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Synopsis 

For more than three decadw black hole physics has been the focus of extensive investiga- 
tions. A considerable body of knowledge has been accumulated in course of these studies. 
Most of these investigations, however, have been directed towards black holes represented 
by vacuum solutions that ; ~ r c  time independent and asymptotically flat. Time indepen- 
dence is characterized by the existence of a timelike Killing vector field and asymptotic 
flatness implies that the sp;tc:ct,ime at  large distances from the black hole is Minkowskian. 
These features namely vaclllirri exterior, time independence and asymptotic flatness lie at 
the heart of most conceptu;~l and mathematical work associated with black hole physics. 
When one wishes to study a totally realistic situation, however, it may be necessary to 
give up either time indepe~ltlerice or asymptotic flatness or both. This would be the case. 
for instance, when the black hole is surrounded by local mass distributions or is embedded 
in an external universe. Urldcr such circumstances, one would like to ascertain whether 
the well known properties of 1)lack holes are retained, modified o r  radically altered. Black 
holes in cosmological backgrounds, or more generally, in non-flat backgrounds form, there- 
fore, an important topic. Vory little has been done in this direction. Some of the issues 
involved here have been outli~ied in a recent article by Vishvesh\vara[l]. As discussed in 
that article, there may be funtlamental questions of concepts and definitions involved in 
this context. Addressing all the pertinent issues in a comprehensive manner would be 
a formidable task indeed. Nevertheless, considerable insight may be gained by studying 
specific examples even if they are not entirely realistic. In a series of studies we have been 
investigating black holes in non-flat backgrounds. In this regard the family of spacetimes 
derived by Vaidya[2] represcnt,ing in a way black holes in cosmological backgrounds have 
been found to be lielpful. Tlicse metrics, in general, correspond to non-vacuum solutions 
that represent black holes which are no longer asymptotically flat. One of this represents 
the Kerr black hole in the hac1;ground of the Einstein universe and the other the special 
case namely that of the Sc1iw;~rzschild black hole in the background of the Einstein uni- 
verse. These spacetimes contnin, as limiting cases, the usual I<err and the Schwarzschild 
spacetimes respectively and the Einstein universe. In the present thesis, therefore, for the 
sake of brevity arid because of the specific model employed, we shall use the terms 'cos- 
mological' and 'non-flat' intcrc:liangeably for convenience, depending on whether we wish 
to draw attention to the cosrriological nature of the background or to the asymptotic all^ 
non-flat nature respectively. 

Some preliminary work performed before the advent of the present thesis may be noted 
here. The Sch~varzschild blu(zli liole in the backgrou~id of the Einstein universe was inves- 
tigated by Nayak, LlacCallurii and Vishveshwara[3]. They constructed a composite static 
spacetime as an (:sample of a ])lack hole in a non-flat background, which comprises a vac- 
uum SchwarzschiltL spacetiirio Sor the interior of t,he black hole, across which it is matched 
on to the spacetirlie of Vaitly;~ representing a blt~cl; liole in the Einstein universe; this it- 



self, in turn, is matched to t.he Einstein universe. They called this composite spacetime 
the 'Vaidya-Einstein-Schwarsschild (VES) spacetime'. They also studied the behaviour of 
scalar waves in this spacetimc>. 

We may mention here some ~)rcvious work related to black holes in non-flat backgrounds. 
For instance, McVittie consitlcred the spacetime corresponding to a mass-particle in an 
expanding universc[8][9][10]. The metric, a t  a first glance, seems to admit an event hori- 
zon. However i t  call be show11 that the spacetime becomes singular on this surface and the 
interior is not defined a t  all. As such this spacetime represents essentially a mass-particle 
rather than a black hole in an expanding universe. For further properties and problems 
associated with the work of McVittie, we refer to Sussman[ll]. There are also studies 
in the literature based on tlio so called 'Swiss-cheese model'. Einstein and Straus[lO] [l21 
constructed a model which comprises a cavity enclosing a Schwarzschild vacuum space- 
time which includcs the black hole; exterior to the cavity is the Friedman cosmological 
spacetime. The above two modcls have been employed to  study the influence of the cosmo- 
logical expansion 011 planetary orbits as has been done, for instance, by Gautreau[lS](see 
also Brauer[l4]). Tliis study has been extended to the case of a slowly rotating black hole 
by Chamorro[lS]. 

In the models mentioned above, the matching is not extended up to the horizon as in 
the case of the VES spacetirne. Also, the background parameter R occurring in the VES 
spacetirne can be vi~ried continuously thereby corltrolling the influc?nce of the non-flat cos- 
mological background. As R increases, approaching the limit of t h e  Sch~varzschild vacuum 
solution as R tends to infinity. Furthermore, the VES spacetirne is a special case of the 
I<er-r black hole in I l ~ e  background of the Einstein universe given by Vaidya. So the study 
of the VES spacetiirie is a precursor to that of the Vaidya-Einstein-Kerr (VEK) spacetime. 
Obviously a study of the VEI< spacetime would lead to a greater insight into rotating black 
holes in non-flat backgrounds. 

In the present thesis we study both the VES and the VEK spacetimes. After investigating 
some physical effects in the VES spacetime we move on to the VET< spacetime focusing 

V on thc geom~t ry  and physics of the event horizon. This is followed by an investigation of 

important physical effects in the VEK spacetime. We then move on to discuss the Carter 
constant and the Potrov classification of the VEK spacetime. Lastly, we study the struc- 
ture of particle angular momeritum in the VEK spacetime. Throughout we compare and 
contrast the results obtained with that of their flat background counterparts. An detailed 
outline of the thesis is given below. 

1. T h e  Vaidya-Einstein-Schwarzschild black hole: S o m e  physical effects. 
In our study of the VES spacetime we have investigated sonlc physical effects such 
as the classici~l tests and geodesics[21]. The pertinent results ;LE as folloivs. 



The background-black hole decomposition. 
In order to study the effects due to the background and the black hole clearly, we 
have introduced the background-black hole decomposition. This idea is implicit 
while expressing the Kerr metric in Kerr-Schild coordinates but has not been 
exploited fully especially in the case of the Schwarzschild metric. This decom- 
position enables us to neatly separate out the various geometrical and physical 
quantities associated with the spacetime into background and black hole quan- 
tities. Thus attention may be given to either the background spacetime or the 
black hole in order to study or generalize the properties of the spacetime. In 
particular, the background may be extended from a flat into a non-flat one. -4s 
an application, we have decomposed the test particle Lagrangian as the sum of a 
background and a black hole term. The background term may be thought of as 
a kinetic energy term and the black hole term may be thought of as a potential 
energy term, in analogy with the usual Lagrangian formalism. This allows us to 
decompose the conserved quantities into corresponding background and black 
hole terms as well. 

It is expected that the background-black hole decomposition may be carried out 
in the case of black hole spacetimes other than the Einstein universe facilitating 
thereby to  find new solutions of black holes in non-flat backgrounds, especially 
in the background of an expanding Universe. 

The effective potential. 
We have presented the effective potential for particle motion and performed a 
qualitative analysis by plotting the effective potential against the radial coor- 
dinate. We have shown that a t  small values of the background parameter, the 
influence of the cosmological background is so large that there is an enormous 
modification in the nature of the orbits. At large values of the background 
parameter the orbits tend to their Schwarzschild character as the cosmological 
influence decreases. 

The classical tests. 
Our study of the classical tests, namely the gravitational redshift, the perihelion 
precession and light bending, in the Vaidya sector of the VES spacetime sho\irs 
how the non-flat nature of the background spacetime affects the Schwarzschild 
results. The non-flat background manifests itself through the background pa- 
rameter R. This is more so in the case of the perihelion precession and light 
bending than in the case of the gravitational redshift. 

- The gravitational redshift. 
In the usual Schwarzschild case we can find the ratio of the frequencies of 
light emitted at  a certain point in the spacetime and observed at  another. 



In the VES case however, due to the presence of different sectors, the ef- 
fect' becomes much more interesting. We have considered the gravitational 
redshift seen by a static observer in the Einstein sector due to light emitted 
in the Vaidya sector. We have shown that when both the observation and 
the emission points are in the Einstein sector the redshift is absent as is 
expected. 

- Perihelion precession. 
We have shown that the presence of the background increases the perihe- 
lion precession. The perihelion shift has been calculated in full and also to 
second order in 1/R. 

- Bending of light. 
We have shown that the presence of the background causes an increase in 
the bending of light. This effect is analogous to that in perihelion preces- 
sion. Again, the calculations have been presented in full and to  second order 
in 1/R. 

Geodesics in the VES spacetime. 
A study of geodesics is the direct route towards gaining qualitative and quan- 
titative insight into the nature of the spacetime. First we have studied circular 
geodesics and then presented a brief classification of the geodesics. 

Circular geodesics. 
In the Schwarzschild case there is a photon orbit a t  r = 3Ms and timelike or- 
bits exist below this limit. In contrast we have shown that in the VES case, 
there are two photon orbits and that time-like circular geodesics exist within 
these two limits. There are no circular geodesics beyond these values. This is 
analogous to the effect in the Ernst spacetime, where two null circular geodesics 
are present as has been pointed out by Nayak and Vishveshwara[l8]. As the 
background influence becomes small the inner null circular geodesic approaches 
the Schwarzschild value r = 3111, and the outer null circular geodesic approaches 
infinity. An interesting feature which we have pointed out here is that of the 
centrifugal force reversal, which has been discussed by Prasanna [19]. The cen- 
trifugal force reverses at  the inner null circular orbit by becoming inward. This 
is analogous to what happens in the case of the Schwarzschild spacetime. VCTe 
have shown that in the present case, such a reversal takes place at  the outer 
null orbit also, as in the case of the Ernst spacetime. Since the Schwarzschild 
case has a null circular orbit at  only r = 3Ms this implies that the effect of the 
Einstein cosmological background is in bifurcating the null circular orbit of the 
Schwarzschild spacctime into two thereby completely altering the nature of the 
Schwarzschild circular geodesics. 



Classification of the geodesics. 
We have presented a brief classification of the geodesics. In the Schwarzschild 
spacetime there are eight timelike and three null geodesics. In contrast to this 
we have shown that the VES spacetime allows eight timelike and eight null 
geodesics. 

2. Geometry of the Vaidya-Einstein-Kerr black hole. 

The event horizon. 
By studying the event horizon, we have shown that the background -gives rise to 
significant modifications in the geometrical and physical quantities associated 
with the black hole. The event horizon shrinks from its limiting Kerr magnitude 
as the background influence increases and the stationary limit surface gets more 
distorted. Thus there is an enlargement of the ergosphere. 

The circumferences. 
We have shown that the distortion of the horizon can be ascertained by com- 
puting its equatorial and polar circumferences and studying the variation of the 
oblateness parameter. The oblateness parameter 6 is given by the difference of 
the equatorial and polar circumferences divided by the equatorial circumference. 
This has been investigated by two different approaches. In the first instance, 
to compare the results with those obtained by Smarr in the Kerr case, we have 
varied the distortion parameter without varying the background parameter. 

We have shown that further insight can be gained into the structure of the hori- 
zon by investigating the oblateness as an explicit function of the parameters 
a and the background parameter R. As we have pointed out there exist both 
modulated and direct effects. 

The modulated effect is obtained by varying a for different fixed values of R. 
Here we have found a totally unexpected effect. That  is, whereas the equatorial 
circumference Ce increases monotonically with a for all values of R,  the polar 
circumference C, first decreases as a increases, starting from the Kerr value, and 
then increases after a critical value of R. Nevertheless, the oblateness parame- 
ter increases with a for all values of R. On the other hand the direct effect is 
obtained by varying the circumferences with R. Here, one sees that both C, and 
C, decrease as R decreases, ie as the background influence increases. However, 
the oblateness parameter increases as R decreases. 



The surface area of the horizon. 
Another quantity that indicates the change in the geometry of the event horizon 
is its surface area. As was done in the case of the circumferences, we have stud- 
ied two different effects of the background on the area. First the modulation of 
rotation by the background and second the direct effect of the background. In 
the first case, for large values of R the area decreases monotonically with a as in 
the Kerr case. Then for a critical range of values of R the area increases, attains 
a maximum and then, decreases. Finally for small values of R it increases mono- 
tonically with a. This effect is also a novel one which reveals the peculiarity of 
the background influence. Next, we have the direct effect of the background. 
As R decreases thereby enhancing the background effect, the area decreases and 
asymptotically approaches the Kerr value as the background effect goes down. 

Our analysis of the surface area of the VEK black hole has shown that it is no 
longer a function of the scale parameter alone as in the Kerr case. It gets 
coupled to  the distortion parameter ,B as well. 

The angular velocity of the horizon. 
The angular velocity of the VEK event horizon is an important physical quan- 
tity. It plays a central role in physical effects such as superradiance. We have 
shown that it goes up significantly as the background influence increases. 

Gaussian curvature and embedding. 
By investigating the intrinsic geometry as represented by the Gaussian curva- 
ture we have shown that the VEK black hole may be classified into two distinct 
classes. The first class consists of black holes with positive Gaussian curvature 
and the second consists of black holes with negative Gaussian curvature. In the 
Kerr case studied by Smarr, this classification is on the basis of two constant 
'limiting' values of the distortion parameter ,B. In the VEK case however, the 
corresponding 'limiting' values are no longer constants but depend on the angu- 
lar momentum parameter a and the background parameter R. The topology of 
the VEK event horizon is that of a 2-sphere as may be expected for any normal 
black hole. 

3. Examples of physical effects in the VEK Spacetime. 
We have investigated some physical effects in the VEK spacetime. These include 
circular geodesics and the gyroscopic precession. 

Circular geodesics. 
A study of the circular geodesics is very fruitful in gaining insight into the na- 
ture of the black hole and the spacetime. In the VES case, as mentioned above, 



the nature of the geodesics changes significantly due to  the non-flat background. 
In the VEK case we have shown that the changes are more pronounced due to 
the presence of rotation. In the Kerr spacetime only one null circular geodesic 
exists. Corresponding to this there is one CO-rotating and one counter-rotating 
orbit. Timelike geodesics exist all the way up to infinity. In contrast, the VEK 
case allows two different possibilities depending on the background parameter. 

In the first case two null circular geodesics are present. There is an inner null 
geodesic and an outer null geodesic. Each of these have one CO-rotating and 
one counter-rotating orbit. Timelike geodesics exist between the inner and the 
outer null geodesics. 

In the second case only one null geodesic exists. Corresponding to  this is one CO 

and one counter-rotating orbit. There is a complete absence of timelike circular 
geodesics. The impact parameter also reflects this feature as we have shown in 
the special case of the VES spacetime. 

By investigating the phenomena of gyroscopic precession in the VEK spacetime 
we have shown that the background affects the precession in both modulated 
and direct effects. The first torsion which in the Kerr case coincided with the 
Schwarzschild Keplerian frequency now no longer coincides with the VES gen- 
eralized Keplerian frequency. I t  is now a function of the angular momentum 
parameter as well in contrast to the Kerr case. This brings about a pronounced 
modification of the results from the Kerr case. In particular this gives rise to a 
generalized version of the Schiff precession. Moreover, even in the special cases 
of the generalized versions of the Fokker-De Sitter precession in the VES space- 
time, the background prevents the first torsion from being equivalent to the 
generalized Keplerian frequency. Finally, the generalized version of the Thomas 
precession in the Einstein universe is also considerably modified. 

The Carter constant and Petrov classification of the VEK spacetime. 
A study of the Carter constant and the Petrov classification sheds light on the 
connection between the properties of the geodesics and the classification of the 
gravitational field. Thus, starting with a discussion of Carter's discovery of the 
fourth constant in the Kerr case, we have shown by construction that the Carter 
constant exists in the VEK spacetime also. From the Carter constant we have 
obtained the Killing tensor and brought out its significance by considering the 
special case of the Schwarzschild spacetime wherein the Killing tensor becomes 
reducible. 

Next, taking into account the fact that in the Kerr spacetirne, the Killing tensor 
is related to the Killing-Yano tensor which, in turn, is related to the type-D 



nature of the spacetime, we have investigated the classification of the VEK 
spacetime. By employing the Newman-Penrose formalism we have calculated 
the spin coefficients for the VEK spacetime. We have shown that unlike the 
Kerr case there is a non-vanishing spin coefficient E .  Even though the rest of 
the results mirror that in the Kerr case, their expressions are considerably com- 
plicated. These spin coefficients contain as limiting cases the Kerr and the VES 
counterparts and of course the Schwarzschild ones also. The Bianchi identities 
contain non-zero Ricci terms also in addition to  the Weyl scalars. 

Motivated by the significance of the type-D nature of a black hole spacetime we 
have studied the classification of the VEK spacetime. We have demonstrated 
explicitly and in detail, that the VES spacetime is type-D. We have shown that 
the only non-vanishing Weyl scalar is Q2. Turning to  the Ricci terms, the only 
non-zero terms are Qoo, Qll, Q22 and the scalar A. That  these terms which van- 
ish in the Schwarzschild case do not do so here shows that the spacetime is 
non-vacuum. In the Einstein universe also the Ricci terms are non-zero which 
brings out the asymptotically non-flat nature of the spacetime. The optical 
scalars W and a vanish as in the Schwarzschild case whereas the optical scalar 
O is modified because of the background. 

We have discussed the 2-spinor formalism and constructed the Killing spinor 
for the VEK spacetime. By means of the Killing spinor we have calculated the 
Killing-Yano tensor and shown that in the limit of the background parameter 
tending to infinity this coincides with the Killing-Yano tensor of the Kerr space- 
time. 

Geodetic Particle Angular Momentum in the VEK spacetime. 
With the above apparatus in hand, we have investigated the relation between 
the Killing and the Killing-Yano tensors. The Killing tensor has been shown 
to  be a 'square' of the Killing-Yano tensor. Both these tensors have been ex- 
pressed through the Newman-Penrose tetrads to further clarify their structure. 
We have shown that these tensors contain the Kerr counterparts as limiting 
cases. By constructing a tetrad for the Killing tensor we have further exhibited 
the relations between the metric, the Killing and the Killing-Yano tensors. The 
eigenvalues of these tensors have been calculated. 

We have introduced the background-black hole decomposition and discussed the 
Kerr-Schild and the generalized Kerr-Schild transformations and their implica- 
tions for the Kerr and the VEK cases respectively. By employing this decomposi- 
tion we have expressed the Newman-Penrose tetrad in terms of background and 
black hole terms. Further, we have split the Hamiltonian, the four-momentum, 
and the Killing tensor into background and black hole terms. We have shown 



that the Killing-Yano tensor has only a background term. 

Focusing on the Killing-Yano tensor we have employed the phase space formal- 
ism to project it to space. By means of the projected tensor we have defined 
quantities analogous to the components of particle angular momentum. These 
components satisfy the Poisson bracket relations expected of them. We have 
shown that to first order in the angular momentum parameter and to second 
order in the inverse of the background parameter, the angular momentum vector 
precesses along the central axis preserving its magnitude. 

To summarize, we have demonstrated that the effect of the background on the properties 
of the usual black holes are significant. We have shown that the results may be classified 
into three groups. In the first, the properties of the black holes are retained. Such is the 
case with the gravitational redshift discussed in Chapter 2 and the existence of the Carter 
constant and the Petrov classification of the VES spacetime discussed in Chapter 5 .  The 
results here are similar to that in the flat case. In the second case, the properties of the 
black holes are considerably mod$ed. This is the case with the perihelion precession, the 
bending of light considered in Chapter 2, the geometry of the ergosphere, the angular ve- 
locity, topology, and the nature of the spin coefficients corresponding to  the VEK black 
hole as shown in Chapter 5 .  In the third case, the properties of the black holes are radi- 
cally altered. This includes the behavior of circular geodesics and the classification of the 
timelike geodesics in the VES spacetime discussed in Chapter 2, circular geodesics in the 
VEK spacetime and the nature of gyroscopic precession discussed in Chapter 4. 

