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Chapter 1

Introduction

Graph theory, an important and interesting branch of discrete mathe-

matics, is believed to have originated in 1735 with the introduction of a solution

to the famous Konigsberg bridge problem by Leonard Euler. Due to its diverse

applications in almost all fields of real life, research has been flourishing in this

area since it’s inception.

Graph theory has numerous applications in day to day life. Applications of

graph theory are very much useful in the field of artificial intelligence, biology,

chemistry, quantum physics, computer science, operation research, economics,

sociology etc.

Internet, the word which is familiar to every one and without which every-

one’s life become strenuous and worthless, is really a virtual graph. In internet,

an individual page can be regarded as the vertex and a hyperlink between two

pages can be treated as an edge.

In this thesis, our main goal is to study the forcing numbers of some graphs
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and splitting graphs. The forcing numbers which we consider in this thesis com-

prises of zero forcing number, k-forcing number, connected k-forcing number and

2-distance forcing number. Throughout the thesis, we consider only simple, con-

nected and finite graphs.

Zero forcing number. The zero forcing number of a graph G, denoted

by Z(G), was found by the AIM Minimum Rank Special Graphs Group [19].

They used this graph parameter Z(G) to bound the minimum rank for numer-

ous families of graphs. The zero forcing number has wide range of applications in

coding theory, logic circuits, in modelling the spread of diseases, power network

monitoring, information in social networks etc.

In 2012, Minerva Catral et al. studied the relationship between the maxi-

mum nullity, the zero forcing number and the path cover number of a graph G [7]

and obtained some useful results. They also included the relationship between

the zero forcing number and the maximum nullity of edge subdivision graphs in

their discussion. In 2015, Amos et al. [1] gave an upper bound of the zero forcing

number of a connected graph G in terms order n and ∆ ≥ 2, where ∆ is the

maximum degree of the graph G. In 2016, Michael Gentner et al. [14] verified

this conjecture and proved that the result is true only for the graphs Cn, Kn and

K∆,∆. A lower bound for triangle free graphs were also provided by them. More

useful studies regarding the zero forcing number were also carried out by Darren

D. Row in the paper “A technique for computing the zero forcing number of a

graph with a cut-vertex” [29]. In this paper, a technique for computing the zero

forcing number of graph with a cut-vertex was established. Darren D. Row also

focused his attention in finding graphs having very low or very high zero forcing

numbers.
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k-forcing number. The k-forcing number of a graph G, denoted

by Zk(G), was introduced by D Amos, Y Caro, R Davila, and R Pepper in

2015 [1]. When k = 1, then this parameter is equivalent to the zero forcing

number. Therefore, k-forcing number is a generalization of the zero forcing num-

ber. Thus, the introduction of the k-forcing number of a graph raised several

questions which led to a more fruitful study of the topic in which new bounds

had been studied and analysed. As a result, upper bounds on Zk(G) in terms

of order (n), maximum degree (∆), minimum degree (δ) and a positive integer

k ≥ 1 were provided. Apart from this, discussion on improved upper bounds on

Zk(G) of connected graphs and upper bounds on Zk(G) of some special families

of graphs such as Hamiltonian graph, cycle-tree graph, tree graph were given. A

serious effort was also made by the authors to establish a relationship between

the k-forcing number and the connected k-domination number of a graph G. As

a conclusion of their work, they found that the sum of the zero forcing number

and the connected domination number is at most the order for connected graphs.

Connected k-forcing number. Without knowing much about the struc-

ture of a forcing set, it is difficult to study Z(G) of a graph G. This fact had

actually motivated the study of the connected zero forcing set of a graph G,

denoted by Zc and the connected k-forcing set of G, denoted by Zck. In 2016,

Boris Brimkov and Randy Davila [4] imposed a condition on the zero forcing set

that the initially colored set of black vertices should form a connected induced

subgraph. This restriction on the zero forcing set had led to the introduction

of the concept of connected zero forcing set and thus the connected zero forcing

number Zc(G).

Connected k-forcing number Zck(G) of several families of graphs including
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trees, flower snarks, hyper cubes and graphs with a single maximal clique of size

greater than two were studied and analysed. As a result of their work, the au-

thors had arrived at the conclusion that the connected zero forcing number is a

sharp upper bound to the maximum nullity, the path cover number and the leaf

number of a graph. Further studies were carried out and in 2016, Randy Davila,

Michael A. Henning, Colton Magnant, and Ryan Pepper [9] provided sharp lower

and upper bounds on the connected forcing number of a graph based on the max-

imum degree (∆), minimum degree (δ), girth and order (n) of a graph.

2-distance forcing number. In addition to the graph parameters dis-

cussed above, we introduced a new parameter namely 2-distance forcing number

of a graph G. This forcing number is a generalization of the zero forcing number

based on the distance in graphs. To define the 2-distance forcing number of a

graph G, we have to familiarise with the following.

2-distance vertex. Let G = (V,E) be a graph with vertex set V (G) and

edge set E(G). If a vertex v of G lies at a distance at most two from the vertex

u of G, then we say that v is a 2-distance vertex ( or 2-distance neighbor ) of u.

Color change rule. Let G be a graph with each vertex colored either

black or white. If a black colored vertex has exactly one white colored 2-distance

neighbor, then change the color of that white vertex to black. When the color

change rule is applied to an arbitrary vertex v to change the color of the vertex

u to black, then we say that the vertex v forces the vertex u to black and we

denote it as v → u to black.

A 2-distance forcing set of a graph G is a subset Z2d of vertices of G such

that if initially the vertices in Z2d are colored black and the remaining vertices

are colored white, the derived coloring of G is all black.
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The 2-distance forcing number Z2d(G) is the minimum of | Z2d | over

all 2-distance forcing sets Z2d ⊆ V (G).

In addition to the introductory chapter, the thesis is divided into seven

other chapters and chapters into sections.

Chapter One is the introduction.

Chapter Two provides a brief description of the basic definitions of graph

theory which will be very useful in the upcoming chapters.

In Chapter Three, we compute the zero forcing number of certain types

of graphs. Also, this chapter investigates the zero forcing number of the splitting

graph of a path Pn, cycle Cn, the star graph K1,n on n + 1 vertices, the ladder

graph, the wheel graph, the CP graph, the friendship graph etc. The chapter

begins with some basic definitions, elementary results, facts and terminology

which are also used in the subsequent chapters. This chapter is divided into

Five Sections. In Section 1, we deal with some basic results regarding path

and cycle. In Section 2, we provide some bounds on the zero forcing number

of the splitting graph. An attempt is also made to incorporate the zero forcing

number with its dominating number. Section 3 discusses the families of graphs

for which the equality Z[S(G)] = 2Z(G) holds. We show that the result is true

for the path Pn, the cycle Cn, the star graph K1,n on n+ 1 vertices and the lad-

der graph. The zero forcing number of family of CP graphs and their splitting

graphs are also provided in this section. Section 4 starts with an attempt to

prove the inequality Z[S(G)] ≤ 2Z(G) for a connected graph G. We consider

the CP graph C3Pr first. This section also provides the zero forcing number of

the friendship graph and its splitting graph. We also introduce a new family

of graph, namely the ZP graph, in the last Section. ZP graph. A graph G
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is said to be ZP if Z(G) = P (G), where P (G) is the path cover number of G.

The relation between the path cover number and the zero forcing number of the

splitting graph of path and star graph is also studied in this Section.

In Chapter Four, we focus mainly on determining the k-forcing number

Zk(G) of some classes of graphs, especially the 2-forcing number Z2(G). This

chapter contains Four Sections. Necessary definitions are provided in Section

1 for the further development of this chapter. In Section 2 of this chapter, we

determine the 2-forcing number of graphs such as the Corona product Cn �K1,

the square graph of a path Pn, where n ≥ 3, the cycle Cn, the graph Pn�Pm,

(n,m ≥ 2), the prism graph ( or circular ladder graph ), the wheel graph and

the square graph of a cycle. Besides these findings, we also obtain the 2-forcing

number of the splitting graph of path Pn, n ≥ 3, cycle Cn, where n ≥ 4, ladder

graph, wheel graph and the prism graph Cn�K2. Again, an effort is taken to

compute the k-forcing number of path and cycle. In the next Section 3, namely

“Graphs for which Z2(G) ≥ 4”, we consider the star graph and the generalized

friendship graph F k
p . Section 4, which is the concluding section of this chapter,

describes the bounds on the 2-forcing number of a graph G. A relationship be-

tween Z(G), Z2(G) and Z[S(G)] is also given in this Section.

It is worth mentioning that Chapter Five is the continuation of Chapter

Four. Throughout the Chapter Five, we address the problem of determin-

ing the connected k-forcing number of some graphs and splitting graphs. The

concept of connected k-forcing number can be regarded as a generalization of

the connected zero forcing number. In Section 1, we compute the connected

zero forcing number of the splitting graph of path Pn, splitting graph of cycle

Cn, friendship graph Fp, complete bipartite graph Km,n, the Cartesian product
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Cn�Pm and the star graph K1,n. We also compute the connected k-forcing num-

ber of the splitting graph of path and cycle in this section. Moreover, we provide

an upper bound for connected zero forcing number of the corona product of two

graphs, say G and H. Section 2 describes the connected k-forcing number of

rooted product of some graphs. In this section, we consider the rooted product of

cycle and path, cycle and cycle, ladder graph and path, the grid graph and path,

ladder graph and cycle, circular ladder graph and path, circular ladder graph

and cycle, and path and path for determining this graph parameter. In addition

to this, we also investigate the connected k-forcing number of the CP -graph

C3Pr and the circular ladder graph. In Section 3, we deal with the connected

k-forcing number of square graph of path and cycle.

A new graph parameter, namely 2-distance forcing number Z2d(G), is

introduced in Chapter Six. Section 1 provides some preliminary definitions

necessary for the further development of this chapter. In Section 2, we deter-

mine the exact value of this parameter for path, cycle, wheel graph, friendship

graph, star graph, ladder graph and the complete bipartite graph. Section 3

provides the 2-distance forcing number of graphs with diameter lying between 2

and 5. In this section, we compute the 2-distance forcing number of gear graph,

jelly fish graph, helm graph and the sunflower graph.

Chapter Seven investigates the 2-distance forcing number of some

special graphs with large diameter. In Section 1, we compute the 2-distance

forcing number of shadow graph of path, middle graph of path, Sth Necklace

graph, triangular snake graph, n-sunlet graph, comet graph, n- pan graph and

the generalized friendship graph F k
p . Section 2 deals with the 2-distance forcing

number of rooted product of graphs. Rooted product of path and path, path
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and cycle, cycle and path, and cycle and cycle are considered for discussion. In

Section 3, we find the 2-distance forcing number of square graph of path and

cycle. The 2-distance forcing number of the splitting graph of path Pn, where

n ≥ 4, is computed in Section 4. Section 5 computes the 2-distance forcing

number of Cartesian product of graphs such as the ladder graph Pn�P2, the

grid graph Pn�Pm and the circular ladder graph Cn�K2. The final Section 6

provides the 2-distance forcing number of complement of path and cycle.

Chapter Eight provides conclusion and further scope of research.
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Chapter 2

Preliminaries

This chapter provides a brief account of the preliminary definitions from

graph theory which are very useful for the upcoming chapters. For the notations

and terminologies not defined directly in the thesis, we may refer to [12] and [16].

2.1 Basic Definitions

Definition 2.1.1. [3] A graph G is an ordered triple G = (V (G), E(G), ψ(G))

consisting of a non-empty set V (G) of vertices, a set E(G) of edges disjoint from

V (G) and an incidence function ψ(G) which associates with each element of

E(G), an unordered pair of vertices (not necessarily distinct) of G.

Definition 2.1.2. [3] A diagram of a graph represents the incidence relation

between two edges and vertices.

Definition 2.1.3. [3] If two vertices are incident with a common edge, then that

vertices are adjacent. Otherwise, they are non adjacent. If a vertex u is adjacent
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2.1. Basic Definitions

to a vertex v in a graph G, we denote it as u ∼ v. If two edges are incident with

a common vertex, then that edges are adjacent. Otherwise, non adjacent.

Definition 2.1.4. [3] An edge with identical end points is called a loop. An

edge with distinct end points is known as a link. Edges joining the same pair of

vertices are called multiple edges.

Definition 2.1.5. [3] A graph G is finite if both the vertex set V (G) and the

edge set E(G) are finite. Otherwise, the graph G is said to be infinite.

Definition 2.1.6. [3] The number of vertices in a graph G is known as the order

of the graph and it is denoted by O(G).

Definition 2.1.7. [3] A graph which has no loops and multiple edges is called

a simple graph. A graph is trivial if it has only one point.

Definition 2.1.8. [3] Two graphsG andH are identical if V (G) = V (H), E(G) =

E(H) and ψ(G) = ψ(H).

Definition 2.1.9. [3] Two graphs G and H are said to be isomorphic if there

exists bijections θ : V (G)→ V (H) and φ : E(G)→ E(H) such that ψG(e) = uv

if and only if ψH(φ(e)) = θ(u)θ(v). If G and H are isomorphic, we write G u H.

The pair (θ, φ) is called an isomorphism between the graphs G and H.

Definition 2.1.10. [3] A graph G is complete if every pair of distinct vertices

is joined by an edge and G is simple. A complete graph on n vertices is denoted

by Kn.

Definition 2.1.11. [3] An empty graph is a graph which has no edges.
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2.2. Subgraphs

Definition 2.1.12. [3] A graph G is called bipartite if the vertex set V (G) can

be partitioned into two subsets X and Y such that each edge of G has one end

in X and the other end in Y . (X, Y ) is called a partition of G.

Definition 2.1.13. [3] A graph G is said to be complete bipartite if G is simple,

bipartite with bipartition (X, Y ) and each vertex of X is joined to every vertex

of Y . If | X |= m, | Y |= n, then G is denoted by Km,n.

Definition 2.1.14. [3] A graph G is m-partite if the vertex set can be partitioned

into m subsets X1, X2, . . . , Xm such that no edge of G has both ends in any one

subset. (X1, X2, . . . , Xm) is called m-partition of G. Complete m-partite graph

is a simple graph and a m-partite graph such that each vertex of each subset is

joined to every vertex of other subsets.

Definition 2.1.15. [3] The complement of a simple graph G, denoted by Gc, is

a simple graph with vertex set V (G) and such that two vertices are adjacent in

Gc if and only if they are non adjacent in G.

2.2 Subgraphs

Definition 2.2.1. [3] A graph H is a subgraph of G, if V (H) ⊆ V (G), E(H) ⊆

E(G) and ψH is the restriction of ψG to E(H).

If H is a subgraph of G, then it is denoted by H ⊆ G. G is the super graph

of H. If H is a subgraph of G and H 6= G, then H is a proper subgraph of G

(H ⊂ G). H is a spanning subgraph of G if H is a subgraph and V (H) = V (G).

Let G be a graph. By deleting all loops and for every pair of adjacent vertices all

except one link joining them, we obtain a simple spanning subgraph of G called
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2.3. Path and Connection

the underlying simple graph of G.

Definition 2.2.2. [3] Let V 1 be a non-empty subset of the vertex set V of G.

The subgraph of G whose vertex set is V 1 and whose edge set is the set of those

edges of G that have both ends in V 1 is called the subgraph of G induced by V 1

and is denoted by G[V 1]. We say G[V 1] is the induced subgraph of G.

Definition 2.2.3. [3] Let G be a graph and v be it’s vertex. Then, the degree of

v is the number of edges of G incident with v, counting each loop as two edges.

The degree of v is denoted as deg(v). The vertex with zero degree is called an

isolated vertex. A vertex with degree one is called an end vertex or pendant

vertex.

We denote by δ(G) and ∆(G), the minimum degree and the maximum degree of

vertices in G respectively.

Definition 2.2.4. [3] A graph G is k-regular if deg(v) = k for all v ∈ V . A

regular graph is a graph which is k-regular for some k ≥ 0.

If G has vertices v1, v2, . . . , vn, then the sequence deg(v1), deg(v2), . . . , deg(vn) is

called a degree sequence of G.

2.3 Path and Connection

Definition 2.3.1. [3] A walk in a graph is a finite non-null or non-empty se-

quence w = v0e1v1e2v2, . . . , ekvk whose terms are alternatively vertices and edges

so that for 1 ≤ i ≤ k, the ends of ei are vi−1 and vi. We say that w is a walk

from v0 to vk or w is a (v0, vk) walk. v0 is called the origin and vk is called the

terminus of w. v1, v2, . . . , vk−1 are called the internal vertices. The integer k is
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2.3. Path and Connection

called the length of w.

Definition 2.3.2. [3] A walk in which every edge is distinct is called a trial.

Definition 2.3.3. [3] A walk in which every vertex is distinct (hence edges are

distinct) is called a path.

Definition 2.3.4. [3] Two vertices u and v of G are said to be connected if

there is a (u, v) path between them. Connectedness is an equivalence relation on

the vertex set V . Thus, there is a partition v1, v2, . . . , vw of V (G). The induced

subgraphs G[v1], G[v2], . . . , G[vw] are called the components of G. The graph G is

connected if G has exactly one component. Otherwise, G is disconnected. w(G)

is the number of components of G.

Definition 2.3.5. [3] The distance between two vertices u and v, denoted by

d(u, v), is the length of the shortest path connecting them.

Definition 2.3.6. [3] Diameter of a graph G is the maximum distance between

the vertices of G.

Definition 2.3.7. [3] A cycle is a closed trial whose origin and internal vertices

are different. A cycle of length k is called a k-cycle and it is denoted by Ck.

Definition 2.3.8. [3] A graph is called acyclic if it has no cycles.

Definition 2.3.9. [3] A tree is a acyclic graph which is connected.

Definition 2.3.10. [3] Forest is a acyclic graph.
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2.4. Some Operations on Graphs

2.4 Some Operations on Graphs

Definition 2.4.1. [12] Let G1 = (V1, E1) and G2 = (V2, E2) be two simple

graphs. Then, the graph G = (V,E), where V = V1 ∪ V2 and E = E1 ∪ E2, is

called the union of graphs G1 and G2 and is denoted by G1 ∪G2. If V1 ∩ V2 = φ,

then G1 ∪ G2 is usually denoted by G1 + G2, called the sum of the graphs G1

and G2.

Definition 2.4.2. [12] Let G1 = (V1, E1) and G2 = (V2, E2) be two simple

graphs with V1 ∩ V2 6= φ. Then the graph G = (V,E), where V = V1 ∩ V2 and

E = E1 ∩ E2, is called the intersection of graphs G1 and G2 and is denoted by

G1 ∩G2.

Definition 2.4.3. [12] Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs

with V1 ∩ V2 = φ. Then the join, G1 ∨ G2, of G1 and G2 is the super graph of

G1 +G2 in which each vertex of G1 is adjacent to every vertex of G2.

Definition 2.4.4. [12] The Cartesian product of two simple graphs G1 and G2,

commonly denoted by G1�G2 or G1×G2, has the vertex set V (G1)×V (G2) and

two distinct vertices (u1, v1) and (u2, v2) of G1�G2 are adjacent if either u1 = u2

and v1v2 ∈ E(G2) or v1 = v2 and u1u2 ∈ E(G1).

Definition 2.4.5. [12] The Composition or lexicographic product of two simple

graphs G1 and G2, commonly denoted by G1[G2] has the vertex set V (G1) ×

V (G2) and two distinct vertices (u1, v1) and (u2, v2) of G1[G2] are adjacent if

either u1 is adjacent to u2 or u1 = u2, and v1 is adjacent to v2.

Definition 2.4.6. [12] The Corona G1 � G2 of two graphs G1 and G2 is the

graph obtained by taking one copy of G1, which has p1 vertices, and p1 copies

14



2.4. Some Operations on Graphs

of G2 and then joining the ith vertex of G1 by an edge to every vertex in the ith

copy of G2.

Definition 2.4.7. [15] Rooted Product. Let G be a connected graph with ver-

tices v1, v2, . . . , vn and let H be a sequence of n rooted graphs H1, H2, . . . , Hn.

The rooted product of G and H is defined as the graph obtained by identifying

the root of Hi, 1 ≤ i ≤ n, with the ith vertex of G for all i. This graph is denoted

by G(H) and is known as the rooted product of G by H.

.
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Chapter 3

On the Zero Forcing Number of Graphs and

Their Splitting Graphs

In this Chapter, we address the problem of determining the zero

forcing number of graphs and splitting graphs. First Section of this

Chapter contains basic definitions and preliminary results. In Sec-

tion 2, we give upper bounds on the zero forcing number of the

splitting graph of a graph. In Section 3, we find several classes of

graphs in which Z[S(G)] = 2Z(G). Section 4 provides classes of

graphs in which Z[S(G)] < 2Z(G). In section 5, we provide more

families of graphs with Z(G) = P (G).

3.1 Introduction

Definition 3.1.1. [32] The splitting graph of a graph G, denoted by S(G), is the

graph obtained by taking a vertex v′ corresponding to each vertex v ∈ G and join

1This chapter has been published in the Journal Algebra and Discrete Mathematics, Volume

28, Number 1, 2019, Pages 29-43.
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3.1. Introduction

The graph K3 The splitting graph of K3

Figure 3.1: The graph K3 and its splitting graph S(K3).

v′ to all the vertices of G adjacent to v. If G contains p vertices and q edges,

then S(G) contains 2p vertices and 3q edges. For example, See figure 3.1.

For the further development of this chapter, it is necessary to define the

following.

Definition 3.1.2. [19] (i) Color change rule : If G is a graph with each vertex

colored either black or white, u is a black vertex of G, and exactly one neighbor

v of u is white, then change the color of v to black.

(ii) Given a coloring of G, the derived coloring is the result of applying the

color change rule until no more changes are possible.

(iii) A zero forcing set for a graph G is a subset of vertices Z of G such that if

initially the vertices in Z are colored black and the remaining vertices are colored

white, the derived coloring of G is all black.

The zero forcing number Z(G) of a graph G can be defined as follows:

Definition 3.1.3. [19] The zero forcing number Z(G) is the minimum of |Z|

over all zero forcing sets Z ⊆ V (G).

17



3.1. Introduction

When the color change rule is applied to a vertex u to change the color of

a vertex v, we say that u forces v and we write this as u → v. The sequence

u1 → v1, u2 → v2, . . ., uk → vk is called a forcing sequence for the zero forcing

set Z (See[29]).

Example 3.1.4. In Figure 3.2, the vertex set {1, 2} generates a minimum zero

forcing set for the house graph G. The order of applying the color change rule

to the vertices of the house graph G are 1→ 3 and 2→ 4, 3→ 5.

1

3 4

5

2 1

3 4

5

2 1

3 4

5

2

Figure 3.2: A minimum zero forcing set for the house graph marked by the black

vertices {1, 2} can been seen in the first figure. The forcing sequence 1→ 3 and

2→ 4 is shown in the second figure and the derived coloring of the house graph

after applying the forcing 3→ 5 is depicted in the third figure.

The parameter namely zero forcing number was found by the AIM Minimum

Rank Special Graphs Group (See[19]) and they used this parameter Z(G) to

bound the minimum rank for numerous families of graphs.

The zero forcing number of the splitting graph of a graph and some bounds

besides finding the exact value of this parameter are discussed in this chapter.

We prove that for any connected graph G of order n ≥ 2, Z[S(G)] ≤ 2Z(G).

18



3.1. Introduction

Also, many classes of graphs for which Z[S(G)] = 2Z(G) are discussed. Further,

classes of graphs in which Z[S(G)] < 2Z(G) are also shown.

We start with some preliminary results. For more definitions on graphs, we

refer to [12] and [16]. We can find the following observation in [9].

Observation 3.1.5. [9] For any connected graph G = (V,E) , Z(G) = 1 if and

only if G = Pn for some n ≥ 2.

We note that if G is a connected graph with order n≥ 3, then S(G) contains

a cycle C4. Therefore, by using the above observation we can determine the

following.

Theorem 3.1.6. Let G be a connected graph of order n ≥ 3. Then, Z[S(G)] ≥ 2,

and this bound is sharp for the path Pn, n ≥ 3.

Proof. Since G is a connected graph with order n ≥ 3, S(G) contains a cycle C4.

Therefore, Z[S(G)] ≥ 2 because Z(Cn) = 2 (See[19]). Next to prove the bound

is sharp for the path Pn, n ≥ 3.

Let u1, u2, . . . , un be the vertices of the path Pn and u′1, u
′
2, . . . , u

′
n be the corre-

sponding vertices in S(Pn). Assign black color to the vertices u1 and u′1. The

remaining vertices are assumed to be white. Then, u′1 → u2 and u1 → u′2 to

black. Again, u′2 → u3 and u2 → u′3 to black. After this stage, u′3 → u4 and

u3 → u′4 to black and so on. Hence the set Z = {u1, u
′
1} forms a zero forcing set

for S(Pn). The cardinality of the set Z is two. We can easily see that with only

one black vertex, we cannot generate a zero forcing set for S(Pn). Therefore,

Z[S(Pn)] = 2.
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3.2. Bounds on Z[S(G)]

Theorem 3.1.7. For any connected graph G = (V,E) , Z[S(G)] = 1 if and only

if G is the path P2.

Proof. If G = (V,E) is the path P2, then S(G) is the path P4 and therefore

Z[S(G)] = 1. The converse follows from Observation 3.1.5.

3.2 Bounds on Z[S(G)]

In this section, we prove some bounds on the zero forcing number of S(G).

Theorem 3.2.1. Let G be a connected graph of order n ≥ 3. Then, Z[S(G)] ≤

2Z(G).

Proof. Consider any minimum zero forcing set Z for G.

Let Z = {v1, v2, . . . , vk}, where 1 ≤ k ≤ n, be a minimum zero forcing set for G.

