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Chapter 1

An Introduction to Channeling

Any particle traversing amorphous matter or a misaligned crystal experiences

a number of uncorrelated collisions with atoms. These encounters occur with

a distribution of small or large impact parameter. A variety of processes

take place in the collision events. The most common are, angular scattering

in multiple collisions with the atomic nuclei and energy loss in collisions

with atomic electrons. For a homogeneous and isotropic target material, the

impact parameters involved in collisions with the individual target atoms are

independent of the relative orientations of the beam direction and target.

Hence the yields of these interactions are random.

When the target material is mono crystalline, the situations be-

come quite different. The distribution of impact parameters and the yields

of physical processes are found to be strongly dependent on the relative ori-

entations of beam and target. If a beam of positive charged ions is incident

on a crystal, the angle between the direction of the incident beam and a

particular axis or plane in the crystal is within a small but predictable range.

The gradually changing electrostatic repulsion between the incident particle

and each successive atomic nucleus of the crystal steers the beam through

the crystal lattice. This anisotropic effect is commonly refered as channeling.
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1.1 Basic Ideas

From a classical standpoint, one may qualitatively understand the channeling

effect as follows. If the direction of a charged particle incident upon the

surface of a mono crystal lies close to a major crystal direction, the particle,

with high probability, will suffer a small angle scattering as it passes through

the several layers of atoms in the crystal. If the direction of the particle’s

momentum is close to atomic planes, ions follow trajectories which oscillate

to and fro in the open channels as they pass through the crystal. Such a

motion as shown in figure(1.1) is refered as planar channeling.

Figure 1.1: Schematic representation of highly exaggerated planar channeling

The same phenomena occur when the direction of the momentum

of the charged particle incident upon the surface of a crystal lies close to a

major crystalline high symmetry axis. The particle then again undergoes

a correlated series of gentle small angle collisions. This is known as axial

channeling. See figure(1.2). Similarly for very low angle of incidence with

respect to a channeling direction an ion might even get trapped between a

set of nearest atomic rows as it traverses the crystal. This type of motion is

2



called hyper-channeling. See figure(1.3)

Figure 1.2: Schematic representation of highly exaggerated axial channeling.
The shaded circles represent lattice sites of crystal

Figure 1.3: Schematic representation of hyper-channeling of ions. The black
circles represent the mean position of atomic rows when viewed in the direc-
tion of a simple axis and the curves are the projected motion of the ion on
to the plane normal to the direction

3



1.2 Experimental Arrangement

A schematic diagram of a typical experimental arrangement for measure-

ments on the channeling effect is shown in figure(1.4). A well collimated

beam of particles is incident upon a mono crystalline target mounted on a

goniometer. The target is oriented so that there is a small angle ψ between

some axial or planar direction in the crystal and the beam direction. Chan-

neling measurements usually consist of determining either the ψ dependence

of the yield of close encounter processes or the distributions in space or mo-

mentum of the transmitted beam. For thin targets the transmitted beam

can be examined with a photographic plate, a fluorescent screen or detector

1. The yield of close encounter processes is measured by keeping detector 2

at a wide angle to the incident beam. We now consider some of the notable

experiments in channeling bringing out the salient features of channeling

effects.

Figure 1.4: Schematic arrangement of a typical channeling experiment

4



1.3 Penetration Experiments

Experiments fall into two main categories. Either ions are transmitted through

thin single crystals into a detector or radioactive ions are allowed to come to

rest in a thick crystal and their range is measured.

1.3.1 Transmission experiment

Figure(1.4) with detector 1 alone gives the schematic arrangement of trans-

mission experiment. Results of Nelson and Thomson[1], using a 50keV proton

beam and gold target showed increased penetration of ions close to a channel

direction. Using a current measuring electrode as detector 1, the intensity

of the emergent beam is measured. Figure(1.5) shows the typical variation

Figure 1.5: Variation of the transmitted ion current with rotation about
〈111〉 axes in Au crystal.

in measured transmitted current when the crystal is rotated about the 〈111〉
axes. The peaks in the transmitted current occur when the incident beam

was within about 40 of the 〈110〉 axes. For the fcc structure of gold these

5



are the most closely packed directions and hence the directions of most open

spaces. The effects were found to persist for proton energies up to at least

two orders of magnitude greater, although at such high energies the angular

range over which the effect could be seen falls to a fraction of a degree.

1.3.2 Range measurements

Range measurements of the Chalk River and Munich groups [2],[3] showed

enhancement of penetration for incidence close to channeled direction for

heavy ions of kilovolt energies. Range of an ion is defined as the longitudinal

Figure 1.6: Penetration of 40keV kr86 ions along the principal crystallo-
graphic directions of Al and in amorphous Al2O3

distance covered by the ion in the crystal before it loses all its energy and is

finally brought to rest. Higher range for a channeled ion comes from a num-

ber of factors. First the channeled trajectory loses less energy in travelling

a given distance, since fewer violent encounters occur with individual atoms.

Secondly, the ion travels more nearly in a straight line than a random trajec-

6



tory which wanders through the crystal in a zig zag path. Figure(1.6) shows

how the distribution of krypton ions which came to rest in an aluminium crys-

tal varies with the orientation of the target. The results clearly illustrate,

that the most open channels are those between the most closely packed rows

in the crystal structure. For fcc crystals, 〈110〉 direction is the most closely

packed and the range is found to be maximum along this direction.

1.4 Close Encounter Process

A channeled trajectory always avoids the nuclei, which are the centres of

repulsion for the positive ions and are producing the required steering action

for channeling. In order to initiate a nuclear reaction such as

Si28 + p→P 29 + γ (1.1)

Cu65 + p→Zn65 + n (1.2)

the protons have to approach the nucleus to a distance roughly 10−4 times

the channel width. Therefore if a proton beam is incident on a crystal close to

channel directions, we can expect a minimum in the measurement of nuclear

reaction yields. The typical orientation dependence of the yield of a close

encounter process measured in a channeling experiment[4] is illustrated in

figure(1.7). In measurements on the yield of close encounter processes, the

detector is kept in a random direction, in order to eliminate the possible

anisotropic effects. The yield is measured by varying the angle ψ over a

small range centered on ψ = 0. The yield χ is normalized to random. The

yield χ=1 is the yield that would be measured from a hypothetical amorphous

target having the same characteristics as the target chosen.
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Figure 1.7: The normalized depth dependent yield of a close-encounter pro-
cess

When ψ = 0 the channeled fraction of the incident beam is a

maximum, and thus the yield of close encounter process is at its minimum

value χmin. As the crystal is tilted away from the beam, the channeled frac-

tion decreases, and χ rises to a maximum value χmax, which can be somewhat

greater than unity. This results in a shoulder like pattern on either side of

the minimum. At still larger angular deviations, the yield approaches the

random value. ψmax is the angle at which χ=χmax. Channeling is character-

ized by the minimum yield χmin and half-width ψ1/2 at the point where the

yield χ1/2 = 1
2
[1 +χmin]. The measured yield χ is dependent upon the depth
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x at which the close encounter process occurs inside the target crystal. The

depth dependence of χ is primarily a consequence of multiple scattering of

the beam as it progresses through the crystal.

1.5 Blocking

Figure 1.8: Schematic representation of blocking effect

In an experiment closely related to the nuclear reaction, one may

take a crystal containing alpha radioactive atoms as members of the lattice.

The emitted alpha particles will not be able to emerge from the crystal in

the exact channel directions, since they would then have to pass through a

row of intervening nuclei, and they are steered away as shown in figure(1.8).

This is often referred to as blocking effect. If we set a detector to collect

alpha particles emitted from a crystal in a specific direction, the counting rate

should fall to a minimum when the detector is placed in the channel direction.

Figure(1.9) shows the results of such an experiment done by Domeij et al[5].
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Figure 1.9: Typical intensity variation as a function of emission angle for
5.5MeV alpha particles from Ra222 atoms embeded in Tungsten crystal. The
dip is centered on a simple crystal axis

1.6 Back Scattering Experiments

When channeling of the incident ion occurs, the chances of an ion being

scattered through a large angle and returning to the surface will be greatly

reduced. In any experiment which measures the back scattered current of

particles from a crystal, we expect a large attenuation whenever the ion beam

is channeled along a simple crystal direction. Nelson and Thomson[1] found

the first evidence for the strong influence of channeling on backscattering

yields. They observed a sharp minima in the scattering of 50keV H+, He+,
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Ne+ and Xe+ ions from a Cu crystal, whenever the incident beam is along

a channeling direction.

1.7 Theory of Channeling

The passage of energetic positively charged ions through a crystal lattice is

a complicated process. To understand how the crystal symmetry steers a

particle beam, let us briefly consider the particle interaction with a single

atom.

1.7.1 Ion crystal interaction

The interaction between an ion and a crystal is divided into(i) elastic inter-

actions with the atomic nuclei and (ii) inelastic interactions involving the

electrons. The elastic interaction between the ion and the atom at a dis-

tance r is described by an interaction potential V (r). At low separations,

V (r) is described by the coulombic repulsion of the bare nuclei modified by

an appropriate function which describes electronic screening. The following

potentials are commonly used.

1. The Lindhard standard potential[6]

V (r) =
Z1Z2e

2

r

{

1 − r

(r2 + C2a2
T )

1

2

}

(1.3)

where Z1 and Z2 represents the atomic number of ion and atom respectively,

e is the electronic charge, C is an adjustable parameter approximately equal

to
√

3 and aT is the Thomas Fermi screening radius given by

aT = 0.8853a0

(

Z
2

3

1 + Z
2

3

2

)− 1

2

(1.4)
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where a0 = 0.53A0, is the Bohr radius.

2. The Moliere potential[7]

V (r) =
Z1Z2e

2

r

{

0.1e
− 6r

aT + 0.35e
− 0.3r

aT + 0.55e
− 1.2r

aT

}

(1.5)

and

3. Bohr potential[8]

V (r) =
Z1Z2e

2

r
e
− r

aT (1.6)

At relatively large separations, the interatomic potential is often described

by a Born-Mayer potential

V (r) = ABMe
−Br (1.7)

Where ABM and B are empirical parameters.

When the ions are channeled, to a first approximation, ions ef-

fectively see a continuously spread out rows of positively charged nuclear

strings or nuclear planes. The ion-nuclei interaction can then be replaced by

ion-atomic row or ion-atomic plane interaction using the so called continuum

string potential or continuum planar potential respectively. This continuum

model is briefly described in the next section.

1.8 Continuum Model

A comprehensive treatment of continuum model was given by Lindhard [9].

The essential simplification in this model is to average the ion-atom interac-

tion potential along the major axes or planes so that the scattering is reduced

from three to two or one dimension respectively. The great advantage of this

model is that it enables one to describe the average properties of a given tra-
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jectory or alternatively to describe the average properties of an entire beam

of ions. The continuum potential at a distance r⊥ from a string of atomic

nuclei is written as the average of inter-atomic potential V (r) given by

U1(r⊥) =
1

d

∫ +∞

−∞

dzV

(

√

z2 + r2
⊥

)

(1.8)

where d is the inter atomic spacing along the atomic row, z is the dis-

tance of the ion to the nucleus measured along the row in the channeling

direction so that r =
√

z2 + r2
⊥ is the distance between the ion and the

nucleus(figure(1.10)). Substituting eqn(1.3) in eqn(1.8) gives the standard

Figure 1.10: Collisions of channeled particles with idealized static linear array
of atoms.

Lindhard continuum potential for a string at ~r⊥i

U1(|~r⊥ − ~r⊥i|) =

(

2Z1Z2e
2

d

)

0.5ln

{

1 +

(

CaT

|~r⊥ − ~r⊥i|

)2
}

(1.9)

the potential at ~r⊥ due to all strings in the plane is then

U(~r⊥) =

N
∑

i=1

U1(|~r⊥ − ~r⊥i|) − Umin (1.10)
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where Umin is so chosen that U(~r⊥) becomes zero at points where potential

is a minimum[10].

1.8.1 Axial motion in the continuum model

For an ion of energy E moving at a relatively low angle ψin to a low index

direction the total transverse energy at the point ~r⊥ is given by

E⊥ = U(~r⊥) + Eψin
2 (1.11)

Since the potential energy is independent of velocity, transverse energy is

conserved throughout the motion. Hence the ions are always confined to

regions where U(~r⊥)≤E⊥. Lindhard had shown that once statistical equilib-

rium is attained there is an equal probability of finding the ion anywhere in

the accessible area A(E⊥), so that the probability may be written as

P (E⊥, ~r⊥) =
1

A(E⊥)
U(~r⊥)≤E⊥ (1.12)

= 0 U(~r⊥) > E⊥. (1.13)

The above equation implies a minimum approach distance r⊥c to a string

determined from the equation

E⊥ = U(r′⊥) ≡ U1(r⊥c) (1.14)

where |r′⊥| = |~r⊥ − ~r⊥i| = r⊥c, ~r⊥i being the position vector of the ith string

in the transverse plane. Hence all close encounters with the string for which

the impact parameter q < r⊥c is ruled out. This explains the reduction in

the yield of close encounter processes for channeling ions. The continuum

approximation is valid only for ions with large impact parameters and small
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transverse angles. The approximation breaks down for a critical distance of

approach r⊥crit, which defines a critical value Ecrit for transverse energy and

critical angle ψcrit for angle of incidence ψin. The three values are related by

the equation,

U(r⊥crit) = Ecrit = Eψ2
crit (1.15)

where ψcrit is of the order of a characteristic angle ψ1, written as

ψ1 =

(

2Z1Z2e
2

Ed

)
1

2

(1.16)

When the ion energy is less than a characteristic energy E ′ defined as

E ′ =
2Z1Z2e

2d

a2
T

(1.17)

ψcrit is of the order of another characteristic angle ψ2 expressed as

ψ2 =

{

CaT

d

(

Z1Z2e
2

Ed

)
1

2

}
1

2

(1.18)

1.8.2 Continuum approximation for planes

If the ion is moving in an inter planar channel of width dp, with an angle

of incidence φ with respect to an atomic plane, and is trapped between two

adjacent X-Z planes, the continuum potential at a distance y from an X-Z

plane is given by

Y1(y) = (Ndp)

∫ +∞

0

2πrdrV
(

√

r2 + y2
)

(1.19)

where (Ndp) is the number of atoms per unit area in the plane. The Lindhard

standard potential yields the following expression for Y1(y) by substituting
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eqn(1.3) into eqn(1.19)

Y1(y) = 2πZ1Z2e
2(Ndp)aT





{

(

y

aT

)2

+ C2

} 1

2

−
(

y

aT

)



 (1.20)

The transverse energy associated with the motion is given by

E⊥ = Y (y) + Eφ2 (1.21)

There is a finite potential barrier EB = Y (0) which an ion must overcome

in order to penetrate through one atomic plane into the next channel. The

transverse angle necessary to overcome this barrier is

φr =

(

EB

E

)
1

2

=

(

2πZ1Z2e
2(Ndp)aT

E

)
1

2

(1.22)

All ions with transverse energy E⊥ < EB will be trapped within a single

inter-planar channel. φr is thus a measure of the critical angle φcrit for planar

channeling.

1.9 Classification of Trajectories

Consider an ion beam incident on a crystal at an angle ψin with respect to a

channel axis and transverse energy E⊥ given by eqn(1.11). Ions with E⊥ <

Ecrit will become channeled, while those with E⊥ >> Ecrit freely penetrate

the continuum strings and they are said to describe random trajectories(figure(1-

11)).

Ions with E⊥ less than a certain value E0 can be trapped within

the central region of a single channel. These particles execute a helical orbit

as they penetrate through the crystal. Such ions are said to be proper or
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hyper channeled(figure(1.3)). Ions with E⊥ of the order of E0 are quasi-hyper

channeled(figure(1-12)). They are trapped within a set of atomic rows for

sometime, then escapes to get trapped in another set of atomic rows.

Figure 1.11: Random trajectories Figure 1.12: quasi-hyper channeled tra-
jectories

Ions with E⊥ > E0 and less than Ecrit are called axially chan-

neled(figure(1.2)). Another class of ions with E⊥ greater than Eψcrit
2 but

less than 4Eψ1
2 are called quasi-axial channeled(figure(1-13)). Even though

they sometimes exhibit channeling properties, they are capable of penetrat-

ing continuum strings.

IfE⊥ is less than Eφr
2, ions become planar channeled(figure(1.1)).

For E⊥ between 0.25φr
2 and 2.25φr

2 ions become quasi-planar channeled.

They are trapped between a pair of atomic planes but soon escape cutting

through several atomic planes(figure(1-14)) to be trapped again between an-

other set of planes.

By eqn(1.15), which defines Ecrit, channeled ions cannot approach
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Figure 1.13: Quasi-axial trajecto-
ries

Figure 1.14: Quasi-planar trajectories

the continuum strings to a distance less than r⊥crit. This would mean that

channeled ions with ψ < ψcrit would not take part in close encounter pro-

cesses. Hence in the measurement of the yield of these processes, there

should be contributions only in the region of ψ > ψcrit thus causing a dip

in the channeling direction[11]. The chances of close encounters are more

for quasi-channeled ions than for random ions, resulting in a characteristic

shoulder on either side of channeling dip. Higher than random value of χmax

in the figure(1-7) is attributed to the refractive effect of quasi-channeled ions

as shown in the figure(1-15). As the ions cut across transverse planes or

atomic rows the transverse energy approaches a minimum value resulting in

an increased time spend on the planes or the rows. This gives the ions a

greater probability for close encounter interactions with the atomic nuclei,

thus resulting in a higher than random yield.
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Figure 1.15: refractive effect

1.10 Computer Simulations of Channeling

Computer simulation is a major tool for studying the interactions of ions

with solids. There are two main objectives of computer simulations. Firstly,

we have the direct simulation of experiments, where a theoretical analogue

is produced for comparison with experiments. In the second category, com-

puter simulation is used as an ideal experiment on which to test and develop

analytical models. To simulate the passage of an ion through a crystal lattice

on a computer, the three dimensional structure of the crystal lattice is stored

in the computer memory, together with the interaction forces which bind the

atoms together. Various computer simulation models are discussed briefly in

the following sessions.

1.10.1 Binary collision model

Earlier analytical methods were based on the binary collision model[12],[13].

In this model the ion is assumed to interact with only the nearest atom.

Moliere potential given by eqn(1.5) is taken as the interaction potential.

Thermal vibrations are simulated by giving each lattice atom a displacement

with coordinates chosen at random from a Gaussian distribution. This treat-

ment is valid provided the energy is sufficiently high and scattering angles
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are small. One of the shortcomings of this theory is that it does not consider

the interaction of the ion with a large number of nuclei in the neighbouring

rows and planes, although it is this aspect which leads to the characteristic

features of channeling.

1.10.2 N-body model

The basic idea of this model is to set up a numerical crystallite whose atoms

interact through a potential energy function. A disturbance is introduced

involving the sudden displacement of an atom of the crystallite with a sub-

stantial kinetic energy. The equations of motion are integrated until the

added energy is sufficiently dissipated. In addition to the forces from the

inter atomic potential, external forces may be applied to atoms in the crys-

tallite boundary. In general the field at any point is obtained by considering

the ion atom interaction using an appropriate binary potential with each of

the neighbouring atoms in the crystal. This molecular dynamics model was

first applied to radiation damage studies by Vineyard et al[14]. In the seven-

ties and early eighties due to low computer speeds N-body model consumed

very large computation time. Therefore this model was not preferred for

most calculations.

