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ABSTRACT 

 

 In Malayalam, speech processing is still in its infancy stage, with only a 

few works focusing only on audio speech. Thus, there is a significant gap 

between the computational and linguistic aspects of the Malayalam language, 

making it an under-resourced language. It is well established that combining 

the audio and visual speech information improves the system's overall 

performance, especially in acoustically noisy conditions. However, few efforts, 

particularly in resourced languages, have attempted to recognise speech in 

noisy environments and struggled to meet satisfactory performance. This study 

aims to develop a Malayalam audio-visual speech recognition system that 

utilises visual speech information in noisy environments to improve the overall 

performance by proposing new algorithms. This is the first audio-visual speech 

recognition system in Malayalam. In this work, the visual speech unit (viseme) 

is utilised initially to recognise the Malayalam speech (phoneme) using the 

SVM classifier in noisy acoustical conditions having noise levels up to -20 dB.  

 A Malayalam audio-visual speech database named "MOZHI" is 

proposed to carry out this work, recorded in various environments for various 

research purposes, making it the first of its kind in the language. In this study 

the first category of the database is used which includes 30 speakers uttering 

50 phonemes and 207 connected words that include all allophonic variations.  

Phonemes are the relatively distinct and fundamental utterances of a language. 

An allophone is a version of a phoneme that is phonetically distinct. The place 

and phonetic surroundings in the word generally characterises the allophones 

of the same phoneme. Viseme is a visual language unit that describes distinct 

speech movements of the visual speech articulators. Three noises, white 

Gaussian noise, pink noise, and red noise, were added to the segmented and 

labelled clean speech with a noise level ranging from 20 dB to -20 dB to 
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perform the proposed work in noisy situations. This study used statistical 

analysis of the duration of all phonemes and allophones to estimate audio-visual 

asynchrony for better understandoing of coarticualation of Malayalam. 

Since the proposed work relies mostly on visual speech, a 

comprehensive analysis of viseme is carried out to interpret the visual 

information from the lips. Linguistic expertise is used to choose the relevant 

frame for the underlined phoneme's visual appearance. A viseme is represented 

by two preceding and following frames from the chosen frame. Using the lip 

corner coordinate points and hue channel information from the HSV colour 

model, the lip region is extracted and made rotational and translational 

invariant. Linguistically 50 phonemes were grouped into 14 viseme classes. A 

data-driven approach is carried out by clustering the DCT features using K-

means, and an optimum 16 viseme class were selected using the gap statistic 

method. Allophone-to-viseme mapping is performed by the data-driven 

approach, which emphasises the need for linguistic classification of allophones. 

Noise-robust audio speech features are extracted for the proposed task 

as it is carried out in noisy conditions. This work proposed noise-robust 

acoustic features using the autocorrelation function (ACR). It includes ACR for 

fundamental frequency estimation, ACR Cepstrum for formant frequencies and 

ACR MFCC. The proposed audio speech features are compared with the most 

prominent methods and have outperformed even in intense background noise. 

The SVM classifier is used in this study to identify the underlying 

phoneme by efficiently combining the extracted audio and visual speech 

features. To determine an optimum value for the SVM classifier 

hyperparameters and evaluate model performance, a nested stratified 5-fold 

cross-validation strategy is utilised, which minimises overfitting concerns and 

imbalance in the target class distribution. Since the proposed work relies on 

visual speech, a minor change in the visual appearance could cause the 
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underlying phoneme to be misjudged. A modified hierarchical approach 

addresses this problem by proposing a modified phoneme-to-viseme mapping 

or broad viseme class. 

Precision, recall, F1-score, and accuracy are used to evaluate the 

presented systems' performance. In all metrics, the visual-only and audio-only 

speech recognition systems perform at 90% and 96%, respectively (in clean 

speech). Based on the broad viseme approach, the performance of the second 

phase of the AVSR (Audio-Video Speech Recognition) system has improved 

the average accuracy by 9%, 8% and 3% for audio-only speech recognition in 

white Gaussian noise, pink noise and red noise even at -20 dB noise level. It 

can be concluded that the improved performance of the proposed system, at 

intense background noise, is due to the process involved in the audio and visual 

feature extraction and the implementation aspects of the SVM classifier. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 “Speech is the most sophisticated behaviour of the most complex 

organism in the known universe” – Moore, R. K. (2007) [1]. Speech processing 

is a distinct discipline that covers a broad area by incorporating various 

technologies and applications that enable humans to interact seamlessly with 

intelligent systems. One of the most challenging features especially for 

researchers in the speech processing realm is its multidisciplinary nature, which 

necessitates knowledge and expertise from various disciplines. Research and 

development of ASR (automatic speech recognition) systems began in the 

1950s in Bell Labs, with simple digit recognition systems [2]. Since then, the 

recognition tasks have become more complex, from speaker-dependent isolated 

word recognition then speaker-independent continuous speech recognition with 

an extensive vocabulary up to spontaneous speech recognition in a noisy 

environment. Automatic speech recognition is now used in various areas of our 

lives, including speech-enabled electronic devices, navigation systems, and 

inquiry systems, etc. 

 The existing audio-only speech-based application system is only 

successful in relatively controlled surroundings or under calm conditions. Any 

intense background noise has a negative impact on the performance of such a 

system. Humans, on the other hand, can typically compensate for such 

ambiguity by incorporating additional speech information sources, such as the 

speaker's facial appearance. To recognise speech, humans integrate both visual 

and audio cues wisely. This effect is known as the ”McGurk effect” [3]. Gesture 

or deformation of the mouth, especially lips, plays a vital role in overcoming 
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audio-only speech perception limitation. This idea of using visual cues inspired 

many researchers to devote their efforts to develop intelligent systems using 

audio and visual speech information, namely Audio-Visual Speech 

Recognition (AVSR).  

 Following Petajan's first attempt at a visual speech recognition system 

in 1984 [4], a wide range of AVSR systems has been produced, with results 

confirming that AVSR systems have a better recognition rate than audio-only 

speech recognition systems, especially in noisy environments. Because visual 

speech mainly conveys information about the point of articulation, which is 

easily confused when the audio modality is noisy. Even though these systems 

analyse and combine audio and visual information differently, they generally 

have a similar system architecture. Following is the general overview of how 

AVSR systems work. First, the speech signal is collected and recorded in both 

visual and audio formats. The signals were then processed for features that 

represent each. Finally, the two modalities were integrated to recognise the 

speech. Combining audio and visual information aims to provide the best 

feasible recognition outcomes in noisy environments. 

 Audio-visual speech-based applications were devised successfully for 

resourced languages like English and are growing rapidly. However, this 

technology for under-resourced languages does not attain an adequate pace in 

its research and development. There have been several technological 

improvements in speech processing for a range of languages in recent years; 

however, most researchers in this field are focused on developing speech-based 

applications for European languages, particularly English. The fascination with 

speech processing aroused speech researcher’s focus on developing speech 

processing systems in their native language. Speech-based application systems 

have been developed in India for various languages, including Hindi, Tamil, 

Kannada, Oriya, and Punjabi. However, speech processing in Malayalam is still 



Introduction 
 

 3

in its early stages, with only a few works focusing only on audio speech. As a 

result, there is a significant gap between the computational and linguistic 

aspects of the Malayalam language, particularly in intense background noise. 

A significant amount of effort must be made in this regard to develop a noise-

robust audio-visual speech recognition system in Malayalam. 

1.2 Motivation 

 The speech recognition area has grown significantly in various contexts 

over the past 70 years of research and development by considering speech 

signals' inherent variability and diversity. Motivated by the ease of data transfer 

through spoken words rather than through typing using keyboards has propelled 

the human-machine interaction to the world of reality. Despite these technical 

achievements, ASR falls short of human performance in various tasks and 

situations, especially when there is much background noise. Furthermore, most 

ASR systems claim that users must have a basic understanding of English to 

communicate with them naturally and effectively. Thus, it has recognised the 

need for an effective human-machine interaction system based on regional 

languages. As a result, researchers are working hard to increase the accuracy of 

speech processing systems by incorporating visual speech information in these 

languages so that a user-friendly interactive system can be developed. Even 

though speech processing has been a focus of research in India for several years, 

Malayalam speech processing research is still in its infancy. As a result, having 

an effective Malayalam speech recognition system has great relevance in the 

present scenario. 

 Malayalam is a Dravidian language spoken in India that serves as the 

official language of Kerala. It has 50 phonemes and 106 allophones. Malayalam 

is syllabic  with exact correspondence between spoken and written syllables. 

The lack of standard speech database and supporting computational linguistic 

resources is the major roadblock to Malayalam speech processing. A 
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phonetically rich audio-visual speech database in Malayalam suitable for 

various research in audio and visual speech processing is presented. The 

information like the duration of elementary speech units (phonemes and 

visemes), asynchrony between audio and visual speech signals etc., are 

essential for their combined use in speech processing systems. In addition, 

linguistic information of articulation of different phonemes and visemes and 

their coarticulation variations is also vital for developing such systems. These 

informations are language-specific and are unexplored in many regional 

languages, including Malayalam. This research delves into the durational 

analysis of Malayalam audio-visual speech signals to better understand 

Malayalam's coarticulation nature. 

 This will be the first study in Malayalam that addresses visual speech 

processing. It is necessary to establish the relationship between phoneme and 

its visual equivalent by establishing the viseme set in Malayalam to analyse 

visual speech and make decisions based on audio-visual speech data. 

Language-specific exploration is necessary to analyse visemes, the visual 

equivalent of phonemes. Since the lip region of a talking face contains most 

visual speech information, extracting the lip region is critical for boosting the 

system’s accuracy. Furthermore, there is no unique agreement on the 

lip extraction algorithm, especially in the Indian context, where low lip-skin 

colour contrast and facial hairs are major issues. While standard parameters for 

characterising an audio speech signal are well understood, the visual speech 

parameters that are most beneficial for automatic speech recognition are still 

being disputed. This work investigates the highlighted problems associated 

with the visual speech signal to capture relevant articulatory information from 

the talking face.  

 Extraction of noise-robust acoustic features from speech signals is still 

an active research area. Researchers have introduced new noise-robust feature 
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extraction algorithms and modified existing traditional methods. Such features 

must have acceptable accuracy even with ambient noise and use 

computationally simple algorithms in real-time applications. However, few 

works have even addressed speech signal processing at negative dB (decibel) 

level noise and failed to achieve satisfactory results. Fundamental frequency, 

formant frequencies, and MFCCs (Mel Frequency Cepstral Coefficients) are 

the most often utilised acoustical parameters in literature. This research focuses 

on extracting a noise-resistant version of these features using relatively simple 

noise-robust algorithms and evaluating their performance in various noisy 

speech signals, even up to -20 dB. The experimental result of this type has 

significant importance in real-time speech-based applications.  

 The effective merging of information extracted from audio and visual 

speech signals remains an open problem. The system can effectively adapt to 

any noisy environment by optimising the weights associated with each 

modality. The major goal is to develop a Malayalam speech recognition system 

that utilises visual speech information in noisy environments to improve overall 

performance by proposing new algorithms and models. The motivation for this 

research stems from the fact that little attempt was reported to build a 

multimodal Malayalam speech recognition system. This research proposes 

solutions for the problems mentioned above to support the development of 

Malayalam AVSR systems. 

1.3 Thesis Outline 

 This research aims to investigate the performance of a Malayalam 

speech recognition system in acoustically noisy conditions by utilising visual 

speech information. Experimental findings are used to validate the proposed 

methods and system components, which are thoroughly discussed. The rest of 

this thesis is organised as follows. 
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 The purpose of Chapter 2 is to lay the groundwork for the subsequent 

chapters. A detailed review of the known audio-visual speech database, 

including features like durational analysis and audio-visual asynchrony is 

discussed here. Phoneme-to-viseme mapping, allophone-to-viseme mapping 

and visual feature extraction is discussed in detail in the following sections. In 

the next section, studies on various lip region extraction techniques are 

reviewed. The last section reviewed the audio-visual speech recognition 

systems in intense background noise. 

 The third chapter proposes a Malayalam audio-visual speech database, 

“MOZHI”. In Malayalam, there are linguistically classified 50 phonemes based 

on articulatory points and positions and 106 allophones. Phonemes are the 

relatively distinct and fundamental utterances of a language. An allophone is a 

version of a phoneme that is phonetically distinct. The purpose of a speech 

database depends intensely on the language material, speaker population, and 

the quality of the recording, which should be optimally adapted to attain the 

prime goal. This database consists of 3 categories of recording, which can be 

used for various research works. There is one category of audio-only speech 

database and two categories of audio-visual speech database.  This database is 

designed to aid research into the effects of age on speech, noisy speech 

processing, visual speech processing, viseme-based speech synthesis, and lip 

synchronisation utilising audio-visual speech asynchrony, among other topics. 

The segmentation and labelling of recorded audio and video speech are the 

most crucial task once the database is recorded. The segmentation is done semi-

automatically, starting with a spectral subtraction method to remove the noisy 

background content while recording. The labelling process, which involves 

utterance, speaker, and noise information with alphanumeric characters, was 

carried out automatically. Any real-world speech-based application must 

consider its performance in various noisy environments with varying signal-to-

noise ratios (SNR). This research created a realistic environment by 



Introduction 
 

 7

incorporating several noisy signals such as white Gaussian noise, pink noise, 

and red noise, with noise levels ranging from 20 to -20 dB.  The durational 

analysis of phonemes and allophones from the audio and visual speech signal 

is covered in the next part, which includes a comprehensive statistical analysis.   

Duration modelling is the preliminary task in phoneme or viseme level speech 

processing applications like speech recognition and speech synthesis system. 

Based on the durational analysis, audio-visual asynchrony is estimated for 

phonemes and allophones to study the coarticulation nature of the Malayalam 

language. 

 The fourth chapter delves into an in-depth investigation into the visual 

cues, or viseme, which can be applied to bi-modal speech application in 

Malayalam.  Viseme is a visual language unit that describes distinct speech 

movements of the visual speech articulators. This chapter has three main 

sections; the first one is lip region extraction. Lip segmentation and tracking 

are the most important functions of a lip-reading system since the lip is the most 

active articulator and holds the most visual information. In the initial stage, the 

lip region is extracted manually using 36 landmark points. Later, the lip region 

is extracted by utilising the hue channel information from the HSV colour 

model. The Lip region is also made rotational and translational invariant by 

utilising lip corner coordinates information. The second section aims to identify 

the viseme set in the Malayalam language using a linguistic involved data-

driven approach. The relevant frames were chosen based on articulatory norms 

and linguistic expertise. Two preceding and following frames from the 

linguistically chosen frame were also selected to encode the time evolution of 

the underlined phoneme's visual speech. Seven geometric features and 20 

Discrete Cosine Transform (DCT) coefficients are extracted from each image 

to represent the visual speech signals. Then the viseme map is developed by 

categorising visual feature vectors using the K-means clustering and Gap 

statistic methods. The last section deals with the creation of allophone-to-
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viseme mapping. This chapter concludes with the necessity of developing an 

allophone-to-viseme mapping linguistically to address world-level visual 

speech analysis issues. 

 The fifth chapter investigates the analysis of audio speech signals in 

various noisy environments, which is a core component of today's speech-based 

applications. The most challenging problem for any speech recognition system 

is to extract noise-resistant features even in ambient noise. The most popular 

acoustical features used by research groups are fundamental frequency (F0), 

formant frequencies (F1 and F2) and Mel frequency cepstral coefficients 

(MFCCs). An improvisation of these features that is noise-tolerant even at 

negative noise levels is proposed. To achieve noise robustness, a noisy speech 

signal in time-domain is transformed into the autocorrelation domain and then 

subjected to certain operations to extract these features. The proposed features 

performance is compared with prominent algorithms in the speech processing 

field in different noisy speech signals at various noise levels, and its dominance 

is verified experimentally. 

 The sixth chapter discusses an audio-visual speech recognition system 

that employs support vector machine (SVM) classifiers. SVMs, unlike some 

HMM modifications that reduce the empirical risk on the training set, also 

reduce the structural risk, resulting in improved generalisation ability even with 

minimal training data. In the presence of noise, the maximum margin solution 

allows SVMs to dominate most nonlinear classifiers, which has long been a 

challenge in speech recognition. Various issues that arise before and after the 

integration of audio, and visual speech information is discussed in detailed. The 

SVM classifier's main feature is selection of optimal hyperspace parameters 

such as margin width from penalty parameter C and margin shape, which are 

determined experimentally using grid search. The SVM method is modified by 

implementing nested cross-validation so that each observation is either training, 
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validation, or test data. The audio-visual fusion strategy is one of the most 

crucial aspects of any speech recognition system. Stream weights of each 

stream is estimated from its corresponding reliability measures, thereby 

favouring the reliable stream depending on the noise levels. This work adopted 

a hierarchical fusion method in which viseme is recognised first, then the 

underlined modified phonemes in that viseme class is recognised. Thus, it will 

reduce the computational complexity without computing the likelihood of each 

phoneme, even in intense background noise. The algorithms proposed in 

previous chapters for building an audio-visual speech recognition system for 

the Malayalam language are validated through experiments. 

 The seventh chapter concludes the thesis by summarizing the  

conclusions and suggestions to extend the research work. Reference is provided 

after this chapter and the details of the author's publications at last. 

 





CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Many human-machine communication technologies make use of speech 

recognition. However acoustic noise, which is common in real-world 

applications, makes automatic speech recognition challenging. There are two 

approaches to deal with this problem.  The first is to extract noise-resistant 

audio features from the distorted audio speech input. The second is to employ 

the visual modality, such as highlighting key characteristics of the speaker's 

face or lips, to improve recognition. As a result, several attempts have been 

made in recent years to extract noise-tolerant audio features and incorporate 

visual information into the speech recognition process. Thus, significant 

milestones in this field must be highlighted. 

Although speech recognition research began in the 1950s, the 1980s 

marked a significant increase in the technology associated with ASR. In the 

1980s, speech research was portrayed by a technological transition away from 

template-based methods to statistical modelling methodologies. Hidden 

Markov Models were employed in the development of more realistic automatic 

continuous speech recognition systems [5]. The introduction of Mel frequency 

Cepstral Coefficients (MFCCs) [6], one of the most notable metrics that 

characterise the audio speech signal, is another significant advance in ASR. 

Pollack and Sumby [7], on the other hand, started the theoretical work for 

merging visual cues with noisy acoustic speech in 1954. The McGurk effect 

also demonstrated the favourable benefits of visual speech information on 

speech perception.  Petajan created the first visual speech recognition system 

in 1984. Artificial Neural Networks were used to experiment with automatic 
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speech recognition in the late 1980s, and reliable results were claimed.  During 

this timeframe, many effective systems were developed; in 1990, Carnegie 

Mellon University released Sphinx, an open source-based voice recognition 

system [8]. The introduction of convolutional neural networks, which fuelled 

deep learning, was another advance in this subject in 1994. Deep learning 

research advances slowly at first, but the demand for fast computational power 

sparks interest, and a significant breakthrough was made in 2009 [9]. Google's 

speech recognition engine delivered ground-breaking results through its 

Google Voice-based search service in 2011. All of today's commercially 

available speech recognition systems were designed with language-related 

properties in mind, allowing for trustworthy results in noise-free or low-noise 

conditions. Implementing a speech recognition system for useful applications 

in loud situations and public areas is still a research problem. 

This research aims to create an audio-visual speech recognition system 

that primarily relies on the visual speech unit (viseme) to recognise the 

underlying phoneme in noisy environments. The background and current 

scenario of its connected methodologies or approaches must be thoroughly 

investigated to implement this system. This chapter discusses a comprehensive 

review of relevant works. Section 2.2 summarises the growth of a known audio-

visual speech database. Section 2.3 reviews the work in phoneme and allophone 

modelling and audio-visual speech asynchrony. Section 2.4 gives a detailed list 

of available viseme sets and their attributes. Section 2.5 describes a brief review 

of lip segmentation techniques. Section 2.6 presents the performance of an 

audio-visual speech recognition system in intense background conditions. 

Section 2.7 concludes the literature review. 

2.2 Review on known Audio-Visual Speech Database 

Over the years of development and unceasing research in speech-based 

applications has endorsed the dearth of standard audio-visual speech databases. 
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The need for diversity in resources and massive storage capacity is the main 

challenge that produces the remarkable difference in the statistic between 

audio-only and audio-visual speech databases. Creating an exhaustive and 

methodically arranged audio-visual speech database built up a worldwide 

acceptance in the research community. An audio speech signal can capture at 

high quality at a relatively low cost. However, a high-quality visual speech can 

capture the dynamic movements of the lip accurately, which is relatively large. 

Massive storage space is needed for the storage and distribution of audio-visual 

speech database than the audio-only speech databases. Instead of giving a 

detailed description of the characteristics of the existing database, a tabular 

representation of the available audio-visual speech databases is presented. It 

offers a clear picture of parameters and comparison among different others. 

Table. 2.1 summarize the historical background of the audio-visual speech 

database in terms of gender distribution, speech corpus, hardware setup and 

some distinctive features. The history begins with Petajan 1988 for lip-reading 

digit recognizer. This work presents a historical sketch in different aspects of 

the available audio-visual speech database from 1988.  Even though many 

papers have reviewed some of the audio-visual speech databases, this work 

gives an overall view of creating the databases in resourced and under-

resourced language, and technological advances occur in the recording devices 

and approaches. A new face in this realm gets a proper insight into the quantity 

and quality of basic requirements and resources needed to build an audio-visual 

speech database for a task in their mother language.
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Table 2.1 Summary of known Audio-Visual Speech Database 

Database – 
Year 

Speaker 
(F, M) 
 

Corpus - Repetition Video Parameters 
(Pixel size, fps) 

Audio 
Parameters 
(Sampling 
frequency) 

Special Features 

TULIPS1  
1995 [10] 

12 (9,3)  First four English digit 
– twice. 

 100x75, 30 fps. 
 Mouth region. 

11.1 kHz.  Isolated digit recognition. 

DAVID  
1996 [11] 

124  English language. 
 Isolated digits. 
 English-alphabet E-

set. 

 Video-conference 
control commands. 

 ‘VCVCV’ nonsense 
utterances. 

 640x480,  
30 fps. 

 Full face. 
 Frontal view. 

 

__  Speech/Person recognition. 
 Contain 4 corpus with 

different research theme. 
Complex background and 
variable illumination. 

 Contain individual speaker 
and more than one speaker 
during recording. 

 Lack of head pose and facial 
expression variations.  

M2VTS  
1997 [12] 
Multi Modal 
Verification 
for 
Teleservices 
and Security 
applications 

37  French language. 
 Numbers (0 to 9) – 5 

times. 
 

 286x350, 
25 fps. 

 Full face. 
 Frontal view. 
 

48 kHz  Speech verification, face 
recognition. 

 Mostly French Speakers. 
 Head rotation (left, right, up 

and down). 
 Presence of glasses and hats. 
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XM2VTSDB  
1999 [13] 
Extended 
M2VTS 
Database 

295  Three sentences 
(numbers and word) – 
twice.  

 720x576,  
25 fps. 

 Full face. 
 Frontal view. 
 2 Cameras used. 

32 kHz  Personal identity 
verification. 

 Head rotation (left, right, up 
and down). 

 Recorded in extremely 
controlled condition. 

 Text dependent. 
 http://www.ee.surrey.ac.uk/

CVSSP/xm2vtsdb/ 

AMP/CMU 
2001 [14] 
Advanced 
Multimedia 
Processing 
Lab 

10 (3,7)  78 Isolated words 
(date and time, month, 
day and 
miscellaneous) – 10 
times. 

 720x480,  
25 fps. 

 Full face. 
 Frontal view. 

16 kHz  Lip reading. 
 Presence of glasses and hats. 
 Recorded in controlled 

situation. 

AV Letters 
2002 [15] 

10 (5, 5)  English language. 
 Isolated letters (A to 

Z) – 3 times. 

 Total 780 utterances. 

 376x288,  
25 fps. 

 Full face. 
 Frontal view. 

22.05 kHz  Speech recognition. 
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CUAVE  
2002 [16] 
Clemson 
University 
Audio-Visual 
Experiments 

36 (19, 17) 
Speaker pairs -
20 

 English language. 

 Isolated digits. 

 Connected digits. 
 Total 7000 utterances. 

 720x480, 29.97 fps. 
 Shoulder and head. 
 Frontal and Profile 

view. 

16 kHz  Speaker independent digit 
recognition. 

 Speaker independent 
database. 

 Contain individual speaker, 
speaker pairs and moving 
speakers. 

 Head movement in side-to-
side, back-and-back. 

 Presence of glasses, facial 
hairs and hats. 

 Fit to one DVD-data disk. 
 http://universal.elra.info/pro

duct_info.php?cPath=25&pr
oducts_id=2228 

VidTIMIT 
2002 [17] 

43 (19, 24)  English language. 
 10 TIMIT sentences 

per speaker. 

 First 2 sentences are 
same for all but 
remaining 8 are 
unique. 

 512x384,  
25 fps. 

 Frontal view. 

32 kHz  Multi-modal person 
verification. 

 Data acquisition with 3 
sessions. 

 Extended head rotation. 
 Change in speaker 

appearance and voice during 
each session. 

 Variability in camera zoom 
factor and background noise. 

 http://conradsanderson.id.au/
vidtimit/ 
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DUTAVSC 
2002 [18] 

8 (1, 7)  Dutch language. 

 POLYPHONE corpus. 
 Phonetically rich 

sentences. 
 Connected digits. 

 Spelling. 
 Application driven 

utterance. 

 384x288, 25f fps. 
 Frontal view. 
 Lower face view. 

44 kHz  Audio visual speech 
recognition. 

BANCA 
2003 [19] 

52 (26, 26) for 
each language 
class. 

 4 Languages-English, 
French, Italian and 
Spanish. 

 Numbers. 

 Names. 

 Addresses. 

 Date of birth. 
 

 720x576,  
25 fps. 

 Shoulder and head. 
 Frontal view. 
 2 Cameras used. 

 32 kHz. 
 2  
Microphone used. 

 Multi-modal identity 
verification. 

 Recorded in controlled, 
degraded and adverse 
condition. 

 Text independent. 
 Lack of head pose and facial 

expression variations. 
 http://www.ee.surrey.ac.uk/

CVSSP/banca/ 
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AVICAR  
2004 [20] 
Audio-Visual 
Speech in a 
Car. 

100 (50, 50)  English language. 

 Isolated digits. 

 Isolated letters. 
 Phone numbers. 

 TIMIT sentences. 
 Total 59,000 

utterances. 

 720x480,  
30 fps. 

 Full face. 
 4 Frontal views. 
 4 Camera arrays. 
 

 48 kHz. 
 8 
Microphone 
arrays. 
 

 Speech recognition in car. 
 60% American English 

others Latin American, 
European, East Asian and 
South Asian. 

 Recorded in 5 noisy 
condition (automotive 
noise). 

 http://www.isle.illinois.edu/s
st/AVICAR/ 

AV-TIMIT 
2004 [21] 

223 (106, 117)  450 TIMIT-SX 
sentences. 

 Each speaker utter 20 
sentences. 

 First sentences are 
common and other 19 
sentences are different. 

 720x480,  
30 fps. 

 Full face. 
 Frontal view. 

16 kHz.  Speaker independent 
continuous speech 
recognition. 

 Continuous phonetically 
balanced speech. 

 Contain multiple speakers. 
 Controlled office 

environment. 
 Presence of facial hairs, 

glasses and hats.  
 Recorded in different 

illumination condition. 
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AVOZES  
2004 [22] 
Audio Video 
OZtralian 
English 
Speech  

20 (10, 10)  Australian English 
language. 

 Digits. 

 Words. 
 Phrases. 

 Continuous word. 
 Total of 56 sequences 

per speaker without 
repetition. 
 

 720x480, 29.97fps. 
 Full face. 
 Stereo view. 

48 kHz.  Modular approach database- 
each module addresses 
specific task. 

 6 Modules- 1 general 
module (speaker 
independent) and 5 speaker 
specific module. 

 Native speakers of 
Australian English. 

 Presence of glasses, facial 
hairs and lip highlighter. 

 Speaker personal data 
acquisition mode. 

 http://users.cecs.anu.edu.au/
~roland/avozes.html 

MANDARIN 
CHINESE 
2004 [23] 

225  Chinese language. 
 Continuous speech. 

 Total 17,000 
utterances. 

 720x576,  
25 fps. 

 768x576,  
25 fps. 

 7 Cameras used. 

 48 kHz. 
 12 
Microphones used.  

 Audio-visual speech/speaker 
recognition and 3Dface 
modelling. 

 Recorded in 2 sessions. 
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VALID 
 2005 [24] 

106 (29, 77)  XM2VTS speech 
corpus. 

 720x576, 
25 fps. 

 Full face with 
shoulder. 

 Frontal view. 

32 kHz.  Multi-modal speaker/speech 
recognition. 

 97 Europeans and 9 Asians. 
 5 Recording session – 1 

controlled and 4 
uncontrolled (varying noise, 
illumination). 

 Presence of facial hairs. 

UWB-04-
HSCAVC 
2006 [25] 
University of 
West 
Bohemia-
2004-Hundred 
Speakers 
Czech Audio-
Visual Corpus 

100 (61, 39)  Slavonic language 
(Czech and Russian). 

 200 Sentences (50 
shared and 150 
unique). 

 720x576,  
25 fps. 

 Full face. 
 Frontal view. 

 44 kHz. 

 2 
Microphones used. 

 Audio-visual speech 
recognition. 

 Visual speech 
parameterizations. 

 Recorded in laboratory 
condition. 

 Constant illumination and 
static head position. 

 Mean age is 22. 

GRID 
2006 [26] 

34 (16, 18)  English language. 

 Command sentences. 
 Each sentence 

contains six-word 
sequence.  

 Total corpus size 
34,000. 

 720x576,  
25 fps 

 Full face. 
 Frontal view. 

25 kHz.  Speech recognition. 
 Recorded in lab environment 

with blue background. 
 Mean age is 27. 
 http://spandh.dcs.shef.ac.uk/

gridcorpus/ 
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AV Letters 2 
2008 [27] 

5  English language. 
 26 Isolated letters – 7 

times. 

 1920x1080, 50 fps. 
 Full face. 
 Frontal view. 

 

4 8 kHz.  Speech recognition. 
 High-definition version of 

AV Letter database. 

UWB-07-
ICAVR 
2008 [28] 
University of 
West 
Bohemia-
2007-Impaired 
Conditions 
audio visual 
speech 
Recognition 

50 (25, 25)  Czech language. 
 200 Sentences (50 

shared and 150 
unique). 

 Total 10,000 
continuous utterances. 

 

 720x576,  
50 fps (high quality). 

 640x480,  
30 fps (low quality). 

 2 Cameras used. 

 44 kHz. 
 2 
Microphones used. 

 6 types of illumination 
condition 

 Average age is 22. 
 

IV2  
2008 [29] 

300  15 French sentences.  780x576,  
25 fps (high quality). 

 640x480,  
25 fps (low quality). 

 Full face. 
 Frontal and profile 

view. 
 

2 Microphone 
used. 

 Face recognition. 
 Majority data acquisition 

within single session.   
 Pose, expression, 

illumination and glass 
variability. 

 Different illumination levels 
and orientations. 

 Iris image, 3D laser scanner 
face data. 
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DXM2VTS  
2008 [30] 
Damascened 
XM2VTS 

295  XM2VTS database. 
 Additional videos 

containing several 
degradation level of 
background noises. 

 720x576,  
25 fps. 

 Full face. 
 Frontal view. 
 2 Cameras used. 

32 kHz.  Face recognition. 
 Internal video distortion 

(blur, salt and pepper and 
rotation). 

 External video distortion 
(zooming and dynamic 
background noise). 

IBM Smart-
Room  
 2008 [31] 

38  Connected digit 
strings. 

 Total 1661 utterances. 

 368x240,  
30 fps. 

 Full face. 
 Frontal and profile 

view. 

 22 kHz. 
 2 
Microphones used. 

 Lip-reading system. 

HIT-AVDB-II 
2008 [32] 
Harbin 
Institute of 
Technology 
Audio Visual 
Speech 
Database II 

30 (15, 15)  Digits. 

 Chinese poems. 
 Tongue twisters of 

Chinese and English. 

 Greek alphabets. 

 Music notes. 

 Mandarin vowels. 

 720x576,  
25 fps. 

 4 Cameras used. 
 4 views- frontal, 

profile, 300 and 600. 

__  Visual speech, Biometrics, 
lip tracking and multi view. 

 Database witness emotions, 
fast mouth movements and 
tunes. 

 Recorded in 3 sessions in 
different day time to capture 
varying speaker appearances 
and background. 

 Presences of spectacles and 
hair ornaments. 
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OuluVS 
2009 [33] 

20 (3, 17)  English language. 
 10 daily use short 

phrases – 9 times. 

 Total 817 sequences. 

 720x576,  
25 fps. 

 Full face. 
 Frontal view. 

 

No audio  Visual only speech 
recognition. 

 

WAPUSK20 
2010 [34] 

20 (9, 11)  100 GRID database 
sentences. 

 Total 2000 sentences. 

 640x480,  
32 fps. 

 Full face. 
 Frontal view. 

 16 kHz. 

 4 audio channels. 

 Stereoscopic video. 
 Speakers – 2 England, 1 

Greece, 1 Kazakhstan and 1 
Spain. 

 All other native German 
speakers. 

 Mean age is 29.  

AVA II               
2010 [35] 

14 (7,7)  Persian language. 
 Phonemes, Phonemic 

combinations (cv, vc, 
vcv), 20 sentences and 
digits. 

 720x576,   
25 fps. 

 3 cameras used. 
 Frontal view, profile 

view and lip area. 
 Full face with shoulder 

and lip region. 
 

 48 kHz. 

 2 
microphones used. 

 23 consonants and 6 vowels. 
 Speakers have Tehrani 

accent. 
 Recorded in studio 

environment with lighting 
system and blue curtain. 
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BL-Database  
2011 [36] 
Blue Lips-
Database 

17 (8, 9)  French language. 

 238 sentences. 
 Diphone rich 

utterances.  

 576x720,  
25 fps (front view). 

 640x480,  
30 fps (side view). 

 640x480,  
30 fps (depth camera). 

 Full face. 
 Frontal and side view. 

 44.1 kHz. 

 2 
Microphones used. 

 Audio-Visual speech 
recognition. 

 Recorded in 2 sessions- First 
sessions for 2D analysis and 
second session for 3D 
analysis of mouth 
movement.  

 Native French speakers. 
 Blue lipstick used. 

UNMC-VIER 
2011 [37] 

123 (49, 74)  11 XM2VTS 
sentences. 

 Sequence of numerals. 

 708x640,  
25 fps (3 high quality 
cameras). 

 320x240,  
29 fps (low quality 
camera). 

 320x240,  
15 fps (low quality 
camera). 

 5 Cameras used.  
 Full face. 
 Frontal and left profile 

view. 

 48 kHz (From 
high quality 
camera). 

 44 kHz 
(From low quality 
camera). 

 32 kHz 
(From low quality 
camera). 

 22 kHz 
(Audio device). 

 Audio-Visual 
speech/speaker recognition. 

 Contain multiple visual 
variation in the same video 
recording. 

 Visual variations- 
illumination, expression, 
head pose, background and 
resolution. 

 Head rotation- left-to-right 
and up and down. 

 Spoken in normal and slow 
speech pace.  

 Recorded in controlled and 
uncontrolled environment 
with different devices. 
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AusTalk  
 2011 [38] 

1000  Australian English. 
 Multiple read and 

spontaneous speech 
tasks. 

 640x480,  
48 fps 

__  Applied for Speaker 
verification, Audio-Visual 
speech Recognition, 
Forensic Speaker 
recognition. 

 http://austalk.edu.au 

MoBio 
2012 [39] 

152 (52, 100)  English language. 
 32 questions (short 

response questions, 
short response free 
speech, set speech, and 
free speech). 

 640x480, 16-30 fps. 48 kHz.  Mobile-based biometric 
system. 

 Database almost captured 
from mobile devices. 

 High variability in pose and 
illumination. 

 http://www.idiap.ch/dataset/
mobio 

LILiR 
2012 [40] 
Language 
Independent 
Lip Reading 

20  Resource management 
corpus. 

 Total 200 sentences 
per speaker. 

 5 cameras used (2 HD 
and 3 SD). 

 Full face. 
 5 views- frontal, 

profile, 300, 450 and 
600. 

__  Continuous speech 
recognition. 

AVAS  
2013 [41] 
Audio-Visual 
Arabic Speech  

50  Arabic language.  

 36 daily words. 
 13 casual phrases. 

 

 640x480,  
30 fps. 

 Full face. 
 Frontal view. 

48 kHz.  Audio-Visual 
speech/speaker recognition. 

 Visual variations-4 
illumination condition and 5 
head pose variations. 

 First database in Arabic 
language. 
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†Oriya Digit 
Database 
2013 [42] 

15 (10,5)  Oriya language. 

 Digits-4 times. 

 1024x768, 30  fps. 
 Frontal view. 
 Full face. 

16 kHz  Digit recognition. 
 Lip tracking. 
 3 type of noise added to 

speech signal.  

AGH  
2015 [43] 

166 (one third 
female) 

 Polish language. 
 Isolated words and 

Numbers. 

 Total 1,17,450 words. 
 

 1920x1080, 50 fps. 44.1 kHz.  Automatic speech 
recognition and Text-to-
speech systems. 

 Largest audio-visual Polish 
corpus. 

OuluVS2  
2015 [44] 

53 (13, 40)  English language.  
 Continuous digits. 

 Phrases. 

 TIMIT sentences. 
 

 1920x1080, 30 fps 
(From 5 HD camera). 

 640x480, 100 fps 
(From frontal HS 
camera). 

 Six cameras used. 
 Full face. 
 5 views- frontal, 

profile, 300, 450 and 
600. 

High quality 
audio. 

 Multi-view audio-visual 
database. 

 No native English speakers. 
 Speakers- European, 

Chinese, Indian/Pakistan, 
Arabian and African. 

 Neutral facial expression and 
static head pose. 

 Simultaneous recording by 6 
cameras from 5 different 
views.  

 http://www.ee.oulu.fi/researc
h/imag/OuluVS2/ 
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TCD-TIMIT 
2015 [45] 

62 (30, 32)  6913 phonetically rich 
TIMIT sentences. 

 1920x1080, 30fps. 
 Cameras used. 
 2 views- frontal and 

300.  

16 kHz.  Phone recognition in 
continuous speech. 

 Two class of speakers- 3 
professional lip speakers 
(female) and non-lip 
speakers. 

