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INTRODUCTION

The collection X£(X) of all topologies on a
fixed non-empty set X is a partially ordered set wunder
the natural partial order of set inclusion. The discrete and
indiscrete topologies are the smallest and largest

elements in X(X) respectively.

The intersection of an arbitrary collection of
topologies on the set X is a topology on X. So under
the partial ordering, any subset of the collection of all
topologies on the set X has an infimum, namely their set
theoretic intersection. Hence the collection X(X) of all

topologies on the set X is a complete lattice under the
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partial order mentioned above ([6] Theorem 3,

page 112).

The two lattice operations join and meet of the
lattice £(X) can be described as follows. The meet of a
collection of topologies on X 1is simply their set
theoretic intersection. The join of a collection of
topologies is the topology generated by the union of all

the topologies in the collection.

The study of lattice of topologies and its
sublattices is one of the interesting areas in point set
topology. As mentioned earlier, G. Birkhoff [6] and R.
Vaidynathaswamy [32] initiated the study of the lattice
theoretic properties of X(X)and some of its sublattices.
Following them many authors studied the lattice
properties of the lattice of topologies from different

perspectives.




If L is a lattice, and a and b are elements
of L, then b is said to be an upper neighbour of a if

a < b,anda < ¢ £ b,c € L implies that a = c or

c = b. An element a is said to be a lower neighbour of
an element b in a lattice, when the element b is an upper

neighbour of a.

An atom in a lattice is any element ‘a’ in the
lattice which is an upper neighbour of the smallest
element. Dually a duall atom in a lattice is any element
in the lattice which is lower neighbour of the largest

element.

A lattice such that every element other than
the smallest can be written as the join of atoms smaller
than or equal to the element is called an atomic lattice.

A dually atomic lattice is defined dually.



There are atoms in the lattice X(X). The
atoms of the lattice £(X) are precisely the topologies of
the form {6, X, A} where A is a proper nonempty
subset of the set X. In the lattice Z(X) every element
other than the indiscrete topology can be written as a
join of atoms smaller than or equal to it. Hence the

lattice of topologies £(X) is an atomic lattice [32].

If © is a topology on X and if A is a nonempty
subset of X, then the simple expansion of the topology 7
by the set A is the join 1 v {&J ,X, A} in the lattice of
topologies. It is denoted by © (A). The topology t(A) can

be represented in the following form

T(A)={Uu(VnA) ; where U and V are

open in the topology t } [12 ].




N. Levine [17] initiated the investigation of

the properties of T (A) in relation with the properties of

the topology © and the set A.

In the lattice £(X), there are dual atoms also.
The dual atoms of X(X), which are the lower neighbours
of the discrete topology, are called ultra topologies.
The ultra topologies in X(X) are described below using

ultra filters on X..

A filter on a set X is a nonempty collection of
nonempty subsets of X such that the intersection of two
elements in it is again a member of the collection and a
superset of a member of the collection is also a member

of the collection

There are two types of filters. When the

intersection of all the members in a filter is non-empty, it




is called a fixed filter. When this intersection is empty,

it is called free filter.

The collection of all filters on a fixed set is
ordered under the natural order of set inclusion. There
are maximal members in this collection and these

maximal members are called ultrafilters.

Fixed ultra filters are also called principal

ultra filters. The principal ultrafilters are of the form

U(a)= { Ac X :a e A} for an element a in X.

The ultratopologies are topologies of the

form p( X \ {x}) v U, for x €X where I/ is an

ultrafilter on X such that {x}is not a member of I/ This

ultratopology is denoted as 3 ( x , /). This ultra filter U/

is called the associated wultra filter of the ultra topology

o~

I (x, U). In the lattice Z(X) every non discrete



topology can be written as the greatest lower bound of
the ultratopologies finer than it. So the lattice of

topologies is dually atomic [11].

Corresponding to simple expansion of a
topology, the simple reduction of topology t is defined as

the greatest lower bound with an ultra topology[22].

Also the collection of all T; topologies
forms a sublattice of X(X)[7]. This sub lattice is denoted
by A(X). The sublattice A(X) has properties very similar
to that of Z(X). It has a least element. It is called the
cofinite topology on X. The non-empty closed sets of
this topology are the finite subsets of X.  This topology
is sometimes called the minimum T, topology on X. The
greatest element of the lattice of T, topologies on X is

also the discrete topology on X.




There are atoms and dual atoms in the lattice
A(X). The atoms of A are unions of the singletons of
the set X with the co-finite topolo~gy. Since there are
topologies on infinite sets without singleton open sets,

this lattice is not atomic.

There are dual atoms in this lattice when X
is infinite. The dual atoms .of A(X) are of the form

I(x, U)=p(X\{x}) Ul for x eX where I/ is a

non-principal ultrafilter on X. This lattice is also

dually atomic.

There are many interesting sublattices of the
lattice of the topologies. As noted earlier, the lattice of
all T, topologies is one of the important sublattices.
Other important sublattices of the lattice of the topologies
are the lattice of all principal topologies, the lattice of all

regular topologies, the lattice of all completely regular




topologies, the lattice of all countably accessible

topologies etc. ( See [13], [14], [15]).

The properties upper semimodularity and lower
semimodularity are defined in terms of the neighbours of
an element. Specifically a lattice L is called upper
semimodular ifAfor all elements a, b in L such that a is a
lower neighbour of a A b implies a v b is an upper
neighbour of b. The lattice L is lower semimodular if its

dual lattice is upper semimodular.

Most of the works appeared on the lattice of
topologies on a fixed set discuss properties like
complementation, distributivity, modularity, lattice
morphisms etc. But authors like R. E. Larson, W. J.
Thron, R. Valent and others. (See [35] , [31], [34], [21]
etc.) deviated from this main stream of study and they

attempted to study properties like upper modularity,
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lower modularity, upper and lower semi modularity,
embedding different types of lattices in the lattice of

topologies, existence of upper and lower neighbours etc.

The study of upper or lower neighbours 1is
closely connected with study of properties like upper
semimodularity, lower semimodularity. Hence a study of

upper or lower neighbours a topology are important.

In their survey article R. E. Larson and Susan
J. Andima [15] observed the following. “If X is an
infinite set and P is any topological property, then the
collection of topologies in the lattice of the topologies
possessing the property P may be identified simply from
the lattice structure of the lattice of the topologies. This
follows from the theorem that for an infinite X, the
group of lattice automorphisms of the lattice of the

topologies is isomorphic to the symmetric group on X.
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Therefore the only automorphisms of the lattice of the
topologies for infinite X are those which simply permute
the elements of X. Therefore any automorphism of the
lattice of the topologies must map all the topologies in
the lattice of the topologies onto homeomorphic images.
Thus the topological properties of the elements the lattice
of the topologies must be determined by the position of
topologies in the lattice of the topologies.” This means
study of the neighbours of topologies is important and

this thesis i1s an attempt in this direction.

We can view this problem from another
perspective also. The collection of subsets of a
topological space containing a point in their interior is a
filter. We call this filter as the neighbourhood filter of
that point with respect to the topology. The topology of
a set can be charecterised using the neighbourhood filters

of its points. So two different topologies have different
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neighbourhood filters atleast one point. In other
words altering neighbourhood filters means altering
topologies. This thesis attempts to study how to alter
the neighbourhood filter of a point or minimum number
of points. A typical case is the neighbourhood filters of
all points except one point are the same. Here our
intention is to study how to alter neighbourhoods of

minimum number of points.

In the first chapter we discuss upper or lower
neighbours for general lattices. A theorem and its dual
about neighbours are proved in general lattices. Using the
theorem it is proved that in an atomic modular lattice
every element has an upper neighbour and in a dually
atomic modular lattice every elemeﬁt has a lower
neighbour. The results are in such a general fashion that
they are also applicable to some of the sublattices of the

lattice of topologies. Using the above results we
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charecterise the lower neighbours of ultra topologies as

the intersection of two ultra topologies.

In the second chapter we study upper
neighbours in the Lattice of Topologies. An equivalence
relation on the non open sets is defined on the collection
of all non open subsets. Then an order relation is defined
among the equivalence classes. Using this order relation
the upper neighbours in Lattice of Topologies are
charecterised. Using these results we determine that a
special interval in the lattice of topologies is a Boolean

Algebra generated by a subset.

