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INTRODUCTION 

The collection C(X) of all topologies on a 

fixed non-empty set X is a partially ordered set under 

the natural partial order of set inclusion. The discrete and 

indiscrete topologies are the smallest and largest 

elements in C(X) respectively. 

The intersection of an arbitrary collection of 

topologies on the set X is a topology on X. So under 

the partial ordering, any subset of the collection of all 

topologies on the set X has an infimum, namely their set 

theoretic intersection. Hence the collection C(X) of all 

topologies on the set X is a complete lattice under the 



/ 
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partial order mentioned above ([6] Theorem 3 ,  

page 112). 

The two lattice operations join and meet of the 

lattice C(X) can be described as follows. The meet of a 

collection of  topologies on X is simply their set 

theoretic intersection. The join of a collection of 

topologies is the topology generated by the union of all 

the topologies in the collection. 

The study of lattice of topologies and its 

sublattices is  one of the interesting areas in point set 

topology. As mentioned earlier, G .  Birkhoff [6] and R. 

Vaidynathaswamy [32] initiated the study of  the lattice 

theoretic properties of  C(X)and some of  its sublattices. 

Following them many authors studied the lattice 

properties of the lattice of topologies from different 

perspectives. 



If L is a lattice, and a and b are  elements 

of  L, then b is  said to be an upper neighbour of  a if  

a < b, and a I c I b, c E L implies that  a = c or 

c = b. An element a is  said to be a lower neighbour of 

an element b in a lattice, when the element b is  an upper 

neighbour of a. 

An atom in a lattice is  any element 'a '  in the 

latt ice which is an upper neighbour of  the smallest  

element. Dually a dual atom in a latt ice is  any element 

in the latt ice which is lower neighbour o f  the largest 

element.  

A lattice such that every element other  than 

the smallest can be written as  the join of  atoms smaller 

than or equal to the element is called an atomic latt ice.  

A dually atomic lattice is defined dually.  
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There are atoms in the latt ice C(X). The 

atoms of the lattice Z(X) are precisely the topologies of 

the form {@, X, A )  where A is a proper nonempty 

subset of the set X. In the lattice C(X) every element 

other than the indiscrete topology can be written as a 

join of atoms smaller than or equal to it.  Hence the 

lattice of topologies C(X) is an atomic latt ice [32]. 

If z is a topology on X and if A is a nonempty 

subset of X, then the simple expansion of the topology z 

by the set A is the join z v (0  ,X, A )  in the lattice of 

topologies. It is denoted by z (A). The topology z(A) can 

be represented in the following form 

z (A) = { U u ( V n A) ; where U and V are 

open in the topology .c ) [ l 2  1. 
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N. Levine [ l71  initiated the investigation of 

the properties of T (A) in relation with the properties of 

the topology T and the set A. 

In the lattice C(X), there are dual atoms also. 

The dual atoms of C(X), which are the lower neighbours 

of the discrete topology, are called ultra topologies. 

The ultra topologies in C(X) are described below using 

ultra filters on X. 

A filter on a set X is a nonempty collection of 

nonempty subsets of X such that the intersection of two 

elements in it is again a member of the collection and a 

superset of a member of the collection is also a member 

of the collection 

There are two types of fi l ters.  When the 

intersection of all the members in a fi l ter is non-empty, i t  
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is  called a fixed filter. When this intersection is  empty, 

it is  called free filter. 

The collection of all  f i l ters on  a fixed set  is  

ordered under the natural order of  set  inclusion. There 

are maximal members in this collection and these 

maximal members are called ultrafi l ters.  

Fixed ultra filters are  also called principal 

ultra fi l ters.  The principal ultrafi l ters are of  the form 

U(a) = { A c X : a E A )  for  an element a in X. 

The ultratopologies are topologies of  the 

form g (  X \ { X ) )  U U ,  for  X E X  where U is an 

ultrafi l ter  on X such that {x}is not a member of  U. This 

ultratopology is denoted as  3 ( X , U).  This  ultra filter U 

is called the associated ultra filter of  the ultra topology 

3 ( X , U).  In the lattice Z(X) every non discrete 
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topology can be written as  the greatest  lower bound of 

the ultratopologies finer than i t .  So  the latt ice of  

topologies is dually atomic [ l  l ] .  

Corresponding to  simple expansion of  a 

topology, the simple reduction of  topology T is  defined as  

the greatest  lower bound with an ultra topology[22].  

Also the collection o f  a l l  T 1  topologies 

forms a sublatt ice of  C(X)[7]. This sub latt ice is  denoted 

by A(X). The sublatt ice A(X) has properties very similar 

to  that of  C(X). I t  has a least element.  I t  i s  called the 

cofinite topology on X. The non-empty closed sets of  

this topology are  the finite subsets of  X. This  topology 

is sometimes called the minimum T1 topology on X. The 

greatest  element of  the latt ice of  T1 topologies on X is 

a lso the discrete topology on X. 
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There are atoms and dual a toms in the lattice 

A(X). The atoms of  A are unions o f  the singletons o f  

the set X with the CO-finite topology. Since there are  

topologies on infinite sets without singleton open sets,  

this latt ice is  not atomic.  

There are  dual atoms in this latt ice when X 

is infinite.  The dual atoms .of A(X) are  of  the form 

3 ( X ,  U )  = @ ( X  \ { X ) )  v U, for X E X  where U is a 

non-principal ultrafi l ter  on X. This  latt ice is  also 

dually atomic.  

There are many interesting sublatt ices of the 

lattice of  the topologies. As noted earlier, the lattice of  

all T I  topologies is one of the important sublattices. 

Other important sublattices of the lattice of  the topologies 

are the lattice of all  principal topologies, the lattice of all 

regular topologies, the lattice of  all completely regular 
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topologies, the lattice of all countably accessible 

topologies etc. ( See [13], [14], [15]). 

The properties upper semimodularity and lower 

semimodularity are defined in terms of the neighbours of 

an element. Specifically a lattice L is  called upper 

semimodular if for all elements a ,  b in L such that a is a 

lower neighbour of a A b implies a v b is an upper 

neighbour of b. The lattice L is  lower semimodular if  its 

dual lattice is upper semimodular. 

Most of the works appeared on the lattice of 

topologies on a fixed set discuss properties like 

complementation, distributivity, modularity,  lattice 

morphisms etc. But authors l ike R. E. Larson, W. J.  

Thron, R. Valent and others. (See [35] , [31], [34],  [21] 

etc.)  deviated from this main stream of study and they 

attempted to study prpperties like upper modularity, 
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lower modularity,  upper and lower semi modularity,  

embedding different types of latt ices in the  latt ice of  

topologies,  existence of upper and lower neighbours etc.  

The study of upper or  lower neighbours i s  

closely connected with study o f  properties l ike upper 

semimodularity,  lower semimodularity.  Hence a study of 

upper or  lower neighbours a topology are  important.  

In their  survey article R. E. Larson and Susan 

J .  Andima [ l51  observed the following. "If X is an 

infinite set  and P is any topological property,  then the 

collection of  topologies in the latt ice of  the topologies 

possessing the property P may be identified s imply from 

the latt ice structure of  the lattice of  the topologies.  This  

follows from the theorem that for  an inf ini te  X,  the 

group of  lattice automorphisms of the latt ice of  the 

topologies is  isomorphic to  the symmetric group on X. 
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Therefore the only automorphisms of  the latt ice of  the 

topologies for  infinite X are those which s imply permute 

the elements of  X. Therefore any automorphism of  the 

lattice of  the topologies must map all  the topologies in 

the lattice of  the topologies onto homeomorphic images.  

Thus the topological properties of  the elements the latt ice 

o f  the topologies must be determined by the position of 

topologies in the latt ice o f  the topologies." This means 

study o f  the neighbours o f  topologies is important and 

this thesis is an attempt in this direction. 

We can view this problem from another 

perspective also.  The collection of  subsets of a 

topological space containing a point in their  interior is  a 

f i l ter .  We call  this f i l ter  as  the neighbourhood fi l ter  of  

that point with respect to  the topology. The  topology of 

a set  can be charecterised using the neighbourhood fi l ters 

of i ts  points. So two different topologies have different 
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neighbourhood fi l ters atleast  one point.  In other 

words altering neighbourhood fi l ters means altering 

topologies.  This thesis attempts to  study how to alter 

the neighbourhood fi l ter  of  a point or  minimum number 

of points.  A typical case is the neighbourhood fi l ters of  

all points except one point are  the same. Here our  

intention is to  study how to alter neighbourhoods of  

minimum number of  points.  

In the first  chapter we discuss upper  or  lower 

neighbours for general lattices. A theorem and i ts  dual 

about neighbours are proved in general  lat t ices.  Using the 

theorem it  is  proved that in an atomic modular latt ice 

every element has an upper neighbour and in a dually 

atomic modular lattice every element has  a lower 

neighbour.  The results are  in such a general  fashion that 

they are  also applicable to  some o f  the sublatt ices o f  the 

lattice of topologies.  Using the above results we 
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charecterise the lower neighbours of  ultra topologies as  

the intersection of  two ultra topologies.  

In the second chapter we s tudy upper 

neighbours in the Lattice of  Topologies.  An equivalence 

relation on the non open sets is  defined on the collection 

of  all  non open subsets.  Then an order relation i s  defined 

among the equivalence classes. Using this order  relation 

the upper neighbours in Latt ice o f  Topologies are  

charecterised.  Using these results we  determine that a 

special  interval in the lattice of  topologies is  a Boolean 

Algebra generated by a subset.  

In the third chapter we conduct a similar study 

of  lower neighbours in the latt ice o f  topologies.  The 

results in this chapter are generalisations of  results given 

by Larson and Thron from the latt ice of  T1 topologies to  

Latt ice of  Topologies.  



In the fourth chapter we consider topologies 

without upper neighbours. We generalise some existing 

results and prove that no countably accessible topology 

possesses upper neighbours in the Lattice of  Topologies. 

We also compare the Lattice of Topologies with the 

lattice of Cech Closure Operators in this context. 



CHAPTER l 

PRELIMINARIES 

1.1  Covering relations in lattices 

A partially ordered set  in which every pair  of  

elements has an infimum and a supremum is called a 

lattice. A partially ordered set in which an arbitrary set  

of  elements has an infimum and a supremum is called a 

complete latt ice.  If  a latt ice has a least  element,  then it 

is unique. The least element of  a latt ice is  usually 

denoted by 0. Any element of  a latt ice which is an 

upper neighbour of the least  element is  called an atom. 

A latt ice is  called an atomic latt ice if  every element 

of the latt ice except the least element can be writ ten 

as  the least  upper bound of a collection of  atoms. 

If  a lattice has a greatest  element then this 

greatest  element is  unique. The greatest  element of  a 



lat t ice is  usually denoted by 1.  Any lower neighbour 

of  the greatest  element is called an dual -atom or anti  

atom. A lattice is  called dually-atomic or  ant i  atomic if  

every element other than the greatest  element can be 

writ ten as  the greatest  lower bound of  dual-atoms. 

In an arbitrary lattice the following three 

identit ies are  equivalent [6]. 

1. (XAY)V (XAZ)V (YAZ) = (XV Y) A (XVZ) 

~ ( y  v z )  for all  X,  y ,  and z in the latt ice 

2. X A  (y VZ)  = (XAY)V (XAZ),  for all  X,  y .  and 

z in the latt ice 

3 .  x v  ( y ~ z )  = ( x v  y)  A (xvz) .  for  all X,  y, 

and z in the lattice 

A latt ice in which any three elements X,  y, z 

satisfy one (and hence all)  of  the above identit ies i s  

called a distributive lattice. 



Similarly in an arbitrary latt ice the following 

identit ies are  equivalent [6]. 

1. (XV Y) A  AY) vz) )  = (XAY)V((XVY)AZ) 

for all X,  y. and z in the lattice 

2. X t y implies X A  (y  v z )  = y v  (XAZ),  for  all  

X,  yi and z in the lattice 

A latt ice in which any three elements  X,  y ,  z 

satisfy one (and hence all)  of  the above identit ies i s  

called a modular lattice. 

A distributive latt ice i s  a lways modular.  

There are  modular lattices which are  not distributive.  

First we obtain a convenient method to 

determine covers in lattices. In  atomic modular 

latt ices this methods becomes a handy one.  



