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ABSTRACT 
 

“INVESTIGATIONS ON THE APPLICATIONS OF DYNAMICAL 
INSTABILITIES AND DETERMINISTIC CHAOS FOR  

SPEECH SIGNAL PROCESSING” 
 

By 
 

PRAJITH. P 
 
 This study investigates the potential use of Reconstructed Phase Space 

(RPS) based parameters for Speech Signal Processing by utilizing nonlinear 

dynamical systems theory. In this approach features are extracted from the 

time domain. Study of nonlinear dynamical system shows that the RPS is able 

to capture the nonlinear information of the underlying system, that cannot be 

captured by frequency domain analysis. 

 A multimedia based system is converted into a low cost data 

acquisition system by adding a presampling antialiasing analog filter prior to 

A/D converter of the sound card. A speech database of short vowels in 

Malayalam is created. Nonlinear invariant parameters of vowel sounds are 

calculated. With these parameters one can quantify the chaotic behaviour of 

the speech signal.  

 Reconstructed Phase Space is generated for speech sounds by the 

method of time delay embedding. From the reconstructed space, a unique 

parameter called Reconstructed Phase Space Distribution Parameter (RPSDP) 

is extracted. These parameters are found to be similar for same vowel and 

differ from vowel to vowel. They are further used in the recognition 

experiments. 

i



 

 A new method for pitch estimation using Reconstructed Phase Space in 

two dimensions is presented. The proposed new method does not suffer from 

the limitations of other short term pitch estimation techniques. The problems 

in choosing the optimal time delay and the minimum embedding dimension 

for the reconstruction of phase space using the method of delays are addressed 

in this thesis. A simple procedure that quantifies expansion from the identity 

line of embedding space is developed for choosing proper time delay. For 

determining proper embedding dimension, Cao’s algorithm is used. With the 

optimum embedding parameters, Reconstructed Phase Space Distribution 

Parameter is modified as Modified Reconstructed Phase Space Distribution 

Parameter (MRPSDP). 

 Recognitions experiments of Malayalam vowels based on the 

above discussed parameters are conducted with k-NN classifier and neural 

network. The highest recognition accuracy is obtained with MRPSDP feature 

using neural network classifier. The nonlinear RPS derived features are then 

combined with the traditional MFCC feature set to achieve an improvement in 

the accuracy of recognition experiments. When this joint feature vector is 

used as input parameter, there is a significant boost in the recognition 

accuracy than that is obtained when RPS derived feature or MFCC feature 

alone is used. The entire system is developed and implemented using 

MATLAB 7. 
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Chapter 1 

Introduction   

1.1 Background 

 Speech is one of the oldest and most natural means of information 

exchange between human beings. We, humans speak and listen to each other 

in human-human interface. For many years, people have tried to develop 

machines that can understand and produce speech as humans do so naturally. 

Speech processing is the mathematical analysis and application of electrical 

signals for information storage and retrieval that results from a speech. The 

area of speech processing generally can be subdivided into the broad 

overlapping categories of speech analysis, coding, enhancement, synthesis 

and recognition. Speech analysis is the study of the speech production 

mechanism in order to generate a mathematical model of the physical 

phenomena. The study of coding endeavors to store speech information for 

subsequent recovery. Enhancement, in contrast, is the process of improving 

the intelligibility and quality of noise-corrupted speech signals. The 

generation of speech from coded instructions is known as speech synthesis. 

Speech recognition is the process of synthesis in reverse; namely, given a 

speech signal, produce the code that generated it. It deals with analysis of the 

linguistic content of a speech signal. 

 In the past few decades emerging from the theoretical development of 

nonlinear dynamics, the study of chaotic dynamics in deterministic systems 

has become very popular. Perhaps it is because of the amazing findings that 
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the study of chaotic systems has delivered. Interest in nonlinear dynamics 

grew rapidly after 1963, when Lorenz published its implications for weather 

prediction. 

It would be natural to think that if a system is deterministic, its 

behavior should be easily predicted. But there are systems where their 

behavior turns out to be non-predictable: not because of lack of determinism, 

but because of the complexity of the underlying dynamics, that require an 

infinite precision, which is unable to be computed. This can be seen in 

systems where very similar initial conditions yield very different behaviors. 

No matter how much precision we have, the most minimal differences will 

tend in the long time to very different results, or the system is highly sensitive 

to initial conditions. The extreme ‘sensitivity to initial conditions’ 

mathematically present in the systems is called dynamical instability, or 

simply chaos. It occurs in mechanical oscillators such as pendula or vibrating 

objects, in rotating or heated fluids, in laser cavities, in electronic circuits and 

in some chemical reactions. The chaotic behaviour of a system, which obeys 

deterministic laws, is called deterministic chaos. 

These two distinct research fields are addressed in this work: nonlinear 

dynamics and speech processing. Speech generation has classically been 

modelled as a linear system, which provides a convenient and simple 

mathematical formulation. However, a number of nonlinear effects are present 

in the physical process, which limit the effectiveness of the linear model. An 
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improved approach may be to view speech as an output of a nonlinear 

dynamical system. 

Speech production is an extremely complex process. It can be 

described in basic terms as follows. The lungs generate air pressure and this 

pressure wave is modulated as it flows through the larynx. Today a number of 

nonlinear effects in the speech production process are known. Firstly, it has 

been accepted for some time that the vocal tract and the vocal folds do not 

function independently of each other, but that there is in fact some form of 

coupling between them when the glottis is open [Koizumi. T., Taniguchi. S. 

et.al., 1985]. This can cause significant changes in formant characteristics 

between open and closed glottis cycles. [Brookes. D. M. and Naylor. P. A., 

1988]. Teager and Teager [Teager. H. M. and Teager. S. M, 1989] have 

claimed (based on physical measurements) that voiced sounds are 

characterised by highly complex airflows in the vocal tract, rather than well 

behaved laminar flow. Turbulent flow of this nature is also accepted to occur 

during unvoiced speech, where the generation of sound is due to a 

constriction at some point in the vocal tract. In addition, the vocal folds will 

themselves be responsible for further nonlinear behaviour, since the muscle 

and cartilage, which comprise the larynx, have nonlinear stretching qualities. 

Such nonlinearities are routinely included in attempts to model the physical 

process of vocal fold vibration, which have focussed on two or more mass 

models [Ishizaka. K. and Flanagan. J. L, 1972], [Koizumi. T., Taniguchi. S. 

et.al., 1987], [Steinecke. I. and Herzel. H, 1995], in which the movement of 
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the vocal folds is modelled by masses connected by springs, with nonlinear 

coupling. Observations of the glottal waveform reinforce this evidence, where 

it has been shown that this waveform can change shape at different 

amplitudes [Schoentgen. J, 1990]. Such a change would not be possible in a 

strictly linear system where the waveform shape is unaffected by amplitude 

changes.  

Taking into account the evidences presented here for the nonlinearities 

in speech, the source-filter model clearly has drawbacks. The assumptions 

made imply a loss of information, which although allowing a simple, 

mathematically tractable linear model, the full speech signal dynamics can 

never be properly captured. If instead of choosing a linear model, the 

nonlinear option is pursued, then it is not necessary to make many of the 

assumptions that are required in the linear case. Hence speech can be 

modelled as the output of a dynamical system, which has nonlinear behaviour.  

 Speech recognition has a history of more than 50 years. With the 

emerging of powerful computers and advanced algorithms, speech 

recognition has undergone a great amount of progress over the last 25 years. 

The earliest attempts to build systems for Automatic Speech Recognition 

(ASR) were made in 1950s based on acoustic phonetics. These systems relied 

on spectral measurements, using spectrum analysis and pattern matching to 

make recognition decisions, on tasks such as vowel recognition [Forgie. J. W 

and Forgie. C. D, 1959]. Filter bank analysis was also utilized in some 

systems to provide spectral information. In the 1960s, several basic ideas in 
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speech recognition emerged. Zero-crossing analysis and speech segmentation 

were used, and dynamic time aligning and tracking ideas were proposed 

[Reddy. D. R, 1966]. In the 1970s, speech recognition research achieved 

major milestones. Tasks such as isolated word recognition became possible 

using Dynamic Time Warping (DTW). Linear Predictive Coding (LPC) was 

extended from speech coding to speech recognition systems based on LPC 

spectral parameters. IBM initiated the effort of large vocabulary speech 

recognition in the 70s [Rabiner. L.R and Juang. B. H, 1993], which turned out 

to be highly successful and had a great impact in speech recognition research. 

Also, AT&T Bell Labs began making truly speaker-independent speech 

recognition systems by studying clustering algorithms for creating speaker-

independent patterns [Rabiner. L. R, Levinson.S.E, et. al.,1979]. In the 1980s, 

connected word recognition systems were devised based on algorithms that 

concatenated isolated words for recognition. An important turning point was 

the transition of approaches from template-based to statistical modeling – 

especially the Hidden Markov Model (HMM) approach [Rabiner. L. R, 1989]. 

HMMs were not widely used in speech application until the mid-1980s. From 

then on, almost all speech research has involved using the HMM technique. In 

the late 1980s, neural networks were also introduced to problems in speech 

recognition as a signal classification technique. In spite of these efforts, 

machines are still far inferior to humans in speech recognition capabilities. 
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1.2 Motivation 

 The problem addressed in this work concerns the investigation of novel 

acoustic modeling techniques that exploit the theoretical results of nonlinear 

dynamics, and applies them to the area of speech processing like pitch 

detection and speech recognition. In continuous speech recognition system, 

generally, the word spotting method is adopted. This necessitates large 

number of isolated word templates, for an efficient recognition system. The 

main disadvantage of this method is that enormous number of checking is 

necessary in this system.  Many mismatching may occur during checking 

because of the differences in utterance speed between isolated and continuous 

speech units. So this method is a failure in many cases.  An alternative 

method is phoneme based word spotting.  Phonemes are basic speech units of 

language. In this method an isolated word to be used as reference pattern is 

divided into phoneme based segments and a permissible duration range for 

each segment is set. As a result, the words spotting reference pattern is 

represented by a sequence of phoneme segments together with minimum and 

maximum permissible durations and with a typical spectrum for the segment. 

Phonemes are two types; vowel phoneme and consonant phoneme. Many 

vowel phoneme recognition systems are reported in literature [Waibel.A. 

et.al, 1988], [Chandrasekhar. C, 1996], [Chandrasekhar.C and Yegnanarayana 

B, 1996], [Yegnanarayana B, 1999], and [Sada Siva Sarma. A and Agrawal. 

S.S, 1996]. However, the average vowel phoneme recognition accuracy 

reported in literature is very low. So further study in the parameterization of 
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vowels is to be carried out for developing a robust speech recognition system. 

Many research works are reported on this topic in Indian languages like 

Hindi, Tamil, Bengali etc. Malayalam speech recognition is still in its infancy. 

Very few research works are reported so far. So, more basic research works 

are essential in this area. In the present study Malayalam vowel sounds are 

modeled using nonlinear speech processing techniques.  

As discussed previously, current speech recognition systems typically 

use frequency domain features, obtained via a frame-based spectral analysis 

of the speech signal. Such frequency domain approaches are constrained by 

linearity assumptions incurred by the source-filter model of speech 

production. The Phase Space of a dynamical system is a mathematical space 

where the orthogonal co-ordinate directions represent the variables needed to 

specify the instantaneous state of the system. Takens’ theorem states that 

under certain assumptions, phase space of a dynamical system can be 

reconstructed through the use of time-delayed versions of the original scalar 

measurements[Takens.F, 1980]. This new state space is commonly referred to 

in the literature as a reconstructed phase space (RPS), and has been proven to 

be topologically equivalent to the original phase space of the dynamical 

system, as if all the state variables of that system would have been measured 

simultaneously [Kubin.G, 1995]. A Reconstructed Phase Space can be 

exploited as a powerful signal processing domain, especially when the 

dynamical system of interest is nonlinear or even chaotic [Broomhead.D.S. 

and King.G, 1986], [Kantz.H. and Schreiber.T, 2003]. The RPS 
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representation is capable of preserving the nonlinear dynamics of the signal. 

The RPS based nonlinear methods concentrate on geometric structure that 

appear in the RPS. The orbits or trajectories that the row vectors of the 

trajectory matrix produce these geometric patterns. These orbits can be 

loosely called attractors. This method addresses the problem in the time 

domain instead of the frequency domain so that nonlinear information can be 

captured. The application of RPS for speech recognition is a new path of 

research and is still in its very early stages. The potential of this method for 

speech processing motivates the work presented in the thesis.  

1.3 Outline of the work and Main Results 

The intend of the Chapter 2 is to establish a necessary background for 

the following chapters with a review of previous works. The former part of 

the chapter contains a brief review of the state of art of nonlinear processing 

of speech. The later part gives brief survey of research findings reported in the 

applications of neural network for speech recognition. 

In the first session of chapter 3, a brief overview of articulatory and 

acoustic phonetics has been presented. This provides a framework for later 

discussions of speech production and the speech signal, especially 

concentrating on vowel sounds and their characterization. In the second 

session data acquisition of Malayalam vowel sounds is presented in detail. 

The personal computers available today possess built in sound card. These 

cards can be modified for speech processing by incorporating an antialiasing 

presampling filter appropriately. We have converted a sound card into one 
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suitable for speech processing by incorporating an antialiasing presampling 

low pass filter at the input for removing the frequency component above 

4kHz. A speech database of short vowels in Malayalam is created using the 

data acquisition system developed, for speech analysis and recognition study 

described in the following chapters. 

In Chapter 4, the field of nonlinear dynamical theory is introduced, 

including the concepts of chaos and how to measure it. The traditional model 

of speech production has been shown to have a number of shortcomings and a 

nonlinear system has been proposed as an alternative. The problem of whether 

speech (especially vowel sounds) is chaotic has been examined through 

discussion of previous studies and experiments. Nonlinear invariant 

parameters for Malayalam vowels are calculated. The major invariant features 

include attractor dimensions and Kolmogorov entropy. The non-integer 

attractor dimension and non-zero value of Kolmogorov entropy confirm the 

contribution of deterministic chaos to the behavior of speech signal. 

Though these parameters quantify the chaotic behaviour of the speech 

signal, as far as recognition application is concerned, we want to get more 

robust and computationally simpler parameters. In chapter 5, we are focusing 

to extract a novel parameter from the time domain tool- ‘Phase Space’, in 

order to capture the nonlinear characteristics of the speech. From the 

Reconstructed Phase Space of each vowel sound, a promising parameter 

called Reconstructed Phase Space Distribution Parameter (RPSDP) is 

extracted. With this parameter we can analyze the geometric structure of the 

9



 

reconstructed attractor. The RPSDPs are found to be similar for same vowel 

sounds and differs from vowel to vowel. Hence they are further used in the 

recognition experiments. Here we are presenting an entirely different way of 

viewing the speech processing problem, and offering an opportunity to 

capture the nonlinear characteristics of the acoustic structure. 

Pitch detection, also referred to as Fundamental frequency (f0) 

estimation has been a popular research topic for many years, and is still being 

investigated today. Fundamental frequency, f0 is the lowest frequency 

component, in the signal, which relates well to most of the other frequency 

components. In chapter 6, we introduce a general method for pitch estimation 

using Reconstructed Phase Space in two dimensions. Here methodologies 

originally developed for analyzing chaotic time series have been successfully 

applied to pitch determination problem. The proposed new method does not 

suffer from the limitations of other short-term pitch-estimation techniques. 

The algorithm is very straightforward and flexible. The results of the 

simulation experiments show its robust performance on real speech. The 

experimental results show that the pitch estimated using Reconstructed Phase 

Space features agrees with that obtained using conventional Pitch Detection 

Algorithms. 

The problem of choosing the optimal time delay and the minimum 

embedding dimension for the reconstruction of phase space using the method 

of delays are addressed in chapter 7. From the discussions of the methods of 

determining proper time delay, it can be concluded that the optimal delay 
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depends upon the details of the time series as well as the dynamics of the 

underlying system. We developed a simple procedure that quantifies 

expansion from the identity line of embedding space. Such a procedure may 

be more useful in the estimation of the proper time delay, since it is the most 

space filling reconstruction. For determining the minimum embedding 

dimension we have used Cao’s method, which does not contain any subjective 

parameters except time delay for the embedding and is computationally 

efficient. This method gives consistent results with Malayalam vowels. With 

these optimum-embedding parameters, Reconstructed Phase Space 

Distribution Parameter (RPSDP) is modified as Modified Reconstructed 

Phase Space Distribution Parameter (MRPSDP). 

Chapter 8 deals with the recognition of Malayalam vowels based on 

the above discussed features, using different classifiers. The credibility of the 

extracted parameters is tested with the k-NN classifier [Duda.R.O and 

Hart.P.E, 1973]. A connectionist model based recognition system by means of 

multi layer feed forward neural network with error back propagation 

algorithm [Haykin.S, 2004] is then implemented and tested using RPSDP 

features and MRPSDP features extracted from the vowels. The highest 

recognition accuracy (92.96%) is obtained with MRPSDP feature using neural 

network classifier. These results specify the discriminatory strength of the 

Reconstructed Phase Space derived features for isolated Malayalam vowel 

classification experiments. 
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The purpose of the work presented in chapter 9 is to extend the 

developed nonlinear methods by combing the nonlinear based RPS derived 

features with the traditional MFCC feature set to achieve a boost in the 

accuracy of recognition experiments. If the frequency domain features contain 

different discriminatory information than the RPS derived features, we should 

get better results. Multi layer feed forward neural network with error back 

propagation algorithm is implemented and tested with this hybrid feature set 

extracted from the vowels. An overall recognition accuracy of 96.24% is 

obtained for the simulation experiments. When the joint feature vector is used 

as input parameter, there is a significant boost in the recognition accuracy 

than that obtained when RPS derived feature (92.96%) or MFCC feature 

(91.68%) alone is used. This result suggests that the frequency domain 

features and the RPS derived features contain different discriminatory 

information. The entire system is developed and implemented using 

MATLAB 7. 

Finally chapter 10 concludes this work and suggests a few directions 

for future research. 
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Chapter 2 

 Review of Previous Work  

2.1 Introduction 

The last two decades have seen significant advances in human-machine 

interfaces. Speech and language technology, in particular - speech recognition 

is one among several areas, which have benefited enormously from these 

advances (Young, 2001). Initially, the research area of speech recognition was 

treated as a problem in statistical pattern recognition and classification, using 

small vocabularies of isolated words or digits recorded in low noise 

environments. Speech utterances were processed using traditional spectral 

techniques such as discrete Fourier transforms or filter banks, and direct 

classification techniques such as template matching were used to make a 

recognition decision. Some of the earliest systems used statistical pattern 

matching to do isolated digit recognition [Davis.K.H., Biddulph.R. et.al, 

1952] or syllable recognition [Forgie.J.W. and Forgie.C.D, 1959],[Olson.H.F.  

and Belar.H.,1956].  

Mathematical models for speech were developed as early as the 1940's 

[Dudley.H.W, 1940], based on linguistics research that viewed spoken 

language as the output of the filter system with the impulses from the larynx 

and vocal folds as the input to the system, the shape of the vocal tract 

representing the filter parameters, and the speech waveform as the system's 

output (Source filter Model) [Flanagan.J.L, 1965].  
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In the late 1960's and early 1970's, speech research became 

increasingly focused on a few key areas: feature selection and analysis, and 

template-based classification techniques targeted for speech data. Features 

such as cepstral coefficients and linear prediction coefficients [Thomas 

Parsons, 1987], [Rabiner.L and Juang.B.H, 1993] enabled the excitation 

portion of the speech waveform to be modeled and removed, leaving the 

vocal tract information relatively intact. Classification techniques such as 

Dynamic Time Warping (DTW) allowed for a temporally- motivated, non-

linear mapping between speech inputs and templates, and resulted in an 

excellent method for measuring perceptual similarity [Itakura.F, 1975], 

[Vintsyuk.T.K, 1968]. From mid 1980 onwards, almost all speech research 

has involved using the Hidden Markov Model (HMM) technique. In the late 

1980s, neural networks were also introduced to problems in speech 

recognition as a signal classification technique. 

Source-filter models form the foundation of many speech processing 

applications such as speech coding, speech synthesis, speech recognition, and 

speaker recognition technology. Usually, the filter is linear and based on 

linear predictions. It neglects nonlinear structure known to be present in the 

speech production mechanism. While this approach has led to great advances 

in the last 30 years, a fully automatic speech-based interface to products, 

which would encompass real-time speech processing as well as language 

understanding, is still considered to be many years away. The replacement of 

the linear filter with nonlinear operators (models) should enable us to obtain 
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an accurate description of the speech. This in turn may lead to better 

performance of practical speech processing applications. 

This chapter presents a review of previous works in the area of 

nonlinear speech processing and the applications of neural network for speech 

recognition and is organized as follows. Section 2.2 provides a summary of 

research findings in the area of nonlinear speech processing. Section 2.3 gives 

a review of previous works in the applications of neural network for speech 

recognition. Finally section 2.4 concludes this review. 

2.2 Review of Previous works in Nonlinear Speech Processing 

 Nonlinear methods for speech processing are a rapidly growing area of 

research. Naturally, it is difficult to define a precise date for the origin of the 

field, but it is clear that there was a rapid growth in this area, which started in 

the mid-nineteen eighties. Since that time, numerous techniques were 

introduced for nonlinear time series analysis, which are ultimately aimed at 

engineering applications. 

  Among the nonlinear dynamics community, a budding interest 

has emerged in the application of theoretical results to experimental time 

series data analysis in 1980’s. One of the profound results established in 

chaos theory is the celebrated Takens’ embedding theorem. Takens’ theorem 

states that under certain assumptions, phase space of a dynamical system can 

be reconstructed through the use of time-delayed versions of the original 

scalar measurements. This new state space is commonly referred to in the 
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literature as Reconstructed Phase Space (RPS), and has been proven to be 

topologically equivalent to the original phase space of the dynamical system. 

Packard et al. [Packard.N.H, Crutchfield.J.P, et.al, 1980] first proposed 

the concept of phase space reconstruction in 1980. Soon after, Takens showed 

that a delay-coordinate mapping from a generic state space to a space of 

higher dimension preserves topology [Takens.F, 1980]. Sauer and Yorke have 

modified Taken’s theorem to apply for experimental time series data analysis 

[Sauer T., Yorke.J.A and Casdagli.M, 1991]. 

 Conventional linear digital signal processing techniques often utilize 

the frequency domain as the primary processing space, which is obtained 

through the Discrete Fourier Transform (DFT) of a time series. For a linear 

dynamical system, structure appears in the frequency domain that takes the 

form of sharp resonant peaks in the spectrum. However for a nonlinear or 

chaotic system, structure does not appear in the frequency domain, because 

the spectrum is usually broadband and resembles noise. In the RPS, a 

structure emerges in the form of complex, dense orbits that form patterns 

known as attractors. These attractors contain the information about the time 

evolution of the system, which means that features derived from a RPS can 

potentially contain more or different information.  

The majority of literature that utilizes a RPS for signal processing 

applications revolves around its use for control, prediction, and noise 

reduction, reporting both positive and negative results. There is only scattered 

research using RPS features for classification and /or recognition experiments. 
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 In contrast to the linear source-filter model for speech production 

process, a large number  of  research  works  are  reported  in  the  literature to   

show the nonlinear effects in the physical process. Koizumi.T, Taniguchi.S, 

et.al. in 1985 showed that the vocal tract and the vocal folds do not function 

independently of each other, but that there is in fact some form of coupling 

between them when the glottis is open [Koizumi.T, Taniguchi.S, et.al., 1985]. 

This can cause significant changes in formant characteristics between open 

and closed glottis cycles. [Brookes.D.M and Naylor.P.A, 1988].  

Teager and Teager [Teager.H.M and Teager.S.M, 1989] have claimed 

that voiced sounds are characterised by highly complex airflows in the vocal 

tract, rather than well behaved laminar flow. Turbulent flow of this nature is 

also accepted to occur during unvoiced speech, where the generation of sound 

is due to a constriction at some point in the vocal tract. In addition, the vocal 

folds will themselves be responsible for further nonlinear behaviour, since the 

muscle and cartilage, which comprise the larynx, have nonlinear stretching 

qualities.  

Such nonlinearities are routinely included in attempts to model the 

physical process of vocal fold vibration, which have focussed on two or more 

mass models [Ishizaka.K and Flanagan.J.L, 1972], [Koizumi.T, Taniguchi.S, 

et.al., 1987] [Steinecke.I and Herzel.H, 1995] in which the movement of the 

vocal folds is modelled by masses connected by springs, with nonlinear 

coupling. Observations of the glottal waveform reinforce this evidence, where 

it has been shown that this waveform can change shape at different 
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amplitudes [Shoentgen.J, 1990]. Such a change would not be possible in a 

strictly linear system where the waveform shape is unaffected by amplitude 

changes.  

 Extraction of invariant parameters from speech signal has 

attracted researchers for designing speech and speaker recognition systems. In 

1988, Narayanan.N.K. et.al. [Narayanan.N.K. and Sridhar.C.S, 1988] used the 

dynamical system technique mentioned in the nonlinear dynamics to extract 

invariant parameters from speech signal. The dynamics of speech signal is 

experimentally investigated by extracting the second order dimension of the 

attractor D2 and the second order Kolmogorov entropy K2 of speech signal. 

The fractal dimension of D2 and non-zero value of K2 confirms the 

contribution of deterministic chaos to the behavior of speech signal. The 

attractor dimension D2 and Kolmogorov entropy K2 are then used as a 

powerful tool for voiced / unvoiced classification of speech signals. 

 The dimension of the trajectories, or the dimension of the attractor is 

an important characteristic of the dynamic systems. The estimation of the 

dimension gives a lower bound of the number of parameters needed in order 

to model the system. The goal is to find if the system under study occupies all 

the state space or if it is most of the time in a subset of the space, called 

attractor. The correlation dimension [Tishby, 1990] is a practical method to 

estimate the dimension of an empirical temporal series. 

 There are a large variety of techniques found in the literature of 

nonlinear methods and it is difficult to predict which techniques ultimately 
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will be more successful in speech processing. However, commonly observed 

methods in the speech processing literature are various forms of oscillators 

and nonlinear predictors, the latter being part of the more general class of 

nonlinear autoregressive methods. The oscillator and autoregressive 

techniques themselves are also closely related since a nonlinear 

autoregressive model in its synthesis form forms a nonlinear oscillator if no 

input is applied. For the practical design of a nonlinear autoregressive model, 

various approximations have been proposed [Farmer.J.D and Sidorowich.J.D, 

1988], [Casdagli.M, Des Jardins. D, et.al., 1992], [Abarbanel.H.D.I, 

Brown.R, et.al., 1993], [Kubin.G, 1995]. These can be split into two main 

categories: parametric and nonparametric methods. 

