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Chapter 1

Classical Extreme Value Theory -

An Introduction

1.1 Introduction

Asymptotic theory of functions of random variables plays a very important role in

modern statistics. The objective of the asymptotic theory is to approximate distri-

butions of large sample statistics with limiting distributions which are often much

simpler to work than their exact distributions. For example, if {Xn, n ≥ 1} is a se-

quence of independent and identically distributed random variables (i.i.d.r.v.’s) with

X1 distributed like F and E(X1) = µ, exists, then the asymptotic theory of partial

sum, Sn =
∑n

i=1 Xi and partial maximum Mn = max(X1, X2, . . . , Xn), n ≥ 1 play a

fundamental role in statistics. From the well known theories of laws of large numbers,

and the central limit theorem available in probability literature one can handle the

statistics Sn, the partial sum or X̄n = 1
n

∑n
i=1 Xi, the arithmetic mean, very effec-

tively. That is, by weak law of large numbers X̄n
p→ µ and by strong law of large
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numbers X̄n
a.s.→ µ. The central result in statistics, the central limit theorem, says that

under proper normalization the partial sum sequence {Sn} or X̄n converges weakly

to Levy-skew stable distributions. That is, if there exists real sequences of constants

say {an > 0} and {bn} such that

P (
Sn − bn

an

≤ x)
w→ H(x) (1.1.1)

for some non-degenerate d.f. H, then H can be identified as Levy-skew stable dis-

tribution for which normal distribution is a special case, see Laha Rohatgi (1979)

and Billingsly (1968) for more details. Similarly, the limit theory of partial maxima

Mn = max(X1, X2, . . . , Xn) of i.i.d.r.v.’s is also available in the literature. Like the

partial sum Sn, there is no unique asymptotic model for Mn, but several models ex-

ists. In the next section, we introduce various asymptotic models for Mn which are

available in the statistics literature.

1.2 Classical Extreme Value Models

The study of probabilistic and statistical aspects of partial maxima Mn, partial min-

ima mn = min(X1, X2, . . . , Xn), and other related order statistics of sequence {Xn}

of i.i.d.r.v.’s is known as the classical extreme value theory. The order statistics Mn

or mn are commonly referred as extremes in extreme value theory. Classical extreme

value theory is well developed and a number of books are available in the area, see

for example, Gumbel (1958), Galambos (1978), Leadbetter et al. (1983), Resnick

(1987), Embrechts et al. (1997), Reiss et al. (2004), de Haan and Ferreira (2006)

etc. In this section, we introduce various asymptotic models available in the classical

extreme value theory.
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1.2.1 The Generalized Extreme Value (GEV) Model

Let {Xn} be a sequence of i.i.d.r.v.’s and X1 is distributed like F . It can easily be

verified that Mn
p→ xF , where xF = sup{x ∈ R,F (x) < 1} is the right end point of

the d.f. F . Further {Mn, n ≥ 1} is an increasing sequence, hence, Mn
a.s.→ xF . This is

similar to what we observed for partial sum sequence {Sn} in the beginning of this

chapter. Hence, under proper normalization, if a limit distribution can be derived for

Mn as in the case of the central limit problem, that limit distribution can be used

as an approximate model for Mn. Fisher and Tippet (1928) proved that if a limit

distribution exists for maximum under proper normalization then it is one among

the three classes of distributions known as the extreme value distributions (EVD).

The theorem is known as the Extremal Types Theorem (ETT) or the Fisher-Tipett

theorem in the statistics literature, which we state below. For the latest available

detailed proof see Leadbetter et al. (1983).

Theorem 1.2.1 (Extremal Types Theorem): Let {Xn, n ≥ 1} be a sequence

of i.i.d.r.v.’s and Mn = max(X1, X2, . . . , Xn). If there exist sequences of norming

constants {an > 0}, {bn}, and a non-degenerate d.f. G such that,

P{Mn − bn

an

≤ x} w→ G(x), (1.2.2)

then G, in equation 1.2.2, is one among the following three classes of distributions:

Type I : G1(x) = exp(− exp(−x)),−∞ < x < ∞

Type II : G2(x) =

 0 if x≤ 0,

exp(−x−α) if x>0, α > 0 .

T ype III : G3(x) =

 exp(−(−x)α) if x≤ 0,

0 if x>0, α > 0 .

which are the Type I, Type II, and Type III extreme value distributions.
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The Type I, Type II, and Type III extreme value distributions are also known as

the Gumbel distribution, the Frechet distribution and the reverse-Weibull distribution

respectively in the statistics literature. The above three types of distributions are the

standard extreme value distributions. The corresponding location-scale family can be

derived by replacing x in Theorem 1.2.1 by x−µ
σ

, which are given below.

G1(x) = exp(− exp(−[
x− µ

σ
]))−∞ < x < ∞

G2(x) =

 0 if x−µ
σ

≤ 0,

exp(−[x−µ
σ

]−α) if x−µ
σ

>0, α > 0 .

G3(x) =

 exp(−(−[x−µ
σ

])α) if x−µ
σ

≤ 0,

0 if x−µ
σ

>0, α > 0 .

The Extremal Types Theorem suggests one of the three probable asymptotic mod-

els for maxima of large data set, and is extensively used in many real life situations

(see for example Gumbel (1958), Kotz and Nadarajah(2000)). The disadvantage of

this model is that it is not easy to identify which one of these three distributions is

a good model for a given data. Hence, one need to fit these three models and find

the best model, if it exists. To overcome this difficulty, von-Mises and Jenkinson

suggested an alternative approach by incorporating the three extreme value distri-

butions into a single class by introducing a shape parameter in the model. The new

model is known as the generalized extreme value (GEV) distribution. That is, the

extremal types theorem suggests GEV distribution as a model for the maximum of

sequence {Xn} of i.i.d.r.v.’s. In this thesis we denote this model as GEV(max), we

define GEV(max) model below.

Definition 1.2.1 A random variable X is said to follow the Generalized Extreme
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Value distribution (GEV(max)) if its d.f. Gη(x) is given by,

Gη(x) =

 exp{−(1 + η[x−µ
σ

])−1/η} if η 6= 0

exp{−exp(−[x−µ
σ

])} if η =0

where 1 + η[x−µ
σ

] > 0. So the supports are
x−µ

σ
> −η−1 for η > 0

x−µ
σ

< −η−1 for η <0

x−µ
σ
∈ R for η =0.

The shape parameter η is known as the extreme value index. For η = 0, the

GEV distribution becomes Type I extreme value distribution; for η < 0, it is the

Type II extreme value distribution; and for η > 0, it is the Type III extreme value

distribution given in Theorem 1.2.1. The proof of Theorem 1.2.1 consists of two

important stages. First stage is to identify the limit distribution G of the normalized

maxima in equation 1.2.2 as a class having a stability property called max-stability.

The second stage consists of identifying this class exactly as the class of GEV(max)

distributions. The property of max-stability will be used quite often in the forgoing

chapters of this thesis, hence, we define it below.

Definition 1.2.2 A non-degenerate random variable X is said to be max-stable if,

for each n = 2, 3, . . . there are constants an > 0 and bn such that

max(X1, X2, . . . , Xn)
d
= (anX + bn).

where X1, X2, . . . , Xn are same copies of X.

Example 1.2.1 Let X be a random variable which follows standard Gumbel distri-

bution given by,

G(x) = exp{− exp(−x)},−∞ < x < ∞.
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Then X is max-stable since there are constants an = 1 and bn = log n such that, for

every n,

max(X1, X2, . . . , Xn)
d
= (anX + bn).

where X1, X2, . . . , Xn are same copies of X.

The GEV(max) model can be fitted to a given data by first dividing data set in

to number of blocks of appropriate sizes (for example daily, weekly, monthly, yearly,

etc.) and calculate the maximum for each block. To the new sequence of maxima the

GEV(max) distribution can be fitted. The fitted model can be used for prediction

or any other statistical purposes. The model fitted has the disadvantage that most

of the observation in the data are discarded, and only one observation is considered

in each block. Hence, data is not properly used for fitting GEV(max) model. To

overcome this disadvantage, another alternative model is suggested in the literature

which is known as the rth largest order statistics model. In the next subsection we

introduce this model.

1.2.2 The r Largest Order Statistics Model

This model is an extension of the maximum approach, idea is to use the r largest

observations in each block, where r > 1. The mathematical result on which this lies

is that, equation 1.2.2 can be easily extended to the joint distribution of the r largest

order statistics, as n →∞ for a fixed r > 1, and this may therefore be used as a basis

of statistical study. The following theorem describes the mathematical model.

Theorem 1.2.2 Let X1:n ≥ X2:n ≥ · · · ≥ Xr:n ≥ · · · ≥ Xn:n be order statistics of

i.i.d sample of size n, an > 0 and bn be normalizing constants in equation 1.2.2, then

(an[X1:n − bn], . . . , an[Xr:n − bn])
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converges in distribution to a limiting random vector (Y1, Y2, . . . , Yr), whose density

is

h(y1, . . . , yr) = σ−r. exp{−(1 + η
yr − µ

σ
)−1/η − (1 +

1

η
)
∑
j=1

r log(1 + η
yj − µ

σ
)}.

For more details about this result and proof, see Leadbetter et al. (1983). To fit

this model to a given data, first divide the data into blocks of appropriate sizes (for

example daily, weekly, monthly, yearly, etc.) and calculate the maximum, 2nd maxi-

mum, ..., rth maximum for each block. To the new sequence of r dimensional vector

maxima the distribution given in Theorem 1.2.2 can be fitted. The fitted model can

be used for prediction or any other statistical purposes. Such models are extensively

used in statistics. For example see Smith (1986) and Tawn (1988) on hydrological

extremes, Robinson and Tawn (1995) and Smith (1997) for a novel application to the

analysis of athletic records. The model for extremes suggested in Thereom 1.2.2 has

the disadvantage that choosing r maximum in each block is not required or there are

more large values in some blocks. Hence, data is not properly used for fitting this

model as well. Another alternative model suggested in the litteratute for extreme

to overcome this disadvantage is to fix a threshold ’u’ and take all the observations

above this threshold, which we describe in the next subsection.

1.2.3 The Peak Over Threshold (POT) Model

The theoretical aspects of this model have been suggested by two independent works

namely Belkama and de Haan (1974) and Pickands (1975). The model can be ex-

plained in the following theorem.

Theorem 1.2.3 let {Xn, n ≥ 1} be a sequence of i.i.d.r.v.’s with common continuous

distribution function F (x). Suppose there exists a pair of sequences {an} and {bn}
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with an > 0 for all n and a non-degenerate distribution function G(x) such that

lim
n→∞

P{(Mn − bn)/an ≤ x} = lim
n→∞

F n(anx + bn) = G(x) (1.2.3)

for all x at which G(x) is continuous. Let

Pu(x) = P{X > u + x|X > u} =
1− F (u + x)

1− F (u)
, (1.2.4)

Then, under proper normalization, Pu(x) can be approximated by generalized Pareto

(GP) distribution, when u → xF . Also let {Xn, n ≥ 1} be a sequence of i.i.d.r.v.’s

with common continuous distribution function F (x). Suppose the observations above

exceedances of a level u has generalized pareto as a limit distribution. Then there exist

a pair of sequence {an} and {bn} with an > 0 for all n such that Mn−bn

an
converges to

a random variable with GEV distribution.

For proof, see Pickands (1975). Hence, GEV (max) model and generalized Pareto

model are two equivalent models for extremes. The generalized Pareto (GP) distri-

bution is given below.

Definition 1.2.3 A random variable X is said to follow the generalized Pareto (GP)

distribution if its distribution function is given by,

Qη(x) =

 1− {(1− ηx)1/η} if η 6= 0

1− exp{(−x)} if η =0.

and the supports are 
x > η−1 for η < 0

x < η−1 for η >0

x ∈ R for η =0.

where η is the shape parameter.

12



One can extend this class by adding location and scale parameter. Like the

GEV(max) distribution the GP distribution possesses a characterizing property of

stability called POT stability w.r.t non-random sample size. Below we define POT

stability for non-random sample sizes.

Definition 1.2.4 A non-degenerate random variable X is said to be POT-stable if,

for each u > 0 there are constants au > 0 and bu such that

(X − u)/X > u
d
= (auX + bu).

To fit the POT model or the GP model to a given data, first fix a threshold

u and take all the observations which are greater than u. To the new sequence of

observations, which are greater than u, the GP distribution can be fitted. The fitted

model can be used for prediction or any other statistical purposes. A good application

of GP model can be seen in Smith (2001) for air pollution data.

Since min(X1, X2, · · · , Xn) = −max(−X1,−X2, · · · ,−Xn) the asymptotic dis-

tribution for minimum can be derived from the limit distribution of maximum as

1−G(−x), where G is the GEV(max) distribution. The following theorem describes

the mathematical model.

Theorem 1.2.4 Let {Xn, n ≥ 1} be a sequence of i.i.d.r.v.’s and mn = min(X1, X2,

. . . , Xn). If there exist sequences of norming constants {an > 0}, {bn}, and a non-

degenerate d.f. G such that,

P{mn − bn

an

≤ x} w→ G(x), (1.2.5)

then G is one among the following three classes of distributions:

G1(x) = 1− exp(− exp([
x− µ

σ
])),−∞ < x < ∞

13



G2(x) =

 0 if x−µ
σ

≤ 0,

1− exp([x−µ
σ

]−α) if x−µ
σ

>0, α > 0 .

G3(x) =

 1− exp(−([x−µ
σ

])α) if x−µ
σ

≤ 0,

0 if x−µ
σ

>0, α > 0 .

As in the case of maximum these three distributions can be incorporated into a

single class namely the Generalized extreme value distribution for minima, which we

define below.

Definition 1.2.5 A random variable X is said to follow generalized extreme value

distribution of minima (GEV(min)) if its d.f. Gη(x) is given by

Hη(x) =

 1− exp{−(1− ηx)−1/η} if η 6= 0

1− exp{−exp(x)} if η =0.

where 1− ηx > 0. So the supports are
η−1 > x for η > 0

η−1 < x for η <0

x ∈ R for η =0.

One can introduce the related location-scale family Hη by replacing the argument

x in Definition 1.2.5 by x−µ
σ

for µ ∈ R and σ > 0. The support has to be adjusted

accordingly. That is,

Hη(x) =

 1− exp{−(1− η[x+µ
σ

])−1/η} if η 6= 0

1− exp{−exp(−[x+µ
σ

])} if η =0.

14



where 1− η[x+µ
σ

] > 0. So the supports are
x−µ

σ
< η−1 for η > 0

x−µ
σ

> η−1 for η <0

x−µ
σ
∈ R for η =0.

The largest order statistics model and the peak over threshold model can also be

extended to minima using similar argument. For details see Leadbetter et al. (1983).

1.3 Objective of this Study

The three models of extremes introduced in Section 1.2 are based on the assumption

that the limit distribution of maxima exists. These three models have extensively

been used in many contexts, for details see Smith (2001) and de Haan and Ferreira

(2006). The extreme moment of share market price is another field of application

of the three models of extremes described in this chapter. One should expect the

generalized extreme value model or other equivalent models described above for the

extremal behavior of prices of shares. However, Gettinby et al. (2004) shows that

generalized logistic (GL) distribution (see Definition 3.2.7), introduced by Hosking,

gives a better fit for extreme analysis of daily returns of the FT All share index

(London Stock Exchange) than the generalized extreme value distribution. Tolikas

and Brown (2006) and Tolikas et al. (2007) again propound that in majority of

cases (especially minima) an adequate fit for extreme daily returns is generalized

logistic distribution for Athens Stock Exchange and German Stock Exchange data

respectively compared to generalized extreme value distribution. But no theoretical

basis for this claim is established yet in the statistics literature. The main objective

of this research work is to investigate whether there is any theoretical basis for the

share market data evidences pointed out above. From the three studies of share
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market data analysis reported above, we point out some important conclusions; they

all analyzed share market data up to moderately high time intervals (or blocks), such

as two years. Hence, the rate of convergence in extremal types theorem is very poor

(or unapplicable in modeling), compared to some other models, in financial sector.