1 . 1 1  Theorem 

Let L be a lattice and a and b be any two 

elements of L such that a is  a lower neighbour of  b .  

Let c be any element of the lattice such that the interval 

[ a ~ c ,  b v  c ] in L is a modular interval and let L 1  be a 

subset of  L such that every element of  the interval 

[ a ~ c ,  b v  c] in L can be writ ten as  join o f  some subset  of  

L1 .  Then the element a A c is a lower neighbour of  b ~ c .  

Proof 

Let the element a be a lower neighbour of  

the element b in L and let c be any element of  the latt ice 

such that the interval [ a ~ c ,  b v  c ] in L is a modular 

interval.  

Let d be an element of  the latt ice such that 

a A c < d I b A c . Since a A c < d, by the property of 

the set  L ,  that  every element of  the interval 



[ a ~ c ,  b v  c ] is  a join of some subset of  L I ,  there is  an 

element e of the set L1 such that e neither less than nor 

equal to a A c and e is  less than or  equal to  d .  If  e I a 

also then e I d I b A c I c and this means e I a A c ,  a 

contradiction to  the choice of  e.  Hence e i s  neither less 

than nor equal to a.  

So we have a < a v d < b ,since e < a v d , e 

not less than a.  Since a is a lower neighbour o f  b we 

have a v d = b.  Also we  have d I c.  So the  elements 

a,b and d all belong to the interval [ a ~ c ,  b v  c 1. By 

assumption this interval is modular and we have d 5 c.  

Hence by the modular law we have 

d v  ( a ~  c) = ( d v a ) ~  c 

So we have b A c = (a  v d)  A c 



= d  v ( a ~ c )  

= d , since (a A c)  < d. 

Hence b A c = d. 

So a A c is a lower neighbour of b A c. 

Dually we have the following theorem 

1.1.2 Theorem 

Let L be a lattice and let a and b be any two 

elements of L such that a is a lower neighbour of b.  

Let c be any element of the lattice such that the interval 

[a  AC,  b v c ] in L is a modular interval and let  L1 be a 

subset of L such that every element of the interval 

[a  AC,  b v c ] in L can be written as the meet of some 

subset of L , .  Then the element a v  c is  a lower 

neighbour of b VC.  



1.1.3 Remarks 

a) In an atomic latt ice every element is a 

join of  atoms. Hence in theorem 1 . l .  1 the set  L1 can be 

taken as the collection of all atoms in the latt ice.  There 

fore we have the following corollary.  

Let L be an atomic latt ice.  Let a and b be 

any two elements of  L such that a is  a lower neighbour 

of  b. Let c be any element of  the latt ice such that the 

interval [ a ~ c ,  b v  c ] in L is a modular interval.  Then 

the element a A c is a lower neighbour of  b A c .  

b) In a modular lattice every sub  interval is  

modular and hence in a modular latt ice we  have the 

following result .  

Let L be a lattice and let a and b be any two 

elements of L such that a is a lower neighbour of  b .  

Let L1 be a subset of L such that every element o f  the 

interval [ a ~ c ,  b v  c ] in L can be writ ten as join o f  some 
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subset of  L I .  If  the lattice is  modular , then the element 

a A c is  a lower neighbour of  b A c .  

c) In modular atomic lattices the above results 

takes a simple form. 

Let L be an atomic modular latt ice.  I f  a is  a 

lower neighbour of b then a A c is a lower neighbour of  

b A c for all  elements c in the latt ice L .  

Because of  the importance we list the duals 

of  the above results. 

d) Let L be an dually atomic lattice. Let a and 

b be any two elements of  L such that a is  a lower 

neighbour of b .  Let c be any element of  the lattice such 

that the interval [ a AC,  b v c ] in L is a modular interval. 

Then the element a v c is  a lower neighbour of  b v c. 

e) Let L be a lattice and let a and b be any 

two elements of L such that a is  a lower neighbour of b. 



Let L ,  be a subset of L such that every element of  the 

interval [a AC,  b v c ] in L can be written as  meet of 

some subset of  L, .  If  the lattice is  modular ,then the 

element a V C  is a lower neighbour of b v c. 

As in the earlier case in dually atomic 

modular latt ices the above results takes very simple 

form. 

f) Let L be an dually atomic modular lattice. 

Then if  a is a lower neighbour of  b then a v c is  a lower 

neighbour of b v c for all elements c in the lattice L. 

Next we show that in atomic modular lattices 

and dually atomic modular lattices every element other 

than the smallest and largest has upper neighbours and 

lower neighbours respectively 



1.1 .4  Theorem 

In an atomic modular latt ice every element 

0-ther than the greatest  element has an upper neighbour.  

Proof  

Let a be an arbitrary element o f  an atomic 

modular lattice which is not the greatest  element.  

Since the latt ice is  atomic it has atoms and the element 

a is  join of atoms. Since a is not the greatest  element,  

there is  an atom b in the latt ice which is not greater 

than a.  

Since b is  an atom it i s  an upper neighbour of  

the smallest  element 0 of  the latt ice . Since the latt ice 

is modular the join of  a and the smallest  element 0 i .e.  

a is  a lower neighbour of the element a v b  in  the 

lattice. In  particular the element a has  an upper 

neighbour.  



Hence every element of a modular atomic 

lattice has an upper neighbour.  

Dually we have the following theorem. 

1.1.5 Theorem 

In a dually atomic modular latt ice every 

element other than the smallest  element has a lower 

neighbour.  

Next theorem enables us  to  charecterise 

covers in atomic and dually atomic latt ices.  

1 . l  .6 Theorem 

Let L be a latt ice.  Let L1 be a collection of  

elements of  L such that every element o f  L can be 

written as  a join of a collection of  elements o f  L l .  Let a 

and b be two elements of  L such that a < b.  Let L2 be 

the collection of  all  elements of  L1 less than or  equal to  



b but not less than a.  Then a is  a lower neighbour of b 

if and only if al l  c in the set  L2 , the relation a v c = b 

holds in L. 

Proof 

Let c E L2. Then c I b but c is  not  less than 

a.  So a < a v c I b and if a + C and s ince b i s  an upper 

neighbour of  a ,  we must have a v c = b. 

Conversely let a v c = b for  all  c E L2.  Let 

d E L be such that a d I b.  Hence there is  an element 

e E L2 such that e I d but e i s  not  less  than a. S o  

e E L2 and hence by assumption we have a v e = b. 

We have e I d, a I d implies a v e < d i.e., 

b I d.  Hence b = d. So a is  a lower neighbour of  b. 

Dually we have the following theorem 



1.1.7 Theorem 

Let L be a lattice. Let L ,  be a collection of  

elements of L such that every element o f  L can be 

written as a meet o f  a collection o f  elements o f  L , .  Let 

a and b be two elements of  L such that a < b.  Let L2 be 

the collection of  all elements of  L1 neither greater than 

nor equal to  b but not greater than a. Then a is  a lower 

neighbour of b if  and only if  al l  c in the set  L2,  the 

relation a = b A c holds in L. 

1.1.8 Remarks 

In an atomic latt ice we  can take L 1  to  be the 

collection o f  all  atoms. Similarly in an dual ly atomic 

latt ice we can take L1 to be the collection o f  all  dual 

atoms. So  we have the following theorems. 

a) Let L be an atomic latt ice.  Let a and b be 

two elements of  L such that a < b. Let L ,  be the 

collection of all  atoms less than or  equal  to  b but 



neither less than nor equal to a .  Then a is a lower 

neighbour of  b if and only if  al l  c in the set  L , ,  

a v c = b .  

b)  Let L be a dually atomic latt ice.  Let a 

and b be two elements of L such that a b .  Let L2 be 

the collection of  all  dual atoms greater than or  equel 

to a but neither less than nor equal to  b. Then a is a 

lower neighbour of  b if and only if  a = b A c for  all 

c in LZ.  

1.2 Applications to lattice of topologies 

We apply theorems 1.1.12 and 1.1.13 

developed in the previous section to  the particular case 

of  the latt ice of all topologies on a fixed set .  

When we apply theorem 1.1.12 to the lattice 

of  topologies we get the following result  f irst  

proved by Larson and Thron[ l6  1. 



1.2.1 Lemma 

1 Let r and r are  topologies on X . For r ' to  

be an upper neighbour of  r it is  necessary and 

1 sufficient that r = r (A) for  all  A in the topology r 1 

and not in the topology r. 

Applying theorem 1.1.13 to  the lattice o f  

topologies we get the following result .  

1.2.2  Lemma 

1 Let r and r are  topologies on  X. For  r l to  

be an upper neighbour of  r i t  is  necessary and 

sufficient that  for  all  ultratopologies 3: ( b , U )  finer 

than r , not finer than r we  must have 

1 r = T  n S ( b ,  U ) .  

As a corollary we get the following result 

proved by Larson and Thron[ 161. 
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If  r and r are  topologies on X such that r ' is  

an upper neighbour of  T .Then there is  an ultratopology 

1 3 ( b ,  U) such that r = r n 3 ( b , U ) .  

These results together with the results we 

have developed in the previous section enable us  to  

charecterise the lower neighbours o f  the ultra 

topologies.  

1.3 Lower neighbours of  ultra topologies  

In their  paper enti t led "Basic Intervals in the 

Lattice of  Topologies", R. Valent and R.E. Larson 

introduced the concept of  a basic interval in the Lattice 

of  Topologies as  an interval [G , S ]  of  Latt ice o f  

Topologies such that there is  an element 'a '  in the set  

X such that for  all  elements G in the topology S ,  we 

have G \ {a)  i s  an element of  the topology G [34]  . This 

element a is unique. 



Later the first author R. Valent [35] modified 

this definit ion of  the basic interval to  include a wider 

class of  intervals in the lattice of  topologies.  Following 

B. Banaschewsky, R. Valent defined an expansion of  

a topology by an element ' a '  in X as  topology in which 

the neighbourhood fi l ters of  all  points except a single 

point are the same. An interval [G , 9 ]  o f  Latt ice of  

Topologies is  basic if  the topology 9 is  an expansion of  

the topology by some element in X. Valent made this 

modification of  the definit ion of  the basic interval in 

such a way that all the results of  the original paper 

remains true.  

The most important thing about  basic 

intervals is  that they have a very rich latt ice structure.  

In  fact  Valent and Larson proved that a basic interval is  

infinitely meet distributive,  compactly generated and 

complete.  An interval of the Lattice of  Topologies is  

called a very basic interval if  the lower end point of  the 

interval can be obtained by intersecting the upper end 
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point of  the interval by an ultra topology [34] .  A very 

basic interval is always a basic interval.  

Next we charecterise the lower neighbours of  

the ultra topologies as those topologies which can be 

writ ten as  the intersection of  two ultra topologies.  

1.3.1 Theorem 

Every ultra topology has a lower neighbour 

and the lower neighbours of  the ultra topologies are  

precisely those topologies which can be  writ ten as  the 

intersection of  two ultra topologies.  

Proof 

We apply the theorem 1.1.3 to  the latt ice of  

topologies.  We take the element b to  be the discrete 

topology, the element a and c to  be two distinct  ultra 

topologies.  Then the interval [ aAc , b v  c] i s  a basic 

interval and hence infinitely meet distributive.  So  this 



interval is  modular. There fore the requirments of  the 

theorem 1.1.3 are  satisfied and so  the element ar\c is a 

lower neigbour of  the element b ~ c .  s ince the element b 

is the discrete topology, the element b ~ c  is the element 

c i tself .  Hence the ultra topology c has  ay?  lower 

neighbour aAc. 

By lemma 1.2.3, every lower neighbour o f  

every topology can be obtained by taking meet with a 

suitable an ultra topology. There fore  every lower 

neighbour of  an ultra topology is the intersection o f  two 

distinct  ultra topologies.  

Hence the theorem. 