Parametric methods are perhaps best exemplified by the polynomial 

approximation (truncated Volterra series with the special case of quadratic 

filters [Sicuranza.G.L, 1992], [Mumolo.E and Francescato.D, 1993], 

[Mumolo.E, Carini.A, et.al, 1994], [Thyssen.J, Nielsen.H, et.al. 1994],  

locally linear models [Townshend.B, 1992], [Townshend.B, 1991], 

[Singer.A.C, Wornell.G.W, et.al.1994], [Kumar.A and Gersho.A, 1997], [Ma 

Y.G.Wei.N, 1998], including threshold autoregressive models [Tong.H, 

1990], and state dependent models [Priestley.M.B, 1988]. Another important 

group of parametric methods is based on neural nets: radial basis functions 

approximations [Casdagli.M, 1989], [Birgmeier.M, 1995], [Birgmeier.M, 

1996], [Diaz de Maria.F, et.al., 1995], [Yee Y.S.P.Haykin, 1995] [Mann.I and 

McLaughlin, 1998], multi-layer perceptrons [Lapedes.A and Farber.R, 1988], 
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[Reininger.H and Wolf.D, 1990] and recurrent neural nets [Wu.L and 

Niranjan. M, 1994], [Haykin.S and Li.L, 1995], [Hussain.A, 1996]. 

 Nonparametric nonlinear autoregressive methods also play an 

important role in nonlinear speech processing. Examples are Lorenz’s method 

of analogues [Lorenz.E.N, 1969], [Bogner.R.E, 1988] [Bogner.R.E and Li.T, 

1989], [Casdagli.M, 1989] which may be the simplest of various nearest 

neighbour methods [Yakowitz.S, 1987], [Farmer.J.D and Sidorowich.J.D, 

1988], which also includes nonlinear predictive vector quantization 

[Gersho.A, 1989] [Wang.S, Paksoy.E, et.al., 1990], [Wu.L, Niranjan.M, 

1994], [Gersho.A and Gray.R.M, 1992] or codebook prediction [Singer.A.C, 

Wornell.G.W, et.al.1992], [Kumar.A and Gersho.A, 1997].  

 Phase space reconstruction is usually the first step in the analysis of 

dynamical systems. An experimenter obtains a scalar time series from one 

observable of a multidimensional system. State-space reconstruction is then 

needed for the indirect measurement of the system’s invariant parameters like, 

dimension, Lyapunov exponent etc. Takens’ theorem gives little guidance, 

about practical considerations for reconstructing a good state space. It is silent 

on the choice of time delay (τ) to use in constructing m-dimensional data 

vectors. Indeed, it allows any time delay as long as one has an infinite amount 

of infinitely accurate data. However, for reconstructing state spaces from real-

world, finite, noisy data, it gives no direction [Casdagli. M, Eubank.S, et. al., 

1991]. Two heuristics have been developed in the literature for establishing a 

time lag [Kantz.H and Schreiber.T, 2003]. 1) The first zero of the 

 
20



autocorrelation function and 2) the first minimum of the auto mutual 

information curve [Fraser.A.M and Swinney.H.L, 1986]. 

 In their work, Andrew M Fraser and Harry L Swinney, the mutual 

information is examined for a model dynamical system and for chaotic data 

from an experiment on the Belousov-Zhabotinskii reaction. An N log N 

algorithm for calculating mutual information (I) is presented. A minimum in 

‘I’ is found to be a good criterion for the choice of time delay in Phase Space 

Reconstruction from time series data. This criterion is shown to be far 

superior to choosing a zero of the autocorrelation function. 

 There have been many discussions on how to determine the optimal 

embedding dimension from a scalar time series based on Taken’s theorem or 

its extensions [Sauer.T, Yorke.J.A., and Casdagli. M, 1991]. Among different 

geometrical criteria, the most popular seems to be the method of False 

Nearest Neighbors [Kennel.M. B, Brown. R, and Abarbanel.H.D.I, 1992]. 

This criterion concerns the fundamental condition of no self-intersections of 

the reconstructed attractor. 

Work by Banbrook, McLaughlin et. al.[Banbrook.M and  

McLaughlin.S, 1994], Kumar et. al. [Kumar.A and  Mullick.S.K, 1996], and 

Narayanan et. al. [Narayanan.S.S and Alwan.A.A, 1995] has attempted to use 

nonlinear dynamical methods to answer the question: “Is speech chaotic?” 

These papers focused on calculating theoretical quantities such as Lyapunov 

exponents and Correlation dimension. Their results are largely inconclusive 

and even contradictory. A synthesis technique for voiced sounds is developed 
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by Banbrook  et.al, inspired by the technique for estimating the Lyapunov 

exponents [Banbrook.M, McLaughlin.S and Mann.I, 1999]. 

 In a work presented by Langi and Kinsner speech consonants are   

characterised  by  using  a  fractal  model   for   speech   recognition   systems.  

 [Langi.A and Kinsner.W, 1995] Characterization of consonants has been a 

difficult problem because consonant waveforms may be indistinguishable in 

time or frequency domain.  The approach views consonant waveforms as 

coming from a turbulent constriction in a human speech production system, 

and thus exhibiting turbulent and noise like time domain appearance. 

However, it departs from the usual approach by modeling consonant 

excitation using chaotic dynamical systems capable of generating turbulent 

and noise-like excitations. The scheme employs correlation fractal dimension 

and Takens embedding theorem to measure fractal dimension from time series 

observation of the dynamical systems. It uses linear predictive coding  (LPC) 

excitation of twenty-two consonant waveforms as the time series.  

Furthermore, the correlation fractal dimension is calculated using a fast 

Grassberger algorithm [Grassberger and Procaccia, 1983]. 

Wei Gang, Lu Yiqing et. al. presented a new method for low bit rate 

speech coding method based on fractal code excited linear prediction [Wei 

Gang, Lu Yiqing and Quyang Jingzheng, 1996]. Based on the recently 

developed chaos and fractal theories they introduced new methods for speech 

signal processing. A novel phase space reconstruction algorithm is proposed 

for speech signal, the distributions of the maximum Lyapunov exponent and 
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the fractal dimension of speech signal are tested and analyzed statistically. 

The results of this study indicate that chaos and fractal theories have great 

potentials in the field of speech signal processing. 

 The criterion in the False Nearest Neighbor approach for determining 

optimal embedding dimension is subjective in some sense that, different 

values of parameters may lead to different results [Cao.L, 1997)]. For realistic 

time series data, different optimal embedding dimensions are obtained if we 

use different values of the threshold value. Also with noisy data this method 

gives spurious results. [Kantz.H and Schreiber.T, 2003]. 

 Lyangyue Cao in 1997 proposed a practical method to determine the 

minimum embedding dimension from a scalar time series. It does not contain 

any subjective parameters except for the time delay for the embedding. It does 

not strongly depend on how many data points are available and it is 

computationally efficient. Several time series are tested to show the above 

advantages of the method [Cao.L, 1997)]. 

Petry et. al.[Petry.A, Augusto.D et.al., 2002]  and Pitsikalis et. al. 

[Pitsikalis.V and  Maragos.P, 2002] have used Lyapunov exponents and 

Correlation dimension in unison with traditional features (cepstral 

coefficients) and have shown minor improvements over baseline speech 

recognition systems. Central to both sets of these papers is the importance of 

Lyapunov exponents and Correlation dimension, because they are invariant 

metrics that are the same regardless of initial conditions in both the original 

and reconstructed phase space. Despite their significance, there are several 
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issues that exist in the measuring of these quantities on real experimental data. 

The most important issue is that these measurements are very sensitive to 

noise. Secondarily, the automatic computation of these quantities through a 

numerical algorithm is not well established and this can lead to drastically 

differing results. The overall performance of these quantities as salient 

features remains an open research question.  

 In addition to these speech analysis and recognition applications, 

nonlinear methods have also been applied to speech enhancement, speech 

coding etc. Papers by Hegger et al. [Hegger.R, Kantz.H, et.al. 2000], 

[Hegger.R, Kantz.H, et.al. 2001] demonstrated the successful application of 

what is known as local nonlinear noise reduction to sustained vowel 

utterances. 

Michael T. Johnson et.al. proposed the implementation of two 

nonlinear noise reduction methods applied to speech enhancement [Michael 

T. Johnson, Andrew C. Lindgren, et.al, 2003]. The methods are based on 

embedding the noisy signal in a high-dimensional reconstructed phase space 

and applying singular value decomposition to project the signal into a lower 

dimension. The advantages of these nonlinear methods include that they do 

not require explicit models of noise spectra and do not have the typical 

‘musical tone’ side effects associated with traditional linear speech 

enhancement methods.  

In a work presented by Jinjin Ye et.al. Principal Component Analysis 

(PCA) is applied to feature vectors from the reconstructed phase space [Jinjin 
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Ye, Michael T. Johnson, et.al., 2003]. By using PCA projection, the basis of 

the feature space is orthogonalized. A Bayes classifier uses the transformed 

feature vectors to classify phonemes. The results show that the classification 

accuracy with PCA method surpasses the accuracy using only original 

features in most cases. PCA projection was implemented in three ways over 

the reconstructed phase space on both speaker-dependent and speaker-

independent data. 

 Kevin M Lindrebo et.al. introduced a method for calculating speech 

features from third-order statistics of sub band filtered speech signals which 

are used for robust speech recognition [Kevin M. Indrebo, Richard J. 

Povinelli, et.al., 2005]. These features have the potential to capture nonlinear 

information not represented by cepstral coefficients. Also, because the 

features presented in this method are based on the third-order moments, they 

may be more immune to Gaussian noise than cepstrals, as Gaussian 

distributions have zero third-order moments. 

 Richard J Povinelli et.al. introduced a novel approach to the analysis 

and classification of time series signals using statistical models of 

reconstructed phase spaces [Povinelli.R.J, Michael T. Johnson, et.al., 2006]. 

With sufficient dimension, such reconstructed phase spaces are, with 

probability one, guaranteed to be topologically equivalent to the state 

dynamics of the generating system, and, therefore, may contain information 

that is absent in analysis and classification methods rooted in linear 

assumptions. Parametric and nonparametric distributions are introduced as 
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statistical representations over the multidimensional reconstructed phase 

space, with classification accomplished through methods such as Bayes 

maximum likelihood and artificial neural networks (ANNs). The technique is 

demonstrated on heart arrhythmia classification and speech recognition. This 

new approach is shown to be a viable and effective alternative to traditional 

signal classification approaches, particularly for signals with strong nonlinear 

characteristics. 

 In a recent study Marcos Faundez-Zanuy compared the identification 

rates of a speaker recognition system using several parameterizations, with 

special emphasis on the residual signal obtained from linear and nonlinear 

predictive analysis [Marcos Faundez-Zanuy, 2007]. It is found that the 

residual signal is still useful even when using a high dimensional linear 

predictive analysis. If instead of using the residual signal of a linear analysis a 

nonlinear analysis is used, both combined signals are more uncorrelated and 

although the discriminative power of the nonlinear residual signal is lower, 

the combined scheme outperforms the linear one for several analysis orders. 

 It is seen that the majority of literature that utilizes the nonlinear 

techniques for signal processing applications revolves around its use for 

control, prediction and noise reduction, reporting both positive and negative 

results. There is only scattered research using these methods for classification 

or recognition experiments. It is also important to notice that no work has 

been reported yet in nonlinear speech processing for Malayalam and other 
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Indian languages. The succeeding session of this chapter is focussed on the 

review of the applications of neural network for speech recognition. 

2.3 Review of the applications of neural network for speech recognition 

Artificial neural net (ANN) algorithms have been designed and 

implemented for speech pattern recognition by a number of researchers. 

ANNs are of interest because algorithms used in many speech recognizers can 

be implemented using highly parallel neural net architectures and also 

because new parallel algorithms are being developed making use of the newly 

acquired knowledge of the working of biological nervous systems. 

Hutton.L.V compares neural network and statistical pattern comparison 

method for pattern recognition purpose [Hutton.L.V 1992]. Neural network 

approaches to pattern classification problems complement and compete with 

statistical approaches. Each approach has unique strengths that can be 

exploited in the design and evaluation of classifier systems. Classical 

(statistical) techniques can be used to evaluate the performance of neural net 

classifiers, which often outperform them.  Neural net classifiers may have 

advantages even when their ultimate performance on a training set can be 

shown to be no better than the classical. It is possible to be implemented in 

real time using special purpose hardware. 

Personnaz L.and Dreyfus G presents an elementary introduction to 

networks of formal neurons [Personnaz L and. Dreyfus.G 1990]. The state of 

the art regarding basic research and the applications are presented in this 

work. First, the most usual models of formal neurons are described, together 
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with the most currently used network architectures: static (feedforward) nets 

and dynamic (feedback) nets.   Secondly, the main potential applications of 

neural networks are reviewed:  pattern recognition (vision, speech), signal 

processing and automatic control. Finally, the main achievements (simulation 

software, simulation machines, integrated circuits) are presented.  

 Willian Huang et.al. presents some neural net approaches for the 

problem of static pattern classification and time alignment [Willian Huang et. 

al., 1988].  For static pattern classification multi layer perceptron classifiers 

trained with back propagation can form arbitrary decision regions, are robust, 

and are trained rapidly for convex decision regions. For time alignment, the 

Viterbi net is a neural net implementation of the Viterbi decoder used very 

effectively in recognition systems based on Hidden Markov Models (HMMs). 

Waibel.A et. al. proposed a time delay neural network (TDNN) 

approach to phoneme recognition, which is characterized by two important 

properties [Waibel.A et. al., 1988]. Using a three level arrangement of simple 

computing units, it can represent arbitrary non-linear decision surface. The 

TDNN learns these decision surfaces automatically using error back 

propagation. The time delay arrangement enables the network to discover 

acoustic phonetic features and temporal relationships between them 

independent of position in time and hence not blurred by temporal shifts in 

the input. For comparison, several discrete Hidden Markov Models (HMM) 

were trained to perform the same task, i.e. the speaker dependent recognition 

of the phonemes “B”, “D” and “G” extracted from varying phonetic contexts. 
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The TDNN achieved a recognition rate of 98.5% correct compared to 93.7% 

for the best of HMMs. They show that the TDNN has well known acoustic –

phonetic features (e.g., F2-rise, F2-fall, vowel-onset) as useful abstractions. It 

also developed alternate internal representations to link different acoustic 

realizations to the same concept.   

Yoshua Bengio and Renato De Mori used The Boltzmann machine 

algorithm and the error back propagation algorithm to learn to recognize the 

place of articulation of vowels(front, center or back), represented by a static 

description of spectral lines [Yoshua Bengio and Renato De Mori, 1988]. The 

error rate is shown to depend on the coding. Results are comparable or better 

than those obtained by them on the same data using hidden Markov Models. 

They also show a fault tolerant property of the neural nets, i.e. that the error 

on the test set increases slowly and gradually when an increasing number of 

nodes fail. 

Moore. K.L discussed different types of neural network in his paper 

entitled “Artificial neural networks” [Moore.K.L, 1992]. Three different tasks 

for which they are suitable are discussed. They are pattern classification and 

associative memory, self-organization and feature extraction, and 

optimization. 

           Mah. R.S.H and Chakravarthy.V examine the key features of simple 

networks and their application to pattern recognition. [Mah. R.S.H and 

Chakravarthy.V, 1992]. Beginning with a three-layer back propagation 

network, the authors examine the mechanisms of pattern   classification. They 
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relate the number of input, output and hidden nodes to the problem features 

and parameters. In particular, each hidden neuron corresponds to a 

discriminant in the input space. They point out that the   interactions between 

number of discriminant, the size and distribution of   the training set, and 

numerical magnitudes make it very difficult to   provide precise guidelines. 

They found that the shape of the threshold   function plays a major role in 

both pattern recognition, and quantitative prediction and interpolation. Tuning 

the sharpness parameter could have a significant effect on neural network 

performance. This feature is currently under-utilized in many applications. 

For some applications linear discriminant is a poor choice. 

Janssen. R.D.T, Fanty. M and Cole. R.A developed a phonetic front-

end for speaker-independent recognition of continuous letter strings [Janssen. 

R.D.T, Fanty.M and Cole.R.A, 1991]. A feedforward neutral network is 

trained to classify 3 msec speech frames as one of the 30 phonemes in the 

English alphabet. Phonetic context is used in two ways: first, by providing 

spectral and waveform information before and after the frame to be classified, 

and second, by a second-pass network that uses both acoustic features and the 

phonetic outputs of the first-pass network. This use of context reduced the 

error rate by 50%. The effectiveness of the DFT and the more compact PLP 

(perceptual linear predictive) analysis is compared, and several other features, 

such as zerocrossing rate, are investigated. A frame-based phonetic 

classification performance of 75.7% was achieved. 
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Ki-Seok-Kim and Hee-Yeung-Hwang present the result of the study on 

the speech recognition of Korean phonemes using recurrent neural network 

models conducted by them [Ki-Seok-Kim and Hee-Yeung-Hwang, 1991]. 

The results of applying the recurrent multi layer perceptron model for 

learning temporal characteristics of speech phoneme recognition, is   

presented. The test data consist of 144 vowel+consonant+vowel (VCV) 

speech chains made up of 4 Korean monothongs and 9 Korean plosive 

consonants. The input parameters of the artificial neural network model used 

are the FFT coefficients, residual error and zero crossing rates. The baseline 

model showed a recognition rate of 91% for vowels and 71% for plosive 

consonants of one male speaker. The authors obtained better recognition rates 

from various other experiments compared to the existing multilayer 

perceptron model, thus showing the recurrent model to be better suited to 

speech recognition. The possibility of using the recurrent models for speech 

recognition was experimented upon by changing the configuration of this 

baseline model. 

  Ahn.R and Holmes.W.H propose a voiced / unvoiced / silence 

classification algorithm of speech using 2-stage neural   networks with 

delayed decision input [Ahn .R and Holmes.W.H, 1996]. This feed forward 

neural network classifier is capable of determining voiced, unvoiced and 

silence in the first stage and refining unvoiced and silence decisions in the 

second stage. Delayed decision from the previous frame's classification along 

with preliminary decision by the first stage network, zero crossing ratio and 
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energy ratio enable the second stage to correct the mistakes made by the first 

stage in classifying unvoiced and silence frames. Comparisons with a single   

stage classifier demonstrate the necessity of two-stage classification 

techniques. It also shows that the proposed classifier performs excellently. 

Sunilkumar.R.K and Narayanan.N.K investigated the potential use of 

zerocrossing based information of the signal for Malayalam vowel 

recognition [Sunilkumar.R.K. 2002]. A vowel recognition system using 

artificial neural network is developed. The highest recognition accuracy 

obtained for normal speech is 90.62%. 

Dhananjaya.N, Guruprasad.S, et.al. proposed a method for detecting 

speaker changes in a multi speaker speech signal [Dhananjaya.N, 

Guruprasad.S, et.al., 2004]. The statistical approach to a point phenomenon 

(speaker change) fails when the given conversation involves short speaker 

turns (< 5 sec duration). They used auto associative neural network (AANN) 

models to capture the characteristics of the excitation source that present in 

the linear prediction (LP) residual of speech signal. The AANN models are 

then used to detect the speaker changes. 

Xavier Domont, Martin Heckmann, et.al. proposed a feed forward 

neural network for syllable recognition [Xavier Domont, Martin Heckmann, 

et.al., 2007]. The core of the recognition system is based on a hierarchical 

architecture initially developed for visual object recognition. In this work, 

they showed that, given the similarities between the primary auditory and 

visual cortexes, such a system can successfully be used for speech 
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recognition. Syllables are used as basic units for the recognition. Their 

spectrograms, computed using a Gammatone filter bank, are interpreted as 

images and subsequently feed into the neural network after a preprocessing 

step that enhances the formant frequencies and normalizes the length of the 

syllables. 

 In a recent work by Ana I. Garcia Moral, Ruben Solera Urena, et.al. 

the solutions provided in the past for Artificial Neural Network are recalled 

and applied them to Support Vector Machines (SVM), performing a 

comparison between them [Ana I. Garcia Moral, Ruben Solera Urena, et.al., 

2007]. Support Vector Machines are state-of-the-art methods for machine 

learning but share with more classical ANN the difficulty of their application 

to temporally variable input patterns. Preliminary results are encouraging. 

2.4 Conclusion 

 This chapter provides a summary about the recent advances, new 

trends and important contributions in the area of nonlinear speech processing 

and the applications of neural network for speech recognition. Nonlinear 

signal processing techniques have several potential advantages over 

traditional linear signal processing methodologies. They are capable of 

recovering the nonlinear dynamics of the signal of interest possibly preserving 

natural information. They are not constrained by strong linearity assumptions. 

Despite these facts, the use of nonlinear signal processing techniques also 

have disadvantages as well, which is why they have not been widely used in 

the past. Primarily, they are not as well understood as conventional linear 
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methods. Salient features of Reconstructed Phase Space for classification or 

recognition have yet to be firmly established, and this work is clearly in the 

early stages, which is what motivates this research pursuit. Moreover, 

researchers have just begun to study nonlinear signal processing techniques 

for a variety of engineering tasks with mixed success. The use of nonlinear 

methodologies especially as it applies to speech recognition is truly in its 

infancy with very little work published, most of which has been in the last 

five years.  
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Chapter 3 

Speech Characteristics and Data Acquisition   

3.1 Introduction 

 Utterances in any language can be analyzed into a sequence of abstract 

units called phonemes. Subsets of these phonemes can be grouped into 

categories according to the type of phonation involved, that is, based on the 

behaviour of the vocal tract organs to create the particular speech sound. 

There are many ways in which speech sounds can be grouped. Our primary 

school categories of vowel and consonant capture the most basic contrast in 

speech sounds. In phonetics, a vowel is a sound in spoken language that is 

characterized by an open configuration of the vocal tract so that there is no 

build-up of air pressure above the glottis and a consonant is a sound, that is 

characterized by a closure or stricture of the vocal tract sufficient to cause 

audible turbulence.  

The personal computers available today possess built in sound card. 

The purpose of this card is not the accurate sound feature measurement, but 

the digitization of speech and music. These cards can be modified for speech 

processing by incorporating an antialiasing presampling filter appropriately. 

We have converted a sound card into one suitable for speech processing by 

incorporating an antialiasing presampling low pass filter at the input. 

 This chapter is organized as follows. Section 3.2 presents a brief 

introduction to phonetics, which aims to define the type of phonation involved 

in the production of different phonemes. Section 3.3 concentrates on an 
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overview of Malayalam vowel sounds. Following this, speech data acquisition 

and the need for antialiasing filter in data acquisition system is presented in 

section 3.4. Finally section 3.5 concludes this chapter. 

3.2 Phonological description of Speech 

 The field of phonetics includes the study of speech production and the 

acoustics of the speech signal, and provides a way to effectively describe 

speech. It can be broadly classified into articulatory phonetics and acoustic 

phonetics. Articulatory phonetics deals with the articulatory aspects of speech 

sounds. That is, articulatory phoneticians are interested in how the different 

structures of the vocal tract, called the articulators (tongue, lips, jaw, palate, 

teeth etc.), interact to create the specific sounds. Acoustic phonetics is a 

subfield of phonetics which deals with acoustic aspects of speech sounds. 

Acoustic phonetics investigates properties like the mean squared amplitude of 

a waveform, its duration, its fundamental frequency, or other properties of its 

frequency spectrum, and the relationship of these properties to other branches 

of phonetics. 

3.2.1 Articulatory Phonetics 

The process of air being expelled from the lungs and pushing through 

the vocal tract produces speech signals. The resulting sound pressure wave 

radiates out from the lips. The various organs involved in speech production 

process are shown in Figure 3.1. According to their positioning, a large 

variety of sounds can be produced. In order to discuss these sounds 
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unambiguously, they are categorised into a series of distinct types like, nasals, 

plosives, fricatives etc. according to how they are produced. 

 

 

 
 
 
 

 

Fig. 3.1 The human vocal organs. (1) Nasal cavity, (2) Hard palate, (3) 

Alveoral ridge, (4) Soft palate (Velum), (5) Tip of the tongue (Apex), (6) 

Dorsum, (7) Uvula, (8) Radix, (9) Pharynx, (10) Epiglottis, (11) False vocal 

cords, (12) Vocal cords, (13) Larynx, (14) Esophagus, and (15) Trachea. 

 

The larynx is at the base of the vocal tract and mainly comprises two 

bands of muscle and tissue called the vocal cords or folds. All air from the 

lungs must pass through the vocal folds, and they can obstruct its passage to a 

greater or lesser extent. In terms of speech production, the vocal folds can 

operate in three ways: 
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• vibrating in a pseudo–periodic manner to create voiced sounds. The 

frequency of this vibration is called the fundamental frequency, and 

corresponds to the tone heard by a listener which is called pitch; 

• not vibrating for unvoiced sounds; 

• stopped or closed to produce a glottal stop, the glottis being the gap 

between the vocal cords; 

The different articulatory organs (e.g. tongue, lips, soft–palate) in the 

vocal tract can be positioned so as to modulate the flow of air through the 

tract in different ways (close, narrow and open). 

 

• Closure. As well as the glottal stop, the vocal tract may be closed at 

other places such as at the lips, or between the tongue and hard palate. 

If the velum is lowered, then air can flow out through the nose creating 

a nasal sound. However, if it is raised, there is no way for the air to 

escape. Therefore the pressure in the vocal tract increases, and when 

the closure is removed the air bursts out creating a plosive sound. 

• Narrowing. If rather than completely closing the vocal tract, two 

speech organs are instead brought close together, then the air flow 

through them becomes turbulent and produces fricative sounds. The 

narrowing can occur at any point in the vocal tract. 

• Open. With the speech organs sufficiently open so that no turbulence is 

produced in the airflow, vowel sounds are generated. These sounds are 

always voiced, and it is mainly the position of the highest part of the 
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tongue that determines the vowel produced. This leads to a widely used 

description in which vowels are specified according to which part of 

the tongue is highest (front, central, back) and how high it is (close, 

mid, open). 

3.2.2 Acoustic Phonetics 

Now we consider how the actual speech waveforms themselves can be 

linked to the description of sounds explained above, which is based entirely 

on the mechanics of their production. Figures 3.2(a) and (b) show the time 

domain and frequency domain representations of the Malayalam vowel A/Λ/ 

respectively.  

 

 

 

 

Fig.3.2(a) Time domain representation of the Malayalam vowel A/Λ/. 
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 Fig.3.2(b) Frequency spectrum of the Malayalam vowel A/Λ/. 

The spectrum, which is limited to 4 kHz, shows a number of peaks at 

differing levels. These are due to the pseudo–periodic excitation signal and 

the subsequent modulation by the vocal tract. The first peak, at approximately 

125 Hz, is the fundamental frequency and the other peaks are harmonics of 

this. There are also areas of higher energy within the spectrum, corresponding 

to the resonant frequencies of the vocal tract. These are called formants, and 

are labeled incrementally as first formant, second formant, third formant etc 

(F1, F2, F3). In the frequency range shown, three formants are visible at 

approximately 650 Hz, 1100 Hz and 2500 Hz. Formant frequencies provide a 

useful method to characterise vowels acoustically, since they depend upon 

where the vocal tract is constricted and by how much – i.e. tongue position 

[Rabiner.L.R and Schafer.R.W, 1978]. There are at least five formants present 

in a typical vowel, but in terms of using them for specification, only the first 
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two or three are required. Figure 3.3 shows the listing of Formant frequencies 

in the Malayalam vowel sound A/Λ/ over a time period of 183.5 msec.  
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Fig.3.3 Formant Frequencies Malayalam vowel A/Λ/. 

3.3 Vowel Sounds in Malayalam 

Vowel sounds are the most interesting class of sounds in any language. 