 Presence of glasses and 
piercings. 

 https://sigmedia.tcd.ie/TCD
TIMIT/ 

†AMAUV 
2015 [46] 
Aligarh 
Muslim 
University 
Audio Visual 

100  Hindi language. 
 10 sentences out of 

which 2 sentences are 
common to all 
speaker. 

 640x380, 
25 fps. 

 Frontal view up to 
shoulder. 

44.1 kHz  Audio-Visual speech 
recognition. 

 Phonetically balanced Hindi 
database. 

†vVISWa 
2016 [47] 
Visual 
Vocabulary of 
Independent 
Standard 
Words  

58 (20, 38)  Marathi, Hindi and 
English languages. 

 Isolated words–10 
times. 

 Continuous words–10 
times. 

 Total 2, 96,960 words. 

 720x576,  
25 fps. 

 Cameras used. 
 3 views- frontal, 

profile and 300.  

__  Multi-pose audio visual 
speech recognition system 
for 3 languages. 

 Speakers- native (20F & 
28M) and non-native (Iraq 
and Yemen) (10M). 

 Presence of glasses and caps. 
 Induced mode of data 

acquisition contains speakers 
with lipstick. 
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†Kannada and 
Telugu Digit 
Database 
2017 [48] 

2 speakers for 
each language 

 Kannada, Telugu and 
Indian English 
languages. 

 Digits–2 times. 

 640x480, 
25 fps. 

 Frontal view. 
 Lip region. 

 
 

No Audio  Visual Speech Recognition. 

MODALITY 
2017 [49] 

35 (9, 26)  English language. 
 168 commands. 

 1080x1920, 100 fps.  
 Cameras used. 
 Full face. 
 Partial front views. 

 

 44.1kHz. 
 Array of 8 

microphones 
used. 

 Audio-visual speech 
recognition. 

 31 hours of recording. 
 Speakers- native and non-

native English speakers. 
 Noise varying recording 

setup. 
 http://www.modality-

corpus.org 
 

AVID 
2017 [50] 

10 (5,5)  Indonesian language. 
 1040 sentences. 
 

 1280x962, 48 fps. 
 Full face. 
 Frontal view. 

44.1 kHz  Audio-visual speech 
recognition system. 

 First database in Indonesian 
language. 

NTCD-TIMIT 
2017 [51] 

56  Irish accent. 
 5488 different TIMIT 

sentences. 

 1920x1080, 30fps. 
 Frontal view. 

16 kHz.  Noisy version of TCD-
TIMIT database. 

 Six noises. 
 https://doi.org/10.5281/zeno

do.260228 
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LRS 
2017 [52] 
Lip Reading 
Sentences 

_  English language. 
 1,00,000 natural 

sentences from BBC 
television 

 120x120,  
25 fps 

 Frontal and Non-
frontal views. 

__  Visual speech recognition. 
 Phrase and sentence 

recognition. 
 Talking face synthesis. 
 https://www.robots.ox.ac.uk/

~vgg/data/lip_reading/lrs2.ht
ml 
 

Audio-Visual 
Lombard 
Speech  
2018 [53] 

54  2700 Lombard and 
2700 plain reference 
utterances. 

 Extension of GRID 
corpus. 

 720x480,  
24 fps (from frontal 
web cam). 

 864x480,  
30 fps (from side 
webcam). 

48 kHz  Analysis of Lombard effect. 
 http://spandh.dcs.shef.ac.uk/

avlombard/ 
 Lombard speech is usually 

more intelligible than plain 
speech. 

AVSpeech 
2018 [54] 

Wide range  Various languages 
 Public instructional 

YouTube videos. 

 4700 hours of video 
segments. 

 25 fps. 
 Full face. 
 Head pan up to 500. 
 Head tilt up to 300. 

16 kHz  Speech separation, Video 
captioning and Speech 
recognition. 

 Multi-speaker with 
background noise. 

 3 to 10 s video segments. 
 Age up to 100. 
 https://looking-to-

listen.github.io/avspeech/exp
lore.html 
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AVSD 
2019 [55] 
Arabic Visual 
Speech 
Database 

22 (14,8)  Arabic language. 
 10 daily 

communication 
sentences. 

 1980x1080, 30 fps. 
 Smartphone camera. 
 Frontal view. 

No Audio  Visual Speech Recognition. 
 Indoor illumination and 

simple background. 

3D Audio 
Visual Speech 
Corpus 
2020 [56] 

5 (3,2)  American English. 
 224 sentences from 

CRM corpus -2 
repetition. 

 50 sentences from 
IEEE corpus. 

 3D 180x180x2 
stereoscopic mode 
(half sphere). 

 360x180 stereoscopic 
mode (full sphere). 

 5.7 k video resolution, 
30 fps. 

 48 kHz. 
 2 
microphones used 
 

 Virtual reality applications. 
 3600 degree and 1800 

stereoscopic recording. 
 Black and green 

background. 
 https://fb.sharepoint.com/:f:/

s/FRLAudioResearch/EpU2
AeUdvDBBvF589aYDOEE
BeREku01AkIQWlD8V4H3
m8g?e=Dq4FWR. 

RGB-D 
2020 [57] 

20  20 English phrases.  640x480, 
30 fps. 

 3D Head Pose Angles-
Yaw, pitch and roll. 
 
 

No Audio  Visual speech recognition. 
 Employed kinetic facial 

tracking. 
 Facial points, facial outline, 

RGB data, depth data, 
mapping between RGB and 
depth data, and 2D and 3D 
face representations of the 
face along with the 3D head 
orientation 
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RUSAVIC 
2021 [58] 

20  Russian language. 
 50 phrases related to 

driving condition. 

 10 recording sessions. 

 1920x1080, 
60 fps. 

 2 
smartphones. 

48 kHz. 
 

 Audio-visual speech 
recognition in vehicle. 

 First smartphone placed near 
the left side of driver. 

 Second smartphone placed 
200 to the right.  

 https://mobiledrivesafely.co
m/corpus-rusavic 

† Audio-Visual speech database in Indian languages. 
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A diversity of standard databases has been reported, and most of them 

claim to be beneficial for the specific task.  The most favourable speech 

material for the speech recognition task is continuous speech compared to 

isolated speech for the speaker verification task. The speaker recognition task 

requires a large size and high variability of speaker population when compared 

to the speech recognition task. Multi-view visual speech performs better in lip 

reading tasks.  So, the database invented should serve more than one goal to be 

useful for various research works.  The resolution and frame rate of the camera 

is chosen to employ a trade-off involving computational complexity and high-

quality visual speech information. The database should be captured with 

uniform distribution to avoid gender imbalance. The main criteria for speech 

database construction are to have a large phonetically balanced speech corpus 

uttered by many unique speakers in an uncontrolled environment. It is 

mandatory to figure out the peculiarities of the language of the database and its 

linguistic background and compare it with other groups of languages, which 

help resolve the issues that arose during the creation of the database in under-

resourced languages. The reported audio-visual speech databases in Indian 

languages are still not in the full-fledged form in different aspects. Thus, 

creating an audio-visual speech database in the Malayalam language that 

addresses most of these requirements has an immense influence on the research 

community.   

2.3 Review on Phoneme and Allophone Durational Modelling and Audio-

Visual Speech Asynchrony 

 Durational analysis of phonemes and allophones are analysed for speech 

recognition and speech synthesis task in various languages. The variance in 

phoneme duration is mostly due to its relative position and the characteristics 

of neighbouring phonemes. Rule-based approaches, statistical approaches, 

model-based approaches, and their combinations are used to characterise this 
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variability. Kamrunnahar Swarna et al. used the rule-based approach for the 

duration modelling of diphones in the Bangla text to speech system [59]. 

Subachan. Bo Chen et al. investigated the duration of Chinese phonemes using 

an LSTM RNN by incorporating the linguistic information using cross-entropy 

[60]. Mohamed O.M. Khalifa et al. utilised HsMM (Hidden semi-Markov 

Model) for durational analysis of Arabic phoneme and recognition [61]. Sovilj-

Nikic et al. Serbian phone duration model is Tree-based machine learning 

approach is proposed [62]. Magdalena Igras et al. uses statistical analysis to 

model the phoneme durations in Polish [63]. Yonas Demeke et al. built duration 

model for Amharic phonemes using Classification and Regression Trees 

(CART) [64]. Kalu U. Ogbureke et al. proposed a joint venture of HMM and 

Multilayer Perceptron to model American English phonemes for better 

improvement of the perceived quality of synthesised speech [65]. Jan Romportl 

et al. modelled the phoneme duration for the Czech text-to-speech system, 

ARTIC, using the CART method [66]. Alexandros Lazaridis et al. CART 

machine learning approach is utilised for durational modelling of Greek 

phonemes [67]. Giedrius Norkevičius et al. Lithuanian phoneme duration 

analysis was carried out by using a decision tree-based algorithm [68]. Janne 

Pylkk¨onen et al. duration modelling using HsMM is employed to Finnish 

phone for continuous speech recognition [69]. Ömer Şayli et al. investigated 

the duration of Turkish phonemes using the statistical method for text-to-

speech synthesis [70].  

 Durational analyses of phonemes in various Indian languages were also 

reported. Somnath Roy et al. duration analysis of Hindi phonemes is presented 

for implementing prosody in text-to-speech systems [71]. D. Govind et al. 

demonstrated the significance of duration in the context of phonological 

aspects of Assamese [72]. B. Lakshmi Kanth et al. used statistical analysis to 

characterise the duration of Hindi, Tamil and Telugu [73]. They discriminated 

against these languages using vowel, nasal and stop sounds. Deepa P. Gopinath 
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et al. carried out the preliminary durational analysis of Malayalam phonemes 

for a text-to-speech system. They also analysed the positional variation of 

consonants in a word [74]. K. Sreenivasa Rao et al. used the SVM regression 

model for modelling the durational analysis of Hindi, Telugu and Tamil 

syllables [75]. N. Sridhar Krishna et al. proposed a preliminary work using the 

CART method for modelling the duration of Hindi and Telugu phonemes [76]. 

Samudravijaya K et al. studied the duration analysis of Hindi stop consonants 

[77]. S. R. Savithri identified factors affecting the duration of Tamil vowels in 

the initial position of words [78].  

 In addition to phoneme durational analysis, the acoustical properties of 

allophones were explored in various languages. Piotr Kozierski et al. allophone 

based speech recognition system for the Polish language is presented [79]. 

Instead of using the entire allophone set, most frequent allophones were used 

for this purpose. Fayçal Imedjdouben et al. used a rule-based method to convert 

phonemes to allophones for synthesising the Arabic speech [80]. Ji Xu et al. 

automatic allophone deriving approach is utilised the recognise Korean speech 

[81]. Wafa Barkhoda et al. proposed three Kurdish speech synthesis systems 

based on diphone, syllable and allophone and compared their performance 

using various test [82]. Diphone based speech synthesiser showed the most 

natural one while all systems intelligibilities are acceptable. Long Nguyen et 

al. used the most frequent allophones to recognise the Japanese speech [83]. 

Pavel A. Skrelin described an allophone based Russian speech synthesiser [84]. 

Vivek P et al. presented the rule set for Malayalam vowel allophones based on 

the position and neighbourhood information and analysed its duration 

properties [85]. 

 Audio-Visual speech asynchrony is one of the major issues to be 

addressed in audio-visual speech processing. Aciel Eshkya et al. used 

ultrasound to visualise the tongue during speech production . A self-supervised 
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neural network is employed to address asynchrony between ultrasound and 

audio speech signals. Gerasimos Potamianos et al. proposed a two-stream 

ConvNet architecture to determine the lip-synchronisation error [4]. Etienne 

Marcheret et al. Two DNN-based audio-visual synchrony detectors, one based 

on scattering and the other on DCT features, were used with identical 

architectures [86]. Kshitiz Kumar et. al. proposed a time-evolution model for 

audio-visual features in linear prediction and proposed the using canonical 

correlation analysis to multidimensional audio-visual features [87]. Enrique 

Argones Ru´a et al. The degree of synchronisation between the lips and the 

voice was measured using coupled hidden Markov models and co-inertia 

analyses [88]. 

The durational analysis of phonemes, allophone and audio-visual speech 

asynchrony is performed in various languages by employing various methods. 

However, the corresponding analysis in Indian languages, especially in 

Malayalam, is less addressed. As Malayalam is a language with a rich phoneme 

and allophone set, durational analysis of these basic units and audio-visual 

speech asynchrony can better understand language and performance 

improvement in speech-based applications. 

2.4 Review on known Viseme set 

Many researchers have analysed the importance of the phoneme to 

viseme mapping. The phonemes which have almost the same visual mouth 

appearance grouped to a single viseme class. In literature, many mappings 

reported, range of visemes in a language varies between 10 and 20. The number 

and nature of viseme are language dependent. Hence a language-specific 

exploration is needed for establishing the viseme set for a language. 

Traditionally there are three approaches for obtaining visemes from a many to 

one mapping: linguistic knowledge-based, perception experiments with human 

subjects  and data-driven approach. Some authors blend linguistic and 
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perception experiments based on approaches and name them as subjective 

assessments. Using a subjective approach, viseme classes are defined through 

linguistic knowledge and prediction of phonemes having a similar visual 

appearance. Viseme classes created by clustering of phonemes based on 

features extracted from the mouth region is the highlight of a data-driven 

approach. Most of the work has reported in European languages, but in India, 

only a few such as Hindi  and Marathi have been studied in visual speech. The 

centre of discussion so far shows attempts have not yet reached the realm of 

successful development of visual speech technology in the Indian language. 

Besides, only a few viseme maps have studied for the coarticulation effects of 

visual speech, which might be the lack of database containing all contextual 

variations in the language concerned. This research work is going to be the 

initial study in Malayalam phoneme to viseme mapping based on linguistic 

involved data-driven approach and allophone-to-viseme mapping based on a 

data-driven approach alone. Table 2.2 summarizes a brief background of 

established viseme mapping in terms of language, methodology and some 

special features. 
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Table 2.2 Summary of known Viseme sets 

Author   Year 
Linguistic 

Information 
Implementing Method Special Features 

Woodward et al.                    
1960 [89] 

 24 initial consonants 
of English to 4 
viseme classes. 

 Perception experiment with human 
subjects. 

 Studied on a black and white 
video of a speaker face. 

Fisher et al.         
1968 [90] 

 23 initial consonants 
to 5 viseme classes. 

 20 final consonants 
to 5 viseme classes. 

 Multiple-choice intelligibility test.   
 Confusion matrix. 

 Studied visual perception of 
initial and final consonants.  

 Mapping is done subjectively.                      
 Fisher introduced the term 

viseme which is a compound 
word of visual and phoneme. 

Franks et al.         
1972 [91] 

 Initial consonants.   Consonants are only studied. 

Binnie et al.        
1976 [92] 

 20 English 
consonants to 9 
viseme classes. 

 Human testing.        
 Confusion matrix. 

 Consonants are only studied.  
 20 English consonants were 

combined with the vowel /a/ to 
form 20 CV syllables.                 

 34 female observers have 
participated in the testing 
process.                                

 Mapping is done subjectively. 
Jeffers et al.        
1980 [91] 

 American English.         Pure linguistic approach.  
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 43 phonemes to 11 
viseme classes. 

Montgomery et 
al.          1983 
[93] 

 American English.                 
 15 vowels and 

diphthongs. 

 3 methods- Perceptual analysis using 
confusion matrix, Physical 
measurements (height, width, area, 
acoustical and visual duration) and 
Correlation between the two. 

 Study was restricted to vowels 
only. 

Goldschen et al.                    
1994 [94] 

 19 vowel and 
diphthong phonemes 
to 16 viseme classes. 

 36 consonant 
phonemes to 18 
viseme classes. 

 HMMs using Forward-Backward 
algorithm. 

 67 sentences from TIMIT 
database. 

  Used optical information from 
the oral cavity shadow. 

 Continuous Optical Automatic 
speech recognition. 

Lander et al.        
1999 [95] 

 35 phonemes to 12 
classic Disney 
mouth position. 

 Linguistic approach  Facial Animation. 

Neti et al.            
2000 [96] 

 42 phonemes to 12 
viseme classes 
(excluding silence). 

 Mixture of linguistic and data driven 
approach.   

 Decision tree based HMM state 
clustering method.   

 Models are trained using DCT visual 
features. 

 IBM ViaVoive database was 
used. 

Pandzic et al.   
2002  

 24 phonemes to 14 
viseme classes. 

 Based on Face Animation Parameters.  MPEG-4 facial animation. 
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Lee et al.              
2002 [97] 

 41 phonemes to 14 
viseme classes.                                    

 7 vowel, 6 
consonant and 1 
silence viseme. 

 Assumed to be linguistic approach.                            
 HMM modelling.             Used context-

independent recognition units (phone 
model).                          

 Produced a sequence of viseme symbols 
from speech waveform. 

 TIMIT speech database.       
 Two approaches in building 

viseme recognizer-viseme 
HMMs and phoneme HMMs. 

Hazen et al.          
2004 [21] 

 American English.         
50 phonemes to 14 
viseme classes.                         

 There are 54 
phonemes, but 4 
phonemes were 
merged to get 50 
phonemes. 

 Data-driven approach.  
 Agglomerative hierarchical clustering 

algorithm.  
 Bottom-up clustering using maximum 

Bhattacharyya distances.                                  
 96-dimension stacked PCA feature 

vectors. 

 AV-TIMIT speech database.  
 Viseme was represented by three 

consecutives frames with middle 
frame describe the static viseme 
of each phoneme.                            

 Before clustering some 
phonemes were merged 

Aschenberner et 
al.          2005 
[98] 

 German language.          
 42 phonemes to 15 

viseme classes. 

 Linguistic approach.  Applied for speech synthesis. 

Melenchón et 
al.               
2007 [99] 

 Spanish language.           
 12 allophones to 6 

viseme classes. 

 Data-driven approach.          
 12 PCA coefficients were used as 

feature vector. 

 Three speakers utter 12 Spanish 
sentences.  

Chitu et al.            
2009 [100] 

 Dutch language.              
 40 phonemes to 18 

viseme classes. 

 Confusion matrix.  
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Damien et al.      
2009 [101] 

 Arabic language.            
 28 phonemes to 10 

viseme classes. 

 Data-driven approach.   
 Geometrical features used. 

 Four speakers utter four types of 
word sequences. 

Yu et al.                
2010 [102] 

 50 words to 60 
classes of visual 
speech units (VSU). 

 Data-driven approach.    
 Used Expectation Maximization 

Principal Component Analysis (EM-
PCA) as feature extraction method.                               

 Based on HMM classification. 

 Introduced new term “Visual 
Speech Unit (VSU)” which 
include transition information 
between consecutive visemes.         

 Two speakers utter a total of 50 
words. 

    
Chelali et al.   
2012 [103] 

 Arabic language. 
 28 consonant 

phonemes to 11 
viseme classes. 

 Data-driven approach. 
 Statistical parameters  of lips and 

geometric features. 

 Viseme Recognition. 
 Ten native Algerian speakers. 
 Video- 576*720, 25 fps. 
 Front region. 

Mattheyses et 
al.               
2013 [104] 

 Dutch language.      
 Many-to-many 

phoneme-to-viseme 
mapping. 

 Data driven approach.     
 AAM (Active Appearance Model)-based 

representation of mouth region.                                   
 Tree- based and k-means clustering 

approach was used. 

 Coarticulation effect was 
studied.                                   

 Applied for visual speech 
synthesis. 

Seko et al.            
2013 [105] 

 Japanese language.        
 40 phonemes to 14 

viseme classes 
(excluding silence).  

 HMM modelling.  CENSREC-1-AV database was 
used. 
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Aghaahmadi et 
al.            2013 
[106] 

 Persian language. 
 23 consonants to 7 

viseme classes. 

 Data-driven approach-PCA. 
 Subjective assessment. 

 Studied the effect of 
coarticulation and the phoneme 
position in syllable. 

 Coarticulation effect-middle 
image in bi-viseme (CV 
syllable) and tri-viseme (CVC 
syllable). 

 AVA II database was used. 
†Varshney et al.                  
2014 [107] 

 Hindi language. 
 20 consonant 

phonemes to 5 
viseme classes. 

 Linguistic approach.  Viseme Recognition. 
  In Hindi, total 61 phonemes. 
 

Bear et al.             
2015 [108] 

 46 phonemes to  
visemes ranging 
from 2 to 45. 

 Viseme classes were obtained based 
upon the mapping of articulated 
phonemes, which was confused during 
phoneme recognition, into viseme 
groups. 

 Designed Speaker-dependent 
viseme classes.                    

 Studied on LiLIR dataset.         
 12 British speakers utter about 

1000 words totally. 
 
 
 

   

Taylor et al.          
2015 [109] 

 Created many-to-
many mapping.   

 Approximately 
50000 visual speech 
gestures – 150 

 Clustered the speech gestures identified 
by AAM (Active Appearance Model) of 
jaw and lips.                        20 
Dimension feature vector entirely 
describe the shape and appearance 

 KB-2K database was used.    
  A single actor recites 2542 

phonetically balanced sentences 
from TIMIT database.                          
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dynamic viseme 
classes.   

information.    Dynamic visemes were 
learned entirely from visual data. 

 Applied for automatic redubbing 
of video. 

Setyati et al.    
2015 [110] 

 Indonesian 
language.     

 49 phonemes to 12 
viseme classes. 

 Linguistic approach.  Used Blend shape models for 
analysing the facial images.   

 10 speakers were used for this 
study. 

†Brahme et al.              
2016 [111]                    

 Marathi language. 
 44 phonemes to 13 

viseme classes. 
 Including silence. 
 10 vowel phonemes 

to 5 viseme classes. 
 34 consonant 

phonemes to 7 
viseme classes 

 Linguistic approach.  Visual Speech Recognition. 
 First work in Marathi language. 
 

† Viseme mapping in Indian languages. 
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2.5 Review on Lip Segmentation 

 Being lips is the active articulator, segmenting the lip region is the 

primary task in visual speech analysis. One of the successes behind the AVSR 

task is to extract the lip region from its surroundings efficiently. Lip 

segmentation and tracking can be broadly classified into colour-based and 

model-based approaches. The colour-based approach uses colour uniformity or 

discontinuity, whereas the model-based approach uses a set of parameters to 

represent the lip shape mathematically.   

Ashley D. Gritzman et al. presented a detailed analysis of 33 colour 

transforms, including 21 channels from seven different colour spaces and 12 

more [112]. They further expanded the research to include oral cavity 

segmentation and created a rating of colour channels based on their potential 

for segmentation. Using optimal thresholding based on bacterial foraging 

optimisation, Mohamad Amin Bakhshali et al. segmented the lip area [113]. A 

new colour space (IHLS) was also proposed, which is less computationally 

demanding and error-prone. Ashley D. Gritzman et al. offer a method termed 

adaptive threshold optimisation (ATO), which uses shape information feedback 

to determine the threshold [114]. For lip segmentation, Shu-Hung Leung et al. 

use fuzzy clustering in the CIELab and CIELuv colour space combined with 

distance information [115].  Simon Lucey et al. employed chromatic temporal 

information and a fuzzy-based thresholding algorithm to solve difficulties with 

the traditional thresholding method [116]. Meng Li et al. adopted a three-stage 

technique in which the CIE Lab and LUX colour spaces were used first, 

followed by a Gaussian model using hue and saturation values. The lip region 

is extracted using a morphological 38 filter in the final stage [117].  

Nicolas Eveno et al. proposed a jumping snake that makes use of various 

distinctive points in the lip region, as well as a cubic-natured parametric model 

in the segmentation process [118]. M.Li'evin et al. used spatiotemporal 
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Bayesian segmentation with hue and motion information to locate and segment 

the mouth accurately [119].  Lastly, an active contour is used to precisely 

outline the lips. Tony F. Chan et al. presented active contours without edges 

that detect the inner contour automatically regardless of where the initial curve 

is on the lip [120]. Pierre Garcon et al. used a statistical model of shape with 

local appearance gaussian descriptors [121]. In a multi-speaker task, this 

strategy can be generalised to account for intra-person appearance variability. 

The Active Shape Model (ASM) was utilised by Juergen Luettin et al. to extract 

visual speech [122]. K.L. Sum et al. 14-point ASM is used to extract the outer 

lip shape information, and the cost function is computed using fuzzy clustering 

analysis [123]. The Active Appearance Model (AAM) was utilised by Piotr 

Dalka et al. to statistically describe lip shape and texture [124]. In the face 

recognition challenge, M Iqtait et al. applied ASM and AAM to extract visual 

speech features [125]. 

Researchers have given lip tracking top priority since the accuracy of 

recognition relies heavily on the proper tracking of spoken lips. Many literary 

works, especially in European contexts, have adopted the red colour dominance 

of lips. However, in the Indian context, there is no significant variance in lip 

and skin colour tone, and the presence of facial hairs further complicates the 

capture and analysis of lip dynamics. In Indian languages, there are very few 

works reported. The lip-skin discrimination power varies depending on the 

colour space and the ethnicity of the database used. Recent lip-tracking 

experiments have taken a hybrid approach, which could lead to better 

segmentation findings. 

2.6 Review on AVSR systems in Intense background Noise 

 Speech processing in the Malayalam language is still in its infancy stage, 

with only a few works focusing only on audio speech. Lavanya B.Babu et al. 

proposed a continuous Malayalam speech recognition system in the Kaldi 



Literature Review  
 

 45

platform [126]. They extracted MFCC features and its transformed version 

using LDA and built triphone and mono phone-HMM models and compared its 

performance. Smrithy K Mukundan et al. introduced a speaker-independent 

word recognition system using MFCC features and a hidden Markov toolkit 

[127]. Raji Sukumar A1 et al. presented an intelligent query processing system 

in Malayalam [128]. Cini Kurian et al. presented a speaker-independent 

connected Malayalam digit recogniser using PLP and HMM and obtained 

99.5% accuracy [129]. Anu V Anand et al. developed a large vocabulary 

continuous speech recognition system for visually impaired people using 

MFCC features and HMM [130]. Vimal Krishnan V R et al. proposed an 

isolated word recognition task using wavelet transforms and ANN, which 

obtained an 89% recognition rate [131]. 

 Few attempts have been made to build an AVSR system in Indian 

languages like Hindi [46], [132], [133], Oriya [42], etc. Since the first AVSR 

system in 1984, researchers have focused on improving the audio and visual 

speech feature extraction approach [134]–[136]and employing various schemes 

for modelling and fusing techniques [45], [58], [137], [138]. Table 2.3 

summarises the performance of various ASVR systems employed in the intense 

background (negative SNR) conditions in terms of features, fusion and stream 

weight. 
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Table 2.3 Summary of AVSR systems employed in negative SNR Conditions. 

Author 
Year 

Speech Features 
Special Features (Purpose. Database, 
Fusion & Weight Strategies, Model) 

Performance 

Wentao Yu et al. 
2021 [137] 

 Audio-40 log Mel Features + 2 
Pitch features + Probability of 
Voicing. 

 Visual–43 IDCT coefficients.  
 
 

 AVSR in Vehicle cabin. 
 LRS2 database. 
 Decision Fusion. 
 Model and Signal-based Reliability 

measures. 
 BLSTM and LSTM neural networks. 

 Additive Noise 
 Word error rate (%). 

 
                  LSTM     BLSTM 

Clean 
9 dB 
6 dB  

   3 dB 
0 dB 
-3 dB 
-6 dB 
-9 dB 

10.32 
15.84 
13.97 
19.17 
21.25 
21.26 
27.22 
33.30 

7.84 
10.78 
10.25 
14.93 
16.35 
17.89 
23.11 
27.55 

 
Ali S.Saudia et 
al. 
2019 [139] 
 

 Audio-Gabor Audio features. 
 Visual-Gabor video features 

 Continuous digit recognition. 
 CUAVE database. 
 Late integration. 
 Signal based-Zero crossing rate, short-

time energy, energy entropy, spectral 
roll-off, spectral centroid and spectral 
flux. 

 Synchronous Multi-stream HMM. 

 NOISEX database-white gaussian 
noise. 

 Visual-only 69.23%. 
 
              Audio-only    AVSR 
Clean 
20 dB 
15 dB 
10 dB 

98.89 
97.98 
96.67 
94.17 

98.89 
97.78 
96.67 
95.83 
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5 dB 
0 dB 
-5 dB 

-10 dB 

92.22 
91.11 
81.11 
75.56 

94.44 
93.33 
85.71 
80 

Ian McLoughlin 
et al. 
2019 [140] 

 Audio-Spectrogram, 
Cochleogram and constant-Q 
transform-based images. 

 Audio-only event classification problem. 
 Real World Computing Partnership 

(RWCP) Sound Scene Database. 
 CNN Classifiers. 

 NOISEX-92 databse-4 noise. 
 Combination of Cochleogram and 

Spectrogram performs well. 
Clean 99.33% 
20 dB 99.50% 
10 dB 99.24% 
 0 dB 96.96% 
-5 dB 73.02% 

                -10 dB 34.44% 
Hendrik 
Meutzner et al. 
2017 [135] 

 Audio–23 Mel filter bank 
features, 13 MFCC, 32 ratemap 
features and 13 GFCC. 

 Visual–63 DCT coefficients. 

 AVSR. 
 CHiME challenge dataset. 
 Early and State-based integration. 
 Stream weight-Improved Minima 

Controlled Recursive Averaging. 
 DNN. 

 Highly non-stationary background 
noise. 

 Ratemap feature performs better. 
 Keyword accuracy (%). 
 Video-only 71.34% 

             Audio-only   AVSR 
9 dB 
6 dB 
3 dB 
0 dB 
-3 dB 
-6 dB 

94.47 
92.86 
89.71 
86.48 
80.36 
73.98 

96.82 
95.02 
95.02 
93.47 
90.21 
88.32 
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Ahmed Hussen 
Abdelaziz et al. 
2017 [51] 

 Audio-13 MFCC + first and 
second derivatives. 

 Visual-DCT + PCA. 

 NTCD-TIMIT database. 
 AVSR. 
 Direct and Separate integration. 
 Speaker independent acoustic DNN-

HMM hybrid model. 

 6 Noises from NOISEX-92 and 
CHiME challenge dataset. 

 Phone error rate (%). 
 Visual-only 68%. 

           Audio-only    AVSR 
Clean 
20 dB 
15 dB 
10 dB 
5 dB 
0 dB 
-5 dB 

21.6 
45.4 

56 
67 

76.8 
85.4 
90.6 

22.5 
45.8 
55.6 
62.1 
64.3 
65.7 
65.6 

Naomi Harte et 
al. 
2015 [45] 

 Audio-12 MFCC. 
 Visual-132 DCT coefficients + 

first derivative + second 
derivative. 

 Continuous AVSR. 
 TCD-TIMIT database. 
 Early Integration. 
 HMM. 

 Additive White Gaussian noise. 
 Visual-only 34.54%. 

             Audio-only     AVSR 
40 dB 
30 dB 
20 dB 
10 dB 
0 dB 

-10 dB 

50.88 
44.63 
32.20 
21.60 
15.49 
8.73 

37.24 
35.95 
32.41 
27.55 
22.3 
18.33 

Kwanchiva  
Thangthai et al. 
 
 
 
 

 Audio-39 MFCC with first and 
second derivatives. 
 
 
 

 AVSR in noisy environment. 
 Resource management-3000 database. 

 
 
 

 Word accuracy(%). 
 Visual only 84.67%. 
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2015 [138]  Visual-23 features-AAM + 
Hierarchical LDA. 

 Ten-fold cross-validation. 
 DNN. 
 

      Audio-only     AVSR 
Clean 
20 dB 
15 dB 
10 dB 
5 dB 
0 dB 
-5 dB 
-10 dB 
-15 dB 
-20 dB 

98 
96 
94 
90 
70 
30 
8 
0 
0 
0 

98 
96 
95 
92 
88 
69 
40 
22 
14 
8 

Virginia 
Estellers et al. 
2011 [141] 

 Audio-13 Normalised MFCC. 
 Visual-13 DCT coefficients. 

 AVSR. 
 CUAVE database. 
 Signal based-VAD and SNR estimation. 
 Model based-Entropy, Dispersion and 

Transistion probability counter. 
 HMM-ANN and HMM-GMM. 

 NOISEX database-white and 
babble noise. 

 Word accuracy(%) 
 
               White         Babble 

25 dB 
20 dB 
15 dB 
10 dB 
5 dB 
0 dB 
-5 dB 
-10 dB 

95 
94 
93 
91 
88 
85 
79 
69 

95 
94 
92 
87 
79 
69 
59 
54 
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Mihai Gurban et 
al. 
2009 [136] 

 Audio-13 MFCC + first and 
second derivative. 

 Visual-192 DCT coefficients. 

 AVSR 
 CUAVE database. 
 Model based- Entropy. 

 Additive white Gaussian noise. 
25 dB 96% 
20 dB 96% 
15 dB 95% 
10 dB 93% 
5 dB   90% 
0 dB  85% 
-5 dB 78% 

-10 dB  67% 
E.K. Patterson et 
al. 
2002 [16] 

 Audio-16 Mel frequency 
discrete wavelet coefficients. 

 Visual-Geometric features and 
Fourier descriptors. 

 Isolated word recognition. 
 CUAVE database. 
 HMM. 

 NOISEX database. 
 Visual-only 87%. 

 
          Audio-only     AVSR 
Clean 
18 dB 
12 dB 
6 dB 
0 dB 
-6 dB 

100 
96.5 
80.9 
52.6 
29.1 
21.0 

100 
99.3 
96.9 
92.9 
89.8 
88.4 

 



Literature Review  
 

 51

2.7 Conclusions 

 The research on recent developments in the AVSR system is examined 

from several aspects. A thorough examination of the audio-visual speech 

database is conducted. A study on phoneme and allophone durational analysis 

and audio-visual speech asynchrony is also provided. The identification of 

viseme sets in various languages are discussed in depth. A review of lip 

segmentation methods is conducted. Finally, reviewed the current 

developments in audio-visual speech recognition tasks in noisy environments. 

 

 

 



 



 

CHAPTER 3 

AN AUDIO-VISUAL SPEECH DATABASE IN 
MALAYALAM – “MOZHI” 

 

3.1 Introduction 

Back in the last couple of decades, human interact with a machine in 

every aspect of their life. For better human-computer interaction, the device 

must perform just like a human interacts with his surroundings. In the speech 

processing aspect, human interaction with its surroundings is bimodal. The 

audio signal from the mouth is the primary source for recognizing speech. Still, 

it is well established that incorporating visual cues from the mouth has 

improved the efficiency of speech perception levels. Even though the visible 

part of speech contains less speech information than the acoustic part, it helps 

better understand when the acoustic element is less informative. The idea of 

visual speech in speech processing is employed in resourced languages like 

English. However, under-resourced languages like Malayalam (a regional 

language of India) never explored the usefulness of visual speech in speech 

processing systems. The non-availability of an audio-visual speech database for 

Malayalam is one major reason that keeps researchers away from such studies. 

Researchers working in languages, which are less addressed by the speech 

research group, are forced to do their research work with self-collected speech 

data, which brings problematic conditions when comparing their results with 

others.  

Over the years of development and unceasing research in audio-visual 

speech processing has endorsed the deficiency of a standard audio-visual 

speech database. The demand for diversity in resources and large storage 

capacity is the main challenge that produces the remarkable hindrance in 

developing the bi-modal speech database. Creating an exhaustive and 
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methodically arranged audio-visual speech database builds up worldwide 

acceptance in the research community. A diversity of standard databases has 

been reported, and most of them claim to be beneficial for the specific task. The 

database required to develop should have many features to be useful for various 

research works. The main criteria needed for speech database construction is to 

have a large phonetically balanced speech corpus uttered by many unique 

speakers in an uncontrolled environment. To develop an efficient speech-based 

application system, a long duration of the annotated recording of the speech 

utterance is necessary for both training and testing schemes. It is mandatory to 

figure out the peculiarities of the language of the database and its linguistic 

background and compare it with other language groups that help to resolve the 

issues that spring up during the creation of the database. 

An audio-visual speech database in Malayalam was captured in various 

environments for a variety of research goals. It is probably the first of its sort 

in Malayalam. This database was recorded in 3 categories with unique speakers 

in each stage. The first recording category contains an audio-visual speech 

database recorded from 25 females and five male speakers speaking 50 

Malayalam isolated phonemes and 207 connected words comprising of all 

allophonic variations in a controlled environment. Each isolated phonemes and 

word in the audio and video domain are appropriately segmented and labelled. 

The second recording category creates an audio-only speech database captured 

in two different conditions, one in a secluded and noiseless environment and 

another in the acoustically realistic environment. Finally, in the third category, 

the audio and visual speech signal from 5 female speakers uttering isolated 

phonemes and real-time isolated words in an acoustically and visually realistic 

environment is recorded. It took three years to prepare this database. This 

chapter also discusses the different simulated noisy signals and the audio-visual 

asynchrony in the Malayalam language.  
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This chapter's content is organised as follows. Section 3.2 displays a 

detailed outline of this database architecture, such as different categories of 

recording, language material, hardware setup, and environmental conditions. 

Section 3.3 discusses the segmentation and labelling process involved in the 

creation of this database. Section 3.4 explains different simulated noisy signals 

used in this work. Section 3.5 discusses the audio-visual asynchrony in the 

Malayalam language. Section 3.6 concludes the work. 

3.2 Database Design 

The purpose of a speech database depends intensely on the language 

material, speaker population, and the quality of the recording, which should be 

optimally adapted to attain the prime goal. It is better to consider a continuous 

speech corpus for speech recognition and isolated words for speaker 

verification. Many speakers are required for the verification task than compared 

to the recognition task. Extracting minute variations in the visual features of the 

speaker may improve the recognition task, which can be implemented by using 

a high definition camera rather than cameras with high fps (frames per second) 

under better illumination conditions. 

A new audio-visual speech database in Malayalam is induced. The 

database is recorded by native speakers of northern Kerala. The visual speech 

database is mainly a female-oriented database by keeping in mind the low 

contrast between the lip and skin colour tone in the Indian context and the 

presence of facial hairs in the significant male population in Kerala. However, 

to avoid gender discrimination, five male speakers are included in the visual 

speech database, which carries the visual complexity like facial hairs partially 

covering the lip region. This database is recorded in 3 categories with unique 

speakers in each stage. The first category is the audio-visual speech database 

recorded in a controlled environment. This category includes 25 female and 

five male speakers uttering 50 Malayalam isolated phonemes and 207 
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connected words comprising all allophonic variations five times each. The 

second category consists of an audio-only speech database which has two sub-

categories. The first sub-category is a clean audio speech database recorded in 

a closed environment uttering 50 Malayalam isolated phonemes five times each 

by ten male and 20 female speakers aged 21-25. The second sub-category is an 

audio speech database recorded in an acoustically realistic environment uttering 

of five Malayalam short vowel phonemes ten times each by ten males and ten 

females in each group ranging from 5 to 60, a total of 560 males and 560 

females. The third category contains an audio-visual speech database captured 

in an uncontrolled environment to help in developing a visual speech 

processing system in real-world ambient conditions. This category includes 

five female speakers uttering 50 Malayalam isolated phonemes and real-time 

isolated words five times each with a complex background. It includes lighting 

variations and multiple speakers in the background.  