1.10.3 Hybrid model

A Monte Carlo program for the calculation of channeling phenomena is de-

scribed in this model. Smulders and Boerma[15] tried to combine the advan-

tages of binary and continuum model, by considering the interaction with

the nearest atom using binary collision model for small distances and with

the surrounding atomic rows using continuum model for large distances thus

reducing the computer time.
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1.11 History and Present Work

The channeling effect was discovered theoretically by a computer simulation

in 1962. This discovery by Robinson and Oen[16], of ion channeling and its

effects in crystals greatly improved the understanding of the interaction of

ion beams with solids and has since been used for characterizing, analysing

and processing materials. The actual existence was later demonstrated by

further experimental work with mono crystalline targets[2],[3]. These discov-

eries marked the beginning of a period in which, interest in the channeling

effect grew rapidly. Lehmann and Leibfried[17] made an analytic calcula-

tion of the trajectories for low energy ion channeling. Further experimental

evidence on channeling effect was given by Nelson and Thompson[1], Ergin-

soy[18] and others. A topic of much interest is the channeling of particles

at relativistic velocities[19],[20]. The channeling phenomenon, theory, wide

variety of experiments and its various applications have been described in

detail in several review articles of Morgan[10], Gemmel[21], Beloshitsky[22]

and several others.

With the availability of high speed digital computers, it has be-

come possible to analyze experimental results using Particle Trajectory Ap-

proximation(PTA) developed by Ellison et al[23]. Here an N-particle beam

is generated in a computer and the trajectory of each particle within the

crystal is computed by solving the equation of motion

M
d2r

dt2
= −∂U( ~r⊥)

∂r
(1.23)

Where M is the mass of the ion particle and U( ~r⊥) is the ion-crystal po-

tential at any point ~r within the crystal, given by Lindhard potential(eqn

(1.9)). Trajectories were computed upto a desired depth, which is usually
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the thickness of the crystal on which a transmission experiment is performed.

The measured physical quantities like transverse momentum and energy, of

the emerging particles is compared with the value determined from the exit

position and momentum coordinates of the computed trajectories. The com-

puted quantity is comparable with the measured value in the limit of large

N. This is the principle of PTA. Ellison et al[23] used it successfully to sim-

ulate the doughnut spectrum to give the transverse momentum distribution

of emerging particles. Their experiment showed an inherent property of the

differential equation(1.23) namely that the equation is highly unstable; that

is the two particles which start from two close points do not remain close

together, for long, instead they quickly diverge away from each other. The

non-linearity of the equation of motion and the instability of its solution

suggest the possibility of chaos in channeling.

Henry Poincare the famous mathematician was the first who ob-

served rapidly diverging trajectories in many dynamical systems. Though

the discovery was made in the early 19th century, extensive studies of the

behaviour as a distinct phenomenon called chaos was done only after the

advent of digital computers in the seventies. The phenomenon of chaos and

its characteristics are discussed in chapter 2. Chapter 3 considers the investi-

gation of chaos in channeling. Chapter 4 deals with the simulation of protons

channeled in silicon, the existence of chaos in the system and it concludes

with the salient findings of our present study in channeling.
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Chapter 2

Chaos

2.1 Introduction

Chaos is the term attributed to the irregular and unpredictable evolution of

many nonlinear dynamical systems. A central characteristic feature of such

a system is that, a small initial difference in the state of the system grows

exponentially with time and after a very short time its history as well as

future becomes indeterminable. For a non chaotic system on the other hand,

a small initial difference grows only linearly. In spite of its unpredictability, a

chaotic system is governed by deterministic equations. But unlike a stochas-

tic system subject to random external forces, the irregularity of a chaotic

system is part of the intrinsic dynamics of the system.

In depth study of chaos has shown that two necessary conditions

for a system described by a set of first order differential equations to be

chaotic are that (i) the system has at least three dynamical variables and

(ii) the equation of motion has one nonlinear term coupling several variables.

The nonlinearity condition makes the equation almost unsolvable analytically

and hence necessitates the use of computers, to obtain numerical solutions.

Therefore extensive study of nonlinear dynamics and chaos were

done only in the last three decades. This has lead to identify a number of dy-
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namical systems exhibiting chaos. The chaotic behaviour has been observed

in mechanical oscillators, electrical circuits, nonlinear optical systems, chem-

ical reactions, heated fluids and many other systems[1-5]. A large number

of experimental work were also started during this period in various fields

of science[6-8]. Here we emphasize on two types of dynamical systems. A

discrete time dynamical system called maps, takes the current state of the

system as input and updates the situation by producing a new state as out-

put. The other important type of dynamical system is essentially the limit of

discrete systems with smaller and smaller updating times. These continuous

time dynamical systems are described by a set of differential equations.

2.2 Feature of Chaos

The time evolution of any system is represented as a phase trajectory in the

phase space of the system(figure(2.1)). The phase space is a mathematical

Figure 2.1: Phase diagram of the linear pendulum with angular velocity ω
and angular displacement θ as axes. Each value of ai yield a closed orbit of
fixed energy called phase trajectory.

26



space with orthogonal coordinate directions representing each of

the variables, required to specify the instantaneous state of the system. Thus

for a particle moving in one dimension the phase space is a two dimensional

plane made up of position and velocity directions or their equivalents like

position and momentum directions. If one dynamic variable is unbounded

but periodic, the phase diagram can also be made periodic, by defining ap-

propriate boundary conditions. The values of the phase coordinates at any

instant defines a point in its phase space. Using the equations of the system

the trajectory passing through the point can be obtained by evaluating its

past and its future, provided the system is deterministic. If the trajectory

is crossed the past and the future become ambiguous and the system is said

to be indeterministic(figure(2.2)). This is one central feature of a chaotic

system.

Figure 2.2: The non crossing property of phase trajectories. Crossing of
trajectories violates uniqueness of trajectories in a deterministic dynamical
system.

Physical systems can be conservative or dissipative. A set of
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nearby points can be connected together to create an area in two dimen-

sional phase space or a volume in a multidimensional phase space. If the

system is conservative neighbouring points maintain the same distance in

phase space, resulting in the preservation of area or volume generated by the

points(figure(2.3)).

Figure 2.3: Preservation of phase space area.

Some dynamical systems follow the Hamilton’s equations of mo-

tions. These systems preserve area or volume in phase space and hence are

conservative systems. Such systems are called Hamiltonian systems. For dis-

sipative systems the phase space area or volume can shrink and ultimately

go to a point called an attractor. If the point attractor is an equilibrium

state of the system, it is called a focus(figure(2.4a)). A focal point is sum of

the two critical points in a phase space, the other being a saddle point. For

a saddle point there are some stable trajectories which go towards the point

and some unstable trajectories which go away from the point(figure(2.4b)).

Some trajectories are closed and stable attracting neighbouring
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Figure 2.4: Critical points in phase space (a)focal point (b)saddle point.

trajectories. Such trajectories are called limit cycle. A phase space can have

regions made up of points from where trajectories will eventually converge

on an attractor:-a focal point or limit cycle. Such regions are called basins of

attraction. One region can sometimes be separated from another by a curve

called separatrix(figure(2.5)).

Figure 2.5: A sketch of attractor A1 and basins of attraction in state space.
The line bounding the basin of attraction forms a separatrix.
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A phase space trajectory can be viewed stroboscopically in the

sense that the system is viewed at regular intervals and the state of the

system is marked as points in the phase space diagram. This strobe diagram

is called a Poincare section. We give below some examples of well studied

chaotic systems.

2.3 Chaos in Dynamical Systems:

2.3.1 Lorenz model

This is a highly simplified model of a convecting fluid introduced by Edward

Lorenz[9] to describe convection in the atmosphere. Lorenz demonstrated

that even a very simple set of equations may have solutions whose behaviour

is essentially unpredictable. In simple physical terms this model treats the

fluid system as a layer that is heated at the bottom and cooled at the top.

The fluid motion and the resulting temperature differences can be expressed

in terms of three variables X(t), Y(t) and Z(t). X is related to the time

dependence of fluid stream function, and its derivative with respect to the

spatial variables gives the components of the fluid flow velocity. The variables

Y and Z are related to the time dependence of the temperature deviations.

Using these variables Lorenz model is written as three coupled differential

equations,
dX

dt
= σ(Y −X) (2.1)

dY

dt
= X(ρ− Z) − Y (2.2)

dZ

dt
= XY − βZ (2.3)

where σ is called the Prandtl number, which is defined to be the ratio of the

kinetic viscosity of the fluid to its thermal diffusion coefficient. The Rayleigh
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number ρ is a dimensionless measure of the temperature difference between

the top and bottom of the fluid layer and β is related to the vertical height

of the fluid layer to the horizontal size of convection rolls. For a choice of

parameters σ = 10, β = 8
3
, Lorenz found numerically that the system behaves

chaotically whenever ρ exceeds a critical value=24.74. The phase plot for σ =

10, β = 8
3

and ρ = 28 gives an attractor in the three dimensional XY Z space

coordinates. A trajectory can be started from an initial position (X0, Y0, Z0).

The trajectory then rotates about two unstable fixed points. On starting

another trajectory from an initial position X0 +dX, Y0 +dY, Z0 +dZ close to

the original one, it can be seen that the second trajectory evolves separately

with the difference between the two trajectories increasing exponentially.

This sensitivity to initial conditions is sometimes called butterfly effect

and is a characteristic feature of chaos. Figure(2.6) shows the trajectory in

the XY Z space projected on to a two dimensional XZ plane.

Figure 2.6: Projection of Lorenz attractor in 2-dimensional phase space
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The trajectories even though they look simple, they are infact

complicated. Even after millions of rotations it has been seen that the sys-

tem never repeats. If one magnifies the trajectories one can see that, the

structure even at the minute scale retains the characteristic features of the

gross structure. The resultant path is sometimes compared with a sheet of

pastry dough, being repeatedly stretched and folded making the structure

self similar. Geometrical objects possesing this property have non integer

dimensions and hence are called fractals. Attractors that are fractals are

called strange attractors. Chaos always result in strange attractor, but not

all strange attractors are chaotic.

2.3.2 Logistic maps

In many cases maps are used as models for physical systems even if the

underlying equations are unknown. Maps arise in many disciplines such as

biology, engineering, economics and physics. One such map showing chaos is

the logistic map[10] given by,

xn+1 = rxn(1 − xn) (2.4)

with x in the range [0,1] and 0 < r < 4. For a given value of r, eqn(2.4) is

iterated from a starting x0, and after a few hundred iterations xn+1 reaches a

stable fixed point. The process is repeated for other values of r. Figure(2.7)

gives a plot of stable fixed points against the values of r. It can be seen that

up to r=3, there is just one stable fixed point. At r=3 there is a pitchfork

bifurcation resulting in a two cycle. This continues up to 3.4495. With r

slightly larger than 3.54, the second bifurcation takes place and so on. At

r=3.57 chaos sets in. Most values beyond 3.57 exhibit chaotic behavior , but

around 3.82 period doubling cascade occur again.
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Figure 2.7: Bifurcation diagram for logistic map

The self similarity is evident from the figure. The discrete dy-

namical system described by the eqn(2.4) is characteristic of many one di-

mensional systems which exist in nature.

2.3.3 Henon map

To explore the behaviour of two-dimensional maps, let us consider a map

function called the Henon map, which has become a classic in the litera-

ture of non linear dynamics. The Henon map function is essentially a two-

dimensional extension of the one-dimensional quadratic map. This map func-

tion was first discussed by Henon[11] and is given by

xn+1 = yn + 1 − ax2
n (2.5)

yn+1 = bxn (2.6)

where a and b are (positive) bifurcation parameters. The parameter b is a

measure of the rate of area contraction (dissipation). The Henon map is the

most general 2-D quadratic map with the property that the contraction is

independent of x and y.
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Figure 2.8: Henon attractor for a=1.4 and b=0.3

When b = 0, the Henon map reduces to the quadratic map.

Bounded solutions exist for the Henon map over a range of a and b values,

some yielding chaotic solutions. The map has been well studied for a = 1.4

and b = 0.3, where the attractor is strange and chaotic. Figure(2.8) shows

the attractor of the Henon map in x-y space for a = 1.4 and b = 0.3.

2.4 Hamiltonian Systems

Hamiltonian systems are a class of dynamical systems without any dissipa-

tion. For such a system we expect that volume of initial conditions would

remain constant for all time and there would exist no attractors for the tra-

jectories. Hamiltonian systems exist in various fields such as astronomy[12],

superconductivity[13], optics[14] and particle accelerator dynamics[15]. In

the Hamiltonian system with N degrees of freedom, the dynamics is com-

pletely specified by a simple function, the Hamiltonian H(q, p) where q and

p are the canonical coordinates and momenta respectively. Then the trajec-
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tories p(t), q(t) in 2N dimensional phase space can be generated by solving

the Hamilton’s equation of motion,

dqi
dt

=
∂H(q, p)

∂pi

(2.7)

dpi

dt
= −∂H(q, p)

∂qi
(2.8)

In many cases the Hamiltonian does not explicitly depend on time and the

energy E = H(q, p) is conserved along the trajectory. One of the basic prop-

erties of Hamilton’s equations is that they preserve 2N dimensional volume

in phase space. As a consequence of this result Hamiltonian systems do not

have attractors in the usual sense.

2.5 Integrable and Non Integrable Systems

For a special class of Hamiltonian systems, there are as many constants of the

motion as there are degrees of freedom. Such systems are called integrable

systems[16]. In most cases, the constants of motion are not the ps in terms

of which we initially wrote the Hamiltonian. The constants of the motion,

however, can always be expressed as functions of the original qs and ps. The

constants of motion are usually called action variables and are commonly

written as Ji(q, p), i = 1, 2, ....., N . For an integrable Hamiltonian system,

the phase space trajectories are confined to an N -dimensional surface in

phase space. Associated with each Ji(q, p) there is another variable labeled

θi(q, p), called the angle variable. The Ji and θi are chosen so that Hamilton’s

equations, expressed in terms of Ji and θi have the same mathematical form

as the original Hamilton’s equations expressed in terms of the qs and ps.

θ̇i =
∂H(θ, J)

∂Ji
(2.9)
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J̇i = −∂H(θ, J)

∂θi

(2.10)

If the eqns(2.9) and (2.10) are satisfied, the variables (θ, J) are related to the

variables (q, p) by a canonical transformation. If the Hamiltonian depends

only on Ji and not on θi for all i = 1, 2, 3, .....N , we have

J̇i = 0 (2.11)

and the Ji are the N constants of the motion. A Hamiltonian system that

satisfies the eqns(2.9),(2.10),(2.11) is called an integrable system. If the num-

ber of constants of motion is less than the degrees of freedom, the system is

non integrable. The given list will tell us what kinds of Hamiltonian systems

are integrable[17].

1. All Hamiltonian systems with one degree of freedom and for which H is

an infinitely differentiable function of q and p, are integrable and the corre-

sponding action J satisfies H = ωJ , where ω = ∂H
∂J

.

2. All Hamiltonian systems for which Hamilton’s equations are linear in q

and p are integrable.

3. All Hamiltonian systems with nonlinear Hamilton’s equations that can be

separated into uncoupled systems of one degree of freedom are integrable.

For an integrable system, the trajectory in phase space will remain on the

constant energy surface. The idea of transition from integrability to non inte-

grability is given by KAM theorem[18]. Since the behaviour of an integrable

Hamiltonian system is always periodic or quasi periodic, an integrable sys-

tem cannot display chaotic behavior. Much of the literature on the chaotic

behaviour of Hamiltonian systems has focused on systems that are, in some

sense, just slightly non integrable. A number of non integrable Hamiltonian

systems have been identified and studied for their chaotic behavior. The
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standard map and kicked oscillator are some of the well studied chaotic sys-

tems.

2.6 The Standard Map

Many of the theoretical results for universal behaviour of non integrable

Hamiltonian systems have come from the study of area preserving iterated

map functions. In this section we will discuss the standard map, first intro-

duced by B. V. Chirikov[19]. The Chirikov standard map function is usually

written as a function two variables, r and θ, which can be interpreted as

the polar coordinates of a trajectory intersection point on a two-dimensional

Poincare plane:

rn+1 = rn − K

2π
sin2πθnmod1 (2.12)

Θn+1 = θn + rn+1mod1 (2.13)

For the standard map, the angle θ and the variable r are defined to be in the

range[0,1]. K is a positive nonlinearity parameter. It is usual to replace the

variable rn with the variable Jn to use the action angle notation. When K=0,

the system will be integrable and the trajectory can be put on a torus and the

corresponding phase portrait will be a closed curve. But when K > 0, the

system becomes non integrable and the phase portrait will be complicated.

To illustrate the behaviour of the trajectories of the standard map, we have

plotted the trajectory points generated with K=0.5(fig(2.9)) by taking several

initial conditions. For each initial point, the standard map has been iterated

200 times and each of the resulting trajectory points has been plotted in

the θ-J plane. If the initial condition yields a chaotic orbit,they will wander

throughout an area. For small perturbation(K=0.5) there are many KAM

tori. When K is increased more and more, the non linearity
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Figure 2.9: The phase portrait of the standard map with K=0.5

Figure 2.10: Phase portrait with
K=1

Figure 2.11: Phase portrait with
K=2.5
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becomes stronger and KAM tori starts disappearing. As the non-

linearity increases further, all the tori are eventually destroyed and a single

trajectory will wander over nearly the entire allowed region of phase space.

Phase plot for K=1 and K=2.5 are given in fig(2.10) and (2.11).

2.7 Quantifying Chaos

Quantifying chaos will help us to separate chaos from noise or randomness in

the system. Quantifiers can also sometimes give an estimate of the number

of degrees of freedom for the system. Another reason for quantifying chaos

is that they may help us sort systems into universality classes. Changes in

the quantifiers may be linked to important changes in the dynamical be-

haviour of the system. In characterizing chaos quantitatively we make use

of two different, but related type of description. The first type emphasizes

the dynamics(time dependence) of chaotic behavior. The familiar Lyapunov

exponent is an example of this type of description. Various kinds of en-

tropy tell us how the system evolves in time and what happens to the nearby

trajectories as time goes on. The second type of quantifier emphasizes the

geometric nature of trajectories in state space. When the system evolves for

a long time, we examine the geometry of the resulting trajectories in phase

space. Fractal dimensions and correlation dimensions are quantities which

come under this category and they characterise the chaotic attractors.

2.7.1 Lyapunov exponent

Consider a dynamical system described by a set of ordinary differential equa-

tions. For a one dimensional state space let x0 be one initial point and x a

nearby initial point. The trajectories that arises from x0 and x are repre-

sented by x0(t) and x(t) respectively. Let s = x(t) − x0(t) be the distance
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between two trajectories. The time dependent equation is assumed to be

ẋ(t) = f(x) (2.14)

since we assume that x is close to x0, we can use a Taylor series expansion

to write

f(x) = f(x0) +
df(x)

dx
|x0

(x− x0) + ........ (2.15)

The rate of change of distance between the two trajectories is given by

ṡ = ẋ− ẋ0

= f(x) − f(x0)

=
df(x)

dx
|x0

(x− x0) = s
df(x)

dx
|x0

(2.16)

where higher derivative terms in Taylor series expansion of f(x) are neglected.

Since we expect the distance to change exponentially in time, we introduce

the Lyapunov exponent λ as the quantity that satisfies

s(t) = s0e
λt (2.17)

Where s0 = s(t = 0). If we differentiate equation(2.17) with respect to time,

ṡ = λs0e
λt = λs (2.18)

which gives

λ =
df(x)

dx
|x0

(2.19)

Thus we see that if λ is positive, the trajectories diverge. In state space

with more dimensions we can associate a Lyapunov exponent with the rate
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of expansion or contraction of trajectories for each of the directions in the

state space.