The most practical speech recognition systems rely heavily on vowel 

recognition to achieve high performance [Rabiner.L.R, Levinson.S.E, et. al., 

1979], [Rabiner.L.R and Schafer.R.W, 1978], [Rabiner.L.R and Juang.B.H, 

1993]. Vowels are produced by exciting a fixed vocal tract with quasi-

periodic pulses of air caused by vibration of the vocal cords. Conventional 

methods used to classify vowels are articulatory configuration required to 

produce sounds, typical waveform plots, typical spectrogram plots and 

formant frequency analysis [Gimson.A, 1972], [Rabiner L.R and 
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Schafer.R.W, 1978]. In this work, we concentrate on the study of nonlinear 

properties of speech sounds for speech recognition applications. To this end, 

Malayalam vowel sounds are used for the analysis.  

Malayalam is the language spoken predominantly in the state of 

Kerala, in southern India. It is one of the 23 official languages of India, 

spoken by around 37 million people. A native speaker of Malayalam is called 

a ‘Malayali’. Malayalam is also spoken widely in Lakshadweep, Mahe 

(Mayyazhi), Kodagu (Coorg) Kanyakumari and Dakshina Kannada. The 

language belongs to the family of Dravidian languages. The language is 

closely related to Tamil. However, Malayalam has a script of its own, 

covering all the symbols.  

 Generally Malayalam phonemes can be classified into vowel sounds 

and consonant sounds. There are 15 vowels and 36 consonants. The vowels in 

Malayalam.  are shown in table 3.1 . 

 

Malayalam Vowels 
1 2 3 4 5 

A/Λ/ B/Λ�/ C/I/ Cu/I�/ D/u/ 

6 7 8 9 10 

Du/u�/ E/eru/ F/ae/ G/ae�/ sF/ai/ 

11 12 13 14 15 

H/o/ Hm/o�/ Hu/au/ Aw/am/ Ax/ah/ 

 

Table 3.1 Vowels in Malayalam 
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Analyzing carefully, we will realize that, there are only about 8 basic 

sounds in this list of 15. In other words, half of them are just modifications of 

these eight. The 8 basic vowels are :. 

A/Λ/, C/ I/, D/u/, E/eru/, F/ae/,  H/o/, Aw/am/, and Ax/ah/ 

Among these 8 basic units, E/eru/ is very rarely used. As far as the 

definition for a vowel sound given in the earlier session is concerned, 

‘Aw/am/’ cannot be included in the vowel list, since there is a closure of 

vocal track during its production. Influence of Sanskrit is very prominent in 

formal Malayalam. Malayalam has also borrowed a limited amount of 

Sanskrit words. The unit ‘Ax/ah/’ mostly occur only in words accepted from 

Sanskrit. 

Considering these facts, for the study presented in this thesis, we limit 

our analysis to the five basic vowel units viz. A/Λ/ (as in ARUNACHAL), 

C/I/ (as in ENGLAND), F/ae/ (as in ANYONE), H/o/ (as in ORRISA), and 

D/u/  (as in UTTERPREDESH). 

 The International Phonetic Association (IPA) has produced a set of 

phonetic symbols to define all of the individual speech sounds (called 

phonemes) in terms of their place of articulation; for vowel sounds, the 

tongue position is used. The IPA vowel chart for Malayalam is shown in 

Figure 3.4. 
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Fig.3.4 IPA vowel chart for Malayalam vowels   

In language terminology, in terms of tongue and hump position, tongue 

and hump height and typical spectrogram studies, the vowels, C/I/ and F/ae/ 

are classified as front vowels, D/u/ and H/o/ are classified as back vowels and 

A/Λ/ is classified as mid vowel [Velayudhan. S, 1971], 

The vowel C/I/ is a front vowel articulated by raising the rear part of 

front of the tongue ( i.e. the part of the tongue nearer to center than to the 

front) in the direction of hard palate, just above the half-close position. The 

vowel F/ae/ is also a front vowel. During the articulation of this vowel, the 

front of the tongue is raised in the direction of the hard palate to a height 

between half-close and half-open. The vowel H/o/ is a back vowel and for the 
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articulation of this vowel, the back of the tongue is just above the fully open 

position.  Vowel D/u/ is also back vowel. During the articulation of this vowel 

the front part of the back of the tongue (i.e. the part nearer to the center than 

the back of the tongue) is raised in the direction of the soft palate to a height 

just above half-close position. The vowel A/Λ/ is a mid vowel. During the 

articulation of this vowel the center of the tongue is raised in the direction of 

the roof of the mouth. Figure 3.5 shows the tongue position during the 

production of front vowel C/I/, back vowel D/u/ and the mid vowel A/Λ/ 

 

           

                    Front        Back     Mid 

 

Fig.3.5 Tongue position during the production of front, back and mid vowels 

3.4 Speech Data Acquisition 

The purpose of the sound card, coming with the personal computers 

available today is not the accurate sound feature measurement, but the 

digitization of speech and music. By incorporating an antialiasing 
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presampling filter appropriately, these cards can be modified for speech 

processing. For the acquisition of data used in this work, we have converted a 

sound card into one, suitable for speech processing by incorporating an 

antialiasing presampling low pass filter at the input. The performance of the 

system with such a modified sound card is comparable to the dedicated high 

cost systems available in the market. 

3.4.1 Need for anti aliasing filters 

According to the Sampling Theorem, any signal can be accurately 

reconstructed from values sampled at uniform intervals as long as it is 

sampled at a rate at least twice the highest frequency present in the signal. 

Failure to satisfy this requirement will result in aliasing of higher-frequency 

components, meaning that these components will appear to have frequencies 

lower than their true values. That is if we can exactly reconstruct the analog 

signal from the samples, we must have done the sampling properly. Figure 

3.6 shows several sinusoids before and after digitization. The continuous line 

represents the analog signal entering the ADC, while the square markers are 

the digital signal leaving the ADC. In fig 3.6(a), the analog signal is a 

constant DC value, a cosine wave of zero frequency. Since the analog signal 

is simply a series of straight lines between each of the samples, all of the 

information needed to reconstruct the analog signal is contained in the digital 

data.  

The sine wave shown in Fig 3.6(b) has a frequency of 0.09 times of the 

sampling rate. This might represent, for example, a 90 cycle/second sine wave 
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being sampled at 1000 samples/second. Expressed in another way, there are 

11.1 samples taken over each complete cycle of the sinusoid. These samples 

properly represent the analog signal because no other sinusoid, or 

combination of sinusoids, will produce this pattern of samples. These samples 

correspond to only one analog signal, and therefore the analog signal can be 

exactly reconstructed. In  fig 3.6(c), the situation is made more difficult by 

increasing the sine wave's frequency to 0.31 of the sampling rate. This results 

in only 3.2 samples per sine wave cycle. These samples properly represent the 

analog waveform. The samples are a unique representation of the analog 

signal. In fig 3.6(d), the analog frequency is pushed even higher to 0.95 of the 

sampling rate, with a mere 1.05 samples per sine wave cycle. Here the 

samples are so sparse that they don't even appear to follow the general trend 

of the analog signal. These samples do not properly represent the data. The 

samples represent a different sine wave from the one contained in the analog 

signal. In particular, the original sine wave of 0.95 frequency misrepresents 

itself as a sine wave of 0.05 frequency in the digital signal. This phenomenon 

of sinusoids changing frequency during sampling is called aliasing. Just as a 

criminal might take on an assumed name or identity (an alias), the sinusoid 

assumes another frequency that is not its own. Since the digital data is no 

longer uniquely related to a particular analog signal, an unambiguous 

reconstruction is impossible. This is an example of improper sampling. This 

line of reasoning leads to a milestone in Digital Signal Processing, the 

sampling theorem. This is called the Shannon’s sampling theorem, or the 
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Nyquist sampling theorem, after the authors of 1940s papers on the topic. The 

sampling theorem indicates that a continuous signal can be properly sampled, 

only if it does not contain frequency components above half of the sampling 

rate. For instance, a sampling rate of 2000 samples/second requires the analog 

signal to be composed of frequencies below 1000 cycles/second. If 

frequencies above this limit are present in the signal, they will be aliased to 

frequencies between 0 and 1000 cycles/second.  

 

 

       Fig.3.6(a)              Fig.3.6(b) 

 

        Fig.3.6(c)              Fig.3.6(d) 

Fig.3.6(a-d): Illustration of aliasing in a sinusoidal signal 
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From the above discussion we conclude that, any signal can be 

faithfully reproduced from its samples if it is sampled at a sampling 

frequency, greater than or equal to twice the highest frequency present in the 

signal.  For this, the signal must be a band limited one. Otherwise higher 

frequency components would be mapped back into the base band and thereby 

distorts the low frequency information. To avoid this problem of aliasing, it is 

highly essential to apply a band limiting low-pass filter to the signal, prior to 

the sampling stage, to remove any frequency components above the "folding" 

or Nyquist frequency (half the sampling frequency). Such anti-aliasing filters 

are commonly built into the analog interface chips and codecs, which convert 

analog input signals into digital form for processing, by a digital signal 

processor. Most of the sound blaster cards available now a days in the market 

are general purpose cards. It has to handle both speech and music. This card 

consists generally of one or more A/D and D/A converters. They do not have 

front-end antialiasing filter circuits to band limit the speech data. So these 

cards cannot be directly used for speech data acquisition. We can convert such 

a card into one suitable for speech processing by incorporating an antialiasing 

filter before the analog to digital converter. We have constructed an 8th order 

Butterworth low pass filter that can convert our multimedia system to low 

cost data acquisition system.  

3.4.2. Speech Processing System 

Figure 3.7 shows the block diagram of a typical speech processing 

system. Before encountering the analog-to-digital converter, the input signal 
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is filtered with an 8th order Butterworth low-pass filter with a cut off 

frequency of 4 kHz, to remove all frequencies above the Nyquist frequency 

(since sampling frequency is 8 kHz). This is done to prevent aliasing during 

sampling, and is correspondingly called an antialias filter. The system 

equipped with antialiasing filter is now suitable for acquisition of speech data. 

We used the data acquisition system supported by Windows based multimedia 

system. The recording part of this software consists of option for selecting the 

sampling frequency and bits per sample for quantization. The sound files are 

recorded in the software as Windows wave format (.wav). This wave file can 

be accessed  directly by Mathlab 7, the language used for implementing the 

software part in this work. On the other end, the digitized signal is passed 

through a digital-to-analog converter and another low-pass filter. This output 

filter is called a reconstruction filter. 
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Fig.3.7 Block diagram of Digital Speech Processing system 

3.4.3. Speech Database Creation 

 The speech signal, low pass filtered to 4 kHz and sampled at 8 kHz is 

digitized using 16-bit A/D converter. A speech database is created using the 
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above data acquisition system. As explained in the earlier session, for the 

analysis of nonlinear properties, we have used the five basic short vowel units 

in Malayalam viz: A/Λ/, C/I/, D/u/, F/ae/, and H/o/. The database created 

consists of all the five short vowels in Malayalam. Each vowel is uttered 500 

times by the author at different occasions, digitized and stored in separate data 

files. The file name of the data reveals the vowel identity, speaker identity, 

and repetition. The structure of the file name is given below 

                             XX , YYY… ,ZZZ  

The first XX indicates the vowel identity. For example, for the vowel D /u/, 

this part is UX and for F/ae/ this is EA. The second part, YYY indicates the 

repetition of the vowels. For example, 001,002 etc. A provision is also 

included to create multi speaker (both male and female) database for future 

research work. The third part, ZZZ indicates the speaker identity. For 

example, M01, F01 represent the first male speaker and first female speaker 

respectively. The time domain representations of the five vowel units from the 

created database are given in figures 3.8(a-e) 
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74 msec

Fig.3.8(a). Speech waveform of vowel A/Λ/  - (Data file: AX001M01) 
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Fig.3.8(b). Speech waveform of vowel C/I/ - (Data file: EX001M01) 
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Fig.3.8(c). Speech waveform of vowel F/ae/ - (Data file: EA001M01) 
 

 
54



 
 

 
 

 
 

 
 
 74 msec 

Fig.3.8(d). Speech waveform of vowel H/o/ - (Data file: OX001M01) 
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Fig.3.8(e).Speech waveform of vowel D/u/ - (Data file: UX001M01) 
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3.5 Conclusion 

In this chapter a brief overview of articulatory and acoustic phonetics 

has been presented. This provides a framework for later discussions of speech 

production and the speech signal, especially concentrating on vowel sounds 

and their characterization. Most of the sound blaster cards available in the 

market do not have front-end antialiasing filter circuit to band limit the speech 

signal. So this card cannot be directly used for speech data acquisition. Here 

an 8th order analog antialiasing presampling filter with a low pass cut off       

4 kHz is connected prior to the ADC card for removing the frequency 

component above 4kHz. A speech database of short vowels in Malayalam is 

created using the data acquisition system developed, for speech analysis and 

recognition study described in the following chapters. 
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Chapter 4 

Nonlinear dynamical Invariants of Speech  

4.1 Introduction 

  
 For several decades, the traditional approach to speech modeling has 

been the linear (source-filter) model. This model forms the foundation of 

many speech-processing applications such as speech coding, speech synthesis, 

speech recognition, and speaker recognition technology. Here the true 

nonlinear nature of speech production are approximated via the standard 

assumptions of linear acoustics and one dimensional (1-D) plane wave 

propagation of the sound in the vocal tract. There is strong theoretical and 

experimental evidence for the existence of important nonlinear 3D fluid 

dynamics phenomena during the speech production that cannot be accounted 

for by the linear model. Examples of such phenomena include modulations of 

the speech airflow and turbulence. Teager and Teager present several physical 

measures that show turbulences in the airflow [Teager H. M. and Teager S. 

M, 1989]. We can view the linear model only as a first order approximation to 

the true speech acoustics, which also contain second-order and nonlinear 

structure. The ‘standard’ speech features used in automatic speech recognition 

(ASR) are based on short-time smoothed cepstra stemming from the linear 

model. Therefore adding new robust nonlinear information should give 

promising results. 
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 The dynamics of a system can be studied by extracting invariant 

parameters from the experimental time series data. In this chapter we 

investigate the features, known as invariants of non-linear dynamical system, 

that measure the non-linearity in a signal. We analyze three popular measures: 

Box counting dimension, Correlation dimension and Kolmogorov entropy. 

These measures quantify the presence (and extent) of chaos in the underlying 

system that generated the speech. 

 This chapter is organized as follows. Firstly the theory of dynamical 

systems is presented to provide a background for subsequent work. Following 

this, speech production mechanism is demonstrated to be a nonlinear process, 

giving the motivation to pursue speech processing from this perspective. Then 

a detailed description is presented for the invariant parameters – Box counting 

dimension, Correlation dimension and Kolmogorov entropy. Finally these 

parameters are evaluated for speech signals. 

4.2 Nonlinear Dynamics 

 Emerging from the theoretical development of nonlinear dynamics, the 

study of chaotic dynamics in deterministic systems has become very popular 

in the past few decades. Perhaps it is because of the amazing findings that the 

study of chaotic systems has delivered. Interest in chaos (or more generally 

nonlinear dynamics) grew rapidly after 1963, when Lorenz published its 

implications on weather prediction. 

It would be natural to think that if a system is deterministic, its 

behavior should be easily predicted. But there are systems where their 
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behavior turns out to be non-predictable: not because of lack of determinism, 

but because of the complexity of the underlying dynamics that require an 

infinite precision that is unable to be computed. This can be seen in systems 

where very similar initial conditions yield very different behaviors, even 

though the systems obey deterministic laws.  No matter how much precision 

we have, the most minimal differences will tend in the long time to very 

different results, or the system is highly sensitive to initial conditions. The 

extreme ‘sensitivity to initial conditions’ mathematically present in the 

systems despite the deterministic laws is called dynamical instability, or 

simply chaos. It occurs in mechanical oscillators such as pendula or vibrating 

objects, in rotating or heated fluids, in laser cavities, in electronic circuits and 

in some chemical reactions. 

If prediction becomes impossible, it is evident that a chaotic system 

can   resemble a stochastic system ( a system subject  to random external 

forces). However, the source of the irregularity is quite different. For chaos, 

the irregularity is part of the intrinsic dynamics of the system, not because of 

unpredictable outside influences. Necessary conditions for chaotic motion are 

that (a) the system has at least three independent dynamical variables, and (b) 

the equations of motion contain a nonlinear term that couples several of the 

variables [Ott. E and Sauer. T, 1994].  

4.2.1 Dynamical Systems theory 

 Dynamical theory provides a framework with which nonlinear 

deterministic systems can be examined. Important steps in the analysis are to 
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find the system dimension; reconstruct from available data a representation of 

the system; investigate if chaos is present and determine the predictability of 

the system. The theory is now well enough established that a number of 

excellent tutorial papers [Eckmann.J.P and Ruelle.D, 1985], [Crutchfield.J, 

Farmer.J, et. al., 1986], [ Parker.T.S and Chua.L.O, 1987], [Kearney. M. J. 

and Stark. J, 1992], and books [Hilborn. R, 1994], [Ott.E, Sauer.T et.al., 

1994], [Alligood.K, Sauer.T et. al., 1997] exist, which give a thorough 

background to the subject. The following will be limited to an attempt to 

show some basic principles which will lead on to subsequent work presented 

in this thesis. 

A dynamical system may be defined, for the continuous time case, by the 

equation: 

     = F (X)          (4.1) X&

where X is a vector in ‘d’ dimensional space, F  is some function (linear or 

nonlinear) operating on X , and  is the time derivative of X . This system is 

deterministic, in that it is possible to completely specify its evolution, or flow 

of trajectories in the d dimensional space, given the initial starting conditions. 

X&

Now consider a simple system that of a point mass on an ideal spring, that 

obeys Hooke’s Law. The position, x(t), of this continuous time system is 

given by 

tsin
x

 t cos  x x(t) 0
0 ω

ω
ω

&
+=               (4.2) 

where  

m
k

=ω  
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ω is the angular frequency of oscillations, k is the spring constant, m is the 

mass of the particle. x0 and   are the initial conditions at time t= 0.  0x&

The velocity of the system is found by differentiating the equation 4.2 

tcos x t sin x -  (t)x 00 ωωω && +=     (4.3) 

The position and the velocity completely specify the system.  

Plotting x against gives the phase portrait, as shown in Figure 4.1. 

This plot  is  also called the phase space or state space of  the  system, since  it 

can be  used  to specify  the  state of the system at any moment in time.  

x&

 

 

 

Fig. 4.1 Phase portrait for a point mass on an ideal spring 

 

 If the spring was not ideal, then energy would be dissipated from the 

system through time. This would lead to a phase portrait of the type shown in 

Figure 4.2(a). When all energy has been dissipated, the particle will be at rest, 
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corresponding to the origin of the phase portrait. Hence this system has an 

attractor at the origin, since any damped harmonic oscillator will converge 

towards it. This is known as a point attractor. In contrast, the addition of some 

driving force will lead to a closed curve, or limit cycle attractor, as seen in 

Figure 4.2(b).  

 

 

Fig.4.2 (a) Point attractor and (b) Limit cycle attractor for a harmonic 

oscillator 

Alternatively, for discrete time, the dynamical system can be defined as a 

map: 

 Xn+1 = G (Xn)          (4.4) 

where Xn is again the d length vector, at time step n, and G is the operator 

function. Given the initial state, X0, it is possible to calculate the value of Xj 

for any j > 0.  

A simple example of a map is the quadratic map 

                  (4.5) 2
n1n X -   X α=+
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where α is a control parameter. Plotting iterations of Xn+1 against Xn gives the 

evolution of the system, as seen in Figure 4.3. This type of plot is known as a 

phase portrait. Here knowledge of the variable Xn completely specifies the 

system. Detailed description of Phase space is given in the next chapter.  

 

 

Fig.4.3 Phase portrait of the quadratic map with α = 2 

 

It is somewhat surprising to find that certain dynamical systems, with 

system equations not much more complicated than the previous examples, can 

exhibit extremely complex behavior (Eg. Lorenz equations). If a variable is 

available for observation, the resulting time series may seem entirely random; 

such systems were often called random and unpredictable. The discovery of 

chaos has changed this viewpoint dramatically. 

How can a deterministic dynamical system exhibit such behavior? The 

answer lies in the sensitivity to initial conditions [Kearney.M.J and Sark.J, 
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1992]. In the phase portrait of such systems, two trajectories that are close to 

each other at some time will eventually become separated. If a system is 

allowed to evolve from two sets of initial conditions that are very close 

together (to machine precision), then after some time there will be exponential 

divergence for the trajectories, hence leading to differing behavior of the 

system. This phenomenon, known as sensitive dependence on initial 

conditions, is very common to chaotic systems. Just a small change in the 

initial conditions can drastically change the long-term behavior of a system. 

Such a small amount of difference in a measurement might be considered 

experimental noise, background noise, or an inaccuracy of the equipment. 

Such things are impossible to avoid in even the most isolated lab.  

4.3 Nonlinear Dynamical Aspects of Speech 

Speech generation has classically been modelled as a linear system, 

which provides a convenient and simple mathematical formulation. However, 

a number of nonlinear effects are present in the physical process, which limit 

the effectiveness of the linear model. An improved approach may be to view 

speech as an output of a nonlinear dynamical system. 

 Speech production is an extremely complex process. It can be 

described in basic terms as follows. The lungs generate air pressure and this 

pressure wave is modulated as it flows through the larynx. Essentially, the 

larynx is made up of two almost symmetric masses known as the vocal folds, 

which are capable of closing completely together and move apart.  
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While moving apart there creates a triangular opening called the 

glottis.  During normal respiration and the production of unvoiced sounds, air 

passes freely through the glottis. When the vocal folds vibrate in a quasi-

periodic manner then voiced sounds are produced. The frequency of this 

excitation is known as the fundamental frequency. The resulting glottal 

waveform excites the vocal tract, which is the region extending from the 

larynx to the lips. Different configurations of the vocal tract will result in 

different modulations of the glottal waveform and thus produce specific 

sounds [Rabiner.L.R and Juang.B.H, 1993]. 

The speech production process is generally modelled by the linear 

source–filter speech model, as shown in Figure 4.4 [Fant.G, 1960]. There is a 

hard switch between voiced and unvoiced sounds. The glottal waveform for 

voiced sounds is generated from an impulsive periodic signal, with period 

equal to the pitch period, whereas the generation of unvoiced sounds is 

modelled by white noise. These signals are then applied to a slowly time 

varying linear filter whose transfer function represents the contribution of the 

vocal tract, followed by another filter to represent the radiation from the lips. 
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Fig.4.4  Linear Source-filter model of Speech Production. 

 

In order to arrive at this simplified model, a number of major assumptions are 

made. These include: 

• The vocal tract and speech source are uncoupled – thus allowing 

source-filter separation 

• Airflow through the vocal tract is laminar 

• The vocal folds vibrate in an exactly periodic manner during voiced 

speech production 

• The configuration of the vocal tract will only change slowly 

But today a number of nonlinear effects in the speech production process 

are known. Firstly, it has been accepted for some time that the vocal tract and 

the vocal folds do not function independently of each other, but that there is in 
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fact some form of coupling between them when the glottis is open 

[Koizumi.T, Taniguchi.S, et.al., 1985]. This can cause significant changes in 

formant characteristics between open and closed glottis cycles. [Brookes.D.M 

and Naylor.P.A, 1988]. More controversially, Teager and Teager 

[Teager.H.M and Teager.S.M, 1989] have claimed (based on physical 

measurements) that voiced sounds are characterised by highly complex air 

flows in the vocal tract, rather than well behaved laminar flow. Turbulent 

flow of this nature is also accepted to occur during unvoiced speech, where 

the generation of sound is due to a constriction at some point in the vocal 

tract. In addition, the vocal folds will themselves be responsible for further 

nonlinear behaviour, since the muscle and cartilage, which comprise the 

larynx, have nonlinear stretching qualities. Such nonlinearities are routinely 

included in attempts to model the physical process of vocal fold vibration, 

which have focussed on two or more mass models [Ishizaka.K and 

Flanagan.J.L, 1972], [Koizumi.T, Taniguchi.S, et.al., 1987] [Steinecke.I and 

Herzel.H, 1995] in which the movement of the vocal folds is modelled by 

masses connected by springs, with nonlinear coupling. Observations of the 

glottal waveform reinforce this evidence, where it has been shown that this 

waveform can change shape at different amplitudes [Shoentgen.J, 1990]. Such 

a change would not be possible in a strictly linear system where the waveform 

shape is unaffected by amplitude changes.  

Taking into account the evidence presented here for the nonlinearities in 

speech, the source-filter model clearly has drawbacks. The assumptions made 
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imply a loss of information, which although allowing a simple, 

mathematically tractable linear model, the full speech signal dynamics can 

never be properly captured. If instead of choosing a linear model, the 

nonlinear option is pursued, then it is not necessary to make many of the 

assumptions that are required in the linear case. So Speech is modelled as the 

output of a nonlinear dynamical system, which only has a low number of 

active degrees of freedom. So it is possible to model them using a nonlinear 

dynamical approach by: 

Xi+1 = F (Xi) 

where F is some nonlinear mapping between previous samples Xi and the 

next sample Xi+1. By Taken’s theorem, there will be a one–to–one mapping 

between F and the underlying nonlinear system. Therefore correctly modeling 

F implies that the dynamics of speech production have been captured. 

 The fact that the speech signal is produced by a nonlinear dynamical 

system that often generates small or large degrees of turbulence, motivated 

our study of nonlinear aspects of speech processing. In the following section 

we investigate the  features, known as invariants that measure nonlinearities 

in a signal.  
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4.4 Invariant Characteristics of the Dynamical System 

 Suppose we are analyzing a signal with the help of Fourier spectrum, 

where the source of signal is linear. We see a spectral peak at some frequency. 

Then we know that if we were to simulate the same system at a different time 

with a different forcing strength, we would see the spectral peak in the same 

location, possibly with a different integrated power. That is the Fourier 

frequency is an invariant of the system evolution. The phase associated with 

that frequency depends on the time at which the measurements begin and the 

power under the peak depends on the strength of the forcing.. 

 Since chaotic motion produces continuous, broadband Fourier spectra, 

we clearly have to replace narrowband Fourier features with other invariant 

features or characteristics of the system for the purpose of identification and 

classification. The major invariant features include attractor dimensions and 

Kolmogorov entropy. 

4.4.1 Fractal Dimension of the Attractor 

Informally the attractor ‘A’ of a dynamical system is the subset of 

phase space toward which the system evolves. An initial condition x0, that is 

sufficiently near the attractor will evolve in time so that φ(x0) comes 

arbitrarily close to the set A as t → ∞. That is attractors are defined as a broad 

subset of the Phase Space, in which the orbits or trajectories reside as              

t → ∞ [Ott. E, 1993]. Fractal dimensions are characteristics of the geometric 

figure of the attractor and relate to how the points on the attractor are 
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distributed in phase space. If the attractor A is a fractal, then the attractor is 

said to be strange. A strange attractor is having non-integer dimension in 

phase space. To understand the possibility of non-integer dimension requires 

a more sophisticated concept of dimension than that associated with lines, 

surfaces and solids. 

To characterize the structure of the underlying strange attractor from an 

observed time series, it is necessary to reconstruct a phase space from the time 

series. This reconstructed phase space captures the structure of the original 

system’s attractor (the true state-space that generated the observable). The 

process of reconstructing the phase space that underlies the system’s attractor 

is commonly referred to as embedding.  

 The simplest method to embed scalar data is the method of delays. In this 

method, the pseudo phase-space is reconstructed from a scalar time series, by 

using delayed copies of the original time series as components of the 

Reconstructed Phase Space (RPS). It involves sliding a window of length d 

through the data to form a series of vectors, stacked row-wise in the matrix. 

