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Chapter 1

Introduction

1.1 Inventory systems

The existence of inventory in a system generally implies the existence of
an organised complex system involving inflow, accumulation and outflow
of some commodities or goods or items or products. The scientific anal-
ysis of inventory systems defines the degree of interrelationship between
inflow, accumulation and outflow and identifies economic control methods
for operating such systems.

Inventory models play an important role in operations research and
management science. It is an integral part of logistic systems common to
all sectors of economy. Because of the importance of this branch of decision
making in a number of practical situations in Government, military organi-
sations, industries, hospitals etc.; significant development of the subject in
new directions resulted.

The main factors affecting the inventory are demand, lifetime of items
stored, production rate, lead time, damage rate due to external disaster,
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availability of space in store etc. If all the parameters are known beforehand,
then the inventory model is called deterministic inventory model. If some
or all of these parameters are not known with certainty, then it is justifiable
to consider them as random variables with some probability distributions
and the resulting inventory model is then called stochastic inventory model.
There can be single or multi-commodity inventory systems. Inventory sys-
tems may again be classified as continuous review or periodic review. In
continuous review, the system is monitored continuously over time. In pe-
riodic review systems, the system is monitored at discrete, equally spaced
instants of time.

An inventory policy is a set of decision rules that dictate the ‘When’
and the ‘How much’ to order. Several policies may be used to control an
inventory system; of these, the single most important policy is the (s, S)
policy. The time between the order and replenishment is called lead time. If
the replenishment is instantaneous, then the lead time is zero, otherwise the
system is said to have positive lead time. Shortage of inventory can occur
in systems with positive lead time. Then there can be back orders. In an
inventory with positive lead time one of the following assumptions is made:
(i) finite backlog (ii) infinite backlog (iii) no backlog.

1.2 Classical inventory

We shall refer to an inventory with negligible service time as classical inven-
tory model. In all works reported in inventory prior to 1993 it was assumed
that the time required to serve the item to the customer is negligible. If an
item is available at a customer demand epoch then his waiting time is neg-
ligible. In classical inventory models, a queue of customers can be formed
only when inventory level becomes zero and lead time is positive/shortage
cost is not high compared to holding cost. Immediately on replenishment
of items this queue will not vanish. Items are served one at a time to each
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waiting customer. If the number of customers waiting at the replenishment
epoch turns out to outnumber the quantity replenished then only a part of
the queue vanish.

The mathematical analysis of inventory problems was started by Har-
ris [22]. He proposed the famous EOQ formula, that was popularised by
Wilson. Right from the days of Harris and Wilson, the fundamental as-
sumption in any inventory problem was that the service time is negligible.

1.3 Inventory with service time

There are various situations arising in real life where positive processing
(service) time is involved before an item is delivered to the customer. Thus
in an inventory with service time, a queue will be formed even when the
item is available. This is not the case with inventory with negligible ser-
vice time except when backlog of demand is permitted in the absence of
inventory. Thus the problem in inventory with service time may appear as
a problem in queue. The paper by Berman, Kim and Simshak [8] is the
first attempt to introduce positive service time in inventory where it is as-
sumed that service time is deterministic as also the inter-arrival time. Later
Berman and Kim [6] extended these results to service time of random du-
ration. Berman and Sapna [10], Parthasarathy and Vijayalakshmi [48] deal
with control problems in inventory with service time. Arivarignan et al. [2]
considers a continuous review perishable inventory control system with pos-
itive service time. One of the most recent contribution to inventory with
service time is due to Schwarz et al. [54].

It may be noted that inventory with positive service time differs sub-
stantially in analysis from that of queue. In the latter, if a customer is avail-
able and the server is free and ready to serve, the customer starts getting
service. However, in inventory with service time, the availability of the
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items also is needed in addition to the features required in a queue. This
means that in queues we do not look at the availability of resources used
for service, whereas this has to be taken into account in inventory. In a
way one can regard the classical queueing problem as an inventory prob-
lem with unlimited number of items stored with the provision that holding
cost is negligible!. Thus in inventory the customer is forced to wait in the
absence of the item, even when server is free. This leads to the need for a
separate discussion on inventory with positive service time.

1.4 Production inventory

Very little investigation on production inventory had been made in the past.
This is so especially in the non-deterministic case. That is when factors
such as demands, lead time etc., are not deterministic. The analysis be-
comes highly complex when the items are of random life times and the lead
time is positive. Doshi et al. [17] study a production inventory system with a
compound Poisson arrival of demands and a continuous review (s, S) pro-
duction control policy. They derive measures of performance such as the
probability distribution of the inventory level, average number of switch
overs, and lost sales per unit time. Garish and Graves [18] study a con-
tinuous review (s, S) production inventory system with unit demand and
fixed replenishment times. de Kok et al. [15] study the same problem with
backorders and develop approximations for the switch over levels.

Sharafali [55] considers a production inventory system operating un-
der the (s, S) policy where demands arrive according to Poisson process
and production output is also Poisson. He assumes that the machine is sub-
ject to failure and repair time has general distribution. de Kok [14] deals
with a one-product production inventory model, where the production rate
can be dynamically adjusted in order to cope with random fluctuations in
demand. The demand process for the product is described by a compound
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Poisson process and the excess demand is lost.

Hsu and Tapiero [24] analyse a production inventory model using
queueing theory techniques. Mitra [42] considers a production consumption
system characterised by a finite capacity buffer that incorporates the relia-
bility factor in to the modelling. Altiok [1] analyses a production inventory
system with compound Poisson demand and phase-type distribution for the
processing time. Berge et al. [4] consider production inventory systems in
which a number of producing machines are susceptible to failure follow-
ing which they must be repaired to make them operative again. William et
al. [64] examines the impact of production level time on costs through the
use of periodic review production inventory model with a non-stationary
stochastic demand process.

1.5 Phase-type distribution

The idea of ‘method of phases’ was first proposed by A. K. Erlang. He gave
a generalisation of the exponential distribution. His idea lead to what is
known as Erlangian distribution. The basic idea behind Erlang’s approach
was the memoryless property of exponential distribution. Erlang’s idea was
extended by Cox who gave phase representation for all probability distri-
bution on the positive real time which have rational Laplace-Stieltjes trans-
form. This generalisation requires heavy use of complex analysis, due to
which their numerical implementation becomes difficult. This drawback is
overcome by Neuts [47] for at least a subclass of the distribution considered
by Cox and has received major attention in stochastic modelling.

To get away from Poisson/exponential models Neuts [47] developed
the theory of phase-type (PH) distributions and related point process. PH
distributions lead themselves naturally to algorithmic implementation. They
have nice closure properties and a related matrix formulation that make
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them attractive for use in practice.

1.5.1 Continuous PH-distribution

Let X = (Xt : t ≥ 0) denote a homogeneous Markov process with finite
state space {1, 2, . . . ,m+ 1} and generator

Q =

[
T η

0 0

]
where T is a square matrix of dimension m, η a column vector and 0 the
zero row vector of the same dimension. The initial distribution of X shall
be the row vector α = (α, αm+1), with α being a row vector of dimension
m. The first m states {1, . . . ,m} shall be transient, while the state m+ 1 is
absorbing. Let Z = inf{t ≥ 0 : Xt = m+ 1} be the random variable of the
time until absorption in state m+ 1.

The distribution of Z is called phase-type distribution with represen-
tation PH (α, T ). The dimension m of T is called the order of the distribu-
tion PH (α, T ). The states {1, 2, . . . ,m} are called phases.
Let e denote the column vector of dimension m with all entries equal to
one; then

η = −Te and αm+1 = 1− αe.

The distribution function of Z is given by

F (t) = p(Z ≤ t) = 1− α exp(Tt)e, for all t ≥ 0.

and density function is

f(t) = α exp(T · t)η for all t > 0,

where exp(T · t) =
∞∑

n=0

tn

n!T
n denotes a matrix exponential function.
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1.5.2 Discrete PH-distribution

Analogous to the definition of PH distribution in continuous time, we will
define discrete PH distributions in terms of Markov chains with one ab-
sorbing state. Let χ denote a Markov chain with finite state space E =
{0, 1, . . .m} and a transition matrix

P =

[
1 0
η T

]
.

Let α = (α0, α) be the initial distribution of χ where α is of dimension m.
0 is absorbing state. All other states shall be transient.

Let Z = min{n ∈ N0; Xn = 0}
denote the time until absorption in state 0.
Define pn = Pr(Z = n) for all n ∈ N0. The distribution P = (pn : n ∈ N0)
of Z is called a discrete PH distribution denoted by PHd(α, T ). The number
m of transient states is called the order of P . A transient state is called
phase. Here

η = 1− T1 and p0 = Pr(Z = 0) = α0 = 1− αe.

1.6 Matrix analytic method

Matrix analytic methods constitute a success story, illustrating the enrich-
ment of a science, applied probability, by a technology, that of digital com-
puters. Neuts has played a seminal role in these exciting developments,
promoting numerical investigations as an essential part of the solution of
probability models. Matrix analytic methods are popular as modelling tools
because they give one the ability to construct and analyse, in a unified way
and in an algorithmically tractable manner, a wide class of stochastic mod-
els.
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1.6.1 Quasi-Birth and Death process (QBD)

QBD’s are matrix generalisations of simple birth and death process on the
non-negative integers. Consider a discrete time Markov chain {Xt : t ∈ N}
on the two dimensional state space {(n, i) : n ≥ 0, 1 ≤ i ≤ m}, which we
partition as

⋃
n≥0

l(n), where l(n) = {(n, 1), (n, 2) . . . (n,m)} for n ≥ 0. The

first coordinate n is called the level, and the second coordinate j is called
the phase of the state (n, j). The Markov chain is called a QBD if one-step
transitions from a state are restricted to states in the same level or in the two
adjacent levels: it is possible to move in one step from (n, j) to (n′, j′) only
if n′ = n, n+ 1 or n− 1 (provided in the last case that n ≥ 1).

The transition probabilities are assumed to be level-independent. That
is for n or n′ greater than or equal to 1, the probability P [X1 = (n′, j)|X0 =
(n, i)] may depend on i, j and n′−n, but not on the specific values of n and
n′. The infinitesimal generator Q is given by

Q =


B0 A0

B1 A1 A0

A2 A1 A0

A2 A1 A0 · · ·
... ... ...


where B0e + A0e = B1e + A1e + A0e = (A0 + A1 + A2)e = 0. The
generator Q is assumed to be irreducible. The matrix A = A0 +A1 +A2 is
a finite generator.

Theorem 1.6.1. The process Q is positive recurrent if and only if the mini-
mal non-negative solution R to the matrix-quadratic equation

R2A2 +RA1 + A0 = 0

has all its eigen values inside the unit disk and the finite system of equations

x0(B0 +RB1) = 0

x0(I −R)−1e = 1
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has a unique positive solution x0.

If the matrix A is irreducible, then sρ(R) < 1 if and only if

πA2e > πA0e

where π is the stationary probability vector of A.

The stationary probability vector x = (x0, x1, . . .) of Q is given by

xi = x0R
i for i ≥ 0.

The equivalent equalities RA2e− A0e = RB1e−B0e = 0 hold.

1.6.2 First passage time

LetGv
jj, (K, x) denote the conditional probability that a QBD process, start-

ing in the state (i+v, j) at time t = 0, reaches the state i for the first time not
later than time x, after exactly k′ transitions to the left, and does so by enter-
ing the state (i, j). This probability is so defined for x ≥ 0, v ≥ 1, K ≥ 1,
1 ≤ j ≤ m, 1 ≤ j′ ≤ m and for any i such that the states (i, j′), 1 ≤ j′ ≤ m

are not boundary states. The probability G(v)
jj′ (K, x) does not depend on i.

The matrix with elements G(v)
jj′ (K, x) will be denoted by G(v)(K, x). For

ease of presentation, we also introduce the transform matrix

Ĝ(v)(Z, s) =
∞∑

K=1

ZK

∫ ∞

0
e−sxdG(v)(K, x),

for |Z| ≤ 1 and Re s ≥ 0.
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1.7 Review of related works

Mathematical modelling of inventory problems started in 1915 with the
work of Harris [22] in which he derives a formula popularly known as
‘Harris-Wilson economic lot size formula’. A systematic analysis of the
(s, S) inventory system using renewal theoretic arguments is provided in
Arrow, Karlin and Scarf [3]. Veinott and Wagner [62] provide algorithms
for finding the optimal (s, S) inventory policies. The application of these
models in various practical situations and the related problems are dealt
with in Hadley and Whitin [21], Naddor [43] and Wagner [65]. In the re-
view article Veinott [63] provides a detailed account of the work carried
out in inventory theory. Gross and Harris [19] consider the inventory sys-
tems with state dependent lead times. In [20] they developed the idea of
dependence between replenishment times and the number of outstanding
orders. Analysis of inventory systems with random lead times is provided
in Ryshikov [51].

Sivazlian [57] considers a continuous review (s, S) inventory prob-
lem with renewal demands and zero lead times. He proves that the lim-
iting distribution of the inventory position is uniform on (s + 1, . . . , S).
Richards [49] proves the same result for the case with compound renewal
demand. Richard [50] analyses a continuous review (s, S) inventory sys-
tem in which the demand for items in inventory is dependent on an external
environment. Sahin [52] discussed continuous review (s, S) inventory with
continuous state space and constant lead times. Srinivasan [59] extended
Sivazlian’s result to the case of arbitrarily distributed lead times. He de-
rived explicit expressions for probability mass function of the stock level
and extracted steady state results. This was further extended by Manoharan,
Krishnamoorthy and Madhusoodanan [35] to the case of non-identically
distributed inter-arrival times. Sahin [53] derived the binomial moments of
the transient and stationary distributions of the number of backlogs in a con-
tinuous review (s, S) inventory model with arbitrarily distributed lead times
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and compound renewal demand. Thangaraj and Ramanarayanan [60] deal
with an inventory system with random lead time having two order levels.

Kalpakam and Arivarignan [25] studied a continuous review inven-
tory system having an exhibiting item subject to random failure (exponen-
tially distributed life times). They [26] extended the result to exhibiting
items having Erlangian life times under renewal demands. Again in [27]
they analysed a perishable inventory model having exponential lifetimes
for all the items. Liu [41] analyses an (s, S) continuous review inventory
system in which depletions are due to random demands and random fail-
ure. Here backlogs are allowed but the lead time is assumed to be zero.
Kalpakam and Sapna [28] analyse an (s, S) perishable system with Pois-
son demand process and exponentially distributed lead times, allowing no
backlogs. In [29] they extent it to the case of arbitrary lead time distribution.

In all the works reported in inventory prior to 1993, the service time
is considered to be negligible. Berman, Kim and Shimshak [8] is the first
attempt to introduce positive service times in inventory, where it was as-
sumed that the service time is deterministic. Parthasarathy and Vijayalak-
shmi [48] is the first to analyse stochastic inventory models with positive
service times. They obtain time dependent solution for the system state.
Later Berman and Kim [5] extended this result to random service time.
Berman and Sapna [9] investigate inventory control at a service facility,
which uses one item of inventory for service provided. Parthasarathy and
Vijayalakshmi [48] considers a transient analysis of an (S − 1, S) inven-
tory model. Schwarz et al. [54] considers an M |M |1 queueing system
with inventory. Their model assumes balking of customers when inventory
level is zero (lost sales situation). They obtained that with infinite waiting
room capacity the limiting distributions of the queue length processes are
the same as in the classical M |M |1|∞ system. Kazimirsky [30] consid-
ers BMAP |G|1 queue with service time distribution depending on number
of processed items. He derives an efficient algorithm for calculating the
stationary queue length distribution and Laplace-Stieltjes transform of the
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Sojourn time. Sivasamy and Elangovan [58] considers a queueing system
with machining input source operating under an N -policy. They developed
computational algorithms for numerical evaluation of steady state proba-
bility distribution of queue length process, and first passage times through
matrix analytic methods. An optimum N -policy is also obtained.

Queues with transfer of customers is studied by Qi-Min-He and Neuts
[23]. They consider two M |M |1 parallel queues with infinite capacity and
manned by one server each. They provide a number of extremely useful
measures of the system that can effectively be utilised as control measures.
Krishnamoorthy and Jose [33] considers an (s, S) inventory system with
positive lead time and loss and retrial of customers. In another paper [34]
they analyse and compare three (s, S) inventory systems with positive ser-
vice time and retrial of customers. Krishnamoorthy et al. [31] consider an
(s, S) inventory system with service time, vacation to customer and corre-
lated lead time. Service times have PH distributions.

Krishnamoorthy and Raju [36] considers N -policy for an (s, S) in-
ventory systems with perishable items. Later in [37] they considerN -policy
for production inventory system with random life times. They obtain an op-
timal value of N for fixed S. The waiting time distribution for a required
item is computed. Krishnamoorthy and Mohammed Ekramol Islam [32]
analysed a production inventory with retrial of customers. Krishnamoor-
thy and Ushakumari [39] consider a D-policy for a k-out of n : G system
with repair. They obtain system state distribution, system reliability, ex-
pected length of time the server is continuously available, expected number
of times the system is down in a cycle etc. They obtain an optimal D value
which maximises a suitably defined cost function. In [61] they discussed
max(N, T ) policy for the same G system.
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1.8 An outline of the present work

This thesis is organised in six chapters including this introduction. The sec-
ond chapter is about control policies for inventory with service time. Con-
trol policies like N , D, T and their combinations are extensively studied in
queueing systems. These can be extended to inventory systems with ser-
vice time. The results thereby obtained will be of great use in management
related problems. Here we are introducing N -policy for an (s, S) inven-
tory system with positive service time. If at a service completion epoch
no customer is left, then the server is switched off to be activated again at
the epoch when N customers accumulate. Under specified inter-arrival and
service time distributions, which are independent of each other, we obtain
the necessary and sufficient condition for the system to be stable. System
state distribution is shown to have product form solution. We also obtain
the optimal values of the control variables s, S and N ; it is seen that the
cost function attains the minimum value at s = 0. It is also shown that the
cost function is separately convex in the variables S and N . Several mea-
sures of performance of the system are evaluated. Numerical illustrations
are provided.

In the third chapter we consider the effective utilisation of idle time
in an (s, S) inventory with positive service time. Here we introduce some
additional features in an (s, S) inventory system with positive service time.
In all the models considered with positive service time, including the one
we considered in chapter 2, the service starts only on the arrival of a cus-
tomer; in the absence of customers (or inventory) the server remains idle.
We relax this condition in our problem. If an item is available at a service
completion epoch, the server process it even in the absence of customers
(eg: assembling of parts); It keeps on doing this as long as unprocessed
items are available in the inventory, keeping the sum-total of processed and
unprocessed items (inclusive of the one being processed, if any) at most
S. Thus at a customer departure epoch either there is no processed item
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available or one or more processed items available. As long as processed
items are available, service time is negligible; otherwise a queue of cus-
tomers formed. The processing of items even in the absence of customers
can ensure reduction in the waiting time and hence in the associated cost.
Even in the simplest of cases we will not get analytical solutions. Hence we
proceed for an algorithmic analysis of the system. We establish a necessary
and sufficient condition for system stability. Several performance measures
are computed. An optimization problem is discussed.

In the fourth chapter we consider an inventory system with two paral-
lel service facilities with service time and transfer of customers and/inventory.
In the previous chapters we consider single server inventory systems with
positive service time. Here we consider an inventory system with two par-
allel service facilities. When the numerical difference between the number
of customers in the two queues reaches a certain fixed quantity L, a cer-
tain number K(K < L) of customers are transferred from the longer to the
shorter queue. In addition to the transfer of customers from the longer to the
shorter queue, we transfer a certain quantity of inventory also depending on
the availability. Further if one of the queues has customers, but has no in-
ventoried items, where as the other has atleast one inventoried item to spare,
then exactly one item is taken to the former and service begins thereby en-
hancing the efficiency of the system. Stability of the system is analysed.
Several performance measures that helps in efficient design of such systems
are computed.

In the previous chapters we consider exponentially distributed service
time. In chapter 5 we consider arbitrarily distributed service time. Here
we consider an (s, S) inventory with arbitrarily distributed service time.
Several situations are considered: (i) case of zero lead time (ii) case of
random lead time with different replenishment policies. In the second case
we restrict to the case where the system does not admit customers when the
inventory level is zero (lost sales). All these cases lead to matrices of the
M |G|1 type. We establish product form solutions. Also the optimal values
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of control variables are investigated.

In the previous chapters we considered inventory systems with posi-
tive service time. In chapter 6 we consider an inventory system with neg-
ligible service time. Here we consider a production inventory system with
perishable items. We introduce a control policy, D-policy for this produc-
tion inventory system with items having random life times. The maximum
capacity of the inventory system is S. When the inventory level is S, the
production process is switched off. Thereafter the depletion in inventory
is due to demand and perishability. The production starts only when the
accumulated workload exceeds a threshold D (> 0). Once the production
starts, it stops only when the inventory level reaches S. When the inventory
level reaches zero without accumulating D, the production starts automat-
ically so as to minimize loss of demands. Steady state probabilities and
several performance measures are obtained. The case without perishability
is derived as a special case.
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Chapter 2

Control Policies for Inventory with
Service Time

2.1 Introduction

In this chapter we consider N -policy for an (s, S) inventory system with
positive service time. If at a service completion epoch no customer is left,
then the server is switched off, to be activated again at the epoch when N
customers accumulate. We introduce an additional control variableN to the
(s, S) inventory system. Even when the server is switched off, there can be
positive on hand inventory which attracts holding cost. Thus the threshold
N value will depend also on the holding cost of on hand inventory during
the servers inactive time, in addition to the cost incurred due to customers
being made to wait. Under simple assumptions on the arrival of demands
(customer arrival process) to the system and on the pattern of service, we
provide an analytical expression for the optimal threshold value for N . The
analytical solution to system state probability distribution is first arrived at
in a heuristic fashion, and then it is given theoretical foundation.

∗ The content of this chapter is published in ‘Stochastic Analysis and Applications’, 24: 719–732, 2006.
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The results, especially concerning N , is of great importance to pro-
duction and manufacturing facilities providing service on the following count.
It is not always optimal to start service immediately on arrival of the first
customer to an idle server. This is so because there can be huge cost toward
switching on the server. So unless the resulting busy period is long enough,
the per unit time operational cost turns out to be very high compared to the
cost toward customer waiting cost. Thus, it is better to start service facility
only after N customers accumulate in the waiting line. This will guarantee
that at least N customers are served in a busy cycle which in turn brings
down the per unit time operational cost considerably. Of course, the opti-
mal N value depends on the activation cost of the server, the waiting cost
of customers, the holding cost of inventoried items and so on. The results
obtained will be of great use in management-related problems.