Now, consider the set

Z
′
= {v1, v2, . . . , vk} ∪ {v′1, v′2, . . . , v′k} ∈ V [S(G)]

where v′1, v
′
2, . . . , v

′
k be the copies of the vertices v1, v2, . . . , vk in S(G). Color all

vertices in Z
′

as black and the remaining vertices as white.

We show that the set Z
′
forms a zero forcing set for S(G). Consider the vertices in

G which has exactly one white neighbor in G. Let the vertices be v1, v2, . . . , vl, l ≤

k and v′1, v
′
2, . . . , v

′
l be the corresponding vertices of v1, v2, . . . , vl in S(G). Now,

we can see that in S(G), each one of N(v′1), N(v′2), . . . , N(v′l) contains exactly

one white vertex. Let it be u1, u2, . . . , ul. Clearly, v′1 → u1 to black, v′2 → u2 to

black, . . ., v′l → ul to black. Again, consider the set {v1, v2, . . . , vl} in S(G). At
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3.2. Bounds on Z[S(G)]

this time, we can see that v1 → u′1, v2 → u′2, . . ., vl → u′l to black. Consider the

white vertices which are adjacent to u1, u2, . . . , ul in G. Let it be w1, w2, . . . , wl.

Clearly, u′1 → w1 to black, u1 → w′1 to black and so on, where w′1, w
′
2, . . . , w

′
l are

the corresponding vertices of w1, w2, . . . , wl. Therefore, the set Z
′

forms a zero

forcing set for S(G). Hence the proof.

Definition 3.2.2. [33] A subset D ⊆ V (G) is called a dominating set if every

vertex not in D is adjacent to at least one vertex in D. The size of a minimum

dominating set D is called the domination number of G and is denoted by γ(G).

A dominating set which is connected is known as a connected dominating set

and the number of vertices in a minimum connected dominating set is called the

connected domination number γc(G).

In [1], Amos et al. determined the following upper bound on the zero forcing

number.

Corollary 3.2.3. [1] For any connected graph G of order n ≥ 2, Z(G) ≤ n −

γc(G).

From the Theorem 3.2.1 and the Corollary 3.2.3, we conclude the following upper

bound.

Theorem 3.2.4. For any connected graph G of order n ≥ 2, Z[S(G)] ≤ 2[n −

γc(G)], and this inequality is sharp.

Proof. Theorem 3.2.1 gives

Z[S(G)] ≤ 2Z(G) (3.1)
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3.3. Families of Graphs with Z[S(G)] = 2Z(G)

whereas Corollary 3.2.3 implies

Z(G) ≤ n− γc(G) (3.2)

From (3.1) and (3.2), Z[S(G)] ≤ 2[n−γc(G)]. To see the bound is sharp, consider

cycles of order n ≥ 4.

3.3 Families of Graphs with Z[S(G)] = 2Z(G)

In this Section, we provide some familiar families of graphs for which the

equality Z[S(G)] = 2Z(G) holds. We start with path and cycle.

Theorem 3.3.1. If G is the path Pn, n ≥ 3, then Z[S(G)] = 2 = 2Z(G).

Proof. Proof follows from the Observation 3.1.5 and the Theorem 3.1.6.

Theorem 3.3.2. If G is the cycle Cn, where n ≥ 4, then Z[S(G)] = 4 = 2Z(G).

Proof. Let v1, v2, ..., vn be the vertices of Cn and v′1, v
′
2, ..., v

′
n be the corresponding

vertices of v1, v2, ..., vn in S(Cn). Consider the set Z = {v1, v2, v
′
2, v
′
3}. Color these

vertices as black and the remaining vertices as white. Now, v′2 → v3 to black,

v′3 → v4 to black, v3 → v′4 to black and so on. Therefore, the set Z forms a

zero forcing set for S(G) and hence Z[S(G)] ≤ 4. We can easily verify that

with 3 black vertices, it is not possible to change the color of all other vertices

of S(G) to black. Therefore, Z[S(G)] ≥ 4. Hence, Z[S(G)] = 4 = 2Z(G), since

Z(G) = 2.
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3.3. Families of Graphs with Z[S(G)] = 2Z(G)

Figure 3.3: The splitting graph of C3 with Z[S(C3)] = 3.

If G is the graph C3, then we can choose the above 3 black vertices for the zero

forcing set of S(G) as depicted in Figure 3.3. Hence, Z[S(C3)] = 3.

Definition 3.3.3. [12] The star graph K1,n is a tree having n + 1 vertices with

one vertex having degree n and all other vertices have degree one.

Theorem 3.3.4. If G is the star graph K1,n on n+ 1 vertices, then Z[S(G)] =

2n− 2 = 2(n− 1) = 2Z(G).

Proof. Assume that we have a zero forcing set Z consisting of 2n − 3 black

vertices. Then, the number of white vertices in S(G) is 2n + 2 − (2n − 3) = 5.

Consider the five white vertices in S(G). Consider the case when either two of

them will be in A part or two of them will be in B part ( See figure 3.4 ). We can

easily verify that in this case the color change rule is not possible, a contradiction

to our assumption. Therefore, we need at least 2n− 2 black vertices in any zero

forcing set for S(G) and hence

Z[S(G)] ≥ 2n− 2 (3.3)

Conversely, consider the 4 white vertices as depicted in Figure 3.4. Consider

one black vertex from A part. This black vertex forces the vertex u to black.
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3.3. Families of Graphs with Z[S(G)] = 2Z(G)

Figure 3.4

Now, consider one black vertex from B part. This black vertex forces the vertex

w to black. Consider the vertex w. Then, the vertex w has exactly one white

neighbor. Clearly, the vertex w forces this white vertex to black. In a similar

manner, we can change the color of the white vertex in the A part to black.

Thus, with 2n − 2 black vertices, we will get a derived coloring of S(G). This

implies,

Z[S(G)] ≤ 2n− 2 (3.4)

From (3.3) and (3.4), we have Z[S(G)] = 2n − 2 = 2(n − 1) = 2Z(G), since

Z(G) = n− 1 (See[29]).

Theorem 3.3.5. [19] Let G be any graph. Then, Z(G) ≥ δ(G), where δ(G)

denotes the minimum degree of the graph G.

Theorem 3.3.6. Let G be a connected graph with Z(G) = k = δ(G) and let Ĝ

be the graph obtained from G by adding a single vertex v and joining the vertex

v to all vertices of G. Then, Z(Ĝ) = Z(G) + 1.
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3.3. Families of Graphs with Z[S(G)] = 2Z(G)

Proof. Since G is a graph with Z(G) = δ(G) and we have from the Theorem

3.3.5, δ(Ĝ) ≤ Z(Ĝ). Let u be a vertex in G with δ(G) = k. In Ĝ, δ(Ĝ) = k+1 =

δ(G) + 1. Therefore, δ(G) + 1 ≤ Z(Ĝ) . This implies,

Z(G) + 1 ≤ Z(Ĝ) (3.5)

Color the vertex v, which is connected to all vertices of G, as black. Then,

Z(G) ∪ {v} forms a zero forcing set for Z(Ĝ). This implies,

Z(Ĝ) ≤ Z(G) + 1 (3.6)

From (3.5) and (3.6), the result follows.

For a cycle Cn, Z(Cn) = 2. By using the Theorem 3.3.6, we can easily verify

that if G is a wheel graph, then Z(G) = 3.

Theorem 3.3.7. Let G be the wheel graph with n ≥ 5 vertices obtained by

connecting a single vertex to all vertices of the cycle Cn−1. Then, Z[S(G)] = 6.

Proof. From the above observation Z(G) = 3 and by the Theorem 3.2.1 , we can

conclude that

Z[S(G)] ≤ 6 (3.7)

To prove the reverse part, assume that Z[S(G)] = 5. Divide the graph S(G) into

three parts as shown in Figure 3.5.

Let v1, v2, . . . , vn−1 be the vertices in S(G) with deg(vi) = 6, 1 ≤ i ≤ n − 1,

v′1, v
′
2, . . . , v

′
n−1 be the vertices in S(G) with deg(v′i) = 3, 1 ≤ i ≤ n− 1 and let vn

be the vertex which is adjacent to {v1, v2, . . . , vn−1} ∪ {v′1, v′2, . . . , v′n−1} and v′n

be the vertex which is adjacent to {v1, v2, . . . , vn−1} with deg(vn) = 2n − 2 and
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3.3. Families of Graphs with Z[S(G)] = 2Z(G)

Figure 3.5

deg(v′n) = n− 1.

Case 1.

{vn, v′n} ∈ Z. Now, S(G) − {vn, v′n} = S(Cn). We know that from the theorem

3.3.2, Z[S(Cn)] = 4. This implies that Z[S(G)] = 4 + 2 = 6 6= 5, which is a

contradiction to our assumption that Z[S(G)] = 5.

Case 2.

Suppose vn ∈ Z and v′n /∈ Z. Now, we have four black vertices remain in Z.

If we use these four black vertices to begin the color change rule, then we can

observe that with these 4 black vertices we can change the color of at most two

vertices to black, not all. A contradiction to our assumption.

Case 3.

Suppose vn /∈ Z and v′n ∈ Z. Then, we have four black vertices remain in Z. If we
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3.3. Families of Graphs with Z[S(G)] = 2Z(G)

use these four black vertices to begin the color change rule, we can observe that

with these 4 vertices we can change the color of at most two vertices to black,

not all. Again, a contradiction to our assumption that Z[S(G)] = 5. Hence,

Z[S(G)] ≥ 6 (3.8)

From (3.7) and (3.8), we have Z[S(G)] = 6.

We prove one more family of graphs in which Z[S(G)] = 2Z(G). The follow-

ing definition can be found in [1].

Definition 3.3.8. [1] A connected graph G = (V,E) is defined as a cycle-path

graph (CP−graph) if it contains r vertex disjoint cycles that are connected by

(r − 1) edges of the path Pr. Thus, a CP -graph with n vertices contains m =

n+ r − 1 edges and each edge between two cycles is a cut edge.

Example 3.3.9. Let G be the graph depicted in Figure 3.6. Then, G represents

the CP -graph with the cycle C4 and the path P3. That is, the graph G is the

C4P3-graph.

Figure 3.6

Theorem 3.3.10. Let G be the CP -graph with r vertex disjoint cycles. Then,

Z(G) = r + 1.
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3.3. Families of Graphs with Z[S(G)] = 2Z(G)

Proof. We proceed by induction on the number of cycles r in G. Assume that

r = 1. In this case, G is a cycle. Hence, Z(G) = 2 = r + 1. Therefore, the

result is true for r = 1. Assume that the theorem is true for all CP -graphs with

r − 1 cycles, where r > 2. Let C be an end-cycle, that is, a cycle connected

to rest of the graph by an unique edge e = {u, v}, where u ∈ V (G) − C and

v ∈ C. The induced subgraph < G[V − C] > is a CP -graph with r − 1 < r

cycles. Therefore by our assumption, Z(< G[V − C] >) = r − 1 + 1 = r. Let

S be a minimum zero forcing set for < G[V − C] > and let w be the black a

neighbor of v on C. Consider the set Z = S ∪ {w}. Since {u, v} is the only cut

edge between < G[V − C] > and C, therefore, we can start the color change

rule for the vertices of < G[V − C] > with the vertices of the set S. Now, the

vertex u is black. Since u is a black vertex and the only one white vertex which is

adjacent to u is v, therefore, u→ v to black. In the cycle C, we can see that the

set {u,w} forms a zero forcing set for the cycle C, where u ∈ (< G[V − C] >).

Therefore by induction hypothesis, Z(G) = Z(< G[V − C] >) + |{w}| = r + 1.

Hence the proof.

Theorem 3.3.11. Let G be the CP -graph with r vertex disjoint cycles Cn, where

n ≥ 4. Then, Z[S(G)] = 2(r + 1).

Proof. We prove the result by induction on the number of cycles r on the CP -

graph. Assume that r = 1. In this case, G is a cycle. We have from the

Theorem 3.3.2, Z[S(G)] = 4 = 2(1 + 1). Therefore, the result is true for r = 1.

Assume that the result is true for all CP -graphs with r − 1 < r cycles, where

r > 2. Let C be an end-cycle, that is, a cycle connected to rest of the CP -graph

by an unique edge e = {u, v}, where u ∈ V (G)−C and v ∈ C and let S(C) be the
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3.3. Families of Graphs with Z[S(G)] = 2Z(G)

splitting graph of the cycle C in S(G). Now, S(C) is connected to the rest of S(G)

by three edges. Let these edges be X = {u1v1, u1v2, u2v1}, where {u1, u2} ∈<

V [S(G)] − V [S(C)] > ( ie, the subgraph induced by V [S(G)] − V [S(C)] ) and

{v1, v2} ∈ S(C). The induced subgraph < V [S(G)]− V [S(C)] > is a CP graph

with r − 1 cycles. Therefore by our assumption, Z{< V [S(G)]− V [S(C)] >} =

2[(r − 1) + 1] = 2r.

Let U be the minimum zero forcing set for < V [S(G)] − V [S(C)] >. Also, let

w1 be the neighbor of v1 in V [S(C)] and w
′
1 be the corresponding vertex of w1

in V [S(C)]. Let w1 and w
′
1 be black. Consider the set Z = U ∪ {w1, w

′
1}. Since

X is a cut set between S(G) − S(C) and S(C), therefore, the set U forces the

vertices v1 and v2 to black. The vertices w1 and w
′
1 are in Z. Therefore, the set

{v1, v2, w1, w
′
1} forms a zero forcing set for S(C) in S(G). Therefore by induction

hypothesis, Z[S(G)] = Z{< V [S(G)] − V [S(C)] >}+ | {w1, w
′
1} |= 2r + 2 =

2(r + 1). Hence the proof.

Definition 3.3.12. [12] The ladder graph Ln is the graph obtained by taking the

Cartesian product of Pn with P2.

In [19], it was proved that if G is the ladder graph, then Z(G) = 2. Now, we

prove one more family of graphs in which Z[S(G)] = 2Z(G).

Theorem 3.3.13. If G is the splitting graph of the ladder graph, then Z(G) = 4.

Proof. Consider the graph G depicted in Figure 3.7. Clearly, the set of left black

vertices of the graph G forms a zero forcing set for G. We can easily verify that

with three black vertices, we cannot form a zero forcing set for G. Therefore,

Z(G) = 4.
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Figure 3.7: The splitting graph G of the ladder graph with Z(G) = 4.

3.4 Families of Graphs with Z[S(G)] < 2Z(G)

We start this section with a CP -graph family in which Z[S(G)] < 2Z(G).

Consider the CP -graph C3Pr, where C3 is a cycle on 3 vertices and Pr is the

path on r > 1 vertices.

Theorem 3.4.1. Let G be the C3Pr graph. Then, Z[S(G)] = r + 2 < 2(r + 1).

Proof. Represent the r copies of the cycle C3 in G by C
(1)
3 , C

(2)
3 , . . . , C

(r)
3 , where

V [C
(1)
3 ] = {u1

1, u
1
2, u

1
3}

V [C
(2)
3 ] = {u2

1, u
2
2, u

2
3}

...
...

...

V [C
(r)
3 ] = {ur1, ur2, ur3}

Let A1 = {v1
1, v

1
2, v

1
3}, A2 = {v2

1, v
2
2, v

2
3}, . . . , Ar = {vr1, vr2, vr3} be the correspond-

ing vertex sets of the cycles C
(1)
3 , C

(2)
3 , . . . , C

(r)
3 in S(G) respectively. Consider

the set Z = {u1
2, v

1
1, v

1
2, u

2
1, u

3
1, . . . , u

r
1}. Color all vertices of the set Z as black

and the remaining vertices in S(G) as white. Then, clearly the black vertex v1
1
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forces the vertex u1
3 to black, v1

2 forces the vertex u1
1 to black, u1

1 forces the vertex

v1
3 to black, v1

3 forces the vertex u2
2 to black, u1

3 forces the vertex v2
2 to black, v2

2

forces the vertex u2
3 to black and so on. Thus, we get a derived coloring of the

graph S(G) using the set Z. Here | Z |= 3 + r − 1 = r + 2. Therefore,

Z[S(G)] ≤ r + 2 (3.9)

To prove the reverse inequality, consider S[C
(1)
3 ] in S(G). To obtain the derived

coloring for S[C
(1)
3 ], we need at least three black vertices. To proceed further, we

have to assign black color to at least one vertex of each of the remaining cycles

C
(2)
3 ,C

(3)
3 , . . . , C

(r)
3 in S(G). Hence to get the derived coloring for S(G), we need

at least 3 + (r − 1) = r + 2 black vertices. Therefore,

Z[S(G)] ≥ r + 2 (3.10)

Hence from (3.9) and (3.10), Z[S(G)] = r + 2. Therefore, Z[S(G)] = r + 2 <

2(r + 1) = 2Z(G). That is, Z[S(G)] < 2Z(G).

Definition 3.4.2. [12] The friendship graph Fn can be obtained by joining n

copies of the cycle C3 with a common vertex.

Now, we compute the zero forcing number of the friendship graph Fn. The

following Lemma can be found in [29].

Lemma 3.4.3. [29] Let G = (V,E) be a graph with cut-vertex v ∈ V (G).

Let X1, . . . , Xk be the vertex sets of the connected components of G − v and for

1 ≤ i ≤ k, let Gi = G[Xi ∪ {v}]. Then, Z(G) ≥
k∑

i=1

Z(Gi)− k + 1.

Theorem 3.4.4. For a friendship graph Fn with n copies of the cycle C3,

Z(Fn) = bp/2c+ 1, where p is the order of the friendship graph Fn.
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3.4. Families of Graphs with Z[S(G)] < 2Z(G)

Proof. Let v1, v2, . . . , vp be the vertices of Fn, where vp is the common vertex.

The cycle C3 is a complete graph of order three. Therefore, Z(C3) = 2. Since vp

is a cut vertex, G− vp will have bp/2c components. Hence Lemma 3.4.3 gives

Z(Fn) ≥ 2bp/2c − bp/2c+ 1 = bp/2c+ 1 (3.11)

To establish the reverse inequality, consider the following set of black vertices

Z = {v1, v3, . . . , vp−2} ∪ {vp}.

Clearly, the vertices v1 and vp are black, therefore, the vertex v1 → v2 to black.

The vertices v3 and vp are black, therefore, the vertex v3 → v4 to black and so on.

Similarly, the vertices vp−2 and vp are black, therefore, the vertex vp−2 → vp−1

to black. Thus, we get a derived coloring of the graph Fn with the set Z. The

cardinality of the set Z is bp/2c+ 1 and hence

Z(Fn) ≤ bp/2c+ 1 (3.12)

Therefore from (3.11) and (3.12), Z(Fn) = bp/2c+ 1.

Lemma 3.4.5. Let S(Fn) be the splitting graph of the friendship graph Fn and

let

Al = {vi, v′i, vj, v′j}, 1 ≤ l ≤ bp/2c

(vivj is an edge in Fn and i, j 6= p) be the set of vertices of S(Fn) obtained by

deleting the vertices vp and v′p from S(Fn). Then, at least one vertex from the

set Al will be in any optimal zero forcing set of S(Fn).

Proof. On the contrary, assume that none of them belongs to any zero forcing

set Z. That is, vi, v
′
i, vj, v

′
j /∈ Z. In any color change rule the vertices vp and v′p
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3.4. Families of Graphs with Z[S(G)] < 2Z(G)

will never force the vertices in Al to black, since N(vp) and N(v′p) have two white

neighbors in Al. Therefore, at least one vertex from the set Al will be in Z.

Theorem 3.4.6. For a friendship graph Fn, Z[S(Fn)] = bp/2c + 2, where p is

the order of the friendship graph Fn.

Proof. Let v1, v2, . . . , vp be the vertices of Fn, where vp is the common vertex.

Let v′1, v
′
2, . . . , v

′
p be the copies of the vertices v1, v2, . . . , vp in S(Fn). Now, con-

sider the set Z = {vp, v′p, v′1, v′3, v′5, . . . , v′p−2} of black vertices. The remain-

ing vertices are assumed to be white. Also, let T1 be the triangle in Fn with

V (T1) = {v1, v2, vp} and V (T ′1) = {v′1, v′2, v′p}, where v′1, v
′
2, v
′
p are the correspond-

ing vertices of v1, v2, vp in S(Fn).

We can see that in the color change rule, the vertex v′1 forces the vertex v2 to

black and then the vertex v2 forces the vertex v1 to black and then the ver-

tex v1 forces the vertex v′2 to black. Clearly, the set {vp, v′p, v′1} forms a zero

forcing set for V (T1) ∪ V (T ′1). In a similar manner, we can prove that the set

{vp, v′p, v′1, v′3} forms a zero forcing set for [V (T1)∪ V (T ′1)]∪ [V (T2)∪ V (T ′2)] and

so on, where V (T2) = {v3, v4, vp} and V (T ′2) = {v′3, v′4, v′p}. Therefore, the set

Z = {vp, v′p, v′1, v′3, v′5, . . . , v′p−2} forms a zero forcing set for S(Fn). Cardinality of

the set Z is bp/2c+ 2. Therefore,

Z[S(Fn)] ≤ bp/2c+ 2 (3.13)

To prove the reverse part, assume that there exists a zero forcing set Z consisting

of bp/2c+ 1 black vertices for S(Fn). Now, we consider the following cases.

Case 1.

The vertex v′p /∈ Z. Now, deg(vi) = 4 for i 6= p and in S(Fn) the vertex

33



3.4. Families of Graphs with Z[S(G)] < 2Z(G)

v′p is adjacent to all vertices of the friendship graph Fn, except the vertex vp.

Therefore, in any color change rule to force the vertex v′p, we need two more black

vertices from the set Al ( Refer Lemma 3.4.5 ), a contradiction to our assumption

that there exists a zero forcing set consisting of bp/2c + 1 black vertices . If we

take two more black vertices from the set Al, then we get a zero forcing set.

Therefore, it is clear from the Lemma 3.4.5 that Z[S(Fn)] ≥ bp/2c+ 2.

Case 2.

The vertex v′p ∈ Z and v′p is black. We have from the Lemma 3.4.5 that we

need at least one vertex from the set Al to get a zero forcing set. Without loss

of generality, assume that B = {v′1, v′3, . . . , v′p−2} is the set of black vertices of

S(Fn). Then, B ∪ {v′p} will never force the vertex vp to black, a contradiction

to our assumption. Therefore, we need at least one more black vertex from the

set Al to get a zero forcing set for S(Fn). Hence, Z[S(Fn)] ≥ bp/2c+ 2. In both

cases,

Z[S(Fn)] ≥ bp/2c+ 2 (3.14)

Therefore from (3.13) and (3.14), Z[S(Fn)] = bp/2c+ 2.

Definition 3.4.7. [12] The generalized friendship graph F k
p is the graph obtained

by joining k copies of the cycle Cp, p ≥ 4 and k ≥ p, with a common vertex vp.

The following theorem provides the zero forcing number of the generalized

friendship graph F k
p .

Theorem 3.4.8. For a generalized friendship graph F k
p , where p ≥ 4 and k ≥ p,

with a common vertex vp, Z(F k
p ) = k + 1.
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Proof. We know that for a cycle Cn, Z(Cn) = 2. Now, Lemma 3.4.3 gives

Z(F k
p ) ≥

k∑
i=1

Z(Ci)− k + 1 = 2k − k + 1 = k + 1 (3.15)

Conversely, consider one vertex from each cycle Cp, which is adjacent to the com-

mon vertex vp. Denote the k copies of the cycle Cp in F k
p as C

(1)
p , C

(2)
p , . . . , C

(k)
p ,

where

C(1)
p = v1

1, v
1
2, . . . , vp

C(2)
p = v2

1, v
2
2, . . . , vp

...
...

...

C(k)
p = vk1 , v

k
2 , . . . , vp

Consider the set of black vertices Z = {v1
1, v

2
1, . . . , v

k
1} ∪ {vp}. The remaining

vertices in F k
p are assumed to be white. Now, we can see that N(v1

1) contains

only one white vertex v1
2. Therefore, v1

1 → v1
2 to black, v1

2 → v1
3 to black and so on.

Similarly, we can see that N(v2
1) contains only one white vertex v2

2. Therefore,

v2
1 → v2

2 to black, v2
2 → v2

3 to black and so on. In the cycle C
(k)
p , we can see

that N(vk1) contains only one white vertex vk2 . Therefore, vk1 → vk2 to black,

vk2 → vk3 to black and so on. Thus, the set Z forms a zero forcing set for F k
p . The

cardinality of the set Z is k + 1. Hence,

Z(F k
p ) ≤ k + 1 (3.16)

Therefore from (3.15) and (3.16), Z(F k
p ) = k + 1.

Theorem 3.4.9. Let F k
p be the generalized friendship graph with p ≥ 4 and

k ≥ p, with a common vertex vp. Then, Z[S(F k
p )] ≤ 2k + 2.
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3.5. Z(G) and P (G) of the Splitting Graph of a Graph.

Proof. First we note that the Theorem 3.4.8 gives Z(F k
p ) = k + 1, and the

Theorem 3.2.1 implies Z[S(F k
p )] ≤ 2 Z(F k

p ). Combining these two results, we

get

Z[S(F k
p )] ≤ 2k + 2.

3.5 Z(G) and P (G) of the Splitting Graph of a

Graph.

Definition 3.5.1. [22] A path cover of a graph G is a set of vertex disjoint paths

of G containing all the vertices of G. The minimum number of paths in any path

cover of G is called the path cover number of G and is denoted by P (G).

Theorem 3.5.2. [22] For any connected graph G,P (G) ≤ Z(G).

Theorem 3.5.3. If G is the splitting graph of the path Pn on n ≥ 3 vertices,

then Z(G) = 2 = P (G).

Proof. The proof is obvious.

Theorem 3.5.4. If G is the splitting graph of the star graph K1,n, then Z(G) =

2n− 2 = P (G).