3.2.1 Language Material 

India has 23 constitutionally recognised official languages. Hindi and 

English are treated as official language by the Central Government. Malayalam 

is a Dravidian language spoken across Kerala, Lakshadweep, and Mahe has 

been spoken by 38 million people worldwide and designated a status of 

classical language in 2013. Due to its lineage deriving from both Tamil and 

Sanskrit, the Malayalam alphabet has many letters among the Indian Language 

orthographies. Malayalam is a language that is used by masses and less 

accessed from the computational point of view. So, developing a speech-based 

application in Malayalam benefits from enjoying the recent technological 

revolution with the native language rather than in English. 

It is mandatory to figure out the peculiarities of the language of the 

database and its linguistic background and compare it with other groups of 

languages that help to resolve the issues that arose during the creation of the 
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database. The language basic units like phoneme, allophone and viseme are the 

essential terminology used in any speech-oriented application. Phonemes are 

the relatively distinct and fundamental utterances of a language [142]. The 

number of phonemes varies between dialects and languages; for instance, 

British English has 44, Indian English has 38 [91], and Malayalam has 50. The 

participation of articulators in the speech production system is used to classify 

the phonemes. In Malayalam, the language components like phoneme and 

allophone is linguistically categorized according to articulation points and 

manners as in [http://www.cmltemu.in/phonetic/#/], an inclusive Malayalam 

phonetic archive owned by Thunchath Ezhuthachan Malayalam University 

(TEMU), Kerala, India. The audio file in this archive is utilized to understand 

the pronunciation of phonemes and words.  

3.2.1.1 Speech Production 

 When humans speak, the air is forced out of their lungs through the 

trachea, the larynx, and the vocal tract, with two openings (mouth and nose) 

and variable constrictions at different places for different sounds.  The glottis 

is the beginning of the vocal tract, around 17 cm long and extends to the lips. 

The vocal folds, commonly known as vocal cords, are two tiny muscular folds 

in the larynx that may be opened or closed. Glottis is the space between two 

folds. Vocal cords are tensed muscular tissues which vibrate when the folds are 

partially closed and do not vibrate when the folds are apart. The nasal cavity is 

a chamber between the velum and the nostrils. Sounds produced with vocal 

cords vibration is called voiced sounds, and sounds produced when folds are 

apart (no vibration) are called unvoiced sounds. During vibration, airflow is 

chopped into quasi-periodic pulses, which are then modulated in frequency by 

passing through the pharynx, mouth cavity, and nasal cavity—depending upon 

the position and manner of different articulators (lips, teeth, tongue, alveolar, 

and palates) different sounds are produced. Linguistically, phonemes are 
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broadly classified into vowel phonemes, diphthong phonemes and consonant 

phonemes. Fig. 3.1 shows the schematic diagram of the human speech 

production system.   

 

Fig. 3.1 Schematic Diagram of Speech Production System 

3.2.1.2 Vowel Phonemes 

 The vocal tract, driven by quasi-periodic air pulses produced by the 

vocal cord's vibrations, produces vowel phonemes. Vowels are voiced sounds 

with less constriction in the vocal tract and generally have a long duration and 

are louder than other classes of phonemes. The tongue plays a vital role in the 

creation of vowel sounds (vowel phonemes). Vowels are classified based on 
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the height (High, Mid, and Low) and position (Front, Central, and Back) of the 

highest part of the tongue and the shape of the lips (rounded or not). The height 

(Low, Mid, and High) and location (Back, Central, and Front) of the highest 

portion of the tongue and the shape of the lips are used to classify vowels. 

Because the lips are the most visible element of visual speech, their shape is 

vital in classifying visemes (as discussed in section 4.7.1). Classification of 

vowel phonemes is listed in table 3.1. Fig. 3.2 displays the short vowel 

phonemes in the time domain.  

Table 3.1 Linguistic Classification of Vowel Phonemes 

 
Tongue 
Height 

 

 
Duration 

 

Tongue Position 
 

Front Central Back 

High Short ഇ /i/  ഉ /u/ 

Long ഈ /i:/  ഊ /u:/ 

Mid Short എ /e/  ഒ /o/ 

Long ഏ /e:/  ഓ /o:/ 

Low Short  അ /a/  

Long  ആ /a:/  
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Fig. 3.2 Time Domain Representation of Short Vowel Phonemes: (a) അ /a/, 

(b)  ഇ /i/, (c) എ /e/, (d) ഒ /o/ and (e) ഉ /u/. 

3.2.1.3 Diphthong Phonemes 

  Diphthong phonemes are voice sounds generated by smoothly 

switching between two vowel configurations of the vocal tract. In Malayalam, 

there are two diphthongs: ഐ /ai/ and ഔ-/au/. Diphthong phoneme ഐ 

/ai/ is produced by starting with the vowel phoneme അ /a/, and before ending 

it, the tongue changes its position to the configuration of the vowel phoneme 

ഇ /i/. Diphthong phoneme ഔ-/au/ is produced by uttering the vowel 

phoneme അ /a/ and then glides to the vowel phoneme ഉ /u/. Fig. 3.3 displays 

the diphthong phonemes in the time domain. 
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Fig. 3.3 Time Domain Representation of Diphthong Phonemes: (a) ഐ /ai/ 

and (b) ഔ-/au/. 

3.2.1.4 Consonant Phonemes 

 Consonant phonemes are produced by restricting the flow of air by 

articulators and maybe voiced or unvoiced. Consonants can be distinguished 

by the place of articulation (the point of maximum restriction) and manner of 

articulation (partial or complete restriction). In Malayalam, consonant 

phonemes appear as Consonant-Vowel (CV) unit termed as syllable (ക< ka > 

= ĭ /k/ + അ /a/). Before analyzing the speech signal, consonant phonemes 

must be segmented from the CV unit. Bilabial, labiodental, dental, alveolar, 

retroflex, palatal, velar, and glottal are consonant phonemes based on the place 

of articulation. Consonant phonemes are classified based on the point of 

articulation, as shown in fig. 3.4. 
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Fig. 3.4 Place of Articulation 

 Bilabial consonant phonemes are created by restricting the air flow by 

the two lips coming together. In Malayalam, there are five bilabials,  Ł/P/, ł 

/ph/, Ń /b/, ń /bh/ and Ņ /m/ as shown in fig. 3.5. The consonant boundary 

is indicated by the red line. 

 

Fig. 3.5 Time Domain Representation of Bilabial Consonant Phonemes: (a) Ł 
/P/, (b) ł /ph/, (c) Ń /b/, (d) ń /bh/ and (e) Ņ /m/. 
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 Labiodental consonant phonemes are produced by restricting the airflow 

by touching the upper teeth with the lower lips and then releasing the air by 

opening the mouth. Ō /v/ is the only labiodental consonant phoneme in 

Malayalam, and its time-domain representation is shown in fig. 3.6. 

 

Fig. 3.6 Time Domain Representation of Labiodental Consonant Phoneme: Ō /v/. 

 Dental consonant phonemes are produced by placing the tip of the 

tongue behind the teeth. The consonant phonemes ļ/t/, Ľ/th/ , ľ/d/, Ŀ/dh/ and 

ŀ/n̪/ belongs to this category. 

  

Fig. 3.7 Time Domain Representation of Dental Consonant Phoneme: (a) ļ/t/, 

(b) Ľ/th/, (c) ľ/d/, (d) Ŀ /dh/ and (e) ŀ/n̪/. 
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 Alveolar consonant phoneme is produced by limiting the airflow by 

pressing the tongue tip on the alveolar ridge, which is the part of the mouth's 

roof immediately behind the upper teeth. The consonant phonemes like ƃ് /ṟ/, 

ŀ /n/, ŏ /s/, Ň /r/, ň /ṛ/ and ŉ/ൽ /l/ belong to this class.  

 

Fig. 3.8 Time Domain Representation of Alveolar Consonant Phonemes: (a) ƃ് 
/ṟ/, (b) ŀ /n/, (c) ŏ /s/, (d) Ň /r/, (e) ň /ṛ/ and (f) ŉ/ൽ /l/.  

 The retroflex sound is produced when the tongue articulates between the 

alveolar ridge and the hard palate. It is the largest consonant phoneme group in 

Malayalam, which includes ķ /ʈ/, ĸ /ʈh/, Ĺ /ɖ/, ĺ /ɖh/, Ļ /ɳ/, Ŏ /ʂ/, Ŋ/ൾ 

/ɭ/ and ŋ /ʐ/ (fig. 3.9). Palatal consonant phonemes are made by a constriction 

between the tongue's tip and the mouth's roof (palate). The consonant phonemes 

like Ĳ /c/, ĳ /ch/, Ĵ /ɟ/, ĵ /ɟh/, Ķ /ɲ/, ō /ʃ/ and ņ /y/; its time-domain 

representation is shown in fig. 3.10. When the back of the tongue is in contact 

with the velum (soft palate), velar consonant phonemes are produced. The 

phonemes that belong to this categories are ĭ /k/, Į /kh/, į /g/, İ /gh/ and 

ı /ŋ/ as shown in fig. 3.11. Glottal consonant phoneme was made by closing 

the far back of the oral cavity (glottis). Only glottal consonant phoneme in 
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Malayalam is Ő /h/, whose time-domain representation is shown in fig. 3.12. 

Based on the point of articulation, 38 consonant phonemes are grouped into 

eight groups. 

 

Fig. 3.9 Time Domain Representation of Retroflex Consonant Phonemes: (a) 
ķ /ʈ/, (b) ĸ /ʈh/, (c) Ĺ /ɖ/, (d) ĺ /ɖh/, (e) Ļ /ɳ/, (f) Ŏ /ʂ/, (g) Ŋ/ൾ /ɭ/ and 

(h) ŋ /ʐ/.   

 

Fig. 3.10 Time Domain Representation of Palatal Consonant Phonemes: (a) Ĳ 

/c/, (b) ĳ /ch/, (c) Ĵ /ɟ/, (d) ĵ /ɟh/, (e) Ķ /ɲ/, (f) ō /ʃ/ and (g) ņ /y/. 
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Fig. 3.11 Time Domain Representation of Velar Consonant Phonemes: (a) ĭ 

/k/, (b) Į /kh/, (c) į /g/, (d) İ /gh/ and (e) ı /ŋ/. 

 

Fig. 3.12 Time Domain Representation of Glottal Consonant Phoneme: Ő 

/h/. 

 Point of articulation refers to the point at which the constriction is made 

in the oral cavity. Manner of articulation represents the extend of constriction 

made for a consonantal gesture. In Malayalam, manner of articulation was 

broadly classified into four classes: Plosives (Stops), Nasal, Fricatives and 

Semivowels.  

 Plosives (Stops) are made by completely blocking the airflow for a short 

duration termed as closure, and then the air is released, termed as a release.  

Based on the state of vocal cords during the closure time, plosives are divided 

into unvoiced plosives and voiced plosives. During the production of unvoiced 

plosives, vocal cords do not vibrate along with the complete closure of the vocal 

tract, creating short-duration silence followed by the abrupt release of air. On 
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the other hand, the vocal cords vibrate when the vocal tract is closed, making a 

short low-frequency signal during the closing time. Unvoiced and voiced 

plosives are subdivided into two groups based on whether aspiration (stable 

glottis airflow) is present or not. 

 Nasal sounds are the results of coupled action of an oral and nasal tract.  

They are caused by glottal excitement and complete narrowing in the vocal tract 

somewhere in the mouth cavity. However, the velum is lowered, which opens 

the nasal passage to allow airflow through the nostrils.  

 Fricative sounds are produced by partially constricting the airflow 

through the vocal tract. It is generated by a continuous airflow that is turbulent 

at the constriction site and characterised by a hissing tone, stimulating the vocal 

tract. 

 Semivowels are vowel-like sounds produced by gliding transition in 

vocal tract area function between the adjacent phonemes, like the vowels and 

diphthongs. It is divided into four groups: Trill/flapped, lateral, approximant 

and glide. Flap is a quick flip of  the tongue against the alveolar ridge. Lateral 

sound is produced by raising the tip of the tongue towards the roof of the mouth 

so that the air flows along both sides of the tongue. Approximant sounds are 

made when the tongue moves close to the roof of the mouth but not close 

enough to cause turbulence. Thus, approximant falls between the characterized 

of vowel and fricative sounds. Finally, in glide sound, airflow is frictionless 

and modified by the tongue and lips position.  

 Thus, combining the place of articulation and manner of articulation is 

enough to classify the Malayalam consonant phonemes uniquely. In 

Malayalam, all vowels are voiced sounds, while there are 23 voiced consonants 

(Voiced Plosives, Nasals, and Semivowels) and 15 unvoiced consonants 

(Unvoiced Plosives and Fricatives). A comprehensive classification of 

Malayalam consonant phonemes is shown in table 3.2. 
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3.2.1.5 Allophones 

 In the Malayalam language, there are ten vowel phonemes, two 

diphthongs, and 38 consonant phonemes. Based on articulation, among the ten 

vowels, four are classified as front vowels, two as central vowels and four as 

back vowels. Based on the relative position of articulators, the consonant 

phonemes are categorized as bilabial, labiodental, dental, alveolar, retroflex, 

palatal, velar, and glottal. An allophone is a version of a phoneme that is 

phonetically distinct [84].  The place or phonetic surroundings in the word 

generally characterises the allophones of the same phoneme. Because these 

differences do not assist in identifying one word from another, speakers of a 

language sometimes have trouble recognising the phonetic differences between 

allophones of the same phoneme. There are 207 words accommodating 106 

Malayalam allophones, which include 75 consonant allophones, 28 vowel 

allophones, and three allophones corresponding to diphthongs. Table 3.3 & 3.4 

shows the list of Malayalam vowel phonemes and consonant phonemes with its 

corresponding allophones. The consonant phonemes are arranged in a front to 

the back manner (from lip to glottal) of the articulator's position.  
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Table 3.3 Malayalam Vowel and Diphthong Phonemes with its Allophonic 
variations 

SI. 
No. 

Vowel 
Phoneme 

IPA 

Vowel 
Allophone 

IPA 

SI. 
No. 

Vowel 
Phoneme 

IPA 

Vowel 
Allophone 

IPA 

1 ഇ /i/ [i] 
[yi] 
[yi] 

7 ഉ /u/ 

 

[wu] 
[uw] 
[ɯ] 
[ə] 
[ə*] 
[ɯv] 
[U] 

2 ഈ /i:/ [yi:] 
[i:] 

8 ഊ /u:/ [wu:] 
[u] 

3 എ /e/ [ye] 
[ey] 
[E] 

9 ഒ /o/ [wO] 
[O] 

4 ഏ /e:/ [ye:] 
[er:] 
[e:] 

10 ഓ /o:/ [wO:] 
[O:] 

5 അ /a/ [ʌ] 
[A] 

11 ഐ /ai/ [ai] 
[ei] 

6 
 

ആ /a:/ [a:] 
[a] 

 

12 ഔ-/au/ [au] 
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Table 3.4 Malayalam Consonant Phonemes with its Allophonic variations 

SI. 
No. 

Consonant 
Phoneme 

IPA 

Consonant 
Allophone 

IPA 

SI. 
No. 

Consonant 
Phoneme 

IPA 

Consonant 
Allophone 

IPA 

SI. 
No. 

Consonant 
Phoneme 

IPA 

Consonant 
Allophone 

IPA 

1 
 
 

 

Ł /P/ 

 
 

[p] 
[β] 
[b] 
[P] 

14 ŏ /s/ [s] 27 ĳ /ch/  [cʰ] 
[Cʰ] 

2 ł /ph/ [ph]  15 Ň /r/ [r] 28 Ĵ /ɟ/ [J] 
[j] 

3 Ń /b/ [B] 
[b] 

16 ň /ṛ/ [ṛ] 29 ĵ /ɟh/  [ɟh] 

4 ń /bh/ [bh ] 17 ŉ/ൽ /l/ [l] 30 Ķ /ɲ/ [ɲ] 

 
5 

 
Ņ /m/ 

[m̪h] 
[M] 
[m] 
[ṃ] 

 
18 

 
ķ /ʈ/ 

[ɖ] 
[ɽ] 
[ʈ] 
[T] 

 
31 

 
ō /ʃ/ 

 
[ʃ ] 

6 Ō /v/ [w] 
[v] 

19 ĸ /ʈh/ [ʈʰ] 
[Tʰ] 

32 ņ /y/ [y] 

 
7 

 
ļ /t/ 

[t] 
[t''] 
[ð] 
[d̪] 

 
20 

 
Ĺ /ɖ/ 

 
[ɖ] 

 
 

33 

 
 

ĭ /k/ 

[k] 
[kj] 
[ɣ̥] 
[ɠ] 
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[ʈ] 
[K] 

 
8 

 
Ľ /th/  [th]  

 
21 

 
ĺ /ɖh/  

 
[ɖh ] 

 
34 

 
 Į /kh/ 

[kh] 
[Kh] 
[Kh] 

 
9 

 
ľ /d/ 

[ḍ] 
[d] 

22 Ļ /ɳ/ [ɳ] 35 į /g/ [G] 
[g] 

10 Ŀ /dh/  [dh ] 23 Ŏ /ʂ/ [ʂ] 36  İ /gh/ [ɡh] 

11 ŀ /n̪/ [n̪] 
[n] 

24 Ŋ/ൾ /ɭ/ [ɭ]  
 

37 
 

 
 

ı /ŋ/ 

[ŋ] 
[ŋj] 
[ŋ<] 
[ŋ>] 
[ŋ'] 

12 ƃ് /ṟ/ [d] 
[t] 

25 ŋ /ʐ/ [ʐ] 

 
13 

 
ŀ /n/ [nh] 

[n] 

 
26 

 
Ĳ /c/ 

[c] 
[c̬] 
[ɟ] 
[C] 

 
38 

 
Ő /h/ 

 
[H] 
[h] 
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3.2.2 Database Acquisition Hardware 

Cost-effective recording devices were used for documenting the audio-

visual speech in this database. The video signal is recorded with two handy 

cameras in the first and third categories of recording. High-quality visual 

utterances are captured using Sony handy camera HDR-CX405. The video 

signal is recorded at a frame rate of 25 fps and a resolution of 1280 x 720. The 

audio signal is sampled at 44100 Hz. This camera is used to capture the 

dynamical variation of the mouth region with audio and video signals wrapped 

in MP4 format. Low-quality visual signals are captured using Sony handy 

camera DCR-SX45E. The video signal is captured at a frame rate of 25 fps with 

a resolution of 720 x 576 in MPG format. The audio signal is sampled at 48000 

Hz. This camera is employed for capturing the speaker’s face in both categories 

with audio and video signals wrapped in MPG format. Both cameras are 

mounted on a tripod stand with a bubblehead to adjust the horizontal position 

of the camera. Two LED video lamps with varying intensity ranging up to 

400W is used in the recording environment to capture the in-depth information 

from the speaker’s mouth. Two different types of audio capturing hardware are 

used in the second category of recording. First, a standard headphone with a 

microphone (with foam cover) captures sound in a controlled environment. 

Second, an ordinary mobile headset with a microphone was employed in the 

acoustically realistic environment. The recorded audio files are saved as a wav 

file at a sampling frequency of 16 kHz. Before processing, all audio speech data 

is resampled to 16 kHz. 

3.2.3. Recording Setup 

The database entitled “MOZHI” consists of 3 categories of recording. A 

single audio-only speech database acquisition category and two audio-visual 

speech database acquisition categories. Recording in each stage begins with an 

explanation of the objectives to be achieved. During each utterance, the 
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speakers are advised to close their mouths at the beginning and end of each 

utterance. Speakers start their utterance only a few seconds after the recording 

device starts; this strategy is utilised in all categories to capture the background 

noise and channel distortion at the beginning of the speech. Most of the data is 

recorded in a studio-like environment with provisions to record the signal in 

controlled and uncontrolled conditions.  

The first recording category contains an audio-visual speech database 

recorded to highlight the visual features of the speaker’s mouth in a 

linguistically rich environment. Speaker is instructed to keep their head in 

quasi-static condition and exhibit a neutral facial expression during recording. 

Two handy cameras (high quality and low quality) are set to record the frontal 

view of the speaker. The cameras are mounted on a tripod stand about 100cm 

away from the speaker's face. The low-quality camera is placed a little bit 

vertically above the high-quality camera. The low-quality camera is zoomed in 

to capture only the speaker’s face and shoulder. The high-quality camera is 

zoomed in to capture the mouth region, from chin to tip of the nose. Both 

cameras are operated by a single speaker, which helps to maintain the 

synchronization between them. In addition, two LED video lamps are placed 

on both sides of the handy camera at equal distance, thereby aligning all in a 

single line with the same vertical height. The light is slightly tilted towards the 

speaker's face, and the intensity was adjusted to obtain uniform illumination on 

the speaker's face. The presence of a background screen reduces the complexity 

related to speaker face segmentation as in the third category of recording. This 

orientation is maintained throughout the recording process taken at different 

times. The speaker can practice elocution on the language material provided to 

them and modify their pronunciation. The language material is provided in 

printed form (which contain 50 Malayalam isolated phonemes and 106 words). 

Speaker is advised to widen their mouth so that the entire mouth region should 

be in the frame while uttering such postures. Before recording, the camera 
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screen is turned towards the speaker to adjust their position to achieve the 

desired view in both cameras. Speaker is instructed to speak in their natural 

manner and allow them to out of the frame while they made or felt a mistake 

and let them in the frame after rectifying it. The audio signals are captured using 

the inbuilt audio recorder in the two handy cameras synchronising with the 

visual cues. The audio and video are wrapped in MP4 files from the high-

quality camera and MPG files from the low-quality camera. The approximate 

footage length is 5 minutes for isolated phonemes and 20 minutes for connected 

words for each speaker. These captured raw audio-visual speech databases 

contain redundant and unwanted information which should be removed and 

arranged systematically for implementation in speech-based applications.  Fig. 

3.13 shows the recording setup of the first category. 

 

Fig. 3.13 MOZHI recording setup. 

The second category consists of an audio-only speech database which 

has two sub-categories. The first sub-category is clean audio signal is recorded 

in an acoustically isolated laboratory environment using a standard headphone 

with a microphone near the mouth region, enabling good audio acquisition. 

Before recording, the channel’s gain is limited, thereby attaining fewer 
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background noisy signals and reducing the channel clipping issues. The 

speakers are requested to repeat each utterance five times and is saved as a 

single wav file for each phoneme and allophone. In addition. speakers are 

requested to repeat the utterance if necessary, either because of a mistake during 

articulation or if the recorded sound contains noise due to respiration or channel 

problem. All the speakers are post-graduate students within the age group of 

21-25 years. The second sub-category is an audio speech database  recorded in 

an acoustically realistic environment (office, school, and house) using an 

ordinary mobile headset with a microphone. The speakers can utter five short 

vowels ten times each, which the operator controls since the age group utilized 

for this task is 5-60. This database is used to study the effects of ageing in 

human speech organs and to investigate better noise-robust techniques in 

speech-based applications.   

The third recording category is dedicated to capturing the audio-visual 

speech database in an acoustically and visually realistic environment. This 

recording is made in a lab environment with natural daylight and ordinary 

illumination in a room. The room may contain possible background noises from 

electrical equipment and human conversation inside and outside the room. The 

speaker is seated at the centre of the room to create illumination variation on 

the speakers face. This recording is done in the same manner as the first 

category except without LED lamps and background screen. The approximate 

footage length was 10 minutes for each speaker. After the recording process, 

the speakers signed a consent form.  

The recording setup is intentionally adopted to implement a human-

machine speech-based interacting system in the public domain using low cost, 

affordable performance and easily installable equipment is used in this 

recording process. The third recording category can be implemented in an open 

space in a public domain like a hospital, railway station, airport etc., which 

produces the same recording environment as in the third category. The first 

recording category can be implemented in a closed cabin (like a telephone 
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booth) with all facilities to fabricate the same recording environment, thereby 

ensuring better performance. Table 3.5 gives the complete picture of this 

database named “MOZHI- An Audio-Visual Speech Database in Malayalam 

Language”. As an initial work in the Malayalam language, the rest of the thesis 

is done with an audio-visual speech database taken from the first recording 

category. The last two categories of records will be utilized in future work. 

Table 3.5 MOZHI Database Profile 

 Modality Utterance & 
Speakers 

Purpose Equipment  

 
 
 

Category-1 

 
Audio-Visual 
(Lip region) 

 
50 phonemes-5 times 
each and 206 isolated 
words comprising of 
all allophones-3 times 
each. 
Speakers- 25 females 
and five males. 

 
 
 

Audio-visual speech 
processing in 

Malayalam language. 

High quality 
Camera (1280 x 
720) with two 

professional LED 
video light 

                           
Audio-Visual 
(Face region) 

Low quality 
Camera (720x 576) 

with two 
professional LED 

video light 
 
 
 

 
Category-2 

 
 
 

 
Audio-only 

50 phonemes- 5 times 
each. 
Speakers- 20 females 
and 10 males in the 
age group 21-25. 

 
Audio-only speech 

processing. 

 
Good quality 

microphone placed 
closer to mouth 

region. 
Five Short Vowels- 5 
times each. 
Speakers- 10 females 
and 10 males in each 
age group ranging 
from 5 to 60 

Effects of aging on 
human speech organs. 

Effects of real-time 
noise in speech signal 

processing. 

 
Ordinary 

microphone placed 
closer to mouth 

region 

 
 

Category-3 

Audio-Visual 
(Lip region) 

 
50 phonemes and real 
time isolated words-5 
times each. 
Speakers- 5 females 

 
 

Real-time audio-visual 
speech processing. 

High quality 
Camera (1280 x 

720) 
 

Audio-Visual 
(Face region) 

Low quality 
Camera (720x 576) 
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3.3 Audio and Video Segmentation and Labelling 

The major work after the recording was the processing of audio and 

visual speech data individually and preparing it in a standard format for further 

usage. The audio and visual data processing involves the segmentation and 

labelling of audio and video files separately for each isolated phonemes and 

word, thereby removing redundancy in both domains. This database contains 

audio files with less storage space when compared to the visual domain and 

video files with massive storage space, which makes manual processing an 

error-prone and time-consuming process. Automatic processing has its 

drawback while dealing with manually compromising features involving an 

individual difference in appearance, speaking style, pronunciation, instructions 

passed to the speaker, misreading etc. So, it is reliable to consider a semi-

automatic viewpoint in the processing step.  

The audio signals are segmented and labelled automatically, and the 

segmented files is analysed manually for omitting files that contain noise and 

wrong pronunciations. The recorded individual audio files contain the same 

sound repeated several times with enough separation between each other. This 

audio signal is passed through a spectral subtraction process, which removes 

the noisy background content that arises during recording. The spectral 

subtraction process is implemented only on the audio files recorded in a lab 

environment where the noise changes slowly relative to the speech signal. 

However, the audio files, which are recorded in an acoustically realistic 

condition (Category 2), are retained to study the effect of the real-time noisy 

speech signal in future work.  

In the spectral subtraction method [143], the clean speech and noise are 

uncorrelated and additive in the time domain. In addition, most of the additive 

noise and the channel distortion change very slowly as to the speech signal. 
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Hence, a recorded speech signal is generally realised as a combination of 

convolved channel distortion and additive noise,  

y(m) = x(m) * d(m) + n(m)                                                  (3.1) 

Where m stands for discrete-time index, y(m) for recorded speech, x(m) for 

clean speech, d(m) for channel distortion, n(m) for additive noise, and * for 

convolution operator. Assuming the absence of channel distortion, the power 

spectrum of the noisy speech signal is the sum of clean speech power spectrum 

X(k) and noise power spectrum N(k) as in Eq. (3.2), where k is frequency bin 

index.  

| Y(k) |2 = | X(k) |2 + | N(k) |2                                               (3.2) 

According to the recording strategy, the noise power spectrum is estimated in 

the non-speech region. The estimated noise power spectrum is then subtracted 

from the power spectrum of the noisy speech signal to obtain the clean speech 

power spectrum as in Eq. (3.3). 

| X(k) |2 = | Y(k) |2 - | N(k) |2                                                  (3.3) 

The inverse discrete Fourier transform (IDFT) transforms the obtained clear 

speech power spectrum into the time domain by combining its magnitude with 

the phase information gained from the noisy speech input. 

  x(m) =  | 𝑋(𝑘)| 𝑒
షೕమഏ

ಾ  𝑒ఏೊ()
ୀெିଵ

ୀ
                                       (3.4) 

The phase information from the noisy speech signal is represented by θY(k). As 

noise varies randomly, spectral subtraction might produce negative results. 

Since the power spectrum is always positive, the negative value will impact the 

recovered signal, which will be visible at low signal-to-noise ratios. In a weak 

background noisy speech signal, this issue is unnoticeable. The block diagram 

of the spectral subtraction method is shown in Figure 3.14.   
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Fig. 3.14 Block Diagram of Spectral Subtraction method. 

After the noise removal step, the lengthy speech signal (containing many 

utterances of isolated phonemes) goes through the segmentation process. In the 

segmentation process, the signal is segmented into 10 ms frames. The 

maximum of the absolute values of the samples in each frame is compared with 

the maximum of the absolute values of the whole signal. The first frame with a 

maximum of the absolute values of the samples in the frame greater than a 

threshold value (8% of the maximum of the absolute values of the whole signal) 

is found. Just before this frame, the second frame is considered the first frame 

of the isolated phoneme (framestart). Then the first frame, after framestart, with 

the maximum amplitude value less than a threshold value (about 8% of the 

maximum of the absolute values of the whole signal) is found. After this frame, 

the following second frame is considered the last frame of the isolated phoneme 

(frameend). All the frames from framestart and frameend are saved as the first 

utterance. The time information of starting and ending frame is utilized to 

segment the corresponding visual counterpart. All frames up to frameend are 

removed from the original signal. The process is repeated until all the isolated 

phonemes are segmented. Fig 3.15 shows the steps involved in the 

segmentation of acoustic speech signals.  
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Fig. 3.15 Speech Segmentation Process. 

After this process, each segmented speech signal from the same 

utterance is viewed acoustically and visually, and the misspelt and corrupted 

speech signals are removed manually. After scrutinising all segmented speech 

signals, it is forwarded to the labelling process, which contains all relevant 

information regarding the signal. The labelling process was done entirely 

automatically in all category of recording, which minimizes the errors occur 

during manual labelling.  

It is decided to keep each audio and visual file in a different folder under 

the heading of the corresponding category, which will drop out the necessity of 

including category information in the labelling process. The first four 

characters represent the label of the isolated phonemes (the maximum 

characters required to label is for ƃ്/ṟ/ (TTAA)). For phonemes with a label 

length of less than four characters, the excess characters are filled with X (like 

AXXX for അ /a/). An additional character (single digit) is allotted to 

allophones for displaying the context-based variation of phonemes. The 

maximum context based phonemic variation is for the phoneme ഉ /u/ (7 classes 
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as in table 3.4). The following two characters represent the repetition of 

utterance (from 01 to 99) since some speakers repeated the utterance more than 

nine times. The next character (7th for phoneme and 8th for allophone) 

represent the gender of the speaker (‘F’ for females and ‘M’ for males). The 

proceeding two characters represent the age of the speaker from 05 to 60. The 

next character represents the nativity of the speaker. The nativity of the speaker 

is represented by the first letter of the city/street. The last two characters 

represent the speaker number (each speaker is assigned a unique two-digit 

number) since the second recording category needs a considerable number of 

speakers. The first 6 and 7 characters are used to provide the information 

regarding the phoneme and allophone, respectively. The proceeding seven 

characters are used to represent the speaker identity. So, an audio speech file is 

named with 12 and 13 alphanumeric characters for phonemes and allophones, 

respectively. The same nomenclature is implemented for audio speech files of 

categories 2 and 3. 

The same rule for labelling has been used for the video signal. For each 

speaker, two videos were captured simultaneously, with one containing only 

lip information and the other with complete facial information, which is 

specified in the format of the video file. All original audio and video data have 

been stored along with corresponding standardized data under the proper 

headings so that further examinations will still be possible. Table 3.6 displays 

the nomenclature of MOZHI database files.  
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3.4 Simulated Noisy Signal 

In signal processing, noise is considered as a signal with various 

frequency components at varying strengths that can distort the nature of the 

original signal during the recording, processing and transmission of the signals. 

In the real world, various noises distorted speech signals, reducing their 

perceptual quality and intelligibility. Low perceptual quality results in listener 

fatigue, and poor intelligibility yields poor performance in different speech-

based applications. Vowels and consonants are the two types of speech signals. 

Vowel sounds have low-frequency features, whereas consonant sounds have 

high-frequency ones. Consonants provide most of the information in the speech 

signal. As a result, it is preferable to investigate noises that degrade speech in 

various frequency ranges. Three noise signals were used by analysing the 

spectral characteristics: White Gaussian noise, Pink noise, and Red noise. 

These noises were treated as coloured noise, which uses the idea of colour to 

describe its frequency response.  

Any real-world speech-based application must address its performance 

in different noisy conditions with a different signal-to-noise ratio (SNR). The 

signal-to-noise ratio is a parameter used to characterises the relative strength of 

the signal with the noise. SNR is defined as the ratio of signal power to the 

noise power, often expressed in decibels (dB). SNR in terms of power is defined 

in linear scale as 

    SNR = 
 ೞೌ

 ೞ
                                                                (3.5) 

Where Psignal is the power of the clear signal and Pnoise is the power of the noisy 

signal. SNR in decibel (dB) scale is given by, Eq. (3.6). The SNR values of the 

speech signal include in this database, and their corresponding linear scale 

representation are shown in table 3.7. 
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SNR (dB) = 10 log10 (SNR)                                                 (3.6) 

Table 3.7 SNR and Corresponding Relation between Signal Power and Noise 
Power 

SNR in dB SNR in linear scale 

20 Signal power = 100*Noise power 

10 Signal power = 10*Noise power 

0 Signal power = 1*Noise power 

-10 Signal power = 
ଵ

ଵ
*Noise power 

-20 Signal power = 
ଵ

ଵ
*Noise power 

 

The algorithm for the generation of the coloured noisy signal is 

summarised below. 

Step1: Create a random signal from the Gaussian distribution of finite length. 

Step2: Apply Fast Fourier Transform (FFT)  

Step3: To manipulate the left half of the spectrum, remove the symmetric 

portion from the         spectrum. 

Step4: For white noise, Power spectrum density (PSD) is flat. 

-Retain the spectrum without any modification.  

For Pink noise, PSD =K/f, where K is a constant and f is the frequency. 

-Manipulate the spectrum by dividing the spectrum amplitude with the 

square root of frequency indexes. Since power is proportional to 

amplitude squared, the power per Hz will decline at higher frequencies 

at the rate of about -3dB per octave or -10dB/decade. 
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For Red noise, PSD =K/f2, where K is a constant and f is the frequency. 

- Manipulate the spectrum by dividing the spectrum amplitude with 

frequency indexes. The power per Hz will decline at higher frequencies 

at the rate of about -6dB per octave or -20dB/decade. 

Step5: Reconstruct the whole spectrum. 

Step6: Take Inverse Fast Fourier Transform (IFFT) (Convert noisy signal from 

frequency  domain to time domain). 

Step7: Ensure zero mean and unity standard deviation. 

The created coloured noise is mixed with speech signal additively at different 

SNR values. To generate the noisy signal of the desired SNR, convert the given 

SNR in dB into the linear scale and substitute in the equation below. Then 

combine the speech signal with the noisy signal with the appropriate SNR. 

Noise of desired SNR = ට
౩ౝౢ 

ௌேோೌೝ
  * noise[m]                                       (3.7) 

3.4.1 White Gaussian Noise  

 White Gaussian noise or white noise has a uniform power distribution 

over all frequencies from 0 to half the sampling frequency. White noise, for 

example, has the same strength between 100 and 500 Hz as between 20,000 

and 20,500 Hz at a sampling rate of 44,100 Hz. Thus, a sequence of statistically 

uncorrelated random numbers generated from a Gaussian distribution, usually 

with zero mean and unity variance, is characterized as white noise. When the 

TV or radio is tuned to an unused frequency, a human ear hears pure white 

noise as a hissing sound. 

 Fig. 3.16 visualise the properties of White Gaussian noise. Fig 3.16 (a) 

shows the time-domain representation of white noise with zero mean and unit 
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variance. The frequency response of white noise in the semi-log graph is shown 

in fig. 3.16 (b). In a semi-log graph, one axis is in logarithmic scale and the 

other in liner scale; here, the spectral magnitude is in logarithmic scale. Power 

Spectral Density (PSD), power per unit frequency, is the frequently used tool 

for noise analysis, characterising the average behaviour of fluctuating 

quantities. Even though the spectrum is not an exact flat for white noise, the 

“average power” is the same for all frequencies. The histogram of white noise 

matches the theoretical probability distribution function of the Gaussian 

random variable, which is shown in fig. 3.16 (c). The autocorrelation function 

measures the time fluctuating quantities related to ‘t’ and shifted time ‘t+τ’. 

Fig. 3.16 (d) shows the autocorrelation function of White noise equal to an 

impulse at zero lag, which ensures that the random variation of white noise is 

highly uncorrelated. Fig. 3.17 shows the effect of white Gaussian noise in the 

time and frequency domain. 

 

Fig. 3.16 Properties of White Gaussian Noise. 
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Fig. 3.17 Effect of White Gaussian Noise on Speech signal in Time and 
Frequency domain. 

3.4.2 Pink Noise 

Pink noise, sometimes known as "1/f noise," is a signal with a power 

spectral density that is inversely proportional to its frequency. Pink noise has 

the same power distribution throughout each octave in the logarithmic scale; 

therefore, the power between 200 and 400 Hz is the same as that between 2,000 

and 4,000 Hz. Because power is proportional to amplitude squared, the power 

in each constant bandwidth of pink noise decreases at higher frequencies at a 

rate of around -3dB per octave or -10dB per decade. Thus, Pink noise is 

equivalent to white noise, which falls off at -3db/octave. Many physical 

processes in the natural world produce noise with a power distribution like pink 

noise; flicker noise in electronics is one of them. 