To conclude, we have shown that the effect of the background on the properties of the 
usual black holes is clear and patent. As a prototype the Vaidya cosmological-black holes 
on which we have based our investigations is specific and restricted. Nevertheless, it is not 
a t  all unlikely that the above effects may be retained or even enhanced in more realistic 
models. 
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Chapter 1 

Introduction 

Black Holes in Cosmological Backgrounds 

For more than three decades black holes have been investigated in great detail. Most 
of these studies, however, have been directed towards black holes represented by vacuum 
solutions that are time independent and asymptotically flat. Time independence is char- 
acterized by the existence of a timelike Killing vector field and asymptotic flatness implies 
that the spacetime a t  large distances from the black hole is Minkowskian. These features 
namely vacuum exterior, time independence and asymptotic flatness lie a t  the heart of 
most conceptual and mathematical work associated with black hole physics. When one 
wishes to study a totally realistic situation, however, it may be necessary to give up either 
time independence or asymptotic flatness or both. This would be the case, for instance, 
when the black hole is surrounded by local mass distributions or is embedded in an external 
universe. Under such circumstances, one would like to ascertain whether the well known 
properties of black holes remain retained, modified or  radically altered. 

Black holes in cosmological backgrounds, or more generally, in non-flat backgrounds form, 
therefore, an important topic. Very little has been done in this direction. Some of the is- 
sues involved here have been outlined in a recent article by Vishveshwara[l]. As discussed 
in that article, there may be fundamental questions of concepts and definitions involved 
in this context. Addressing all the pertinent issues in a comprehensive manner would be 
a formidable task indeed. Nevertheless, considerable insight may be gained by studying 
specific examples even if they are not entirely realistic. In a series of studies we have been 
investigating black holes in non-flat backgrounds. In this regard the family of spacetimes 
derived by Vaidya[2] representing in a way black holes in cosmological backgrounds have 
been found to be helpful. These metrics, in general, correspond to non-vacuum solutions 
that represent black holes which are no longer asymptotically flat. One of this represents 
the Kerr black hole in the background of the Einstein universe and the other the special 
case of the Schwarzschild black hole in the background of the Einstein universe. These 
spacetimes contain, as limiting cases, the usual Ixerr and the Sclirvarzschild spacetimes 
respectively and the Einstein universe. In the present thesis, therefore, for the sake of 
t~revity and because of the specific model employed, rve shall use the terms 'cosmological' 
and 'non-flat' interchangeably for convenience, depending on whct81ier we wish to draw 
attention to the cosmological nature of the background or to the ilsymptotically non-flat 



nature respectively. 

We may mention some preliminary work performed before the advent of the present thesis. 
The Schwarzschild black hole in the background of the Einstein universe was investigated 
by Nayak, MacCallum and Vishveshwara [3]. They constructed a composite static space- 
time as an example of a black hole in a non-flat background, which comprises a vacuum 
Schwarzschild spacetime for the interior of the black hole, across which it is matched on 
to the spacetime of Vaidya representing a black hole in the Einstein universe; this it- 
self, in turn, is matched to the Einstein universe. They called this composite spacetime 
the 'Vaidya-Einstein-Schwarzschild (VES) spacetime'. They also studied the behaviour of 
scalar waves in this spacetime. 

With this as the starting point we shall investigate in this thesis, further properties of black 
holes in non-flat backgrounds. 

The organization of this chapter is as follows. In Section 1.2, we discuss the motivation for 
our investigations. In Section 1.3, we address some of the issues involved. In Section 1.4, we 
give an outline of the approach we have taken. In Section 1.5, we consider other possible 
specific models and discuss the reason for choosing the Vaidya cosmological black hole 
spacetimes. In Section 1.6, we discuss briefly the Vaidya cosmological-black hole metric. 
In Section 1.7, we conclude this chapter with a brief outline of the investigations that we 
have performed. 

l. 2 Motivation 

As mentioned in the Introduction, most investigations on black holes have been directed 
towards black holes represented by vacuum solutions which are time independent and 
asymptotically flat. We now discuss the implications of these features briefly. 

l .  Vacuum (or charged) solutions: This feature is a t  the base of most of the theorems 
on black holes. In particular, it is crucial for the formulation of theorems associated 
with the Petrov classification. For instance, the Goldberg-Sachs theorem rests on the 
vacuum nature of the Kerr and Schwarzschild spacetimes. Through this theorem, 
or directly by the nature of the Weyl scalar components, it follows that the vacuum 
black hole spacetimes are all of Petrov type-D. Another theorem of considerable im- 
portance in black hole physics, which assumes a vacuum spacetime, is the Hawking 
area theorem. 

2. Asymptotic Hatness: This feature is based on the reasonable assumption that the 
curvature gvnerated by the source far outweighs the average curvature due to the 



rest of the matter in the universe. Thus, it is assumed that the spacetime a t  large 
distances from the black hole is Minkowskian. Most of the black holes represented 
by vacuum solutions satisfy this criterion. Though this feature is present implicitly 
or explicitly in the formulation of theorems associated with black holes, it is not 
completely clear whether it is really necessary. Also, asymptotic flatness is invoked 
in order to identify conserved quantities via Komar integrals. 

3. Time independence: The static, spherically symmetric Schwarzschild black hole and 
the stationary, axisymmetric Kerr black hole are both time independent. Thus, such 
spacetimes are characterized by the existence of a timelike Killing vector. I t  is this 
feature that ensures that one can define the event horizon of the black hole as a 
Killing horizon. Thus in the absence of this feature it is not clear as to  how to define 
the black hole itself. Moreover, the definition of conserved quantities like the total 
mass are tied up with the existence of a timelike Killing vector. 

We now contrast the above with an example of a totally realistic situation characterized 
by the following. 

1. Non-vacuum: In a situation such as that  encountered in astrophysics, for instance, the 
black hole may be surrounded by local mass distributions. The spacetime around the 
black hole would then be described by an energy-momentum tensor satisfying certain 
reasonable energy conditions. Thus the black hole would no longer be represented 
by a vacuum solution of the Einstein field equations. Thus, for instance, the classifi- 
cation of the spacetime could possibly be affected as there would be no analogue of 
the Goldberg-Sachs theorem. 

2. Embedded in external universe: In a totally realistic situation the black hole would 
not be surrounded by empty space but by an external universe. Depending on the 
model chosen to correspond to observational data, there are two possibilities. 

Static universe: In view of the observational tests suggesting a non-static uni- 
verse this would seem to be not entirely realistic. However, this choice preserves 
time independence and ensures the existence of a timelike Killing vector field. 
Thus the black hole could still be defined by means of a Killing horizon. Such 
a model although not entirely realistic, affords a simple example for studying 
black holes in non-flat backgrounds. This would constitute a first step in devel- 
oping more realistic scenarios. 

Time dependent(Expanding) universe: Present day observational data is strongly 
in favour of an expanding universe described by a Friedman-Robertson-Walker 
spacetirne. It is clear that in this case a timelike Killing vector field no longer 



exists. .Thus it is not possible to  define the black hole via a Killing horizon as 
per the standard methods. 

Regarding the above two points, it is clear that in both situations the black hole 
spacetime would no longer be asymptotically flat but would correspond to the space- 
time of the background universe. 

From the above discussion we may draw the following conclusions which serve as 
motivation for our studies. 

The properties of the usual black holes may change when the features of vac- 
uum, asymptotic flatness and time independence are relaxed. 

Since black hole and cosmological spacetimes have been well explored the com- 
bination namely black holes in cosmological backgrounds may yield more insight 
into the properties of spacetimes in general. 

The usual black holes do not admit stationary perturbations that vanish a t  
large distances from the black hole, thereby preserving asymptotic flatness. This 
means that the black holes cannot be distorted, a fact supported by the unique- 
ness theorems. Other topics that fall within the scope of perturbation analysis 
are, the question of stability, the study of propagation and scattering of radia- 
tion and the determination of quasinormal modes. I t  would be interesting and 
instructive to  find out how these phenomena are modified when the background 
is no longer flat. 

The relaxation of the above mentioned features of the usual black holes may give 
rise to subtle modifications from the standard results. Regarding this we may point 
out that even in the standard case of the Schwarzschild black hole the introduction 
of rotation leads to profound changes. For instance, in the static case the timelike 
Killing vector field becomes null on the event horizon which is a t  once the static 
limit and a Killing horizon. On the other hand, in the case of the Kerr black hole 
the stationary limit a t  which the corresponding timelike Killing vector field becomes 
null does not coincide with the event horizon which still remains a null surface. 
However, a suitable combination of the timelike and rotational Killing vector fields 
enables us to construct a globally hypersurface orthogonal, irrotational vector field 
which does become null on the event horizon. The separation of the stationary 
limit from the event horizon giving rise to the ergoregion in between leads to several 
interesting phenomena such as the Penrose process and superradiance. Similarly the 
reverse situation may prevail, namely phenomena that occur in the Schwarzschild 
spacetime may not take place in the Kerr spacetime. For instance, the generation of 



gravitational synchrotron radiation present in the Schwarzschild spacetime is absent 
in the Kerr spacetime. In a like manner, relaxation of the features of standard black 
holes may radically transform black hole physics. 

We now discuss some of the issues involved. 

1.3 The Issues 

We give a very brief account of some of the approaches attempted by different authors 
towards generalization of black holes. 

1. Tipler(1977)[4] gave a definition of a black hole as a region containing all non- 
cosmological trapped surfaces whose boundary is generated by null geodesic seg- 
ments. Thus in accordance with this, the local properties remain unaltered whereas 
the global behaviour does change. 

2. Joshi and Narlikar(1982)[5] defined a black hole in a globally hyperbolic spacetime 
to be a future set of all closed compact spacelike 2-surfaces which are either trapped 
or marginally trapped. Their definition differs from that of Tipler in that it does not 
distinguish between local and cosmological trapped surfaces and covers all possible 
local collapse situations. In other words, they defined the black hole on the basis 
of the trapping of light by the gravitational field of a collapsing object in a globally 
hyperbolic spacetime. 

3. Hayward[G] has defined the black hole as a certain type of trapping horizon. A trap- 
ping horizon is a 3-surface foliated by marginal surfaces. And a marginal surface is 
a spatial 2-surface where a light wave would have instantaneously parallel rays. He 
classified the marginal surfaces into four types, described as future or past and outer 
or inner. Tho future outer trapping horizon provides the definition of a black hole. 
This also excludes cosmological horizons and is thus closer in spirit to that of Tipler. 

4. Ashtekar et a1[7] in recent work have introduced the concept of what they call an 
isolated horizon. Their key idea is to replace the notion of a stationary black hole with 
that of an isolated horizon, which can be identified with a portion of the event horizon 
which is in ccluilibrium ie across which there is no flux of gravitational radiation 
or matter ficlds. They define an isolated horizon by means of certain boundary 
conditions. They state that these boundary conditions as well as the overall view- 
point are closctly related to the work of Hayward. However, they do not give a 'direct' 
definition of the black hole. Nevertheless, their work gives importance to cosmological 
horizons as (10 Joshi and Narlikar. 



Next we consider some of the issues directly related to our investigations and which we 
shall address in the present thesis. 

1. Tests: This has to do with the issue as to whether the properties of the well-known 
black holes are it retained, modified or radically altered. We shall exemplify these 
three possibilities and draw attention to the nature of the modifications that take 
place. 

2. Physical phenomena: One would like to  know whether anything new happens. 

3. Exploration towards more realistic models: The nature of the modifications or the 
simplicity of the model may indicate the appropriateness of the prototype black hole 
on which to base our investigations. This may involve the theory of exact solutions 
which is beyond the scope of this thesis. 

We now discuss the mode of investigation that we employ. 

1.4 Our Approach 

The approach that we shall take in investigating black holes in non-flat backgrounds may 
be outlined as follows. 

a Consider specific examples: This conforms well to the historical evolution of the field 
of black holes. It was initially by the studies on the Schwarzschild and the Kerr 
black holes that the motivation for, and development, of the formalism took place. 
Investigations on the local properties of these black holes gave rise to the need to 
introduce suitable generalizations incorporating global methods as well. Studies on 
physical phcriomena in the gravitational field of these black holes led to much of the 
presently well-known theorems such as, for instance, the area theorem along with the 
concept of the irreducible mass. 

a Relax conditions step by step: Dropping a t  once all the features of the usual black 
holes may prove to be too formidable to handle as a first step. For instance, relaxing 
time indepcridence deprives us of the timelike vector field which goes into defining 
the black holc. As a concrete illustration, the Vaidya cosmological-black hole metric, 
which we slii~ll discuss below, having the Einstein static universe as the background 
spacetime niiturally admits a timelike Killing vector field. However, as we shall dis- 
cuss later on, its non-static counterpart given by Vaidya himself does not satisfy the 



definition of a black hole as being a null surface with the light cone tangential to it. 
Therefore, in the present thesis we retain time independence but drop asymptotic 
flatness. 

Accumulate a sizeable body of knowledge: As in the case of the Schwarzschild and 
the Kerr black holes, possessing a substantial body of knowledge and results on spe- 
cific examples makes it easier to proceed towards generalizations. Moreover, this 
step serves as a selection criterion for the specific examples by allowing us to restrict 
attention to those which retain the desirable properties of black holes. 

Study issues that emerge: In course of investigations, as  in fact borne out by the 
present work, it is natural that further issues may arise. A study of these may shed 
light on the issues that confronted us a t  the starting point itself. We shall find several 
illustrations of this in the succeeding chapters. 

We turn now to a discussion of possible specific examples of black holes in non-flat back- 
grounds. 

1.5 Prototypes of Black Holes in Non-Flat Backgrounds 

In an attempt to arrive a t  a suitable choice of 'a prototype we may mention here some 
previous work related to  black holes in non-flat backgrounds. For instance, McVittie con- 
sidered the spacetime corresponding to a mass-particle in an expanding universe[8] [g] [10]. 
The metric, a t  a first glance, seems to admit an event horizon. However it can be shown 
that the spacetime becomes singular on this surface and the interior is not defined a t  all. 
As such this spacetime may represent essentially a mass-particle rather than a black hole 
in an expanding universe. For further properties and problems associated with the work 
of McVittie, we refer to Sussman[ll]. There are also studies in the literature based on 
the so called 'Swiss-cheese model'. Einstein and Straus [l01 [l21 constructed a model which 
comprises a cavity enclosing a Schwarzschild vacuum spacetime which includes the black 
hole; exterior to the cavity is the Friedman cosmological spacetime. The above two models 
have been employed to study the influence of the cosmological expansion on planetary or- 
bits as was done, for instance, by Gautreau[lS]( see also Brauer[l4]). This study has been 
extended to the case of a slowly rotating black hole by Chamorro[l5]. 

,411 the above models essentially contain cavities. This shortcoming is remedied by the 
Vaidya spacetime. The Vaidya spacetime is of a very special kind in that it connects the 
black hole and the Einstein universe. The regular black holes form a member of the family 
represented by the Vaidya metric. In the limit we do obtain the regular black holes. This 
is not possible, for instance, for models having the De Sitter universe as background. Thus 
the Vaidya family provides the best prototype for our investigations. 



The Vaidya Cosmological-Black Hole Metric 

The Vaidya cosmological-black hole metric which we shall be dealing with was derived 
by Vaidya in 1977. We may point out that this is in no way related to the Vaidya radi- 
ating metric given by him earlier. His approach towards obtaining the metric is to take 
any suitable background metric and to make a transformation to rotating spheroidal co- 
ordinates. By making certain adjustments, he then arrives at  the cosmological black hole 
metric. In the limit as we have noted earlier, we recover the usual black hole metric and 
the metric of the Einstein universe. The energy-momentum tensor is derived through the 
Einstein field equations. In the present thesis we confine ourselves to the Einstein universe 
as background. 

1.7 Outline of the Present Investigations 

In the present thesis we study both the Vaidya-Einstein-Schwarzschild and the Vaidya- 
Einstein-Kerr spacetimes. In Chapter 2, we investigate some physical effects in the VES 
spacetime. These include the classical tests namely the gravitational redshift, perihelion 
precession and light bending and a study of the geodesics. We move on to the VEK space- 
time in Chapter 3 focusing on the geometry and physics of the event horizon. By computing 
the equatorial and polar circumferences we examine the oblateness of the horizon as a func- 
tion of the background parameter. We discuss the behavior of the surface area and the 
angular velocity of the horizon as the background parameter is varied. We compute the 
Gaussian curvature and discuss conditions for embedding the horizon in Euclidean space. 
This will be followed by an investigation of some physical effects in the VEK spacetime 
in Chapter 4. These include circular geodesics and the gyroscopic precession. In Chapter 
5 ,  we study the Carter constant and the Petrov classification of the VEK spacetime. We 
construct the Killing tensor, the Killing spinor and the Killing-Yano tensor. In Chapter 6, 
we investigate the structure of the geodetic particle angular momentum analogues in the 
VEK spacetime by means of the Killing-Yano tensor. Chapter 7 contains a brief summary 
and conclusion of this thesis. Throughout this work we compare and contrast the results 
obtained in the casc of black holes in non-flat backgrounds with that of their asymptotically 
flat background co~interparts. 
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Chapter 2 

The Vaidya-Einstein-Schwarzschild 
Black Hole: some physical effects 

2.1 Introduction 

In the previous chapter we discussed the motivation underlying our investigations on black 
holes in non-flat backgrounds. We elucidated the reasons for choosing the Vaidya cosmo- 
logical spacetimes as being the most suitable spacetimes for our studies. In the present 
chapter we take as a starting point, a special case of the Vaidya cosmological spacetimes. 
This is the spacetime of the static, spherically symmetric Schwarzschild black hole in the 
background of the Einstein universe. As mentioned in Chapter 1, Nayak, MacCallum 
and Vishveshwara[3] constructed a composite static spacetime called the Vaidya-Einstein- 
Schwarzschild (VES) spacetime, as an example of a black hole in a non-flat background. 
As a physical effect they studied the behaviour of scalar waves in this spacetime. 

We now study some more physical effects such as the classical tests and geodesics in the 
VES spacetime[21]. 

The organization of this chapter is as follows. In Section 2.2, we describe the VES metric 
as given in [3] and outline the salient points that led to the construction of the composite 
spacetime. In Section 2.3, we decompose the VES metric into a background and a black 

. hole component. This is analogous to  the expression of the Kerr metric in terms of Kerr- 
Schild coordinates, as will be clarified in the same section. This 'background-black hole 
decomposition' allows for a convenient separation of the effects due to the background 
spacetime and due to the black hole respectively. This type of decomposition is found 
to be useful and instructive in discussing physical effects as well. As an example we 
consider the geodesic Lagrangian. We may point out that this decomposition would be of 
considerable utility if one has to deal with the Kerr black hole in the background of the 
Einstein universe as we shall see in Chapter 6. Section 2.4 comprises the computations 
of the classical test,s, namely the gravitational redshift, the perihelion precession and the 



bending of light, modified by the non-flat background spacetime. Geodesics are studied in 
Section 2.5 and are shown to undergo significant changes because of the background of the 
VES spacetime as compared with the usual Schwarzschild spacetime. This study includes 
the structure of circular geodesics and the classification of geodesics in general. Section 2.6 
carries some concluding remarks. 