As described above, the main objective of this study is to investigate whether there

is any theoretical basis for the data evidences pointed out in Gettinby et al. (2004),

Tolikas and Brown (2006) and Tolikas et al. (2007). We investigate the theoretical

importance of the generalized logistic distribution in extreme value modeling. In

this investigation we first identify the general class of functions where some sort of

stability property holds. If so what is its asymptotic distribution? This is the question

we answer in Chapter 2. Chapter 2 is completely based on Nidhin and Chandran

(2009a). In Chapter 3, the main theorem of Chapter 2 is used to identify the statistic

for which the asymptotic distribution is the generalized logistic distribution. The

form of stability of maximum is also identified in Chapter 3. In Chapter 4, we study

the extremal behavior of BSE sensex data. Among the various models available for

extremes we found that the generalized logistic distribution is a good model for both

the maximum and the minimum. The main tool used in Chapter 4 is the Anderson-

Darling statistic. In Chapter 5, we introduce a goodness fit measure using L-moment

ratio’s and compare it with the existing goodness of fit statistics using simulation.

We use this measure to identify that the generalized logistic distribution is the best

fitted distribution to the BSE sensex data. Chapter 6 gives an over all summary of

the thesis and some important problems for future work.
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Chapter 2

Limit Theory of General Functions

of i.i.d.r.v.’s

2.1 Introduction

In Chapter 1, we described stability property of maximum, minimum and sum with

non-random sample sizes. Moreover, we saw that, under proper normalization, the

statistic Mn
w→ Z, where Z is max-stable and Sn

w→ Z∗, where Z∗ is sum-stable. In

this Chapter, we investigate the convergence results for more general functions which

includes Mn, mn and Sn as special cases. Asymptotic distribution of such general

functions under proper normalization are derived. The central limit theorem and

extremal types theorem are derived as special cases. As a consequence of the main

result of the chapter, the limit distribution of random sums, random maximum, and

random minimum are also derived. The contents of this Chapter is based on Nidhin

and Chandran (2009a).
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Let {Xn, n ≥ 1} be a sequence of independent and identically distributed random

variables defined on some probability space (Ω, Ψ, P ). Let g(X1, X2 , . . . , Xn(p)) be

a Borel-measurable function of X1, X2 , . . . , Xn(p), where n(p) is a positive integer

valued random variable, independent of {Xi}, which depends on the parameter p or

n(p) is a fixed integer which belongs to the set of natural numbers. In particular,

we denote n when we consider fixed sample size, N for random sample size and for

general case we use n(p), throughout this chapter.

Definition 2.1.1 Let {Xn, n ≥ 1} be a sequence of i.i.d.r.v.’s with X1 ∼ F and g be

a Borel function of X1, X2 , . . . , Xn(p). For every n(p) ≥ 1, define dn(p) : (−∞,∞)×

[0, 1] → (−∞,∞)× [0, 1] such that

(x, Fg(X1,X2,··· ,Xn(p))(x)) = dn(p)[(x, F (x))] , ∀ x ∈ <. (2.1.1)

The existence of such dn(p) is guaranteed because if A and B are two sets with

same cardinality then there exist a bijective function from A on to B. Below we give

an example to such a function dn(p) for fixed n(p) = n.

Example 2.1.1 Let {Xn, n ≥ 1} be a sequence of i.i.d.r.v.’s. Let g(X1, X2, · · · , Xn(p)) =

max(X1, X2, · · · , Xn) so that

(x, Fmax(X1,X2,··· ,Xn)(x)) = dn(x, F (x)) = (x, (F (x))n).

Then dn(x, y) = (x, yn).

Now, let F be the class of all graphs of distribution functions, G be a non-

degenerate distribution function which belongs to F and define the class F∗, w.r.t

g, such that,

F∗ = {(F, {an(p) > 0}, {bn(p)}) | dn(p)(x, F (an(p)x + bn(p))) → (x, G(x)), F ∈ F}.
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Instead of taking class of distribution functions we take the class of graph of distri-

bution functions since there is a one to one relation between the class of d.f.s and the

class of graph of d.f.s. We use the notation Ft,a,b for a member (Ft, {an(p) > 0}, {bn(p)})

in F∗.

Example 2.1.2 Let {Xn, n ≥ 1} be a sequence of i.i.d.r.v.’s with d.f. F such that,

F (x) =

 1− exp(−x), if x > 0,

0, if x < 0.

Let g(X1, X2, . . . , Xn(p)) = max(X1, X2, · · · , Xn). Then for an = 1 and bn = log n,

Leadbetter et al. (1983, page 20) showed that

dn(p)[x, F (x + log n)] = (x, F n(x + log n)) = (x, [1− e−x+log n]n)

converges to G, where G is the Type I extreme value distribution given by Gumbel

with d.f.,

G(x) = exp{− exp(−x)},−∞ < x < ∞.

Hence, ((x, 1− e−x), {1}, {log n}) is a member in F∗.

Example 2.1.3 Let {Xn, n ≥ 1} be a sequence of i.i.d.r.v.’s which follows standard

Bernoulli distribution with parameter p. Let g(X1, X2, . . . , Xn(p)) =
∑n

i=1 Xi, that

is, g(X1, X2, . . . , Xn(p)) is the number of successes in n trials. Then for an =
√

npq

and bn = np, by De Moivre-Laplace central limit theorem (see Billingsly, 1968, p.

1), F∑n
i=1 Xi

(
√

npq x + np) converges to standard normal distribution, which implies

((x, F∑n
i=1 Xi

(x)), {√npq}, {np}) is a member in F∗.

For g(X1, X2, . . . , Xn(p)) = Sn and g(X1, X2, . . . , Xn(p)) = Mn, the limit d.f. of g

is stable in some sense as described in Chapter 1. For general function g, we define a

stability property in the next section.
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2.2 Stability Property of g

In this section we introduce a stability property for the general function g. We also

give some examples to illustrate the stability property when g takes special forms.

Definition 2.2.1 Let {dn(p)} be a given one to one functions as described in Defini-

tion 2.1.1. We say that F1,a,b ∈ F∗ satisfies stability property for the given functions

{dn(p)} if, for each n(p),

dn(p)(x, F1(an(p)x + bn(p))) = (x, F1(x)) , ∀ x ∈ <.

A member F1,a,b ∈ F∗ is a stable member in F∗ if it satisfies the stability property

as described in Definition 2.2.1. The following remark describes the stability property

in Definition 2.2.1 in terms of the general function g. We also give some examples.

Remark 2.2.1 Let {Xn} be a sequence of i.i.d.r.v.’s and g be a Borel function of

X1, X2, . . . , Xn(p). Then we say that {Xn, n ≥ 1} satisfies stability property for the

given function g if, for every n(p),

Fg(X1,X2,··· ,Xn(p))(an(p)x + bn(p)) = FX1(x) , ∀ x ∈ <.

Example 2.2.1 (Feller, (2000)) Let {Xn, n ≥ 1} be a sequence of i.i.d.r.v.’s with X1

follows normal distribution with mean zero. Take g(X1, X2, . . . , Xn(p)) =
∑n

i=1 Xi,

∀n ≥ 1. The sequence {Xn, n ≥ 1} satisfies stability property as described in Remark

2.2.1 w.r.t the function g, since ∃ sequences {
√

n} and {0} such that, for each n,

F∑n
i=1 Xi

(
√

nx) = FX1(x) , ∀ x ∈ <.

Example 2.2.2 (Leadbetter et al., (1983)) Let {Xn, n ≥ 1} be a sequence of i.i.d

random variables with X1 follows standard Gumbel distribution given by,

G(x) = exp{− exp(−x)},−∞ < x < ∞.

20



Let g(X1, X2, . . . , Xn(p)) = max(X1, X2, . . . , Xn). Then {Xn, n ≥ 1} satisfies stability

property as described in Remark 2.2.1 w.r.t the function g, since ∃ sequences {1} and

{log n} such that, for every n,

Fmax(X1,X2,...,Xn)(x + log n) = FX1(x) , ∀ x ∈ <.

Example 2.2.3 (Voorn, (1987)) Let {Xn, n ≥ 1} be a sequence of i.i.d random

variables and X1 follows logistic distribution. Let N be a random variable, indepen-

dent of {Xi}, and N follows geometric distribution. Take g(X1, X2, . . . , Xn(p)) =

max(X1, X2, . . . , XN). Then {Xn, n ≥ 1} satisfies stability property as described in

Remark 2.2.1 w.r.t the function g, since ∃ sequences {1} and {b > 0}, depends on N ,

such that

Fmax(X1,X2,...,XN )(x + b) = FX1(x) , ∀ x ∈ <.

2.3 Classes of Domain of Attraction

In this section, we identify the class of members converging to stable members dis-

cussed in Definition 2.2.1. This is identified by defining a relation on the class F∗ and

proving that this relation is an equivalence relation.

Consider the class F∗ defined in Section 2.1, we define a relation M on F∗ and

show that M is an equivalence relation.

Definition 2.3.1 Let F1,a,b, and F2,l,m ∈ F∗. We say that F1,a,b and F2,l,m are M

related (denoted by F1,a,b
M∼ F2,l,m) if for all ε > 0, there exists a N0 ∈ N (the set of

natural numbers), independent of x, such that for every n(p) ≥ N0,

| dn(p)(x, F1(an(p)x + bn(p)))− dn(p)(x, F2(ln(p)x + mn(p))) | < ε. (2.3.2)
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The following lemma shows that the relation M is an equivalence relation on F∗.

Lemma 2.3.1 The relation M is an equivalence relation on F∗.

Proof : Let F1,a,b ∈ F∗. Since

dn(p)(x, F1(an(p)x + bn(p))) = dn(p)(x, F1(an(p)x + bn(p))),∀x and n(p)

the relation is reflexive. Also let F1,a,b, and F2,l,m ∈ F∗ and F1,a,b
M∼ F2,l,m. That is

for n(p) ≥ N0,

| dn(p)(x, F1(an(p)x + bn(p)))− dn(p)(x, F2(ln(p)x + mn(p))) | < ε

implies

| dn(p)(x, F2(ln(p)x + mn(p)))− dn(p)(x, F1(an(p)x + bn(p))) | < ε,

for n(p) ≥ N0, or F2,l,m
M∼ F1,a,b so that the relation is symmetric. Now let F1,a,b, F2,l,m

and F3,e,f ∈ F∗, such that F1,a,b
M∼ F2,l,m and F2,l,m

M∼ F3,e,f . That is, for every ε > 0

there exist N1, N2 ∈ N such that for every n(p) ≥ N1,

| dn(p)(x, F1(an(p)x + bn(p)))− dn(p)(x, F2(ln(p)x + mn(p))) | < ε

2

and for n(p) ≥ N2,

| dn(p)(x, F2(ln(p)x + mn(p)))− dn(p)(x, F3(en(p)x + fn(p))) | < ε

2
.

Then for R = max{N1, N2} and for every n(p) ≥ R,

| dn(p)(x, F1(an(p)x + bn(p)))− dn(p)(x, F3(en(p)x + fn(p))) | < ε.

that is M is transitive. Hence M is an equivalence relation on F∗. �

Hence, relation M on F∗ partitions F∗ into equivalent classes in such a way that if

F1,a,b, F2,l,m belongs to same class then F1,a,b, F2,l,m are M related and F1,a,b, F2,l,m
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belongs to different classes are not M related. Next we prove that within each equiv-

alent class all members of the class converge to a unique stable member, if a stable

member exists within that class. We prove this in the following two lemmas.

Lemma 2.3.2 Let F0 be one of the equivalent class introduced by the relation M.

Let F1,a,b ∈ F0 satisfies the stability property for a given sequence of function {dn(p)}.

That is,

dn(p)(x, F1(an(p)x + bn(p))) = (x, F1(x)), ∀ x ∈ < and ∀ n(p).

Then for all F2,l,m ∈ F0,

dn(p)(x, F2(ln(p)x + mn(p))) → (x, F1(x)), as n(p)
p→∞.

Proof : Given that F1,a,b, F2,l,m ∈ F0 where F0 is one of the class introduced by the

relation M. Since F2,l,m ∈ F0 then for all ε > 0, ∃ N3 ∈ N such that for n(p) ≥ N3,

|dn(p)(x, F1(an(p)x + bn(p)))− dn(p)(x, F2(ln(p)x + mn(p)))| < ε.

But

dn(p)(x, F1(an(p)x + bn(p))) = (x, F1(x)), ∀ x ∈ < and ∀ n(p).

The above two equation implies ∀ ε > 0 ∃ N3 such that for n(p) ≥ N3,

|dn(p)(x, F2(ln(p)x + mn(p)))− (x, F1(x))| < ε.

Therefore,

dn(p)(x, F2(ln(p)x + mn(p))) → (x, F1(x)), as n(p)
p→∞ and ∀ x. �

Hence, if there exists a stable member in an equivalent class then all members of

that class converges to the same stable member. The following lemma shows that the

convergent member is unique in every class whenever there exists one such member.
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Lemma 2.3.3 Let F0 be a nonempty equivalent class introduced by relation M which

contains a stable member. Then F0 has one and only one stable member.

Proof : Given F0 is one of the class introduced by the relation M. If possible let

F1,a,b ∈ F0 and F2,e,f ∈ F0 and satisfy the stability property. Then

dn(p)(x, F1(an(p)x + bn(p))) = (x, F1(x)), ∀ x ∈ < and ∀ n(p).

Now assume F2,e,f ∈ F0 satisfies stability property then

dn(p)(x, F2(en(p)x + fn(p))) = (x, F2(x)), ∀ x ∈ < and ∀ n(p).

Since F1,a,b, F2,e,f ∈ F0, for all ε > 0, ∃ N0 ∈ N such that for every n(p) ≥ N0,

|dn(p)(x, F1(an(p)x + bn(p)))− dn(p)(x, F2(en(p)x + fn(p)))| < ε,

which gives ∀ ε > 0, ∃ N0 ∈ N such that,

|F1(x)− F2(x)| < ε when n(p) > N0.

That is,

|F1(x)− F2(x)| < ε, ∀ε > 0

which gives F1(x) = F2(x) for all x. �

Therefore for each equivalent class there exists one and only one stable member if

it exists, and all other members converges to the stable member. This class we call as

the domain of attraction of that stable member, if it exist. Motivated by this below

we define domain of attraction of a stable member G.

Definition 2.3.2 Let dn(p) be given one to one functions. For G ∈ F and F0 ⊆ F∗,

F0 is the domain of attraction of G if for every F1,a,b ∈ F0,

dn(p)(x, F1(an(p)x + bn(p))) → (x, G(x)) as n(p)
p→∞.

When n(p) = n, non-random, then n(p)
p→∞ may be interpreted as n →∞.
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All the convergence results described in this section are under the assumption that

a stable member exist in each class. In the next section we identify the condition on

g such that each class has a stable member.

2.4 Existence of Stable Member

In this section we define a property Q of g. Then show that every equivalent class,

introduced by relation M, contains a stable member, if g satisfies the Q property. A

procedure followed in de Haan (1976) and Leadbetter et al. (1983) is used to prove

results in this section. The following lemma shows that d−1
n(p)(x, F1(x)) always exists

and is a graph of a distribution function.

Lemma 2.4.1 Let {dn(p)} be given functions defined in equation (2.1.1), and {dn(p)}

has the property that dn(p)’s are one to one, on to and monotone. Let F (x) be a dis-

tribution function. Then d−1
n(p)(x, F (x)) always exists and is a graph of a distribution

function.

Proof : Clearly, d−1
n(p)(−∞, 0) = (−∞, 0) and d−1

n(p)(∞, 1] = (∞, 1). Now dn(p) is mono-

tone gives d−1
n(p)(x, F1(x)) is non-decreasing and right continuous. That is, d−1

n(p)(x, F1(x))

is a distribution function. �

Next we define a property Q of g.
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Definition 2.4.1 Let g(x1, x2 , . . . , xn(p)) be a Borel-measurable function of x1, x2

, . . . , xn(p), then g satisfies property Q if,

g(x1, x2, · · · , xn(p)) = g{g(x1, x2, · · · , xn1(p)),

g(xn1(p)+1, xn1(p)+2, · · · , x2n1(p)),

· · · , g(x(n2(p)−1)n1(p)+1, x(n2(p)−1)n1(p)+2, · · · , xn2(p)n1(p))}

where n(p), n1(p) and n2(p) are integer valued random variables or integers such that

P{n(p) = n1(p)n2(p)} = 1.