CHAPTER 2 

UPPER NEIGHBOURS IN THE 

LATTICE OF TOPOLOGIES 

R .  E .  L a r s o n  and  W .  J .  T h r o n [ l 6 ]  

i n v e s t i g a t e d  t h e  u p p e r  and  l o w e r  n i g h b o u r s  o f  a  

T 1  t o p o l o g y .  T h e y  d e t e r m i n e d  c o n d i t i o n s  u n d e r  

w h i c h  a  T 1  t o p o l o g y  i s  c o v e r e d  b y  a  s i m p l e  

e x p a n s i o n  by a  non  e m p t y  o p e n  s e t .  N .  L e v i n e  [ l 7 1  

p r e s e n t e d  n e c e s s a r y  and  s u f f i c i e n t  c o n d i t i o n s  f o r  

t h e  s i m p l e  e x p a n s i o n  T ( A )  t o  b e  a n  u p p e r  

n e i g h b o u r  o f  t h e  t o p o l o g y  T. T h e  r e s u l t s  of  

L a r s o n  a n d  Thron  w e r e  e x t e n d e d  by  

F . P l a s t r i a .  [ 2 2 ]  

P .  A g a s h e  and  N .  L e v i n e  [ l ]  d i s c u s s e d  

t h e  e x i s t e n c e  o f  n e i g h b o u r s  f o r  t o p o l o g i e s  in  



t h e  l a t t i c e  o f  t o p o l o g i e s .  T h e y  s h o w e d  t h a t  e v e r y  

r e g u l a r  a n d  n o n  T l  t o p o l o g y  h a s  a n  u p p e r  

n e i g h b o u r .  

2 . 1  U p p e r  n e i g h b o u r s  i n  t h e  l a t t i c e  o f  t o p o l o g i e s  

R .  E .  L a r s o n  a n d  W .  J .  T h r o n [ l 6 ]  

o b t a i n e d  n e c e s s a r y  a n d  s u f f i c i e n t  c o n d i t i o n s  t h e  

s i m p l e  e x p a n s i o n  T ( A )  o f  a  T 1  t o p o l o g y  T b y  t h e  

s e t  A t o  b e  a n  u p p e r  n e i g h b o u r  o f  t h e  t o p o l o g y  z 

i n  t h e  l a t t i c e  o f  T 1  t o p o l o g i e s .  T h e y  s h o w e d  t h a t  

t h e  e v e r y  u p p e r  n e i g h b o u r  o f  T 1  t o p o l o g y  z i s  o f  

t h e  f o r m  z ( U  u { X } )  f o r  a n  o p e n  s e t  U a n d  a  

p o i n t  X i n  X s u c h  t h a t  { X }  i s  n o t  a n  e l e m e n t  o f  t h e  

t o p o l o g y  z .  L a t e r  R .  V a l e n t  [ 3 5 ]  s h o w e d  t h a t  t h e  

a b o v e  r e s u l t  i s  t r u e  f o r  To  t o p o l o g i e s  a s  w e l l .  

W e  e x t e n d  t h e  a b o v e  r e s u l t s  t o  t h e  

l a t t i c e  o f  a l l  t o p o l o g i e s .  W e  s t a r t  t h i s  b y  



r e p r e s e n t i n g  t h e  s i m p l e  e x p a n s i o n  i n  a n o t h e r  

f o r m .  

2 . 1 . 1  L e m m a  

L e t  r b e  a  t o p o l o g y  o n  t h e  s e t  X .  T h e n  

t h e  s i m p l e  e x p a n s i o n  r ( A )  o f  r b y  t h e  s e t  A c a n  

b e  r e p r e s e n t e d  in  t h e  f o l l o w i n g  f o r m .  

r ( A )  = { U  n ( V u A  ) f o r  s e t s  U a n d  

V o p e n  i n  r 1 

P r o o f  

L e t  r '  = { U  n ( V u A  ) f o r  s e t s  U a n d  

V  o p e n  i n  r 1 

L e t  B b e  a n  a r b i t r a r y  e l e m e n t  o f  

t o p o l o g y  r ' .  T h e n  t h e  s e t  B c a n  b e  w r i t t e n  i n  t h e  

f o r m  U n ( V  U A  ) f o r  s e t s  U a n d  V  o p e n  i n  

r .  T h i s  s e t  B c a n  a l s o  b e  w r i t t e n  i n  t h e  f o r m  



( U n V )  U ( U n A  ). S i n c e  U  a n d  V a r e  o p e n s e t s  i n  

.c, U n V  i s  a l s o  a n  e l e m e n t  o f  z .  H e n c e  B b e l o n g s  

t o  z ( A ) .  H e n c e  z ' ~  ?;(A).  

On t h e  o t h e r  hand  z ( A )  i s  t h e  s m a l l e s t  

t o p o l o g y  c o n t a i n i n g  t h e  e l e m e n t s  o f  z  a n d  t h e  s e t  

A .  z '  i s  s u c h  a  t o p o l o g y  b e t w e e n  z  a n d  z  ( A ) .  I f  A  

i s  o p e n  i n  z  t hen  z  = z '  = z  ( A ) .  O t h e r w i s e  z '  z  

So  z '  = z  ( A ) .  

T h e r e  f o r e  z ( A )  = { U  n ( V u A ) f o r  

U , V  € 7  ) .  

I f  A  i s  a  s u b s e t  o f  X ; C l  , A  , I n t  , A  

d e n o t e  r e s p e c t i v e l y  t h e  c l o s u r e  a n d  i n t e r i o r  o f  t h e  

s u b s e t  A  w i t h  r e s p e c t  t o  t h e  t o p o l o g y  z .  



2 . 1 . 2  T h e o r e m  

L e t  r  b e  a  t o p o l o g y  o n  X a n d  l e t  A  b e  a  

s u b s e t  o f  X ,  n o t  o p e n  i n  . c .  T h e n  t h e  f o l l o w i n g  a r e  

e q u i v a l e n t .  

1 .  A  \ i n t ,  A  i s  i n d i s c r e t e  

2 .  A  \ i n t ,  A  = B \ i n t ,  B f o r  a l l  B i n  z  ( A )  \ z 

3 .  B \ i n t ,  B i s  i n d i s c r e t e  f o r  a l l  B i n  z ( A ) \ z  

4 .  F o r  a l l  p o i n t s  i n  t h e  s e t  A  \ i n t  , A  h a v e  t h e  

s a m e  z c l o s u r e .  

P r o o f  

S u p p o s e  A  \ i n t  , A  b e  i n d i s c r e t e  a n d  

B b e  a n  a r b i t r a r y  e l e m e n t  o f  z  ( A )  \ z .  
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F i r s t  w e  s h o w  t h a t  t h e  s e t  B c a n  b e  

t a k e n  a s  0 u ( A  \ i n t  , A)  w h e r e  0 i s  a  z  - o p e n  

s e t  d i s j o i n t  w i t h  A \  i n t  , A .  

S o  l e t  B E z ( A )  \ T. T h e n  B = U  u ( V n A )  

f o r  s o m e  o p e n  s e t s  U a n d  V  i n  z .  

W e  w r i t e  B a s  

U u (V  n ( i n t ,  A u ( A  \ i n t ,  A ) )  

= U u (V  n in t ,  A  ) U  ( V  n ( A  \ i n t ,  A ) )  

I f  V  n ( A  \ i n t ,  A )  = cp t h e n  

B = U  u (V  n i n t ,  A  ) i s  a n  e l e m e n t  o f  z .  B u t  

t h i s  i s  n o t  t r u e  s i n c e  B g z .  H e n c e  

V n  ( A \ i n t ,  A)  # cp.  S i n c e  ( A  \ i n t ,  A )  i s  

i n d i s c r e t e  w e  h a v e  V  n ( A  \ i n t ,  A ) =  ( A  \ i n t ,  A ) .  

T h u s  B i s  o f  t h e  f o r m  

B = U u ( V  n i n t ,  A  ) u ( A  \ i n t ,  A )  

W e  t a k e  t h e  o p e n  s e t  U u (V n i n t ,  A )  a s  0 .  T h u s  



B  = 0 u ( A  \ i n t  , A ) .  I f  t h e  o p e n  s e t  0 i s  n o t  

d i s j o i n t  w i t h  ( A  \ i n t  , A  ) t h e n  s i n c e  

( A  \ i n t  , A )  i s  i n d i s c r e t e ,  ( A  \ i n t  , A )  w i l l  b e  a  

s u b s e t  o f  0 a n d  h e n c e  t h e i r  u n i o n  w i l l  b e  t h e  z 

o p e n  s e t  0. B u t  t h i s  c a n  n o t  b e  t h e  c a s e  s i n c e  t h e  

a b o v e  u n i o n  i s  B  w h i c h  i s  n o t  i n  t h e  t o p o l o g y  z .  

S o  t h e  s e t  B  c a n  b e  t a k e n  a s  

0 u ( A  \ i n t  , A  ) w h e r e  0 i s  a  2 - o p e n  s e t  a n d  0 

i s  d i s j o i n t  w i t h  A  \ i n t  , A .  H e n c e  A \ i n t  , A  

m u s t  b e  a  s u b s e t  o f  X \ 0. A l s o ,  s i n c e  A \ i n t  , A  

c a n n o t  c o n t a i n  a n y  o p e n  s e t ,  t h e  2 - i n t e r i o r  o f  B  

m u s t  b e  0. 

H e n c e  B  \ i n t  , B  

= [ 0  u ( A  \ i n t  , A  ) I  n ( X \ O )  

= ( A  \ i n t  , A )  n ( X  \ 0 )  

= A \ i n t , A  



H e n c e ,  B  \ i n t  ,Ik, = A  \ i n t  , A  f o r  a l l  

B E 'I: ( A )  \ z  

S o  ( 2 )  h o l d s .  

( 2 )  = ( 3 )  

L e t  A  \ i n t  , A  b e  e q u a l  t o  B \  i n t  ,B& 

f o r  a l l  B  in  z ( A )  - z .  

L e t  0 b e  a z - o p e n s e t  i n t e r s e c t i n g  

A \  i n t  , A .  S o  t h e r e  i s  a n  e l e m e n t  b  i n  

0 n (A\int  , A ) .  

I f  0 n A i s  in  z, t h e n  b  i s  a n  e l e m e n t  o f  

t h e  z o p e n  s e t  0 n A w h i c h  i s  t h e r e f o r e  m u s t  b e  a  

s u b s e t  o f  i n t  , A  a n d  h e n c e  0 i s  d i s j o i n t  w i t h  

A \  i n t  , A ,  w h i c h  i s  n o t  s o .  



H e n c e  0 n A  i s  n o t  in  t h e  t o p o l o g y  T,. 

bu t  i t  i s  a n  e l e m e n t  o f  t h e  t o p o l o g y  z  ( A ) .  

S o  b y  a s s u m p t i o n ,  s i n c e  A  E T ( A )  \ z  

w e  h a v e  

A \  i n t  , A  = ( 0  n A )  - ( 0  n i n t  , A )  

= O n A n ( X \ ( O n i n t , A ) )  

= O n A n ( X \ i n t , A )  

= 0 n ( A \  i n t ,  A )  

H e n c e  A  \ int ,A c 0 ,  w h i c h  m e a n s  

A  \ i n t  , A  i s  i n d i s c r e t e .  S i n c e  A  \ i n t  , A = 

B  \ i n t  , B  f o r  a l l  B  in  z ( A )  n o t  i n  z ,  B \  i n t  , B  

i s  i n d i s c r e t e  f o r  a l l  B  i n  z ( A )  n o t  i n  z .  H e n c e  ( 3 )  

h o l d s .  



S u p p o s e  B \ i n t  , B b e  i n d i s c r e t e  f o r  a l l  

B i n  r ( A )  n o t  i n  r .  T h e n  s i n c e  A  i s  s u c h  a n  

e l e m e n t ,  w e  h a v e  A  \ i n t  , A  i s  i n d i s c r e t e .  H e n c e  

( 1 )  h o l d s .  

L e t  A  \ i n t  , A  b e  i n d i s c r e t e  a n d  l e t  a 

a n d  b  b e  a n y  t w o  e l e m e n t s  o f  A \ i n t  , A. I f  0 i s  

a n y  o p e n  s u b s e t  o f  X h a v i n g  a  n o n e m p t y  

i n t e r s e c t i o n  w i t h  ( A  \ i n t  , A ) ,  t h e n  s i n c e  

A  \ i n t  , A  i s  i n d i s c r e t e  w e  h a v e  A  \ i n t  , A  i s  a  

s u b s e t  o f  t h e  o p e n  s e t  0. 