Control policies such as N , T , D and their combinations, are exten-
sively studied in queueing literature. It may be noted that inventory with
positive service time differs substantially in analysis from that of queues.
Although in the latter if a customer is available and the server is free and
ready to serve, the customer starts getting service. However, in inventory
with service time, the availability of the item is also needed in addition to
the features required in queueing theory. This means that in queueing theory
we do not look at the availability of resources used for service, whereas this
has to be taken into account in the inventory. Thus, the customer is forced
to wait in the absence of the item, even when server is free. This leads to
the need for a separate discussion on inventory with positive service time.

Berman, Kim and Shimshak [8] introduced inventory with positive
service time, where it is assumed that service time is deterministic. Later
Berman and Kim [5] extended this results to random service time. The anal-
ysis is via dynamic programming and is over a finite horizon. Berman and
Sapna [9] consider a finite buffer system and use Markov renewal theory
for analysis. Parthasarathy and Vijayalakshmi [48] deal with control prob-
lem in inventory with service time. One of the most recent contribution to
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inventory with service time is due to Schwarz et al. [54]. Krishnamoorthy
and Jose [33] compare three (s, S) inventory systems with positive service
time and retrial of customers. Krishnamoorthy et al. [31] considers an
(s, S) inventory system with service time, vacation to customer and corre-
lated lead time. Krishnamoorthy and Raju [37] considers N -policy for an
(s, S) inventory system with items having random life times.

2.2 Formation and analysis of the problem

Customers arrive to a single server counter according to a Poisson process
of rate λ. Service times of customers are independent and identically dis-
tributed exponential random variables with parameter µ. Arrival and service
processes are independent of each other. Also service times of customers
are mutually independent. The inventory stock is governed by (s, S) policy.
When the server becomes idle, it is switched off until N customers accu-
mulate at which epoch the server is activated. If at a service completion
epoch no customer is left and the inventory level drops to s, then order for
replenishment is placed only on accumulation of N customers. Lead time
is assumed to be zero.

Let

N(t) = number of customers in the system including the one getting
service (if any) at time t

I(t) = Inventory level in the system at time t

C(t) =

{
0 if the server is idle at time t.
1 if the server is busy at time t.

and X(t) = (N(t), C(t), I(t)). Then {X(t); t ≥ 0} forms a continuous
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time Markov chain with state space

S =
∞⋃
i=0

l(i)

where l(0) = {(0, 0, j)/s ≤ j ≤ S − 1}.

For 1 ≤ i ≤ N − 1

l(i) = {(i, 0, j)|s ≤ j ≤ S − 1} ∪ {(i, 1, j)|s+ 1 ≤ j ≤ S}

and for i ≥ N

l(1) = {(i, 1, j)|s+ 1 ≤ j ≤ S}.

Arranging the states in the lexicographic order, the infinitesimal gen-
erator Q of the process {X(t); t ≥ 0} can be written as

Q =



0 A00 A01

1 A10 Ã1 Ã0

2 Ã2 Ã1 Ã0
... . . . . . . . . .
N − 2 Ã2 Ã1 Ã0

N − 1 Ã2 Ã1
˜̃A0

N ˜̃A2 A1 A0

N + 1 A2 A1 A0

N + 2 A2 A1 A0... . . . . . . . . .


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where

A00 = −λIS−s

A01 = [λIS−s0IS−s]

A10 =

[
0IS−s

µIS−s

]
Ã1 =

[
−λIS−s 0

0 −(λ+ µ)IS−s

]
Ã0 = λI2(S−s)

Ã2 =

[
0IS−s 0IS−s

0IS−s µE

]
, E =

[
0 1

IS−s−1 0

]
˜̃A0 =

[
λE

λIS−s

]
˜̃A2 =

[
0IS−s µE

]
A1 = −(λ+ µ)IS−s

A0 = λIS−s

A2 = µE.

2.3 Stability condition

Theorem 2.3.1. The process {X(t)|t ≥ 0} will be stable if and only if
λ < µ.

Proof. Since the process {X(t), t ≥ 0} is level independent QBD, it will
be stable if and only if πA0e < πA2e. (See Neuts [44]), where π is the
steady state distribution of generator matrix

A = A0 + A1 + A2 = −µIS−s + µE.
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It can be seen that π = [ 1
S−s ,

1
S−s , . . . ,

1
S−s ] and, πA0e = λ and πA2e = µ

and the theorem follows.

2.4 The steady state probability vector of Q

Here, we calculate the steady-state probability vector of Q under the stabil-
ity condition. Let the steady-state probability vector X of Q be partitioned
according to the levels as

X = (x(0), x(1), x(2), . . . , x(N − 1), x(N), . . .)

where the sub-vectors x(i), 1 ≤ i ≤ N − 1, contain 2(S − s) elements and
all other sub-vectors contain (S − s) elements. The sub-vectors satisfy the
equations

x(0)A00 + x(1)A10 = 0 (2.1)

x(0)A01 + x(1)Ã1 + x(2)Ã2 = 0 (2.2)

x(i− 1)Ã0 + x(i)Ã1 + x(i+ 1)Ã2 = 0; 2 ≤ i ≤ N − 2 (2.3)

x(N − 2)Ã0 + x(N − 1)Ã1 + x(N) ˜̃A2 = 0 (2.4)

x(N − 1) ˜̃A0 + x(N)A1 + x(N + 1)A2 = 0 (2.5)
x(i− 1)A0 + x(i)A1 + x(i+ 1)A2 = 0; i ≥ N + 1 (2.6)

Again, partition the sub-vectors x(i), 1 ≤ i ≤ N − 1, as

x(i) = (x(i, 0), x(i, 1))

where the sub-vectors x(i, j), j = 0, 1, contain S − s elements each. Equa-
tions (2.1)–(2.6) give rise to the following equations. (In what is the follow
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E stands for the matrix
[

0 1
IS−s−1 0

]
)

λx(0)− λx(1, 0) = 0 (2.7)
λx(i, 0)− λx(i+ 1, 0) = 0, 1 ≤ i ≤ N − 2 (2.8)
− λx(0) + µx(1, 1) = 0 (2.9)
− (λ+ µ)x(1, 1) + µx(2, 1)E = 0 (2.10)
λx(i− 1, 1)− (λ+ µ)x(i, 1) + µx(i+ 1, 1)E

= 0, 2 ≤ i ≤ N − 2 (2.11)
λx(N − 2, 1)− (λ+ µ)x(N − 1, 1) + µx(N)E = 0 (2.12)
λx(N − 1, 0)E + λx(N − 1, 1)

− (λ+ µ)x(N) + µx(N + 1)E = 0 (2.13)
λx(i− 1)− (λ+ µ)x(i) + µx(i+ 1)E = 0, i ≥ N + 1 (2.14)

Now equations (2.7) and (2.8) give

x(i, 0) = x(0) for 1 ≤ i ≤ N − 1. (2.15)

Taking x(0) = η(1, 1, · · · 1), equation (2.9) gives

x(1, 1) =
λ

µ
η(1, 1 · · · 1) (2.16)

Now, from equation (2.10) we get

x(2, 1) = (1 +
λ

µ
)(
λ

µ
)η(1, 1 · · · 1)E−1

which gives

x(2, 1) = (
λ

µ
+ (

λ

µ
)2)η(1, 1 · · · 1). (2.17)

Equation (2.11) gives

x(i, 1) = ((
λ

µ
) + (

λ

µ
)2 + · · ·+ (

λ

µ
)i)η(1, · · · 1) for 3 ≤ i ≤ N − 1 (2.18)
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and equation (2.12) gives

x(N) = (
λ

µ
+ (

λ

µ
)2 + · · ·+ (

λ

µ
)N)η(1, · · · 1) (2.19)

then equation (2.13) gives

x(N + 1) = (
λ

µ
)((
λ

µ
) + (

λ

µ
)2 + · · ·+ (

λ

µ
)N)η(1, 1 · · · 1).

That is,

x(N + 1) =
λ

µ
x(N). (2.20)

Now, from equation (2.14) we get

x(N + i) = (
λ

µ
)ix(N) for i ≥ 2. (2.21)

Now, to find η, we use normalizing condition,

x(0)e+
N−1∑
i=1

x(i)e+
∞∑

i=N

x(i)e = 1. (2.22)

Under the assumption that λ
µ < 1, (2.22) give

N(S − s)

1− ρ
η = 1.

hence
η =

1− ρ

N(S − s)
. (2.23)

Thus we get the steady-state probability vector explicitly as:
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Theorem 2.4.1. The steady-state probability vector X of Q partitioned as
X = (x(0), x(1), x(2), . . .) where each x(i), 1 ≤ i ≤ N − 1, again parti-
tioned as x(i) = (x(i, 0), x(i, 1)), 1 ≤ i ≤ N − 1, is given by

x(0) = η(1, 1 · · · )
x(i, 0) = η(1, 1, · · · 1), 1 ≤ i ≤ N − 1

x(i, 1) =
[∑i

j=1(
λ
µ)j
]
η(1, 1 · · · 1), 1 ≤ i ≤ N − 1

x(N) =
[∑N

j=1(
λ
µ)j
]
η(1, 1 · · · 1)

x(N + i) = (
λ

µ
)ix(N) for i ≥ 1

where η = 1−ρ
N(S−s) and ρ = λ

µ .

Remark 2.4.2. If we put N = 1 in theorem 2.4.1 we get steady-state prob-
abilities for the system with service of customers whenever there is at least
one waiting:

Probability of i customers and j items in inventory

= (
λ

µ
)i(1− λ

µ
)

1

S − s
for i ≥ 0.

Note that the first two factors constitute the system state probability in the
classical M |M |1 queue and the third one corresponds to inventory level
probability in a system with negligible service time, zero lead time and in-
finite shortage cost. Thus we have a product form solution for the system
state probability. This is the case even when we adopt the N -policy for
service.
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2.5 System performance measures

1. Average number of customers in the system

µc =
∞∑
i=1

ix(i)e =
N − 1

2
− ρ

N

N−1∑
i=1

iρi

+
ρ

1− ρ
(1− ρN) + (

ρ

1− ρ
)2 (1− ρN)

N
.

2. Average inventory size

µinv =
S−1∑
j=s

jx(0, j) +
S−1∑
j=s

j{
N−1∑
i=1

x(i, 0, j)}+
S∑

j=s+1

j

{
N−1∑
i=1

x(i, 1, j)}
S∑

j=s+1

j{
∞∑

i=N

x(i, j)} =
s+ S − 1

2
+ ρ.

3. Probability that the server is idle Pidle = x(0)e+
∑N−1

i=1 x(i, 0)e = 1−ρ.

4. Expected number of customers in the system when the server is inactive

µ1
c =

1

1− ρ

N−1∑
i=1

ix(i, 0)e =
N − 1

2
.

5. Expected inventory in the system when the server is inactive

µ1
inv =

1

1− ρ

{ S−1∑
j=s

jx(0, j) +
S−1∑
j=s

j
{N−1∑

i=1

x(i, 0, j)
}

=
s+ S − 1

2
.

6. Expected number of customers when the server is active

µ′′c =
1

ρ

{N−1∑
i=1

ix(i, 1)e+
∞∑

i=N

ix(i)e
}

=
N − 1

2
− 1

N

{N−1∑
i=1

iρi
}

+
1− ρN

1− ρ
+

ρ

(1− ρ)2

(1− ρN)

N
.
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7. Average replenishment rate

µR =
{N−1∑

i=2

x(i, 1, s+ 1) +
∞∑

i=N

x(i, s+ 1)
}
µ+ x(N − 1, 0, s)λ

=
λ

S − s
.

8. Expected length of a busy cycle

Ebusy =
N

λ(1− ρ)
.

Next, we use these performance measures to construct a cost function
for the model described above.

2.5.1 Cost function

We define a cost function as follows:

F (s,Q,N) = h1µinv + h2µ
′
c + c1Pidle + (K + c2Q)µR +

A

Ebusy
+ h3µ

′
inv

where h1 is the holding cost per unit time per item, h2 is the holding cost
per customer per unit time when the server is inactive, c1 is the loss per unit
time due to the server kept inactive and h3 is the holding cost of inventoried
items where the server is inactive. K is the fixed cost per order, c2 is the
variable procurement cost per item, Q = S − s and A is the initial set up
cost or activation cost of the server. Substituting in the expression for the
system parameters we get

F (s,Q,N) = h1
(s+ S − 1

2
+ ρ
)

+ h2
(N − 1

2

)
+ h3

(s+ S − 1

2

)
+ c1(1− ρ) + (K + c2Q)

λ

S − s
+
Aλ(1− ρ)

N
.
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Because the above function is linear in s, we notice that when shortage cost
is infinity and lead time is zero, the optimal s value is given by
s∗ = 0. Furthermore, we notice that there is no direct relationship between
the values of S and N except that on the average S−1

2 units of the item is
held in the inventory during the inactivation time of the server. Hence, F
can be regarded as separable in the variables S and N . Then, we notice that
the optimal value of S is given by

√
2Kλ

h1+h3
. We also see that the optimal

value of N is given by N ∗ =
√

2Aλ(1−ρ)
h2

. Thus the expected minimum cost
of the system is

2

√
Kλ(h1 + h3)

2
+ (1− ρ)c1 + λc2 +

√
5

2
Aλ(1− ρ)h2. (2.24)

The optimal order quantity agrees with the classified formula for
EOQ. It is also seen that the server need be activated on accumulation of
sufficiently large number of customers when the activation cost is very high.
The expression for N ∗ also tells that if the holding cost of inventory and/or
the waiting cost of customers (incurred to the system) when the server is
not active, are/is high then relatively smaller values of N turns out to be
optimal.

2.5.2 Numerical illustration

Table 2.1: S = 25, λ = 5.0, µ = 6.0, h1 = 20.0, h2 = 2.5, h3 = 20.0, K = 100.0,
c2 = 50.0, c1 = 2.0, A = 500.

N 2 4 6 8 10

F 874.91 793.25 781.02 786.16 798.25

In Table 2.1, the average per unit time cost is indicated against various
values of N for given input parameters. The cost decreases with increasing
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Table 2.2: λ = 5.0, µ = 6.0, h1 = 20.0, h2 = 2.5, h3 = 20.0, K = 100.0, c2 = 50.0,
c1 = 2.0, N = 5, A = 500.

S 15 16 17 18 19 20 21 22

F 750.33 743.66 741.76 742.83 745.89 750.33 755.78 762

Table 2.3: S = 20, λ = 5.0, h1 = 20.0, h2 = 2.5, h3 = 20.0, K = 100.0, c2 = 50.0,
c1 = 2.0, N = 5.

µ 5.1 5.5 6.0 6.5 7.0 7.5

F 791.95 726.31 750.33 777.06 801.47 823.17

value of N , attains a minimum and then goes up. We notice from Table 2.2
that the above observation is true for F as a function of S. Interestingly
such an observation could be made about F when viewed as a function of µ
as well in Table 2.3.

2.6 Conclusion

In this chapter, an (s, S) inventory system, where customers require a ran-
dom amount (positive) of service, is discussed. In addition to the control
variables s and S, we have brought in another control variable, namely, N .
Each time the server becomes idle it is switched off and to be activated again
on accumulation of N customers. It is proved that the optimal value s∗ of s
is s∗ = 0 if no shortage is permitted (shortage cost is infinity and lead time
is zero). It is also established that N and S have global optimal values. The
expression for the minimum cost is given by equation (2.24).
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The optimal order quantity agrees with the classical formula for EOQ.
It is also seen that the server need be activated on accumulation of suffi-
ciently large number of customers when the activation cost is very high (see
the expression for the optimal value of N ). The expression for N ∗ also tells
that if the holding cost of inventory and /the waiting cost of customers (in-
curred to the system) when the server is not active, are/is high then relatively
smaller values of N turns out to be optimal. Thus, the results obtained are
quite useful for optimal design of an inventory system where service time is
not negligible.
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Chapter 3

Effective Utilization of Idle Time in an
(s, S) Inventory with Positive Service
Time

3.1 Introduction

In the previous chapter we were looking exclusively at the N -policy of ac-
tivation of server for cost minimization. In this chapter we have a different
motive, namely to improve the utilization of the server and also reduce the
waiting time of customers to the maximum extent possible. It turns out that
some customers have negligible service time with zero waiting time in the
queue and the others will have to wait. This is achieved through processing
(servicing) inventoried items while server does not have any customer to
serve. The waiting time of a customer at the service counter is caused by
the time required to process the inventoried item. The server can do this
even in the absence of customers and this is exactly what we assume in this

∗ The content of this chapter is published in ‘Journal of Applied Mathematics and Stochastic Analysis’ Ar-

ticle ID 69068, 1–13, 2006.Also presented in the ‘Joint Statistical Meeting and International Conference

on Staistics, Probability and Related areas’ during January 2-5, 2007 at Cochin University of Science and

Technology
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chapter. Thus we note that, unlike in the previous chapter, the optimal re-
order level here is NOT zero but a positive quantity even in the absence of
lead time and shortage cost.

However this seemingly simple “effective utilization” principle re-
sults in analytical intractability of the model! Nevertheless it is interesting
to note that Deepak et al. [16] produces analytical result to the following
simple variance of model discussed here and that in chapter 2: there are two
streams of customers, one stream asking for unprocessed items (and hence
with zero waiting and negligible service time) whereas the other asks for
processed items resulting in positive service time and sometimes waiting
time in queue.

Berman et al. [8] introduced positive service time in inventory mod-
els in a purely deterministic set up. Berman and Kim [5] deal with stochas-
tic inventory models with positive service time wherein the average cost is
minimised using dynamic programming technique. Berman and Sapna [9]
consider an (s, S) inventory problem with positive service time. They con-
sider a finite capacity waiting station model and identify a Markov renewal
process to study the system behaviour. Since the state space is finite the
Markov renewal equation has a unique solution.

3.2 Description of the model and its mathematical formu-
lation

We have a single commodity inventory system operating under the (s, S)
policy, with positive service time. Items are serviced (processed — eg.
assembling) even in the absence of a demand. The processed items are
stacked separately. The server keeps processing the items. The total of
processed and unprocessed items can not exceed S. Also when the total
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reaches s an order for replenishment is placed and the order materialisation
takes place instantly (ie, lead time is zero).

Demands for the item arrive according to a Poisson process of rate
λ. Service (processing) times are exponentially distributed with parameter
µ. A queue of customers is formed in the absence of processed items at
demand epochs. There is no bound assumed to the queue. Thus the queue
of customers can be arbitrarily large. We investigate its stability. The inves-
tigation of the maximum number of processed items that may be stacked is
also important. This is so since it is much more expensive to stack processed
items than unprocessed items. Also note that unlike in classical inventory
with zero lead time and inventory with positive service time and zero lead
time, we expect a positive reorder level (s) as optimal since this will reduce
waiting time of customers and the consequent cost, thus bringing down the
otherwise avoidable holding cost of customers.

Denote by N(t), the number of customers in the system at time t; by
I(t) the total inventory (processed plus unprocessed) at t; and by C(t) the
number of processed items. Thus {(N(t), I(t), C(t)), t ∈ R+} is a three
dimensional Markov chain on

{(i, j, k)|i = 0, S ≥ j ≥ s+1, j ≥ k ≥ 0}∪{(i, j, 0)|i > 0, S ≥ j ≥ s+1}.

C(t) can be positive only when number of customers waiting in the system
is zero. We investigate the optimal (s, S) values and also the maximum
number of processed items that could be stored so that the average system
running cost is minimum.
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3.3 Analysis of the system

Let 0 =
(
(0, s + 1, 0), (0, s + 1, 1), . . . (0, s + 1, s + 1), (0, s + 2, 0) . . .

(0, s + 2, s + 2), . . . (0, S, 0), (0, S, 1) . . . (0, S, S)
)

and i =
(
(i, s + 1, 0),

(i, s+ 2, 0), . . . (i, S, 0)
)

, for i = 1, 2, . . . .

Then the resulting process is a level independent Quasi birth-death
process (LIQBD) with the infinitesimal generator

Q =



0 1 2

0 A00 A01 0 · · ·
1 A10 A1 A0 0 · · ·
2 0 A2 A1 A0 · · ·

. . . . . . . . .
0 A2 A1 A0 · · ·


where

A00 =


Bs+2 0 · · · C ′

s+1
Cs+2 Bs+3 · · · 0

...
0 0 CS BS+1



A01 =


D1

D2
...

DS−s


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A10 =


0 · · · 0 0 · · · 0 · · · 0 · · · 0 µ 0 · · · 0
µ · · · 0 0 · · · 0 · · · 0 · · · 0 0 0 · · · 0
0 · · · 0 µ · · · 0 · · · 0 · · · 0 · · · · · · · · · 0

0 · · · 0 0 · · · 0 · · · µ · · · 0 0 · · · · · · 0


is a matrix of order

(S − s)×
(
(S − s)s+

(S − s)(S − s+ 1)

2
+ S − s

)
A0 = λIS−s,

A1 = −(λ+ µ)IS−s,

A2 =


0 · · · µ

µ 0 · · · 0
0 µ · · · 0
0 · · ·µ 0


(S−s)×(S−s)

,

Bj =


−(λ+ µ) µ 0 · · · 0

0 −(λ+ µ) µ 0 · · · 0
...
0 −(λ+ µ) µ
0 −λ


j×j

Cj =

 0

λIj


(j+1)×j

C ′
s+1 =

[
0 0

λIs+1 0

]
(s+2)×(S+1)

D1 =


λ 0 · · · 0
0 · · · · · · 0

0 · · · · · · 0


(s+2)×(S−s).
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D2 =


0 λ 0 · · · 0
0 0 · · · · · · 0
...
0 · · · · · · · · · 0


(s+3)×(S−s)

DS−s =

0 · · · · · · λ

0 · · · · · · 0
0 · · · · · · 0


(S+1)×(S−s).