Proof. Let G be the splitting graph of the star graph K1,n. By Theorem 3.3.4,

we have Z(G) = 2n−2. Now, we prove P (G) = 2n−2. We consider the following

three cases.
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3.5. Z(G) and P (G) of the Splitting Graph of a Graph.

Case 1.

Suppose, if we take two vertex disjoint paths of length 1 (that is the complete

graph K2) to cover the graph G, then it must include the vertices u and w (Re-

fer figure 3.4). If we include u and w in these vertex disjoint paths, then there

remains 2n− 2 uncovered vertices. To count these vertices in the path covering,

we have to choose each of them as independent paths. In this case, the total

number of paths we need to cover the entire vertices in G is 2n− 2 + 2 = 2n.

Case 2.

Suppose, if we take two vertex disjoint paths of length 2 ( i.e the graph P3 ) to

cover the graph G, take two vertices from part A and the vertex u as the path

P1. Similarly, take any two vertices from part B and the vertex w as the path

P1 (Refer figure 3.4). As in Case 1, the total number of paths we need to cover

the entire vertices in G is 2n+ 2− 6 + 2 = 2n− 2.

Case 3.

Suppose, if we consider a path of length 3 ( i.e the path P4 ) as a path to cover

the graph G, then it is not possible to choose another path of length 2 or 3 as

a path to cover the vertices. Now as in Case 1, the total number of paths we

need to cover the entire vertices in G is 2n + 2 − 4 + 1 = 2n − 1. From the

above three cases, we can conclude that the minimum number of vertex disjoint

paths possible to cover the vertices in G is occurred in Case 2 and it is 2n − 2.

Therefore, P (G) = 2n− 2.

This completes the proof.

37



Chapter 4

k-Forcing Number of Some Graphs and Their

Splitting Graphs

In the first Section of this Chapter, we introduce the concept of k-

forcing number Zk(G) of a graph G. We investigate the 2-forcing

number Z2(G) of some graphs in Section 2. In this Section, we find

some simple graphs for which 1 ≤ Z2(G) ≤ 4. Then, we consider

some more graph classes for which Z2(G) > 4 in Section 3. In

Section 4, we provide some bounds on Z2(G).

4.1 Introduction

Definition 4.1.1. [1] A k-forcing set of a graph G is a subset Zk of vertices

of G such that if initially the vertices in Zk are colored black and the vertices in

V (G)− Zk are colored white, the whole graph G is colored black by applying the

k-color change rule. The k-forcing number Zk(G) is the minimum of | Zk |
1This chapter has been published in International Journal of Scientific Research in Math-

ematical and Statistical Sciences, Volume 6, Issue 3, 2019, Pages 121-127.
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4.2. Graphs for which 1 ≤ Z2(G) ≤ 4

over all k-forcing sets Zk ⊆ V (G).

When k = 1, this is equivalent to the zero forcing number, denoted by Z(G)

(See[19]). When k = 2, this is known as the 2-forcing number and is denoted by

Z2(G).

Definition 4.1.2. k-Color change rule. [1] Let G be a graph with each vertex

colored either black or white. If a black colored vertex has at most k white colored

neighbors, then change the color of k white neighbors to black.

When the k-color change rule is applied to an arbitrary vertex v to change the

color of some vertices w1, w2, . . . , wk to black, then we say that the vertex v “k-

forces” the vertices w1, w2, . . . , wk and we denote it as v → w1, v → w2, . . . , v →

wk. If it is zero forcing, then we say that the vertex v forces w.

The following definitions are necessary for the further development of this

chapter.

Definition 4.1.3. [34] Three vertices u, v and w in a graph G are said to be

3-consecutive if uv and vw are edges in G.

Definition 4.1.4. [27] The square of a graph G, represented by G(2), is the graph

with the vertex set same as that of the vertex set of G (ie, V (G)) and such that

two vertices are adjacent in G(2) if their distance in G is either 1 or 2.

4.2 Graphs for which 1 ≤ Z2(G) ≤ 4

In this section, we obtain some simple graphs for which 1 ≤ Z2(G) ≤ 4. We

start with path and cycle. The following theorems are easy to observe.
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4.2. Graphs for which 1 ≤ Z2(G) ≤ 4

Theorem 4.2.1. Let G be a connected graph. If ∆(G) ≤ 2, then Z2(G) = 1.

Theorem 4.2.2. If G is a connected graph with minimum degree δ ≥ 3, then

Z2(G) ≥ 2.

Next we consider some classes of graphs for which Z2(G) = 1.

Theorem 4.2.3. Let G be the corona product Cn � K1 of a cycle Cn with the

graph K1. Then, Z2(G) = 1.

Proof. Color any pendant vertex of G as black. Then, clearly this black vertex

generates a 2-forcing set for G. This completes the proof.

Theorem 4.2.4. Let G be the square graph of a path Pn, where n ≥ 3. Then,

Z2(G) = 1.

Proof. Let v1, v2, . . . , vn be the vertices of the graph G. We generate a 2-forcing

set for G as follows. Color the vertex v1 as black. The remaining vertices are

assumed to be white. Clearly, the vertex v1 is adjacent to the vertices v2 and v3.

So the black vertex v1 2-forces the vertices v2 and v3 to black. Again, consider

the black vertex v2. The vertex v2 is adjacent to the vertices v1, v3 and v4 of

which the vertices v1 and v3 are already black. Therefore, the vertex v2 forces

the vertex v4 to black and the process continues till we get a derived coloring for

G. Hence the set Z2 = {v1} forms a 2-forcing set for G. The cardinality of the

set Z2 is 1. Therefore, Z2(G) = 1.

Theorem 4.2.5. Let G be the graph Cn � K1. Let G1, G2, . . . , Gm,m ≥ n, be

the m copies of G and let G∗ be the graph obtained by identifying a pendant

vertex of G1 with a pendant vertex of G2, a pendant vertex of G2 with a pendant
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4.2. Graphs for which 1 ≤ Z2(G) ≤ 4

vertex of G3 etc, a pendant vertex of Gn−1 with a pendant vertex of Gn. Then,

Z2(G∗) = 1.

Proof. Color any pendant vertex of G1 as black. Then, clearly this black vertex

gives a derived coloring for the graph G∗. Hence, Z2(G∗) = 1.

Definition 4.2.6. [20] The prism graph or the circular ladder graph is the graph

obtained by taking the Cartesian product of a cycle Cn with the complete graph

K2. The circular ladder graph can be denoted as Cn�K2.

Theorem 4.2.7. Let G be the prism graph Cn�K2 and v1, v2, . . . , vn be the ver-

tices of the cycle Cn. Let v′1, v
′
2, . . . , v

′
n be the vertices corresponding to v1, v2, . . . , vn

in Cn�K2. Let H be the graph obtained by sub dividing the edges v1v
′
1, v2v

′
2, . . . , vnv

′
n

in Cn�K2 exactly once. Then, Z2(H) = 1.

Proof. Let w be the vertex which subdivides the edge v1v
′
1 of G exactly once.

Color the vertex w as black and the remaining vertices as white. Then, the black

vertex w 2-forces the vertices v1 and v′1 to black. Again, the black vertex v′1 2-

forces the vertices v′2 and v′n to black, the black vertex v1 2-forces the vertices v2

and vn to black and so on. Thus, the set Z2 = {w} forms a 2-forcing set for H.

Hence, Z2(H) = 1.

Theorem 4.2.8. Let G be the graph Pn�Pm, where Pn and Pm are two paths,

n ≥ 2 and m ≥ 2. Then, Z2(G) = 1.

Proof. Consider the vertex u of G with δ(u) = 2. Assign black color to the vertex

u. Then, we can easily observe that the set Z2 = {u} generates a 2-forcing set

for G. Therefore, Z2(G) = 1.
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4.2. Graphs for which 1 ≤ Z2(G) ≤ 4

Now we consider some splitting graphs.

Theorem 4.2.9. Let G be a path, where n ≥ 3 and 2 ≤ k ≤ ∆ be a positive

integer. Then, the 2-forcing number of the splitting graph of G is 1. That is,

Z2[S(G)]=1.

Proof. Let v1, v2, . . . , vn be the vertices of G and v′1, v
′
2, . . . , v

′
n be the correspond-

ing neighbors of the vertices v1, v2, . . . , vn in S(G). Consider the set Z2 = {v′2}.

Color the vertex v′2 as black and all other vertices as white. Clearly, the vertex

v′2 is adjacent to only two white vertices v1 and v3. Therefore, the black vertex

v′2 2-forces the vertices v1 and v3 to black. Then, the black vertex v1 forces the

vertex v2 to black. Now, the vertex v2 2-forces the vertices v′1 and v′3 to black

and the process continues till we get the derived coloring for the graph G. Thus,

the set Z2 = {v′2} forms a 2-forcing set for S(G). Hence, Z2[S(G)] = 1. We can

easily verify that if k > 2, then Zk[S(G)] = 1.

Next we consider the splitting graph of a cycle Cn

Theorem 4.2.10. Let G be the cycle Cn, where n ≥ 4. Then, Z2[S(G)] = 2.

Moreover, Zk[S(G)] = 1, If 3 ≤ k ≤ 4.

Proof. Let A = {u1, u2, . . . , un} be the vertex set of the cycle Cn in S(G) and

B = {u′1, u′2, . . . , u′n} be the set of corresponding vertices of A = {u1, u2, . . . , un}

in S(G). We observe that the degree of each vertex in A is 4 and the degree

of each vertex in B is 2 in S(G). Assume that there exists a 2-forcing set with

cardinality one. Let v ∈ S(G) be the black vertex.

Case 1.

Assume v ∈ B. Clearly, the vertex v is black and all other vertices in S(G) are
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4.2. Graphs for which 1 ≤ Z2(G) ≤ 4

white. Now, the vertex v can 2-forces two more white vertices to black, not all

because each vertex of B is adjacent to two vertices in A and each vertex in A is

of degree 4. A contradiction to our assumption that there exists a 2-forcing set

with cardinality one.

Case 2.

Assume v ∈ A. We can easily observe that the color change rule is not possible,

since all the vertices in A have degree 4. Therefore,

Z2[S(G)] ≥ 2 (4.1)

To prove the reverse part, we proceed as follows.

Let Z2 = {u1, u
′
1}. Color u1, u′1 as black and all other vertices as white. Clearly,

the black vertex u′1 2-forces the vertices u2 and un to black. Now, the vertex u1

2-forces the vertices u′2 and u′n to black. Consider the black vertex u2. The vertex

u2 is adjacent to u1, u
′
1, u3, u

′
3 and the vertices u1, u

′
1 are already colored black. So

the vertex u2 2-forces the vertices u3 and u′3 to black, and the process continues

till we obtain the derived coloring for S(G). Therefore, the set Z2 = {u1, u
′
1}

forms a 2-forcing set for S(G). Hence,

Z2[S(G)] ≤ 2 (4.2)

Therefore from (4.1) and (4.2), Z2[S(G)] = 2.

Case 3.

If 3 ≤ k ≤ 4, then any black vertex forms a 2-forcing set for S(G). Hence,

Zk[S(G)] = 1.

Corollary 4.2.11. If G is the cycle C3, then Z2[S(G)] = 1.

Proof. Let u1, u2, u3 be the vertices of G and u′1, u
′
2, u′3 be the corresponding

43



4.2. Graphs for which 1 ≤ Z2(G) ≤ 4

vertices of u1, u2, u3 in S(G). Color the vertex u′1 as black and the other vertices

as white. Clearly, the vertex u′1 2-forces the vertices u2 and u3 to black. Then,

the vertex u2 2-forces the vertices u1 and u′3 to black, the vertex u3 forces u′2 to

black. Thus, the set Z2 = {u′1} generates a 2-forcing set for S(G). Therefore,

Z2[S(G)] = 1.

Theorem 4.2.12. Let G be the ladder graph Pn�P2. Then, the 2-forcing number

of the splitting graph of G is 2. That is, Z2[S(G)] = 2.

Proof. Let A = {u1, u2, . . . , un} and B = {v1, v2, . . . , vn} be the vertex sets

of the copies of the path Pn in S(G). Then, C = {u′1, u′2, . . . , u′n} and D =

{v′1, v′2, . . . , v′n} be the sets of the corresponding vertices of the copies A and B

of the path Pn in S(G) respectively. We can easily assert that it is not possible

to obtain a 2- forcing set for S(G) with only one black vertex. Therefore,

Z2[S(G)] ≥ 2 (4.3)

We generate a derived coloring for S(G) by taking 2 black vertices and all other

vertices are colored as white. Let Z2 = {u1, u
′
1} be a set of black vertices in S(G).

Since u′1 is adjacent to v1 and u2, therefore, the vertex u′1 2-forces the vertices

v1 and u2 to black. Now, the vertex u1 is adjacent to the vertices u2, u′2, v1 and

v′1. The vertices v1 and u2 are already colored black. Therefore, the vertex u1

2-forces the vertices v′1 and u′2 to black. Apply the color change rule iteratively,

all the remaining white vertices in S(G) will be colored as black. Thus, the set

Z2 generates a 2-forcing set for S(G). The cardinality of the set Z2 is 2. Hence,

Z2[S(G)] ≤ 2 (4.4)

From the above two inequalities, we have Z2[S(G)] = 2.
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Theorem 4.2.13. Let G be the prism graph Cn�K2. Then, Z2(G) = 2.

Proof. Let V (G) = {u1, u2, . . . , un, v1, v2, . . . , vn} be the vertex set of G, where

u1, u2, . . . , un are the vertices of the inner cycle. We construct a 2-forcing set for

G as follows. Without loss of generality, take two vertices u1 and u2. Assign them

the black color. The remaining vertices are considered to be white. Clearly, the

black vertex u1 2- forces the vertices v1 and un to black. Also, the black vertex

u2 2- forces the vertices v2 and u3 to black. Now, the vertex u3 2-forces the

vertices v3 and u4 to black. Repeatedly apply these steps, we can see that the

set Z2 = {u1, u2} generates a 2-forcing set for G. Here the cardinality of the set

Z2 is 2.

Therefore,

Z2(G) ≤ 2 (4.5)

On the other hand, it is clear that we cannot form a 2-forcing set for G with only

one black vertex. Therefore,

Z2(G) ≥ 2 (4.6)

The above two inequalities conclude the result.

Definition 4.2.14. The graph C4�K2 is known as the 3-regular cube Q3.

Theorem 4.2.15. Let G be the 3-regular cube graph C4�K2. Then, Z2(G) = 2.

Proof. Proof is obvious by the Theorem 4.2.13.

We recall the following Theorem from [1] to prove the next result.

Theorem 4.2.16. [1] For any connected graph G with minimum degree δ, Z2(G) ≥

δ − 1.
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4.2. Graphs for which 1 ≤ Z2(G) ≤ 4

Theorem 4.2.17. Let G be the wheel graph on n ≥ 5 vertices. Then, Z2(G) = 2.

Proof. Since the minimum degree δ = 3 in a wheel graph, we have from the

Theorem 4.2.16,

Z2(G) ≥ 2 (4.7)

Conversely, let u, u1, u2, . . . , un−1 be the vertices of G, where u is the central

vertex. Consider two adjacent vertices, say u1 and u2, on the outer cycle Cn−1 of

the wheel graph G and color these vertices as black. Let Z2 = {u1, u2}. Clearly,

the set Z2 forms a 2-forcing set for the graph G and therefore

Z2(G) ≤ 2 (4.8)

From (4.7) and (4.8), Z2(G) = 2.

Next Theorem deals with a particular class of graph for which Z2[S(G)] = 3.

Theorem 4.2.18. For a wheel graph G on n ≥ 5 vertices, Z2[S(G)] = 3.

Proof. In S(G), it is clear that with 2 black vertices we can 2-force the maximum

of two more vertices to black, not all. Therefore,

Z2[S(G)] ≥ 3 (4.9)

Let v1, v2, . . . , vn−1 be the vertices on the cycle Cn−1 and vn be the central vertex

of the wheel graph. Also, let v′1, v
′
2, . . . , v

′
n−1 be the corresponding vertices of

v1, v2, . . . , vn−1 in S(G) and v′n be the vertex corresponds to the vertex vn in

S(G). Consider the set Z2 = {v′1, v′2, vn} of black vertices in S(G) and assume

that the remaining vertices are white. Clearly, the vertex v′1 → {v2, vn−1} to

black and v′2 → {v1, v3} to black. Now, in N(v1), we have exactly two white
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4.2. Graphs for which 1 ≤ Z2(G) ≤ 4

neighbors v′n−1 and v′n. Therefore, v1 → {v′n−1, v
′
n} to black. The remaining

white vertices forms a splitting graph of the cycle and hence we can force all the

vertices as black. Since the cardinality of the set Z2 is 3,

Z2[S(G)] ≤ 3 (4.10)

Hence, the result follows from (4.9) and (4.10).

Next Theorem deals with another class of graph G for which Z2(G) = 3.

Theorem 4.2.19. Let G be the cycle Cn, where n ≥ 5. Then, Z2[G(2)] = 3.

Proof. Clearly, the graphG(2) is a 4 regular graph. Therefore, ∆[G(2)] = δ[G(2)] =

4. So by using the Theorem 4.2.16, we have

Z2[G(2)] ≥ 4− 1 = 3 (4.11)

Conversely, let the vertices of G be v1, v2, . . . , vn−1, vn. Color the vertices v1, v2, v3

as black and the remaining vertices as white. Clearly, the vertex v1 2-forces the

vertices vn and vn−1 to black. Now, v2 → v4 as black, v3 → v5 to black and so

on. Hence the set Z2 = {v1, v2, v3} forms a 2-forcing set for G(2). The cardinality

of the set Z2 is 3. Therefore,

Z2[G(2)] ≤ 3 (4.12)

Therefore from the above two inequalities, we have Z2[G(2)] = 3.

Theorem 4.2.20. Let G be the prism graph Cn�K2, where n ≥ 4. Then,

Z2[S(G)] = 4.

Proof. Clearly, with two black vertices we can force the maximum of two more

vertices to black in S(G). Therefore, color change rule is not applicable with
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4.2. Graphs for which 1 ≤ Z2(G) ≤ 4

two black vertices. This implies that Z2[S(G)] 6= 2. Assume that Z2[S(G)] = 3.

Since the vertices in S(G) are of degree 3 or 6, we have the following cases.

Suppose that u, v, w are the three black vertices in S(G). The remaining vertices

in S(G) are assumed to be white.

Case 1.

Suppose u, v and w are mutually non adjacent. Now, | N(u) |= 3 or 6, |

N(v) |= 3 or 6 and | N(w) |= 3 or 6. Since N(u), N(v) and N(w) contain 3

or 6 white vertices, the color change rule is not applicable. This implies that

there exists at least two adjacent black vertices in the 2- forcing set. Therefore,

deg(u) = deg(v) = deg(w) = 3 is not possible, since the vertices with degree

three are independent.

Case 2.

Suppose that deg(u) = deg(v) = deg(w) = 6. The number of white vertices

adjacent to u, v or w is at least 4. Therefore, these black vertices will never force

any of the other vertices, a contradiction to our assumption that Z2[S(G)] = 3.

Case 3.

Suppose that deg(u) = deg(v) = 6 and deg(w) = 3. In this case, at least two

vertices must be adjacent by Case 1. Assume that u ∼ v and deg(w) = 3. We

observe that to force any other vertex, the vertices u, v and w must form a path

of length 2. That is, they must form 3-consecutive vertices. Since the graph

is triangle free, therefore in this case, we can force the maximum of two more

vertices to black, a contradiction to our assumption.

Case 4.

deg(u) = deg(v) = 3 and deg(w) = 6. Since deg(u) = deg(v) = 3, this implies

that u is not adjacent to v. Now, we have the following two Subcases.
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4.2. Graphs for which 1 ≤ Z2(G) ≤ 4

Subcase 1.

Assume that u is adjacent to w and v is not adjacent to w. Then, the vertex u

will force two white vertices of degree 6 to black and these two vertices will have

at least 4 white vertices adjacent to it. Therefore, further forcing is not possible,

a contradiction to our assumption that Z2[S(G)] = 3.

Subcase 2.

Assume that w ∼ u and w ∼ v. In this case u and v together can force a

maximum of 4 more vertices to black, not all. By considering the above cases,

we can conclude that

Z2[S(G)] ≥ 4 (4.13)

To prove the reverse inequality, consider the graph depicted in Figure 4.1. In

Figure 4.1: The splitting graph of the prism graph C4�K2
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this figure, the orange vertices represent the white vertices. Consider the set

of black vertices {1, 2, 3, 4}. The vertices 6 and 10 are 2-forced to black by the

vertex 1. Consider the vertex 2. Since the vertex 6 and 10 are black and they

are in the open neighborhood of the vertex 2, therefore, the vertices 5 and 9

are 2-forced to black by the vertex 2. Since there are two white neighbors in the

open neighborhood of the vertex 4, therefore, the vertices 7 and 11 are 2-forced to

black by the vertex 4. Now, if we consider the vertex 3, it can 2-forces the vertices

8 and 12 to black. If we color the vertex set {5, 6, 7, 8} or {9, 10, 11, 12} as black,

then also we can force the remaining vertices to black. The same argument is

true for the splitting graph of the prism graph, where n ≥ 5. The cardinality of

the set {1, 2, 3, 4} is 4. Hence,

Z2[S(G)] ≤ 4 (4.14)

Therefore from (4.13) and (4.14), Z2[S(G)] = 4.

4.3 Graphs with Z2(G) > 4

In this section, we consider some more graph classes in which Z2(G) > 4. We

start with the splitting graph of the star graph.

Theorem 4.3.1. Let G be the star graph K1,n on n + 1 vertices, where n ≥ 5.

Then, Z2[S(G)] = 2n− 4.

Proof. Assume that we have a 2- forcing set consisting of 2n− 5 black vertices.

Then, the number of white vertices in S(G) is 7 , that is, 2n+ 2− (2n− 5) = 7.

We divide the vertex set of S(G) into four sets A = {u′}, B = {u1, u2, . . . , un},
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4.3. Graphs with Z2(G) > 4

C = {u} and D = {u′1, u′2, . . . , u′n} as depicted in Figure 4.2.

Case 1.

Assume that the vertices in A and C are white. Consider the remaining 5 white

vertices in S(G). Then, we have the following Subcases.

Subcase 1.

Assume that 3 of them will be in B and 2 of them will be in D or vice versa. We

can see that the color change rule is not applicable in this case, because three

vertices will remain as white either in B or in D.

Subcase 2.

Assume that 4 of them will be in B and 1 will be in D or vice versa. In this

case the color change rule is not possible, since four vertices will remain as white

either in B or in D.

Subcase 3.

Assume that there exists no white vertex in the set B and all 5 white vertices

are in the set D or vice versa. Here also we cannot apply the color change rule.

Case 2.

Assume that the vertices in A and C are black. The remaining 7 white vertices

can be distributed in the sets B and D as follows.

B D

7 0

6 1

5 2

4 3
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We note that the number of vertices in B and D can also be interchanged. From

the above partition we can observe that in each case, at least 3 white vertices

will be either in B or in D. Therefore, the color change rule is not possible.

Case 3.

Assume that the vertex u′ ∈ A is black or the vertex u ∈ C is black. Consider

the following distribution of the 7 white vertices among the sets A,B,C and D.

B D A and C

6 0 1

0 6 1

1 5 1

5 1 1

4 2 1

2 4 1

3 3 1

From the above partition, we can see that at least 3 white vertices will be there

in B or in D. Therefore, the color change rule is not possible in this case. From

the above cases we conclude that with 2n− 5 black vertices, we cannot obtain a

derived coloring for S(G). Therefore,

Z2[S(G)] ≥ 2n− 4 (4.15)

On the other hand, let A = {u′}, B = {u1, u2, . . . , un−1, un}, C = {u}, D =

{u′1, u′2, . . . , u′n−1, u
′
n}. Consider the 6 white vertices as u, u′, un, un−1, u

′
n, u

′
n−1.

Consider one black vertex, say u1, in B. Clearly, the vertex u1 2-forces the

vertices u and u′ to black. Consider the vertex u′. Then, the black vertex u′
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u
′

A

u2

u1

un−1

un
B

u

C

u′2

u′1

D

u′n

u′n−1

Figure 4.2: The splitting graph of the graph K1,n

2-forces the vertices un−1 and un to black. Again, the vertex u 2-forces the

vertices u′n and u′n−1 to black. Therefore, the set Z2 = {u1, u2, . . . , un−2} ∪

{u′1, u′2, . . . , u′n−2} of black vertices forms a 2-forcing set for the graph S(G).

Thus, we will get a derived coloring for S(G) with all vertices colored black.

Hence, Z2[S(G)] ≤ n− 2 + n− 2 = 2n− 4. Therefore,

Z2[S(G)] ≤ 2n− 4 (4.16)

From (4.15) and (4.16), Z2[S(G)] = 2n− 4.

Remark 19 . If G is the star graph K1,2, then Z2[S(G)] = 1.

Theorem 4.3.2. Let G be the generalized friendship graph F k
p , p ≥ 6, k ≥ p.

Then, Z2(G) = k − 1.

Proof. Represent the k cycles in F k
p as C

(1)
p , C

(2)
p , . . . , C

(k)
p , where

V [C(1)
p ] = {v1

1, v
1
2, . . . , vp}

V [C(2)
p ] = {v2

1, v
2
2, . . . , vp}
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...
...

...