Each row of this matrix is a point in the reconstructed phase-space. 

Let  represent the row vectors. The row vectors can be compiled into a 

matrix called trajectory matrix and is represented as: 

}nx{
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x1    x1+τ    x1+2τ    . . . . . . .  . . x1+(d-1) τ

x2    x2+τ    x2+2τ    . . . . . . . . .  x2+(d-1) τ
 X        = x3    x3+τ    x3+2τ    . . . . . . . . .  x3+(d-1) τ

.  
     . 
     . 
     xN   xN+τ    xN+2τ    . . . . . . . . .  xN+(d-1)τ
 

where d is the embedding dimension and τ is the embedding delay. Detailed 

study on various aspects of Reconstructed Phase Space is presented in the 

next chapter. 

There are several ways to generalize dimension to the fractional case, 

like capacity or box counting dimension, correlation dimension, information 

dimension, Lyapunov dimension etc. In the present study, we have analyzed 

box counting and correlation dimensions of speech signal. 

4.4.1.1 Box counting Dimension 

 There are many ways to define the dimension, d(A), of a set A. One 

approach is the Box counting dimension or capacity dimension dB. Consider a 

one-dimensional figure such as a straight line or curve of length L. This line 

can be ‘covered by N(ε) one dimensional boxes of size ε. If L is the length of 

the line then, 

N(ε) = L (1/ε)       (4.6)  

 Similarly, a two dimensional square of side L can be covered by                   

N(ε) = L2(1/ε)2 boxes. For a three dimensional cube, the exponents would be 

3, and so on for higher dimensions. In general, 
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N(ε) = Ld (1/ε)d                      (4.7) 

Taking logarithms one obtains 

)/1log(Llog
)(Nlogd

ε+
ε=        (4.8) 

and in the limit of small ε, the term involving L becomes negligible. The box 

counting dimension is defined as 

 dB = 
0

lim
→ε )/1log(

)(Nlog
ε
ε        (4.9) 

 
Some of the first numerical estimates of fractal dimension were 

obtained with the box-counting method [Ott.E, 1993]. In this section some of 

the practical issues that arise in the implementation of box-counting 

algorithms are discussed.  To compute the box-counting dimension, break up 

the embedding space into a grid of boxes of size ε. Count the number of boxes 

N(ε), inside which,  at least one point of the attractor lies. The box-counting 

dimension is formally defined by the limit in Eq. (4.9). There are some 

obstacles, however, in applying Eq. (4.9) directly to an experimentally 

observed signal. 

In practical situations, only a finite resolution is available, so the limit 

ε → 0 cannot be taken. A natural and direct approximation is just to apply Eq. 

(4.9) directly but with the smallest ε available. That is, 

dB ≈ 
)/1log(
)(Nlog

ε
ε    (4.10) 
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An equivalent approach is to regard dB as the slope of the log N versus log(1/ 

ε) curve for ε is  very small. 

In computing the box-counting dimension, one either counts or does not 

count a box according to whether there are some points or no points in the 

box. No provision is made for weighting the box count according to how 

many points are inside a box. In other words, the geometrical structure of the 

fractal set is analyzed but the underlying measure is ignored. For experimental 

data another type of dimension is more efficient to compute than the box-

counting dimension. This is the correlation dimension (dC) [Grassberger and 

Procaccia ,1983]. 

4.4.1.2 Correlation dimension. 

 Suppose that many points are scattered over a set. The typical number 

of neighbors of a given point will vary more rapidly with distance from that 

point if the set has high dimension than otherwise. The correlation dimension 

dC measures the variation of the average fraction of the neighboring points 

with distance. It may be computed from the correlation integral Cd(R) in the d 

dimensional phase space defined by: [Grassberger and Procaccia, 1983]. 

Cd(R)  =  
∞→N

lim
⎥
⎦

⎤
⎢
⎣

⎡
−−∑

=

N

1j,i
ji2 )xxR(H

N
1    (4.11)  

where xi and xj are points on the attractor, H(y) is the Heaviside function    

( H(y) = 1 if y ≥ 0 and 0 if y < 0), and N is the number of points randomly 

chosen from the entire data set. The Heaviside function simply counts the 

number of points within a radius R of the point denoted by xi , and  Cd(R)  
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gives the average fraction of points within R. The correlation dimension dCis 

defined by the variation of Cd(R)  with R: [Grassberger and Procaccia ,1983]. 

Cd(R)  =  Rdc  as R → 0   (4.12) 

Therefore    dC = 
0R

lim
→

[ ]
Rlog

)R(Clog d    (4.13) 

When R approaches the size of the phase space, Cd(R) saturates at unity 

since all points are then included in the range R. On the other hand when R is 

smaller than the spacing between the data points, only one point lies in the 

range, and Cd(R)  levels off at 1/N2 

The quantities dB and dC are not equivalent. The box-counting dimension 

depends only on whether small elements of phase space contain any points 

and does not take into account the differing numbers of points in the various 

elements. That is, small scale variations of the density of points are ignored. 

On the other hand, the correlation dimension does include this effect. Because 

of these differences, dC is called metric dimension and dB is called frequency 

dimension. 

One reason for the popularity of the correlation algorithm is that it is easy 

to implement. One computes the correlation integral Cd(R) merely by 

counting distances. However, there are a variety of practical issues and 

potential pitfalls that come with making an estimate from finite data. The 

limit N →∞ in the calculation of Cd(R) will get us into trouble whenever we 

have a finite sample: N is limited by the sample size.  The meaningful choice 

for ‘R’ is limited by the inevitable lack of near neighbors at small length 
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scales. Practically dC is calculated as the slope of log Cd(R) versus log R 

curve. 

4.4.2 Kolmogorov Entropy 

 The concept of the entropy is fundamental for the study of statistical 

mechanics and thermodynamics. Entropy is a thermodynamic quantity 

describing the amount of disorder in the system. One can generalize this 

concept to characterise the amount of information stored in a more general 

probability distribution. This is in part what information theory is concerned 

with. The theory has been developed since 1940s and the main contributions 

came from Shannon, Renyi, and Kolmogorov.      

  Information theory provides an important approach to time series 

analysis. The complex appearance of the various graphical representations of 

chaotic behaviour naturally leads to the question of the relationship between 

statistical mechanics and chaos. One way to connect these phenomena is to 

apply the concept of entropy to a chaotic system. Consider a hypothetical 

statistical system for which the outcome of a certain measurement is located 

on the unit interval. If the interval is subdivided into M subintervals, we can 

associate a probability pi with the ith subinterval containing a particular range 

of possible outcomes. The entropy of the system is then defined as 

     ∑
=

−=
M

1i
elogS ii pp

This quantity may be interpreted as a measure of the amount of disorder in the 

system or as the information necessary to specify the state of the system. If 
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the subintervals are equally probable so that pi = 1/M for all i, then the 

entropy reduces to S = logeM, which can  be shown to be its maximum value. 

Conversely, if the outcome is known to be in a particular subinterval, then     

S = 0, the minimum value. When S = logeM, the amount of further 

information needed to specify the result of a measurement is at a maximum. 

On the other hand, when S = 0, no further information is required. The 

entropy is also interpreted as ‘missing’ information. 

 In a dynamical system the entropy is defined through a partition of the 

phase space with the probability pi given by the integral of the invariant 

measure ρ(x) (probability density) over the ith element. Define the partition    

β = {Bi}; i = 1…….. M with Bi non-empty, non-intersecting sets that cover 

the attractor. Then the probability pi of finding a point in the box Bi is 

, where dV∫ρ ix)dV( i is an arbitrary small elemental phase space volume.  

The entropy of the partition of the dynamical system is computed using 

       ∑
=

−=
M

1i
elogS ii pp

  This tells us about the uncertainty coming from the “random” 

aspect of the dynamics. This quantity is not immediately useful, since it 

depends on the scheme of partitioning (e.g. the box size) as well as intrinsic 

properties of the attractor. Two related quantities have been defined to give 

intrinsic properties. One is the scaling of the entropy as the box size of the 

partition is reduced. This defines the “information density” of the attractor 
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and is called Information dimension of the attractor dI. The information 

density is a static property of the attractor [Farmer.J.D and Naturforsch. Z, 

1982].  

The second quantity tells us how the uncertainty or information of the 

system evolves in time, or under iteration for a map. This is known as the 

Kolmogorov or Kolmogorov-Sinai or metric entropy (K) [Farmer.J.D,1982]. 

The Kolmogorov Entropy is defined as, 

 

=K  
∞→M

lim )(S
M
1

Mβ  

Consider a dynamical system can be defined by an iterative map: 

 

  Xn+1 = G (Xn) 

   

where Xn is the d length vector, at time step n. Suppose we know the 

initial value X0 to a certain precision. The Kolmogorov entropy tells us how 

the precision of our prediction for the nth iterates Xn decreases with n, due to 

the “sensitive dependence on initial conditions”. A positive value of K may be 

used to define the existence of chaos. 

 Numerically, the Kolmogorov entropy can be estimated as the second 

order Renyi entropy ( K2) and can be related to  the correlation integral of the 

reconstructed attractor as [Kantz.H and Schreiber.T, 2003]: 
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)Kdexp(Rlim~)R(C D

d
0Rd τ−

∞→
→

 

 Where D is the fractal dimension of the system’s attractor, d is the 

embedding dimension and τ is the time delay used for attractor reconstruction.  

This leads to the relation,  
)R(C

)R(Clnlim1~K
1d

d

d
0R

+∞→
→τ

 

4.4.3 Simulation Experiments and Results 

 In this work we extracted box-counting dimension for Malayalam 

vowels A/Λ/, C/I/, F/ae/, H/o/, and D/u/. The acoustic data from each 

phoneme is embedded into a reconstructed phase space using time delay 

embedding with a delay of one sample and dimension two. Determination of 

more scientific time delay and dimension are described in the next chapter. 

Figures 4.5(a) to 4.5(e) show the log-log plot of N(ε) vs. 1/ε for vowels 

A/Λ/, C/I/, F/ae/, H/o/, and D/u/ with different speech samples. Box 

counting dimension dB is calculated as the slope of log N versus log(1/ ε) 

curve. Calculated value of dB is tabulated in table 4.1. 

Using the speech data the correlation integral Cd(R) for several ‘R’ with 

respect to each particular dimension ‘d’ is computed. Fig.4.6(a) shows a log-

log plot of Cd(R) vs R for vowel A/Λ/ and Fig. 4.6(b) that for vowel C/I/. It 

may be noted that with the increase in dimensions the slope at the linear 

portions of these curves converges to a limiting value. Fig.4.7 shows the slope 

‘m’ in the linear range of the different curves vs the dimension ‘d’. The 
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limiting value of the slope corresponds to the correlation dimension dC of the 

attractor. Table 4.2 shows the calculated value of dC for different vowels 

Figures 4.8(a-b) represent the plot showing mean value of log[Cd(R) / 

Cd+1(R)] obtained from the linear range of the curves in Fig.4.6(a-b) for 

vowels A/Λ/ and C/I/. The Kolmogorov entropy K is obtained as the 

product of the limiting value of  log[Cd(r) / Cd+1(r)] and ( 1/τ ) and is tabulated 

in   table 4.3. 
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Fig.4.5(a).log N versus log(1/ ε) plot for vowel A/Λ/ 
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Fig.4.5(b).log N versus log(1/ ε) plot for vowel C/I/ 
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Fig.4.5(c).log N versus log(1/ ε) plot for vowel F/ae/ 
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Fig.4.5(d).log N versus log(1/ ε) plot for vowel H/o/ 

 
82



 

1.5 2.0 2.5 3.0 3.5 4.0 4.5
1

2

3

4

5

6

7

lo
g 

N

log(1/Epsilon)

 

Fig.4.5(e).log N versus log(1/ ε) plot for vowel D/u/ 

 

 

Vowel Dimension dB

A/Λ/ 1.4208 

C/I/ 1.4371 

F/ae/ 1.3850 

H/o/ 1.4653 

D/u/ 1.4630 

 

Table 4.1. Box counting dimension for Malayalam vowels 
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Fig.4.6(a).  Log – log plot of C(R) versus the distance R for vowel A/Λ/ 
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Fig.4.6(b).  Log – log plot of C(R) versus the distance R for vowel C/I/ 
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Fig.4.7(a). The slope ‘m’ of different curves in Fig.4.6(a)  versus the 

dimension ‘d’ 
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Fig.4.7(b). The slope ‘m’ of different curves in Fig.4.6(b)  versus the 

dimension ‘d’ 
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Vowel Dimension dC

A/Λ/ 2.33 

C/I/ 2.79 

F/ae/  2.84 

H/o/ 2.80  

D/u/  2.69 

 

Table 4.2. Correlation dimension for Malayalam vowels 

 

6 8 10 12 140.16

0.18

0.20

0.22

 

 

lo
g(

C
d(R

)/C
d+

1(R
))

d

.1711

Fig.4.8(a).Mean value of log[Cd(R)/Cd+1(R) ] as a function of d for vowel A/Λ/ 
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Fig.4.8(b). Mean value of log [Cd(R)/Cd+1(R) ] as a function of d for vowel C/I/ 

 

 

Vowel Kolmogorov 
Entropy (K) 

A/Λ/ 1367 

C/I/ 1392 

F/ae/  1217 

H/o/ 1650  

D/u/  1540 

 

Table 4.3. Kolmogorov Entropy for Malayalam vowels 
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4.5 Conclusion 

This chapter has introduced the field of nonlinear dynamical theory, 

including the concepts of chaos and how to measure it. The traditional model 

of speech production has been shown to have a number of short–comings and 

a nonlinear system has been proposed as an alternative. The problem of 

whether speech (especially vowel sounds) is chaotic has been examined 

through discussion of previous studies and experiments. Nonlinear invariant 

parameters for Malayalam vowels are calculated. The non-integer attractor 

dimension and non-zero value of Kolmogorov entropy confirm the 

contribution of deterministic chaos to the behavior of speech signal. Though 

these parameters quantify the chaotic behaviour of the speech signal, as far as 

recognition application is concerned, we want to go for more robust and 

computationally simple parameters. Phase space is a tool to analyze the 

underlying dynamics of a system. It can be exploited as a powerful signal 

processing domain, especially when the dynamical system of interest is 

nonlinear or chaotic. In the subsequent chapters we are focusing to extract a 

novel parameter from this time domain tool in order to capture the nonlinear 

characteristics of the speech. 
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 Chapter 5 

Phase Space Features for Speech Modeling 

5.1 Introduction  

 The Phase Space of a dynamical system is a mathematical space with 

orthogonal co-ordinate directions representing each of the variables needed to 

specify the instantaneous state of the system. In Mathematics and Physics, 

Phase Space is the space in which all possible states of a system are 

represented, with each possible state of the system corresponding to one 

unique point in the phase space. For mechanical systems, the phase space 

usually consists of all possible values of position and momentum variables. A 

plot of position and momentum variables as a function of time is called a 

phase diagram. The number of state variables determines the dimension of the 

system. These systems are typically treated as deterministic, i.e. if the state of 

the system at time t0 is known, then the state of the system at any time t1 is 

completely predictable. 

Unfortunately, the entire state space of almost all real systems cannot be 

observed, if only one state variable is available. It would seem that accurate 

characterization of the system is impossible in this case, especially if the 

dimensionality and nonlinearity of the system are high. However, with the use 

of a transformation on the observable variable known as a time-delay 

embedding, more information about the system is available than one might 

expect. Takens’ theorem states that under certain assumptions, phase space of 

a dynamical system can be reconstructed through the use of time-delayed  
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versions of the original scalar measurements [Takens.F, 1980]. This new state 

space is commonly referred to in the literature as a reconstructed phase space 

(RPS), and has been proven to be topologically equivalent to the original 

phase space of the dynamical system, as if all the state variables of that 

system would have been measured simultaneously [Kubin.G, 1995]. A 

Reconstructed Phase Space can be exploited as a powerful signal processing 

domain, especially when the dynamical system of interest is nonlinear or even 

chaotic [Broomhead.D.S and King.G, 1986], [Kantz.H and Schreiber.T,2003].  

As explained in the earlier chapter, RPS can be used to estimate the 

dynamical invariants like attractor dimension, Kolmogorov Entropy etc. of 

the system [Abarbanel.H.D.I, 1996].  Recently this approach has been taken 

in the realm of speech signal processing by many researchers [Narayanan.N.K 

and Sridhar.C.S, 1988], [Narayanan.N.K, 1999], [Lindgren.A.C, 

Johnson.M.T, et.al., 2003]. In this thesis, we use the distribution or density of 

the RPS as a basis for modeling the speech phonemes. To this end we 

introduce a new Phase Space based parameter called Reconstructed Phase 

Space Distribution Parameter (RPSDP), which can be effectively used for the 

recognition applications. 

This chapter is organized as follows. In the first session a general 

introduction and properties of the Phase Space of a dynamical system is 

presented. Following this the reconstruction of Phase Space from a scalar time 

series is demonstrated based on Taken’s embedding theorem. Then 
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application of Reconstructed Phase Space (RPS) in the area of signal 

processing and automatic speech recognition is explained. Finally the 

parameter extraction (Reconstructed Phase Space Distribution Parameter) 

from the RPS of Speech signal is presented. 

5.2 Phase Space of a Dynamical System 

 For a purely deterministic system, once its present state is fixed, the 

states at all future times are determined as well. Thus it will be important to 

establish a vector space called Phase Space or State Space for the system, 

such that specifying a point in this space specifies the state of the system and 

vice versa. Then the information about the dynamics of a system can be 

obtained by studying the various features of the corresponding phase space 

distribution. This concept is illustrated in detail in the following session. 

  The state of a particle moving in one dimension is specified by its 

position (x) and velocity (v). Its phase space is a plane. On the other hand a 

particle moving in three dimensions would have a six dimensional phase 

space with three position and three velocity directions. In phase space, 

momenta can be used instead of velocities. 
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Fig.5.1: Phase trajectory of a conservative system 

 

Figure 5.1  is  a  two  dimensional  phase  diagram for  an  energy  

conserving system. The energy increases with the square of the radius of the 

trajectory. An important feature of the trajectory is that two trajectories 

corresponding to similar energies will pass very close to each other, but the 

orbits will not cross each other. This non crossing  property derives from the 

fact that past and future states of a deterministic mechanical system are 

uniquely prescribed by the system state at a given time. A crossing of 

trajectories at time t would introduce ambiguity into past and future states, 

thereby rendering the system indeterminate. 

Another important feature of the phase space of conservative (constant 

energy) systems is the preservation of areas. For a dissipative system, area of 

phase trajectory will not be a constant. This property leads to a classification 

of dynamical systems into two categories - conservative or dissipative, 
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depending upon whether the phase volumes stay constant or contract, 

respectively. Figure 5.2 is the phase trajectory of a dissipative system.             

  

 

 

Fig.5.2: Phase trajectory of a dissipative system 

5.3 Reconstructed Phase Space Using Time delay Embedding 

 Having stressed the importance of Phase Space for the study of 

dynamical systems, we have to face the first problem: in the case of a speech 

signal, what we have is not a Phase Space object but a time series, only a 

sequence of scalar measurements. We therefore have to convert the 

observations into state vectors. This is the important problem of Phase Space 

Reconstruction, which is technically solved by the method of time delay 

embedding.   

One of the profound results established in chaos theory is the 

celebrated Takens’ embedding theorem. Takens’ theorem states that under 

certain assumptions, phase space of a dynamical system can be reconstructed 

through the use of time-delayed versions of the original scalar measurements. 
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This new state space is commonly referred to in the literature as 

Reconstructed Phase Space (RPS), and has been proven to be topologically 

equivalent to the original phase space of the dynamical system. 

Packard et al. [Packard.N.H, Crutchfield.J.P, et.al, 1980] first proposed 

the concept of phase space reconstruction in 1980. Soon after, Takens showed 

that a delay-coordinate mapping from a generic state space to a space of 

higher dimension preserves topology [Takens.F, 1980]. 

Let M be a compact manifold of topological dimension d. Then for 

pairs (P,y) where P : M → M and y : M → R, then the map 

ΦP,y(x) = (y(x), y(P(x), …………y(Pm-1(x))) 

This map is an embedding in Rm , provided that m ≥ 2d. This result 

guarantees that for an observable y from a smooth mapping with Phase Space 

dimension d. There is one to one correspondence between the mapped points 

(yi, yi+1, ….. yi+m-1  ) and the points lying on the original Phase Space for m ≥ 

2d. That is Taken proved that, for a given uncorrupted signal of infinite 

length, this transformation is topologically equivalent [Takens.F, 1980]. 

This theorem provides important theoretical justification for the use of 

RPS’s for system identification and pattern classification. Because the 

topology of the RPS is identical to the topology of the underlying system’s 

phase space, we can expect the shape and density of the RPS attractor to 

provide valuable information of the system that generates a signal. 
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 According to Taken’s embedding theorem a Reconstructed Phase 

Space can be produced for a measured state variable - xn, n = 1,2 ,3,4  ….N, 

via the method of delays by creating vectors given by  

 
 

xn = [ xn  xn+τ  xn+2τ  …. xn+(d-1) τ ] 

 
where d is the embedding dimension and τ is the chosen time delay 

value. The row vector, xn, defines the position of a single point in the RPS. 

The row vectors then can be compiled into a matrix called a trajectory matrix 

to completely define the dynamics of the system and create a Reconstructed 

Phase Space, as 

 
 

x1    x1+τ    x1+2τ    . . . . . . .  . . x1+(d-1) τ
x2    x2+τ    x2+2τ    . . . . . . . . .  x2+(d-1) τ

 X        = x3    x3+τ    x3+2τ    . . . . . . . . .  x3+(d-1) τ
.  

     . 
     . 
     xN   xN+τ    xN+2τ    . . . . . . . . .  xN+(d-1)τ
 

 
A speech signal with amplitude values can be treated as a dynamical 

system with a one dimensional time series data. Based on the above theory, 

this study investigates a method to model a Reconstructed Phase Space for 

Malayalam vowels, through the use of time delay versions of the original 

scalar measurements. Here trajectory matrices X1 with embedding dimension 

d = 2 and time delay τ = 1 and X2 with embedding dimension d = 3 and time 
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delay τ  = 1 are constructed by considering the speech amplitude values xn as 

one dimensional time series data. The matrices X1 and X2 thus obtained are 

given below. 

 
x1    x2
x2    x3

 X1        = x3    x4
.  

     . 
     . 
     xN   xN+1
 
 

 
x1    x2    x3
x2    x3    x4     

 X2        = x3    x4    x5   
.  

     . 
     . 
     xN   xN+1    xN+2
 

 
 
By plotting the row vectors of the trajectory matrix, a visual representation of 

the system dynamics becomes evident as shown in the figures 5.3(a-e) and 

5.4(a-e). 
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Fig. 5.3(a):Two dimensional Reconstructed Phase Space for Malayalam 
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Fig.5.4(a): Three dimensional Reconstructed Phase Space for Malayalam 
Vowel A/Λ/ 
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Fig. 5.3(b): Two dimensional Reconstructed Phase Space for Malayalam 
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Fig. 5.4(b): Three dimensional Reconstructed Phase Space for Malayalam 
Vowel C/I/ 
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Fig. 5.3(c): Two dimensional Reconstructed Phase Space for Malayalam 

Vowel F/ae/ 
 

-1 -0.5

10.5 1

-1
-0.500.51

-0.5

0   

0.5 

1   

XnXn+1

X
n+

2

 
Fig.5.4(c): Three dimensional Reconstructed Phase Space for Malayalam 

Vowel F/ae/ 
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Fig. 5.3(d): Two dimensional Reconstructed Phase Space for Malayalam 

Vowel H/o/ 
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Fig. 5.4(d): Three dimensional Reconstructed Phase Space for Malayalam 
Vowel H/o/ 
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Fig. 5.3(e): Two dimensional Reconstructed Phase Space for Malayalam 

Vowel D/u/ 
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Fig. 5.4(e): Three dimensional Reconstructed Phase Space for Malayalam 
Vowel D/u/ 
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5.4 Application of RPS in Signal Processing 

 Because RPS’s preserve the dynamical information in a system, 

they have advantages over other methods for signal classification. Many 

classical methods make assumptions about the systems in question, and in 

doing so, we ignore information that does not fit with those assumptions. 

While data reduction is often desirable for practical purposes, the reduction of 

data can remove important features. RPS’s do not remove any information 

from the signals; the entire signal can be reconstructed from an RPS. 

Unlike traditional linear signal classification methods, RPS’s are able 

to capture nonlinear information that may be present in signals. Classic 

methods such as LPC analysis and cepstral analysis work by assuming a 

linear model and learning parameters to fit the linear model [Deller.J.R, 

Hansen.J.H.L, et.al., 2000]. These approaches work very well if the signals to 

be analyzed are generated by linear systems, but are fundamentally flawed if 

that is not the case. These methods are popular for speech signal analysis, 

based on the linearity assumption. 

Dynamical invariant features extracted from RPS’s have been used for 

classification of speech signals. Lyapunov exponents [Narayanan.S.S and 

Alwan.A.A, 1995], [Kumar.A and  Mullick.S.K, 1996] and correlation 

dimension [Pitsikalis.V and Maragos.P, 2003] have been used as features in 

addition to cepstral coefficients by appending them to the standard feature 

vectors. While this has been shown to increase accuracy, the improvements 

have been relatively small. 
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In addition to invariant features, RPS’s can be statistically modelled. 

This approach has been successfully applied to heart arrhythmia classification 

[Roberts.F.M, Povinelli.R.J, et.al., 2001] as well as motor fault detection        

[Povinelli.R.J, Bangura.J.F, et.al., 2002]. Instead of extracting features from 

the RPS’s, such as Lyapunov exponents and various dimensions, the full 

attractors are modelled. In this case, there is no data reduction, which is 

important, as the attractors may contain information not preserved by the 

dynamical invariants. To accomplish this, a statistical model is built over the 

attractor, describing the natural dimension of the RPS. 

5.5 Application of RPS in ASR 

 Conventional speech signal processing techniques are based on linear 

systems theory, where the fundamental processing space is the frequency 

domain. Traditional acoustic approaches assume a source-filter model where 

the vocal tract is modeled as a linear filter. Although the features based on 

these approaches have demonstrated excellent performance over the years, 

they are, nevertheless, rooted in the strong linearity approximations of the 

underlying physics. Performance of the current speech recognition systems 

which rely on the linear system theory are far inferior to humans, and there 

are many factors that severely degrade recognition performance. As an 

alternative to the traditional techniques, interest has emerged in studying 

speech as a nonlinear system [Teager.H.M and Teager.S.M, 1990] 

[Banbrook.M and McLaughlin.S, 1994], [Banbrook.M and McLaughlin.S, 

1999]. State of the art speech recognition systems typically use Cepstral 
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coefficient features, obtained via a frame-based spectral analysis of the speech 

signal. However, recent    work in Phase Space Reconstruction Techniques for 

nonlinear modeling of time-series signals has motivated investigations into 

the efficacy of using dynamical systems models in the time-domain for 

speech recognition. In theory, reconstructed Phase Spaces capture the full 

dynamics of the underlying system, including nonlinear information not 

preserved by traditional spectral techniques, leading to possibilities for 

improved recognition accuracy. The potential benefit of using this 

information is still under investigation. 