Fig 3.18 (a) shows the time-domain representation of pink noise. The 

frequency response of pink noise in the semi-log graph is shown in fig. 3.18 

(b). The spectral property of pink noise is presented by marking the rolling rate 

at -10dB/decade. The histogram of pink noise exactly matches the theoretical 

probability distribution function of the Gaussian random variable, which is 
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shown in fig. 3.18 (c). Pink noise can be viewed as a low-pass filtered white 

noise. Since the high-frequency components were removed, the random 

samples exhibit a less sharp transition between each other, which is displayed 

as in fig. 3.18 (d) when compared to 3.16 (d).  Fig. 3.19 shows the effect of 

pink noise in the time and frequency domain. 

 

Fig. 3.18 Properties of Pink Noise 

 

Fig. 3.19 Illustration of effect of Pink Noise on Speech signal in Time and 
Frequency domain  
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3.4.3 Red Noise 

 The deeper variant of pink noise, known as red, brown, or Brownian 

noise, has a power spectrum proportional to 1/f2. Therefore, lower frequencies 

have more energy than higher frequencies in brown noise. Brown noise is 

sometimes known as red noise because it has a low frequency analogous to red 

light. At higher frequencies, red noise rolls off at a rate of around -6dB/octave 

or -20dB/decade. As a result, red noise is the same as white noise, which falls 

off at a rate of -6dB/octave. 

 Fig 3.20 (a) shows the time-domain representation of red noise, which 

wanders up and down, but there is a clear correlation between successive 

values. The frequency response of red noise in the semi-log graph is shown in 

fig. 3.20 (b). The spectral property of red noise is presented by marking the 

rolling rate at -20dB/decade. The histogram of red noise deviates from the 

theoretical probability distribution function of the Gaussian random variable, 

which is shown in fig. 3.20 (c). In fig. 3.20 (d), the autocorrelation function 

displays a repetitive form due to the high correlation between the samples in 

Red noise. Finally, fig. 3.21 shows the effect of red noise in the time and 

frequency domain. 

 

Fig. 3.20 Properties of Red Noise 
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Fig. 3.21 Illustration of effect of Red Noise on Speech signal in Time and 
Frequency domain 

Before studying the effect of the noise signal in speech, the corrupted 

speech signal must be properly labelled. Up to this point, each phoneme and 

allophones were represented by 12 and 13 alphanumeric characters, 

respectively (as in table 3.6). For adding noise information, additional four 

characters are used. The first character is represented the first letter of noise 

used in this database, i.e., ‘W’ for White noise, ‘P’ for Pink noise, ‘R’ for Red 

noise. The next three characters are representing the noise level in dB scale-like 

+20, +10, +00dB, -10dB, and -20dB. A corrupted phoneme file is labelled with 

16 alphanumeric characters, and 17 alphanumeric characters represent its 

corresponding corrupted contextual variation. This labelling method helps to 

select the suitable subset of the database and to get all the relevant information 

about the speech signal. 

3.5 Audio-Visual Asynchrony 

 The durational analysis of phonemes and allophones, its visual 

counterpart, and hence audio-visual asynchrony is discussed in this section. It 

is the first work done in Malayalam. Duration modelling is the preliminary task 

in phonemes or viseme level speech processing applications like speech 



An Audio-Visual Speech Database in Malayalam – “Mozhi” 

 92

recognition and speech synthesis system. The segmented audio and video 

speech files contain silence on both sides of a vowel (V), consonant-vowel 

(CV) and word utterance. So, the duration of the underlined vowel and 

consonant phonemes must be properly time-aligned in audio and video files. 

Even though the durational analysis for audio and video speech files was 

done separately, the correlation between the two modalities must be thoroughly 

examined, especially in a bi-modal speech processing task. Two major issues 

arise when comparing acoustical speech with visual speech: difference in frame 

rate and asynchrony. Based on the database, the visual speech is captured at a 

rate of 25 Hz (25 fps) and in the thesis, the acoustical speech was analysed in a 

short duration, namely ‘window’ or ‘frame’ of 25 ms with a sliding window of 

10 ms, creating 100 fps. This difference must be equalized by upsampling the 

video frame rate. In addition, upsampling the video files is nothing but 

capturing the same sequence in a 100 fps camera with the same duration. The 

frame rate does not create an issue in this section since durational analysis is 

performed on the entire speech signal. It is well known that while uttering a 

sound, the speaker’s mouth starts moving or opening a little bit later or earlier 

than the acoustic signal, thereby producing an asynchrony (in the range of 

milliseconds) between audio and visual cues. This problem must be 

significantly addressed in bimodal speech-based applications. Since both 

modalities are captured simultaneously by the same devices, which help to 

consider only the natural asynchrony rather than asynchrony occur during the 

recording of both modalities separately. There's an inherent asynchrony 

between both visual and sound cues of language. Speech is generated through 

the closely coordinated motion of many articulators. Because of coarticulation 

effects and articulator inertia, the sound and visual cues might not be precisely 

synchronized at any certain time. After uttering a phoneme, it's not possible for 

the muscles of our articulatory system to instantly alter the positions of the 

various articulators to generate the following sound. Visual address suffers both 

from anticipatory and preservatory coarticulation effects. Preservatory or 

backward coarticulation usually means a speech gesture proceeds after uttering 
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a sound section, whereas the other gestures necessary to make this sound are 

already finished [104]. In short, the visual expressions found following the 

corresponding phoneme discovered in preservatory coarticulation. Besides, 

anticipatory or forward coarticulation occurs when a visible gesture of a 

language segment occurs ahead of other articulatory elements of the segment. 

Therefore, in anticipatory coarticulation, visual expressions have been 

observed before the corresponding phoneme is heard. Linguistic exploration is 

necessary to handle this problem since the scope and directionality of the 

coarticulation effect is extremely language-dependent. 

To deal with this issue in the Malayalam language, we used our audio-

visual speech database containing all phonemes and allophones of five 

speakers. Phonemes are utilized to assess the asynchrony because of articulator 

inertia alone. Allophones address the asynchrony by considering coarticulation 

effects and articulator inertia. From the recorded data, audio signals are 

extracted from video and stored as separate files. The video file was then 

converted into frames. Asynchrony is then estimated as the difference in the 

time duration of the acoustic and visual speech signal of the underlined 

phonemes or allophones. Asynchrony analysis was performed individually for 

phonemes and allophones to underline the coarticulation effect. The duration 

of each phoneme and allophones in the audio and video speech signal are 

estimated manually. Manual phonetic boundary identification is the most 

favourable approach in database creation. Even though it is time-consuming, 

this method is helpful when there is no clear distinction between neighbouring 

speech elements, especially in consonant phoneme boundary estimation. 

During the acoustic speech time alignment process, both waveform appearance 

(visual perception) and sound (auditory perception) are synchronously utilized 

to identify the location of the change in both attributes. The information from 

the articulator’s motion is explored in viseme (visual equivalent of the 

phoneme) boundary identification. A relatively rapid change in the appearance 

of visually perceivable articulators like lips, teeth and tongue is the boundary's 

identification mark. Due to the speaker variability, certain linguistic intuitions 
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are also employed to judge the boundary when the teeth' appearance hinders 

the tongue motion. Two labellers were utilized to do the manual segmentation 

of our database. For reducing individual bias, the time-aligned audio and visual 

speech files were rechecked by the author of this thesis, who got training from 

the linguistic people. 

Fig. 3.22 shows the time alignment of acoustical and visual speech of 

vowel phoneme അ /a/. The first row represents the time-domain 

representation of speech signal with time in seconds along the x-axis and signal 

value along the y-axis. The vertical red line indicates the beginning and end 

boundary point of the underlined phoneme/ allophone. The second and fourth 

row shows the phoneme labels of the audio and video speech files, respectively. 

The third row displays the mouth appearance involved in the production of the 

underlined phoneme. The number beneath the frame shows the corresponding 

frame number in the video file.  

 
     Silence                                                         അ /a/                                                        Silence 
 

 
    1                3                                                                                                                                     17            19  
Silence                                                  അ /a/                                                                           Sil… 

Fig. 3.22 Time alignment of vowel phoneme അ /a/ 
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The dotted lines indicate the silence portion in the video file. For 

example, frames from 1 to 2 and 18 to 19 are silent regions. The time duration 

of the speech elements (phoneme/ allophone) is estimated from the time domain 

itself. However, for visual speech, the time duration of the underlined phoneme 

is estimated by multiplying the number of frames with the reciprocal of the 

camera’s fps. From fig. 3.22, the number of frames for uttering vowel phoneme 

അ /a/ is 15 (from 3 to 17) multiplied with the reciprocal of the fps of our 

camera (25 fps), creating 0.60 s. 

 Immense care is given while performing the time alignment of 

consonant phonemes. Since the consonant phonemes in Malayalam always 

appear like Consonant-Vowel (CV) syllables, precise boundary detection is 

possible by repeatedly checking the sound of the selected consonant phoneme 

and the overlapped vowel phoneme. Fig. 3.23 shows the time alignment of a 

consonant phoneme ļ/t/. 

 
        Silence                  ļ/t/                                     അ /a/                                               Silence 

 

 
    1            3                      6       7                                                                                                       18            20                         
Silence              ļ/t/                                                  അ /a/                                                         Silence          

Fig. 3.23 Time alignment of consonant phoneme ļ/t/ 
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 The coarticulation effect in Malayalam speech is embedded in 

Allophones. In a word, the occurrence of a speech element is highly influenced 

by the linguistic properties of the preceding and proceeding speech element and 

its relative position. എ [ye], എ[ey] and എ [E] are the contextual variation 

of the vowel phoneme എ /e/. Fig. 3.24 shows the time alignment of vowel 

allophone എ [ye] in the word എവിെട [eviʈe] with phonetic transcription 

എ /e/ + Ō /v/ + ഇ /i/ + ķ /ʈ/ + എ/e/. Fig. 3.25 shows the time alignment 

of vowel allophone എ [ey] in the word പിെŹ [pinne] with phonetic 

transcription Ł /P/ + ഇ /i/ + ŀ /n/ + ŀ /n/ + എ /e/. Fig. 3.26 shows the 

time alignment of vowel allophone എ [E] in the word െവളƧŮ [veɭutta] 

with phonetic transcription Ō /v/ + എ /e/ + Ŋ /ɭ/ + ഉ /u/ + ļ /t/ + ļ /t/ 

+ അ /a/.  

       Silence     എ [ye]       Ō            ഇ         ķ                   എ                    Silence 

 

   1         3                                 8    9          11  12               15   16  17          21        23 

Silence                എ [ye]                    Ō                 ഇ          ķ         എ       Silence 

Fig. 3.24 Time alignment of vowel allophone എ [ye] in the word എവിെട 

[eviʈe] 
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     Silence     Ł    ഇ                  ŀ+ŀ      എ[ey]                         Silence 

  

    1          3           6    7                           11   12         14  15                                      21      23 

 Silence           Ł                    ഇ                 ŀ+ŀ      എ[ey]                  Silence 

Fig. 3.25 Time alignment of vowel allophone എ [ey] in the word പിെŹ 

[pinne] 

 
      Silence    Ō   എ[E]    Ŋ          ഉ             ļ+ļ                    അ                     Silence 

 
   1          3           5  6            7     8    9  10  11             14   15                                     21        23 
Silence         Ō       എ[E]    Ŋ      ഉ         ļ+ļ                           അ                    Silence 

 

Fig. 3.26 Time alignment of vowel allophone എ [E] in the word െവളƧŮ 

[veɭutta] 
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Fig. 3.27 and 3.28 shows the graphical representation of durational 

statistics of Malayalam phonemes from acoustic and visual speech, 

respectively. The triangle in the stock plot represents the mean duration of the 

corresponding phoneme, and the length of the line from the top and bottom of 

the triangle indicates “mean + SD” (Standard Deviation)  and “mean – SD”, 

respectively. In fig. 3.27, the short vowel phonemes roughly varied between 

0.250 s to 0.450 s, and the long vowel phonemes were shifted above in between 

0.450 s to 0.650 s. The consonant phonemes were distributed between 0.050 s 

and 0.250 s. In fig. 3.28, all the short vowel phonemes were shifted between 

0.500 s and 0.650 s, and long vowel phonemes varied between 0.600 s and 

0.700 s. The consonant phonemes were distributed between 0.100 s and 0.300 

s. The Malayalam vowel and consonant phoneme duration from the acoustic 

speech is 0.411 ± 0.068 s and 0.113 ± 0.029 s, respectively. The visual speech’s 

Malayalam vowel and consonant phoneme duration is 0.61 ± 0.04 s and 0.20 ± 

0.04 s, respectively. While comparing the fig. 3.27 with fig. 3.28, the whole 

plot is uplifted, especially vowel phonemes, which means, for almost all 

Malayalam phonemes, acoustic speech is lag the visual speech. 
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 Fig. 3.27 Graphical representation of Durational Statistics of Malayalam 
phonemes from acoustic speech
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Fig. 3.28 Graphical representation of Durational Statistics of Malayalam phonemes from 
visual speech 
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 Fig. 3.29 and 3.30 show the graphical representation of the durational 

statistics of Malayalam vowel allophones from acoustic and visual speech. The 

numbers associated with each phoneme represent the different types of 

allophones for the concerned phoneme. In fig. 3.27, the vowel phonemes varied 

between 0.250 s to 0.650 s but in fig. 3.29, the vowel allophones varied between 

0.005 s to 0.400 s. In addition, fig. 3.28 displays the vowel phonemes varying 

between 0.500 s to 0.700 s but in fig. 3.30, the vowel allophones were varying 

between 0.005 s to 0.400 s. While comparing the fig. 3.27 with fig. 3.29 and 

fig. 3.28 with fig. 3.30, the whole plot is lowered due to the coarticulation effect 

and the articulation inertia of underlined vowel phoneme in a word. In addition, 

a clear durational distinguish is observed between corresponding short and long 

vowel allophones in acoustic speech, which is not observed in visual speech.  

 Fig. 3.31 and 3.32 show the graphical representation of the durational 

statistics of Malayalam consonant allophones from acoustic and visual speech. 

In fig. 3.27, the consonant phonemes from the acoustic speech varied between 

0.005 s to 0.250 s but in fig. 3.31, the consonant allophones varied between 

0.025 s to 0.350 s. In addition, fig. 3.28 displays the consonant phonemes from 

visual speech varying between 0.100 s to 0.300 s but in fig. 3.32, the consonant 

allophones were varying between 0.025 s to 0.400 s. While comparing the fig. 

3.27 with fig. 3.31 and fig. 3.28 with fig. 3.32, the coarticulation effect and the 

articulation inertia of underlined consonant phonemes were less affected when 

compared with vowel phonemes in a word. The duration of the Malayalam 

vowel and consonant allophone from the acoustic speech is 0.189 ± 0.077 s and 

0.121 ± 0.064 s, respectively. The visual speech's duration of Malayalam vowel 

and consonant allophone is 0.27 ± 0.10 s and 0.16 ± 0.06 s, respectively. 
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Fig. 3.29 Graphical representation of Durational Statistics of Malayalam vowel 
allophones from acoustic speech 

 

Fig. 3.30 Graphical representation of Durational Statistics of Malayalam vowel 
allophones from visual speech 
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Fig. 3.31 Graphical representation of Durational Statistics of Malayalam 
consonant allophones from acoustic speech 



An Audio-Visual Speech Database in Malayalam – “Mozhi” 

 104

 

Fig. 3.32 Graphical representation of Durational Statistics of Malayalam 
consonant allophones from visual speech 
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 From the durational analysis, the time duration from the audio and visual 

streams was estimated separately for phonemes and allophones. For almost all 

Malayalam phonemes, acoustic speech is lagging the visual speech. This 

lagging is prominent for vowel phonemes than consonant phonemes. However, 

due to the coarticulation effect, this lagging is feeble for vowel allophones and 

consonant allophones. Based on this durational analysis, audio-visual 

asynchrony is estimated for phonemes and allophones. The time difference 

between the visual and acoustic speech of the phoneme and allophone was 

treated as the audio-visual asynchrony of phonemes and allophones, 

respectively. For this, the durational difference between the speech modalities 

was measured for each phoneme and allophones for five speakers. After 

estimating the time lag, the histogram of asynchrony distributions is tabulated 

for phonemes and allophones as in fig. 3.33 and fig. 3.34, respectively. In both 

figures, early audio region and early video region are due to preservatory 

coarticulation and anticipatory coarticulation, respectively.  

 For phonemes, the histogram is centred in the visual lead region with 

few distributions in the audio lead region varying from -20 ms to +295 ms as 

in fig. 3.33. For allophones (fig. 3.34), the histogram is centred near the 

boundary between the synchronous and visual lead region with eye-catching 

distribution in the audio lead region compared to Fig. 3.33. The effect of 

coarticulation is reflected by extending into the early audio range of the 

histogram, ranging from -115 ms to 270 ms. From the analysis of this database, 

it is observed that anticipatory coarticulation is prominent and ranges from 

small early audio to large early video. The asynchrony mentioned above refers 

to the time delay between the recorded audio and visual speech data. The 

sources of this asynchrony may include the differences in response time of the 

hardware used to record the signals and the fps of the video recorder etc. 
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Fig. 3.33 Histogram of Asynchrony distribution in Malayalam Phonemes 

    

Fig. 3.34 Histogram of Asynchrony distribution in Malayalam Allophones 

3.6 Conclusions 

A new multimodal Malayalam audio-visual speech database is 

developed and presented. This database is recorded in 3 categories with unique 

speakers in each stage. The first category is the audio-visual speech database 

recorded in a controlled environment. This category includes 25 female and 
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five male speakers uttering 50 Malayalam isolated phonemes and 207 

connected words comprising all allophonic variations five times each. 

The second category consists of an audio-only speech database which 

has two sub-categories. The first sub-category is a clean audio speech database 

recorded in a closed environment uttering 50 Malayalam isolated phonemes 

five times each by ten male and 20 female speakers aged 21-25. The second 

sub-category is an audio speech database recorded in an acoustically realistic 

environment uttering of five Malayalam short vowel phonemes ten times each 

by ten males and ten females in each group ranging from 5 to 60, a total of 560 

males and 560 females. 

The third category contains an audio-visual speech database captured in 

an uncontrolled environment to help in developing a visual speech processing 

system in real-world ambient conditions. This category includes five female 

speakers uttering 50 Malayalam isolated phonemes and real-time isolated 

words five times each with a complex background. It includes lighting 

variations and multiple speakers in the background. Three additive noises 

(White, Pink and Red) were added to our database and is used to study its 

influence on speech processing applications. Durational analysis of phonemes 

and allophones and its visual counterpart and thereby audio-visual asynchrony 

has been carried out, which is the first work in the Malayalam language. The 

database is intended to facilitate research into the effects of age on speech, noisy 

speech processing, visual speech processing, viseme-based speech synthesis, 

and lip synchronisation utilising audio-visual speech asynchrony, among other 

topics. 



 



 

CHAPTER 4 

MALAYALAM VISEME SET 
IDENTIFICATION 

 

4.1 Introduction 

Speech, the most natural form of human communication, is bimodal 

because it combines both audio and visual signals to interpret it. Speech-based 

applications at public places like enquiry systems at railway stations, where 

clean speech is not available, is a need of today. In such situations, visual 

signals are necessary for decision making. For this, a bimodal speech 

processing technique is to be developed. However, processing the entire video 

signal is computationally expensive in any real-time speech processing 

application. Therefore, knowledge about visually separable basic units in a 

language (viseme) is vital in making any multimodal speech-based 

applications. This chapter describes an in-depth study to characterize the visual 

cues in Malayalam speech that can be used for any bi-modal speech application. 

A phoneme is the basic sound unit necessary to symbolize all words in that 

speech. The corresponding language unit of visual speech is termed viseme. 

For many years of study in visual language, it has gained considerable 

alterations in its definition. A viseme can be considered in terms of articulatory 

gestures such as mouth opening, teeth, and tongue vulnerability that must 

generate different phonemes [90]. An equivalent definition used extensively in 

literature is a viseme for a set of phonemes with a similar visual look [144]. 

The static viseme cannot represent the coarticulation effect of a visual address. 

On the other hand, the current description of viseme is a lively visual language 

unit that describes distinct speech movements of the visual speech articulators. 

The lips, tongue, teeth and jaw are the actively visible articulators used in 

language production [145]. Analysis of the lips, the most active visible 
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articulator, is crucial in the visual speech analytics framework for recognition 

and synthesis. Due to the appearance of the lips, many phonemes belong to a 

single viseme class, thereby creating a bridge between phoneme and viseme, 

which is termed phoneme-to-viseme mapping or many-to-one mapping. The 

visual equivalent of a phoneme has several features that require a 

comprehensive study of this phoneme-to-viseme mapping. 

Lip segmentation is the prime task in a lip-reading system. However, 

successful lip extraction in motion, including the oral cavity, is still an unsolved 

problem in an actual situation. In this work, the possibility of segmenting the 

lip region from the speaker’s face while speaking is carried out by exploiting 

the strength of different colour spaces in the Indian context. The low contrast 

between the lip and skin colour tone and facial hairs hinders capturing the lip 

dynamics, making it necessary to execute manual lip tracking. For developing 

a phoneme-to-viseme mapping, language exploration is needed since the 

phoneme set is language-dependent. The correlation between static visual 

speech unit and phoneme is carried out by developing a many-to-one phoneme-

to-viseme mapping from isolated phonemes based on linguistic knowledge and 

a data-driven approach. The visual coarticulation effect creates a visibly 

different appearance for the same phoneme in a different context, creating a 

further subdivision in phoneme-to-viseme mapping. The contextual variation 

in Malayalam phonemes is modelled using allophonic characterization. The 

coarticulation effect in visual speech is modelled by developing many-to-many 

allophone to viseme mapping using a data-driven approach alone. Vowel-only 

and consonant only mapping is also mentioned. 

The content of this work is arranged as follows. Section 4.2 discusses 

the substantial issues that come up while establishing a viseme set. Section 4.3 

describes the various approaches utilized in the viseme set creation. Section 4.4 

discusses the selection of relevant frames for the underlying phoneme. Section 
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4.5 analysis the strength of different colour models in the lip segmentation 

problem. Section 4.6 deals with the semi-automatic lip region extraction 

process. Section 4.7 provides a thorough description of phoneme-to-viseme 

mapping. Section 4.8 consolidate the visual speech analysis done and further 

modifications is present. Section 4.9 explains the creation of allophone-to-

viseme mapping. Finally, section 4.10 concludes the work. 

4.2 Challenges in Viseme set Identification 

The use of visual cues in speech recognition, especially in a noisy 

environment, is promising. The primary requirement of the analysis of the 

visual speech signal is the phoneme to viseme map.  The use of the viseme set 

shows significant improvement in noisy speech recognition.  

In developing a visual speech analysing system, one must consider the 

problems related to speaker variability in appearance [146], pose [147], 

shadows and recording device [148], [149]. While developing the database 

(Category 1) for this study, the variations in these factors is minimised by 

selecting a homogeneous group of speakers and recording with the same 

devices in the same recording environment (Chapter 3, section 3.2). The 

primary task in visual speech analysis is to decode the visual information from 

the lips. Because the inertia of the facial muscles is greater than that of the vocal 

organs, the extent of lip deformation is limited. As a result, the number of 

visemes in a speech is always less than the number of phonemes. For 

developing the viseme set, the literature suggests two different approaches: 

linguistic and data-driven approach [104], [150]. In the linguistic approach, 

phonemes with the similar visual appearance of active articulators treat as a 

viseme. In the data-driven strategy, the visual speech is analysed by extracting 

essential features from the lip area and group the features based on the 

similarity measurement. The linguistic approach depends significantly on the 

perception ability of the linguistically trained individual, which accurately 
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represents the human lip-reading nature and is a time-consuming process. The 

data-driven approach provides a less time-consuming endeavour, but 

computational analysis of visual cues profoundly depends on the choice of 

visual characteristics, which may be language-dependent. In human 

understanding, a holistic perspective is much more important than parts (Gestalt 

perception theory), but in computer vision, parts (pixels) is much more 

significant than the whole (picture) [151]. Because of this battle, the data-driven 

approach alone cannot mimic human perception accurately, and linguistic 

knowledge alone cannot have the ability to examine substantial visual speech 

information. Therefore, a linguistic involved data-driven approach can make 

valuable of individual perception modelling from linguistic approach and the 

computational easiness out of a data-driven approach. 

This work aims to identify the viseme set in Malayalam language using 

a linguistic involved data-driven approach by consciously neglecting the issues 

in visual speech as discussed above. The lack of a phonetically rich database in 

the target language is one of the significant challenges in visual speech analysis. 

Besides, there is no collective agreement among researchers in different aspects 

of the database like what is to be recorded, how many speakers are to be 

included, which types of speakers are to be included to generalize the whole 

population of interest, etc. As an initial work in Malayalam visual speech 

analysis area, an audio-visual speech database is created, which contains 30 

native speakers (out of 30, 23 speakers are used) of Kerala by capturing the lip 

region of the speaker’s face along with the audio. The database includes vowel 

and consonant-vowel syllables, which comprises 50 phonemes and 106 words 

that capture all contextual variations of 50 phonemes, namely the allophone, as 

in tables 3.3 and 3.4. 

The crucial step involved in the visual speech analysis is identifying 

relevant static frames from the recorded video, which contains the visual 
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appearance of the concerned phoneme. Based on the linguistic mapping, frames 

with similar visual appearance were selected manually for each speaker, 

minimizing the error rate during data-driven analysis. The main factor in the 

data-driven approach is selecting relevant visual features to model human 

perception. It can be solved only by considering the visual speech properties of 

the concerned language. The tongue plays the significant role in speaking 

Malayalam in terms of speed and flexibility, making it distinct from other 

languages. The degree of presence of teeth, oral cavity, and lip shape can be 

modelled using geometric features of lips and deformation in the appearance of 

lips and tongue can be modelled through the Discrete Cosine Transform (DCT) 

feature. Thus, the mathematical analysis is initiated by extracting the Geometric 

features and DCT features from the selected frames. 

The optimum number of static frames that represent the visual 

equivalent is a crucial factor to be studied. Since the visual length and 

appearance of vowel phonemes and consonant phonemes are significantly 

different, static frame alone may end in sparse classification from the 

computational point of view. Besides, it is not advisable to consider every 

frame in a phoneme to represent the visual speech due to computational 

complexity and non-uniformity in the feature-length of vowel and consonant 

phonemes. The time evolution of the static frame is used to solve this problem. 

Thus, a viseme is represented in three ways: static frame, static frame with 

preceding and following frames (3 frames), and static frame with two preceding 

and following frames (5 frames) as in fig. 4.1.   
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Fig. 4.1 Viseme representation using a single frame (upper), three frames 
(middle) and five frames (lower) 

 

The next step is to identify the number of visemes from the visual 

features. Researchers conducted various techniques to establish the mapping 

between phoneme and viseme. Still, there are no reliable and unambiguous 

methods to confirm that one is better than the other. This work categorized the 

visual feature vectors into viseme groups by combining the K-means clustering 

[152] and Gap statistic methods [153]. Since K-means requires a pre-

determined cluster number, the gap statistic method identifies the optimal 

cluster number from a range of clusters by exploring the language knowledge. 

The correlation between static visual speech unit and phoneme is carried out by 

developing a many-to-one phoneme-to-viseme mapping from isolated 

phonemes based on linguistic knowledge and clustering in the parametric space 

using different visual features. Three viseme mappings (static frame alone, 

three frames, and five frames) were compared with the linguistic mapping and 

visual speech duration, thereby identifying the best representation of visual 

speech in terms of frames. The coarticulation effect in visual speech is 
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accounted for by developing many-to-many allophone to viseme mapping 

using a data-driven approach alone. 

A relevant methodology is presented for phoneme-to-viseme mapping. 

This methodology has the advantage of considering linguistic knowledge, an 

essential element in creating a speech-based application in the concerned 

language. A linguistically involved data-driven approach can make an 

individual perception model from a linguistic approach with computational 

easiness as it employs the data-driven approach. This is the first study that 

utilizes Gap statistics to estimate optimum cluster number from highly 

correlated visual speech data. 

4.3 Viseme set Formation Approaches 

Many researchers have analysed the importance of phoneme to viseme 

mapping—the phonemes which have almost the same visual mouth appearance 

grouped to a single viseme class. Many mappings have been recorded in the 

literature, with the number of visemes in a language ranging from 10 to 20 

[108]. The number and nature of visemes are language-dependent. Hence a 

language-specific exploration is needed for establishing the viseme set for a 

language. Traditionally there are three approaches for obtaining viseme from a 

many to one mapping: linguistic knowledge-based [98], [154], perception 

experiments with human subjects [90], [93], [155] and data-driven approach 

[101],[21], [99]. Some authors blend the linguistic knowledge-based approach 

and the perception experiments-based approach. This approach is termed 

subjective assessment. In the subjective approach, viseme classes are defined 

through linguistic knowledge and prediction of phonemes having a similar 

visual appearance. A viseme class created by clustering phonemes based on 

features extracted from the mouth region highlights a data-driven approach. 

Most of the work in visual speech has been reported in European languages. 

Few works reported in Indian languages, such as Hindi [46], [107], [133] and 
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Marathi [111], have been studied in viseme mapping. Attempts to identify 

viseme sets have not yet reached the realm of successful development of visual 

speech technology in the Indian languages.  

Almost all viseme maps have developed either based on linguistic 

approach or data-driven approach, or both. Besides, only a few viseme maps 

have been studied for the coarticulation effects of visual speech, which might 

be the lack of a database containing all contextual variations in the language 

concerned. This research work will be the initial study in Malayalam phoneme 

to viseme mapping based on a linguistic involved data-driven approach. The 

contextual variation of phonemes is also studied by developing a allophone-to-

viseme mapping using a data-driven approach alone, which is explained in 

section 4.9. Before addressing this, relevant frames which represent the viseme 

are to be selected. 

 4.4 Selection of Relevant Frames 

A high-quality visual speech is recorded from the speaker’s mouth 

region with a resolution of 1280 x 720, having a frame rate of 25 fps in MP4 

format (as in section 3.2.2). After documenting the multimodal speech 

database, the visual speech mode alone is used for viseme mapping. 

Considering every frame in a phoneme to represent the visual speech unit is not 

advisable. It leads to computational complexity and non-uniformity in the 

feature-length of vowel and consonant phonemes. Furthermore, selecting a 

single frame alone cannot represent the time evolution, which is essential to 

deal with the coarticulation effect. Hence, the number of frames required to 

represent the visual equivalent is selected, giving optimum results.  

The crucial step in the mapping procedure is identifying relevant frames 

from the recorded video, which contains the visual look of the underlying 

phoneme. This work is performed by rending the expertise of the linguistic 
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peoples. In Malayalam, phonemes and allophones are linguistically categorized 

according to articulation points and manners. However, the classification of 

visual speech units, visemes, of Malayalam has been not reported. In this work, 

visual speech is classified based on linguistic knowledge. The relevant frames 

were then chosen based on articulatory norms and linguistic expertise to 

implement a data-driven method. Two preceding and following frames from 

the chosen frame were also selected to encode the time evolution of the 

underlined phoneme's visual speech. Fig. 4.2 shows the sequential arrangement 

of the frame, which will capture the visual dynamics of the underlying 

phonemes. The linguistically chosen frame is the middle one. 

 

Fig. 4.2 Sequential frames for phoneme - Ĳ /c/ 

4.5 Colour-based Approach to Lip Segmentation 

  Lip reading enables us to understand the spoken utterance from the 

speaker’s face by interpreting the movement and gestures of visual articulators. 

In Humans, the actively moving parts of the face provide important visual 

speech information, especially in the mouth region. Therefore, lip segmentation 

and tracking are the primary tasks of a lip-reading system. Even though the use 

of these visual cues improves the performance of the speech recognition 

systems in noisy environments, a successful lip tracking algorithm from visual 

speech is still a challenging task. While developing an algorithm for lip 

tracking, one must consider the lip colour tone variations compared to its 

surroundings, lighting conditions, head movements, etc. Because the accuracy 

of lip tracking is so crucial in visual speech recognition, developing such an 

algorithm requires extreme caution. In most of the reported works, the 
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reddishness of the lips is made use in lip tracking. However, since the lips of 

most of the Indians are not reddish and there is no significant colour tone 

variation between the lips and its surrounding, such an algorithm does not give 

an acceptable result.     

There are two approaches for segmenting lips from the mouth region: 

model-based approach and colour-based approach [156]–[158]. Mathematical 

models for lip contour are used; consequently, a set of model parameters is used 

for lip segmentation. Deformable templates [159], [160], Active shape [122], 

[123] and appearance models [125], [161] are the widely used model-based 

approaches. In colour-based approaches, lip and skin pixels' triplet values can 

be used as the base information for segmentation. The colour image 

segmentation usually extracts the regions from an image by exploiting colour 

uniformity or discontinuity. The colour-based methods are classified as simple 

thresholding-based methods [162], histogram-based probabilistic methods 

[114], [163], segmentation by clustering in the colour space [112], fuzzy 

clustering methods [116], etc. Thresholding-based method is used for the lip 

segmentation process. 

The focus of this section is the segmentation of lips based on colour pixel 

values in different colour spaces in the Indian context. A colour model is a 

mathematical concept to visualize the colour spectrum in a multi-dimensional 

space.  The colour model RGB, HSV, CIE L*a*b* [164], and more can be 

visualized in 3D shapes while the CMYK colour model in 4D space. A colour 

space maps a specific, measurable and fixed range of colours and luminance 

values to the colour models. sRGB is one of the colour spaces which has a 

comparatively smaller colour gamut than Adobe RGB. It is the most widely 

used colour space in digital files. RGB, HSV and CIE L*a*b* colour models 

are visualized with sRGB colour spaces. Adobe RGB has a broader RGB colour 

gamut to encompass most of the colours that printers can create. The same RGB 
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values may look different depends on the colour space. As a result, visualizing 

a colour model without an associated colour space is difficult. The different 

colour models represent the colour information in different ways. The lips 

discrimination power is different for different colour models and depends on 

the complexion of the speaker. Even though the transformation from RGB to 

some colour models is computationally expensive, the lips discrimination 

power is enhanced significantly. The colour models HSV and CIE L*a*b* are 

promising for the database of this study. 

4.5.1 Image Thresholding 

The method of separating the region of interest from the background 

using the intensity values of the pixels is known as image thresholding. 

Thresholding is a technique for converting colour/ greyscale data into a binary 

image. Pixels with intensities larger than the threshold are mapped to logical 

true. In contrast, pixels with intensities less than or equal to the threshold are 

mapped to logical false, or vice versa, depending on the situation. The 

thresholded (binary, B) image is defined as  

            𝐵(𝑥, 𝑦) = ൜
1, 𝑖𝑓 𝐼(𝑥, 𝑦) > 𝑇

0, 𝑖𝑓 𝐼(𝑥, 𝑦) ≤ 𝑇
                                            (4.1) 

Where I(x,y) is the input image with pixel position represented by (x,y) and T 

is the threshold value. 

In the HSV colour model, the Hue (H) component is used in the 

segmentation process with thresholding condition, 

Lip Pixels,   If H > 0.70 

   Skin Pixels,   else 

 In the CIE L*a*b* colour model, the a* component is used in the 

segmentation process with thresholding condition, 
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Lip Pixels,   If a* > 3 

   Skin Pixels,   else 

The performance of the image thresholding method is found to be 

satisfactory for speakers with fair complexion and no facial hairs. However, the 

lip discriminating power for speakers with facial hairs or dark complexion is 

poor. Table 4.1 shows the performance of two colour models in the lip 

segmentation process with different facial features. It is found from the study 

that the Hue component in the HSV colour model representation is an efficient 

feature for the teeth information extraction of all speakers and the outer lip 

contour extraction of female speakers. The a* component of the CIE L*a*b* 

colour model can be used to get the outer lips contour of speakers with fair 

complexion. Even though different colour space representation fails to extract 

the lip contour with enough accuracy, it provides vital information for teeth 

area computation as in section 4.7.2.1 and to isolate the lip region from its 

background as in section 4.8. 

Researchers used a model-based technique like AAM (Active 

Appearance Model) and ASM (Active Shape Model) for lip contour extraction. 

However, the construction of these models requires an extensive training set to 

cover the high variability range of lips and is often a challenging task. 

Therefore, another possibility is the manual marking of the lip contour. Since 

the primary concern is to get exact information about the lip counter, the manual 

lip marking method is adopted. Even though this method is time-consuming, it 

ensures the accuracy of lip contour by using knowledge about the articulators' 

postures.  
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Table 4.1 Performance HSV and CIE L*a*b* Colour Models in Lip 

Segmentation Problem  

Image of the 
speaker in 

RGB 

Faci
al 

Hair 

Complexi
on 

Image of the 
speaker in 

HSV 

Thresholde
d Image 

Image of the 
speaker in 
CIELAB 

Thresholde
d Image 

 No 

 

Fair 

No Dark 

Yes Fair 

Yes Dark 

 

4.6 Lip Region Extraction 

The lip region is the only significant area in the representation of visual 

speech. Therefore, the region of interest (lip region) is to be segmented from 

the rest of the chosen frame, which contains irrelevant information like 

background screen, hairs, ornaments, etc. 

The primary task in the lip region extraction is selecting the optimum 

number of landmark points that best represent the lip contour. The adjacent 

landmark points were joined by straight lines to form the lip contour. The 

number of landmark points is chosen by trial and error that they best represent 

the lip contour. It is found that a minimum of 36 (20 for outer lip contour and 

16 inner lip contour) landmark points is required to represent the lip contour 

(as in fig. 4.3) without any significant deviation from the actual one. Since these 

points are equidistant, the contour is quasi smooth. Each landmark point is 

represented by the x and y-coordinates of the pixel position. 
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Fig. 4.3 Manual labeling of landmark points in ROI 

A slight tilt in the clockwise or anti-clockwise direction may be present 

in the selected frame. To make the selected frame rotational invariant, rotate it 

in the opposite direction of the tilt. The angle θ made by the line joining the two 

landmark points at lip corners (1 and 11 as in fig. 4.4) with the horizontal is 

estimated using Eq. (4.2). The horizontal line passes through the pixel 

coordinates (1,360) as (ax, ay) and (1280,360) as (bx, by). Then the frame is 

rotated by an angle “-θ” through the midpoint of the line joining the two 

landmarks as in fig. 4.5. The rotated image may not have the same size as the 

original image. 