V [C(k)
p ] = {vk1 , vk2 , . . . , vp}

Consider the set of black vertices Z2 = {v1
1, v

2
1, . . . , v

k−1
1 }. The remaining vertices

in G are assumed to be white. We can see that N(v1
1) contains only two white

vertices vp and v1
2. Therefore, the black vertex v1

1 2-forces the vertices vp and v1
2

to black. The vertex v1
2 forces v1

3 to black and so on. Similarly, we can observe

that N(v2
1) contains vertices vp and v2

2 of which vp is already black. Now, v2
1 → v2

2

to black, v2
2 → v2

3 to black and so on. In a similar way, vk−1
1 → vk−1

2 to black,

vk−1
2 → vk−1

3 to black and so on. Consider the cycle C
(k)
p in G. The vertex set

of the cycle C
(k)
p is {vk1 , vk2 , . . . , vp}. The black vertex vp is adjacent to two white

vertices vk1 and vkp−1. So the black vertex vp 2- forces the vertices vk1 and vkp−1 to

black. Now, vk1 → vk2 to black , vk2 → vk3 to black and so on in C
(k)
p . Therefore,

the set Z2 forms a 2- forcing set for F k
p . The cardinality of the set Z2 is (k − 1).

We can easily observe that with (k − 2) black vertices it is not possible to form

a 2-forcing set for G, because there exists at least 4 white vertices adjacent to

the vertex vp. Hence, Z2(G) = k − 1.

4.4 Bounds on Z2(G)

In this section, we consider some bounds on Z2(G).

Theorem 4.4.1. For any connected graph G of order n ≥ 3, Z2[S(G)] ≤ 2Z2(G).

Proof. Assume that Z2 = {u1, u2, . . . , um}, 1 ≤ m ≤ n, be a minimun 2-forcing
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set for G. Now, consider the set

Z
′

2 = {u1, u2, . . . , um} ∪ {u′1, u′2, . . . , u′m} ∈ V [S(G)]

where u′1, u
′
2, . . . , u

′
m be the copies of the vertices u1, u2, . . . , um in V [S(G)]. Color

all the vertices in Z
′
2 as black. We prove that the set Z

′
2 will form a 2-forcing

set for S(G). Assume that G is colored with black and white vertices and the

vertices in Z2 are black. Consider the vertices in G which have exactly two

white neighbors in G. Let it be u1, u2, . . . , ul, where l ≤ m and u′1, u
′
2, . . . , u

′
l

be the vertices corresponds to u1, u2, . . . , ul in S(G). We see that in S(G), each

one of N(u′1), N(u′2), . . . , N(u′l) contains exactly two white vertices. Let it be

V1, V2, . . . , Vl, where each one of V1, V2, . . . , Vl represents the set of two white

vertices. Clearly, u′1 → V1 to black, u′2 → V2 to black, . . ., u′l → Vl to black.

Consider the set {u1, u2, . . . , ul} in S(G). At this point of time, we can see that

u1 → V ′1 to black, u2 → V ′2 to black,. . ., ul → V ′l to black, where V ′1 , V
′

2 , . . . , V
′
l are

the corresponding vertices of V1, V2, . . . , Vl . Consider the white vertices which

are adjacent to V1, V2, . . . , Vl in G. Let it be w1, w2, . . . , wl. Clearly, V ′1 → w1 to

black, V1 → w′1 to black and so on, where w′1, w
′
2, . . . , w

′
l denote the corresponding

vertices of w1, w2, . . . , wl respectively. Therefore, the set Z
′
2 forms a 2- forcing

set for S(G). Hence, Z2[S(G)] ≤ 2Z2(G).

Now, we consider the following results from [1] and [8] to prove a relationship

between Z(G), Z2(G) and Z[S(G)].

Theorem 4.4.2. [8] Let G be a connected graph of order n ≥ 3. Then, Z[S(G)] ≤

2Z(G).

Theorem 4.4.3. [1] Let G = (V,E) be a connected graph. Then, Z(G) ≥ Z2(G).
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Next we prove a relationship between Z(G), Z2(G) and Z[S(G)].

Theorem 4.4.4. Let G be a connected graph of order n ≥ 3. Then, Z2(G) +

Z[S(G)] ≤ 3Z(G), and the bound is sharp if G is the path P3.

Proof. Theorem 4.4.2 and Theorem 4.4.3 imply that Z2(G) +Z[S(G)] ≤ Z(G) +

2Z(G) = 3Z(G). This bound is sharp for P3, since Z2(P3) = 1, Z[S(Pn)] = 2

and Z(G) = 1.

56



Chapter 5

Connected k -Forcing Number of Graphs and

Splitting Graphs

In this Chapter, we address the problem of determining the connected k-forcing

number Zck(G) of certain graphs. In Section 1, we find the connected zero forc-

ing number and the connected k-forcing number of some familiar graphs and

splitting graphs. We also provide an upper bound of Zck(G�H) for the corona

product of two graphs G and H. In Section 2, we investigate the connected zero

forcing number and the connected k-forcing number of rooted product of some

graphs, the CP -graph C3Pr and the circular ladder graph. Section 3 deals with

the connected k-forcing number of square graph of path and cycle.

5.1 Introduction

Definition 5.1.1. [1] k-color change rule: Let G be a graph with each ver-

tex colored either black or white. If a black colored vertex has at most k white

1This chapter has been published in the Journal of Mathematical and Computational Sci-

ence, Volume 10, Number 3, 2020, Pages 656-680.
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neighbors, then change the color of k white neighbors to black. When the k-color

change rule is applied to an arbitrary vertex v to change the color of some ver-

tices w1, w2, . . . , wk to black, then we say that the vertex v “k-forces” the vertices

w1, w2, . . . , wk and we denote it as v → w1, v → w2, . . . , v → wk.

Definition 5.1.2. [1] A k-forcing set of a graph G is a subset Zk of vertices

of G such that if initially the vertices in Zk are colored black and the vertices in

V (G)− Zk are colored white, the whole graph G is colored black by continuously

applying the k-color change rule. The k-forcing number Zk(G) is the min-

imum of | Zk | over all k-forcing sets Zk ⊆ V (G). If the subgraph induced by

the vertices in Zk (ie, 〈Zk〉) is connected, then Zk is known as the connected k-

forcing set, denoted by Zck.

Definition 5.1.3. The connected k-forcing number Zck(G) is the minimum

of | Zck | over all connected k- forcing sets Zck ⊆ V (G).

When k = 1, this is known as the connected zero forcing number and is denoted

by Zc(G).

From the definitions above, we have the following Theorem.

Theorem 5.1.4. Let Pn be a path, where n ≥ 3. Then,

Zck[S(Pn)] =


3 if k = 1

1 if k ≥ 2.

Proof. Case 1.

Assume that k = 1. We can easily observe that if we color any two adjacent
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vertices as black, it is not possible to obtain a derived coloring for S(Pn). There-

fore,

Zc[S(Pn)] ≥ 3 (5.1)

Let u1, u2, . . . , un be the vertices of Pn and u
′
1, u

′
2, . . . , u

′
n be the corresponding

vertices in S(Pn). Color the vertices u1, u2 and u
′
1 as black and the remaining

vertices as white. Clearly, the vertex u1 forces u
′
2 to black. Then, the vertex u

′
2

forces u3 to black, the vertex u2 forces u
′
3 to black and so on. Therefore, the set

Zc = {u1, u2, u
′
1} forms a connected zero forcing set for S(Pn). Therefore,

Zc[S(Pn)] ≤ 3 (5.2)

Hence from (5.1) and (5.2), Zc[S(Pn)] = 3.

Case 2.

Assume that k ≥ 2. In this case if we color the vertex u1 as black, then the black

vertex u1 forms a connected zero forcing set and hence the result follows.

Theorem 5.1.5. For any simple graph G, Z(G) ≤ Zck(G) for any fixed positive

integer k.

Proof. Proof is obvious.

We consider the next Theorem from [8] to prove the result for the splitting graph

of a cycle Cn.

Theorem 5.1.6. [8] If G is the cycle Cn, where n ≥ 4, then Z[S(G)] = 4.

In the succeeding Theorem, we consider the splitting graph of a cycle Cn, n ≥ 4.
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Theorem 5.1.7. Let S(Cn) be the splitting graph of a cycle Cn, n ≥ 4. Then,

Zck[S(Cn)] =



4 if k = 1

3 if k = 2

1 ifk ≥ 3.

Proof. Case 1.

Assume that k = 1. From the Theorem 5.1.5 and the Theorem 5.1.6, we have

Zc[S(Cn)] ≥ 4 (5.3)

To prove the reverse part, consider the vertices of the cycle Cn as v1, v2, . . . , vn

and v′1, v
′
2, . . . , v

′
n be the corresponding vertices in S(Cn). Consider the set Zc =

{v1, v
′
1, v2, v

′
2}. Color the vertices of the set Zc as black and the remaining vertices

as white. Then, the vertex v′2 → v3 to black, v2 → v′3 to black, v′3 → v4 to black,

v3 → v′4 to black and so on. Therefore, we can find a derived coloring for S(Cn)

with the set Zc = {v1, v
′
1, v2, v

′
2}. The cardinality of the set Zc is 4. Therefore,

we have

Zc[S(Cn)] ≤ 4 (5.4)

Hence from (5.3) and (5.4), Zc[S(Cn)] = 4.

Case 2.

Assume that k = 2 and Zc2[S(Cn)] = 2. Consider a connected 2-forcing set

consisting of two black vertices. Let u and v be the two adjacent black vertices

in the connected 2-forcing set for S(Cn). Then, we have the following Subcases.

Subcase 1.

deg(u) = deg(v) = 4. Since u and v are adjacent to three white neighbors, the
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color change rule is not applicable in this case, a contradiction to our assumption

that Zc2[S(Cn)] = 2.

Subcase 2.

deg(u) = 2 and deg(v) = 4. In this case, the black vertex u can force one adjacent

vertex of degree 4 to black. Therefore in this case, it is not possible to obtain a

derived coloring. Hence from the Subcases 1 and 2, we have

Zc2[S(Cn)] ≥ 3 (5.5)

We can easily observe that the set Zc2 = {v1, v
′
1, v2} of black vertices forms a

connected 2-forcing set for S(Cn) and hence

Zc2[S(Cn)] ≤ 3 (5.6)

Therefore from (5.5) and (5.6), Zc2[S(Cn)] = 3.

For k = 3, the proof is obvious.

Theorem 5.1.8. Let Fp denotes the friendship graph with p ≥ 2 triangles. Then,

Zck(Fp) =



p+ 1− k
2
if k is even and k < ∆− 2

2p−k+3
2

if k is odd and k < ∆− 2

1 if k ≥ ∆− 2.

Proof. Case 1.

Assume that k is even and k < ∆−2. Let v be the vertex with maximum degree

∆. We can observe that v should be a member of any connected k-forcing set.

Otherwise, the k- forcing set will not be connected. Therefore, assume that the

vertex v is there in any connected k-forcing set for Fp. If we take one black

vertex from each of the p − k
2
− 1 triangles, then it is not possible to obtain a
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derived coloring since deg(v) = 2p and by using the color change rule we get

2(p− k
2
− 1) = 2p−k− 2 black vertices which are adjacent to the vertex v. Now,

we have 2p − (2p − k − 2) = k + 2 white vertices remain. It is not possible to

force these k + 2 vertices to black by using the black vertex v. Therefore, we

must take one black vertex from each of the p− k
2

triangles. Since the vertex v

is black, we have

p+ 1− k

2
≤ Zck(Fp) (5.7)

Take one vertex from each of the p− k
2

triangles as black. Since the vertex v is

black, these p− k
2

vertices will force the remaining vertices in the p− k
2

triangles

as black. Then, we have 2(p − k
2
) black vertices together with the black vertex

v in the connected k-forcing set. We can observe that at this stage we have

2p− (2p− k) = k white vertices adjacent to the vertex v. Now, the vertex v can

force these k-vertices as black. Therefore, we get a derived coloring with p+1− k
2

black vertices. Hence,

Zck(Fp) ≤ p+ 1− k

2
(5.8)

Therefore, Zck(Fp) = p+ 1− k
2
.

Case 2.

Assume that k is odd and k < ∆− 2. Let v be the vertex with maximum degree

∆. We can see that v should be a member of any connected k- forcing set.

Otherwise, the k-forcing set will not be connected. Therefore, assume that the

vertex v is there in any connected k- forcing set for Fp. Suppose that there exists

a k- forcing set consisting of 2p−k+1
2

black vertices. Since the vertex v is black,

we can distribute the remaining 2p−k−1
2

black vertices among the triangles. To

force the maximum number of vertices as black, we need to distribute one black

vertex for each of 2p−k−1
2

triangles. Now, we have 2(2p−k−1
2

) + 1 = 2p − k black
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vertices and 2p + 1 − (2p − k) = k + 1 white vertices. All these white vertices

are adjacent to v. So the color change rule is not applicable since (k + 1) white

vertices are adjacent to the black vertex v. Therefore with 2p−k+1
2

black vertices,

we cannot obtain a derived coloring for Fp. Hence,

Zck(Fp) ≥
2p− k + 3

2
(5.9)

We take one vertex from each of the 2p−k+3
2
−1 triangles as black. Since the vertex

v is back, these 2p−k+3
2
− 1 black vertices will force the remaining vertices in the

2p−k+3
2
−1 triangles as black. At this stage, we have 2(2p−k+3

2
−1)+1 = 2p−k+2

black vertices remain. Therefore, the total number of white vertices remain at

this stage is 2p + 1 − (2p − k + 2) = k − 1. All these (k − 1) white vertices are

adjacent to v. Therefore, the vertex v forces all these (k − 1) white vertices as

black. Hence,

Zck(Fp) ≤
2p− k + 3

2
(5.10)

Therefore from (5.9) and (5.10), Zck(Fp) = 2p−k+3
2

.

We can easily observe that if k ≥ ∆− 2, then Zck(Fp) = 1.

Theorem 5.1.9. Let G be a connected graph with | V (G) |= p1 and let H be

another connected graph with Zck(H) = p2. Let G be the graph obtained by taking

the corona product of G and H, that is, G = G�H. Then, Zck(G) ≤ p1(1 + p2).

Proof. Without loss of generality, assume that G is connected with | V (G) |= p1

and Zck(H) = p2. Color all the vertices of G as black. To form the k-forcing

set for the sub graph induced by {v1} ∪H1, we need a maximum of 1 + p2 black

vertices. That is, Zk(〈{v1} ∪ H1〉) ≤ 1 + p2 , where H1 is the first copy of H

corresponds to the vertex v1 in G. Also, Zk(〈{v2}∪H2〉) ≤ 1+p2, where H2 is the
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second copy of H corresponds to the vertex v2 in G. Proceeding like this, we can

observe that Zk(〈{vp1}∪Hp1〉) ≤ 1+p2. Now, the graph G = 〈{v1}∪H1〉∪〈{v2}∪

H2〉∪ . . .∪〈{vp1}∪Hp1〉. Therefore, Zk(G) ≤ (1+p2)+(1+p2)+ · · ·+(1+p2)-p1

times. This follows that Zk(G) ≤ p1(1 + p2). Since each vertex in G is connected

to the vertices of all copies ofH, the k-forcing set thus obtained forms a connected

k-forcing set. Therefore, Zck(G) ≤ p1(1 + p2).

Theorem 5.1.10. Let G be the complete bipartite graph Km,n, where n ≥ 2,

m ≥ 2. Then, the connected zero forcing number of G is m + n − 2. That is,

Zc(G) = m+ n− 2.

Proof. Since G is a complete bipartite graph, therefore, the vertex set of G can

be partitioned into two sets X and Y . Let u1, u2, . . . , um be the vertices in X and

v1, v2, . . . , vn be the vertices in Y . Clearly, the vertices in X are non adjacent.

The vertices in Y are also non adjacent. To start the color change rule, color any

vertex, say u1, in X as black. The remaining vertices are considered to be white.

Since each vertex in X is connected to every vertex in Y , we have to color (n−1)

vertices in Y as black. Let the only one white vertex in Y be vn. Now, the vertex

u1 → vn to black. In X, there are (m− 1) white vertices remain. Each vertex in

Y is joined to (m− 1) white vertices in X. Assign black color to (m− 2) white

vertices in X. Then, any black vertex in Y , say v1, forces the remaining white

vertex in X as black. Now, the zero forcing set consists of 1 + m − 2 + n − 1

black vertices, which are connected. Thus, with 1 +m− 2 + n− 1 = m+ n− 2

black vertices, we can obtain a derived coloring for G. We can easily observe

that with m+ n− 3 black vertices, forming a connected zero forcing set for G is

not possible. Hence the connected zero forcing number of G is m+ n− 2.
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We use the following results from [4] and [19] to prove the next result.

Theorem 5.1.11. [4] For any connected graph G, Z(G) ≤ Zc(G).

Theorem 5.1.12. [19] Let G be the graph obtained by taking the Cartesian

product of a cycle Cn with the path Pm. Then, Z(G) = min{n, 2m}

Theorem 5.1.13. Let G be the graph obtained by taking the Cartesian product

of a cycle Cn with the path Pm and let n ≥ 2m. Then, Zc(G) = 2m.

Proof. Let v1 and v2 be the two adjacent vertices in the cycle Cn. Let A =

{v1
1, v

2
1, . . . , v

m
1 } be the vertices corresponding to the vertex v1 in G and let B =

{v1
2, v

2
2, . . . , v

m
2 } be the vertices corresponding to the vertex v2 in G, where v1 = v1

1

and v2 = v1
2. Consider the 2m vertices in the set A ∪ B and color these vertices

as black in G. The remaining vertices are assumed to be white. Then, these 2m

black vertices in A∪B forces the remaining vertices in G as black. Clearly, these

vertices are connected in G and thus form a connected zero forcing set for G.

Hence,

Zc(G) ≤ 2m (5.11)

Also, by the Theorem 5.1.11 and the Theorem 5.1.12

Zc(G) ≥ 2m (5.12)

From (5.11) and (5.12), Zc(G) = 2m.

Theorem 5.1.14. Let G be the star graph k1,n on n+ 1 vertices, n ≥ 3. Then,

Zc(G) = n. In general, if 2 ≤ k ≤ n, then Zck(G) = n− k + 1.

Proof. Let v, u1, u2, . . . , un be the vertices of the star graph k1,n, where v is the

vertex having degree n. Assume that the vertex v is black. We generate a
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connected zero forcing set as follows.

Since deg(v) = n, to apply the color change rule, we have to color (n−1) vertices

in G adjacent to v as black. Then, the vertex v forces the remaining white vertex

to black. Thus, with n− 1 + 1 = n black vertices, we get a derived coloring for

G and we can easily observe that with (n− 1) black vertices we cannot generate

a connected zero forcing set for G. Therefore, Zc(G) = n.

If k = 2, we can easily show that the connected 2-forcing number ofG is n−2+1 =

n − 1. Again, if k = 3, then we can easily observe that the connected 3-forcing

number of G is n−3+1 = n−2. Proceeding like this, we obtain Zck(G) = n−k+1

for any positive integer 2 ≤ k ≤ n.

5.2 Connected k-Forcing Number of Rooted Prod-

uct of Graphs

In this section, we deal with the connected k-forcing number of rooted product

of cycle and path, cycle and cycle, ladder graph and path, grid graph and path,

ladder graph and cycle, circular ladder graph and path, circular ladder graph

and cycle, and path and path.

Theorem 5.2.1. Let G be the graph obtained by taking the rooted product of the

cycle Cn and the rooted path Pt rooted with the pendant vertex of Pt, where t ≥ 2.

Then,

Zck(G) =


n if k = 1

1 if 2 ≤ k ≤ ∆(G) = 3.
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Proof. Let u1, u2, . . . , un be the vertices of the cycle Cn inG and P
(1)
t , P

(2)
t , . . . , P

(n)
t

be the n copies of the path Pt rooted at the vertices u1, u2,. . . , un respectively.

Represent the vertex set of the paths P
(1)
t , P

(2)
t , . . . , P

(n)
t in G as follows.

V [P
(1)
t ] = {p1

1, p
1
2, . . . , p

1
t}

V [P
(2)
t ] = {p2

1, p
2
2, . . . , p

2
t}

. . .

. . .

V [P
(n)
t ] = {pn1 , pn2 , . . . , pnt }

Let u1 be the vertex identified with the vertex p1
1 in G, u2 be the vertex identified

with the vertex p2
1 in G, . . ., un be the vertex identified with the vertex pn1 in G.

Case 1.

Assume that k = 1. This case is similar to that of the connected zero forcing

number of G. Color the vertices u1, u2, . . . , un in G as black and the remaining

vertices are assumed to be white. We can easily infer that

Zc(G) ≤ n (5.13)

It is worth mentioning that if we start the color change rule with the vertices

of P
(i)
t , where 1 ≤ i ≤ n, other than the vertices identified with the vertices

u1, u2, . . . , un of Cn, we cannot obtain a connected zero forcing set with n black

vertices. Therefore, we need to consider the vertices in the cycle to force the

remaining vertices in G.

Assume that we have a connected zero forcing set consisting of (n − 1) black

vertices. From above, we can assert that these vertices must be from the cycle
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Cn. Without loss of generality, assume that the vertices u1, u2, . . . , un−1 are

black. Clearly, the vertex u2 can force the vertices of the path P
(2)
t to black, the

vertex u3 can force the vertices of the path P
(3)
t to black, . . ., the vertex un−2

can force the vertices of the path P
(n−2)
t to black. Since the black vertex u1 is

adjacent to two white vertices un and p1
2, the vertex u1 cannot force the vertices

un and p1
2. Similarly, the black vertex un−1 is adjacent to two white vertices un

and pn−1
2 . Therefore, the vertex un−1 cannot force un and pn−1

2 . This contradicts

our assumption that Zc(G) = n− 1. Therefore,

Zc(G) ≥ n (5.14)

Hence from (5.13) and (5.14), Zc(G) = n.

Case 2.

Assume that k ≥ 2. In this case, if we consider any pendant vertex of G as a

black vertex , then it can force the remaining white vertices of G as black. Hence,

Zck(G) = 1.

Theorem 5.2.2. Let G be the graph representing the rooted product of a cycle

Cn and the rooted cycle Cm. Then,

Zck(G) =



2n if k = 1

n if k = 2

1 if 3 ≤ k ≤ ∆(G) = 4.

Proof. Let u1, u2 . . . , un be the vertices of the cycle Cn inG and C
(1)
m , C

(2)
m , . . . , C

(n)
m

be the n copies of the cycle Cm rooted at u1, u2, . . . , un respectively. Represent

the vertex set of the cycles C
(1)
m , C

(2)
m ,. . . , C

(n)
m in G by

V [C(1)
m ] = {d1

1, d
1
2, . . . , d

1
m}
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V [C(2)
m ] = {d2

1, d
2
2, . . . , d

2
m}

. . .

. . .

V [C(n)
m ] = {dn1 , dn2 , . . . , dnm}

Assume that the vertex d1
1 be rooted at u1, the vertex d2

1 be rooted at u2, . . .,

the vertex dn1 be rooted at un.

Case 1.

Suppose that k = 1. This case is similar to that of the connected zero forcing

number of G. Color the vertices u1, u2, . . . , un, d
1
2, d

2
2, . . . , d

n
2 as black and the

remaining vertices as white. We can easily see that these black vertices form a

connected zero forcing set for G. Hence,

Zc(G) ≤ 2n (5.15)

We can easily observe that to form a minimum connected zero forcing set for G,

we need to color the vertices u1, u2, . . . , un as black and color at least one vertex

from each of the cycles C
(i)
m , 1 ≤ i ≤ n, adjacent to each ui (1 ≤ i ≤ n) as black.

Otherwise, we cannot form a minimum connected zero forcing set. Clearly,

Zc(G) ≥ 2n (5.16)

Hence from (5.15) and (5.16) Zc(G) = 2n.

Case 2.

Assume that k = 2. Color all vertices of Cn in G as black and the remaining

vertices as white. Each vertex ui, 1 ≤ i ≤ n, is adjacent to exactly two white

vertices of C
(i)
m , 1 ≤ i ≤ n and k = 2. Therefore, these vertices form a 2-forcing
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set for G. The sub graph induced by these black vertices is connected and hence

form a connected 2-forcing set for G. Therefore,

Zc2(G) ≤ n (5.17)

We can easily observe that to form a minimum connected 2-forcing set for G,

we need to color the vertices u1, u2, . . . , un as black, otherwise we cannot form a

minimum connected 2-forcing set. Clearly,

Zc2(G) ≥ n (5.18)

Therefore from (5.17) and (5.18), the result follows.

Case 3.

Suppose that k ≥ 3. In this case, an arbitrary black vertex with degree 2 from

the cycle C
(i)
m , 1 ≤ i ≤ n, will k-forces the remaining vertices in G as black.

Therefore, Zck(G) = 1. Hence the result.

Theorem 5.2.3. Let G be the rooted product of the ladder graph Pn�P2 and the

rooted path Pt rooted with the pendant vertex of Pt, where n ≥ 3, t ≥ 2. Then,

Zck(G) =


2n if k = 1

1 if 2 ≤ k ≤ 4 = ∆(G).

Proof. Represent the vertices of the graph Pn�P2 by u1, u2, . . . , un and v1, v2,

. . . , vn. Let P
(1)
t , P

(2)
t ,. . . ,P

(n)
t be the copies of the path Pt rooted at the vertices

u1, u2,. . . , un respectively. Also, let Q
(1)
t , Q

(2)
t , . . . , Q

(n)
t be the copies of the path

Pt rooted at the vertices v1, v2, . . . , vn respectively. The vertex set of the paths

P
(1)
t , P

(2)
t , . . . , P

(n)
t and Q

(1)
t , Q

(2)
t , . . . , Q

(n)
t in G can be named as follows.

V [P
(1)
t ] = {p1

1, p
1
2, . . . , p

1
t}, V [Q

(1)
t ] = {q1

1, q
1
2, . . . , q

1
t }

70



5.2. Connected k-Forcing Number of Rooted Product of Graphs

V [P
(2)
t ] = {p2

1, p
2
2, . . . , p

2
t}, V [Q

(2)
t ] = {q2

1, q
2
2, . . . , q

2
t }

. . . . . .