2.2 The Vaidya-Einstein-Schwarzschild (VES) Space- 
t irne 

The Kerr metric in the background of a homogeneous model of the universe rather than in 
the standard Minkowskian background was given by Vaidya[2]. This metric contains both 
the Kerr metric and the metric of the Einstein universe as limiting cases. The special case 
of this metric, the Schwarzschild metric in the background of the Einstein universe has 
been investigated in detail by Nayak, MacCallum and Vishveshwara[S] who constructed a 
composite spacetime called the Vaidya-Einstein-Schwarzschild (VES) spacetime. We take 
this VES spacetime as our starting point, the metric of which may be presented as 

where, M is the mass parameter and the coordinates range from 0 5 r / R  5 7r, 0 5 0 5 .ir 
and 0 5 4 5 27r. Here, M is termed the mass parameter because in order to define it 
rigorously one requires the spacetime to be asymptotically flat. Nevertheless, M indeed 
reduces to the mass of the Schwarzschild spacetime in the limiting case of R + oo as we 
shall show below. 

This metric incorporates both the Schwarzschild black hole and the Einstein universe as 
limiting cases. As R goes to infinity, we obtain the Schwarzschild spacetime 

and as iW goes to zero we obtain the Einstein universe 

The parameter R represents the influence of the cosmological background on the black 
hole. Smaller the value of R,  greater the background influence. In view of this we shall 
denote R as the background parameter, which originally started off in the formalism as 
the scaling parameter in the Einstein universe. The background can also be viewed simply 
as matter distribution characterized by R. The event horizon of the black hole is a t  



Returning to  the metric(2.1), the metric of the interior of the event horizon is taken to be 
that of the Schwarzschild vacuum with mass parameter Ms. The metric of this region is 

I therefore 

2 2Ms 2 2Ms r ds, = (1 - -) dt - (1 - -)-'dr2 - sin2(-) (do2 + sin2 8 d42) (2.5) r r R 

In ref[3], it has been shown that the metrics(2.1) and (2.2) can be smoothly matched 
across the event horizon. In their paper the authors use Kruskal coordinates for the vac- 
uum Schwarzschild and the VES metric in order to perform the matching. We summarize 
the essential steps below. 

The Kruskal form of the VES line element is given by 

The Kruskal line element for the Schwarzschild vacuum spacetime 

may be recovered from equation (2.6) by the limit R = m. 

The horizon of the VES metric is a t  r = ro where 2 M  = Rtan(ro/R).  To match to 
Schwarzschild a t  the horizon the angular variables part requires 2Ms = R sin(ro/R). Using 
r' = Rsin(r/R) as the radial variable in the VES region both the 0 and P of each of 
the metrics may be rescaled by constant factors 4Ms/f i  and ~ M R ~ ~ - ' o / * ~ / ( ~ M ~  + R2) 
respectively, giving new coordinates U, V, to  reduce the metrics to  the forms 

Then we see the metric is continuous if we identify r, and r' a t  the future horizon 
U = 0 ,  r' = r s  =2Ms = Rsin(ro/R), r = r o .  

' 

The derivatives of tjhe metric coefficients will match if 

1 1 a t  the horizon, but g = l/ cos(r/R) and = Rsin(ro,R). Therefore we obtain 

1 
- - 

1 
2 M  cos (ro l R) R sin (ro l R)  

This is consistent Ijecause at  the horizon 2 M  = R tan(ro/ R). 



Matching the metric component gs3 yields the relation between the Schwarzschild vacuum 
mass MS and the VES mass M 

This clearly exhibits the influence of the cosmological matter distribution on the Schwarzschild 
vacuum black hole mass. Since it is required that 2Ms <_ R the length scale in the exterior 
places a bound on the black hole mass. 

Next we see that a t  r / R  = r / 2  the metric (2.1) reduces to that of the Einstein universe. 
Here it is natural to match the Einstein universe given by equation(2.3) to  the spacetime of 
(2.1). I t  has been shown that the metric components automatically match but the deriva- 
tives do not, giving rise to a surface distribution of matter. We have thus the composite 
VES spacetime which consists of a vacuum black hole interior which is matched across 
the event horizon to the spacetime of Vaidya, which in turn is matched to  the Einstein 
universe. In other words the Vaidya spacetime now consists of three sectors namely the 
vacuum Schwarzschild sector, the Vaidya sector and the Einstein sector. We shall use this 
terminology whenever convenient. 

The Schwarzschild spacetime is asymptotically flat whereas the VES spacetime is asymp- 
totically Einstein. This may be seen directly by setting the radial coordinates r and 
R tan(r /  R) to infinity in the respective metrics. However, in order to exhibit this feature 
clearly and also with a view towards future generalizations, in particular, having to do 
with the structure of geodetic angular momentum in the spacetime of the Kerr black hole 
in non-flat backgrounds in Chapter 6, we examine this feature in some detail. 

2.3 The Background-Black Hole Decomposition 

In order to  study the effects due to the background and the black hole clearly, it is con- 
venient to  introduce the background-black hole decomposition. This idea is implicit while 
expressing the Kerr metric in Kerr-Schild coordinates but has not been exploited fully 
especially in the case of the Schwarzschild metric. This decomposition enables us to neatly 
separate out the various geometrical and physical quantities associated with the spacetime 
into background and black hole quantities. Thus attention may be given to either the 
background spacetime or the black hole in order to study or generalize the properties of 
the spacetime. In particular, the background may be extended from a flat into a non-flat 
one as will be shown in the following sections. In Chapter 6, we shall discuss this in greater 
detail. 



2.3.1 The metric 

t 
For the sake of completeness we first consider the decomposition of the Schwarzschild 
metric. It is instructive to carry out this procedure for the Schwarzschild metric on its 
own rather than consider it as a special case of the Kerr metric in the Kerr-Schild form. 
Accordingly we begin with the Schwarzschild metric 

The corresponding Newman-Penrose (NP) null tetrad (1 ,  n, m, m) is given by 

m~ = m:dxa = -:(do + i sin Bd4) fi 
- r m, = 7ii:dxa = - - (do - i sin Od4) JZ 

where 
A = r2 - 2Msr 

In terms of the above tetrad, the metric assumes the form, 

We make a transformation 

which enables us to express the metric as 

2Ms ds: = ( ~ x O ) ~  - dr2 - r2 (do2 + sin2 19 dqj2) - -(dxO - dr) 2 
r 

with the corresporlding N P  tetrad 

1, = dxO - dr 
A 

n,  = -(dxO - dr) + dr 
2r2 

r 
m, = --(dB + isinBd4) 

- - r m, = madxa = - - (dB - i sin Bd$) JZ 
The flat metric 



on the other hand, has the NP tetrad 

l 
nf = - 2 (dx" + d r )  

r mf = -- a (dB + i sin e d 4 )  

The above transformation allows us to express the N P  tetrad of the Schwarzschild metric 
entirely in terms of the tetrad of the flat background spacetime. 

And the metric splits into a flat background metric and a term involving the tetrad of the 
flat background spacetime 

where, h, = 2Ms/r and f refers to the flat background. We see t,tlat t,he infbrmation about 
the black hole is contained entirely in just one of the tetrad, n,. 

.4s r goes to infinity, the second term goes to zero and the metric coincides with the 
metric of the flat background spacetime. This shows that the metric is asymptotically 
flat. Turning now to the case where we have an asymptotically Einstein background, by a 
construciion closely following the Schwarzschild case, we arrive a t  the decomposed metric 
for the VES spacetime. 

ds;,, = dsz - hl, 8 l ,  (2.24) 

where, h = 2M/ R tan(r/ R ) ,  e refers to the Einstein background. 
The corresponding N P  tetrad is 

7=2 
l,,, = d t  - =dr 

A 

- r - -- mves - fi 
(dB + i sin Od4) 

- - - r 
lnves - -- fi 

(dB - i sir1 Bd4) 



where, 

A generalized transformation 

enables us to express the VES metric as a combination of a non-flat Einstein metric and a 
term involving the N P  tetrad of the Einstein background spacetime. 

the N P  tetrad being given by 

As R tan(r/R) goes to infinity, the second term in the VES metric goes to zero and the 
metric coincides with the metric of the Einstein universe. This shows that the metric is 
asymptotically Einstein. As in the Schwarzschild case this form of the metric is known 
as the generalized Kerr-Schild form[lO], the term 'generalized', referring to the non-flat 
nature of the background spacetime. It is interesting to observe that the VES metric may 
be expressed as a combination of the flat metric and two other terms. This is because the 
Einstein metric may be written as 

. where Z, g and z are cartesian-like coordinates defined by 

whence, 
(zdz + ijdij + zdz) 

ds: = d s ;  - 
(R2 - 7 ~ 2  g2 22) 



Thus the VES metric may be expressed as 

This clearly shows that as R goes to infinity the VES metric goes over into the metric of 
the vacuum black hole 

As M goes to zero, it goes over into the metric of the Einstein universe 

It is expected that the background-black hole decomposition may be carried out in the 
case of black hole spacetimes other than the Einstein universe facilitating thereby to find 
new solutions of black holes in non-flat backgrounds, especially in the background of an 
expanding universe. 

2.3.2 The geodesic Lagrangian 

Proceeding in the spirit of the previous subsection, we decompose the test particle La- 
grangian and write it as the sum of the background and the black hole terms. The back- 
ground term may be thought of as a kinetic energy term and the black hole term may be 
thought of as a potential energy term, in analogy with the usual Lagrangian formalism. 
This allows us to decompose the conserved quantities into corresponding background and 
black hole terms as well. 

It is instructive to recall the usual geodesic Lagrangian method. As is well known, the 
equations governing the geodesics in a spacetime with the line element 

can be derived from the Lagrangian 

where T is an affine parameter which is usually identified with the proper time, for time-like 
geodesics. 

For the VES spacetime, the Lagrangian is 

where the dot denotes differentiation with respect to T. As in the Schwarzschild case, 
without loss of generality, we confine the geodesics to  the equatorial plane defined by 
8 = 7r/2. We then have 



1 
L = 5[(1 - 

2M 
) i 2 - ( l -  2M ) - I f2  - R' (L) $1 R tan($) R tan(;) R 

(2.39) 

The above Lagrangian has two conserved quantities coming from the cyclic coordinates t 
and 4, defined by 

the energy and 

s i n 2 ( r / ~ ) $  = L 

the azimuthal angular momentum. In terms of these constants, the Lagrangian becomes 

For time like geodesics, we have ,C = f ( d ~ / d r ) ~  = 1, and hence 

which immediately gives 
f 2  + v 2 ( r )  = 

where 

is the effective potential for particle motion described by the above Lagrangian. 

2.3.3 The decomposed geodesic Lagrangian and conserved quan- 
tit ies 

The background-black hole decomposition of the test particle Lagrangian is obtained by 
taking the corresponding decomposed metric and forming the Lagrangian as 

which may be written as 
C = L, - ( 1 / 2 ) h ( l , + ) ~  

with the Lagrangian for the test particle in the Einstein universe alone given by 

The conjugate mornenta are 

P,""" = dC/dxa  - h(laz")la 



and therefore 

P,""" PP," - h(l,+)l, 

where 

P," = dCe/axa 

and the two conserved quantities, the energy E and the azimuthal angular momentum L 
are therefore given by 

which indicates clearly that the energy receives a contribution from both the background 
and the black hole and that the azimuthal angular momentum is due only to  the Einstein 
background. 

We shall see that the above decomposition will be more relevant when we study the classical 
tests. Here we exhibit plots of the effective potential for particle motion after noting that 
the L appearing in equation 2.45 is just L,. 

Figure 2.1: Plot of the effective potential V(r) for M = 1, L = 6 

The qualitative features of the orbits may be discerned from the plot of the effective po- 
tential against r. A detailed discussion of such a plot for the Schwarzschild spacetime is 
given in various standard sources [l61 and the same may be done for the present case. As 
a detailed discussion based on a different approach will be given below we merely present 
here the plot for various values of R,  indicating the degree of cosmological influence. At 
small values of R, the influence of the cosmological background is so large that there is an 
enormous modification in the nature of the orbits. At large values of R the orbits tend to 
their Schwarzschild character as the cosmological influence decreases. 



2.4 The Classical Tests 

A study of the classical tests, namely the gravitational redshift, the perihelion precession 
and light bending, of the VES spacetime shows how the non-flat nature of the back- 
ground spacetime affects the Schwarzschild results. The non-flat background manifests 
itself through the parameter R. This is more so in the case of the perihelion precession 
and light bending than in the case of the gravitational redshift to which we turn first. 

2.4.1 The gravitational redshift. 

It is instructive to study the gravitational redshift first as it is the simplest among the 
classical tests. In the usual Schwarzschild case we can find the ratio of the frequencies 
of light emitted a t  a certain point in the spacetime and observed a t  another, to  be given 

by[161 

U O / ~ E  ( & ) ~ / ( & i i ) o  = 4-1 J- (2.54) 

where, v0 and V E  are the frequencies of light observed and emitted, with subscripts 0 and 
E referring to the observer and emitter, respectively and goO the metric tensor component. 

In the VES case, however, due to  the presence of different sectors, the effect becomes much 
more interesting. We can consider the gravitational redshift seen by a static observer in 
the Einstein sector due to  light emitted in the Vaidya sector. In the general case, the ratio 
of frequencies is given by 

and in terms of the Schwarzschild mass MS, this becomes 

When light is emitted from a point in the Vaidya sector 7r/2 < r / R  < ;rr and received by a 
static observer in the Einstein sector, we have 

When both the observation and the emission points are in the Einstein sector the redshift 
is absent as is expected. 

vo/ve = ( & G ) o / ( J S o o ) e  = (1 - 2Ms / ( R  tan ( r l ~ ) ) ) ? ~  (2.57) 
JGLiiigz 



2.4.2 Perihelion precession 

In order to  consider the effect of perihelion precession in the VES spacetime, and to 
make the discussion analogous to the Schwarzschild case, it is convenient to define n = 

1/R tan(r/R) and do a similar calculation as in that case. the orbit equation for time-like 
geodesics is given by, [l61 

By treating the second term on the right hand side as a perturbation, we obtain the solution 

1 1  1 1 
ii = M (- + -)[l + e cos 4 ( l -  3~~ (, + ,))I 

L: ~2 Le R 

where e is a constant emerging after integration, the eccentricity of the orbit as in the 
Schwarzschild case. 

The perihelion shift is 
l 1 

which in terms of the mass MS is 
1 1 

and to second order in 1 /R may be expressed as 

where the subscript S indicates the Schwarzschild quantities. Thus the presence of the 

cosmological background, increases the perihelion precession. 

2.4.3 Bending of light 

The discussion here is similar to  that in the above section. The orbit equation for null 

geodesics[l6] is given by 

For small values such that the second term on the right hand side can be treated as a 
perturbation, we obtain the solution 

where b is the impact parameter usually taken as the radius of the source. 



Introducing cartesian-like coordinates 

T = R tan(r/R) cos q5 

g = R tan(r/R) sin q5 

we obtain 

whence, the deflection angle-the difference between the angular coefficients of the two 
asymptotes of the above equation-, is 

Which may be expressed in terms of the mass MS as 

and to second order in 1 /R we have 

where b, represents the Schwarzschild quantity obtained as a limiting case when R + m. 

We see that the presence of R causes an increase in the bending of light. This effect is 
analogous to that in perihelion precession. 

2.5 Geodesics in the VES spacetime 

A study of the geodesics is the direct route towards gaining qualitative and quantitative 
insight into the nature of the spacetime. First we study circular geodesics. Next we present 
a brief classification of the geodesics in general. 

2.5.1 Circular geodesics 

We first investigate the simpler case of circular geodesics by the method of Killing vectors 
given by Iyer and Vishveshwara[20]. The VES metric admits a time-like Killing vector J a  

and a rotational Killing vector qa. 

+ We form the combirlation 

xa = J a  + wqa 



where W is the angular velocity. 

Confining to  the equatorial plane, we obtain by equating the derivative with respect to  
r of the norm xaxa to zero, the generalized Kepler law in the Vaidya sector of the VES 
spacetime 

r r 
w2 = M/[R~  sin3(-) cos(-)] 

R R 
(2.74) 

which in terms of the schwarzschild mass M, is given by 

r 
w2 = M,(l - ~ M ; / R ~ ) - ' / ~ / ( R ~  s in3(1)  COS(-)) 

R R 
(2.75) 

For R going to infinity we recover the usual Kepler law 

for the Schwarzschild spacetime. 
For M going to zero, ie in the Einstein universe 

and there are no circular geodesics as is expected. 

Let us consider the time-like and null circular geodesics, the condition being 

This and the generalized Kepler law together lead to the existence of null circular geodesics 
a t  the two coordinate values: The inner null circular geodesic defined by 

and the outer null circular geodesic defined by 

with R2 > 12M2 

Time-like circular geodesics exist 'sandwiched' within these two limits. There are no cir- 
cular geodesics beyond these values. This is analogous to the effect in the Ernst space- 
time, where two null circular geodesics are present as has been pointed out by Nayak and 
Vishveshwara[l8]. As R becomes large the inner null circular geodesic approaches the 
Schwarzschild value r = 3M, and the outer null circular geodesic approaches infinity. An 
interesting feature to note here is that of the centrifugal force reversal, which has been 
discussed by Prasanna[l9]. The centrifugal force reverses a t  the inner null circular orbit 
by becoming inward. This is analogous to  what happens in the case of the Schwarzschild 
spacetime. In the present case, such a reversal takes place a t  the outer null orbit also, as 
in the case of the Ernst spacetime. Since the Schwarzschild case has a null circular orbit 
a t  only r = 3Ms wc see that the effect of the Einstein cosmological background is in bifur- 
cating the null circular orbit of the Schwarzschild spacetime into two thereby completely 
altering the nature of the Schwarzschild circular geodesics. 



2.5.2 Geodesics and their classification 

We now present a classification of the geodesics[l7]. Going back to the orbit equation 
considered in Section 4, we write it as 

where 

The nature of the roots of the cubic equation 

determines the nature of the geodesics. 

We take iil, ii2 and ;ii3 to be the roots and refer to Chandrasekhar[l7] for details of the 
analysis. 

We note first the features of the time-like bound orbits which require that 

or, in the background-black hole decomposed form 

which contains the special cases 

corresponding to  the Schwarzschild case, with f denoting the flat quantities and 

corresponding to the case of the Einstein universe. 