For an iterated map, the divergence or convergence of trajectories

is exponential as a function of iteration number. Let x0 be a point on the

attractor and x0 + ǫ its neighbour. We then apply the iterated map function

n times to each value and consider the difference between these results.

dn =| fn(x0 + ǫ) − fn(x0) | (2.20)

If the behavior of the system is chaotic, we expect this distance to grow

exponentially with n, so we write

dn

ǫ
=

| fn(x0 + ǫ) − fn(x0) |
ǫ

= eλn (2.21)

Then

λ =
1

n
ln

| fn(x0 + ǫ) − fn(x0) |
ǫ

(2.22)

If we now let ǫ→ 0, we recognize from elementary calculations that the ratio

on the R.H.S of the equation(2.22) is just the definition of fn with respect

to x. We have also seen that, the derivative of fn can also be written as a

product of n derivatives of fn evaluated at the successive trajectory points

x0, x1, x2, .... and so on. Thus we can put the definition of Lyapunov exponent

in a more intuitive form

λ =
1

n
(ln | f ′(x0) | + ln | f ′(x1) | +..... + ln | f ′(xn) |) (2.23)

equation(2.23) tells us that the Lyapunov exponent is just the average of

the natural logarithm of the absolute value of the derivatives of the map
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function, evaluated at the trajectory points. In general we can say that a

one dimensional iterated map function has chaotic trajectories for a partic-

ular parameter value if the average Lyapunov exponent is positive for that

parameter value.

Lyapunov exponents can also be calculated from a one-dimensional

time series of data. Consider two points in a space, x0 and x0 + ∆x0, each

of which will generate an orbit in that space using some equation or system

of equations. These orbits can be thought of as parametric functions of a

variable that is something like time. If we use one of the orbits a reference

orbit, then the separation between the two orbits will also be a function of

time. This separation is also a function of the location of the initial value and

has the form ∆x(x0, t). In a system with attracting fixed points or attracting

periodic points, ∆x(x0, t) diminishes asymptotically with time. If a system

is unstable, then the orbits diverge exponentially for a while, but eventually

settle down. For chaotic points, the function ∆x(x0, t) will behave errati-

cally. Then the mean exponential rate of divergence of two initially close

orbits defined by the formula

λ = lim
t→∞

1

t
ln

|∆x(x0, t)|
∆x0

(2.24)

is chosen as the Lyapunov exponent. It works for discrete as well as for

continuous systems.

2.7.2 Significance of Lyapunov exponents

For λ < 0, the orbit attracts to a stable fixed point(figure 2.12) or stable

periodic orbit(figure 2.13). Negative Lyapunov exponents are characteristic

of dissipative or non-conservative systems. Such systems exhibit asymptotic

stability; the more negative the exponent, the greater the stability.
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Figure 2.12: dissipative(attracting fixed point), λ < 0

Figure 2.13: dissipative(attracting orbit), λ < 0

Figure 2.14: conservative(neutral fixed point and orbits), λ = 0

For λ = 0, the orbit is a neutral fixed point (figure 2.14). A

Lyapunov exponent of zero indicates that the system is in some sort of steady
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state mode. A physical system with this exponent is conservative. Such

systems are said to exhibit Lyapunov stability. For λ > 0 ,the orbit is

unstable and chaotic. Nearby points, no matter how close, will diverge to

any arbitrary separation. These points are said to be unstable.

In the last thirty years several mathematical techniques have been

developed for determining the Lyapunov exponent and other quantifying

parameters in chaos. This lead to the study of chaos in a wide variety of

physical systems. In the next chapter we consider the study of chaos in

channeling.
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Chapter 3

Chaos in Channeling

3.1 Previous Work

The existence of chaos in channeling was first demonstrated by Shulga et

al[1]. They considered the channeling of relativistic electrons and positrons

through silicon crystal in the 〈110〉 direction. The particle interaction with

crystal is described by the continuum potential. This conserves the mo-

mentum component of particle in channeling direction chosen as the Z axis.

This reduces the motion to the two-dimensional X-Y plane transverse to the

channel axis. The conservation of the transverse energy(E⊥) of the channeled

particle gives the equation of motion, one integral of motion. The existence

of the second integral is investigated by the Poincare cross section tech-

nique. For this, the trajectory of a particle is drawn in the four-dimensional

phase space(x, ẋ, y, ẏ); x and y being two orthogonal position directions in

the transverse plane and ẋ and ẏ their time derivatives. Since transverse

energy(E⊥) is a constant the trajectory will lie on a three-dimensional sur-

face defined by its value. A Poincare section is generated by plotting the

points of intersection of this trajectory with a two-dimensional plane such

as y, ẏ. If the second integral exists, the intersection should give a curve

determined by the integral of motion. Motion of the particle will then be
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regular and quasi-periodic. On the other hand if the second integral does not

exist the intersection points are randomly distributed in a region bounded

by a separatrix. Motion will be then irregular and chaotic. Shulga et al[1]

showed that for both channeled and random particles motion can be chaotic.

Kimball et al[2] assumed the velocity of the particle in the direc-

tion of channeling to be a constant. In the transverse plane the particle is

assumed to be acted upon by a time dependent force generated by the near-

est neighbour atom. Then the equation of motion in the transverse plane

can be written as

M
d2r

dt2
= F (r, t) (3.1)

with

F (r, t+ τ) = F (r, t)

The transverse force F is periodic with periodicity τ , τ being the time taken

by the particle to move one lattice distance in the channel direction. Because

of the time dependence of the transverse force, the transverse energy of the

particle is no longer conserved. After a series of assumptions the equation of

motion is reduced to a set of recursion relations

pn+1 = pn − K

π
sin(πqn) (3.2)

qn+1 = qn + pn+1 (3.3)

Where qn and pn are generalized transverse position and momentum coor-

dinates. K is a parameter depending on factors like lattice constant and

the instantaneous kicks generated by neighbour atoms. The above equations

are the standard map equations discussed in section(2.6). The trajectories

generated by the recursion relations(eqns(3.2),(3.3)) are plotted as points in
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the s-p phase space. It is shown that for small values of K, corresponding

to channeled trajectories, closed orbits are obtained. For higher values of K,

the single orbits breaks up into islands and for still higher values of K the

motion becomes chaotic.

Later in the 1990’s Ling chen et al[3] demonstrated chaos for

the case planar channeling. As described in section(1.8.2), in the case of

planar channeling, the motion reduces to a one-dimensional problem, since

the velocity components in the channeling direction(z axis) as well as in the

direction parallel to the atomic planes and orthogonal to the channel axis(y

axis) are conserved. Then the motion in the x direction perpendicular to the

atomic planes are described by the Hamiltonian equations

∂(mv)

∂t
= −∂H

∂x
(3.4)

∂x

∂t
=

∂H

∂(mv)
(3.5)

where m is the mass of the particle and v its velocity in the x direction. The

Hamiltonian H for planar channeled particle is

H =
mv2

2
+ U(x, t) (3.6)

The interaction potential U(x, t) is described by the Moliere potential(eqn(1.5))

modulated by a time dependent delta function corresponding to the impulses,

from the nearest neighbour atomic plane. The generalized coordinates p and

q for the transverse momentum and position respectively can be defined by

the equations

p =
2Tv

dp
(3.7)
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q =
2x

dp
(3.8)

where dp is the inter planar distance and T is the time period required for

a channeled particle to travel a distance of one periodic unit in the channel

direction. The generalized coordinate p is then related to the instantaneous

transverse angle ψ by the relation

p = ψ

(

2b

dp

)

(3.9)

where b is the lattice constant. Then using suitable approximations the

following recursion relations are obtained

pn+1 = pn +
2F (qn)T 2

(mdp)

where

F (qn) =
−E0ψp

2

a
ΣiΣjαiexp

(−βidp|qn − qj |
2a

)

(3.10)

pn+1 = pn +KΣiΣjαiexp

(−βidp|qn − qj |
2a

)

(3.11)

qn+1 = qn + pn+1 (3.12)

K =
2πNb2Z1Z2e

2

E0dp
(3.13)

The summation j is for the number of planes considered, N is the atomic

density in the channeling plane and K is the parameter depending on the

interaction between the channeling particles and the lattice planes. Chen et

al[3] considered the channeling of 10keV protons in tungsten crystal between

the (100) planes. This results in the K value of 0.427. Choosing the initial

value of q to be zero, various values of p in the range 0 < p < 0.4 are selected

to define the initial sets of (p0, q0) in the (p, q) phase space. The trajectories
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for each sets of (p0, q0) are then determined by the equations(3.11) and (3.12).

It was found that the interior orbits in the phase space corresponding to small

values of the incident angle ψ0 are elliptical in shape. They represent the

regular channeled motion. As p increases corresponding to increase in ψ0 the

orbits begin to get deformed and eventually split to form islands. The motion

thus become chaotic. On increasing p0 and hence ψ0 islands disappear and

the near elliptic orbits return. These are indicative of random motion. On

varying K Chen et al[3] found that K has to be in the range 0.35 to 1, for

chaotic motion.

Chen at al[3] could successfully relate these findings to exper-

imental observations. For this they assumed that the distribution in the

transverse momentum of the ions are directly related to the yield for close-

encounter process. On plotting the distribution of the transverse momentum

of channeled particles along tungsten(100) and silicon(100) planes, they ob-

tained the results comparable to the experimental observation. Their findings

show that the characteristic dip in the close-encounter processes is due to well

channeled particles. On the other hand chaotic motion produces a yield close

to random motion superimposed by a fine structure. The result of channeled

and chaotic motion then produces the characteristic dip modulated by a fine

structure as observed by Logan et al[4] and Anderson et al[5].

The works of Shulga, Kimball and Chen were of qualitative na-

ture. All of them involved plotting the phase-space trajectory and searching

for the existence of open curves which are indicative of chaos. Their re-

sults conclusively proves chaos in channeling. The result of Chen et al[3]

also shows possible experimental observations of chaotic motion in crystals.

Hence it underlies the necessity of further investigation of chaos in channel-

ing. A quantitative estimate of chaos by evaluating the Lyapunov exponents
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is therefore appropriate.

3.2 Calculation of Lyapunov Spectra

An algorithm for computing the entire Lyapunov spectrum was put forward

by Wolf et al[6], which was based on the technique developed independently

by Bennetin et al[7], Shimada and Nagashima[8] for determining a complete

spectrum from a set of differential equations. The method involves the mea-

surement of the average rate of divergence of neighbouring trajectories on

an attractor. Consider a small sphere centered at a point on the attractor

and whose surface is made up of points of neighbouring trajectories. As the

system evolves in time the sphere is deformed as a result of the different

rates of expansion in different directions. For example in the case of a two-

dimensional system the sphere becomes an ellipsoid with the principal axis

along the directions of expansion and contraction(figure(3.1)).

Figure 3.1: Evolution of ellipsoid
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Lyapunov exponents are then defined as a rate of expansion along

the different principal axis. For the ith principal axis, the corresponding

exponent is defined as

λi = lim
t→∞

1

t
ln
Li(t)

Li(0)
(3.14)

where Li(t) is the radius of the ellipsoid along the ith principal axis at time

t. Thus we have n-Lyapunov exponents defined for an n-dimensional phase

space. It is impractical to perform the actual computation in the way sug-

gested by the definition, because the initially close phase points would soon

diverge from each other by distances approaching the size of the attractor,

and the computation would then fail to capture the local rates of divergence

and contraction. Therefore vectors connecting the surface of the ellipsoid to

the center must be shrunk periodically or renormalized to ensure that the size

of the ellipsoid remains small and that its surface points correspond to tra-

jectories near that of the center point. This method is called Gram-Schmidt

reorthonormalization(GSR) and the procedure is illustrated in figure(3.2).

Let the linearized equations of motion act on the initial frame of

orthonormal vectors to give a set of vectors v1, ....vn. Then GSR provides the

following orthonormal set v′1, ....v
′
n.

v′1 =
v1

‖v1‖
(3.15)

v′2 =
v2− < v2 · v′1 > v′1

‖v2− < v2 · v′1 > v′1‖
(3.16)

...

v′n =
vn− < vn · v′n−1 > v′n−1 − ....− < vn · v′1 > v′1

‖vn− < vn · v′n−1 > v′n−1 − ......− < vn · v′1 > v′1‖
(3.17)

GSR never affects the direction of the first vector in a system, as this vector
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Figure 3.2: Readjustment of the size of vectors along the principal axis

tends to seek out the direction in the tangent space which is most rapidly

growing. The second vector has its component along the direction of the first

vector removed, and is then normalized. Due to re-normalization the vectors

v′1 and v′2 are orthogonal and span the same two dimensional subspace that

is most rapidly growing.The area defined by these vectors is proportional

to 2(λ1+λ2)t. The length of the vector v1 is proportional to 2λ1t. There-

fore the growth rate of length and area leads to the determination of both

the lyapunov exponents for a two-dimensional system. In general for an n-

dimensional phase space all the n lyapunov exponents can be determined by

monitoring the long term evolution of the n volume.

For a discrete dynamical system defined by map equations

xn+1 = f(xn, yn) (3.18)

yn+1 = g(xn, yn) (3.19)
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where xn and yn are the (n − 1)thth iterate of an arbitrary initial condition

x1,y1. Let an initial vector be defined as





δxn

δyn



. The linearisation of this

map then gives




δxn+1

δyn+1



 = Jn





δxn

δyn



 (3.20)

where the jacobian Jn is

Jn =





∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y



 (3.21)

An orthonormal frame of principal axis vectors such as ((0,1),(1,0)) is evolved

by applying the product jacobian to each vector. Thus the current axis vector




δxn

δyn



 may be written as ,





δxn

δyn



 = Jn−1



Jn−2......J1





0

1







 (3.22)

The magnitude of each current axis vector diverges and the angular separa-

tion between the two vectors goes to zero. GSR corresponds to the replace-

ment of each current axis vector. The growth rate of the length of the first

vector and the growth rate of the area defined by both vectors is used to

compute both Lyapunov exponents.

3.3 Lyapunov Exponent in Planar Channel-

ing

We consider the planar channeling of 10keV protons in Gold between (100)

planes. Using the value of 4.078A0 as the lattice constant of gold we get
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2.039A0 as the value of inter planar distance dp. Then equation (3.13) yields

the value of K = 0.7007. Then according to Chen et al[3] this value comes

within the range 0.35 to 1 for chaotic motion. The phase space trajectories

are then generated by using the programme planar.for given in appendix

I . For all trajectories the initial value q0 is taken to be zero. Then p0 is

varied between 0.1 to 0.4 to produce different trajectories. Starting from

initial values (p0, q0) subsequent values of p and q are obtained using the

map equations((3.11),(3.12)). Subroutine fcn accepts input from the main

calling programme the current values of pn and qn through the variable x in

the programme and returns the new values through the variable xnew. The

summation in equation is performed by considering three pairs of neighbour

planes. The map equations are linearized by using the Jacobian

J =





1 −KΣiΣjαiβiexp
(

−βidp|qn−qj |

2a

)

1 1 −KΣiΣjαiβiexp
(

−βidp|qn−qj|

2a

)



 (3.23)

This Jacobian is evaluated by the subroutine fcn and the new elements

are returned to the calling program. These elements are used by the main

programme to obtain the current axis vectors. Renormalizations are done

after every three iterations. Lyapunov exponents are evaluated after about

thousand renormalization. The main programme outputs the Lyapunov ex-

ponents on to a data file and the evolution in phase space by writing the

values of p,q on to another data file pq.d. The programme pqgen.c reads

from the data file to generate the phase space trajectory. There is also an

option for viewing the planar motion in the y-z real space. Figure (3.3) shows

the trajectories in pq phase space.

From figure(3.3), it can be seen that for low values of p, ions are
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Figure 3.3: phase diagram of 10keV proton channeling along gold(100) plane

well channeled giving near elliptical orbits. From about p=0.315 the closed

curve begins to develop a ripple showing the onset of chaos. At p=0.321,

the orbits splits to form separate islands. The islands then shrink to form

single points at p=0.327. The motion is then no longer chaotic. Increasing p

further once again sets in chaos. The points grow to become islands again.

They continue to grow until they merge to form double orbits at p=0.335.

Throughout this chaotic phase the ions stay well channeled and periodic.

Beyond p=0.38, the motion becomes random with no stable orbits in (p, q)

plane.

Since planar channeled motion is represented by a two-dimensional

phase space there will be two lyapunov exponents. The map equations(3.11)

and (3.12) being conservative the sum of Lyapunov exponents should give

zero. As expected planar.for gives two lyapunov exponents of the same mag-

nitude with opposite sign. Table(3.1) shows the positive values of lyapunov
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exponent(λ) for various values of p. The values of λ are reported in the unit

of bits/iterations. Even though all trajectories yields one positive value of λ

it can be seen that the values are relatively low beyond p=0.375, when the

motion becomes random. The obtained values are hence consistent with the

interpretations based on the phase space diagram except for the values of p

less than 0.315.

Table 3.1: Lyapunov exponents calculated in units of bits per iterations for
10keV protons in Au(100), for various p0 values

p0 λ

0 0.004

0.1 0.1895

0.15 0.2585

0.2 0.3206

0.25 0.3894

0.3 0.4703

0.31 0.4887

0.32 0.5119

0.34 0.5358

0.35 0.5541

0.36 0.5739

0.37 0.5982

0.38 0.2276

0.39 0.0388

0.4 0.0117

For the case of silicon with lattice constant b = 5.431A0 the inter

planar spacing dp = 1.92A0 for (100) plane. Then the channeling of 50keV

protons gives a K value of 0.023. Calculations then show that all phase tra-
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jectories are elliptical without any splitting. Closed curves in phase space

are assumed to represent regular, periodic trajectories. But our calculations

show that the Lyapunov exponent can be positive, even in such cases, even

though the magnitude of the exponent is very small. Table(3.2) shows the

positive Lyapunov exponents for the trajectories studied. The very low val-

ues obtained shows that the motion is regular, periodic and non-chaotic,

consistent with the observation of Chen et al[3] .

Table 3.2: Lyapunov exponents calculated in units of bits per iterations for
50keV protons in Si(100), for various p0 values

p0 λ

0.01 0.001

0.02 0.001

0.024 0.0012

0.026 0.002

0.028 0.018

0.03 0.0263

0.032 0.0322

0.034 0.037

0.036 0.0414

0.038 0.0455

0.04 0.049

3.4 Conclusion

Lyapunov exponents have been determined for planar channeled trajectories

using the approximate map equations of Chen et al[3]. It is found that the

maximum lyapunov exponent is always positive upto a p0 value of 0.4. But

it is significant only when the parametric value K in the equation(3.11) is
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between 0.35 and 1. Even when the phase trajectories are closed indicative of

regular periodic motion the maximum lyapunov exponent is positive though

very small in magnitude. The results are recently being presented by Jeena

et al[9].
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Chapter 4

Lyapunov Exponents From

Time Series Data

The study of chaos in channeling using the map equations is a crude approx-

imation to the real system. This is obvious from the fact that the equations

are heavily dependent on the parameter K which can take the same value

in a wide variety of crystal systems, by varying the energy of the channeled

particle suitably. The map equations are also conservative whereas the real

system is not, hence the need arises for a more realistic study of chaos in

channeling. The use of many body model described in section (1.10.2) is the

most realistic approximation to the ideal system.