In the third chapter we conduct a similar study
of lower neighbours in the lattice of topologies. The
results in this chapter are generalisations of results given
by Larson and Thron from the lattice of T, topologies to

Lattice of Topologies.
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In the fourth chapter we consider topologies

without upper neighbours. We generalise some existing
results and prove that no countably accessible topology
possesses upper neighbours in the Lattice of Topologies.
We also compare the Lattice of Topologies with the

lattice of Cech Closure Operators in this context.




CHAPTER 1

PRELIMINARIES

1.1 Covering relations in lattices

A partially ordered set in which every pair of
elements has an infimum and a supremum is called a
lattice. A partially ordered set in which an arbitrary set
of elements has an infimum and a supremum is called a
complete lattice. If a lattice has a least element, then it
is unique. The least element of a lattice is usually
denoted by 0. Any element of a lattice which is an
upper neighbour of the least element is called an atom.
A lattice  is called an atomic lattice if every element
of the lattice except the least element can be written

as the least upper bound of a collection of atoms.

If a lattice has a greatest element then this

greatest element is unique. The greatest element of a
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lattice is usually denoted by 1. Any lower neighbour
of the greatest element is called an dual —atom or anti
atom. A lattice is called dually-atomic or anti atomic if
every element other than the greatest element can be

written as the greatest lower bound of dual-atoms.

In an arbitrary lattice the following three

identities are equivalent [6].

1. (xAy)v (xAz)v (yaz) = (xv y) A (xvz)

A(y vz) for all x, y, and z in the lattice

2. xA (y vz) = (xAY)V (xaz), for all x, y. and

z in the lattice

3. xv (yaz) = (xv y) A (xvz). for all x, vy,

and z in the lattice

A lattice in which any three elements x, y, z
satisfy one (and hence all) of the above identities is

called a distributive lattice.
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Similarly in an arbitrary lattice the following

identities are equivalent [6].

Lo(xvy) A ((xnay) vz)) = (xAY)V((XVY)AzZ)

for all x, y. and z in the lattice

2. x 2y implies xA (y vz) = yv (xaz), for all

X, y; and z in the lattice

A lattice in which any three elements x, y, z
satisfy one (and hence all) of the above identities is

called a modular lattice.

A distributive lattice is always modular.

There are modular lattices which are not distributive.

First we obtain a convenient method to
determine covers in lattices. In atomic modular

lattices this methods becomes a handy one.
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1.1.1 Theorem

Let L be a lattice and a and b be any two
elements of L such that a is a lower neighbour of b.
Let ¢ be any element of the lattice such that the interval
[anc, bv ¢ ] in L is a modular interval and let L, be a
subset of L such that every element of the interval

[anc, bv ¢] in L can be written as join of some subset of

L,. Then the element a A ¢ is a lower neighbour of bac.
Proof

Let the element a be a lower neighbour of
the element b in L and let ¢ be any element of the lattice
such that the interval [aAnc, bv ¢ ] in L is a modular

interval.

Let d be an element of the lattice such that
anc<ds<bac. Sinceananc<d, by the property of

the set L, that every element of the interval
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[anc, bv ¢ ] is a join of some subset of L;, there is an
element e of the set L; such that e neither less than nor
equal to a A ¢ and e is less than or equal to d. Ife <a
alsothene < d<b Ac< candthismeanse < anAc,a
contradiction to the choice of e. Hence e is neither less

than nor equal to a.

So we havea<avd<b ,sincece<avd, e
not less than a. Since a is a lower neighbour of b we
have a v d = b. Also we have d < c. So the elements
a,b and d all belong to the interval [aanc, bv ¢ ]. By

assumption this interval is modular and we have d < c.

Hence by the modular law we have

dv (an ¢) = (dva)a ¢

So we have bAac = (avd)ac

=(dva)ac
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=d v (aAc)
=d , since(aAnc)<d.
Hence b A ¢ =d.
Soa A cisalower neighbpur of bAac.
Dually we have the following theorem

1.1.2 Theorem

Let L be a lattice and let a and b be any two
elements of L such that a is a lower neighbour of b.
Let ¢ be any element of the lattice such that the interval
[a Ac, b v c]in L is a modular interval and let L, be a
subset of L such that every element of the interval
[a Ac, b v ¢ ] in L can be written as the meet of some
subset of L;. Then the element av c¢ is a lower

neighbour of b vec.
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1.1.3 Remarks

a) In an atomic lattice every element is a
join of atoms. Hence in theorem 1.1.1 the set L; can be
taken as the collection of all atoms in the lattice. There

fore we have the following corollary.

Let L be an atomic lattice. Let a and b be
any two elements of L such that a is a lower neighbour
of b. Let ¢ be any element of the lattice such that the

interval [aac, bv ¢ ] in L is a modular interval. Then

the element a A ¢ is a lower neighbour of b A c.

b) In a modular lattice every sub interval is
modular and hence in a modular lattice we have the

following result.

Let L be a lattice and let a and b be any two
elements of L such that a is a lower neighbour of b.

Let L, be a subset of L such that every element of the

interval [aac, bv ¢ ] in L can be written as join of some
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subset of L,. If the lattice is modular ,then the element

a A cis alower neighbour of b A c.

¢) In modular atomic lattices the above results

takes a simple form.

Let L be an atomic modular lattice. If a is a
lower neighbour of b then a A ¢ is a lower neighbour of

b A ¢ for all elements c¢ in the lattice L.

Because of the importance we list the duals

of the above results.

d) Let L be an dually atomic lattice. Let a and
b be any two elements of L such that a is a lower
neighbour of b. Let ¢ be any element of the lattice such

that the interval [ a Ac, b v ¢ ] in L is a modular interval.

Then the element a v c is a lower neighbour of b v c.

e) Let L be a lattice and let a and b be any

two elements of L such that a is a lower neighbour of b.
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Let L, be a subset of L such that every element of the
interval [a Ac, b v ¢ ] in L can be written as meet of
some subset of L,. If the lattice is modular ,then the

element a vc is a lower neighbour of b v c.

As in the earlier case in dually atomic
modular lattices the above results takes very simple

form.

f) Let L be an dually atomic modular lattice.

Then if a is a lower neighbour of b then a v ¢ is a lower

neighbour of b v ¢ for all elements c in the lattice L.

Next we show that in atomic modular lattices
and dually atomic modular lattices every element other
than the smallest and largest has upper neighbours and

lower neighbours respectively
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1.1.4 Theorem

In an atomic modular lattice every element

other than the greatest element has an upper neighbour.
Proof

Let a be an arbitrary element of an atomic
modular lattice which is not the greatest element.
Since the lattice is atomic it has atoms and the element
a is join of atoms. Since a is not the greatest element,
there is an atom b in the lattice which is not greater

than a.

Since b is an atom it is an upper neighbour of
the smallest element O of the lattice . Since the lattice
is modular the join of a and the smallest element 0 i.e.
a is a lower neighbour of the element avb in the
lattice. In particular the element a has an upper

neighbour.
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Hence every element of a modular atomic

lattice has an upper neighbour.

Dually we have the following theorem.

1.1.5 Theorem

In a dually atomic modular lattice every
element other than the smallest element has a lower

neighbour.

Next theorem enables us to charecterise

covers in atomic and dually atomic lattices.

1.1.6 Theorem

Let L be a lattice. Let L; be a collection of
elements of L such that every element of L can be
written as a join of a collection of elements of L;. Let a
and b be two elements of L such that a < b. Let L, be

the collection of all elements of L; less than or equal to
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b but not less than a. Then a is a lower neighbour of b
if and only if all ¢ in the set L, , the relation avc=>b

holds in L.
Proof

Let ¢ € L,. Then ¢ £ b but ¢ is not less than
a. Soa<avc<bandifa=candsince b is an upper

neighbour of a, we must have a v ¢ = b.

Conversely let a v ¢ = b for all ¢ € L,. Let
d € L be such that a <d <b. Hence there is an element
e € L, such that e £ d but e is not less than a. So
e € L, and hence by assumption we have a v e =b.
We have e < d, a <dimpliesavec<d 1.€e.,

b <d. Hence b =d. So ais alower neighbour of b.