Below we give functions that are commonly used in statistics which satisfy the

property Q defined above.

Example 2.4.1 Let {Xi} be a sequence of i.i.d.r.v. and

g(X1, X2, ..., Xn(p)) = max(X1, X2, · · · , Xn),

where n is a natural number. For a special case take n1(p) = 2, n2(p) = 2 and for

X1, X2, X3, X4, we get,

max(X1, X2, X3, X4) = max{max(X1, X2), max(X3, X4)}.

Hence, g(X1, X2, ..., Xn(p)) = max(X1, X2, · · · , Xn) satisfies property Q.

Remark 2.4.1 Let {Xi} be a sequence of i.i.d.r.v.’s then
∑n

i=1 Xi,
∏n

i=1 Xi, are other

examples of g satisfying property Q. For N integer valued r.v.’s, max(X1, X2, · · · , XN),

and
∑N

i=1 Xi, also satisfy Q. Here max(X1, X2, . . . , XN) satisfies the property Q,

since given that P{n(p) = n1(p)n2(p)} = 1 and w.l.o.g. if n(p) take the value 10 then

n1(p) and n2(p) should be 5 and 2 or 2 and 5 or 10 and 1 or 1 and 10 respectively

and hence the property follows.
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Now the following result gives a property of dn(p) from property Q of g.

Lemma 2.4.2 Let g satisfies property Q and {dn(p)} be defined by equation (2.1.1).

Then

dn(p)m(p)(x, F (x)) = dn(p)dm(p)(x, F (x)) ∀x and ∀ m(p), n(p).

Proof : Let {Xn, n ≥ 1} be i.i.d r.v’s and g(X1, X2, . . . , Xn(p)) be a Borel measurable

function. Now for n ≥ 1, define

Yn = g(X(n−1)m(p)+1, X(n−1)m(p)+2, · · · , Xnm(p))

then {Yn, n ≥ 1} is also a sequence of i.i.d r.v’s. Let P{X1 ≤ x} = F (x) and

P{Y1 ≤ x} = G(x). Then

(x, P{g(Y1, Y2, · · · , Yn(p)) ≤ x}) = dn(p)(x, G(x)).

Which is same as,

(x, P{g[g(X1, X2, · · · , Xm(p)), g(Xm(p)+1, Xm(p)+2, · · · , X2m(p)), · · · ,

g(X(n(p)−1)m(p)+1, X(n(p)−1)m(p)+2, · · · , Xn(p)m(p))] ≤ x}) = dn(p)(x, G(x)).

But we know that

(x, G(x)) = (x, P{Y1 ≤ x}) = (x, P{g(X1, X2, · · · , Xm(p)) ≤ x})

= dm(p)(x, F (x))

Hence,

(x, P{g[g(X1, X2, · · · , Xm(p)), g(Xm(p)+1, Xm(p)+2, · · · , X2m(p)),

· · · , g(X(n(p)−1)m(p)+1, X(n(p)−1)m(p)+2, · · · , Xn(p)m(p))] ≤ x})

= dn(p)dm(p)(x, F (x)).
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But (x, P{g(X1, X2, · · · , Xn(p)m(p)) ≤ x}) = dn(p)m(p)(x, F (x)). So by property Q

dn(p)m(p)(x, F (x)) = dn(p)dm(p)(x, F (x)) ∀x and ∀ m(p), n(p). �

The next two lemmas establish the existence of stable member in each equivalent

class when g satisfies property Q.

Lemma 2.4.3 If there is a sequence {Fn} of d.f ’s and constants {an(p) > 0} and

{bn(p)} such that

(x, Fn(p)(an(p)k(p)x + bn(p)k(p)))
w→ d−1

k(p)(x, Ft1(x)). (2.4.3)

for any k(p). Then there exist some sequence {en(p) > 0} and {fn(p)} such that Ft1,e,f

satisfies stability property.

Proof : If equation (2.4.3) holds for each k(p) then by Khintchine’s theorem,

d−1
k(p)(x, Ft1(x)) = (x, Ft1(en(p)x + fn(p))) ∀ x

for some values {en(p) > 0} and {fn(p)}. Which implies

(x, Ft1(x)) = dk(x, Ft1(en(p)x + fn(p))).

So that Ft1,e,f satisfies stability property. �

From this point onwards we consider weak convergence since we have used Khint-

chine’s theorem.

Lemma 2.4.4 Let F0 be one of the equivalent class introduced by the relation M. If

for Ft2,a,b ∈ F0 has the following convergence ,

dn(p)(x, Ft2(an(p)x + bn(p)))
w→ (x, Ft1(x)).

Then there exist sequences {en(p) > 0} and {fn(p)} such that Ft1,e,f satisfies stability

property.
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Proof : Given that there exist atleast one Ft2,a,b such that

dn(p)(x, Ft2(an(p)x + bn(p)))
w→ (x, Ft1(x)).

Which implies

dn(p)k(p)(x, Ft2(an(p)k(p)x + bn(p)k(p)))
w→ (x, Ft1(x)).

for every k = 1, 2, · · · . By using Lemma 2.4.2 we get

dk(p)dn(p)(x, Ft2(an(p)k(p)x + bn(p)k(p)))
w→ (x, Ft1(x)).

That is,

dn(p)(x, Ft2(an(p)k(p)x + bn(p)k(p)))
w→ d−1

k(p)(x, Ft1(x)).

Putting dn(p)(x, Ft2) = (x, Fn(p)) we get

(x, Fn(p)(an(p)k(p)x + bn(p)k(p)))
w→ d−1

k (x, Ft1(x)).

and by Lemma 2.4.3 there exist sequence {en(p) > 0} and {fn(p)} such that Ft1,e,f

satisfies stability property. �

Hence for every equivalent class of F∗ there exists a unique stable member, if g

satisfies property Q.

2.5 Main Theorem

In this section we prove the limit theorem of general functions of i.i.d.r.v.’s which

posses property Q.

Theorem 2.5.1 Let g(x1, x2, . . . , xn(p)) be a Boral-measurable function of x1, x2, . . . ,

xn(p) such that g satisfies property Q, and n(p) is independent of {Xi}. Let X be a
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class of random variables such that for all X ∈ X there exist a sequences {an(p) > 0}

and {bn(p)} such that

Fg(X1,X2,··· ,Xn(p))(an(p)x + bn(p)) = FX1(x), ∀ x ∈ < and ∀ n ∈ N,

where Xi are independent copies of X. Let {Yn, n ≥ 1} be any i.i.d sequence of r.v’s

such that

Fg(Y1,Y2,··· ,Yn(p))(en(p)x + fn(p))
w→ FZ(x)

for some {en(p) > 0} and {fn(p)}. Then Z is either degenerate r.v or Z ∈ X.

Proof : By Lemma 2.4.4 we get if Fg(Y1,Y2,··· ,Yn(p))(en(p)x + fn(p)) converges to a non-

degenerate function FZ(x) then there exist a sequence {an(p) > 0} and {bn(p)} such

that

Fg(Z1,Z2,··· ,Zn)(an(p)x + bn(p)) = FZ(x), ∀ x ∈ < and ∀ n(p).

where Z1, Z2, · · · are same copies of Z. Then by Lemma 2.3.2 and Lemma 2.3.3 if

Fg(Y1,Y2,··· ,Yn(p))(en(p)x +fn(p)) converges to a function FZ(x) then Z is degenerate or

Z ∈ X. �

2.6 Applications of the Main Theorem

In this section we describe the applications of Theorem 2.5.1. The Central limit

theorem and extremal types theorem are derived as special cases. We also derive the

asymptotic distribiton of sum, maximum and minimum of a random number of r.v.’s.

2.6.1 Central Limit Theorem as a Special Case

Let n(p) = n and g(X1, X2, . . . , Xn(p)) =
∑n

i=1 Xi, then g satisfies property Q as

described in Definition 2.4.1. Let X be the class of random variables which follows
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Levy-skew stable distributions. Then for all X ∈ X there exist a sequence {an > 0}

and {bn} such that, for each n,

F∑n
i=1 Xi

(anx + bn) = FX1(x), ∀ x ∈ <

where Xi are same copies of X. Now {Yn, n ≥ 1} be an i.i.d sequence of r.v’s such

that

F∑n
i=1 Yi

(cnx + dn)
w→ FZ(x)

for some {cn > 0} and {dn}. Then Z is either degenerate r.v or Z ∈ X.

2.6.2 Extremal Types Theorem as a Special Case

Let n(p) = n and g(X1, X2, . . . , Xn(p)) = max(X1, X2, ..., Xn), then g satisfies prop-

erty Q by Example 2.4.1. Let X be the class of random variables follows Generalized

Extreme Value distributions given by,

F1(x) =

 exp{−(1− kx)1/k} if k 6= 0

exp{−exp(−x)} if k =0.

and the supports are 
x > k−1 for k < 0

x < k−1 for k >0

x ∈ R for k =0.

Then for all X ∈ X there exist a sequence {an > 0} and {bn} such that

Fmax(X1,X2,··· ,Xn)(anx + bn) = FX1(x) ∀ x ∈ < and ∀ n ∈ N

where Xi are same copies of X. Now {Yn, n ≥ 1} be a sequence of i.i.d.r.v.’s and if

Fmax(Y1,Y2,··· ,Yn)(cnx + dn)
w→ FZ(x)

for some {cn > 0} and {dn}. Then Z is either degenerate r.v or Z ∈ X.

31



2.6.3 Random Sum Convergence as a Special Case

Let n(p) = N , a r.v follows geometric distribution and g(X1, X2, . . . , Xn(p)) =
∑N

i=1 Xi,

then g satisfies property Q. Let X be the class of random variables which follows

geometric stable distribution. Then for all X ∈ X there exist constants {an(p) > 0}

and {bn(p)} such that, for each n,

F∑N
i=1 Xi

(an(p)x + bn(p)) = FX1(x) ∀ x ∈ <

where Xi are same copies of X. Now {Yn, n ≥ 1} be an i.i.d sequence of r.v’s such

that

F∑n
i=1 Yi

(ln(p)x + mn(p))
w→ FZ(x)

for some {ln(p) > 0} and {mn(p)}. Then Z is either degenerate r.v or Z ∈ X.

The results discussed in subsections 2.6.1, 2.6.2 and 2.6.3 are known results that

can be seen in literature (see Feller, (2000), Leadbetter et al., (1983), and Kozubowski

and Rachev, (1999)). In the next subsection we use Theorem (2.5.1) to derive the limit

theorems of max(X1, X2, . . . , XN) and min(X1, X2, . . . , XN), where N is an integer

valued variable which follows geometric or extended geometric distribution.

2.6.4 Limit Theory of Maxima and Minima when Sample

Size is Random

Let N, X1, X2, . . . be independent random variables, X1, X2, . . . with common dis-

tribution function F. Voorn (1987) showed that if N follows geometric distribution

then Xi is max-stable w.r.t N (see Section 3.4) if and only if Xi, i = 1, 2, . . . follows

either Logistic, loglogistic or backward loglogistic distribution. Using Theorem 2.5.1,

one can derive the limit distribution of max(Y1, Y2, . . . , YN), for any sequence {Yi} of

i.i.d.r.v.’s when the limit distribution exists and N follows geometric distribution.

32



Corollary 2.6.1 Let Y1, Y2, . . . be independent and identically distributed random

variables with distribution function F . Let ZN = max(Y1, Y2, . . . , YN) where N is

an integer valued random variable which follows geometric distribution and N is in-

dependent of each Yi. Then the limit distribution of ZN after proper normalization,

if it exists, is one of the following class of distributions:

Logistic : G(x) =
1

1 + e−x
,−∞ < x < ∞

Loglogistic : G(x) =

 0 if x≤ α ,

1
1+(x−α/β)−γ if x> α .

Backward loglogistic : G(x) =

 1
1+(α−x/β)−γ if x≤ α ,

0 if x> α .

Proof : Voorn (1987) has shown that the class of max-stable distribution is either

Logistic, Loglogistic and Backward loglogistic when N is geometric random variable.

Using Theorem 2.5.1, the limit distribution of ZN under proper normalization is one

of the three distributions mentioned above. �

Similar results hold when N is an extended geometric random variable where

the limit distribution will be extended logistic, extended loglogistic and extended

backward loglogistic distribution respectively, provided N follows extended geometric

distribution.

Similarly, from Theorem 2.5.1, the limit theorem of the random minima can easily

be derived for the same N . So using Theorem 2.5.1, to derive the limit distribu-

tion of max(X1, X2, . . . , XN), when N follows a particular distribution, we need the

distributions with characterizing stability property w.r.t. the same N . To find the

distributions with stability property is simple see for example (Voorn (1987), Sreehari

(1995), Satheesh and Nair (2002), etc. ).
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2.7 Conclusion

The limit theory of general functions of i.i.d.r.v.’s presented in this chapter is a uni-

fied approach of existing important asymptotic theorems in statistics. From the main

result, it is verified that Central limit theorem, Extreme value theorem and simi-

lar important convergence theorems are special cases of a more general convergence

result. Moreover the results implies a comparatively simple way to derive limit dis-

tribution of a statistic g. That is, first derive the class of stable distributions for the

statistic g, then the limit distribution is identified as the same class. We use this idea

to prove a limit theorem of a statistic to the generalized logistic distribution in the

next chapter.
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Chapter 3

Generalized Logistic Distribution

in Extreme Value Modeling

3.1 Introduction

In Chapters 1 and 2, we saw that asymptotic or approximated model for large values

is the GEV distribution or GP distribution. However, in a number of recent share

market data analysis, various authors have empirically shown that the extreme move-

ment of share market data can adequately be modeled by the generalized logistic

distribution than GEV or GP distribution (see for example Gettinby et al. (2004),

Tolikas and Brown (2006) and Tolikas et al. (2007) to mention a few). No theoretical

basis of this claim has yet been established. In this Chapter, we try to investigate

this problem at three different angles. First note that large values always arise from

the right tail of distributions. Hence, if GEV, GP and GL distributions are good

asymptotic models for extreme data then one should expect tail equivalence of these

distributions asymptotically. In Section 3.3, we prove that the tails of GL, GEV and
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GP distributions are equivalent asymptotically. In Chapters 1 and 2, we described

that both the asymptotic models of extremes, namely, GEV and GP are stable dis-

tributions through extreme order statistics in some sense. If GL distribution is also

a model for extremes then one should expect some sort of stability property for GL

through the extreme order statistics Mn or mn. This problem is investigated in Sec-

tion 3.4. In Section 3.5, the asymptotic probability law of the extreme order statistic,

to be discussed in Section 3.4, which is stable is identified as the GL distribution.

This chapter is based on Nidhin and Chandran (2010a). Before describing the theo-

retical issues of this chapter, we introduce some basic concepts in Section 3.2, which

are used to prove the results in the forthcoming sections of this chapter.

3.2 Basic Concepts

First, we introduce the max-stability w.r.t. a discrete distribution. This is the sta-

bility of maximum of a random number of random variables.

Definition 3.2.1 Let F be a non-degenerate distribution function of a random vari-

able X and N be a discrete random variable defined on set of positive integers with

probability mass function {pn}. That is,

P{N = n} = pn, n = 1, 2, 3, . . . .

Then F is said to be max-stable w.r.t. {pn} (or r. v. X is said to be maximum stable

w.r.t. a r. v. N) if there exist real numbers aN > 0 and bN such that,

max(X1, X2, . . . , XN)− bN

aN

d
= X

where Xn, n ≥ 1 are same copies of X.

Similarly, we can define min-stability w.r.t. a discrete distribution as follows.
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Definition 3.2.2 Let F be a non-degenerate distribution function of a random vari-

able X and N be a discrete random variable defined on set of positive integers with

probability mass function {pn}. That is,

P{N = n} = pn, n = 1, 2, 3, . . . .

Then F is said to be min-stable w.r.t. {pn} (or r. v. X is said to be minimum stable

w.r.t. a r. v. N) if there exist real numbers cN > 0 and dN such that,

min(X1, X2, . . . , XN)− dN

cN

d
= X

where Xn, n ≥ 1 are same copies of X.