4.1 N-body Model

Let an ion be incident on the crystal at a small angle ψin with respect to the

normal to the surface, the crystal itself cut with the normal along a crystal

axis called the channel axis. Choosing the Z-axis to be along the channeling

direction an X-Y plane transverse to this direction is considered as shown in

figure(4.1). If E is the energy of the ion and M its mass, then the velocity of

the ion v =
√

2E
M

. The component of the velocity in the channeling direction
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is

vz = vcosψin (4.1)

While the transverse component of the velocity

v⊥ = vsinψin (4.2)

Figure 4.1: Schematic diagram of an experimental arrangement for channel-
ing to study close interaction processes.

The transverse velocity vector may subtend an angle θin with

respect to a reference axis say, [h’ k’ l’]. This angle is called azimuthal angle.

The velocity components along the two orthogonal directions X and Y in the

transverse plane are

vx = −v⊥sinθin (4.3)
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and

vy = v⊥cosθin (4.4)

The instantaneous position of the ion within the crystal is given by the

position vector

~r = xi + yj + zk (4.5)

where x, y, z are the position co-ordinates of the ion and i, j,k are unit vectors

along X, Y, Z axes respectively. Then the instantaneous force on the ion is

given by the equation

M
d2~r

dt2
= −

[

∂V (~r)

∂x
i +

∂V (~r)

∂y
j +

∂V (~r)

∂z
k

]

(4.6)

Where V (~r) is the potential due to all the nuclei in the crystal. In the N-body

model this potential is written as

V (~r) =
N

∑

i=1

Vs(r, ri) (4.7)

where N is the total number of atoms and Vs is the potential due to a

single atom at ri. We used the coulombic potential modified with Lindhard

standard potential(eqn(1.3)) to describe the ion atom potential Vs.

Due to thermal energy the nuclei in the crystal oscillates about

the equilibrium positions ri’s . To take into account the effect of these oscilla-

tions we use an averaging procedure given by Andersen et al[1]. Accordingly

the average field at ~r due to a nucleus centered at ~ri is given by

〈~F (~r, ~ri, T0)〉 =

∫ +∞

−∞

~Fi(~r, ~ri, ~r
′
i, T0)dr

′
i (4.8)
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where

~Fi(~r, ~ri, ~r
′
i, T0) = −f(~ri, ~r

′
i)

[

∂Vs(r, r
′
i)

∂r

]

(4.9)

Here T0 is the temperature of the crystal and f(ri, r
′
i) is the gaussian proba-

bility function

f(~ri, ~r
′
i) =

1
√

2πu2
1

[

exp

(−|~ri − ~r′i|2
2u2

1

)]

(4.10)

which gives the probability of the nucleus centered at ~ri to be displaced to

~r′i at any instant. u2
1 is the mean-square displacement of the nucleus in any

direction.

4.2 Programme Implementation

To simulate the trajectory, the equation of motion (eqn(4.6)) is integrated

numerically using the programme gax(Appendix I). The integration is per-

formed by the Runge-Kutta method. The field at any instant is computed

by the subroutines field and closf . The summation in equation(4.7) is for

only those atoms which come within a distance of 3A0. Beyond this distance

it is found that the atoms do not contribute to field significantly. Rajasekha-

ran and Neelakandan[2] have shown that the thermal vibrations influence

the motion of an ion noticeably only when the ion comes close to within a

distance of 1A0 from the nucleus. The study conducted so far suggests that

chaotic motion arises when channeled ions get too close to crystal nuclei.

Therefore consideration of thermal vibrations are necessary for a realistic

simulation of channeling in crystals. At a distance of 1A0 the nearest nu-

cleus outweighs the other nuclei in its contribution to field. The correction

for thermal vibrations is applied only when an ion comes within this critical

distance. Even after these assumptions the programme consumes a lot of
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computation time because of the integral in equation(4.8). To overcome this

problem the integral is evaluated at 1000 points within a cube of size 1A0

with the nucleus at one corner. The computed values are then stored in a

data file. When the programme gax is run this data is read into memory.

The field at any desired point is determined by interpolation of this thermal

data and by applying symmetry.

The programme gax also uses a sub-routine eloss to consider

energy loss suffered by the electrons. But calculations of Rajasekharan and

Neelakandan[2] have shown that the energy loss suffered by ions of Mev

energies moving through crystal is of the order of a few eV/A0 only. Therefore

in transmission experiments through crystals involving thickness of the order

of a few thousand angstrom, the energy loss suffered is less than 1 percent

of the incident energy. Hence the energy loss is neglected in our present

calculation. But the sub-routine eloss help us to incorporate the energy loss

also easily when need arises.

Figure(4.2) shows the plane transverse to 〈110〉 axis. The dots

represents rows of atoms in the 〈110〉 direction. A unit cell in the shape of a

rhombus enclosing two atomic rows is considered. The point midway between

the rows is chosen as the origin of a coordinate system, defined with X axis

along 〈100〉 axis and Y the 〈110〉 axis. All protons studied are assumed to

be incident within the cell. The number of steps upto which a trajectory is

to be computed, the position coordinates (x, y) of the points of incidence of

the proton and its angles ψin and θin are the inputs. Programme gax then

computes the trajectory and outputs its position and velocity coordinates to

a datafile plot.d at desired intervals of IO. This data file is used to view

the trajectories by using the program gnplot(Appendix I). This programme
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Figure 4.2: The plane transverse to the 〈110〉 direction of silicon.

written in C can generate trajectories in phase space as well as in a plane

transverse to the channeling direction.

Figure(4.3) shows the trajectory of a 1MeV proton incident at

an angle ψin = 0.420 and θin = −150 generated with gax and gnplot. From

the figure it can be seen that the proton avoids the rows of atoms indicating

the characteristic feature of axial channeling, even though we haven’t made

any approximations to incorporate any channeling continuum potentials.

Figure(4.4) shows a plot of an ion incident exactly midway be-

tween two atomic rows with θin = 00 and ψin = 20. This plot should see

a symmetrical distribution of atoms about the (100) direction. Therefore

as expected, the trajectory in the transverse plane is a straight line. The
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Figure 4.3: Trajectory of a 1MeV proton for ψ = 0.420 and θ = −150

Figure 4.4: Trajectory of a 1MeV proton for ψ = 20 and θ = 00
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two figures can be taken to be an indication of a near realistic simulation

of particles in a crystal by our programme. The main programme gax also

determines the Lyapunov spectrum using Wolf’s algorithm[3].

When the ion is axially channeled, neglecting the energy loss re-

sults in the conservation of momentum in the direction of channeling. There-

fore the motion can be analysed in the four-dimensional phase space made

up of the generalized position directions (qx, qy) and generalized momentum

direction (px, py). These are defined by the equations

qx =
x

lx
, qy =

y

ly
(4.11)

and

px =
vx

v⊥
, py =

vy

v⊥
(4.12)

where lx and ly are the periodicities in the crystal structure in the x and y

directions respectively and v⊥ =
√

2E
M

. The Lyapunov spectra made up of

four exponents is evaluated using Wolf’s algorithm for four-dimensional phase

space. The equation of motion(4.6) is re-written as four one-dimensional

equations

q̇x =
v⊥
lx
px (4.13)

q̇y =
v⊥
ly
py (4.14)

ṗx =
Fx

mv⊥
(4.15)

ṗy =
Fy

mv⊥
(4.16)

where Fx and Fy are the forces in the respective directions. The above non
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linear equations are then linearized by using the jacobian

J =

















0 0 v
lx

0

0 0 0 v
ly

1
mv⊥

∂Fx

∂qx
0 1

mv⊥

∂Fx

∂px
0

0 1
mv⊥

∂Fy

∂qy
0 1

mv⊥

∂Fy

∂py

















(4.17)

The sub programme jacobs evaluates the jacobian and returns the values to

gax to compute all the four Lyapunov exponents using the equations (4.13)

to (4.16).

4.3 Results

We considered the channeling of 1MeV protons in silicon in the (110) di-

rection. Table(4.1) shows the critical angles for various types of channeling

of 1MeV protons in silicon. An ion incident at (0,1.96) with ψin = 0.10

and θin = 300 is considered for computation of the Lyapunov spectrum. By

table(4.1) the trajectory should be hyperchanneled.

Table 4.1: Critical angles for various types of channeling. For planar chan-
neling the angle considered is the angle made by the incident momentum
vector of the ion with the planes, between which the ions are channeled.

Type of channeling Critical angle in degree

hyper channeling ψ = 0.1280

axial channeling ψ = 0.5870

planar channeling φr = 10

Table(4.2) shows the values of the four Lyapunov exponents com-

puted in steps of 0.13 upto a depth of 27µm. The values are in the units of
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second−1.

Table 4.2: Lyapunov spectra calculated using Wolf’s algorithm

λ1 λ2 λ3 λ4

0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.985050E+00 0.896956E+00 0.696742E+00 0.472503E+00
0.563397E+01 0.547247E+01 0.333420E+01 0.284969E+01
0.175260E+02 0.171556E+02 0.964848E+01 0.874750E+01
0.400145E+02 0.392545E+02 0.213147E+02 0.198459E+02
0.749423E+02 0.736235E+02 0.392304E+02 0.370774E+02
0.124097E+03 0.122102E+03 0.643196E+02 0.613496E+02
0.189865E+03 0.187056E+03 0.977839E+02 0.938522E+02
0.276533E+03 0.272771E+03 0.141811E+03 0.136738E+03
0.388190E+03 0.383338E+03 0.198397E+03 0.192056E+03
0.527820E+03 0.521794E+03 0.269010E+03 0.261291E+03
0.697896E+03 0.690551E+03 0.354891E+03 0.345675E+03
0.899706E+03 0.890949E+03 0.456671E+03 0.445867E+03
0.113433E+04 0.125338E+04 0.640452E+03 0.627072E+03
0.140352E+04 0.139159E+04 0.710465E+03 0.696170E+03
0.170913E+04 0.169543E+04 0.864281E+03 0.848085E+03
0.205293E+04 0.203735E+04 0.103724E+04 0.101904E+04
0.243714E+04 0.241956E+04 0.123046E+04 0.121013E+04
0.286552E+04 0.284580E+04 0.144586E+04 0.142324E+04
0.334574E+04 0.332372E+04 0.168730E+04 0.166220E+04
0.389129E+04 0.386680E+04 0.196158E+04 0.193374E+04
0.451224E+04 0.448534E+04 0.227357E+04 0.224303E+04
0.522039E+04 0.519101E+04 0.262931E+04 0.259590E+04
0.603976E+04 0.600760E+04 0.304096E+04 0.300426E+04
0.699791E+04 0.696269E+04 0.352231E+04 0.348188E+04

Figure(4.5) shows that the ion stays hyper channeled even upto

this depth. But the motion is non-periodic. Calculated values of the four

Lyapunov exponents show that there is no convergence even after this depth.

The positive value for the sum of exponents means that the transverse energy

of the proton is actually increasing with depth. This is consistent with the

71



findings of Desalvo et al[4]. The lack of convergence may be due to the fact

that the algorithm is not suitable for this case. Hence we decided to use the

time series analysis for the output data.

4.4 Time Series Analysis

In the last decade great progress has been achieved in determining the Maxi-

mum Lyapunov Characteristic Exponent(MLCE) from experimental data[3],

[5-7]. An experimental result is made up of a series of univariate measure-

ments equidistant in time or some other variable. The data represented as

xt, t = 1.....n is called a time series. Apart from the possible noise in the

measurements there is a further problem of determining the dimension of

the phase space which could correctly represent the dynamics of the system.

Therefore to reveal the dynamical properties of the system a new phase space

is constructed. This is often done by the method of delays. Here we generate

a new series (xn − (m− 1)τ, xn − (m− 2)τ, ...., xn). The number m is called

embedding dimension and τ is referred to as the time delay or time lag. In

the new phase space we take an arbitrary point xt. Then all neighbours xi in

the neighbourhood Ut are considered and the average of the distance between

all neighbouring trajectories and the reference trajectory xt is computed as

a function of a relative time say τ . To get rid of the possible fluctuations

we take the logarithm of these average distances . Thus one computes

S(τ) =
1

n

n
∑

t=1

ln(
1

| Ut) |
∑

iεut

| xt+τ − xi+τ |) (4.18)

If S(τ) increases linearly with identical slopes for all embedding dimension

m greater than a value m0 and for a reasonable range in size of the neigh-

bourhood, the slope is taken as an estimate of the MLCE. This algorithm is
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implemented using the TISEAN software package which is publicly available

from http://www.mpipks-dresden.mpg.de/ tisean.

4.5 Calculation

TISEAN package is not one of the usual kind of programmes where one

feeds in the data to get the output. Instead the package is a collection of

several short programmes with which the data can be studied in detail before

drawing the final conclusions. Here we have analysed the data contained in

plot.d using the programmes to determine the embedding dimension and

time delay before evaluating the MLCE using the programme lyap−k. We

have considered the trajectories of 1MeV protons in silicon (110) plane. The

incident angles have been so chosen to yield each trajectory representative

of one channeling characteristic feature.

4.5.1 Hyper channeling

Figure 4.5: Hyper channeled trajectory for ψ = 0.10, θ = 300
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Figure(4.5) shows a simulated hyper channeled trajectory for

ψin = 0.10 and θin = 300 using gax. Trajectory is simulated upto 10000

steps and the programme lyap−k generates the datafile to plot S(τ) against

τ . Figure (4.6) to (4.13) shows, S(τ) plotted against τ for delay between

1 and 8 and dimension from 2 to 5. For computation of S(tau), the pro-

gram considers only the values of x-coordinate in the data file plot.d. This

is because the information regarding the Lyapunov exponents is contained

identically in all the position and velocity data. Hence instead of the x coor-

dinates if y or any of the velocity coordinates vx and vy is used, lyap−k gives

the same output.

Figure 4.6: delay=1 Figure 4.7: delay=2

Figure 4.8: delay=3 Figure 4.9: delay=4
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Figure 4.10: delay=5 Figure 4.11: delay=6

Figure 4.12: delay=7 Figure 4.13: delay=8

From the above figures it can be seen that for delay=2, the di-

mensions 4 and 5 gives identical slopes. Therefore choosing the dimension

to be 4, the slope of the straight region of the curve fig(4.14) is determined

to yield the Lyapunov exponent as 0.1024/iterations. Since the time step of

integration in gax was 10−16seconds, dividing the above value by the time

step gives the value of MLCE as 0.1024x1016/s.

75



Figure 4.14: Plot of S(τ) versus τ for hyper channeled trajectory in fig(4.5)
with delay=2 and m=4

4.5.2 Quasi-hyper channeling

Figure 4.15: Quasi-hyper channeled trajectory for ψ = 0.1140 and θ = −300

For ψin = 0.1140 and θin = −300, a quasi hyper channeled tra-
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jectory is simulated using gax as shown in figure(4.15). S(τ) plotted against

τ for delay between 1 and 8 and dimension from 2 to 5 are shown in fig-

ures(4.16) to (4.23).

Figure 4.16: delay=1 Figure 4.17: delay=2

Figure 4.18: delay=3 Figure 4.19: delay=4

Figure 4.20: delay=5 Figure 4.21: delay=6
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Figure 4.22: delay=7 Figure 4.23: delay=8

From the above figures it can be seen that a delay of 2 and

dimension of 4 is suitable for finding the Lyapunov exponent. The slope

of the curve (fig(4.24)) then yield a MLCE value of 0.0999/iterations.

Figure 4.24: Plot of S(τ) versus τ for quasi hyper channeled trajectory in
fig(4.15) with delay=2 and m=4

78



4.5.3 Axial channeling

Figure 4.25: Axial channeled trajectory for ψ = 0.40 and θ = −170

An axially channeled trajectory is simulated with ψin = 0.40

and θin = −170, using gax. Trajectory is simulated upto 10000 steps using

lyap−k, and S(tau) is plotted against tau for delay between 1 and 8 and

dimension from 2 to 5 in figures(4.26) to (4.33).

Figure 4.26: delay=1 Figure 4.27: delay=2
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Figure 4.28: delay=3 Figure 4.29: delay=4

Figure 4.30: delay=5 Figure 4.31: delay=6

Figure 4.32: delay=7 Figure 4.33: delay=8

From the above figures it can be seen that a delay of 2 and dimen-

sion of 4 is suitable for finding the Lyapunov exponent. Figure(4.34) shows
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S(τ) vs τ for the chosen delay and dimension. The slope of the selected region

of the curve in the figure(4.34) yields MLCE value of 0.00125/iterations.

Figure 4.34: Plot of S(τ) versus τ for axial channeled trajectory in fig(4.25)
with delay=2 and m=4

4.5.4 Quasi-axial channeling

Figure 4.35: Quasi-axial channeled trajectory for ψ = 0.5380 and θ = −250

A quasi axially channeled trajectory(figure(4.35)) is simulated for
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ψin = 0.5380 and θin = −250. Figures (4.36) to (4.43) shows S(tau) variation

for delay between 1 and 8 and dimension from 2 to 5.

Figure 4.36: delay=1 Figure 4.37: delay=2

Figure 4.38: delay=3 Figure 4.39: delay=4

Figure 4.40: delay=5 Figure 4.41: delay=6
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Figure 4.42: delay=7 Figure 4.43: delay=8

Figure 4.44: Plot of S(τ) versus τ for quasi axial channeled trajectory in
fig(4.35) with delay=2 and m=4

Choosing a dimension of 4 and delay of 2, the slope of the curve

in figure(4.44) gives the gives the value of MLCE as 0.00036/iterations.
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4.5.5 Planar channeling

Figure 4.45: Planar channeled trajectory ψ = 10, θ = −83.70

For ψin = 10 and θin = −83.70, a planar channeled trajectory is

simulated(fig(4.45))using gax. Figure(4.46) to (4.54) shows S(tau) plotted

against tau for delay between 1 and 8 and dimension from 2 to 5.

Figure 4.46: delay=1 Figure 4.47: delay=2
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Figure 4.48: delay=3 Figure 4.49: delay=4

Figure 4.50: delay=5 Figure 4.51: delay=6

Figure 4.52: delay=7 Figure 4.53: delay=8

Choosing a delay of 1 and dimension of 5, the slope of the selected
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region in the curve(figure(4.54)) gives the value of MLCE as 0.000298/itera-

tions.

Figure 4.54: Plot of S(τ) versus τ for planar channeled trajectory in fig(4.45)
with delay=1 and m=5

4.5.6 Quasi-planar channeling

Figure 4.55: Quasi-planar channeled trajectory for ψ = 10 and θ = −83.5820

S(tau) is plotted against tau for a quasi planar channeled trajec-
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tory for delay between 1 to 8 and dimension 2 to 5 as shown in figures(4.56)

to figure(4.63).

Figure 4.56: delay=1 Figure 4.57: delay=2

Figure 4.58: delay=3 Figure 4.59: delay=4

Figure 4.60: delay=5 Figure 4.61: delay=6
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Figure 4.62: delay=7 Figure 4.63: delay=8

Figure 4.64: Plot of S(τ) versus τ for quasi planar channeled trajectory in
fig(4.55) with delay=1 and m=5

Figure(4.64) shows the variation of S(τ) with τ for a delay of 1

and dimension of 5. The slope of the plot gives the value of MLCE=0.00036/iterations.
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4.5.7 Random motion

Figure 4.65: Random trajectory for ψ = 10 and θ = −400

A random trajectory is simulated for ψin = 10 and θin = −400.

Figure(4.66) to (4.73) shows S(tau) plotted against tau for delay between 1

and 8 and dimension 2 to 5.