3.3.1 Calculation of steady state probabilities

Let π = (π0, π1, π2, · · · ) be the stationary probability vector associated with
Q. Note that πi is the probability vector associated with level i. Then πQ =
0 and πe = 1 where e is the column vector of 1’s of appropriate dimension.
The πi are given by

πi = π1R
i−1 for i ≥ 2 (3.1)

where R is the minimal non-negative solution of the matrix equation A0 +
RA1 +R2A2 = 0. π0 and π1 are calculated from the equations

π0A00 + π1A10 = 0 (3.2)
π0A01 + π1A1 + π2A2 = 0. (3.3)

Using (3.1), (3.3) can be rewritten as

π0A01 + π1(A1 +RA2) = 0. (3.4)

From (3.2), we have
π0 = π1(−A10)A

−1
00 . (3.5)

Using (3.5) in (3.4) we get

π1(−A10)A
−1
00 A01 + π1(A1 +RA2) = 0

i.e., π1((−A10)A
−1
00 A01 + A1 +RA2) = 0 (3.6)
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Thus π0 and πi(i ≥ 2) are expressed in terms of π1, and π1 can be
obtained by solving (3.6) subject to the condition that

π1[(−A10)A
−1
00 e + e +R(I −R)−1e] = 1. (3.7)

Let T = −A10A
−1
00 A01 + A1 + RA2. Then (3.6) reads as π1T = 0. Write

T = T1 − T2 where T1 = TU + TD and T2 = −TL. Then by block Gauss-
Seidel method, the recursive scheme of equations is given by π(l+1)

1 T1 =

π
(l)
1 T2.

3.3.2 Stability criterion

At first glance, it may appear that the stability condition can be weaker than
λ < µ. Such suspicion arises out of the fact that some customers have zero
waiting time. However, it turns out that a few of the items were processed
by the server in the absence of the customers and hence such customers who
encounter the system with processed items do not have to wait. In any case,
service was given and thus a certain amount of time was already spent on
processed items towards service. Hence here also we can expect that λ < µ,
which is true and its proof is given below.

Theorem 3.3.1. The system is stable if and only if λ < µ.

This follows from the fact that if the rate of drift from level i to i− 1
is greater than that to level i+1 (the two immediate neighbours of i and the
process is LIQBD which is skip free to either direction) then πA2e > πA0e
(see Neuts [45]), where π is the stationary probability vector associated with
A = A0 + A1 + A2. This on simplification gives λ < µ.
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3.3.3 First passage time analysis.

Here we obtain expression for the first passage time probability from a level
i to the level i − 1 for i ≥ 1. This provides the mean number of customers
served during the transition of the number of customers from i to i − 1.
Also it provides the mean time for the above transition. These measures are
helpful in the design of service facilities.

Let Gjj(k, x) be the conditional probability that the Markov process,
starting in the state (i, j, 0) (for i > 1), at time t = 0, reaches the level
i − 1 for the first time at or prior to x, after exactly k transitions to the left
(ie., after exactly k service completions) and does so by entering the state
(i − 1, j′, 0) for s + 1 ≤ j′ ≤ S. The matrix with elements Gjj′(k, x) is

denoted by G(k, x). Let G∗(z, θ) =
∞∑

k=1

zk

∫ ∞

0
e−θxdG(k, x).

Then, for 0 < z < 1, θ > 0, the Matrix G∗(z, θ) is the minimal
non-negative solution to the equation,

zA2(θI − A1)G
∗(z, θ) + A0G

∗2

(z, θ) = 0

lim
s→0,z→1

G∗(z, θ) = G = (Gjj′)

where

Gjj′ = Pr
{
τ <∞, (N(τ),M(τ),M1(τ)) = (i− 1, j′, 0)

∣∣∣
(N(0),M(0),M1(0)) = (i, j, 0)

}
and τ is the first passage time from the level i to the level i− 1

Let Mij be the mean first passage time from the level i(i > 1) to the
level i − 1, given that it started in the state (i, j, 0) and let M̃1 be a row
vector of dimension S−s with elements M1j. Let M2j be the mean number
of service completions during this first passage time and let M̃2 be a row
vector of dimension S − s with elements M2j.
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Then

M̃1 = − ∂

∂θ
G∗(z, θ)e|θ=0,z=1 = −(A1 + A0(I +G))−1e

M̃2 = −(A1 + A0(I +G))A2e
[ ∂
∂z
G∗(z, θ)e|θ=0,z=1

]
Similar toG∗(z, θ), M̃1 and M̃2, we define matricesG∗(1,0)(z, θ), M̃1

(1,0)
and

M̃2
(1,0)

for the first passage time from the level 1 to the level 0 and G∗(0,0)

(z, θ), M̃1
(0,0)

and M̃2
(0,0)

for the first passage time from the level 0 to the
level 0.
Then

G∗(1,0)(z, θ) = z(θI − A1)
−1A10 + (θI − A1)

−1A0G
∗(z, θ)G∗(1,0)(z, θ)

and
G∗(0,0)(z, θ) = (θI − A00)

−1A01G
∗(1,0)(z, θ).

Hence

M̃
(1,0)
1 = − ∂

∂θ
G∗(1,0)(z, θ)e|θ=0,z=1 = −(A1 + A0G)−1(A0M̃1 + e)

M̃2 =
∂

∂z
G∗(1,0)(z, θ)e|θ=0,z=1 = −(A1 + A0G)−1(A0M̃2 + A10e)

M̃
(0,0)
1 = − ∂

∂θ
G∗(0,0)(z, θ)e|θ=0,z=1 = −A−1

00 (A01M̃
(1,0)
1 + e)

M̃
(0,0)
2 =

∂

∂z
G∗(0,0)(z, θ)e|θ=0,z=1 = −A−1

00 A01M̃
(1,0)
2
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3.3.4 Performance measures

(a) Average queue size

=
∞∑
i=1

iπie

= π1e +
∞∑
i=2

iπ1R
i−1e

= π1(I + 2R + 3R2 + · · · )e
= π1(I −R)−2e

(b) If we partition πi by states in level i as

πi = (πi,s+1,0, . . . , πi,s+1,s+1, . . . πiSS),

then the average inventory size (processed + unprocessed) is

=
∞∑
i=0

S∑
j=s+1

jπij0 +
S∑

j=s+1

j∑
k=1

jπ0,j,k =
∞∑
i=0

S∑
j=s+1

j∑
k=0

j × πijk.

(c) Average number of processed items held =
S∑

j=s+1

j∑
k=1

kπ0jk.

(d) Average Service rate = λ

S∑
j=s+1

j∑
k=1

π0jk + µ

∞∑
i=1

S∑
j=s+1

πij0.

(e) Probability of a customer getting serviced instantaneously (ie., his ser-

vice time is negligible, ie., waiting time is zero) =
S∑

j=s+1

j∑
k=1

π0jk.

(f) Probability that a customer will have to wait for service

=
∞∑
i=0

S∑
j=s+1

πij0.
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(g) Average replenishment rate = λ

s+1∑
k=1

π0,s+1,k + µ

∞∑
i=1

πi,s+1,0.

(h) π0jj stands for the probability that there is no customer (first subscript)
in the system, j items are in the inventory (middle subscript) and all
these are in processed state (last subscript). Only when no customer is
present, there can be processed inventory. Thus the probability that all

these are processed is given by
S∑

j=s+1
π0jj.

(i) Probability that there is no processed item in the inventory

=
∞∑
i=0

S∑
j=s+1

πij0.

(j) Probability that the inventory size is maximum (ie., S)

=
∞∑
i=0

πiS0 +
S∑

k=1

π0Sk.

(k) Average waiting time of an arbitrary customer in the system

=
1

µ

[
S∑

j=s+1

π0j0 +
∞∑
i=1

S∑
j=s+1

iπij0

]
.

(l) Probability that the inventory level moves from S back to S without any
intervening arrivals having to wait

S∑
i1=1

S−1∑
i2=1

· · ·
s+1∑

iS−s=1

π0,S,i1π0,S−1,i2 . . . π0,s+1,iS−s
.

(m) Probability that during an S to S transition, all customers have to wait
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is given by∑
i0≥1

∑
i1≥i0−1

. . .∑
iS−(s+2)≥iS−(s+3)−1

∑
iS−(s+1)≥iS−(s+2)−1

πi0,S,0πi1,S−1,0 . . . πiS−(s+1),s+1,0

The reasoning is as follows:
There are i0 (≥ 1) customers when a replenishment takes place. At the
first departure epoch there are i1 customers left (i1 ≥ 0); if this is zero
an arrival should take place before the next service commences, else the
next service commences immediately; the S − (s+ 1)th service in that
cycle, with s+1 items in the inventory, proceeds and leaves behind one
or more customers at its departure and the next service starts. Also the
replenishment takes place.

3.4 Control Problem

We notice a glaring departure from classical inventory and inventory with
service time as in chapter 2 on the one side and the problem under discus-
sion here on the otherside. In the former, the optimal reorder level is zero
(whenever lead time is zero) whereas in the latter this is not always true.

Here a trade off between the waiting cost of customers and the holding
cost of finished products has to be obtained. If the former is very high
compared to the latter, always a positive reorder level (that too pretty high)
is called for, whereas when the holding cost of finished products is very high
in comparison with the cost towards the waiting of customers, the reorder
level may tend towards zero. The numerical illustrations are suggestive of
these observations.

Now we show numerically that it is optimal to place replenishment
order before the inventory level drops to zero whenever the waiting cost
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of customers is very high compared to the holding cost of processed item.
Since analytical expressions are not available for the system state proba-
bilities, it is difficult to give a formal proof for the above statement. Nev-
erthless, it can intutively shown to hold. For when the customer waiting
cost is very high in comparision with the holding cost of processed items,
a heavy expenditure is incurred for the former in the absence of processed
items. If processed item is available, the demand is immdiately met with
the result that the waiting cost of customer is completely avoided. This is
brought out through tables 3.4, 3.5 and 3.6. Note that the optimal values of
s in these cases are 9, 3 and 1, respectively. In these tables, the service rates
are given the values 2.5, 3.0, and 3.5 respectively; and all other parameters
are kept fixed. In arriving at the results given in Tables 3.7, 3.8 and 3.9 we
constructed a profit function

F̂ (k) = π0Sk(k · h′1 + (S − k)h′2 − λh2).

This is to numerically establish that for a given inventory level, say S, there
is a corresponding optimal value for the number of processed items to be
kept in the inventory.

Let the costs associated with the system operation be as follows.
Fixed ordering cost = K, procurement cost = c per unit item, holding cost
of customers = h2 per unit/time, holding cost of processed items = h′1 per
unit/time and holding cost of
unprocessed items = h′2 per unit/time.
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We analyse the following cost function:

F (s, S) = (K + c(S − s))

(
λ

s+1∑
k=1

π0,s+1,k + µ

∞∑
i=1

πi,s+1,0

)

+ h′1

S∑
j=s+1

j∑
k=1

kπ0jk

+ h′2

( ∞∑
i=0

S∑
j=s+1

j∑
k=0

jπijk −
S∑

j=s+1

j∑
k=1

kπ0jk

)
+ h2π1(I −R)−2e.

The objective is to minimize this cost. Since analytical expressions are not
available for the system state probabilities, we resort to numerical proce-
dure. Tables 3.1, 3.2 and 3.3, respectively, show the effect of the maximum
inventory level on the system running cost when service rates are 2.1, 2.5
and 3 respectively with λ fixed at 2. The values of all other parameters are
also kept fixed. Tables 3.4, 3.5 and 3.6 indicate the effect of the replenish-
ment level on the system running cost and other system parameters, with
service rates varying as 2.5, 3.0 and 3.5 respectively. In all these tables, we
notice that the cost first shows a decreasing trend, reaches a minimum and
then climbs up.

Effect of S on the expected system cost. Here we take λ = 2.0,
s = 10, K = 500, C = 100, h′1 = 50, h′2 = 10, h2 = 50.0.
Table 3.4 to 3.6 show effect of replenishment level s on the expected system
cost λ = 2.0, S = 20, K = 50.0, c = 20.0, h′1 = 15.0, h′2 = 10.0,
h2 = 200.0.

Tables 3.7 to 3.9 provide the profit gained by stacking processed items
in the inventory. In these tables, we fix λ = 2.0, S = 20, K = 50.0,
c = 20.0, h′1 = 15.0, h′2 = 10.0, h2 = 200.0, the values of s and µ alone are
varied.
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Table 3.1: µ = 2.1

S 12 16 20 24 25 26 27 28 30

Average queue size 11.203 10.784 10.495 10.264 10.212 10.162 10.113 10.067 9.978

Average 11.207 13.169 15.130 17.091 17.582 18.072 18.563 19.053 20.034
inventory held

Average number of 2.756 3.138 3.435 3.694 3.754 3.814 3.872 3.930 4.041
processed items

P(inventory 0.0464 0.0465 0.0465 0.0466 0.0466 0.0466 0.0466 0.0466 0.0466
contains only
processed items)

Average waiting 5.602 5.393 5.248 5.132 5.106 5.081 5.057 5.034 4.989
time of a customer
in system

Expected cost 1437.68 1122.88 1071.40 1058.70 1058.04 1058.01 1058.51 1059.47 1062.47

Table 3.2: µ = 2.5

S 12 14 16 18 19 20 21 22 25

Average queue size 0.317 0.288 0.266 0.249 0.242 0.235 0.229 0.223 0.208

Average 11.354 12.356 13.356 14.355 14.854 15.354 15.853 16.353 17.850
inventory held

Average number of 7.541 8.022 8.429 8.796 8.968 9.136 9.298 9.457 9.913
processed items

P(inventory 0.1975 0.1977 0.1979 0.1980 0.1981 0.1981 0.1982 0.1982 0.1983
contains only
processed items)

Average waiting 0.1587 0.1439 0.1332 0.1247 0.1210 0.1176 0.1145 0.1116 0.1039
time of a customer
in system

Expected 944.04 746.21 694.26 677.72 675.25 675.06 676.56 679.32 692.58
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Table 3.3: µ = 3.0

S 12 14 16 18 19 20 21 22 25

Average 0.020 0.017 0.015 0.014 0.013 0.012 0.012 0.011 0.0096
queue size

Average 11.474 12.476 13.478 13.978 14.478 14.979 15.479 16.480 17.981
inventory held

Average 9.333 9.889 10.374 10.602 10.822 11.036 11.246 11.653 12.241
number of
processed items

P(inventory 0.3326 0.3327 0.3328 0.3328 0.3328 0.3329 0.3329 0.3329 0.3330
contains only
processed items)

Average waiting 0.010 0.008 0.007 0.007 0.0066 0.0063 0.006 0.0054 0.0048
time of
customer in
system

Expected 879.46 713.31 677.01 672.11 671.50 673.73 677.92 690.23 714.49
cost

Table 3.4: µ = 2.5

S 0 3 5 8 9 10 11 12 15

Average 1.640 0.920 0.623 0.346 0.285 0.235 0.193 0.160 0.091
queue size

Average 9.971 11.566 12.671 14.298 14.828 15.353 15.875 16.394 17.934
inventory held

Average 2.123 3.892 5.290 7.562 8.345 9.135 9.929 10.724 13.087
number of
processed items

P(inventory 0.1869 0.1926 0.195 0.1972 0.1977 0.1981 0.1984 0.1987 0.1992
contains only
processed items)

Average waiting 0.820 0.460 0.311 0.173 0.142 0.117 0.097 0.080 0.045
time of
customer in
system

Expected cost 454.52 337.31 297.22 271.94 269.93 270.31 272.73 276.89 298.95
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Table 3.5: µ = 3.0

S 0 1 2 3 4 5 6 10 15

Average 0.442 0.309 0.216 0.150 0.104 0.072 0.050 0.012 0.002
queue size

Average 10.128 10.691 11.253 11.808 12.355 12.893 13.423 15.479 17.995
inventory held

Average no. of 3.472 4.173 4.915 5.683 6.466 7.259 8.056 11.246 15.138
processed items

P(inventory 0.317 0.3219 0.325 0.328 0.329 0.331 0.331 0.333 0.333
contains only
processed items)

Average waiting 0.221 0.155 0.108 0.075 0.052 0.036 0.025 0.006 0.001
time of a
customer in
system

Expected cost 213.2 196.2 187.18 183.84 184.5 187.95 193.35 225.53 278.89

Table 3.6: µ = 3.5

S 0 1 2 3 4 5 7 10 15

Average 0.183 0.111 0.067 0.04 0.024 0.014 0.005 0.001 0.0001
queue size

Average 10.250 10.825 11.38 11.918 12.45 12.965 13.986 15.497 17.999
inventory held

Average no. of 4.452 5.2 5.965 6.738 7.513 8.288 9.833 12.133 15.88
processed items

P(inventory 0.414 0.420 0.423 0.425 0.427 0.427 0.428 0.428 0.429
contains only
processed items)

Average waiting 0.092 0.055 0.033 0.020 0.012 0.007 0.003 0.0006 0.00005
time of
customer in
the system

Expected cost 163.81 158.96 159.71 163.87 170.09 177.55 194.48 222.32 274.7
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Table 3.7: µ = 2.5, s = 9

k 1 4 7 8 9 10 11 15 19

F̂ (k) 0.32 0.574 0.807 0.844 3.825 2.056 1.104 0.091 0.007

Table 3.8: µ = 3.0, s = 3

k 1 2 3 4 5 8 11 15 19

F̂ (k) 0.231 0.272 3.821 2.231 1.301 0.257 0.05 0.006 0.0006

Table 3.9: µ = 3.5, s = 1

k 1 2 3 4 7 11 15 19

F̂ (k) 3.539 2.194 1.359 0.842 0.199 0.029 0.004 0.0006

3.5 Conclusion

In this chapter we have considered an effective way to improve the server
idle-time utilization. Eventhough the lead time is assumed to be zero, we
notice that when the holding cost of customers is very high, reorder level
remains positive. There are some customers requiring negligible service
time (as in classical inventory models) and some others requiring positive
service time. The need for stacking processed items is also brought out in
this chapter.
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Chapter 4

Inventory with Service Time and
Transfer of Customers and/Inventory

4.1 Introduction

In the previous chapters we considered single server inventory systems with
positive service time. We note that the problem in inventory with service
time may appear as a problem in queue. This chapter clubs inventory with
positive service time of customers waiting in two different queues with their
transfer from the longer to shorter queue to improve performance of the
combined system. In other words an inventory system with two parallel ser-
vice facilities is considered. A certain number of customers are transferred
from longer to shorter queue whenever their difference reaches a prescribed
quantity. Along with this customer transfer, a certain quantity of inventory
is also transferred, depending on availability. Further, if one of the queues
has customers, but has no inventoried items whereas the other has at least
one inventoried item to spare, then exactly one item is taken to the former

∗ The content of this paper will appear in ‘Annals of Operations Research’ (2008).To be presented at the‘Sixth

International Workshop in Matrix Analytic Method’ at Beijing, June 2008.
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and service begins, thereby enhancing the efficiency of the combined sys-
tem and what is more is that the combined system may be stable even when
one of the queues is unstable. Stability of the system is analysed. Sev-
eral performance measures that help in efficient design of such systems, are
computed. Some numerical results are provided.

Parallel queues providing identical service, where customers jockey
for reaching the server with minimal waiting, is a common sight. Here the
system itself does not provide a means to reduce the waiting time of cus-
tomers. One among the queue may build up whereas the other may remain
pretty small. Inorder to bring down the waiting time of customers a transfer
of customers from the longer to the shorter queue by the system rather than
by the customers themselves is desirable. As far as our information goes,
the first work to deal with customer transfer by the system (from longer
to shorter queue) in parallel queues was considered by Qi-Ming He and
Neuts [23]. Despite the fact that one of the queues in a two-parallel queue
system with customer transfer is unstable, the combined system can be sta-
ble. Their model runs as follows: there are two infinite capacity waiting
lines manned by one server each. Arrival process to the first and second
lines form independent Poisson processes of rates λ1 and λ2 respectively.
Service times are exponentially distributed with parameters µ1 and µ2 and
are independent of each other. Upto this stage these are two independent
systems. The dependence comes in through the following: when the nu-
merical difference between the number of customers in the two channels
reaches L, a certain number K (K < L) of customers are transferred from
the longer to the shorter queue. Despite this the two waiting lines can grow
to any large size and thus the matrix analytic method fails. However, if we
now view the combined system described by a two dimensional vector, the
first coordinate of which is defined as the sum of the number of customers
in the two queues and the second coordinate as their difference, then the
first one can be taken as the level and the second one, the phase. Since
the second coordinate can assume only a finite number of values, the ma-
trix analytic method can be employed to the two dimensional Markov chain
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thereby obtained. Still the system turns out to be a level dependent Quasi
birth-death process (LDQBD). In order to reduce it to a level independent
QBD a number of transformations are made and the resulting continuous
time Markov chain is analysed. Qi-Ming He and Neuts [23] provide a num-
ber of extremely useful measures of the queueing system with transfer of
customers that can effectively be utilized as control measures. In particular
they demonstrate that under λ1 + λ2 < µ1 + µ2, the system is collectively
stable even when one component is unstable. This means that the system
performs better with transfer of customers. In the present set up, such a
simple stability condition cannot be obtained due to the complexity of the
model. It may be noted that if we drop the assumption of transferring one
unit of inventory to the queue where customer(s) are waiting in the absence
of inventory, then the same stability condition as obtained in [23] results.

Inventory with positive service time is considered by Berman et al. [8],
Berman and Kim [6], Berman and Sapna [10], Parthasarathy and Vijayalak-
shmi [48]. Arivarignan et al. [2] consider a continuous review perishable
inventory control system with positive service time. One of the most recent
contributions to inventory with service time is due to Schwarz et al. [54].
Basically their model assumes Poisson arrival of demands, exponentially
distributed service time and balking of customers when inventory level is
zero (lost sales situation). They derive joint stationary distributions of queue
length and inventory level in explicit product form under continuous review
of inventory level and different inventory management policies. With lead
time assumed to be exponentially distributed, they evaluate various perfor-
mance measures. The key result they obtained is that with infinite waiting
room capacity the limiting distributions of the queue length processes are
the same as in the classical M |M |1|∞ system. They could arrive at ana-
lytical solutions because of the assumption that no customer is permitted to
join the system when inventory level is zero.

50



4.2 Mathematical formulation and Analysis

In this chapter we extend the Qi-Ming He-Neuts model to an inventory with
service time as described below. There are two service counters manned by
one server each. Customers arrive to these according to two independent
Poisson processes of rates λ1 and λ2 respectively, demanding inventoried
item—exactly one item will be served to a customer. Server at counter i
serves according to exponentially distributed time with parameter µi, i =
1, 2. At both counters the same (s, S)-inventory policy is adopted for sim-
plifying the discussion. The maximum that can be held in the inventory is
S; the reorder level is s. Thus always s < S. However, here we make a
stronger assumption that S > 2s+1, the reason for which becomes evident
while we proceed further. (s can be interpreted as the safety stock which
could be used to serve customers during lead time). At each order place-
ment epoch the order quantity is Q = S − s. Here we assume that the lead
time at counter i is exponentially distributed with parameter δi, i = 1, 2.