      Θ = ቄ𝑡𝑎𝑛ିଵ ቀ
ି

ೣିೣ
ቁ − 𝑡𝑎𝑛ିଵ ቀ

௬భభି௬భ

௫భభି௫భ
ቁቅ ∗

ଵ଼


                               (4.2) 
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Fig. 4.4 Estimation of Angle of Tilt 

 

Fig. 4.5 Rotated Image 

After rotating the image, the landmark points must be rotated to place 

them on the rotated lip region. Before rotating the points, the coordinates of the 

landmark points (x,y) is subtracted from the original image centre (xoriginal, 

yoriginal) so that the image centre is translated to the origin (0,0). Thus, rotating 

a point (x-xoriginal, y-yoriginal) on a plane about the origin by θ degrees counter-

clockwise is given by Eq. 4.3. 

     
𝑥ᇱ

𝑦ᇱ൨ = ቂ𝐶𝑜𝑠𝜃 −𝑆𝑖𝑛𝜃
𝑆𝑖𝑛𝜃 𝐶𝑜𝑠𝜃

ቃ ቂ
𝑥 − 𝑥

𝑦 − 𝑦
ቃ                                             (4.3) 
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 To overlay the rotated landmark points in the rotated image, the rotated 

coordinate points (x’,y’) must be modified by adding with the centre position 

of the rotated image (xrotated, yrotated) as (x’new,y’new). The rotated image along 

with rotated landmark points is shown in fig. 4.6. Therefore Eq. 4.3 can be 

modified as, 

    
𝑥௪

ᇱ

𝑦௪
ᇱ ൨ = ቂ𝐶𝑜𝑠𝜃 −𝑆𝑖𝑛𝜃

𝑆𝑖𝑛𝜃 𝐶𝑜𝑠𝜃
ቃ ቂ

𝑥 − 𝑥

𝑦 − 𝑦
ቃ + ቂ

𝑥௧௧ௗ

𝑦௧௧ௗ
ቃ                              (4.4) 

 

Fig. 4.6 Rotated Image along with landmark Points 

From the rotation-invariant image, the translation-invariant lip region 

must be extracted. The area occupied by the lip contour is different for different 

phonemes. For example, see the visual appearance of the phoneme എ /e/ and 

ഉ /u/ as in fig. 4.7 and fig. 4.8, respectively. Hence, the size of the manually 

segmented region of interest may be different for different phonemes. So, 

normalization is required to make the region of interest phoneme independent. 

Manual segmentation will not be able to accomplish this process.   

 

Fig. 4.7 Selected Frame of the Phoneme എ /e/ 
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Fig. 4.8 Selected Frame of the Phoneme ഉ /u/ 

A semi-automatic method for the segmentation of ROI is employed. For 

this, ROI with minimum size and location must be identified. The minimum 

length and breadth of the rectangular frame that occupies the ROI for all 

phonemes and speakers is manually examined. It is found that a minimum 

length of 600 pixels and a breadth of 500 pixels. The location of the rectangular 

frame is selected such that its centre coincides with the centroid of the lip 

contour. The x and y coordinates (Xcentroid and Ycentroid) of the centroid of lip 

contour is estimated from x and y coordinates (xi and yi) of the landmark points 

using the equation Eq. (4.5) and Eq. (4.6) for the centroid of a finite set of 

points. Figure 4.9 shows the rotation and translation invariant lip region. 

                       Xcentroid =  
ଵ

ଷ
 ∑ 𝑥

ଷ
ୀଵ                                                     (4.5)                                                                

Ycentroid =  
ଵ

ଷ
 ∑ 𝑦

ଷ
ୀଵ                                                    (4.6) 

 

Fig. 4.9 Extracted Lip Region 
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4.7 Malayalam Phoneme-to-Viseme / Many-to-One Mapping  

In this work, linguistic and data-driven approaches were adopted for 

discovering the viseme set. The linguistic approach is carried out under the 

guidance of linguistic persons by linguistically analyzing the utterance style of 

the speakers. In the data-driven approach, the mathematical representation of 

visual speech is extracted and clustered based on the similarity measurement. 

Literature [165]–[167] shows a wide range of visual features based on the type 

of information embedded in it, which are shape-based, appearance-based and 

model-based. Shape-based features explicitly simulate the mouth measurement 

concerning height, weight, area, perimeter etc., by analyzing the pixels in the 

lip boundary. Geometric features, Centroid distance and Fourier transcriptor 

[168] belong to this category. The appearance-based feature considers all pixels 

in the region of interest (ROI) are informative to represent the speech. The ROI 

is transformed into a different domain in this method, thereby capturing the 

most informative components. Discrete Cosine Transform (DCT) [169], [170], 

Discrete Wavelet Transform (DWT) [171], [172], Principal Component 

Analysis (PCA) [173], [174] and Linear Discriminant Analysis (LDA) [175] 

and the combinations [176] belong to this category. Model-based features 

create a mathematical model to extract visual information with high 

computational complexity. Active Shape Model (ASM) and Active 

Appearance Model (AAM) [157], [177] belongs to this class. Due to the 

diversity in the lip movement of the speaker’s in the world, just language 

mining can figure out this matter. Due to the diversity in the lip movement of 

the speaker’s in the world, only language exploration can solve this issue. The 

tongue plays a vital role concerning flexibility and speed for uttering 

Malayalam sounds, making it distinct from other languages. The geometric 

features of lips may be used to model the amount of teeth present, the oral cavity 

and lip shape, and the Discrete Cosine Transform (DCT) feature can be used to 

describe deformation in the appearance of lips and tongue. The visual speech 

attributes are then clustered to identify the visual equivalent of the phoneme. 

Clustering is a vital step in data mining to discover the hidden pattern of an 
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unlabelled dataset based on mathematical measurement. This method divides 

the dataset into smaller subclasses that have high intra-class similarity and low 

inter-class similarity. The two widely used clustering algorithms are 

Hierarchical (Agglomerative & Divisive) [178], [179] and Partitional (K-

means) [152], [180]. They explore the partition of data objects based on the 

number of clusters. However, the number of groups obtained from such 

approaches is highly sensitive to the nature of the dataset. Thus, identifying the 

optimal number of clusters is a significant endeavour and can be carried out 

using the Gap statistic method [153], [181]. K-means clustering, and the Gap 

statistic method are employed for optimum cluster selection in this work to 

cluster large and highly correlated datasets. Literature shows that this is the first 

work that employs the gap statistic method to develop the viseme map. 

4.7.1. Linguistic approach 

In Malayalam, the language component in the audio speech, i.e., 

phoneme, is linguistically categorized according to articulation points and 

manners as in Chapter 3 (section 3.2.1). The visual speech appearance depends 

primarily on the lip and lower jaw movements. Visibility of teeth and tongue is 

also a vital element. While uttering vowel phonemes, the lips are either wide 

open or projected outward. However, consonant phonemes are produced by 

touching the active articulator tongue at different places inside the mouth area 

whose dynamics is not visible. Thus, the extent of appearance of active 

articulators is the discriminating factor to characterize the consonant phonemes. 

This section explores the possibilities of forming a viseme set from linguistic 

knowledge by rending the expertise from the linguistic peoples.  

The vowel sound is generated by the airflow from the larynx to the lips 

with no obstruction in the mouth region. Linguistically the five short vowel 

phonemes are distinguished by the tongue’s position as front-high, front-mid, 

central–low, back-high and back-low. Since these tongue positions are partially 

visible, the shape information is utilized to categorize the visual equivalent of 

phonemes. Since the visual appearance of long vowels is the same as that of the 
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corresponding short vowel. It is difficult to differentiate them visually. The 

front-high vowel ഇ /i/ exhibits a wide horizontal opening, and the central-low 

vowel അ /a/ exhibit a vertical opening. Front-mid vowel എ /e/ visually 

placed between front-high and central-low vowel. Both back-high ഉ /u/ and 

back-mid ഒ /o/ vowel shows a rounded lip shape with a discriminating outward 

posture for the back-high vowel. The quick gliding of the tongue from one 

vowel to another characterizes a diphthong. The diphthong ഐ /ai/ is made 

from the transition from അ /a/ to ഇ /i/ and ഔ /au/ is obtained from അ /a/ 

to ഉ /u/. The visual characterization of vowels is taken from the selected frame, 

and the visual signature of the diphthongs is captured from the transition of the 

selected frames. Due to the diversity, two diphthongs are assigned to separate 

viseme classes. In short, each vowel is assigned to separate viseme classes, but 

monophthong short and long phonemes of the same vowel are placed in the 

same class. The viseme set for vowels and diphthongs in Malayalam formed 

from linguistic understanding is given in table 4.2.  

In contrast to the vowel phoneme, the consonant sound is articulated 

with the complete or partial closure of the vocal tract, which is visually 

distinguishable only by considering the lip appearance. The most visually 

distinctive sound element in consonant class is bilabial sound. While uttering 

this sound, the lips are kept closed with a slight strain in the facial muscles. The 

first consonant viseme classes formed from bilabial plosives expect ł /ph/. 

വ /va/, the only true labiodentals in the Malayalam and the Bilabial - Plosive-

voiceless aspirated ł /ph/ which is visually different from other Bilabial 

phonemes placed in the next viseme class due to the feeble presence of teeth. 

Viseme 10 consists of dental consonants, which have the maximum teeth 

visibility and some traces of tongue tip. The velar consonants and the only 

glottal phoneme ഹ/h/ are placed in the next viseme class since their place of 

articulation is the back of the tongue and has the same visual appearance. The 
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tongue is backward in alveolar consonants, which are less visible and grouped 

in viseme class 12. Retroflex consonants are produced by curling the tongue 

backwardly and touching the front part of the hard palate, producing the same 

visual appearance and assigning it as a new viseme group. Viseme 14 is 

linguistically characterized as palatal consonants produced by touching the 

tongue towards the hard palate. In brief, 50 isolated Malayalam phonemes were 

mapped into 14 viseme classes. The viseme set for the consonant phonemes in 

Malayalam formed from the linguistic background is given in table 4.3. 

Table 4.2 Linguistic Classification of Vowel and Diphthong Phonemes 
Visually. 

Viseme Viseme Class Phoneme with IPA Viseme in Frame 
1 Front, High– Vowel ഇ /i/, ഈ /i:/ 

 
 2 Front, Mid – Vowel എ /e/, ഏ /e:/ 

 
 3 Central, Low – Vowel അ /a/, ആ /a:/ 

 
 4 Back, High – Vowel ഉ /u/, ഊ /u:/ 

 
 5 Back, Mid – Vowel ഒ /o/, ഓ /o:/ 

 
6 Diphthong 1 ഐ /ai/ 

 
7 Diphthong 2 ഔ /au/ 
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Table 4.3 Linguistic Classification of Consonant Phonemes Visually 

Viseme Viseme Class Phoneme with IPA Viseme in 
Frame 

8 Bilabial - Plosive-
voiced and voiceless 
unaspirated, Nasal 

Ł/p/, Ń /b/, ń /bh/, 
Ņ/m/ 

 
9 Bilabial - Plosive-

voiceless aspirated 
And Labiodental 

ł/ph/, Ō/v/ 

 
10 Dental ļ/t/, Ľ/th/, ľ/d/, Ŀ/dh/, 

ŀ/n̪/ 

 
11 Velar 

Glottal 
ĭ/k/, Į/kh/, į/g/, 

İ/gh/, ı/ŋ/, Ő /h/ 

 
12 Alveolar ƃ്/ṟ/, ŀ/n/, ŏ/s/, Ň/r/, 

ň/ṛ/, ŉ/l/ 

 
13 Retroflex ķ/ʈ/, ĸ/ʈh/, Ĺ/ɖ/, ĺ/ɖh/, 

Ļ/ɳ/, Ŏ/ʂ/, Ŋ/ɭ/, ŋ/ʐ/ 

 
14 Palatal Ĳ/c/, ĳ/ch/, Ĵ/ɟ/, 

ĵ/ɟh/, Ķ/ɲ/, ō/ʃ /, ņ/y/ 

 
 

4.7.2. Data-driven Approach 

In data-driven approaches, visual features are extracted from the mouth 

region of talking faces and viseme formed by clustering in the feature space. 

Both shape-based features and appearance-based features are used as visual 

cues in the Malayalam language. Shape-based features use information from 

the speaker’s lip contour. The geometric feature is the shape-based feature used 

in this work. An appearance-based feature deals with pixel information in the 

ROI (Region of Interest), thereby offering high computational complexity and 
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is weak in capturing geometric variations compared to shape-based features. 

However, in a real-time application, appearance-based features show 

dominance over shape-based features, which have complexities related to the 

accurate extraction of the lip contour. Discrete Cosine Transform (DCT) is the 

appearance-based feature used in this work. Taking both methods together help 

in judging their reliability in the problem under study. K-means clustering with 

the Gap statistic method is used to find the viseme set by clustering in the 

feature space.  

4.7.2.1. Geometric Visual Features 

Geometric features used in this study consist of outer lip width, outer lip 

height, inner lip width, inner lip height, outer lip area, inner lip area and teeth 

area. These are extracted from the landmark points of the lip contour as 

discussed in section 4.6. 

The outer lip width and height are taken from the difference of x-

coordinate of landmark points 1 and 11 and y-coordinate of landmark points 6 

and 16, respectively, as in fig. 4.10 (a). Similarly, the inner lip width and height 

obtained from the difference of x-coordinate of cardinal points 21 and 29 and 

y-coordinate of cardinal points 25 and 33, respectively, as in fig. 4.10 (b). The 

outer lip area is the total number of pixel points enclosed within the outer lip 

boundary, as in fig. 4.10 (c). The inner lip area is the oral cavity region, 

measured by the total number of pixel points within the inner lip boundary as 

in fig. 4.10 (d). The presence, absence, and area of teeth are direct indicators to 

distinguish many phonemes. The teeth area inside the convex hull of inner lip 

landmark points is computed after converting the pixels into the HSV colour 

space [112]. The thresholding process segments teeth pixels to the pixels inside 

the inner lip, as in fig. 4.10 (e). The thresholding condition is done with the Hue 

channel, whose intensity value ranges from 0.45 to 0.6. 
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Fig. 4.10 Extraction of Seven Geometric Features from a Frame 

 

4.7.2.2. Discrete Cosine Transform (DCT) Visual Features 

DCT is one of the oldest and still popular appearance-based visual 

feature extraction technique in the literature. A two-dimensional DCT of an M-

by-N image is represented as 

D (i, j) = ∑ ∑ 𝐼(𝑖, 𝑗)cos (
(ଶାଵ)గ

ଶெ

ே
ୀଵ

ெ
ୀଵ ) cos (

(ଶାଵ)గ

ଶே
)                       (4.7)                                   
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Where I (i, j) is the grey-scale image of the ROI. The DCT return a 2-

dimensional matrix having M*N coefficients. Most of the visually important 

information and energy is concentrated in a few coefficients of DCT, which 

represent the low-frequency aspect of an image. The DCT coefficient extraction 

process is shown in fig. 4.11. Initially, the extracted lip region of size 600 x 500 

is converted into a grayscale value. The ROI is resized to 64 x 64 (as in fig. 

4.11 (a)) for better implementation of the DCT algorithm, and the 

corresponding histogram plot is shown in fig. 4.11 (b). Histogram equalisation 

is used to expand the dynamical range of the intensity values, resulting in better 

contrast than before. Histogram equivalized image and the histogram plot is 

shown in fig. 4.11 (c) and 4.11 (d), respectively. The ROI in the time domain 

is then converted to the frequency domain using Eq. 4.8. A 3-Dimensional 

representation of DCT coefficients and its 2-D representation in colour map is 

shown in fig. 4.11 (e) and 4.11 (f) respectively. To avoid the curse of 

dimensionality, first, 20 coefficients per frame are selected from 64 x 64 DCT 

coefficients in a zig-zag manner [182] starting from the DC component (D (1, 

1)) as shown in fig. 4.11 (g).  

4.7.2.3. Viseme set Formation by Clustering in the Parametric Space 

Viseme set is formed by clustering in the feature vector space. Shape-

based and appearance-based visual feature vectors are analysed separately for 

50 whole phonemes and 38 consonant phonemes. The geometric feature 

comprises seven numerical values per frame, and DCT features comprise 20 

numerical values per frame. Thus, each phoneme is represented by a 35-

dimensional geometric feature vector and 100-dimensional DCT feature vector, 

respectively. An aggregate feature vector is created by concatenating the 

feature vector of 23 speakers. This feature vector was standardised for further 

analysis. 
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Fig. 4.11 DCT Coefficient Feature Extraction 

(a) (b) 

(c) (d) 

(e) 

 (g) (f) 
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 The final feature vector is fed into the Gap statistic method for 

determining optimum cluster number by using the K-means algorithm for 

clustering purposes. K-means algorithm is one of the simplest unsupervised 

learning algorithms, classifying the data set into a pre-defined number of 

clusters based on the centroid. The algorithm inputs are the dataset containing 

‘n’ objects and pre-defined cluster number ‘k’. The algorithm of K-means 

clustering is given below.                                                                                                                                                                     

1. The algorithms start with initial estimates for the Κ centroids, either 

randomly generated or randomly selected from the data set. 

2. Each centroid defines one of the clusters. In this step, each data point is 

assigned to its nearest centroid, based on the squared Euclidean distance.  

3. In this step, the centroids are recomputed by taking the mean of all data 

points assigned to that centroid’s cluster. 

4. The algorithm iterates between steps two and three until a stopping 

criterion is met (i.e., no data points change clusters, the sum of the 

distances minimized, or some maximum number of iterations reached. 

 Due to the high correlation of mouth parameters for acoustically 

different phonemes, the clustering algorithm alone fails to estimate an optimum 

cluster value. The gap statistic method has proven its strength in identifying 

optimum cluster number in a highly correlated dataset. The gap statistic method 

compares the intra-class dispersion obtained from the given data with an 

appropriate reference distribution. The methodology of gap statistic work 

(using the notation from Tibshirani,2001 [181]) is as follow, 

 Consider a dataset {xij} with i = 1, 2, …., n and j = 1, 2, …, p, consists 

of p features measured on n independent observations, clustered into k clusters 

C1, C2, …, Ck, where Cr denotes the indexes of samples in cluster r, and nr =| 

Cr|. Let dii’ denotes the squared Euclidean distance between the observation i 
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and i’ (dii’= ∑ j(xij – xi’j)2). The sum of the pairwise distance Dr for all points in 

cluster r is 

      Dr = ∑ 𝑑ᇱ,ᇲ∈ೝ                                                                         (4.8) 

Let Wk be the within-cluster sum of squared distances from the cluster means 

as 

Wk = ∑
ଵ

ଶೝ
𝐷


ୀଵ                                                              (4.9) 

Wk decreases monotonically as the number of clusters k increases. For 

calculation, the Gap function, Tibshirani et al.,2001 proposed to use the 

difference of the expected value of log(W*k) of an appropriate null reference 

and the log(Wk) of the dataset, 

      Gapn(k) = E*nlog(W*k) - log(Wk)                                             (4.10) 

Where E*n denotes the expectation of under a sample of size n from the 

reference distribution. Then the proper number of clusters for the given data is 

the smallest k such that 

           Gapn(k) ≥ Gapn(k+1) - sk+1                                                                                 (4.11)                       

Let sk is the simulation error calculated from the standard deviation sd(k) of B 

Monte Carlo replicates log(W*k) according to the equation sk = 

ඥ1 + 1/𝐵 sd(k), which is represented by a vertical bar in Gap curve. 

In short, a range of cluster groups is estimated using the k-means 

algorithm (or any other clustering algorithm), and the logarithm of within-

cluster variance is compared with the exact measurement of an appropriate 

reference distribution of the data. The difference between these quantities (gap 

curve or gap function) provides the corresponding gap value for each cluster 

group, and these clusters show a fall at the point where the gap is maximum. 

Fig. 4.12 reveals different Gap statistic steps of data using K-means clustering. 

For a well-separated dataset, the gap function exhibits a non-monotone 
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behaviour. However, for a highly correlated dataset, the gap function exhibits 

a monotone behaviour, which directly educates us to inspect the whole gap 

curve instead of simply finding the cluster number with the maximum gap. The 

performance of the Gap statistic profoundly depends on the nature of the 

dataset/feature vector used. By considering the problem under study, features 

should be selected to display a high discriminating power between high 

correlated observables. This work removes the redundancy of selected features 

by considering a few feature coefficients that may deal with the issue under 

study. The optimum number of features needed to deal with the issue under 

study seriously remains an open research field. 

 

Fig. 4.12 A two cluster example: (a) data; (b) within sum of square function 
Wk; (c) functions log (Wk) (O) and E*n{log(Wk)} (E); (d) gap curve (Tibshirani 
et al., 2001) 
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Depending upon the property of the dataset and underlying problem, it 

is better to study a reasonable range in the gap curve. Since analysing the whole 

gap curve is tiresome and time-consuming in estimating the optimum cluster 

number, especially for highly correlated data. For a highly correlated dataset 

and phoneme-to-viseme conversion problem, it is better to examine the gap 

curve between clusters 10 to 20. Though the amount of viseme is language-

dependent, the majority of the published works have underlined this range in 

various languages. In this work, 50 Malayalam phonemes are linguistically 

mapped to 14 viseme classes. Besides, for a straightforward interpretation, a 

minimum of 2 phonemes can occupy a single viseme class due to high 

correlation in the visual appearance of phonemes, thereby creating a maximum 

of 25 viseme sets. The same methodology is carried out in the rest of this work. 

The gap curve is analysed for clustering the feature vectors of 50 phonemes, 

and the optimum cluster number is identified with maximum gap value in the 

cluster range 10 to 20, as shown in fig. 4.13. For 50 Malayalam phonemes, 

based on geometric feature vector and DCT feature vector using static frame 

alone is shown in table 4.4 and 4.5 respectively. The estimated viseme set using 

geometric and DCT features is 16. 

 

Fig. 4.13 Gap curve 
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Table 4.4. Phoneme-to-viseme mapping using one frame based on the 
Geometric features 

Viseme Phonemes with IPA 
 

1 Ĳ-/c/, ĳ-/ch/, Ĵ-/ɟ/, ĵ-/ɟh/, Ķ-/ɲ/, ļ-/t/, Ľ-/th/, ľ-/d/, Ŀ-

/dh/, ŀ-/n̪/, ō-/ʃ /, Ŏ-/ʂ/, ŏ-/s/,  ƃ്-/ṟ/ 
2 Ń-/b/, Ņ-/m/ 

3 Ő-/h/, Ŋ-/ɭ/ 

4 ņ-/y/, Ň-/r/, ŉ-/l/, ŋ-/ʐ/, ň-/ṛ/, ŀ-/n/ 

5 അ-/a/, ആ-/a:/ 

6 ഉ-/u/, ഊ-/u:/, ഒ-/o/, ഓ-/o:/ 

7 ń-/bh/ 

8 Ł-/p/ 

9 എ-/e/, ഏ-/e:/ 

10 ł-/ph/, Ō-/v/ 

11 ഇ-/i/, ഈ-/i:/ 

12 ĸ-/ʈh/, ĺ-/ɖh/ 

13 ഔ-/au/, 

14 ഐ-/ai/ 

15 ķ-/ʈ/, Ĺ-/ɖ/, Ļ-/ɳ/ 

16 ĭ-/k/, Į-/kh/, į-/g/, İ-/gh/, ı-/ŋ/ 
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Table 4.5. Phoneme-to-viseme mapping using one frame based on the DCT 
features 

Viseme Phonemes with IPA  

1 ഉ-/u/, ഊ-/u:/ 

2 ŉ-/l/ 

3 ഒ-/o/, ഓ-/o:/ 

4 Ĳ -/c/, ĳ-/ch/, Ĵ-/ɟ/, ĵ-/ɟh/, Ķ-/ɲ/ 

5 ഔ-/au/ 

6 ĭ-/k/, Į-/kh/, į-/g/, İ-/gh/, ı-/ŋ/, Ļ-/ɳ/ 

7 Ŋ-/ɭ/, ň-/ṛ/ 

8 എ-/e/, ഏ-/e:/, ഐ-/ai/ 

9 ƃ്-/ṟ/ 
10 ļ-/t/, Ľ-/th/, ľ-/d/, Ŀ-/dh/, ŀ-/n̪/, ĸ-/ʈh/, Ĺ-/ɖ/, ĺ-/ɖh/, ł-

/ph/, Ō-/v/ 

11 ķ-/ʈ/, ņ-/y/, Ň-/r/, ŋ-/ʐ/, ന്-/n/ 

12 Ł-/p/, Ń-/b/, ń-/bh/, Ņ-/m/ 

13 ŏ-/s/ 

14 അ-/a/, ആ-/a:/, Ő-/h/ 

15 ō-/ʃ /, Ŏ-/ʂ/ 

16 ഇ-/i/, ഈ-/i:/ 

 

One of the essential inferences from table 4.4 and 4.5 is that the visual 

appearance of the vowel phoneme is almost embedded in a single frame. In 

addition, the velar consonant phonemes (ĭ-/k/, Į-/kh/, į-/g/, İ-/gh/, ı-

/ŋ/) were distinguished from other consonant groups, just like in the linguistic 

picture. All other consonant groups were randomly distributed while analyzing 

viseme using a single frame. The viseme map using three frames is shown in 

Tables 4.6 and 4.7. 
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Table 4.6. Phoneme-to-viseme mapping using three frames based on the 
Geometric features 

Viseme Phonemes with IPA 
 

1 ĭ-/k/, Į-/kh/, į-/g/, İ-/gh/, ı-/ŋ/ 

2 ഓ-/o:/ 

3 Ł-/p/, Ń-/b/, ń-/bh/, Ņ-/m/ 

4 ķ-/ʈ/, ĸ-/ʈh/, Ĺ-/ɖ/, ĺ-/ɖh/, Ļ-/ɳ/ 

5 ഉ-/u/, ഊ-/u:/ 

6 ł-/ph/ 

7 ņ-/y/, Ň-/r/, ŉ-/l/, Ő-/h/, Ŋ-/ɭ/, ŋ-/ʐ/, ň-/ṛ/, ŀ-/n/ 

8 Ĳ-/c/, Ķ-/ɲ/ 

9 എ-/e/, ഏ-/e:/, ഐ-/ai/ 

10 ഔ-/au/ 

11 ഇ-/i/, ഈ-/i:/, ļ-/t/, Ľ-/th/, ľ-/d/, Ŀ-/dh/, ŀ-/n̪/ 

12 ō-/ʃ /, Ŏ-/ʂ/, ŏ-/s/, ƃ്-/ṟ/ 
13 Ō-/v/ 

14 ĳ-/ch/, Ĵ-/ɟ/, ĵ-/ɟh/ 

15 അ-/a/, ആ-/a:/ 

16 ഒ-/o/ 
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Table 4.7. Phoneme-to-viseme mapping using three frames based on the DCT 
features 

Viseme Phonemes with IPA 
 

1 Ł-/p/, Ń-/b/, ń-/bh/, Ņ-/m/ 

2 എ-/e/, ഏ-/e:/ 

3 ഐ-/ai/ 

4 ഇ-/i/, ഈ-/i:/ 

5 ō-/ʃ /, Ŏ-/ʂ/, ŏ-/s/, ƃ്-/ṟ/ 
6 ĳ-/ch/, Ĵ-/ɟ/, ĵ-/ɟh/ 

7 ഒ-/o/, ഉ-/u/, ഊ-/u:/ 

8 അ-/a/, ആ-/a:/, Ő-/h/ 

9 ł-/ph/, Ō-/v/ 

10 Ĳ -/c/, Ķ-/ɲ/ 

11 Ň-/r/, ŉ-/l/, Ŋ-/ɭ/, ň-/ṛ/, ŋ-/ʐ/,  ŀ-/n/ 

12 ķ-/ʈ/, ĸ-/ʈh/, Ĺ-/ɖ/, ĺ-/ɖh/, Ļ-/ɳ/ ļ-/t/, Ľ-/th/, ľ-/d/, Ŀ-/dh/, 

ŀ-/n̪ / 

13 ഓ-/o:/, ഔ-/au/ 

14 ņ-/y/ 

15 ĭ-/k/, Į-/kh/, į-/g/, İ-/gh/, ı-/ŋ/ 

 

While taking the preceding and following frames majority of the 

consonant phonemes were exactly matches with table 4.3. Along with the velar 

consonant phonemes, bilabial consonant phonemes (Ł-/p/, Ń-/b/, ń-/bh/, 

Ņ-/m/) and labiodental consonant phoneme (ł-/ph/, Ō-/v/) were separated 

into distinct viseme classes in both features. While comparing tables 4.5 and 

4.7, the DCT feature vector has shown a close resemblance to the linguistic 

map than the geometric features. Viseme representation using five frames is 

shown in tables 4.8 and 4.9. 
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Table 4.8. Phoneme-to-viseme mapping using 5 frames based on the 
Geometric features 

Viseme Phonemes with IPA 
1 ƃ്-/ṟ/ 
2 ഉ-/u/, ഊ-/u:/, ഒ-/o/, ഓ-/o:/ 

3 അ-/a/, ആ-/a:/, Ő-/h/ 

4 Ł-/p/, Ń-/b/, ń-/bh/, Ņ-/m/ 

5 ŉ-/l/, Ŋ-/ɭ/ 

6 ł-/ph/ 

7 ļ-/t/, Ľ-/th/, ľ-/d/, Ŀ-/dh/, ŀ-/n̪/ 

8 ņ-/y/, Ň-/r/, ŀ-/n/ 

9 Ĳ-/c/, ĳ-/ch/, Ĵ-/ɟ/, ĵ-/ɟh/, Ķ-/ɲ/ 

10 ň-/ṛ/ 

11 ĭ-/k/, Į-/kh/, į-/g/, İ-/gh/, ı-/ŋ/ 

12 Ō-/v/ 

13 ķ-/ʈ/, ĸ-/ʈh/, Ĺ-/ɖ/, ĺ-/ɖh/, Ļ-/ɳ/, ō-/ʃ /, Ŏ-/ʂ/, ŏ-/s/, ŋ-/ʐ/ 

14 ഔ-/au/ 

15 ഇ-/i/, ഈ-/i:/, എ-/e/, ഏ-/e:/, ഐ-/ai/ 

Table 4.9. Phoneme-to-viseme mapping using 5 frames based on the DCT 
features 

Viseme Phonemes with IPA 
 

1 ഒ-/o/, ഓ-/o:/ 

2 ĭ-/k/, Į-/kh/, į-/g/, İ-/gh/, ı-/ŋ/ 

3 ഉ-/u/, ഊ-/u:/ 

4 Ł-/p/, Ń-/b/, ń-/bh/, Ņ-/m/ 

5 അ-/a/, ആ-/a:/, Ő-/h/ 

6 Ĳ -/c/, ĳ-/ch/, Ĵ-/ɟ/, ĵ-/ɟh/, Ķ-/ɲ/ 

7 എ-/e/, ഏ-/e:/, ഐ-/ai/ 
8 ഇ-/i/, ഈ-/i:/ 

9 ķ-/ʈ/, ĸ-/ʈh/, Ĺ-/ɖ/, ĺ-/ɖh/, Ļ-/ɳ/ 

10 ƃ്-/ṟ/, ŀ-/n/ 

11 ഔ-/au/ 

12 ō-/ʃ /, Ŏ-/ʂ/, ŏ-/s/ 

13 ņ-/y/, Ň-/r/, ŉ-/l/ 

14 ļ-/t/, Ľ-/th/, ľ-/d/, Ŀ-/dh/, ŀ-/n̪/ 

15 Ŋ-/ɭ/, ŋ-/ʐ/, ň-/ṛ/ 

16 ł-/ph/, Ō-/v/ 
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Based on geometric features, the diphthong vowel phonemes (ഔ-/au/), 

central vowel phonemes (അ-/a/, ആ-/a:/), bilabial consonant phonemes (Ł-

/P/, Ń-/b/, ń-/bh/, Ņ-/m/), labiodental consonant phonemes (ł-/ph/, Ō-

/v/) and dental consonant phonemes (ļ-/t/, Ľ-/th/, ľ-/d/, Ŀ-/dh/, ŀ-/n̪/) velar 

consonant phonemes (ĭ-/k/, Į-/kh/, į-/g/, İ-/gh/, ı-/ŋ/) and most of the 

palatal consonant phonemes (Ĳ-/c/, ĳ-/ch/, Ĵ-/ɟ/, ĵ-/ɟh/, Ķ-/ɲ/)are 

grouped exactly in the same manner as in linguistic approach (table 4.2 and 

4.3). Due to lip contour similarity between front high vowel (ഇ-/i/, ഈ-/i:/) 

and front-mid vowel (എ-/e/, ഏ-/e:/) and back high vowel (ഉ-/u/, ഊ-/u:/) 

and back mid vowel (ഒ-/o/, ഓ-/o:/) are selected to the same viseme class 

rather than different classes as in linguistic approach. The remaining consonant 

phonemes are distributed so that it follows some traces of linguistic point of 

consonant phoneme cluster. 

Phoneme-to-viseme mapping was also studied for the DCT feature 

vector with an estimated optimum cluster number equal to 16. The vowel 

phonemes are distributed precisely in the same fashion of linguistic approach 

but with overlapping of a diphthong phoneme (ഐ-/ai/) into the front-mid 

vowel phoneme class (എ-/e/, ഏ-/e:/). Almost all consonant phonemes were 

precisely clustered as in the linguistic approach. The remaining consonant 

phonemes are randomly distributed, just like in geometric feature map. 

In addition, a viseme map using seven frames is also studied; however, 

no noticeable variation is observed from the viseme map using five frames. 

This is because all vowel phonemes can be represented with a single frame, 

whereas consonant phonemes require nearly five frames to express their visual 

appearance. It may be because the visual appearance of the articulators in the 
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pronunciation of consonant phonemes is less than that of vowel phonemes, 

which primarily rely on lip shape information.  

Analyzing the visual speech in terms of duration also highlights this 

finding. From fig. 3.28, the duration of vowel phonemes ranges between 0.50 

s to 0.70 s, which corresponds to 12 and 17 frames, respectively (frame rate of 

the video is 25 Hz). The duration of consonant phonemes varies between 0.10 

s to 0.30 s, corresponding to two and seven frames, respectively. The average 

duration of Malayalam vowel and consonant phonemes from the visual speech 

is 0.606 s and 0.200 s, corresponding to 15 and 5 frames, respectively. Hence 

it is better to represent the visual equivalent of a phoneme with the time 

evolution of a linguistically identified frame of duration 0.20 s, more precisely, 

preceding and proceeding two frames from the selected frame. Thus, from the 

viseme map and the durational analysis, a relevant frame with the preceding 

two and following two frames (total five frames) is necessary to model the 

Malayalam visual speech element, especially the visual equivalent of the 

consonant phonemes. The following section consolidates the work on the 

Malayalam visual speech analysis. 

4.7.3 Phoneme-to-Viseme Mapping - An Overview 

 A linguistic involved data-driven approach for the viseme set 

identification problem. Automatic identification of visemes (frames) for 

corresponding phonemes from visual speech is still an open research area. From 

a computational point of view, a linguistic approach alone cannot have the 

ability to process massive visual speech information. In this work, viseme is 

defined as the time evolution of a linguistically selected frame for the 

underlying phoneme. For this, three phoneme-to-viseme mappings were 

developed using a linguistically selected frame, selected frame along with the 

previous and following frame and selected frame with two previous and two 

following frames. Besides, the strength of visual speech features (Geometric-
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based and Image-based) was also evaluated by comparing the corresponding 

viseme map with the linguistic map. 

 Even when the viseme is represented by a single frame, as in table 4.4 

and 4.5, the vowel phonemes alone have shown almost comparable 

categorisation. However, the classification becomes worse for viseme mapping 

based on geometric features, as in table 4.8. The viseme map based on DCT 

characteristics, on the other hand, has demonstrated its ability to categorise 

vowel phonemes in all three viseme formats. Hence the visual appearance of 

the vowel phonemes can be modelled even with a single frame based on both 

features. However, Geometric features drain out its strength when viseme is 

represented by the time evolution of the selected frame. For consonant 

phoneme grouping, viseme maps using five frames (Table 4.9) were almost 

closely resembling the linguistic map as in table 4.3. Hence the visual 

appearance of the consonant phoneme can be modelled only by considering the 

time evolution of the linguistically identified frame.  In terms of features, DCT 

features are always dominating over the Geometric features in each viseme 

mapping. Besides, the complexity of extracting exact lip contour for the 

Geometric features (in this work) makes the image-based features (here DCT) 

more prior to the visual speech extraction process. 

 Even though DCT is effective in visual speech analysis in this study, the 

processes for extracting DCT coefficients essentially require landmark points 

along the lip contour. This section mainly focuses on the extraction of ROI 

without using landmark points on the lip contour. For this work, the Hue 

channel information in the HSV colour model is utilized further. Even though 

the Hue channels fails to extract the accurate lip contour, it almost isolates the 

lip region from its background. Histogram equalisation is used to improve the 

contrast of the Hue channel information, as seen in fig. 4.14. (a). The equalized 

image is converted into binary by applying the thresholding condition discussed 
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in section 4.5.1 (fig. 4.14 (b)). As in fig. 4.14 (c), small white pixel areas were 

converted into a black pixel to isolate the lip region from the background. 

 

Fig. 4.14 Thresholded Lip Region 

From the thresholded lip region, the centroid of all connected white pixels was 

estimated by summing them and divided by the number of white pixels in it. 

The centroid of all connected white regions (red spot) was shown in fig. 4.15. 

 

Fig. 4.15 Centroid of Connected White Pixel Regions 

Centroid points with the shortest Euclidean distance from the image's midpoint 

are evaluated to find the centroid spot in the lip region. Then a rectangle frame 

having the length of 600 pixels and breadth of 500 pixels is selected. The centre 

of the rectangular frame is aligned with the centroid spot in the lip contour. This 

rectangular frame is then embedded in the original image as in fig. 4.16. 

    (a)   (b)  (c) 
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Fig. 4.16 Extracted Lip Region from HSV Colour Model 

 The extracted lip region in figures 4.9 and 4.16 was nearly identical. 

Thus, this approach bypasses the time-consuming process of extracting the lip 

region. However, making the extracted lip region rotation invariant, manual 

marking at the corners of the lip (points 1 and 11 as in fig. 4.3) is needed. Thus, 

the original image (fig. 4.3) and the coordinate points of the lip corners were 

needed to study the visual speech analysis. This method is made use for the 

extraction of ROI for Allophone-to-Viseme mapping. 