Figure 4.66: delay=1 Figure 4.67: delay=2
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Figure 4.68: delay=3 Figure 4.69: delay=4

Figure 4.70: delay=5 Figure 4.71: delay=6

Figure 4.72: delay=7 Figure 4.73: delay=8

Figure(4.74) shows the curve for delay=2 and dimension=4. The
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slope of the selected region of the above curve yields the value of MLCE as

0.015/iterations.

Figure 4.74: Plot of S(τ) versus τ for random trajectory in fig(4.65) with
delay=2 and m=4

In the case of a proton channeled with ψ = 20 and θ = 00 the

trajectory is a straight line as shown in figure(4.4). Trajectory is simulated

upto 10000 steps and the programme lyap−k generates the datafile to plot

S(τ) against τ . Figure(4.75) to (4.82) shows S(tau) plotted against tau for

delay between 1 and 8 and dimension from 2 to 5.

Figure 4.75: delay=1 Figure 4.76: delay=2
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Figure 4.77: delay=3 Figure 4.78: delay=4

Figure 4.79: delay=5 Figure 4.80: delay=6

Figure 4.81: delay=7 Figure 4.82: delay=8
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Figure(4.83) shows the variation of S(τ) with τ for a delay of

2 and dimension of 4. The slope of the curve gives the value of MLCE as

0.00036/iterations.

Figure 4.83: Plot of S(τ) versus τ for straight trajectory in fig(4.4) with
delay=2 and m=4

4.6 Conclusion

We have simulated the passage of 1MeV protons in silicon using Runge-

kutta method. In the calculations, thermal vibrations of host nuclei have

been considered. But energy loss of moving ions due to multiple scattering

with electrons in the crystal have been neglected. Using T isean package

the MLCE has been determined for every trajectory considered. Table(4.3)

gives a consolidated picture of MLCE variation for the different types of

trajectories. The results show that hyper channeled trajectories are most

chaotic among the various types of motion. Planar and axial channeled

trajectories with approximately the same MLCE values are least chaotic.

Their MLCE values are about one hundredth of the value for hyper channeled

ion. The reason for this can be attributed to the fact that the hyper channeled
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Table 4.3: Lyapunov exponents calculated per second for various types of
trajectories

ψ0
in Entry points θ0

in Trajectory λ by TISEAN

0.1 (0,1.92) 30 Hyper channeling 10.24E+14

0.114 (0,1.92) -30 Quasi-hyper channeling 9.99E+14

0.4 (0,1.92) -17 Axial cahnneling 0.125E+14

0.538 (0,1.92) -25 Quasi-axial channeling 0.036E+14

1 (0,0.96) -83.7 Planar channeling 0.0298E+14

1 (0,0.96) -83.582 Quasi-planar channeling 0.036E+14

1 (0,1.92) -40 Random motion 1.5E+14

2 (0,1.92) 0 Straight motion 3.3E+14

ions keep a high distance from the host nuclei throughout its motion. This

maximizes the number of host nuclei interacting with the channeled ion, thus

increasing the non linearity as well as the collective scattering. For planar

and axial channeled trajectories the number of collective scattering is less

and this explains their low MLCE values.

For random motion the trajectory is nearly a straight line since

no nuclei is involved in any significant interaction with the moving ion. The

ion can go on until it meets with a close-encounter scattering with host

nucleus. Hence a random moving ion sees minimum number of nuclei in

the crystal and therefore one should expect a low MLCE. Table(4.3) shows

that the MLCE for random motion is at least one order of magnitude less

than that for hyper channeled ions. The trajectory in figure(4.4) also keeps

a safe distance from a host nucleus. This justifies the low value of MLCE,

comparable to random ions for this trajectory also, as can be seen from
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table(4.3).

Using the latest software TISEAN we have carried out exten-

sive study of chaos in channeling. Results confirm chaos for almost all the

ions traversing a crystal. There is also a wide variation in the MLCE among

various types of ions moving in a crystal. These results are being communi-

cated[8].
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Appendix –I 

 

planar.for 

 

c program to calculate Lyapunov exp for planar channelling 
c n= number of variables in nonlinear map 
c nn=n*(n+1)=total number of variables 
 
 parameter(n=2,nn=6) 
         implicit double precision(a-h,o-z) 
 external fcn 
         external vect 
         dimension x(nn),xnew(nn),v(nn),tot(n) 
         dimension znorm(n),gsc(n) 
 
         data io,irate,mf,iopt/200,3,1000,1/ 
         data ivst,ivfn/1,3/ 
  
c initial conditions for nonlinear maps 
         write(*,*)'Enter initial p and q:' 
         read(*,*)v(2),v(1) 
  
         open(unit=1,file='pq.d',status='new') 
        open(unit=3,file='vect.d',status='new') 
c initial conditions for linearised maps 
 do 10 i=n+1,nn  
             v(i)=0.0 
10       continue 
 tme=0.0 
         iv = 0 
 do 20 i=1,n 
             v((n+1)*i)=1.0 
             tot(i)=0.0 
20 continue 
 
         do 100 m=1,mf 
            do 25 j=1,irate 
            do 26 i=1,nn 
             x(i)=v(i) 
26        continue 
            iv = iv + 1 
            if(iv.ge.ivst.and.iv.le.ivfn) call vect(x,xnew,nn) 
            if(iopt.eq.1) write(1,*)(x(ii), ii = 1,n) 
            call fcn(x,xnew,n) 
            do 27 i=1,nn 
            v(i)=xnew(i) 
27        continue 
            tme=tme+1.0 
25        continue 
 
c construct a new orthonormal basis by gram schmidt method 
c normalise first vector 
             znorm(1)=0.0 
             do 38 j=1,n   
             znorm(1)=znorm(1)+v(n*j+1)**2 



98

38         continue 
             znorm(1)=dsqrt(znorm(1)) 
             do 40 j=1,n 
              v(n*j+1)=v(n*j+1)/znorm(1) 
40         continue 
    
c generate the new orthonomal set of vectors 
 
c generate j-1 gsr coefficients 
             do 80 j=2,n 
             do 50 k=1,j-1 
             gsc(k)=0.0 
             do 50 l=1,n 
             gsc(k)=gsc(k)+v(n*l+j)*v(n*l+k) 
50         continue 
     
c construct a new vector 
             do 60 k=1,n 
             do 60 l=1,j-1 
             v(n*k+j)=v(n*k+j)-gsc(l)*v(n*k+l) 
60         continue 
     
c calculate the vectors norm 
             znorm(j)=0.0 
             do 70 k=1,n 
             znorm(j)=znorm(j)+v(n*k+j)**2 
70         continue 
             znorm(j)=dsqrt(znorm(j))   
  
c normalise the new vector 
             do 80 k=1,n 
             v(n*k+j)=v(n*k+j)/znorm(j) 
80         continue  
 
c        update running vector magnitudes 
            do 90 k=1,n 
            tot(k)=tot(k)+dlog(znorm(k))/log(2.0) 
90        continue 
 
c normalise exponent and print every io iterations 
             if(mod(m,io).ne.0) go to 100 
             write(*,334)tme,(tot(k)/tme,k=1,n) 
100 continue 
         close(unit=1) 
         close(unit=3) 
 
         open(unit=2,file='lambda.d',status='new') 
         write(2,*) (tot(k)/tme,k=1,n) 
         close(unit=2) 
 
334      format(1x,f7.1,3x,f8.4,3x,f8.4) 
335      format(1x,f6.2,3x,f6.2) 
 
 end 
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 subroutine fcn(x,xnew,n) 
         implicit double precision(a-h,o-z) 
         dimension x(n),xnew(n),alpha(3),beta(3) 
         data alpha/0.1,0.55,0.35/,beta/6.0,1.2,0.3/ 
c        a - screening length and dp - inter planar distance (both in Ang.) 

data ak/0.7007/, np/3/, a/0.109/, dp/2.039/,ifist/1/ 
 
  
c nonlinear map equations 
         if (ifist.eq.1)then 
            np = (np-1)*2 + 1 
            ifist = 0 
         endif 
         sum1 = 0.0 
         sum2 = 0.0 
         do 10 j = -np, np, 2 
            do 10 i = 1,3 
            r = x(1)-j 
            if (r.lt.0) then 
            idir = -1 
            else 
            idir = 1 
            endif 
            arg = -beta(i)*dp*dabs(r)/(2.0*a) 
            term1 = idir*alpha(i)*dexp(arg) 
            term2 = (-beta(i)*dp/(2.0*a))*term1 
            sum1 = sum1 + term1 
            sum2 = sum2 + term2 
10       continue 
         xnew(2) = x(2) + ak * sum1 
         xnew(1) = x(1) + xnew(2) 
       
c        linearised eqns of motion      
         sum2 = ak*sum2 
         xnew(3) = (1 + sum2)*x(3) + x(5) 
         xnew(4) = (1 + sum2)*x(4) + x(6) 
         xnew(5) = sum2*x(3) + x(5) 
         xnew(6) = sum2*x(4) + x(6) 
       
 return 
 end 
 
         subroutine vect(x,xnew,nn) 
         implicit double precision(a-h,o-z) 

dimension x(nn),xnew(nn) 
 
         write(3,*)(x(i), i = 1,nn) 
 
         return 
         end 
 
 

pqgen.c 

 
#include <stdio.h> 
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#include <conio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <dos.h> 
#include <graphics.h> 
#define MAXNUM 4010 
#define MXN 250 
 
int main() 
 { 
 FILE *fp; 
 int i,c,ilim[20],j,jm,ij,titlgth; //size approx. => MAXNUM/MXN 
 float q[MAXNUM],p[MAXNUM],qm,pm,qmx,pmx,lamda[2]; 
 float qq[4],pp[4],qx[4][4],px[4][4],qv,pv; 
 float qr,pr,yinc,xinc,zr,yr;  //Maxima of coordinates q,p 
 int xf,yf,xc,yc,imax,jmax,key;   
//xf,yf - Max of x and y coordinates of the screen. 
      //(xc,yc) - Coordinate of the centre of the screen. 
 int gd = DETECT,gm,iqm,im,shifty; 
 char lbltiks[4],title[40],c1; 
 float dep1,dep2,b = 1.0;  
// Inter-atomic distance (in Ang.) in the channelling direction 
 
 clrscr(); 
// Reads from PLOT.D 
 clrscr(); 
 fp = fopen("pq.d","r"); 
 i = -1; 
 while(!feof(fp)) 
  { 
  i++; 
  fscanf(fp,"%g %g",&q[i],&p[i]); 
  } 
 imax = i-1; 
 fclose(fp); 
// Reads from lambda.d 
 fp = fopen("lambda.d","r"); 
 fscanf(fp,"%g %g",&lamda[0],&lamda[1]); 
 fclose(fp); 
// Determine maxima of all p and q 
 i = 1; 
 qm = fabs(q[0]); 
 pm = fabs(p[0]); 
// qm = 1.0; 
// pm = 0.5; 
 do 
  { 
  qm = max(qm,fabs(q[i])); 
  pm = max(pm,fabs(p[i])); 
  i++; 
  } 
 while(i<=imax); 
// Labels X 
 do 
  { 
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// Select projection plane 
  do 
   { 
   clrscr(); 
   gotoxy(20,6); 
   printf("SELECT YOUR PROJECTION PLANE:"); 
   gotoxy(20,9); 
   printf("1  :: Trajectory in phase space"); 
   gotoxy(20,12); 
   printf("2  :: Trajectory in real space"); 
   gotoxy(20,15); 
   printf("3  :: QUIT"); 
   gotoxy(20,18); 
   printf("Hit 1/2/3 to select : "); 
   c = getch(); 
   } 
  while(c < 49 || c > 53); 
  switch (c) 
   { 
   case '1': 
    initgraph(&gd, &gm,"c:\\tc\\bgi");      
 //Initialising graphic screen 
    xf = getmaxx(); 
    yf = getmaxy(); 
    xc = xf/2; 
    yc = yf/2; 
//Drawing coordinate axes 
    setcolor(LIGHTGREEN); 
    line(0,yc,xf,yc); 
    line(xc,0,xc,yf); 
//Puts X ticks and Y ticks 
    setcolor(CYAN); 
    settextstyle(DEFAULT_FONT,HORIZ_DIR,0); 
    settextjustify(1,2); 
    im = yc*0.75; 
    shifty = 0.5*textheight("|"); 
    for(i=-2; i < 3; i++) 
     { 
     if (i != 0) 
     outtextxy(xc+(i*im),yc-shifty,"|");  
// X - ticks 
     } 
    settextstyle(DEFAULT_FONT,V ERT_DIR,0); 
    settextjustify(1,1); 
    for(i=-2; i < 2; i++) 
     { 
     if (i != 0) 
     outtextxy(xc+0.5*shifty,yc+(i*im),"|");  
//Y - ticks 
     } 
//Labelling ticks 
    settextstyle(DEFAULT_FONT,HORIZ_DIR,0); 
    settextjustify(1,2); 
    setcolor(LIGHTGREEN); 
    for(i=1; i < 2; i++) 
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     { 
     sprintf(lbltiks,"%2.1f",qm); 
     outtextxy(xc+(i*im),yc+2*shifty,lbltiks); 
     } 
    for(i=1; i < 2; i++) 
     { 
     sprintf(lbltiks,"%3.1f",-qm); 
        

outtextxy(xc(i*im),yc+1.3*textheight(lbltiks),lbltiks); 
     } 
    settextjustify(0,1); 
    for(i=1; i < 2; i++) 
     { 
     sprintf(lbltiks,"%2.1f",pm); 
    outtextxy(xc-1.3*textwidth(lbltiks),yc-(i*im),lbltiks); 
     } 
    for(i=1; i < 2; i++) 
     { 
     sprintf(lbltiks,"-%2.1f",pm); 
    outtextxy(xc-1.3*textwidth(lbltiks),yc+(i*im),lbltiks); 
     } 
//W rites title 
    setcolor(YELLOW ); 
    settextstyle(DEFAULT_FONT,HORIZ_DIR,1); 
    sprintf(title,"    TRAJECTORY IN"); 
    outtextxy(2,3*textheight(title),title); 
    sprintf(title,"   P-Q PHASE SPACE:"); 
    outtextxy(2,5*textheight(title),title); 
    setcolor(LIGHTCYAN); 
    settextstyle(SMALL_FONT,HORIZ_DIR,5); 
    sprintf(title,"Initial (p,q) = (%9.7f,%5.2f)",p[0],q[0]); 
   outtextxy(xf-1.1*textwidth(title),2*textheight(title),title); 
    sprintf(title, "Lyapunov Coefficients:"); 
   outtextxy(xf-1.5*textwidth(title),3.5*textheight(title),title); 
    for(j=0; j<2; j++) 
     { 
     sprintf(title, ": %6.3f",lamda[j]); 
  outtextxy(xf-1.5*textwidth(title),(1.5*j+5)*textheight(title),title); 
     } 
// Labels X and Y axes 
    setcolor(LIGHTCYAN); 
    settextstyle(SMALL_FONT,HORIZ_DIR,5); 
    sprintf(title,"            Q --->"); 
    outtextxy(xc+textwidth(title)+5,yc+textheight(title)+5,title); 
    settextstyle(SMALL_FONT,V ERT_DIR,5); 
    sprintf(title,"             P --->"); 
 outtextxy(xc-2*textheight(title),textwidth(title)/2,title); 
// Plots trajectory 
    i = 0; 
    do 
     { 
     qr = q[i]*(yc*0.75/qm)+xc;       
//0.75 - number same as in line 32 of SLATE1.C 
     pr = -p[i]*(yc*0.75/pm)+yc; 
     putpixel(qr,pr,W HITE); 



103

//     delay(5);         
// Delay by 10ms between two points 
     i++; 
     } 
    while(i<=imax); 
// Get data for vectors 
    fp = fopen("vect.d","r"); 
    i = -1; 
    while(!feof(fp)) 
     { 
     i++; 

fscanf(fp,"%g %g %g %g g%g", 
&qq[i],&pp[i],&qx[i][1],&qx[i][2],&px[i][1],&px[i][2]); 

//printf("\n\t%d %f %f %f %f\n",i,qx[i][1],qx[i][2],px[i][1],px[i][2]); 
     } 
    jmax = i-1; 
    fclose(fp); 
// Draw vectors 
    i = 0; 
    qmx = 10.0*max(fabs(qx[i][1]),fabs(qx[i][2])); 
    pmx = 10.0*max(fabs(px[i][1]),fabs(px[i][2])); 
    do 
     { 
     qr = qq[i]*(yc*0.75/qm)+xc;      
 //0.75 - number same as in line 32 of SLATE1.C 
     pr = -pp[i]*(yc*0.75/pm)+yc; 
     qv = qx[i][1]*(yc/qmx)+qr; 
     pv = -px[i][1]*(yc/pmx)+pr; 
     setcolor(LIGHTRED); 
     line(qr,pr,qv,pv); 
     qv = qx[i][2]*(yc/qmx)+qr; 
     pv = -px[i][2]*(yc/pmx)+pr; 
     setcolor(YELLOW ); 
     line(qr,pr,qv,pv); 
     setcolor(LIGHTGRAY); 
     settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
     sprintf(lbltiks,"%d",i+1); 
     outtextxy(qr-1.3*textwidth(lbltiks),pr,lbltiks); 
     i++; 
     } 
    while(i<=jmax); 
 