Without going into extensive details, we list the various cases: 
There are five casc:s: 
Case(1): For 0 < Z1 < E2 < a3, there exists two distinct orbits confined respectively, to 
the intervals 
(a): iil 5 ii 5 a2, iLn orbit which oscillates between two extreme values of the radial coor- 
dinate G-l = R ta r~( r /R) ,  which we may call the orbit of the first kind and 
(b): ii > E3, an orbit, which, starting a t  a certain aphelion distance, plunges into the 



singularity a t  R tan(r/R) = 0, which we may call an orbit of the second kind. 
Case(2): The orbit of the first kind is a stable circular orbit and the orbit of the second 
kind plunges into the singularity. 
Case(3):The orbit of the first kind, starts a t  a certain aphelion distance iill and approaches 
the circle of radius E:', asymptotically, by spiralling around it an infinite number of times. 
The orbit of the second kind spirals away from the same circle and plunges into the singu- 
larity. 
Case(4): There is an unstable circular orbit of radius El' = ET' = ET'. 
Case(5): All orbits, starting from certain aphelion distances plunge into the singularity. 
We note next the features of the time-like unbound orbits which require that 

There are only three cases: 
Case(1): There exist orbits of the first kind restricted to  the interval, 0 < E 5 ii2 and 
orbits of the second kind with ii 2 ii3 
Case(2): Orbits with ii2 = ii3 which approach asymptotically a common circle, spiralling 
around it an infinite number of times. 
Case(3): Orbits which all plunge into the singularity. 
The above cases are qualitatively analogous to those occurring in the usual Schwarzschild 
spacetime. The quantitative differences which are considerable, are not revealed by means 
of this analysis. However, the null geodesics exhibit a drastic modification even in their 
qualitative features. To see this we consider the orbit equation for null geodesics, 

where 

with 

Dues = Le/Eves = Le/(Ee - h(laxa)) 
In the usual Schwarzschild case, the corresponding polynomial g(u) is just 

which is obtained from the above equation by tending R to infinity. Here, the nature of 
the roots depend on the sign of the term 1/D: which being always positive, leads to a 
situation similar to the time-like unbound orbits, giving rise to  three cases only. 

In the VES case, however, the nature of the roots of the corresponding polynomial equation 
depend on the sign of the term (1/D,2,,-1/R2) which can take on both positive and negative 
values depending on the value of R and leads to a situation similar to that of the time- 
like bound as well as time-like unbound orbits giving rise to  eight cases. This makes the 
qualitative behaviour of the null geodesics completely different from that occurring in the 
Schwarzschild spacctime. As has been already mentioned, the effect of the background in 
altering physical phenomena occurring in the Schwarzschild spacetirne is considerable. 



Concluding Remarks 

In the present chapter we have studied some physical effects in the composite Vaidya 
cosmological-black hole spacetime constructed by Nayak, MacCallum and Vishveshwara. 
This VES spacetime is asymptotically non-flat but is time independent. The event horizon 
is defined as a Killing horizon. By studying physical effects in this spacetime, we have 
shown that the introduction of the cosmological background modifies the Schwarzschild 
results considerably. In contrast to  the Schwarzschild case, the nature of the null geodesics 
is drastically affected and the time-like circular geodesics depart significantly from their 
Schwarzschild counterparts. Regarding the classical tests- the gravitational redshift is 
modified from that in the Schwarzschild spacetime and the perihelion precession and light 
bending undergo an increase because of the background spacetime. These investigations 
allow us to conclude that the background spacetime has a clearly noticeable influence on 
the physical phenomena occurring in this spacetime. 
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Chapter 3 

Geometry of the 
Vaidya-Einst ein-Kerr Black Hole 

3.1 Introduction 

In the previous chapter we studied the Vaidya-Einstein-Schwarzschild black hole which 

represents the Schwarzschild black hole in the background of the Einstein universe. By 
investigating some physical effects such as the classical tests and geodesics we showed that 
the non-flat background leads to significant modifications of the Schwarzschild counter- 
parts. Apart from the pronounced modifications of the classical tests, the nature of the 
circular geodesics as well as the classification of geodesics in general is completely altered 
by the presence of the background. At the same time, even in the asymptotically flat case 
it is well known that the introduction of rotation brings about profound changes. Thus 

taken together the above considerations allow us to expect that the inclusion of rotation 
in the asymptotically non-flat case would lead to interesting effects. In the present chaptc I. 
we take up this line of investigation by studying the Kerr black hole in the background of 
the Einstein universe. 

The Kerr black hole in the background of the Einstein universe is a stationary, axisymmetric 
black hole surrourided by matter distribution. As in the spherical case the cosmological- 
black hole spacetime given by Vaidya[2] has been found to be most suitable for our inves- 
tigations. We shall call this the Vaidya-Einstein-Kerr(VEI0 spacetime in analogy with its 
Schwarzschild counterpart referred to as the VES spacetime earlier. The scaling parameter 
of the Einstein universe characterizes the influence of the non-vacuum background which 
is no longer asymptotically flat. We show that several properties of black holes are signif- 
icantly modified by the background effects. These properties include the structure of the 
ergosphere, the geornetry of the event horizon as well as its angular velocity. 

We begin this study in Section 3.2 where we describe the VEI< metric as given by Vaidya 
and cast it in the Boyer-Lindquist form. We then present the energy momentum tensor 



and discuss the structure of the event horizon and the stationary limit surface as modified 
by the background. In Section 3.3, we study the effect of the background on the shape of 
the black hole by computing the equatorial and polar circumferences. In Section 3.4, we 
investigate the surface area of the horizon. In Section 3.5, we discuss the angular velocity 
of the horizon. In Section 3.6, we examine the surface gravity and the 'extreme' VEK black 
hole. In Section 3.7, we consider the Gaussian curvature and the embedding of the surface 
of the horizon in Euclidean space. Section 3.8 comprises some concluding remarks. 

3.2 The Vaidya-Einstein-Kerr (VEK) Spacetime 

The Kerr metric represents the spacetime of a stationary, axisymmetric black hole. This 
spacetime is time independent and asymptotically flat. We wish to retain time indepen- 
dence but relax asymptotic flatness. A specific example of such a spacetime is the VEK 
spacetime given by Vaidya. He generalized the Kerr metric by extending the background 
spacetime from a flat one to a homogeneous model of the universe. Thus his cosmological 
rotating black hole metric represents the spacetime of a stationary, axisyrnmetric black 
hole in an asymptotically non-flat background. This metric yields, as limiting cases, both 
the Kerr metric and the Einstein universe expressed in spheroidal polar coordinates. The 
metric, in general, can be considered as representing the interaction between the black hole 
and the background. 

Since the original paper by Vaidya is not easily accessible and for the sake of completeness 
we briefly outline Vaidya's method in arriving i t t  the VEK metric. 

3.2.1 The Vaidya cosmological- black hole metric 

Starting with the metric of the Einstein universe 

(zdz  + gdg + z d ~ ) ~  
ds; = ( d ~ ' ) ~  - ( d ~ ) ~  - - ( d ~ ) ~  - (R2 

Vaidya makes a transformation from (5, g, T) to spheroidal polar coordinates (r, 8 ,d )  

5 + ig = (Rsin(r/R) + iacos(r/R)) sin B eii 

2 = Rsin(r/R)cosB (3.2) 

under which the Einstein metric becomes 

+ ( ( R ~  - a2) sin2 (r/ R) + a2 cos2 0) sin' 19d4~ 

In terms of the retarded null coordinate u = t - r this takes the form 



- ( ( R ~  - a2)  sin2 ( r l ~ )  + a2 cos2 8 )  sin2 - (du + a sin2 

which forms the background of the VEK metric given in[2] 

ds2 = 2(du + a sin2 8d$)dt - (1 + 2Mp) (du + a sin2 8d6I2 - 

where 

In the above, iZ/I and a are the 'mass' and the 'angular momentum' parameters respectively. 
These quantities are well defined in an asymptotically flat spacetirric and it is not clear 
a t  the outset as to how to extend it to the non-flat case. Neverthcless, for the sake of 
convenience, we continue to use the terminology keeping in mind that these parameters 
go over to t,heir corresponding limiting counterparts as the background influence vanishes. 
In the above, the coordinates range from 0 5 r / R  5 n,  0 5 8 < n and 0 5 4 5 27r. At 
0 = n/2 and r / R  = n the metric is singular. The former is present in rhe Kerr case as well 
and may be taken care of by going over into generalized-Kerr Schild coordinates in analogy 
with the Kerr case. The latter may be resolved by matching the Vaidya exterior to the 
Einstein universe. As in the VES case we match to the Einstein universe at  r /R  = ~ / 2 .  
.4t this radius the VEK line element reduces to 

which is the line tlernent of the Einstein universe expressed in spheroidal polar coordinates. 
The metric compot~ents of the two spacetimes automatically match and the first derivatives 
of the tt parts is discontinuous, thereby giving rise to surface dist,rib~~tion of matter. The 
jump in the fundarllental form of the r = const surfaces is 

which goes over to the VES counterpart 

The Vaidya cosmological-black hole metric includes both the Kerr sp;~cetime and the space- 
time of the Einstoin universe as limiting cases. In order to see this feature clearly, it is 
convenient to cast the metric in the Boyer-Lindquist form. 



3.2.2 VEK metric in the Boyer-Lindquist form 

In the case of the Kerr black hole, the Boyer-Lindquist form of the metric is found to be 
the most convenient one in describing the spacetime and the event horizon. We find that 
this is true for the VEK metric as well. We therefore proceed to  cast the VEK metric in 
the Boyer-Lindquist form. Taking the VEIC metric presented in the previous subsection, 
we make the transformations 

where 

a 

du = dt + f dr 

d$ = dd + gdr 

This brings the metric to the Boyer-Lindquist form 

-2Map sin2 6'dtdd - (M + a2 ( 1  + 2 M p )  sin2 6') sin2 0d$2 (3.12) 

To facilitate comparison with the Kerr metric, we develop our notation such that the VEK 
metric 'looks' similar to the Kerr metric. We define 

In terms of these quantities the metric may be expressed as 

As mentioned earlier, this metric incorporates both the Kerr black hole and the Einstein 
universe as limiting cases. As R goes to infinity, we obtain the Kerr metric in the Boyer- 
Lindquist coordinates 



And as M goes to zero we obtain the Einstein universe expressed in spheroidal polar 
coordinates 

2 ds = dt2 - - ;ii2 
ii2 dr2 - --do2 - ( T ~  + a2) sin2 13 dd2 

F* + a2 C2 
The parameter R represents the influence of the background on the black hole. In the 
spherical case of the VES metric, this paramleter is unrestricted, ie the metric is regular for 
all values of R in the range 0 < R 5 m. In the VEK case, however, we need the condition 

to  ensure the regularity of the metric coefficients. 

3.2.3 The energy-momentum tensor 

The VEK metric represents a non-vacuum solution which is not asymptotically flat. The 
energy momentum tensor is determined through the metric via the Einstein field equations 

The energy momentum tensor is taken to  be that of a perfect fluid which is given by 

T a b  = ( P  f ~)uaub - p g a b  (3.19) 

where U" = E"/& is the four velocity of a stationary observer and Ea is the timelike 
Killing vector field. The density and pressure are then given by 

1 2 M r  
rcp = ---(l - -) 

R2 p2 

The stationary limit is given by = goO = 1 - 2ME/p2 = 0 which shows that p >_ 0 but 
p I 0 everywhere outside the stationary limit and that both go to zero a t  the stationary 
limit. Nevertheless p + p  > 0 outside the stationary limit so that the weak energy condition 

. is satisfied which is reasonable. Furthermore p >_ ( p (  and therefore the dominant energy 
condition is also satisfied. 

3.2.4 The event horizon and the ergosphere 

We now turn to study the structure of the event horizon as a function of the parameters 

( M ,  a ,  R) 
We may remark that when we speak of the 'surface' of the black hole, we are dealing 
essentially with a sequence of spacelike slices through the event horizon represented by a 
null hypersurface. This gives a family of 2-geometries which, if closed, can be thought of 



as the surface of the black hole. In general, these surfaces depend on the particular slicing 
chosen. Nevertheless, in the VEK case, as in the Kerr case [24], the 2-geometry of the 
surface of the horizon is independent of the slicing. Thus we may consider the surface of 
the VEK black hole without reference to the slicing. 

Since, therefore, the surface of the event horizon is a two dimensional manifold one would 
expect that only two parameters are needed to  describe it. One way of doing this is for 
instance, by defining two new parameters in terms of the parameter R and then studying 
the geometry as a function of these parameters. We do not take this approach here as we 
wish to be able to go to the limiting cases of the Einstein and the VES black holes wherein 
M = 0 and a = 0 respectively. If, on the contrary, we take, for instance, M = mR and 
a = aR we are led to the following restrictions. When m = 0 we have two possibilities, 
R + oo and M += 0 giving the limiting case of the flat Minkowski metric expressed in ro- 
tating coordinates. When cr = 0 we again have two possibilities R + m and a + 0 giving 
the limiting case of the Schwarzschild metric. Clearly this is not suitable for obtaining the 
limiting cases of the Einstein and the VES metrics. 

The Boyer-Lindquist form of the VEK metric is particularly convenient for calculations 
since orthogonal transitivity is manifestly inherent to this form of the metric. In these 
coordinates, we have the timelike Killing vector field 5 = 8/8t  and the axial Killing vector 
field q = 8/84 and the condition for orthogonal transitivity 

is satisfied. 

As has been shown by Greene, Schucking and Vishveshwara[23] there exists a globally 
hypersurface orthogonal vector field 

Furthermore, the surface on which X becomes null (xaxa = 0) is itself a null surface. In a 
stationary spacetime like that of VEK this is indeed the event horizon and hence defines 
the black hole in the Einstein background. The condition xax, = z/g33 = 0 has a solution 

R tan(r+/R) = M + 4- (3.24) 

where r+ is the 'radius' of the outer event horizon. 

On the other hand, as we have already mentioned, the stationary limit is given by the 
condition 

Sa<a = g00 = 0 (3.25) 



which has a solution 

The ergosphere is the region between the event horizon and the stationary limit given 

Figure 3.1: Plots of r, and r+ corresponding to  the stationary limit, and the event horizon 
respectively for R = 0.6 , l ,  10 respectively going outwards from tllc wntre. The R = 10 
plot is almost indistinguishable from the I<err case(not shown). l-Ierc .\i = 1, a = 0.5. 

respectively by ecluations(3.24) and (3.26). 

In figure 3.1 we sliow the polar plots of T, and T+ corrcspo:;:iing to the stationary limit 
and the event horizon respectively for different fixed values of 12. These plots indicate the 
change in both tllc surfaces as R is varied. We see that  for lower values of R ,  the shrinkage 
of both thc stationary limit and the event horizon is more pronouncc~d. 

In figure 3.2 we have constructed the polar diagram of the functions R tan(r,/R) and 
R tan(r+/R) corresponding to the stationary lirnit and the event horizon respectively: for 
diff'erent values of R. Since R tan(r+/R) is a constant for given values of iL1 and a and 
coincides with the Icerr expression, the representation of the event horizon remains the 
same. However R tan(r,/R) changes with R. Hence, the plots clearly show the changing 
form of the stationary limit compared to  the fiducial event horizon snrface. ,"L R increases 
thc situation tends to that in the Kerr spacetime. For lower valucs o f  R the ergosphere is 
larger and more distorted than in the Kerr case. 

In the foregoing IVV have plotted the polar diagrams of the event horizon and the stationary 
liniit only to givc i L  feel for the changes that occur. tlTe shall hc (.onsidering the actual 



Figure 3.2: Plots of R tan(r,/R) (the stationary limit represented by the solid curves), 
R tan(r+/R) (event horizon represented by the dashed curves) for A4 = 1, a = 0.5 and 
different values of R. The values of R are O.G(top left),l(top right) and lO(bottom). 



geometry by means of quantities which indicate more clearly the effect of the background. 
We shall now go on to discuss the effect of the background on the geometry of the event 
horizon. 

The Shape of the Event Horizon 

It is well known that there is a characteristic flattening of the poles and stretching of the 
equator when a fluid sphere is rotated. One would expect a similar effect in the case of 
the event horizon of a rotating black hole. The analogy with a rotating body is supported 
too by the fact that the angular velocity of the black hole is constant over the horizon. 
Smarr[24] investigated some rotational effects on the Kerr-Newmann black hale. For this 
purpose he introduced what he termed as the scale and the distortion parameters q and ,L? 

respectively. In this paper, when we refer to the work of Smarr, it will be with respect to 
the case of the Kerr black hole where the charge is zero. We shall define the scale and the 
distortion parameters for the VEK horizon in analogy with the Kerr case as 

We see that in the VEK case, the scale and the distortion parameters depend on the back- 
ground parameter as well. 

We have two possible approaches which we can take while studying the geometry of the 
horizon. In the first approach, we hold R fixed and allow q and P to vary analogous to 
Smarr's original approach which is essentially equivalent to  considering the effect of rota- 
tion on the horizon. In the present case this is further modified by the presence of the given 
background. We may therefore use this approach merely in order to compare our results 
with those of Smarr in the Kerr case. But in order to get a feel for the actual influence 
of the background, it is preferable to deal with the basic parameters a and R explicitly 
as we shall describe below. However, we do not entirely give up the use of the scale and 
distortion parameters but employ them, in particular, to classify the Gaussian curvature 
as in Section 3.7 

In the second approach, we do not use the parameters 7 and ,B but instead, consider the 
explicit dependence of the geometrical quantities on the parameters a and R. Here, in 
turn, we have two cffects which we term as the 'modulated effect' and the 'direct effect' 
in both of which WC take M to be constant. In the case of the modulated effect, we vary 
the angular momentum parameter a for different values of R. Here the effect of rotation 
is modulated or controlled by the background parameter R. On the other hand, in the 
case of the direct vffect, we hold a constant and vary R continuously. We shall see the 
differences in these t,wo kinds of effects when we study the oblateness and the area of the 



black hole. 

3.3.1 The approach of Smarr 

We now define the scale and distortion parameters for the event horizon of the VEK 
black hole. The 2-metric on the event horizon is then expressed entirely in terms of these 
parameters and R. The 2-metric on the event horizon of the VEK black hole is given by 

C where the subscript '+' indicates quantities on the event horizon. In terms of the dyad 
(g2, 03) this may be expressed as 

where 

- 
3 C+ sin 8 8 =  

P+ 
do  

The scale parameter and the distortion parameter ,B for the above 2-metric are defined 

by 

Then the metric and the dyad forms O2 and O3 become, 

q sin 8 

In the above we see that Q3 does not depend explicitly on the parameter R. 

3 In the Kerr case, given a set of values for (a, M) the parameters 71 and ,B are determined 
and can be treatctl ss  independent variables which Inay be used instead of a and M .  In 



the VEK case, there is a degeneracy in the 3-parameter family, however, which leads to  
the determination of only the angular momentum parameter a. To see this we express a 
and h1 in terms of q and p 

We see that a is uniquely determined once and P are given. But M is not since it depends 
on the background parameter R as well. Therefore, there is a whole family of stationary, 
axisymmetric black holes depending on R. We also note that the equation for the horizon 
can be expressed in terms of q and ,L? as 

As we have seen above, the parameters q and p are inherent to the geometry of the black 
hole. It is instructive therefore to examine the variation of one of the parameters, say P, 
with the background. Here again we would have both the modulated and the direct effects. 
The variation of the other parameter q is easily ascertained from equation(3.33). Towards 
this end we express p in terms of M ,  a and R from equation(3.31) as 

In Figure 3.3, the variation of P, with a is displayed for different values of R; this shows 
the modulating effect of the background. We see that smaller the background parameter 
R,  larger is the rate of variation of P with a. 

Figure 3.3: This plot shows the behaviour of the distortion parameter P with a for M = 1 
and for different values of R including the Kerr case. 

Turning to the dircct effect, as can be seen, the plot of /3 against R in Figure 3.4 shows 
that 3 goes on increasing as the background parameter R decreases. That is, the distortion 
parameter goes up iis the background influence increases. In particular, the minimum value 



Figure 3.4: This plot shows the behaviour of the distortion parameter P with R for M = 1 
and a = 0.5. 

is attained for the limiting Kerr case. 

One additional point to  be considered is the allowable range of values for the scale and 
the distortion parameters. In the Kerr case, it is necessary and sufficient to  demand that 
a 5 M. This places a restriction P 2 l/&, the equality holding for the case of the 
extreme Kerr black hole with a = M. In the VEK case, this generalizes to a 5 M which 
is eauivalent to  the condition 

In terms of the scale and the distortion parameters, we now study the equatorial and polar 
circumferences as well as the oblateness of the event horizon as a function of R. 