 One disadvantage of using RPS for speech recognition is seen in the 

time complexity for classification of phonemes. Because cepstral coefficients 

are frame-based, a feature vector is computed and used for statistical analysis 

every 10 milliseconds, where as RPS have a feature vector at every sample. 

Due to the amount of data, time complexity is far greater for RPS based 

approach to speech recognition. For RPS based methods to become useful, 

this issue must be solved.  In this chapter we introduce a new method to 

extract a useful feature vector from the Reconstructed Phase Space, called 

RPS Distribution  Parameter (RPSDP) 

 
5.6  Reconstructed Phase Space Distribution 

 In this session Reconstructed Phase Space Distribution plot (scatter 

graph) in two dimensions is constructed for Malayalam vowels as follows. 

The normalized ‘N’ sample values for the Malayalam vowel sounds is the 
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scalar time series xn, where       n = 1,2,…………N. For each speech signal, a 

trajectory matrix is formed with dimension d = 2 and time delay τ = 1. (More 

scientific choice for ‘d’ and ‘τ’ is explained in chapter 7). Now a scatter plot 

named Reconstructed Phase Space Distribution is generated by plotting the 

row vectors of the above constructed trajectory matrix. (ie by plotting xn 

versus xn+1). Figures 5.5(a-e) shows the Reconstructed Phase Space 

Distribution plot for five Malayalam phonemes A/Λ/, C/I/, F/ae/, H/o/, and 

D/u/. 
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Fig. 5.5(a): Reconstructed Phase Space Distribution for Malayalam Vowel  A/Λ/ 
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Fig. 5.5(b): Reconstructed Phase Space Distribution for Malayalam Vowel  C/I/ 
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Fig. 5.5(c): Reconstructed Phase Space Distribution for Malayalam Vowel  F/ae/ 
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Fig. 5.5(d): Reconstructed Phase Space Distribution for Malayalam Vowel  H/o/ 
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Fig. 5.5(e): Reconstructed Phase Space Distribution for Malayalam Vowel  D/u/ 
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5.7 Reconstructed Phase Space Distribution Parameter  

 The complexity of RPS based approach due to the excess amount of 

data can be reduced by extracting useful parameters from the Reconstructed 

Phase Space. Here RPS is divided into 400 locations, and the number of 

Phase Space Points distributed in each location is calculated as follows. 

RPS is divided into grids with 20 x 20 boxes. The box defined by co-

ordinates (-1, .9) , (-.9, 1) is taken as location 1. Box just right side to it is 

taken as location 2 and it is extended towards X direction, with the last box in 

the row (.9,.9),(1, 1) as location 20.  This is repeated for the next row, taking 

the starting box as location 21 and repeated for all other rows. The 

Reconstructed Phase Space Distribution Parameter (RPSDP) is calculated by 

estimating the number of Phase Space points distributed in each location. 

This can be mathematically represented as follows. The Reconstructed 

Phase Space Distribution Parameter for location ‘i’ in two dimension can be 

defined as : 

 

         (RPSDP)i  =  ∑ η( [x
=

N

1n
n, xn+τ], i ) 

where η( [xn, xn+τ], i )  = 1, if the Phase Space point defined by the row  

vector [xn, xn+τ] is in the location ‘i’. 

        = 0, otherwise. 
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Generally RPSDP for location ‘i’ in d dimension can be defined as : 

(RPSDP)i  =  η( [x∑
=

N

1n
n, xn+τ, xn+2τ …… xn+(d-1)τ], i ) 

where η( [xn, xn+τ, xn+2τ …… xn+(d-1)τ], i )  = 1, if the Phase Space point defined  

        by the row vector [xn, xn+τ, xn+2τ   

            … xn+(d-1)τ] is in the location ‘i’. 

           = 0, otherwise. 

Figures 5.6(a-e) show the Reconstructed Phase Space Distribution Parameter 

versus  locations for the vowels A/Λ/, C/I/, F/ae/, H/o/, and D/u/. 
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Fig. 5.6(a) :Reconstructed Phase space Distribution Parameter (Vowel A/Λ/) 
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Fig. 5.6(b) :Reconstructed Phase space Distribution Parameter (Vowel C/I/) 
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Fig. 5.6(c):Reconstructed Phase space Distribution Parameter (Vowel F/ae/) 
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Fig. 5.6(d): Reconstructed Phase space Distribution Parameter (Vowel H/o/) 
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Fig. 5.6(e): Reconstructed Phase space Distribution Parameter (Vowel D/u/) 
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This operation is repeated for the same vowel uttered at different 

occasions. Figures 5.7(a-e) show the Reconstructed phase space point 

distribution graphs for each vowel uttered at different occasions. The graph 

thus plotted for different vowels shows the identity for a vowel as regard to 

pattern. Therefore this technique can be effectively utilized for speech 

recognition applications 
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Fig. 5.7(a):Reconstructed Phase Space Distribution Parameter for 15 repeated 
utterances (Vowel A / Λ/) 
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Fig. 5.7(b): Reconstructed Phase Space Distribution Parameter for 15 
repeated utterances (Vowel C / I /  ) 
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Fig. 5.7(c): Reconstructed Phase Space Distribution Parameter for 15 
repeated utterances (Vowel F /ae/  ) 
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Fig. 5.7(d): Reconstructed Phase Space Distribution Parameter for 15 
repeated utterances (Vowel H/o/) 
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Fig. 5.7(e): Reconstructed Phase Space Distribution Parameter for 15 
repeated utterances (Vowel D / u /  ) 
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5.8 Conclusion 

Inspecting the above distribution plots, it is evident that the recognition 

application based on these parameters will give improved accuracy. The 

method has a strong theoretical justification provided by the nonlinear 

dynamics literature. Since it is a time domain based approach, this method 

represents a fundamental philosophical shift from the frequency domain to the 

time domain. Here we are presenting an entirely different way of viewing the 

speech processing problem, and offering an opportunity to capture the 

nonlinear characteristics of the acoustic structure. The usefulness of the above 

parameter for efficient speech recognition application is studied and 

established in the later chapters. 
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Chapter 6 

Nonlinear Phase Space Features for Robust Pitch Detection 

6.1 Introduction 

 Pitch detection, also referred to as Fundamental frequency (f0) 

estimation has been a popular research topic for many years, and is still being 

investigated today. Fundamental frequency, f0 is the lowest frequency 

component, in the signal, which relates well to most of the other frequency 

components. In a periodic waveform, most of the components are 

harmonically related, meaning that the frequency of  most of the components 

are related to the lowest component by a small whole-number ratio. The 

frequency of this lowest frequency component is ‘f0’ of the waveform. 

 Isolated word recognition engines often discard the pitch information 

as irrelevant to the recognition task. While it is true that individual phonemes 

are recognizable regardless of the pitch of the driving function, or even in the 

absence of pitch as in whispered speech, this does not imply that pitch 

information is not useful. Much semantic information is passed on through 

pitch that is above the phonetic and lexical levels. In tonal languages, the 

relative pitch motion of an utterance contributes to the lexical information in a 

word. In this case, speech recognition algorithms must attend to the pitch or 

the context of the utterance to avoid ambiguity in continuous speech 

recognition applications. Pitch information can also be used for speaker 

identification. 
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Accurate pitch estimation plays a very important role in speech 

compression and speech synthesis, as well as in the musical world. A large 

number of Pitch Determination Algorithms (PDA) have been developed to 

date. Most of them can be loosely classified as time-domain or short-term 

analysis PDAs [Hess.W.J, 1992]. The most popular and reliable techniques in 

use today (for example, those based on correlation, spectrum or cepstrum) are 

short-term methods operating on short segments of a signal. f0 estimators 

developed for a particular application, such as musical note detection or 

speech analysis, are well understood, but depend on the domain of the data, 

that is, a detector designed for one domain is less accurate when applied to a 

different domain [Rabiner.L.R and Schafer.R.W, 1978 ].  

Most algorithms for pitch detection involve one or more of the 

following components. (i) preprocessing  to enhance the periodicity of the 

waveform (eg. low pass filtering, center clipping), (ii) short time analysis of 

speech to obtain initial estimates of f0 and (iii) post processing to correct 

isolated errors and produce smooth contours (eg. median filtering, dynamic 

programming). There are basically two kinds of determination methods (i) 

methods that operate in the time domain as the famous autocorrelation 

method [Rabiner.L.R and Schafer.R.W, 1978], [Hess.W.J, 1983] and   (ii) 

methods that operate in the frequency domain typically rely on FFTs, 

detecting f0 from peaks of the magnitude cepstrum or harmonic power 

spectrum [Hess.W.J, 1992, Bagshaw.P.C, et al, 1993]. 
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However most of the conventional techniques are not fully satisfactory 

on real speech. One of the reasons for such deficiency is the linear nature of 

signal processing employed by many conventional methods. As explained in 

chapter 3, human speech production is a complex nonlinear and non-

stationary process. Its complete and most accurate description can only be 

achieved in terms of nonlinear fluid dynamics. Traditionally it has been 

described using techniques like source-filter model and spectral analysis. 

These techniques work very well for many aspects of speech analysis, but 

they are inherently limited in their ability to describe the true dynamics of 

speech production. Consequently, to study such nonlinear aspects of speech 

production as excitation function, it is advantageous to dismiss traditional 

linear techniques and to use more general nonlinear approach. Without 

making too many simplifying assumptions one can state that voiced speech is 

generated by a relatively low-dimensional nonlinear dynamical system, while 

an unvoiced speech is generated by a high dimensional dynamical system. 

In chapter 4 we have discussed that one of the profound results 

established in chaos theory is the celebrated Taken’s embedding theorem 

[Taken.F, 1981], which states that it is possible to reconstruct a state space 

topologically equivalent to the original state space of a system from a single 

observable. Some attempts have already been made to apply nonlinear and 

chaotic signal analysis methods to pitch detection algorithms. In particular, it 

was previously noted that pitch period can be measured in state space by 

using Poincaré sections [Kubin.G, 1995]. However, a truly reliable and 
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accurate method for pitch detection using state-space embedding of a signal 

has not been proposed to date. 

 In this chapter we introduce a general method for pitch estimation 

using reconstructed Phase Space in two dimensions. Theoretical matters are 

discussed first followed by implementation details and experimental results. 

 This chapter is organized in three sessions. In first session a general 

discussion about fundamental frequency or pitch in a signal and the methods 

pitch tracking and pitch marking is presented. Following this, conventional 

pitch detection algorithms based on time domain and frequency domain 

methods are discussed. Finally a new method for robust pitch detection based 

on Reconstructed Phase Space features is introduced.  

6.2 Measuring Fundamental Frequency 

 Pitch is a perceptual quantity related to f0 of a periodic or pseudo-

periodic waveform. Note that in this thesis, the terms ‘pitch’ and its primary 

acoustical correlate ‘fundamental frequency’ are used inter changeably. To 

find the frequency of oscillation, it is sufficient to determine the period of 

such oscillation, the inverse of which is the frequency. The problem comes 

when the waveform consists of more than a simple sinusoid. As harmonic 

components are added to a sinusoidal waveform, the appearance of pitch of 

the waveform becomes less clear and the concept of “fundamental frequency” 

or f0 must be considered. The goal of a f0 estimator is to find f0 in the midst of 

the other harmonically related components of the sound. 
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The difficulty of finding the f0 of a waveform depends on the 

waveform itself. If the waveform has few higher harmonics or the power of 

the higher harmonics is small, the f0 is easier to detect, as in Figures 6.1 and 

6.2. If the harmonics have more power than the f0, then the period is harder to 

detect, as in Figures 6.3 and 6.4.  

 

        
        
        
        
        
        

 
     angle (*pi)    frequency (*f0) 

Fig.6.1  Waveform with no upper harmonics 

 
angle (*pi)    frequency (*f0) 

Fig.6.2  Waveform with lower power upper harmonics 

 

 
angle (*pi)    frequency (*f0) 

Fig.6.3  Waveform with higher power upper harmonics 
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Fig.6.4  Waveform where power of upper harmonics is very high 

 

6.3 Pitch tracking and pitch marking 

 Pitch tracking consists of classifying speech into voiced and unvoiced 

regions, and for voiced regions determining the fundamental frequency of the 

vibrations of the vocal chords. Generally pitch tracking involves determining 

pitch (f0) over a large interval of speech as shown in Figure 6.5. The pitch 

track is represented by the block dots overlaid on the spectrogram. Notice that 

each dot represents a value of f0. The dots in the voiced region (0.05-0.3 

seconds in the figure) have a non-zero value whereas dots in unvoiced region 

represent a value of zero frequency implying an absence of periodic 

component (f0).  

Pitch tracking algorithms generally do not identify the temporal 

location of each vibration of the vocal chords but rather are based on average 

time spacing between a numbers of vibrations. The averaging, typically due to 

the use of an autocorrelation type of calculation in the pitch tracking, is used 

to improve the accuracy of the tracking. 
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Pitch marking (PM), on the other hand, attempts to locate every 

vibration of the vocal chords. That is, the beginning and end of each pitch 

cycle is to be located by timing markers. PM does not involve classifying 

speech into voiced or unvoiced regions but rather may use such pre-existing 

knowledge for locating pitch cycle markers. Figure 6.6 shows the markers by 

vertical dotted lines, identified in pitch marking process for an actual speech 

signal. 

Since the speech signal is not really periodic and also highly non-

stationary, pitch tracking and pitch marking turn out to be extremely difficult 

problems to solve accurately. That is, even over short time intervals of the 

order of 50 ms, the speech signal is often changing in f0, in amplitude and in 

overall spectral characteristics.  

 For voiced speech, typical f0 ranges are of the order of 50-250 

Hz for male speakers, 120-400 Hz for female speakers and around 150-450 

Hz for child speakers, these ranges differ for different speaker conditions 

[Baken.R, 1987]. However, there are wide variations from one individual to 

another. Even during the normal speech of a single speaker, there can be pitch 

variations spanning from one to four octaves. These wide variations, and 

other factors, make it very difficult to detect pitch with 100% accuracy with 

any set of parameters. 
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Fig.6.5:  Illustration of an example of pitch track of a speech signal. The top 

panel shows the time domain speech signal and bottom panel shows the pitch 

track overlaid on a spectrogram of the speech signal. 
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Fig.6.6: Illustration of pitch markers identified in speech signal for 

different regions of speech. The top panel shows markers in speech signal that 
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is purely voiced whereas the bottom panel shows markers in a section of 

speech signal that has unvoiced and voiced region.  

6.4 Time-Domain Methods for Pitch Detection 

 Pitch tracking algorithms can be broadly classified into the following 

categories:   time domain based and frequency domain based pitch tracking 

There is a family of related time-domain f0 estimation methods which seek to 

discover how often the waveform fully repeats itself. The theory behind these 

methods is that if a waveform is periodic, then there are extractable time-

repeating events that can be counted, and the number of these events that 

happen in a second is directly related to the frequency. Each of these methods 

is useful for particular kinds of waveforms. If there is a specific time-event 

that is known to exist once per period in the waveform, such as a 

discontinuity in slope or amplitude, it may be identified and counted. There 

are many popular methods in time domain, such as Zero-crossing rate (ZCR), 

Peak rate, Slope event rate, Auto correlation etc, where the last one is the 

most reliable method.   

6.4.1 Autocorrelation Method for Pitch Detection 

We briefly discuss the autocorrelation in this section. The auto-

correlation approach is the most widely used method for estimating the pitch 

of a periodic signal. The correlation between two waveforms is a measure of 

their similarity. The waveforms are compared at different time intervals, and 

their “sameness” is calculated at each interval. The result of a correlation is a 

measure of similarity as a function of time lag between the beginnings of the 
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two waveforms. The autocorrelation function is the correlation of a waveform 

with itself. One would expect exact similarity at a time lag of zero, with 

increasing dissimilarity as the time lag increases. In the next chapter we have 

explained it in detail during the calculation of proper time delay. 

Periodic waveforms exhibit an interesting autocorrelation 

characteristic: the autocorrelation function itself is periodic. As the time lag 

increases to half of the period of the waveform, the correlation decreases to a 

minimum. This is because the waveform is out of phase with its time-delayed 

copy. As the time lag increases again to the length of one period, the 

autocorrelation again increases back to a maximum, because the waveform 

and its time-delayed copy are in phase. For periodic signals, the 

autocorrelation function attains a maximum at sample lags of 0, ±P, ±2P, etc., 

where P is the period of the signal. 

A major limitation of the auto-correlation function is that it may 

contain many other peaks other than those due to basic periodic components. 

For speech signals, the numerous peaks present in the auto-correlation 

function are due to the damped oscillations of the vocal tract response 

[Talkin.D, 1995]. It is difficult for any simple peak picking process to 

discriminate those peaks due to periodicity from these “extraneous” peaks. 

The peak picking is more robust if a relatively large time window is used, but 

has the disadvantage that the rapid changes in pitch cannot be tracked 

properly. 
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Some of the shortcomings in the auto-correlation method are 

overcome using the cross-correlation function The Normalized Cross 

Correlation function is very similar to the auto-correlation function, but is 

better able to follow the rapid changes in pitch and amplitude. The major 

disadvantage is an increase in the computational complexity 

6.5 Frequency-Domain Methods for Pitch Detection 

There is much information in the frequency domain that can be related 

to the f0 of the signal. Pitched signals tend to be composed of a series of 

harmonically related partials, which can be identified and used to extract the 

f0. Many attempts have been made to extract and follow the f0 of a signal in 

this manner. There are many popular methods based on frequency domain, 

such as Component Frequency Ratios, Filter-Based Methods, Cepstrum 

Analysis etc, in which the last one is more efficient. 

6.5.1 Cepstrum Analysis Method for Pitch Detection 

As mentioned above, another method for pitch tracking technique is 

computation of the Cepstrum,  followed by  peak  picking over a suitable 

range. The  Cepstrum  is defined  as the  inverse Fourier Transform of the 

short time log magnitude spectrum. 

C(t) = F-1( log⏐F(x(t))⏐2) 

Where, x(t) = the input signal under consideration.  

For voiced speech, the Cepstrum tends to have local maxima at times, kT, 

corresponding to integer multiples of the glottal periods. The “log” in the 
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Cepstrum equation tends to flatten the harmonic peaks in the spectrum and 

thus leads to more distinct peaks in the Cepstrum function, as compared to the 

peaks in the autocorrelation function.  

The cepstrum method assumes that the signal has regularly-spaced 

frequency partials. If this is not the case, such as with the inharmonic 

spectrum the method will provide erroneous results. As with most other f0 

estimation methods, this method is well suited to specific types of signals. It 

was originally developed for use with speech signals, which are spectrally 

rich and have evenly spaced partials. Thus, as for autocorrelation methods, in 

regions where there are rapid changes in f0, the method does not perform well.  

 The computational difficulties in the above time domain and frequency 

domain approaches in the detection of pitch can be considerably  reduced by 

developing a pitch detection method in the Phase Space domain. The 

following session describes the detailed formulation of a Pitch Detection 

Algorithm based on the Phase Space Analysis. 

6.6 Phase Space and Frequency 

The phase space signal representation is a way of observing the short-

time history of a waveform in a way that makes repetitive cycles clear. As 

explained in the earlier chapters the basic phase space representation is to plot 

the value of the waveform at time t versus the slope of the waveform at the 

same point. Phase space of a dynamical system can be reconstructed through 

the use of time-delayed versions of the original scalar measurements. We 
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know that according to Takens’ embedding theorem [Taken.F 1981], it is 

possible to reconstruct a Phase space, topologically equivalent to the original 

state space of a system from a single observable. Any periodic signal forms a 

closed cycle in phase space, and the shape of the cyclic path depends on the 

harmonic composition of the signal. The f0 of a signal is related to the speed 

with which the path completes the cycle in phase space. The task then 

becomes detecting the difference between new values in phase space crossing 

the old path, and new values intersecting and re-tracing the old path. The 

simplest solution would be to compare distances between points in phase 

space, and detect when the distance becomes minimal. An initial point would 

be selected, and the distance from that point would be traced as a function of 

time. When this distance became zero (or a minimum value) the waveform 

may have repeated. 

A bigger problem with phase space f0 estimation is how to deal with 

pseudo-periodic signals. In a phase space representation, the path of a pseudo-

periodic signal will never re-trace itself, although it will follow a closely 

parallel path. 

A Poincar´e section of a phase space plot is a lower-dimensional 

orthogonal slice through the plot which produces a cross-section of a path 

being considered. A Poincar´e section of a periodic signal will be one or more 

discrete points, indicating the locations that the path intersects the section. 

Figure 6.7 shows the Poincar´e section for a periodic signal in 3 dimensional 

Phase Space.  
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Fig.6.7: Poincare’s section for a periodic signal in a 3 dimensional  

Phase Space 

A pseudo-periodic signal will generate a cloud of points in a Poincar´e 

section, localized in one or more clusters. If these clusters are separate, the 

mean location of each cluster can be treated as the intersection point for that 

cluster, and the period can be calculated by the time lag between successive 

points in the same cluster.  

A problem arises when two clusters of points are close together, such 

that for some points it is not clear which cluster they should belong to. In this 

case, higher-dimension phase-space representations should be employed until 

the clusters are shown to be disjointed. There are many potential problems 

with this suggested method such as the dimensionality of Phase space etc., but 
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it may provide another alternative to the many f0 estimation algorithms that 

are currently available. 

In our proposed method the algorithm is not depending on the 

dimension of Phase space and not on the type of data being investigated. 

6.7 Reconstructed Phase Space for a Periodic signal 

 A periodic signal forms closed loops in Phase space. For a periodic 

complex signal the displacements at two points with a phase difference of 2π 

would have same values. This implies that in the two dimensional Phase 

Space diagram the points representing such pairs would be lying on a straight 

line with a slope of π/4 to the axes (Phase Space Diagonal), and this is the 

Reconstructed Phase Space with time lag corresponds to time period of the 

signal ‘T’. Figure 6.8 shows the Reconstructed Phase Space for a sinusoidal 

signal with a time lag T.  

  It may be seen that as the phase lag decreases the points are 

scattered over a broad region. The scattered region reaches a maximum width 

for a phase difference of π/2, or time lag corresponds to ‘T/4’. With this time 

delay, a pure sinusoidal signal forms circular orbits in the Phase space. It 

collapses into a straight line when the phase difference becomes 2π, which 

corresponds to the time period ‘T’. Figure 6.9 gives the Reconstructed Phase 

Space for a sinusoidal signal with time lag T/4, and Figure 6.10 represents the 

RPS diagram with time lag T/1.5.   
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Fig. 6.8: Reconstructed Phase Space for sinusoidal signal with time lag T 

 

 
 
 

Fig. 6.9: Reconstructed Phase Space for sinusoidal signal with time lag T/4 
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Fig. 6.10:Reconstructed Phase Space for sinusoidal signal with time lag T/1.5 
 

Therefore we can say that in the Reconstructed Phase Space of a 

complex quasi periodic signal, if the time lag introduced τ corresponds to the 

pitch period, the spread of Phase Space points from the Phase Space Diagonal 

with slope π/4 will be minimum. The spread can be measured in terms of 

perpendicular Euclidean distance of the Phase Space points from the diagonal. 

6.8 Euclidian Distance Measure from the Phase Space Diagonal 

 Figure 6.11 shows the two dimensional Phase Space Reconstruction of 

Malayalam vowel A/Λ/. The spread of Phase Space points from the Phase 

Space diagonal can be quantified in terms of Euclidean Distance Measure 

from the diagonal as shown in the figure 6.11. 
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Fig.6.11 Euclidean Distance Measure from Phase Space Diagonal 

The Euclidean distance measure of the ith Phase Space point with co-

ordinates xi and yi is given by 

 

2
Dii

2
Diii )yy()xx(d −+−=   …………………… (6.1) 

 Here xDi and yDi represent the co-ordinates of the point where the 

perpendicular from the ith Phase Space point meets the Phase Space Diagonal.  

Since the points xDi and yDi are on the diagonal, we have  xDi = yDi   
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Also from triangle OAB in the above figure, we have (OB)2 = (OA)2 + (AB)2
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 Knowing xDi and yDi in terms of xi and yi we can calculate the 

Euclidean distance measure di. 

 Then the total Euclidean Distance Measure  
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 The Distance Measure is calculated using equation 6.2 for the speech 

segment with a time delay embedding. This process is repeated by increasing 

the time delay. It can be seen that at a particular delay, the Distance Measure 

becomes minimum and that delay is the pitch candidate for the speech 

segment.  

 Repeating the procedure and increasing the delay up to the last sample 

in the frame can select the entire pitch candidates. The selected pitch 

candidates are shown in the Delay versus Distance Measure graph (figures 

6.12(a-e)). Once the pitch candidates are selected in terms of time delays, 

pitch period or fundamental frequency can be computed by knowing the 

sampling frequency. 

6.9 Computational Efficiency 

 The proposed method requires finding the least distance among N-1 

points in the 2 dimensional space, where N is proportional to sampling rate. 

The only expensive part of the procedure is the N-1 Euclidean distance 

measure. Therefore Compared to conventional  Pitch Detection Algorithms 

the present method is computationally efficient. 

6.10 Experimental Results 
 
 Usually the implementation of short term Pitch Determination 

Algorithm includes three usual stages [Talkin.D, 1995] (a) signal pre-

processing, (b) generation of pitch period candidates and (c) post-processing. 

The proposed method works well on raw speech waveforms and does not 

explicitly require any signal pre-processing. 
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In this work 5 Malayalam vowels, namely  A/Λ/, C/I/, F/ae/, H/o/, 

and D/u/. are taken for the experiment. For each vowel, Minimum Distance 

Measure and the corresponding time delays are calculated. Pitch candidates 

obtained as described above usually include only a  true pitch period and its 

integer multiples. Selecting the lowest multiple can give a reliable local pitch 

estimate for the vowel. 

Delay versus Distance Measure graph for the vowels are shown in 

figures 6.12(a-e). Let τm be the delay corresponding to first minimum of 

distance measure. Then the pitch period T is calculated as  

T =  τm x Ts

 Where  Ts  is the sampling period ( 125µ sec. if sampling frequency is 

8 kHz.). Then the fundamental frequency f0 = 1 / T. The experiment is 

repeated for different samples of vowel sounds. Minimum pitch, maximum 

pitch and average pitch is tabulated in table 6.1 
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Fig. 6.12(a): Delay versus Distance Measure graph for vowel A/Λ/ 
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Fig. 6.12(b): Delay versus Distance Measure graph for vowel C/I/ 
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Fig. 6.12(c): Delay versus Distance Measure graph for vowel F/ae/ 
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Fig. 6.12(d): Delay versus Distance Measure graph for vowel H/o/ 

 
142



 

0 100 20

350

400

450

500

550

600

650

700

049

D
is

ta
nc

e 
M

ea
su

re

Delay

 

Fig. 6.12(e): Delay versus Distance Measure graph for vowel D/u/ 

 

Vowel 
Unit 

Minimum Pitch 
(Hz) 

Maximum Pitch 
(Hz) 

Average Pitch 
(Hz) 

A/Λ/ 119.40   135.59  125.00   
C/I/ 114.28   166.67   160.00   

F/ae/ 106.66   163.26   156.86   
H/o/ 105.26   148.15   137.93   
D/u/ 106.66   170.21   163.26   

 

 

 

 

 

 
 

 
           Table. 6.1: Experimental Results 
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 The pitch value is also estimated using conventional methods 

autocorrelation and cepstrum methods. A comparison of average value of 

pitch obtained by these methods and the pitch value obtained by the newly 

proposed Reconstructed Phase Space based method are shown in table 6.2. 