Dually we have the following theorem
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1.1.7 Theorem

Let L be a lattice. Let L, be a collection of
elements of L such that every element of L can be
written as a meet of a collection of elements of L,. Let
a and b be two elements of L such that a <b. Let L, be
the collection of all elements of L; neither greater than
nor equal to b but not greater than a. Then a is a lower
neighbour of b if and only if all ¢ in the set L,, the

relation a = b A ¢ holds in L.

1.1.8 Remarks

In an atomic lattice we can take L; to be the
collection of all atoms. Similarly in an dually atomic
lattice we can take L, to be the collection of all dual

atoms. So we have the following theorems.

a) Let L be an atomic lattice. Let a and b be
two elements of L such that a < b. Let L, be the

collection of all atoms less than or equal to b but
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neither less than nor equal to a. Then a is a lower
neighbour of b if and only if all ¢ in the set L,

avc=hb.

b) Let L be a dually atomic lattice. Let a
and b be two elements of L such that a < b. Let L, be
the collection of all dual atoms  greater than or equel
to a but neither less than nor equal to b. Then a is a
lower neighbour of b if and only if a =b A ¢ for all

c in L2.

1.2 Applications to lattice of topoiogies

We apply theorems 1.1.12 and 1.1.13
developed in the previous section to the particular case

of the lattice of all topologies on a fixed set.

When we apply theorem 1.1.12 to the lattice
of topologies we get the following result first

proved by Larson and Thron[16 ].
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1.2.1 Lemma

1

Let © and © 'are topologies on X . For 1 'to

be an upper neighbour of 1t it is necessary and
1

sufficient that t© ' =1 (A) for all A in the topology t

and not in the topology .

Applying theorem 1.1.13 to the lattice of

topologies we get the following result.

1.2.2 Lemma

'to

Let t and T ' are topologies on X. For 1
be an upper neighbour of 1t it is necessary and

sufficient that for all ultratopologies 3 (b, i) finer

than T, not finer than T we must have

1:=‘tl ﬂS(b, U)

As a corollary we get the following result

proved by Larson and Thron[ 16].
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If t and © ' are topologies on X such that 1 s
an upper neighbour of 1 .Then there is an ultratopology

3(b, i) suchthat Tt =t' n"n3I (b, UY).

These results together with the results we
have developed in the previous section enable us to
charecterise the lower neighbours of the ultra

topologies.

1.3 Lower neighbours of ultra topologies

In their paper entitled “Basic Intervals in the
Lattice of Topologies”, R. Valent and R.E. Larson
introduced the concept of a basic interval in the Lattice
of Topologies as an interval [¢ ,9] of Lattice of
Topologies such that there is an element ‘a’ in the set
X such that for all elements G in the topology 9, we
have G \ {a} is an element of the topology ¢ [34] . This

element a is unique.
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Later the first author R. Valent [35] modified
this definition of the basic interval to include a wider
class of intervals in the lattice of topologies. Following
B. Banaschewsky, R. Valent defined an expansion of
a topology by an element ‘a’ in X as topology in which
the neighbourhood filters of all points except a single
point are the same. An interval [¢ ,8] of Lattice of
Topologies is basic if the topology 9 is an expansion of
the topology ¢ by some element in X. Valent made this
modification of the definition of the basic interval in
such a way that all the results of the original paper

remains true.

The most important thing about Dbasic
intervals is that they have a very rich lattice structure.
In fact Valent and Larson proved that a basic interval is
infinitely meet distributive, compactly generated and
complete. An interval of the Lattice of Topologies is
called a very basic interval if the lower end point of the

interval can be obtained by intersecting the upper end
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point of the interval by an ultra topology [34]. A very

basic interval is always a basic interval.

Next we charecterise the lower neighbours of
the ultra topologies as those topologies which can be

written as the intersection of two ultra topologies.

1.3.1 Theorem

Every ultra topology has a lower neighbour
and the lower neighbours of the ultra topologies are
precisely those topologies which can be written as the

intersection of two ultra topologies.

Proof

We apply the theorem 1.1.3 to the lattice of
topologies. We take the element b to be the discrete
topology, the element a and ¢ to be two distinct ultra
topologies. Then the interval [ aac , bv ¢] is a basic

interval and hence infinitely meet distributive. So this
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interval is modular. There fore the requirments of the
theorem 1.1.3 are satisfied and so the element aac is a
lower neigbour of the element bac. since the element b
is the discrete topology, the element bac is the element
¢ itself. Hence the ultra topology c¢ has ar lower

neighbour anc.

By lemma 1.2.3, every lower neighbour of
every topology can be obtained by taking meet with a
suitable an ultra topology. There fore every lower
neighbour of an ultra topology is the intersection of two

distinct ultra topologies.

Hence the theorem.



CHAPTER 2

UPPER NEIGHBOURS IN THE

LATTICE OF TOPOLOGIES

R. E. Larson and W. J. Thron[16]
investigated the upper and lower nighbours of a
T, topology. They determined conditions under
which a T; topology is covered by a simple
expansion by a non empty open set. N. Levine [17]
presented necessary and sufficient conditions for
the simple expansion 1 (A) to be an wupper
neighbour of the topology t. The results of

Larson and Thron were extended by

F.Plastria.[22]

P. Agashe and N. Levine [1] discussed

the existence of neighbours for topologies in
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the lattice of topologies. They showed that every
regular and non T; topology has an upper

neighbour.

2.1 Upper neighbours in the lattice of topologies

R. E. Larson and W. J. Thron[16]
obtained necessary and sufficient conditions the
simple expansion t (A) of a T, topology t by the
set A to be an upper neighbour of the topology =
in the lattice of T, topologies. They showed that
the every upper neighbour of T, topology 7t is of
the form T (U v {x}) for an open set U and a
point x in X such that {x} is not an element of the
topology t. Later R. Valent [35] showed that the

above result is true for Ty topologies as well.

We extend the above results to the

lattice of all topologies. We start this by
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representing the simple expansion in another

form.

2.1.1 Lemma

Let t be a topology on the set X. Then
the simple expansion T (A) of t by the set A can

be represented in the following form.

1 (A) = {U N (VUA ) for sets U and

V open in 7 }

Proof

Let t° = {U N (VUA ) for sets U and

V open in 7 }

Let B be an arbitrary element of
topology 1. Then the set B can be written in the
form UNn(Vu A) for sets Uand V open in

t. This set B can also be written in the form
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(UNnV) U (UNnA ). Since U and V are opensets in
1, UNV is also an element of 1. Hence B belongs

to 1(A). Hence t'c t(A).

On the other hand t(A) is the smallest
topology containing the elements of t and the set
A. 1’ is such a topology between t and © (A). If A
is open in v then t = 1" = 1 (A). Otherwise t° # 1

Sot =1 (A).

~ There fore t1(A) = {U n (VUA)for

U,V e1 }.

If A is a subset of X ; Cl ; A ,Int ; A
denote respectively the closure and interior of the

subset A with respect to the topology r.
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2.1.2 Theorem

Let T be a topology on X and let A be a
subset of X, not open in t. Then the following are

equivalent.

1. A\ int, A 1is indiscrete
2. A\int, A =B\ int, B forall Bint (A)\~
3. B \int, B is indiscrete for all B in t (A)\7

4. For all points in the set A \ int ; A  have the

same 1T closure.

Proof

(1) =(2)

Suppose A \ int ; A be indiscrete and

B be an arbitrary element of 1 (A) \ 7.
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First we show that the set B can be
taken as O u (A \ int ; A) where O is a 71 -open

set disjoint with A\ int . A.

So let B € ©1(A) \ t. Then B=U U (VNA)

for some open sets U and V in t.