To prove tail equivalence of two d.f.s we need the concepts of right end point and

left end point of distributions, which are introduced below.

Definition 3.2.3 The right end point and left end point of a d.f. F denoted by xF

and yF respectively are,

xF = sup{x : F (x) < 1},

yF = inf{x : F (x) > 0}.

Another important concept used in this chapter is the tail equivalence of two

distributions, which we define below.

Definition 3.2.4 Two distributions F and G are equivalent in their right tail if they

have the same right end point, i.e. if xF = xG, and

lim
x↑xF

1− F (x)

1−G(x)
= 1.
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Definition 3.2.5 Two distributions F and G are equivalent in their left tail if they

have the same left end point, i.e. if yF = yG, and

lim
x↓yF

F (x)

G(x)
= 1.

Logistic distribution plays some important role in modeling of extremes of data.

Below we define Logistic distribution and then discuss its importance in Extreme

value theory.

Definition 3.2.6 A random variable X is said to follow standard logistic distribution

if its d.f is given by

FX(x) =
1

1 + e(−x)
, −∞ < x < ∞. (3.2.1)

The following are some important results which connects logistic distribution and

extreme value theory.

Result 3.2.1 (Voorn (1987)): Let {Xn, n ≥ 1} be a sequence of i.i.d.r.v.s with sym-

metric distribution function F (.). Let N be an integer valued random variable inde-

pendent of {Xn} and

P (N = k) = p(1− p)k−1, 0 < p < 1, k ≥ 1. (3.2.2)

Let MN = max(X1, X2, . . . , XN) and there exist constants aN and bN such that

MN − bN

aN

d
= X1

iff F is the logistic distribution function.

Using Definition 3.2.1, Result 3.2.1 tells us that the geometric random maximum

Mn of sequence of i.i.d.r.v.s {Xn} is max-stable iff the i.i.d. sequence {Xn} is such that
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X1 follows Logistic distribution. For more details about including proof see Voorn

(1987). The logistic distribution appears as a limiting distributions of maximum Mn

as described in the following result

Result 3.2.2 (Balakrishnan (1996)): Let {Xn, n ≥ 1} be a sequence of independent

and identically distributed random variables with distribution function F (.). Let N

be an integer valued random variable which are not necessarily independent of {Xn}.

Assume F is in the domain of attraction of Type 1 extreme value distribution and

lim
N→∞

P (N ≤ nz) = A(z), z > 0,

where A(z) is a proper distribution function. Then the limit distribution of MN is

logistic iff A(z) = 1− exp{−az}, a > 0.

The next result brings the connection between logistic distribution and the ex-

treme value theory through midrange. For proof see Balakrishnan (1996).

Result 3.2.3 (Balakrishnan (1996)): Let {Xn, n = 1, 2, . . .} be a sequence of in-

dependent and identically distributed random variables with X1 follows F (.). Let

Mn = max(X1, X2, . . . , Xn) and mn = min(X1, X2, . . . , Xn). Assume F is sym-

metric distribution and belongs to the domain of attraction of Type 1 extreme value

distribution then under proper normalization the midrange

ηn =
mn + Mn

2

converges to a random variable Z which follows standard logistic distribution.

In the statistics literature, there are several ways of generalizing the logistic distri-

bution given in Definition 3.2.6 ( for more details see Johnson et. al. (1995)). Among

the various generalization of logistic distribution the one given by Hosking (see Hosk-

ing and Wallis (1997)) is called the 5th generalized logistic distribution (Johnson et.
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al. (1995)). This form of generalized logistic distribution is used for modeling share

market data by various authors (see for example Gettinby et al. (2004), Tolikas and

Brown (2006) and Tolikas et al. (2007)). Motivated by this we introduce the 5th

generalized logistic distribution and call this generalization of logistic distribution as

generalized logistic (GL) distribution in this thesis.

Definition 3.2.7 A random variable is said to follow generalized logistic distribution

if its d.f. Fη(x) is given by

Fη(x) =

 1
1+(1−ηx)1/η if η 6= 0

1
1+x

if η =0.

The support is 
η−1 > x for η > 0

η−1 < x for η <0

x ∈ R for η =0.

One can introduce the related location-scale family by replacing the argument x

in Definition 3.2.7 by x−µ
σ

for µ ∈ R and σ > 0. The support has to be adjusted

accordingly. That is,

Fη(x) =


1

1+(1−η(x−µ
σ

))1/η if η 6= 0

1
1+x−µ

σ

if η =0.

The support is 
η−1 > x−µ

σ
for η > 0

η−1 < x−µ
σ

for η <0

x ∈ R for η =0.

The parameter η is known as the shape parameter of the distribution and η ∈ <. For

η = 0, F0 can be identified as the Logistic distribution given in Definition 3.2.6. For
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η > 0, and some scale transform in Defintion 3.2.7, we get Loglogistic distribution

given in Corollary 2.6.1. Similarly for η < 0, through some scale transform we get

Backward loglogistic distribution given in Corollary 2.6.1. The statistical properties

and estimation issues of the GL distribution are discussed in Johnson et. al. (1995).

3.3 Tail Equivalence of GEV, GP and GL Distri-

butions

Two important theoritical asymptotic probability models for maximum are the GEV

and GP distributions discussed in Chapter 1. However, in a number of recent papers

on share market data analysis (see Gettinby et al. (2004), Tolikas and Brown (2006)

and Tolikas et al. (2007)) ), it is verified through data that GL is also a probable model

for the analysis of fluctuation of maximum. Figure 3.1 gives the probability density

functions of standard Generalized Extreme Value distribution for maxima, standard

generalized Pareto distribution, standard generalized extreme value distribution for

minima and standard Generalized Logistic distribution. Figure 3.2 gives the dis-

tribution functions of standard generalized extreme value distribution for maxima,

standard generalized Pareto distribution, standard generalized extreme value distri-

bution for minima and standard generalized logistic distribution. Figures 3.1 and 3.2

indicate that the right tails of the GEV(max), GP and GL distributions are similar.

This clearly indicates that these three distributions are asymptotically equivalent in

their tails, which we prove in the following theorems. We use notations G, H, F, and

Q for distribution functions of GEV(max), GEV(min), GL, and GP respectively.
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Figure 3.1: ndfnf idhn
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Figure 3.2:
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Theorem 3.3.1 The distributions GEV(max) and GL are equivalent at their right

tails.

Proof : As per the assumed notation for the distributions of GEV(max) and GL, to

prove the asymptotic equivalence of their right tails, by Definition 3.2.4, it is enough

to prove that xG = xF and

lim
x→xF

1−G(x)

1− F (x)
= 1, ∀η ∈ <.

We prove this in the following three cases.

Case 1 [η = 0]. Here xG = xF = ∞,

lim
x→∞

1−G(x)

1− F (x)
= lim

x→∞

1− exp{− exp(−x)}
1− 1

1+exp(−x)

.

This is 0
0

form. So applying L- Hospital’s rule we get,

lim
x→∞

d/dx[1−G(x)]

d/dx[1− F (x)]
= lim

x→∞
[exp(−x). exp{− exp(−x)}] (1 + exp(−x))2

exp(−x)

= lim
x→∞

exp{− exp(−x)}[1 + exp(−x)]2 = 1.

Case 2. [η < 0]. Here also xG = xF = ∞,

lim
x→∞

1− Fη(x)

1−Gη(x)
= lim

x→∞

1− 1
1+(1−ηx)1/k

1− exp{−[1− ηx]1/η}
which is again 0

0
form. So applying L-Hospital’s rule,

lim
x→∞

d/dx[1− Fη(x)]

d/dx[1−Gη(x)]

= lim
x→∞

{ (1− ηx)1/η

(1− ηx)[1 + (1− ηx)1/η]

1− ηx

(1− ηx)1/η exp{−(1− ηx)1/η}

− [(1− ηx)1/η]2

[1 + (1− ηx)1/η]2.(1− ηx)

1− ηx

(1− ηx)1/η exp{−(1− ηx)1/η}
}

= 1− lim
x→∞

[
(1− ηx)1/η

1 + 2(1− ηx)1/η + (1− ηx)2/η
].

1

exp{−(1− ηx)1/η}

= 1− lim
x→∞

[
1

1
(1−ηx)1/η + 2 + (1− ηx)1/η

].
1

exp{−(1− ηx)1/η}

= 1− 1

∞+ 2 + 0
= 1.
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Case 3. [η > 0]. In this case xG = xF = 1
η
,

lim
x→1/η

1− Fη(x)

1−Gη(x)
= 1− 0

1
= 1. �

The following theorem proves the right tail equivalence of GP and GL distribu-

tions.

Theorem 3.3.2 The distributions GP and GL are equivalent at their right tails.

Proof : Using the same notation as described above, it is enough to prove that

lim
x→xF

1−Q(x)

1− F (x)
= 1, ∀η ∈ <.

Case 1 [η = 0]. Here xQ = xF = ∞,

lim
x→∞

1−Qη(x)

1− Fη(x)
= lim

x→∞

exp(−x)

1− 1
1+exp(−x)

This is 0
0

form. So applying L- Hospital’s rule we get,

lim
x→∞

d/dx[1−Qη(x)]

d/dx[1− Fη(x)]
= lim

x→∞
[exp(−x)]

(1 + exp(−x))2

exp(−x)

= lim
x→∞

[1 + exp(−x)]2 = 1.

Case 2. [η < 0]. Here also xQ = xF = ∞,

lim
x→∞

1−Qη(x)

1− Fη(x)

= lim
x→∞

[1− ηx]1/η

1− 1
1+(1−ηx)1/η

= lim
x→∞

1 + (1− ηx)1/η = 1.

Case 3. [η > 0] In this case xG = xF = 1
η
,

lim
x→1/η

1−Qη(x)

1− Fη(x)

= lim
x→1/η

[1− ηx]1/η

1− 1
1+(1−ηx)1/η

= lim
x→1/η

1 + (1− ηx)1/η = 1. �
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Similar to the behavior of the maximum, the left tails of GEV(min) and GL

are similar. We prove their asymptotic equivalence in the left tail in the following

theorem. We prove this using the same notations described above.

Theorem 3.3.3 The distributions GEV(min) and GL are equivalent at their left

tails.

Proof : It is enough to prove that

lim
x→yF

H(x)

F (x)
= 1, ∀η ∈ <.

Case 1 [η = 0]. Here yH = yF = −∞,

lim
x→−∞

H(x)

F (x)
= lim

x→−∞
[1− exp{− exp(−x)}].[1 + exp(−x)]

= 0.∞

Applying L-Hospital’s rule,

lim
x→−∞

d/dx[H(x)]

d/dx[F (x)]
= lim

x→−∞
[exp(x). exp{− exp(x)}] (1 + exp(−x))2

exp(−x)

= lim
x→−∞

[exp(x). exp{− exp(x)}][1 + 2 exp(−x) + exp(−2x)]

= lim
x→−∞

exp{− exp(−x)}[exp(2x) + 2 exp(x) + 1] = 1.[0 + 0 + 1] = 1.

Case 2. [η > 0] Here also yQ = yF = −∞,

lim
x→−∞

Hη(x)

Fη(x)
= lim

x→−∞
[1− exp{−(1− ηx)1/η}].[1 + (1− ηx)1/η]

= 0.∞
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lim
x→−∞

d/dx[Hη(x)]

d/dx[Fη(x)]

= lim
x→−∞

[
(1− ηx)1/η exp{−(1− ηx)−1/η}

1− ηx
][
{1 + (1− ηx)1/η}2(1− ηx)

(1− ηx)1/η
]

= lim
x→−∞

[
exp{−(1− ηx)−1/η}

(1− ηx)2/η
][1 + 2(1− ηx)1/η + (1− ηx)2/η]

= lim
x→−∞

exp{−(1− ηx)−1/η}[ 1

(1− ηx)2/η
+

2

(1− ηx)1/η
+ 1]

= 1.[0 + 0 + 1] = 1.

Case 3. [η < 0] In this case yQ = yF = 1
η
,

Again we get the limit is

lim
x→1/η

Hη(x)

Fη(x)
= 0.∞.

Applying L-Hospital’s rule,

lim
x→1/η

exp{−(1− ηx)−1/η}[ 1

(1− ηx)2/η
+

2

(1− ηx)1/η
+ 1]

= 1.[0 + 0 + 1] = 1. �

The distributions GEV(max) and GP are the asymptotic models for maximum.

The distribution GEV(min) is the model for minima. Since GL distribution has a

right tail equivalent to both GEV(max) and GP distributions and GL distribution has

a left tail equivalence to GEV(min) distribution, GL provides an alternative model

for both maximum and minimum. This is an advantage of the GL model. The three

models for maxima namely, the GEV(max), GP and GEV(min) distributions are

stable in terms of extreme order statistics as we see in Chapter 1. The asymptotic

tail equivalences proved in Theorems 3.3.1 - 3.3.3 also justifies the application of

GL distribution in extreme value theory. That is GL can also be used to model

extremes of data in some sense. Another consequence of Theorems 3.3.1 - 3.3.3 is

that unlike GEV(max), GEV(min), and GP, the two tails of GL may be used to model
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the extremal behavior of data. Since, the right tail of GL has tail equivalence with

GEV(max) and GP, and GEV(max) and GP are used for the analysis of maximum

of data, GL can be used to model maximum of data in some sense. Also the left tail

of GL has tail equivalence with GEV(min), and GEV(min) is used for the analysis

of minimum of data, GL can be used to model minimum of data in some sense. In

the next two sections we identify some important property of GL, which answers the

sense in which GL can be used as a model for maximum and minimum of data.

3.4 Stability Property of GL Distribution

In this section we identify another notable characteristic of GL distribution in extreme

value theory which is in terms of random sample size. We know that the distribu-

tion, GEV(max) includes three well known family of distributions namely Gumbel,

Frechet, and reverse-Weibull. This is the only family of distributions which pos-

sess a characterizing property of max-stability w.r.t fixed sample size (see Definition

1.2.2). Similarly, GEV(min) incorporates three family of distributions namely reverse-

Gumbel, reverse-Frechet, and Weibull which is the class of distributions possessing

the characterizing property of min-stability w.r.t fixed sample size (see Definition

1.2.5). Same is the situation with GP distribution. GP includes Exponential, Pareto,

and Beta distributions and is the class having the characterizing property of POT-

stability w.r.t fixed sample size (see Definition 1.2.2). In Section 3.2, we have seen

that Logistic, Loglogistic and Backward loglogistic distributions are members of the

GL family of distributions. In this section, we prove that GL distribution character-

izes the max-stability and min-stability w.r.t geometric distribution. To prove the

max-stability of GL, we use the following lemma from Voorn (1987),

Lemma 3.4.1 Let F be a non-degenerate distribution function which is maximum
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stable w.r.t {pn, n ≥ 1}. If yF = −∞, xF = ∞, and for any real constant c, and

d.f ’s G and H defined by F (x) = G(c + exp(x)) and F (x) = H(c− exp(−x)) for all

real x, then G and H are non-degenerate and maximum stable w.r.t {pn, n ≥ 1} with

yG = c and xH = c respectively.

For detailed discussion and proof of this result see Voorn (1987). In the next

theorem, we prove max-stability and min-stability of GL distribution using Lemma

3.4.1.

Theorem 3.4.1 The Generalized Logistic distribution given in Definition 3.2.7 char-

acterizes max-stability and min-stability w.r.t geometric distribution.

Proof : Let F be the distribution function of Generalized Logistic distribution with

η < 0, and location and scale parameters γ and ξ respectively. That is,

F (x) =
1

1 + (1− η(x−γ
ξ

))1/η
, γ +

ξ

η
< x < ∞.