4.8 Allophone-to-Viseme Mapping / Many-to-Many Mapping  

While addressing the visual language, the phoneme-to-viseme (many-

to-one mapping) must be needed to exhibit the high correlation between 

phonemes and the visual look. However, this mapping admits viseme as a static 

visual speech unit by eliminating the coarticulation effects of visual signal. The 

visual coarticulation effect creates a visibly different appearance for the same 

phoneme in a different context, creating a further subdivision in phoneme-to-

viseme mapping. To put it differently, the visual appearance of a phoneme 

intensely depends not only on its articulation properties but also on the presence 

and nature of its neighbouring phoneme in the word or sentences. The 

contextual variation in Malayalam phonemes is modelled using allophonic 
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characterisation. For accurately describing the visual speech information in a 

different context, a comprehensive phoneme-to-viseme mapping is needed, 

which ought to be an allophone-to-viseme (many-to-many mapping). Only a 

few works were reported the coarticulation effects of visual speech by 

assembling the many-to-many mapping. Hilder et al., have described a novel 

method of segmenting the visual speech by capturing the patterns of behaviour 

of the articulators and clustered the behaviour that appears similar into a set of 

visemes, thereby obtaining a different viseme label for different allophones of 

a phoneme [183]. Taylor et al., have modelled the coarticulation effects of 

visual speech by considering the motion of visual speech articulators rather than 

static mouth representation and animated a talking head [145]. Mattheyses et 

al., have introduced a many-to-many phoneme-to-viseme mapping using tree-

based and k-means clustering approaches, which ensure a more accurate 

description of visual speech when compared to phoneme based and many-to-

one viseme based speech labels [104]. Katsaggelos et al., discussed the 

challenges associated with audio-visual fusion, especially the need for audio-

visual synchrony since the range and directionality of coarticulation patterns 

differ across languages [184]. 

As seen in tables 3.3 and 3.4, there are 106 allophones, with 28 vowel 

allophones, three diphthong allophones, and 75 consonant allophones. Since 

the linguistic knowledge about mapping contextual variations of phonemes to 

viseme is still undiscovered, a data-driven approach must be used to build 

many-to-many visual speech mapping. Therefore, DCT visual features are 

captured from every allophone and clustered using the K-mean algorithm and 

Gap statistic as in phoneme-to-viseme mapping. For clustering the DCT 

features of 106 allophones, the gap curve is analysed between the range 20 and 

40, and the estimated cluster group is 33 and shown in table 4.10. 
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Table 4.10 Allophone-to-viseme mapping based on the DCT feature vector 

Viseme Allophones with IPA 

1 Ĳ2-[c], Ĳ3-[c], Ĳ4-[c] 

2 ഉ4-[ə], ഉ5-[ə*], ĭ5-[ʈ], ļ4-[d̪], Ľ1-[th], ľ1-[ḍ], ľ2-[d], ŀ1-[n̪], ŀ2-[n] 

3 ĭ2-[kj], ĸ2-[Tʰ] 

4 ആ2-[a], Ő2-[h] 

5 ഉ6-[ɯv], ķ3-[ʈ], ō1-[ʃ], Ŏ1-[ʂ] 

6 ķ1-[ɖ] 

7 Ķ1-[ɲ]  

8 എ3-[E], Į1-[kh], ŉ1-[l], Ō1-[w] 

9 ķ4-[T], ĸ1-[ʈʰ], ƃ്1-[d], ƃ്2-[t] 

10 ഐ2-[ei], ŀ2-[n] 

11 ഇ1-[i], Ĵ1-[J] 

12 ആ1-[a:], ļ3-[ð] 

13 ഒ1-[wO], ഓ1-[wO:], ഓ2-[O:], ı4-[ŋ>] 

14 Ń1-[B] 

15 അ2-[A], ഏ1-[ye:], ഏ2-[er:], ഏ3-[e:] 

16 ň1-[ṛ], Ő1-[H] 

17 ķ2-[ɽ], ĺ1-[ɖh] 

18 ł1-[ph], Ņ3-[m], Ō2-[v] 

19 ഈ2-[i:] 

20 ņ1-[y], Ň1-[r], Ŋ1-[ɭ], ŋ1-[ʐ] 

21 ഇ2-[yi], ഇ3-[yi], ഈ1-[yi:], എ1-[ye], എ2-[ey], ŏ1-[s], ŀ1-[nh] 

22 ഉ1-[wu], ഉ2-[uw], ഉ7-[U] 

23 ഔ1-[au], İ1-[ɡh] 

24 അ1-[ʌ], ĭ4-[ɠ], ĭ6-[K], Į3-[Kh], ı1-[ŋ], ı2-[ŋj] 

25 ഐ1-[ai] 

26 ഉ3-[ɯ] 

27 Ņ2-[M] 

28 Ł1-[p], Ł2-[β], Ł3-[b], Ł4-[P], Ń2-[b], ń1-[bh ], Ņ1-[m̪h], Ņ4-[ṃ] 

29 ĭ3-[ɣ̥], į1-[G], ı3-[ŋ<], ı5-[ŋ'] 

30 ഊ1-[wu:], ഊ2-[u:], ഒ2-[O] 

31 Ĳ1-[c], ĳ1-[cʰ], ĳ2-[Cʰ], Ĵ2-[j] 

32 Ĺ1-[ɖ], Ļ1-[ɳ], ļ2-[t''] 

33 ĭ1-[k], Į2-[Kh], į2-[g], ĵ1-[ɟh], ļ1-[t], Ŀ1-[dh] 
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The allophones of the very same phonemes are grouped randomly into 

33 viseme groups. Some of the vowel allophones are grouped with other vowel 

allophone classes and consonant allophone groups. However, it is fascinating 

that bilabial consonant allophones dispersed themselves without a crossover 

with other allophones, which shows its distinctive individuality in visual speech 

classification. After assessing the data-driven approach, it is necessary to study 

vowel allophone-to-viseme mapping and consonant allophone-to-viseme 

mapping since both allophones are randomly connected, as in table 4.10. 

For grouping the DCT features of 31 vowel allophones, the gap function 

is analysed between the range 5 and 15, and the estimated cluster group is 11, 

as shown in table 4.11. 

Table 4.11 Vowel Allophone-to-viseme mapping based on the DCT feature 
vector 

Viseme Allophone 
1 ഇ1-[i], ഇ2-[yi] 

2 ഏ1-[ye:], ഐ1-[ai], ഐ2-[ei] 

3 അ2-[A], എ3-[E], ഉ7-[U] 

4 ഇ3-[yi], എ2-[ey]  

5 ഓ2-[O] 

6 ഉ3-[ɯ] 

7 അ1-[ʌ], ആ1-[a:], ആ2-[a] 

8 ഏ3-[e:] 

9 ഉ1-[wu], ഉ2-[uw], ഉ6-[ɯv], ഊ1-[wu:], ഊ2-[u], ഒ1-[wO], ഒ2-[O], 

ഓ1-[wO:], ഔ1-[au] 

10 ഈ1-[yi:], ഈ2-[i:], എ1-[ye], ഏ2-[er:]  

11 ഉ4-[ə], ഉ5-[ə*] 

 

The vowel allophones of the very same phonemes are grouped into 

different classes, thereby producing an overlapped many-to-many mapping. 

Not even a single phoneme has shown an individual clustering result compared 

to the phoneme-to-viseme mapping (fig. 4.9), which directly highlights the 



Malayalam Viseme Set Identification 

 152

sophistication of many-to-many mapping. The back high vowel ഉ-/u/ and back 

mid vowel ഒ-/o/ are highly correlated when it appears in a word. The number 

of elements in a viseme group varies from one (minimum) to nine (maximum).   

The complexity of consonant allophone-to-viseme mapping is studied 

by clustering the DCT visual features and assessing the gap curve from 20 to 

35. Table 4.12 shows the clustering of 75 consonant allophones into 25 viseme 

groups. 

Table 4.12 Consonant Allophone-to-viseme mapping based on DCT feature 
vector. 

Viseme Allophones with IPA 
 

1 ł1-[ph]  

2 ĭ5-[ʈ], Ĳ2-[c], Ĳ3-[c], Ĳ4-[c], ĳ2-[Cʰ], Ĵ1-[J], Ŏ1-[ʂ], ƃ്2-[t]  

3 Ļ1-[ɳ], ŋ1-[ʐ]  

4 Ő2-[h] 

5 ĭ1-[k], Į2-[Kh], ķ3-[ʈ], ņ1-[y], Ň1-[r], ň1-[ṛ] 

6 ľ1-[ḍ], Ŀ1-[dh] 

7 Į3-[Kh] 

8 Ĺ1-[ɖ], ŀ1-[nh], ŀ2-[n]   

9 İ1-[ɡh], ŀ1-[n̪], ŉ1-[l]  

10 ļ2-[t''], ļ4-[d̪], Ľ1-[th], ľ2-[d], ŀ2-[n]   

11 ı4-[ŋ>]  

12 ĳ1-[cʰ], Ĵ2-[j], ĵ1-[ɟh], ō1-[ʃ]  

13 Ł1-[p], Ł2-[β], Ł3-[b], Ł4-[P], Ń1-[B], Ń2-[b], ń1-[bh ], Ņ2-[M], 

Ņ4-[ṃ] 

14 Ĳ1-[c], Ķ1-[ɲ], ļ1-[t], ŏ1-[s] 

15 Į1-[kh], ķ2-[ɽ], ĺ1-[ɖh] 

16 ķ1-[ɖ] 

17 ĭ6-[K], ı2-[ŋj], ı3-[ŋ<], ı5-[ŋ']     

18 į2-[g], ı1-[ŋ] 

19 ĭ3-[ɣ̥], ĭ4-[ɠ], į1-[G], ķ4-[T], ĸ1-[ʈʰ], Ŋ1-[ɭ], ƃ്1-[d] 

20 Ņ1-[m̪h] 

21 Ő1-[H] 

22 Ō1-[w]  

23 Ņ3-[m], Ō2-[v]  

24 ĭ2-[kj], ĸ2-[Tʰ], ļ3-[ð]  
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The bilabial consonant allophones have revealed their distinguishing 

power nearly in the same fashion as allophone-to-viseme mapping. The 

contextual variation of all other phonemes is randomly distributed. While 

comparing tables 4.10, 4.11 and 4.12, the common behaviour found is that 

allophones are unevenly distributed, i.e., there are a large number of smaller 

groups and a small number of larger groups. In addition, visual speech for 

allophones are analysed with five consecutive frames, which is suitable for 

phoneme level analysis. However, it may need either less than five or a dynamic 

number of frames for analysing the allophones because the time duration of the 

allophone may vary with the presence of neighbourhood phonemes in a word. 

To overcome this issue, a reference tool must be developed, just like in 

phonemes. Thus, to investigate further in visual speech, especially at the word 

level, the foremost work is to create an allophone-to-viseme mapping based on 

linguistic knowledge, which is still an unaddressed research problem. Hence, 

the remaining portion of this work deals with speech processing at the phoneme 

level only. 

4.9 Conclusions 

 The core objective is to decode the visual information from the lips, 

which can be obtained by developing the viseme set in the Malayalam 

language. For viseme mapping a linguistically involved data-driven approach 

is used, which can take advantage of individual perception modelling from a 

linguistic perspective and the computational ease of a data-driven approach. In 

the first phase of the study, phoneme-to-viseme or many-to-one mapping is 

made according to the linguistic and data-driven approach. In the linguistic 

approach, 50 phonemes grouped into 14 viseme classes based on linguistic 

knowledge. In the data-driven approach, the viseme set is created by clustering 

the numerical representation of phonemes using the k-means algorithm and gap 

statistics. Geometric and DCT visual features are used in the data-driven 
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approach. Three viseme mappings (static frame alone, three frames, and five 

frames) were compared with the linguistic picture and visual speech duration, 

thereby identifying the best representation of visual speech in terms of frames.  

The above statement is verified by analyzing the visual duration of all 

Malayalam phonemes. The average durational range of vowel phonemes is 0.50 

s to 0.70 s, which corresponds to 12 frames to 17 frames, respectively. Since 

the vowel phonemes can be visually modelled using a single relevant frame, 

additional frames may increase the computational cost. The average durational 

range of consonant phonemes is 0.10 s and 0.30 s, which correspond to 2 frames 

to 7 frames. Thus, for the Malayalam language, consecutive five frames are 

needed to represent the visual speech element, especially for the consonant 

phoneme. After analyzing three viseme sets, DCT features based viseme map 

has shown a close resemblance with the linguistic map by classifying 50 

phonemes into 16 viseme classes. In addition, only two landmark points are 

enough to extract a rotation-invariant ROI from the original image, which 

bypasses the time-consuming process of manual lip marking for extracting the 

lip region.    

To examine the coarticulation effect in visual speech, an allophone-to-

viseme many-to-many mapping is created. The data-driven approach-based 

allophone-to-viseme mapping is created in the second phase. DCT visual 

features clustered the 106 allophones into 33 viseme classes. In addition, vowel 

allophone-to-viseme mapping and consonant allophone-to-viseme mapping are 

investigated to provide a visual clustering result of vowel and consonant 

allophones. Due to the unavailability of linguistic classification of the visual 

part of allophones, the rest of this work is confined to phoneme level audio-

visual speech processing. 



 

CHAPTER 5 

EFFECT OF INTENSE BACKGROUND 
NOISE ON ACOUSTICAL SPEECH 

PARAMETERS 

 

5.1 Introduction 

 The previous chapters discussed the audio-visual speech database 

named “MOZHI”, its related attributes; simulated noisy speech and audio-

visual asynchrony, and visual speech analysis. Speech is a very complex 

feedback process that involves production, perception and information 

processing in the brain. Various sources of corruption, such as background 

noise, reverberation, channel distortion, and so on, frequently occur in audio 

speech signals. In the development of speech recognition systems, background 

noise is a major factor to be considered. As a result, making speech processing 

robust to this type of real-world corruption is the primary challenge of any 

speech-based application.  

Speech has a set of very distinct traits which capture human’s 

physiological features, language, background noise, etc. So, converting these 

traits to machine-readable format is an important task in speech processing 

termed feature extraction. The primary purpose of feature extraction is to 

provide a perceptually relevant representation of a digitalized waveform while 

removing redundant information, making computation easier. Since a single 

method is not enough to retrieve all relevant information from the speech 

signal, a comprehensive method is needed which explore the potentials of both 

time and frequency domain information. In addition, such a method must have 

an acceptable accuracy even when there is ambient noise.  
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There are various techniques to extract the relevant acoustical speech 

parameters like fundamental frequency, formant frequencies, MFCCs (Mel 

Frequency Cepstral Coefficients) [185]. This chapter discusses their 

performance in different noisy conditions and proposes modifications in these 

algorithms to make them noise-robust. The time-domain speech signal is 

transformed into the autocorrelation domain in which the effect of noise is 

suppressed to achieve noise robustness.  

Pitch is a vital aspect of human speech. The fundamental frequency (F0) 

[186], or the lowest harmonic frequency, is frequently confused with pitch. The 

first is a physical characteristic of the underlying audio stream, whereas the 

second is a perceptual characteristic. Pitch is defined acoustically as the 

fundamental frequency (F0) of a quasi-periodic waveform. It represents the 

vibrational frequency of the vocal cords during the production of voiced 

speech. The popular pitch extraction methods (Praat [187], YIN [188], RAPT 

[189], and PEFAC [190]) are compared with the proposed method, especially 

in noisy conditions. The human vocal tract is a muscular tube with varying 

cross-sectional area which is excited by chopped air from the vocal cords (at 

one end of the tube) or turbulent air at constriction (a point along the tube). The 

frequencies in the speech that transfer most of the acoustical energy from the 

excitation source to the lip (output) are called resonance frequencies or formant 

frequencies. The first two formant frequencies are estimated using the proposed 

method and evaluated in different noisy conditions. Modification in the MFCC, 

ACR-MFCC (Autocorrelation MFCC), is also reported and compared its 

performance with respective standard versions in an acoustically corrupted 

speech signal.  

 The content of this chapter is arranged as follows. Section 5.2 discusses 

different pre-processing steps in speech processing followed by a noise 

reduction method based on a higher lag autocorrelation function. Section 5.3 
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explains the proposed fundamental frequency estimation method and its 

performance in different noisy conditions. Section 5.4 deals with a noise-robust 

formant frequency estimation method. Section 5.5 displays the ACR-MFCC 

and its performance in different noisy conditions. Finally, section 5.6 concludes 

the work. 

5.2 Pre-processing  

It is necessary to make the segmented speech signal (Eq. 3.4) tuned for 

further analysis collectively termed as Pre-Processing. The performance of a 

speech recognition system depends significantly on different operations in the 

pre-processing stage. Amplitude Normalization, Pre-emphasis Filtering, 

Framing and Windowing are the commonly used pre-processing steps. In this 

work, the key step in all the acoustic speech feature extraction processes is 

transforming the pre-processed time-domain signal to the autocorrelation 

domain. 

5.2.1 Amplitude Normalization 

 Speech signals must be normalised in speech recognition systems to 

successfully compare unfamiliar spoken data with stored patterns or models. 

While recording a speech signal, the energy levels often vary due to speaker, 

speaking style, channel, background noise and microphone distance. As a 

result, differences in amplitude (or energy) among different speakers' 

utterances or the same speaker at various times must be avoided or minimised. 

Amplitude Normalisation eliminates the variable energy levels between 

signals, improving performance in energy-related metrics. Divide each signal 

sample by its greatest absolute value to normalise the amplitude; thus, the 

dynamic range of amplitude is limited to [-1, +1]. The segmented speech signal 

is shown in Fig. 5.1 (a), and the normalised speech signal is shown in Fig. 5.1 

(b). 
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Fig. 5.1 Normalized of Speech Signal 

5.2.2 Pre-emphasis Filtering  

 Because higher frequencies in the recorded speech signal contain less 

energy, it is necessary to emphasise energy at higher frequencies before 

processing the signal. For this the signal’s value are re-evaluated using the 

formula: 

                        x(n) = x(m) – 0.95 × x(m-1)                                                  (5.1) 

The operation corresponds to a high-pass filter of the first order. Low-

frequency signals sampled at a high sampling frequency (fs) produce samples 

with identical numerical values. Because low frequency fundamentally 

indicates slow time variation, the numerical values of a low-frequency signal 

vary slowly or smoothly from one sample to the next. By excluding the parts 

of the samples that did not change with their neighbouring samples, the part of 

the signal that varies rapidly, i.e. its high-frequency components, is left. Thus, 

a pre-emphasis filter is used before using feature extraction algorithms to 

enhance the relative energy of the high-frequency spectrum. Fig. 5.2 (a) and 

fig. 5.2 (b) shows the normalized speech signal and its corresponding frequency 
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domain representation. Fig. 5.2 (c) shows the pre-emphasized speech signal, 

and the corresponding frequency response is shown in fig. 5.2 (d). This method 

must be chosen wisely in frequency domain analysis because the amplitude of 

the low-frequency region is reduced, so it is necessary to bypass this method 

for the fundamental frequency (F0) estimation task. However, it is suitable for 

the extraction of formant frequencies where higher frequency components are 

important. 

 

Fig. 5.2 Pre-emphasized Speech Signal  

5.2.3 Framing 

 A time-varying vocal tract system with time-varying excitation produces 

speech. Thus, the speech signal becomes quasi-stationary. Usually, signal 

processing principles deal with a time-invariant signal. As a result, signal 

processing methods are not immediately applicable to speech processing. The 

speech signal may appear stationary for an interval of 10-35 ms, therefore the 

speech signal must segment before applying different signal processing 

methods. The speech signal is divided into several frames based on a certain 

predefined number of samples. As a result, by extracting the essence from the 
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speech part-by-part rather than the entire signal, framing the speech signal will 

help improve the recognition part's accuracy and stability. 

Two parameters are required to frame a speech signal properly: window 

length (flength) and overlapping length (foverlap). The window length is the number 

of samples in each frame of the speech signal. Overlapping length is the number 

of samples in the overlapped frames of the speech signal. It is the same as that 

of window length, but the difference comes to play in the way where the 

overlapping frame is located. While analysing the speech signal only with the 

individual frame, some of the information at the beginning and end of each 

frame is lost. By using an overlapping frame, the lost information is 

reincorporated back into the extracted features. Usually, overlapping frames 

begin from the centre of the previous frame and ends in the centre of the next 

frame. The window length chosen is 25 ms, which capture enough information 

and, it will be relatively stationary, and the overlapping length is 10ms. Thus, 

the speech signal is divided into N frames, each of length 400 samples (fs =16 

kHz). The first frame starts from 0 ms to 25 ms, then the second frame starts 

from 10 ms to 35 ms, as in fig. 5.3. The total number of frames in a speech 

signal x[n] is 

    Number of Frames = 
௧ {௫()} ି 

ೡೝೌ
 + 1                                        (5.2)    

Sometimes, the last frame may contain fewer samples then, that frame is 

extended to the original size of the previous one by padding zeros in the end. 

Fig. 5.3 shows the framing of speech signals. 
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Fig. 5.3 Framing of Speech Signal 

5.2.4 Windowing 

 Framing is the process of selecting a portion of the signal in which the 

nature of the signal is almost stationary. A windowing function is applied 

before processing stage to avoid the sudden discontinuity in each frame and 

distortion in the frequency domain. For given frame size, the nature of spectral 

information varies slightly with the window function. There are many types of 

windows such as Rectangular, Hamming, Hanning, Gaussian windows etc. 

Window function maintains its property within the frame and drops to zero 

outside it. The rectangular window function maintains the signals within the 

frame, but its spectral features change abruptly at the beginning and ending 

points. As a result, a window function that gradually reduces the points near the 

beginning and end of each frame to zero must be used. In speech recognition, 

the most commonly used window function is Hamming window. Hamming 

window is defined by  
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   Whamm (n) = 0.54 – 0.46 cosቀ2𝜋


ேିଵ
ቁ ,       0 ≤ n ≤ N-1                    (5.3)       

 

Fig. 5.4 Hamming Window  

The framed speech signal x(n), n=0, 1, 2, …., N-1, is multiplied with the 

Hamming window then, the resulting windowed speech signal is defined as and 

shown in fig. 5.5 

                        xhamm(n) = x(n) Whamm(n)                                                      (5.4) 

 

Fig. 5.5 Hamming Windowed Speech Signal 
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5.2.5 Autocorrelation 

 Autocorrelation is a measure of similarity between a signal and its time 

delayed version samples. It is estimated as the sum of products of the 

corresponding samples of a signal and its time-shifted version. It is considered 

as cross-correlation of a signal with itself. It is an even function with length 2n-

1 (as in fig.5.6 (b)), where n is the signal's length. So, correlation coefficients 

estimated for negative lags are discarded. Such correlation function is called 

one-sided autocorrelation function and is estimated as  

  r(i) = 
ଵ

ே
 ∑ 𝑥(𝑛)𝑥(𝑛 − 𝑖)ேିଵ

ୀ                                           (5.5) 

 Each frame of the windowed speech signal is then autocorrelated. The 

autocorrelation function of the speech signal is the convolution of the 

autocorrelation function of the source (glottal impulse) and system (vocal tract) 

components. It is periodic with smooth spectral envelop information repeated 

periodically over the entire lag. Fig. 5.6 shows the power spectrum and 

autocorrelation function of the Hamming windowed speech signal of vowel 

phoneme അ /a/.  

 

Fig. 5.6 Power Spectrum and Autocorrelation function of Hamming windowed 
speech signal. 
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 Fig. 5.6 (a) shows the power spectrum of the speech signal, and its 

associated autocorrelation function is shown in fig. 5.6 (b). The system (vocal 

tract) information is represented by a smooth spectral envelope (fig. 5.6 (c)) 

which is computed from the first 20 cepstral coefficients of the speech spectrum 

(discussed in section 5.4). Fig. 5.6 (d) shows the autocorrelation of the Inverse 

Fast Fourier transform (IFFT) of the smooth spectral envelope. The source 

(glottal impulse) information is represented by the excitation power spectrum, 

which is obtained by subtracting the smooth spectral envelope from the speech 

power spectrum and is shown in fig. 5.6 (e). Its associated autocorrelation 

function is obtained by subtracting the IFFT of the smooth spectral envelope 

from the speech spectrum and is shown in fig. 5.6 (f). The system information's 

autocorrelation function is limited to lower lags alone. On the other hand, the 

source information provides the voiced speech signal's periodicity and the 

unvoiced speech signal's non-periodicity. Convolving the autocorrelation 

functions of system and source information along with its corresponding phase 

information (which is avoided while computing power spectrum) will get the 

autocorrelation function of speech signal as in fig. 5.6 (b). The speech 

information is provided as a function of lag (or time shift) in the autocorrelation 

domain, while the power spectrum is presented as a function of frequency. 

From fig. 5.6 (d), the autocorrelation peaks represent the formant frequencies 

in lags which corresponds to the spectral peaks in fig. 5.6 (c). The separation 

of spectral peaks in fig. 5.6 (e) gives the vocal cord vibration information, also 

retained as autocorrelation peaks in fig. 5.6 (f). Thus, analyzing the speech 

signal in the autocorrelation domain is enough since it contains the same 

information as the signal's power spectrum. 

 Because this work is being done on noisy speech signals, it is worth 

examining the power of autocorrelation to suppress the noise. When the speech 

signal x(m) is corrupted with additive noisy signal n(m), the autocorrelation 

function of the noisy speech signal y(m) is given by 
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ryy(i) = 
ଵ

ே
∑ [𝑥(𝑚) + 𝑛(𝑚)][𝑥(𝑚 − 𝑖) + 𝑛(𝑚 − 𝑖)]ேିଵ

ୀ  

       = rxx(i) + rxn(i) + rnx(i) + rnn(i)                                                          (5.6) 

Since the speech signal and noisy signal are uncorrelated, the cross-correlation 

terms rxn(i) and rnx(i) are relatively small. As a result, Eq. 5.6 contains the 

autocorrelation function of the speech signal and noisy signal only. Due to the 

random nature of the noisy signal, the autocorrelation function rnn(i) will have 

a peak at zero lag and is expected to decay rapidly to zero for higher lag values. 

Consequently, only rxx(i) is expected to have large peaks at i ≥ 0. Thus, taking 

the autocorrelation function of the noisy speech signal will retain most of the 

speech information even at ambient noise level. 

In the rest of this thesis, the autocorrelation function is denoted by ACR. 

Fig. 5.7 shows a comparison of different noises at 10 dB noise level both in the 

time domain and autocorrelation domain. It is evident from fig. 5.7(a) that the 

periodic nature of speech signal (as in fig. 5.5) is almost ruined in time-domain 

while adding white Gaussian noise at 10 dB noise level. However, the periodic 

nature is retained in its corresponding autocorrelation domain (fig. 5.7(b)), 

making ACR a better domain for  representing noisy speech signals for 

extracting the source information. Fig. 5.7 also exhibits the effect of different 

noises at the same noise level on a speech signal. Compared to the similar noise 

levels of pink and red noise, the periodic nature and audible quality of speech 

signals are greatly affected by white gaussian noise. The noisy signals (fig. 

5.7(c), (g), and (k)) were extracted by subtracting the noisy speech signal (fig. 

5.7(a), (e), and (i)) from the clean speech signal fig. 5.5 respectively. Noisy 

effect in autocorrelation domain (fig. 5.7(d), (h) and (l)) is less prominent when 

compared to time-domain representation (fig. 5.7(c), (g) and (k)). The noisy 

signal's autocorrelation coefficients are concentrated around the lower lag, 

whereas the autocorrelation coefficients near the higher lag are very small. 
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Thus, in addition to retaining the periodic nature, ACR is also robust for 

analysing speech signals in intense background noise. This work uses the ACR 

for robustly extracting different features, especially in intense background 

noise.  

Repeating pattern in the ACR is utilised to extract the fundamental 

frequency (F0) from the speech signal. It is achieved by estimating the 

difference between two consecutive local maxima in the ACR. The 

performance is evaluated in different noisy speech signals at different noisy 

levels, discussed in section 5.3. Frequency domain representation of speech 

signal is efficient for characterizing the vocal tract features especially, formant 

frequencies (F1, F2 and F3). Formant frequencies are reflected as spectral peaks 

in the frequency domain. MFCC (Mel Frequency Cepstral Coefficients) is the 

widely utilized acoustic feature in speech recognition systems. MFCC performs 

well for speech recognition in a clean environment, but its performance 

deteriorates in noisy speech processing. Background noise has a significant 

impact on power spectrum estimates in MFCC, lowering the recognition rate. 

Since ACR is robust in noisy conditions, it is used as an initial step in the MFCC 

algorithm, which enhances the efficiency of MFCC features in noisy speech. 

Since power spectrum estimate is the foundation of formant frequencies and 

MFCC estimation, it is crucial to analyse the spectrum behaviour of ACR of 

the speech signal, which is shown in fig. 5.8. Fig. 5.8 (a) shows the power 

spectrum of the Hamming windowed speech signal  
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 (dotted line), and fig. 5.8 (b) displays the power spectrum of ACR of the 

Hamming windowed speech signal. At low frequencies, the power spectrum of 

autocorrelation collects harmonic information, but it completely misses 

harmonics with magnitudes below -5 dB. In other words, the autocorrelation 

power spectrum's dynamic range is limited to around 43 dB (between 38 dB 

and -5 dB). It is because of the dynamic range of the Hamming window, where 

the the maximum side lobe's magnitude is around 43 dB lower than the main 

lobe’s, as illustrated in fig. 5.4. 

 

Fig. 5.8 Power Spectrum of Speech Signal and corresponding ACR. 

 To overcome this issue while retaining the noise robustness of ACR, a 

new window function is applied before spectral analysis. The most common 

window function used in speech recognition tasks is Hamming window. 

However, the dynamic range of a Hamming window is approximately 43 dB 

(fig. 5.4). To produce a power spectrum of ACR equivalent to that of the power 

spectrum of the speech signal, a window function with double dynamic range 

must be used. A Hamming window with a double dynamic range is designed 

by creating a Hamming window of size N/2. Then, its two-sided autocorrelation 

sequence of length N-1 (2*(N/2)-1) is computed with maximum value at the 
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zeroth lag. Finally, a zero is padded at the end of the autocorrelation sequence 

to obtain a window of length N. This window function is referred as Double 

Dynamic Range (DDR) Hamming window [134]. DDR Hamming window 

function and its frequency response is shown in fig. 5.9. 

 Thus, before estimating the power spectrum of ACR, ACR (R(n)) of the 

speech signal is multiplied with the DDR Hamming window ( WDDRhamm(n)) to 

get the windowed ACR. 

RW(n) = R(n). WDDRhamm(n)                                                      (5.7) 

where n=0, 1, …, N-1. The windowed ACR along with ACR is shown in fig. 

5.10. 

 

Fig. 5.9 DDR Hamming Window 
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Fig. 5.10 Illustrations of DDR Hamming window on One-sided ACR. (a) One-
sided ACR. (b) DDR Hamming window. (c) Windowed ACR. 

 

 The power spectrum of DDR Hamming windowed ACR and the 

Hamming windowed speech signal is shown in fig. 5.11 (c) and 5.11 (a) 

respectively. The dynamic range problem is solved using the DDR Hamming 

window function by retaining the entire spectrum structure marginally lowered 

compared with the speech spectrum. It also neglects small fluctuations near the 

harmonics by creating slightly wider harmonics which does not affect the 

performance of the speech recognition system since the DDR Hamming 

window captures the formant structure (fig. 5.11 (d)) similar as in Hamming 

windowed speech signal (fig. 5.11 (b)). 
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Fig. 5.11 Comparison of Power Spectrum. (a) Hamming windowed Speech 
signal. (c) DDR Hamming windowed ACR. Smooth spectral envelope of 
speech signal (b) and DDR Hamming windowed ACR (d). 

 The spectral behaviour ACR is to be investigated for its noise robustness 

in different noisy conditions at different noise levels. Fig. 5.12 shows the power 

spectrum of DDR Hamming windowed ACR (right) and its corresponding 

speech power spectrum (left) along with formant structure is also displayed. 

The speech signal corrupted with noisy signals at10 dB noise level is used for 

this illustation. Fig 5.12 (a) and (b) shows the power spectrum of clean speech 

signal and its corresponding ACR power spectrum. Fig 5.12 (c) and (d) displays 

the power spectrum of white gaussian noise added speech signal and its 

corresponding ACR power spectrum repectively. It is quite evident from this 

illustration that white gaussian noise added speech spectrum displays 

harmonics similar to the speech spectrum contrary to its behaviour in time 

domain and autocorrelation domain representation as in fig. 5.7 (a) and (b), 

respectively, when compared with other noisy speech signals. Fig 5.12 (e) and 

(g) displays the power spectrum of pink noise added speech signal and red noise 

added speech signal repectively. Both noisy signals speech spectrum 

completely losses its prominent harmonics at the lower frequency range which  
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directly affect the formant frequency estimation. Fig 5.12 (f) and (h) shows the 

ACR power spectrum of pink noise added speech signal and red noise added 

speech signal repectively. Due to the presence of wide harmonics relatively 

better formant struture is obtained when compared to that of in fig. 5.12 (e) and 

(g). The performance of pink and red noise in frequency representation is quite 

different from its autocorretion representation (fig. 5.7 (f) and (j) repectively) 

where it is very similar to speech signal ACR (fig 5.6 (b)).Thus, in 

autocorrelation domain, pink noise added speech signal exhibit less error in 

fundamental frequency estimation when compared to other background noises. 

In contrary, white gaussian noise added speech signal displays better result 

especially in the first formant estimation (F1) when comapred to other noises. 

 

Fig. 5.12 Comparison of Speech Power Spectrum and ACR Power Spectrum 
in different Noisy Coinditions 

 The steps involved the modified pre-processing stage for extracting the 

noise robust acoustical speech features is summarized in fig. 5.13.  
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Fig. 5.13 Pre-processing Steps 

5.3 Acoustical Speech Parameter- Fundamental Frequency (F0)  

 Fundamental frequency (F0) is the smallest frequency in a voiced speech 

signal, which is estimated from the frequency of quasi-periodic nature of the 

source sounds (vocal cords). Source sounds are complex and harmonic in 

nature. It consists of different frequencies, which are almost integral multiples 
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of the fundamental frequency. The spectral representation of source sound is 

characterized by the relative strength of fundamental frequency and its 

harmonics. Fig. 5.16 (e) shows the spectral representation of source sound, 

which is influenced by different factors like vocal cord’s stress, F0, and 

phonation type. In domains like time-domain (fig. 5.5), autocorrelation domain 

(fig. 5.6 (b)) and spectral-domain (fig. 5.6(e)), the fundamental frequency is 

visible as peaks or differences between consecutive peaks. Typically, F0 in 

speech varies roughly between 70 to 400 Hz. The F0 of an individual speaker 

primarily depends on the elasticity of the vocal cords and is also related to the 

physiological features, language and ethnicity.  

           Automatic estimation of the fundamental frequency (F0), a widely used 

speech feature, is a fundamental problem in most speech and music processing 

applications. A variety of noise-robust F0 estimation algorithms were proposed 

in the past, but most of them focus only on its accuracy while few aims to 

improve the computation speed. Therefore, it is essential to develop an F0 

estimation method that is accurate and computationally fast to suit real-time 

applications. The quasi-stationary behaviour of speech, the effect of vocal tract 

resonances, abrupt articulator change, and degradations owing to 

environmental factors such as noise and reverberation are all key elements that 

influence the F0 estimate.      

In time-domain methods, F0 is computed from the repeating patterns of 

the speech signal or its transformed version. The most explored domain for F0 

estimation is the autocorrelation domain, in which the stronger correlation 

peaks carry the source sound information. Methods such as Robust Algorithm 

for Pitch Tracking (RAPT) [189], Yet Another Algorithm for Pitch Tracking 

(YAAPT) [191], Praat estimate F0 by extracting local maxima of the 

autocorrelation or cross-correlation function. Various modifications to 

autocorrelation-based algorithms were made to minimize errors in the 
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estimated F0 as in the YIN method. In the frequency domain, the harmonic 

structure exhibits rich information about the pitch. Sub-harmonics to harmonics 

ratio (SHRP) [192], summation of residual harmonics [193], Sawtooth 

Waveform Inspired Pitch Estimator (SWIPE) [194], and others [195], [196] are 

examples of this type. The speech signal is split into numerous frequency bands 

in time-frequency domain pitch extraction algorithms, and each sub-band 

signal is subjected to time-domain procedures. The auditory-model 

correlogram based technique is a prominent time-frequency domain method 

[197]. An auditory filter bank is used to decompose the signal, followed by 

autocorrelation computation on each sub-band signal. Data-driven approaches 

are used in some methods [198], [199] to learn how noise influences the 

magnitude and location of peaks in the speech spectrum. Methods in [200]–

[203] use statistical approaches to improve F0 estimation. The exact value of 

F0 of the speech signal is unknown as it is quasi-stationary. So different F0 

estimation methods reported their accuracy by comparing with the F0 value 

estimated from the laryngograph (parallelly recorded glottal activity) [204]–

[206] or Praat (a famous speech analysis tool).           

Compared to formant frequencies estimate and other acoustical 

properties, F0 estimation is deemed as the most researched and active research 

topic in speech processing. Not a single conference or journal can pass without 

discussing a novel method or a modification in a popular algorithm for the F0 

estimation in each year, which tells it is still a hot research topic. The main 

reason for this is the time-varying nature of speech signals. Speech features are 

vulnerable to speaker variations, languages and different parameters and steps 

in the feature extraction algorithms. Measurement parameters include 

minimum F0, maximum F0, window size, window type and other thresholding 

variables. Thus, the ‘true’ or ‘reference’ value (for both F0 and formant 

frequencies) is still unknown. So, researchers are forced to check the 

performance of different methods on synthesized signals where frequency 
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components are known even though this approach is easy to pick the most 

accurate method but fails to accommodate the dynamic nature of speech 

signals.  

 

Fig. 5.14 The top figure shows the recorded microphone waveform over time, 
whereas the bottom waveform represents the laryngograph signal of the word 
“encyclopedias”. Speech includes voiced and unvoiced parts [205]. 

 Another approach is to capture laryngograph signal (as discussed above) 

simultaneously with speech signal where the effect of vocal tract resonance is 

somehow diminished. However, only very few databases were created in this 

manner; most of the database in the literature captures only the speech signal 

using microphones. Furthermore, issues with asynchrony between two 

recording devices must be addressed, and variations in the laryngograph signal 

(fig. 5.14 (bottom)) must be normalised before feature extraction. 

           A performance evaluation strategy suitable for the database used for the 

study is to be adopted to select the outperforming F0 estimation method. This 

work uses an audio speech database recorded with a microphone. The 

performance of the F0 estimation algorithm is evaluated in this work as follows. 