We write B as

U u (V n(int; AU(A \ int; A))
=Uu((Vn int; A)u(Vn (A\int; A))

If V. n (A\ int;, A) = ¢ then
B =Uuv (V nint;, A ) is an element of t. But
this is not true since B & t. Hence
Vn (A\int, A) # 0. Sinc'e (A \ int, A) is
indiscrete we have V.n (A \ int, A)= (A \ int; A).
Thus B is of the form

B=Uwu(Vnint, A)vu (A\ int; A)

We take the open set U U (V n int; A) as O. Thus
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B= Ou (A\int, A). If the open set O is not
disjoint with (A \ int . A ), then since
(A \ int ; A) is indiscrete, (A \ int ; A) will be a
subset of O and hence their union will be the =
open set O. But this can not be the case since the

above union is B which is not in the topology .

So the set B can be taken as
Ou (A\int ; A ) where Ois a t -open set and O
is disjoint with A \int . A. Hence A \ int ; A
must be a subset of X \ O. Also, since A \ int , A

cannot contain any open set, the t-interior of B

must be O.

Hence B \int ; B
=[O0 U (A\int ; A )] n (X\0)
= (A\int ; A) n (X \ O)

=A\int ; A




41

Hence, B \int .. = A \int . A for all

B e t(A)\1
So (2) holds.
(2) =(3)

Let A \ int ; A be equal to B\ int B4

for all Bin 1t (A) - .

Let O be a 1t -openset intersecting
A\ int , A. So there is an element b in

O N (Anint ; A).

If O n A is in t, then b is an element of
the t open set O N A which is therefore must be a
subset of int ; A and hence O is disjoint with

A\ int ; A, which is not so.
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Hence O n A is not in the topology 7,.

but it is an element of the topology © (A).

we have

A \ int

1

So by assumption, since A € © (A) \ 7

A\int . A = (O A A) - (O M int ; A)

ONnAn(X\(Onint.A))

OnNn An (X\int ; A)

O N (A\int, A)

Hence A \ int;A < O, which means

A

1s

indiscrete. Since A \ int , A =

B \int ; B for all B in t (A) not in 7, B\ int ; B

is indiscrete for all B in t (A) not in T. Hence (3)

holds.
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(3) = (1)

Suppose B \ int ; B be indiscrete for all
B in t© (A) not in t. Then since A is such an
element, we have A \ int ; A is indiscrete. Hence

(1) holds.

(1) = (4)

Let A \ int ; A be indiscrete and let a
and b be any two elements of A \ int ; A. If O is
any open subset of X having a nonempty
intersection  with (A \ int . A), then since
A \int . A is indiscrete we have A \ int ; A is a

subset of the open set O.

Every open set containing the element a,
has a non-empty intersection with A \ int ; A as a
subset and hence this open set contains b. This

means b € Cl ; ({a}).
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Hence Cl, ({b}) < Cl, ({a}).

Similarly Cl. ({a}) c Cl. ({b})

So we have the equality Cl, ({a}) =Cl; ({b}).

4) = (1) Let Cl, ({a}) = CIl; ({b})
for all elements a, b in A \ int ; A. If A \int ; A
is not indiscrete, then there is an open set O
having a non empty intersection with A \ int ; A,
yet A \ int ; A is not completely contained in the

set A.

Letae On (A\int ; A) and

be (A\int. A)\O.

Here a, b € A \ int ; A. Hence by

assumption we have Cl, ({a}) = Cl. ({b}), but
here there is an open set O containing the

element a but not the element b. So Cl; ({a})
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must be different from Cl ({b}), a contradiction to

our assumption.

This contradiction proves that A \ int ; A

must be indiscrete.

Hence, the theorem.

F. Plastria [22] defined that a set A has
the property P, if A satisfies the following

equivalent conditions

1) Every open set intersecting A

contains A.

2) A is contained in the closure of

each of its points.

3) All points of A have the same

neighbourhood filter.
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Combining these properties with our

theorem we have the

2.1.3 Theorem

Let © be a topology on X and let A be a
subset of X, not open in t. Then the following are

equivalent.

1. A\ int, A 1is indiscrete

2. A\int; A =B\ int, B for all B in

T(A)\ 1

3.B \ int, B is indiscrete for all B in

T (A)\1
4. For all points in the set A \ int ; A

have the same <t closure.

5. A \ int . A 1is contained in the

closure of each of its points.
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6.All points of A \ int ; A have the same

neighbourhood filter.

Now we  extend the results of Larson
and Thron [16] from the lattice of T, topologies to
the lattice of all topologies. We do this by
extending the results of Larson and Thron from
the lattice of T, topologies to the lattice of all

topologies.

2.1.4 Lemma

Let © € Z( X) , A and B be any two
subsets of X. If the simple expansion topology
T (B) is finer then the simple expansion topology
T (A) then the set A \ int;A is a subset of the set
B and the intersection A N B can be represented

as the intersection of an open set in T with B.
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Proof

Let the simple expansion topology
T (B) be finer then the simple expansion
topology 1t (A). Since t (A) always contains the
set A, the set A is a member of the topology
1t ( B ). This means the set A is of the form
Uu (VN B ) for some open sets U, V in 7.
Hence we have the inclusion U < A and

therefore, since U is open we have U < int [A.

Now we show subset relation
A \int;Ac B. Ift e A\ int;A thent ¢ int;A. So
t ¢U. Sincet € A we havet e Uu (VN B). So
te VN B and consequentlyt € B. So we have

the relation A \ int;A < B.

For the other relation we have

A =U v (Vn B ) and hence A nNn B =

( Uu(VNnB) )nB= (UNnB)Yu(VnB)-=
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( U uvu V )n B. So the set AN B is the

intersection of an open set in © with B.

2.1.5 Lemma

Let t© € 2( X) , A and B be any two
subsets of X such that the set A \ int,A is a
subset of the set B. Then the simple expansion
topology © (A n B) is finer than the simple

expansion topology t (A).

Proof

Suppose A and B are two subsets of X

such that A \ int;A ¢ B.

In this case we have A \ int;:A < A N B

and hence we have the following inclusions
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Ac(AnNnB)uintA =
A n (int;Au B) ¢ A and this means ( A n B)
v int;A = A. So A is an element of the topology

Tt (AnNnB).

So t (A), which is the join of the
topology 1t and the atom { ¢ ,A, X } in the
lattice of topologies, is contained in the

topology Tt ( A n B ).

2.1.6 Lemma

Let 1 € Z( X), A and B be any two
subsets of X such that the set A n B is the
intersection of an open set in t with the set B.
Then the simple expansion topology 7t(B) is finer

than the simple expansion topology Tt (A n B),
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Proof

Since the set A n B 1is the intersection
of an open set in t with the set B, there is an
open set U such that AN B = Un B.
An element in the topology T (A N B ) is of
the form V U (WNn An B ) for elements V,
W in T. This set can be rewritten as
V U(W n (Un B)). Clearly this set belongs to
the topology © ( B ). Therefore the simple
expansion topology =+t ( B ) is finer than the

simple expansion topology © ( A n B).

2.1.7 Theorem

Let 1t € Z( X), A and B be any two
subsets of X. Then the simple expansion
topology 1 (B) is finer then the simple expansion
topology 7t (A) if and only if the set A \ int A

is a subset of the set B and the set A n B can be
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represented as the intersection of an open set in =

with B.
Proof
The only if part is the lemma 2.1.4

If A and B are two sets of X such that
the set A \ int;A is a subset of the set B and the
set A N B can be represented as the intersection
of an open set in t with B ,then by Lemma
2.1.5.the simple expansion topology t (A N B) is
finer than the simple expansion topology 1 (A).
Again by lemma 2.1.6 we have, the topology
T (B) is finer than the toporlogy T .(A N B).

Hence the result.
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2.1.8 Corollary

Let t be a topology on X. Let A
and B be any two subsets of X. Thenrt ( A ) C

1 (B) ifand only ift (A) c Tt (AN B)c1t(B).

Proof

One implication is trivial and for the
other implication, let © (A) < t© (B). Then by the
lemma 2.1.4 we have the set A \ int;A 1is a
subset of the set B and the set A N B can be
represented as the intersection of an open set in 7
with B. So the lemma 2.1.5 implies the relation
T(A) ct (AN B ) and the lemma 2.1.6 implies
the relation 1t (AN B ) < t( B ). Hence we have

the inclusions

T(A)ct1(AnNnB)ct(B).
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The following corollary ¥# follows from

the theorem 2.1.8

2.1.9 Corollary

Let ( X, 1) e X(X), A and B be any
two subsets of X. Then t (A) =t (B) if and only
if A\ int;,A < B, B \ int;B c A and A n B is

relatively open in both A and B.