// Exit instruction 
    setcolor(LIGHTRED); 
    settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
    sprintf(title,"Hit any key to return to menu"); 
    outtextxy(xc-textwidth(title)/2,yf-textheight(title)-5,title); 
    getch(); 
    closegraph(); 
    break; 
   case '2': 
    if(qm>10) 
     { 
     printf("\n\tERROR! Random Trajectory"); 
     printf("\n\tHit any key to exit option\n"); 
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     getch(); 
     } 
    else 
     { 
     initgraph(&gd, &gm,"c:\\tc\\bgi");      //Initialising 
graphic screen 
     xf = getmaxx(); 
     yf = getmaxy(); 
     xc = xf/2; 
     yc = yf/2; 
//Drawing Atomic planes 
     setcolor(LIGHTGREEN); 
     qm = fabs(qm); 
     iqm = qm; 
     if(iqm<qm) iqm+= 1; 
     if((iqm % 2) == 0) 
      iqm = iqm + 1; 
     yinc = 1.3*yc/(2*iqm); 
     for(i=-iqm; i<=iqm; i+=2) 
      { 
      line(xf*0.05,yc+i*yinc,xf*0.95,yc+i*yinc); 
      } 
//W rites title 
     setcolor(YELLOW ); 
     settextstyle(DEFAULT_FONT,HORIZ_DIR,1); 
     sprintf(title,"    TRAJECTORY IN"); 
     outtextxy(2,3*textheight(title),title); 
     sprintf(title,"      REAL SPACE:"); 
     outtextxy(2,5*textheight(title),title); 
     setcolor(LIGHTCYAN); 
     settextstyle(SMALL_FONT,HORIZ_DIR,5); 
     sprintf(title, "Initial (p,q) : (%5.2f,%5.2f)",p[0],q[0]); 
   outtextxy(xf-1.1*textwidth(title),2*textheight(title),title); 
// Plots trajectory 
     if(imax>MXN) 
      { 
      jm = (imax+1)/MXN; 
      if(((imax+1) % MXN) > 0) 
       { 
       jm = jm + 1; 
       for(j=0; j<jm; j++) 
        ilim[j] = j*MXN; 
       ilim[jm] = imax - ((imax+1)/MXN); 
       } 
      else 
       { 
       for(j=0; j<=jm; j++) 
        ilim[j] = j*MXN; 
       } 
      } 
     else 
      { 
      ilim[0] = 0; 
      ilim[1] = imax; 
      jm = 1; 
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      j = 0; 
      } 
     j=0; 
     xinc = xf*0.9/ilim[1]; 
     key = 0; 
     do 
      { 
      setcolor(LIGHTBLUE); 
     
 settextstyle(DEFAULT_FONT,HORIZ_DIR,1); 
      dep1 = b*ilim[j]; 
      setfillstyle(SOLID_FILL,getbkcolor()); 

      bar(0, yc+iqm*yinc+textheight(title), 
xf,yc+iqm*yinc+2*textheight(title)); 

      sprintf(title,"%7.1f",dep1); 
     
 outtextxy(xf*0.005,yc+iqm*yinc+textheight(title),title); 
      dep2 = b*ilim[j+1]; 
      sprintf(title,"%7.1f",dep2); 

      outtextxy(xf*0.95-
textwidth(title),yc+iqm*yinc+textheight(title),title); 

      sprintf(title,"Depth (in Ang.) --->"); 
 outtextxy(xc-textwidth(title)/2,yc+iqm*yinc+textheight(title),title); 
      setcolor(W HITE); 
      zr = xf*0.05; 
      yr = -(q[ilim[j]-1]*yinc)+yc; 
      if(j == 0) yr = -(q[ilim[j]]*yinc)+yc; 
      bar(0,yc-yinc+1,xf,yc+yinc-1); 
      moveto(zr,yr); 
      for(i=ilim[j]; i<=ilim[j+1]; i++) 
       { 
       zr = zr + xinc; 
       yr = -(q[i]*yinc)+yc; 
       lineto(zr,yr); 
       } 
     setcolor(LIGHTCYAN); 
     settextstyle(DEFAULT_FONT,HORIZ_DIR,1); 
     sprintf(title,"Hit:-         "); 
     titlgth = textwidth(title)/2; 
    outtextxy(xc-titlgth,yf-6.0*textheight(title)-5,title); 
     if(j > 0) 
      { 
      sprintf(title,"    1 for BACK"); 
    outtextxy(xc-titlgth,yf-4.5*textheight(title)-5,title); 
      } 
     else 
      { 
   bar(0, yf-5.5*textheight(title), xf,yf-4*textheight(title)); 
      } 
     if(j < jm-1) 
      { 
      sprintf(title,"    2 for FORW ARD"); 
    outtextxy(xc-titlgth,yf-3.0*textheight(title)-5,title); 
      } 
     else 
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      { 
   bar(0,yf-4*textheight(title), xf,yf-2.5*textheight(title)); 
      } 
     sprintf(title,"    Any key to return to menu"); 
    outtextxy(xc-titlgth,yf-1.5*textheight(title)-5,title); 
keyin: 
       c1 = getch(); 
       if(c1=='1') 
        { 
        if(j==0)key = 1; 
        j--; 
        } 
       else if(c1=='2') 
        { 
        if(j==jm-1)key = 1; 
        j++; 
        } 
       else 
        key = 1; 
       } 
     while(key == 0); 
// Exit instruction 
     closegraph(); 
     } 
    break; 
   case '3': 
//    QUIT 
    clrscr(); 
   } 
  } 
 while(c != '3'); 
 
// End 
 return 0; 
 } 
 
 

gax.for 

 
c       Programme to calculate lyapunov spectrum (exponents) 
c       Programme generates trajectories by computing accl. in all three 
c       directions but for Lyapunov exponents consideres only four dimensional 
c       phase space namely qx, qy, psix and psiy. 
c       n=number of nonlinear odes 
c       nn=n*(n+1)=total number of odes 
c       nn1=nn+1(for compilers that start arrays at element 0) 
 
 
 block data 
c        implicit double precision(a-h,o-z) 
 common /cnvr/acr 
         common /fcndat/vt 
        common /option/rcrt,iopt 
 data iopt/1/ 
 data rcrt,acr/1.0e-03,1.0e+10/ 
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 end 
         program ode 
 parameter(n=6,mm=4,nn=42,nn1=43,mm1=22) 
 parameter(pi=3.14159265) 
         external fcn 
 double precision znorm,cum 
 common /cnvr/acr 
         common /fcndat/vt 
 common /option/rcrt,iopt 
        dimension y(nn1),yprime(nn1),v(nn1),A(nn1),B(nn1),C(nn1) 
c        dimension yprime(nn1),v(nn1),A(nn1),B(nn1),C(nn1) 
         dimension D(nn1),cum(n),znorm(n),gsc(n),ci(nn1),tm(n) 
 
c       NSTEP is the total number of reorthonormalization steps that will be 
c               performed. Set this to any very large value. 
c       IRATE is the number of numerical integration time steps per 
c               reorthonormalization 
c       STPSZE is the integration stepsize in "seconds". Choose a # of seconds 
c               small compared to the 'mean orbital period'. 
c       IO is the rate at which output is generated. Rather than outputing 
c               the spectrum for every IOth reorthonorm. 
 
 
         open(unit=1,file='ion.d',status='old') 
         read(1,*)z1,pm 
 close(unit=1) 
         write(*,111) 
111     format(1x,'Enter NSTEP, STEP SIZE, IRATE, IO :') 
         read(*,*)nstep,stpsze,irate,io 
 
 
c        Initial conditions for nonlinear ODEs 
c       (** Choose within the system's basin of attraction **) 
c        Initial position coordinates 
 write(*,*)'Enter energy(Mev),psi0,theta(deg)' 
    read(*,*)e,psi,theta 
    e1=e*1.602177e-13 
    psi1=psi*pi/180. 
    theta1=theta*pi/180. 
    pv=sqrt(2.*e1/pm) 
    tv=pv*sin(psi1) 
    vzii=pv*cos(psi1) 
    sth=sin(theta1) 
    cth=cos(theta1) 
    if(abs(sth).lt.1.0e-06)sth=0 
    if(abs(cth).lt.1.0e-06)cth=0 
    vxii=-tv*sth 
    vyii=tv*cth 
         v(1) = 0. 
c       v(2) = 1.92 
        v(2)=0.96 
        v(3) = 0.0 
c       Initial velocity coordinates 
        v(4) = vxii 
        v(5) = vyii 
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        v(6) = vzii 
 
        xm = amax1(v(4),v(5))*nstep*stpsze*acr 
        vt = sqrt(v(4)*v(4)+v(5)*v(5)) 
        vzm = sqrt(vt*vt+v(6)*v(6)) 
        write(*,*)'xm=',xm 
        write(*,*)'vx,vy,vt=',v(4),v(5),vt 
        write(*,*)'vz,vzm=',v(6),vzm 
        open(unit=2,file='plo.d',status='new') 
        write(2,*)'NSTEP, STEP SIZE, IRATE, IO:' 
        write(2,*)'             ',nstep,stpsze,irate,io 
        write(2,*)'e,psi,theta:',e,psi,theta 
        if(iplot.eq.1)then 
                open(unit=1,file='plot.d',status='new') 
                write(1,*)v(3),v(1),v(2),v(4),v(5),v(6) 
        endif 
        tme = 0.0 
 
c       Initial conditions for linearized ODEs 
 
        do 10 i = n+1,mm1 
        v(i) = 0.0 
10     continue 
        do 20 i = 1,mm 
        v((mm+1)*i+2) = 1.0 
        cum(i) = 0.0 
20     continue 
 
c-------------          Computation Begins      ------------------- 
        do 100 m = 1,nstep 
 
c       Integration of ordinary differential equation begins (for IRATE steps) 
                do 25 j = 1,irate 
 
c       Application of Runge-Kutta for one step of integraton  
c****************************************************************** 
       do 26 i = 1,mm1 
         y(i) = v(i) 
26      continue 
 t = tme 

call fcn(t,y,yprime) 
  

do 27 i = 1,mm1 
         A(i) = yprime(i) 
27      continue 
         do 28 i = 1,3 
         y(i) = v(i) + (stpsze*acr*A(i))/2.0 
28      continue 
         do 128 i = 4,mm1 
         y(i) = v(i) + (stpsze*A(i))/2.0 
128     continue 

t = tme + stpsze/2.0 
         call fcn(t,y,yprime) 
         do 29 i = 1,mm1 
         B(i) = yprime(i) 
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29      continue 
         do 30 i = 1,3 
         y(i) = v(i) + (stpsze*acr*B(i))/2.0 
30      continue 
         do 130 i = 4,mm1 
         y(i) = v(i) + (stpsze*B(i))/2.0 
130     continue 
         t = tme + stpsze/2.0 

call fcn(t,y,yprime) 
         do 31 i = 1,nn 
         C(i) = yprime(i) 
31      continue 
         do 32 i = 1,3 
         y(i) = v(i) + (stpsze*acr*C(i)) 
32      continue 
         do 132 i = 4,mm1 
         y(i) = v(i) + (stpsze*C(i)) 
132    continue 

t = tme + stpsze 
call fcn(t,y,yprime) 

         do 33 i = 1,mm1 
         D(i) = yprime(i) 
33      continue 
 
c****************************************************************** 

do 34 i = 1,3 
         v(i) = v(i)+ stpsze*acr*(A(i)+D(i)+2.0*(B(i)+C(i)))/6.0 
34      continue 
         do 134 i = 4,mm1 
         v(i) = v(i) + stpsze * (A(i) +D(i) + 2.0*(B(i)+C(i)))/6.0 
134    continue 
c       One step of Runge-Kutta ends here 
c****************************************************************** 

tme = tme + stpsze 
if(iplot.eq.1)write(1,*)v(3),v(1),v(2), v(4),v(5),v(6) 

                                      
25      continue 
 
c       Integration of ODE over 
 
c       Construct new orthonormal basis by Gram-Schmidt 
 
c       Normalize first vector 

znorm(1) = 0.0 
         do 38 j = 1,mm 
         znorm(1) = znorm(1) + v(mm*j+3)**2 
38      continue 
         znorm(1) = dsqrt(znorm(1)) 
         do 40 j = 1,mm 
         ci(mm*j+3) = v(mm*j+3) 
         v(mm*j+3) = v(mm*j+3)/znorm(1) 
40      continue 
c       Generate the new (mm-1) orthonormal set of vectors 
         do 80 j = 2,mm 
c       Generate (j-1) GSR coefficients 



110

  do 50 k = 1,(j-1) 
         gsc(k) = 0.0 

do 50 l = 1,mm 
 gsc(k) = gsc(k) + v(mm*l+j+2)*v(mm*l+k+2) 
50      continue 
c       Construct a new vector 
 do 60 k = 1,mm 
         do 60 l = 1,j-1 

v(mm*k+j+2) = v(mm*k+j+2) -gsc(l)*v(mm*k+l+2) 
60 continue 
c       Calculate the vector's norm 
         znorm(j) = 0.0 
 do 70 k = 1,mm 
 znorm(j) = znorm(j) + v(mm*k+j+2)**2 
70      continue 
         znorm(j) = dsqrt(znorm(j)) 
c       Normalize the new vector 
 do 80 k = 1,mm 
         v(mm*k+j+2) = v(mm*k+j+2)/znorm(j) 
80      continue 
c       Update running vector magnitudes 
         do 90 k = 1,mm 
         tmm = dlog(znorm(k))/dlog(2.0d0) 
         cum(k) = cum(k) + tmm 
c        cum(k) = cum(k) + alog(znorm(k))/alog(2.0) 
c        write(*,*)'k,znorm : ',k,znorm(k) 
90      continue 
 write(*,335)  (cum(k)/tme, k = 1,mm) 
         write(2,335)  (cum(k)/tme, k = 1,mm) 
100 continue 
         if(iplot.eq.1)then 
         write(1,*)'100.0 100.0 100.0 100.0 100.0 100.0' 
         close(unit=1) 
         close(unit=2) 
         endif 
c---------------        Computation Over        ------------------- 
 
55 format(5x,'gsc(',i2,') = gsc(',i2,') + v(',i2,')*v(',i2,')') 
61      format(3x,'Components of ',i1,'th V ector:') 
62      format(3x,'v(',i2,') = v(',i2,') - gsc(',i2,')v(',i2,')') 
63      format(3x,'znorm(',i1,') = znorm(',i1,') + v(',i2,')^2') 
334     format(1x,e13.6,2x,e13.6,2x,e13.6,2x,e13.6,2x, e13.6,2x,e13.6,2x,e13.6) 
335     format(1x,e13.6,2x,e13.6,2x,e13.6,2x,e13.6) 
120     format(1x,e13.6,3x,e13.6,3x,e13.6,3x,e13.6) 

stop 
         end 
c------------------------------------------------------------------ 
 
c       Sub-routine containing nonlinear functions 
 
         subroutine fcn(t,y,yprime) 
c        implicit double precision(a-h,o-z) 
c        real acr,y(43),ax,ay,az 

common /cnvr/acr 
         common /fcndat/vt 
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         common /pda/cj(10),axbdx,axbdy,axbdz,aybdx,aybdy,aybdz, 
             azbdx,azbdy,azbdz 
         common /posn/xu1,yu1,zu1 
         dimension y(43), yprime(43) 
         data apx/5.431/, apy/3.84/ 
c        dimension yprime(43) 
 
c        Nonlinear Lorenz equations 
         yprime(1) = y(4) 
         yprime(2) = y(5) 
         yprime(3) = y(6) 
         vz2 = y(6)*y(6) 
         call field(y(1),y(2),y(3),vz2,ax,ay,az,*20,*30) 
 yprime(4) = ax 
         yprime(5) = ay 
         yprime(6) = az 

call jacobs(vz2) 
do 10 i = 0,3 
yprime(7+i)  = y(15+i)*vt*acr/apx 

         yprime(11+i) = y(19+i)*vt*acr/apy 
 yprime(15+i) = (cj(1)*y(7+i) + cj(2)*y(11+i)) *(apx/(vt*acr)) 

yprime(19+i) = (cj(4)*y(7+i) + cj(5)*y(11+i)) *(apy/(vt*acr)) 
10      continue 

go to 40 
20      continue 
30      write(*,*)'Unexpected error in field calculations' 
         stop 
40      continue 

return 
         end 
 
 

eloss.for 

subroutine elos(x,y,v2,zlos) 
         zlos=0 
         return 

end 
 

closs.for 

 
 subroutine closf(fx,fy,fz) 
 parameter(id=23,pi=3.14159265) 
 common /posn/xu1,yu1,zu1 
c       The above line supplies the ion  position from calling programmes 
c       such as dmtst.for or bdimt.for 
  
 common /podis/x2(50),y2(50),za2,m,n 
        common /jacbs/z1,zpmc,dist,dist2,distc2,xq,dxq,con,s 
 character*1 qk,qi(id),qj(id) 
 dimension idiv(id),jdiv(id) 
 dimension xi(50),yi(50),xsq(id),ysq(id) 
 data engy/1.0e+04/ 
c        Crystal data :- u1 value for 293K (Ref.- Gemmel,1974) 
 data u1,br,z2,a/0.075,0.529177,14.0,5.43089/ 
         data ec/1.602177e-19/,eps/8.854188e-12/ 



112

 
c        calculating/assigning constant terms 
c if(ien.eq.0)then 
c ien=1 
 
c       ------ Inputs ion data --------- 
        open(unit=4,file='ion.d',status='old') 
        read(4,*)z1,pm 
        close(unit=4) 
 

open(unit=4,file='dftem.d',status='old') 
 read(4,*)nf,distc 
 close(unit=4) 
 
c       Specification data for execution of this programme: 
         dist=3.0 
 distc2=distc*distc 
         zpmc=z1*(1.672623e-27)/pm 
 xq=a*0.25 
 idim=(a+dist)/xq 
 idim=idim*2+1 
 if(idim.gt.id)then 

 write(*,*)'Increase value of id to',idim 
 stop 
 endif 
 if(id.gt.50)then 
 write(*,*)'Error !; Change size of xi,yi,and zi' 
 write(*,*)'         Size should be at least id in' 
 write(*,*)'         the parameter statement' 
 stop 
 endif 
 dxq=1./xq 
 dist2=dist*dist 
 cond=4.0*pi*eps 
         if(z1.eq.1.0)then 
         at=0.8853*br/(z2**0.3333333) 
         else 
             sqz=sqrt(z1)+sqrt(z2) 
         at=0.8853*br/(sqz**0.6666667) 
         endif 
         con=3.*at*at 
 s=z1*z2*(ec/pm)*(ec/cond)*(1.0e+20) 
c endif 
 
c       -------    Field calculation begins    ------------ 
c       Obtains upper and lower bounds of i,j,k 
 xll=xu1-dist 
 xul=xu1+dist 
 ixl=xll*dxq 
 ixu=xul*dxq 
 yll=yu1-dist 
 yul=yu1+dist 
 jyl=yll*dxq 
 jyu=yul*dxq 
 zll=zu1-dist 
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 zul=zu1+dist 
 kzl=zll*dxq 
 kzu=zul*dxq 
 sumx=0 
 sumy=0 
 sumz=0 
 mn=0 
 
c       Generating the crystal structure 
 
 l=0 
 do 40 k=kzl,kzu 

l=l+1 
 m=0 
 call fact(k,qk,kdiv) 
 zi=k*xq 
 za2=zu1-zi 
 zsq=za2*za2 
 do 50 j=jyl,jyu 
 m=m+1 
 if(l.eq.1)then 
 call fact(j,qj(m),jdiv(m)) 
 yi(m)=j*xq 
 y2(m)=yu1-yi(m) 
 ysq(m)=y2(m)*y2(m) 
 endif 
 if(qk.ne.qj(m)) go to 50 
 n=0 
 do 60 i=ixl,ixu 
 n=n+1 
 if(mn.eq.0)then 
 call fact(i,qi(n),idiv(n)) 
 xi(n)=i*xq 
 x2(n)=xu1-xi(n) 
 xsq(n)=x2(n)*x2(n) 
 endif 
c       Selelects valid atomic sites 

if(qk.ne.qi(n)) go to 60 
 if(kdiv.eq.4) then 
 if(jdiv(m).ne.idiv(n)) go to 60 
 else 
 if(jdiv(m).eq.idiv(n)) go to 60 
 endif 
 
c       Checks whether valid sites are within limiting 'dist' 
 dint2=zsq+ysq(m)+xsq(n) 
 if(dint2.gt.dist2)then go to 60 
c write(*,*)'Atom very far away' 
 endif 
c        write(*,*)'xyz',x2(n),y2(m),za2 
c        Determines contribution to the field 
         if(dint2.lt.distc2)then 
c        write(*,*)'clos' 
 call fted(afx,afy,afz) 

if((x2(n).gt.0).and.(afx.lt.0))afx=-afx 
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 if((x2(n).lt.0).and.(afx.gt.0))afx=-afx 
 if((y2(m).gt.0).and.(afy.lt.0))afy=-afy 
 if((y2(m).lt.0).and.(afy.gt.0))afy=-afy 
 if((za2.gt.0).and.(afz.lt.0))afz=-afz 
 if((za2.lt.0).and.(afz.gt.0))afz=-afz 
         if(z1.ne.1.0)then 
         afx=afx*zpmc 
         afy=afy*zpmc 
         afz=afz*zpmc 
         endif 
c        write(*,*)'ax,ay,az',afx,afy,afz 
         else 
c        write(*,*)'far' 
 den1=sqrt(dint2)*dint2 
 den2=dint2+con 
 pg=(1./den1)-(1./(den2*sqrt(den2))) 
 afx=x2(n)*pg*s 
 afy=y2(m)*pg*s 
 afz=za2*pg*s 
 endif 
c       write(*,*)afx,afy,afz 