The measured value of F0 of each frame of the clean audio speech signal of the 

isolated phoneme is treated as the true F0 value of that frame. The F0 of each 
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is measured for the speech signal with added noise. To evaluate the 

performance of the presented method, an estimate of the number of frames (n) 

having variances less than 5% of the true F0 value is utilised. The accuracy is 

estimated as 

                   Accuracy = 


ே
100 %                                                       (5.8) 

Where N is the total number of frames. 

 An autocorrelation domain algorithm is used for F0 estimation, which is 

robust to different noises at low SNR levels. In this algorithm, the consecutive 

autocorrelation peaks are identified in each ‘clean’ speech frame, and the 

difference between their corresponding lags is used to estimate the ‘true’ 

fundamental frequency. The F0 value in Hz is the ratio of the sampling 

frequency (fs) to the lag difference. The zero-lag coefficient gives the first 

correlation peak. The next highest peak is chosen as the second peak. However, 

this algorithm performs poorly in noisy conditions because of numerous peaks 

(depends on the noise nature) in between the prominent peaks. To overcome 

this issue, peaks corresponding to frequencies higher than the maximum 

expected fundamental frequency (400 Hz) are skipped. Thus, after picking the 

zeroth lag correlation peak, the first 40 lags (fs/F0max), which contain 

frequency components higher than the F0 range, are omitted during the second 

peak selection. Since most noisy information is concentrated near the lower lag 

correlation coefficients, this simple algorithm will reduce the noise components 

to an extent. The block diagram of the proposed F0 estimation algorithm is 

shown in fig. 5.15. 
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Fig. 5.15 Block Diagram of proposed ACR F0 Estimation Algorithm  

 Hundreds of fundamental frequency estimation methods have been 

proposed in the past. Most of them are innovative in their methodology and 

sophisticated in their algorithm. Some of them are dedicated to specific acoustic 

signals, and only very few were reliable in extreme background noise. The 

success rate of the proposed method in capturing the periodic nature of speech 

signals in low SNR conditions is evaluated in this work. The performance of 

the proposed ACR method is compared with that of the four prominent 

algorithms: Praat, YIN, PEFAC and RAPT. These were selected because of 

their wide acceptability and other potential features. Praat is a standard speech 

analyzing software in broad research domains like linguistics, acoustics, 

engineering, etc. In Praat, the F0 estimation is computed with autocorrelation 

function in each 10 ms speech segment with a 75-500 Hz pitch search range. 

Another flavour of the autocorrelation function is YIN. Starting from the 

autocorrelation function, YIN introduced different modifications to avoid 

estimation errors. It has no upper limit for the F0 search range, which also 

makes it useful for music signals. PEFAC estimates the fundamental frequency 

of each frame by convolving its power spectrum in the log-frequency domain 

with a filter that sums the energy of the pitch harmonics. It estimates the pitch 

reliably even at negative SNR. PEFAC includes several algorithm parameters 

whose values were determined empirically from the training data. RAPT 
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capture peaks in the normalized autocorrelation function and uses dynamic 

programming for pitch selection within the F0 search range 60-400 Hz. 

Although RAPT is an old method, it is included in this study as it uses the value 

of F0 obtained from the laryngogram as the true F0 value.  

 For conducting this experiment, an audio database (which is not 

mentioned in chapter 3) consist of a single speaker uttering a vowel phoneme 

20 times. It is utilized to compare the performance of different fundamental and 

formant frequency estimation algorithms with the proposed methods. Table 5.1 

shows the variation of F0 estimation accuracy with SNR of differed noise types 

based on Praat, YIN, PEFAC, RAPT and proposed method (ACR). The 

reference F0 value estimated from each method is represented as mean ± 

standard deviation. The performance is evaluated on three noisy signals with 

SNRs 20 dB, 10dB, 0dB, -10 dB and -20dB. This comparison is carried out 

without changing the default parameter values of the reported methods. 

Table 5.1 Variation of F0 estimation accuracy with SNR of differed noise types 
based on Praat, YIN, PEFAC, RAPT and ACR 

Method F0 (Hz) 
Clean 
Speech 

Noise 
type 

Frames within 5% deviation (%)  
Frames 

20 dB 10 dB 0 dB -10 dB -20 dB 
 

Praat 
 

252 ± 31 
White 97 87 53 0 0  

30 Pink 97 83 63 0 0 
Red 100 100 93 53 0 

 
YIN 

 
293 ± 19 

White 100 94 50 0 0  
18 Pink 100 94 39 0 0 

Red 100 100 56 0 0 
 

PEFAC 
 

255 ± 38  
White 96 96 0 0 0  

26 Pink 96 96 92 0 0 
Red 100 96 88 62 19 

 
RAPT 

 
244 ± 45 

White 97 81 29 0 0  
31 Pink 94 77 52 0 0 

Red 97 90 71 32 0 
 

ACR 
 

254 ± 33  
White 97 88 72 38 22  

32 Pink 97 88 75 44 25 
Red 97 91 81 41 9 
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 This section summarises the performance of five algorithms in different 

noisy conditions. Examining the accuracy of these methods, it is found that the 

proposed method ACR outperforms other well-known methods. All methods 

perform well in red noise added speech signal, which is evident from fig. 5.7 

(j) where speech information is retained even at extreme negative SNR.  Thus, 

the best method is decided by the performance of these methods in the other 

two noisy signals, especially in white Gaussian noise, where the speech 

structure is intensively affected compared to pink noise. Praat shows 

comparable results up to 0 dB; after that, it fails to capture the periodic nature, 

especially in white Gaussian noise added speech signal. Another noticeable 

finding is; YIN is inferior to others in terms of estimation of true F0 value. 

However, YIN performs well in white Gaussian noise added speech signal 

when compared to PEFAC and RAPT. PEFAC has emerged as a robust method 

in extremely noisy conditions, but in this work, it fails to exhibit its robustness, 

especially in white Gaussian noise added speech signal. However, it is the only 

method that outperforms other reported methods and the proposed method in 

red noise added speech signal. RAPT is the only method that does not achieve 

a significant result in all three noisy speech signals. The proposed method 

(ACR) exhibit outstanding performance mainly in white Gaussian noise added 

speech signal. However, it fails to maintain that performance in red noise added 

speech signal where it is below the Praat and PEFAC method. The ACR method 

is the only one that can extract the periodic information in more than one speech 

frame, even in extremely noisy conditions in all three cases. Fig. 5.16, 5.17 and 

5.18 shows the performance of different methods in white Gaussian noise, pink 

noise and red noise added speech signal, respectively. 

 By analysing the performance of the five methods, it is noticeable that 

the proposed method (ACR) performs comparatively well in all three noisy 

speech signals in extremely noisy conditions. However, despite this conclusion, 

some literature suggests YIN and PEFAC is superior for noise robustness in 
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other databases (language). Thus, it is evident that the language under study 

highly influences the estimation of the fundamental frequency.  In addition, it 

is also noticeable that each method does not act in the same way to the type of 

noise and SNR level. Thus, a combination of different methods (based on its 

performance) should be even more noise-robust when compared to its 

performance. The following section deals with the formant frequencies 

estimation in the noisy condition, which contain the same accuracy estimating 

policy that is not discussed there.  

 

Fig. 5.16 Performance of Different Pitch Estimation Methods in White 
Gaussian Noise added Speech signal. 

 

Fig. 5.17 Performance of Different Pitch Estimation Methods in Pink Noise 
added Speech signal. 
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Fig. 5.18 Performance of Different Pitch Estimation Methods in Red Noise 
added Speech signal. 

5.4 Acoustical Speech Parameter- Format Frequencies 

 The speech signal is composed of various frequency components which 

characterise the unique features of source sound (vocal cords) and system sound 

(vocal tract) in the speech production mechanism. Some frequency components 

are prominent in deciding the content of the spoken utterance. As the 

fundamental frequency of a speech sound is directly related to the 

characteristics of the vocal cords, formant frequencies are related to the vocal 

tract structure. The vocal tract is an acoustic space that shapes the frequency 

spectrum of the sound from the vocal folds as it passes through it. The 

frequency response of the vocal tract is characterised by its shape and size, 

which is influenced by the position of active articulators, mainly the tongue. 

However, a similar concept that frequently appears in the literature is resonant 

frequencies. Therefore, some authors blended the two concepts as identical, and 

some authors treated them as distinct. Resonant frequencies are the acoustical 

property of the vocal tract, while formant frequencies are that of the speech 

signal radiated from the lips. In this work, vocal tract characteristics is extracted 

from the speech signal followed by a filtering process. Thus, the corresponding 

frequency response of the vocal tract is termed formant frequencies. It is a 

concentration of acoustic energy represented by spectral peaks in the spectrum 
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or dark horizontal bands on the spectrogram, which is shown in fig. 5.19 and 

5.20, respectively.  

 

Fig. 5.19 Smooth Spectral envelope of vowel phoneme. 

 

Fig. 5.20 Spectrogram of vowel Phoneme അ /a/. 

 In the speech, the voice spans a range of frequencies 70 Hz to 5000 Hz. 

Theoretically, there are one formant in each 1000 Hz band; thus, there will be 

five formants in a speech signal. The lowest formant frequency is F1, and the 

following higher frequencies were named F2, F3, F4 and F5, respectively. 

However, in the speech recognition perspective, F1 and F2 are enough to 
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capture speech content [207]. Thus, first two formant frequencies were used in 

the comparison process. From the speech production perspective, sudden 

change of vocal tract configuration is the primary source of formant variations. 

Even though the relationship between articulator configuration and formants 

are complex, the first formant F1 is correlated with the tongue height, i.e., the 

higher the tongue height, the lower F1. The second formant, F2, is related to 

the tongue's position, where F2 is higher for front vowels than back vowels. 

This relation is shown in fig. 5.21, where ഇ /i/ and ഉ /u/ are high vowels that 

have lower F1 when compared to others. Similarly, ഇ /i/ and എ /e/ are front 

vowels that have higher F2 when compared to others. 

 

Fig. 5.21 F1 vs F2 plot of short Malayalam vowel phonemes 

 In addition, different people uttering the same vowel will have different 

formant structures due to the different vocal tract lengths among men, women, 

and children. The most error-prone area in the estimation of formant 

frequencies is the computational perspective. Since the speech signal is 

produced by convolving the source signal and system signal and the inherent 

limitations of the frequency domain restrict a broad, innovative outcome in the 

formant estimation methods compared to F0 estimation methods. The most 
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common formant frequencies estimation methods are a spectrum [208], 

spectrogram [209] and LPC (Linear Predictive Coding) or LP analysis [210].  

           Spectrum is one of the most straightforward ways to examine the 

frequency component of a signal. Since speech is a convolved signal, it is pretty 

challenging to pick the formants (from fig. 5.6 (a)) because their location is 

inferred from the relative amplitude of the harmonics. Another way is to 

deconvolve the speech signal and extract the spectral envelope of the system 

signal alone, as shown in fig. 5.19. This homomorphic decomposition is carried 

out in the cepstral domain. The red marks indicate the position of formant 

frequencies. Intense care is needed in the smoothing process since it may affect 

the shape and position of the formants. The harmonics become visible when the 

smoothing is not enough, and closer formant peaks will be lost when the 

smoothing is too high. The spectrogram is the visual representation of 

frequencies of a signal with time. The horizontal axis represents the time 

information, and the vertical axis represents the frequencies. The colour scale 

(usually greyscale) represents the amplitude of the observed frequency at a 

time. Darker shades of grey indicate higher amplitudes. Attempts to locate the 

position of the formants is quite problematic, especially for higher formants 

where energies are relatively low compared to the first few formants, as in fig. 

5.20. Even though spectrogram is referred to as speech fingerprint, 

measurement of formant frequencies from spectrogram requires some degree 

of interpretation and linguistic knowledge. Linear Prediction analysis is one of 

the frequently used formant frequency estimation methods. In Linear 

prediction, the individual samples in a speech signal are predicted from 

previous samples' weighted combinations. These weights are termed 

coefficients which characterizes a digital filter that has the frequency response 

of the formants. LP analysis extracts the formant frequencies either by 

generating the LPC spectrum from the filter's frequency response or by finding 

the roots of the prediction polynomial. One of the critical parameters associated 
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with LPC is LPC order which determines the number of coefficients in the 

linear prediction. This parameter has the same problem as the smoothness of 

the spectrum when picking peaks. LPC is a simplified speech production model 

that does not account for the interaction between the vocal tract and source 

information and may perform poorly when the model does not sufficiently 

represent the speech signal. Since each method has its own merits and demerits, 

the most desirable approach is to consider these issues while proposing a 

method. The proposed method extracts the formant structure from the cepstral 

domain by fusing the noise robustness nature of the autocorrelation domain. 

The proposed method is termed ACR Cepstrum, whose block diagram is shown 

in fig. 5.22. 

 

Fig. 5.22 Block Diagram of proposed ACR Cepstrum Algorithm. 

 The cepstrum of a signal is defined as the Inverse Fourier Transform 

(IFFT) of the logarithm of the signal spectrum [211]. Speech is a convolved 

signal in the time domain as well as in the frequency domain. To extract the 

vocal tract information V(n) from the source information S(n), the signal must 

be converted to a special domain where convolution becomes a summation 

problem. This domain is called the cepstral domain, and the process is termed 

homomorphic decomposition. 
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RW(n) = S(n) ⁎ V(n)                                                    (5.9) 

Where RW(n) is the DDR Hamming windowed ACR and ⁎ denotes the 

convolution operation. The windowed ACR is transformed to the frequency 

domain by taking the magnitude of the power spectrum on both sides of the 

above equation. 

      |RW(n)|2  = |S(n)|2 x |V(n)|2                                                 (5.10) 

Since convolution in the time domain is equivalent to multiplication in the 

frequency domain, the convolution operation is changed to product problem. 

Taking logarithm on both sides of Eq. 5.10. 

             log |RW(n)|2  = log |S(n)|2 + log |V(n)|2                                                      (5.11) 

The logarithmic spectrum helps visualize the spectral content by uniformly 

distributing the magnitude values throughout the spectrum, as shown in fig. 5.6 

(a). Even though the convolution problem is transformed to a summation 

problem, S(n) and V(n) are still fused. To separate the two components of the 

speech signal, Inverse Fourier Transform is applied on the log spectrum as 

shown in Eq. 5.12. 

  |Ƒ-1{log |RW(n)|2}|2  = |Ƒ-1{log |S(n)|2}|2 + |Ƒ-1{log |V(n)|2}|2                         (5.12) 

Where Ƒ-1 represent the Inverse Fourier Transform. Even though the cepstrum 

involves two frequency transforms, the cepstral domain is not the same as that 

of the time domain of the original signal. The x-axis of a cepstrum is termed as 

quefrency axis, which is expressed in the unit seconds. In cepstrum, the low 

quefrencies contain the slow varying feature of the logarithmic spectrum, 

giving the formants structure information.  The harmonic feature of the 

logarithmic spectrum is visible as comb structure in the high quefrency range, 

as shown in fig. 5.23. 
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Fig. 5.23 Cepstrum of Speech Segment.  

 The arrow indicates the high quefrency region from which the 

fundamental frequency is estimated by taking the reciprocal of corresponding 

time information. Since the formant information is distributed over several 

cepstral coefficients, the information cannot be extracted as simple as F0 

estimation. To remove the harmonic information from the cepstrum, a 

rectangular window is applied, termed Liftering (like quefrency). The number 

of cepstral coefficients determines the smoothness of the spectral envelope, 

which is obtained by taking the frequency response of the filtered cepstrum. 

This work chose the first 20 cepstral coefficients based on the trial and error 

method to extract the smooth spectrum, as shown in fig. 5.19. After extracting 

the smooth envelope, the spectral maxima were picked, corresponding to 

formant frequencies in the speech signal. The first formant is localized from the 

frequency band, which ranges from F0 to 1200 Hz. The F0 is obtained from the 

comb structure in the cepstrum. This wide range is used to include the variation 

due to speech production perspective as discussed above. The second formant 

is localized in the frequency range from F1 to 3000 Hz. 

           The proposed work is compared with the Praat method, which applies a 

Gaussian-like window (25 ms) and computes the LPC coefficients with the 
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algorithm by Burg. The performance of the proposed method is compared with 

the Praat method without changing its default settings on a database used in the 

F0 estimation stage. Table 5.2 shows the variation of F1 and F2 estimation 

accuracy with SNR of differed noise types based on Praat and ACR Cepstrum 

method. The most noticeable element is that Praat is more precise than ACR 

Cepstrum but fails to maintain robustness. The precision of measurement is 

more prominent for the first formant than the second formant in both methods. 

Both methods drop their performance mainly in pink noise added speech signal 

than the other two. While concerning tables 5.2 and 5.1, the performance of the 

proposed ACR method in white Gaussian noise added speech is contrary in the 

autocorrelation domain and frequency domain. 

Table 5.2 Variation of F1 & F2 estimation accuracy with SNR of differed noise 
types based on Praat and ACR Cepstrum 

 
Method 

Clean 
Speech 

(Hz)  

Noise 
type 

Frames within 5% deviation 
(%) 

 
Frames 

 
20 
dB 

10 
dB 

0 
dB 

-10 
dB 

-20 
dB 

 
 
 

Praat 

F1 
900±100 

White 93 81 65 44 28  
 

48 
Pink  89 75 53 33 11 
Red 90 76 60 39 20 

F2 
1400±150 

White 88 73 55 33 22 
Pink 82 65 46 26 8 
Red 84 67 50 30 14 

 
 

ACR 
Cepstrum 

F1 
700±150 

White 93 84 77 55 33  
 

32 
Pink 90 77 59 43 19 
Red 90 80 63 47 27 

F2 
1200±220 

White 88 76 50 41 28 
Pink 83 69 51 33 15 
Red 84 72 55 37 19 
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5.5 Acoustical Speech Parameter- ACR MFCC 

 Mel-frequency cepstral coefficients (MFCCs) are the most widely used 

acoustic feature in speech recognition systems [212]. In speech recognition, 

knowing how we hear is more important than speaking in feature extraction. 

Humans' auditory perception is non-uniform, linear at low frequency (1000 Hz) 

and nonlinear after 1000 Hz. Thus, the recorded speech signal must be 

nonlinearly mapped into the perceived scale. Mel scale maps the measured 

frequency exactly like human auditory perception. From the computational 

perspective, a group of overlapped triangular bandpass filters that simulate the 

characteristics of the Mel scale is used and is shown in fig. 5.24. In MFCC, 

these filter banks are applied on the speech spectrum to get the Mel scale power 

spectrum. Then the log operator is used to get the log-filter-bank output. 

Finally, the discrete cosine transforms (DCT) is used to generate 12 MFCCs. 

The 13th parameter is the log energy computed from each speech segment. To 

capture the dynamic information of the speech lost during frame-by-frame 

analysis, temporal derivatives were captured as ΔMFCCs and ΔΔMFCCs. So, 

the final feature vector in each speech segment contains 13 MFCCs, 13 

ΔMFCCs and 13 ΔΔMFCCs. 

 

Fig. 5.24 Mel-scale Filter Bank 
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 The MFCC features are good at recognising clean speech but not so good 

at recognising noisy speech. This is because the additive background noise 

significantly impacts the power spectral estimate utilised in MFCC 

computation, thereby lowering the recognition for noisy speech. This work 

proposes a noise-robust MFCC extraction method, termed ACR-MFCC, as 

shown in fig. 5.25. 

To compare the performance of the proposed method (ACR-MFCC) 

with the MFCC Support Vector Machine (SVM) classifier [213] is used, which 

is discussed in Chapter 6. The database utilised for this comparison is five short 

vowels with 40 speech samples each which is also corrupted with three noisy 

signals. Table 5.3 shows the performance of ACR-MFCC and MFCC with SNR 

of different noise types. As discussed above, the proposed method and MFCC 

perform similarly in clean speech, but MFCC degrades its performance in noisy 

speech. MFCC perform similarly as the proposed one in three noisy speech up 

to 0 dB.  Both methods are affected drastically in pink noise added speech 

signal than white Gaussian noise, but less in red noise. It is because the structure 

of the ACR spectrum is distracted heavily by pink noise, as in fig.5.12 (f). Thus, 

ACR MFCC is a valuable method for robust feature extraction when compared 

with MFCC. 
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Fig. 5.25 Block Diagram of ACR-MFCC Feature Extraction Algorithm 

Table 5.3 Performance of ACR MFCC and MFCC with SNR of differed noise 
type for Short Vowel Phoneme 

Method Noise 
type 

Average Accuracy (%) Clean 
Speech 20 dB 10 dB 0 dB -10 dB -20 dB 

 
ACR 

MFCC 

White 94 90 83 71 56  
95 Pink 93 88 83 70 63 

Red 94 91 90 87 73 
 

MFCC 
White 88 85 80 60 48  

92 Pink 88 83 78 63 52 
Red 94 90 9 80 63 

 

The main element in extracting different speech features is the 

autocorrelation function (ACR). ACR has proven its noise robustness property 

in each feature extraction when compared with other prominent methods. Thus, 
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the three feature extraction methods can be viewed in a unified framework, as 

shown in fig. 5.26. 

 

Fig. 5.26 Unified Frame work of Acoustical Feature Extraction 
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5.6 Conclusions 

 An Autocorrelation (ACR) based acoustical feature extraction process 

is presented. Features extracted are fundamental frequency (F0), formant 

frequencies (F1 and F2) and Mel-Frequency Cepstral Coefficients (MFCCs). 

This work treats the frequency estimated from each segmented frame of a 

“clean” speech signal as the true values for F0 and formants. The method’s 

performance is evaluated by analyzing the variation of corresponding true 

values from each frame of a noisy speech signal. The performance of each 

method has been evaluated without changing its default parameter. 

Fundamental frequency of the speech signal is estimated from the 

autocorrelation sequence and it outperforms the prominent methods like Praat, 

YIN, RAPT and PEFAC in all noisy conditions. The proposed method (ACR) 

performs outstanding, especially in white Gaussian noisy speech signals. To 

obtain the spectral information of speech signal in autocorrelation domain, 

Hamming window with double dynamic range is applied on ACR. The first two 

formant frequencies were extracted from the cepstral domain by incorporating 

the noise robustness nature of ACR. The proposed method (ACR Cepstrum) is 

compared with the Praat method. Even though ACR Cepstrum is inferior in 

terms of standard deviation, it is superior for noise robustness compared to 

Praat. The performance of both methods is affected mainly by pink noisy 

speech signal. A noise-robust  MFCC method (ACR MFCC) is introduced, and 

an SVM classifier evaluates its performance. ACR MFCC surpasses MFCC in 

all noisy conditions but performs similarly in clean speech.



 

CHAPTER 6 

AUDIO-VISUAL SPEECH RECOGNITION 
USING SUPPORT VECTOR MACHINE 

CLASSIFIER 

 

6.1 Introduction 

 The human brain makes bimodal judgements based on circumstances, 

especially in a noisy background. Motivated from this, intelligent speech-based 

systems respond to a stimulus by analyzing and interpreting the information 

captured from microphones and cameras. The key component in achieving 

human-like decision making in such a system is the selection of audio and 

visual speech information integration strategy and decision making. Intense 

caring is needed to fuse the modalities and make a decision which requires 

linguistic knowledge and technical knowledge for the fine-tuning of 

parameters. This area has witnessed a vast technical outbreak to cope up with 

the wide usage of speech-based systems in different domains of life. 

 In this work, chapter 3 deals with creating an audio-visual speech 

database for the Malayalam language named “MOZHI”. It also addressed the 

issues related to database creation like audio and video speech segmentation 

and labelling process, corrupting the audio speech with different noise at 

different dB levels and audio-visual asynchrony. Chapter 4 displayed a detailed 

work on visual speech alone based on phoneme-to-viseme mapping and 

allophone-to-viseme mapping. Based on phoneme-to-viseme, visemes are 

represented by five consecutive frames. The DCT feature (appearance-based 

feature) has shown dominance over Geometric features (shape-based features) 

in visual speech analysis. Due to the random distribution of allophones in the 

allophone-to-viseme mapping, the visual equivalent of allophone (viseme) 

requires a detailed study in the linguistic domain. After that, chapter 5 analysis 
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the audio speech alone and extracts the acoustical speech parameters like 

fundamental frequency (F0), formant frequencies (F1 and F2) and ACR MFCC. 

It also discussed the performance of the proposed method in corrupted audio 

speech, which surpasses the traditional methods. A well-established linguistic 

foundation and computational update are at the need of any speech-based 

system. So, in the present scenario (in the rest of the work), phonemes and 

visemes are the centres of discussion. This will be the first effort to develop 

audio-visual speech recognition in Malayalam. 

  Even though the central problem in audio-visual speech recognition is 

an intelligent way of combining the audio and visual features, which is 

addressed in section 6.3.5. The key issue is, “which classifiers should be 

utilised to recognise uttered phonemes from audio and visual feature vectors?”. 

A classifier is a machine learning algorithm that maps the input data into 

specific classes based on certain rules to discover patterns and regularities 

hidden in the data. Machine learning algorithms are broadly classified into two 

classes: Unsupervised learning and Supervised learning. An unsupervised 

learning algorithm uses an unlabelled dataset to classify, revealing similarities 

and structures hidden in the data. Unsupervised learning is helpful for finding 

useful insights from the data. K-means clustering, Hierarchical Clustering are 

some of the popular unsupervised learning algorithms. A supervised learning 

algorithm uses training datasets from which they learn to classify similar un-

labelled data. Naïve Bayes [214], Artificial Neural Network (ANN) [215], 

Decision Tree Classification [81], Support Vector Machine (SVM) [216], K-

Nearest Neighbours (K-NN) [217] are some of the popular supervised learning 

algorithms. A classification model tries to draw some conclusions from the 

training data during the training mode, and it will predict the class labels for the 

new data during the testing mode. Classification models are grouped into two 

classes: Discriminative Models and Generative Models [218]. A discriminative 

model models the decision boundary between the data in the data space, while 
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a generative model explicitly models how data is distributed in the data space. 

The discriminative model learns the conditional probability distribution 

P(Y|X), while the generative model learns the joint probability distribution 

P(X,Y). Since the generative model relies on the Bayes theorem, it can handle 

more complex tasks than discriminative models. Hidden Markov Model 

(HMM) [219] ,Gaussian Mixture Model (GMM) [220], Bayesian Network 

[221] belongs to generative models. Support Vector Machine (SVM), Artificial 

Neural Network (ANN), K-Nearest Neighbours (KNN) are some of the 

discriminative models. 

 Hidden Markov Model (HMM) and its hybrid version (Coupled HMM 

[222], HMM/GMM [223], HMM/ANN [224], HMM/SVM [225]) are the most 

widely used in recent audio-visual speech recognition systems for modelling 

and recognizing speech. HMM's capacity to statistically model acoustic and 

temporal variation in speech is the primary reason for its popularity. However, 

the HMM-based speech recognition system suffers from performance loss due 

to a disparity between training and testing settings. One of the main problems 

related to the HMM-based speech recognition system is its implementation side 

compared to discriminative models like SVM for a multi-modal phoneme level 

task. Another powerful classifier widely used in speech recognition tasks is 

Artificial Neural Network (ANN). The neural network algorithms strive to 

reduce the difference between the desired output and the network's generated 

output [226]. In contrast, the training of an SVM classifier relies on maximizing 

the margins between the borders of classes. Unlike certain HMM modifications 

that only minimise the empirical risk on the training set, SVMs also minimise 

the structural risk, resulting in improved generalisation even with less training 

data. The exceptional generalisation properties of SVM is due to the maximised 

distance, termed as the margin. In the presence of noise, the maximum margin 

solution allows SVM to outperform most nonlinear classifiers, which has long 

been a challenge in speech recognition [227]. 
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 An audio-visual speech recognition system using support vector 

machine classifiers is presented in detail. Viseme is utilized to recognize the 

underlined phoneme in intense background noise. The different problems 

which arise before and after fusing the audio and visual speech information are 

addressed in detail. The rest of the chapter is organized as follows. Section 6.2 

describes the fundamentals of the SVM classifier. Section 6.3 presents a 

detailed outline of the audio-visual speech information fusion process. Section 

6.4 introduces the proposed audio-visual speech recognition system. Section 

6.5 discusses the experimental part and section 6.6 concludes the work. 

6.2 Support Vector Machine (SVM) Classifier 

 SVM is a supervised machine learning algorithm that has been used in 

many real-world tasks, especially for classification purposes. SVM is based on 

the statistical learning theory of Vapnik in 1974 and quadratic programming 

[226]. SVM has got different modifications which makes it still an active 

algorithm with relatively simple concepts. SVM was inherently a binary 

nonlinear classifier capable of distinguishing whether the input data belongs to 

class 1 or 2. It defines an optimum hyperplane that separates different classes 

with the maximum margin between the boundary points (support vectors) in a 

higher dimensional feature space. Decision boundaries will be of different size 

and shape depending upon the nature of the problem. For separable cases, it 

will be a line in 2-dimension, a plane in 3-dimension and a hyperplane in N-

dimension. For non-separable cases, SVM uses a trick named kernel trick that 

transforms the non-separable n-dimensional sequence of feature vectors to 

linearly separable higher dimensional kernel feature space ɸ.  

 Empirical Risk Minimisation (ERM) is the goal of any classifier: it 

reduces the number of misclassifications in the training set. In machine 

learning, a generalised model must be chosen from a finite data set, which leads 

to the problem of overfitting, i.e., when the model becomes overly tuned to the 



Audio-Visual Speech Recognition Using Support Vector Machine Classifier 

 199

training set's characteristics and hence fails to generalise to fresh data. This 

problem is solved using the Structural Risk Minimisation (SRM) principle, 

which balances the model's complexity against its ability to match the training 

data. The optimal hyperplane maximises the margin while minimising the 

empirical risk [213], [228]. As shown in fig. 6.1, there will be hyperplanes that 

can accurately categorise all data points, resulting in zero empirical risk. 

However, H1 is preferred over H2 because H1 has a higher margin than H2 and 

is thus less prone to overfitting. In other words, a linear SVM can be configured 

to learn a hyperplane that can tolerate a limited number of non-separable data 

points.  

 

Fig. 6.1 Hyperplanes for Classifying the Non-separable Data points  

 The amount of non-separable data items that SVM takes into account 

should be limited.  The decision boundaries with a very high margin will create 

a chance of misclassification of many data points. As a result, there should be 

a trade-off between margin width and misclassification error. To avoid this 

issue, a penalization term is added to the optimal condition, as shown below. 

M* = arg min 
ଵ

ଶ
 ||w||2 + C ∑ 𝜉


ୀଵ  
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Subject to 𝑚𝑖𝑛 𝑦(𝑤்𝑥  +  𝑤) – 1 + ξi ≥ 0                                  (6.1) 

ξi ≥ 0, i = 1, 2, …..., p 

where w is a vector of model parameter which defines the decision boundary, 

C is the penalty parameter, which represents misclassification or error term, ξi  

is the positive slack variables. The misclassification or error term informs the 

SVM optimization about the acceptable level of error. A smaller C value results 

in a small margin, while a bigger C value results in a larger margin. The 

parameter Ϲ establish an understanding between ERM and SRM using an 

iterative search process (Grid search). After the SVM has been trained with 

training data, the number of support vectors determines the classifier's 

complexity. 

 

Fig. 6.2 Linear Separating Hyperplane for the Non-separable Data points 

 In real-world classification problems, the data points are highly 

overlapped, making the above-stated classifier not yield accurate classification. 

In other words, the decision boundary may not be a linear or nonlinear 

hyperplane instead a hypersurface. The input data is transferred into a higher-

dimensional space to address this problem, as the data’s dimension does not 

determine the classifier’s success. Then look for a linear decision boundary to 
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separate the higher-dimensional data that has been transformed. A method 

known as the kernel trick gives a revolutionary answer to the issue mentioned 

above. The kernel approach conveys the data only through pairwise similarity 

comparisons between the original data observations x rather than explicitly 

applying the transformations f(x) and expressing the data by these modified 

coordinates in the higher dimensional feature space [229]. In short, the kernel 

function accepts lower-dimensional inputs and provides the dot product of 

converted vectors in higher-dimensional space. The dot product is frequently 

used to compare two input vectors. Kernel function Κ (xi, xj)  is a real function 

defined on R such that there exist a function ɸ: Rm → Rn, where n > m 

       Κ (xi, xj) = ɸ(xi) •ɸ(xj)  → xi • xj                                              (6.2) 

 

Fig. 6.3 Transformation of Non-Separable Data points in Feature Space to 
Separable Data points in Kernel Space 

 Some of the most widely used kernel functions are linear, polynomial, 

Gaussian radial basic and sigmoid. The kernel function which provides a better 

result in this work is the Gaussian radial basic kernel. The classification result 

using different kernels is shown in table1. The database used for this is task is 

the MFCC feature vector extracted from a clean speech by considering all 

attributes discussed in section 6.3.  

Gaussian Radial Basic Kernel: KG(xi, xj) = exp ቀ− 
| ௫ି௫ೕ |

మ

ଶఙమ
ቁ                      (6.3) 
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Gamma = 
ଵ

ଶఙమ
  

Table 6.1 Performance of SVM Classifier for Different Kernel Functions 

Kernel Type Accuracy (%) 

Linear 89  

Polynomial 
(degree=3) 

91  

Gaussian Radial Basic  96  

Sigmoid 90  

 

 6.3 Problems and Strategies: Before and After Audio-Visual Integration 

 This work has discussed a brief background of the SVM classifier so far. 

Identifying optimal hyperplane with the maximum margin guarantees better 

generalization makes SVM a very promising tool for the speech recognition 

perspective. In addition, its structural risk minimization (SRM) ability will 

remarkably improve the robustness of speech-based systems, especially in a 

noisy environment. However, the presented SVM still needs fine-tuning for the 

recognition task while considering the fusion of different modalities. The 

following session addresses different factors that need prime attention during 

audio and visual feature integration. By analyzing all aspects, a proposed work 

is presented in session 6.4.    

6.3.1 Multi-class Problems 

 SVM discussed deals with the classification of binary classes, but a 

speech recognition system is a many class problem. The multi-class 

classification problem is handled by combining many binary SVM classifiers. 

It can be achieved by two approaches: One-vs-all and one-vs-one classification. 
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           In one-vs-all or one-vs-rest classification, each class is compared with 

all rest of the classes. The number of binary classifiers needed is the same as 

that of the number of class labels in the data set. Data from one class is positive 

for each binary classifier, and all other classes have a negative attribute. Thus, 

each model predicts a probability-like score. The class index with the most 

significant score is then used to predict a class. 

           In one-vs-one classification, each class is confronted with each other 

classes separately. The number of classifier models needed in this method is 

n(n-1)/2, where n is the number of classes in the problem. For implementing 

this approach, datasets are split into one binary classification dataset for each 

pair of classes. In this work, the one-vs-all classification approach is used, as 

shown in fig. 6.4. 

 

Fig. 6.4 One-vs-All SVM Classifier 
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6.3.2 Audio-Visual Integration Approach 

 The task of fusing audio and visual speech information is one of the 

major components in determining the overall performance of the speech 

recognition system. Incorporating the visual speech information along with 

acoustical speech provides better recognition accuracy than an individual one. 

The way of integration profoundly depends on the problem under study. Thus, 

it is better to introduce the mode of integration before presenting the data 

structure (as discussed in 6.3.3). Before fusing the data from both domains, it 

is necessary to address one of the problems associated with audio-visual 

integration, i.e., lack of one-to-one correspondence between phonemes and 

visemes. In general, visemes carry comparatively less information than 

phonemes; thus, the number of visemes are very less. In Malayalam, 50 

phonemes are mapped to 14 visemes. Thus, in this work (Phoneme 

recognition), data from both streams (audio and video) should be presented 

either as 50 or 14 classes. Presenting the visual speech information in 50 classes 

may degrade the overall performance of the system. Thus, a strategy that 

initially depends on the visual speech, thereby achieving robustness to acoustic 

noise, is presented. 

 Early integration (Feature fusion) and Late integration (Decision fusion) 

are the most widely used approaches in audio-visual integration process [184]. 

In Early Integration, audio and visual features extracted from the respective 

domain are combined, then used to recognise the corresponding phoneme. 

Since the physical characteristics of both domains are different, an intelligent 

way is required to combine both features where audio-visual asynchrony 

problem arises. In Late integration, both audio and visual domain has individual 

recogniser whose outputs are combined to get the overall results. In this 

approach, the fusion of the two domains can be controlled by weighting the 

domain. At high SNR (Signal-to-Noise Ratio), the audio domain is enough to 
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recognise the corresponding phoneme. At low SNR, the visual domain alone is 

adequate to provide better recognition. In this work, a hierarchical approach 

[230] is utilised to obtain the mentioned strategy. 

 The hierarchical approach computes the likelihood for a phoneme in two 

phases. The visual speech data is used in the first phase, with 14 groups 

(viseme). The most likely viseme class is determined from phase 1. In the 

second phase, audio and visual speech data are divided into 50 classes to 

determine the most likely phoneme within the viseme class determined in the 

first phase. When the most likely viseme class in phase 1 has only one phoneme 

(viseme class 6 and 7 as in table 4.2), then the second phase is skipped as it is 

not required. In the second phase, the phonemes within the most likely viseme 

class are investigated. The computational overhead involved in this phase is 

less. In practical view, there will be three datasets (which is discussed in section 

6.3.3): one with video speech data grouped into 14 classes (Visemes) and 

second with audio speech data grouped into 50 classes (Phonemes) and third 

with visual speech data grouped into 50 classes (visual speech of 50 phonemes).   