Also by the previous corollary we have

1(A) = 1 (B) implies t(A)=t (AnNnB)=1(B).

2.1.10 Remark

The inclusion 1 (A) <€ 7 (A \ int;A )
between the topologies t© (A) and 7T ( A\ int:A)
always holds. For an element of t© (A) is of
the form U ( VN A ) and this set can be

written as U U ( Vn ( int,A U (A \ int;A))) =
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U v (Vnint;:A )u(Vn(A\ int;A) ). Clearly
this set belongs to t(A \ int;A ). Hence every
element of T (A) is an element of 7 ( A\ int A ).

Thus we have always 1t (A) < 1 ( A\ int;A ).

The above remark shows that the
condition A \ int,A < B of the theorem

2.1.7 cannot be weakened further.

2.1.11 Proposition

Let © be a topology on X. Let A
and B be any two subsets of X. If A\ int A is

relatively open in B, then 1 (A) < 1 (B)

Proof

The condition A\ int,A 1is relatively
open in B implies that the set A\ int;A is of the

form V n B for some open set U in X. There fore
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A is of the form int;A U ( Vn B ) and hence A
belongs to t (B). Hence 1t (A) =1tv {¢,A, X}

c t (B).

2.1.12 Example

Now we show that the conditions
i) A\ int; A ¢ B and ii) AnB is relatively open in

B of theorem 2.1.7 are independent of one another.

We take X = {a, b, ¢ }. Let the non
trivial open subsets of the topology t be {b,c },
{b} and {c} . If we take A = {a} , B = {a,b},
then int;A = ¢ So A \ int;A < B, but there is no

open set U such that An B =U n B.

On the other hand if we take A; = {a, b},
B; = {b} then A, \ int;A;, 1is not contained in B,,
but Ay n B, = {b} = UnNn B; where the set

U = {b} is open in t.
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Now we define an equivalence relation

=. on the subsets of X which are not open in 7.

2.1.13 Definition

For subsets A, B of X which are not
open in 71, define A = . B if A \ int;A ¢ B,
B \int; Bc A and A NnB is relatively open in both

A and B.

2.1.14 Lemma

The relation = . defined above is an

equivalence relation.

Proof

We have by theorem2.1.9, A = . B if and

only if <t (A) = t( B ). In this form, the
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properties of the equivalence relation follows

easily.

2.1.15 Lemma

For subsets A, B of X which are not
openint, A =.Bifand only if A =,.B=,

A N B.

Proof

This is clear since from the corollary
2.1.9 we have T (A) =1 (B) if and only if

T(A) =1t (AnNnB)=1(B).

2.1.16 Definition

Let the equivalence class containing the

subset A of X be denoted by [A]. We now
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define a partial order < . among the equivalence

classes as follows.

[A]

IA

. [B]lif © (A) ¢ t (B). This
partial order is well defined for if [A] = [C]

and [B] = [D] then,

T (A) =1 (C) and t (B) =t (D).

So [A] <. [Blie. 1 (A)c 1t (B)
implies T (C) < 1 (D) and therefore we have

[C] <. [D].

2.1.17 Theorem

Let A be a subset of X, which is not
open in a topology t on X. Then <t(A) is an
upper neighbor of t if and only if [A] is a
minimal element in the partial order < . defined

above.
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Proof

If © is a lower neighbour of T(A) and if
[B] <. [A] then we have 1 (A) =t ( B ) and so
[A] = [B] which implies that [A] is a minimal

element.

Now if t(A) is not an upper neighbor of
t for some topology ' we have 1 < 1 ''c 1(A)
there fore for any B et' \ 1 we have

1 (B) € t (A). There fore [B] < .[A]. So [A] is

not a minimal element.

P. Agashe and N. Levine [1]proved that
if v is a T, topology and if A isa non open subset
such that t (A) is an upper neighbour of t then
A \ int A is an singleton set. So in the lattice of
T, topologies A \ int;A 1is always indiscrete
whenever © (A) is an upper neighbour of t© . Also

the condition A \ int;A < B of definition 2.1.14
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becomes a trivial condition. So Theorem 2.1.17

generalises result 2.6, page 104 of [16].

2.1.18 Theorem

Let 1 be a topology on X and A be a subset

of X be such that

1. If O is an © open set disjoint with
(A \ int . A) then Cl, (O) is disjoint with
(A \int ; A),

2. (A \ int ; A) is indiscrete.

then 1 is an immediate predecessor of T(A).
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Proof

Let B be an element in T(A) not in t.

Then B must be of the form
B =UuU(U NnA)
= U V[V n ((A\ int ; A) U int ; A)]
=Uu(Vnint, A) v (V n (A\int ; A))

If V is disjoint with (A\ int . A), then B
=Uu (Vnint; A) will be an element of 1, which
is not true. Hence V must have a non-empty
intersection with (A\ int ; A). Since (A\ int ; A)
is indiscrete, this non-empty intersection must be
(A\ int , A). Denoting the rt-open set
U v (V. n int  A) by W we see that
B=WuU (A\ int ; A). Again W must be disjoint

with (A\ int . A), otherwise, since A\ int ; A is
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indiscrete, A\ int . A will be a subset of W and
hence its union with W is the same as the t-open

set W which cannot happen.

Hence, B = W U (A\ int ; A) where W is
1 open and W is disjoint with (A\ int ; A). So its
t-closure Cl ; W is also disjoint with (A\ int ; A).
So we have either Cl ;{ W cc X \ A or

Cl . W cint ; A.

Now the set int , Au (X \ Cl ; W) n B)

is an element of T (B) and

int., AU ((X\Cl,W)n B)

=int;, AU (X\Cl,W)n (WuU (A\int ; A)))

=int. A U (X\Cl,W) N (A\ int ; A))

=int , AU (X\Cl W)yn An (X\int . A))
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If Wc int ; A then X \int ; A < X\ Cl, W.

In this case the above set is

int . A u ((X\ int A ) n A) =

int ; AU (A\lint ; A)=A

If Wec X\ Athen AcX\Cl W. In

this case also we have

int ., AU ((X\Cl,W)n B)

=int . Au ((X\VCl , W)yn A n

(X \int ; A ))

=int. A U (A\int; A) = A.

Hence ih both the cases the set A is an
element of the topology t (B). So the join
TV {X. ¢, A} is again contained in t (B). i.e. we

have 1 (A) < t© (B). Since B € t (A) \ 1, we have
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also 1 (B) < © (A). Hence by theorem 1.2.1 7 is

an immediate predecessor of 1t (A).

2.2 Topologies containing an ultra filter

The results developed so far can be used
to describe an interval in the lattice of topologies

completely.

2.2.1 Theorem

Let T be a topology containing an
ultrafilter. Then t has upper neighbours and they

are of the form © ({x}) , where {x} ¢ 1.

Proof

Let 7t be a topology containing the

ultrafilter /. We have to prove that t has upper
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neighbours and every upper neighbor of <t is of

the form 1t {x} for some {x} ¢ rt.

By the last theorem it is enough to prove
that the equivalence class [{x}] containing the
singleton set {x}, is a minimal element for
{x} ¢ 1 and every minimal element is of this

form.

So let A € 1 , {x} ¢ 1 and
[A] £ [{x}]. Therefore by definition we have
A\Nint ; A < {x}. Since A ¢ 1, {x} ¢ T we
have A\ int ; A = {x}. So A =int,. A v {x},
since int ; A ¢ A . We have {x}\ int ; {x} < A and

A ¢ 1 = A ¢ !l Since U is an ultrafilter we
have int ; A ¢ ! and X \ int ; A € Ul and

there fore X \ int ; A is open and {x} =

A n (X \int . A ). So [A] £, [{x}] and
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therefore [A] = [{x}]. Therefore [{x}] is a

minimal element.