sumx=sumx+afx 
 sumy=sumy+afy 
 sumz=sumz+afz 
60      continue 
 mn=1 
50      continue 
40      continue 
 
c       Obtaining the final accl. 
 fx=sumx 
 fy=sumy 
 fz=sumz 
 return 
 end 
 
c       Subroutine to determine whether the given integer 'i' 
c       is odd or even and whether (i-1) or i is divisible by 2 or 4 
 
 subroutine fact(i,qi,idiv) 
 character*1 qi 
 if((i-(i/2)*2).eq.0)then 
 qi='e' 
 idiv=multip(i) 
 else 
 qi='o' 
 idiv=multip(i-1) 
 endif 
 return 
 end 
 
c       Function subprogramme to find whether  
c       given 'i' is multiple of 2 or 4 
 
 function multip(i) 
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 if((i-(i/4)*4).eq.0)then 
 multip=4 
 else 
 multip=2 

endif 
 return 
 end 
 
 
 subroutine fted(afx,afy,afz) 
 parameter(jd=10) 
 common /podis/x2(50),y2(50),za2,m,n 
 dimension fx(jd,jd,jd),fy(jd,jd,jd),fz(jd,jd,jd) 
 
 if(ien.eq.0)then 
         ien=1 
 open(unit=4,file='dftem.d',status='old') 
 read(4,*)nf,distc 
 id=ifix(sqrt(float(nf))) 
 do 10 i=1,id 
 do 20 j=1,id 
         read(4,*)(fx(i,j,k),fy(i,j,k),fz(i,j,k), k=1,id)  
20      continue 
10      continue 
         close(unit=4) 
 a10=distc/id 
 ainc=a10*0.1 
 endif 
 x=x2(n) 
 if(x.lt.0)x=-x 
 y=y2(m) 
 if(y.lt.0)y=-y 
 z=za2 
 if(z.lt.0)z=-z 
 i=1+(x/a10) 
 if(i.gt.id)i=id 
 j=1+(y/a10) 
 if(j.gt.id)j=id 
 k=1+(z/a10) 
 if(k.gt.id)k=id 
 afx=fx(i,j,k) 
 afy=fy(i,j,k) 
 afz=fz(i,j,k) 
 return 
 end 

jacobs.for 

 
c       ------ Subprogramme to generate the Jacobians --------------- 
 
         subroutine jacobs(vz2) 
 parameter(id=23,pi=3.14159265) 
        common /pda/cj(10),axbdx,axbdy,axbdz,aybdx,aybdy,aybdz, 

azbdx,azbdy,azbdz 
 common /posn/xu1,yu1,zu1 
        common /jacbs/z1,zpmc,dist,dist2,distc2,xq,dxq,con,s 
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c       The above line supplies the ion  position from calling programmes 
c        such as dmtst.for or bdimt.for 
 common /podis/x2(50),y2(50),za2,m,n 
 character*1 qk,qi(id),qj(id) 
 dimension idiv(id),jdiv(id) 
 dimension xi(50),yi(50),xsq(id),ysq(id) 
 data engy/1.0e+04/ 
c        Crystal data :- u1 value for 293K (Ref.- Gemmel,1974) 
 data u1,br,z2,a/0.075,0.529177,14.0,5.43089/ 
         data ec/1.602177e-19/,eps/8.854188e-12/ 
 xll=xu1-dist 
 xul=xu1+dist 
 ixl=xll*dxq 
 ixu=xul*dxq 
 yll=yu1-dist 
 yul=yu1+dist 
 jyl=yll*dxq 
 jyu=yul*dxq 
 zll=zu1-dist 
 zul=zu1+dist 
 kzl=zll*dxq 
 kzu=zul*dxq 
         axbdx=0 
         axbdy=0 
         axbdz=0 
         aybdx=0 
         aybdy=0 
         aybdz=0 
         azbdx=0 
         azbdy=0 
         azbdz=0 
 mn=0 
 
c       Generating the crystal structure 
c       Generates all combinations of i,j,k within the lower & upper bounds 
c       and determines their factors 
 l=0 
 do 40 k=kzl,kzu 

l=l+1 
 m=0 
 call fact(k,qk,kdiv) 
 zi=k*xq 
 za2=zu1-zi 
 zsq=za2*za2 
 do 50 j=jyl,jyu 

m=m+1 
 if(l.eq.1)then 
 call fact(j,qj(m),jdiv(m)) 
 yi(m)=j*xq 
 y2(m)=yu1-yi(m) 
 ysq(m)=y2(m)*y2(m) 
 endif 
 if(qk.ne.qj(m)) go to 50 
 n=0 
 do 60 i=ixl,ixu 
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 n=n+1 
 if(mn.eq.0)then 
 call fact(i,qi(n),idiv(n)) 
 xi(n)=i*xq 
 x2(n)=xu1-xi(n) 
 xsq(n)=x2(n)*x2(n) 
 endif 
 
c       Selelects valid atomic sites 
 if(qk.ne.qi(n)) go to 60 
 if(kdiv.eq.4) then 

if(jdiv(m).ne.idiv(n)) go to 60 
 else 
 if(jdiv(m).eq.idiv(n)) go to 60 
 endif 

dint2=zsq+ysq(m)+xsq(n) 
 if(dint2.gt.dist2)then 
 go to 60 
c        write(*,*)'Atom very far away' 
 endif 
c        Determines contribution to the Jacobian; axbdx, axbdy etc. are 
c        the Jacobian elements in the 'Unit Cell' frame 

if(dint2.lt.distc2)then 
c        if(idata.eq.0)write(5,*)'clos' 
c        write(*,*)'clos' 

call getf(afx,afy,afz) 
         if(x2(n).ge.0)then 
         x2(n)=x2(n)+0.1 
         ds=0.1 
         else 
         x2(n)=x2(n)-0.1 
         ds=-0.1 
         endif 
         call getf(afx1,afy1,afz1) 
         dfxx=(afx1-afx)/ds 
         dfyx=(afy1-afy)/ds 
         dfzx=(afz1-afz)/ds 
         if(x2(n).ge.0)then 
         x2(n)=x2(n)-0.1 
         else 
         x2(n)=x2(n)+0.1 
         endif 
         if(y2(m).ge.0)then 
         y2(m)=y2(m)+0.1 
         ds=0.1 
         else 
         y2(m)=y2(m)-0.1 
         ds=-0.1 
         endif 
         call getf(afx1,afy1,afz1) 
         dfxy=(afx1-afx)/ds 
         dfyy=(afy1-afy)/ds 
         dfzy=(afz1-afz)/ds 
         if(y2(m).ge.0)then 
         y2(m)=y2(m)-0.1 
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         else 
         y2(m)=y2(m)+0.1 
         endif 
         if(za2.ge.0)then 
         za2=za2+0.1 

ds=0.1 
         else 
         za2=za2-0.1 
         ds=-0.1 
         endif 
         call getf(afx1,afy1,afz1) 
         dfxz=(afx1-afx)/ds 
         dfyz=(afy1-afy)/ds 
         dfzz=(afz1-afz)/ds 
         if(za2.ge.0)then 
         za2=za2-0.1 
         else 
         za2=za2+0.1 
         endif 
         else 
         r3=sqrt(dint2)*dint2 
         r5=r3*dint2 

rc2=dint2+con 
         rc3=rc2*sqrt(rc2) 
         rc5=rc3*rc2 
         dfxx=(1./r3)-(1./rc3)-(3.0*x2(n)*x2(n)/r5)+ (3.0*x2(n)*x2(n)/rc5) 

dfxx=dfxx*s 
         adf=(3.0/r5)-(3.0/rc5) 
         dfxy=-x2(n)*y2(m)*s*adf 
         dfxz=-x2(n)*za2*s*adf 
         dfyy=(1./r3)-(1./rc3)-(3.0*y2(m)*y2(m)/r5)+ (3.0*y2(m)*y2(m)/rc5)     

dfyy=dfyy*s 
         dfyz=-y2(m)*za2*s*adf 
         dfyx=dfxy 
         dfzz=(1./r3)-(1./rc3)-(3.0*zsq/r5)+ (3.0*zsq/rc5) 

dfzz=dfzz*s 
         dfzx=dfxz 
         dfzy=dfyz 
 endif 

axbdx=axbdx+dfxx 
         axbdy=axbdy+dfxy 
         axbdz=axbdz+dfxz 
         aybdx=aybdx+dfyx 
         aybdy=aybdy+dfyy 
         aybdz=aybdz+dfyz 
         azbdx=azbdx+dfzx 
         azbdy=azbdy+dfzy 
         azbdz=azbdz+dfzz 
60      continue 
 mn=1 
50      continue 
40      continue 
c        Obtaining the final derivative of accl. axbdx, axbdy etc. 
c        in the Lab frame, viz. <110> 
         call cjacob() 
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return 
 end 
 
c        Subprogramme to determine ax,ay and az at a point (x2,y2,za2) 
c        due to an atom at (0,0,0)  
         subroutine getf(afx,afy,afz) 
 common /podis/x2(50),y2(50),za2,m,n 
         common /jacbs/z1,zpmc,dist,dist2,distc2,xq,dxq,con,s 
         if((abs(x2(n)).ge.1.0).or.(abs(y2(m)).ge.1.0).or. (abs(za2).ge.1.0)) then 
         dint2=za2*za2+y2(m)*y2(m)+x2(n)*x2(n) 
         den1=sqrt(dint2)*dint2 
         den2=dint2+con 
         pg=(1./den1)-(1./(den2*sqrt(den2))) 
         afx=x2(n)*pg*s 
         afy=y2(m)*pg*s 
         afz=za2*pg*s 
         else 
         call fted(afx,afy,afz) 
        if((x2(n).gt.0).and.(afx.lt.0))afx=-afx 
        if((x2(n).lt.0).and.(afx.gt.0))afx=-afx 
        if((y2(m).gt.0).and.(afy.lt.0))afy=-afy 
        if((y2(m).lt.0).and.(afy.gt.0))afy=-afy 
        if((za2.gt.0).and.(afz.lt.0))afz=-afz 
        if((za2.lt.0).and.(afz.gt.0))afz=-afz 
        if(z1.ne.1.0)then 
        afx=afx*zpmc 
        afy=afy*zpmc 
        afz=afz*zpmc 
        endif 
        endif 
        return 
        end 
 

tr110.for 

 
 
         subroutine pstran(x,y,z,x1,y1,za1) 
c        Lab. coordinates: Z - axis along <110> 
c        xc=a*0.125 
c        c45=1./sqrt(2.0) 
 data xc,c45/0.6788612,0.7071067/ 
 y45=y*c45 
 z45=z*c45 
 x1=-y45+z45 
 y1=x+xc 
 za1=y45+z45 
 return 
 end 
  
 subroutine ftrans(sumx,sumy,sumz,axi,ayi,azi) 
 data c45/0.7071067/ 
 axi=sumy 
 axc45=sumx*c45 
 azc45=sumz*c45 
 ayi=-axc45+azc45 
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 azi=axc45+azc45 
 return 
 end 
 
c       Subprogramme to transform derivatives of accl. in 'Unit Cell' frame 
c       to <110> Lab frame 
        subroutine cjacob() 
c       Determines spatial derivatives of accl. in (/s^2) 
 

common /pda/cj(10),axbdx,axbdy,axbdz,aybdx,aybdy,aybdz,  
azbdx,azbdy,azbdz 

data c45/0.7071067/ 
         c452=c45*c45 
         cj(1)=aybdy 
c        cj(2)=(aybdz-aybdx)*c45 
         cj(2)=(aybdy-aybdx)*c45 
         cj(3)=(aybdx+aybdz)*c45 
c        cj(4)=(azbdy-axbdy)*c45 
        cj(4)=(aybdy-axbdy)*c45 
c        cj(5)=(-azbdx+axbdx+azbdz-axbdz)*c452 
         cj(5)=(-aybdx+axbdx+aybdy-axbdy)*c452 
         cj(6)=(azbdx-axbdx+azbdz-axbdz)*c452 
         cj(7)=(axbdy+azbdy)*c45 
         cj(8)=(-axbdx-azbdx+axbdz+azbdz)*c452 
         cj(9)=(axbdx+azbdx+axbdz+azbdz)*c452 
c        Next one is zero if eloss = 0 
         cj(10)=0 
         return 
         end 
 

gnplot.c 

 

 
/* ------   Main Programme of Project "GNPLOT.PRJ"  -------- 
 Project prepared from TRBASGN which processes o/p from GAX.FOR only. 
 This one handles o/p of both STRAJ.FOR and GAX.FOR. 
 STARJ.FOR:- 
  Plots trajectory in real space transverse to channel axis. 
 GAX.FOR:- 
  Programme to plot projection of ion trajectory in 4-D phase 
  space to 2-D r1-vr1, r2-vr2 and r3-vr3 OR x-vx, y-vy and z-vz. 
*/ 
#include <stdio.h> 
//#include <conio.h> 
#include <stdlib.h> 
#include <math.h> 
//#include <dos.h> 
#include <graphics.h> 
//#include <errno.h> 
//#include <string.h> 
 
float x,y,z,vx,vy,vz; 
float x1,y1; 
float xm,ym,zm,vxm,vym,vzm;  //Maxima of coordinates x,y,z,vx etc. 
int xf,yf,xc,yc;  //xf,yf - Max of x and y coordinates of the screen. 
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      //(xc,yc) - Coordinate of the centre of the screen 
float r1,r2; 
 
void slate(); 
void projr(); 
void projx(); 
void projy(); 
void projz(); 
void depth(); 
void projun(); 
void conv(); 
void gentrn(float x, float y); 
int main() 
 { 
 unsigned long int i; 
 int c,sorc; 
 char string[200]; 
 FILE *fp; 
 clrscr(); 
// Determines the source of PLOT.D 
 fp = fopen("plot.d","r"); 
 do c=fgetc(fp); while(c < 45); 
 fclose(fp); 
 if(c>48) sorc = 1; else sorc = 2; //1 - o/p of STRAJ; 2 - o/p of GAX 
// Reads from PLOT.D 
 i=0; 
 fp = fopen("plot.d","r"); 
 if (sorc == 1) 
  { 
  fscanf(fp,"%d",&c); 
  if(fscanf(fp,"%g %g",&z,&x));     //Final depth, theta 
  else 
   { 

printf("ERROR in input on second line;\nSystem message: 
%s\n",i,strerror(errno)); 

   getch(); 
   exit(1); 
   } 
  if(fscanf(fp,"%g %g %g",&z,&x,&y)); 
  else 
   { 

printf("ERROR in input at %l;\nSystem message: 
%s\n",i,strerror(errno)); 

   getch(); 
   exit(1); 
   } 
  } 
 else 
  { 
  if(fscanf(fp,"%f %f %f %f %f %f",&z,&x,&y,&vx,&vy,&vz)); 
  else 
   { 

printf("ERROR in input at %l;\nSystem message: 
%s\n",i,strerror(errno)); 

   getch(); 
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   exit(1); 
   } 
  } 
 
// Determine maxima of all coordinates 
 xm = fabs(x); 
 ym = fabs(y); 
 if(sorc==2) 
  { 
  zm = fabs(z); 
  vxm = fabs(vx); 
  vym = fabs(vy); 
  vzm = fabs(vz); 
  } 
 if(sorc==1) 
  { 
  do 
   { 
   xm = max(xm,fabs(x)); 
   ym = max(ym,fabs(y)); 
   i++; 
   if(fscanf(fp,"%g %g %g",&z,&x,&y)); 
   else 
    { 
    printf("%f %f\n",x,y); 

printf("ERROR in input at %l;\nSystem message: 
%s\n",i,strerror(errno)); 

    getch(); 
    exit(1); 
    } 
   } 
  while(x != 100.0 && y != 100.0); 
  } 
 else 
  { 
  do 
   { 
   xm = max(xm,fabs(x)); 
   ym = max(ym,fabs(y)); 
   zm = max(zm,fabs(z)); 
   vxm = max(vxm,fabs(vx)); 
   vym = max(vym,fabs(vy)); 
   vzm = max(vzm,fabs(vz)); 
   i++; 
   if(fscanf(fp,"%f %f %f %f %f %f",&z,&x,&y,&vx,&vy,&vz)); 
   else 
    { 

printf("ERROR in input at %l;\nSystem message: 
%s\n",i,strerror(errno)); 

    getch(); 
    exit(1); 
    } 
   } 
  while(x != 100.0 && y != 100.0); 
  } 
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 fclose(fp); 
// W arning screen if no. of atoms to be displayed is too high 
 if((xm > 30.0) || (ym > 30.0)) 
  { 
  do 
   { 
   clrscr(); 
   gotoxy(20,6); 
   printf("W ARNING! xm and ym are %f and %f",xm,ym); 
   gotoxy(20,8); 
   printf("Hit 1 - To EXIT"); 
   gotoxy(24,10); 
   printf("2 - To continue with another xm/ym"); 
   gotoxy(24,12); 
   printf("3 - To continue any how"); 
   c = getch(); 
   } 
  while(c < 49 || c > 51); 
  switch (c) 
   { 
   case '1': 
    exit(1); 
    break; 
   case '2': 
    gotoxy(20,14); 
    printf("Enter xm/ym: "); 
    scanf("%f",&xm); 
    ym = xm; 
    break; 
   case  3 : 
    clrscr(); 
   } 
  } 
// Menu to plot or 'quit'for GAX alone 
 if(sorc==2) 
  { 
  do 
   { 
// Select projection plane 
   do 
    { 
    clrscr(); 
    gotoxy(20,6); 
    printf("SELECT YOUR PROJECTION PLANE:"); 
    gotoxy(20,8); 
    printf("1  :: (110) plane"); 
    gotoxy(20,10); 
    printf("2  :: X - V X plane"); 
    gotoxy(20,12); 
    printf("3  :: Y - V Y plane"); 
    gotoxy(20,14); 
    printf("4  :: Z - V Z plane"); 
    gotoxy(20,16); 
    printf("5  :: TRAJECTORY IN UNIT CELL"); 
    gotoxy(20,18); 
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    printf("6  :: QUIT"); 
    gotoxy(20,20); 
    printf("Hit 1/2/3/4/6 to select : "); 
    c = getch(); 
    } 
   while(c < 49 || c > 54); 
   switch (c) 
    { 
    case '1': 
     clrscr(); 
//     gotoxy(20,6); 
//    printf("Enter Maximum x :"); 
//    scanf("%f",&xm); 
     projr(); 
     break; 
    case '2': 
     clrscr(); 
//     gotoxy(20,6); 
//    printf("Enter Maximum V elocity in X direction :"); 
//    scanf("%f",&vxm); 
     slate(); 
     projx(); 
     break; 
    case '3': 
     clrscr(); 
//     gotoxy(20,6); 
//    printf("Enter Maximum V elocity in Y direction :"); 
//    scanf("%f",&vym); 
     slate(); 
     projy(); 
     break; 
    case '4': 
     clrscr(); 
//     gotoxy(20,6); 
//    printf("Enter Maximium V elocity in Z direction :"); 
//    scanf("%f",&vzm); 
     slate(); 
     projz(); 
     break; 
    case '5': 
     clrscr(); 
     projun(); 
     break; 
    case '6': 
//     QUIT 
     clrscr(); 
    } 
   } 
  while(c != '6'); 
  } 
 else 
  { 
  clrscr(); 
  projr(); 
  } 
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// End 
 return 0; 
 } 
// -------------   END OF MAIN ------------------------- 
 