Another important component of the fusion process is the weighting of 

each stream (audio and video), which allows for choosing to increase or 

decrease one input's role based on its decision-making efficiency. Proper 

integration weight ensures better improvement in the performance of AVSR 

than audio-only and visual-only speech recognition. The sum of the stream 

weights must equal one. Various methods for assigning weight values to 

streams have been proposed in the literature. These weight values can be 

assigned based on the quality of test data [141], [222], train data [231], [232], 

or both [184]. The stream weight is manually estimated in some cases. As a 

result, the challenge of determining stream weight under various SNR 

situations remains under investigation. In this work, the weight value is 

estimated automatically depending on the noise level. For this, the reliability of 
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each stream is measured from the dispersion of the posterior probability 

(outputs of the classifier) [233], [234]. The output of the SVM classifier is not 

a probability [235]. Building a classifier to produce a posterior 

probability P(class/input) is useful. The distance of x from the separating 

hyperplane for a test sample x is represented by SVMs' output, f(x). While the 

class prediction (y = +1 or y = -1) is determined by the sign of the SVM output, 

the magnitude of the SVM output can represent the level of confidence in that 

prediction. As a result, the SVM output cannot be directly translated into a 

probability value used to estimate confidence. To tackle this problem, Platt 

[236] used a parametric model to directly fit the posterior P(y = +1 / f(x)) 

without estimating the conditional density p(f(x) / y) for each label y, as 

         P(y = +1 / f(x)) = 
ଵ

ଵାୣ  [(௫)ା] 
                                  (6.4) 

The parameters A and B of Eq. 6.4 are fitted using maximum likelihood 

estimation from a training set. Thus, the reliability of a stream is estimated as  

        σ = 
ଵ

ே
∑ [(max log 𝑃(𝑂/𝐹) −  log 𝑃(𝑂/𝐹)] ே

ୀଵ                                (6.5) 

where P(O / Fi) is posterior probability of the phoneme/viseme (O) given the 

corresponding feature vector Fi and N is the number of classes. Then, the stream 

weight for audio stream and video stream is estimated as 

               λA = 
ఙಲ

ఙಲାఙೇ
                                                     (6.6) 

                              λV = 1- λA                                                                  (6.7) 

where σA and σV are the dispersion of audio and video outputs probabilities 

respectively. After the recognition of phonemes and visemes from separate 

classifiers, their outputs are combined by the weighted product rule to 

recognize the uttered phoneme as shown in Eq. 6.7. 
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Phoneme = arg maxi [P(OV / 𝐹
) λA  x  P(OV / 𝐹

 ) λV]                            (6.8) 

The proposed Hierarchical approach in this work is shown in fig. 6.5 and its 

corresponding equations are given as 

Phase 1: Viseme = arg maxi P(OV / 𝐹
 ), i = 1, 2, …., 14                               (6.9) 

Phase 2:   Phoneme = arg maxj [P(OA / 𝐹
) λA  x  P(OV / 𝐹

) λV] 

             j is the phonemes in the selected viseme                         (6.10) 

 

Fig. 6.5 Hierarchical Approach for Audio Visual Integration 

 In a real-time context, however, a minor change in the appearance of a 

phoneme can look almost identical to the visual appearance (viseme) of another 

phoneme. As a result, a modified phoneme-to-viseme mapping must be 

established, as shown in table 6.2, which clusters the phonemes with a broad 

visual speech appearance.  The first three visemes in table 4.2 are front and 

back vowels and belong to the first broad viseme, which has a common visual 

attribute of mouth wideness. The back vowels belong to the second broad 

viseme and have a visual characteristic of lip roundness. Table 6.2 does not 

consider visemes 6 and 7 in table 4.2 because they have a single phoneme that 

is skipped in the second phase of the hierarchical approach. Visemes 8 and 9 in 

table 4.3 have the characteristic visual appearance of lips touching, classified 
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as the third broad viseme. Dental, velar, glottal, alveolar, retroflex, and palatal 

visemes are among the most confusing visemes of consonant classes. A barely 

visible tongue plays their linguistic characteristics. As shown in fig. 6.15, the 

visual equivalents of dental (viseme 10 in table 4.3) and velar and glottal 

(viseme 11 in table 4.3) were grouped as the fourth broad viseme based on their 

capacity to recognise better than others. The remaining consonant viseme 

classes were assigned to the fifth broad viseme, as shown in table 6.2. 

Table 6.2 Modified Phoneme-to-Viseme Mapping  

Broad 
Viseme  

Viseme Class Phonemes 

1 Front, High– Vowel 
Front, Mid – Vowel 

Central, Low – Vowel 

ഇ /i/, ഈ /i:/ 

എ /e/, ഏ /e:/ 

അ /a/, ആ /a:/ 

2 Back, High – Vowel 
Back, Mid – Vowel 

ഉ /u/, ഊ /u:/ 

ഒ /o/, ഓ /o:/ 

3 Bilabial - Plosive-voiced and 
voiceless unaspirated, Nasal 
Bilabial - Plosive-voiceless 
aspirated and Labiodental 

Ł/p/, Ń /b/, ń /bh/, 
Ņ/m/ 

 
ł/ph/, Ō/v/ 

4 Dental 
Velar, Glottal 

ļ/t/, Ľ/th/, ľ/d/, Ŀ/dh/, 

ŀ/n̪/ 

ĭ/k/, Į/kh/, į/g/, 

İ/gh/, ı/ŋ/, Ő /h/ 

5 Alveolar 
 

Retroflex 
 

Palatal 
 

ƃ്/ṟ/, ŀ/n/, ŏ/s/, Ň/r/, 

ň/ṛ/, ŉ/l/ 

 
ķ/ʈ/, ĸ/ʈh/, Ĺ/ɖ/, ĺ/ɖh/, 

Ļ/ɳ/, Ŏ/ʂ/, Ŋ/ɭ/, ŋ/ʐ/    

 
Ĳ/c/, ĳ/ch/, Ĵ/ɟ/, 

ĵ/ɟh/, Ķ/ɲ/, ō/ʃ /, 

ņ/y/ 



Audio-Visual Speech Recognition Using Support Vector Machine Classifier 

 209

 As the phoneme-to-viseme mapping is modified to address the visual 

speech appearance in a real-time scenario, the corresponding hierarchical 

approach is also modified as fig. 6.6. In the first phase, the most likely viseme 

is identified from the 14 visemes as in fig. 6.5. In addition, other visemes which 

belong to the same broad viseme class of the most likely viseme were also 

selected. For instance, the most likely viseme in the first phase is viseme 9, 

which correspond to the visual representation of the phonemes ł/ph/ and 

Ō/v/. However, in the broad viseme class, viseme 9 belongs to broad viseme 

class 3, containing viseme 8. Thus, the main aim of phase 2 is to identify the 

most likely phonemes of broad viseme class 3 Ł/p/, Ń/b/, ń/bh/, Ņ/m/, 

ł/ph/ and Ō/v/ instead of most likely phoneme of viseme 9 ł/ph/ and 

Ō/v/ as in fig. 6.5. In the second phase, the probability of these phonemes was 

estimated in the audio and visual classifiers separately. Then the most likely 

phoneme is identified by fusing both classifiers with proper stream weight 

depending on the noisy acoustical condition. The corresponding equation of 

phase 2 in the modified hierarchical approach is given in Eq. 6.11. Since phase 

1 is dedicated to identifying the most viseme from 14 viseme, its corresponding 

equation is Eq. 6.9.  

Phase 2:              Phoneme = arg maxk [P(OA / 𝐹
) λA  x  P(OV / 𝐹

) λV]  

                  k is the phonemes in the selected broad viseme                              (6.11)  

 

Fig. 6.6 Modified Hierarchical Approach for Audio Visual Integration 
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6.3.3 Dataset Preparation and Hyper Parameter Estimation 

 A dataset is a collection of different variables' values. Training and 

testing sets are created after the dataset has been prepared. The training set is 

inserted into the machine learning algorithm to create a predictive model. The 

model then predicts the labels in the testing data. The model's performance is 

then evaluated with precision, recall, F1-score, and accuracy. 

           In this work, audio speech samples were collected from 23 speakers 

uttering 50 utterances (vowels, diphthongs and consonant phonemes) repeating 

three times each. Thus, each speaker has a total of 150 utterances/observations. 

These audio speech samples were corrupted with three different noises with 

noise levels 20 dB, 10 dB, 0 dB, -10 dB and -20 dB.  The visual speech was 

collected simultaneously with the audio speech. Since the viseme for each 

phoneme is represented by five consecutive frames, later, the visual 

representation of each phoneme is grouped based on phoneme-to-viseme 

mapping as in tables 4.2 and 4.3. Thus, the visual speech sample consists of 

750 frames (50 phonemes x 3 repetition x 5 frames)  for each speaker. 

           To implement the proposed modified hierarchical approach, three 

datasets were needed. For phase 1, the visual representation of each phoneme 

was grouped into 14 classes, namely visemes. Since each viseme contains an 

unequal number of phonemes, resulting in an unbalanced dataset with 

minimum and maximum of 69 and 552 observations, respectively, as shown in 

fig. 6.7. Random oversampling is carried out to make it a balanced dataset. In 

phase 1, the training and testing set consists of 14 classes. For phase 2, two 

datasets are needed: one having audio speech of 50 phonemes and the other 

having visual speech of 50 phonemes.  The distribution of observations for 

phase 2 is shown in fig.6.8, which is a balanced dataset with 69 observations 

for each class. For this phase, the training set consists of 50 classes, and the 

testing set consists of 5 classes representing the five broad visemes. 
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Fig. 6.7 Distribution of Observations in 14 Viseme Classes 

 

Fig. 6.8 Distribution of Observations in 50 Phonemes and 50 Visual 
representation of Phonemes  
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 Even though the fusion strategies and datasets were well established, 

specific issues associated with the classifier like selecting optimum 

hyperparameters, data splitting, overfitting and unbalanced dataset are to be 

addressed in detail. A machine learning model is a mathematical model that 

requires the learning of various parameters from data. Another parameter, 

Hyperparameters, on the other hand, cannot be learned directly from the usual 

training procedure. Instead, they usually are addressed before the start of the 

training procedure. These parameters define the model's key characteristics, 

such as its complexity and learning rate. Models might have many 

hyperparameters, thus choosing the best one is a research problem. Typically, 

the values for these hyperparameters are assigned at random and compare 

which ones produce the best results. Randomly choosing the model's 

parameters, on the other hand, can be tedious. Instead of choosing parameter 

values at random, a preferable method would be to create an algorithm that 

identifies the ideal parameters for a model automatically.  Grid search is one of 

the most effective algorithms for optimising hyperparameters. The machine 

learning model is examined for a range of hyperparameter values using the Grid 

Search method. Then, it seeks the optimal combination of hyperparameters. 

The penalty parameter, C and Gaussian Radial Basic Kernel parameter, 

gamma are the hyperparameters for support vector machines [237]. The 

misclassification or error term, denoted by the letter C, tells the SVM 

optimization how much error can be tolerated. For example, a small-margin 

hyperplane is created by a lower value of C, while a larger-margin hyperplane 

is created by a higher value of C. Gamma decides how much curvature is 

needed for the decision boundary. A higher value of gamma implies more 

curvature, and a lower value of gamma means less curvature. Thus, there will 

be a trade-off between the misclassification term and the decision boundary. 

The values assigned to C and gamma in grid search are 100, 101, 102, 103, 104 

and 105 and 100, 10-1, 10-2, 10-3, 10-4 and 10-5, respectively. In this work, Nested 

5-fold stratified cross-validation is used to search for the best value for tuning 

hyperparameter, which is discussed in the next paragraph. The grid search for 
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datasets of 14 visemes, visual representation of 50 phonemes and 50 phonemes 

are shown in table 6.3, 6.4 and 6.5, respectively. The best combination of 

hyperparameter combination is not chosen based on the highest score. Instead, 

the parameter set having the highest, most stable score value is selected as the 

optimum value. The highest score belongs to a parameter set with C equal to 

104, resulting in high computational cost. For all datasets, the optimum 

combination of hyperparameters is C = 102 and gamma = 10-2. This optimum 

value is chosen throughout the rest of this work. 

In a machine learning process, the dataset is divided into training and 

test datasets; the training dataset is used to train the model, while the test dataset 

is used to examine the performance of a model. The training dataset typically 

accounts for two-thirds of the overall dataset, with the remainder used for 

testing. As a result, this method may neglect some of the most informative data, 

resulting in a more significant bias. The solution to this problem is to use k-fold 

cross-validation. The k-fold cross-validation procedure divides a limited 

dataset into k folds (a subset of the dataset). Each k fold can be used as a testing 

set, while the rest can be used as a training set. The method is repeated until 

each set has been utilised at least once for training and testing. Finally, the mean 

performance is presented after a total of k models are fitted and tested on the k 

test sets. This technique is used to select model hyperparameters to set up each 

model and select models that have been configured. Unfortunately, utilising the 

test set for both model selection and estimate overfits the test data, resulting in 

an optimistic bias in estimation [238]. To overcome this issue, model selection 

and evaluation must be done separately, which is implemented using a modified 

version of cross-validation termed Nested Cross-Validation.   
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Table 6.3 Grid search of 14 Visemes 

 C 

G
am

m
a 

 100 101 102 103 104 105   100 101 102 103 104 105 

100 0.170 0.188 0.188 0.188 0.188 0.188  100 0.168 0.187 0.187 0.187 0.187 0.187 
10-1 0.405 0.503 0.503 0.503 0.503 0.503  10-1 0.405 0.495 0.495 0.495 0.495 0.495 
10-2 0.473 0752 0.806 0.806 0.806 0.806  10-2 0.486 0.743 0.801 0.801 0.801 0.801 
10-3 0.359 0.539 0.744 0.885 0.912 0.912  10-3 0.368 0.544 0.748 0.877 0.925 0.925 
10-4 0.186 0.367 0.534 0.673 0.801 0.900  10-4 0.185 0.376 0.536 0.670 0.804 0.908 
10-5 0.159 0.188 0.369 0.535 0.645 0.726  10-5 0.159 0.185 0.376 0.539 0.655 0.746 

 1st Iteration   2nd Iteration 
100 0.167 0.188 0.188 0.188 0.188 0.188 100 0.169 0.186 0.186 0.186 0.186 0.186 
10-1 0.398 0.493 0.493 0.493 0.493 0.493  10-1 0.409 0.503 0.503 0.503 0.503 0.503 
10-2 0.474 0.728 0.803 0.803 0.803 0.803  10-2 0.481 0.740 0.802 0.802 0.802 0.802 
10-3 0.364 0.545 0.735 0.866 0.917 0.918  10-3 0.350 0.542 0.744 0.867 0.927 0.928 
10-4 0.181 0.368 0.541 0.659 0.777 0.911  10-4 0.181 0.360 0.532 0.671 0.789 0.898 
10-5 0.159 0.183 0.367 0.540 0.646 0.717  10-5 0.159 0.183 0.361 0.533 0.650 0.712 

 3rd Iteration    4th Iteration 
100 0.170 0.186 0.186 0.186 0.186 0.186   
10-1 0.408 0.507 0.507 0.507 0.507 0.507   
10-2 0.465 0.750 0.801 0.801 0.801 0.801  
10-3 0.356 0.538 0.728 0.874 0.927 0.927  
10-4 0.187 0.361 0.531 0.672 0.774 0.898  
10-5 0.159 0.188 0.362 0.529 0.648 0.718  

 5th Iteration  
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Table 6.4 Grid search of 50 Visemes 

 C 

G
am

m
a 

 100 101 102 103 104 105   100 101 102 103 104 105 

100 0.019 0.018 0.018 0.018 0.018 0.018  100 0.013 0.010 0.010 0.010 0.010 0.010 
10-1 0.029 0.030 0.030 0.030 0.030 0.030  10-1 0.033 0.034 0.034 0.034 0.034 0.034 
10-2 0.076 0.208 0.302 0.302 0.302 0.302  10-2 0.077 0.218 0.316 0.316 0.316 0.316 
10-3 0.090 0.138 0.351 0.692 0.709 0.709  10-3 0.094 0.141 0.367 0.689 0.714 0.714 
10-4 0.056 0.090 0.147 0.357 0.767 0.854  10-4 0.043 0.095 0.150 0.360 0.775 0.862 
10-5 0.056 0.056 0.090 0.148 0.358 0.764  10-5 0.042 0.042 0.096 0.151 0.359 0.762 

 1st Iteration   2nd Iteration 
100 0.018 0.014 0.014 0.014 0.014 0.014 100 0.025 0.018 0.018 0.018 0.018 0.018 
10-1 0.026 0.030 0.030 0.030 0.030 0.030  10-1 0.029 0.031 0.031 0.031 0.031 0.031 
10-2 0.079 0.219 0.298 0.298 0.298 0.298  10-2 0.082 0.212 0.303 0.303 0.303 0.303 
10-3 0.089 0.137 0.359 0.692 0.717 0.717  10-3 0.093 0.148 0.363 0.694 0.715 0.715 
10-4 0.053 0.093 0.147 0.357 0.747 0.848  10-4 0.065 0.092 0.158 0.357 0.763 0.854 
10-5 0.040 0.040 0.094 0.149 0.352 0.736  10-5 0.065 0.065 0.092 0.159 0.362 0.751 

 3rd Iteration    4th Iteration 
100 0.020 0.020 0.020 0.020 0.020 0.020   
10-1 0.031 0.033 0.033 0.033 0.033 0.033   
10-2 0.085 0.210 0.307 0.307 0.307 0.307  
10-3 0.093 0.143 0.354 0.696 0.717 0.717  
10-4 0.056 0.092 0.153 0.358 0.781 0.860  
10-5 0.056 0.056 0.093 0.155 0.354 0.754  

 5th Iteration  
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Table 6.5 Grid search of 50 Phonemes 

 C 

G
am

m
a 

 100 101 102 103 104 105   100 101 102 103 104 105 

100 0.156 0.188 0.188 0.188 0.188 0.188  100 0.140 0.180 0.180 0.180 0.180 0.180 
10-1 0.772 0.796 0.796 0.796 0.796 0.796  10-1 0.788 0.802 0.802 0.802 0.802 0.802 
10-2 0.771 0.905 0.915 0.915 0.915 0.915  10-2 0.792 0.908 0.909 0.909 0.909 0.909 
10-3 0.435 0.778 0.890 0.903 0.903 0.903  10-3 0.415 0.779 0.897 0.902 0.902 0.902 
10-4 0.081 0.433 0.768 0.887 0.902 0.903  10-4 0.082 0.423 0.762 0.894 0.902 0.902 
10-5 0.077 0.079 0.432 0.766 0.886 0.904  10-5 0.080 0.080 0.423 0.759 0.893 0.900 

 1st Iteration   2nd Iteration 
100 0.145 0.171 0.171 0.171 0.171 0.171 100 0.160 0.194 0.194 0.194 0.194 0.194 
10-1 0.766 0.788 0.788 0.788 0.788 0.788  10-1 0.766 0.794 0.794 0.794 0.794 0.794 
10-2 0.765 0.890 0.899 0.899 0.899 0.899  10-2 0.780 0.892 0.901 0.901 0.901 0.901 
10-3 0.409 0.752 0.880 0.891 0.891 0.891  10-3 0.422 0.763 0.882 0.894 0.894 0.894 
10-4 0.111 0.420 0.746 0.871 0.889 0.900  10-4 0.095 0.422 0.753 0.878 0.893 0.893 
10-5 0.106 0.109 0.421 0.742 0.870 0.888  10-5 0.091 0.094 0.423 0.750 0.875 0.893 

 3rd Iteration    4th Iteration 
100 0.135 0.168 0.168 0.168 0.168 0.168   
10-1 0.783 0.801 0.801 0.801 0.801 0.801   
10-2 0.769 0.898 0.902 0.902 0.902 0.902  
10-3 0.414 0.762 0.884 0.897 0.897 0.897  
10-4 0.094 0.420 0.747 0.880 0.895 0.895  
10-5 0.091 0.094 0.417 0.747 0.877 0.894  

 5th Iteration  
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The nested k-fold cross-validation has inner loop cross-validation nested 

within the outer cross-validation. The process is commonly referred to as 

double cross-validation since it uses two cross-validation loops. Model 

selection/hyperparameter tuning (validation dataset) is performed by the inner 

loop, while performance evaluation is done by the outer loop (test dataset). As 

a result, there are three datasets in nest cross-validation: a training dataset, a 

validation dataset, and a testing dataset. Each training dataset (inner training 

fold) is fed into a hyperparameter-optimisation process like grid search, then 

tested on the validation dataset. Estimate the average metrics score for each 

hyperparameter configuration, then select the best hyperparameter with the 

highest consistent score. Then, a model is trained with the best hyperparameter 

on the train and validation dataset collectively termed as outer training fold. 

Next, evaluate its performance on the test dataset (outer testing fold) and save 

the score for each iteration. At last, the mean score is estimated for all iterations. 

Because the model selection process is done separately, it has no chance of 

overfitting the dataset because it is only exposed to a portion of the dataset 

provided by the outer cross-validation approach. 

Another issue associate with nested k-fold cross-validation is to handle 

a significant imbalance in the distribution of the target classes. In situations 

where there is a significant class imbalance, a randomly generated fold might 

not appropriately represent the minor class. For instance, viseme class 13 in the 

table. 4.3 comprises eight phonemes. While splitting the dataset into k-folds, it 

is essential to ensure that each phoneme's relative class frequencies in viseme 

eight are approximately preserved in each train and validation fold. Thus, the 

data in each class should be rearranged so that each fold is a good representative 

of the whole. This process is termed stratification, and the associated cross-

validation is stratified. 
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To implement nested stratified k-fold cross-validation, the k (folds) 

value should be appropriately chosen. Commonly it is selected between 3 and 

10, but the most popular value is 10. A poorly chosen value for k may affect 

the overall performance of the classifier. A smaller k value indicates that the 

system is more biased, which is undesirable. A greater k value, on the other 

hand, is less biased but has a lot of variation. In this work, the proposed nested 

stratified k-fold cross-validation performance is carried out with the value of k 

varying from 3 to 10, as shown in fig. 6.9. The mean, median and standard 

deviation of the accuracy of each iteration is computed. The k value having 

overlapped mean and median and minor deviation is selected as the best value. 

Thus, an SVM classifier using nest stratified 5-fold cross-validation is used. 

The visualization of the proposed method in audio-only, visual-only and audio-

visual scenarios is shown in fig. 6.10, 6.11 and 6.12, respectively. 

 

Fig. 6.9 Identification of best fold ‘k’ for Nested Stratified Cross Validation 
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Fig. 6.10 Visualisation of Nested Stratified 5-fold Cross Validation Method for 
Visual-only and Audio-only Speech Recognition  
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Fig. 6.11 Visualisation of Nested Stratified 5-fold Cross Validation Method for 
the First Phase of Audio-Visual Speech Recognition 
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Fig. 6.12 Visualisation of Nested Stratified 5-fold Cross Validation Method for 
the Second Phase of Audio-Visual Speech Recognition 
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6.4 Proposed Audio-Visual Speech Recognition System 

 The schematic diagram of the audio-visual speech recognition (AVSR) 

system using an SVM classifier is shown in fig. 6.13. it also has audio-only 

speech recognition and visual-only speech recognition task. This AVSR mainly 

relies on the visual speech element (viseme) to recognise the underlying 

phoneme in intense background noise. The performance of the proposed AVSR 

system is discussed in the next section. 

 

Fig. 6.13 Schematic diagram of Proposed Audio-Visual Speech recognition 
system  

6.5 Experimental Results 

 The performance of the proposed AVSR system is evaluated with 

accuracy, precision, recall and F1-score, which are computed from four basic 

parameters: true positive, true negative, false positive and false negative. The 

role of the four parameters can be visualised using a confusion matrix, as shown 

in table 6.6. The class mentioned in the confusion matrix represents phoneme 

or viseme depending upon the problem under study.  
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Table 6.6 Confusion Matrix 

A
ct

u
al

 C
la

ss
 

 Predicted Class 

 Class = Yes Class = No 

C
la

ss
 =

 Y
es

 

True Positive 
(TP) 

False Negative (FN) 

C
la

ss
 =

 N
o 

False Positive 

(FP) 

True Negative 

(TN) 

 

Accuracy is a metric that generally describes how the model performs across 

all classes as (Eq. 6.12). Precision attempts to answer how precise the model is 

out of those predicted positive, how many of them are actual positive (Eq. 6.13). 

Recall tells what portion of the actual class was predicted correctly (Eq. 6.14). 

F1-score is the Harmonic mean of the Precision and Recall (6.15). 

                         Accuracy = 
்ା்ே

்ା்ேାிାி
                                                 (6.12) 

Precision = 
்

்ାி
                                                             (6.13)    

       Recall = 
்

்ାிே
                                                                  (6.14) 

                      F1-score = 2 
௦∗ோ

௦ାோ
                                              (6.15) 

The experimental result for each recognition task is presented in the next 

sections 

6.5.1 Visual-only Speech Recognition 

 In the experimental procedure, visual speech is utilised for two purposes: 

visual-only speech recognition and the first phase of audio-visual speech 

recognition. For the first phase of the AVSR task, the visual speech is 

represented as 14 visemes. The confusion matrix of 14 visemes and the 

performance of the first phase of the AVSR task is shown in fig. 6.14 and 6.15 
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respectively. The experimental result shows that the viseme recognition in the 

first phase of the AVSR task using SVM gives a better result with an average 

of 90% in all metrics. Performance of the visual representation of the 50 

phonemes is displayed in fig. 6.16. The poor performance of the visual-only 

speech recognition is quite oblivious as the visual speech carry less 

information. However, the exceptional performance of the visual representation 

of diphthongs is due to the selection of its visual signature, as discussed in 

section 4.7.1. Compared to all other consonants, the system fails to recognise 

the visual representation of plosive consonants, excluding the bilabial 

consonants.  

 
Fig. 6.14 Confusion Matrix of 14 Viseme Classes 

 

Fig. 6.15 Performance of First Phase of AV Speech Recognition (Viseme 
Recognition) 
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Fig. 6.16 Performance of Visual-only Speech Recognition of Visual 
representation of  50 Phonemes 
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6.5.2 Audio-only Speech Recognition 

 The dataset used for the audio-only speech recognition task consists of 

clean speech, white Gaussian noise, pink noise and red noise added speech 

signal. The performance of the audio-only speech recognition task in a clean 

environment, white Gaussian noise, pink noise and red noise are shown in fig. 

6.17, 6.18, 6.19 and 6.20, respectively. 

 

Fig. 6.17 Performance of Audio-only Speech Recognition  
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Fig. 6.18 Performance of Audio-only Speech Recognition in White Gaussian 
Noise  
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Fig. 6.19 Performance of Audio-only Speech Recognition in Pink Noise 
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Fig. 6.20 Performance of Audio-only Speech Recognition in Red Noise 

6.5.1 Audio-Visual Speech Recognition 

 This section deals with the second phase of the AVSR task using two 

different datasets: the visual representation of 50 phonemes and 50 phonemes 



Audio-Visual Speech Recognition Using Support Vector Machine Classifier 

 230

in different noisy conditions. The performance of the second phase of AVSR 

using the first dataset is shown in fig. 6.21. The displayed figure is a 

concatenation of the performance of AVSR of phonemes in each broad 

visemes. The average performance AVSR using a visual representation of 50 

phonemes is slightly improved when compared with visual-only speech 

recognition task as in fig. 6.16. Since viseme classes having single phonemes 

were skipped in the second phase of the AVSR task, which is reflected as the 

drastic variation in metrics of models using the visual equivalent of diphthongs. 

The performance of the second phase of AVSR using 50 phonemes in a clean 

environment, white Gaussian noise, pink noise and red noise is shown in fig. 

6.22, 6.23, 6.24 and 6.25, respectively. The average performance of the AVSR 

task is improved significantly below 0 dB noise level compared with the 

performance of the audio-only speech recognition task in the corresponding 

noisy conditions. Remarkable improvement is noticed for the AVSR task in 

white Gaussian noise, then in pink noise and less in red noise.  

           The final decision in the performance of the AVSR system depends 

mainly on the estimation of stream weight value in different noisy conditions. 

The average accuracy of the second phase of the AVSR system using 50 

phonemes ranged from 96 % (clean environment) to 83 % (white gaussian noise 

with -20 dB noise level), and that of using a visual representation of 50 

phonemes is 45 %. This remarkable difference is reflected in the reliability 

measurement of streams, thereby in stream weight also. Thus, no combination 

of streams in Eq. 6.11 can improve the overall performance better than the 

second phase of the AVSR task using 50 phonemes. Hence, the stream weight 

value of the audio stream is given unity (λA = 1) for different noise types and 

noise levels used. In other words, the proposed AVSR system consists of the 

first phase to recognise the viseme of underlying phoneme from 14 visemes and 

the second phase to recognise the phoneme from phonemes within the selected 

broad viseme using audio speech alone. Thus, the broad viseme has improved 

the accuracy by 9%, 8% and 3% for white Gaussian noise, pink noise and red 

noise, respectively, at -20 dB compared with its corresponding audio-only 
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version (fig. 6.18, 6.19 and 6.20). In addition, the hierarchical approach also 

reduced the computational cost by recognising the phoneme from the phonemes 

of the selected broad viseme instead of from 50 phonemes.  

 

Fig. 6.21 Performance of Second Phase of AV Speech Recognition of Visual 
representation of 50 Phonemes 
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Fig. 6.22 Performance of Second Phase of AV Speech Recognition of 50 
Phonemes from Audio 
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Fig. 6.23 Performance of AV Speech Recognition of 50 Phonemes in White 
Gaussian Noise 
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Fig. 6.24 Performance of AV Speech Recognition of 50 Phonemes in Pink 
Noise 
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Fig. 6.25 Performance of AV Speech Recognition of 50 Phonemes in Red 
Noise 

 The performance of visual-only, audio-only and AVSR recognition 

systems in different acoustical noisy conditions based on accuracy metrics is 

shown in table 6.7. For better readability, table 6.7 is visually presented in fig. 

6.26. The number between the lines denotes the accuracy in percentage at 

different dB levels. 
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Table 6.7 Comparison of Performance of Visual-only, Audio-only and 
Proposed AVSR in different Acoustical Noisy Conditions 

 

 

Noise 

Type 

 

 

Audio 

Noise 

Level 

 

Visual-only 

Speech 

Recognition 

(Phonemes) 

 

Audio-only 

Speech 

Recognition 

(Phonemes) 

Audio-Visual Speech Recognition 

Phase 1 Phase 2  

Combined 

(λA
 = 1 & 

λv = 0)  

Visemes 

from 

Video 

Phonemes 

from 

Audio 

Phonemes 

from 

Video 

Accuracy (%) 

Clean  40 96 90 96 45 96 

 

 

White 

Noise 

 

20 dB 40 96 90 96 45 96 

10 dB 40 93 90 95 45 95 

0 dB 40 90 90 93 45 93 

-10 dB 40 85 90 90 45 90 

-20 dB 40 74 90 83 45 83 

 

Pink 

Noise 

20 dB 40 96 90 96 45 96 

10 dB 40 93 90 94 45 94 

0 dB 40 90 90 92 45 92 

-10 dB 40 85 90 88 45 88 

-20 dB 40 75 90 83 45 83 

 

Red 

Noise 

20 dB 40 96 90 96 45 96 

10 dB 40 95 90 96 45 96 

0 dB 40 94 90 94 45 94 

-10 dB 40 91 90 92 45 92 

-20 dB 40 87 90 90 45 90 
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Fig. 6.26 Graphical Representation of Performance of Proposed AVSR system 

 

6.6 Conclusions 

 The implementation of an Audio-Visual Malayalam speech recognition 

(phoneme) system using an SVM classifier is presented. Nested stratified 5-

fold cross-validation is utilised to select the model hyperparameters and 

evaluate the model's performance. The audio-visual integration is carried out 

with a modified hierarchical approach and stream weight. The dataset contains 

two visual speech datasets comprising of 14 visemes and visual representation 

of 50 phonemes and one audio speech dataset comprising 50 phonemes in 

different noisy conditions. The performance of the audio-only, visual-only and 

AVSR systems is evaluated using accuracy, precision, recall and F1-score. 

Finally, the second phase of the proposed AVSR system is used to recognise 

the underlying phoneme from the phonemes of selected broad viseme using 

audio speech alone. Visual-only speech recognition system performs with an 

average of 90% in all metrics for 14 visemes. Based on the broad viseme 
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approach, the performance of the second phase of the AVSR system has 

improved the average accuracy by 9%, 8% and 3% for audio-only speech 

recognition in white Gaussian noise, pink noise and red noise even at -20 dB 

noise level. The better performance of the proposed system even at intense 

background noise depends on the process involved in the feature extraction 

algorithm and implementation part of the SVM classifier. 

 



 

CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

7.1 Conclusions 

Recognising what is spoken, especially in noisy conditions, is 

significantly aided by looking at the talker’s face. During the last decades, 

significant effort has been made to improve speech-based applications like the 

AVSR system’s performance by using visual cues. Effective merging of noise-

tolerant acoustic speech features with visual information is the crucial factor of 

success behind such a system. However few works, especially in resourced 

languages, have addressed speech recognition in intense background noise and 

struggled to meet satisfactory performance. This thesis presented an approach 

that firstly utilises the visual speech unit (viseme) to recognise the Malayalam 

speech (phoneme) in intense background noise, which performs better.  

 The backbone of any speech-based application is the availability of a 

phonetically balanced audio-visual speech database in the concerned language. 

This work created and presented an audio-visual speech database in Malayalam 

named “MOZHI”, captured in various environments for various research goals.  

The first category of this database is dedicated to audio-visual speech 

processing in a controlled environment. Two video lamps are used to highlight 

the visual features of the speaker’s mouth in a linguistically rich environment. 

The second category is dedicated to audio-only speech processing which is 

utilized to study the effects of real-time noise in speech processing and ageing 

on human speech organs by capturing data from wide age groups. The third 

category is dedicated to audio-visual speech processing in an acoustically and 

visually realistic environment. This database is intended to facilitate research 

in audio-visual speech processing in clean and noisy conditions, lip-reading, 

speech synthesis, among other topics. The first category of the database is used 
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in this work which consists of 30 speakers uttering 50 phonemes and 207 

connected words comprising of all allophonic variations captured in a 

controlled environment to capture the in-depth information from the speaker’s 

mouth. To perform the proposed work in noisy conditions, three different 

noises were added to the segmented and labelled clean speech with a noise level 

ranging from 20 dB to -20 dB. Statistical analysis on the duration of all 

phonemes and allophones is carried out to study thereby estimated audio-visual 

asynchrony to study the coarticulation nature of the Malayalam language. In 

Malayalam, it is observed that anticipatory coarticulation is prominent and 

ranges from small early audio to large early video. 

 Since the proposed work primarily depends on visual speech, an in-

depth study of viseme is carried out to decode the visual information from the 

lips. A linguistic involved data-driven approach is implemented to build a 

connection between phoneme and viseme. Linguistic expertise is utilised to 

select the relevant frame of the visual appearance of the underlined phoneme. 

Three different visual representations were examined, out of which a viseme 

represented by two proceeding and following frames from the chosen frame is 

selected. Lip region is extracted from manually selecting two lip corner points 

and hue channel information from the HSV colour model and is also made 

rotational and translational invariant. Linguistically 50 phonemes were grouped 

into 14 viseme classes. This viseme set will act as the foundation for future 

studies of visual speech analysis in Malayalam. The data-driven approach is 

carried out by clustering the DCT features using K-means, and an optimum 16 

viseme class were selected using the gap statistic method. Allophone-to-viseme 

mapping is performed by the data-driven approach, which highlights the need 

for linguistic classification of allophones. 

 After extracting relevant information from visual speech, the following 

procedure captures noise-robust features from audio speech. Fundamental 
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frequency (F0), formant frequencies (F1 and F2) and most popular Mel 

frequency cepstral coefficients (MFCCs) is used in this work. Instead of using 

these features, its noise-tolerant version was proposed by using the 

autocorrelation function. F0 estimation from ACR, F1 and F2 estimation from 

ACR Cepstrum and ACR MFCC. The proposed feature extraction method is 

compared with the most popular algorithms. The ACR method outer performs 

in white Gaussian noise but falls behind in red noise compared with Praat, YIN, 

RAPT and PEFAC. ACR Cepstrum is noise-robust in all noise but less precise 

when compared with LPC. ACR MFCC outperforms in all noise but performs 

similarly in clean speech when compared with MFCC. The proposed audio 

speech features have displayed their noise-tolerant property over the chosen 

methods. 

 The next task is to effectively merge the audio and visual speech feature 

by optimally selecting the stream weight based on the noisy condition, thereby 

improving the overall performance compared to individual stream 

performance. SVM classifier based audio-visual speech recognition system is 

proposed and compared with audio-only and video-only speech recognition 

systems. The empirical and structural error minimisation power of the SVM 

classifier, especially for noisy data and easiness on the implementation side, 

made to choose better than other popular models. A nested stratified 5-fold 

cross-validation approach is used to select an optimum value for the 

hyperparameters of the SVM classifier and evaluate the model performance, 

which minimises the overfitting issues and imbalance in the distribution of 

target classes. As the proposed work initially depends on the performance of 

visual speech, a slight variation in the visual appearance of a phoneme may 

wrongly judge the underlying phoneme. A modified hierarchical approach is 

implemented, which tackles this issue by considering a modified phoneme-to-

viseme mapping or broad viseme class. To implement this approach, three 

different datasets are used. In the first phase, a dataset of 14 viseme classes is 
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utilised to identify the visual appearance of the underlying phoneme. The next 

phase is utilised to identify the underlying phoneme from the phoneme list of 

selected broad viseme classes by using two datasets: one contains 50 phonemes, 

and another has a visual appearance of 50 phonemes. The performance of the 

proposed systems is evaluated with precision, recall, F1-score and accuracy. 

Visual-only and audio-only speech recognition system performs with an 

average of 90% and 96% (clean speech) in all metrics, respectively. Based on 

the broad viseme approach, the performance of the second phase of the AVSR 

system has improved the average accuracy by 9%, 8% and 3% for audio-only 

speech recognition in white Gaussian noise, pink noise and red noise even at -

20 dB noise level.  Due to the efficient performance of extracted noise-robust 

acoustical features, relevant visual features and the algorithm of modified 

hierarchical approach nullifies the need for stream weight for decision making. 

This is the first work that addresses audio-visual speech recognition in 

Malayalam. 

7.2 Future Research Directions 

 Even though the outcomes of this research work give promising results, 

certain areas are untouched or need modifications to be addressed in future 

research. Some of them are listed below. 

 The proposed database needs an extension to incorporate continuous 

speech while capturing all dialectal variations of Malayalam language. 

Also, extend the existing database and make it available online for 

research purposes only.  

 Category 2 and 3 from the proposed database must be utilised for its 

underlying applications.  

 In this work, the visual speech unit (viseme) is identified by rendering 

the expertise from the linguistic people. In a real-time application, these 
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visemes are to be selected automatically from the visual speech. An 

initiative work towards this direction is already started but not presented 

in this work.  

 The proposed work utilises the lips corner information to facilitate the 

lip segmentation process. It is necessary to automate this process and 

propose a prominent method invariant to shadows and other visual 

noises by exploring the features of the third category of the proposed 

database. 

 The main reason for limiting this work to phoneme-level recognition is 

the lack of linguistic information for creating the allophone-to-viseme 

mapping like phoneme-to-viseme mapping. Constructing such a relation 

will trigger the audio-visual speech processing to word-level or even to 

continuous speech. 

 Implementing the proposed AVSR task using Hidden Markov Model 

(HMM) or Deep Neural Network (DNN) in continuous speech has great 

potential. 
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