 

Average Pitch in Hertz 
Vowel 
Unit Conventional Method 

(Hz) 
RPS Method       

(Hz) 
A/Λ/ 126.21 125.00 

C/I/ 158.47 160.00 

F/ae/ 153.98 156.86 

H/o/ 131.77 137.93 

D/u/ 165.48 163.26 
 

Table. 6.2:  Comparison of results with conventional methods 
 

 
6.11 Conclusion 
 

Methodologies originally developed for analyzing chaotic time series 

have been successfully applied to pitch determination problem. The proposed 

new method does not suffer from the limitations of other short-term pitch 

estimation techniques. The algorithm is very straightforward and flexible. The 

preliminary evaluation results show its robust performance on real speech. 

The experimental results show that the pitch estimated using Reconstructed 

Phase Space features agrees with that obtained using conventional Pitch 

Detection Algorithms. 
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Chapter 7 

Optimum Embedding Parameters for Phase Space 

Reconstruction 
 
7.1 Introduction 
  
 Phase space reconstruction is usually the first step in the analysis of 

dynamical systems. Typically, an experimenter obtains a scalar time series 

from one observable of a multidimensional system. State-space reconstruction 

is then needed for the indirect measurement of the system’s invariant 

parameters like, dimension, Lyapunov exponent etc. Several techniques for 

attractor reconstruction are currently employed, such as derivative coordinates 

[Packard.N.H, Shaw.R.S, et.al., 1980], [Taken.F, 1981] and principal 

components (or singular value decomposition) [Broomhead.D.S.  and King. 

G.P, 1986], the method of delays [Packard.N.H., Shaw.R.S, et al. 1980], 

[Taken.F, 1981] etc.  

Takens' theorem [Taken.F, 1980] demonstrates that in the absence of 

noise a multidimensional state space can be reconstructed from a scalar time 

series, using the method of delays. It is the most widespread approach because 

it is the most straightforward and the noise level is constant for each delay 

component [Casdagli.M, Eubank.S, et. al., 1991]. The method of delays 

reconstructs the attractor dynamics by using delay coordinates to form 

multiple state-space vectors, Xn. The reconstructed state of the system at each 

discrete time n is 
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Xn = [xn  xn+τ  ... xn+(d-1) τ ], 

 Where τ is the reconstruction time delay and d is the embedding 

dimension. Taken’s theorem gives little guidance, about practical 

considerations for reconstructing a good state space. It is silent on the choice 

of time delay (τ) to use in constructing d-dimensional data vectors. Indeed, it 

allows any time delay as long as one has an infinite amount of infinitely 

accurate data. However, for reconstructing state spaces from real-world, 

finite, noisy data, it gives no direction [Casdagli.M, Eubank.S, et. al., 1991]. 

 Experiments show that the quality of reconstruction depends on the 

value chosen for ‘τ’ and experimenters and theorists note that there are no 

criteria for choosing ‘τ’ in the literature. The following facts are to be 

remembered while choosing proper time delay [Abarbanel.H.D.I, 1996.] 

i) It must be some multiple of the sampling time Ts, since we only 

have data at those times. 

ii) If time delay is too short, the coordinates, which we wish to use in 

our reconstructed data vector, will not be independent enough. That  

is, not enough time will have evolved for the system, for its phase 

space to produce new information about that phase space. If ‘τ’ is 

too small each coordinate is almost the same, and the trajectories of 

the reconstructed space are squeezed along the identity line; this 

phenomenon is known as redundance. 
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iii) If τ is too large, in the presence of chaos and noise, the dynamics at 

one time become effectively causally disconnected from the 

dynamics at a later time, so that even simple geometric objects look 

extremely complicated; this phenomenon is known as irrelevance 

[Casdagli.M, Eubank.S, et. al., 1991]. 

For the embedding dimension ‘d’, the theorem states the sufficient (but 

not necessary) condition is d ≥ 2D, where D is the fractal dimensions of the 

underlying attractor. Normally, one has no a priori knowledge regarding the 

topological dimension and it is unclear what values of d will satisfy the 

condition. 

Most of the research on the state space reconstruction problem has 

centered on the problems of choosing ‘τ’ and dimension ‘d’ for delay 

coordinates. In practice, the determination of the time lag can be difficult, 

because there is no theoretically well-founded method to ascertain it, where 

an obvious criterion function can be formulated. Despite this limitation, two 

heuristics have been developed in the literature for establishing a time lag 

[Kantz.H and Schreiber.T, 2003]. 1) The first zero of the autocorrelation 

function and 2) the first minimum of the auto-mutual information curve 

[Fraser.A.M and Swinney.H.L, 1986]. These heuristics are premised on the 

principle that it is desirable to have as little information redundancy between 

the lagged versions of the time series as possible.  
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There have been many discussions on how to determine the optimal 

embedding dimension from a scalar time series based on Taken’s theorem or 

its extensions [Sauer.T, Yorke.J.A., and Casdagli.M, 1991]. The standard way 

to find the minimum embedding dimension ‘d’ is to use some criterion, which 

the geometry of the attractor must meet and check for which embedding 

dimension this is fulfilled. Among different geometrical criteria, the most 

popular seems to be the method of False Nearest Neighbors [Kennel.M.B, 

Brown.R, and Abarbanel.H.D.I, 1992]. This criterion concerns the 

fundamental condition of no self-intersections of the reconstructed attractor. 

In this chapter we are discussing the selection of proper time delay in 

terms of first zero of autocorrelation function and first minimum of auto 

mutual information function along with a new method in terms of Maximum 

Euclidean Distance Measure. For the embedding dimension we have used 

Cao’s algorithm in which the method overcomes the shortcomings of the 

conventional techniques for finding False Nearest Neighbors. With these 

optimum embedding parameters, Reconstructed Phase Space Distribution 

Parameter (RPSDP) is modified. 

In the first session of this chapter, selection of optimum time delay for 

Phase Space Reconstruction based on first zero of Autocorrelation function is 

described. Following the limitations of this method, selection of ‘τ’ based on 

first minimum of average mutual information function is presented. Then a 

new technique for the selection of proper time delay is introduced. In the next 

session, minimum embedding dimension for Phase Space Reconstruction is 
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determined using Cao’s method. Finally modification of RPSDP with the 

optimum embedding parameters is presented.   

7.2 Proper Time Delay based on Autocorrelation Function 

 Autocorrelation is a mathematical tool used frequently in signal 

processing for analysing functions or series of values, such as time diomain 

signals. Informally, it is a measure of how well a signal matches a time-

shifted version of itself, as a function of the amount of time shift. 

Autocorrelation is useful for finding repeating patterns in a signal, such as 

determining the presence of a periodic signal which has been buried under 

noise, or identifying the missing fundamental frequency in a signal implied by 

its harmonic frequencies. 

 The Autocorrelation function (ACF) shows the value of the 

autocorrelation coefficient for different time lags τ [Abarbanel.H.D.I, 1996] : 

   C(τ) = 2
nn )] - )(X - E[(X

σ
µµ τ+    ….(7.1) 

Where E is the expectation  value, µ is the mean and σ the standard 

deviation. The estimation of the autocorrelations from a time series is 

straightforward as long as the lag τ is small compared to the total length of the 

time series and C(τ) quantifies how these points are distributed. If they spread 

out evenly over the plane, or if they are uncorrelated, then C(τ) =0. If they 

tend to crowd along the diagonal Xn = Xn+τ, then C(τ) > 0, and if they are 

closer to the line Xn = - Xn+τ we have C(τ) < 0. The latter two cases reflect 
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some tendency of Xn and Xn+τ to be proportional to each other. C(τ) is 

maximized when the delay ‘τ’  is zero.  

The autocorrelation function is expected to provide a reasonable 

measure of the transition from redundance to irrelevance as a function of 

delay. A common choice for delay ‘τ’ is the time at which the autocorrelation 

function has its first zero, which makes the coordinates linearly uncorrelated. 

 Figure 7.1(a) shows the autocorrelation function for vowel A/Λ/. Here 

C(τ) crosses first zero when the delay is 4. Figure 7.2(a) gives the 

corresponding reconstructed phase space for vowel A/Λ/ with dimension 3. 

 Figures 7.1(b-e) show the autocorrelation functions for vowels C/I/, 

F/ae/, H/o/, D/u/ and figures 7.2(b-e) show the corresponding Phase portraits. 
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Fig.7.1(a): Delay Vs. Autocorrelation function for Malayalam vowel A/Λ/ 
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Fig.7.2(a)Reconstructed Phase space for vowel A/Λ/ with delay 4 and dimension 3 
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Fig.7.1(b): Delay Vs. Autocorrelation function for Malayalam vowel C/I/ 
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Fig. 7.2(b) Reconstructed Phase space for vowel C/I/with delay 9 and dimension 3 
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Fig.7.1(c): Delay Vs. Autocorrelation function for Malayalam vowel F/ae/ 

-1  

0   

1   

-1  

0   

1   

0   

1   

XnX(n+6)

X
(n

+1
2)

 

Fig.7.2(c)Reconstructed Phase space for vowel F/ae/ with delay 6 and dimension 3 
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Fig.7.1(d): Delay Vs. Autocorrelation function for Malayalam vowel H/o/ 
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Fig. 7.2(d) Reconstructed Phase space for vowel H/o/with delay 5 and dimension 3 
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Fig.7.1(e): Delay Vs. Autocorrelation function for Malayalam vowel D/u/ 
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Fig. 7.2(e) Reconstructed Phase space for vowel D/u/with delay 6 and dimension 3 
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 The autocorrelation based methods have the advantage of short 

computation times when calculated via the fast Fourier transform (FFT) 

algorithm. A quite reasonable objection of this procedure is that it is based on 

linear statistics and only measures linear dependence. It is not taking into 

account nonlinear dynamical correlations. Since the relationship between the 

spatial distribution of a reconstructed attractor and the temporal 

autocorrelation of a single time series is an ill-defined one, the method tends 

to be inconsistent [Fraser.A.M. and Swinney.H.L, 1986], [Albano.A.M, 

Rapp.P.E et. al., 1988], [Martinerie.J.M, Rapp.P.E et. al., 1992]. For this 

reason, Fraser and Swinney [Fraser.A.M. and Swinney.H.L, 1986] suggested 

a spatial measure based on mutual information. 

7.3 Proper Time Delay based on Mutual Information Function 

 In contrast to the linear dependence measured by autocorrelation, 

mutual information, I(τ), supplies a measure of general dependence 

[Fraser.A.M. and Swinney.H.L, 1986]. Therefore, I(τ) is expected to provide 

a better measure of the shift from redundance to irrelevance with nonlinear 

systems. Mutual information answers the following question : Given the 

observation of x(t), how accurately can one predict x(t + τ)? Thus, successive 

delay coordinates are interpreted as relatively independent when the mutual 

information is small. According to Fraser and Swinney greatest independence, 

or the lowest I(τ), can be associated with the least redundance and, therefore 

is the best for attractor reconstruction. Hence the proper time delay ‘τ’ can be 
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selected as the lag that produces a local minimum of I(τ). In a system with 

positive metric entropy any measurement stripe will eventually spread back 

into the invariant measure. This is accomplished by the well known stretching 

and folding effect. To avoid this type of spreading, the first local minimum of 

I(τ) is preferred to later minima [Fraser.A.M. and Swinney.H.L, 1986], 

[Liebert.W and Schuster.H.G, 1989].  

7.3.1 Average Mutual Information 

 In probability theory and information theory, the mutual information of 

two random variables is a quantity that measures the mutual dependence of 

the two variables, or it is the amount of information that is shared between 

two data sets. Shannon’s information theory provides a formalism for 

quantifying the concept of information among measurements. 

 Consider a set of possible measurements s1, s2, ……… sn of a system 

‘S’. Let Ps(s1), Ps(s2), ………..Ps(sn) be the associated probabilities of the 

measurements. Then Ps maps the measurements to probabilities. The amount 

of information gained from a measurement that specifies s  is the entropy ‘H’ 

of the system, 

    ∑−=
i

isis )s(Plog)s(P)S(H               ……….. ( 7.2) 

If the log is taken to the base two, H is in units of bits. 

 Now we consider a general coupled system ‘S’ and ‘Q’. We have given 

that ‘s’  has  been   measured  and  found to  be si,  then   the  uncertainty  in  a  
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measurement of ‘q’ is given by, 

   ])sq(Plog[)sq(P)sQ(H ijsq
j

ijsqi ∑−=             ……(7.3)  

where )( ijsq sqP  is the probability that a measurement of q will yield qj, 

given that the measured value of s is si. But the probability associated with the 

combined system S and Q, that a measurement of q will yield qj, and the 

measurement of s yield si,  is given by : )q,s(P jisq

)q,s(P jisq = )sq(P ijsq .  )s(P is

then,  )sQ(H i )]s(P/)q,s(Plog[)]s(P/)q,s(P[ isjisqis
j

jisq∑−=    ….(7.4) 

  Then for a time series x(t), we can measure how dependent the 

values of x(t+τ) on the values of x(t), by making the assignment [s,q] = [x(t), 

x(t+τ)]. Given that x has been measured at time t, then the average uncertainty 

in a measurement of x at time t+τ is given by averaging )( isQH  over si, 

which yields 

∑=
i

iis )sQ(H)s(P)SQ(H                 ………..(7.5) 

    ∑−=
j,i

isjisqjisq )]s(P/)q,s(Plog[)q,s(P  

[ ] [ ]{ }∑ −−=
j,i

isjisqjisq )s(Plog)q,s(Plog)q,s(P  

[ ] [ ]∑∑ +−=
j,i

isjisq
j,i

jisqjisq )s(Plog)q,s(P)q,s(Plog)q,s(P  
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But     )Q,S(H)]q,s(Plog[)q,s(P
j,i

jisqjisq =−∑   .…...(7.6) 

and    [ ] [ ])s(Plog)s(P.)sq(P)s(Plog)q,s(P isisij
j,i j,i

sqisjisq∑ ∑=  

                    = [ ]∑
i

isis )s(Plog)s(P  since, ∑ =
j

ijsq 1)sq(P  

so = - H(S)            ….…..(7.7) [∑
j,i

isjisq )s(Plog)q,s(P ]

Hence           =)SQ(H   )S(H)Q,S(H −  

   H(Q) is the uncertainty of q in isolation, and H(Q⏐S) is the uncertainty 

of q given a measurement of s. So the amount that a measurement of s reduces 

the uncertainty of q is  

   )SQ(H)Q(H)S,Q(I −=  

)Q,S(H)S(H)Q(H −+=  

 This is the mutual information. It is the answer to the question, ‘Given 

a measurement of s, how many bits on the average can be predicted about q?’ 

         From equation 7.6, we have ∑−=
j,i

jisqjisq )]q,s(Plog[)q,s(P)Q,S(H  

and from equation 7.7,  H(S) = [ ]∑−
j,i

isjisq )s(Plog)q,s(P  

similarly,    H(Q)= [ ]∑−
j,i

jqjisq )q(Plog)q,s(P   

Hence, 

I(Q,S) = ∑
j,i

jisqjisq )]q,s(Plog[)q,s(P [ ]∑−
j,i

isjisq )s(Plog)q,s(P [ ]∑−
j,i

jqjisq )q(Plog)q,s(P  

∑=
j,i

jqisjisqjisq )]q(P)s(P/)q,s(Plog[)q,s(P)S,Q(I  
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 If the measurement of a value from Q resulting in qj is completely 

independent of  the  measurement of a  value from  S  resulting in  si, then 

Psq(si,qj) factorizes : 

Psq(si,qj) = Ps(si) Pq(qj) and the amount of information between the 

measurements, average mutual information is zero. 

 For time series x(t), the average mutual information between x(t) and 

x(t+τ) is given by 

∑
+

+++=
)(),(

))](())((/))(),((log[))(),(()(
τ

ττττ
txtx

txPtxPtxtxPtxtxPI  

If the measurements x(t) and x(t+τ) are independent, then I(τ) will tend 

to zero. It was the suggestion of Fraser that one can use the function  I(τ) as a 

kind of nonlinear autocorrelation function to determine, when the values x(t) 

and x(t+τ) are independent enough of each other to be useful as coordinates in 

a time delay vector but not so independent as  to have no connection with 

each other at all. The actual prescription suggested is to take the ‘τ’ where the 

first minimum of the average mutual information I(τ) occurs as that value to 

use in time delay reconstruction of phase space.  

The algorithm suggested by Fraser and Swinney is implemented using 

Mathlab and the proper delay for Malayalam vowels are calculated. 

Figures 7.3(a-e) show the average mutual information function for 

Malayalam vowels and figures 7.4(a-e) give the corresponding reconstructed 

phase spaces with dimension 3. In figure 7.3(a) first minimum of I(τ) is when 

delay is 3 
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Fig.7.3(a): Delay Vs. Average Mutual Information function (vowel A/Λ/) 

-1  

0   

1   

-1  

0   

1   
-1  

0   

1   

XnX(n+3)

X
(n

+6
)

 

Fig7.4(a):Reconstructed Phase space for vowel A/Λ/with delay 3 and dimension 3 
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Fig.7.3(b):  Delay Vs. Average Mutual Information function (vowel C/I/) 
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Fig.7.4(b): Reconstructed Phase space for vowel C/I/with delay 8 and dimension 3 
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Fig.7.3(c): Delay Vs. Average Mutual Information function (vowel F/ae/) 
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Fig7.4(c):Reconstructed Phasespace for vowel F/ae/with delay 4 and dimension 3 
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Fig.7.3(d):  Delay Vs. Average Mutual Information function (vowel H/o/) 
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Fig.7.4(d): Reconstructed Phase space for vowel H/o/with delay 4 and dimension 3 
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Fig.7.3(e): Delay Vs. Average Mutual Information function (vowel D/u/) 
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Fig.7.4(e): Reconstructed Phase space for vowel D/u/with delay 4 and dimension 3 
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 Average mutual information I(τ)  reveals quite a different insight about 

the nonlinear characteristics of an observed time series than the more familiar 

autocorrelation function, where the latter is tied to linear properties of the 

source. The primary drawback of this approach is the enormous 

computational costs. Martinerie et. al. showed that mutual information is also 

inconsistent in identifying the optimal value of ‘τ’ [Martinerie.J.M et. al., 

1992].   

 The literature contains many more suggestions on methods of how to 

determine an optimal time lag. Some of them have a nice heuristic 

justification. For a nonlinear time series analysis, it is our impression that it 

might be more useful to optimize the time lag with respect to a particular 

source and application. Hence for speech signal analysis, we introduced a 

novel method for determining the proper time lag and is explained in the next 

section. 

7.4 Geometry based method for Proper Time Delay 

Geometry-based methods for determining τ may be interpreted as 

various attempts to answer the following question: What value for the delay 

results in the most space filling reconstruction? Or for what value of delay the 

attractor in the reconstructed phase space is most dilated? In the previous 

chapter we have utilized the reconstructed phase space for the determination 

of pitch period of the speech signal. The idea behind this approach is that, if 

the time delay corresponds to pitch period of the signal (T), the Euclidean 
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distance measure of phase space points from the phase space diagonal (the 

identity line) is the minimum. If the Euclidean Distance Measure from the 

Phase Space Diagonal is maximum, the Phase Space points are widely spread 

in the reconstructed space. The delay corresponding to the Maximum 

Euclidean Distance Measure can be interpreted as the delay, which results in 

the most space filling reconstruction. 

The expansion from the main diagonal can be best quantified by 

measuring the Euclidean distance of the phase space points, as explained in 

the previous chapter. The delay corresponds to Maximum Euclidian Distance 

Measure (MEDM) can be used for the reconstruction of phase space, as it 

results in most space filling reconstruction and provides most dilated attractor 

in the Phase Space. 

Figures 7.5(a-e) show the variation of Euclidean Distance Measure of 

Phase Space points from the Phase Space diagonal with delay for Malayalam 

vowels and figures 7.6(a-e) give the corresponding reconstructed phase 

spaces with dimension 3. In figure 7.5(a), Maximum Distance Measure from 

the phase space diagonal corresponds to time delay 6. 
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 Fig.7.5(a):Delay Vs. Distance Measure from the phase space diagonal (vowel A/Λ/) 
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Fig7.6(a):Reconstructed Phase space for vowel A/Λ/with delay 6 and dimension 3 
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Fig.7.5(b):Delay Vs.Distance Measure from the phase space diagonal (vowel C/I/) 
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Fig7.6(b):Reconstructed Phase space for vowel C/I/with delay 13 and dimension 3 
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Fig.7.5(c):Delay Vs.Distance Measure from the phase space diagonal (vowel F/ae/) 
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Fig7.6(c):Reconstructed Phase space for F/ae/with delay 10 and dimension 3 
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Fig.7.5(d):Delay Vs.Distance Measure from the phase space diagonal (vowel H/o/) 
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Fig.7.6(d): Reconstructed Phase space for vowel H/o/with delay 9 and dimension 3 
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Fig.7.5(e):Delay Vs.Distance Measure from the phase space diagonal (vowel D/u/) 
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Fig.7.6(e):Reconstructed Phase space for vowel D/u/ with delay 11and dimension 3 
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Fig.7.7 : Phase portrait of Malayalam vowel D/u/ with first zero of 

    Autocorrelation function as time delay 
 

   
Fig. 7.8 : Phase portrait of Malayalam vowel D/u/ with first minimum of Mutual  
                Information function as time delay 

  
Fig. 7.9 : Phase portrait of Malayalam vowel D/u/ with maximum distance measure   
                from the phase space diagonal as time delay 
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The criteria chosen for the selection time delay in the reconstruction of 

phase space are compared in figures 7.7, 7.8 and 7.9. The phase portrait 

shown in Figure 7.7 is constructed for time delay corresponding to the first 

zero in the autocorrelation function and it occurs for delay 6. In Figure 7.8 the 

phase portrait corresponds to first minimum of mutual information function 

and here the delay is 4. In these figures it is clear that the trajectories are 

indistinguishable and the attractor is not dilated much. Therefore it is difficult 

to deduce quantitative information about the dynamics from these phase 

portraits. On the other hand in the phase portrait shown in figure 7.9 the 

criteria used for the selection of time delay is the delay corresponds to 

maximum distance measure from the main diagonal, and the delay selected is 

11. Since it is the most space filling reconstruction compared to the other two 

methods, in applications like speech recognition, parameters can be 

quantitatively deduced from this portrait. Phase space distribution parameter 

extracted from these portraits can be effectively utilized for the improvement 

of recognition accuracy as explained in chapter 8 

7.5 Minimum Embedding dimensions for Phase Space Reconstruction 

 The embedding theorem tells us that if the dimension of the attractor 

defined by the orbits is D, then we will certainly unfold the attractor in an 

integer dimensional space of dimension d, where d ≥ 2D. This is not the 

necessary dimension for unfolding, but is sufficient and certainly tells us 

when to stop adding components to the time delay vector. The box counting 

dimension of the strange attractor for the Lorenz model is D ≈ 2.06, which 
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would lead us to anticipate d = 5 to unfold the Lorenz attractor. But it is 

shown that d = 3 will do well for this system [Abarbanel.H.D.I, 1996]. 

Therefore we are certain from the theorem that some dimension ≤ 2D will do 

for d, and in the following session we will discuss which dimension is to be 

selected. 

 There have been many discussions in the literature on selecting 

optimum embedding dimension from a time series data [Martinerie.J.M., 

AlbanoA.M..et al, 1992], [Kennel. M. B., Brown. R., and Abarbanel. H. D. 

I,1992]. Following are the three basic methods which are usually used to 

choose the minimum embedding dimension: 

(1) computing some invariant on the attractor[ Grassberger.P and Procaccia.I, 

1983]. By increasing the embedding dimension used for the computation one 

notes when the value of the invariant stop changing. The typical problem with 

this approach is that it is often very data intensive, certainly subjective, and 

time-consuming for computation. (2) singular value decomposition and (3) 

the method of false neighbors [Kennel.M.B,  Brown.R, et.al., 1992]. It was 

developed based on the fact that choosing too low an embedding dimension 

results in points that are far apart in the original phase space being moved 

closer together in the reconstruction space. 

7.5.1 The method of False Nearest Neighbors 

 The concept called false nearest neighbors, was introduced by Kennel, 

Brown & Abarbanel (1992). The basic idea is to search for points in the data 

set which are neighbors in embedding space. Imagine that the correct 
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embedding dimension for some data set is d. Now study the same data in a 

lower embedding dimension, d0      (ie d0 < d). The transition from d to d0 is a 

projection, eliminating certain axes from the coordinate system. Hence points 

whose coordinates are eliminated by the projection can become ‘false 

neighbors’ in the d0 dimensional space. 

If d0 is qualified as an embedding dimension by the embedding 

theorems, then any two points which stay close in the d0 dimensional 

reconstructed space will be still close in the d0 +1 dimensional reconstructed 

space. Such pair of points are called true neighbors, otherwise they are called 

false neighbors. Perfect embedding means that no false neighbors exist. This 

is the idea of the false neighbor method by the authors Kennel, Brown & 

Abarbanel [Kennel.M.B,  Brown.R, et.al., 1992]. 

 For each point of the time series, take its closest neighbor in d0 

dimensions. Then compute the ratio of distances between these two points in 

d0+1 dimensions and d0 dimensions. If this ratio is larger than a threshold ‘r’, 

the neighbor was false. The process is repeated by increasing the dimension 

and the percentage of false nearest neighbors will drop from 100% to zero 

when the proper dimension ‘d’ is reached. Further it will remain zero from 

then onwards, since once the attractor is unfolded, it is unfolded. 

But the criterion in this approach is subjective in some sense that, 

different values of  parameters  may  lead to  different  results [Cao.L, 1997)]. 

For realistic time series data, different optimal embedding dimensions are 
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obtained if we use different values of the threshold value. Also with noisy 

data this method gives spurious results. [Kantz.H and Schreiber.T, 1997]. 

7.5.2 Minimum Embedding Dimension using Cao’s Method 

Consider a time series x1, x2,  ...…xN  The time-delay vectors can be 

reconstructed as follows: 

yi(d) = (xi  xi+τ  ... xi+(d-1) τ),  i = 1,2,……..N – (d-1) τ  

where d is the embedding dimension and τ is the time-delay. Note that yi(d) 

means the ith reconstructed vector with embedding dimension d. Similar to the 

idea of the false neighbor method [Kennel. M. B., Brown. R., and Abarbanel. 

H. D. I,1992], we define 

   a(i, d)  =   
)d(y)d(y

)1d(y)1d(y

)d,i(ni

)d,i(ni

−

+−+
,    i = 1,2,…….N-dτ 

where  is measurement of Euclidean distance, yi(d+1) is the ith 

reconstructed vector with embedding dimension d+1, i.e., yi (d+1) = (xi  xi+τ  

... ….xi+dτ) and n(i,d), (1 ≤ n(i,d) ≤ N-dτ) is an integer such that yn(i,d)(d) is the 

nearest neighbor of yi(d) in the m dimensional reconstructed phase space in 

the sense of Euclidean distance . 