We follow the policy of transfer of customers as in Qi-Ming He and
Neuts [23]. In addition to transfer of K customers from the longer to
the shorter queue, whenever their difference reaches L, we transfer cer-
tain quantity of inventory also. For example suppose queue 1 is longer than
queue 2 by L units. Then K customers are chosen from the last among the
waiting and passed on to the queue 2. Simultaneously we transfer a cer-
tain number of inventoried items from queue 1 to queue 2 which is given
by Inv1→2 = min{[I1(t) − I2(t)]

+, K ′} where K ′ is a positive integer less
than Q provided I2(t) > 0. ([x]+ is the largest integer part (≥ 0) in x). If
I2(t) = 0, then the quantity transferred is I1(t) − 1. Several clarifications
are needed at this stage: (i) Note that the reorder level is s. However it
can happen that I1(t) > s and consequent to the transfer the inventory level
drops to level s or below that, triggering immediate order placement. Then
how much to order? We restrict the order quantity to S − s = Q, irrespec-
tive of whether the inventory level at reorder epoch turns out to be any one
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among s, s− 1, . . . , 0. (ii) An equally uncomfortable situation arises when
customers are received along with a certain amount of inventoried items.
For example suppose K customers are transferred from queue 1 to queue 2.
Suppose that replenishment order is outstanding in queue 2 at this epoch.
Further assume that as a consequence of the transfer of some inventory to
queue 2, the inventory level in that queue has exceeded s, the reorder level.
Subsequently the replenishment may take place when the inventory level
remains above s. This will result in the inventory position in queue 2 going
above S (the maximum that can be held there). (iii) Further it may appear
now as if there is no pending replenishment order in queue 2, unless we
introduce an entity to describe that status. To overcome all these unpleasant
situations, we assume that, if an order for replenishment is pending at the
queue to which customers and inventory are transferred, then that particu-
lar order is cancelled in case the inventory level goes above s consequent
to the transfer. (iv) In addition if at a service completion epoch if one of
the queues still has customers waiting but service could not be given for
want of inventory, then depending on the availability of items in the other
queue, exactly one unit of inventory is transferred to the one without inven-
tory currently, provided it does not interrupt the service of the customer, if
any, in service at the queue from which the item is transferred. (One can
very well consider transfer of more than one unit of inventory). Without
this assumption the structure of the infinitesimal generator of the process
would have been quite handy as we will realize in the section to follow.
Nevertheless these inventory transfers will ensure smoother running of the
service system, by reducing waiting time thereby enhancing the efficiency
of the combined system.

We suitably define the state variables so as to enable us to make the
associated Markov process a QBD for which the matrix analytic method
can be effectively used. With that observation we consider the process{

(q(t) = q1(t) + q2(t), J(t) = q1(t)− q2(t), I1(t), I2(t)); t ≥ 0
}

which is a QBD process with q(t) ≥ 0 and −(L − 1) ≤ J(t) ≤ L − 1.
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Generally, 0 ≤ Ii(t) ≤ S for i = 1, 2. Within these limits, however,
the values assumed by I1(t) and I2(t) very much depend on the values of
(q(t), J(t)). The state space of the above Markov chain can be divided into
levels according to the values of q(t). The states in each level are given as
follows.

i) For q(t) = 0, the only possible value for J(t) is zero so that the level 0,
denoted by l(0) is given by

l(0) = {(0, 0, 0, 0) . . . (0, 0, 0, S)(0, 0, 1, 0) . . . (0, 0, 1, S) . . .

(0, 0, S, 0) . . . (0, 0, S, S)}

ii) When q(t) = n; 1 ≤ n ≤ L − 1, the possible values for J(t) are
n, n− 2, n− 4, . . .− (n− 4),−(n− 2) so that for 1 ≤ n ≤ L− 1, the
level n, denoted by l(n) is given by

l(n) =
{

(n, n, 0, 0) (n, n, 1, 0) (n, n, 1, 1) . . . (n, n, 1, S)

. . . . . . (n, n, S, 0) . . . . . . (n, n, S, S)
}

∪
{

(n, n− 2, 0, 0) (n, n− 2, 0, 1) (n, n− 2, 1, 0) . . .

(n, n− 2, 1, S)(n, n− 2, 2, 1) . . . (n, n− 2, 2, S) . . .

(n, n− 2, S, 1) . . . (n, n− 2, S, S)
}

. . . . . . . . . . . .

∪
{

(n,−n, 0, 0) (n,−n, 0, 1) . . . (n.− n, 0, S) (n,−n, 1, 1) . . .

(n,−n, 1, S) . . . (n,−n, S, 1) . . . (n,−n, S, S)
}
.

i.e., l(n) has (n− 1)(S2 − 3)− 2(S(S − 1)− 1) states.

iii) For n ≥ L there are two cases:
1) If n ≥ L and n − L is odd, then the possible values of J(t) are
L− 1, L− 3 · · · − (L− 3), −(L− 1).
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So in this case

l(n) =
{

(n, L− 1, 0, 0) (n, L− 1, 0, 1) (n, L− 1, 1, 0) . . .

(n, L− 1, 1, S), (n, L− 1, 2, 1) . . . (n, L− 1, 2, S) . . . . . .

(n, L− 1, S, 1) . . . . . . (n, L− 1, S, S)
}
∪ . . . . . . . . . . . .

∪
{

(n,−(L− 1), 0, 0) (n,−(L− 1), 0, 1)

(n,−(L− 1), 1, 0) . . . (n,−(L− 1), 1, S),

(n,−(L− 1), 2, 1) . . . (n,−(L− 1), 2, S) . . .

(n,−(L− 1), S, 1) . . . (n,−(L− 1), S, S)
}
.

i.e., l(n) has L(S2 + 3) states.

2) If n ≥ L and n − L is even, J(t) assumes one of the values in the
set {L− 2, L− 4, . . . ,−(L− 4),−(L− 2)}. Moreover, in this case the
values assumed by I1(t) and I2(t) are the same as in the previous case
so that here we arrange the states in the same order as in case 1. Hence
in this case l(n) has (L− 1)(S2 − 3) states.

Now we introduce a few frequently occurring notations and abbrevi-
ations used in the sequel.

Ij : Identity matrix of order j.
0j : Column vector of order j with all entries zeros.
e : column vector of 1’s of appropriate order.
δij : Kronecker delta.
⊗ : Kronecker product.
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H0 = [1, 0]1×2; H1 =

[
I2
0

]
(S+1)×2

; H2 =

[
0 0
1 0

]
2×2

;

I ′ =

[
0 0 0
0 IS−1 0

]
(S+1)×(S+1)

; Î =

[
0 0

IS−1 0

]
S×S

;

Ĩ =

[
0 0
IS 0

]
(S+1)×(S+1)

;

I ′j =

[
0 0
0 IS−j+1

]
(S+1)×(S+1)

for 1 ≤ j ≤ S;

I ′′j =

[
Ij 0
0 0

]
S×S

for 1 ≤ j ≤ S − 1;

I ′′′j =

[
0 0 0
0 IS−j+1 0

]
S×S

for 3 ≤ j ≤ S;

Ĩ ′j =

[
0 0
0 IS−j

]
S×S

for 1 ≤ j ≤ S − 1;

Ĩ ′′j =

[
Ij 0
0 0

]
(S+1)×(S+1)

for 1 ≤ j ≤ S;

Î ′j =

[
0 0
0 IS−j+1

]
(S+1)×S

for 1 ≤ j ≤ S with Î ′1 =

[
0
IS

]
(S+1)×S

;

πL(I −R)−1)n(S2+3)+iS+j = U(n, i, j);(
πn

)
S(S+1)+n(S2+3)+iS+j

= V (n, i, j) for 1 ≤ n ≤ L− 1

where (πn)i represents the ith component of the row vector πn.
The matricesBij,B′

ij,B
′′
ij andB′′′

ij are of orders (S+1)×(S+1), (S+1)×S,
S × S and S × (S + 1) respectively, with the property that the (i, j)th entry
of all these matrices is equal to 1 and all other entries are zero.

Now the infinitesimal generator matrix of the Markov process {(q(t),
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J(t), I1(t), I2(t)), t ≥ 0} is given as:

Q1 =



A01 A00

A12 A11 A10
. . . . . . . . .

AL−1,2 AL−1,1 AL−1,0 . . .

AL,2 AL,1 AL,0 . . .

AL+1,2 AL+1,1 AL+1,0
. . . . . . . . .


.

Each block matrix appearing in Q1 is explicitly expressed as follows.

A01 =

[
Is+1 ⊗ F0 0 δ1I(s+1)(S+1)

0 0 IS−s ⊗ F1

]
(S+1)2×(S+1)2

where

F0 =

[
−ψIs+1 0 δ2Is+1

0 0 (−ψ + δ2)IS−s

]
(S+1)×(S+1)

and

F1 =

[
(−ψ + δ1)Is+1 0 δ2Is+1

0 0 −(λ1 + λ2)IS−s

]
(S+1)×(S+1)

with ψ = λ1 + λ2 + δ1 + δ2.

Note that in the following the blocks in the matrices are indexed by
J(t) = q1(t)−q2(t) which has the values

{
n, n−2, n−4, . . .−(n−2),−n

}
for 0 ≤ l(n) ≤ L − 1;

{
L − 2, L − 4, . . . − (L − 4),−(L − 2)

}
and{

L− 1, L− 3, . . .− (L− 3),−(L− 1)
}

for l(n) ≥ L.
Then

A00 = (A
(1)
00 A

(2)
00 ) where A

(1)
00 =

[
A

(1,1)
00 A

(1,2)
00

0 A
(1,3)
00

]
(S+1)2×(S(S+1)+1)

.
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In A(2)
00 , the (1, 1)th block entry is A(2,0)

00 ; (2, 1)th entry is A(2,1)
00 ; (i, i)th entry

is A(2,2)
00 for 2 ≤ i ≤ S + 1; (i, i− 1)th entry is A(2,3)

00 for 3 ≤ i ≤ S + 1 and
remaining entries are zero.

The matrices appearing in each block are explicitly expressed as

A
(1,1)
00 =

[
λ1

0S

]
,

A
(1,2)
00 = (λ1Ĩ , 0)(S+1)×S(S+1);

A
(1,3)
00 = λ1IS(S+1), A

(2,0)
00 = λ2IS+1, A(2,1)

00 = λ2B12, A(2,2)
00 = λ2Î

′
1 and

A
(2,3)
00 = λ2B

′
11.

Now, A12 =

[
A

(1)
12

A
(2)
12

]
where A(1)

12 =

[
0 0

µ1IS(S+1) 0

]
(S(S+1)+1)×(S+1)2

;

A
(2)
12 =

[
A

(2,1)
12 0

0 IS ⊗ A
(2,2)
12

]
where A(2,1)

12 = µ2Ĩ

and A(2,2)
12 =

[
µ2IS 0

]
S×(S+1).

For 2 ≤ n ≤ L− 1,

An2 =



n− 1 n− 3 · · · · · · −(n− 3) −(n− 1)

n A
(1)
2

n− 2 A
(2)
2 A

(3)
2... A
(4)
2

. . .
... . . . . . .
... . . . A

(3)
2

−(n− 2) A
(4)
2 A

(5)
2

−n A
(6)
2


where A(1)

2 is a square matrix of order S(S + 1) + 1 with the only non-zero
blocks A(1,2)

2 as the (2, 2)th (block) entry, A(1,1)
2 as the (2, 1)th entry and the
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other lower diagonal entries are equal to µ1IS+1.

A
(2)
2 =

A
(2,1)
2 0 0

0 A
(2,1)
12 0

0 0 IS−1⊗ A
(2,2)
12


(S2+3)×(S(S+1)+1)

;

A
(3)
2 is a square matrix of order (S2 + 3) with the lower diagonal (block)

entries A(3,4)
2 except the first two which are A(3,1)

2 and A(3,3)
2 respectively,

and the only non-zero diagonal (block) entry A(3,2)
2 as the second one;

A
(4)
2 is a square matrix of order (S2 + 3) with the diagonal (block) entries

A
(4,4)
2 except the first two which are A(4,1)

2 and A(2,1)
12 respectively, and the

lower diagonal entries A(4,5)
2 except the first two which are zero and A(4,3)

2
respectively;

A
(5)
2 =

[
0 0

µ1IS2+1 0

]
(S2+3)×(S(S+1)+1)

and A(6)
2 is a square matrix of order S(S + 1) + 1 with the diagonal entries

A
(4,4)
2 except the first one which is A(2,1)

12 and the lower diagonal entries
A

(4,5)
2 except the first one which is A(4,3)

2 .

The matrices appearing in each of the blocks A(i)
2 , i = 1, 2, . . . , 6 are

as given below.

A
(1,1)
2 =

[
µ1

0S

]
; A

(1,2)
2 = µ1Ĩ; A

(2,1)
2 = (0, µ2)

T ;

A
(3,1)
2 = µ1H1; A

(3,2)
2 = µ1I

′; A
(3,3)
2 =

[
0 µ1IS

]
S×(S+1) ;

A
(3,4)
2 = µ1IS; A

(4,1)
2 = µ2H2; A

(4,3)
2 = µ2B

′′′
12;

A
(4,4)
2 = µ2Î and A

(4,5)
2 = µ2B

′′
11.
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For 1 ≤ n ≤ L− 2,

An0 =



n+ 1 n− 1 · · · · · · −(n− 1) −(n+ 1)

n A
(1)
0 A

(2)
0

n− 2 A
(3)
0 A

(4)
0... . . . . . .

... . . . . . .
−(n− 2) A

(3)
0 A

(4)
0

−n A
(5)
0 A

(6)
0


where

A
(1)
0 = λ1IS(S+1)+1; A

(2)
0 =

[
A

(2,1)
0 0

0 Ã
(2)
00

]
where A(2,1)

0 = λ2H0 and Ã(2)
00 is obtained from A

(2)
00 by eliminating the last

row (block); A(3)
0 = λ1IS2+3;

A
(4)
0 = λ2IS2+3; A

(5)
0 =

A(5,1)
0 A

(5,2)
0 0

0 A
(5,3)
0 0

0 0 λ1IS(S−1)


and A(6)

0 = λ2IS(S+1)+1.

The matrices appearing in A(5)
0 are expressed as

A
(5,1)
0 = λ1H1; A

(5,2)
0 = λ1I

′ and A(5,3)
0 =

[
0 λ1IS

]
S×(S+1).

For 1 ≤ n ≤ L− 1,

An1 = diag(A
(1)
1 , eT ⊗ A

(2)
1 , A

(3)
1 )

where e is of order n−1 and if A(i)
1 (j, k) represents the entry (block) in A(i)

1
corresponding to the pair of indices (j, k) where 0 ≤ j, k ≤ S, then the non-
zero (block) entries in A(i)

1 are given by A(1)
1 (0, 0) = A

(1,1)
1 ; A(1)

1 (0, 1) =

A
(1,2)
1 ;A(1)

1 (i, i) = A
(1,4)
1 for 1 ≤ i ≤ s;A(1)

1 (i, i) = A
(1,6)
1 for s+1 ≤ i ≤ S;
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A
(1)
1 (0, S − s) = A

(1,3)
1 ; and A(1)

1 (i, S − s+ i) = A
(1,5)
1 for 1 ≤ i ≤ s.

A
(2)
1 (0, 0) = A

(2,1)
1 ; A(2)

1 (1, 1) = A
(2,5)
1 ; A(2)

1 (i, i) = A
(2,8)
1 for 2 ≤ i ≤ s;

A
(2)
1 (i, i) = A

(2,9)
1 for s + 1 ≤ i ≤ S; A(2)

1 (0, 1) = A
(2,2)
1 ; A(2)

1 (0, S −
s − 1) = A

(2,3)
1 ; A(2)

1 (1, S − s) = A
(2,6)
1 ; A(2)

1 (2, S − s + 1) = A
(2,7)
1 ; and

A
(2)
1 (i, S − s+ i) = A

(2,10)
1 for 2 ≤ i ≤ s

A
(3)
1 (0, 0) = A

(3,1)
1 ; A(3)

1 (i, i) = A
(3,4)
1 for 1 ≤ i ≤ s; A(3)

1 (i, i) = A
(3,6)
1 for

s + 1 ≤ i ≤ S; A(3)
1 (0, S − s − 1) = A

(3,2)
1 ; A(3)

1 (0, S − s) = A
(3,3)
1 and

A
(3)
1 (i, S − s+ i) = A

(3,5)
1 for 1 ≤ i ≤ s.

The matrices appearing in each of the blocks A(i)
1 ; i = 1, 2, 3 are

given as A(1,1)
1 = −ψ; A(1,2)

1 = [0, δ2, 0]1×(S+1) where δ2 lies at the (S− s)th

position;

A
(1,3)
1 = [δ1, 0]1×(S+1); A

(1,4)
1 = F0 − µ1IS+1; A(1,5)

1 = δ1IS+1;
A

(1,6)
1 = A

(1,4)
1 + A

(1,5)
1 ; A(2,1)

1 = diag(−ψ,−ψ − µ2);
A

(2,2)
1 = (0 δ2I2 0)2×(S+1)

where δ2 in the first row lies at the (S − s)th position;

A
(2,3)
1 =

[
δ1 0
0 0

]
2×S

; A
(2,4)
1 =

[
0 0
δ1 0

]
2×S

;

A
(2,5)
1 = F0 − µ2I

′
1 − µ1IS+1; A

(2,6)
1 = δ1B

′
11; A

(2,7)
1 = δ1Î

′
1; A

(2,8)
1 is

obtained from A
(2,5)
1 by eliminating the first row and column;

A
(2,9)
1 = A

(2,10)
1 + A

(2,8)
1 ;A

(2,10)
1 = δ1IS;

A
(3,1)
1 = F0 − µ2I

′
1; A

(3,2)
1 = A

(2,6)
1 ; A

(3,3)
1 = A

(2,7)
1 ; A

(3,4)
1 is obtained

from A
(3,1)
1 by eliminating first row and column; A(3,5)

1 = δ1IS and A(3,6)
1 =
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A
(3,4)
1 + A

(3,5)
1 .

AL−1,0 =



L− 2 L− 4 · · · L− 2K · · · −(L− 4) −(L− 2)

L− 1 A
(2)
0 λ1D

L− 3 λ1IS2+3 λ2IS2+3

...
. . . . . .

...
. . . . . .

...
. . . . . .

−(L− 3) λ1IS2+3 λ2IS2+3

−(L− 1) λ2D
′ A

(5)
0



Note that in the definition of AL−1,0, the block matrix corresponding
to the pair of indices (L − 1, L − 2K) is λ1D and that corresponding to
(−(L−1),−(L−2K)) is λ2D

′ (because when J(t) = ±(L−1), an arrival
may cause a transfer) where

D =



H0

IS+1
2∑

i=1

Bi,i+1 Î ′2

2∑
i=1

Bi,i+2 B′
33 Î ′3

· · · · · · · · · · · · · · ·
2∑

i=1

Bi,i+K′ B′
3,K′+1 · · · B′

K′+1,K′+1 Î ′K′+1

3∑
i=1

B′
i,i+K′−1 · · · B′

K′+2,K′+2 Î ′K′+2

. . . . . .
S−K′+1∑

i=1

B′
i,i+K′−1 B′

S−K′+2,S · · · B′
SS Î ′S


and

D′ =



H1 B32 B′
41 · · · B′

K′+1,1

S−K′+1∑
i=2

Bi+K′,i−1

B′′′
12 B′′

21 · · · · · · B′′
K′,1

S−K′+1∑
i=2

B′′
i+K′−1,i−1

I ′′2 B′′
32 · · · · · · B′′

K′+1,2

. . .
. . .

I ′′S−K′ B′′
S−K′+1,S−K′ · · · B′′

S,S−K′

I ′′S−1 B′′
S,S−1

IS



.
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Now for the level L of Q1, we have

AL2 =



L− 1 L− 3 · · · −(L− 3) −(L− 1)

L− 2 A
(2)
2 A

(3)
2

L− 4 A
(4)
2

. . .
... . . .
−(L− 4) A

(3)
2

−(L− 2) A
(4)
2 A

(5)
2

;

AL1 = IL−1 ⊗ A
(2)
1 and

AL0 =



L− 1 L− 3 · · · · · · −(L− 3) −(L− 1)

L− 2 A
(3)
0 A

(4)
0

L− 4 A
(3)
0 A

(4)
0... . . . . . .

−(L− 4)

−(L− 2) A
(3)
0 A

(4)
0

.
For the level L+ 1, we have

AL+1,2 =



L− 2 L− 4 · · · L− 2K · · · −(L− 4) −(L− 2)

L− 1 A
(3)
2 µ2E

L− 3 A
(4)
2 A

(3)
2

...
. . . . . .

...
. . . . . .

−(L− 3) A
(4)
2 A

(3)
2

−(L− 1) µ1E
′ A

(4)
2


.

Here note that the block matrix corresponding to the pair of indices (L −
1, L − 2K) is µ2E and that corresponding to (−(L − 1),−(L − 2K)) is
µ1E

′ (because when J(t) = ±(L − 1), a service completion results in a
transfer) where
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E =



H2

Ĩ
2∑

i=1

B′′′
i,i+1 I ′′′3

2∑
i=1

B′′′
i,i+2 B′′

33 I ′′′4

· · · · · ·
2∑

i=1

B′′′
i,i+K′ B′′

3,K′+1 · · · B′′
K′+1,K′+1 I ′′′K′+2

3∑
i=1

B′′
i,i+K′−1 B′′

4,K′+2 · · · · · · I ′′′K′+3

. . . . . .
S−K′+1∑

i=1

B′′
i,i+K′−1 B′′

S−K′+2,S · · ·B′′
SS



;

and E ′ =

[
0

D̃′

]
where the matrix D̃′ is obtained from D′ by eliminating the

last row (block).

AL+1,1 = IL ⊗ A
(2)
1 and

AL+1,0 =



L− 2 L− 4 · · · L− 2K · · · −(L− 2)
L− 1 λ2IS2+3 λ1D

′′

L− 3 λ1IS2+3 λ2IS2+3
...

. . . . . .
−(L− 3) λ2IS2+3

−(L− 1) λ2D
′′′ λ1IS2+3


where

D′′ =



I2

IS+1

B′′′
13 Ĩ ′1

B′′′
14 B′′

23 Ĩ ′2
· · · · · · · · ·
· · · · · · · · ·

B′′′
1,K′+2 B′′

2,K′+1 B′′
3,K′+1 · · · B′′

K′,K′+1 Ĩ ′K′

2∑
i=1

B′′
i,K′+i B′′

3,K′+2 · · · · · · B′′
K′+1,K′+2 Ĩ ′K′+1

. . .
S−K′∑
i=1

B′′
i,K′+i B′′

S−K′+1,S · · · B′′
S−1,S Ĩ ′S−1


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and

D′′′ =



I2

Ĩ ′′2 B′
31 B′

41 · · · B′
K′+1,1

S−K′+1∑
i=2

B′
K′+i,i−1

I ′′2 B′′
32 · · · · · · B′′

K′+1,2

S−K′+1∑
i=3

B′′
K′+i,i−1

· · · · · · · · · · · · · · ·
. . .