E v e r y  o p e n  s e t  c o n t a i n i n g  t h e  e l e m e n t  a ,  

h a s  a  n o n - e m p t y  i n t e r s e c t i o n  w i t h  A \ i n t  , A a s  a  

s u b s e t  a n d  h e n c e  t h i s  o p e n  s e t  c o n t a i n s  b .  T h i s  

m e a n s  b  E C1 , ( { a ) ) .  



H e n c e  Cl ,  ( { b ) )  c C l ,  ( { a ) ) .  

S i m i l a r l y  Cl ,  ( { a ) )  c Cl ,  ( { b ) )  

S o  w e  h a v e  t h e  e q u a l i t y  C l ,  ( { a ) )  = C l ,  ( { b ) ) .  

(4 )  3 ( 1 )  L e t  C l ,  ( { a ) )  = C l ,  ( { b ) )  

f o r  a l l  e l e m e n t s  a ,  b  i n  A  \ i n t  , A .  I f  A  \ i n t  , A  

i s  n o t  i n d i s c r e t e ,  t h e n  t h e r e  i s  a n  o p e n  s e t  0 

h a v i n g  a  n o n  e m p t y  i n t e r s e c t i o n  w i t h  A  \ i n t  , A ,  

y e t  A  \ i n t  , A  i s  n o t  c o m p l e t e l y  c o n t a i n e d  i n  t h e  

s e t  A .  

L e t  a  E 0 n ( A  \ i n t  , A  ) a n d  

b  E ( A  \ i n t  , A )  \ 0 .  

H e r e  a ,  b  E A  \ i n t  A .  H e n c e  b y  . 

a s s u m p t i o n  w e  h a v e  Cl ,  ( { a ) )  = C l ,  ( { b ) ) ,  b u t  

h e r e  t h e r e  i s  a n  o p e n  s e t  0 c o n t a i n i n g  t h e  

e l e m e n t  a  b u t  n o t  t h e  e l e m e n t  b .  S o  Cl ,  ( { a ) )  



m u s t  b e  d i f f e r e n t  f r o m  C1 ( { b ) ) ,  a  c o n t r a d i c t i o n  t o  

o u r  a s s u m p t i o n .  

T h i s  c o n t r a d i c t i o n  p r o v e s  t h a t  A  \ i n t  , A 

m u s t  b e  i n d i s c r e t e .  

H e n c e ,  t h e  t h e o r e m .  

F.  P l a s t r i a  1221 d e f i n e d  t h a t  a  s e t  A h a s  

t h e  p r o p e r t y  P ,  i f  A s a t i s f i e s  t h e  f o l l o w i n g  

e q u i v a l e n t  c o n d i t i o n s  

1 )  E v e r y  o p e n  s e t  i n t e r s e c t i n g  A 

c o n t a i n s  A .  

2 )  A i s  c o n t a i n e d  i n  t h e  c l o s u r e  o f  

e a c h  o f  i t s  p o i n t s .  

3)  A l l  p o i n t s  o f  A  h a v e  t h e  s a m e  

n e i g h b o u r h o o d  f i l t e r .  



C o m b i n i n g  t h e s e  p r o p e r t i e s  w i t h  o u r  

t h e o r e m  w e  h a v e  t h e  

2 . 1 . 3  T h e o r e m  

L e t  T b e  a  t o p o l o g y  o n  X a n d  l e t  A b e  a  

s u b s e t  o f  X ,  n o t  o p e n  i n  T .  T h e n  t h e  f o l l o w i n g  a r e  

e q u i v a l e n t .  

l .  A \ i n t ,  A i s  i n d i s c r e t e  

2 .  A \ i n t ,  A = B \ i n t ,  B f o r  a l l  B i n  

T ( A )  \ T 

3 . B  \ i n t ,  B i s  i n d i s c r e t e  f o r  a l l  B i n  

4. F o r  a l l  p o i n t s  i n  t h e  s e t  A \ i n t  , A 

h a v e  t h e  s a m e  T c l o s u r e .  

5 .  A \ i n t  , A i s  c o n t a i n e d  i n  t h e  

c l o s u r e  o f  e a c h  o f  i t s  p o i n t s .  



6 . A l l  p o i n t s  o f  A  \ i n t  , A  h a v e  t h e  s a m e  

n e i g h b o u r h o o d  f i l t e r .  

N o w  w e  e x t e n d  t h e  r e s u l t s  o f  L a r s o n  

a n d  T h r o n  [ l 6 1  f r o m  t h e  l a t t i c e  o f  T 1  t o p o l o g i e s  t o  

t h e  l a t t i c e  o f  a l l  t o p o l o g i e s .  W e  d o  t h i s  b y  

e x t e n d i n g  t h e  r e s u l t s  o f  L a r s o n  a n d  T h r o n  f r o m  

t h e  l a t t i c e  o f  T 1  t o p o l o g i e s  t o  t h e  l a t t i c e  o f  a l l  

t o p o l o g i e s .  

2 . 1 . 4  L e m m a  

L e t  z E C (  X )  , A a n d  B b e  a n y  t w o  

s u b s e t s  o f  X .  I f  t h e  s i m p l e  e x p a n s i o n  t o p o l o g y  

z ( B )  i s  f i n e r  t h e n  t h e  s i m p l e  e x p a n s i o n  t o p o l o g y  

z ( A )  t h e n  t h e  s e t  A  \ in t ,A i s  a  s u b s e t  o f  t h e  s e t  

B  a n d  t h e  i n t e r s e c t i o n  A  n B c a n  b e  r e p r e s e n t e d  

a s  t h e  i n t e r s e c t i o n  o f  a n  o p e n  s e t  i n  z w i t h  B .  



P r o o f  

L e t  t h e  s i m p l e  e x p a n s i o n  t o p o l o g y  

T ( B )  b e  f i n e r  t h e n  t h e  s i m p l e  e x p a n s i o n  

t o p o l o g y  r ( A ) .  S i n c e  r ( A )  a l w a y s  c o n t a i n s  t h e  

s e t  A ,  t h e  s e t  A  i s  a  m e m b e r  o f  t h e  t o p o l o g y  

r ( B  ) T h i s  m e a n s  t h e  s e t  A  i s  o f  t h e  f o r m  

U u ( V  n B  ) f o r  s o m e  o p e n  s e t s  U ,  V  i n  r .  

H e n c e  w e  h a v e  t h e  i n c l u s i o n  U A  a n d  

t h e r e f o r e ,  s i n c e  U  i s  o p e n  w e  h a v e  U  c i n t  , A .  

N o w  w e  s h o w  s u b s e t  r e l a t i o n  

A  \ in t ,A c B .  I f  t  E A  \ int ,A t h e n  t  P in t ,A .  S o  

t  e U .  S i n c e  t  E A  w e  h a v e  t  E U U ( V  n B  ). S o  

t  E V  n B  a n d  c o n s e q u e n t l y  t  E B .  S o  w e  h a v e  

t h e  r e l a t i o n  A  \ in t ,A E B. 

F o r  t h e  o t h e r  r e l a t i o n  w e  h a v e  

A = U u V n B )  a n d h e n c e  A n B  = 

( U u ( V n B )  ) n B =  ( U n B ) u ( V n B ) =  
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( U v V ) n B .  So  t h e  s e t  A  n B i s  t h e  

i n t e r s e c t i o n  o f  an  o p e n  s e t  i n  .c w i t h  B .  

2 . 1 . 5  L e m m a  

Le t  z E C (  X )  , A  a n d  B  b e  a n y  t w o  

s u b s e t s  o f  X s u c h  t h a t  t h e  s e t  A  \ in t ,A  i s  a 

s u b s e t  o f  t h e  s e t  B .  T h e n  t h e  s i m p l e  e x p a n s i o n  

t o p o l o g y  .r: ( A  n B )  i s  f i n e r  t h a n  t h e  s i m p l e  

e x p a n s i o n  t o p o l o g y  z ( A ) .  

P r o o f  

S u p p o s e  A  and  B  a r e  t w o  s u b s e t s  o f  X  

s u c h  t h a t  A  \ int ,A G B. 

In  t h i s  c a s e  we  h a v e  A  \ in t ,A c A  n B  

and  h e n c e  we  h a v e  t h e  f o l l o w i n g  i n c l u s i o n s  



A c ( A n B ) u i n t , A  = 

A  n ( i n t , A  u B )  G A  a n d  t h i s  m e a n s  ( A  n B ) 

u in t ,A = A.  S o  A  i s  a n  e l e m e n t  o f  t h e  t o p o l o g y  

z ( A n B ) .  

S o  7 ( A ) ,  w h i c h  i s  t h e  j o i n  o f  t h e  

t o p o l o g y  z  a n d  t h e  a t o m  { A X } i n  t h e  

l a t t i c e  o f  t o p o l o g i e s ,  i s  c o n t a i n e d  i n  t h e  

t o p o l o g y  z  ( A  n B  ). 

2 . 1 . 6  L e m m a  

L e t  T E C (  X ) ,  A a n d  B  be  a n y  t w o  

s u b s e t s  o f  X s u c h  t h a t  t h e  s e t  A  n B i s  t h e  

i n t e r s e c t i o n  o f  a n  o p e n  s e t  i n  z  w i t h  t h e  s e t  B .  

T h e n  t h e  s i m p l e  e x p a n s i o n  t o p o l o g y  % ( B )  i s  f i n e r  

t h a n  t h e  s i m p l e  e x p a n s i o n  t o p o l o g y  z  ( A  n B). 



P r o o f  

S i n c e  t h e  s e t  A  n B  i s  t h e  i n t e r s e c t i o n  

o f  a n  o p e n  s e t  in  T w i t h  t h e  s e t  B ,  t h e r e  i s  a n  

o p e n  s e t  U  s u c h  t h a t  A n  B  = U n  B .  

A n  e l e m e n t  in  t h e  t o p o l o g y  z ( A n B  ) i s  o f  

t h e  f o r m  V  U ( W n  A  n B  ) f o r  e l e m e n t s  V ,  

W  i n  T .  T h i s  s e t  c a n  b e  r e w r i t t e n  a s  

V U (W n ( U  n B ) ) .  C l e a r l y  t h i s  s e t  b e l o n g s  t o  

t h e  t o p o l o g y  T ( B  ). T h e r e f o r e  t h e  s i m p l e  

e x p a n s i o n  t o p o l o g y  T ( B  ) i s  f i n e r  t h a n  t h e  

s i m p l e  e x p a n s i o n  t o p o l o g y  z ( A  n B  ). 

2 . 1 . 7  T h e o r e m  

L e t  z E C (  X ) ,  A  a n d  B  b e  a n y  t w o  

s u b s e t s  o f  X .  T h e n  t h e  s i m p l e  e x p a n s i o n  

t o p o l o g y  z ( B )  i s  f i n e r  t h e n  t h e  s i m p l e  e x p a n s i o n  

t o p o l o g y  .r: ( A )  i f  a n d  o n l y  i f  t h e  s e t  A  \ i n t ,A  

i s  a s u b s e t  o f  t h e  s e t  B  a n d  t h e  s e t  A  n B  c a n  b e  



r e p r e s e n t e d  a s  t h e  i n t e r s e c t i o n  o f  a n  o p e n  s e t  i n  z 

w i t h  B .  

P r o o f  

T h e  o n l y  i f  p a r t  i s  t h e  l e m m a  2 . 1 . 4  

I f  A  a n d  B  a r e  t w o  s e t s  o f  X s u c h  t h a t  

t h e  s e t  A  \ in t ,A i s  a  s u b s e t  o f  t h e  s e t  B  a n d  t h e  

s e t  A  n B  c a n  b e  r e p r e s e n t e d  a s  t h e  i n t e r s e c t i o n  

o f  a n  o p e n  s e t  i n  z w i t h  B , t h e n  b y  L e m m a  

2 . 1 . 5 . t h e  s i m p l e  e x p a n s i o n  t o p o l o g y  z ( A  n B)  i s  

f i n e r  t h a n  t h e  s i m p l e  e x p a n s i o n  t o p o l o g y  z ( A ) .  

A g a i n  b y  l e m m a  2 . 1 . 6  w e  h a v e ,  t h e  t o p o l o g y  

z ( B )  i s  f i n e r  t h a n  t h e  t o p o l o g y  T ( A  n B ) .  