Effect of the background on the circumferences via the scale and the distortion 
parameters. 

The equatorial and polar circumferences C, and C, respectively are defined as follows. 

For the VEK event horizon we have 



Figure 3.6: The oblateness parameter 6 plotted against /3 for both the Kerr and the VEK 
cases. 

Figure 3.5: The equatorial and the polar circumferences plotted against ,O for different 
values of R. 

Comparing these circumferences allows us to obtain a gross measure of the surface defor- 
mation. As in the Kerr case, both C, and C, are invariant since the curves are geodesics 
of the Zmetric of the horizon. 

0 . 5 .  

We may note that the expression for C, is the same as that for the Kerr case, ie there is 
no explicit dependence of Ce on R. However, 7 and /3 are dependent on R. 

t .  

1 

As we have discussed at the beginning of this section, the variation of 7 and ,B could be 
due to the change in rotation for different fixed values of R. To compare the results with 
those of Smarr, we treat 7 and ,L? as independent parameters and vary them for different 
fixed values of R. We compute C, and C, as functions of and ,L? for fixed values of R. 
The results are plotted in Figure 3.5. The equatorial circumference C,, which does not 
depend explicitly on R and therefore, is the same for the VEK and Kerr cases, increases 
with p. However, the polar circumference decreases with p. For lower values of R, the 
rate of decrease of C, is diminished compared to the Kerr case, sho~ving that the flattening 
is reduced due to the background effect. The oblateness is reflected in the variation of 
6 = (Ce - C,)/C, which is shown in Figure 3.6. Once again the effect of the background 
is to decrease the oblateness generated by rotation. 



The above calculations were carried out in order to apply Smarr's approach to the VEK 
metric. We now turn to the modulated and the direct effects of the background on Ce, C, 
and 6 to get further insight into the behaviour of the oblateness of the horizon. 

Explicit effect of the background on the circumferences and the oblateness 

Figure 3.7: Plot of the equatorial circumference C, against a-' for h1 = 1 and for different 
values of R. Both the Kerr(1eft) and the VEK(right) cases are shown. 

Figure 3.8: Plot of the polar circumference C, against a-' for 114 = 1 and for different values 
of R. For large values of R including the Kerr case(left), C, decreases as a-' decreases. 
After a critical value of R(not shown), Cp increases as a-' decreases(right). Thus C, is 
strongly modulated by the background. 

We nonr express the circumferences in terms of the mass, angular momentum and the back- 
ground parameter. 

First we have the oquatorial circumference 



Figure 3.9: Plot of the oblateness parameter S against a-' for Ad = 1 and for different 
values of R. Both tlie I<err(left) and the VEl<(right) cases are shown. 

And nest the polar circumference 

In order to discern the modulated effect, these circumfererices ns well as the oblateness 
parameter 6 are plotted against a-', instead of a for conveniencc. in Figures 3.7. 3.8 and 
3.9 respectively, for different values of the background paramctclr R. The behaviour of the 
equatorial circumference C', is uniform for all values of R including the limiting Kerr value. 
going up monotonic~ally as a increases. However, the behaviour of the polar circumference 
C, is not uniforrii for all values of R. For lower values of R, ie under strong background 
influence, Cp incrc;tses monotonically as a increases. This behaviour reverses a t  a critical 
value of R after which C, decreases, as in the Kerr case. with increasing a. Therefore the 
effect of rotation is strongly modulated by the background parameter R. Nevertheless, the 
oblateness paramer vr b increases uniformly for all values of R including the limiting Kerr 
value. 

Thus the bel~aviol~r of the circumferences under the modulated effect, may be summed up 
as follows. For large values of R, the horizon becomes oblate as the rotation increases: 
with the equatorial circumference increasing and the polar circunifc.rence decreasing with 
increase in rotatio~l.  Below a critical value of R, the horizon 'b1o;~ts up' as it were, with 
both the circumferc~nces increasing with rotation accorripanied by illcreased oblateness. 

\Ye now turn to  tlic> direct effect of the background on the cir~unif~rences.  For this pur- 
pose. the circurnferonces as well as the oblateness parameter are plottod against R as shown 
in Figures 3.10 ant1 3.11 respectively. Both C, ancl C!, decrease with R. This is due to 
the shrinkage of t11v event horizon which we had already anticipatc.d in Section 3.2. The 



Figure 3.10: Plot of the equatorial circumference C, against R for M = 1, a = 0.5. 
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Figure 3.11: Plot of the polar circumference C, against R for M = 1, a = 0.5. 

Figure 3.12: Plot of oblateness parameter 6 against R for M = 1, u = 0.5. This illustrates 
the direct effect of the background on 6 



oblateness is given by 6 which is now an explicit function of R. The behaviour of 6 with R 
is shown in Figure 3.12. Clearly, the effect of the background is to  enhance the oblateness 
which increases with diminishing R. 

In the Kerr case oblateness is caused only by rotation. Here we see that the non-flat back- 
ground too contributes towards the oblateness by both modulated and direct effects. 

PVe now consider another geometric quantity, the surface area of the event horizon. 

3.4 The Surface Area 

The surface area of the event horizon is an invariant geometric quantity of considerable 
importance. In a vacuum, asymptotically flat spacetime, it  is a well established fact that 
Hawking's area theorem provides a starting point for black hole thermodynamics. This 
theorem states that  the total surface area of a black hole can never decrease. We shall non7 
examine the nature of the area in the VEK case. 

In the Kerr case, the surface area of the horizon is given by 

When we turn to  the case of the VEK black hole, we find that thc iir(?a 

This can be integrated to give 

3.4.1 Effect of the background on the area 

It is interesting to study the effect of the background on the area of the event horizon. 

First we consider tile modulated effect of the background and study the variation of the 
area as a function of a for different constant values of R. The results are plotted in Figure 
3.13. For large values of R starting from the limiting Kerr value. tllc area decreases mono- 
tonically with a. Below a critical range of values of R. however, the area first increases 
with a ,  attains a 111asimum and then decreases. For lower values of R the behaviour of the 
area entirely revc.1.sc.s. It now increases monotonically with a. This is something entirely 
unespected. It iritlicates that there is a nontrivial coupling of tho Imckground spacetime 



Figure 3.13: Plot of the area A against a for M = 1, for the Kerr case(top left) and for 
different values of R in the VEK case. For R = 1.8(top right), A attains a maximum due 
to strong modulating effect of the background. After a critical range of values of R, the 
VEK area increases as a increases(bottom). 
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Figure 3.14: Plot of the area A against R for M = 1 and a = 0.5. Both the Kerr and the 
VEK cases are indicated. The decrease of the VEK area as R decreases, exhibits the direct 

A effect of the background. 

to rotation. 

Turning to  the direct effect of the background, the plot of the area against R in Figure 
3.14 shows that it goes on decreasing as R decreases, that is, as the background influence 
increases. The area of the horizon goes down from its Kerr value a t  R = ca indicating the 
shrinkage of the horizon as was indicated by the polar diagrams of Figure 3.1. 

3.5 Angular Velocity of the Horizon 

The angular velocity of the Kerr black hole is constant over the horizon. This implies that 
the horizon rotates like a rigid body. This feature is of central importance in studying 
physical effects such as superradiance. It is also of direct interest in studying the effect of 
rotation on the black hole. 

The angular velocity of the horizon of the VEK black hole is given by 

-4s in the Kerr case, it is constant over the horizon of the VEK black hole. In terms of q 
and p, the angular velocity of the VEK horizon takes the simple form 

In terms of 114, a arid R,  the angular velocity of the horizon is 

'C- This shows that tlicre is a significant increase in the angular velocity of the horizon as R 
decreases, that is ;IS the background influence increases. This in turn indicates that there 



Figure 3.15: Plot of the angular velocity wH of the horizon against R for -11 = 1, a = 0.3. 
.As R decreases, U ~ I  increases due to  strong background influence. 

A 

would be a pronounced modification in the physical effects associated with the angular 
velocity of the horizon. The variation of w~ with respect to  R is plotted in Figure 3.15 
and shows its sharp increase with decreasing R. 

3.6 Surface Gravity and the Extreme VEIC Black Hole 

We now discuss tlie surface gravity of the VEK black hole and define the -extreme' VEIC 
blac.1; hole. The surface gravity of the VEK black hole is given by 

This goes to  zero when a = 111. Therefore, in analogy with the Kerr case we Illay define 
the extreme VEI< black hole as the VEK black hole corresponding to the case a = :V. \Ye 
now discuss the existence of yet another case for the irEK black hole. 

In the Kerr case as tliscussed by Smarr[24](see also Carter[26]) we may define the equatorial 
surfacct velocity of the black hole by, 

This reduces to 

This tends to  the volocity of light (v + 1) as the extreme Kerr black hole is approached. In 
the VEIC case, duc to the absence of asymptotic flatness, it may not be possible to define 
the corresponding equatorial surface velocity of the black hole. N(.vertheless, proceeding 
by analogy with the asymptotically flat case, we may use this '(lcfinition' to obtain a 
classification of t,lic \'EK black hole. Thus, in the \-EI< spaceti~ric. the above formalism 
leads once again to 



The extreme VEK case a = M gives 

a2 
""k = /l + $/,/l - g 

This is clearly greater than unity. This makes it possible to classify the VEK black hole 
into two classes. One given by vvek < l and the other given by vuek > 1 as seen from 
outside by a Killing observer. The existence of the Killing observer is ensured because 
in the present, as in the asymptotically flat case, the norm of the timelike Killing vector 
is unity a t  the radius r / R  = 7r/2 where the matching to  the Einstein universe has been 
performed. 

The value vuek = l allows us to  define the 'limiting black hole' for which 

This shows that for any given R there exists a set of values for a and M that generates a class 
of limiting black holes. We can see from the above equation that at  a = M, R = m. As 
we have already stressed, the background parameter R represents the influence of the non- 
vacuum background which is asymptotically non-flat. R = oo corresponds to the limiting 
case of a vacuum background which is asymptotically flat. Therefore equation(3.52) which 
describes the limiting black hole contains, as a limiting case, the extreme black hole a = M 
a t  which R = CO. The analogue of the condition a = M for an extreme black hole may 
now be expressed by an equivalent form of equation(3.52) 

which goes over to the limiting case a = M as R + oo 

3.7 The Gaussian Curvature and Embedding 

The Gaussian curvature defines an isometrically invariant local nieasure of the intrinsic 
distortion of the event horizon from sphericity. Being an invariant it provides us informa- 
tion about the topology of the horizon as well via the Gauss-Bonnet theorem. We may 
study the Gaussian curvature either by treating it as a function of the parameters 17 and 
p, or by treating it as an explicit function of the background parameter R. 

The Gaussian curvature of the event horizon of the VEK black hole is given by 



which in terms of the scale and the distortion parameters, may be expressed as 

K(% P7 Q) = 

(3.55) 

When ,3 = 0 ie when the rotation is absent, we have, 

which is the spherical Gaussian curvature of the horizon of the VES black hole. And when 
R += m we have 

the Gaussian curvature of the event horizon of the Kerr black hole. 

In the Kerr case, K is a function of the polar angle Q. In the VEK case, K is in addition 
a function of the parameter R. The Gaussian curvature vanishes a t  the poles when - 
which in turn happens for 

For 

there are two "polar caps" where the Gaussian curvature becomes negative. This condition 
is obtained by examining the range of values of P for which the Gaussian curvature vanishes. 
It  allows us to  classify the VEK black holes into two distinct classes parametrized by a and 
R through the dependence on the value of P as given in the above equation. But unlike 
in the Kerr case (R -+ m ) ,  each class gives in fact a whole family depending on both a 
and R. The first class, as in the Kerr case, consists of black holes with positive Gaussian 
curvature resembling oblately deformed spheres. The second class consists of black holes 
with negative Gaussian curvature. As Smarr has commented in the Iierr case, this class of 
negative Gaussian curvature is unlike any surface one can envision in our familiar 3-space. 
This is to  be attributed to  the presence of regions of negative Gaussian curvature both 
on and around thc axis of symmetry, causing the surface to  resemble a hybrid sphere and 
pseudosphere. By integrating the Gaussian curvature over the surface we find that the 
Euler characteristic: of the horizon is 2. This establishes that  the topology of the VEK 
black hole is that of a 2-sphere. 



Figure 3.16: The sequence of embedding diagram for ,B = 0 (dashed line), id1 + a2/R2 

(dotted line), -&Jw (solid line) shown for a = 0.5 and R = 1. 

3.7.1 Embedding 

Embedding the 2-surface of the VEK horizon in the Euclidean 3-space gives an additional 
visualization of the geometry. The possibility of embedding depends on the sign of the 
Gaussian curvature and may shed light on the nature of the surface under investigation. It 
is therefore instructive to find conditions for globally embedding the 2-surface of the VEK 
horizon. To this end we first rewrite the metric in the standard form 

where 

Tlie Gaussian curvature is then given by 

where the dot denotes differentiation with respect to p. 

We now define a map from (p,  4 )  to (X, y, z )  by 

X = F(p) cos 4 



y = F ( p )  sin 4 
= G(P) 

The metric then becomes 

We now require that 

from which we obtain 

The condition for global embedding is that the expression under the square root of the 
integrand be nonnegative definite. This leads to the result that the metric cannot be 
globally embedded in Euclidean 3-space if 

This is the same condition as for the negative curvature given by the inequality in equation(3.60). 

The condition given by equation(3.68) is also equivalent to 

The embedding diagram sequence for p = 0, f ,/m, &Jm for a = 0.5 and 
R = 1 is shown in Figure 3.16. The first value of ,B corresponds to the VES black hole. For 
the second value, the polar region has negative curvature. The last value of P corresponds 
to the 'extreme' VEK black hole which, as we have shown, cannot exist. We have shown 
the diagram for this last value of p as an illustration only. 

3.8 Concluding Remarks 

In the present chapter we have investigated the Kerr black hole in thc Einstein background 
given by Vaidya. This spacetime may be viewed as that of a rotating black hole surrounded 
by matter distribution satisfying reasonable energy conditions as JVC have demonstrated. 



First of all we note that the VEK horizon is a Killing horizon as in the case of the Kerr 

spacetime. By studying the event horizon, we have shown that the background gives rise 
to significant modifications in the geometrical and physical quantities associated with the 
black hole. The event horizon shrinks from its limiting Kerr magnitude as the background 
influence increases and the stationary limit surface gets more distorted. Thus there is an 
enlargement of the ergosphere. The distortion of the horizon can be ascertained by com- 
puting its equatorial and polar circumferences and studying the variation of the oblateness 
parameter. The oblateness parameter S is given by the difference of the equatorial and 
polar circumferences divided by the equatorial circumference. This has been investigated 
by two different approaches. In the first instance, to compare the results with those ob- 
tained by Smarr in the Kerr case, we vary the distortion parameter without varying the 
background parameter R.  In this formalism the equatorial circumference remains the same 
as that of the Kerr horizon which of course varies with the distortion parameter. Neverthe- 
less, the polar circumference progressively decreases but more slowly than in the Kerr case. 
The net effect is that the oblateness parameter increases more slowly as compared with 
the Kerr spacetime. In a sense, these computations reveal the variation of the oblateness 
modified by R and as compared with the Kerr horizon. 

We have found that further insight can be gained into the structure of the horizon by 
investigating the oblateness as an explicit function of the parameters a and R. As we have 
pointed out there exist both modulated and direct effects. 

The modulated effect is obtained by varying a for different fixed values of R.  Here we 
have found a totally unexpected effect. That  is, whereas the equatorial circumference Ce 
increases monotonically with a for all values of R, the polar circumference C, first decreases 
as a increases, starting from the Kerr value, and then increases after a critical value of R. 
Nevertheless, the oblateness parameter increases with a for all values of R. 

On the other hand the direct effect is obtained by varying R and studying the circumfer- 
ences. Here, one sees that both C, and C, decrease as R decreases, ie as the background 
influence increases. However, the oblateness parameter increases as R decreases. 

Another quantity that indicates the change in the geometry of the event horizon is its 
surface area. As was done in the case of the circumferences, we have studied two different 
effects of the background on the area. First the modulation of rotation by the background 
and second the direct effect of the background. In the first case, for large values of R the 
area decreases mo~lotonically with a as in the Kerr case. Then for a critical range of values 
of R the area increases, attains a maximum and then decreases. Finally for small values 
of R it increases rrionotonically with a. This effect is also a novel one which reveals the 
peculiarity of the background influence. Next, we have the direct effect of the background. 
As R decreases tliclreby enhancing the background effect, the area decreases and asymp- 



totically approaches the Kerr value as the background effect goes down. 

Turning to the angular velocity of the VEK event horizon, we have shown that it goes 
up significantly as the background influence increases. By means of the surface gravity of 
the VEK horizon we have shown that the extreme VEK black hole occurs a t  a = M as 
in the Kerr case. However the equatorial tangential velocity defined in analogy with the 
Kerr case is no longer that of light. By exploiting this fact, we have classified the VEK 
black hole and have shown that another type of black hole the 'limiting black hole' may 
be defined for which this velocity is that of light. 

By investigating the intrinsic geometry as represented by the Gaussian curvature we have 
shown that the VEK black hole may be classified into two distinct classes. The first class 
consists of black holes with positive Gaussian curvature and the second consists of black 
holes with negative Gaussian curvature. In the Kerr case studied by Smarr, this classifica- 
tion is on the basis of two constant 'limiting' values of the distortion parameter P. In the 
VEK case however, the corresponding 'limiting' values are no longer constants but depend 
on the angular momentum parameter a and the background parameter R. The topology 
of the VEK event horizon is that of a 2-sphere as may be expected for any normal black hole. 

To summarize, in this chapter we have considered a number of geometric properties as a 
function of the background parameter R. These properties are either retained, modified or 
radically altered as we have shown. 
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Chapter 4 

Examples of Physical Effects in the 
VEK spacetime 

4.1 Introduction 

The stationary, axisymmetric, asymptotically flat Kerr black hole is associated with in- 
teresting and often intriguing physical effects. In particular we may mention the effects 
stemming from the presence of the ergoregion like the Penrose process and superradiance. 
Here the geometry of the event horizon plays an important role. The other, perhaps more 
observationally significant physical effects, are those associated with geodesics and the phe- 
nomenon of gyroscopic precession. A great deal of work has been done on both these topics 
in the asymptotically flat case. However, as we have pointed out and shown in the previous 
chapters, the introduction of the non-flat background leads to nontrivial modifications of 
the results obtained in the flat case. In the Chapter 3, we investigated the geometry of the 
event horizon and showed that many of the usual results were either strongly modulated 
or modified altogether by the presence of the non-flat background. Therefore it would be 
interesting and instructive to study some examples of physical effects in the VEK spacetime. 

In the present chapter we investigate circular geodesics and gyroscopic precession in the 
VEK spacetime as examples of physical effects. In studying circular geodesics there are 
two approaches which are usually taken in the Kerr case. One is the geodesic Lagrangian 
method and the other the method of Killing vectors. The former is convenient when one 
wishes to express the results in terms of conserved quantities, the energy and the azimuthal 
angular momentum. The latter, perhaps faster and elegant, is that of the method of Killing 
vectors which leads one directly to the Keplerian frequency. In the Iierr case either of the 
two may be employod to obtain information on the circular geodesics. In the VEK case, 
however, due to the complicated nature of the intermediate expressions, we find it conve- 
nient to combine tlie above methods and use them in conjunction. In particular, we use 
the method of Killing vectors in order to obtain the Keplerian frequency and conditions 
for the existence of non-spacelike circular geodesics. We then use thc geodesic Lagrangian 



method to express. these conditions in terms of the energy and the azimuthal angular mo- 
mentum or the impact parameter. This also makes it easier to compare the results with 
the corresponding special case of the VES non-rotating spacetime. 

