] Rajarshi, S. and Rajarshi, M.B. (1988). Bathtub distributions: a review.

Communications in Statistics - Theory and Methods, 17(8), pp. 2597-2621.

[136] Rao, G.S. (2012), Estimation of reliability in multicomponent stress-

strength model based on generalized exponential distribution. Colombian

Journal of Statistics, 35(1), pp. 67-76.

[137] Rao, G.S., Aslam, M. and Kundu, D. (2015). Burr-XII distribution paramet-

ric estimation and estimation of reliability of multicomponent stress-strength.



216 Bibliography

Communications in Statistics - Simulation and Computation, 44(23), pp.

4953-4961.

[138] Raqab, M.Z, Madi, T. and Kundu, D. (2008). Estimation of P (Y < X) for

the three-parameter generalized Exponential distribution. Communications

in Statistics - Theory and Methods, 37, pp. 2854-2865.

[139] Raqab, M.Z. and Kundu, D. (2005). Comparison of different estimators of

P [Y < X] for a scaled Burr type X distribution. Communications in Statistics

- Simulation and Computation, 34, pp. 465483.

[140] Rezaei, S., Tahmasbi, R. and Mahmoodi, M. (2010). Estimation of P (Y <

X) for generalized Pareto distribution. Journal of Statistical Planning and

Inference, 140(2), pp. 480494.

[141] Saracoglu, B., Kinaci, I. and Kundu, D. (2012). On estimation of R =

P (Y < X) for Exponential distribution under progressive type-II censoring.

Journal of Statistical Computation and Simulation, 82(5), pp. 729-744.

[142] Sarhan, A. and Kundu, D. (2009). Generalized linear failure rate distribu-

tion. Communications in Statistics - Theory and Methods, 38(5), pp. 642-

660.

[143] Schabe, H. (1994a). Constructing lifetime distributions with Bathtub shaped

failure rate from DFR distributions. Microelectronics Reliability, 34(9), pp.

1501-1508.

[144] Shafiq, M. and Viertl, R. (2017). Bathtub hazard rate distributions and

fuzzy life times. Iranian Journal of Fuzzy Systems, 14(5), pp. 31-41.



Bibliography 217

[145] Shahsanaei, F. and Daneshkhah, A. (2013). Estimation of stress-strength

model in generalized linear failure rate distribution, ArXiv Preprint 1312:0401

v1.

[146] Shaked, M. and Shanthikumar, J.G. (2007). Stochastic Orders. Springer,

New York.

[147] Sharma, V.K. (2014). Bayesian analysis of head and neck cancer data using

generalized inverse Lindley stressstrength reliability model. Communications

in Statistics - Theory and Methods, 47(5), pp. 1155-1180.

[148] Sharma, V.K., Singh, S.K., Singh, U. and Agiwal, V. (2014). The in-

verse Lindley distribution: A stress-strength reliability model, arXiv preprint

arXiv:1405.6268.

[149] Sharma, V.K., Singh, S.K., Singh, U. and Agiwal, V. (2015). The inverse

lindley distribution: a stress-strength reliability model with application to

head and neck cancer data. Journal of Industrial and Production Engineering,

32(3), pp. 162-173.

[150] Shehla, R. and Ali-Khan, A. (2016). Reliability analysis using an exponential

power model with Bathtub shaped failure rate function: A Bayes study.

Springer plus, 5(1), DOI: 10.1186/s40064-016-2722-3.

[151] Shoaee, S. (2019). Statistical analysis of bivariate failure time data based

on Bathtub shaped failure rate model. Journal of Iranian Statistical Society,

18(1), pp. 53-87.



218 Bibliography

[152] Shooman, M.L. (1968). Probabilistic Reliability. An Engineering Approach.

McGraw Hill Electrical and Electronic Engineering Series, McGraw Hill, New

York.

[153] Smith, R.L. and Naylor, J.C. (1987). A comparison of maximum likelihood

and Bayesian estimators for the three-parameter Weibull distribution. Jour-

nal of Applied Statistics, 36, pp. 358-369.

[154] Smith, R.M. and Bain, L.J. (1975). An Exponential power life-testing distri-

bution. Communications in Statistics - Theory and Methods, 4, pp. 469-481.

[155] Stacy, E.W. (1962). A generalization of Gamma distribution. Annals of

Mathematical Statistics, 33, pp. 1187-1192.

[156] Stephens, M. A. (1974). EDF Statistics for goodness of fit and some com-

parisons. Journal of the American Statistical Association, 69, pp. 730-737.

[157] Sun, D., Ghosh, M. and Basu, A.P. (1998). Bayesian Analysis for a Stress-

Strength System under Non-informative Priors. The Canadian Journal of

Statistics, 26(2), pp. 323-332.