H e n c e  t h e  r e s u l t .  



2 . 1 . 8  C o r o l l a r y  

L e t  t b e  a  t o p o l o g y  o n  X .  L e t  A  

a n d  B b e  a n y  t w o  s u b s e t s  o f  X .  T h e n  t ( A  ) c 

z ( B )  i f  a n d  o n l y  i f  T ( A )  c t ( A  n B  ) c z (  B  ) .  

P r o o f  

O n e  i m p l i c a t i o n  i s  t r i v i a l  a n d  f o r  t h e  

o t h e r  i m p l i c a t i o n ,  l e t  t ( A )  )c z ( B ) .  T h e n  b y  t h e  

l e m m a  2 . 1 . 4  w e  h a v e  t h e  s e t  A  \ in t ,A i s  a  

s u b s e t  o f  t h e  s e t  B a n d  t h e  s e t  A n B  c a n  b e  

r e p r e s e n t e d  a s  t h e  i n t e r s e c t i o n  o f  a n  o p e n  s e t  i n  t 

w i t h  B .  S o  t h e  l e m m a  2 . 1 . 5  i m p l i e s  t h e  r e l a t i o n  

z  ( A )  2 t ( A  n B  ) a n d  t h e  l e m m a  2 . 1 . 6  i m p l i e s  

t h e  r e l a t i o n  t ( A  n B ) t( B ) .  H e n c e  w e  h a v e  

t h e  i n c l u s i o n s  
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T h e  f o l l o w i n g  c o r o l l a r y  %3?-follows f r o m  

t h e  t h e o r e m  2 .1 .8  

2 . 1 . 9  C o r o l l a r y  

L e t  ( X ,  r ) E X( X ) ,  A a n d  B b e  a n y  

t w o  s u b s e t s  o f  X .  T h e n  r ( A )  =T ( B )  i f  a n d  o n l y  

i f  A  \ in t ,A c B ,  B  \ i n t ,B  c A  a n d  A  n B  i s  

r e l a t i v e l y  o p e n  i n  b o t h  A a n d  B .  

A l s o  b y  t h e  p r e v i o u s  c o r o l l a r y  w e  h a v e  

r ( A )  = T ( B ) i m p l i e s  r ( A )  =I ( A  n B  ) = r ( B ). 

2 . 1 . 1 0  R e m a r k  

T h e  i n c l u s i o n  r ( A )  T ( A \ i n t ,A  ) 

b e t w e e n  t h e  t o p o l o g i e s  r ( A )  a n d  r ( A  \ in t ,A ) 

a l w a y s  h o l d s .  F o r  a n  e l e m e n t  o f  r ( A )  i s  o f  

t h e  f o r m  U ( V n A ) a n d  t h i s  s e t  c a n  b e  

w r i t t e n  a s  U U ( V n ( in t ,A U ( A  \ i n t , A ) ) )  = 



U u ( V  n int ,A ) u ( V  n ( A  \ i n t , A )  ) .  C l e a r l y  

t h i s  s e t  b e l o n g s  t o  T ( A  \ i n t ,A  ) H e n c e  e v e r y  

e l e m e n t  o f  z ( A )  i s  a n  e l e m e n t  o f  z ( A  \ i n t ,A  ). 

T h u s  w e  h a v e  a l w a y s  z ( A )  E z ( A  \ i n t ,A  ). 

T h e  a b o v e  r e m a r k  s h o w s  t h a t  t h e  

c o n d i t i o n  A  \ in t ,A c B  o f  t h e  t h e o r e m  

2 . 1 . 7  c a n n o t  b e  w e a k e n e d  f u r t h e r .  

2 . 1 . 1 1  P r o p o s i t i o n  

L e t  r b e  a  t o p o l o g y  o n  X .  L e t  A  

a n d  B b e  a n y  t w o  s u b s e t s  o f  X .  I f  A  \ in t ,A i s  

r e l a t i v e l y  o p e n  in  B ,  t h e n  z ( A )  G T ( B )  

P r o o f  

T h e  c o n d i t i o n  A  \ i n t ,A  i s  r e l a t i v e l y  

o p e n  i n  B  i m p l i e s  t h a t  t h e  s e t  A  \ in t ,A i s  o f  t h e  

f o r m  V  n B f o r  s o m e  o p e n  s e t  U i n  X.  T h e r e  f o r e  



A  i s  o f  t h e  f o r m  in t ,A v ( V n B  ) a n d  h e n c e  A  

b e l o n g s  t o  r ( B ) .  H e n c e  i ( A )  = r v { 4 , A ,  X ) 

c 7 ( B ) .  

2 . 1 . 1 2  E x a m p l e  

N o w  w e  s h o w  t h a t  t h e  c o n d i t i o n s  

i )  A  \ i n t ,  A  c B  a n d  i i )  A n B  i s  r e l a t i v e l y  o p e n  in  

B  o f  t h e o r e m  2 . 1 . 7  a r e  i n d e p e n d e n t  o f  o n e  a n o t h e r .  

W e  t a k e  X = { a ,  b ,  c  ) .  L e t  t h e  n o n  

t r i v i a l  o p e n  s u b s e t s  o f  t h e  t o p o l o g y  r b e  { b , c  ) ,  

{ b )  a n d  { c )  . I f  w e  t a k e  A = { a )  , B  = { a , b ) ,  

t h e n  in t ,A = 4 S o  A  \ in t ,A c B  , b u t  t h e r e  i s  n o  

o p e n  s e t  U s u c h  t h a t  A  n B  = U n B .  

O n  t h e  o t h e r  h a n d  i f  w e  t a k e  A I  = { a ,  b ) ,  

B ,  = { b )  t h e n  A l  \ i n t , A l  i s  n o t  c o n t a i n e d  i n  B l ,  

b u t  A l  n B l  = { b )  = U n B l , w h e r e  t h e  s e t  

U = { b )  i s  o p e n  i n  z .  



N o w  w e  d e f i n e  a n  e q u i v ' a l e n c e  r e l a t i o n  

, o n  t h e  s u b s e t s  o f  X w h i c h  a r e  n o t  o p e n  i n  r .  

2 . 1 . 1 3  D e f i n i t i o n  

F o r  s u b s e t s  A ,  B  o f  X w h i c h  a r e  n o t  

o p e n  i n  z, d e f i n e  A = T B  i f  A  \ i n t ,A  c B ,  

B \ i n t ,  B c A  a n d  A n B  i s  r e l a t i v e l y  o p e n  i n  b o t h  

A a n d  B .  

2 . 1 . 1 4  L e m m a  

T h e  r e l a t i o n  = d e f i n e d  a b o v e  i s  an 

e q u i v a l e n c e  r e l a t i o n .  

P r o o f  

W e  h a v e  b y  t h e o r e m 2 . 1 . 9 ,  A = , B  i f  a n d  

o n l y  i f  z ( A )  = z ( B ). In  t h i s  f o r m ,  t h e  
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p r o p e r t i e s  o f  t h e  e q u i v a l e n c e  r e l a t i o n  f o l l o w s  

e a s i l y .  

2 . 1 . 1 5  L e m m a  

F o r  s u b s e t s  A ,  B  o f  X w h i c h  a r e  n o t  

o p e n  i n  z , A = , B  i f  a n d  o n l y  i f  A = , B = ,  

A  n B .  

P r o o f  

T h i s  i s  c l e a r  s i n c e  f r o m  t h e  c o r o l l a r y  

2 . 1 . 9  w e  h a v e  z ( A )  =z ( B )  i f  a n d  o n l y  i f  

T ( A ) = T ( A ~ B ) = T ( B ) .  

2 . 1 . 1 6  D e f i n i t i o n  

L e t  t h e  e q u i v a l e n c e  c l a s s  c o n t a i n i n g  t h e  

s u b s e t  A o f  X be  d e n o t e d  b y  [ A ] .  W e  n o w  



d e f i n e  a  p a r t i a l  o r d e r  5 , a m o n g  t h e  e q u i v a l e n c e  

c l a s s e s  a s  f o l l o w s .  

[ A ]  I ,  [ B l i f  z  ( A ) E  z ( B ) .  T h i s  

p a r t i a l  o r d e r  i s  w e l l  d e f i n e d  f o r  i f  [ A ]  = [ C ]  

a n d  [ B ]  = [ D ]  t h e n ,  

z  ( A )  = z  ( C )  a n d  .c ( B )  = z  ( D ) .  

S o  [ A ]  I ,  [ B ] i . e .  z  ( A ) c  z ( B )  

i m p l i e s  z  ( C )  c z  ( D )  a n d  t h e r e f o r e  w e  h a v e  

[ C l  5 T [D] .  

2 . 1 . 1 7  T h e o r e m  

L e t  A  b e  a  s u b s e t  o f  X ,  w h i c h  i s  n o t  

o p e n  i n  a  t o p o l o g y  .r: o n  X .  T h e n  z ( A )  i s  a n  

u p p e r  n e i g h b o r  o f  z  i f  a n d  o n l y  i f  [ A ]  i s  a  

m i n i m a l  e l e m e n t  i n  t h e  p a r t i a l  o r d e r  I , d e f i n e d  

a b o v e .  



P r o o f  

I f  r i s  a  l o w e r  n e i g h b o u r  o f  r ( A )  a n d  i f  

[ B ]  5 ,  [ A ]  t h e n  w e  h a v e  r ( A )  = r ( B  ) a n d  s o  

[ A ]  = [ B ]  w h i c h  i m p l i e s  t h a t  [ A ]  i s  a  m i n i m a l  

e l e m e n t .  

N o w  i f  r ( A )  i s  n o t  a n  u p p e r  n e i g h b o r  o f  

1 r f o r  s o m e  t o p o l o g y  c w e  h a v e  r c r ' c r ( A )  

t h e r e  f o r e  f o r  a n y  B  E r \ r w e  h a v e  

r ( B )  G c ( A ) .  T h e r e  f o r e  [ B ]  I ,  [ A ] .  S o  [ A ]  i s  

n o t  a  m i n i m a l  e l e m e n t .  

P .  A g a s h e  a n d  N .  L e v i n e  [ l l p r o v e d  t h a t  

i f  r i s  a  T 1  t o p o l o g y  a n d  i f  A  i s a  n o n  o p e n  s u b s e t  

s u c h  t h a t  r ( A )  i s  a n  u p p e r  n e i g h b o u r  o f  r t h e n  

A  \ in t ,A i s  a n  s i n g l e t o n  s e t .  S o  i n  t h e  l a t t i c e  o f  

T I  t o p o l o g i e s  A  \ i n t ,A  i s  a l w a y s  i n d i s c r e t e  

w h e n e v e r  r ( A )  i s  a n  u p p e r  n e i g h b o u r  o f  r . A l s o  

t h e  c o n d i t i o n  A \ in t ,A G B o f  d e f i n i t i o n  2 . 1 . 1 4  



b e c o m e s  a t r i v i a l  c o n d i t i o n .  S o  T h e o r e m  2 . 1 . 1 7  

g e n e r a l i s e s  r e s u l t  2 . 6 ,  p a g e  104  o f  [ 1 6 ] .  

2 . 1 . 1 8  T h e o r e m  

Let T be a topology on X and A  be a subset 

of X be such that 

1. If  0 is  an T open set  disjoint with 

(A  \ i n t  , A )  t h e n  Cl ,  ( 0 )  is  disjoint  with 

(A  \ i n t ,  A ) ,  

2. (A  \ i n t  , A )  is  indiscrete. 

then T is an immediate predecessor of  .r;(A). 



Proof 

L e t  B be  a n  e l e m e n t  i n  z ( A )  n o t  i n  z .  