Turning to gyroscopic precession in the VEK spacetime we approach it by employing the 
Frenet-Serret framework developed by Iyer and Vishveshwara[20]. Starting with a brief 
outline of the formalism, we apply it to  the globally timelike Killing trajectories followed 
by stationary observers in the VEK spacetime. Next we study gyroscopic precession along 
circular orbits with constant angular speeds by using rotating coordinates. Armed with the 
above results we go on to investigate the generalized versions of the Schiff precession, pre- 
cession in the VES spacetime, the Fokker-De Sitter precession and the Thomas precession 
in the the Einstein universe. We compare and contrast the results with the asymptotically 
flat case and show how the non-flat background leads to significant non-trivial modifica- 
tions from the corresponding flat results. 

4.2 Circular Geodesics 

The study of circular geodesics is a significant topic in both Newtonian gravitation and 
general relativity. In the former it leads to  the Kepler laws. In the latter it becomes 
even more important especially in black hole spacetimes wherein the Newtonian effects are 
considerably modified. In our investigations on circular geodesics in the VES spacetime 
in Chapter 2 we saw the emergence of novel features due to the asymptotically non-flat 
background. We now study circular geodesics in the rotating case namely in the VEK 
spacetime. 

4.2.1 The metric 

In the previous chapter we have presented the VEK metric and discussed its features in 
detail. Here, for the sake of reference, we recall that the metric in the generalized Boyer- 
Lindquist form is given by 

where 



In the above we impose R > a to ensure the regularity of the metric coefficients. We nonr 
study circular geodesics by the method of Killing vectors[20]. 

4.2.2 The method of Killing vectors 

The VEK metric admits a time-like Killing vector p and a rotational Killing vector qa. 

The combination, 
xa = Ja + wqa 

is defined as a quasi-Killing vector if the Lie derivative of W vanishes along X 

When W is a constant X" reduces to a Killing vector field. 

In order to investigate circular geodesics we adapt the four-velocity ua along xa by writing 

ua = e@Xa (4.6) 

we then have 

Confining to  the equatorial plane, we obtain by equating the derivative with respect to r 
of the norm xaxa to zero, the generalized Keplerian frequency in the VEK spacetime 

The negative sign refers to the co-rotating orbit and the positive sign to the counter- 
rotating orbit. 

The condition for the existence of null geodesics is obtained by demanding that 

(4.9) 

This reduces to  



For iZ/I going to zero, ie, in the Einstein universe, 

w 2 = o  

and there are no circular geodesics as is expected. 

As R + oo ie, in the limit of the Kerr spacetime, we obtain the Keplerian frequencies for 
the CO and counter-rotating orbits 

And equation (4.10) becomes 

This is the condition for the existence of null circular geodesics in the Kerr spacetime as 
discussed in Rindler and Perlick[27]. 

And in the limit a + 0 of the VEK spacetime, we obtain the generalized Keplerian fre- 
quency 

r r 
M/(R3 sin3 (-) cos(-)) (4.14) 

R R 
Equation(4.10) now becomes 

This is the condition for the existence of null geodesics in the VES spacetime. The time- 
like geodesics are present within the limits given by the positive and negative roots of the 
equation as shown by Ramachandra and Vishveshwara[21]. 

Returning to the inequality(4.10) we may note that the null circular geodesics exist between 
the two limits 

and the timelike geodesics exist between these two limits. In the VES case we have the 
corresponding equation(4.14) for R tan(r/R).  To obtain a similar equation for the VEK 
case, it is necessary to solve equation(4.16) which is not easy. Therefore we now resort to 
the geodesic Lagrangian approach in order to obtain an equivalent cxquation for R tan(r/R) 
espressing the condition for the existence of null circular geodesics. 



4.2.3 The geodesic Lagrangian 

'*L The equations governing the geodesics in a spacetime with the line element 

can be derived from the Lagrangian, 

as, for instance, given in Chandrasekhar[l7] which we will follow in the discussion below. 
Here r is an affine parameter which is usually identified with the proper time for time-like 
geodesics. 
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For the VEK spacetime, the geodesic Lagrangian is given by 

where the dot denotes differentiation with respect to T. 

In the equatorial plane defined by 8 = n/2 we have 

The above Lagrangian has two conserved quantities coming from the cyclic coordinates t 
and 4, defined by 

the energy and 

the azimuthal angular momentum. 

These quantities could also have been obtained by the method of Killing vectors but the 
present method is convenient in arriving a t  the differential equation for the radial coordi- 
nate. 

Using the equations(4.21) and (4.22) we obtain the geodesic Hamiltonian for null geodesics 

We now invert equations(4.21) and (4.22) to obtain 



and 

Inserting these into equation(4.23) and simplyfing, we get 

f 2  = E2 + 2116 1 
(L - U E ) ~  - ( L ~  - a 2 ~ 2 )  

R tan(r/R) (R2 - a2) sin2(r/R) (R2 - a2) sin2 ( r / ~ )  
(4.26) 

which may be written in terms of the impact parameter D = L I E  as 

Circular geodesics are defined by equating the above equation and its derivative to  zero. 
We thus obtain 

And 

Solving the above equation we obtain the condition for the existence of the circular null 
geodesics as 

This is the generalized version and analogue of the equation(4.15) corresponding to the 
VES case. As a + 0 we see that this reduces to equation(4.14). 

Equations(4.16) and (4.30) express the condition for existence of null circular geodesics. 
These together with the generalized Keplerian frequency(4.8) completely characterize the 
timelike and null circular geodesics. In fact, these null geodesics are members of the prin- 
cipal null congruences confined to the equatorial plane. We now discuss the nature of the 
circular geodesics in some detail. 

There are two possible cases of timelike and null circular geodesics in the VEK spacetime 
depending on the tzickground parameter. This radical departure from the situation in the 
Kerr spacetime is clue to the presence of the Einstein universe to mliich the Vaidya sector 



has been matched. 

The first case is defined by 

In this case null circular geodesics exist a t  the two limits of R tan(r/R) given by 
equation(4.10). 

The inner null circular geodesic is defined by 

The outer null circular geodesic is defined by 

Timelike circular geodesics exist sandwiched between these two null geodesics. 

In contrast to this the Kerr spacetime has only one photon orbit a t  r = 3 ~ e  and the 
timelike circular geodesics exist starting from this value all the way up to infinity. 

The second case is defined by 

In this case the null circular geodesics exist a t  only one value of R tan(r/R) given by 

And there are no timelike geodesics at  all. We may understand this situation by consider- 
ing the limit R2 + 1 2 h f 2 w  in equation(4.30). As this limit is approached the distance 
between the inner and outer null circular geodesics of the first case goes on decreasing. 
Thus the inner and outer geodesics approach and merge. Since timelike geodesics are con- 
fined between the inner and outer geodesics, as the limit is reached they disappear leaving 

(D-a)  the possibility of occurance of only null circular geodesics a t  R tan(r/R) = 6hd(o+o). 

As mentioned earlier there are both CO and counter rotating orbits a t  the vaIue of R tan(r/R) 
given by equation(4.30). Therefore it is necessary to distinguish the cases a < 0, a = 0 
and a > 0 as, for instance, done in the Kerr spacetime investigated in Chandrasekhar[l7] 



which we shall follow here. In the Kerr spacetime one determines the impact parameter 
D for these values of a.  To do a similar analysis in the VEK case it is necessary to  solve 
equations(4.28) and (4.29) simultaneously which is difficult for the case where a # 0. Nev- 
ertheless, we shall take the limit a = 0 and obtain further information on the VES case. 
Perhaps, the cases a < 0 and a > 0 can be tackled numerically which, however, we shall 
not attempt here. 

For a = 0 equation(4.10) becomes 

Solving equations(4.28) and (4.29) together for a = 0 we obtain 

Here we must consider the cases R2 > 12M2 and R2 = 12M2. 

For R2 > 12M2 there are two null circular geodesics. The inner corresponding to  the 
positive sign and the outer to the negative sign. For R2 >> 121112 we may obtain the 
folloiving approximate results. 

The inner null circular geodesic with 

This tends to  3 4  as R + CO. 

And the outer null circular geodesic with 

This tends to  oo as R -+ CO. 

For R2 = 12M2 wct have 
~=3mi~ (4.40) 

And there is only one photon orbit which occurs a t  R tan(r /R)  = 6114 

\hTe may summarix(: the situation as follows. In the Kerr case null geodesics occur a t  only 
one value of the ri~dial coordinate, ie, a t  r = 3Al(D - a ) / ( D  + U ) .  There is one CO and 



one counter-rotating orbit corresponding to  this value. In contrast to this, the VEK case - 

we have two possibilitiesdetermined by the background parameter. In the first case, ie, for 
R2 > 1 2 ~ 2 0  

(D+a)  
null geodesics occur at  two different values of R tan(r/R).  Thus there are 

inner and outer photon orbits with one CO and one counter-rotating orbit corresponding 
to each. Timelike geodesics exist sandwiched between the inner and the outer orbits. In 
the second case, ie, for R2 > 1 2 i V 2 H  null circular geodesics occur a t  only one value of 
R tan(r/R).  There is one CO and one counter-rotating orbit corresponding to  this. There is 
a total absence of timelike circular geodesics. This clearly illustrates that the presence of 
the nonflat background radically alters the nature of circular geodesics in the VEK space- 
time. 

In order to see other effects of the background we now turn our attention to the study of 
gyroscopic precession. 

4.3 Gyroscopic Precession 

The phenomenon of gyroscopic precession is an important example of rotational effects in 
black hole spacetimes. As shown by Iyer and Vishveshwara[20] this effect can be elegantly 
studied by employing the Frenet-Serret formalism. By means of this formalism we may 
exploit the invariant geometrical description of particle trajectories following the direc- 
tions of spacetime symmetries represented by KilIing vector fields. Once the Frenet-Serret 
formalism is adapted to characterize the Killing trajectories, the associated geometric pa- 
rameters are identified with the physical characteristics of the trajectory The curvature is 
identified with the particle acceleration and the first and the second torsions are directly 
related to the gyroscopic precession. The Frenet-Serret tetrad also serves as a convenient 
reference frame to describe physical phenomena. Here there are two approaches to take. In 
the first, by adapting the Frenet-Serret formalism to general timelike Killing vector fields, 
we may study the precession of a gyroscope with respect to a stationary observer. The pre- 
cession is now due to the effect of the black hole rotation but as modified by the background. 

Next, using the method of rotating coordinates the formalism can bc adapted to the quasi- 
Killing trajectories defined in equation(4.5). The precession is now due to the effect of 
rotation of the black hole on the gyroscope moving in a circular trajectory as modified 
by the background. With this framework the gyroscopic precession can be investigated in 
various circumstances. We now briefly review the Frenet-Serret for~nalism. For details we 
refer to[20]. 

4.3.1 The F'renet-Serret formalism 

We have already defined the quasi-Killing vector in the VEK spacctime in equations(4.4) 
to (4.7). 



Introducing a tetrad eTi) with i = 0, 1, 2, 3 the Frenet-Serret equations may be written as 

e:o) = rce?,) 

eTl) = KeT0) + rleb, 

eT2) = -rleT1) + r2ek 

eT3) = -r2e;Z,, (4.41) 

where K is the curvature and r1, r2 the first and second torsions respectively. From 
equations(4.6) and (4.7) we have 

. = f l = f 2 = o  (4.42) 

implying that along trajectories of xa the Frenet-Serret invariants K, 71 and 72  are constants. 
We first apply this to the timelike Killing trajectories in the VEK spacetime.. 

4 

4.4 Gyroscopic Precession Along Timelike Killing Tra- 
jectories 

Writing the VEK metric for a stationary, axisymmetric spacetime expressed in generalized 
Boyer-Lindquist coordinates in a general form we have 

ds2 = g00dt2 + glldr2 + g22d02 + 2g03dtd4 + g33d42 (4.43) 

The generalized Boyer-Lindquist coordinates are adapted to the Killing vectors 5 and v. 
As shown in reference[20], along trajectories of the timelike Killing vector 5 the the Frenet- 
Serret basis is given by 

where 

The curvature and torsions are given by 



From equation(4.1) and the above we find that 

I 

e h )  = (0, KZ, -2za2 sin B cos B,0) 
Jp2 (&z2 + 44Pa4 sin2 8 cos2 8) 

l 2 Mza  sin2 B 2Mz 

e b )  = sin 0 d - m ' -  p2 , 0, 0, (1 - -)) 
P 

- l 
e h )  - (0, 2za2 sin B cos 8,5,0) (4.49) 

JP (Z2 + 4ii2a4 sin2 B cos2 B) n 

and 

where 
z r2 - a2 cos2 B + 2a2 cos2 B sin2 ( r /  R) (4.53) 

Since K is identified with the particle acceleration, the above equations(4.49-4.52) imply 
that in addition to being accelerated, the gyroscope carried by the stationary observer 
precesses with a non-zero angular velocity. This may be interpreted as a manifestation of 
the dragging of inertial frames in the VEK spacetime as modified by the background. TO 
see the contribution from the background we examine the special case of an observer on 
the equatorial plane 8 = 7r/2. Equations(4.50-4.52) now become 

That is, rl is the only nonzero torsion. 



Since the four-velocity is adapted to the timelike Killing vector field the basis vectors 
of the Frenet-Serret frame always remain oriented towards the stationary observers since 
they are Lie-dragged along the Killing trajectory. Thus the stationary observers will see 
the gyroscope precessing with an angular velocity per unit proper time given by -rl. We 
shall return to this point after discussing the gyroscopic precession of an observer moving 
in a circular trajectory. 

4.5 Rot at ing Coordinates and Gyroscopic Precession 
Along Circular Orbits 

In Section 4.4, we have obtained K ,  r1, r2 for an observer whose world line -is along the 
integral curves of the timelike Killing vector ( of a stationary spacetime. Such an observer 
is a t  a fixed value of r ,  6' and 6 .  We now use the method of rotating coordinates to adapt 
the expressions of Section 4.4 to trajectories belonging to a quasi-Killing congruence that 
represent observers moving along circular orbits with constant arbitrary angular speeds. 

Taking the metric(4.43) adapted to the Killing vectors ( and q we make a coordinate 
transformation 

$ = qbl+ wt' 
I t = t  

under which the metric becomes 

ds2 = go~ofdt12 + 2go1~fd$'dt' + g3~3fd$12 + g l ld r2  + g 2 2 d ~ 2  

where 

Under this transformation the coordinate system is now adapted to t' E t + w q  which is 
a Killing vector of this metric given by 

iQe may now adapt the four-velocity along 5' and obtain the curvature and the torsions 
along this world line. As 5' now corresponds to ( + w q  in the unprinled coordinates we can 
compute K ,  rl and rz along trajectories E+wq by replacing goO, 903 and g33 in equations(4.50- 
4.52) by g0~01,  90'3' and g3131. This procedure enables us to obtain the curvature and the 
torsions associatetl with an observer following circular trajectories. Along these orbits given 



by trajectories o f t  + wr)  the Frenet-Serret equations are given by 

1 
"1) = --(0, gllAl,  g22A2, 0) 2tcA 

and the Frenet-Serret curvature and torsions are given by 

where 

and the subscript a takes on values l and 2. 

Explicitly, for the VEK spacetime the quantities A ,B  and C are given by 

and their derivatives with respect to r and 0 are given by 

4Mm sin 9 cos 9 a2 sin2 0(1 - aw sin2 9 )  
B2 = i + (1 - 2aw sin2 0 

zi2 p2 
-2u sin 9 cos %(r2 + a2) (4.69) 



We now consider the gyroscopic precession by confining to the equatorial plane. 
Taking 0 = 7r/2 in the above equations we obtain 

2 M r a  
B = -(l - aw) - ( F ~  +a2)wsin28 r2 

With these quantities we obtain the curvature and torsions as 

~~ru'  EM^ ((aw - - (I - 
,$2 = - 

F (F2 + a 2 ) w 2  a)2 T 

We note that the gyroscopic precession is about e ( ~ )  which is normal to the orbital plane 
and the precession frequency is given by TI as above. 

Geodesic motion and the Schiff precession. 

Along a geodesic, K = 0 and therefore the angular velocity W is given by 

which is just the generalized Keplerian frequency in the VEK spacetime already obtained 
in Section 4.2. 

The only non-zero torsion r1 becomes 



We see a t  once that a novel feature has emerged due to  the presence of the background. 
In the Kerr case we have 

7 

This coincides with the Schwarzschild Keplerian frequency ws. The rotational effect of the 
Kerr black hole is in making the gyroscope following a circular trajectory, to precess with 
the Schwarzschild Keplerian frequency. There is no 'direct effect', in the sense defined in 
Chapter 3, of the black hole rotation on the gyroscope. This is evident from the absence 
of the angular momentum parameter in the expression for rl(,,,,). In contrast to this, in 
the VEK case, the first torsion 7 1  does not coincide with the VES generalized Keplerian 
frequency given by 

M 
WVES = R3 sin3 (rl  R)  cos(r/ R) 

In fact T ~ ( V E K )  is related to WVES as 

As R -+ W, T ~ ( V E K )  + WVES and the Kerr result is recovered. For values of a /R compara- 
ble to unity, however, T ~ ( V E K )  no longer coincides with WVES and the relation is drastically 
affected. 

Comparing this situation with the Kerr case we see that as the gyroscope moves along the 
circular geodesic its precession is affected not only indirectly by the black hole but also by 
the background through the parameter R. Moreover, R enters into the picture by coupling 
to the angular momentum parameter a. This implies that the effect of the background 
manifests itself in both modulated and direct effects in the sense elucidated in Chapter 3. 
We may recall that the 'modulated effect' is discerned by keeping the background param- 
eter fixed and allowing the angular momentum parameter a to vary and the direct effect 
is discerned by holding a fixed and allowing R to vary. We now consider the gyroscopic 
precession in various circumstances. 

The gyroscopic frequency fjrll is about the basis e(3) which is oriented along the z- 
direction. The orbiting(c0-rotating) observer measures precession relative to  the basis e(l)  
which coincides with bhe radius vector which rotates with the angular velocity given by 
equation(4.10). Tlle precession angle per unit time as evaluated in the rotating coordinates 
is 



Next, to evaluate the precession relative to  a stationary geometry we subtract from the 
precession a t  the end of one revolution the angle through which e(l) has rotated with respect 
to the stationary observer which is 27r radians. This gives the gyroscopic precession in the 
VEK spacetime. 

In the linear approximation this reduces to  a generalized version of the Schiff precession. 

Another interesting result is obtained by computing the precession of the orbiting gyro- 
scope with respect to the gyroscope of the stationary observer. In the time taken for one 
revolution of the orbiting gyroscope the latter precesses due to dragging by an amount 

as has been discussed in[20] where is given by equation(4.51). This leads to  

4.5.1 VES black hole 

Since we have not considered gyroscopic precession in the VES spacetime in Chapter 2, we 
shall give it here as a special case. 

The VES metric may be obtained from the VEK metric as a special case of a = 0. Thus 
the most general case of gyroscopic precession follows from the VEIi expression for a = 0. 