Now take the transformation G[xG + exp(x)], we get,

F [xG + exp(x)] =
1

1 + (−η
ξ

exp(x))1/η
, −∞ < x < ∞

which is the distribution function of Logistic distribution given in Definition 3.2.6 with

σ = −η and µ = log(− ξ
η
). That is, G[xG + exp(x)] is logistic distribution function

and by Lemma (3.4.1), the distribution function F is max-stable w.r.t geometric

distribution. Similarly, for η > 0, the same proof works. That is, GL distribution

satisfies max-stability w.r.t geometric distribution. To prove that GL is the only

distribution with property of max-stability, let X be a random variable which follows

GL distribution with shape parameter η. Now take the transformation

Y =

 X − ξ
k

if k 6= 0

X if k =0
(3.4.3)
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then for η > 0, Y follows loglogistic distribution with distribution function

FY (y) =

 0 if y ≤ γ

{1 + (x−γ
b

)−c}−1 if y > γ

where b = ξ
η

and c = 1
η
. For η < 0, Y follows backward loglogistic distribution. By

Voorn (1987), we know that the class containing logistic, loglogistic, and backward

loglogistic posses the characterizing property of max-stability w.r.t to geometric dis-

tribution. The relation (3.4.3) is one to one implies the max-stability property w.r.t

to geometric distribution characterize Generalized logistic distribution. Similarly we

can prove min-stability characterizes GL distribution w.r.t geometric distribution. �

In the next section we use max-stability and min-stability of GL distribution to

derive limit distribution of random maximum and random minimum of i.i.d.r.v.’s

w.r.t geometric distribution.

3.5 Limit Distribution of Random Maxima and

Minima

The limit theory of random maxima and random minima has been studied by many

authors (see for example Galambos (1978)). In this section we derive Generalized

logistic distribution as the limit of random maxima and random minima when sam-

ple size follows geometric distribution using the results in Section 3.4 and the main

theorem in Chapter 2.

Theorem 3.5.1 Let {Xn, n ≥ 1} be a sequence of i.i.d.r.v.’s and X1 ∼ F . Let

MN = max(X1, X2, . . . , XN), mN = min(X1, X2, . . . , XN), and N is an integer
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valued random variable follows geometric distribution, independent of {Xi}. Also let

Y and Z are random variables with non-degenerate distribution functions G and H

respectively, aN > 0, bN , cN > 0 and dN such that,

MN − bN

aN

d→ Y

and
mN − dN

cN

d→ Z.

Then

G(x) =


1

1+(1−k(x−µ
σ

))1/k if k 6= 0

1
1+exp(−(x−µ

σ
))

if k =0.

with supports are 
x > µ + σk−1 for k < 0

x < µ + σk−1 for k >0

x ∈ R for k =0.

also H has the same distributional form of G with different parameters.

Proof : The proof consist of two parts. First, from Theorem 3.4.1 , it is verified that

GL posses characterizing property of max-stability and min-stability w.r.t geometric

distribution. By using Theorem 2.5.1, the random maxima and random minimum,

when sample size follows geometric distribution, converge to the GL distribution, if

it exist. �

Theorem 3.5.1 identifies the limit distribution of geometric random maxima and

geometric random minima, if it exists, as the GL distribution given in 3.2.7. That is,

GL distribution can be used as an asymptotic model for maximum and minimum of

a random number (N) of random variables when N follows geometric distribution.
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3.6 Conclusion

In this chapter we proved the asymptotic equivalence of right tails of GL distribution

with the existing models for extremes namely GEV(max) and GP. We also established

the asymptotic equivalence of left tails of GL with the existing model for minima

namely GEV(min). We characterized the GL distribution with a stability property

called max-stability and min-stability w.r.t. geometric distribution. The asymptotic

distribution of random maximum and random minimum are identified as the GL

distribution with appropriate parameters. We also saw that this class includes three

well known distributions namely logistic, loglogistic and backward loglogistic. These

findings are parallel to the existing asymptotic models for extremes for non-random

sample sizes. These results justified the theoretical basis for the empirical findings of

GL as a suitable model for extremes of share market data. For example Gettinby et

al. (2004) verified that generalized logistic distribution as a better model for extreme

analysis of daily returns of the FT All share index ( London Stock Exchange) than

the generalized extreme value distribution. Tolikas and Brown (2006) and Tolikas et

al. (2007) concluded that in majority of extreme cases an adequate fit for extreme

daily returns is GL in Athens Stock Exchange and German Stock Exchange data

respectively compared to Generalized Extreme Value distribution. They are also

conformed that GL distribution provide an adequate fit for European Stock Exchange

data. Also Gettinby et al. (2004), Tolikas and Brown (2006) and Tolikas et al. (2007)

show that GEV(max), GEV(min) and GP models are unapplicable in some financial

extreme situations like highly volatile share market.
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Chapter 4

Analysis on the Extremal Behavior

of BSE Sensex Data

4.1 Introduction

In Chapter 3, we established the theoretical significance of GL distribution in the

modeling of extremes. This chapter is an empirical study about the performance of

GL distribution in Extreme value modeling in the Indian context. Gettinby et al.

(2004), Tolikas and Brown (2006) and Tolikas et al. (2007) illustrate some empirical

applications of GL distribution in Extreme value modeling in the financial context.

Here, we could see the advantage of GL distribution in modeling extreme movements

of BSE sensex data. This chapter is based on Nidhin and Chandran (2009b).

In financial literature, the choice of using an appropriate probability model for fi-

nancial returns are clearly exemplified rather than selecting a conventional model (see

for example Kearns and Pagan (1997)). The fitted distribution is crucially important

in financial studies. For Value at Risk (VaR) estimation, one requires appropriate
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probability distribution of extremes as input. A vast number of literature show the

importance of best fitted distribution in VaR analysis ( see Danielson et al. (1998)).

Another important area of application of probability models of extremes is in hedging

procedure. Hedging procedure is clearly based on the probability of fitted distribu-

tion (see Cotter John (2001)). To measure the risk of a share price which critically

depends on the shape of the distribution, especially the shape of the tail of the dis-

tribution, the choice of appropriate model for the tails are crucially important for

this measurement of risk. Gettinby et al. (2004) largely illustrates the importance of

appropriate probability models for extremes of financial returns data.

In history, a majority of literature on share market data analysis are using normal

and lognormal distributions. In the last five decades, different authors have been

showing empirical evidence that the distribution of extreme daily share returns are

far from normal (See for example Mandelbrot (1963), Fama (1965), Grey and French

(1990), Piero (1994), Mc Donald and Xu (1995), Theodossian (1998), Harris and

Kucukozmen (2001)). They all analyze daily share returns by using non-normal

distributions viz. t-distribution, α-stable distribution etc. However, in 1990’s interest

in modeling the extremal behavior of finance data have been diverted to extreme value

theory. Longin (1996) argues that US daily share returns are far from normal. His

analysis of US daily share returns shows that the data is negatively skewed with

a skewness of -0.506 and a high kurtosis of 22.057 which indicates the adequate

distribution is far from normal. He has concluded that the appropriate distribution

for extreme daily share returns is Frechet distribution, which is an extreme value

distribution. Similarly, a number of literature on the analysis of US daily share

returns show that the appropriate distribution for extreme daily share returns is

extreme value distribution (see for example Longin, (1996, 2000)).

However, Gettinby et al. (2004) shows generalized logistic distribution gives a

better fit for extreme analysis of daily returns of the FT All share index ( Lon-
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don Stock Exchange) than the Generalized Extreme Value distribution. Tolikas and

Brown (2006) and Tolikas et al. (2007) again propound that in majority of cases

(especially weekly minima) an adequate fit for extreme daily returns is GL in Athens

Stock Exchange and German Stock Exchange data respectively compared to Gener-

alized Extreme Value distribution . They are also conformed that GL distribution

provide an adequate fit for European Stock Exchange data. Gettinby et al. (2004)

concluded with a suggestion that academics and practitioners should be careful of the

choice of which distribution to employ in the analysis of stock exchange data. Also

Gettinby et al. (2004), Tolikas and Brown (2006) and Tolikas et al. (2007) show that

extreme value theory is unapplicable in financial extreme data.

Till now, very little work has been done on the analysis of extreme share returns

in Indian stock exchange data and some exceptions are Sarma (2001, 2005). Sarma

(2001, 2005) analyze NIFTY extreme returns based on extreme value theory. If a

distribution fitted is better than extreme value distribution to the share market data,

then one can estimate more accurate result of extreme behavior in data using the

best fitted distribution in many applications like VaR, hedging, etc. This chapter

makes an attempts to fit the GL distribution to the Bombay Stock Exchange data.

This verifies the findings of Gettinby et al. (2004), Tolikas and Brown (2006) and

Tolikas et al. (2007) in the Indian context. The rest of this chapter is arranged as

follows. Section 4.2 introduces the basic concepts required for the data analysis in

this chapter. Section 4.3 introduces the data used for analysis in the chapter. A

preliminary analysis of the data is also included in Section 4.3. Section 4.4 identifies

the appropriate models for testing goodness fit of the data by using L-moment ratio

diagram. In Section 4.5 we use Anderson Darling test to find the adequate distribution

for extreme share data. The Section 4.6 concludes the finding of the Chapter.
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4.2 Basic Concepts

To identify the appropriate model for the data used in the chapter, we use the concepts

of L-moments introduced by Hosking (1986). Motivated by this, we describe L-

moment and related concepts in this section. As a tool of goodness of fit we use Jerque-

Bera test, Shapiro-Wilk test and Anderson-Darling test. They are also included in

this section.

L-moments are linear combination of expectation of order statistics. The L-

moments have the following advantages over conventional moments. First, a dis-

tribution may be specified by its L-moments, when its first order moment alone

exists. Second, the L-moment estimators are more robust to outliers of the data

and gives more reliable estimates of parameters than the moment estimators. Third,

L-moments can characterize a wider class of distributions. Moreover, parameter esti-

mator obtained from L-moments are sometimes more accurate in small samples than

the maximum likelihood estimates. Below we introduce L-moments, for a detailed

treatment of the theory of L-moments, see Hosking (1986).

Definition 4.2.1 Let X1:n, X2:n, . . . , Xn:n be ordered samples taken from a popula-

tion with distribution function F (.). The kth population L-moment of F (.) is defined

by:

λk = k−1

k−1∑
r=1

(−1)r

(
k − 1

r

)
EXk−r:k, k = 1, 2, . . .

Using the definition of expectation of order statistics and some calculations, the

first four L-moments can be obtained as follows:

λ1 =

∫ 1

0

X(F )dF

λ2 =

∫ 1

0

X(F )(2F − 1)dF
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λ3 =

∫ 1

0

X(F )(6F 2 − 6F + 1)dF

λ4 =

∫ 1

0

X(F )(20F 3 − 30F 2 + 12F − 1)dF

where X(F ) is the quantile function defined by X(F ) = inf{x : F ≤ F (x)}, 0 < F <

1. Standardized L-moments of higher order (k ≥ 3), which are independent of the

units of measurement of X, are known as the L-moment ratios, which are sometimes

quite useful. We define them below.

Definition 4.2.2 Let λk, k ≥ 1 be the L-moments given in Definition 4.2.1. Then

for k ≥ 3, the kth L-moment ratio τk is,

τk =
λk

λ2

, k ≥ 3.

Remark 4.2.1 The first two L-moment ratio’s of a d.f. F , that is, τ3 and τ4 are

known as L-skewness and L-kurtosis of F respectively.

Below we evaluate the L-moments and L-moment ratios for two known distribu-

tions.

Example 4.2.1 (Exponential Distribution): Let X be a random variable with distri-

bution function F given by,

F (x) = 1− e−(x−µ)/σ, x > 0.

Then the first four L-moments of X are,

λ1 = µ + σ

λ2 = σ/2

λ3 = σ/6
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λ4 = σ/12.

Also L-skewness and L-kurtosis of X are

τ3 =
1

3

τ4 =
1

6
.

Example 4.2.2 (Logistic Distribution): Let X be a random variable with distribution

function F given by,

F (x) =
1

1 + e−(x−µ)/σ
, x ∈ <.

Then the first four L-moments of X are,

λ1 = µ

λ2 = σ

λ3 = 0

λ4 = σ/62.

Also L-skewness and L-kurtosis of X are

τ3 = 0

τ4 =
1

6
.

From Examples 4.2.1 and 4.2.2, it is clear that the populations L-moments are

functions of the unknown parameters of the distributions. Hence L-moments are

population parameters. The L-moments can be estimated using sample functions,

such estimates we call as the sample L-moments.
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Definition 4.2.3 Let x1:n, x2:n, . . . , xn:n be the ordered observed samples, and define

the rth sample L-moments as

lk =

(
n

k

) ∑ ∑
· · ·

∑
︸ ︷︷ ︸
1≤i1<i2<···<ik≤n

k−1

k−1∑
r=0

(−1)r

(
k − 1

r

)
xik−r:n, k = 1, 2, . . . , n;

in particular,

l1 = n−1

n∑
i=1

xi,

l2 =
1

2

(
n

2

)−1 ∑ ∑
︸ ︷︷ ︸

i>j

(xi:n − xj:n),

l3 =
1

3

(
n

3

)−1 ∑ ∑ ∑
︸ ︷︷ ︸

i>j>k

(xi:n − 2xj:n + xk:n),

l4 =
1

4

(
n

4

)−1 ∑ ∑ ∑ ∑
︸ ︷︷ ︸

i>j>k>m

(xi:n − 3xj:n + 3xk:n − xm:n),

The sample L-moments defined above are exactly the U-statistics introduced by

Hoeffding (1948) and they satisfy the important properties like the unbiasedness and

the asymptotic normality. Wang (1996) gives a direct method to compute the sample

L-moments and Hosking (1999) gives Fortran codes to compute sample L-moments

for given data set by identifying the parameters. The sample L-moment ratios are

denoted by tk = lk
l2

, k = 3, 4, . . .. For a complete treatment of L-moment estimation

see Hosking (1986).

In applied statistics, to identify the possible distributions for a data L-moment

ratio diagram is used by many authers (see Vogel and Fennessey, 1993; Sankarasub-

ramanian and Srinivasan, 1999; and Hosking and Wallis, 1997; Tolikas and Brown,

(2006), Tolikas et. al., (2007), etc.). The following remarks facilitate the use of L-

moment ratio diagram in distribution identification problem. First, a distribution

whose mean exists is characterized by its L-moments λr : r = 1, 2, . . .. Second, the
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main features of a probability distribution can be well summarized by the first four

L-moments, especially L-skewness and L-kurtosis. Moreover for skewed distributions,

Hosking (1990) exemplified the advantage of using L-moments rather than using con-

ventional moments.

In L-moment ratio diagram, the L-skewness is plotted in the X-axis and L-kurtosis

in the Y-axis. The possible distributions of the data sets are those distributions whose

theoretical L-moment curve passes through close to the sample L-moments data sets.

For a two parameter probability distribution it makes a point on the graph. A curve

represents a three parameter distribution and an area represents a four parameter

distribution in the L-moment ratio diagram. For more details on this issue see Hosking

(1990).

To verify the non-normality of the data in the chapter, we use the Jerque-Bera

test. Jerque-Bera test, introduced by Bera et al. (1980, 1981), is a commonly used

test for testing normality of the sample in both applied and theoretical statistics.

The Jarque-Bera test is a goodness of fit statistic which measures departure from

normality, based on the sample kurtosis and skewness. The goodness of fit statistic

is defined as

JB =
n

2

{
s2 +

(k − 3)2

4

}
(4.2.1)

where n is the number of observations, s is the sample skewness, k is the sample

kurtosis. The statistic JB has an asymptotic chi-square distribution with two degrees

of freedom and can be used to test the null hypothesis that the data are from a normal

distribution.

Shapiro-Wilk test, introduced by Shapiro and Wilk (1965), is a very popular test

for testing normality of a given sample. Let x1, x2, . . . , xn be a given sample and

x1:n, x2:n, . . . , xn:n be its order statistic. Then the Shapiro-Wilk statistic is defined
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as,

W =
(
∑n

i=1 aixi:n)2∑n
i=1(xi − x̄)2

where x̄ is the sample mean and the constants ai are given by,

(a1, a2, . . . , an) =
µ′V

µ′V −1V −1µ

where µ = (µ1, µ2, . . . , µn)′ and µ1, µ2, . . . , µn are expected values of order statistics

of independent and identically-distributed random variables sampled from the stan-

dard normal distribution, and V is the covariance matrix of those order statistics.

The test reject the null hypothsis (data are sampled from a normal distribution) if W

is too small. For more details about Shapiro-Wilk test, see Shapiro and Wilk (1965).