. . . . . .

V [P
(n)
t ] = {pn1 , pn2 , . . . , pnt }, V [Q

(n)
t ] = {qn1 , qn2 , . . . , qnt }

Color the vertices u1, u2, . . . , un and v1, v2, . . . , vn as black ( Refer figure 5.1).

The remaining vertices are assumed to be white. Clearly, these black vertices

form a connected zero forcing set for G and hence

Zc(G) ≤ 2n (5.19)

Figure 5.1: Rooted product of P8�P2 and P4.

There exists three types of minimum connected zero forcing sets with Zc(G) =

2n. Consider these three sets as follows. We denote them as A,B and C.

A = {u1, u2, . . . , un, v1, v2 . . . , vn}
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B = {u1, u2, . . . , un, p
1
2, p

2
2, . . . , p

n
2}

C = {v1, v2, . . . , vn, q
1
2, q

2
2, . . . , q

n
2 }

We can easily observe that if we take a set of 2n vertices other than these three

sets, then it will not form a minimum connected zero forcing set. Assume that

there exists a connected zero forcing set consisting of (2n − 1) black vertices.

Consider the following cases.

Case 1.

Consider the black vertices as depicted in Figure 5.2. Assume that the black

vertices are from the set A, except the vertex un. Consider the vertex un = u8 as

white. The blue colored vertices represent the vertices which are forced by the

black vertices. In this case if we consider G, then there are 3t−2 vertices remain

as white. Therefore, we cannot obtain a derived coloring, a contradiction to our

assumption that there exists a connected zero forcing set consisting of (2n − 1)

black vertices. The case is similar if we consider u1, v1 and vn = v8 as white

vertices.

Case 2.

Consider the black vertices as depicted in Figure 5.1. If we choose any black

vertex other than u1, v1, un = u8, vn = v8 as white, then we can observe that

there are 4t − 3 white vertices remain in G, a contradiction to our assumption

that Zc(G) = 2n− 1.

Case 3.

Consider the black vertices as depicted in Figure 5.3. Assume that the black

vertices are from the set B, except the vertex p1
2. Consider the vertex p1

2 as

white. The blue colored vertices represent the vertices which are forced by the
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Figure 5.2: Rooted product of P8�P2 and P4.

black vertices. In this case if we consider the graph G, then there are 3t − 2

vertices remain as white. Therefore, we cannot obtain a derived coloring with

(2n − 1) black vertices. A contradiction to our assumption. The case is similar

if we consider the vertex pn2 as white.

Subcase 3.1.

Consider the black vertices as depicted in Figure 5.3. Assume that the black

vertices are from the set B, except the vertex pi2, 2 ≤ i ≤ n − 1. Consider

the vertex pi2 as white. In this case if we consider G, then there are 4t − 3

vertices remain as white. The color change rule is not applicable at this stage, a

contradiction to our assumption that Zc(G) = 2n− 1.

Subcase 3.2.

Assume that the black vertices are from the set B, except the vertex ui, where

1 ≤ i ≤ n. In this case, we loose the connectivity of the zero forcing set. That is,

the zero forcing set is not connected. Again, a contradiction to our assumption
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Figure 5.3: Rooted product of P8�P2 and P4.

that Zc(G) = 2n− 1.

Case 4.

Assume that the black vertices are from the set C, except one. This case is

similar to that of Case 3, since the sub graph induced by the connected zero

forcing sets B and C are isomorphic. Combining the Cases 1, 2, 3 and 4, we have

Zc(G) ≥ 2n (5.20)

From (5.19) and (5.20), Zc(G) = 2n.

Case 5.

Let 2 ≤ k ≤ 4. If we color any one of the pendant vertices of G as black, then

this pendant vertex forms a connected k- forcing set for G. Hence, Zck(G) = 1

if 2 ≤ k ≤ 4.

Theorem 5.2.4. Let G be the rooted product of the grid graph Pn�Pn and the
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rooted path Pt rooted with the pendant vertex of Pt, where t ≥ 2. Then,

Zck(G)



≤ n2 if k = 1

≤ n if k=2

= 1 if 3 ≤ k ≤ ∆(G) = 5.

Proof. Case 1.

Assume that k = 1. In this case, color all vertices of the Cartesian product

Pn�Pn in G as black. We can easily observe that these n2 black vertices form a

connected zero forcing set for G. Thus, Zc(G) ≤ n2.

Case 2.

Assume that k = 2. Let u1, u2, . . . , un be the vertices of the path Pn in Pn�Pn

of G. Color these vertices as black in G. Now, we can easily verify that these

vertices form a connected 2- forcing set for G. Therefore, Zc2(G) ≤ n.

Case 3.

Assume that 3 ≤ k ≤ 5. Let Pt be the path rooted at the vertex u1 in G. Color

the pendant vertex of the path Pt in G as black. Let it be the vertex v. Clearly,

we can form a derived coloring for G with this black vertex v. Thus, Zck(G) = 1,

as desired.

We strongly believe that the bounds in the above theorem are sharp.

Theorem 5.2.5. Let G be the rooted product of Pn�P2 and the rooted cycle Cm,

where n ≥ 3. Then,

Zck(G)



≤ 4n if k = 1

≤ 2n if k = 2

= 1 if 3 ≤ k ≤ ∆(G) = 5.
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Proof. Case 1.

Assume that k = 1. Let u1, u2, . . . , un be the vertices of the path Pn in G and

let v1, v2, . . . , vn be the vertices corresponding to the copy of the path Pn in G.

We observe that deg(u1) = deg(v1) = deg(un) = deg(vn) = 4. The remaining

vertices in G have degree 5. We note that any connected k-forcing set for G

must contain all the vertices of Pn�P2. Otherwise, the k- forcing set will be

disconnected. Without loss of generality, assume that we have a set consisting

of 2n connected black vertices from Pn�P2 in G. The remaining vertices are

considered to be white. To force the white vertices in each cycle, we must select

a black vertex from each cycle rooted at the vertices u1, u2, . . . , un, v1, v2, . . . , vn

and each black vertex should be adjacent to the respective vertex at which each

cycle is rooted. Therefore, we need to choose 2n number of black vertices from

the 2n copies of the cycle Cm. Now, we have a set of 4n black vertices which

forces the remaining vertices of G as black and this set of 4n black vertices is

connected. Therefore, Zc(G) ≤ 4n.

Case 2.

Suppose that k = 2. We can observe that the connected 2-forcing set for G

must contain all the vertices of Pn�P2. Otherwise, the zero forcing set will be

disconnected. If we take the 2n black vertices from Pn�P2 in G, then these

vertices will 2-forces the remaining white vertices as black. Hence, Zc2(G) ≤ 2n.

Case 3.

Let 3 ≤ k ≤ 5. Consider the cycle rooted at the vertex u1, say C
(1)
m . Choose

a vertex from C
(1)
m of degree 2 as black. Clearly, this black vertex will give a

derived coloring for G. Hence, Zck(G) = 1.

We strongly believe that the above bounds are sharp.
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Theorem 5.2.6. Let G be the rooted product of the circular ladder graph Cn�K2

and the rooted path Pt, t ≥ 2, rooted with the pendant vertex of Pt. Then,

Zc(G) = 2n.

Proof. Represent the vertices of Cn�K2 in G as u1, u2, . . . , un, v1, v2, . . . , vn and

P
(1)
t , P

(2)
t , . . . , P

(n)
t be the copies of the path Pt rooted at v1, v2, . . . , vn . Let

v1 = p1
1, v2 = p2

1, . . . , vn = pn1 , where p1
1, p

2
1, . . . , p

n
1 are the pendant vertices of the

paths rooted with the vertices v1, v2, . . . , vn respectively, where

V [P
(1)
t ] = {p1

1, p
1
2, . . . , p

1
t}

V [P
(2)
t ] = {p2

1, p
2
2, . . . , p

2
t}

. . .

. . .

V [P
(n)
t ] = {pn1 , pn2 , . . . , pnt }

We examine the different possibilities for forming a connected zero forcing set as

follows.

Case 1.

Assume that we have a connected zero forcing set consisting of (2n − 1) black

vertices {u1, u2, . . . , un, v1, v2, . . . , vn−1} for G. Then, the black vertex un has two

white neighbors vn and a vertex of the path rooted at un. So further forcing from

the black vertex un is not possible. which is a contradiction to our assumption.

Case 2.

Suppose that Zc = {v1, v2, . . . , vn, u1, u2, . . . un−1} is a connected zero forcing set

for G. Then, we can easily observe that further forcing from the black vertex

vn is not possible, because it has two white neighbors, a contradiction to our
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assumption.

Case 3.

The case for forming a connected zero forcing set by taking (2n− 1) black pen-

dant vertices of the paths is ruled out, since the subgraph induced by these black

vertices is not connected.

Case 4.

Consider a connected zero forcing set of (2n − 1) black vertices having the fol-

lowing combinations.

Subcase 4.1.

Combination of the vertices ui and the vertices of the path Q
(i)
t , where Q

(i)
t is

the path rooted at the vertex ui and i = 1, 2, . . . , n.

Subcase 4.2.

Combination of the vertices vi and the vertices of the path P
(i)
t , where i =

1, 2, . . . , n.

Subcase 4.3.

Combination of the vertices ui, vi and the vertices of the path P
(i)
t , i = 1, 2, . . . , n.

Subcase 4.4.

Combination of the vertices ui, vi and the vertices of the path Q
(i)
t , where

i = 1, 2, . . . , n.

Subcase 4.5.

Combination of the vertices ui, vi, the vertices of P
(i)
t and the vertices of Q

(i)
t ,

i = 1, 2, . . . , n.

We can observe that none of the above combinations form a connected zero

forcing set for G. Hence from the above cases, we can conclude that

Zc(G) ≥ 2n (5.21)
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To claim Zc(G) ≤ 2n, we proceed as follows.

Select u1, u2, . . . , un, v1, v2, . . . , vn as the 2n black vertices. The remaining vertices

are considered to be white. Then, the black vertex v1 → p1
2 to black, the black

vertex p1
2 → p1

3 to black, . . . , p1
t−1 → p1

t to black. Similarly, all the vertices

of the paths rooted at the black vertices v2, v3, . . . , vn will be colored as black.

The same argument holds good for the vertices of the paths rooted at the black

vertices u1, u2, . . . , un. So the set Zc = {u1, u2, . . . , un, v1, v2, . . . , vn} generates a

connected zero forcing set for G. The cardinality of the set Zc is 2n. Hence,

Zc(G) ≤ 2n (5.22)

From (5.21) and (5.22), Zc(G) = 2n.

Theorem 5.2.7. Let G be the rooted product of a circular ladder graph Cn�K2

and the rooted cycle Ck. Then, Zc(G) ≤ 4n.

Proof. Let A = {u1, u2, . . . , un, v1, v2, . . . , vn} be the vertex set of the circular

ladder graph Cn�K2 in G, where u1, u2, . . . , un are the vertices of the inner cy-

cle. Let C
(1)
k , C

(2)
k , . . . , C

(n)
k be the copies of the cycle Ck rooted at the vertices

v1, v2, . . . , vn respectively and D
(1)
k , D

(2)
k , . . . , D

(n)
k be the copies of the cycle Ck

rooted at the vertices u1, u2, . . . , un respectively. Let the vertex set of the cycles

C
(1)
k , C

(2)
k , . . . , C

(n)
k and D

(1)
k , D

(2)
k , . . . ,D

(n)
k be as follows.

V [C
(1)
k ] = {c1

1, c
1
2, . . . , c

1
k}

V [C
(2)
k ] = {c2

1, c
2
2, . . . , c

2
k}

. . .

. . .
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V [C
(n)
k ] = {cn1 , cn2 , . . . , cnk}

V [D
(1)
k ] = {d1

1, d
1
2, . . . , d

1
k}

V [D
(2)
k ] = {d2

1, d
2
2, . . . , d

2
k}

. . .

. . .

V [D
(n)
k ] = {dn1 , dn2 , . . . , dnk}

Let v1 = c1
1, v2 = c2

1, . . . , vn = cn1 and u1 = d1
1, u2 = d2

1, . . . , un = dn1 .

We generate a connected zero forcing set for the graph G as follows. Consider

the set Zc = {v1, c
1
2, v2, c

2
2, . . . , vn, c

n
2 , u1, u2, . . . , un, d

1
2, d

2
2, . . . , d

n
2}. Color the ver-

tices in Zc as black and the remaining vertices as white. Then, the vertices in

Zc can force the remaining white vertices of the cycles C
(1)
k , C

(2)
k , . . . , C

(n)
k and

D
(1)
k , D

(2)
k , . . . , D

(n)
k as black by repeatedly applying the color change rule. Thus,

the set Zc = {v1, c
1
2, v2, c

2
2, . . . , vn, c

n
2 , u1, u2, . . . , un, d

1
2, d

2
2, . . . , d

n
2} generates a

connected zero forcing set for G. The cardinality of the set Zc is 4n. Hence,

Zc(G) ≤ 4n.

We strongly believe that the above bound is sharp.

Theorem 5.2.8. Let G be the rooted product of a path Pn and the rooted path

Pt rooted with the pendant vertex of Pt, where n ≥ 3, t ≥ 2. Then,

Zck(G) =


n if k = 1

1 if k ≥ 2.
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Proof. Denote the vertices of the path Pn in G by u1, u2, . . . , un. Let u1 = p1
1,

u2 = p2
1,. . . , un = pn1 , where p1

1, p
2
1, . . . , p

n
1 are the vertices of copies of the path

Pt rooted at u1, u2, . . . , un respectively.

Claim.

Any set consisting of (n − 1) black vertices will never form a connected zero

forcing set for the graph G. For, consider the following cases.

Case 1.

Select the pendant vertex of each path rooted at the vertices u1, u2, . . . , un−1.

Clearly, they cannot form a connected zero forcing set for G.

Case 2.

Form a set of (n − 1) black vertices from the vertices of the paths rooted at

the vertices u1, u2, . . . , un. Then, we can easily observe that this set will not be

connected and hence will not form a connected zero forcing set for G.

Case 3.

Assume that Zc = {u1, u2, . . . , un−1}. Color the vertices in the set Zc as black

and the vertices in V (G) − Zc as white. Then, we can see that the vertices

of the paths rooted at u1, u2, . . . , un−2 can be colored as black by applying the

color change rule. We observe that the forcing from the black vertex un−1 is not

possible, because un−1 has two white neighbors. Therefore, the set Zc cannot

generate a connected zero forcing set for G. In view of the above cases, we have

Zc(G) ≥ n (5.23)

To prove the reverse part, let Zc = {u1, u2, . . . , un}. Assign black color to the

vertices in the set Zc. Then, we can see that the set Zc generates a connected
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zero forcing set for G. Therefore,

Zc(G) ≤ n (5.24)

Hence from (5.23) and (5.24), Zc(G) = n.

Case 4.

When k = 2. Let u be an arbitrary vertex of G such that deg(u)6= 3. Color the

vertex u as black. Clearly, the vertex u gives a derived coloring for G. Hence,

Zc2(G) = 1.

When k = 3, any black vertex of G forms a connected zero forcing set. Hence

the result follows.

Next we compute the connected zero forcing number of the CP - graph considered

in [8].

Theorem 5.2.9. Let G be the CP -graph C3Pr. Then,

Zck(G) =


2r if k = 1

1 if k = 2, 3.

Proof. Denote the cycles in G by C
(1)
3 , C

(2)
3 , . . . , C

(r)
3 . Let the vertex set of the

cycles in C3Pr be

V [C
(1)
3 ] = {c1

1, c
1
2, c

1
3}

V [C
(2)
3 ] = {c2

1, c
2
2, c

2
3}

. . .

. . .
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V [C
(r)
3 ] = {cr1, cr2, cr3}

Case 1.

Assume that k = 1. We prove the result by mathematical induction on the

number of cycles r in the CP -graph. Assume that r = 1. In this case, G is the

cycle C3. Therefore, Zc(C3) = 2 and the result is true for r = 1.

Assume that the result is true for all C3Pr graphs with (r − 1) cycles C3, where

r > 2. Let C be the end cycle connected to the rest of the C3Pr graph by an

edge e = ab, where a ∈ [V (C3Pr)− V (C)] and b ∈ V (C). Let Y = {a, b} be the

cut set where a ∈ 〈V (C3Pr)− V (C)〉 and b ∈ V (C).

Now, the induced sub graph 〈V (C3Pr) − V (C)〉 is a C3Pr graph with (r − 1)

cycles. Therefore by our assumption, Zc(〈V (C3Pr)−V (C)〉) = 2(r−1) = 2r−2.

Let W be the minimum zero forcing set of 〈V (C3Pr)−V (C)〉 with | W |= 2r−2.

Let u1 and u2 be two white neighbors of the vertex b in C. Since the vertex a

is black, it forces the vertex b to black. Since the black vertex b has two white

neighbors, further forcing from the vertex b is not possible. In order to make

the zero forcing set connected, we have to include the black vertex b in the zero

forcing set. Therefore, our new connected set is W ∪{b}. The set W ∪{b} cannot

force the remaining two white vertices (u1 and u2) adjacent to b. Therefore, we

need to include either u1 or u2 into the set W ∪{b}. Let it be u1 and color u1 as

black. Hence by induction

Zc(G) =| W ∪ {b, u1} |

= 2r − 2 + 2 = 2r.

Therefore, Zc(G) = 2r, if k = 1.
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Case 2.

Assume that k = 2, 3. In this case, any black vertex of degree 2 will form a

connected k-forcing set.

Theorem 5.2.10. [9] Let G be a graph with girth at least 4 and minimum degree

δ(G) ≥ 3. Then, Zc(G) ≥ δ(G) + 1.

Theorem 5.2.11. Let G be the circular ladder graph Cn�K2, where n ≥ 4.

Then,

Zck(G) =



4 if k = 1

2 if k = 2

1 if k = 3 =∆(G).

Proof. Let u1, u2, . . . , un, v1, v2, . . . , vn be the vertices of the circular ladder graph

G, where u1, u2, . . . , un are the vertices of the inner circle.

Case 1.

Assume that k = 1. By the Theorem 5.2.10, since ∆(G) = δ(G) = 3 and the

girth is at least 4 ,we have

Zc(G) ≥ 3 + 1 = 4 (5.25)

To establish the reverse inequality, we proceed as follows.

Without loss of generality, choose four adjacent vertices u1, u2, u3 and v1 in G.

Color these vertices as black and assume that the remaining vertices are white.

Then, clearly the black vertex u2 → v2 to black. Now, the black vertex v2 → v3

to black. Again, the black vertex u3 → u4 to black, v3 → v4 to black. Proceeding

like this, the black vertex un−1 → un to black and vn−1 → vn to black. Therefore,

the set Zc = {u1, u2, u3, v1} forms a connected zero forcing set for G. Here the
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cardinality of the set Zc is 4. Hence,

Zc(G) ≤ 4 (5.26)

Therefore from (5.25) and (5.26), Zc(G) = 4.

Case 2.

Assume that k = 2. In this case , clearly a set consisting of any two adjacent

black vertices forms a connected 2-forcing set for G and with one black vertex,

obtaining a connected 2-forcing set is not possible. Hence, Zc2(G) = 2.

Case 3.

Suppose that k = 3. It is obvious that any black vertex gives a derived coloring

for G. Therefore, the result follows.

5.3 Connected k-Forcing Number of Square of

Graphs

In this section, we deal with the connected k-forcing number of square graph

of path Pn, n ≥ 3 and the cycle Cn, n ≥ 5.

Theorem 5.3.1. Let G denotes the square graph of a path Pn, where n ≥ 3.

Then, the connected zero forcing number of G is 2.

Proof. Represent the vertices of G by u1, u2, . . . , un. It is obvious that with one

black vertex, we cannot obtain a derived coloring for G. Therefore,

Zc(G) ≥ 2 (5.27)
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On the other hand, without loss of generality, color the vertices u1 and u2 as

black and the remaining vertices as white. Then, the black vertex u1 forces u3

to black, the vertex u2 forces u4 to black, the vertex u3 forces u5 to black and

so on till all vertices of G are colored black. Thus, the set Zc = {u1, u2} forms a

connected zero forcing set for G. Here | Zc |= 2. Hence,

Zc(G) ≤ 2 (5.28)

From (5.27) and (5.28), Zc(G) = 2.

Theorem 5.3.2. The connected zero forcing number of the square graph of a

cycle Cn is 4, where n ≥ 5.

Proof. Let G denotes the square graph of the cycle Cn, n ≥ 5. It is clear that

G is a 4-regular graph. Therefore ∆(G) = δ(G) = 4. Since Zc(G) ≥ Z(G) and

Z(G) ≥ δ(G), we have

Zc(G) ≥ 4 (5.29)

In order to establish the reverse inequality, choose any four adjacent vertices of

G. Let the vertices be u1, u2, u3 and un. Color these four vertices as black and

the remaining vertices as white. In G, the vertices adjacent to the vertex u1 are

u2, u3, un and un−1, of which u2, u3, un are black. So the black vertex u1 forces the

vertex un−1 to black. Consider the black vertex u2. The adjacent vertices of u2

are u1, un, u3, and u4. Of these vertices, u1, u3, un are already black. Therefore,

the vertex u2 forces u4 to black. Again, consider the black vertex u3. At this

stage, the vertex u3 has only one white neighbor u5. Hence u3 forces u5 to black,

u4 forces u6 to black and so on. Finally, consider the black vertex un−4. The

vertex un−4 has 4 neighbours un−5, un−6, un−3, un−2 of which un−2 is the only
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white vertex. Therefore, the vertex un−4 forces un−2 to black. The vertex un−3 is

already colored black by the vertex un−5. Therefore, the set Zc = {u1, u2, u3, un}

generates a connected zero forcing set for the graph G. Hence we have

Zc(G) ≤ 4 (5.30)

From (5.29) and (5.30), Zc(G) = 4.
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Chapter 6

2-Distance Forcing Number of a Graph

This Chapter introduces the notion of 2-distance forcing number

Z2d(G) of a graph G. Necessary definitions for the development of

this chapter are given in Section 1. In Section 2, we find the exact

value of Z2d(G) of some graphs such as path, cycle, wheel graph,

Petersen graph, star graph, friendship graph, pineapple graph and

the fan graph. In Section 3, we focus on investigating the 2-distance

forcing number of some classes of graphs with diameter lies between

2 and 5.

6.1 Introduction

Here we discuss a generalization of the zero forcing set based on the distance

in graphs. We use the following definitions for the further development of this

chapter.

1This chapter has been published in the Journal of Mathematical and Computational Sci-

ence, Volume 10, Number 6, 2020, Pages 2233-2248
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Definition 6.1.1. [2] Open neighborhood and closed neighborhood. The set of

all vertices adjacent to a vertex v excluding the vertex v is called the open neigh-

borhood of v and is denoted by N(v). The set of all vertices adjacent to a vertex

v including the vertex v is called the closed neighborhood of v and is denoted by

N [v]. i.e, N [v] = {v} ∪N(v).

Definition 6.1.2. [17] The length of a u− v path in a graph G is the number of

edges in the path u− v. The distance between two vertices u and v in a graph G

is the length of the shortest path between u and v.

Definition 6.1.3. The 2-distance open neighborhood of a vertex u in a graph

G is the set of all vertices which are at a distance at most two from u excluding

the vertex u and is denoted by N2d(u). The 2- distance closed neighborhood of a

vertex u is denoted as N2d[u], and is defined as N2d[u] = {u} ∪N2d(u).

Definition 6.1.4. The 2-distance vertex or 2-distance neighbor. Let

G = (V,E) be a graph with vertex set V (G) and edge set E(G). If a vertex v

of G lies at a distance at most two from the vertex u of G, then we say that the

vertex v is a 2-distance vertex or 2-distance neighbor of u.

For example, consider the graph G depicted in Figure 6.1. In Figure 6.1, the

vertices p, q, u, v are the 2-distance neighbors of the vertex r. Therefore, the

2-distance closed neighborhood of the vertex r is N2d[r] = {r, p, q, u, v}. Hence

| N2d[r] |= 5.

Definition 6.1.5. Color change rule. Let G be a graph with each vertex

colored either black or white. If a black colored vertex has exactly one white

colored 2-distance neighbor, then change the color of the white vertex to black.

When the color change rule is applied to an arbitrary vertex v to change the
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u v

p q

r
s

t w

x y

z

Figure 6.1: The graph G

color of the vertex u to black, then we say that the vertex v forces the vertex u

to black and we denote it as v → u to black.

Definition 6.1.6. A 2-distance forcing set for a graph G is a subset Z2d of

vertices of G such that if initially the vertices in Z2d are colored black and the

remaining vertices are colored white, the derived coloring of G is all black.

Definition 6.1.7. The 2-distance forcing number Z2d(G) is the minimum

of | Z2d | over all 2-distance forcing sets Z2d ⊆ V (G).

6.2 Exact Values of Z2d(G)

In this section, we consider some simple graphs such as path, cycle, wheel

graph, friendship graph, star graph, ladder graph and the complete bipartite

graph for computing the 2-distance forcing number Z2d(G). We begin with the

path Pn.

Theorem 6.2.1. The 2-distance forcing number of a path Pn is 2, where n ≥ 3.

That is, Z2d(Pn) = 2.

Proof. Represent the vertices of the path Pn as u1, u2, . . . , un. The pendant

vertices u1 and un have the least number of 2-distance neighbors. Note that the
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vertices u2 and u3 are the only 2-distance neighbors of u1. We start with the

vertices u1 and u2. Assign black color to the vertices u1 and u2. The remaining

vertices in Pn are assumed to be white. Now, the vertex u1 → u3 to black.