// ------------- SUBROUTINE 'PROJX()' ----------------- 
// Subprogramme to plot in X-V X plane 
 
void projx() 
 { 
 int som; 
 float xr,vxr; 
 char title[30]; 
 FILE *fp; 
 
//W rites title 
 setcolor(YELLOW ); 
 settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
 sprintf(title,"    PROJECTION"); 
 outtextxy(2,1.5*textheight(title),title); 
 sprintf(title,"    IN X-V X PLANE:"); 
 outtextxy(2,3.5*textheight(title),title); 
 
// Labels X and Y axes 
 setcolor(LIGHTCYAN); 
 settextstyle(SMALL_FONT,HORIZ_DIR,5); 
 sprintf(title,"Generalized X --->"); 
 outtextxy(xc+textwidth(title)+5,yc+textheight(title)+5,title); 
 settextstyle(SMALL_FONT,V ERT_DIR,5); 
// settextjustify(LEFT_TEXT,RIGHT_TEXT); 
 sprintf(title,"Generalized V X --->"); 
 outtextxy(xc-textheight(title)*3,textwidth(title)/2,title); 
 
// Plots trajectory 
 fp = fopen("plot.d","r"); 
 fscanf(fp,"%g %g %g %g %g %g",&z,&x,&y,&vx,&vy,&vz); 
 do 
  { 
  vxr = -(vx/vxm)*(yc/2)+yc; 
  gentrn(x,y); 
  r1 = r1*(yc/2)+xc; 
  putpixel(r1,vxr,W HITE); 
//  delay(100);        // Delay by 100ms between two points 
 fscanf(fp,"%g %g %g %g %g %g",&z,&x,&y,&vx,&vy,&vz); 
  } 
 while(x != 100.0 && y != 100.0); 
 fclose(fp); 
 
// Exit instruction 
 setcolor(LIGHTRED); 
 settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
 sprintf(title,"Hit any key to return to menu"); 
 outtextxy(xc-textwidth(title)/2,yf-textheight(title)-5,title); 
 getch(); 
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 closegraph(); 
 } 
// ------------- SUBROUTINE 'PROJY()' ----------------- 
// Subprogramme to plot in Y-V Y plane 
 
void projy() 
 { 
 float yr,vyr; 
 char title[30]; 
 FILE *fp; 
 
//W rites title 
 setcolor(YELLOW ); 
 settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
 sprintf(title,"    PROJECTION"); 
 outtextxy(2,1.5*textheight(title),title); 
 sprintf(title,"    IN Y-V Y PLANE:"); 
 outtextxy(2,3.5*textheight(title),title); 
 
// Labels X and Y axes 
 setcolor(LIGHTCYAN); 
 settextstyle(SMALL_FONT,HORIZ_DIR,5); 
 sprintf(title,"Generalized Y --->"); 
 outtextxy(xc+textwidth(title)+5,yc+textheight(title)+5,title); 
 settextstyle(SMALL_FONT,V ERT_DIR,5); 
// settextjustify(LEFT_TEXT,RIGHT_TEXT); 
 sprintf(title,"Generalized V Y --->"); 
 outtextxy(xc-textheight(title)*3,textwidth(title)/2,title); 
 
// Plots trajectory 
 fp = fopen("plot.d","r"); 
 fscanf(fp,"%g %g %g %g %g %g",&z,&x,&y,&vx,&vy,&vz); 
 do 
  { 
  yr = (y/ym)*(yc/2)+xc; 
  vyr = -(vy/vym)*(yc/2)+yc; 
  putpixel(yr,vyr,W HITE); 
//  delay(100);        // Delay by 100ms between two points 
 fscanf(fp,"%g %g %g %g %g %g",&z,&x,&y,&vx,&vy,&vz); 
  } 
 while(x != 100.0 && y != 100.0); 
 fclose(fp); 
 
// Exit instruction 
 setcolor(LIGHTRED); 
 settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
 sprintf(title,"Hit any key to return to menu"); 
 outtextxy(xc-textwidth(title)/2,yf-textheight(title)-5,title); 
 getch(); 
 closegraph(); 
 } 
// ------------- SUBROUTINE 'PROJZ()' ----------------- 
// Subprogramme to plot in Z-V Z plane 
 
void projz() 
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 { 
 float zr,vzr; 
 char title[30]; 
 FILE *fp; 
 
//W rites title 
 setcolor(YELLOW ); 
 settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
 sprintf(title,"    PROJECTION"); 
 outtextxy(2,1.5*textheight(title),title); 
 sprintf(title,"    IN Z-V Z PLANE:"); 
 outtextxy(2,3.5*textheight(title),title); 
 
// Labels X and Y axes 
 setcolor(LIGHTCYAN); 
 settextstyle(SMALL_FONT,HORIZ_DIR,5); 
 sprintf(title,"Generalized Z --->"); 
 outtextxy(xc+textwidth(title)+5,yc+textheight(title)+5,title); 
 settextstyle(SMALL_FONT,V ERT_DIR,5); 
 sprintf(title,"Generalized V Z --->"); 
 outtextxy(xc-textheight(title)*3,textwidth(title)/2,title); 
 
// Plots trajectory 
 fp = fopen("plot.d","r"); 
 fscanf(fp,"%g %g %g %g %g %g",&z,&x,&y,&vx,&vy,&vz); 
 do 
  { 
  zr = (z/zm)*(yc/2)+xc; 
  vzr = -(vz/vzm)*(yc/2)+yc; 
  putpixel(zr,vzr,W HITE); 
//  delay(100);        // Delay by 100ms between two points 
 fscanf(fp,"%g %g %g %g %g %g",&z,&x,&y,&vx,&vy,&vz); 
  } 
 while(x != 100.0 && y != 100.0); 
 fclose(fp); 
 
// Exit instruction 
 setcolor(LIGHTRED); 
 settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
 sprintf(title,"Hit any key to return to menu"); 
 outtextxy(xc-textwidth(title)/2,yf-textheight(title)-5,title); 
 getch(); 
 closegraph(); 
 } 
 
// ------------- SUBROUTINE 'PROJR()' ----------------- 
// Subprogramme to plot in real (110) plane 
 
void projr() 
 { 
 int i,j,k; 
 float a = 5.43089; //Si lattice constant in Ang. 
 float a8,dp; 
 float xr,yr,xym,sc;   //xym - maximum value of x and y combined 
          //sc - A scale factor such that trajectory is 
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          // within 90% of 'yc' 
 char title[30],titcl[30]; 
 
 int gd = DETECT,gm; 
 FILE *fp; 
 
// Opens graphic screen and defines the values of parameters a8,dp,...etc. 
 initgraph(&gd, &gm,"c:\\tc\\bgi");      //Initialising graphic screen 
 xf = getmaxx(); 
 yf = getmaxy(); 
 xc = xf/2; 
 yc = yf/2; 
// xm = 5.0;      //Lines to test (Do not discard this and next lines) 
// ym = 5.0;      //Changing xm and ym will allow you 
         //to include as many rows more or less 
         // in the (110)plane. 
 xym = max(xm,ym); 
 sc = yc*0.9;    //Curve to come up to 40% of screen border. Indirectly 
   //decrease of the coefficient of 'yc' increases the 
   // number of atomic rows on the screen. 
 a8 = a/8.0; 
 dp = a/(2.0*sqrt(2.0));  //Interplanar separation in (110) 
 a = (a/xym)*sc;          //  | 
 a8 = (a8/xym)*sc;        //  | Scaling to screen coordinates 
 dp = (dp/xym)*sc;        //  V  
 
//      Generate the atomic rows in the plane 
 setcolor(MAGENTA); 
 setfillstyle(SOLID_FILL,MAGENTA);   //fill style for atomic rows 
 for(j=-1; j<2; j+=2)      //-1 Left of screen-centre 
  { 
  for(i=-1;i<2;i+=2)  //-1 Above screen-centre 
   { 
   k = -i;     //k fixes centre of the basis 
        //At hte beginning j=-1,i=-1 and k=1 
        //so that yr = yc. ie. The origin (screen 
        //centre is the mid-point of two atoms 
        // in a basis. 
   yr = yc + (i-1)*dp/2.0; 
   do 
    { 
    xr = xc + ((k+1)*a/4.0); 
    do 
    { 
    pieslice(xr+a8,yr,0,360,2);  //Draws atomic rows 
    pieslice(xr-a8,yr,0,360,2);  //Draws atomic rows 
    xr = xr + j*a; 
    } 
    while(xr >= 0 && xr <= xf); 
    k = -k; 
    yr = yr + i*dp; 
    } 
   while(yr >= 0 && yr <= yf); 
   } 
  } 
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// Draws unit cell 
 setcolor(GREEN); 
 line(xc-a*0.5,yc,xc,yc-dp); 
 line(xc,yc-dp,xc+a*0.5,yc); 
 line(xc+a*0.5,yc,xc,yc+dp); 
 line(xc,yc+dp,xc-a*0.5,yc); 
 
//W rites title 
 setcolor(YELLOW ); 
 settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
 sprintf(title,"    PROJECTION"); 
 outtextxy(2,1.5*textheight(title),title); 
 sprintf(title,"    IN (110) PLANE:"); 
 outtextxy(2,3.5*textheight(title),title); 
 
// Plots trajectory 
 setcolor(LIGHTCYAN); 
 settextstyle(SMALL_FONT,HORIZ_DIR,4); 
 i = 0; 
 fp = fopen("plot.d","r"); 
 fscanf(fp,"%g %g %g %g %g %g",&z,&x,&y,&vx,&vy,&vz); 
 do 
  { 
  xr = (x/xym)*sc+xc; 
  yr = -(y/xym)*sc+yc; 
  putpixel(xr,yr,W HITE); 
  depth(); 
//  delay(50);        // Delay by 100ms between two points 
  fscanf(fp,"%g %g %g %g %g %g",&z,&x,&y,&vx,&vy,&vz); 
  } 
 while(x != 100.0 && y != 100.0); 
 fclose(fp); 
 
// Exit instruction 
 setcolor(LIGHTRED); 
 settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
 sprintf(title,"Hit any key to return to menu"); 
 outtextxy(xc-textwidth(title)/2,yf-textheight(title)-5,title); 
 getch(); 
 closegraph(); 
 } 
 
void depth() 
 { 
 char title[30]; 
 
 setfillstyle(SOLID_FILL,BLACK); 
 sprintf(title,"  Depth: %g Ang.",z); 
 settextstyle(0,HORIZ_DIR,1); 
 bar(0,yf-1.1*textheight(title),1.1*textwidth(title),yf); 
 setcolor(W HITE); 
 outtextxy(0,yf-textheight(title),title); 
 } 
 
void projun() 
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 { 
 extern float x,y,z,vx,vy,vz; 
 extern float x1,y1; 
 int i,j,k; 
 float a = 5.43089; //Si lattice constant in Ang. 
 float a8,dp; 
 float xr,yr,xym,sc;   //xym - maximum value of x and y combined 
          //sc - A scale factor such that trajectory is 
          // within 90% of 'yc 
 char title[30],titcl[30]; 
 
 int gd = DETECT,gm; 
 FILE *fp; 
 
// Opens graphic screen and defines the values of parameters a8,dp,...etc. 
 initgraph(&gd, &gm,"c:\\tc\\bgi");      //Initialising graphic screen 
 xf = getmaxx(); 
 yf = getmaxy(); 
 xc = xf/2; 
 yc = yf/2; 
// xm = 5.0;      //Lines to test (Do not discard this and next lines) 
// ym = 5.0;      //Changing xm and ym will allow you 
         //to include as many rows more or less 
         // in the (110)plane. 
// xym = max(xm,ym); 
 xym=2.0; 
 sc = yc*0.9;    //Curve to come up to 40% of screen border. Indirectly 
   //decrease of the coefficient of 'yc' increases the 
   // number of atomic rows on the screen. 
 a8 = a/8.0; 
 dp = a/(2.0*sqrt(2.0));  //Interplanar separation in (110) 
 a = (a/xym)*sc;          //  | 
 a8 = (a8/xym)*sc;        //  | Scaling to screen coordinates 
 dp = (dp/xym)*sc;        //  V  
 
//      Generate the atomic rows in the plane 
 setcolor(MAGENTA); 
 setfillstyle(SOLID_FILL,MAGENTA);   //fill style for atomic rows 
 for(j=-1; j<2; j+=2)      //-1 Left of screen-centre 
  { 
  for(i=-1;i<2;i+=2)  //-1 Above screen-centre 
   { 
   k = -i;     //k fixes centre of the basis 
        //At hte beginning j=-1,i=-1 and k=1 
        //so that yr = yc. ie. The origin (screen 
        //centre is the mid-point of two atoms 
        // in a basis. 
   yr = yc + (i-1)*dp/2.0; 
   do 
    { 
    xr = xc + ((k+1)*a/4.0); 
    do 
    { 
    pieslice(xr+a8,yr,0,360,2);  //Draws atomic rows 
    pieslice(xr-a8,yr,0,360,2);  //Draws atomic rows 
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     xr = xr + j*a; 
    } 
    while(xr >= 0 && xr <= xf); 
    k = -k; 
    yr = yr + i*dp; 
    } 
   while(yr >= 0 && yr <= yf); 
   } 
  } 
// Draws unit cell 
 setcolor(GREEN); 
 line(xc-a*0.5,yc,xc,yc-dp); 
 line(xc,yc-dp,xc+a*0.5,yc); 
 line(xc+a*0.5,yc,xc,yc+dp); 
 line(xc,yc+dp,xc-a*0.5,yc); 
 
//W rites title 
 setcolor(YELLOW ); 
 settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
 sprintf(title,"    PROJECTION"); 
 outtextxy(2,1.5*textheight(title),title); 
 sprintf(title,"    IN (110) PLANE:"); 
 outtextxy(2,3.5*textheight(title),title); 
 
// Plots trajectory 
 setcolor(LIGHTCYAN); 
 settextstyle(SMALL_FONT,HORIZ_DIR,4); 
 i = 0; 
 fp = fopen("plot.d","r"); 
 fscanf(fp,"%g %g %g %g %g %g",&z,&x,&y,&vx,&vy,&vz); 
 conv(); 
 do 
  { 
  xr = (x1/xym)*sc+xc; 
  yr = -(y1/xym)*sc+yc; 
  putpixel(xr,yr,W HITE); 
  depth(); 
//  delay(50);        // Delay by 100ms between two points 
  fscanf(fp,"%g %g %g %g %g %g",&z,&x,&y,&vx,&vy,&vz); 
  conv(); 
  } 
 while(x != 100.0 && y != 100.0); 
 fclose(fp); 
 
// Exit instruction 
 setcolor(LIGHTRED); 
 settextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
 sprintf(title,"Hit any key to return to menu"); 
 outtextxy(xc-textwidth(title)/2,yf-textheight(title)-5,title); 
 getch(); 
 closegraph(); 
 } 
 
void conv() 
 { 
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 extern float x,y,z,vx,vy,vz; 
 extern float x1,y1; 
 float a = 5.43089; //Si lattice constant in Ang. 
 float calp,salp,salp1,ax,ay; 
 calp=a*0.5; 
 salp=a/(2*sqrt(2.0)); 
 salp1 = sqrt(2.0)/a; 
 ax = 0.5 + x/a; 
 ay = y*salp1; 
 r1 = ax-ay; 
 r2 = ax+ay; 
 if(r1 >= 0) 
  r1 = r1 - (int)(r1); 
 else 
  r1 = r1+(int)(1.0+abs(r1)); 
 if(r2 >= 0) 
  r2 = r2 - (int)(r2); 
 else 
  r2 = r2+(int)(1.0+abs(r2)); 
 
// printf("%f,%f\n",r1,r2); 
// getch(); 
 x1=(r1+r2-1.)*calp; 
 y1=(r2-r1)*salp; 
 } 
 

gentrn.c 

 

/* Programme to convert x,y in <110> frame to generalised coordinates 
 r1,r2 in <110> frame  */ 
#include <stdio.h> 
//#include <conio.h> 
#include <math.h> 
extern float xm,ym,zm,vxm,vym,vzm; 
extern float r1,r2; 
void gentrn(float x, float y) 
 { 
//      -------- CODE 1 ----------- 
 r1 = x/xm; 
 r2 = y/ym; 
 
/*      -------- CODE 2 ----------- 
// Alternate code to generate generalised coordinates of Ellison et al. 
 float ax,ay,salp1; 
 float a = 5.43089; 
 
 salp1 = sqrt(2.0)/a; 
 ax = 0.5 + x/a; 
 ay = y*salp1; 
 r1 = ax-ay; 
 r2 = ax+ay; 
 if(r1 >= 0) 
  r1 = r1 - (int)(r1); 
 else 
  r1 = r1+(int)(1.0+abs(r1)); 
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 if(r2 >= 0) 
  r2 = r2 - (int)(r2); 
 else 
  r2 = r2+(int)(1.0+abs(r2)); 
*/ 
 } 

slate.c 

 
// ---------- SUBROUTINE FOR MAIN IN 'TRBASIN.C'   ------------ 
// Subprogramme to open a graphics screen, draws the X-Y axes, 
// and ticks and labels them for further plotting by projx(),... etc. 
//#include <conio.h> 
#include <graphics.h> 
#include <stdio.h> 
#include <math.h> 
#define PI 3.14159265 
extern  int xf,yf,xc,yc; 
 
void slate() 
{ 
 int gd = DETECT,gm,i,im,shifty; 
 char lbltiks[3],title[30]; 
 
 initgraph(&gd, &gm,"c:\\tc\\bgi");      //Initialising graphic screen 
 xf = getmaxx(); 
 yf = getmaxy(); 
 xc = xf/2; 
 yc = yf/2; 
 
//Drawing coordinate axes 
 setcolor(LIGHTGREEN); 
 line(0,yc,xf,yc); 
 line(xc,0,xc,yf); 
 
//Puts X ticks and Y ticks 
 setcolor(CYAN); 
 settextstyle(DEFAULT_FONT,HORIZ_DIR,0); 
 settextjustify(1,2); 
 im = yc/2; 
 shifty = 0.5*textheight("|"); 
 for(i=-2; i < 3; i++) 
  { 
  if (i != 0) 
   outtextxy(xc+(i*im),yc-shifty,"|"); // X - ticks 
  } 
 settextstyle(DEFAULT_FONT,V ERT_DIR,0); 
 settextjustify(1,1); 
 for(i=-2; i < 2; i++) 
  { 
  if (i != 0) 
   outtextxy(xc+0.5*shifty,yc+(i*im),"|");  //Y - ticks 
  } 
 
//Labelling ticks 
 settextstyle(DEFAULT_FONT,HORIZ_DIR,0); 
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 settextjustify(1,2); 
 setcolor(MAGENTA); 
 for(i=1; i < 2; i++) 
  { 
  sprintf(lbltiks,"%d",i); 
  outtextxy(xc+(i*im),yc+2*shifty,lbltiks); 
  } 
 for(i=1; i < 2; i++) 
  { 
  sprintf(lbltiks,"-%d",i); 
  outtextxy(xc-(i*im),yc+2*shifty,lbltiks); 
  } 
 settextjustify(0,1); 
 for(i=1; i < 2; i++) 
  { 
  sprintf(lbltiks,"%d",i); 
  outtextxy(xc-1.5*textwidth(lbltiks),yc-(i*im),lbltiks); 
  } 
 for(i=1; i < 2; i++) 
  { 
  sprintf(lbltiks,"-%d",i); 
  outtextxy(xc-1.5*textwidth(lbltiks),yc+(i*im),lbltiks); 
  } 
} 