General VES case. 

Taking a = 0 in equations(4.68-4.69) yields 



The curvature and torsions are given by 

The Frenet-Serret frame is given by 

2 A f  > ( M w2 COS 0 sin B - W2 sin2 Q), --..- 
X (07 (l - R tan(r/R) (R tan(r/R))3 

. 0) 
R ta~l(r/ 'R) 

The equatorial plane. 

As is usual we comp~ite the precession for orbits in the equatorial plane for which 6' = ~ / 2 .  
Equations(4.84-4.85) reduce when 0 = to 



The bases vectors of the Frenet-Serret frame are obtained by inserting 6' = 7r/2 in equation(4.86). 
The gyroscopic precession in this case is 

And 

A4 = -27r((l- M (  
1 2 + 

Rsin(r/R) cos(r/R) R tan(r/R) 1) X 

As R + oo this reduces to  

Fokker-De Sitter precession. 

A generalized version of the Fokker-De Sitter precession is obtained by specializing the 
above results to the case of a geodesic along which K. = 0 so that  we recover the generalized 
Keplerian frequency 

1 K 

In this case 
= w2 cos2(r/R) 

so that the orbital gyroscopic precession frequency is not the same as the angular speed W .  

Thus even in the absence of rotation the direct effect of the background is manifest. There 
is a significant modification of the results from the asymptotically flat case. 

In one orbital revolution, the gyroscope rotates by 

This reduces to 
3M 112 A = ( ( l  - -) - 1) 
r 

as R + oo thereby recovering the well-known Schwarzschild result. 

4.5.2 Einstein universe 

The general case. 

C 
Taking M = 0 in cquations(4.84-4.85) the results are automatically specialized to the case 
of the Einstein universe. We note that the circular orbits are not geodesics as in the flat 



case as there are no geodesics in the Einstein universe. Nevertheless, non-geodesic circular 
orbits may be examined in order to find analogues of the Thomas precession. 

4 

We now have 

while equations(4.86) reduce to 

i 1 
eTO) = J1 - ~2 sin2 ow2 (1,0,0, W )  

r cos Q 
e?,) = (0,-sin0,- 

T2 7 0) 
T 

e;) = ( W T ~  sin2 O , O , O ,  -1) 
F2 sin 0 4 1  - w2? sin2 Q 

r sin 0 
eT3) = (0, cos0, -L 70) (4.100) 

P 

We see that 7 2  vanishes identically. This implies that the precession is about the normal 
to the orbital plane as should be expected from the symmetry of the situation. 

4 

Thomas precession. 

The above expressions reduce on the 0 = 7r/2 plane to 

leading to the expression for the generalized version of the Thomas precession 

Aqh = -2n((l - R2 ~ i n ~ ( r / R ) w ~ ) - ~ / ~  - 1) (4.104) 

As R + ca ie, in the flat spacetime, this reduces to 

A 4  = -27r((1 - r2w2)-'l2 - l> 

which is the well-known formula for the Thomas precession. 



Concluding Remarks 

In this chapter we have investigated some examples of physical effects characteristic to a 
rotating black hole in the asymptotically nonflat VEK spacetime. By studying circular 
geodesics we have shown that there is a significant departure of the VEK results from 
the usual Kerr counterparts. This is due to  the matching of the Vaidya spacetime to the 
Einstein universe wherein there are no circular geodesics a t  all. In the Kerr spacetime null 
circular geodesics exist a t  only one value of the radial coordinate expressed in terms of the 
impact parameter. At this value of the radial coordinate, there is one CO-rotating and one 
counter-rotating orbit. Timelike geodesics exist from this point, all the way up to infinity. 
In contrast, the VEK case allows two different possibilities depending on the background 
parameter. 

In the first case the null circular geodesics are present a t  two different values of R tan(r/R). 
These values are-now functions of both the impact parameter and the background param- 
eter. There is an inner photon orbit and an outer photon orbit. Each of these have one 
CO-rotating and one counter-rotating orbits. Timelike geodesics exist sandwiched between 
the inner and the outer photon orbits. 

In the second case, null geodesics occur a t  only one value of R tan(r/R) with one CO-rotating 
and one counter-rotating orbit. There is a complete absence of timelike circular geodesics. 
The impact parameter also reflects this feature as we have shown in the special case a = 0 
of the VES spacetime. 

By investigating the phenomenon of gyroscopic precession in the VEK spacetime we have 
shown that the background affects the precession in both modulated and direct effects. 
The first torsion which in the Kerr case coincided with the Schwarzschild Keplerian fre- 
quency now no longer coincides with the VES generalized Keplerian frequency. It is now 
a function of the angular momentum parameter as well in contrast to the Kerr case. This 
brings about a pronounced modification of the results of the Kerr case. In particular this 
gives rise to a generalized version of the Schiff precession. Moreover, even in the special 
cases of the generalized versions of the Fokker-De Sitter precession in the VES spacetime, 
the background prevents the first torsion from being equivalent to the generalized Keple- 
rian frequency. Finally, the generalized version of the Thomas precession in the Einstein 
universe is also considerably modified. 

Thus we may conclude that the influence of the nonflat background on the physical effects 
associated with black hole rotation investigated herein is significant and manifest. 
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Chapter 5 

The Carter Constant and the Petrov 
Classification of the VEK Spacetime 

5.1 Introduction 

Having discussed the geometry of the event horizon and some physical effects in the 
VEI< spacetime, we now turn to the investigation of certain separability properties of 
the geodesics and the Petrov classification of the spacetime. We study also certain quan- 
tities that have proved to be indispensable in defining particle angular momentum in a 
stationary, axisymmetric spacetime with a view to extend them to the VEK case. These 
quantities are the Killing tensor, the Killing spinor and the Killing-Yano tensor. Their sig- 
nificance lies in the fact that on one hand, they are the only quantities that seem to support 
particle angular momentum structure. On the other hand, together, these quantities re- 
late the properties of the geodesics, in particular, the separability of the Hamilton-Jacobi 
equation and the Carter constant, to the Petrov classification of the spacetime. 

The existence of these quantities in the VEK spacetime is not a t  all obvious. There are two 
reasons for this. One is that the separability properties of the equations of mathematical 
physics possessed by the Kerr metric may not be possessed by the VEK metric. In fact, 
going by the evidence of our studies on geodesics in the VES and the VEK spacetimes, it 
is not a t  all unlikely to expect that the drastic modification in the nature of the geodesics 
from their asymptotically flat counterparts would affect the separability properties also. 

Another reason has to do with the Petrov classification of the spacetime. The Kerr space- 
time is of Petrov type-D and is a vacuum spacetime. Therefore it admits a Killing spinor. 
The Killing spinor goes into defining the Killing-Yano tensor. The type-D nature of the 
Kerr spacetime relies on the vacuum, asymptotically flat features of the spacetime. When 
one or both of these features are relaxed it need not be expected that the classification 
remains invariant. Even if the type-D classification is retained as in the VEK case, but 
the spacetime is non-vacuum and asymptotically non-flat, it is not at  all clear whether the 



Killing spinor and hence, the Killing-Yano tensor exists. 

-A significant feature of the Kerr metric is that almost all the equations of mathematical 
physics are separable. Central among these equations is the Hamilton-Jacobi equation. 
The importance of this stems from the fact that the solution of the Hamilton-Jacobi equa- 

tion gives complete information on the nature of the geodesics. The Kerr metric being 
stationary and axisymmetric there exist two Killing vector fields, one timelike and one 
rotational. These lead directly t o  two conserved quantities namely the energy and the az- 
imuthal angular momentum. The metric itself leads to another conserved quantity namely 
the rest mass. In general, there is no reason to  expect any other conserved quantities 
apart from these three. However, as discovered by Carter[28] in his investigations on the 
Hamilton-Jacobi equation for the Kerr metric, there exists a fourth constant of motion 
which has proved to  be extremely useful in the study of geodesics in the Kerr spacetime. 
Since it is a quadratic constant of motion, it may be expressed as the contraction of a 
symmetric rank two tensor, called the Killing tensor, twice with a four-momentum. The 
Killing tensor, in turn, may be expressed as a 'square' of an antisymmetric rank two tensor, 
the Killing-Yano tensor as shown by Penrose and Floyd[29][30]. 

This discovery came from another line of investigation, viz, that related to the Petrov clas- 
sification of the spacetime. It  was shown by Walker and Penrose[31] that an asymptotically 
flat type-D vacuum spacetime admits a Killing spinor. The vacllurn, type-D character of 
the Kerr spacetirne ensures that the principal null c0ngruenct.h ;iIp gc:ociesic and shear-free 
and that there is only one non-vanishing Weyl scalar \I12. Thc Killing spinor is constructed 
out of Q2 and the basis spinors. The Killing spinor, in turn, may be used to construct 
the Killing-Yano tensor. The Killing tensor is now obtained as a partial contraction of 
Killing-Yano tensors twice as shown by Floyd[30]. Thus once again one arrives a t  the same 
Carter constant. 

The above discussion indicates that  the Killing-Yano tensor serves as a link between the 
Killing tensor ant1 the Killing spinor. Therefore the Killing-Yano tensor itself, in turn, 
depends on either the separability property of the Hamilton-Jacobi cquation or the type-D 
character o l  the spacetime both of which are tied up with the existence of the Carter con- 
stant. C1ose:y related to  these properties is the fact that the Kerr spacetime is vacuum and 
asymptotically flat. On one hand the property of being type-D depends on the vacuum 
nature of the spacetime. On the other hand, the property of asy~nptotic flatness enables 
the physical quaritities to  be appropriately identified through the Killing-Yano tensor. 

To reiterate then, in the case of the non-vacuum, asymptotically non-flat VEI< spacetime 
there are no gro~~r ids  to expect that  either of the above properties be valid. It  is not improb- 
able that the matter distribution surrounding the VEIi black hole would be expected to 
affect the c1assific:;ltion and the asymptotically non-flat feature of the spacetime may make 



it difficult to  define physical quantities. Nevertheless, as we shall show both the separabil- 
ity property and the type-D nature of the spacetime hold in the case of the VEK spacetime. 

This chapter is organized as follows. In Section 5.2, we show that the Carter constant 
exists by constructing it  following the original method of Carter[35] in the case of the 
Kerr metric. In Section 5.3, we present the Killing tensor. In Section 5.4, me discuss 
the classification of the VEK spacetime. Employing the Newman-Penrose formalism we 
calculate the spin coefficients and contrast the results with the Kerr case. In Section 5.5, we 
present calculations to demonstrate explicitly that the special case of the VEK spacetime. 
namely, the VES spacetime is Petrov type-D. After a brief review of the 2-spinor formalism 
in Section 5.6, we go on to  construct the Killing spinor for the VEK spacetime. This will be 
followed by Section 5 . 7  wherein we construct the Killing-Yano tensor. Section 5.8 carries 
the concluding remarks. 

The Carter Constant 

The discovery by Carter of the fourth constant which now bears his name was one of the 
remarkable results on investigations involving the Kerr metric. In his studiesj281 Carter 
was motivated by the need to  integrate the geodesic equations. !Is tliscussed in Chapters 
2 and 4, the geodesic equation for a free particle of mass m can be obtained from the 
Hamiltonian 

1 ab 
= -9 P a P b  (5.1)  2 

where 

P a  = g a b i a  (5.2) 

is the four-momentum. Since the affine parameter does not appear explicitly in the Hamil- 
tonian, the Hamiltonian itself is automatically a constant of t,hc niotion and is given by 

In a stationary, asisymmetric spacetime wherein there are two c\-c~lic coordinates corre- 
._ sponding to the timelike and rotational Killing trajectories we liave in addition to  the 

above, two other constants. The four-momenta pt and pd where t iwd 4 are the time and 
azimuthal Boyer-Lindquist coordinates respectively, are also conserved. 

For a complete sct of first integrals of the motion we need in all four constants of the 
motion. Thus a fourth constant of the motion is needed. This ~vo~l ld  not exist in a gen- 
eral stationary, axisymmetric spacetime. However, in the case of the Kerr spacetime the 
fourth constant does exist as shown by Carter. Since the Kerr spi1c:etime is vacuum and 
asymptotically flat there is no reason to expect that  the the non-vi~cuum, asynlptotically 
Einstein VEK spacetime admits a fourth constant. Nevertheless, proceeding in analogy 



with Carter's construction of the fourth constant we now construct it for the VEK space- 
time. We first recall the method of Carter[35] which bypasses the necessity of going through 
the Hamilton-Jacobi equation. Thus the Carter constant may be obtained directly by in- 

e 
spection of the Hamiltonian by means of the following lemma due to Carter. 

Lemma: Let the Hamiltonian have the form 

where U, and Ue are single variable functions of the coordinates r and 8 respectively and 
where X ,  is independent of the momentum pe and of all the coordinate functions other 
than r and 3Ce is independent of the momentum p, and of all the coordinate functions 

.: other than 8. Then the quantity 

Poisson commutes with 31 and hence is a constant of the motion. The proof is as follows. 

Since ?lr commutes with X.  and U, commuter with X e  and U, + 246 we obtain 

and 
l 

We thus obtain 

Using this in equations(5.6) and (5.7) we obtain 

A. 

[X, ,  X ]  = 2X[ZA,, X ]  

This may be written as 
[2Ur3C - ?lr, X ]  = 0 

or 
[K, R] = 0 

since K: = 2U,U - 74, as can be readily verified. 

+ It therefore follo\vs that the quantity K: is a constant of the motion. 



In order to apply this lemma to the VEI< Hamiltonian we note that the VEK metric in 
generalized Boyer-Lindquist form may be written as 

- - 
where F, E, p, A,  C and are as in equation(3.13) of Chapter 3. 

The contravariant form of this metric is given by 

Therefore the Hamiltonian is 

We now bring the Hamiltonian to a form in which the above Lemma may be applied. We 
rewrite the Hamiltonian as 

This is clearly of the form given in equation(5.4) with 

Therefore we im~liediately obtain 

(a2 cos2 Q sin2 Q + & F ~ )  (2a(~-?  + a2)u2 cos' 0 + F2&) 

p2& sin2 Q Pd 
- 

p2K PtP, (5.17) 

wliich is the Cart,c:r constant for the VEK metric. 



That K: is a constant of the motion follows by the fact that the Poisson bracket of IC and 
3C vanishes. 

Thus we have shown that the Carter constant exists despite the fact that the VEK space- 
time is non-vacuum and asymptotically non-flat. 

In the phase space view the Carter constant is a quadratic constant of motion. In analogy 
with the metric which also leads to a quadratic constant of motion, namely, the rest mass 
squared, this motivates the possibility of expressing the Carter constant in terms of a similar 
quantity. Since the metric is expressed by means of a symmetric second rank tensor we 
may express the Carter constant by means of a similar symmetric second rank tensor called 
the Killing tensor which we shall now discuss. 

5.3 The Killing Tensor 

The Killing tensor is an extension of the concept of a Killing vector field to a tensor field 
with analogous properties. 

We recall that a vector field ca is termed a Killing vector field if the Lie derivative of the 
metric along ca vanishes 

L ~ g a b  = 0 (5.18) 

This is equivalent to the Killing equations 

Then, if p" is a geodesic vector satisfying the relations pbpa;b = 0 the product J,pa is a 
conserved quantity for 

P ' ( Q P " ) ; ~  = p b p ; t a  + p b p a ~ a ; b  = 0 (5.20) 

the first t,erm vanishes since p" is a geodesic a,nd the second term vanishes due to the Killing 
equations. We now give the definition of a Killing tensor. 

A Killing tensor ICab...-d is a symmetric tensor satisfying, in analogy with the Killing 
equations(5.19) 

I c ( a b  ... c d ; e )  0 (5.21) 

It straight away follows that Kab...cd leads to a conserved quantity. Indeed, considering the 
quantity Q = I~ab..,cdpapb.. .pcpd we have 

a 6  c d  b c d , .  
p e ( h r c l b  ..., . d p  p ...p p ) ; e  = 2pCpa ; e p  ...p p I l a b  ... cd + 

e a b  2p  p p ;e...pc$~<ab,,.cd + ... f p ' : p a p b ~ a b  ... d ; e  

= 0 



the terms other than the last vanish since pa is geodesic and the last term vanishes by the 
Killing tensor equations(5.2 1). 

6- 

For a Killing tensor of rank two which is what we shall be dealing with the above definition 
reduces to the simple form 

e a b  
pe(li'abpapb) = 2pepa ;epblcab + p p p Kab;e = 0 (5.23) 

Just as a Killing vector field is associated with a linear constant of motion (,pa, Kabpapb 
is associated with a quadratic constant of motion. 

i The metric tensor trivially satisfies the requirements for being a Killing tensor, the corre- 
sponding conserved quantity being the particle rest-mass. 

The phase space view of the Killing tensor reveals the following. Just as the metric tensor 
multiplied twice by a four-momentum is twice the Hamiltonian, the Killing tensor mul- 
tiplied twice by a four-momentum is associated with the Carter constant which, being a 
constant of the motion, Poisson-commutes with the Hamiltonian. 

We now exhibit the Killing tensor for the VEK spacetime. First we note that  the Carter 
constant introduced in equation(5.17) may be expressed through the contravariant form 

~ 2 ~ 2  a (a2 cos2 0sin2 B + XF2) 8 8 
0-- p2 ao ao -B-  p 2 3  sin" 84 84 

A _  We identify this ;is the Killing tensor for the VEK spacetirne 

( 2 ( t ( ~ ~ + a ~ ) a ~  cosZ Q+PZX) 
- & ( ( 7 ~  + a2)2 + 3 ~ 2  sin2 0) 0 0 - 

P-  A j?i2 Zi 
0 aZ cos2 QZi 0 - 

P-  
O 

0 0 -q P 0 
(2a(7*+a2)a' cos' 8+rzX) - (a2 cos2 Q sin2 Q + ~ F ' )  

-., - 
p- A 

0 p q s i n q  1 
-4- The covariant for111 of the Killing tensor is 



In order to see the significance of the Killing tensor it is instructive to look a t  the limiting 
case of the Schwarzschild space-time by taking R + oo and a = 0. We then have 

The Sch~varzschild metric admits three Killing vectors ix ,L,, and L, arising from spherical 
symmetry 

,. d d 
L, = cos 4- - cot B sin 4- 

dB 84 

The Lie brackets of these vector fields are 

With these Kab may be expressed as 

The three Killing vcctors ex ,L, ,L, give us natural definitions of components of angular 
momentum 



and the Carter constant is found to be the square of the angular momentum vector 

In this limiting case of the Sch~varzschild spacetime however, the Killing tensor from which 
it arose, is degenerate or reducible. That  is, the Killing tensor is expressible in terms of 
the Killing vectors. 

The above discussion suggests that the Carter constant is somehow analogous to the square 
of the angular momentum of the particle. 

In passing we may note that instead of the limiting case R -+ m, a = 0 we may consider 
the special case of the VES spacetime by keeping the background parameter R finite while 
taking a = 0. An analogous discussion as in the Sch~varzschild case may be given. Thus 
the VES spacetime also has a similar Carter constant as the Schwarzschild spacetime via 
a reducible Killing tensor. This is because the VES spacetime also admits the rotation 
group due to  spherical symmetry. 

The existence of the Carter constant gives strong motivation to  expect that the VEK 
spacetime is of Petrov type-D. We now turn to a brief discussion of the Newman-Penrose 
formalism in order to calculate the spin coefficients for the VEI< spacetime. 