Now if 1" is an upper neighbour of 7,
then t° = 1( A) for A € t° \'t. Let x € A be such
that {x} ¢ 1. Now since A is not in T , it is not in

the ultrafilter . Therefore its complement
belongs to !, and hence ( X \ A) u{x} e U

Therefore {x} = A Nn[( X \ A) u{x}], is the
intersection of an open sets in t with A. Hence it
belongs to t (A). Therefore the upper neighbour

1( A) must be of the form ~t( {x} ). Hence

T({x}) = 1 (A).

Hence every upper neighbour of 1 is a

simple expansion by a non-open singleton.
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2.2.2 Lemma

Let !/ be an ultra filter on the set X. Let

1 be a topology finer than t. Let A be a subset of
X open in the topology t but not open in the
topology t. Then every singleton subset of A is

open in the topology T

Proof

Let Ae t \71andleta € A. We have
to prove that {a} is open in 1. A is not a
member of the topology 1t and hence A is not a

member of the ultrafilter /. Hence its component
X \ A belongs to the ultrafilter /. So its superset
(X \ A) U {a} is an element of /. So this set

belongs to t and hence it belongs to the finer

topology ©. Hence the sets A and (X \ A) U {a}
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belongs to the topology T, Hence their

intersection {a} is also in the topology T,

Since a € A was arbitrary, it follows
that every singleton subset of A is open in the

topology 1 .

2.2.3 Theorem

Let {/ be an ultra filter on X. Let t be
the topology v {¢} on X. Then every topology
t  finer than © is of the form @(F) U U where F

is the union of all sets in the topology T not in

the topology 7 .

Proof

Let © be a topology finer than 1 .

Now we prove that t = p (F) u U.
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Let A € T If A is empty then
A € g (F). If A is non-empty and A e 7t then

Ae l.

Otherwise A € © \t. then by
lemma 2.2.2 every singleton subset of A is open in

the topology © and hence the set A and its subsets

are in g (F).

Hence A € p (F).

In other words, every element A in the

topology t© is also a member of the topology

o (F) u U.

Hencet < p (F)u Y —--meme- (i)

if A 1s a member of the topology

@ (F) U U/, then, either A € I/ or A € p (F).
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IfA e I/ then A € 1 and hence A e 1.

Otherwise A € p (F) and A is not a

member of I . Since !/ is an ultra filter we have

the complement X \ A e /.

If a € A then (X \ A) U {a} € lf and

hence {a} = A n ( (X \ A) u {a}) is a member of

the topology UYu g (F).

Also {a}is not in the ultra filter /. So

{a} € g (F) for all a € A.
SoaeF. So {a} et forallaeA
Since 1 is a topology we have A € 1.

So every member of the topology g (F)

U U is also a member of the topology t .




Hence p (F)u Y < t
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From (i) & (ii) we have © = p (F) v U.

Thus every topology finer than =

(F) v U

is of the form p



CHAPTER 3

LOWER NEIGHBOURS OF TOPOLOGIES

In this chapter we consider the dual problem
in the previous chapter. Here we consider lower
neighbours. Recall that a lower neighbour of topology =

is a topology t' such that t is an upper neighbour of t".

A topology in which every non empty open set
is dense is called a D-topology by N. Levine [18]. Levine
proved that a topology is a D topology if and only if
every pair of non empty open sets has a nonempty
intersection if and only if every openset in the topology

is connected.
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P. Agashe and N. Levine [1] initiated the_
investigation of the existence of lower neighbours in
the Lattice of Topologies. They proved that a topology
which 1s not a D-topology in which singleton sets are G-
closed has a lower neighbour. From this it follows that
T, non D- topology and every Hausdorff topology have

lower neighbours.

In the Lattice of T; Topologies, Larson and
Thron [16] started investigating this problem and we
generalise their results from the Lattice of T, Topologies

to the Lattice of Topologies.

3.1 Lower neighbours in the lattice of topologies

3.1.1 Lemma

Let © be a topology on X and A ¢ X such

that A ¢ t and t =1(A) N 3(x, U) for some

ultratopology 3( x, U). Thenx € A\int . A
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Proof

We have always A € t (A) and also we have

the relation A ¢ 1 =1(A) " 3(x, I). So A ¢ I(x,l)

and hence x € A. Also ifx € int . A € 7, then int . A

€ 3(x, YY) and so int ; A € l/. Therefore the set A ,
being a superset of int ; A will be in {/and hence it will
be in the ultra topology 3( x, /). So A is an element of

the topology t , since it is in t (A) , which is not true.
Hence

x ¢ int ; A. Therefore x € A\ int, A.

3.1.2 Proposition

Let © be a topology on X and A ¢ X such

that A g1 and v =1t(A) n 3( x, Y ) for some
ultratopology 3( x, /). If A\int . A is indiscrete then

A\lint . A = Cl. ({x})
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Proof

We have by lemma 3.1.1,x € A\int A

Since A \ int . A is indiscrete, by theorem
2.1.2 it is contained in the closure of each of its points.

So A\ int ; A. ¢ Cl; ({x}).

On the other hand if there existt € A \int ; A
such that t ¢ Cl , ({x}), then there is an open set U
containing t but not x. So U and hence U n A are

elements of the ultra topology J3( x, ). Also U n A is

an element of T (A). Hence UN A € 1 (A) N 3(x, U)=r.

We havet € A andt € U. Therefore U n A is
a nonempty T -open set containing t contained in A and
hence t € int ;A . This contradicts the choice of t as

an element of A \int ; A.
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Hence there is no te A \ int . A not in
Cl . ({x}). This together with A\ int ; A. < Cl . ({x})

means A \int ;A = Cl . ({x}).

Next we generalise the results of Larson and
Thron from the lattice of T; topologies to the Lattice of

Topologies.

3.1.3 Definition [16 ]

Let T and © ' be topologies on X such that t'

is an upper neighbour of ©. We say that 1 ' is an upper
neighbourof 1t by x if there is an ultratopology such

that © =1 ' N 3(b, UY).

3.1.4 Theorem

If t and © ' are two topologies on X such that

t ! is an upper neighbour of 1 by two points a and b.
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Then Cl1 .({a}) = Cl .({b}).
Proof

Since 1 'is an upper neighbour of T we have

1! =1 (A) for some subset A of X, not open

in T. Also by assumption there are ultra topologies such

that

t=1t' Nn3(a, Y )and

t=t!' A3 (b, U,
Then by lemma 3.1.1a e A\int; A

and b € A\int ; A
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We have to prove that Cl ({a}) = CI ({b}).
Equivalently it is enough to prove that b € Cl .({a}) and

a e Cl.({b}).

Suppose a ¢ Cl ({b}). Since X \ Cl ({b}) et
it is an element of T (A) and hence A n ( X\ CI .({b}))

= A\CI.({b})e 1( A) and hence

tc T (A\NCL({b})) < t(A).

If T (A \ Cl.({b}) ) = 1( A), then by

theorem 2.1.9 we have

A\int ;A < A\Cl.({b}) c X\ Cl.({b}).

Here b e A\int ; A, butb ¢ X\ Cl . ({b}), a

contradiction. Hence 1t ( A\CI ({b})) t( A).

Also (A\NCl ({b}) ¢t asa e A\int ; A
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If t=1(A\Cl({b})) then A\ CI .({b}e 1.

Then A \ Cl .({b} = int (A \ Cl .({b})

—int. AN (X \Cl.({b})

= int ; A \ Cl (({b}

But since a ¢ Cl .({b}, a € A, we have
ae A\CIl . ({b}. So a € int, A , a contradiction to the

choice of a as an element of A \ int ; A.

Hence we have the strict inclusions

Tt c t(A \ Cl.({b}) ) c¢ 1(A) which

contradicts the fact that t is lower neighbour of t (A).

Soa e Cl .({b}). Similarly b € Cl ({a}).

Therefore Cl ({a}) = Cl ({b}).
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3.1.5 Corollary

If 1 and t' are two T, topologies such that t!
upper neighbours t . Then there exist a unique element x

of X such that 7t ' is an upper neighbourof t by x.

Proof

Suppose that t' is an upper neighbourof =
by x and y. Then by the previous result we have
Cl.({x})=Cl({y}). So x =y, since the topology =

18 TO,

Thus there exist a unique element x of X such

that 1 ' is an upper neighbourof 1 by x.