T h e n  B m u s t  b e  o f  t h e  f o r m  

= U u [ V  n ( ( A \  i n t  , A )  U i n t  , A ) ]  

= U U ( V  n i n t  , A )  U ( V  n ( A \  i n t  , A ) )  

I f  V  i s  d i s j o i n t  w i t h  ( A \  i n t  , A ) ,  t h e n  B 

= U u ( V  n in t  , A )  w i l l  b e  a n  e l e m e n t  o f  z ,  w h i c h  

i s  n o t  t r u e .  H e n c e  V m u s t  h a v e  a  n o n - e m p t y  

i n t e r s e c t i o n  w i t h  ( A \  i n t  , A ) .  S i n c e  ( A \  i n t  , A)  

i s  i n d i s c r e t e ,  t h i s  n o n - e m p t y  i n t e r s e c t i o n  m u s t  b e  

( A \  i n t  , A ) .  D e n o t i n g  t h e  z - o p e n  s e t  

U U ( V  n i n t  A )  by  W w e  s e e  t h a t  

B = W U ( A \  i n t  , A ) .  A g a i n  W m u s t  b e  d i s j o i n t  

w i t h  ( A \  i n t  , A ) ,  o t h e r w i s e ,  s i n c e  A \  i n t  , A  i s  



i n d i s c r e t e ,  A \  i n t  , A  w i l l  b e  a  s u b s e t  o f  W  a n d  

h e n c e  i t s  u n i o n  w i t h  W i s  t h e  s a m e  a s  t h e  z - o p e n  

s e t  W w h i c h  c a n n o t  h a p p e n .  

H e n c e ,  B = W u ( A \  i n t  , A )  w h e r e  W i s  

z  o p e n  a n d  W  i s  d i s j o i n t  w i t h  ( A \  i n t  , A ) .  S o  i t s  

z - c l o s u r e  C1 , W  i s  a l s o  d i s j o i n t  w i t h  ( A \  i n t  , A ) .  

S o  w e  h a v e  e i t h e r  C l , W c X \ A o r  

C1 , W c i n t  , A .  

N o w  t h e  s e t  i n t  , A u  ( X  \ C1 , W )  n B )  

i s  a n  e l e m e n t  o f  z ( B )  a n d  

= i n t  , A  u ( X  \ C1 , W )  n ( W  u ( A \  i n t  , A ))) 

= i n t  , A u ( X  \ C1 , W )  n ( A \  i n t  , A  )) 

= i n t  , A  u ( X  \ C1 , W )  n A  n ( X \  i n t  , A  )) 
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I f  W c  i n t  , A  t h e n  X  \ i n t  , A  c X \  C l ,  W .  

I n  t h i s  c a s e  t h e  a b o v e  s e t  i s  

i n t  , A  u ( ( X \  i n t  , A  ) n A )  = 

i n t  , A  u ( A \  i n t  , A  ) = A  

I f  W  c X \ A  t h e n  A  c X  \ C1 , W .  I n  

t h i s  c a s e  a l s o  w e  h a v e  

i n t  , A  U ( ( X  \ C1 , W )  n B )  

= i n t A u ( ( X \ C l , W ) n  A n  

( X  \ i n t  , A  ) ) 

= i n t  , A  u ( A \  i n t  , A  ) = A .  

H e n c e  i n  b o t h  t h e  c a s e s  t h e  s e t  A  i s  a n  

e l e m e n t  o f  t h e  t o p o l o g y  r ( B ) .  S o  t h e  j o i n  

r V { X .  + , A  } i s  a g a i n  c o n t a i n e d  i n  r ( B ) .  i . e .  w e  

h a v e  r ( A )  c r ( B ) .  S i n c e  B  E T ( A )  \ r ,  w e  h a v e  



6 5  

a l s o  t ( B )  c t ( A ) .  H e n c e  b y  t h e o r e m  1 . 2 . 1  t i s  

a n  i m m e d i a t e  p r e d e c e s s o r  o f  t ( A ) .  

2 . 2  T o p o l o g i e s  c o n t a i n i n g  a n  u l t r a  f i l t e r  

T h e  r e s u l t s  d e v e l o p e d  s o  f a r  c a n  b e  u s e d  

t o  d e s c r i b e  a n  i n t e r v a l  i n  t h e  l a t t i c e  o f  t o p o l o g i e s  

c o m p l e t e l y .  

2 . 2 . 1  T h e o r e m  

L e t  z b e  a  t o p o l o g y  c o n t a i n i n g  a n  

u l t r a f i l t e r .  T h e n  z h a s  u p p e r  n e i g h b o u r s  a n d  t h e y  

a r e  o f  t h e  f o r m  t ({X)) , w h e r e  {X) g t. 

P r o o f  

L e t  t b e  a  t o p o l o g y  c o n t a i n i n g  t h e  

u l t r a f i l t e r  U. W e  h a v e  t o  p r o v e  t h a t  z h a s  u p p e r  



n e i g h b o u r s  a n d  e v e r y  u p p e r  n e i g h b o r  o f  z  i s  o f  

t h e  f o r m  z {X) f o r  s o m e  { X )  P z. 

B y  t h e  l a s t  t h e o r e m  i t  i s  e n o u g h  t o  p r o v e  

t h a t  t h e  e q u i v a l e n c e  c l a s s  [ { X ) ]  c o n t a i n i n g  t h e  

s i n g l e t o n  s e t  { X ) ,  i s  a  m i n i m a l  e l e m e n t  f o r  

{ X )  P z  a n d  e v e r y  m i n i m a l  e l e m e n t  i s  o f  t h i s  

f o r m .  

S o  l e t  A P T , { X ) T  a n d  

[A] I , [ { X ) ] .  T h e r e f o r e  b y  d e f i n i t i o n  w e  h a v e  

A  \ i n t ,  A  { X ) .  S i n c e  A P z ,  {X) P z  w e  

h a v e  A \ i n t  , A  = { X ) .  S o  A = i n t , A u  { X ) ,  

s i n c e  i n t  , A G A . W e  h a v e  {X)\ i n t  , { X )  E A a n d  

A  P z A  P U. S i n c e  U i s  a n  u l t r a f i l t e r  w e  

h a v e  i n t  , A P U a n d  X \ i n t  , A E U a n d  

t h e r e  f o r e  X \ i n t  A i s  o p e n  a n d  { X )  = 

A  n ( X \ i n t  , A ) S o  [ A ]  I ,  [ { X ) ]  a n d  
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t h e r e f o r e  [ A ]  = [ { X } ] .  T h e r e f o r e  [ { X } ]  i s  a  

m i n i m a l  e l e m e n t .  

N o w  i f  t '  i s  a n  u p p e r  n e i g h b o u r  o f  z , 

t h e n  z '  = T (  A )  f o r  A  E T '  \ T .  L e t  X E A  b e  s u c h  

t h a t  { X )  P t .  N o w  s i n c e  A  i s  n o t  i n  t , i t  i s  n o t  in  

t h e  u l t r a f i l t e r  U. T h e r e f o r e  i t s  c o m p l e m e n t  

b e l o n g s  t o  U, a n d  h e n c e  ( X \ A )  ~ { x )  E U. 

T h e r e f o r e  { X }  = A  n[( X \ A )  u ( x } ] ,  i s  t h e  

i n t e r s e c t i o n  o f  a n  o p e n  s e t s  i n  T w i t h  A .  H e n c e  i t  

b e l o n g s  t o  t ( A ) .  T h e r e f o r e  t h e  u p p e r  n e i g h b o u r  

'C( A )  m u s t  b e  o f  t h e  f o r m  t (  ( X }  ). H e n c e  

t ( { x } )  = ( A ) -  

H e n c e  e v e r y  u p p e r  n e i g h b o u r  o f  T i s  a  

s i m p l e  e x p a n s i o n  b y  a  n o n - o p e n  s i n g l e t o n .  



2 . 2 . 2  L e m m a  

L e t  U b e  an  u l t r a  f i l t e r  o n  t h e  s e t  X .  L e t  

r f  b e  a  t o p o l o g y  f i n e r  t h a n  r .  L e t  A b e  a  s u b s e t  o f  

X o p e n  in  t h e  t o p o l o g y  r b u t  n o t  o p e n  i n  t h e  

t o p o l o g y  r .  T h e n  e v e r y  s i n g l e t o n  s u b s e t  o f  A  i s  

, 
o p e n  i n  t h e  t o p o l o g y  r . 

P r o o f  

L e t  A E r \ 'I: a n d  l e t  a  E A .  W e  h a v e  

t o  p r o v e  t h a t  { a )  i s  o p e n  i n  r ' .  A i s  n o t  a  

m e m b e r  o f  t h e  t o p o l o g y  r a n d  h e n c e  A i s  n o t  a  

m e m b e r  o f  t h e  u l t r a f i l t e r  U .  H e n c e  i t s  c o m p o n e n t  

X \ A b e l o n g s  t o  t h e  u l t r a f i l t e r  U .  S o  i t s  s u p e r s e t  

( X  \ A )  U { a )  i s  a n  e l e m e n t  o f  U .  S o  t h i s  s e t  

b e l o n g s  t o  r a n d  h e n c e  i t  b e l o n g s  t o  t h e  f i n e r  

t o p o l o g y  r l .  H e n c e  t h e  s e t s  A  a n d  ( X  \ A )  U { a )  
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, 
b e l o n g s  t o  t h e  t o p o l o g y  r .  H e n c e  t h e i r  

, 
i n t e r s e c t i o n  { a )  i s  a l s o  in  t h e  t o p o l o g y  T . 

S i n c e  a  E A w a s  a r b i t r a r y ,  i t  f o l l o w s  

t h a t  e v e r y  s i n g l e t o n  s u b s e t  o f  A i s  o p e n  i n  t h e  

t o p o l o g y  r . 

2.2.3 Theorem 

L e t  U b e  a n  u l t r a  f i l t e r  o n  X .  L e t  r b e  

t h e  t o p o l o g y  U u  ( 4 )  o n  X .  T h e n  e v e r y  t o p o l o g y  

r '  f i n e r  t h a n  r i s  o f  t h e  f o r m  @ ( F )  u U w h e r e  F 

i s  t h e  u n i o n  o f  a l l  s e t s  i n  t h e  t o p o l o g y  r '  n o t  i n  

t h e  t o p o l o g y  r . 

P r o o f  

, 
L e t  r b e  a  t o p o l o g y  f i n e r  t h a n  r . 

N o w  w e  p r o v e  t h a t  r '  = p ( F )  U U .  



L e t  A E r .  I f  A i s  e m p t y  t h e n  

A E ,p ( F ) .  I f .  A i s  n o n - e m p t y  a n d  A E T t h e n  

A E U .  

O t h e r w i s e  A E r '  \ r .  t h e n  b y  

l e m m a  2 . 2 . 2  e v e r y  s i n g l e t o n  s u b s e t  o f  A i s  o p e n  i n  

t h e  t o p o l o g y  r '  a n d  h e n c e  t h e  s e t  A a n d  i t s  s u b s e t s  

a r e  i n  p ( F ) .  

H e n c e  A E p ( F ) .  

I n  o t h e r  w o r d s ,  e v e r y  e l e m e n t  A i n  t h e  

t o p o l o g y  r '  i s  a l s o  a  m e m b e r  o f  t h e  t o p o l o g y  

( F )  U .  

H e n c e  r '  c p ( F )  U U ( i )  

i f  A i s  a  m e m b e r  o f  t h e  t o p o l o g y  

p ( F )  u U ,  t h e n ,  e i t h e r  A E U o r  A E p ( F ) .  



I f  A  E U t h e n  A  E r a n d  h e n c e  A  E T'. 

O t h e r w i s e  A  E p ( F )  a n d  A i s  n o t  a  

m e m b e r  o f  U .  S i n c e  U i s  a n  u l t r a  f i l t e r  w e  h a v e  

t h e  c o m p l e m e n t  X  \ A  E U .  

I f  a  E A  t h e n  ( X  \ A )  u { a )  E U a n d  

h e n c e  { a )  = A  n ( ( X  \ A )  u { a ) )  i s  a  m e m b e r  o f  

t h e  t o p o l o g y  Uu ,p ( F ) .  

A l s o  { a ) i s  n o t  i n  t h e  u l t r a  f i l t e r  U .  S o  

{ a )  E p ( F )  f o r  a l l  a  E A .  

, 
S o  a  E F .  S o  { a )  E r f o r  a l l  a  E A  

, 
S i n c e  r 1  i s  a  t o p o l o g y  w e  h a v e  A  E r . 

S o  e v e r y  m e m b e r  o f  t h e  t o p o l o g y  p ( F )  

U U i s  a l s o  a  m e m b e r  o f  t h e  t o p o l o g y  7'. 



H e n c e  p ( F )  u U c r '  - - - - - - - - - - -  ( i i )  

F r o m  ( i )  & ( i i )  w e  h a v e  r '  = ( F )  V U. 