Consider the black vertex u2. The 2-distance neighbors of u2 are u1, u3 and u4 of

which the vertices u1, u3 are already black. Hence the black vertex u2 → u4 to

black and so on. Therefore, the set Z2d = {u1, u2} forms a 2-distance forcing set

for the path Pn. The number of vertices in the set Z2d is two. We wish to say

that with only one black vertex, obtaining a 2-distance forcing set for the path

Pn is not possible. Hence, Z2d(Pn) = 2.

Next we find the 2-distance forcing number of a cycle Cn.

Theorem 6.2.2. Let G be the cycle Cn, where n ≥ 5. Then, Z2d(G) = 4.

Proof. Let the vertices of G be denoted by u1, u2, . . . , un. Each vertex ui, where

i = 1, 2, . . . , n, in G has four 2-distance neighbors. From the cycle Cn we can

easily observe that with any three black vertices we cannot obtain a derived color-

ing for G, because each black vertex has at least two 2-distance white neighbors.

Therefore,

Z2d(G) ≥ 4 (6.1)

On the other hand, take four arbitrary adjacent vertices un−1, un, u1 and u2 of

G. Assign them the black color. The remaining vertices are considered to be

white. Consider the black vertex u1. The vertices un−1, un, u2 and u3 are the

2-distance neighbors of the vertex u1, of which the three vertices un−1, un, u2 are

already black. So the vertex u1 → u3 to black. Again, the vertices un, u1, u3 and

u4 are at a distance at most two from the vertex u2. Since the vertices u1, un
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and u3 are black, the black vertex u2 → u4 to black. Proceeding like this, we will

get a derived coloring for G. Hence the set Z2d = {un−1, un, u1, u2} generates a

2-distance forcing set for G. Therefore,

Z2d(G) ≤ 4 (6.2)

Therefore from (6.1) and (6.2), Z2d(G) = 4.

Definition 6.2.3. [17] The maximum distance between any pair of vertices in a

graph G is called the diameter of G and is denoted by diam(G).

Theorem 6.2.4. Let G be a connected graph of order n ≥ 3 with diam(G) = 2.

Then, Z2d(G) = n− 1.

Proof. Without loss of generality, assume that G is a connected graph of order

n ≥ 3 and diam(G) = 2. We can easily assert that in G if we color exactly one

vertex as white and the remaining vertices as black, then any black vertex will

force the white vertex to black. Therefore,

Z2d(G) ≤ n− 1 (6.3)

To prove the reverse inequality, assume that there exists a 2- distance forcing set

consisting of (n−2) black vertices. Let the black vertices be v1, v2, . . . , vn−2. Since

the diameter of the graph G is 2, each black vertex vi, where 1 ≤ i ≤ n− 2, will

have two white vertices in it’s 2-distance open neighborhood. Therefore, derived

coloring for G is not possible. A contradiction to our assumption. Hence,

Z2d(G) ≥ n− 1 (6.4)

From (6.3) and (6.4), Z2d(G) = n− 1.
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Corollary 6.2.5. The following are true.

(i) Let G be the wheel graph with n vertices. Then, Z2d(G) = n− 1.

(ii) If G is the Petersen graph with n vertices, then Z2d(G) = n− 1.

(iii) For the star graph K1,n, where n ≥ 2, Z2d(K1,n) = n.

(iv) Let G be the friendship graph with n vertices. Then, Z2d(G) = n− 1.

Theorem 6.2.6. For a complete graph Kn of order n ≥ 3, Z2d(Kn) = n− 1.

Proof. The proof is obvious.

More graphs with Z2d(G) = n− 1 can be obtained as follows.

Definition 6.2.7. [10] The pineapple graph, denoted by Kk
m, is the graph formed

by coalescing any vertex of the complete graph Km with the star graph K1,k (m ≥

3, k ≥ 2). The number of vertices in Kk
m is m + k, the number edges in Kk

m is

m2−m+2k
2

and the diameter of Kk
m is 2.

Theorem 6.2.8. Let G be the pineapple graph Kk
m. Then, Z2d(G) = m+ k − 1.

Proof. Since the graph G is connected with order n ≥ 3 and diam(G)=2, the

proof follows by the Theorem 6.2.4.

Definition 6.2.9. [12] The fan graph, denoted by Fm, is the graph obtained by

the join K1 ∨ Pn, where Pn is a path on n vertices and K1 is the empty graph.

The order of the fan graph Fm is n+ 1 and the diam(Fm) = 2.

Theorem 6.2.10. For a fan graph Fm, the 2-distance forcing number is n.

Proof. Since the diam(Fm)=2 and the graph Fm is connected with order n ≥ 3,

the proof follows by the Theorem 6.2.4.
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6.3 Graphs for which 2 < diam(G) < 5

We start this section by computing the 2-distance forcing number of a graph

having diameter 3.

Theorem 6.3.1. If G is the graph obtained by appending one pendant edge to

each vertex of a complete graph Km, where m ≥ 3, then Z2d(G) = 2(m− 1).

Proof. Let u1, u2, . . . , um be the vertices of the complete graph Km and let

v1, v2, . . . , vm be the vertices attached to the vertices u1, u2, . . . , um respectively

in G. It suffices to construct a 2-distance forcing set for G consisting of 2(m− 1)

black vertices. Without loss of generality, take the vertex v1. Clearly, the vertex

v1 has m 2-distance neighbors u1, u2, . . . , um. Assign black color to the vertex v1.

To start the color change rule from the vertex v1, we have to color at least (m−1)

vertices out of u1, u2, . . . , um as black. Let u1, u2, . . . , um−1 be the black vertices.

The remaining vertices are colored as white. Then, v1 → um to black. Now,

consider the black vertex u1. The vertices v2, v3, . . . , vm are the 2-distance white

neighbors of u1. Let v2, v3, . . . , vm−1 be black. Then, the black vertex u1 → vm

to black. Therefore, the set Z2d = {v1, u1, u2, . . . , um−1, v2, v3, . . . , vm−1} forms a

2-distance forcing set for G. The cardinality of the set Z2d is 1+m−1+m−2 =

2(m − 1). Moreover, we can easily observe that any set consisting of less

than 2(m − 1) black vertices will never give a derived coloring for G. Hence,

Z2d(G) = 2(m− 1).

Next we find the 2-distance forcing number of some graphs G with diam(G) = 4.

Definition 6.3.2. [12] A gear graph or the bipartite wheel graph, denoted by

Gn, is the graph derived from the wheel graph Wn by attaching a vertex between
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every pair of adjacent vertices of the n cycle. The gear graph Gn contains 2n+ 1

vertices and 3n edges.

Theorem 6.3.3. For a gear graph Gn, Z2d(Gn) = n+ 2, where n ≥ 4.

Proof. Let V (Gn) = {u, u1, u2, . . . , un, v1, v2, . . . , vn}, where u is the central ver-

tex, u1, u2, . . . , un are the vertices of the n cycle of the wheel graph Wn and

v1, v2, . . . , vn are the vertices with uivi, viui+1 ∈ E(Gn), where i + 1 is taken

modulo n. We generate a 2-distance forcing set as follows. Consider the ver-

tices u1, u2, . . . , un, u, v1 of Gn. Color these vertices as black and the remaining

vertices in Gn as white. Now, we can easily verify that the vertex u2 → v2

to black, u3 → v3 to black and so on. Finally, un → vn to black. Therefore,

the set Z2d = {u1, u2, . . . , un, u, v1} forms a 2-distance forcing set for Gn and

| Z2d |= n+ 2. Hence,

Z2d(Gn) ≤ n+ 2 (6.5)

Conversely, note that each vertex vi, where i = 1, 2, . . . , n, has five 2-distance

neighbors. Therefore, we can observe that Z2d(Gn) ≥ 5. Since Z2d(Gn) ≥ 5,

we can construct a 2-distance forcing set starting with five black vertices. If we

start to construct a 2-distance forcing set consisting of five black vertices, then

two cases arise for applying the color change rule.

Case 1.

Assume that the five black vertices are distributed among the outer cycle of the

graph Gn and they are connected. We can easily verify that the central vertex u

will be forced to black. To start further forcing, we have to include at least one

black vertex from the cycle into the 2-distance forcing set. Then, we can force

a maximum of one more white vertex to black. This process continues and at
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each step we can see that we have to add at least one black vertex from the cycle

into the 2-distance forcing set. If n = 3, we can observe that we need at least 5

black vertices to form a 2-distance forcing set. If n = 4, then we need at least 6

black vertices to form a 2-distance forcing set. Similarly if n = 5, then we need

at least 7 black vertices to form a 2-distance forcing set. Therefore, we need at

least (n+ 2) black vertices to form a 2-distance forcing set for Gn. Hence,

Z2d(Gn) ≥ n+ 2 (6.6)

Case 2.

Assume that four black vertices are distributed among the outer cycle of the

graph Gn and they are connected and the vertex u is black. We can easily verify

that with these five black vertices, we can force a maximum of one more vertex to

black. Now, to start further forcing, we have to include at least one black vertex

from the cycle into the 2-distance forcing set. Then, we can force a maximum of

one more white vertex to black. This process continues and at each step we can

note that we have to add at least one vertex from the cycle into the 2-distance

forcing set. If n = 3, then we can verify that we need at least 5 black vertices to

form a 2-distance forcing set. If n = 4, then we need at least 6 black vertices to

form a 2-distance forcing set. Similarly, if n = 5, then we need at least 7 black

vertices to form a 2-distance forcing set. Therefore, we need at least (n+2) black

to form a 2-distance forcing set for Gn. Hence,

Z2d(Gn) ≥ n+ 2 (6.7)

In both Cases,

Z2d(Gn) ≥ n+ 2 (6.8)

Therefore from (6.5) and (6.8), Z2d(Gn) = n+ 2.
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Definition 6.3.4. [12] The jelly fish graph, denoted by J(m,n), is the graph

obtained from a 4-cycle wxyzw by joining the vertex w and the vertex y by an

edge and attaching the central vertex of K1,m to x and attaching the central vertex

of K1,n to z.

Theorem 6.3.5. Let G be the jelly fish graph. Then, Z2d(G) = m+ n+ 1.

Proof. Our aim is to construct a 2-distance forcing set consisting of m + n + 1

black vertices. For, we proceed as follows.

Color all the m vertices v1, v2, . . . , vm of K1,m as black. Also, we color the ver-

tices w and y as black. The remaining vertices of G are assumed to be white.

Then, any vertex vi, where i = 1, 2, . . . ,m, can force the vertex x to black.

Now, consider the black vertex x. The vertex x has only one 2-distance white

neighbor z. So x → z to black. Again, the 2-distance white neighbors of z

are u1, u2, . . . , un, where u1, u2, . . . , un are the n vertices of K1,n. If we color

the vertices u1, u2, . . . , un−1 as black, then z → un to black. Therefore, the set

Z2d = {v1, v2, . . . , vm, w, y, u1, u2, . . . , un−1} forms a 2-distance forcing set for G.

The cardinality of the set Z2d is m+ n+ 1. Hence,

Z2d(G) ≤ m+ n+ 1 (6.9)

To establish the reverse inequality, we proceed as follows:

We can see that in any 2-distance forcing set for G, it is compulsory to include

(m− 1) black vertices from the sub graph K1,m and (n− 1) black vertices from

the sub graph K1,n of G. Now, we have a set from G consisting of m+n−2 black

vertices and these vertices are from the sub graphs K1,m and K1,n of G. We can

choose the vertices w, x, y and z to form a 2-distance forcing set for G. We claim

that we need to choose at least 3 more vertices from w, x, y and z, otherwise we
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arrive at a contradiction as follows:

If we choose any two vertices from w, x, y and z as black, then we can observe

that each black vertex of G will have at least two 2-distance white neighbors.

Hence further forcing is not possible. Therefore, it is not possible to form a

2-distance forcing set for G with m−1+n−1+2 = m+n black vertices. Hence,

Z2d(G) ≥ m+ n+ 1 (6.10)

Therefore from (6.9) and (6.10), Z2d(G) = m+ n+ 1.

Definition 6.3.6. [12] The helm graph, denoted by Hn, is the graph constructed

from the wheel graph Wn by appending a pendant edge to each vertex of the outer

n cycle.

Theorem 6.3.7. Let G be the helm graph Hn, where n ≥ 4. Then, Z2d(G) ≤

n+ 1.

Proof. Let u, u1, u2, . . . , un be the vertices of the wheel graph Wn in G, where u

is the central vertex. Also, let v1, v2, . . . , vn be the pendant vertices of the graph

G. Consider the set Z2d = {v1, v2, . . . , vn−2, u1, u2, un} of black vertices. The

vertices in V (G)−Z2d are assumed to be white. We claim that the set Z2d forms

a 2-distance forcing set for G. For, we start with the black vertex v1. Clearly,

the vertex v1 → u to black. Then, the vertex v2 → u3 to black. Again, consider

the black vertex v3. The vertex v3 → u4 to black and the process continues.

Consider the black vertex vn−2. We can see that the vertex vn−2 → un−1 to

black. Now, the black vertex un−2 → vn−1 to black. Consequently, the vertex vn

will be colored as black. Thus, with the set Z2d, we can force all the vertices of G

to black. The cardinality of the set Z2d is n+ 1. Therefore, Z2d(G) ≤ n+ 1.
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Definition 6.3.8. [12] The sunflower graph, denoted by SFn, is the graph ob-

tained by taking a wheel graph Wn with central vertex u and the outer n cycle

u1, u2, . . . , un and additional vertices v1, v2, . . . , vn, where vi is joined by edges to

ui,ui+1, where i+ 1 is taken modulo n.

Theorem 6.3.9. Let G be the sunflower graph SFn. Then,

Z2d(G)


= n+ 3 if 3 ≤ n ≤ 5

≤ n+ 2 if n > 5.

Proof. Without loss of generality, divide the vertex set of SFn into three sets,

namely A = {u}, B = {u1, u2, . . . , un} and C = {v1, v2, . . . , vn} , where u is the

central vertex, u1, u2, . . . , un are the vertices of the outer n cycle and v1, v2, . . . , vn

are the additional vertices.

Consider the following cases.

Case 1.

Assume that n = 3. Then, G is a graph with diameter 2. We have from the

Theorem 6.2.4, Z2d(G) = O(G)− 1 = 7− 1 = 6 = n+ 3.

Case 2.

Assume that n = 4. Let A = {u, u1, u2, u3, u4, v1, v2, v3, v4} be the vertex set

of the sunflower graph SF4, where u is the central vertex, u1, u2, u3, u4 are the

vertices of the outer cycle and v1, v2, v3, v4 are the additional vertices. Consider

the set Z2d = {v1, v2, v4, u1, u2, u3, u4} as the set of black vertices in SF4. The

remaining vertices in SF4 are considered to be the white vertices. Clearly, the

vertex v1 → u to black. Then, v2 → v3 to black and hence the set Z2d forms a

2-distance forcing set for SF4. Therefore,

Z2d(G) ≤ 7 = n+ 3 (6.11)
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Conversely, suppose that there exists a 2-distance forcing set for SF4 consisting

of 6 black vertices. Then, there will be 3 vertices remain as white colored in SF4.

At least two of these white vertices will be there in the 2-distance neighborhood of

each of the six black vertices. Since | N2d[ui] |= 9, where 1 ≤ i ≤ 4, | N2d[u] |= 9

and | N2d[vi] |= 8, where 1 ≤ i ≤ 4, further forcing is not possible. Therefore

with six black vertices, obtaining a 2-distance forcing set for SF4 is not possible.

Hence,

Z2d(G) ≥ 7 = n+ 3 (6.12)

Hence from (6.11) and (6.12), Z2d(G) = n+ 3.

Case 3.

Suppose that n = 5. Let A = {u, u1, u2, u3, u4, u5, v1, v2, v3, v4, v5} be the vertex

set of the sunflower graph SF5, where u is the central vertex, u1, u2, u3, u4, u5

are the vertices of the outer cycle and v1, v2, v3, v4, v5 are the additional vertices.

Consider the set Z2d = {v1, v2, v4, v5, u1, u2, u3, u5} of black vertices. The remain-

ing vertices are considered to be white. Clearly, the black vertex v1 → u to black.

Then, the black vertex v5 → u4 to black. Consequently, the vertex v3 will be

colored as black. Thus, the set Z2d generates a 2-distance forcing set for SF5.

The cardinality of the set Z2d is 8 = n+ 3. Therefore,

Z2d(G) ≤ 8 = n+ 3 (6.13)

Conversely, assume that there exists a 2-distance forcing set for SF5 consisting

of 7 black vertices. Then, we have the following Subcases.

Subcase 1.

Assume that the vertex u is black.
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Subcase 1.1.

Take five black vertices from the set B and one black vertex from the set C. In

this case, further forcing is not possible since each black vertex has at least two

2-distance white neighbors. A contradiction to our assumption that there exists

a 2-distance forcing set for SF5 with 7 black vertices.

Subcase 1.2.

Choose one black vertex from the set B and five black vertices from the set C.

Here also further forcing is not possible, a contradiction to our assumption.

Subcase 1.3.

Select four black vertices from the set B and two black vertices from the set C.

In this case, we can force a maximum of one more white vertex to black, not all.

Therefore, the color change rule is not possible. Again, a contradiction to our

assumption.

Subcase 1.4.

Select two black vertices from the set B and four black vertices from the set

C. In this case we cannot form a derived coloring for G, a contradiction to our

assumption.

Subcase 1.5.

Select three black vertices from both the sets B and C. In this case also, we can

force one more white vertex to black, not all. A contradiction to our assumption.

Subcase 2.

Assume that the vertex u is not black. Then, we have the following Subcases.

Subcase 2.1.

Select five black vertices from the set B and two black vertices from the set C. In

this case the derived coloring is not possible, since forcing is not possible because
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each black vertex has at least two 2-distance white neighbors. A contradiction

to our assumption.

Subcase 2.2.

Choose two black vertices from the set B and five black vertices from the set C.

In this case also further forcing is not possible, a contradiction to our assump-

tion.

Subcase 2.3.

Select four black vertices from the set B and three black vertices from the set

C. Here also the derived coloring is not possible, because in this case we can

force only one more white vertex to black, not all. Again, a contradiction to our

assumption.

Subcase 2.4.

Choose three black vertices from the set B and four black vertices from the set

C. We can easily observe that the color change rule is not applicable in this case.

A contradiction to our assumption.

Hence from the above Subcases, we can conclude that

Z2d(G) ≥ 8 = n+ 3 (6.14)

Therefore from (6.13) and (6.14), Z2d(G) = n+ 3.

Case 4.

In this case, we assume that n > 5. Consider the set

Z2d = {u1, u2, . . . , un−2, un, v1, v2, vn}

of black vertices and the remaining vertices in V (G) − Z2d are assumed to be

white. Clearly, the black vertex v1 → u to black. Then, the black vertex v2 → v3

to black, since v3 is the only 2-distance white vertex of v2. Again, consider the
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black vertex v3. Then, v3 → v4 to black, v4 → v5 to black, v5 → v6 to black and

so on. Now, the black vertex vn−4 → vn−3 to black. The white vertex un−1 can

be colored as black by any one of the black vertices u2, u3, . . . , un−4. Then, the

black vertex vn−3 → vn−2 to black, the black vertex vn−2 → vn−1 to black. Thus,

the set Z2d = {u1, u2, . . . , un−2, un, v1, v2, vn} forms a 2-distance forcing set for

G. The cardinality of the set Z2d is n+ 2. Hence, Z2d(G) ≤ n+ 2.
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Chapter 7

Graphs with Large Diameter and Their 2-

Distance Forcing Number

Necessary definitions and some preliminary results are given in Section 1. In

Section 2, we investigate the 2-distance forcing number of the shadow graph

of path, the middle graph of path, the Sth necklace, the n-sunlet graph, the

triangular snake graph, the generalized friendship graph, the comet graph and

the n-pan graph. The 2-distance forcing number of the rooted product of some

graphs are discussed in the Section 3. Section 4 deals with the 2-distance forcing

number of the square graph of path and cycle. Section 5 provides the 2-distance

forcing number of the splitting graph of path. In Section 6, the ladder graph,

the grid graph Pn�Pm, the circular ladder graph are taken into discussion.

The final Section deals with the 2-distance forcing number of the complement

of path and cycle.
1This chapter has been published in the Journal of Mathematical and Computational Sci-

ence, Volume 11, Number 2, 2021, Pages 1810-1837.
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Figure 7.1: The graph G

7.1 Introduction

This chapter provides a generalization of the zero forcing set based on the

distance in graphs. The following definitions are essential for the further devel-

opment of this chapter.

Definition 7.1.1. Let u be an arbitrary vertex in G. The 2-distance degree of

u is defined as the number of vertices which are at a distance at most two from

u including the vertex u. The 2-distance degree of the vertex u is denoted by

deg2d(u).

For example, consider the graph depicted in Figure 7.1. In Figure, deg2d(u1) =

6, deg2d(u2) = 8, deg2d(u3) = 9, etc.

Definition 7.1.2. Consider the 2-distance degree of all vertices in a graph G.

The minimum among them is called the minimum 2-distance degree of the graph

G and it is denoted by δ2d(G). Similarly, the maximum among them is called the

maximum 2-distance degree of the graph G. The maximum 2-distance degree of

G is denoted by ∆2d(G).

We start with the following preliminary result.

Theorem 7.1.3. Let G be a connected graph of order n ≥ 3. Then, Z2d(G) ≥

δ2d(G)− 1.
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Proof. The proof is obvious.

For a connected graph G of order n ≥ 3, any Z2d set forms a zero forcing set

Z of G. Therefore, we have the following.

Theorem 7.1.4. Let G be a connected graph of order n ≥ 3. Then, Z(G) ≤

Z2d(G).

Proof. The proof is obvious.

7.2 Certain Graph Classes and Their Z2d(G)

In this section, we first find the 2-distance forcing number of the shadow graph

of a path with large diameter.

Definition 7.2.1. [35] The shadow graph D2(G) of a connected graph G is con-

structed by taking two copies of G, say G1 and G2, and join each vertex u1 in

G1 to the neighbors of the corresponding vertex u2 in G2.

Theorem 7.2.2. The 2-distance forcing number of the shadow graph D2(Pn) of

a path Pn is n+ 2, where n ≥ 3.

Proof. Let G1 and G2 be the two copies of the path Pn. Denote the vertices

of G1 by u1, u2, . . . , un and that of G2 by v1, v2, . . . , vn. Consider the set Z2d =

{u1, u2, . . . , un, v1, v2} of black vertices. The remaining vertices are assumed to

be white. We shall show that this set Z2d generates a 2-distance forcing set

for D2(Pn). For, consider the black vertex u1. We observe that v3 is the only

2-distance white vertex of u1. So the vertex u1 → v3 to black. Again, the black
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vertex u2 → v4 to black. Also, u3 → v5 to black, u4 → v6 to black, . . . , un−2 → vn

to black. Hence the set Z2d generates a 2-distance forcing set for D2(Pn). The

cardinality of the set Z2d is n+ 2. Therefore,

Z2d[D2(Pn)] ≤ n+ 2 (7.1)

To prove the reverse inequality, we assume that there exists a 2-distance forcing

set consisting of (n + 1) black vertices and we arrive at a contradiction. We

consider the following cases.

Case 1.

Consider the set Z2d = {u1, u2, . . . , un, v1} of black vertices. The vertices in

V [D2(Pn)]− Z2d are assumed to be white. Then, further forcing is not possible

because each black vertex has at least two 2-distance white neighbors. Therefore,

the set Z2d will never form a 2-distance forcing set for D2(Pn), a contradiction

to our assumption.

Case 2.

Let Z2d = {v1, v2, . . . , vn, u1} be a set of (n+ 1) black vertices. By applying the

same argument as in Case 1, we can easily observe that the set Z2d cannot give

a derived coloring for D2(Pn), again a contradiction to our assumption.

Case 3.

Let Pn be a path on n black vertices and Z2d be it’s vertex set. The vertices in

V[D2(Pn)]− Z2d are assumed to be white. Then, each black vertex will have at

least three white neighbors in it’s 2-distance open neighborhood. If we add one

more black vertex to the set Z2d to form a 2-distance forcing set , then all the

black vertices will have at least two 2-distance white neighbors. Therefore, we

cannot start the color change rule from any one of these black vertices. Hence
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from the above cases, we can conclude

Z2d[D2(Pn)] ≥ n+ 2 (7.2)

From (7.1) and (7.2), Z2d[D2(Pn)] = n+ 2.

Definition 7.2.3. [36] The middle graph of a graph G, denoted by M(G), is the

graph with vertex the set V (G) ∪ E(G) and such that two vertices in M(G) are

adjacent if and only if, either they are adjacent edges in G or one is a vertex of

G and the other is an edge incident with it.

Theorem 7.2.4. Let G represents the middle graph of a path Pn, n ≥ 4. Then,

Z2d(G) = n.

Proof. Let V (G) = {v1, v2, . . . , vn, v
1
1, v

1
2, v

1
n−1}, where v1, v2, . . . , vn are the ver-

tices of the path Pn and v1
1, v

1
2, v

1
n−1 are the vertices corresponds to the edges

e1, e2, . . . , en−1 of the path Pn in G. Our aim is to generate a 2-distance forcing

set for G consisting of n black vertices. For, color the vertex v1 as black and the

remaining vertices as white. Then, the 2-distance white neighbors of v1 are v1
1,

v1
2 and v2. To begin the color change rule, assign black color to at least two of

these vertices . Let v1
1, v2 to be black. Then, v1→ v1

2 to black. Now, consider

the black vertex v2. The white colored 2-distance vertices of v2 are v3 and v1
3.