[158] Suresh, R. P. (1992). On estimating change-point in a Bathtub failure rate

model. Proceedings of the Symposium on Statistical Inference, 24, Centre for

Mathamatics and Science, Trivandrum. pp. 103-113.

[159] Tarvirdizade, B. and Ahmadpour, M. (2016). Estimation of the stress-

strength reliability for the two-parameter Bathtub shaped lifetime distribu-

tion based on upper record values. Statistical Methodology, 31, pp. 58-72.



Bibliography 219

[160] Topp, C.W. and Leone, F.C. (1955). A family of J-shaped frequency func-

tions. Journal of American Statistical Association, 50, pp. 209-219.

[161] Tweedie, M.C.K. (1947). Functions of statistical variate with given means,

with special reference to Laplacian Distributions. Proceedings of the Cam-

bridge Philosophical Society, 43, pp. 41-49.

[162] Vera, F. and Lynch, J. (2005). K-mart stochastic modeling using iterated

total time on test transforms. Modern Statistical and Mathematical Methods

in Reliability, World Scientific, Singapore, pp. 395-409.

[163] Wang, F.K. (2000). A new model with Bathtub shaped failure rate using

an additive Burr XII distribution. Reliability Engineering and System Safety,

70, pp. 305-312.

[164] Wang, R., Sha, N., Gu, B. and Xu, X. (2014). Statistical analysis of a

Weibull extension with Bathtub shaped failure rate function. Advances in

Statistics, DOI:10.1155/2014/304724. pp. 1-15.

[165] Wang, X., Yu, C. and Li, Y. (2015). A new finite interval lifetime distribution

model for fitting Bathtub shaped failure rate curve. Mathematical Problems

in Engineering, DOI:10.1155/2015/954327. pp. 1-6.

[166] Weerahandi, S. and Johnson, R.A. (1992). Testing reliability in a stress-

strength model when X and Y are normally distributed. Technometrics,

34(1), pp. 83-91.



220 Bibliography

[167] Wondmagegnehu, E.T., Navarro, J. and Hernandez, P.J. (2005). Bathtub

shaped failure rates from mixtures: A practical point of view. IEEE Trans-

actions on Reliability, 54(2), pp. 270-275.

[168] Xavier, T. and Jose, J.K. (2020). A study of stress-strength reli-

ability using a generalization of power transformed half-logistic dis-

tribution. Communications in Statistics - Theory and Methods, DOI:

10.1080/03610926.2020.1716250.

[169] Xia, Z.P., Yu, J.Y., Cheng, L.D., Liu, L.F. and Wang, W.M. (2009). Study

on the breaking strength of jute fibers using modified Weibull distribution.

Journal of Composites Part A: Applied Science and Manufacturing, 40, pp.

54-59.

[170] Xie, M. and Lai, C.D. (1995). Reliability analysis using an additive Weibull

model with bathtub-shaped failure rate function. Reliability Engineering and

System Safety, 52, pp. 87-93.

[171] Xie, M. and Lai, C.D. and Murthy, D.N.P. (2003). Weibull-related distribu-

tions for modelling of Bathtub shaped failure rate functions. Mathematical

and Statistical Methods in Reliability, Lindqvist, B.H. and Doksum, K.A.

(Eds), World Scientific, Singapore, pp. 283-297.

[172] Xie, M., Tang, Y. and Goh, T.N. (2002). A modified Weibull extension

with Bathtub shaped failure rate function. Reliability Engineering and System

Safety, 76(3), pp. 279-285.



Bibliography 221

[173] Zeng, H., Lan, T. and Chen, Q. (2016). Five and four-parameter lifetime

distributions for Bathtub shaped failure rate using Perks mortality equation.

Reliability Engineering and System Safety, 152, pp. 307-315.

[174] Zhang, T., Dwight, R. and El-Akruti, K. (2013). On a Weibull related distri-

bution model with decreasing, increasing and upside-down Bathtub shaped

failure rate. Proceedings Annual Reliability and Maintainability Symposium

(RAMS), Orlando, pp. 1-6.

[175] Zhou, W. (2008). Statistical inference for P (X < Y ). Statistics in Medicine,

27(2), pp. 257-279.



LIST OF PUBLISHED WORKS

(a) Published:

(1) Deepthi, K.S. and Chacko, V.M. (2021). Identification of Failure rate

behavior of Increasing Convex (Concave) Transformations. Reliability:

Theory and Applications, Vol. 16, 1(61), pp. 109-116.

https : //doi.org/10.24412/1932−2321−2021−161−109−116. (Scopus

and UGC Care)

(2) Deepthi, K.S. and Chacko, V.M. (2020). Reliability Estimation of

Stress-Strength Model using three parameter Generalized Lindley dis-

tribution, Advances and Applications in Statistics, 65(1), pp. 69-89.

http : //dx.doi.org/10.17654/AS065010069. (Web of Science and UGC

Care).