I ′′S−K′ B′′
S−K′+1,S−K′ · · · B′′

S−1,S−K′ B′′
S,S−K′

I ′′S−K′+1 · · · B′′
S,S−K′+1

. . . · · · · · · · · ·
. . . · · · · · ·

I ′′S−1 B′′
S,S−1

IS



.

For the level L+ 2,

AL+2,2 =



L− 1 L− 3 · · · · · · −(L− 3) −(L− 1)

L− 2 A
(4)
2 A

(3)
2

L− 4 A
(4)
2 A

(3)
2

...
. . . . . .

...
. . . . . .

−(L− 4)
. . . . . .

−(L− 2) A
(4)
2 A

(3)
2


.

and for n ≥ 0, i = 0, 1, we have AL+2n,i = ALi and AL+2n+1,i = AL+1,i.
Also for n ≥ 1, AL+2n,2 = AL+2,2 and for n ≥ 0, AL+2n+1,2 = AL+1,2.

Thus all the matrices (blocks) arising in the infinitesimal generator Q1 have
been explicitly expressed. Now, the QBD process {(q(t), J(t), I1(t), I2(t)) :
t ≥ 0} is level dependent. Analysis of a level dependent QBD process is
in general difficult. However, as in [23] we are fortunate to generate a level
independent QBD process by reorganising the state space. The details are
as follows:
For n ≥ 0, the level L+2n has (L−1)(S2+3) states and the level L+2n+1
has L(S2+3) states. Regroup the (2L−1)(S2+3) states in the levels L+2n
and L+ 2n+ 1 and call the new level as L+ n.
After regrouping the states, the resulting QBD process becomes level inde-
pendent. Corresponding to the new partition of the state space, we introduce
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a new Markov process {(X(t), J(t), I1(t), I2(t)) : t ≥ 0} where

X(t) =


q(t) if q(t) ≤ L− 1

L+

⌊
q(t)−L

2

⌋
if q(t) ≥ L

where ‘bxc’ is the largest integer less than or equal to x. Clearly, the Markov
process {(X(t), J(t), I1(t), I2(t)) : t ≥ 0} is irreducible and level indepen-
dent.

The infinitesimal generator Q2 of {(X(t), J(t), I1(t), I2(t)) : t ≥ 0}
is given by

Q2 =



0 1 2 · · · L L + 1 L + 2 · · ·
0 A01 A00

1 A12 A11 A10
...

. . . . . . . . .
L− 1 AL−1,2 AL−1,1 A∗

L−1,0

L A∗
L2

A1 A0

L + 1 A2 A1 A0

L + 2 A2 A1 A0
...

. . . . . . . . .



where A∗
L−1,0 = [AL−1,0, 0], A∗

L2 =

[
AL2

0

]
, A1 =

[
AL1 AL0

AL+1,2 AL+1,1

]
,

A0 =

[
0 0

AL+1,0 0

]
and A2 =

[
0 AL+2,2

0 0

]
.

Note that X(t) and q(t) are related by

q(t) = 2X(t)− L if X(t) ≥ L, J(t)− L is even;
and q(t) = 2X(t)− L+ 1 if X(t) ≥ L, J(t)− L is odd.
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4.2.1 Stability condition and Stationary distribution

We first investigate the condition for the system to be stable. Starting from
the fact that the system is stable if and only if π̃A0e < π̃A2e, where π̃
is the stationary probability vector corresponding to the generator matrix
A = A0 + A1 + A2, we get

(λ1 + λ2)π̃Le <

L−1∑
i=1

π̃L−1,ia

where π̃ = (π̃L−1, π̃L) with π̃L−1 being the vector of probabilities associated
with the first (L − 1) blocks, and π̃L that associated with the last L blocks
and

a = (0, µ2, µ1, µ1 + µ2, . . . , µ1 + µ2)
T

with S2 + 3 entries.

When replenishment rate is infinity, this reduces to λ1 +λ2 < µ1 +µ2

as in [23]. This is on the expected lines since when replenishment rate is
infinity, servers will remain idle only in the absence of customers.

Note that if the first three elements in a were also µ1 + µ2 then the
stability condition would have reduced to λ1 + λ2 < µ1 + µ2 which is
the case of infinite replenishment rate. The numerical results obtained are
supportive of this state of affairs.

Since {(X(t), J(t), I1(t), I2(t)) : t ≥ 0} is a level independent QBD
process, its stationary distribution (if exists) has a matrix geometric solution.
We refer to Neuts [45] and Latouche and Ramaswami [40] for details about
the matrix geometric solution of QBD processes.

Denote by πn, the stationary probability vector of the above level in-
dependent QBD process corresponding to the level n. Then

πQ2 = 0 and πe = 1 (4.1)
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where π = (π0, π1, π2, · · · , · · · ). Because of the special structure of Q2, π
can be expressed as

πn = πLR
n−L : n ≥ L+ 1, (4.2)

where R is the minimal non-negative (matrix) solution to the equation

R2A2 +RA1 + A0 = 0 (4.3)

and the vectors π0, π1, . . . , πL−1 are obtained by solving

(i) π0A01 + π1A12 = 0

(ii) πi−1Ai−1,0 + πiAi1 + πi+1Ai+1,2 = 0; 1 ≤ i ≤ L− 2

(iii) πL−2AL−2,0 + πL−1AL−1,1 + πLA
∗
L2

= 0 (4.4)
(iv) πL−1A

∗
L−1,0 + πL(A1 +RA2) = 0

subject to the normalizing condition

L−1∑
i=0

πie+ πL(I −R)−1e = 1. (4.5)

By the appropriate manipulation of the above system of equations, we get

πi = πi+1Ai+1,2(−A′
i)
−1 if 0 ≤ i ≤ L− 2

πL−1 = πLA
∗
L2(−A′

L−1)
−1 (4.6)

and πL = πL+1A2(−A′
L)−1

where

A′
i =


A01 if i = 0

Ai1 + Ai2(−A′
i−1)

−1Ai−1,0 if 1 ≤ i ≤ L− 1

A1 + A∗
L2(−A′

L−1)
−1A∗

L−1,0 if i = L.

(4.7)

Now, to calculate the non-boundary state probability vectors we proceed as
follows.

67



By applying block Gaussian elimination, the partitioned subvector
[πL, πL+1 . . . ] corresponding to non-boundary states satisfies the relation

[πL, πL+1 . . . ]


A′

L A0 . . .

A2 A1 A0 · · ·
0 A2 A1 A0 · · ·
· · · · · ·
· · · · · ·

 = 0T . (4.8)

Let

δ =
∞∑

i=L

πie and xi = δ−1πL+i if i ≥ 0. (4.9)

From (4.8), So

πLA
′
L + πL+1A2 = 0 and πL+i = πL+i−1R : i ≥ 1. (4.10)

or, sequentially xi = x0R
i for i ≥ 1. Since

∞∑
i=0

xie = 1, we get x0(I −

R)−1e = 1. Now from (4.2), πi = πLR
i−L for i ≥ L.

Hence
πi = δx0R

i−L for i ≥ L by using (4.9). (4.11)

From (4.6),

π0 = π1A12(−A′
0)
−1

= π2A22(−A′
1)
−1A12(−A′

0)
−1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
= πL−1AL−1,2(−A′

L−2)
−1AL−2,2(−A′

L−3)
−1 . . . A12(−A′

0)
−1

= πLA
∗
L2(−A′

L−1)
−1AL−1,2(−A′

L−2)
−1 . . . A12(−A′

0)
−1.

That is,

π0 = δx0A
∗
L2(−A′

L−1)
−1

L−1∏
j=1

AL−j,2(−A′
L−j−1)

−1.

In general,

πi = δx0A
∗
L2(−A′

L−1)
−1

L−i−1∏
j=1

AL−j,2(−A′
L−j−1)

−1, 0 ≤ i ≤ L− 1.
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Thus we have,

πi = δx0A
∗
L2(−A′

L−1)
−1

L−i−1∏
j=1

AL−j,2(−A′
L−j−1)

−1

if 0 ≤ i ≤ L− 1

and πi = δx0R
i−L if i ≥ L, (4.12)

where x0 is the unique solution of

x0(A
′
L +RA2) = 0; x0(I −R)−1e = 1. (4.13)

Now πe = 1 implies
∑∞

i=0 πie = 1.
i.e.,

δ
[
x0A

∗
L2(−A′

L−1)
−1

L−1∑
i=0

L−i−1∏
j=1

AL−j,2(−A′
L−j−1)

−1e+ x0(I −R)−1e
]

= 1

so that

δ =
[
1 + x0A

∗
L2(−A′

L−1)
−1

L−1∑
i=0

L−i−1∏
j=1

AL−j,2(−A′
L−j−1)

−1e
]−1 (4.14)

since x0(I −R)−1e = 1.

In the next section, we discuss some important descriptors which are
very useful in system designing.

4.2.2 Measures of effectiveness

Let πL+n = (πL+n(0), πL+n(1)) where πL+n(0) corresponds to the level
L+2n and πL+n(1) corresponds to the levelL+2n−1 in the level dependent
case. Here remember that in the present level independent QBD process, the
level L+n is formed by combining levels L+2n and L+2n−1 that existed
in the level dependent QBD process. Then,
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1. Mean number of customers in the system,

EN =
L−1∑
n=0

nπne+
∞∑

n=0

(L+ 2n)πL+n(0)e+
∞∑

n=0

(L+ 2n+ 1)πL+n(1)e

=
L−1∑
n=0

(n− L)πne+ L+ πL[2R(I −R)−2e+

(
0(L−1)(S2+3)

e

)
].

2. Let {Pn(i), n ≥ 0} be the distribution of the queue length of queue i in
steady state i = 1, 2. Then

Pn1(1) = P (q1(t) = n1) =

max{0,L−n1−1}∑
n2=max{0,n1−L+1}

S∑
i=0

S∑
j=0

πn1+n2,n1−n2,i,j

+

n1+L−1∑
n2=max{0,L−n1−1}+1

S∑
i=0

S∑
j=0

π
L+bn1+n2−L

2 c,n1−n2,i,j
: n1 ≥ 0.

Similarly

Pn2(2) = P (q2(t) = n2) =

max{0,L−n2−1}∑
n1=max{0,n2−L+1}

S∑
i=0

S∑
j=0

πn1+n2,n1−n2,i,j

+

n2+L−1∑
n1=max{0,L−n2−1}+1

S∑
i=0

S∑
j=0

π
L+bn1+n2−L

2 c,n1−n2,i,j
: n2 ≥ 0.

Even though in the sums we have generally taken 0 ≤ i, j ≤ S, the
variations of i and j depend on the particular values assumed by (n1, n2).

3. The probability that the queue size is zero is π0e.
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4. The probability that server 1 is idle,

P idle
1 = π0e+

L−1∑
n=1

S∑
i=0

S∑
j=0

πn,−n,i,j +

L−1−n2∑
n1=1

L−2∑
n2=0

S∑
j=0

πn1+n2,n1−n2,0,j

+

L+n1−1∑
n2=L−n1

L−1∑
n1=1

S∑
j=0

π
L+bn1+n2−L

2 c,n1−n2,0,j

+

n1+L−1∑
n2=n1−L+1

∞∑
n1=L

S∑
j=0

π
L+bn1+n2−L

2 c,n1−n2,0,j

= π0e+
L−1∑
n=1

(πn)1 +
L−1∑
n=1

n−2∑
l=0

∑
j=0,1

(πn)S(S+1)+l(S2+3)+j+2

+
L−1∑
n=1

S∑
j=0

(πn)S(S+1)+(n−1)(S2+3)+j+2

+
L−1∑
n=1

S∑
i,j=1

(πn)S(S+1)+(n−1)(S2+3)+is+j+2

+
2L−2∑
l=0

∑
j=0,1

(πL(I −R)−1)l(S2+3)+j+1

= π0e+
L−1∑
n=1

(πn)1 +
L−1∑
n=1

n−2∑
l=0

∑
j=0,1

V (l, 0, j + 2)

+
L−1∑
n=1

S∑
i=0

S∑
j=1−δi0

V (n− 1, i, j + 2)

+
2L−2∑
l=0

∑
j=0,1

U(l, 0, j + 1).
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The probability that server 2 is idle,

P idle
2 = π0e+

L−1∑
n=1

S∑
i=0

S∑
j=0

πn,n,i,j +

L−n1−1∑
n2=1

L−2∑
n1=0

S∑
i=0

πn1+n2,n1−n2,i,0

+

L+n2−1∑
n1=L−n2

L−1∑
n2=1

S∑
i=0

π
L+bn1+n2−L

2 c,n1−n2,i,0

+

n2+L−1∑
n1=n2−L+1

∞∑
n2=L

S∑
i=0

π
L+bn1+n2−L

2 c,n1−n2,i,0

= π0e+
L−1∑
n=1

(πn)1 +
L−1∑
n=1

S−1∑
i=0

(πn)i(S+1)+2

+
L−1∑
n=1

n−2∑
l=0

∑
j=0,2

(πn)S(S+1)+l(S2+3)+j+2

+
L−1∑
n=1

(πn)S(S+1)+(n−1)(S2+3)+2 +
L−1∑
n=1

S−1∑
i=0

S∑
j=1

(πn)i(S+1)+j+2

+
2L−2∑
l=0

∑
j=0,2

(πL(I −R)−1)l(S2+3)+j+1.

= π0e+
L−1∑
n=1

S−1∑
i=0

(πn)i(S+1)+2 +
L−1∑
n=1

n−2∑
l=0

∑
j=0,2

V (l, 0, j + 2)

+
L−1∑
n=1

V (n− 1, 0, 2) +
L−1∑
n=1

S−1∑
i=0

S∑
j=1

(πn)i(S+1)+j+2

+
2L−2∑
l=0

∑
j=0,2

U(l, 0, j + 1).

Note that in this system, a server can be idle due to lack of customers or
inventory.

5. Let TC
R,1→2(T

C
R,2→1) be the transfer rate of customers from queue 1 to
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queue 2 (queue 2 to queue 1). i.e., the number of transfers (of customers)
per unit time.
Then

TC
R,1→2 = λ1

S∑
i=0

S∑
j=0

πL−1,L−1,i,j

+ λ1

∞∑
n=0

S∑
i=0

S∑
j=0

πL+n,L−1,i,j + µ2

∞∑
n=0

S∑
i=0

S∑
j=1

πL+n,L−1,i,j

= λ1

S∑
i,j=0

πL−1,L−1,i,j + λ1

S2+3∑
j=1

(πL(I −R)−1)(L−1)(S2+3)+j

+ µ2

S2+3∑
j=2
j 6=3

(πL(I −R)−1)(L−1)(S2+3)+j

= λ1

S∑
i,j=0

πL−1,L−1,i,j

+
S2+3∑
j=1

(λ1 + µ2(1− δ1j)(1− δ3j)]U(L− 1, 0, j)

and

TC
R,2→1 = λ2

S∑
i=0

S∑
j=0

πL−1,−(L−1),i,j

+ λ2

∞∑
n=0

S∑
i=0

S∑
j=0

πL+n,−(L−1),i,j

+ µ1

∞∑
n=0

S∑
i=1

S∑
j=0

πL+n,−(L−1),i,j
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= λ2

S∑
i,j=0

πL−1,−(L−1),i,j + λ2

S2+3∑
j=1

(πL(I −R)−1)(2L−2)(S2+3)+j

+ µ1

S2+3∑
j=3

(πL(I −R)−1)(2L−2)(S2+3)+j

= λ2

S∑
i,j=0

πL−1,−(L−1),i,j

+
S2+3∑
j=1

(λ2 + µ1(1− δ1j)(1− δ2j)]U(2L− 2, 0, j).

Note that a transfer from one station to the other can take place either
through an arrival to the former or through a service completion at the
latter whenever J(t) = ±L− 1 as the case may be.

6. Let T I
R,1→2(T

I
R,2→1) be the transfer rate of inventory from queue 1 to

queue 2 (queue 2 to queue 1). Unlike the case of customer transfer,
inventory transfer can occur in several situations (not necessarily with a
customer transfer). For example, if a service station has sufficient stock
of inventory whereas the other has no stock, then an arrival to the second
station triggers an inventory transfer from the former without a customer
transfer. All these things have been taken into consideration for writing
the expression for T I

R,1→2.

T I
R,1→2 = λ1

S−1∑
j=1

S∑
i=j+1

πL−1,L−1,i,j + λ1

S∑
i=2

πL−1,L−1,i,0

+ λ1

∞∑
n=0

S−1∑
j=1

S∑
i=j+1

πL+n,L−1,i,j

+ µ2

∞∑
n=0

S∑
j=1

S∑
i=j

πL+n,L−1,i,j + λ2

S∑
i=1

π0,0,i,0
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+ λ2

∑
n2,n1 6=0

1≤n1+n2≤L−1
|n1−n2|<L

S∑
i=2

πn1+n2,n1−n2,i,0

+ µ2

∑
n2,n1 6=0

1≤n1+n2≤L−1
|n1−n2|<L

S∑
i=2

πn1+n2,n1−n2,i,1 + µ2

L−1∑
n=1

S∑
i=2

πn,−n,i,1

+ µ2

∞∑
n=0

−(L−1)∑
P=L−2

S∑
i=2

πL+n,p,i,1

+ δ1
∑

n2 6=0,n1 6=0
1≤n1+n2≤L−1
|n1−n2|<L

∑
i=0,1

πn1+n2,n1−n2,i,0

+ δ1

L−1∑
n=1

πn,−n,0,0 + δ1

∞∑
n=0

−(L−1)∑
P=L−2

∑
i=0,1

πL+n,p,i,0

= λ1

S−1∑
j=1

S∑
i=j+1

πL−1,L−1,i,j + λ1

S∑
i=2

πL−1,L−1,i,0

+ λ1

S−2∑
i=0

i+1∑
j=1

(πL(I −R)−1)(L−1)(S2+3)+(i+1)S+j+3

+ µ2

S−2∑
i=0

i+2∑
j=1

(πL(I −R)−1)(L−1)(S2+3)+(i+1)S+j+3

+ λ2

S−1∑
i=0

(π0)(i+1)(S+1)+1 + λ2

L−1∑
n=1

S−1∑
i=1

(πn)i(S+1)+2

+ µ2

L−1∑
n=1

n−2∑
l=1

S−2∑
i=0

(πn)S(S+1)+l(S2+3)+(i+1)S+5

+ µ2

L−1∑
n=1

S−1∑
i=0

(πn)S(S+1)+(n−1)(S2+3)+(i+1)S+3
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+ µ2

2L−2∑
l=0

S−2∑
i=0

(πL(I −R)−1)l(S2+3)+(i+1)S+4

+ δ1

L−1∑
n=1

n−2∑
l=0

∑
j=1,3

(πn)S(S+1)+l(S2+3)+j+1

+ δ1

L−1∑
n=1

(πn)S(S+1)+(n−1)(S2+3)+2

+ δ1

2L−2∑
l=0

∑
j=1,3

(πL(I −R)−1)l(S2+3)+j

= λ1

S−1∑
j=0

S∑
i=j+1

(1− δi1)πL−1,L−1,i,j

+
S−2∑
i=0

i+2∑
j=1

(λ1(1− δi+2,j) + µ2]U(L− 1, i+ 1, j + 3)

+ λ2
[ S∑

i=1

(π0)i(S+1)+1 +
L−1∑
n=1

S−1∑
i=1

(πn)i(S+1)+2
]

+ µ2
[ L−1∑

n=1

n−2∑
l=1

S−2∑
i=0

V (l, i+ 1, 5)

+
L−1∑
n=1

S−1∑
i=0

V (n− 1, i+ 1, 3) +
2L−2∑
l=0

S−2∑
i=0

U(l, i+ 1, 4)
]

+ δ1
[ L−1∑

n=1

n−1∑
l=0

∑
j=1,3

(1− δl,n−1 × δ3j)V (l, 0, j + 1)

+
2L−2∑
l=0

∑
j=1,3

U(l, 0, j)
]
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and

T I
R,2→1 = λ2

S−1∑
i=1

S∑
j=i+1

πL−1,−(L−1),i,j + λ2

S∑
j=2

πL−1,−(L−1),0,j

+ λ2

∞∑
n=0

S−1∑
i=1

S∑
j=i+1

πL+n,−(L−1),i,j

+ µ1

∞∑
n=0

S∑
i=1

S∑
j=i

πL+n,−(L−1),i,j

+ λ1

S∑
j=1

π0,0,0,j + λ1

L−1∑
n=1

S∑
j=2

πn,−n,0,j + µ1

L−1∑
n=1

S∑
j=2

πn,n,1,j

+ µ1

∑
n2 6=0,n1 6=0

1≤n1+n2≤L−1
|n1−n2|<L

S∑
j=2

πn1+n2,n1−n2,1,j

+ µ1

∞∑
n=0

−(L−1)∑
P=L−2

∑
j=0,1

πL+n,p,1,j + δ2

L−1∑
n=1

πn,n,0,0

+ δ2
∑

n1 6=0,n2 6=0
1≤n1+n2≤L−1
|n1−n2|<L

∑
j=0,1

πn1+n2,n1−n2,0,j

+ δ2

∞∑
n=0

−(L−1)∑
P=L−2

∑
j=0,1

πL+n,p,0,j

= λ2

S−1∑
i=1

S∑
j=i+1

πL−1,−(L−1),i,j + λ2

S∑
j=2

πL−1,−(L−1),0,j

+ λ2

S2+3∑
j=5

(πL(I −R)−1)(2L−2)(S2+3)+j

− λ2

S−2∑
i=0

i+2∑
j=1

(πL(I −R)−1)(i+1)S+j+3
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+ µ1

S2+3∑
j=5

(πL(I −R)−1)(2L−2)(S2+3)+j

− µ1

S−2∑
i=0

i+1∑
j=1

(πL(I −R)−1)(i+1)S+j+3

+ λ1

S∑
j=1

(π0)j+1 + λ1

L−1∑
n=1

S+1∑
j=3

(πn)S(S+1)+(n−1)(S2+3)+j+1

+ µ1

L−1∑
n=1

S+1∑
j=3

(πn)j+1 + µ1

L−1∑
n=1

n−2∑
l=0

S+3∑
j=5

(πn)S(S+1)+l(S2+3)+j+1

+ µ1

2L−2∑
l=0

S+3∑
j=5

(πL(I −R)−1)l(S2+3)+j + δ2

L−1∑
n=1

(πn)1

+ δ2

L−1∑
n=1

n−2∑
l=0

∑
j=1,2

(πn)S(S+1)+l(S2+3)+j+1

+ δ2

2L−2∑
l=0

∑
j=1,2

(πL(I −R)−1)l(S2+3)+j

= λ1

[ S∑
j=1

(π0)j+1 +
L−1∑
n=1

S+1∑
j=3

V (n− 1, 0, j + 1)
]

+ λ2

[ S−1∑
i=0

S∑
j=i+1

(1− δij)πL−1,−(L−1),i,j +
S2+3∑
j=5

U(2L− 2, 0, j)

−
S−2∑
i−0

i+2∑
j=1

U(0, i+ 1, j + 3)
]

+ µ1

[ S2+3∑
j=5

U(2L− 2, 0, j)−
S−2∑
i=0

i+1∑
j=1

U(0, i+ 1, j + 3)

+
L−1∑
n=1

S+1∑
j=3

(πn)j+1 +
L−1∑
n=1

n−2∑
l=0

j=5∑
S+3

V (l, 0, j + 1)
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+
2L−2∑
l=0

S+3∑
j=5

U(l, 0, j)
]

+ δ2

[ L−1∑
n=1

(πn)1 +
L−1∑
n=1

n−2∑
l=0

∑
j=1,2

V (l, 0, j + 1)

+
2L−2∑
l=0

∑
j=1,2

V (l, 0, j)
]

7. Total replenishment order rate, i.e., the rate at which orders for inventory
are placed at both stations,

RI
0 = µ2

L−1∑
n=1

πnfn + µ2

∞∑
n=0

πL+nf + µ1

L−1∑
n=1

πnf
′
n + µ1

∞∑
n=0

πL+nf
′

= µ2

[ L−1∑
n=1

πnfn + πL(I −R)−1f
]

+ µ1

[ L−1∑
n=1

πnf
′
n + πL(I −R)−1f ′

]
.