T h u s  e v e r y  t o p o l o g y  f i n e r  t h a n  r i s  o f  t h e  f o r m  p 

( F )  u U. 
0 



CHAPTER 3 

LOWER NEIGHBOURS OF TOPOLOGIES 

In this chapter we consider the dual problem 

in the previous chapter. Here we consider lower 

neighbours. Recall that a lower neighbour of  topology T 

is a topology T' such that T is an upper neighbour of T'. 

A topology in which every non empty open set 

is dense is called a D-topology by N. Levine [18]. Levine 

proved that a topology is  a D topology if and only if 

every pair of  non empty open sets has a nonempty 

intersection if and only if every openset in the topology 

is connected. 



P. Agashe and N.  Levine [ l ]  initiated the 

investigation of the existence of lower neighbours in 

the Lattice of Topologies. They proved that a topology 

which is not a D-topology in which singleton sets are G- 

closed has a lower neighbour. From this it follows that 

T1 non D- topology and every Hausdorff topology have 

lower neighbours. 

In the Lattice of T1  Topologies, Larson and 

Thron [l61 started investigating this problem and we 

generalise their results from the Lattice of T1  Topologies 

to the Lattice of Topologies. 

3.1 Lower neighbours in the lattice of topologies 

3.1.1 Lemma 

Let z be a topology on X and A G X such 

that A z and r = T(A) n 3 (  X,  U ) for  some 

ultratopology 3 (  X, U ) .  Then X E A \ int , A 



Proof 

We have always A E z (A) and also we have 

the relation A g z = T(A) n 3 (  X, U). So A g 3 (  X, U) 

and hence X E A. Also if  X E int , A E z , then int , A 

E 3 (  X, U )  and so int , A E U .  Therefore the set A , 

being a superset of int , A will be in Uand hence it will 

be in the ultra topology 3 (  X, U) .  So A is an element of  

the topology z , since it is in z (A) , which is  not true. 

Hence 

X g int , A. Therefore X E A \ int , A. 

3.1.2 Proposition 

Let T be a topology on X and A G X such 

that A g z and T = z(A) n 3 (  X, U ) for some 

ultratopology 3 (  X, U ) .  If  A \ int , A is  indiscrete then 

A \ int , A = Cl , ({X)) 



Proof 

We have by lemma 3.1.1,  X E A \ int  , A 

Since A \ int , A is indiscrete,  by theorem 

2.1.2 it i s  contained in the closure o f  each o f  i ts  points.  

So A \ int , A. c C l ,  ({X) ) .  

On the other hand if  there exist  t  E A \ int  , A 

such that t  P C1 , ({X)) ,  then there is  an open set  U 

containing t but not X .  So U and hence U n A are 

elements of  the ultra topology 3 (  X,  U). Also U n A is 

an element of  T (A). Hence U n A E T (A) n 3 ( x ,  U ) =  T .  

We have t E A and t E U. Therefore U n A is 

a nonempty T -open set  containing t contained in A and 

hence t E int  ,A . This  contradicts the choice o f  t as  

an element of A \ int  , A. 



Hence there is no t~ A \ int , A not in 

C1 , ({X)) .  This together with A \ int , A. C1 , ({X}) 

means A \ int , A = Cl , ( (X}) .  

Next we generalise the results of Larson and 

Thron from the lattice of T1 topologies to the Lattice of  

Topologies. 

3.1.3 Definition [ l 6  ] 

Let r and r l be topologies on X such that r 1 

1 is an upper neighbour of z . We say that r is an upper 

neighbourof r by X if there is an ultratopology such 

that r = r ' n 3( b, U ) .  

3.1.4 Theorem 

1 If z and r are two topologies on X such that 

r ' is an upper neighbour of r by two points a and b.  



Then C1 ,({a}) = Cl ,({b}). 

Proof 

Since r l is  an upper neighbour of  r we have 

r l = T (A) for some subset A of  X, not  open 

in r .  Also by assumption there are  ultra topologies such 

that 

Then by lemma 3.1 . l  a E A \ int  , A 

and b E A \ int , A 



We have to prove that Cl , ( { a ) )  = Cl , ( { b ) ) .  

Equivalently it is enough to prove that b  E Cl , ( { a ) )  and 

a E Cl T({b)) .  

Suppose a  P Cl , ( { b ) ) .  Since X \ C1 , ( { b ) )  E z  

it  is an element of .c ( A )  and hence A  n ( X \ Cl , ( { b ) ) )  

= A  \ C1 , ( { b ) ) ~  z (  A  ) and hence 

I f  z ( A  \ Cl , ( { b ) )  ) = .c( A ) ,  then by 

theorem 2.1.9 we have 

A  \ int , A  c A  \ Cl , ({b))  X \ C1 , ( { b ) ) .  

Here b  E A  \ int , A  , but b P X \ Cl , ( { b ) ) ,  a 

contradiction. Hence z  ( A  \ Cl , ( { b ) )  ) z (  A ) .  

Also ( A \ Cl , ( (b})  P z as  a  E A \ int , A 



~f T = 7 ( A \ Cl ,({b}) ) then A \ Cl , ({b)  E z. 

Then A \ Cl ,({b) = int , (A \ C1 , ({b))  

= int  , A n ( X \ Cl , ({b))  

= int  , A \ Cl ,({b) 

But since a P Cl ( { b } ,  a E A, we have 

a E A \ Cl ,({b}. So  a E int  , A , a contradiction to  the 

choice of  a as an element of  A \ int , A. 

Hence we have the strict  inclusions 

T c T ( A \ Cl , ({b))  ) c z (A) which 

contradicts the fact that z is  lower neighbour o f  z (A).  

So a E Cl  ,({b}). Similarly b E Cl , ({a)) .  

Therefore Cl , ({a) )  = Cl , ({b)) .  



1 

3 .1 .5  Corol lary 

If  r and r1  are two To topologies such that r 1  

upper neighbours r . Then there exist  a unique element X 

1 of  X such that r i s  an upper neighbourof r by X. 

Proof  

Suppose that r l is  an upper neighbourof r 

by X and y.  Then by the previous result  we have 

Cl ( { X } )  = Cl ( { y } )  . So X = y , since the topology r 

is  To. 

Thus there exist a unique element X of  X such 

1 that  r is  an upper neighbourof r by X. 

3 .1 .6  Corol lary [ l61  

If  T and r1  are two T 1  topologies such that r1  

upper neighbours r . Then there exist  a unique element X 



of X such that r ' is an upper neighbourof r by X. 

3.1.7 Definition 

A subset B is said to be a neighbourhood of the 

set A in the topology T if A E int , B. 

3.1.8 Definition 

The collection p (  X \ {X}) U 3, X E X  where 

3 is a filter on X such that {X) g 3 i s  a topology on X. 

We denote this topology by 3 ( X , 3). 

3.1.9  Lemma 

If r is a topology and 3 ( X , 3 ) is a 

topology on X which is not finer than r.  Then if r is an 

upper neighbour of T' = z n S ( x , 3 ) t h e n  C l , .  

({X}) is indiscrete 



Proof 

Since z is an upper neighbour of 

z -  = z n 3: ( X ,  3), there is an element A E z \ z ' .  

Hence by theorem 1.2.1 z = z ' (A).  Hence 

= ( A )  n 3:( X, U ). Also by theorems 2.1 .3  and 

3.1 .2  A \. int ,. A is indiscrete and by proposition 3.1.2 

A \. int ,. A. = C1 , S  ({X)) .  So C1 ,. ({X))  is  indiscrete. 

3.1.10 Lemma 

Let z be a topology and let 3: ( X , 3 )  be a 

topology on X which is not finer than z. If  z is an 

upper neighbour of z n 3 ( X , 3), then for  any two 

neighbourhoods G and H of Cl, {X) in t such that H E F, 

there exist another neighbourhood N of Cl, {X)  such that 

N E  3 , N n H c G .  



Proof 

Let z '  be the topology z n 3 ( X , 2.  

Let z be an upper neighbour of  z n 3 ( X ,  

3)  i .e.  z is an upper neighbour of z '  and let G and H 

be neighbourhoods of  C1 , ( { X ) )  in z such that H G 3. 

Then H G 2 ( X , 3 ) and so  H E z'. There fore  H 

E 'C \ Z '  . Since z is  an upper neighbour o f  z and 

H E 'I: \ z '  we have by theorem z = z ' (  H ). 

Now G E z ' (  H ) and so by lemma 2.1.1 open 

sets A  and B  in z '  such that G = A  n ( H u B).  

So G G A .  

Since G is a neighbourhood o f  C1 , ( { X ) )  and 

G G A  , A  is  a neighbourhood of  C1 , ( { X ) ) .  Also 

G = A  n ( H U B) = (A n H) U( A  n B).  Hence 

( A n H )  G G .  



Also A E z '  = z n 3 ( X , 3 )  and hence 

A E 3 (since X E A ). So  we may take N = A. 

The neighbourhood N  of  Cl, { X )  is  such that 

N E  3 , N n H c G .  

3.1.11 Theorem 

Let .c be a topology and let  2 ( X ,  3) be a 

topology on X which is not  f iner than z. Then z is  an 

upper neighbour of r n 3 ( X , 3 ) i f  and only if 

Cl , ( { X ) )  is  indiscrete and for any two neighbourhoods 

G and H  of  X in z such that  H  P 3, there exist  another  

neighbourhood N of  X such that N  E 3 ,  N  n H  c G. 

Proof 

If  z is  an upper neighbour o f  z n 3 (X, 3) 



then the result  fol lows from lemmas 3.1.9 & 3.1.10 

For  the converse , le t  the topology r and the 

topology 3 ( X , 3 )  be such that  C1 , ( { X ) )  i s  indiscrete 

and for  any two neighbourhoods G and H of  X in 

r such that  H E 3, there exist  another  neighbourhood N 

of X such that  N E 3 , N  n H z G ,  

Since C1 , ( { X ) )  is indiscrete,  any 

neighbourhood of X , is  a neighbourhood of  C1 , ( { X ) ) .  

Le t  H and G be  any two elements  of  T \ T'. 

S o  H G 3 ( X , 3 ) .  They are neighbourhoods o f  X in r .  

S ince  

C1 , ({X)) i s  indiscrete , they are neighbourhoods of  

Cl  , ( { X ) )  in T. 



Also H E 3 . So  by assumption there exist  

another neighbourhood N of  X such that  N E 3 , 

N n H G G,  N is also a neighbourhood of  C1 , ( { X ) ) .  

In this case we have H E r \ r '  and since 

G \ Cl, ( { X ) )  E 3 ( X, 3)  , G \ Cl, ( { X ) )  E T we have 

G \ Cl, ( { X ) )  E X'. Also N E 3, N E r implies N E r '  

and since N and H are  neighbourhoods o f  Cl  , ( ( X ) )  N n H  

is also a neighbourhood. 

Since r is  a larger topology than r ' ,  Cl  , ({X)  

is subset of  Cl  ,- ({X)) ) .  Since C1 ,. ({x) ) i s  indiscrete 

( theorem 3.1.7) , Cl , ( { X ) )  is also indiscrete.  

Now we have G = ( N n H ) U (G \ Cl,. ( { X ) ) )  

Hence 



There fore G = ( N n H ) U (G \ Cl,. ({X) ) )  E 

T' ( H ). Hence r '  ( G ) r ( H ) Since G and H are 

arbitrary elements of  t \t', i t  follows that 

t' ( G ) = r '  ( H ) That is  r '  ( G ) = r '  ( H )for  all  G 

and H in r not in 2'. Therefore by theorem 1.2.1 r i s  

an upper neighbour of  r '  . Hence the theorem. 

The above theorem generalises the following 

them of  Larson and Thron [16]. We note that  in a T1 

topology Cl  , ( { X ) )  = { X )  is always indiscrete 

3.1.12 Theorem [ l61 

Let r be a topology and let 3 ( X ,  3) be a 

topology on X which is not f iner than r .  Then t i s  an 

upper neighbour of r n 3 ( X , 3) i f  and only if  for 

any two neighbourhoods G and H of  X in r such that 



H  P 3 ,  there exist another neighbourhood N of  X such 

that N E ~ , N ~ H G G .  