(3) Deepthi, K.S. and Chacko, V.M. (2020). An Upside-down Bathtub

Shaped failure rate model using DUS Transformation of Lomax Distri-

222



List of Published Works 223

bution. Chapter 6, Cui, L. (Ed.), Frenkel, I. (Ed.) and Lisnianski, A.

(Ed.). Stochastic Models in Reliability Engineering, Boca Raton: CRC

press, Taylor & Francis Group, London.

https : //doi.org/10.1201/9780429331527.

(4) Deepthi, K.S. and Chacko, V.M. (2019). Estimation of Stress-Strength

model using Three parameter Generalized Lindley Distribution. Pro-

ceedings of National Seminar on Statistical Approaches in Data Sci-

ence, pp. 55-63, ISBN: 978-81-935819-2-6.

(5) Chacko, V.M. and Deepthi, K.S. (2019). Generalized X-Exponential

Bathtub Shaped Failure Rate Distribution. Journal of the Indian So-

ciety for Probability and Statistics, 20(2), pp. 157-171, e-ISSN 2364-

9569.

https : //doi.org/10.1007/s41096 − 019 − 00066 − 7. (University List

and UGC Care at the time of submission).

(6) Chacko, V.M. and Deepthi, K.S. and Beenu, T. (2018). Weibull-Lindly

Distribution: A bathtub shaped failure rate model. Reliability: Theory

and Applications, Vol.13, 4(51) , pp. 9-20.

http : //www.gnedenko.net/Journal/2018/042018/RTA 4 2018−01.pdf

(Scopus and UGC Care).

(7) Chacko, V.M., Beenu, T. and Deepthi K.S. (2017) A One parameter

Bathtub shaped failure rate distribution, Reliability: Theory and Ap-

plications, Vol.12, 3(46)) , pp. 38-43.

http : //www.gnedenko.net/Journal/2017/032017/RTA 3 2017−04.pdf



224 List of Published Works

(b) Presentations in Conferences/Seminars:

(1) A Generalization of Weibull-Lindley distribution: Two parameter Bath-

tub Shaped Model, International Conference on Changing Paradigms

and Emerging Challenges in Statistical Sciences (ICPECS-2018) in

conjunction with Bi-Decennial Convention of Society of Statistics, Com-

puter and Applications organized by the Department of Statistics,

Pondicherry University, Puducherry, India, January 29-30, 2018.

(2) A Generalization of Exponential distribution with Bathtub Shaped

Failure rate Model, National Seminar on Innovative Approaches in

Statistics in conjunction with the Annual Conference of the Kerala

Statistical Association organized by the Department of Statistics, St.

Thomas’ College (Autonomous), Thrissur, Kerala, India, February 15-

17, 2018.

(3) Generalized X-Exponential Bathtub Shaped Failure rate Distribution,

International Conference on Mathematics in collaboration with Inter-

national Multidisciplinary Research Foundation (IMRF) organized by

the Department of Mathematics, St. Thomas’ College (Autonomous),

Thrissur, Kerala, June 29-30, 2018.

(4) Estimation of Stress-Strength Reliability using Three parameter Gener-

alized Lindley Distribution, National Seminar on Statistical Approaches

in Data Science, organized by the Department of Statistics, St. Thomas’

College (Autonomous), Thrissur, February 6-7, 2019.

(5) An Upside-down Bathtub Shaped Failure rate model using DUS Trans-



List of Published Works 225

formation of Lomax Distribution, National Seminar on Recent Trends

in Statistical Sciences in conjunction with 40th Annual Conference of

Kerala Statistical Association organized by the Department of Statis-

tics, University of Kerala, Trivandrum, Kerala, March 7-9, 2019.

(6) Identification of Failure rate behavior of Increasing Convex (Concave)

TTT Transformations, National Web based Seminar on Recent Trends

in Statistical Theory and Applications-2020 organized by Indian Soci-

ety for Probability and Statistics, Kerala Statistical Association (KSA)

and Department of Statistics, University of Kerala, Trivandrum, June

29-July 1, 2020.

(c) Achievements:

(1) Dr. R.N. Pillai Young Statistician Award for Research Paper presen-

tation in National Seminar on Innovative Approaches in Statistics in

conjunction with the Annual Conference of the Kerala Statistical Asso-

ciation conducted by the Kerala Statistical Association at St. Thomas’

College (Autonomous), Thrissur on 16th February 2018.