Here fn, f , f ′n and f ′ are column vectors having dimensions of corre-
sponding πi’s and are defined by

(fn)S(S+1)+l(S2+3)+iS+s+5 = 1

for l = 0, 1, 2, . . . , n− 2; i = 0, 1, . . . , S − 1

and all other entries are zero;

(f)l(S2+3)+iS+s+4 = 1 for l = 0, 1, 2, . . . , 2L− 2; i = 0, 1, . . . , S − 1

and remaining entries are zero.

Similarly, the only non-zero entries occurring in f ′n and f ′ are given by

(f ′n)s(S+1)+j+1 = 1 for j = 1, . . . , S;

(f ′n)S(S+1)+l(S2+3)+sS+j+4 = 1 for l = 0, 1, . . . , n− 2; j = 1, 2, . . . , S.
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and

(f ′)l(S2+3)+sS+j+3 = 1 for l = 0, 1, . . . , 2L− 2; j = 1, 2, . . . , S.

Note that a replenishment order will be placed only at a service com-
pletion epoch due to the fact that the inventory level will be reduced to
s only through a service completion. Another important measure as-
sociated with the present model is the mean inventory size included in a
transfer from one station to the other. Clearly, size of the inventory varies
from transfer to transfer. All the possible cases are taken for the compu-
tation of such a measure. Only the final expression will be exhibited
here.

8. Average size of inventory included in a transfer from queue 1 to queue 2,

EI1→2 =
s−1∑
j=0

s∑
i=j+1

πL−1,L−1,i,j min{i− j − δj0, K
′} λ1

∆− µ2

+
s∑

j=0

S∑
i=s+1

πL−1,L−1,i,j min{i− j − δj0, K
′} λ1

∆− µ2 − δ1

+
S−1∑

j=s+1

S∑
i=j+1

πL−1,L−1,i,j min{i− j,K ′} λ1

∆− µ2 − δ1 − δ2

+
∞∑

n=0

s−1∑
j=0

s∑
i=j+1

πL+n,L−1,i,j
λ1

∆
min{i− j − δj0, K

′}

+
∞∑

n=0

s∑
j=0

S∑
i=s+1

πL+n,L−1,i,j
λ1

∆− δ1
min{i− j − δj0, K

′}

+
∞∑

n=0

S−1∑
j=s+1

S∑
i=j+1

πL+n,L−1,i,j
λ1

∆− δ1 − δ2
min{i− j,K ′}

+
∞∑

n=0

s−1∑
j=1

s∑
i=j

πL+n,L−1,i,j
µ2

∆
min{i− j + 1, K ′}
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+
∞∑

n=0

s∑
j=1

S∑
i=s+1

πL+n,L−1,i,j
µ2

∆− δ1
min{i− j + 1, K ′}

+
∞∑

n=0

πL+n,L−1,s,s
µ2

∆

+
∞∑

n=0

S∑
j=s+1

S∑
i=j

πL+n,L−1,i,j
µ2

∆− δ1 − δ2
min{i− j + 1, K ′}

+
s∑

i=1

π0,0,i,0
λ2

∆− µ1 − µ2
+

S∑
i=s+1

π0,0,i,0
λ2

∆− δ1 − µ1 − µ2

+
∑
n1,n2

1≤n1+n2≤L−1
|n1−n2|<L

s∑
i=2

πn1+n2,n1−n2,i,0
λ2

∆− µ2

+
∑
n1,n2

1≤n1+n2≤L−1
|n1−n2|<L

S∑
i=s+1

πn1+n2,n1−n2,i,0
λ2

∆− δ1 − µ2

+
∑

n2,n1 6=0
1≤n1+n2≤L−1
|n1−n2|<L

s∑
i=2

πn1+n2,n1−n2,i,1
µ2

∆

+
∑

n2,n1 6=0
1≤n1+n2≤L−1
|n1−n2|<L

S∑
i=s+1

πn1+n2,n1−n2,i,1
µ2

∆− δ1

+
L−1∑
n=1

s∑
i=2

πn,−n,i,1
µ2

∆− µ1
+

L−1∑
n=1

S∑
i=s+1

πn,−n,i,1
µ2

∆− µ1 − δ1

+
∞∑

n=0

−(L−1)∑
p=L−2

s∑
i=2

πL+n,p,i,1
µ2

∆
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+
∞∑

n=0

−(L−1)∑
p=L−2

S∑
i=s+1

πL+n,p,i,1
µ2

∆− δ1

+
∑

n2 6=0,n1 6=0
1≤n1+n2≤L−1
|n1−n2|<L

∑
i=0,1

πn1+n2,n1−n2,i,0
δ1

∆− µ2

+
L−1∑
n=1

πn,−n,0,0
δ1

∆− µ1 − µ2

+
∞∑

n=0

−(L−1)∑
p=L−2

∑
i=0,1

πL+n,p,i,0
δ1

∆− µ2

=
s−1∑
j=0

s∑
i=j+1

πL−1,L−1,i,j
λ1

∆− µ2
min{i− j − δj0, K

′}

+
s∑

j=0

S∑
i=s+1

πL−1,L−1,i,j
λ1

∆− µ2 − δ1
min{i− j − δj0, K

′}

+
S−1∑

j=s+1

S∑
i=j+1

πL−1,L−1,i,j
λ1

∆− µ2 − δ1 − δ2
min{i− j,K ′}

+
s−1∑
j=1

s∑
i=j+1

(πL(I −R)−1)(L−1)(S2+3)+(i−1)S+j+3

λ1

∆
min{i− j − δj0, K

′}

+
s∑

j=1

S∑
i=s+1

(πL(I −R)−1)(L−1)(S2+3)+(i−1)S+j+3
λ1

∆− δ1

min{i− j − δj0, K
′}

+
S−1∑

j=s+1

S∑
i=j+1

(πL(I −R)−1)(L−1)(S2+3)+(i−1)S+j+3
λ1

∆− δ1 − δ2

min{i− j,K ′}
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+
s−1∑
j=1

S∑
i=j

(πL(I −R)−1)(L−1)(S2+3)+(i−1)S+j+3

µ2

∆
min{i− j + 1, K ′}

+
s∑

j=1

S∑
i=s+1

(πL(I −R)−1)(L−1)(S2+3)+(i−1)S+j+3
µ2

∆− δ1

min{i− j + 1, K ′}

+
S∑

j=s+1

S∑
i=j

(πL(I −R)−1)(L−1)(S2+3)+(i−1)S+j+3
µ2

∆− δ1 − δ2

min{i− j + 1, K ′}+ (πL(I −R)−1)(L−1)(S2+3)+(s−1)S+s+3
µ2

∆

+
s∑

i=1

(π0)i(S+1)+1
λ2

∆− µ1 − µ2

+
S∑

i=s+1

(π0)i(S+1)+1
λ2

∆− δ1 − µ1 − µ2

+
L−1∑
n=1

s∑
i=2

(πn)(i−1)(S+1)+2
λ2

∆− µ2

+
L−1∑
n=1

S∑
i=s+1

(πn)(i−1)(S+1)+2
λ2

∆− δ1 − µ2

+
L−1∑
n=1

n−2∑
l=1

s∑
i=2

(πn)S(S+1)+l(S2+3)+(i−1)S+5
µ2

∆

+
L−1∑
n=1

n−2∑
l=1

S∑
i=s+1

(πn)S(S+1)+l(S2+3)+(i−1)S+5
µ2

∆− δ1

+
L−1∑
n=1

s∑
i=2

(πn)S(S+1)+(n−1)(S2+3)+(i−1)S+3
µ2

∆− µ1
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+
L−1∑
n=1

S∑
i=s+1

(πn)S(S+1)+(n−1)(S2+3)+(i−1)S+3
µ2

∆− µ1 − δ1

+
2L−2∑
l=0

s∑
i=2

(πL(I −R)−1)l(S2+3)+(i−1)S+4
µ2

∆

+
2L−2∑
l=0

S∑
i=s+1

(πL(I −R)−1)l(S2+3)+(i−1)S+4
µ2

∆− δ1

+
L−1∑
n=1

n−2∑
l=1

∑
j=1,3

(πn)S(S+1)+l(S2+3)+j+1
δ1

∆− µ2

+
L−1∑
n=1

(πn)S(S+1)+(n−1)(S2+3)+2
δ1

∆− µ1 − µ2

+
2L−2∑
l=0

∑
j=1,3

(πL(I −R)−1)l(S2+3)+j
δ1

∆− µ2
.

EI1→2 =
s−1∑
j=0

s∑
i=j+1

πL−1,L−1,i,j
λ1

∆− µ2
min{i− j − δj0, K

′}

+
s∑

j=0

S∑
i=s+1

πL−1,L−1,i,j
λ1

∆− µ2 − δ1
min{i− j − δj0, K

′}

+
S−1∑

j=s+1

S∑
i=j+1

πL−1,L−1,i,j
λ1

∆− µ2 − δ1 − δ2
min{i− j,K ′}

+
s−1∑
j=1

s∑
i=j+1

U(L− 1, i− 1, j + 3)
λ1

∆
min{i− j,K ′}

+
s∑

j=1

S∑
i=s+1

U(L− 1, i− 1, j + 3)

[λ1 min{i− j,K ′}+ µ2 min{i− j + 1, K ′}]
∆− δ1
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+
S−1∑

j=s+1

S∑
i=j+1

U(L− 1, i− 1, j + 3)
λ1

∆− δ1 − δ2
min{i− j,K ′}

+
s−1∑
j=1

S∑
i=j

U(L− 1, i− 1, j + 3)
µ2

∆
min{i− j + 1, K ′}

+
S∑

j=s+1

S∑
i=j

U(L− 1, i− 1, j + 3)
µ2

∆− δ1 − δ2

min{i− j + 1, K ′}+ U(L− 1, s− 1, s+ 3)
µ2

∆

+
S∑

i=1

(π0)i(S+1)+1
λ2

∆− µ1 − µ2 − δ1
∏s

j=1(1− δij)

+
L−1∑
n=1

S∑
i=2

(πn)(i−1)(S+1)+2
λ2

∆− µ2 − δ1
∏s

j=2(1− δij)

+
L−1∑
n=1

n−2∑
l=1

S∑
i=2

V (l, i− 1, 5)
µ2

∆− δ1
∏s

j=2(1− δij)

+
L−1∑
n=1

S∑
i=2

V (n− 1, i− 1, 3)
µ2

∆− µ1 − δ1
∏s

j=2(1− δij)

+
2L−2∑
l=0

S∑
i=2

U(l, i− 1, 4)
µ2

∆− δ1
∏s

j=2(1− δij)

+
L−1∑
n=1

n−2∑
l=1

∑
j=1,3

V (l, 0, j + 1)
δ1

∆− µ2

+
L−1∑
n=1

V (n− 1, 0, 2)
δ1

∆− µ1 − µ2
+

2L−2∑
l=0

∑
j=1,3

U(l, 0, j)
δ1

∆− µ2
.

where ∆ = λ1 + λ2 + µ1 + µ2 + δ1 + δ2.
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Average size of inventory included in a transfer from queue 2 to queue 1,

EI2→1 =
s−1∑
i=0

s∑
j=i+1

πL−1,−(L−1),i,j
λ2

∆− µ1
min{j − i− δi0, K

′}

+
s∑

i=0

S∑
j=s+1

πL−1,−(L−1),i,j
λ2

∆− µ1 − δ2
min{j − i− δi0, K

′}

+
S−1∑

i=s+1

S∑
j=i+1

πL−1,−(L−1),i,j
λ2

∆− µ1 − δ1 − δ2
min{j − i,K ′}

+
s−1∑
i=1

s∑
j=i+1

(πL(I −R)−1)(2L−2)(S2+3)+(i−1)S+j+3

λ2

∆
min{j − i− δi0, K

′}

+
s∑

i=0

S∑
j=s+1

(πL(I −R)−1)(2L−2)(S2+3)+(i−1)S+j+3

λ2

∆− δ2
min{j − i− δi0, K

′}

+
S−1∑

i=s+1

S∑
j=i+1

(πL(I −R)−1)(2L−2)(S2+3)+(i−1)S+j+3

λ2

∆− δ1 − δ2
min{j − i,K ′}

+
s−1∑
i=1

s∑
j=i

(πL(I −R)−1)(2L−2)(S2+3)+(i−1)S+j+3

µ1

∆
min{j − i+ 1, K ′}

+
s∑

i=1

S∑
j=s+1

(πL(I −R)−1)(2L−2)(S2+3)+(i−1)S+j+3

µ1

∆− δ2
min{j − i+ 1, K ′}
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+
S∑

i=s+1

S∑
j=i

(πL(I −R)−1)(2L−2)(S2+3)+(i−1)S+j+3

µ1

∆− δ1 − δ2
min{j − i+ 1, K ′}

+ (πL(I −R)−1)(2L−2)(S2+3)+(s−1)S+s+3
µ1

∆

+
s∑

j=1

(π0)j+1
λ1

∆− µ1 − µ2
+

S∑
j=s+1

(π0)j+1
λ1

∆− δ2 − µ1 − µ2

+
L−1∑
n=1

s∑
j=2

(πn)S(S+1)+(n−1)(S2+3)+j+2
λ1

∆− µ1

+
L−1∑
n=1

S∑
j=s+1

(πn)S(S+1)+(n−1)(S2+3)+j+2
λ1

∆− δ2 − µ1

+
L−1∑
n=1

s∑
j=2

(πn)j+1
µ1

∆− µ2
+

L−1∑
n=1

S∑
j=s+1

(πn)j+1
µ1

∆− δ2 − µ2

+
L−1∑
n=1

n−2∑
l=0

s∑
j=2

(πn)S(S+1)+l(S2+3)+j+4
µ1

∆

+
L−1∑
n=1

n−2∑
l=0

S∑
i=s+1

(πn)S(S+1)+l(S2+3)+j+4
µ1

∆− δ2

+
2L−2∑
l=0

s∑
j=2

(πL(I −R)−1)l(S2+3)+j+3
µ1

∆

+
2L−2∑
l=0

S∑
j=s+1

(πL(I −R)−1)l(S2+3)+j+3
µ1

∆− δ2

+
L−1∑
n=1

(πn)1
δ2

∆− µ1 − µ2

+
L−1∑
n=1

n−2∑
l=0

∑
j=1,2

(πn)S(S+1)+l(S2+3)+j+1
δ2

∆− µ1
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+
2L−2∑
l=0

∑
j=1,2

(πL(I −R)−1)l(S2+3)+j
δ2

∆− µ1

=
s−1∑
i=0

s∑
j=i+1

πL−1,−(L−1),i,j
λ2

∆− µ1
min{j − i− δi0, K

′}

+
s∑

i=0

S∑
j=s+1

πL−1,−(L−1),i,j
λ2

∆− µ1 − δ2
min{j − i− δi0, K

′}

+
S−1∑

i=s+1

S∑
j=i+1

πL−1,−(L−1),i,j
λ2

∆− µ1 − δ1 − δ2
min{j − i,K ′}

+
s−1∑
i=1

s∑
j=i+1

U(2L− 2, i− 1, j + 3)
λ2

∆
min{j − i,K ′}

+
s∑

i=0

S∑
j=s+1

U(2L− 2, i− 1, j + 3)
λ2

∆− δ2
min{j − i− δi0, K

′}

+
S−1∑

i=s+1

S∑
j=i+1

U(2L− 2, i− 1, j + 3)
λ2

∆− δ1 − δ2
min{j − i,K ′}

+
s−1∑
i=1

s∑
j=1

U(2L− 2, i− 1, j + 3)
µ1

∆
min{j − i+ 1, K ′}

+
s∑

i=1

S∑
j=s+1

U(2L− 2, i− 1, j + 3)
µ1

∆− δ2
min{j − i+ 1, K ′}

+
S∑

i=s+1

S∑
j=i

U(2L− 2, i− 1, j + 3)
µ1

∆− δ1 − δ2
min{j − i+ 1, K ′}

+ U(2L− 2, s− 1, s+ 3)
µ1

∆

+
s∑

j=1

(π0)j+1
λ1

∆− µ1 − µ2 − δ2
∏s

i=1(1− δij)
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+
L−1∑
n=1

s∑
j=2

V (n− 1, 0, j + 2)
λ1

∆− µ1 − δ2
∏s

i=2(1− δij)

+
L−1∑
n=1

s∑
j=2

(πn)j+1
µ1

∆− µ2 − δ2
∏s

i=2(1− δij)

+
L−1∑
n=1

n−2∑
l=0

S∑
j=2

V (l, 0, j + 4)
µ1

∆− δ2 −
∏s

i=2(1− δij)

+
2L−2∑
l=0

S∑
j=2

U(l, 0, j + 3)
µ1

∆− δ2 −
∏s

i=2(1− δij)

+
L−1∑
n=1

(πn)1
δ2

∆− µ1 − µ2
+

L−1∑
n=1

n−2∑
l=0

∑
j=1,2

V (l, 0, j + 1)
δ2

∆− µ1

+
2L−2∑
l=0

∑
j=1,2

U(l, 0, j)
δ2

∆− µ1

9. Let ri be the rate at which jobs are completed by server i per unit time,
i = 1, 2, then

r1 = µ1(1− P idle
1 ) and r2 = µ2(1− P idle

2 ).

10. Since there are exactly K customers are included in each transfer, the
total number of customers transferred per unit time is TC

RK where TC
R =

TC
R,1→2 + TC

R,2→1. Since the total arrival rate of customers is λ1 + λ2, the
mean number of transfers per customer (during its sojourn time in the
system), NC

TR =
TC

R K
λ1+λ2

. Replenishment realization rate, i.e., the rate at
which ordered inventory reaches the stations,

RI
R = δ1

[ L−1∑
n=0

πnf
′′
n +

∞∑
n=0

πL+nf
′′]+ δ2

[ L−1∑
n=0

πnf
′′′
n +

∞∑
n=0

πL+nf
′′′]

where f ′′n , f ′′, f ′′′n and f ′′′ are column vectors of appropriate size and the
non-zero entries occurring in these vectors are given by

(f ′′0 )i = 1 for i = 0, 1, 2, . . . , (s+ 1)(S + 1);
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for 1 ≤ n ≤ L− 1, (f ′′n)i = 1 for i = 1, 2, . . . s(S + 1) + 1;

(f ′′n)S(S+1)+l(S2+3)+i+1 = 1

for l = 0, 1, 2, . . . , n− 2; i = 1, 2, . . . , sS + 3

and

(f ′′n)S(S+1)+(n−1)(S2+3)+i+1 = 1 for i = 1, . . . , (s+ 1)S + 1.
(f ′′)l(S2+3)+i = 1 for l = 0, 1, . . . , 2L− 2; i = 1, 2 . . . , sS + 3;

(f ′′′0 )i(s+1)+j = 1 for i = 0, 1, 2, . . . , S; j = 1, 2, . . . , s+ 1.

For 1 ≤ n ≤ L− 1,
(f ′′′n )1 = 1

(f ′′′n )i(S+1)+j+1 = 1 for i = 0, 1, . . . S − 1; j = 1, 2, . . . s+ 1

(f ′′′n )S(S+1)+l((S2+3)+i+1 = 1 for l = 0, 1, 2, . . . n− 2; i = 1, 2, . . . s+ 3

(f ′′′n )S(S+1)+l((S2+3)+iS+j+5 = 1 for l = 0, 1, 2, . . . n− 2; i = 1, 2, . . . S−
2; j = 0, 1, . . . s− 1

(f ′′′n )S(S+1)+(n−1)(S2+3)+iS+j+2 = 1 for i = 1, 2, . . . S; j = 1, 2 . . . s and
for i = 0, j = 0, 1, 2, . . . s

(f ′′′)l(S2+3)+i = 1 for l = 0, 1, 2, . . . 2L− 2; i = 1, 2, . . . s+ 3 and
(f ′′′)l(S2+3)+iS+j+4 = 1 for l = 0, 1, 2, . . . 2L − 2; i = 1, 2, . . . S − 2;
j = 0, 1, 2, . . . s− 1.