The Anderson-Darling test (Stephens, (1974)) is a non-parametric test based on

empirical distribution function, which is used to test if a sample of data came from

a population with a specific distribution. It is a modification of the Kolmogorov-

Smirnov (K-S) test and gives more weight to the tails than does the K-S test. Let

X1:n, X2:n, . . . , Xn:n be ordered samples and F be the test distribution. Then the

Anderson-Darling statistic is defined as,

A2 = −n− S

where S =
∑n

i=1
2i−1

n
[ln F (Xi:n) + ln(1 − F (Xn+1−i:n))]. The critical values for the

Anderson-Darling test are dependent on the specific distribution that is being tested.

For more details see Stephens (1974).

4.3 The Data and its Descriptive Analysis

The data used for analysis in this Chapter is the closing time Bombay stock exchange

sensex index in every working day from 1/1/1982 to 12/31/2007. Figure 4.1 gives a
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time series representation of original data. To eliminate trend we use a transformation

as in Gettinby et al. (2004), Tolikas and Brown (2006) and Tolikas et. al.(2007),

which is the logarithmic successive ratio of daily sensex returns from 1/1/1982 to

12/31/2007. That is, our data points are ti = log si+1

si
, where si is the sensex index

at closing time of ith working day from 1/1/1982. Figure 4.2 provides the time series

representation of ti and Table 4.3 is a descriptive analysis on data, which gives a

number of interesting findings. An overall minimum of the data is -.137 which is at

4/13/1992 and a maximum of the data is .123 at 3/18/1992 due to several extraneous

variables like Harshad mehtas scam, Ketan Parekh’s securities scam, Pre economic

liberalization effect (India witnessed new economic liberalization policy in the year

1995). We also use a boxplot test to detect the outliers, which is illustrated in Figure

4.3 - 4.5.
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Figure 4.1:
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Figure 4.2: 2
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From Figure 4.2, the inconsistency of volatility indicates a number of factors in the

Indian economy. In the early 1990s there was no apex body to control and regulate

the share market activities in India and which resulted in the uneven fluctuation

and ambiguous volatility. But later when the government launched SEBI (Securities

Exchange Board of India) in April 1992 as a governing body to control, regulate and

for the smooth functioning of stock exchange and capital market in Indian economy.

After full fledged functioning of SEBI in 1993, we can see a balanced fluctuation

from the figure. But from 1996 to 2002 we can observe an uneven fluctuation from

the figure. The main reasons could be, in 1998, India experimented Pockran-2 and

followed by economic sanction from the western countries and then India went through

Cargil war and also India has faced political instability during this period. Three

Prime ministers named H. P. Devagowda, I. K. Gujaral, and A. B. Vajpayee came

to power and the respective governments collapsed within short period. Later again

A.B. Vajpayee reelected as prime minster of India and thereafter India has gone to

political stability and the figure directly shows political stability has a direct link

with sensitivity of stock market activities. In 2002, MRTA (Monopoly Restricted

Trade Practice), and FERA (Foreign Exchange Regulation Act) was abolished and

FEMA (Foreign Exchange Management Act) was established. Also SEBI amended

their internal policies. In 2004, India also underwent an election which resulted a

volatility in the sensex which is clear from the picture.

Moreover, Table 4.3 shows various descriptive statistics for the daily returns and

different time intervals of weekly, monthly, quarterly, half yearly, yearly minima as well

as maxima (all intervals are approximated by number, that is, the size of the intervals

are 5, 22, 66, 131, and 261 days respectively). Specifically, the number of observation,

minimum, maximum, mean, standard deviation, skewness and kurtosis along with

their standard errors, and normality test statistics Jeraque-Bera and Shapiro-Wilk

are also shown in the table.

65



Figure 4.3: 2
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Figure 4.4: 2
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Figure 4.5: 2
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Interval N Range Min. Max. Mean S. D Sk. Kt. J-B S-W

(S.E) ( S.E) (P)

Daily 5897 0.260 -0.137 0.123 0.001 0.017 -0.144 4.614 1300.518 ..

( 0.032) ( 0.064 )

Weekly max 118 0.134 -0.01 0.123 0.018 0.014 1.868 6.793 2100.96 .0

( 0.071 ) ( 0.142 )

Monthly max 269 0.123 0 0.123 0.031 0.017 1.866 5.539 300.617 .0

( 0.149) ( 0.296 )

Quart. max. 90 0.11 0.01 0.12 0.042 0.021 1.434 2.514 32.616 .0

( 0.254 ) ( 0.503 )

Half-Yearly max 46 0.119 0.004 0.123 0.051 0.024 1.054 1.369 18.714 0.008

( 0.350 ) ( 0.688 ))

Yearly max. 23 0.093 0.031 0.123 0.062 0.023 0.998 0.987 11.587 .1

( 0.481 ) ( 0.935 )

Weekly min 1180 0.152 -0.137 0.015 -0.017 0.015 -2.019 7.873 3135.926 .0

(0.071 ) ( 0.142)

Monthly min 269 0.141 -0.137 0.004 -0.030 0.019 -2.016 6.239 417.39 .0

( 0.149)) ( 0.296)

Quart. min. 90 0.127 -0.137 -0.01 -0.042 0.023 -1.574 3.136 37.301 .0

(0.254) ( 0.503 )

Half-Yearly min 46 0.136 -0.137 -0.001 -0.051 0.026 -1.091 1.915 13.638 .007

( 0.350 ) ( 0.688 )

Yearly min. 23 0.112 -0.137 -0.024 -0.063 0.028 -0.914 0.808 12.412 .06

( 0.481 ) ( 0.935 )

Table 4.1: Descriptive Statistics of maxima and minima in different time interval: N

for number of samples, S. D for standard Deviation, Sk.(S.E) is for Skewness with its

standard error, Kt.(S.E) is for kurtosis with its standard error, J-B for Jeraque-Bera

statistic and S-W for Shapiro-Wilk statistic

69



Again, the table shows the mean of different time intervals of maximum lies be-

tween 0.018 and 0.062 and which is positive and its counterpart of minimum intervals

shows a range of -0.017 to -.063, which is negative. A large kurtosis of different time in-

tervals indicates a non-normality behavior of the data. For all intervals, Jeraque-Bera

statistic shows large numbers which are clearly greater than 10 and which suggests

a non-normality behavior of the data. But Brys et al.(2004) have shown that the

Jeraque- Bera statistic is highly sensitive to the outliers. Figure 4.3 - 4.5 shows the

presents of outliers. So we use another test namely, Shapiro-Wilk test to confirm

non-normality and the p-values clearly indicates the non-normality of the data.

4.4 Finding Appropriate Distributions for BSE Share

Market Data Using L-moments

In Section 4.3, we confirmed the non-normality of the BSE sensex data. In this section,

we use L-moment ratio diagram to find appropriate distributions for testing goodness

of fit of the data. In Chapter 3, we described GEV, GP, and GL distributions as

probable models for extremal behavior of any data. For the BSE sensex data, after

eliminating trend, among the above three models we try to find out that models which

are more appropriate for testing goodness of fit. We use Fortran codes from Hosking

(1999) for the computational works.

Since GEV, GP, and GL are three parameter distributions, a curve represents

each distributions in the L-moment ratio diagram. We divided the weekly maxima

and minima of the share market data point in to ten intervals and took the sample

L-moment ratio’s t3 and t4 (Hosking (1990)) and these sample L-moment ratios are

plotted in the L-moment ratio diagram in Figure 4.6. The curves in the figure con-

sist of theocratical L-moment ratio curve of Generalized extreme value distribution,
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Generalized logistic distribution, and Generalized Pareto distribution. The plotted

points in the figure corresponds to sample L-moment ratios. Figure 4.6 visually gives

the sample points are comparatively near to GL and GEV distributions, .

For weekly maximum sample points, the diagram shows that both GL and GEV

distributions are always equal fit but for weekly minimum gives an approximate idea

that GL is better than GEV. So we need to analyze more on minimum data to know

whether GL is an adequate fit for minimum than GEV. In the next section we use

Anderson darling test to find which is the better distribution for minimum data among

GL and GEV.
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Figure 4.6: 2
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4.5 Goodness of Fit Test for the BSE Data

The L-moment ratio diagram in Section 4.4 revealed that GL and GEV are appro-

priate models for the extremal behavior of the BSE data. In this section, we use

Anderson-Darling test for comparing goodness of fit of GEV and GL distributions in

the extremal behavior of BSE data. Since the test is based on empirical distribution

function (EDF) and among all the well known tests based on EDF, Anderson-Darling

test has the highest power in testing normality against a number of alternatives when

the parameters are unknown ( Stephens, 1974). Table 4.2 shows a comparison be-

tween GEV(max) and GL in weekly maximum data. Out of fifteen intervals, GL is

adequate in eight intervals and seven for GEV(max). Here GEV(max) and GL per-

form almost equally. However for weekly minimum data, the performance is seriously

different.

To verify the findings of Gettinby et al.(2004), Tolikas and Brown (2006) and

Tolikas et al.(2007) in Indian context, we use to test GEV(max) in minimum data.

From Table 5.3, GL is adequate for weekly minimum data. Out of fifteen, GEV(max)

performs better only in one interval than GL which clearly agrees the findings of

Gettinby et al.(2004), Tolikas and Brown (2006) and Tolikas et al.(2007). In their

papers, on minimum returns, Generalized extreme value distribution performs better

only on one interval than GL distribution.

Table 4.4 shows a comparison between performance of GEV(min) and GL on

minima returns. For fifteen intervals, GL provides an adequate fit in eleven intervals

than GEV(min), which indicates that GL distribution provides a better fit than

GEV(min). However, GEV(min) provides an adequate fit in 11 out of 15 intervals

and in which most of the intervals p-values are large, which shows that GEV(min)

also provides a model for minimum returns. From Table 5.3, GEV(max) provides an

adequate fit for only 1 out of 15 intervals. So GEV(max) cannot be used as a model
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. GEV(max) GL .

Intervals n loca scale shape p loca scale shape p Best fit

1 78 0.006 0.006 0.116 .412 0.009 0.004 -0.247 .347 GEV(max)

2 78 0.007 0.007 0.228 .319 0.010 0.006 -0.325 .229 GEV(max)

3 78 0.013 0.012 -0.018 .374 0.018 0.008 -0.158 .574 GL

4 78 0.013 0.01 -0.089 .625 0.017 0.007 -0.117 .548 GEV(max)

5 78 0.015 0.012 0.109 .068 0.021 0.009 -0.242 .356 GL

6 78 0.020 0.012 0.187 .024 0.025 0.009 -0.296 .000 GEV(max)*

7 78 0.011 0.008 0.118 .054 0.015 0.006 -0.248 .014 GEV(max)

8 78 0.009 0.008 -0.005 .318 0.013 0.006 -0.166 .089 GEV(max)

9 78 0.012 0.010 0.031 .236 0.016 0.007 -0.190 .709 GL

10 78 0.016 0.012 -0.053 .106 0.021 0.008 -0.136 .073 GEV(max)

11 78 0.012 0.011 -0.047 .149 0.017 0.007 -0.14 .155 GL

12 78 0.008 0.008 -0.035 .524 0.012 0.005 -0.147 .791 GL

13 78 0.011 0.006 0.092 .252 0.015 0.005 -0.230 .913 GL

14 78 0.010 0.005 -0.094 .238 0.013 0.003 -0.111 .498 GL

15 88 0.012 0.009 0.07 .039 0.016 0.006 -0.216 .115 GL

Table 4.2: Performance of GEV(max) and GL distribution for Weekly maximum data
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. GEV GL .

Intervals n loca scale shape p loca scale shape p Best fit

1 78 -0.011 0.011 -0.976 .000 -0.009 0.005 0.324 .465 GL

2 78 -0.01 0.013 -1.059 .000 -0.007 0.005 0.356 .000 -

3 78 -0.024 0.014 -0.478 .000 -0.019 0.007 0.103 .869 GL

4 78 -0.019 0.010 -0.369 .46 -0.016 0.006 0.044 .95 GL

5 78 -0.021 0.021 -0.935 .000 -0.015 0.009 0.308 .225 GL

6 78 -0.029 0.023 -0.817 .000 -0.023 0.010 0.26 .938 GL

7 78 -0.017 0.010 -0.485 .034 -0.014 0.005 0.106 .152 GL

8 78 -0.018 0.01 -0.334 .172 -0.015 0.005 0.027 .219 GL

9 78 -0.02 0.016 -0.718 .000 -0.015 0.007 0.217 .932 GL

10 78 -0.021 0.015 -0.632 .000 -0.017 0.007 0.178 0.58 GL

11 78 -0.026 0.019 -0.631 .744 -0.021 0.009 0.177 .254 GEV(max)

12 78 -0.014 0.010 -0.746 .000 -0.011 0.005 0.229 0.125 GL

13 78 -0.016 0.015 -0.899 .000 -0.012 0.006 0.293 .348 GL

14 78 -0.011 0.009 -0.567 .000 -0.019 0.006 0.293 .494 GL

15 88 -0.019 0.017 -0.775 .000 -0.013 0.008 0.242 .00 -

Table 4.3: Performance of GEV(max) and GL distribution for Weekly minimum data
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. GEVmin GL .

Intervals n loca scale shape p loca scale shape p Best fit

1 78 0.006 0.006 0.226 .396 -0.009 0.005 0.324 .465 GL

2 78 0.004 0.007 0.270 .000 -0.007 0.005 0.356 .000 -

3 78 0.014 0.011 -0.107 .112 -0.019 0.007 0.103 .869 GL

4 78 0.012 0.009 -0.207 .672 -0.016 0.006 0.044 .95 GL

5 78 0.010 0.012 0.204 .395 -0.015 0.009 0.308 .225 GEVmin

6 78 0.017 0.014 0.135 .599 -0.023 0.010 0.26 .938 GL

7 78 0.010 0.0082 -0.101 .031 -0.014 0.005 0.106 .152 GL

8 78 0.011 0.009 -0.235 .176 -0.015 0.005 0.027 .219 GL

9 78 0.010 0.011 0.071 .701 -0.015 0.007 0.217 .932 GL

10 78 0.013 0.011 0.012 .052 -0.017 0.007 0.178 0.58 GL

11 78 0.015 0.014 0.0113 .541 -0.021 0.009 0.177 .254 GEVmin

12 78 0.008 0.007 0.090 .009 -0.011 0.005 0.229 0.125 GL

13 78 0.008 0.008 0.183 .107 -0.012 0.006 0.293 .348 GL

14 78 0.006 0.007 -0.036 .401 -0.019 0.006 0.293 .494 GL

15 88 0.009 0.0117 0.117 .003 -0.013 0.008 0.242 .00 GEVmin

Table 4.4: Performance of GEVmin and GL distribution for Weekly minimum data

for minimum returns but GL and GEV(min) provides a good fit and comparing GL

and GEV(min), GL provides a better fit.

Table 4.5 represents an Anderson-Darling test for GEV(max) and GL in monthly

minimum returns data. Out of ten, GL provides a better fit in seven intervals. Also in

five intervals GEV(max) shows a p-value of 0.0 suggests GEV(max) is an inadequate

model for monthly minimum data.

Table 4.6 shows that GL provides a better fit in six interval comparing to GEV(min).
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. GEV(max) GL .

Intervals n loca scale shape p loca scale shape p Best fit

1 26 -0.021 0.013 -1.17 .000 -0.018 0.005 0.396 .206 GL

2 26 -0.036 0.02 -0.536 .72 -0.03 0.01 0.132 .511 GEV(max)

3 26 -0.030 0.008 -0.426 .129 -0.027 0.004 0.075 .525 GL

4 26 -0.052 0.033 -0.821 .000 -0.043 0.015 0.261 .517 GL

5 26 -0.027 0.011 -0.544 .542 -0.023 0.005 0.135 .350 GEV(max)

6 26 -0.031 0.0143 -0.827 .000 -0.027 0.006 0.264 .339 GL

7 26 -0.038 0.021 -0.851 .42 -0.032 0.009 0.274 .258 GEV(max)

8 26 -0.033 0.018 -0.689 .217 -0.028 0.008 0.204 .625 GL

9 26 -0.021 0.015 -1.520 .000 -0.018 0.005 0.507 .122 GL

10 35 -0.029 0.016 -0.509 .000 -0.023 0.007 0.256 .886 GL

Table 4.5: Performance of GEV(max) and GL distribution for monthly minimum

data
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. GEVmin GL .