Color v3 to black. Then, v2 → v1
3 to black. Again, consider the black vertex

v3. Color v4 to black. Then, v3→ v1
4 to black and so on. Repeatedly apply this

process, consider the black vertex vn−2. Clearly, the vertex v1
n−2 is black at this

stage. The 2-distance white neighbors of vn−2 are vn−1 and v1
n−1. Color vn−1 to

black. Then, the vertex vn−2 → v1
n−1 to black, v1

n−1→ vn to black. Thus, we will

obtain a derived coloring for G using the set Z2d = {v1, v2 . . . , vn−1, v
1
1} of black
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vertices. The cardinality of the set Z2d is n. Hence,

Z2d(G) ≤ n (7.3)

To prove the result, it suffices to show that Z2d(G) ≥ n. For this, we claim that

a set having (n − 1) black vertices will never form a 2-distance forcing set for

G. Consider the following cases. In each case, the vertices in V (G) − Z2d are

considered to be white.

Case 1.

Let Z2d = {v1, v2, . . . , vn−1} be a set of black vertices. Then, the color change

rule is not possible, since each black vertex vi, i = 1, 2, . . . , n − 1, contains at

least two 2-distance white neighbors.

Case 2.

Suppose that Z2d = {v1
1, v

1
2, . . . , v

1
n−1} be a set of black vertices. In this case,

each black vertex has at least three 2-distance white neighbors. Therefore, fur-

ther forcing is not possible.

Case 3.

Let Pn−1 be a path on (n − 1) black vertices. Let Z2d be it’s vertex set. Then,

Pn−1 will be of the following types.

Type 1.

Choose the path Pn−1 as v1
1v

1
2....v

1
n−1. In this case, it is obvious that the derived

coloring for G is not possible since each black vertex has at least three 2-distance

white neighbors.

Type 2.

Assume that n is odd. Select a path Pn−1 of the type

v1v
1
1v2v

1
2 . . . v

1
bn
2
c−1vbn2 cv

1
bn
2
c. Note that we can consider only the last three black

vertices of this path for further forcing. But, forcing from these vertices is not
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possible since each black vertex has at least two 2-distance white neighbors.

Again, choose a path v1
1v2v

1
2v3, . . . , vbn

2
cv

1
bn
2
cvbn2 c+1. In this case, it is obvious that

we cannot force all the remaining vertices of G to black.

Type 3.

Suppose that n is even.

Consider the paths v1v
1
1v2v

1
2, . . . , vbn2 c−1v

1
bn
2
c−1vbn2 c and v1

1v2v
1
2v3, . . . , v

1
bn
2
c−1vbn2 cv

1
bn
2
c.

We observe that neither of these paths generates a 2-distance forcing set for G.

From the above mentioned cases, we can conclude that a set consisting of (n−1)

black vertices will never generates a 2-distance forcing set for G. Therefore,

Z2d(G) ≥ n (7.4)

Hence from (7.3) and (7.4), Z2d(G) = n.

Definition 7.2.5. [10] The Sth Necklace graph Ns is defined as a 3-regular graph

that can be constructed from a 3s-cycle by appending s central vertices. Each

extra vertex is adjacent to 3-sequential cycle vertices. The order of a Sth Necklace

graph Ns is 4s and the diameter is b3s
2
c.

Theorem 7.2.6. If G is the Sth Necklace graph NS, then Z2d(G) ≤ s+ 4.

Proof. We generate a 2-distance forcing set for G as follows. First we color all

s vertices of G as black and the remaining vertices as white. Each s vertex will

have five 2-distance vertices. Without loss of generality, start the color change

rule from any one of the s vertices. To begin the color change rule from any one

of the s vertices, we have to color at least four 2-distance vertices of that s vertex

to black. Then, clearly these (s+ 4) black vertices generate a 2-distance forcing

set for G. Hence, Z2d(G) ≤ s+ 4.
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Definition 7.2.7. [28]. The triangular snake graph Tn can be viewed as the

graph formed by replacing each edge of the path Pn by a triangle C3, thus adding

(n− 1) vertices and 2(n− 1) edges.

Theorem 7.2.8. Let G be a triangular snake graph with at least 2 triangles.

Then, Z2d(G) = k + 2, where k is the number of triangles in G.

Proof. Let u1, u2, . . . , un be the vertices of the path Pn in G. Represent the (n−1)

additional vertices in G by v1, v2, . . . , vn−1. We prove the result by induction on

the number of triangles in G.

Assume that k = 2. Represent the vertices in G by u1, u2, u3, v1, v2. Let

Z2d = {u1, u2, u3, v1} be a set of black vertices and the remaining vertices are

white. Then, any black vertex, say u1, forces the vertex v2 to black. So the

set Z2d forms a 2-distance forcing set for G. Here | Z2d |= 4. We can easily

observe that with 3 black vertices forming a 2-distance forcing set for G is not

possible, because each black vertex has two 2-distance black neighbor. Therefore,

Z2d(G) = 4 = k + 2.

Again, assume that k = 3. Let u1, u2, u3, u4, v1, v2, v3 be the vertices of G. Sup-

pose that Z2d = {u1, u2, u3, u4, v1} be a set of black vertices. Clearly, the vertex

u1 → v2 to black. Then, the vertex u2 → v3 to black. Thus, the set Z2d generates

a 2-distance forcing set for G. Here the cardinality of the set Z2d is 5 and it is

clear that with 4 black vertices, we cannot form a 2-distance forcing set for G.

Hence, Z2d(G) = 5 = k + 2.

Assume that the result is true for the graph G with (k − 1) triangles, where

k ≥ 5. Let A = {un, vn−1}. The induced subgraph < G[V −A] > is a triangular

snake graph with k − 1 < k triangles. Therefore by mathematical induction,

111



7.2. Certain Graph Classes and Their Z2d(G)

Z2d(< G[V − A] >) = k − 1 + 2 = k + 1.

Let W be a minimum 2-distance forcing set for < G[V −A] > with | W |= k+1.

Color the vertex un in A as black. Then, it is easy to observe that the vertex

vn−1 will be colored as black. Therefore by mathematical induction, Z2d(G) =

Z2d(< G[V − A] >)+ | {un} |= k + 1 + 1 = k + 2.

Definition 7.2.9. [31]. The n-sunlet graph Sn is the graph on 2n vertices got

by attaching n pendant edges to a cycle Cn. Sunlet graphs are also called Crown

graphs. The diameter of a sunlet graph is bn
2
c+2.

Theorem 7.2.10. Let G denotes the sunlet Graph Sn. Then,

Z2d(G) =

 4 if n = 3

n if n ≥ 4.

Proof. Case 1.

Assume that n = 3. Let u1, u2, u3, v1, v2, v3 be the vertices of the sunlet graph G,

where v1, v2, v3 are the vertices joined to u1, u2, u3 of the cycle C3 respectively.

Let Z2d = {u1, u2, v1, v2} be a set of black vertices. The vertices in V (G) − Z2d

are considered to be white. Then, clearly the black vertex v1 → u3 to black.

Now, the vertex u2 → v3 to black. Thus, the set Z2d forms a 2-distance forcing

set for G. Here | Z2d |= 4. Also, we can easily observe that with three black

vertices the derived coloring is not possible because in this case we can force a

maximum of one more vertex to black. Hence, Z2d(G) = 4.

Case 2.

Assume that n ≥ 4. Let V (G) = {u1, u2, . . . , un, v1, v2 . . . , vn}, where u1, u2, . . . , un

are the vertices of the cycle Cn and v1, v2 . . . , vn are the vertices joined to
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u1, u2. . . . , un respectively. We show that the set Z2d = {u1, un, v1, v2, . . . , vn−2} of

black vertices generates a 2-distance forcing set for G. The vertices in V (G)−Z2d

are assumed to be white. The pendant vertex v1 has three 2-distance vertices u1,

un and u2, of which u1 and un are black. So the black vertex v1→ u2 to black.

Consider the black vertex v2. The 2-distance vertices of v2 are u1, u2 and u3.

Hence v2 → u3 to black, since u1 and u2 are black. Again, consider the black

vertex v3. Then, v3→ u4 to black, since u4 is the only 2-distance white neighbor

of v3. Proceeding like this, consider the black vertex vn−2. Clearly, the vertex

vn−2→ un−1 to black. Also, un−2→ vn−1 to black, un → vn to black. Hence we

obtain a derived coloring for G with the set Z2d. Here | Z2d |= n. Therefore,

Z2d(G) ≤ n (7.5)

In order to prove the reverse part, we assert that any set Z2d containing (n− 1)

black vertices will not form a 2-distance forcing set for the graph G. For this, we

consider the following cases. In each case, the vertices in V (G)− Z2d are white.

Case 1.

Let Z2d = {v1, v2, . . . , vn−1} be a set of (n − 1) black vertices. Then further

forcing is not possible, since each black vertex will have three 2-distance white

neighbors.

Case 2.

Let Pn−1 be a path on (n− 1) black vertices. Let Z2d be the vertex set of Pn−1 .

Then, the path Pn−1 will be of the following types.

Assume that n is even.

Type 1.

Consider the path u1u2 . . . un−1. Then, further forcing is not possible since each

black vertex has at least three 2-distance white neighbors.
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Type 2.

Select a path u1u2 . . . un−3un−2vn−2. Then, only one forcing is possible from the

vertex vn−2 because all other black vertices have at least two 2-distance white

neighbors. So in this case, the derived coloring for G is not possible.

Type 3.

Choose a path v1u1u2 . . . un−4un−3un−2. Clearly, only one forcing from the vertex

v1 is possible because all other black vertices have at least two white neighbors

in their 2-distance open neighborhood. Hence we cannot generate a 2-distance

forcing set for G.

We can also observe that a set of (n− 1) black vertices constructed in any way

other than what we mentioned above will never form a 2-distance forcing set for

G. We also note that the cases are the same when n is odd.

Therefore from the above cases, we can conclude that a set of (n − 1) black

vertices cannot form a 2-distance forcing set for G. Hence,

Z2d(G) ≥ n (7.6)

From (7.5) and (7.6), Z2d(G) = n.

Definition 7.2.11. [28] A comet graph is the graph obtained by appending m

pendant edges to one end of a path Pn, where n ≥ 3. The order of a comet graph

is m+ n and the diameter is n.

Theorem 7.2.12. Let G be a comet graph. Then, Z2d(G) = m+ 1.

Proof. Let u1, u2, . . . , un be the vertices of the path Pn. Also, let v1, v2, . . . vm be

the m vertices appended to the vertex un of the path Pn in G. By coloring the

vertices u1 and u2 as black, we can color the remaining vertices of the path Pn as

114



7.2. Certain Graph Classes and Their Z2d(G)

black. Since all the m pendant vertices are the 2-distance vertices of un or un−1,

by coloring (m− 1) of these vertices, say v1, v2, . . . , vm−1, as black we can obtain

a derived coloring for G. Thus, with the set Z2d = {u1, u2, v1, v2, . . . , vm−1} of

black vertices, we can generate a 2-distance forcing set for G and the cardinality

of the set Z2d is m+ 1. Therefore,

Z2d(G) ≤ m+ 1 (7.7)

Conversely, we claim that with m black vertices we cannot generate a 2-distance

forcing set for G. For, we consider the following cases.

Case 1.

Start the coloring process with any one of the vertices vi, where 1 ≤ i ≤ m.

Without loss of generality, color the vertex v1 as black and the remaining vertices

as white. Since the vertex v1 has m−1+2 = (m+1) 2-distance white neighbors,

to apply the color change rule we have to assign black color to at least m of these

2-distance white vertices. So we must have at least (m + 1) black vertices to

start forcing from the vertex v1. Therefore, we cannot form a 2-distance forcing

set for G with m black vertices if we start from any one of the vertices vi, where

1 ≤ i ≤ m.

Case 2.

Consider the vertices u1, u2. . . . , un−2, where N2d(ui) = 4, i = 3, 4, . . . , n − 2.

Consider the vertex u3. Color the vertex u3 as black. To proceed further, we

have to color the vertices u1, u2 and u4 as black. Then, the black vertex u3 → u5

to black. Now, the black vertex u4 → u6 to black, u5 → u7, . . . , un−3 → un−1,

un−2 → un to black. Then, to start the color change rule from the vertex un,

we have to color at least (m− 1) pendant vertices, say v1, v2, . . . , vm−1, as black.

Thus, we have a set Z2d = {u1, u2, u3, u4, v1, v2, . . . , vm−1} of black vertices. The
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cardinality of the set Z2d is m+ 3.

Case 3.

We observe that the color change rule is not possible with m black vertices if we

start the forcing process either from un−1 or from un, since N2d(un−1) = m + 3

and N2d(un) = m+ 2.

From the above three cases, we can conclude that the minimum number of black

vertices required to obtain a derived coloring for G is m+ 1. Hence,

Z2d(G) ≥ m+ 1 (7.8)

Therefore from (7.7) and (7.8), Z2d(G) = m+ 1.

Definition 7.2.13. [27]. The n-pan graph is the graph formed by joining the

cycle Cn to a singleton graph K1 with a bridge. The order of the n-pan graph is

n+ 1 and the diameter is bn
2
c+ 1.

Theorem 7.2.14. Let G be a n-pan graph, where n ≥ 6. Then, Z2d(G) = 4.

Proof. Represent the vertices of the cycle Cn in G by u1, u2, . . . , un, n ≥ 6, and

the singleton graph K1 by u. Let u be joined to the vertex u1 of Cn in G. Color

any four adjacent vertices of Cn as black, except the vertex u1. Clearly, these

four vertices give a derived coloring for the cycle Cn in G. Consequently, the

singleton graph K1 ( that is, the vertex u ) will be colored as black. Also, we

observe that any set of three black vertices never give a derived coloring for G,

because in this case each black vertex has at least two 2-distance white vertices.

Therefore, Z2d(G) = 4. Hence the proof.

Theorem 7.2.15. Let G be a connected graph with maximum degree ∆(G) = 2

and order n ≥ 5. Then, Z2d(G) = 2 or 4.
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Proof. Suppose that the maximum degree of G is 2. Then, G is either a path Pn

or a cycle Cn. Now, we have from [26] that if G is a path Pn, then Z2d(G) = 2

and if G is a cycle Cn, then Z2d(G) = 4. This completes the proof.

Theorem 7.2.16. Let G be the generalized friendship graph F k
p , p≥ 5 and k ≥ p.

Then, Z2d(G) = 3k.

Proof. Represent the k copies of the cycle Cp in F k
p as C

(1)
p , C

(2)
p , . . . , C

(k)
p , where

V [C(1)
p ] = {v1

1, v
1
2, . . . , vp}

V [C(2)
p ] = {v2

1, v
2
2, . . . , vp}

. . .

. . .

V [C(k)
p ] = {vk1 , vk2 , . . . , vp}

We have the 2-distance forcing number of a cycle Cn is 4, where n ≥ 5 (See[26]).

Consider the cycle C
(1)
p in G. Let A = {vp, v1

1, v
1
2, v

1
3} be a set of four adjacent

black vertices of the cycle C
(1
p ). Clearly, the set A generates a 2-distance forcing

set for C
(1)
p . Therefore, Z2d[C

(1)
p ] = 4. We observe that the vertex vp is also a

black vertex of the cycle C
(2)
p . Assume that B = {vp, v2

1, v
2
2, v

2
3} is a set of four ad-

jacent black vertices of the cycle C
(2)
p . Then, the set B forms a 2-distance forcing

set for the cycle C
(2)
p . Again, suppose C = {vp, v3

1, v
3
2, v

3
3} be a set of four adjacent

black vertices of the cycle C
(3)
p . Clearly, the set C generates a 2-distance forcing

set for the cycle C
(3)
p . The case is similar for other cycles C

(4)
p , C

(5)
p . . . , C

(k−1)
p .

Hence to get the derived coloring for the cycles C
(2)
p , C

(3)
p , . . . , C

(k−1)
p , we need in

total 3(k − 2) black vertices. Now, consider the cycle C
(k)
p . Also, consider the
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vertex vk1 in C
(k)
p which is adjacent to the vertex vp. Color the vertex vk1 as black.

Then, the vertex v1
1 in C

(1)
p forces the vertex vkp−1 in C

(k)
p to black. Hence we

need one more black vertex vk2 in C
(k)
p to get the derived coloring for the cycle

C
(k)
p . Thus, with 4+3(k−2)+2 = 3k black vertices, we can force all the vertices

of G to black. Therefore,

Z2d(G) ≤ 3k (7.9)

To prove the converse, claim that with (3k − 1) black vertices we cannot obtain

a derived coloring for G. For, assume that we have a 2-distance forcing set for G

consisting of (3k− 1) black vertices. Since the vertex vp will be colored as black

after getting the derived coloring for the cycle C
(1)
p using four adjacent black

vertices and the vertex vp is common for all cycles, we need at least 3 adjacent

black vertices ( These black vertices together with the vertex vp should form four

adjacent black vertices ) for each of the cycles C
(2)
p , C

(3)
p , . . . , C

(k−1)
p to get the

derived coloring for them. So in total, we need at least 3(k − 2) = 3k − 6 black

vertices to form the derived coloring for the cycles C
(2)
p , C

(3)
p , . . . , C

(k−1)
p . Now, we

have used 4+3k−6 = 3k−2 black vertices to obtain the derived coloring for the

cycles C
(1)
p , C

(2)
p , C

(3)
p , . . . , C

(k−1)
p . Then, there remains [(3k − 1)− (3k − 2)] = 1

black vertex in the 2-distance forcing set. Using this black vertex together with

the black vertex vp, we cannot form a derived coloring for the cycle C
(k)
p , a

contradiction to our assumption. Therefore,

Z2d(G) ≥ 3k (7.10)

Hence from (7.9) and (7.10), Z2d(G) = 3k.
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7.3 2-Distance Forcing Number of Rooted Prod-

uct of Graphs

In this section, we deal with the 2-distance forcing number of rooted product

of some graphs.

Theorem 7.3.1. Let G be the rooted product Pn(Pm) of a path Pn and the rooted

path Pm rooted with the pendant vertex of Pm, where n ≥ 2, m ≥ 4. Then,

Z2d(G) ≤ 2(n− 1).

Proof. Let u1,u2,. . . ,un be the vertices of the path Pn and P
(1)
m , P

(2)
m ,. . . , P

(n)
m be

the n copies of the path Pm rooted at the vertices u1, u2,. . . , un in G respectively.

Denote the vertex set of the paths P
(1)
m , P

(2)
m , . . . , p

(n)
m in G as follows.

V [P (1)
m ] = {p1

1, p
1
2, . . . , p

1
m}

V [P (2)
m ] = {p2

1, p
2
2, . . . , p

2
m}

. . .

. . .

V [P (n)
m ] = {pn1 , pn2 , . . . , pnm}.

Root the vertex p1
1 of the path P

(1)
m at u1, the vertex p2

1 of the path P
(2)
m at u2,

. . . , the vertex pn1 of the path P
(n)
m at un. That is, p1

1 = u1, p
2
1 = u2, . . . , p

n
1 = un.

We generate a 2-distance forcing set for the graph G as follows.

Let A1 = {p1
m−1, p

1
m}, A2 = {p2

m−1, p
2
m}, . . . , An−1 = {pn−1

m−1, p
n−1
m }. Suppose that

Z2d = A1 ∪ A2 ∪ . . . ∪ An−1. Assign black color to the vertices of the set Z2d.

The vertices in V (G) − Z2d are considered to be white. Since Z2d(Pt) = 2 for a
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path Pt, t ≥ 3 ( See [26] ), clearly the set A1 generates a 2-distance forcing set

for the path P
(1)
m . In a similar manner, the set A2 forms a 2-distance forcing set

for the path P
(2)
m . Proceeding like this, the set An−1 forms a 2-distance forcing

set for the path P
(n−1)
m . Consider the black vertex pn−1

2 of the path P
(n−1)
m . We

can easily see that the vertex pn−1
2 forces the vertex un to black. Then, the black

vertex un−1 forces the vertex pn2 of the path P
(n)
m to black. Now, the set {un, pn2}

of black vertices generates a 2-distance forcing set for the path P
(n)
m . Thus, the

set Z2d generates a 2-distance forcing set for the graph G. Since the cardinality of

the set Z2d is 2(n−1), we have Z2d(G) ≤ 2(n−1). This completes the proof.

We strongly believe that the above bound is sharp.

Theorem 7.3.2. Let G denotes the rooted product Pn(Cm) of a path Pn and the

rooted cycle Cm, where n ≥ 2,m ≥ 5. Then, Z2d(G) ≤ 3n.

Proof. Represent the vertices of the path Pn by u1, u2, . . . , un. Let C
(1)
m , C

(2)
m ,. . . ,

C
(n)
m be the n copies of the cycle Cm rooted at the vertices u1, u2, . . . , un in

G respectively. Denote the vertex set of the cycles C
(1)
m , C

(2)
m , . . . , C

(n)
m in G as

follows.

V [C(1)
m ] = {v1

1, v
1
2, . . . , v

1
m}

V [C(2)
m ] = {v2

1, v
2
2, . . . , v

2
m}

. . .

. . .

V [C(n)
m ] = {vn1 , vn2 , . . . , vnm}.

Let the vertex v1
1 of the cycle C

(1)
m be rooted at the vertex u1 of Pn, the vertex

v2
1 of the cycle C

(2)
m be rooted at the vertex u2 of Pn, . . . , the vertex vn1 of the
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cycle C
(n)
m be rooted at the vertex un of Pn. That is, u1 = v1

1, u2 = v2
1, . . . , un =

vn1 . Let A1 = {u1, v
1
2, v

1
3, v

1
4}, A2 = {v2

2, v
2
3, v

2
4}, A3 = {v3

2, v
3
3, v

3
4}, . . . , An−1 =

{vn−1
2 , vn−1

3 , vn−1
4 }, An = {vn2 , vn3 }. Also, let Z2d = A1 ∪ A2 ∪ . . . ∪ An. Color all

vertices of the set Z2d as black and the remaining vertices as white. Then, we

claim that the set Z2d generates a 2-distance forcing set for G.

For, Since Z2d(Cn) = 4 for n ≥ 5 (See[26]), clearly the set A1 generates a 2-

distance forcing set for the cycle C
(1)
m in G. Then, the black vertex v1

m of the

cycle C
(1)
m forces the vertex u2 of the path Pn to black, since u2 is the only 2-

distance white neighbor of v1
m. Since u2 is also a black vertex of the cycle C

(2)
m ,

we can observe that the set A2 together with the black vertex u2 forms a 2-

distance forcing set for the cycle C
(2)
m in G. Then, the black vertex v2

m of C
(2)
m

forces the vertex u3 of the path Pn to black, because u3 is the only 2-distance

white neighbor of the vertex v2
m. Consider the cycle C

(3)
m in G. Since u3 is

also a black vertex of the cycle C
(3)
m , we can see that the set A3 together with

the black vertex u3 generates a 2-distance forcing set for the cycle C
(3)
m in G.

Proceeding like this, Consider the cycle C
(n−1)
m . In C

(n−1)
m , the vertex un−1 is

already colored as black by the vertex vn−2
m of the cycle C

(n−2)
m . Therefore, the

set An−1 = {vn−1
2 , vn−1

3 , vn−1
4 } together with the black vertex un−1 will form a

2-distance forcing set for the cycle C
(n−1)
m in G. Finally, consider the cycle C

(n)
m

in G. Clearly, the vertex un of the path P
(n)
m will be forced to black by the black

vertex vn−1
m of the cycle C

(n−1)
m . Then, the black vertex un−1 forces the vertex

vnm of the cycle C
(n)
m to black because the vertices un and vn2 are black vertices

in C
(n)
m . Now, We can easily observe that the set An together with the black

vertices un and vnm generates a 2-distance forcing set for the cycle C
(n)
m . Thus,

the set Z2d generates a 2-distance forcing set for G. The cardinality of the set Z2d
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is 4 + 3(n− 2) + 2 = 3n. Therefore, we have Z2d(G) ≤ 3n. Hence the proof.

We strongly believe that the above bound is sharp.

Theorem 7.3.3. Let G be a graph representing the rooted product Cn(Pt) of

a cycle Cn and the rooted path Pt rooted with the pendant vertex of Pt, where

n, t ≥ 4. Then, Z2d(G) ≤ 2n− 4.

Proof. Let P
(1)
t , P

(2)
t , . . . , P

(n)
t be the n copies of the path Pt rooted at the vertices

u1, u2, . . . , un of the cycle Cn in G respectively. Denote the vertex set of the paths

P
(1)
t , P

(2)
t , . . . , P

(n)
t in G as follows.

V [P
(1)
t ] = {p1

1, p
1
2, . . . , p

1
t}

V [P
(2)
t ] = {p2

1, p
2
2, . . . , p

2
t}

. . .

. . .

V [P
(n)
t ] = {pn1 , pn2 , . . . , P n

t }.

Let the vertex p1
1 of the path P

(1)
t be rooted at the vertex u1, p2

1 of the path P
(2)
t

at u2, . . . , the vertex pn1 of the path P
(n)
t at un. That is, p1

1 = u1, p2
1 = u2, . . . ,

pn1 = un. Let A1 = {p1
t , p

1
t−1}, A2 = {p2

t , p
2
t−1}, . . . , An−2 = {pn−2

t , pn−2
t−1 }. Also,

let Z2d = A1 ∪ A2 ∪ . . . ∪ An−2. Color all vertices of the set Z2d as black. The

remaining vertices are treated as white. Then, we assert that the set Z2d forms

a 2-distance forcing set for G.

For, consider the path P
(1)
t rooted at the vertex u1. Since Z2d(Pn) = 2 (n ≥ 3)

(See[26]), clearly the set A1 generates a 2-distance forcing set for the path P
(1)
t .