3.1.13 Corol lary 

Suppose r is a topology and 3 ( X , 3 is an 

ultra topology on X which is not finer than r such that 

r is an upper neighbour of r n 3 (X , 3 )  then r is 

an upper neighbour of r n 3 (y , 3 for every 

topology 

Zi (y  , 3) such that Cl({x}) = Cl({y)) .  

Proof  

Let r '  be the topology r n 3 ( X , 3) where 

Cl({x}) = C ~ ( { Y } ) .  

Let G  and H  be any two neighbourhoods of 

Cl({y))  in r such that H  g 3. So G and H  are any two 



neighbourhoods of  C1 ({X})  in T such that H a 3 ,  hence 

by the previous theorem there exist  a neighbourhood N o f  

C1 ( { X ) )  such that N E 3, N n H E G. Since every 

neighbourhood of Cl({x})  is a neighbourhood o f  Cl({y}) ,  

it follows that there exist  a neighbourhood N o f  C1 ( { y ) )  

such that N E 3, N n H E G. Hence by the previous 

theorem .c is  an upper neighbour o f  T n 3 ( y  , 3 ) .  

Since the element y such that C l ( { x ) )  = 

Cl({y) )  was arbitrary it follows that T is an upper  

neighbour of  T n 3 (y , 3 ) for every y such that 

Cl({x}) = C ~ ( { Y ) ) -  

3.1 .14  Theorem 

If  .c is  a topology and 3 ( X , 3 ) is a 

topology on X which is no t  f iner than T . Then T is an  

upper neighbour of T n 3 ( X  , 3 ) if  and only if  

C1 , ({X)) is indiscrete and for any  two neighbourhoods 



G and H of Cl, ( {X) )  in r such that H E 3 ,  we have 

I n t ,  [ G u ( X \ H ) ]  E 3 ,  

Proof 

Let r is an upper neighbour of  r n 3 ( x , 3 ) .  

Let G and H be any two neighbourhoods of  C1 ( { X ) )  in r 

such that H E 3. Then by the previous theorem there 

exist some N E 3 ,  which is a neighbourhood of  C1 ({X) )  

such that N n H E G. Therefore N c G u ( X \ H ). 

Since N is open in r , N c Int [ G u ( X \ H ) ] . Since 

N E 3 w e  have Int [ G  u ( X \ H ) ]  E 3.  

Conversely, 

Let for any two neighbourhoods G and H of 

Cl ( {X) )  in r such that H s 3, we have 
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Let N = Int  [ G u ( X \ H )] Then we have 

By the previous theorem r is an upper 

neighbour of  r n 3 (X , 3). 

3.1.15 Corollary 

Let r be a topology such that super  sets o f  non 

empty open sets  are  open in  r Then i f  3 ( X , U(y)  ) is  

a principal ultra topology on X which is not  f iner than 

r ,  then r is  an upper neighbour of  r n 3 (X , U(y)).  

Proof 

Let H be neighbourhood of  C l ({x) )  in r such 

that H P U ( y ) ,  that is y P H .  



If  G is any neighbourhood of  Cl({x))  in T , 

then 

[ G u ( X  \ H  )I , being super  set  of  a nonempty open set  

is open in T . 

Hence Int  [ G u ( X \ H ) ] =  [ G u ( X \ H ) ]  

Also y H implies that  y  E X \ H. 

So y E [ G U ( X  \ H  ) l .  There fore 

[ G U ( X  \ H  )] E U (y).  By the previous theorem T i s  

an upper neighbour o f  T n 3 (X , U(y)).  



CHAPTER 4 

TOPOLOGIES WITHOUT UPPER NEIGHBOURS 

IN LATTICE OF TOPOLOGIES 

P. Agashe and N.  Levine first  gave examples 

of  topologies without upper neighbours.  They proved 

that a f irst  countable completely normal topology is 

without upper neighbours in the latt ice of  topologies[ l ] .  

Later R.E. Larson and R. Valent proved that a first 

countable Hausdorff topology is a lso without upper 

neighbour[34].  

4.1 Topologies without upper neighbours 

In this section the above result  o f  Larson and 

Valent is  extended to the case o f  countably accessible 

topologies.  



4.1.1 Lemma 

Let z be a topology such that every non- 

closed subset has two disjoint subsets with a common 

limit point out side the set. Then r does not have an 

upper neighbour. 

Proof 

Suppose on the other hand let z'  be an upper 

neighbour of z then z' = z(A) for some A X A E z . 

So by assumption X \ A contains two disjoint subsets C l  

and C2 with a limit point X E A. So X E A \ in t ,A . 

Also this X is such that X E ClCl and X E C1C2 . The 

sets C l  and C2 are such that C l  n C2 = 0 and 

C l  n C2 n in t ,A = 0 

Let 0 = X \ Cl( C l  U {X}) 



= X \ Cl(Cl), 

(since x e  Cl(Cl)  3 ClCl U Cl ( {X) )  = C l c l )  

Also C l  G X \ A implies int A E X \ Cl(C1) = 0 

Now 0 u ( A \ int  A ) 

= ( X  \ Cl(Cl))  u [A n ( X  \ int A)] 

= [ A U( X \ Cl(CI)]  n[( X \ C1(Cl)) U( X \ int A)] 

v 

= [ A U( X \ Cl(Cl)] n [(X \ (C1(Cl) n int  A)] 

= [ A U( X \ Cl(Cl)]  n X 

= [ A u ( X \  C1(Cl)] 

= A u O  



I f O u ( A \ i n t A ) = O u A  E T  then O u A  

is an open set containing X and hence intersects C l ,  which 

cannot happen. 

Therefore 0 u A g T This  means 

0 v A E T (A) \ r and hence r (A) = r ( 0 U A ). So A is 

of the form U u ( V n ( 0  u A) for U,  V open in T.  

Therefore 

A = U u ( V n ( 0  U(  (A \ int A) u int A ))) 

= U u ( V n  int A ) u ( V n  0 )  u ( V n  (A \ int  A)  ) 

and therefore V n ( 0  \ int A) c V n  0 c int A 

Also V n ( 0  \ int A) E V n  0 n ( X \ int A) E X \ int A 

Hence V n ( 0  \ int A) = 0 



3 A \ int A E V c X \ C l ( ( 0  \ int A)), 

since 

( A \ int A) is indiscrete 

( A \ int A )n C l ( ( 0  \ int A)) = 4 

But we hav,e 

C2 G X \ int A and C2 E 0 SO C2 ( 0  \ int A) 

Hence X E C1 (C2) s C 1  (0 \ int A) so 

X P( A \ int A ) which is a contradiction to the 

choice of X. 

Hence T(A) can not be a upper neighbour of  T. 

Hence the theorem. 

A topology is called countably accessible if 

the topology can be written as the intersection of ultra 



topologies whose associated ultrafilters contain countable 

sets but no finite sets( 1141 page 33). This type of 

topologies were introduced by R. E. Larson. Larson 

constructied these topologies by imitating A.K. Steiner 's  

construction of principal topologies. Since a countably 

accessible topology is an intersection of  non-principal 

ultra topologies, every countably accessible topology is 

T1.  R. E. Larson gave the charecterisation of  a 

countably accessible topology as the topology such that 

every non-closed subset contains a countable subset with 

a limit point outside the set [14]. 

4.1.2 Corollary 

No countably accessible topology which is not 

an ultra topology has an upper neighbour in the lattice 

of topologies 



Proof 

Let (X 7 ) be a countably accessible topology 

and let A be a non-closed set in this topology. By the 

charecterisation of Larson mentioned above there is a 

countably infinite subset B of A with a limit point X 

lying out side A. 

Let f : N + B be a bijection, where N is the set 

of natural numbers. Such a bijection exists since the set 

B is countably infinite. 

Let 

C l  = { X E B such that f(i) = X for an odd integer i )  and 

C2 = { X E B such that f(i) = X for an even integer i ) .  

These sets C l  and C2 are disjoint. Also the limit point X 

is such that it is a common limit point of  the sets 

C l  and C2. 
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Hence every non closed set  has two disjoint  

subsets having a common limit point outside the set .  So 

by the previous theorem T cannot have an upper 

neighbour.  

4.1.3 Corollary 

No first countable T 1  space has an  upper 

neighbour.  

Proof 

A T1 first countable space is  always 

countably accessible.  

4.1.4 Corollary [3]  

No first countable Hausdorff space has an 

upper neighbour.  



Proof 

A first countable T1 space is always countably 

accessible. 

4.2 Lattice of  Cech Closure operators 

4.2.1 Definitions [23] 

Let @(X)  denote the power set  of  set X. The 

topological closure operator associated with a topology T 

is defined as a function on @(X)defined by 

c(A) = Cl,(A). A Cech closure operator is a similar 

operator on @(X)  and can be considered as a 

generalisation of the topological closure operator.  

Formally a Cech closure operator V on a set 

X is a function V from @(X)  into @(X)  having the 

following properties. 



1. V fixes the empty set. i .e. V(cp ) = cp . 

2. V is expansive. i.e. V(A) = A .  

3 .  V preserves the union. i.e. for any two 

subsets A and B of X, we have V(A U B )  = V(A)  U V(B) .  

For convenience we call a Cech closure 

operator on a set X as a closure operator on X .  Also 

the pair ( X , V ) is called a closure space. 

A subset A in a closure operator ( X , V) is 

said to be closed when V(A) = A .  A subset is said to be 

open when its complement X \ A is closed. i.e. when 

V(X \ A)  = X \ A .  The set of  all open sets of a closure 

operator forms a topology on X .  This topology is called 

the topology associated with the closure operator. Also 

this topology is such that, different closure operators 

on the same set, can have the same associated topology. 



A closure operator on set X is topological if and only if 

it is the closure operator associated with a topology on X. 

Now have a partial order among the set  of all 

closure operators on a set X.  

Suppose V1 and V2 are closure operators on a 

set X. We define V,  I V2 if  and only i f  V2(A) c V1(A) 

for every subset A of X. We denote the set  of  all closure 

operators on a fixed set  by C(X). With the partial  order 

defined as above the set of  all closure operators on X 

forms a complete lattice. 

The smallest element of this latt ice is  the 

indiscrete closure operator. For a subset a of  the set  X 

the indiscrete closure operator I is defined by 



This  closure operator is  the closure operator 

associated with the indiscrete topology on X. 

The largest element of  the latt ice of  closure 

operators is  the discrete closure operator.  The discrete 

closure operator D on X is defined by D(A) = A for  every 

subset A of  X.  It is the closure operator associated 

with the discrete topology on X. Also D is the unique 

closure operator whose associated topology is discrete.  

An infra closure operator is  an atom in lattice 

of  closure operators.  i .e. A closure operator is  called an 

infra closure operator if  it is different fr.om the indiscrete 

closure operator I and the only closure operator strictly 

smaller than it is  the indiscrete closure operator.  

An ultra closure operator is  an dual atom in the 

latt ice of  closure operators. i.e. A closure operator is  an 

ultra closure operator if it is  different from the discrete 



closure operator and the only closure operator strictly 

larger than it is  the discrete closure operator.  

The Lattice of  Cech Closure Operators is  

dually atomic and distributive.  So by theorem 1.1.5 every 

element of  it has a lower neighbour.  

4.3 Open Problems 

Our present investigations have proved 

successful in solving many intricate problems confronted 

during the course of  this project. Nevertheless a few 

problems sti l l  remain unanswered. This  wil l  evidently 

open up new avenues in this area of  research. Here we 

list  some of  the open problems. 

1. Charecterisation of topologies having 

upper neighbours in the lattice of  topologies.  



2, Finding topologies without lower 

neighbours in the Lattice of Topologies 

3 .  The upper and lower neighbours in some of 

the important sublattices of the Lattice of  Topologies like 

lattice of regular topologies, lattice of completely regular 

topologies etc., are to be studied. 

4, The relation between covers in the lattice of 

topologies and lattice of Cech closure operators is to be 

studied. 

5 ,  In areas like digital topology we require 

strengthening or weakening of topologies. In these 

problems some times it is required to change lhe 

neighbourhoods of some points in certain special ways 

without affecting the neighbourhoods of  other points. It 

is felt that the methods in this thesis can be used in such 

situations.Detailed investigations in this direction are to 

be made. 
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