Intervals n loca scale shape p loca scale shape p Best fit

1 26 0.015 0.006 0.323 0.324 -0.018 0.005 0.396 .206 GEVmin

2 26 0.024 0.015 -0.060 .708 -0.03 0.01 0.132 .511 GEVmin

3 26 0.025 0.007 -0.153 .255 -0.027 0.004 0.075 .525 GL

4 26 0.034 0.020 0.137 .551 -0.043 0.015 0.261 .517 GEVmin

5 26 0.020 0.008 -0.054 .419 -0.023 0.005 0.135 .350 GEVmin

6 26 0.024 0.009 0.141 .208 -0.027 0.006 0.264 .339 GL

7 26 0.027 0.012 0.156 .257 -0.032 0.009 0.274 .258 GL

8 26 0.023 0.012 0.051 .593 -0.028 0.008 0.204 .625 GL

9 26 0.015 0.006 0.467 .049 -0.018 0.005 0.507 .122 GL

10 35 0.019 0.013 -0.081 .695 -0.023 0.007 0.256 .886 GL

Table 4.6: Performance of GEVmin and GL distribution for monthly minimum data

While GEV(min) provides an adequate fit in nine out of ten intervals shows GEV(min)

is also a model for monthly minima.

From the above analysis of weekly and monthly minimum data, we conclude that

GEV(max) is not a fit for the minimum data. So in the following analysis we consider

GL and GEV(min) distribution only.

Comparing GL and GEV(min) in quarterly minimum data, Table 4.7 indicates the

same result, that is, GL provides a better fit than GEV(min). Further GEV(min) and

GL gives a good model in three out of four intervals, which shows both distribution

can use to model quarterly data and comparing these distributions GL is a better

model.

On analysis of half yearly data, Table 4.8 clearly shows GL provides a good fit
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. GEVmin GL .

Intervals n loca scale shape p loca scale shape p Best fit

1 22 0.029 0.015 -0.074 .419 -0.035 0.01 0.123 .529 GL

2 22 0.034 0.015 0.3072 .103 -0.04 0.012 0.383 .186 GL

3 22 0.039 0.018 -0.073 .054 -0.046 0.011 0.124 .052 GEVmin

4 24 0.0252 0.010 0.263 .01 -0.029 0.008 0.350 .028 GL*

Table 4.7: Performance of GEV(min) and GL distribution for quarterly minimum

data. * indicates neither distribution fit the data.

. GEVmin GL .

Intervals n loca scale shape p loca scale shape p Best fit

1 23 0.038 0.019 0.130 .452 -0.046 0.013 0.256 .569 GL

2 23 0.040 0.019 -0.008 .041 -0.047 0.013 0.165 .195 GL

Table 4.8: Performance of GEV(min) and GL distribution for half yearly minimum

data

comparing to GEV(min). Finally, Table 4.9 illustrates GL provides a better for

yearly minimum data compared to GEV(min). Both distribution fit for the data at

0.05 level, but small p-values shows a poor fit.

The above analysis reveal that, the minimum distribution empirically converges

to GEV(min), but the rate of convergence is very poor. Also GL shows a superiority

for fitting minimum returns than GEV(min) distribution.
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. GEVmin GL .

Intervals n loca scale shape p loca scale shape p Best fit

1 23 0.049 0.023 0.001 .109 -0.058 0.015 0.171 .131 GL

Table 4.9: Performance of GEV(min) and GL distribution for yearly minimum data

4.6 Conclusion

The analysis of BSE sensex data in this chapter reveals that GL gives a better fit

for different blocks of minimum than GEV. From the analysis we recommend that

instead of GEV, GL provides better estimate in VaR estimation, hedging, etc. But

the analysis also suggest that GEV is also a good model for modeling minima and

comparing these two distributions GL is better than GEV. This finding is different

from the findings of Gettinby et al. (2004), Tolikas and Brown (2006) and Tolikas et.

al.(2007), where they found that GEV is not a model for minimum of stock exchange

data. Also extreme value theory holds for finance data but the rate of convergence is

very poor.

Another interesting empirical finding is that the distribution of minima, can be

approximated by the GL distribution. That is, GL is a good asymptotic approximate

distribution for minimum of the data in financial context. This is a data verifica-

tion of the convergence of geometric minima to GL described in Chapter 3. The

approximation is significantly better than GEV(min) distribution, this is verified us-

ing Anderson-Darling test. But we found that the data contains outliers and in some

time intervals the sample size are very small. So we have to find whether this is

the reason for such a result. In other words we have to check the performance of

Anderson-Darling test when data contains outliers and sample size is small. In Chap-

ter 5, we introduce a new goodness of fit measure which is not sensitive to outliers

and small sample size. We also analyzed the same BSE data using the new measure.
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Chapter 5

A Goodness of Fit Measure Using

L-moment Ratio Diagram

5.1 Introduction

In Chapter 4, we empirically verified the results of Chapter 3 for the BSE sensex data

using Anderson-Darling test. During the analysis we found that the data contains

outliers and there are situations where sample sizes are very small. In this chapter, we

introduce a new goodness of fit test using L-moment ratio diagram, which performs

better when sample size is small. We empirically verify that the test is robust to

outliers. We use this test to analyze the extrmal behavior of BSE sensex data. The

content of this chapter is Nidhin and Chandran (2010b).

In parameter estimation, the method of moments is a commonly used method.

It is a simple method of estimation however is very sensitive to outliers, especially

when the sample size is small (see Pearson(1963), Hosking (1990)). The reason for this

limitation is that moments are calculated by power functions. An alternative approach
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to tackle this difficulty is given by Hosking (1990), with the introduction of method of

L-moments. Hosking has shown that first four L-moments of a distribution measures

respectively the average, dispersion, symmetry and tail weight (or peakedness) of the

distribution. In the last two decades, L-moments have turn out to be a popular tool in

parametric estimation and distribution identification problems in different scientific

areas ( see e.g. Hosking (1990), Stedinger et al., (1993), Hosking and Wallis, (1997),

Tolikas et al., (2006)). Section 5.2 introduces the basic concepts required in this

chapter. This section also describes the existing goodness of fit theory based on L-

moments in the statistical literature. Section 5.3 introduces the new goodness of fit

statistic for two parameter distribution. A comparative study of this new statistic

w.r.t. other existing well known goodness of fit statistics using monte carlo simulation

is done in this section. In Section 5.4, we extend the idea to distributions involving

more than two parameters. Section 5.5, applies this new test to the BSE sensex data

described in Chapter 4 to identify the performance of GL distribution in modeling

extremes. Finally, Section 5.6 concludes the finding of the Chapter.

5.2 Basic Concepts

The main objective of this chapter is to introduce a new goodness of fit measure and

study its performance w.r.t. existing goodness of fit statistics. The commonly used

goodness of fit statistics for testing normality are Jerque-Bera statistic, Anderson-

Darling statistic and Robust statistic introduced by Brys et al (2004). The Jerque-

Bera and Anderson-Darling test statistics are introduced in Chapter 4. The robust

statistic is introduced in this section. The robust statistic for testing goodness of fit

is based on three basic measures of data, which are medcouple (MC), left medcouple

(LMC) and right medcouple (RMC) for a given data set. Below we define these

concepts.
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Definition 5.2.1 Let x1, x2, . . . , xn be n independent observations from a continuous

univariate distribution F and let mF = F−1(.5). Then the sample Medcouple (MC)

of the sample (x1, x2, . . . , xn) is,

MC(F ) = medy1≤mF≤y2h(y1, y2)

where y1 and y2 are sampled from F and the kernel function is defined as

h(yi, yj) =
(yj −mF )− (mF − yi)

yj − yi

.

Definition 5.2.2 Let x1, x2, . . . , xn be n independent observations from a continuous

univariate distribution F , let mF = F−1(.5) and MC be as defined in Definition

(5.2.1). Then the Left Medcouple (LMC) of the sample (x1, x2, . . . , xn) is

LMC(F ) = −MC(x < mF )

and the Right Medcouple (RMC) of the sample (x1, x2, . . . , xn) is

RMC(F ) = MC(x > mF ).

The population medcouples can be defined in a similar way. The robust statistic for

goodness of fit introduced by Brys et al. (2004) is defined below.

Definition 5.2.3 Let x1, x2, . . . , xn be n independent observations from a continuous

univariate distribution F and let mF = F−1(.5), MC, LMC and RMC are as in

Definitions (5.2.1) and (5.2.2) respectively. Then the robust statistic for goodness of

fit is

T = n(w −W )′Σ−1(w −W )

for w = (MC,LMC, RMC)′, W is its population parameters and Σ is its asymptotic

variance.
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For more details about the above concepts see Brys et al.(2004). The remain-

ing part of this section reviews existing goodness of fit theory based on L-moments

available in the literature.

Gail and Gastwirth (1978) proposed a goodness of fit measure based on first and

second L-moment for exponential distribution. They concluded that the statistic has

very good power and the advantage of computation easiness. This also has the scale

property, ease extension to a test free of scale and location parameters, availability

of exact percentiles and insensitivity to small rounding or truncation measurement

errors. Hosking (1986) proposes a number of goodness of fit test statistic using L-

moments. For testing goodness of fit of Uniform distribution for a given data, he

suggests the statistics (35n/6)1/2t3, 35n(t23/6 + t24/2), where t3 and t4 are sample L-

skewness and sample L-kurtosis defined in Section 4.2. Also he proposes probability

weighted moment-based variant of Neyman’s smooth test statistic, which is defined

as:

Definition 5.2.4 let X be a random variable with distribution function F (x; θ) and

quantile function G(u; θ), where θ = (θ1, θ2, · · · , θp)
′ is a vector of real parameters

with true (but unknown) value θ0. Let κm(u), m = 1, 2, . . . , p be a set of linearly

independent polynomials. Let

γm(θ) =

∫ 1

0

κm(u)G(u; θ)du, m = 1, 2, . . . , p

be probability weighted moments. The goodness of fit test statistic for the distribution

F is

n(d− µ)′Σ̂−1(d− µ)

where n is the sample size, d = n−1
∑n

i=1 δ
(n)
j Ûj:n, δ

(n)
j = δ( j

n+1
)+O(n−1), δ : [0, 1] →

<m is a continuous bounded function, Ûj:n = F (Xj:n; θ̂) and θ̂ is the probability

weighted moment estimator of the parameter θ,

µ =

∫ 1

0

δ(u) u du, Σ = 2

∫ ∫
u<v

η(u){η(v)}′u(1− v)dudv,
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η(u) = δ(u)−
p∑

i=1

p∑
j=1

{
∫ 1

0

δ(u)
δG(u; θ0)

δθi

du

G′(u; θ0)
}H ij(θ0)κj(u)G′(u; θ0)

here H ij(θ) is the (i, j)th element of the m ∗m matrix H(θ) whose (i, j)th element is

Hij(θ) ≡ δγi(θ)/δθj.

The statistic has some disadvantages. The main disadvantage is the slow conver-

gence of the mean of d − µ to zero, so it requires large sample data for asymptotic

approximation. Another disadvantage is that calculation of the elements of Σ usu-

ally requires some numerical iteration. Another goodness-of-fit measure suggested by

Hosking and Wallis (1993, 1997), using the L-kurtosis, is defined as:

Definition 5.2.5 For each distribution the goodness of fit statistic is

Z = (τ4 − t4 + β4)/σ4 (5.2.1)

where τ4 is the L-kurtosis of the fitted distribution to the data using the candidate dis-

tribution, and β4 =
∑Nsim

i=1 t̄4
(m)/Nsim is the bias of t̄4 estimated using the simulation

technique as before with t̄4
(m) being the sample L-kurtosis of the mth simulation, and

σ = [(Nsim − 1)−1{
Nsim∑
i=1

(t̄4
(m) − t̄4)

2 −Nsimβ2
4}]1/2.

The L-moment ratio diagram has commonly been used for visual identification of

distributions to be considered for the goodness of fit of the given data. In L-moment

ratio diagram, the L-skewness is plotted in the X-axis and L-kurtosis in the Y-axis.

The possible distributions of the data sets are those distributions whose theoretical

L-moment curve passes close to the sample L-moments data sets. For a two parameter

probability distribution it makes a point on the graph. A curve represents a three

parameter distribution and an area represents a four parameter distribution in the L-

moment ratio diagram. For more details see Hosking (1990). This idea of distribution
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identification to a given data set has been used by many authors, see for example,

Vogel and Fennessey, (1993); Sankarasubramanian and Srinivasan, (1999); Hosking

and Wallis, (1997); Gettinby et al. (2004), Tolikas and Brown, (2006), Tolikas et al.

(2007), etc.). We try to use there ideas to define a new goodness of fit measure.

5.3 Goodness of Fit Measure for Two Parameter

Distribution

In Section 5.2, we discussed the use of L-moment ratio diagram, as a visual identifi-

cation tool to find the best distribution for a given data. In this section, we define a

distance measure using L-moment ratio diagram and that is used to test the goodness

of fit of a two parameter distribution for a given data. We also show the advantage

of the test statistic in testing goodness of fit problems.

Let x1, x2, . . . , xn be a given sample and it is decided to test whether the sample

is from a given distribution F , where F involve only two parameters. We assume that

the mean exists for the distribution F , hence all L-moments of F exist as discussed

in Section 4.2. Now to test,


H0 : The data are sampled from distribution F

V/s

H1 : The data are not sampled from distribution F.

We define a new goodness of fit statistic using L-moments (denoted by TL) below,

TL = n(w −W )′A−1(w −W ) (5.3.2)

for w = (t1, t2)
′ be the estimators of W = (τ1, τ2)

′ where t1 and t2 are the sample
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estimators of L-Skewness and L-Kurtosis respectively and τ1 and τ2 are the popula-

tion L-Skewness and population L-Kurtosis respectively. Here A is the asymptotic

covariance matrix of (t3, t4). That is, A = ((Ars)), (r, s = 3, 4)(we use 3 and 4 for

notational similarity) which is defined as

Ars = (Brs − τrB2s − τsB2r + τrτsBrs)/λ
2
2

and Brs is defined as,

Brs =

∫ ∫
x<y

{P ∗
r−1(F (x))P ∗

s−1(F (y)) + P ∗
s−1(F (x))P ∗

r−1(F (y))}F (x){1− F (y)}dxdy

where P ∗
r (x) being the rth shifted Legendre polynomial defined as,

P ∗
r (x) =

r∑
k=0

(−1)r−k

(
r

k

)(
r + k

k

)
xk

Theorem 5.3.1 Let t3 and t4 are sample L-skewness and L-kurtosis respectively also

τ3 and τ4 are population L-skewness and L-kurtosis respectively. Then the statistic

TL = n(w −W )′A−1(w −W )

follows chi-square distribution with two degrees of freedom asymptotically.

Proof : Given that t3, t4, τ3 and τ4 are sample l-skewness, sample l-kurtosis, popula-

tion l-skewness and population l-kurtosis respectively. Then by Hosking (1990),

n1/2[(t3 − τ3)(t4 − τ4)]
′ → N(0, A) (5.3.3)

where A is defined as above. Simple argument tells us that,

TL = n(w −W )′A−1(w −W ) ≈ χ2(2). �

From Theorem (5.3.1), the statistic TL has an asymptotic chi-square distribution

and can be used to test the null hypothesis that the data are from any particular
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Distribution TL

Uniform 35n(
t23
6

+
t24
2
)

Exponential n(40
3
t23 + 224

15
t24 − 70

3
t3t4 − 5t3 + 14

5
t4 + 3

5
)

Gumbel n(6.791776t23 + 11.497577t24 − 10.70669t3t4 − 0.6975599t3 + 1.639404t4 + 0.182541)

Laplace n(
t23

0.4593
+ (t4−0.2361)2

0.1565
)

Logistic n(
t23

0.2899
+ (t4−1/6)2

0.1228
)

Normal n(
t23

0.1866
+ (t4−0.1226)2

0.0883
)

Table 5.1: Goodness of fit statistic of different two parameter distributions.

distribution. By Hosking (1986), the asymptotic theory usually provides a good

approximation to the exact distribution for samples of size n ≥ 50, and is often

adequate even for n = 20. This fast convergence is one of the important advantage

of the statistics TL, especially in extreme value theory.