 In false nearest neighbors method, the authors diagnosed a false 

neighbor by seeing whether the a(i, d) is larger than some given threshold 

value. The problem is how to choose this threshold value. It is very difficult 

and even impossible to give an appropriate and reasonable threshold value, 
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which is independent of the dimension d and each trajectory's point, as well as 

the considered time series data. 

 To avoid the above problem, in Cao’s method, the mean of all a(i,d)s is 

defined by, 

                     E(d) =  ∑
τ−

=τ−

dN

1i
)d,i(a

dN
1  

E(d) is dependent on only the dimension d and the lag τ. To investigate its 

variation from d to d+1,  a quantity is defined by 

    E1(d) = E(d+1)/ E(d) 

It is found that E1(d) stops changing when d is greater than some value 

d0. Then     d = d0+1 is the minimum embedding dimension we are looking 

for. 

The parameter τ is a necessary parameter, which must be given before 

the minimum embedding dimension is determined numerically. Although in 

principle the embedding dimension is independent of the time delay τ, the 

minimum embedding dimension is dependent on τ in practice. Different 

values of τ may lead to different minimum embedding dimensions. We will 

use the method of Maximum Euclidian Distance Measure (MEDM) from the 

phase space diagonal to choose the parameter τ in this work, on account of 

reasons already explained. The algorithm is implemented using Matlab and 

the experimental results are shown in the figures 7.10(a-e). 
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Fig.7.10(a): variation of E1(d) with dimension d for Malayalam vowel A/Λ/ 

 

0 3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 0

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

E1
(d

)

D im e n s io n  (d )

 

Fig.7.10(b): variation of E1(d) with dimension d for Malayalam vowel C/I/ 
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Fig.7.10(c): variation of E1(d) with dimension d for Malayalam vowel F/ae/ 
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Fig.7.10(d): variation of E1(d) with dimension d for Malayalam vowel H/o/ 
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Fig.7.10(e): variation of E1(d) with dimension d for Malayalam vowel D/u/ 

 

 From these figures it may be noted that E1(d) almost remains a 

constant when the embedding dimension is greater than 2, when time lag is 

selected by the method of MEDM. That is the minimum embedding 

dimension according to this result is 3. Therefore in the further analysis we 

have used the minimum embedding dimension for the reconstruction of phase 

space as 3. 

7.6 RPS Features with Optimum Embedding Parameters 

 The concepts of minimum embedding dimension ‘d’ and the optimum 

time lag ‘τ’ play a significant role in both the theoretical and practical aspects 

of Reconstructed Phase Spaces. In the previous session, we found that as far 
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as speech signal is concerned, the optimum time lag corresponding to the 

Maximum Euclidian Distance Measure (MEDM) from the phase space 

diagonal is a good choice. The heuristic procedures of false nearest neighbors 

for determining minimum embedding dimension contain subjective 

parameters. Cao’s algorithm is a solution to avoid such factors. Therefore we 

have optimized the parameters for reconstructing the Phase Space based on 

the above mentioned algorithms. In chapter 5 we have described an algorithm 

for extracting useful parameters from the Reconstructed Phase Space 

(RPSDP). In the next session modified Reconstructed Phase Space features 

are extracted with the optimum embedding parameters. 

 For each vowel, optimum time delay is determined using MEDM from 

the phase space diagonal. From Cao’s algorithm, we have got the minimum 

embedding dimension as 3.Hence phase space is reconstructed for each vowel 

with dimension 3 and  optimum time delay.  RPS  distribution  plot (scatter 

graph)  for  five  Malayalam vowels are shown in figures 7.11(a-e). 
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Fig.7.11(a): Reconstructed Phase Space Distribution for vowel A/Λ/ 
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Fig.7.11(b): Reconstructed Phase Space Distribution for vowel C/I/ 
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Fig.7.11(c): Reconstructed Phase Space Distribution for vowel F/ae/ 
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Fig.7.11(d): Reconstructed Phase Space Distribution for vowel H/o/ 
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Fig.7.11(e): Reconstructed Phase Space Distribution for vowel D/u/ 

7.6.1 Modified RPS Distribution Parameter 

 To extract the distribution parameter from the three dimensional 

Reconstructed Phase Space, the entire three dimensional space is divided into 

1000 locations. The number of Phase Space Points distributed in each location 

is calculated as follows. 

 RPS is divided into grids with 10 x 10 x 10 boxes. The box defined by 

co-ordinates (-1, .8, -.8) , (-.8, 1, -1) is taken as location 1. Box just right side 

to it is taken as location 2 and it is extended towards X direction, with the last 

box in the row (.8, .8, -.8), (1, 1, -1) as location 10.  This is repeated for the 

next row, taking the starting box as location 11 and repeated for all other 

rows. Then the entire steps are repeated in positive Z direction. The 

Reconstructed Phase Space Distribution  Parameter (RPSDP) is  calculated by  
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estimating the number of Phase Space points distributed in each location. 

Figures 7.12(a-e) show the Modified Reconstructed Phase Space Distribution 

Parameter versus  locations for the vowels A/Λ/, C/I/, F/ae/, H/o/, and D/u/. 
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Fig. 7.12(a) : Modified RPS Distribution Parameter (Vowel A/Λ/) 
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 Fig. 7.12(b) : Modified RPS Distribution Parameter (Vowel C/I/) 

 
186



0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0
R

P
SD

P

L o c a t io n

 

Fig. 7.12(c) : Modified RPS Distribution Parameter (Vowel F/ae/) 
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Fig. 7.12(d) : Modified RPS Distribution Parameter (Vowel H/o/) 
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Fig. 7.12(e) : Modified RPS Distribution Parameter (Vowel D/u/) 

 

This operation is repeated for the same vowel uttered at different 

occasions. Figures 7.13(a-e) show the Modified Reconstructed phase space 

distribution parameters for each vowel uttered at different occasions. The 

graph thus plotted for different vowels shows the identity for each vowel as 

regard to pattern. Therefore this technique can be effectively utilized for 

speech recognition applications. 
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Fig.7.13(a) :Modified RPS Distribution Parameter for 15 repeated utterances 
(Vowel A/Λ/) 
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Fig.7.13(b) :Modified RPS Distribution Parameter for 15 repeated utterances  
 (Vowel C / I /) 
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Fig.7.13(c) :Modified RPS Distribution Parameter for 15 repeated utterances 
(Vowel F /ae/) 
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Fig.7.13(d) :Modified RPS Distribution Parameter for 15 repeated utterances 
(Vowel H/o/) 
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Fig.7.13(e) :Modified RPS Distribution Parameter for 15 repeated utterances 
(Vowel D /u/) 
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7.7 Conclusion 

 The problem of choosing the optimal time delay and the minimum 

embedding dimension for the reconstruction of phase space using the method 

of delays are addressed in this chapter. From the discussions of the methods 

of determining proper time delay, it can be concluded that the optimal delay 

depends upon the details of the time series as well as the dynamics of the 

underlying system. We developed a simple procedure that quantifies 

expansion from the identity line of embedding space. Such a procedure may 

be more useful in the estimation of the proper time delay. For determining the 

minimum embedding dimension we have used Cao’s method, which does not 

contain any subjective parameters except time delay for the embedding and is 

computationally efficient. This method gives consistent results with 

Malayalam vowels. With these optimum-embedding parameters, 

Reconstructed Phase Space Distribution Parameter (RPSDP) is modified, 

whose discriminatory power is illustrated in the next chapter.  
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Chapter 8 

Vowel Recognition Using k-NN Classifier and Artificial 

Neural Network   

8.1 Introduction 

 Automatic Speech recognition (ASR) has a history of more than 50 

years. With the emerging of powerful computers and advanced algorithms, 

speech recognition has undergone a great amount of progress over 25 years. 

Fully automatic speech-based interface to products, which would encompass 

real-time speech processing as well as language understanding, is still 

considered to be many years away. 

 Basic approaches adopted for speech recognition are : 

1. Acoustic phonetic approach 

2. Pattern recognition approach 

3. Artificial Intelligence approach  

The acoustic phonetic approach is based on the theory of acoustic 

phonetics that postulates that there exists finite, distinctive phonetic unit in 

spoken language and that phonetic units are broadly characterized by a set of 

properties that are manifested in the speech signal, or its spectrum, over time. 

Even though the acoustic properties of a phonetic unit are highly variable, 

both with speakers and with neighboring phonetic units (it is called co-

articulation of sound), it is assumed that the rules governing the variability are 

straightforward and can readily be learned and applied in practical situations. 
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However for a variety of reasons, this approach has limited success in 

practical systems [Rabiner.L.R and Juang.B.H, 1993] 

In Pattern recognition approach to speech recognition, the method has 

two steps namely, training of the speech patterns and recognition of pattern 

via pattern comparison. This is explained in detail in the later sessions.   

The artificial intelligence approach to speech recognition is a hybrid of 

acoustic – phonetic and pattern recognition approaches. The artificial 

intelligence approach attempts to mechanize the recognition procedure 

according to the way a person applies his intelligence in visualizing, 

analyzing, and finally making a decision on the conceived acoustic features.  

Pattern recognition is the study of how machines can observe the 

environment, learn to distinguish pattern of interest from their background, 

and make sound and reasonable decisions about the categories of the patterns. 

Automatic (machine) recognition, description, classification and grouping of 

patterns are important problems in a variety of engineering and scientific 

disciplines. Pattern recognition can be viewed as the categorization of input 

data into identifiable classes via the extraction of significant features or 

attributes of the data from the background of irrelevant details. Duda and Hart 

[Duda.R.O and Hart.P.E, 1973] define it as a field concerned with machine 

recognition of meaningful regularities in noisy or complex environment. It 

encompasses a wide range of information processing problems of great 

practical significance from speech recognition, handwritten character 

recognition, to fault detection in machinery and medical diagnosis. Today, 
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pattern recognition is an integral part of most intelligent systems built for 

decision making. 

 Normally the pattern recognition processes make use of one of the 

following two classification strategies. 

1. Supervised classification (e.g., discriminant analysis) in which the 

input pattern is identified as a member of a predefined class. 

2. Unsupervised classification (e.g., clustering) in which the pattern is 

assigned to a hitherto unknown class. 

In the present study the well-known approaches that are widely used to solve 

pattern recognition problems including statistical pattern classifier (k-Nearest 

Neighbor classifier), and connectionist approach (Multi layer Feed forward 

Artificial Neural Networks) are used for recognizing Malayalam vowels. Here 

classifiers are based on   supervised learning strategy. 

 The Reconstructed Phase Space Distribution Parameter (RPSDP) 

extracted as explained in chapter 5 and Modified RPS Distribution Parameter 

(MRPSDP) using optimum embedding parameters as discussed in chapter 7 

are used as input features for recognition study. This chapter is organized as 

follows.  

 The first session provides the general description of the pattern 

recognition approach to speech recognition. The second session deals with 

recognition experiments conducted using k-NN statistical classifier. The third 

session describes the multi layer feed forward neural network architecture and 
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the simulation experiments conducted for the recognition of Malayalam 

vowels. 

8.2 Pattern recognition approach to speech recognition 

The block diagram of a typical pattern recognition system for speech 

recognition is  shown in Figure 8.1. 

 
 

 

 

Fig.8.1:Block diagram of a pattern  recognition system for speech recognition 

The pattern recognition paradigm has four steps, namely: 

1. Feature extraction, in which a sequence of measurements is made on 

the input signal to define the ‘test pattern’. For speech signals the 

conventional feature measurements are usually the output of some type 

of spectral analysis technique, such as a filter bank analyzer, a linear 

predictive coding analysis, or a discrete Fourier transform  analysis. 

2. Pattern training, in which one or more test patterns corresponding to 

speech sounds of the same class are used to create a pattern, 

representative of the features of the class. The resulting pattern, 
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generally called a reference pattern, can be an exemplar or template, 

derived from some type of averaging technique, or it can be a model 

that characterizes the statistics of the features of the reference pattern. 

3. Pattern classification, in which the unknown test pattern is compared 

with each (sound) class reference pattern and a measure of similarity 

(distance) between the test pattern and each reference pattern is 

computed. To compare speech patterns (which consist of a sequence of 

spectral vectors), we require both local distance measure, in which 

local distance is defined as the spectral “distance” between two well – 

defined spectral vectors, and a global time alignment procedure (often 

called a dynamic time warping algorithm), which compensates for 

difference of speaking (time scales) of the two patterns. 

4. Decision logic, in which the reference pattern’s similarity scores are 

used to decide which reference pattern (or possibly which sequence of 

reference patterns) has best match to the unknown test pattern. 

The factors that distinguish the different pattern-recognition approaches 

are the types of feature measurement, the choice of templates or models for 

reference patterns, and the method used to create reference patterns and to 

classify the unknown test pattern. The general strengths and weaknesses of 

the pattern recognition models include the following: 

1. The performance of the system is sensitive to the amount of training 

data available for creating sound class reference patterns; generally the 

more training, the higher the performance of the system. 
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2. The reference patterns are sensitive to the speaking environment and 

transmission characteristics of the medium used to create the speech. 

This is because the speech characteristics are affected by transmission 

and background noise.  

3. No speech-specific knowledge is used explicitly in the system; hence, 

the method is relatively insensitive to choice of the vocabulary of 

words, task, syntax and semantics. 

4. The computational load for both pattern training and pattern 

classification is generally linearly proportional to the number of 

patterns being trained or recognized; hence, computation for a large 

number of sound classes could, and often does, become prohibitive. 

5. It is relatively straightforward to incorporate syntactic (and even 

semantic) constraints directly into the pattern-recognition structure, 

thereby improving recognition accuracy and reducing the 

computation. 

8.3 Statistical Pattern Classification 

In the statistical pattern classification process, a ‘d’ dimensional 

feature vector represents each pattern and it is viewed as a point in the d-

dimensional space. Given a set of training patterns from each class, the 

objective is to establish decision boundaries in the feature space, which 

separate patterns belonging to different classes. The recognition system is 

operated in two phases, training (learning) and classification (testing). The 
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following section describes the pattern recognition experiment conducted for 

the recognition of five basic Malayalam vowels using k-NN classifier. 

8.3.1  k-Nearest Neighbor Classifier for Malayalam vowel Recognition 

 Pattern classification by distance functions is one of the earliest 

concepts in pattern recognition [Tou.J.T and Gonzalez.R.C, 1974], 

[Friedman.M. and Kandel.A, 1999]. Here the proximity of an unknown 

pattern to a class serves as a measure of its classification. A class can be 

characterized by single or multiple prototype pattern(s). The k-Nearest 

Neighbour method is a well-known non-parametric classifier, where a 

posteriori probability is estimated from the frequency of nearest neighbours of 

the unknown pattern. It considers multiple prototypes while making a 

decision and uses a piecewise linear discriminant function. Various pattern 

recognition studies with first-rate performance accuracy are also reported  

based on this classification technique [Ray.A.K. and Chatterjee.B, 1984], 

[Zhang.B and Srihari.S.N, 2004], [Pernkopf.F, 2005]. 

Consider the case of m classes ci, i =1,….., m and a set of N samples 

patterns yi, i =1,…, N whose classification is a priory known. Let x denote an 

arbitrary incoming pattern. The nearest neighbour classification approach 

classifies x in the pattern class of its nearest neighbour in the set yi, i = 1,….., 

N i.e., 

If || x – yj ||2 = min || x – yi ||2 where 1 ≤ i ≤ N 

then x ε cj . 
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This scheme can be termed as 1-NN rule since it employs only one 

nearest neighbour to x for classification. This can be extended by considering 

the k nearest neighbours to x and using a majority-rule type classifier. The 

following algorithm summarizes the classification process. 

Algorithm: Minimum distance k-Nearest Neighbor classifier 

Input:  N – number of pre-classified patterns 

m – number of pattern classes. 

(yi, ci), 1≤ i ≤ N - N ordered pairs, where yi is the ith pre-classified 

pattern and ci it’s class number ( 1≤ ci ≤ m for all i ). 

k - order of NN classifier (i.e. the k closest neighbors to the incoming 

patterns are considered). 

x - an incoming pattern. 

Output: L – class number into which x is classified. 

Step 1: Set S = { (yi, ci) }, where i = 1,…, N 

Step 2: Find (yj, cj) ε S which satisfies 

|| x – yj ||2 = min || x – yi ||2 where 1 ≤ i ≤ m 

Step 3: If k = 1 set L = cj and stop; else initialize an 

m -dimensional vector I 

I( i ′ ) = 0, i ′ ≠ cj ; I(cj) = 1 where 1 ≤ i′ ≤ m and 

set S = S - { (yj, cj) } 

Step 4: For i0 = 1,…., k-1 do steps 5-6 

Step 5: Find (yj, cj)  ε  S such that 

|| x – yj ||2 = min || x – yi ||2 where 1 ≤ i ≤ N 
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Step 6: Set I(cj) = I(cj) + 1 and S = S -{ (yj, cj) }. 

Step 7: Set L = max {I(i ′) }, 1 ≤ i′ ≤ m and stop. 

In the case of k-Nearest Neighbor classifier, we compute the distance 

of similarity between the features of a test sample and the features of every 

training sample. The class of the majority among the k - nearest training 

samples is deemed as the class of the test sample. 

8.3.2 Simulation Experiments and Results 

 The recognition experiment is conducted by simulating the above 

algorithm using MATLAB. The Reconstructed Phase Space Distribution 

Parameter (RPSDP) extracted as discussed in Chapter 5, and Modified RPS 

Distribution Parameter (MRPSDP)  as explained in chapter 7 are used in the 

recognition study. Here we used the database consisting of 250 samples of 

five Malayalam vowels collected from a single speaker for training and a 

disjoint set of vowels of same size from the database for recognition purpose. 

The recognition accuracies obtained for Malayalam vowels using the 

above said features using k-NN classifier are tabulated in Table 8.1. The 

graphical representation of these recognition results based on the features 

using k-NN classifier is shown in figure 8.2.   

The overall recognition accuracies obtained for Malayalam vowels 

using k-NN classifier with RPSDP and MRPSDP features are 83.12%, and 

86.96% respectively. This algorithm does not fully accommodate the small 

variations in the extracted features. In the next section we present a 

recognition study conducted using Multi layer  Feed forward neural network 
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that is capable of adaptively accommodating the minor variations in the 

extracted features.  

Average Recognition Accuracy (%) Vowel 
Number 

Vowel 
Unit RPSPD Feature MRPSPD Feature 

1 A/Λ/ 90.4 94.8 

2 C/I/ 79.2 84.4 

3 F/ae/ 70.8 73.6 

4 H/o/ 82.8 86 

5 D/u/ 92.4 96 

Overall Recognition 
Accuracy (%) 83.12 86.96 

 

Table 8.1: Recognition Accuracies of Malayalam Vowels based on RPSPD 

and MRPSPD features using k-NN Classifier 
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Fig. 8.2: Vowel No. Vs. Recognition Accuracies of Malayalam Vowels based 

on RPSPD and MRPSPD features using k-NN Classifier 
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8.4 Application of Neural Networks for Speech Recognition 

 Neural network is a mathematical model of information 

processing in human beings. A neural network, which is also called a 

connectionist model or a Parallel Distributed Processing (PDP) model, is 

basically a dense interconnection of simple, nonlinear computation elements. 

The structure of digital computers is based on the principle of sequential 

processing. These sequential based computers have achieved only little 

progress in the area like speech and image recognition. An adaptive system 

having a capability comparable to the human intellect is needed for 

performing better results in the above said areas.  In human beings these types 

of processing are done using massively parallel-interconnected neuron 

systems.  

A set of processing units when assembled in a closely interconnected 

network, offers a surprisingly rich structure, exhibiting some features of 

biological neural network. Such a structure is called an Artificial Neural 

Network (ANN). The ANN is based on the notion that complex “computing” 

operations can be implemented by massive integration of individual 

computing units, each of which performs an elementary computation. 

Artificial neural networks have several advantages relative to sequential 

machines. First, the ability to adapt is at the very center of ANN operations. 

Adaptation   takes the form of adjusting the connection weights in order to 

achieve desired mappings. Furthermore ANN can continue to adapt and learn, 

which is extremely useful in processing and recognition of speech. Second, 
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ANN tend to move robust or fault tolerant than Von Neumann machines 

because the network is composed of many interconnected neurons, all 

computing in parallel, and failure of a few processing units can often be 

compensated for by the redundancy in the network. Similarly ANN can often 

generalize from incomplete or noisy data. Finally ANN when used as 

classifier does not require strong statistical characterization or 

parameterization of data. Since the advent of Feed Forward Multi Layer 

Perception (FFMLP) and error-back propagation training algorithm, great 

improvements in terms of recognition performance and automatic training 

have been achieved in the area of recognition applications. These are the main 

motivations to choose artificial neural networks for speech recognition. 

 The following sections deal with the recognition experiments 

conducted based on the feed-forward neural network for Malayalam vowels. 

A brief description about the diverse use of neural networks in pattern 

recognition followed by the general ANN architecture is presented first. In the 

next section the error back propagation algorithm used for training FFMLP is 

illustrated. The Final section deals with the description of simulation 

experiments and recognition results. 

8.4.1 Neural Networks for Pattern Recognition 

 Artificial Neural Networks (ANN) can be most adequately 

characterized as computational models with particular properties such as the 

ability to adapt or learn, to generalize, to cluster or organize data, based on a 

massively parallel architecture. The history of ANNs starts with the 
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introduction of simplified neurons in the work of McCulloch and Pitts 

[McCulloch.W.S and Pitts.W, 1943]. These neurons were presented as models 

of biological neurons and as conceptual mathematical neurons like threshold 

logic devices that could perform computational task. The work of Hebb 

further developed the understanding of this neural model [Hebb.D.O, 1949]. 

Hebb proposed a qualitative mechanism describing the process by which 

synaptic connections are modified in order to reflect the learning process 

undertaken by interconnected neurons, when they are influenced by some 

environmental stimuli. Rosenblatt with his perceptron model, further 

enhanced our understanding of artificial learning devices [Rosenblatt.F., 

1959]. However, the analysis by Minsky and Papert in their work on 

perceptrons, in which they showed the deficiencies and restrictions existing in 

these simplified models, caused a major set back in this research area [Minsky 

.M.L and Papert.S.A., 1988]. ANNs attempt to replicate the computational 

power (low level arithmetic processing ability) of biological neural networks 

and, there by, hopefully endow machines with some of the (higher-level) 

cognitive abilities that biological organisms possess. These networks are 

reputed to possess the following basic characteristics: 

• Adaptiveness: the ability to adjust the connection strengths to new  

        data or information 

• Speed : due to massive parallelism 

• Robustness: to missing, confusing, and/ or noisy data 
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• Optimality: regarding the error rates in performance 

Several neural network learning algorithms have been developed in the 

past years. In these algorithms, a set of rules defines the evolution process 

undertaken by the synaptic connections of the networks, thus allowing them 

to learn how to perform specified tasks. The following sections provide an 

overview of neural network models and discuss in more detail about the 

learning algorithm used in classifying Malayalam vowels, namely the Back-

propagation (BP) learning algorithm. 

8.4.2 General ANN Architecture 

A neural network consists of a set of massively interconnected 

processing elements called neurons. These neurons are interconnected 

through a set of connection weights, or synaptic weights. Every neuron i has 

Ni inputs, and one output Yi. The inputs labeled si1, si2, …, siNi represent 

signals coming either from other neurons in the network, or from external 

world. Neuron i has Ni synaptic weights, each one associated with each of the 

neuron inputs. These synaptic weights are labeled wi1, wi2,…,wiNi, and 

represent real valued quantities that multiply the corresponding input signal. 

Also every neuron i has an extra input, which is set to a fixed value θ , and is 

referred to as the threshold of the neuron that must be exceeded for there to be 

any activation in the neuron. Every neuron computes its own internal state or 

total activation, according to the following expression, 

∑
=

θ+=
iN

1i
swx iijijj     j = 1,2,……..,M 
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where M is the total number of Neurons and Ni is the number of inputs 

to each neuron. Figure 8.3 shows a schematic description of the neuron. The 

total activation is simply the inner product of the input vector Si= [si0, si1, …, 

siNi]T by the weight vector Wi = [wi0, wi1,…wiNi]T. Every neuron computes its 

output according to a function Yi = f(xi), also known as threshold or activation 

function. The exact nature of f will depend on the neural network model under 

study. 

In the present study, we use a mostly applied sigmoid function in the 

thresholding unit defined by the expression, 

ax-e1
1  )x(S

+
=  

This function is also called S-shaped function. It is a bounded, 

monotonic, non-decreasing function that provides a graded nonlinear response 

as shown in figure 8.4 

 

 
Fig.8.3: Simple neuron representation 
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Fig.8.4: Sigmoid threshold function 

 The network topology used in this study is the feed forward network. 

In this architecture the data flow from input to output units strictly feed 

forward, the data processing can extend over multiple layers of units but no 

feed back connections are present. 

This type of structure incorporates one or more hidden layers, whose 

computation nodes are correspondingly called hidden neurons or hidden 

nodes. The function of the hidden nodes is to intervene between the external 

input and the network output. By adding one or more layers, the network is 

able to extract higher-order statistics. The ability of hidden neurons to extract 

higher-order statistics is particularly valuable when the size of the input layer 

is large. The structural architecture of the neural network is intimately linked 

to the learning algorithm used to train the network. In this study we used 

Error Back-propagation learning algorithm to train the input patterns in the 

multi layer feed forward neural network. The detailed description of the 

learning algorithm is given in the following section. 
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8.4.3 Back-propagation Algorithm  for Training FFMLP 

 The back propagation algorithm (BP) is the most popular method for 

neural network training and it has been used to solve numerous real life 

problems. In a multi layer feed forward neural network Back Propagation 

algorithm performs iterative minimization of a cost function by making 

weight connection adjustments according to the error between the computed 

and desired output values. Figure 8.5 shows a general three layer network, 

where ok is the actual output value of the output layer unit k, oj is the output of 

the hidden layer unit j, wij and wik are the synaptic weights. 

 

 

 

Fig.8.5: A general three layer network 
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The following relationships for the derivation of the back-propagation hold : 

knetk e
o −+

=
1

1
 

∑=
k

jikk ownet  

jnetj
e

o −+
=

1
1

 

∑=
j

iijj ownet  

The cost function (error function) is defined as the mean square sum of 

differences between the output values of the network and the desired target 

values. The following formula is used for this error computation [Haykins.S, 

2004], 

( )∑ ∑ ⎟
⎠

⎞
⎜
⎝

⎛ −=
p k

pkpk ot 2

2
1E  

where p is the subscript representing the pattern and k represents the 

output units. In this way, tpk is the target value of output unit k for pattern p 

and opk is the actual output value of layer unit k for pattern p. During the 

training process a set of feature vectors corresponding to each pattern class is 

used. Each training pattern consists of a pair with the input and corresponding 

target output. The patterns are presented to the network sequentially, in an 

iterative manner. The appropriate weight corrections are performed during the 

process to adapt the network to the desired behavior. The iterative procedure 

 
212



continues until the connection weight values allow the network to perform the 

required mapping. Each presentation of whole pattern set is named an epoch. 

The minimization of the error function is carried out using the 

gradient-descent technique [Haykins.S, 2004]. The necessary corrections to 

the weights of the network for each iteration n are obtained by calculating the 

partial derivative of the error function in relation to each weight wjk, which 

gives a direction of steepest descent. A gradient vector representing the 

steepest increasing direction in the weight space is thus obtained. Due to the 

fact that a minimization is required, the weight update value ∆wjk uses the 

negative of the corresponding gradient vector component for that weight. The 

delta rule determines the amount of weight update based on this gradient 

direction along with a step size, 

jk
jk w

Ew
∂
∂

−=∆ η  

 The parameter η represents the step size and is called the learning rate. 