11. Since, on average there are EI1→2 and EI2→1 units of inventory that are
included in a transfer from queue 1 to queue 2 and queue 2 to queue 1
respectively, the total units of inventory transferred per unit time from
queue 1 to queue 2 is T I

R,1→2 × EI1→2 and from queue 2 to queue 1 is
T I

R,2→1 × EI2→1. Hence the total units of inventory transferred per unit
time is ET I

R = T I
R,1→2 × EI1→2 + T I

R,2→1 × EI2→1. Now the replen-
ishment realization rate of inventory is RI

R and since there are exactly
S − s units that are included in each replenishment, the total units of
inventory reached in the system per unit time is (S − s)RI

R. Hence the
mean number of transfers per unit inventory is N I

TR =
ET I

R

(S−s)RI
R

.
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12. Even though an inventory order is placed when the inventory level drops
to s, the inventory level may reach above s due to a transfer from the
other station. This results in the cancellation of the order that has already
been placed. On the average, how many such orders will be cancelled
per unit time is a significant measure. Let R(i)

C be the rate at which re-
plenishment orders are cancelled at station i (i = 1, 2).
Then

R
(1)
C = λ2

s∑
i=1

S∑
j=s+1

πL−1,−(L−1),i,j

+ λ2

S∑
j=s+2

πL−1,−(L−1),0,j + λ2

∞∑
n=0

s∑
i=1

S∑
j=s+1

πL+n,−(L−1),i,j

+ µ1

∞∑
n=0

s∑
i=2

S∑
j=s+1

πL+n,−(L−1),i,j + µ1

∞∑
n=0

S∑
j=s+2

πL+n,−(L−1),1,j

= λ2

s∑
i=1

S∑
j=s+1

πL−1,−(L−1),i,j

+ λ2

S∑
j=s+2

πL−1,−(L−1),0,j

+ λ2

s∑
i=1

S∑
j=s+1

(πL(I −R)−1)(2L−2)(S2+3)+(i−1)S+j+3

+ µ1

s∑
i=2

S∑
j=s+1

(πL(I −R)−1)(2L−2)(S2+3)+(i−1)S+j+3

+ µ1

S∑
j=s+2

(πL(I −R)−1)(2L−2)(S2+3)+j+3.
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R
(1)
C = λ2

s∑
i=0

S∑
j=s+δi0+1

(πL−1,−(L−1),i,j

+
s∑

i=1

S∑
j=s+1

(λ2 + δi1µ1)U(2L− 2, i− 1, j + 3)

Similarly,

R
(2)
C = λ1

S∑
i=s+1

s∑
j=1

πL−1,L−1,i,j

+ λ1

S∑
i=s+2

πL−1,L−1,i,0

+ λ1

S∑
i=s+1

s∑
j=1

(πL(I −R)−1)(L−1)(S2+3)+(i−1)S+j+3

+ µ2

S∑
i=s+1

s∑
j=2

(πL(I −R)−1)(L−1)(S2+3)+(i−1)S+j+3

+ µ2

S∑
i=s+2

(πL(I −R)−1)(L−1)(S2+3)+(s+1)S+4

= λ1

s∑
j=0

S∑
i=s+δ0j+1

(π(L−1),−(L−1),i,j

+
s∑

j=1

S∑
i=s+1

(λ1 + δ2jµ2)U(L− 1, i− 1, j + 3)

+ µ2

S∑
i=s+2

U(L− 1, s+ 1, 4)
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13. Probability that there are exactly n customer (batch) transfers from queue
1 to queue 2 before the first transfer from queue 2 to queue
1 =

(
TC

R,1→2

TC
R

)n TC
R,2→1

TC
R

; n ≥ 0.
Hence, mean number of customer (batch) transfers from queue 1 to queue
2 before the first transfer from queue 2 to queue 1

=
TC

R,1→2 × TC
R,2→1

(TC
R )2 × 1(

1− TC
R,1→2

TC
R

)2 =
TC

R,1→2 × TC
R,2→1

(TC
R,2→1)

2 .

Similarly, mean number of customer (batch) transfers from queue 2 to
queue 1 before the first transfer from queue 1 to queue 2 =

TC
R,1→2×TC

R,2→1

(TC
R,1→2)2

.
Similar is the case for inventory batch transfer.

14. Time between two successive customer transfers conditioned on the fact
that the first transfer is from queue 1 to queue 2, follows a PH distribution
with parameters (β1, T ) where β1 is a (2L − 1) dimensional row vector
with (2L− 2K)th entry 1 and all other entries are zero and

T =


−(λ1 + λ2 + µ1 + µ2) λ1 + µ2 · · ·

λ2 + µ1 −(λ1 + λ2 + µ1 + µ2) λ1 + µ2

. . . . . . . . .
λ2 + µ1 −(λ1 + λ2 + µ1 + µ2)


2L−1×2L−1

.

Similarly time between two successive transfers conditioned on the fact
that the first transfer is from queue 2 to queue 1 follows a PH distribution
with parameters (β2, T ) where β2 is a (2L − 1) dimensional row vector
with 2K th entry 1 and all other entries zero.

Hence the time between successive transfers = −βiT
−1e; i = 1, 2 as the

case may be.

As a particular case, if L = 2, K = 1 then the mean time between two
successive (customer) transfers

=
2(λ1 + λ2 + µ1 + µ2)

(λ1 + µ2)2 + (λ2 + µ1)2 .
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4.2.3 Discussion on numerical results

Using the results obtained in previous section, in this section, we study some
design issues related to the present model and make an attempt to establish
that it is very often much superior to the one with two independent (without
transfer of customers or inventory) service stations. Below we discuss in
brief the outcome of our numerical study.

1. We note from table 4.1 that with replenishment rates δ1 and δ2 increas-
ing the condition λ1 + λ2 < µ1 +µ2 becomes more and more conspic-
uous. To be more specific the stability condition π̃A0e

π̃A2e
< 1 approaches

the condition ρ = λ1+λ2

µ1+µ2
< 1, for larger δ1 and δ2 which is in agreement

with the result in [23] in that their model can be considered as a sys-
tem with infinite resource (inventory) with service; or equivalently a
service system with infinite replenishment rate. In this case a customer
waiting for service due to the absence of inventory does not arise.

2. Table 4.2 provides performance measures of the system for varying
pairs (δ1, δ2). We notice that the probability of being idle of the servers
decrease as the values of (δ1, δ2) increase; this also holds for the EN
values. Also the transfer rate T I

R,1→2 decreases with increase in value
of δ1. Note, however, that T I

R,2→1 increases with δ2 increasing. This is
so because λ1

µ1
> 1.

3. Table 4.3 compares the system that we have described with one where
there are two independent (with no customer/inventory transfer) ser-
vice stations. On comparing values in table 4.3, we see that the com-
bined system (present system) is far more effective than the latter. For
the parameters given, the model we have described has probability of
being empty given by π0e = 0.11419, whereas the independent ser-
vice system has probability of being empty given by P ID

empty = 0.04409.
Similarly for our systemEN = 4.18205 while the independent service
system has mean system size EN ID = 12.30469, which implies that
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both customer and inventory transfers greatly increase the efficiency
of the system, which is intuitive. Hence the interactive system we
have described and modelled here performs better than the indepen-
dent service system. Also, the parameters that we have chosen for the
preparation of table 1 and table 2 indicate that the present system can
be stable even when one among the individual systems is unstable.

Table 4.1: (δ1, δ2) verses “traffic intensity”. (λ1 = 1.5, λ2 = 1.1, µ1 = 1.15, µ2 = 3.1,
S = 10, s = 4, L = 7, K = 3, K ′ = 3, ρ = 0.61176)

(δ1, δ2) (1,1) (10,10) (50,50) (75,75)

π̃A0e
π̃A2e

0.62203 0.61176 0.61176 0.61176

Table 4.2: (δ1, δ2) verses system performance. (λ1 = 1.5, λ2 = 1.1, µ1 = 1.15, µ2 = 3.1,
S = 10, s = 4, L = 7, K = 3, K ′ = 3)

(δ1, δ2) P idle
1 P idle

2 T I
R,1→2 T I

R,2→1 EI1→2 EI2→1 EN

(1, 1) 0.08402 0.52350 1.06295 0.30899 0.40620 0.10706 11.90100

(10,10) 0.07207 0.50553 0.80340 0.34682 0.24312 0.12187 11.66534

(50,50) 0.07206 0.50552 0.75888 0.35910 0.23514 0.12914 11.66496

(75,75) 0.07206 0.50552 0.75476 0.36021 0.23504 0.12987 11.66496

Table 4.3: Comparison of the model with a system having two independent service stations.
(λ1 = 1.5, λ2 = 1.0, µ1 = 3.5, µ2 = 1.1, S = 10, s = 4, L = 7, K = 3, K ′ = 3,
δ1 = δ2 = 1.0)

π0e EN P ID
empty EN ID

0.11419 4.18205 0.04409 12.30469
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Chapter 5

M/G/1 Type Inventory Systems
with/without Positive Lead Time

5.1 Introduction

In the previous chapters we considered inventory systems with exponen-
tially distributed service times. In this chapter we consider inventory models
where the distribution of the service time does not possess the memoryless
property, that is we consider non-exponential distributions. Here we assume
service times as independently and identically distributed with distribution
function G(·). Arrival of demands form a Poission process. Arrival and
service processes are assumed to be independent. Our modelling leads to
an M/G/1 type service inventory system.

Only recently investigations in integrated models appeared concern-
ing the problem of how the classical performance measures (eg. queue
length, waiting time, etc.) are influenced by the management of attached
inventory and vice versa. How inventory management has to react to queue-
ing of demands and customers which is due to incorporated service facil-
ities. An early contribution is [56] where approximation procedures are
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used to find performance descriptions for models in which the interaction
of queueing for service and inventory control is integrated. In a sequence of
papers Berman and his co-workers [6, 10, 7, 11] investigate the behaviour
of service systems with an attached inventory. All these models assume that
the demands, which arrive during the time the inventory is zero, is back
ordered.

In this chapter we consider two cases of M/G/1 type service inven-
tory systems: without lead time and with positive lead time. In the first case
we consider an (s, S) inventory system with positive service time, that is an
M/G/1 type system. Lead time is zero. Arrival process is Poisson with rate
λ and service time is distributed as G(·) with µ =

∫∞
0 [1 − G(t)]dt < ∞.

The queue discipline is FIFS and items are served one by one. We anal-
yse the systems at departure epochs and get a product form solution to the
system probability and from that we obtain the arbitrary time system state
distribution. Different performance measures are derived and control pol-
icy is discussed. In the second case we consider M/G/1 type system with
positive lead time and lost sales. Lead time is assumed to be exponentially
distributed. When the inventory level is zero, no customer is allowed. How-
ever, those who are already present waiting are not turned away. Thus the
queue size is given by the set of non negative integers. We discuss two
models. In the first model the system follows (r,Q) policy in which when
the inventory level becomes r, an order for replenishment is placed. The
quantity ordered is of fixed size Q (Q > r). In the second model we con-
sider (r, s) policy in which with each replenishment the inventory level is
restocked to exactly S <∞ units with r < S no matter how many items are
still present in inventory. In both these models we get analytical solution to
system state probability distribution. To be precise we obtain the long run
system probability distribution in product form. Several performance mea-
sures are considered.

The lost sales situation arises in many retail establishments [13], where
the intense competition allows customers to choose another brand or to go
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to another store. But there are other areas of applications, where lost sales
models are appropriate as well. For example, these models apply to cases
such as essential spare parts where one must go to the outside of the normal
ordering system when a stockout occurs [12, p. 605]. The essential spare
part problem is central for many repair procedures, where broken down
units arrive at a repair station, queue for repair, and are repaired by replac-
ing a failed part by a spare part from the inventory. A similar problem
arises in production processes where rough material items are needed to
let the production process run. Both of these problems are modelled using
pure service systems, but these queueing theoretical models neglect inven-
tory management. Schwarz et al. [54] consider M/M/1 queueing systems
with inventory with lost sales. They analyse several single server queueing
systems of M/M/1-type with an attached inventory. The systems under
investigation differ with respect to the size of replenishment orders and the
order policy. Every system under consideration has the property that no
customers are allowed to join the queue as long as the inventory is empty.
This corresponds to the lost sales case of inventory management. How-
ever, if inventory is at hand, customers are still admitted to enter the waiting
room even if the number of customers in the system exceeds the inventory
on hand. In all the models they discussed product form solutions were ob-
tained to the steady state probabilities. That means in the long run and in
equilibrium the queue length process and the inventory process behave as
if they are independent. This is a rather strange observation because, these
processes strongly interact independently of whether being in equilibrium
or not.

As in Schwarz et al [54] we discuss the same models in M/G/1 type
systems. The stationary distribution of M/G/1 queue at arbitrary epochs is
the same as that at departure epochs. We get a product form solution for the
system state distribution.
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5.2 M/G/1 type inventory system without lead time

Here we consider an (s, S) inventory system with positive service time. In-
ter arrival distribution is exponential with parameter λ and service times are
independently and identically distributed with distribution function G(·); it
is natural and essential to assume that µ =

∫∞
0 (1 − G(t))dt < ∞. Lead

time is assumed to be zero.

5.2.1 Mathematical modelling and Analysis

Let N(t)= Number of customers at time t
I(t)= Number of items in inventory at time t.

Then {(N(t), I(t)); t ∈ R+} forms a Markov chain at post departure
epochs with state space

{(0, s), (0, s+1), . . . , (0, S− 1)}∪ {∪i≥1{(i, s+1), (i, s+2) . . . (i, S)}}.

Let 0 = {(0, s), (0, s+ 1), . . . (0, S − 1)} and i = {(i, s+ 1) . . . (i, S)} for
i ≥ 1. The transition probability matrix associated with this Markov chain
is given by

P =



0 1 2 3 · · ·
0 A0 A1 A2 A3 · · ·
1 A0 A1 A2 A3 · · ·
2 0 A0 A1 A2 A3 · · ·
3 0 0 A0 A1 A2 · · ·
... . . . . . . . . .


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Note that this matrix is of the M/G/1 type (Neuts [46]). In the above,

A0 =


0 0 · · · 0 a0

a0 0 · · · 0 0
0 a0 · · · 0 0

a0 0


(S−s−1)×(S−s−1)

Ai =



0 0 · · · 0 ai 0
0 0 · · · 0 0 ai

ai 0 · · · 0 0 0
0 ai · · · 0 0 0

0 . . .

0 . . .
0 0 · · · ai 0 0


(S−s−1)×(S−s−1)

where ai = Pr(i arrivals during a service time)
=
∫∞

0 e−λt (λt)i

i! dG(t); i = 0, 1, . . .

Theorem 5.2.1. The system state distribution has a product form solution
given by

πij = lim
n→∞

P (Nn = i, In = j),

where Nn is the queue length immediately after the nth service completion
and In is the corresponding inventory level.

= πi
1

Q
; with j = s, s+ 1, . . . , S − 1 for i = 0

and j = s+ 1, . . . S for i ≥ 1

where πi is the stationary probability of i customers in the M/G/1 queue
and Q = S − s .

Proof. Let π = (π0,π1,π2, . . . ) be the stationary probability vector asso-
ciated with the Markov chain, where

π0 = (π(0,s),π(0,s+1), . . .π(0,S−1))

and πi = (π(i,s+1),π(i,s+2), . . .π(i,S)) for i ≥ 1
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As in M/G/1 queue, here also if ρ = λµ < 1 the Markov chain is ergodic.
Hence the stationary probabilities are given by the unique solution of π =
πP

i.e., π0A0 + π1A0 = π0

π0A1 + π1A1 + π2A0 = π1

π0A2 + π1A2 + π2A1 + π3A0 = π2
...

(5.1)

Substituting

π0 = (π(0,s),π(0,s+1), . . .π(0,S−1))

= π0(
1

Q
, . . . ,

1

Q
) = π0 ·

1

Q
(1, . . . , 1)

= π0
1

Q
e, where e = (1, . . . , 1)

and πi = (π(i,s+1),π(i,s+2), . . .π(i,S))

= πi
1

Q
e for i ≥ 1

in (5.1) we get the solution which turns out to be unique due to normalizing
condition.
In the above πi; i ≥ 0, is the stationary probabilities that there are i cus-
tomers at a departure epoch (and hence at arbitrary epoch) in an M/G/1
queue. Thus the stationary probability distribution of the system at depar-
ture epoch is given by πij = πi

1
Q , for i = 0 and j = s, s+ 1, . . . S − 1 and

for i = 1 we have j = s+ 1 . . . , S.

Theorem 5.2.2. For the M/G/1 queue the distribution of the number of
customers at departure epoch is the same as that of the number of customers
at arbitrary epoch, hence we have lim

t→∞
Pr(N(t) = i, I(t) = j) = πi

1
Q;

j = s, s+ 1 . . . S − 1 for i = 0 and j = s+ 1, s+ 2 . . . S for i ≥ 1.
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5.2.2 Pollaczek-Khintchine-type formula

Since the system state distribution is in product form the Pollaczek-Khintchine
type formula can be derived as

π(z, r) =
(1− ρ)(1− z)K(z)U(r)

K(z)− z

where (1−ρ)(1−z)K(z)
K(z)−z is the Pollaczek-Khintchine formula for M/G/1/∞

queue and U(r) = E(rI) =
∑S

k=s+1
1
Qr

k = 1
Qr

s+1 1−rQ+1

1−r is the generating
function of the number of items in the inventory.

5.2.3 Busy-Period Analysis

In this section we determine the distribution of the busy period for M/G/1-
type (s, S) inventory system without lead time. Here the busy period anal-
ysis starts with an arrival to an idle server having inventory level i, (1 ≤
i ≤ S − 1) (since the optimum of s is s∗ = 0) until the server again be-
comes idle with an inventory level j, (1 ≤ j ≤ S− 1). Let B(x) denote the
cumulative distribution function of the busy period X of the M/G/1-type
inventory system with service cumulative distribution G(t). Then we con-
dition X on the length of the first service time inaugurating the busy period
when the inventory level is i ≥ 0. Since each arrival during that service
time will contribute to the busy period by having arrivals come during its
service time, we can look at each arrival during the first service time of the
busy period as essentially generating its own busy period.
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Thus

B(x) = Pr
{

busy period generated by all arrivals during (0, t]

is less than or equal to x− t| first customers
service completed in (t, t+ dt) with initial
inventory level i and final level j

}
=

∫ x

0

∞∑
n=1

e−λt(λt)n

n!
B∗n(x− t) dG(t)

where B∗n is the n-fold convolution of B with itself. Now we can evaluate
the mean length of busy period.

E(X) =

∫ ∞

0
[1−B(x)] dx.

With some computations this reduces to
E(X| inventory level at the start of the cycle = i)

=
µπ(0,i)

1− λµπ(0,i)
=

µπ(0,i)

1− ρπ(0,i)

5.2.4 Performance measures

i) Average inventory size

µinv =
S−1∑
j=s

jπ(0, j) +
∞∑
i=1

S∑
j=s+1

jπ(i, j)

= s+
Q+ 1

2
.
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ii) Average number of customers in the system

µc =
∞∑
i=1

iπi =
∞∑
i=1

iπi
1

Q
.

=
1

Q

∞∑
i=1

iπi =
1

Q
( Expected number of customers in the M/G/1 queue).

iii) Expected cycle length from replenishment to replenishment is equal to
expected time for Q services. There are the following four cases.

Case-1 At a replenishment epoch there are at least Q customers.
Then

E( cycle length) = E( time to serve Q customers)
= Q · µ

where µ = E (service time per customers).

Case-2 At a replenishment epoch there are k(< Q) customers. During the
service time of these k customers if at least Q − k customers join then
expected cycle length is = Q · µ.

Case-3 After each service, server has to wait for the next arrival i.e., there
are Q idle periods in between Q services.
Distribution of service time of these Q customers = [G ∗ exp(λ)]∗Q

∴ E (cycle length) = ( 1
λ + µ)Q.

Case-4 There are j(< Q) idle periods in between Q services.
E (cycle length) = µQ+ j

λ ; j = 1, 2, . . . Q− 1.
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5.2.5 Cost function

We define a cost function as follows:

F (s,Q) = hµinv +
K + CQ

(expected cycle length)

where h is the holding cost of inventory per unit per unit time,K is the fixed
order cost and C is the cost of inventory per unit.

F (s,Q) = h(s+
Q+ 1

2
) +

K + CQ∑Q
j=0

j
λ + µQ

= h(s+
Q+ 1

2
) +

K + CQ

µQ+ 1
λ

Q(Q+1)
2

.

The above function is linear in s. Since h > 0, value s∗ of s that minimizes
the expected cost per cycle is given by s∗ = 0. Now we have to find Q∗ the
optimum value of Q that minimizes

F (Q) = h(
Q+ 1

2
) +

K + CQ

µQ+ 1
λ

Q(Q+1)
2

.

Note that d2F (Q)
dQ2 ≥ 0. Hence the function is convex with respect to Q. So

there is a value of Q, say Q∗ for which

F (Q∗ + 1) ≥ F (Q∗) and F (Q∗ − 1) ≥ F (Q∗).

5.3 M/G/1-Type system with positive lead time and lost
sales

In this case we consider M/G/1 type inventory system with positive lead
time. An additional feature we are considering is “lost sales”. That means
when the inventory level is zero, no customer is allowed to join the queue.
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However, customers join when a service is going on, independent of the
number of inventoried items. Here we consider two models. In the first
model the replenishment policy is (r,Q). In this model an order for replen-
ishment is placing when the inventory level reaches the point r. Here a fixed
quantity Q is ordered for each time. In the second model we consider the
(r, S) policy. Here with each replenishment the inventory level is restocked
to exactly S <∞ units, (r < S), no matter how many items are still present
in the inventory.

5.3.1 M/G/1 type system with (r,Q)-policy

We have a single server with infinite waiting room under FCFS regime and
an attached inventory of capacity M (identical) items. Each customer needs
exactly one item from the inventory for service, and the on-hand inventory
decreases by one at the moment of service completion. If the server is ready
to serve a customer which is at the head of the line and there is no item of
inventory this service starts only at the time instant (and then immediately)
when the next replenishment arrives at the inventory. Customers arriving
during a period when the server waits for replenishment order are rejected
and lost to the system (lost sales).

Customers are of stochastically identical behaviour. To the server
there is a Poisson (λ) arrival stream (λ > 0). Customers request an amount
of service time which is arbitrarily distributed with distribution function
G(·). Here µ =

∫∞
0 [1 − G(t)]dt. If the on-hand inventory reaches a pre-

specified value r ≥ 0, a replenishment order is instantaneously triggered.
The size of the replenishment order is fixed to Q <∞ units, Q > r. We fix
M = r+Q . The replenishment lead time is exponentially distributed with
parameter v, v > 0. Let X(ti) denote the number of customers left behind
at the ith departure epoch and Y (ti) denote the on-hand inventory at time ti,
i = 1, 2, . . . . Then the embedded stochastic process Z = {(X(ti), Y (ti))}
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where ti, i = 1, 2, . . . are the successive times of completion of service, is
a Markov chain with the state space

Ez = {(n, k); n ∈ N0; 0 ≤ k ≤ Q+ r}.