We observe that after getting the derived coloring for the path P
(1)
t , the color of
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the vertex u1 is forced to black. Similarly, the set A2 forms a 2-distance forcing

set for the path P
(2)
t rooted at the vertex u2. Then, the black vertex p1

2 of the path

P
(1)
t forces the vertex un of the cycle Cn to black. Again, the set A3 generates a

2-distance forcing set for the path P
(3)
t rooted at the vertex u3. Proceeding like

this, consider the path P
(n−2)
t rooted at the vertex un−2. We can observe that

the set An−2 will form a 2-distance forcing set for the path P
(n−2)
t . Now, the

black vertex pn−2
2 of the path P

(n−2)
t forces the vertex un−1 to black. Then, the

black vertex un−2 forces the vertex pn−1
2 of the path P

(n−1)
t to black, the black

vertex u1 forces the vertex pn2 of the path P
(n)
t to black. Now, we can see that the

remaining white vertices of the paths P
(n−1)
t and P

(n)
t will be colored as black.

Thus, the set Z2d generates a 2-distance forcing set for G. Here | Z2d |= 2n− 4.

Therefore, Z2d(G) ≤ 2n− 4, as we desired.

We strongly believe that the above bound is sharp.

Theorem 7.3.4. Let G be the rooted product Cn(Cm) of a cycle Cn and the

rooted cycle Cm, where m,n ≥ 5. Then, Z2d(G) ≤ 3n. We strongly believe that

this bound is sharp.

Proof. Denote the vertices of the cycle Cn in G by u1, u2, . . . , un and the n copies

of the cycle Cm in G by C
(1)
m , C

(2)
m , . . . , C

(n)
m , where

V [C(1)
m ] = {v1

1, v
1
2, . . . , v

1
m}

V [C(2)
m ] = {v2

1, v
2
2, . . . , v

2
m}

. . .

. . .
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V [C(n)
m ] = {vn1 , vn2 , . . . , vnm}

Let the vertex v1
1 of the cycle C

(1)
m be rooted at the vertex u1, the vertex v2

1 of

the cycle C
(2)
m be rooted at the vertex u2, . . . , the vertex vn1 of the cycle C

(n)
m be

rooted at the vertex un. That is, u1 = v1
1, u2 = v2

1, . . . , un = vn1 . Suppose that

A1 = {u1, v
1
2, v

1
3, v

1
4}, A2 = {u2, v

2
2, v

2
3, v

2
4}, A3 = {v3

2, v
3
3, v

3
4}, A4 = {v4

2, v
4
3, v

4
4},

A5 = {v5
2, v

5
3, v

5
4},. . . , An−2 = {vn−2

2 , vn−2
3 , vn−2

4 }, An−1 = {vn−1
2 , vn−1

3 }, An =

{vn2 , vn3 }. Also, let Z2d = A1 ∪A2 ∪ . . .∪An. Assign black color to all vertices of

the set Z2d. The vertices in V (G) − Z2d are considered to be white. We claim

that the set Z2d forms a 2-distance forcing set for the graph G.

For, consider the set A1. Clearly, the set A1 generates a 2-distance forcing set for

the cycle C
(1)
m rooted at the vertex u1. Similarly, the set A2 generates a 2-distance

forcing set for the cycle C
(2)
m rooted at the vertex u2. Now, since un is the only

2-distance white neighbor of the vertex v1
2 of the cycle C

(1)
m , the black vertex v1

2

forces the vertex un to black. In a similar way, the black vertex v2
2 of the cycle

C
(2)
m forces the vertex u3 to black. Again, consider the set A3. Clearly, the set

A3 together with the black vertex u3 generates a 2-distance forcing set for the

cycle C
(3)
m rooted at the vertex u3. Proceeding like this, consider the cycle C

(n−2)
m

rooted at the vertex un−2. We observe that at this stage the vertex un−2 is forced

to black by the vertex vn−3
2 of the cycle C

(n−3)
m . Now, we can see that the set

An−2 together with the vertex un−2 generates a 2-distance forcing set for the cycle

C
(n−2)
m rooted at the vertex un−2. In the cycle C

(n−1)
m , clearly, the vertex un−1

is forced to black by the vertex vn−2
2 of the cycle C

(n−2)
m . Then, the vertex un−2

forces the vertex vn−1
m of the cycle C

(n−1)
m to black, the vertex u1 forces the vertex

vnm of the cycle C
(n)
m to black. Now, the set An−1 together with the black vertices

un−1 and vn−1
m forms a 2-distance forcing set for the cycle C

(n−1)
m . Similarly, the
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set An together with the black vertices un and vnm generates a 2-distance forcing

set for the cycle C
(n)
m . Thus, the set Z2d generates a 2-distance forcing set for the

graph G. The cardinality of the set Z2d is 4 + 4 + 3(n− 4) + 2 + 2 = 3n.

Hence, Z2d(G) ≤ 3n. This completes our proof.

7.4 2-Distance Forcing Number of Square Graph

of a Graph

In this section, we consider the square of path and cycle.

Theorem 7.4.1. Let G denotes the square graph of a path Pn, where n ≥ 5.

Then, Z2d(G) = 4.

Proof. In G, δ2d(G) = 5. So by the Theorem 7.1.3, we have

Z2d(G) ≥ 4 (7.11)

To establish the reverse inequality, we proceed as follows.

Let Z2d = {u1, u2, u3, u4} be a set of black vertices. The remaining vertices are

colored as white. We observe that u5 is the only 2-distance white neighbor of the

vertex u1. So the black vertex u1 → u5 to black. Now, consider the black vertex

u2. The 2-distance neighbors of the vertex u2 are u1, u3, u4, u5 and u6, out of

which u6 is the only white vertex. Therefore, the vertex u2 → u6 to black. Again,

consider the black vertex u3. The 2-distance neighbors of u3 are u1, u2, u4, u5, u6

and u7, of which u7 is the only white vertex. Hence, the vertex u3→ u7 to black.

Continue this process, we can obtain a forcing sequence u1 → u5, u2 → u6,

u3 → u7,. . . , un−5 → un−1, un−4 → un. Thus, all vertices of G will be colored
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as black using the set Z2d. Therefore, the set Z2d = {u1, u2, u3, u4} forms a

2-distance forcing set for G. Here the cardinality of the set Z2d is 4. Therefore,

Z2d(G) ≤ 4 (7.12)

From the above two inequalities, Z2d(G) = 4.

Theorem 7.4.2. Let G represents the square graph of a cycle Cn, n ≥ 9. Then,

Z2d(G) = 8.

Proof. We observe that G is a 4-regular graph. Denote the vertices of the

cycle Cn in G by u1,u2,. . . ,un. Each vertex ui, where i = 1, 2, 3, ..., n, has

eight vertices in it’s 2-distance open neighborhood. The 2-distance vertices of

u1, u2, u3, u4,. . . ,un−1, un are displayed in the following table.

Vertex 2-distance vertices

u1 u2, u3, u4, u5, un, un−1, un−2, un−3

u2 u1, u3, u4, u5, u6, un, un−1, un−2

u3 u1, u2, u4, u5, u6, u7, un, un−1

u4 u1, u2, u3, u5, u6, u7, u8, un

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

un−1 u1, u2, u3, un, un−2, un−3, un−4, un−5

un u1, u2, u3, u4, un−1, un−2, un−3, un−4

Since δ2d(G) = 9 in G, by the Theorem 7.1.3, we have

Z2d(G) ≥ 8 (7.13)
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To prove the reverse inequality, we proceed as follows.

Start the color change rule by coloring the vertex u1 as black and the remaining

vertices as white. Since the vertex u1 has eight 2-distance white neighbors, to pro-

ceed further, we have to color at least seven of these white vertices as black. Let

the black vertices be un−3, un−2, un−1, un, u2, u4 and u5. Then, u1 → u3 to black.

Now, consider the black vertex u2. The vertices u1, u3, u4, u5, u6, un, un−1, un−2

are the 2-distance vertices of the vertex u2. Out of these vertices, u1, un, un−1,

un−2, u3, u4, u5 are already black. So the vertex u2 → u6 to black. Then, the

vertex u3 → u7 to black, since the other 2-distance vertices u1, u2, un, un−1, u4,

u5 and u6 of the vertex u3 are already black. In a similar manner, the black

vertex u4 forces the vertex u8 to black. Proceeding like this, the black vertex

un−8 forces the vertex un−4 to black. We observe that the vertices un−3, un−2,

un−1, un are already coloured black. Hence with the black vertices u1, u2, u4,

u5, un, un−1, un−2, un−3, we can force all vertices of the graph G to black. Thus,

the set Z2d = {u1, u2, u4, u5, un, un−1, un−2, un−3} of black vertices is a 2-distance

forcing set for the graph G. The cardinality of the set Z2d is 8. Therefore,

Z2d(G) ≤ 8 (7.14)

Hence from the above two inequalities, Z2d(G) = 8.

7.5 2-Distance Forcing Number of Splitting Graph

In this section, we consider the splitting graph of a path.

Theorem 7.5.1. Let G be the splitting graph of a path Pn, where n ≥ 4. Then,

Z2d(G) = n.
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Proof. Denote the vertices of the path Pn in G by u1, u2, . . . , un. Represent the

corresponding vertices of u1, u2, . . . , un in G by u′1, u
′
2, . . . u

′
n. In this graph, the

vertices u′1 and u′n have the least number of 2-distance vertices and the number

of such 2-distance vertices is 4.

We form a 2-distance forcing set for G as follows.

Begin with the vertex u′1. Assign black color to u′1. The vertex u′1 has four

2-distance neighbors u1, u2, u3 and u′3. To begin the color change rule, color at

least three of these 2-distance neighbors as black. Let the black vertices be u1,

u2, u3 and the remaining vertices are treated as white vertices.. Then, the black

vertex u′1 forces the vertex u′3 to black. Consequently, the black vertex u1 forces

u′2 to black. Now, the black vertex u2 has only two 2-distance white neighbors u4

and u′4. Assign black color to the vertex u4. Then, the vertex u′4 is forced to black

by the vertex u2. Similarly, the black vertex u3 has two 2-distance white vertices

u5 and u′5. Color the vertex u5 to black. Then, the black vertex u3 forces the

vertex u′5 to black. Now, consider the vertex u4. The vertices u6 and u′6 are the

2-distance white neighbors of u4. By assigning black color to the vertex u6, we

can force the vertex u′6 to black by the vertex u4. Proceeding like this, consider

the black vertex u′n−1 (we observe that the vertex u′n−1 is forced to black by the

vertex un−3). Now, the black vertex u′n−1 has only one 2-distance white neighbor

un. So u′n−1 forces un to black. Then, the black vertex un−1 forces the vertex u′n

to black. Thus, the set Z2d = {u′1, u1, u2, u3, u4, u5, . . . , un−1} forms a 2-distance

forcing set for G. Clearly, the cardinality of the set Z2d is n. Therefore,

Z2d(G) ≤ n (7.15)

To prove the converse, we claim that no set with (n− 1) black vertices generates

a 2-distance forcing set for G. For, we consider the following cases.
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Case 1.

Let Z2d = {u1, u2, . . . , un−1} be a set of (n − 1) black vertices. The remaining

vertices are assumed to be white. Then, we can observe that further forcing is not

possible because each black vertex has at least three 2-distance white neighbors.

Case 2.

Assume that Z2d = {u′1, u′2, . . . , u′n−1} be a set of black vertices. The vertices

in V (G) − Z2d are assumed to be white. Here also the color change rule is not

possible since each black vertex has at least three 2-distance white neighbors.

Case 3.

Let Pn−1 be a path on (n− 1) black vertices and the set Z2d be the vertex set of

Pn−1. The vertices in V (G) − Z2d are treated as white. Then, we consider the

following Subcases.

Subcase 1.

Assume that n is odd.

Let Pn−1 be the path u1u
′
2u3u

′
4...u

′
n−3un−2u

′
n−1. Then, further forcing is not

possible since each black vertex has at least two 2-distance white neighbors.

Subcase 2.

Consider the path u′1u2u
′
3u4...un−3u

′
n−2un−1. Here also the derived coloring is

not possible because each black vertex has at least two white vertices in it’s 2-

distance open neighborhood.

Subcase 3.

Suppose that n is even.

Consider the paths u1u
′
2u3u

′
4...un−3u

′
n−2un−1 and u′1u2u

′
3u4...u

′
n−3un−2u

′
n−1.

In this case also color change rule is not possible, because each black vertex has

at least two 2-distance white neighbors.
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It is worth mentioning that a set of (n− 1) black vertices generated in any way

other than what we mentioned above cannot form a 2-distance forcing set for G.

Therefore from the above cases, we can observe that

Z2d(G) ≥ n (7.16)

Hence from (7.15) and (7.16), we get Z2d(G) = n.

7.6 2-Distance Forcing Number of Cartesian Prod-

uct of Graphs

This section investigates the 2-distance forcing number of Cartesian product

such as the ladder graph Pn�P2, the grid graph Pn�Pm and the circular ladder

graph Cn�K2. We start with the ladder graph Pn�P2.

Theorem 7.6.1. Let G be the ladder graph Pn�P2, where n ≥ 3. Then,

Z2d(G) = 4.

Proof. Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices of the graph G =

Pn�P2. Here δ2d(G) = 5. Since Z2d(G) ≥ δ2d(G) − 1 ( See Theorem 7.1.3 ),

we have

Z2d(G) ≥ 4 (7.17)

In order to prove the reverse inequality, consider the set Z2d = {u1, u2, v1, v2}.

Assign black color to the vertices of the set Z2d and white color to the remaining

vertices. Take the black vertex v1. Since v3 is the only 2-distance white neighbor

of v1, the black vertex v1 → v3 to black. Clearly, u1 → u3 to black. Repeatedly
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apply the color change rule, we get the forcing sequence v2 → v4, u2 → u4,

v3 → v5, u3 → u5 ,. . . , vn−3 → vn−1, un−3 → un−1, vn−2 → vn, un−2 → un

to black. Thus, all vertices of G will be colored as black. Therefore, the set

Z2d = {u1, u2, v1, v2} generates a 2-distance forcing set for G. The cardinality of

the set Z2d is 4. Hence,

Z2d(G) ≤ 4 (7.18)

From (7.17) and (7.18), Z2d(G) = 4.

Theorem 7.6.2. Let G be the Cartesian product Pn�Pm of a path Pn and a

path Pm, m ≥ 5, where n ≥ m. Then, Z2d(G) = 2m.

Proof. Denote the vertices of the graph G by

p1
1, p

1
2, . . . , p

1
n

p2
1, p

2
2, . . . , p

2
n

p3
1, p

3
2, . . . , p

3
n

. . .

. . .

pm1 , p
m
2 , . . . , p

m
n

We can easily infer that the vertices p1
1, p

1
n, p

m
1 and pmn have the least number of

2-distance vertices and the number of such vertices is 5. We generate a 2-distance

forcing set for G as follows.

Consider the set Z2d = {p1
1, p

1
2, p

2
1, p

2
2, p

3
1, p

3
2, p

4
1, p

4
2, . . . , p

m−1
1 , pm−1

2 , pm1 , p
m
2 } of 2m

black vertices and all other vertices are colored as white. Then, clearly the black

vertex p1
1 forces the vertex p1

3 to black, since p1
3 is the only 2-distance white
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neighbor of the vertex p1
1. Similarly, the black vertex p2

1 forces the vertex p2
3 to

black because p2
3 is the only 2-distance white neighbor of the vertex p2

1. Continue

like this, we can see that the vertex p3
1 forces p3

3 to black, p4
1 forces p4

3 to black,. . . ,

pm1 forces the vertex pm3 to black. Again, the black vertex p1
2 forces the vertex p1

4

to black, p2
2 forces the vertex p2

4 to black,. . . , pm2 forces the vertex pm4 to black.

Apply this process step by step, finally the black vertex p1
n−2 forces the vertex

p1
n to black, p2

n−2 forces the vertex p2
n to black,. . . , pmn−2 forces the vertex pmn to

black. Thus, the set Z2d generates a 2-distance forcing set for G. Clearly, the

cardinality of the set Z2d is 2m. Hence,

Z2d(G) ≤ 2m (7.19)

To establish the reverse inequality, we proceed as follows.

Case 1.

Omit the black vertex p1
1 (or pm1 ) from the set Z2d. Then after possible forcings,

there exists only 2 + m(m−1)
2

black vertices in the graph G. So in this case, the

derived coloring is not possible for G.

Case 2.

Delete the black vertex p2
1 (or pm−1

1 ) from the 2-distance forcing set Z2d. In this

case, after possible number of forcings, there exists only 4+ (m−1)(m−2)
2

black ver-

tices in the graph G. Therefore, the set Z2d will never form a 2-distance forcing

set for G.

Case 3.

If we exclude the vertex p1
2 (or pm2 ) from the set Z2d, then after possible forcings

there exists only m(m+1)
2

black vertices in the graph G. Hence, the set Z2d will

not form a 2-distance forcing set for G.
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Case 4.

If we omit the vertex p2
2 (or pm−1

2 ) from the set Z2d, then clearly there are only

2 + (m−1)m
2

black vertices in G. In this case also, the set Z2d cannot form a

2-distance forcing set for G.

Case 5.

Delete the black vertex pj1, j = 3, 4, . . . ,m − 2, from the set Z2d. Then, we can

easily assert that obtaining a derived coloring for G is impossible.

Case 6.

Remove the black vertex pj2, j = 3, 4, . . . ,m− 2, from the set Z2d. Then, we can

observe that we cannot change the color of all vertices of G to black.

Hence from the above cases, we can conclude that a set with (2m − 1) black

vertices will not form a 2-distance forcing set for G. Therefore,

Z2d(G) ≥ 2m (7.20)

Hence from (7.19) and (7.20), Z2d(G) = 2m.

Theorem 7.6.3. [26] Let G be a connected graph of order n ≥ 3 with diam(G) =

2. Then, Z2d(G) = n− 1.

Theorem 7.6.4. Let G represents the circular ladder graph Cn�K2. Then,

Z2d(G) =



5 if n = 3

6 if n = 4

7 if n = 5

8 if n ≥ 6.
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Proof. We consider the following cases.

Case 1.

Assume that n = 3. Let {u1, u2, u3, v1, v2, v3} be the vertex set of G, where

u1, u2, u3 are the vertices of the inner cycle. In this case since the diameter of G

is 2, Z2d(G) = O(G)− 1 = 6− 1 = 5, by the Theorem 7.6.3.

Case 2.

Assume that n = 4. Represent the vertex set of G by {u1, u2, u3, u4, v1, v2, v3, v4},

where u1, u2, u3, u4 are the vertices of the inner cycle. Here, ∆2d(G) = δ2d(G) = 7.

By the Theorem 7.1.3, we have

Z2d(G) ≥ 6 (7.21)

On the other hand, consider the set Z2d = {v1, v2, v3, v4, u1, u2} of black vertices.

The remaining vertices are assumed to be white. Then, clearly the vertex v1 → u4

to black, since u4 is the only 2-distance white neighbor of the black vertex v1.

Consequently, the vertex u3 will be colored as black. Therefore, the set Z2d forms

a 2-distance forcing set for G. The cardinality of the set Z2d is 6. Hence we have,

Z2d(G) ≤ 6 (7.22)

Therefore from (7.21) and (7.22), Z2d(G) = 6.

Case 3.

Assume that n = 5. Denote the vertex set of G by

{u1, u2, . . . , u5, v1, v2, . . . , v5}, where u1, u2, u3, u4, u5 are the vertices of the inner

cycle. In G, ∆2d(G) = δ2d(G) = 8. Therefore by the Theorem 7.1.3, we have

Z2d(G) ≥ 7 (7.23)

Conversely, Let Z2d = {v1, v2, v3, v5, u1, u2, u5} be a set of seven black vertices.

Then, we can easily see that the black vertex v1 → v4 to black. Now, the vertex
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v5 → u4 to black. Consequently, the vertex u3 will be colored as black. Thus,

the set Z2d generates a 2-distance forcing set for G. The cardinality of the set

Z2d is 7. Therefore,

Z2d(G) ≤ 7 (7.24)

Hence from (7.23) and (7.24), Z2d(G) = 7.

Case 4.

Assume that n ≥ 6. Let {u1, u2, . . . , un, v1, v2, . . . , vn} be the vertex set of the

circular ladder graph G, where u1, u2, . . . , un are the vertices of the inner cycle.

We construct a 2-distance forcing set for G as follows.

Clearly, δ2d(G) = 8 in G. Since Z2d(G) ≥ δ2d(G)−1 for a connected graph G, we

have Z2d(G) ≥ 7. But it is obvious that with 7 black vertices we cannot form a

2-distance forcing set for G, because with 7 black vertices the maximum number

of further forcing possible is only one. Hence we can conclude that

Z2d(G) ≥ 8 (7.25)

To claim the reverse part, we proceed as follows.

Let Z2d = {u1, u2, un, un−1, v1, v2, vn, vn−1} be a set of black vertices and all the

remaining vertices are assumed to be white. Then, the black vertex u1 → u3

to black, since u3 is the only 2-distance white vertex of u1. Similarly, the black

vertex v1 → v3 to black, since v3 is the only 2-distance white vertex of v1. Then,

clearly u2 → u4 to black, v2→ v4 to black and so on. Proceeding like this, we

get the forcing sequence u1 → u3, v1 → v3, u3 → u5, v3 → v5, u4 → u6, v4 → v6,

. . . , un−4 → un−2, vn−4 → vn−2 to black. Thus, we get a derived coloring for G

using the set Z2d. Therefore, the set Z2d forms a 2-distance forcing set for G.
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Here | Z2d |= 8. Hence,

Z2d(G) ≤ 8 (7.26)

Therefore from the above two inequalities, Z2d(G) = 8.

Theorem 7.6.5. Let G be the complete bipartite graph Kmn, where m,n ≥ 2.

Then, Z2d(G) = m+ n− 1.

Proof. Since the complete bipartite graph Kmn is a graph with diam(Kmn) = 2

and having more than two vertices, the proof follows by the Theorem 7.6.3.

7.7 2-Distance Forcing Number of Complement

of Graphs

In this section, we compute the 2-distance forcing number of complement of

path and cycle.

Theorem 7.7.1. Let G denotes the complement of a path Pn, where n ≥ 5.

Then, Z2d(G) = n− 1.

Proof. Since the graph G is connected with n ≥ 3 and diam(G) = 2, the proof

follows by the Theorem 7.6.3.

Theorem 7.7.2. Let G represents the complement of a cycle Cn, where n ≥ 5.

Then, Z2d(G) = n− 1.

Proof. Here the graph G is connected with n ≥ 3 and having diam(G) = 2.

Therefore, the proof follows by the Theorem 7.6.3.
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Chapter 8

Conclusion and Further Scope of Research

8.1 Summary of the Thesis

First Chapter is the Introductory Chapter.

In the Second Chapter, we provided the basic definitions from the graph theory

which are very useful in the forthcoming chapters.

In the Third Chapter, we addressed the problem of determining the zero forcing

number of graphs and their splitting graphs. In Section 2, we gave upper bounds

on the zero forcing number of splitting graph of a graph. In Section 3, we found

several classes of graphs in which Z[S(G)] = 2Z(G). Section 4 provided classes

of graphs in which Z[S(G)] < 2Z(G). In section 5, we provided more families of

graphs with Z(G) = P (G).

In the Fourth Chapter, we dealt with the characterization of graphs G for which

1 ≤ Z2(G) ≤ 4. Also, we determined the k-forcing number of splitting graph of

some graphs. In fact there are many graph classes for which 1 ≤ Z2(G) ≤ 4.

In the Fifth Chapter, we addressed the problem of determining the connected
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k-forcing number of certain graphs. In Section 1, we found the exact value

of connected zero forcing number of some classes of graphs. In Section 2, we

investigated the value of the connected k-forcing number of rooted product of

some graphs. Section 3 dealt with the connected k-forcing number of square

graph of path and cycle.

In Chapter Six, we introduced the notion of 2-distance forcing number Z2d(G)

of a graph G. In Section 2, we found the exact value of Z2d(G) of path, cycle,

wheel graph, Petersen graph, star graph, friendship graph, pineapple graph and

the fan graph. Also, we proved that if G is a connected graph of order n ≥ 3 and

diam(G) = 2, then Z2d(G) = n− 1. In Section 3, we focused on some classes of

graphs with diameter lies between 2 and 5 and their 2-distance forcing number

was determined. Finding an exact value of the 2-distance forcing number of helm

graph and the sunflower graph is open.

Chapter Seven provided the 2-distance forcing number of some special graphs

with large diameter. In Section 1, we computed the 2-distance forcing number

of some graphs. The upper bound for the 2-distance forcing number of rooted

product of some graphs was provided in Section 2. Section 3 studied the 2-

distance forcing number of square graph of path and cycle. The 2-distance forcing

number of splitting graph of path was found in Section 4. Section 5 introduced

the 2-distance forcing number of the Cartesian product of some graphs. The

2-distance forcing number of complement of path and cycle was discussed in the

Section 6.
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8.2 Further Scope of Research

(i) Characterize the graphs G for which 2Z(G) = Z[S(G)].

(ii) Characterize the graphs G with P [S(G)] = Z[S(G)].

(iii) Find the families of graphs G for which Z(G) = n− γc(G).

(iv) Examine some more families of graphs G in which Z(G) = P (G).

(v) Investigate the zero forcing number of splitting graph of some more graphs.

(vi) Characterize S(G) and G for which Z2[S(G)] = 1, Z2(G) = 1, Z2[S(G)] =

2, Z2(G) = 2, Z2[S(G)] = 3, Z2(G) = 3, Z2[S(G)] = 4 and Z2(G) = 4.

(vii) Characterize graph G for which Z2(G) + Z[S(G)] = 3Z(G).

(viii) Investigate the exact value of the 2-distance forcing number for the rooted

product of path and path, path and cycle, cycle and path, cycle and cycle,

and some more graphs.

(ix) Compute the 2-distance forcing number of some more families of splitting

graphs.

(x) Determine the 2-distance forcing number of some other graph products.

(xi) Find the 2-distance forcing number of square graph of some more graphs.

(xii) Investigate the 2-distance forcing number of more classes of graphs with

large diameter.
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