3.1.6 Corollary [16]

If =t and t' are two T, topologies such that 1’

upper neighbours T . Then there exist a unique element x
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of X such that t ' is an upper neighbourof t by x.

3.1.7 Definition

A subset B is said to be a neighbourhood of the

set A in the topology © if A ¢ int . B.

3.1.8 Definition

The collection p( X\ {x}) U F, x €X where
Jis a filter on X such that {x}¢ Jis a topology on X.

We denote this topology by 3 (x, J).

3.1.9 Lemma

If tis a topology and 3 ( x , J ) is a

topology on X which is not finer than t. Then if 1 is an

o~

upper neighbour of t°' = © N 3 (x, J) then Cl

({x}) is indiscrete
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Proof

Since 1t is an upper neighbour of
=1 N3 (x, J), there is an element A € T\ 1 .
Hence by theorem 1.2.1 T = 1 (A). Hence

=1 (A) n 3(x, ). Also by theorems 2.1.3 and

3.1.2 A \. int .- A is indiscrete and by proposition 3.1.2

A\. int ;- A. =Cl - ({x}). So Cl . ({x}) is indiscrete.

3.1.10 Lemma

Let t be a topology and let 3 (x, J) be a
topology on X which is not finer than t. If t is an
upper neighbour of © N3 (x, J), then for any two
neighbourhoods G and H of Cl, {x} in T such that H ¢ F,

there exist another neighbourhood N of Cl; {x} such that

Ne J,NnHcG.
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Proof

Let t' be the topologyt N3 (x, .

Let T be an upper neighbour of © N 3 ( x,

J) i.e. t is an upper neighbour of <1 and let G and H
be neighbourhoods of Cl ; ({x}) in t such that H ¢ 3

Then H ¢ 3 (x, 7) and so H ¢ t'. There fore H

e t V1t . Since t is an upper neighbour of 1" and

H e 1\t we have by theorem 1= 1°(H).

Now G € 1°( H) and so by lemma 2.1.1 open
sets A and B in t° such that G = A n ( H U B).

So G c A.

Since G is a neighbourhood of Cl ; ({x}) and
G ¢ A, A is a neighbourhood of Cl . ({x}). Also
G=An(Hwuvu B) =(AnH) (AN B). Hence

(AnH) cG.
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Also A e ©© =1 N 3 (x, Z) and hence

A e I (sincex € A). So we may take N = A.

The neighbourhood N of Cl, {x} is such that

Ne J,NNnHCcG.

3.1.11 Theorem

o~

Let t be a topology and let 3 (x, J)be a

topology on X which is not finer than t. Then 1 is an

upper neighbour of t N 3 ( x, J) if and only if

Cl . ({x}) is indiscrete and for any two neighbourhoods

G and H of x in t such that H ¢ J there exist another

neighbourhood N of x suchthat Ne J,NnHcG.

Proof

If t is an upper neighbour of 1 N T (x, J)




86

then the result follows from lemmas 3.1.9 & 3.1.10

For the converse , let the topology t and the
topology 3 ( x, ¥) be such that Cl . ({x}) is indiscrete

and for any two neighbourhoods G and H of X in

t such that H ¢ 5 there exist another neighbourhood N

of x suchthat Ne J,NnHcG,

Since Cl . ({x}) 1is 1indiscrete, any

neighbourhood of x , is a neighbourhood of Cl ; ({x}).

Let H and G be any two elements of 1 \ 1.
So Heg 3 (x, J). They are neighbourhoods of x in .
Since
Cl . ({x}) is indiscrete , they are neighbourhoods of

Cl. ({x})in 1.
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Also H ¢ 3. So by assumption there exist
another neighbourhood N of x such that N e 7,

N N Hc G, Nis also aneighbourhood of Cl ; ({x}).

In this case we have H € t \ t  and since

G\Cl, ({x}) e 3(x, 7) ,G\CIl ({x}) € T we have
G\Cl ({x}) e 1. Also N e I N € timplies N € t’

and since N and H are neighbourhoods of Cl ; ({x}) NnH

is also a neighbourhood.

Since t is a larger topology than ', Cl . ({x}
is subset of Cl » ({x})). Since Cl + ({x})is indiscrete

( theorem 3.1.7) , Cl ; ({x}) is also indiscrete.

Now we have G=( N H ) u (G \ Cl;: ({x}))

Hence

Gc (NN H)uU(G\Cl: ({x}))



88

cG U (G\CL: ({x})) = G

There fore G=( NN H) v (G \ Cl; ({x})) €
" (H). Hence1 (G)c 1 (H). Since G and H are
arbitrary elements of 1t \ 71, it follows that
T (G)= v (H) Thatist (G)= t (H)forall G
and H in 1 not in ©°. Therefore by theorem 1.2.1 1 is

an upper neighbour of t' . Hence the theorem.

The above theorem generalises the following

them of Larson and Thron [16]. We note that in a T,

topology Cl ; ({x}) = {x} 1is always indiscrete
3.1.12 Theorem | 16]

Let T be a topology and let 3 (x, J) be a

topology on X which is not finer than t. Then 1t is an

upper neighbour of 1 N 3 (x, J) if and only if for

any two neighbourhoods G and H of x in 1 such that
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H ¢ 3 there exist another neighbourhood N of x such

that N e 4, NnH cG.

3.1.13 Corollary

Suppose tis a topology and 3 (x, 3)is an

ultra topology on X which is not finer than t such that

T is an upper neighbour of © N 3 (x, J) then 1 is
an upper neighbour of 1t N 3 (y , 3) for every

topology

3 (y, J) such that Cl({x}) = CI({y}).

Proof

Let t° be the topologyt N 3 (x, F) where

Cl({x}) = CI({y}).

Let G and H be any two neighbourhoods of

Cl({y}) in t such that H ¢ 3 So G and H are any two
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neighbourhoods of Cl ({x}) in t such that H ¢ I, hence

by the previous theorem there exist a neighbourhood N of

Cl ({x}) such that N e 4 N n H < G. Since every

neighbourhood of CI({x}) is a neighbourhood of CI({y}),
it follows that there exist a neighbourhood N of Cl ({y})

such that N € 3 N n H < G. Hence by the previous

theorem t is an upper neighbour of © N3 (y, ).

Since the element y such that CI({x}) =
Cl({y}) was arbitrary it follows that t is an upper

neighbour of t© n 3 (y, J) for every y such that

Cl({x}) = CI({y}).

3.1.14 Theorem

o~

If tis a topology and 3 ( x , J ) is a

topology on X which is not finer than 7. Then 1 is an

o~

upper neighbour of t N J (x , J) if and only if

Cl ; ({x}) is indiscrete and for any two neighbourhoods
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G and H of Cl; ({x}) in 7t such that H ¢ 3, we have

Int. [GU(X\H)]e I

Proof

Let T is an upper neighbour of = N3 (x,9).

Let G and H be any two neighbourhoods of Cl ({x}) in 7

such that H ¢ 5 Then by the previous theorem there
exist some N € I, which is a neighbourhood of Cl ({x})

such that NN H c G. Therefore N ¢ Gu (X \H).
Since Nisopenin t, N cInt[ Gu (X \H ) ]. Since

Ne Iwehave Int[GU(X\H)] € &

Conversely,

Let for any two neighbourhoods G and H of

Cl ({x}) in t suchthat H ¢ J, we have

Int[GU(X\H)] e Z
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Let N=Int[ GuU (X \H)] Then we have

NNnH=Int[GU(X\H)]nHcG.

By the previous theorem <t is an upper

neighbour of © N3 (x, J).

3.1.15 Corollary

Let T be a topology such that super sets of non

empty open sets are open in t Then if 3 (x, U(y))is

a principal ultra topology on X which is not finer than

17, then t is an upper neighbour of 1 N 3 (x, U (y)).

Proof

Let H be neighbourhood of CIl({x}) in 7t such

that H ¢ /(y),thatis y ¢ H.
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If G is any neighbourhood of Cl({x}) inrt,
then

[ Gu (X \H)], being super set of a nonempty open set

is openin Tt .

Hence Int [ GU(X\H)]=[GuU (X\H)]

Alsoy ¢ H implies that y ¢ X \ H.