The transition probability matrix of the embedded Markov chain is given by

P =


0 1 2 · · ·

0 A0 A1 A2 · · ·
1 A0 A1 A2 · · ·
2 . . . A0 A1 A2 · · ·
... . . .


where

0 = {(0, k); 0 ≤ k ≤ r +Q}
i = {(i, k); 0 ≤ k ≤ r +Q} i = 1, 2, . . . .

A0 =



(0, 0) (0, 1) · · · (0, r − 1) (0, r) · · · (0, Q− 1) (0, Q) · · · (0, Q + r)
(0, 0) 0 0 · · · 0 0 · · · a0 0 · · · 0
(0, 1) b0 0 · · · 0 0 · · · 0 rb0 · · · 0
... b0

(0, r) 0 0 · · · b0 0 · · · 0 0 · · · rb0 0
(0, r + 1) 0 0 · · · 0 a0 · · · 0 0 · · · 0 0
...
(0, Q + r) 0 0 · · · 0 0 · · · 0 0 · · · a0 0



Ai =



0 0 · · · · · · ai 0 0 · · · 0 0
bi 0 · · · · · · 0 rbi 0 · · · 0 0
0 bi · · · · · · 0 0 rbi · · · 0 0

· · · bi 0 0 0 · · · rbi 0
· · · a0

a0 0


(Q+r+1)×(Q+r+1)

where ai =Pr(i arrivals during a service time) as in the M/G/1 queue
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=

∫ ∞

0
(λt)ie

−λt

i!
dG(t).

bi = Pr(i arrivals during a service time and no replenishment).

=

∫ ∞

0
dG(t)e−αt ∧i (t) where ∧i(t) denotes the probability

of i arrivals.
rbi = Pr(i arrivals during a service time and replenishment)

=

∫ ∞

0
dG(t)[1− e−αt] ∧i (t).

Theorem 5.3.1. The embedded Markov chainZ is ergodic if and only if λ <
µ and ν <∞. If Z is ergodic then it has a unique stationary distribution of
product form:

π(n, k) = A−1C(k)πn for n ∈ N0, 1 ≤ k ≤ Q+ r (5.2)

π(n, 0) = A−1λ

v
πn, for n ∈ N0 (5.3)

with

C(k) = (
λ+ ν

λ
)k−1; k = 1, 2, . . . r

C(k) = (
λ+ ν

λ
)r; k = r + 1, . . . Q

C(k +Q) = (
λ+ ν

λ
)r − (

λ+ ν

λ
)k−1; k = 1, 2, . . . r.

The normalization constant is

A = (Q(
λ+ ν

λ
)r +

λ

ν
)

πn = Pr(n no. of customers in an M/G/1 queue).

Proof. Let π = (π0,π1, · · · ) denote the stationary probability vector asso-
ciated with Z; where πi = (π(i,0),π(i,1), . . . ), stationary vector associated
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to level i. Then π is given by

π = πP

(π0,π1, . . . ) = (π0,π1, . . . )


A0 A1 · · · · · ·
A0 A1 · · · · · ·

A0 A1 · · ·
. . . . . . · · ·


i.e.,

π0A0 + π1A0 = π0

π0A1 + π1A1 + π2A0 = π1

π0A2 + π1A2 + π2A1 + π3A3 = π2
...

(5.4)

Substituting the values (5.2) and (5.3) in the above system of equa-
tions we get the product form solution to the embedded Markov chain Z.
For an M/G/1 queue the steady state solution at the departure epochs is
the same as the solution at arbitrary epochs. Thus we can conclude that the
above result is the steady state solution at arbitrary epoch.

5.3.2 Measures of system performance

1. Average on-hand inventory

I =

Q+r∑
k=1

k
∑
n≥0

π(n, k)

=

Q+r∑
k=1

k
∑
n≥0

A−1C(k) · πn.
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=
r∑

k=1

k
∑
n≥0

A−1(
λ+ ν

λ
)k−1πn +

Q∑
k=r+1

k
∑
n≥0

A−1(
λ+ ν

λ
)rπn

+
r∑

k=1

(k +Q)
∑
n≥0

A−1((
λ+ ν

λ
)r − (

λ+ ν

λ
)k−1)πn.

=
∑
n≥0

A−1πn

r∑
k=1

k(
λ+ ν

λ
)k−1 +

∑
n≥0

A−1πn

Q∑
k=r+1

k(
λ+ ν

λ
)r

+
∑
n≥0

A−1πn

r∑
k=1

(k +Q)((
λ+ ν

λ
)r − (

λ+ ν

λ
)k−1).

2. Mean number of customers arriving per unit time

λA = λ
∑
n≥0

M∑
k=1

π(n, k)

= λ ·
∑
n≥0

M∑
k=1

A−1C(k) · πn.

3. Mean number of departures per unit time

λD = µ ·
∑
n≥1

M∑
k=1

π(n, k) = µ
∑
n≥1

M∑
k=1

A−1C(k)πn.

4. Intensity of arrival of replenishment orders

λR = ν
∑
n≥0

r∑
i=0

π(n, i+Q).

5. Average number of lost sales incurred per unit of time

LS = λ ·
∑
n≥0

π(n, 0)

= λ
∑
n≥0

A−1λ

ν
πn.
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6. Expected number of lost sales per cycle

LSc =
LS

λR
.

7. Safety stock or the expected net inventory position just before a replen-
ishment order arrives

s =
ν

λR

r∑
k=1

k ·
∑
n≥0

π(n, k).

=
ν

λR

∑
n≥0

r∑
k=1

k · A−1(
λ+ ν

λ
)k−1πn.

8. Mean number of customers in the system L0 and the mean number of
waiting customers L are the same as in the usual M/G/1 queueing system.
Using Little’s formula the mean sojourn timeW 0 and the mean waiting time
W of customers are

W 0 =
L0

λA

W =
L

λA
.

5.3.3 M/G/1 type system with (r, S)-policy

If the inventory reaches a specified value r > 0, the replenishment order
is instantaneously triggered. With each replenishment the inventory level is
restocked to exactly S < ∞ units with r < S, no matter how many items
are still present in the inventory. We set M = S. The replenishment lead
time is exponetially distributed with parameter ν, ν > 0. During the time
the inventory is zero, no customer is admitted to join the queue. Let (X(ti))
denote the number of customers left behind at the time of ith departure (ti)
and Y (ti) denote the inventory level at time ti, then Z = {(X(ti), Y (ti))};
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denote an embedded Markov chain with state space

Ez = {(n, k); n ∈ N0; 0 ≤ k ≤ S}.

Theorem 5.3.2. The embedded Markov chain is ergodic if λ < µ. If λ < µ

then Z has a unique stationary distribution of product form

π(n, k) = A−1C(k)πn n ∈ N0 and 1 ≤ k ≤ S (5.5)

π(n, 0) = A−1λ

ν
πn for n ∈ N0 (5.6)

with C(k) = (
λ+ ν

λ
)k−1; k = 1, 2, . . . r

C(k) = (
λ+ ν

λ
)r; k = r + 1, . . . S

and normalization constant A = (S − r + λ
ν )(λ+ν

λ )r.

Proof. The transition probability matrix P associated with Z is given by

P =


A0 A1 · · · · · ·
A0 A1 · · · · · ·

A0 A1 · · ·
. . . . . .


with

A0 =



(0, 0) (0, 1) · · · (0, r − 1) (0, r) · · · (0, S − 1) (0, S)
(0, 0) 0 0 · · · 0 0 · · · a0 0
(0, 1) b0 0 · · · 0 0 · · · rb0 0
... 0 b0

(0, r) 0 0 · · · b0 0 · · · rb0 0
(0, r + 1) 0 0 · · · 0 a0 · · · 0 0
... a0

(0, S) 0 0 0 0 · · · a0 0


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Ai =



0 0 · · · · · · ai 0
bi rbi 0

bi · · · · · ·
bi · · · rbi 0

a0 0 0
a0

a00


(S+1)×(S+1)

where ai, bi and rbi are like in (r,Q) policy.

Let π = (π0,π1 . . . ) be the stationary probability vector associated
with Z then π is given by π = πP .

π0 = π0A0 + π1A0

π1 = π0A1 + π1A1 + π2A0

π2 = π0A2 + π1A2 + π2A1 + π3A0.
...

Substituting (5.5) and (5.6) in the above system of equations we get
the product form solution to the embedded Markov chain Z. Since in
M/G/1 queue the steady state probabilities at departure epochs are the
same as the continuous time probabilities, here also we get a product form
solution at arbitrary epochs.
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5.3.4 Performance measures

1. Average on-hand inventory

I =
S∑

k=1

k
∑
n≥0

π(n, k)

=
r∑

k=1

k
∑
n≥0

A−1(
λ+ ν

λ
)k−1πn +

S∑
k=r+1

k
∑
n≥0

A−1(
λ+ ν

λ
)rπn

2. Mean number of customers arriving per unit time

λA = λ ·
∑
n≥0

S∑
k=1

π(n, k)

= λ ·
∑
n≥0

M∑
k=1

A−1C(k) · πn.

3. Mean number of departures per unit time

λD = µ ·
∑
n≥1

S∑
k=1

π(n, k) = µ
∑
n≥1

S∑
k=1

A−1C(k)πn.

4. Intensity of arrival of replenishment orders

λR = ν
∑
n≥0

r∑
i=0

π(n, i)

= ν
∑
n≥0

r∑
i=0

A−1(
λ+ ν

λ
)i−1πn

= ν ·
∑
n≥0

A−1πn ·
(λ+ν

λ )r − 1

ν/λ

=
∑
n≥0

A−1πnλ[(
λ+ ν

λ
)r − 1]
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5. Average number of lost sales incurred per unit time

LS = λ
∑
n≥0

π(n, 0)

= λ ·
∑
n≥0

A−1λ

ν
πn.

6. Expected number of lost sales per cycle

LSc =
LS

λR
.

7. Safety stock

s =
ν

λR

r∑
k=1

k
∑
n≥0

π(n, k).

=
ν

λR

r∑
k=1

k ·
∑
n≥0

A−1(
λ+ ν

λ
)k−1πn.

8. Mean number of customers in the system L0 and the mean number of
waiting customers L are the same as in the usual M/G/1/∞ queueing sys-
tem. Using Little’s formula the mean sojourn timeW 0 and the mean waiting
time W of customers are

W 0 =
L0

λA

W =
L

λA
.

5.4 Conclusion

In this chapter we considered an inventory with arbitrarily distributed ser-
vice time. To start with we considered an inventory system without lead
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time. We got an M/G/1-type transition probability matrix and by analysis
we derived a product form solution to the system state probability distri-
bution. In the second case we considered two models with positive lead
time. We discussed two replenishment policies. Here also we got product
form solution. That means in the long run and in equilibrium the queue
length process and the inventory process behave as if they are independent.
This is rather a strange observation because these process strongly interact,
independently of whether being in equilibrium or not.
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Chapter 6

D-Policy for a Production Inventory
System with Perishable Items

6.1 Introduction

So far we were concentrating on invenory with positive (random) service
time. In this chapter we concentrate on an inventory system with negligible
service time coupled with a control policy. We consider a production in-
ventory system of items having random lifetimes. We introduce a D-policy.
According to this policy the production process is activated only when the
accumulated workload exceeds a thresholdD (> 0). Workload accumulates
due to demands and perishability. Once the production process is switched
on, it continues till the inventory level reaches a maximum S (> 0). When
the inventory level reaches zero, and the accumulated workload has not
reached the threshold value D, then the production starts immediately to
minimize loss of demands. Whenever the inventory level reaches S, the
production is stopped. Thereafter there is depletion in the inventory due to
demand and/ decay. We assume that only items that are kept in the inventory
are subject to decay. The advantage of this problem is that if the production
cost is high, we can find an optimal D which minimizes the overall cost or
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maximizes the net profit. We obtain the system state distribution, expected
length of time the production is continuously on and an optimal D which
maximizes the profit.

Very little investigation on production inventory has been made in the
past. Kalpakam and Sapna [28] analyse a perishable (s, S) system with
Poisson demands and exponentially distributed lead times. They analyse
the case of arbitrarily distributed lead times in [29]. In both the cases de-
mand occurring during stock-out periods are assumed to be lost. Sharafali
[55] considers a production inventory operating under (s, S) policy where
demands arrive according to Poisson process and production output is also
Poisson. Altiok [1] analyses a production inventory system with compound
Poisson demand and phase-type distribution for the processing time. Kr-
ishnamoorthy and Raju [36] discussed the case N -policy for a production
inventory system with random lifetimes. N -policy is introduced to inven-
tory by Krishnamoorthy and Raju. N is the number of backlogs required to
start the production. They obtain some performance measures and an opti-
mal N which minimizes a suitable cost function. Krishnamoorthy and Mo-
hammed Ekramol Islam [32] analysed a production inventory with retrial of
customers. Krishnamoorthy and Ushakumari [38] consider a D-policy for
a k-out-of-n: G system with repair. They obtain system state distribution,
system reliability, expected number of times the system is down in a cycle
etc. They obtain an optimal D value which maximizes a suitably defined
cost function.

6.2 Mathematical modelling and analysis

In this model no backlog is allowed and the machine does not breakdown.
Demands arrive according to Poisson process of rate λ. Lifetime of items
is exponentially distributed with parameter β. The production time is also
exponentially distributed with parameter µ. We obtain the stationary dis-
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tribution of the system by identifying a continuous time bivariate Markov
chain.

Let I(t); t ≥ 0 be the inventory level at time t.
I(t) can take values in {0, 1, 2, . . . S}.
Let

X(t) =

{
1 if the production process is on at time t
0 otherwise.

Then {(I(t), X(t)); t ≥ 0} is a two-dimensional Markov process in the
state space

E = {(0, 1), (1, 1) · · · (S − 1, 1)} ∪ {(1, 0), (2, 0), · · · (S, 0)}.

Let

G(r, a) = Pr (the production is not activated at the rth demand and/ failure)

= Pr (the workload is less than D at the rth demand and/ failure)

= 1−
r−1∑
j=0

e−µD (µD)j

j!
; r = 0, 1, . . . S − 1

where a = µD.
Also Pij(t) = Pr

(
(I(t), X(t)) = (i, j)|(I(0), X(0)) = (S, 0)

)
for (i, j) ∈

E. The Kolmogorov forward differential equations are given by

P ′
S,0(t) =− (λ+ Sβ)PS,0(t) + µPS−1,1(t).

P ′
i,0(t) =− (λ+ iβ)Pi,0(t) + [λ+ (i+ 1)β]Pi+1,0(t)G(S − i, a)

for i = S − 1, S − 2, . . . , 1.

P ′
i,1(t) =− (λ+ iβ + µ)Pi,1(t) + µPi−1,1(t)

+ (λ+ (i+ 1)β)Pi+1,0(1−G(S − i, a))

+ (1− δi,S−1)(λ+ (i+ 1)β)Pi+1,1(t)

for i = S − 1, S − 2, . . . , 1

P ′
0,1(t) =− µP0,1(t) + (λ+ β)P11(t) + (λ+ β)P1,0(t).
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6.2.1 Limiting probabilities

Let

qi,0 = lim
t→∞

Pi,0(t), for i = 1, 2, . . . S

qi,1 = lim
t→∞

Pi,1(t), for i = 0, 1, 2, . . . S − 1

qS,0 = lim
t→∞

PS,0(t).

Then

qi,0 =
λ+ Sβ

λ+ iβ

S−i∏
j=1

G(j, a)qS,0, for i = 0, 1, . . . S − 1

qi,1 =
λ+ Sβ

µ

S−i∑
j=1

S−j∏
k=i+1

λ+ kβ

µ

j−1∏
r=1

G(r, a)qS,0, for i = 0, 1, . . . S − 1

where
(i)
∏y

k=j
λ+kβ

µ = 1 if y < j

(ii)
∏k

r=1 G(r, a) = 1 if k < r

(iii) qS,0 is determined such that the total probability is one.

6.2.2 Performance measures

(i) Expected inventory level is given by

SqS,0 +
S−1∑
i=1

iqi,0 +
S−1∑
i=0

iqi,1 =
{
S +

S−1∑
i=1

i
λ+ Sβ

λ+ iβ

S−i∏
j=1

G(j, a)

+
S−1∑
i=0

i
λ+ Sβ

µ

[ S−i∑
j=1

S−j∏
k=i+1

λ+ kβ

µ

j−1∏
r=1

G(r, a)
]}
qS,0.
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(ii) Now we derive the distribution of the time during which the production
is continuously on. To derive the distribution consider the Markov
chain on the state space

E = {(0, 1), (1, 1), (2, 1), · · · , (S − 1, 1), (S, 0)},

with (S, 0) as absorbing state. Then the distribution of the duration of
time the production is continuously on is of phase-type with distribu-
tion function F (x) given by

F (x) = 1− α exp(Tx)e; x ≥ 0,

where T is a non-singular matrix obtained by deleting the last row and
last column of the infinitesimal generator matrix of the Markov chain
on E, e = (1, 1, . . . , 1) is a row vector of order S with all entries equal
to one and α = (α0, α1, . . . , αS−1) is the initial probability vector of
order S with

αS−i =
e−µD(µD)i−1

(i− 1)!
; i = 1, 2, . . . , S − 2.

α1 = 1−
S−2∑
i=1

e−µD(µD)i−1

(i− 1)!

and α0 = 0.

The expected length of time the production is continuously on is given
by (−1)αT−1e. Inversion of T may often be difficult. So we use a
recursive method to find the expected value.

Let Ti,1 = time to reach (i + 1, 1) from (i, 1) for i = 0, 1, . . . , S − 2
and TS−1,1 = time to reach (S, 0) from (S − 1, 1)
E[Ti,1] = 1

µ + λ+iβ
µ E[Ti−1,1]; i = 1, 2, . . . , S − 1

E[T0,1] = 1
µ; since once the process is in state (0, 1), it is not possible

to move further to the left. Then we get

E[Ti,1] =
1

µ
+

1

µ

i∑
j=1

i∏
k=j

λ+ kβ

µ
; i = 0, 1, . . . S − 1.
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Now the expected time E(B) the production is continuously on is
given by

E(B) = E[TS−1,1]e
−µD + {E[TS−2,1] + E[TS−2,1]}(µD)e−µD + · · ·

+ {E[T0,1] + E[T1,1] + · · ·+ E[TS−1,1]}[1−
S−2∑
j=0

(µD)je−µD

j!
]

=
S−1∑
t=1

[
1

µ
+

1

µ

S−t−1∑
j=1

S−t−1∏
k=j

λ+ kβ

µ
]G(t, a).

(iii) The average amount of time the production is continuously off is given
by

E(I) =
S−1∑
i=1

i

λ+ (S − i+ 1)β
G(i, a) +

S

λ+ β
[1−

S−1∑
i=1

G(i, a)].

The expected cycle length (i.e., the expected time for (S, 0) to (S, 0))
is E(B) + E(I).

(iv) The expected number of visits to state (0, 1) in a cycle is q0,1

qS,0
. There-

fore the expected amount of time the system is empty in a cycle is

1

µ

q0,1

qS,0
=

1

µ
[
λ+ Sβ

µ

S∑
j=1

S−j∏
k=1

λ+ kβ

µ

j−1∏
r=1

G(r, a)]

6.3 Control problem

We derive the optimal value of the control variable D to get the maximum
profit. Let K be the profit per unit time by way of the switched off produc-
tion and C be the loss per unit time when the system is empty. Then the
expected profit per cycle is

E(P ) = KE(I) = K{
S−1∑
i=1

i

λ+ (S − i+ 1)β
G(i, a)+

S

λ+ β
[1−

S−1∑
i=1

G(i, a)]}.

122



Expected loss per cycle is

E(L) = C × Expected amount of time the system is empty

= C[
λ+ Sβ

µ

S∑
j=1

S−j∏
k=1

λ+ kβ

µ

j−1∏
r=1

G(r, a)].

Expected net profit = E(P )− E(L).

6.4 Special case

Here we consider D-policy for a production inventory system without per-
ishability (i.e., β = 0).
We have limiting probabilities as

qi,0 =
S−i∏
j=1

G(j, a)qS,0; i = 1, 2, . . . , S − 1

qi,1 =
[ S−i∑

j=1

(
λ

µ
)j

S−i∏
k=1

G(k, a)
]
qS,0; i = 0, 1, . . . , S − 1

where qS,0 is determined such that total probability is one.
Expected inventory level is given by[

S +
S−1∑
i=1

i

S−i∏
j=1

G(j, a) +
S−1∑
i=0

i{
S−i∑
j=1

(
λ

µ
)j

S−j∏
k=1

G(k, a)}
]
qS,0.
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6.5 Numerical illustration

For the values of the parameters S = 10, λ = 1, β = 0.05, µ = 2, expected
profit per cycle, expected loss per cycle and net profit were obtained and are
tabulated below.

Table 6.1: S = 10, λ = 1, β = 0.05, µ = 2, K = 10, C = 10

D expected profit per cycle Expected loss per cycle Net profit

10 36.74523 24.81855 11.92668

10.1 36.74818 24.8214 11.92678

10.2 36.75079 24.82395 11.92685

10.3 36.7531 24.82621 11.92689

10.4 36.75513 24.82823 11.9269*

10.5 36.75692 24.83002 11.92688

10.6 36.75849 24.83162 11.92687

10.7 36.75987 24.83303 11.92684

10.8 36.76109 24.83429 11.9268

10.9 36.76216 24.83541 11.92675

11 36.7631 24.83639 11.92671

11.1 36.76392 24.83727 11.92666

11.2 36.76465 24.83804 11.92661

11.3 36.76528 24.83873 11.92655

11.4 36.76583 24.83933 11.92651

11.5 36.76632 24.83986 11.92645

11.6 36.76674 24.84034 11.92641

11.7 36.76711 24.84075 11.92637

11.8 36.76744 24.84112 11.92632

11.9 36.76772 24.84144 11.92629
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We get an optimal D value 10.4 with the corresponding net profit
11.9269.

6.6 Concluding remarks

In this thesis we have discussed inventory models with negligible and/ posi-
tive service time. In the second chapter we discussed N -policy for an (s, S)
inventory system with positive service time. In the third chapter we dis-
cussed the problem of effective utilization of idle time of a server in an
(s, S) inventory system with positive and/ negligible service time. In the
fourth chapter we discussed the transfer of customers along with inven-
tory, if available, in two parallel service facilities following (s, S) policy
with positive service time. In all these chapters we consider exponentially
distributed service time. But in the fifth chapter we introduce arbitrarily
distributed service time. Here we consider M |G|1 type inventory system.
In the sixth chapter we consider a production inventory with items having
random lifetimes with negligible service time. Here we introduce a control
policy called D-policy. All these problems are of high importance in any
industrial related management problems and production process.
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