Table 5.1 presents the goodness of fit statistic of some of the important two pa-

rameter distributions. The distributions are Uniform, Exponential, Gumbel, Laplace,

Logistic and Normal. We can derive TL statistic for any two parameter distribution,

for which mean exists.

5.3.1 Goodness of Fit Statistic for Normal Distribution

In this section we study the performance of the statistic TL, defined in equation

5.3.2, as a goodness of fit test statistic for testing Normality of the given data. We

compare TL with three statistics namely the Jerque- Bera statistic, Robust estimator

for testing normality and Anderson-Darling statistic. This is done using Monte-

Carlo simulation. Among tests using empirical distribution function, we consider

Anderson-Darling test for comparison because among all the well known tests based
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on empirical distribution functions, Anderson-Darling test has the highest power for

testing normality against a number of alternatives when the parameters are unknown

( Stephens, 1974). Using simulation, we verify that the power of the test statistic TL

is better than the power of the other three widely used alternatives such as Jarque-

Bera, Robust Statistic and Anderson-Darling statistic. We also verify that TL is

moderately less sensitive to outliers. We simulate 1000 samples each having 100

observations from a Tukey distribution, which includes both normal and non-normal

distributions. For g = h = 0 the distribution is normal and for all other values of g

and h the distribution is non-normal. We define the Tukey distribution (Hoaglin et

al. (1985)) below:

Definition 5.3.1 A random variable Y is said to follow Tukey’s gh-distribution if Y

is defined as,

Y =

 egX−1
g

e
hX2

2 if g 6= 0,

Xe
hX2

2 if g=0.

where X follows standard normal distribution.

The Tukey’s distribution has several properties. The parameters g and h de-

termine its skewness and kurtosis respectively. Also it is easy to simulate from this

distribution even though it is hard to explicitly state the probability density function.

Given this flexibility, the gh family may be extremely useful in modelimg multiple

imputations.

Now consider a sample of size n from the Tukey’s gh distribution and we want to

test the hypothesis that
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
H0 : The data are sampled from normal population

V/s

H1 : The data are not sampled from normal population.

Then TL statistic is

TL = n

{
t23

0.1866
+

(t4 − 0.1226)2

0.0883

}
. (5.3.4)

Using different values of g and h we simulate 1000 samples each of size 100 and

calulate the power of TL, Jerque- Bera and Robust estimator and Anderson-Darling.

In Table 5.2, G g,h represent Tukey’s gh distribution with g and h as parameters. The

values represents the fraction of 1000 samples rejected normality assumption under

0.05 significance level. For all values of g and h, other than g=0 and h=0, representing

non-normality, TL take higher values. The values represent (other than G 0,0) exactly

the power of the tests and for all values of TL performs significantly better. Notice

that the power of robust estimator is very low compared to TL statistic.

Table 5.3 represents the performance of the tests in contaminated samples. The

contamination is done by adding 100(1 − ε)% of the contaminated data. We have

taken ε = 5%. In Table 5.3 N, µ, σ represents the 5% of the standard normal samples

replaced by samples from N(µ, σ). The table also represents the fraction of 1000

samples rejecting normality assumption under 0.05 significance level. From the table,

it is clear that TL shows a moderate performance to outliers. So for small sample

testing TL shows a better performance compared to other tests for testing normality.

The simulation study in this section reveals that the statistic posses computational

higher power and a moderate performance to the outliers. Also the statistic has

a asymptotic chi-square distribution and has a fast convergence. These important

properties make the statistic is highly useful in statistical inference, especially in the
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Tukey’s gh distribution JB TL MC AD

G 0,0.5 0.996 0.999 0.578 0.987

G 0,0.75 1.000 1.000 0.852 1.000

G 0,1 1.000 1.000 0.957 1.000

G 0.5,0 0.981 0.992 0.790 0.676

G 0.75,0 1.000 1.000 0.997 0.989

G 1,0 1.000 1.000 1.000 1.000

G 0.5,0.5 1.000 1.000 0.796 0.995

Table 5.2: Performance of fraction of 1000 samples of Turky distribution for different

parameters. JB-Jerque Bera Statistic, TL - Statistic Using L-moments, MC - Robust

Estimator and AD - Anderson-Darling statistic

Normal (contaminated) JB TL MC A-D

N,2,1 0. 195 0. 148 0.088 0.120

N,-2,1 0.197 0. 165 0.085 0.112

Table 5.3: Performance of fraction of 1000 contaminated samples of normal distri-

bution. JB-Jerque Bera Statistic, TL- Statistic Using L-moments, and MC- Robust

Estimator and AD - Anderson-Darling statistic
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extreme value theory.

5.4 Goodness of Fit Measure for Three Parameter

Distributions

In this section we try to generalize the goodness of fit statistic to d.f. involving three

parameter distribution. A two parameter probability distribution makes a point on

the L-moment ratio diagram. That is we have only one L-skewness and L-kurtosis,

also from the previous section we can use the statistic for goodness of fit tests. How-

ever, in L-moment ratio diagram, a curve represents for a three parameter distribution

and an area represents for a four parameter distribution. To overcome this difficulty,

we test the hypothesis in two steps. First, we identify the best point of population

L-skewness and population L-kurtosis (from test population) for the goodness of fit

test. Next, we use this population L-skewness and population L-kurtosis to test good-

ness of fit by the statistic from L-moments. Here we discuss only for three parameter

distribution, the same argument we can be extended to four or more parameter dis-

tributions.

Again our main testing problem is,
H0 : The data are sampled from a population with distribution function F

V/s

H1 : The data are not sampled from a population with distribution function F.

where F is a three parameter distribution. The first step consists of finding best point

of population L-skewness and population L-kurtosis (on the l-moment ratio curve)

that the data can choose. We denote these point as (τF
3 , τF

4 ). Below we discuss some

methods to find (τF
3 , τF

4 ).
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5.4.1 Graphical Method

This method is a very simple method to find (τF
3 , τF

4 ). From the L-moment ratio

diagram, we can calculate (τF
3 , τF

4 ) as a visual identification which L-moment ratio’s

are closer to (t3, t4), the observed L-skewness and L-kurtosis point. For example,

see Figure 5.4.1, here we are testing goodness of fit statistic for a data to generalized

logistic distribution. The point (t3, t4) represents the observed pair of L-skewness and

L-kurtosis. From the figure, the point (.23,.25075), as a visual identification, is the

nearest point on the theoretical curve than other points on the curve. Here (τGL
3 , τGL

4 )

can be taken as (.23,.25075).

5.4.2 Under same L-skewness

Cong et al. (1993), Hosking and Wallis (1997) discussed a goodness of fit measure

based on the assumption that candidate distribution has the same L-skewness as the

sample data. Using this method we can calculate the pair (τF
3 , τF

4 ). For example,

suppose our observed (t3, t4) is (0.3, 0.15). Then take τGL
3 = 0.3 and now we can

calculate from the L-moment ratio diagram corresponding τGL
4 = 0.24167(GL). So

the pair (τF
3 , τF

4 ) is (0.3, 0.24167).

5.4.3 Minimum Distance Method

This method is a most appropriate method to find (τF
3 , τF

4 ). The method has some

similarity with method of minimum chi square. Here we try to find the point (τF
3 , τF

4 )

which minimize TL. But it is hard to find out the point (τF
3 , τF

4 ) which minimize TL,

so we approximate this value by minimizing the metric d(τF
3 , τF

4 ). The metric we can
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Figure 5.1: abce d ahf fdhah bva
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consider are the Euclidean distance or the absolute distance. That is,

d(τF
3 , τF

4 ) = (t3 − τ3)
2 + (t4 − τ4)

2

or

d(τF
3 , τF

4 ) = |t3 − τ3|+ |t4 − τ4|.

Now the next step is to test contain to test the goodness of fit test using this

(τF
3 , τF

4 ). That is, our testing problem becomes,

H0 : The data are sampled from a population with distribution function F

with population L-skewness and population L-kurtosis (τF
3 , τF

4 )

V/s

H1 : The data are not sampled from a population with distribution function F

with population L-skewness and population L-kurtosis (τF
3 , τF

4 ).

This is a testing problem discussed in Section 5.3. The statistic to be used is,

TL = n(w −W )′A−1(w −W )

for w = (t1, t2)
′ be the estimators of W = (τ1, τ2)

′ where t1 and t2 are the sample

estimators of L-Skewness and L-Kurtosis respectively and τ1 and τ2 are the popula-

tion L-Skewness and population L-Kurtosis respectively. Here A is the asymptotic

covariance matrix of (t3, t4). Also statistic TL follows asymptotic χ2 distribution with

two degrees of freedom. From the conclusion of this test, we reject or accept of our

main hypothesis, that is, data from population with distribution function F .

5.5 Applications

In this section, we use the statistic TL defined in Section 5.4 to study the performance

of GL distribution in extremal behavior Bombay stock exchange data. The data used
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for analysis is the the same data used in Section 4.3. We consider GL distribution

for goodness of fit test to conform the results in Chapter 3. That is, Gettinby et al.

(2004), Tolikas and Brown (2006) and Tolikas et al.(2007) show that in majority of

cases (especially minima) an adequate fit for extreme daily returns is GL for data from

different nations Stock Exchanges. Also these results shows that GL distribution is an

adequate model for extreme behavior of any time interval, which contradict the well

known extremal types theorem. Their studies use Anderson-Darling test for goodness

of fit even for small sample sizes. Here we reconsider the goodness of fit test using

generalized logistic distribution for extreme behavior of Bombay stock exchange data

using TL.
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Figure 5.2: 2

97



Time Interval GL(t3, t4)

Weekly maxima 0.225 0.179

Monthly maxima 0.245, 0.208

Quarterly maxima 0.258, 0.175

Half yearly maxima 0.222, 0.185

Yearly maxima 0.203, 0.153

Weekly minima -0.243 0.194

Monthly minima -0.284, 0.219

Quarterly minima -0.281, 0.204

Half yearly minima -0.202 0.170

Yearly minima -0.171, 0.120

Table 5.4: Estimated value of (t3, t4) on different time intervals

In Figure 5.2, data points in the first quadrant represent (t3, t4) of maximum of

different time interval and in the second quadrant represent (t3, t4) of minimum of

different time interval. Which is also given in Table 5.4. Time intervals include

weekly, monthly, quarterly, half yearly, yearly of the data. Now we have to find

(τF
3 , τF

4 ) for each time interval. We use minimum distance method (by Euclidean

metric) to find (τF
3 , τF

4 ) since the other two methods, graphical method and same L-

skewness method, are very simple to calculate (τF
3 , τF

4 ). The Table 5.5 gives (τF
3 , τF

4 )

for maxima and minima for different time intervals of GL. We have calculated (τF
3 , τF

4 )

by using Fortran code given in the Appendix. The asymptotic variance obtained is

given in Table 5.6. Also the values of TL for different time intervals are given in Table

5.7.

From Table 5.7, we can conclude that for most of the time intervals GL is an

adequate fit. For yearly time intervals, TL shows a high value, but from the simulated

study for small sample size like n=25, in case of three parameter distribution, we have
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Time Interval GL(τF
3 , τF

4 )

Weekly maxima 0.215, 0.205

Monthly maxima 0.242, 0.215

Quarterly maxima 0.242, 0.215

Half yearly maxima 0.215, 0.205

Yearly maxima 0.189, 0.196

Weekly minima -0.235, 0.213

Monthly minima -0.279, 0.231

Quarterly minima -0.270, 0.227

Half yearly minima -0.193, 0.198

Yearly minima -0.154, 0.186

Table 5.5: Estimated value of (τF
3 , τF

4 ) for different distribution on different time

intervals

found that the critical value has a deviation of 2 points. So it can be concluded that

GL distribution is also an adequate fit in yearly time intervals. Which agrees the

result in Chapter 4.

5.6 Conclusion

In this chapter we introduced a goodness of fit test statistic based on L-moments for

distributions whose mean exists. We have shown that the statistic has a asymptotic

Chi-square distribution and this convergence is fast, that is, we can approximate the

statistic to Chi-square distribution even for sample size is 20. For a particular case,

when the test distribution is Normal, the statistic has computational higher power

and moderate performance to outliers compared to the three well-known used tests
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Time Interval t3 t4

Weekly maxima t3 0.488034363 0.329522875

t4 0.210597926

Monthly maxima t3 0.556183701 0.412080163

t4 0.254962338

Quarterly maxima t3 0.55618586 0.4120892

t4 0.255006603

Half yearly maxima t3 0.488035411 0.329513358

t4 0.333706773

Yearly maxima t3 0.260255 0.188271

t4 0.1455574

Weekly minima t3 0.5287056 -0.4394237

t4 0.3804288

Monthly minima t3 0.342497095 -0.279963707

t4 0.343572398

Quarterly minima t3 0.647330388 -0.515478347

t4 0.548024138

Half yearly minima t3 0.44625932 -0.2718477

t4 0.285473296

Yearly minima t3 0.1843003 -0.11621096

t4 0.08287285

Table 5.6: The asymptotic variance matrix of sample L-skewness and sample L-

kurtosis of maxima and minima for different time interval.
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Time Interval TL

Weekly maxima 105.80

Monthly maxima 0.54

Quarterly maxima 4.92

Half yearly maxima 0.27

Yearly maxima 7.03

Weekly minima 6.98

Monthly minima 0.71

Quarterly minima 0.68

Half yearly minima 0.44

Yearly minima 7.59

Table 5.7: Estimated values of TL of GL on different time intervals

viz. Jerque- Bera statistic, the statistic based on Robust estimator and Anderson-

Darling statistic. We also found that the GL distribution is a good model for extremes

of Bombay Stock exchange data.
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Chapter 6

Conclusion and Ideas for Future

Work

In this research work we found that the generalized logistic distribution can also be

used as a model for extremes in addition to the existing models of extremes described

in Chapter 1. We have shown in Chapter 3 that the maximum MN of a random

number N of random variables, where N is a geometric random variable, follows

asymptotically the generalized logistic distribution. We saw that the generalized lo-

gistic distribution has a stability property in terms of random sample size N . Like

the generalized extreme value model described in Chapter 1, the generalized logistic

distribution also includes three well known families of distributions namely, the logis-

tic, the loglogistic and the backward loglogistic distributions. We also verified that

the generalized logistic model is a good fit for the Bombay stock exchange data. We

introduced a goodness of fit measure in Chapter 5 and empirically verified that this

has more power compared to other existing goodness of fit measures.
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In Chapter 3, to prove that the generalized logistic distribution is the asymptotic

distribution of the random maximum MN , we used the main theorem of Chapter

2. The main theorem of Chapter 2 is proved for those function ’g’ which satisfies a

property called Q property. There may be bigger class of functions where the main

theorem in Chapter 2 holds. One of the immediate interest is to identify such class

of functions. The main theorem in Chapter 2 is also proved under the assumption

that the general function g has an asymptotic distribution. The condition under

which such an assumption holds can be investigated. This is another problem of

interest. Another aspect regarding the convergence results in Chapters 2 and 3 to

be looked into is the rate of convergence. All the results in Chapters 2 and 3 are

under the assumption that the sequences of random variables under consideration

are independent and identically distributed. One can try to relax this assumption

and look for convergence. This may lead to investigating whether the results in

Chapters 2 and 3 hold for independent non identically distributed random variables

and dependent sequences of random variables like stationary sequences.
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Appendix: Fortran code to calculate TGL

implicit double precision (a-h,o-z)

DOUBLE PRECISION ss,kk,glq,s,sk,ku,n,gl,gp,gev

open(unit=1,file=’10.DAT’,status=’old’)

open(unit=2,file=’11.txt’,status=’old’)

read(1,*)sk,ku

n=1000.0

do 82 s=-1.0,1.0,0.001

gl=0.0

glq=0.0

glq=glq+(5.0*((s)**2))

glq=(glq+1)/6.0

gl=gl+((sk-s)**2)+((ku-glq)**2)

if(gl.gt.n) go to 23

n=gl

ss=0.0

kk=0.0

ss=ss+s

kk=kk+glq

23 d=b

82 continue

write(2,*)ss,kk

close(1)

stop

end
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