So y e [ G u (X \ H )] There fore

[GU (X \H)] € UY(y). By the previous theorem 1 is

an upper neighbour of 1 N 3 (x, U (y)).




CHAPTER 4

TOPOLOGIES WITHOUT UPPER NEIGHBOURS

IN LATTICE OF TOPOLOGIES

P. Agashe and N. Levine first gave examples
of topologies without upper neighbours. They proved
that a first countable completely normal topology is
without upper neighbours in the lattice of topologies[1].
Later R.E. Larson and R. Valent proved that a first
countable Hausdorff topology is also without upper

neighbour[34].

4.1 Topologies without upper neighbours

In this section the above result of Larson and
Valent is extended to the case of countably accessible

topologies.
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4.1.1 Lemma

Let 1t be a topology such that every non-
closed subset has two disjoint subsets with a common
limit point out side the set. Then 1t does not have an

upper neighbour.

Proof

Suppose on the other hand let t° be an upper
neighbour of t then t" = t(A) forsome Ac X A ¢ .
So by assumption X \ A contains two disjoint subsets C;
and C, with a limit point x € A. So x e A \ int A .
Also this x is such that x € CIC;, and x € CIC, . The
sets C; and C, are such that C;, n C, = & and

Cl M C2ﬂ inttA =

Let O =X \CI(C,u {x})

= X\ [CIC, v CI ({x})]
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= X\ CI(Cy),
(since xe CI(C,) = CIC, U ClI ({x}) = CIC))
Also C;c X \ A implies int A ¢ X\ CI(C;) =0
Now O U (A \int A )
=(X\ Cl(C;))u[Am(X\intA)]
[AU(X\ CI(C)] N[ X\ CI(Cy)) U( X \int A)]
[AU(X\ CI(C)] A [(X\ (CI(C,) N int A)]
= [AU(X\ CI(CP]N X
= [AU(X\ CICY]

= AuO
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IfFOUA\intA)=0uU A et then OU A
is an open set containing x and hence intersects C;, which

cannot happen.

Therefore O v A ¢ 1. This means
OUAet(A)\1tand hence 1t (A) =1t (OuU A). So A is

of the form U u(VN(O U A) for U, V open in 7.

Therefore

A=Uu(VA(O U((A\ int A) Uint A )))

=Uu(Vaint A) (VA O) u(VN (A \ int A))

and therefore VN(O \ int A)c VN O c int A

Also VN(O\int A) c VN ONn (X \int A)c X \int A

Hence VN (O\ intA)=O

NowAg1,VNn (A \ intA)=¢
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= A \intA c V ¢ X\ CI((O\ int A)),

since

( A \ int A) is indiscrete

(A \ int A)nCI((O\ int A))=¢

But we have

C,c X\intAand C,c O SoC,cc(O\int A)

Hence x € Cl (C;) <Cl (O \ int A) SO
x ¢( A \ int A ) which is a contradiction to the

choice of x.

Hence t(A) can not be a upper neighbour of 7.

Hence the theorem.

A topology is called countably accessible if

the topology can be written as the intersection of ultra
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topologies whose associated ultrafilters contain countable
sets but no finite sets( [14] page 33). This type of
topologies were introduced by R. E. Larson. Larson
constructied these topologies by imitating A.K. Steiner’s
construction of principal topologies. Since a countably
accessible topology is an intersection of non-principal
ultra topologies, every countably accessible topology is
T,. R. E. Larson gave the charecterisation of a
countably accessible topology as the topology such that
every non-closed subset contains a countable subset with

a limit point outside the set [14].

4.1.2 Corollary

No countably accessible topology which is not
an ultra topology has an upper neighbour in the lattice

of topologies
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Proof

Let (X, t) be a countably accessible topology
and let A be a non-closed set in this topology. By the
charecterisation of Larson mentioned above there is a
countably infinite subset B of A with a limit point X

lying out side A.

Let f: N — B be a bijection, where N is the set
of natural numbers. Such a bijection exists since the set

B is countably infinite.

Let

Ci = { x € B such that f(i) = x for an odd integer i} and
C, = { x € B such that f(i) = x for an even integer i}.
These sets C; and C; are disjoint. Also the limit point x

is such that it is a common limit point of the sets

Cl and Cz.
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Hence every non closed set has two disjoint
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subsets having a common limit point outside the set. So
by the previous theorem <t cannot have an upper

neighbour.

4.1.3 Corollary

No first countable T, space has an upper

neighbour.

AR

Proof

A T, first countable space is always

countably accessible.

4.1.4 Corollary [3]

No first countable Hausdorff space has an

upper neighbour.
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Proof

A first countable T, space is always countably

accessible.
4.2 Lattice of Cech Closure operators
4.2.1 Definitions [23]

Let g (X) denote the power set of set X. The
topological closure operator associated with a topology 7
is defined as a function on g (X)defined by
c(A) = Cl.(A). A Cech closure operator is a similar
operator on (X)) and can be considered as a

generalisation of the topological closure operator.

Formally a Cech closure operator V on a set
X is a function V from g (X) into g (X) having the

following properties.
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1. V fixes the empty set. i.e. V(¢ ) = ¢ .

2. Vs expansive. i.e. V(A) = A.

3. 'V preserves the union. i.e. for any two

subsets A and B of X, we have V(A U B) = V(A) U V(B).

For convenience we call a Cech closure
operator on a set X as a closure operator on X. Also

the pair ( X, V ) is called a closure space.

A subset A in a closure operator ( X , V) is
said to be closed when V(A) = A. A subset is said to be
open when its complement X \ A is closed. i.e. when
V(X \ A) = X\ A. The set of all open sets of a closure
operator forms a topology on X. This topology is called
the topology associated with the closure operator. Also
this topology is such that, different closure operators

on the same set, can have the same associated topology.
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A closure operator on set X is topological if and only if

it is the closure operator associated with a topology on X.

Now have a partial order among the set of all

closure operators on a set X.

Suppose V,; and V, are closure operators on a
set X. We define V|, £ V, if and only if V,(A) < Vi(A)
for every subset A of X. We denote the set of all closure
operators on a fixed set by C(X). With the partial order
defined as above the set of all closure operators on X

forms a complete lattice.

The smallest element of this lattice is the
indiscrete closure operator. For a subset a of the set X

the indiscrete closure operator I is defined by

1(A) =¢ ifA=2¢

=X ifA #¢.
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This closure operator is the closure operator

associated with the indiscrete topology on X.

The largest element of the lattice of closure
operators is the discrete closure operator. The discrete
closure operator D on X is defined by D(A) = A for every
subset A of X. It 1is the closure operator associated
with the discrete topology on X. Also D is the unique

closure operator whose associated topology is discrete.

An infra closure operator is an atom in lattice
of closure operators. i.e. A closure operator is called an
infra closure operator if it is different from the indiscrete
closure operator I and the only closure operator strictly

smaller than it is the indiscrete closure operator.

An ultra closure operator is an dual atom in the
lattice of closure operators. i.e. A closure operator is an

ultra closure operator if it is different from the discrete
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closure operator and the only closure operator strictly

larger than it is the discrete closure operator.

The Lattice of Cech Closure Operators is
dually atomic and distributive. So by theorem 1.1.5 every

element of it has a lower neighbour.

4.3 Open Problems

Our present investigations have proved
successful in solving many intricate problems confronted
during the course of this project. Nevertheless a few
problems still remain unanswered. This will evidently
open up new avenues in this area of research. Here we

list some of the open problems.

1. Charecterisation of topologies having

upper neighbours in the lattice of topologies.
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2, Finding topologies without lower

neighbours in the Lattice of Topologies

3. The upper and lower neighbours in some of
the important sublattices of the Lattice of Topologies like
lattice of regular topologies, lattice of completely regular

topologies etc., are to be studied.

4, The relation between covers in the lattice of
topologies and lattice of Cech closure operators is to be

studied.

5, In areas like digital topology we require
strengthening or weakening of topologies. In these
problems some times it is required to change the
neighbourhoods of some points in certain special ways
without affecting the neighbourhoods of other points. It
is felt that the methods in this thesis can be used in such
situations.Detailed investigations in this direction are to

be made.
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