The partial derivative is equal to, 

( ) ( ) jkkkk
jk

k
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The error signal δk is defined as 

δk = ( ) ( )kkkk oo ot −− 1  

so that the delta rule formula becomes 

jkjk ow ηδ=∆  
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For the hidden neuron, the weight change of wij is obtained in a similar 

way. A change to the weight, wij, changes oj and this changes the inputs into 

each unit k, in the output layer. The change in E with a change in wij is 

therefore the sum of the changes to each of the output units. The change rules 

produces: 

ij

j

j

j

j

k

k

k

k kij w
net

net
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net
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          = ( ) ( ) ( ) ijjjkkk
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     = ( )∑−−
k

jkkjji wooo δ1  

so that defining the error δj as  

    ( )∑−=
k

jkkjjj woo δδ 1  

we have the weight change in the hidden layer is equal to 

ijij ow ηδ=∆  

The δk for the output units can be calculated using directly available 

values, since the error measure is based on the difference between the desired 

output tk and the actual output ok. However, that measure is not available for 

the hidden neurons. The solution is to back-propagate the δk values, layer by 

layer through the network, so that finally the weights are updated. 

A momentum term was introduced in the back-propagation algorithm 

by Rumelhart [Rumelhart.D.E. et al., 1986]. Here the present weight is 
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modified by incorporating the influence of the passed iterations. Then the 

delta rule becomes 

( )1n)( −∆+
∂
∂

−=∆ ij
jk

ij w
w
Enw αη  

where α is the momentum parameter and determines the amount of 

influence from the previous iteration on the present one. The momentum 

introduces a damping effect on the search procedure, thus avoiding 

oscillations in irregular areas of the error surface by averaging gradient 

components with opposite sign and accelerating the convergence in long flat 

areas. In some situations it possibly avoids the search procedure from being 

stopped in a local minimum, helping it to skip over those regions without 

performing any minimization there. Momentum may be considered as an 

approximation to a second–order method, as it uses information from the 

previous iterations. In some applications, it has been shown to improve the 

convergence of the back propagation algorithm. The following section 

describes the simulation of recognition experiments and results for 

Malayalam vowels. 

8.4.4 Simulation Experiments and Results 

 Present study investigates the recognition capabilities of the above 

explained   FFMLP-based Malayalam vowel recognition system. For this 

purpose the multi layer feed forward neural network is simulated with the 

Back propagation learning algorithm. A constant learning rate, 0.01, is used 

(Value of η was found to be optimum as 0.01 by trial and error method). The 
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initial weights are obtained by generating random numbers ranging from 0.1 

to 1. The number of nodes in the input layer is fixed according to the feature 

vector size. Since five Malayalam vowels are analyzed in this experiment, the 

number of nodes in the output layer is fixed as 5. The recognition experiment 

is repeated by changing the number of hidden layers and number of nodes in 

each hidden layer. After this trial and error experiment, the number of hidden 

layers is fixed as two, the number of nodes in the hidden layer is set to fifteen 

and the number of epochs as 10,000 for obtaining the successful architecture 

in the present study.  

The network is trained using the RPSDP features and MRPSDP 

features extracted for Malayalam vowels separately. Here we used a set of 

250 samples each of five Malayalam vowels for iteratively computing the 

final weight matrix and a disjoint set of vowels of same size from the database 

for recognition purpose. The recognition accuracies obtained for the 

Malayalam vowels based on above said features using multi layer feed 

forward neural network classifier are tabulated in Table 8.2. The graphical 

representation of these recognition results based on different features using 

neural network is shown in figure 8.6. 
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Average Recognition Accuracy (%) Vowel 
Number 

Vowel 
Unit RPSPD Feature MRPSPD Feature 

1 A/Λ/ 96.4 97.2 

2 C/I/ 87.6 90 

3 F/ae/ 82.4 86.4 

4 H/o/ 89.6 92.4 

5 D/u/ 96.8 98.8 

Overall Recognition 
Accuracy (%) 90.56 92.96 

 

Table 8.2: Recognition Accuracies of Malayalam Vowels based on RPSPD 

and MRPSPD features using Neural Network   
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Fig. 8.6: Vowel No. Vs. Recognition Accuracies of Malayalam Vowels based 

on RPSPD and MRPSPD features using  Neural Network 
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The overall recognition accuracies obtained for Malayalam vowels 

using Multi layer feed forward Neural Network with RPSDP and MRPSDP 

features are 90.56%, and 92.96% respectively.  

From the above classification experiments, the overall highest 

recognition accuracy (92.96%) is obtained for the MRPSDP features using 

Multi layer feed forward neural network. Compared to the recognition results, 

obtained for k-NN classifier (86.96%) based on MRPSDP feature, the neural 

network gives better performance. These results indicate that, for pattern 

recognition problems the connectionist model based learning is more 

adequate than the existing statistical classifiers. 

8.5 Conclusion 

Malayalam vowel recognition studies based on the parameters developed in 

chapter 5 and 7 using different classifiers are presented in this chapter. The 

credibility of the extracted parameters is  tested with the k-NN classifier. A 

connectionist model based recognition system by means of multi layer feed 

forward neural network with error back propagation algorithm is then 

implemented and tested using RPSDP features and MRPSDP features 

extracted from the vowels. The highest recognition accuracy (92.96%) is 

obtained with MRPSDP feature using neural network classifier. These results 

specify the discriminatory strength of the Reconstructed Phase Space derived 

features for isolated Malayalam vowel classification experiments. The above 

said RPS derived features are time domain based features.  The performance 

of the recognition experiments can be further improved by combing these 
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features with the traditional frequency domain based Mel frequency cepstral 

coefficient features (MFCCs). Performance of this hybrid parameter is 

demonstrated in the next chapter.  
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Chapter 9 

Vowel Recognition Using Joint Feature Vectors  

9.1 Introduction 

 As mentioned in the earlier chapters, for the study presented in this 

thesis, speech is modeled as a nonlinear system and Reconstructed Phase 

Space is taken as the processing space. The classification experiments 

presented in the previous chapter demonstrated that the features extracted 

from the Reconstructed Phase Space contain substantial discriminatory 

power. But current speech recognition systems use frequency domain 

features, such as Mel-frequency cepstral coefficients (MFCCs), which are 

based upon a switched linear model of the human speech production 

mechanism. This model describes human speech production as an excitation 

source and a linear time invariant filter representing the vocal tract. Cepstral 

analysis allows the excitation source energy to be separated from the 

frequency response characteristics of the vocal tract. 

The purpose of the work given in the present chapter is to extend the 

nonlinear methods we developed, by combing the nonlinear based RPS 

derived features with the traditional MFCC feature set to achieve a boost in 

the accuracy of recognition experiments. If the frequency domain features 

contain different discriminatory information than the RPS derived features, 

we should get better results. 

 This chapter is organized as follows. In the first session, a detailed 

description of cepstral analysis and the Mel frequency cepstral coefficients are 
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presented. In the next session, recognition experiments with MFCC feature set 

alone as input parameter is described. Following this the formation of hybrid 

feature vector by combing the frequency domain and Reconstructed Phase 

Space derived features is presented. Finally the simulation experiments with 

this hybrid feature set and results are demonstrated. 

9.2 Introduction to cepstral analysis 

 The aim of cepstral analysis methods is to extract the vocal tract 

characteristics from the excitation source, because the vocal tract 

characteristics are what contain the information about the phoneme utterance 

[Deller. J. R., Proakis. J. G. et al, 2000]. Cepstral analysis is a form of 

homomorphic signal processing, where nonlinear operations are used to give 

the equations having the properties of linearity [Deller. J. R., Proakis. J. G. et 

al, 2000]. One typical model used to represent the entire speech production 

mechanism is given in figure below. 

 

 

Fig.9.1: Block diagram of speech production model 
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Although this model is accurate, the analysis can be made simpler by 

replacing the glottal, vocal tract, and lip radiation filters, by a single vocal 

tract filter as shown in figure 9.2. This model is obtained by collapsing all 

these separate filters into a vocal tract filter by the convolution operation.  

 

 

 

Fig.9.2: Block diagram of source-filter model 

 

An analytical model of this block diagram can be formulated in the 

following way.  According to the conventional source-filter model 

representation, a speech signal is composed of an excitation source convolved 

with the vocal tract filter as, 

 
s[n] = h[n] ⊗ e[n]   ……………..(9.1) 

 
where, h[n] is the excitation signal, the signal coming from the glottis 

and e[n]  is the vocal tract filter parameter. In the frequency domain (after 

Fourier transform) this is a product: 

 

  S(ω) = H(ω) E(ω)   ……………(9.2) 

 

By taking the logarithm on both sides, the equation is converted from 

multiplication to a simple addition. 

log⏐S(ω)⏐ = log ⏐H(ω)E(ω)⏐ 
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log⏐S(ω)⏐ = log ⏐H(ω)⏐ + log ⏐E(ω)⏐………..(9.3) 

Then, by taking the inverse discrete Fourier Transform (IDFT) of log⏐S(ω)⏐, 

the cepstrum is obtained in what is known as the quefrency domain  [Deller. J. 

R., Proakis. J. G. et al, 2000]. 

C(q) = IDFT { log⏐S(ω)⏐} 

C(q) = IDFT { log ⏐H(ω)⏐} + IDFT { log ⏐E(ω)⏐}. ….…..(9.4) 

The cepstrum then allows the excitation signal to be completely isolated 

from the vocal tract characteristics, because the multiplication in the 

frequency domain has been converted to an addition in the quefrency domain. 

Cepstral coefficients, C(q), can be used as features for speech recognition for 

several reasons. First, they represent the spectral envelope, which is the vocal 

tract. The vocal tract characteristics are understood to contain information 

about the phoneme that is produced. Second, cepstral coefficients have the 

property that they are uncorrelated with one another, which simplifies 

subsequent analysis  [Gold.B. and Morgan. N,  2000], [Deller. J. R., Proakis. 

J. G. et al, 2000]. Third, their computation can be done in a reasonable 

amount of time. The last and most important reason is that cepstral 

coefficients have empirically demonstrated excellent performance as features 

for speech recognition for many years [Deller. J. R., Proakis. J. G. et al, 

2000].  

The first few coefficients are  used as the features for acoustic 

modeling, as they relate more strongly to the vocal tract, which has more 
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smoothly varying spectral characteristics, resulting in lower quefrency 

characteristics. The higher indexed points correspond more to the excitation, 

as the excitation has more jagged spectral characteristics, and consequently 

higher quefrency characteristics. This phenomenon can be seen in figure 9.3 

The cepstral values at the beginning represent features of the vocal tract, 

whereas the humps farther to the right represent the pitch characteristics. 

 

 

Fig.9.3: Cepstrum of a speech signal 

 

9.2.1 Mel frequency Cepstral Coefficients (MFCCs) 

The most popular form of cepstral coefficients are known as Mel 

frequency cepstral coefficients (MFCCs). MFCCs are computed in a similar 

way as the methods described in the previous section, but have been slightly 

modified. The procedure is as follows: 

1. The signal is filtered using a pre-emphasis filter to emphasize the   

frequency contents. 

sʹ[n] = h[n] ⊗ s[n] 
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2. The signal is multiplied by overlapping windows and divided into 

frames usually using 20-30 ms windows with 10-15ms of overlap 

between windows. 

sʹʹ[n] =  sʹ[n] . w[n] 

 A hamming window is typically used for w[n] 

    w[n] = ( )
⎩⎨
⎧ ≤≤π−

otherwise0
Nn0Nn2460540

,
,/cos..   

3. The discrete Fourier Transform (DFT) is taken of every frame sʹʹ 

followed by the logarithm.  

S(ω) = log⏐DFT{ sʹʹ[n]}⏐ 
 

 
4. Twenty four triangular-shaped filter banks with approximately 

logarithmic spacing (called Mel banks) are applied to S(ω). A filter 

bank, in its simplest form, is a set of band pass filters with different 

frequencies covering the interesting part of the spectrum (the 

fundamental frequency and the formants). The output of the filters 

during a frame can be used as features. The center frequencies of the 

filters can be chosen in several ways. Usually they are set according to 

some perceptually motivated scale. One commonly used scale is the 

Mel-scale. It is an empirical scale developed by Stanley Smith Stevens, 

John Volkman, and Edwin Newman. It was created by modeling 

human auditory system and has been showed that this model 
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empirically improves recognition accuracy. The Mel frequency is 

given by: 

Fmel = 2595 log10(1+ FHz / 700) 

  
MFCCs are computed by using filter banks. The filter banks consists of 

triangular filters as shown in figure 9.4. Such filters compute the 

spectrum around each center frequency with increasing bandwidths. 

The log energy (S[m]) at the output of each filter is computed 

afterwards. 

 
 
 

  
 

Fig. 9.4 : Triangular filters used in the MFCC computation 

 

5. The Discrete Cosine Transform (DCT) is taken to give the cepstral 

coefficients 

C[n] = DCT { S[m]} 

6. The first 12 coefficients, excluding the 0th coefficient are the features 

that are known as MFCCs (Cmel) 

 
226



The advantage of computing MFCCs by using filter energies is that they are 

more robust to noise and spectral estimation errors.  

9.3 Simulation Experiments with MFCC feature set as Input Parameter 

 Here we investigate the recognition capabilities of the Mel Frequency 

Cepstral Coefficient -based Malayalam vowel recognition system. For this 

purpose the multi layer feed forward neural network is simulated with the 

Back propagation learning algorithm. A summary of the parameters used for 

the simulation experiment is as follows : A constant learning rate, 0.01, is 

used ( value of learning rate was found to be optimum as 0.01 by trial and 

error method). The initial weights are obtained by generating random 

numbers ranging from 0.1 to 1. The number of nodes in the input layer is 

fixed according to the feature vector size. Since five Malayalam vowels are 

analyzed in this experiment, the number of nodes in the output layer is fixed 

as 5. The recognition experiment is repeated by changing the number of 

hidden layers and number of nodes in each hidden layer. After this trial and 

error experiment, the number of hidden layers is fixed as three, the number of 

nodes in the hidden layer is set to Eighteen and the number of epochs as 

10,000. 

The recognition accuracies obtained for the Malayalam vowels based 

on MFCC feature set using multi layer feed forward neural network classifier 

are tabulated in Table 9.1. The graphical representation of these recognition 

results based on different features using neural network is shown in figure 9.5. 
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Vowel 
Number Vowel Unit Average Recognition 

Accuracy (%) 

1 A/Λ/ 94.4 

2 C/I/ 91.2 

3 F/ae/ 89.2 

4 H/o/ 93.2 

5 D/u/ 90.4 

Overall Recognition 
Accuracy (%) 91.68 

 

Table 9.1: Recognition Accuracies of Malayalam Vowels based on MFCC 

feature vector using Neural Network   

1 2 3 4 5

90

92

94

R
ec

og
ni

tio
n 

Ac
cu

ra
cy

 (%
)

Vowel Number

 

Fig. 9.5: Vowel No. Vs. Recognition Accuracies of Malayalam Vowels based 

on MFCC feature vector using Neural Network 
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9.4 Joint Feature vector 

The RPS derived features can  be used in unison with the MFCC 

feature set to create a joint or composite feature vector. The motivation for 

such a feature vector is that, MFCC feature set has been successful for speech 

recognition in the past, and utilizing them with the RPS derived feature set 

will increase classification accuracy, if the information content between the 

two is not identical. It will be interesting to see how the incorporation of two 

different sets of features extracted from radically dissimilar processing spaces 

and methodologies will fuse together to help ascertain the precise information 

content and discriminatory power of the RPS derived feature set.  

 
 From the previous chapter, it is clear that better accuracy is obtained 

for recognition experiments, when multi layer feed forward neural network 

classifier is used with modified RPS Distribution Parameter (MRPSDP) as 

input parameter. Therefore in this work, MFCC feature set is concatenated 

with the RPS feature vector MRPSDP to make the joint feature set, 

represented by : 

   yn =  [ MRPSDP ⏐ Cmel ] 

And multi layer feed forward neural network is used as the classifier. A block 

diagram of joint feature vector computation is given in figure 9.6 
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Fig.9.6: Block diagram of joint feature vector computation 

9.5 Simulation Experiments and Results 

 Present study investigates the recognition capabilities of the above 

explained joint feature-based Malayalam vowel recognition system. Multi 

layer feed forward neural network is simulated with the Back propagation 

learning algorithm. A constant learning rate, 0.001, is used. The initial 

weights are obtained by generating random numbers ranging from 0.1 to 1. 

The number of nodes in the input layer is fixed according to the feature vector 

size and the number of nodes in the output layer is fixed as 5. The recognition 

experiment is repeated by changing the number of hidden layers and number 

of nodes in each hidden layer. After this trial and error experiment, the 

number of hidden layers is fixed as two, the number of nodes in the hidden 

layer is set to fifteen and the number of epochs as 12,000 for obtaining the 

successful architecture in the present study.  

The network is trained using the joint feature vectors extracted for 

Malayalam vowels. Here we used a set of 250 samples each of the five 
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Malayalam vowels for iteratively computing the final weight matrix and a 

disjoint set of vowels of same size from the database for recognition purpose.  

The recognition accuracies obtained for the Malayalam vowels based 

on above said features using multi layer feed forward neural network 

classifier are tabulated in Table 9.2. The graphical representation of these 

recognition results based on different features using neural network is shown 

in figure 9.7. 

 

Vowel 
Number Vowel Unit Average Recognition 

Accuracy (%) 

1 A/Λ/ 100 

2 C/I/ 93.6 

3 F/ae/ 91.6 

4 H/o/ 96 

5 D/u/ 100 

Overall Recognition 
Accuracy (%) 96.24 

 

Table 9.2: Recognition Accuracies of Malayalam Vowels based on joint 

feature vector using Neural Network   

 

The overall recognition accuracies obtained for Malayalam vowels 

using Multi layer feed forward Neural Network with the joint feature vector is 

96.24%,  
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Fig. 9.7: Vowel No. Vs. Recognition Accuracies of Malayalam Vowels based 

on joint feature vector using  Neural Network 

 

As explained in the previous chapter, when RPS feature alone is used 

as the input parameter for neural network, the maximum recognition accuracy 

obtained is 92.96%.  With the hybrid feature vector formed by combing the 

frequency domain and the Reconstructed Phase Space derived features, the 

overall recognition accuracy becomes 96.24%. That is by using RPS derived 

features in unison with traditional MFCC features yield improvement in 

recognition experiments.  

9.6 Direct comparisons of the Feature sets 

In this study, we have used different feature vectors for the recognition 

experiments. Here we compare the performance of these feature vectors by 
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simply examining the recognition accuracies. The summary of the 

performance is tabulated below and is displayed in figure 9.8 

 

Average Recognition Accuracy (%) 
Vowel 

Number 
Vowel 
Unit RPSDP 

Feature 
MRPSDP 
Feature 

MFCC 
Feature 

Joint 
Feature 

1 A/Λ/ 96.4 97.2 94.4 100 

2 C/I/ 87.6 90 91.2 93.6 

3 F/ae/ 82.4 86.4 89.2 91.6 

4 H/o/ 89.6 92.4 93.2 96 

5 D/u/ 96.8 98.8 90.4 100 

Overall Recognition 
Accuracy (%) 90.56 92.96 91.68 96.24 

 

Table 9.3: Comparison of the Performance of Feature sets with Neural Net 

classifier 

 

 As apparent from the table, modifying the Reconstructed Phase Space 

Distribution Parameter ( RPSDP) with the optimum embedding parameter, 

boost the recognition accuracy by 2.4%. Also appending the Modified RPS 

feature with the traditional MFCC feature set, improves the accuracy by 

4.56%. 
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Fig.9.8:Comparison of the Performance of Feature sets with Neural Net classifier 

9.7 Conclusion 

Malayalam vowel recognition study based on MFCC feature set and 

the joint feature vector developed by combining frequency domain and 

Reconstructed Phase Space derived features are presented in this chapter. 

Multi layer feed forward neural network with error back propagation 

algorithm is implemented and tested with these feature sets extracted from the 

vowels. An overall recognition accuracy of 96.24% is obtained for the 

simulation experiments with the hybrid feature set. This shows that when the 

joint feature vector is used as input parameter, there is a significant boost in 

the recognition accuracy than that is obtained when RPS derived feature or 

MFCC feature alone is used. This result suggests that the frequency domain 

features and the RPS derived features contain different discriminatory 

information. The performance of different feature vectors are compared and 

shown graphically.  
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Chapter 10 

Conclusion   

 Speech processing using a dynamical systems approach has been 

presented in this thesis. This is a novel approach that extracts features from 

the time domain using Reconstructed Phase Spaces. The study of nonlinear 

dynamical system shows that the RPS is able to capture the nonlinear 

information of underlying system that cannot be captured by frequency 

domain analysis alone. 

 A low cost data acquisition system is developed for database creation. 

Here a multimedia based system is converted into an economically viable data 

acquisition system by connecting an 8th order anti aliasing presampling filter 

prior to A/D converter of the sound card. A speech database of short vowels 

in Malayalam is created using the data acquisition system developed. 

By measuring nonlinear invariant parameters of Malayalam vowels, it 

is examined that whether speech (especially vowel sounds) is chaotic.The 

non-integer attractor dimension and non-zero value of Kolmogorov entropy 

confirm the contribution of deterministic chaos to the behavior of speech 

signal. These parameters quantify the chaotic behaviour of the speech signal. 

As far as recognition application is concerned, we want to go for more robust 

and computationally simple parameters. Phase space is a tool to analyze the 

underlying dynamics of a system. It can be exploited as a powerful signal 

processing domain.  
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Reconstructed Phase Space is generated for vowel sounds by the 

method of time delay embedding. From the Reconstructed Phase Space, a 

promising parameter called Reconstructed Phase Space Distribution 

Parameter (RPSDP) is extracted. With this parameter we can analyze the 

geometric structure of the reconstructed attractor. The RPSDPs are found to 

be similar for same vowel sounds and differ from vowel to vowel. Hence they 

are further used in the recognition experiments. Here, an entirely different 

way of viewing the speech processing problem is presented, and offering an 

opportunity to capture the nonlinear characteristics of the acoustic structure. 

Fundamental frequency, f0 is the lowest frequency component, in the 

signal, which relates well to most of the other frequency components. A 

general method for pitch estimation using Reconstructed Phase Space in two 

dimensions is presented. Here methodologies originally developed for 

analyzing chaotic time series have been successfully applied to pitch 

determination problem. The proposed new method does not suffer from the 

limitations of other short-term pitch-estimation techniques. The algorithm is 

very straightforward and flexible. The experimental results show that the 

pitch estimated using Reconstructed Phase Space features agrees with that 

obtained using conventional Pitch Detection Algorithms. 

The two parameters of an RPS, time lag and embedding dimension, 

play an important role both theoretically and practically in building a speech 

recognition system based on RPS features. The problem of choosing the 

optimal time delay and the minimum embedding dimension for the 
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reconstruction of phase space using the method of delays are addressed in the 

thesis. The optimal delay depends upon the details of the time series as well 

as the dynamics of the underlying system. A simple procedure that quantifies 

expansion from the identity line of embedding space is developed for 

choosing proper time delay. Such a procedure may be more useful in the 

estimation of the proper time delay. For determining the minimum embedding 

dimension we have used Cao’s method, which does not contain any subjective 

parameters except time delay for the embedding and is computationally 

efficient. This method gives consistent results with Malayalam vowels. With 

these optimum-embedding parameters, Reconstructed Phase Space 

Distribution Parameter (RPSDP) is modified as Modified Reconstructed 

Phase Space Distribution Parameter (MRPSDP). 

The recognition experiments of Malayalam vowels based on the above 

discussed features are conducted using different classifiers such as k-NN 

classifier and Neural network. The credibility of the parameters is tested with 

the k-NN classifier. A multi layer feed forward neural network with error 

back propagation algorithm is implemented and tested using RPSDP features 

and MRPSDP features extracted from the vowels. The highest recognition 

accuracy (92.96%) is obtained with MRPSDP feature using neural network 

classifier. These results specify the discriminatory strength of the 

Reconstructed Phase Space derived features for isolated Malayalam vowel 

classification experiments. 
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The nonlinear RPS derived features are then combined with the 

traditional MFCC feature set to achieve an improvement in the accuracy of 

recognition experiments. Multi layer feed forward neural network with error 

back propagation algorithm is implemented and tested with this hybrid feature 

set extracted from the vowels. An overall recognition accuracy of 96.24% is 

obtained for the simulation experiments. When the joint feature vector is used 

as input parameter, there is a significant boost in the recognition accuracy 

than that is obtained when RPS derived feature or MFCC feature alone is 

used. This result suggests that the frequency domain features and the RPS 

derived features contain different discriminatory information. The entire 

system is developed and implemented using MATLAB 7. 

This thesis has presented a novel technique for speech processing using 

features extracted from phase space reconstructions. The methods have a 

sound theoretical justification provided by the nonlinear dynamics literature. 

The specific approach transfers the analytical focus from the frequency 

domain to the time domain, which presents a unique way of viewing the 

speech recognition problem and offers an opportunity to capture the nonlinear 

dynamical information present in the speech production mechanism.  

Future Work 

 Due to the nature of the technique, the features are based in the time 

domain, and therefore the dynamic range of the time series affects the range 

of the data in the RPS. The dynamic range or amplitude of  the signal is 

known to be irrelevant to the classification process, because the amplitude is 
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affected by the external conditions such as  the distance of the speaker from 

the microphone during the data collection. One advantage of the MFCC 

features is that they are totally invariant to this issue, because the energy is 

normalized out on a frame-by-frame basis. In the case of the RPS derived 

features though, the problem is partially solved by using the normalization 

procedure, this issue is of particular concern when performing continuous 

recognition, because there is no way to normalize the data on a phoneme-by-

phoneme basis, since the time boundary information would not be present. 

This concern seriously hampers effective implementation for a continuous 

speech task. Future work could resolve this problem by discovering a robust 

method to make this approach independent of amplitude scaling effects. 

The other related issue is that of computing an energy measure. Again, 

the MFCC features incorporate an energy measure by computing it for each 

frame. For the proposed RPS derived features, since there is no analysis 

window, there is no way to compute a meaningful energy measure that can be 

incorporated directly into the feature vector. One method would be to 

compute the energy over an entire phoneme. But, once again, for continuous 

recognition, phoneme boundaries are unknown, and computing such a 

measure may be difficult.  

In addition to the isolated vowel classification experiments presented 

and described here, the entire phonemes should be examined. Thus this 

approach can be applied for the task of continuous speech recognition using 

the RPS derived features. As far as continuous speech recognition task is 
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concerned, the temporal variations of the feature vectors also should be 

incorporated. These issues must be addressed in order for the RPS derived 

features to have long-term success for speech recognition applications.. 

In conclusion, this work has extended the fundamental understanding 

of the speech processing and simultaneously expanded the knowledge of the 

nonlinear techniques for classification applications. It strongly deviates from 

mainstream research in speech processing.  Reconstructed Phase Space 

analysis is an attractive research avenue for increasing speech recognition 

accuracy as demonstrated through the results, and future work will determine 

its overall feasibility and long-term success for both isolated and continuous 

speech recognition applications. 
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