The Spin Coefficients and Petrov Classification 

The Newman-Penrose(NP) formalism enables one to capture the full content of the Einstein 
field equations in terms of the five complex independent tetrad components of the Weyl 
scalar, the six complex independent tetrad components of the trace-free part of the Ricci 
tensor, the Ricci scalar, and the twelve complex spin coefficients. The Newman-Penrose 
equations are expressed in terms of a null tetrad (l, n, m, m). 1 and n are real while m 

and iii are complex conjugates of each other. The special adaptability of the Newman- 
Penrose formalism to the asymptotically flat. vacuum, black hole spacetimes is related to 
the type-D character and the Goldberg-Sachs theorem. This theorem allows one to make 
statements on thc Petrov classification of the black hole spacetime as a consequence of the 
vanishing of certain spin coefficients. This, in turn, is related to  tlie geodesic and shear-free 
nature of the congruences formed by the principal null-directions. Thus an examination of 
the spin coefficie~its allows one to  draw conclusions on the nature of the Weyl scalars and 
vice versa. Since the asymptotically flat, vacuum black hole spacetimes are all of Petrov 
type-D, it is convenient to examine such spacetimes by means of a riull tetrad in which the 
spin coefficients K ,  0 ,  X ,  V and all the Weyl scalars except Q2 vanisli. 

111 a non-vacuum. asymptotically non-flat VEIi spacetime halve\-cr, it is not possible to 
tlraw conclusions on the Petrov classification by an examinatiori of the spin coefficients 



alone. To do so would need at  least a generalized version of the Goldberg-Sachs theorem 
applicable to non-vacuum asymptotically non-flat spacetimes. Nevertheless, the existence 
of the Carter constant and its strong relation to the Petrov classification in the case of 
vacuum asymptotically flat black hole spacetimes motivates us to discuss the spin coeffi- 
cients and their relation to the Weyl scalars in the VEI< spacetime. We now present the 
null tetrad formalism for the VEI< spacetime. 

5.4.1 The Newman-Penrose formalism 

The NP null tetrad may be obtained by a consideration of the shear-free null congruences 
that emerge while solving the equations for the null geodesics. We may recall that in Chap- 
ter 4, we obtained the null geodesics that are members of the principal null congruences 
confined to the equatorial plane. This procedure may be continued to construct the null 
tetrad. However, in what follows we shall construct the null tetrad directly from the metric. 

We write the VEI< metric in generalized Boyer-Lindquist coordinates in the form 

Introducing the tetrad forms e A  = e 2 d x a  where the tetrad indices .-l, B, C... range from 
A = 0, 1,2,3, and expressing the metric as 

we may pick out tlie tetrad forms 

sin Q e3 = :((S* + a2)d$  - a d t )  
P 

From these we may define new tetrad forms E" = E t d x a  by 
- 

3 &sin@ E = -e3= ((r2 + u2)d$  - u d t )  
P 1 P1 

Tliese tetrad forrlis may be most conveniently used to arrive at  thc null tetrad. 



5.4.2 The Newman-Penrose null tetrad 

i The null tetrad forms may be obtained immediately from the above tetrad forms EA as 

v where we have defined 

- 
- T + iacos O P1 - 

-* - - 
P1 - r  - ia  cos 8 

and made use of the identity p2 = plz 

Explicitly we have 

1 
m = madxa = - 

is2 (ia sin Odt - -dO - i (r2 + a2) sin Od$) 
fi~, C 

The contravariarit form of the above tetrad is 

- ~ ~ + a ~ a  a a a 
l =  - -+-+=- a a t  a r  a ad 

r 2 + a 2 a  1 a a - 
n = -- - +-- 

2p2 a t  2 p2 dr  2p2 a4 
ia sin 8 a 
-- 

1 8 i c s c O d  
6 = +--+-- 

4 3 ,  a t  JZir, a~ a p 1  a$ 
- ia sin 0 d 1 d i c s c O 3  
m = ---+----- a~ at app~ 

It is easily verifictl that l ,  n, m, 7 i i  satisfy the standard normalizatioll relations 



where the dot denotes the operation of the inner product or contraction. 

f . In order to facilitate the calculations we note the following useful relations 

l A 1  = n A n = m A m = m A m = O  

l A n = (dt - a sin2 8d4) A dr  
i sin 8 m A m  = -- 
C (adt A dB + (T2 + a2)d0 A d4) (5.43) 

The coordinate forms dt, dr,  dB and dq$ may be expressed in terms of the null forms as 

a a i 
d4 = - l + = n +  

2p2 A &p2 sin 8 (P1m - %m) 

These satisfy 

T~ + a2 ia sin 8& ia sin 8 
drAdt = 1An - lA(p,m - $Pi) 4- - nA(p, m - p$) 

P2 2 4 p 4  &'p2 

a ix 4- i 
dr~dq3  = --1An- 

p2 2fip4 sin 8 
l A ( ~ l m  - + f i p 2  sin 0 

aC -*- d 8 ~ d 4  = -1A(p1m + ~ , m )  + -nA(plm + *Pi) + - iC mATG 
2 &p4 &p2 A p2 sin 8 

(5.45) 

With these prelirriinaries we may proceed to  calculate the spin coefficients for the VEK 
spacetime. 

5.4.3 The spin coefficients 

The standard method of introducing the spin coefficients is by identifying them with 
the Ricci rotation coefficients[36] [l71 [37] [38] [39] (see also[40]) or by crnploying the 2-spinor 
formaIism[41]. However, for the sake of compactness and comp~~tational simplicity we 
~nake use of the Cartan formalism as described in Penrose and Rindler[42]. This formalism 

I 

requires us to cal(.ulate only the exterior derivatives of the null forms l, n and m. The 



spin coefficients then appear in algebraic combinations as coefficients of the components 
of these exterior differentials. We first recall the expressions for dl ,  dn ,  d m  as given in[42]. 

i- Our expressions differ from Penrose and Rindler in that we have replaced the primed spin 
coefficients by their un-primed equivalents T' = -T, 0' = -X, p' = - p  and K' = -V. 

We have also written out the expression for d m .  The bars on the spin coefficients denote 
complex conjugation. 

- (+(;- j ) m A m -  E m A n  - K % A ~ )  

d n  = - ( ( - v ) h m  + ( - v ) l A m  + (y + 7 ) l A n  + (--p + p)mATE + (-a + T - p ) m A n )  

- ((-E + T - p)mr\n) 

W d m  = ((y - ~ + P ) ~ A ~ + X I A ~ + ( - T - T ) ~ A ~ +  ( P - E ) ~ A ~ )  
(+p - 6 + r ) m A n  + crm~n) 

dFi  = ((7 - 7 + p ) l A ~ i i  + A1Am + (-n - 7 ) l A n  + (p - a)7EAm)  

(F - F + c ) m A n  + iYm A n )  (5.46) 

We now proceed to calculate the exterior derivatives of l ,  n. The rest may be obtained 
simply once these are given as we shall show below. 

We find that  

where 

2a2 sin 8 cos 8 
l I  = - - 

A 

- 
iTa sin 8 

ml = 
fipI2R tan(r /R)  

- iT sin Q(T2 - a2 + 2iaT cos 8 )  
m4 = 

f i p I 2 R  tan(r /R)  

- i ( r2  + a2)(:rcos Q + ia)  
m5 = 

l.,"%, 

It is now necessary to express dl and dm in t e r~ns  of the wedge products of 1, n, m, m .  
4 



With the help of the expressions for the coordinate forms in equation(5.44) we find that 

where 

- f ia2[pl  sin B cos B ilm = 
P4 

f ia2[z  sin B cos B 
llK = LTm = - 

P4 

lmE = - 
i a [ Z  cos 0 

4 P 
i f i a p 2  sin 0 

mln = 
P2&R tan(r/R) 

(rcosB + ia) [  
m,= = 

&p12 sin B 

IVe are now left with dn and dm. ,4t this stage dn may be obtained simply by noticing 
that 

1E 
n=--1+dr (5.51) 

2 p2 
so that 

From the relations(5.47), evaluating the derivatives with respect to r and B and using 

h equations (5.44) we get 

where 

- i a z c  cos 8 
n , ~  = 

P" 
I -4s to the expression for dm it suffices to obtain it by complex colij~lgating dm. 



We now equate the algebraic combinations of the spin coefficients in (5.46) to the corre- 
sponding coefficients in equations(5.49) and (5.53) and solve the equations to obtain 

+ 
/$ = v = g = x = o  

ia cos 8 
E = 

2p2R tan(r/R) 
(F - (R tan(r/R)) 

- r p = -  (R tan(r/R) 
- ( )ia cos 8 P R  tan(r/R) 

- 

p = -  
A f (R tan(r/R) 

)ia cos 8 
2p4R tan(r/R) 

- zaf sin 8 
7- = )ia cos 8 

fip2pl R tan (r / R) r 

iai; sin 8 [R tan(r/R) 
T = )ia cos 8 

f i p 2 z R  tan(r/R) 

p =' 
(fcos 8 + ia)C - iaf sin 8 

)ia cos 8 
2fipI2 sin 8 d p 2 p 1  R t a n ( r / ~ )  r 

- 

y = -  i a E  cos 8 Ay2 
4p" tan(r/ R) (F+ cR tan(r/R)) - 2 p 4 ~  tan(r/R) 

d 

We now substitute these spin coefficients into the eighteen standard Newman-Penrose 
equations given, for instance, in[36] [l71 [37] [38] [42] [39] [40] to obtain the following equations 



And the eight Bianchi identities 

DQ1 - = + 2 ( ~  + 2j)Q1 + (T - 4a)Q0 + [Ricci] 

DQ2 - 6*Q1 = - k Q 3  + 3pQ2 + 2 ( ~  - a)Q1 - XQo + [Ricci] 

0 ' 3 3  - 6**2 = -&Q4 - 2(€ - j )Q3 + 3rQ2 - 2XQ1 + [RZCCZ] 
DQq - 6**3 = - ( 4 ~  - P)Q4 + 2(27r + a ) Q 3  - 3XQ2 + [Ricci] 

DQo - 6Q1 = (4y - p)Qo - 2 ( 2 ~  + P) Ql + 3aQ2 + [Ricci] - 

D - Q = vQo + 3(y - p)Ql - 3rQ2 + %Q3 + [Ricci] 

DQ2 - 6Q3 = 2vQl - 3pQ2 - 2(7 - P)Q3 + a Q 4  + [Ricci] - 

DQ3 - 6Q4 = 3vQ2 - 2(y + 2p)Q3 - (T - 4P)Q4 + [Ricci] (5.74) 

where the cumbersome Ricci terms have been merely indicated. IVe may note, however, 
that  by employing the compacted spin coefficient formalism given, for instance, in[42] the 
Ricci terms also may be exhibited in a direct manner. In the above the notation is stan- 
dard except that we have used Q instead of A to  avoid confusion with the Schwarzschild 
counterpart of the already figuring in our notation. IVe note that the D, D, 6, 6* are the 
same as the vector fields i, f i ,  m, % respectively, appearing in equations(5.41). 

These expressions for the spin coefficients, the Newman-Penrose equations and the Bianchi 
identities contain, as limiting cases, both the corresponding Kerr and the VES results. -4s 
R +- oo we recover the Kerr spin coefficients and as a -+ 0 we recover the VES counterparts. 

Apart from the spin coefficient E which is non-vanishing, K, v, a, X do vanish as in the Kerr 
case. That  these are zero shows that the congruence of the principal null directions, 1 and n 
are shear-free. In the Kerr case this fact is sufficient to  invoke the Goldberg-Sachs theorem 
to  conclude that the Kerr spacetime is of Petrov type-D. In the VEI< spacetime, however, 
in absence of a corresponding theorem, there is no alternative thnn to evaluate the LVeyl 
scalars. A glance a t  the Newman-Penrose equations(5.67-5.73) shows that the Weyl scalars 
Q0 and Q4 vanish straight away. Thus it  is immediately clear that the VEK spacetime 
is type-11. In Chapter 6, Section 6.4 we discuss that  this is as it should be by showing 
that  the VEIC metric falls into a generalized Kerr-Schild class ~vliicli therefore correspond 
to type-I1 spac~t~irnes. It  now remains to see whether Ql and q:3 ;xlso vanish. If they do 
and if Q2 is the orily non-\:anishing Weyl scalar and can be evaluated, we would not only 
have that the spncetime is type-D but also would be enabled to  ~ i s c  the expression for Q2 
for calculating tllcx \Veyl spinor. Here we are prevented from directly verifying this due to 
the exceedingly c-limbersome nature of the computations involvclci. A way out of this is 



to notice that the. expressions not containing the mass M do not contribute to the Weyl 
scalars. Therefore these terms add up to zero. The remaining terms containing M are not 
so difficult to evaluate and give the result that Q, and Q3 also vanish. The remaining Weyl 
scalar q2 may be calculated in a way analogous to the Kerr case but is cumbersome and 
we shall not present the details here. Instead we take a brief look a t  the limiting case of 
the ECerr spacetime(R + m) and then go on to exhibit, in detail, the classification of the 
special case of the VES spacetime wherein a = 0. 

When Ifre take the limit R + m the vacuum nature of the resulting Kerr spacetime allows 
us to use the Goldberg-Sachs theorem and put all the Weyl scalars except Q2 to zero. The 
Ricci terms in the Bianchi identities go to zero. Then the Weyl scalar Q2 is most easily 
calculated by invoking the Bianchi identities and substituting the Kerr spin coefficients 
into it as done for instance in [36]. We obtain 

Rewriting these equations and using the value of Ji and r we have 

8 -3za sin 6 
- l 0 g 9 ~  = 
do G 

Solving these equations and determining the constant of proportionality from the spin 
coefficient equations we get 

s, = - ~ ( p ; ) - ~  (5.77) 

where 
-* p, = r - iacos0 

-4s mentioned above a similar calculation of the VEK Weyl scalar requires a knowledge 
of the non-zero Ricci terms which turn out to have complicated expressions. We turn 

therefore to  the sirnpler special case of the VES spacetime. 

5.5 Classification of the VES Spacetime 

As discussed in tall(: previous chapters, the VES spacetime is a special case of the VEIC 
spacetime describing a static, asymptotically non-flat black hole surrounded by matter 
distribution. It is a well-defined composite spacetime comprising a vacuum black hole 
spacetime matchetl to a non-vacuum exterior which, in turn, is matched to the Einstein 
universe as was done by Nayak, MacCallum and Vishveshwara[3]. This VES black hole 
contains the Sch\\ril;lrzschild black hole as a limiting case. As the background parameter 
R + cc the Schw~~r-zschild black hole is recovered. 



Since the Schwarzschild black hole is of Petrov type-D it is natural to  enquire as to the 
classification of the VES black hole. As in the VEK case, in the VES case also one cannot 

4 invoke a theorem like that of Goldberg and Sachs to  determine the Petrov type on the basis 
of the nature of the spin coefficients alone. We now specialize the spin coefficients obtained 
in section 5.4 and evaluate the Weyl scalars explicitly. Taking a = 0 in equations(5.55) we 

get 

p = -  
2R tan(r /R) R tan(r/R) 

cot 0 p = - - -  
) 

2 f i ~  

These expressions are analogs of the Schwarzschild counterparts given, for instance, in[l i ] .  
It  is evident that that the Schwarzschild results are recovered as R + m. 

The Newman-Penrose equations become 

DP = p p + @ ,  
Dy = 'P, + a,, - A  



Solving the above system of equations and using equations(5.79) we find that 

And 

a = - ( l -  
4 R2 R tan(r/R) 

Gathering these results together we see first of all from equations(5.98) that apart from 
90, a4, Q 1  and a3 all vanish and the only non-vanishing LVeyl scalar is \k2. This shows 

1 

that the VES spacetime is Petrov type-D, with repeated principal null directions 1 and n. 
By taking the limit R + oo of !P2 it is immediately verified that the VES Weyl scalar 
reduces to  the Schwarzschild counterpart. 

Next, turning to the Ricci terms above we see that the only non-vanishing quantities are 
the components aoo,  a l l ,  @22 and the scalar h. The presence of these terms reflect the 
non-vacuum nature of the VES spacetime. As discussed in Chapter 2 ,  the non-vacuum 
here refers to  matter distribution satisfying reasonable energy conditions. 

By taking M = 0 in the Ricci terms we see that 

The non-vanishing of these quantities reflect the asymptotically non-flat feature of the VES 
spacetime. We may recall the the limiting case M = 0 of the VES spacetime is the Einstein 
universe. The asyrnptotically flat result is recovered in the limit of R tending to infinity 
and the Ricci quantities vanish as expected. 



In passing we note that the optical scalars are given by 

Thus we have established that the VES spacetime belongs to Petrov class-D. This lends 

strong support to the expectation that the VEK spacetime also falls into the same class. 
To our knowledge there is no result which indicates that the Petrov type is preserved in 
passing from the static to the stationary case. In absence of such a result we base our 
expectation that the VEK spacetime is also of type-D by considering the fact that firstly, 
both the limiting case of the Kerr spacetime(R + m) and the special case.of the VES 
spacetime(a = 0) are of type-D. Secondly, the existence of the Carter constant also supports 
this view. Thirdly as we shall discuss in Section 5.6 below, there exists a Newman-Janis 
type of complex transformation which generates twist in the VES spacetime to give the 
VEK spacetime. Lastly, as we shall show in Section 5.7, there exists a Killing-Yano tensor 
which remarkably 'squares' to give the Killing tensor. This tensor may be constructed 
from the Killing spinor which, in turn, is built up from the only non-vanishing Weyl scalar 
q2 and the metric spinor € A B .  TO proceed in these directions we first need to study the 
2-spinor formalism to discuss the Killing spinor for the VEK spacetime. 

5.6 The Killing Spinor 

It is now necessary to recall some essentials of the 2-spinor formalism which provides the 
frame-work to  define the metric and the Killing spinors. For details we refer, for instance, 
to[42] or [17]. 

5.6.1 Brief review of the 2-spinor formalism 

In the 2-spinor formalism the basic entities are the spinors oA and L . ~  usually normalized 

by 
0 . ~ 1 ~  = 1 (5.102) 

Most of what follows may be built out of the oA and L" and the above relations. 

Indeed, it is helpful to keep the following analogy in mind. In the tensorial view the 
Newman-Penrose t,etrads contain all the information from which the rest of the structures, 
the metric, the Killing and the Killing-Yano tensors may be expressed. Likewise, the basis 
spinors oA and L" contain all the information from which the metric iind the Killing spinors 
may be expressetl. 



The metric spinor eAB which is an antisymmetric spinor is defined by 

It satisfies the Jacobi identity 

e A [ B e C D ]  = 0 

Just as tensor indices may be raised and lowered with the metric tensor, spinor indices 
may be so dealt with with the metric spinor. But the position of the indices is also to be 
given prominence. For instance, we have 

Any spinor , L L ~ . . . ~  can be expressed as the sum of the completely symmetrized spinor 
and products of the metric spinors with completely symmetric spinors of lower valence. 

Thus it is necessary to consider only symmetric spinors. 

A Hermitian spinor p  is one for which p = p. The covariant constancy of the metric tensor 
is mirrored by the vanishing of the spinorial covariant derivative of the metric spinor 

L The 2-spinor formalism is related to the standard tensor formalism through the Infeld-Van 
der Warden symbols a:,, as follows. 

The Newman-Penrose tetrad is defined in terms of oA and L" by 

l a  = a .4 A' cAAIO 0 

,a = a A A' 
cAAtL L 

A  A' ma = 0 1 ~ 1 0  L 

-4 m = a A  A' 
OAAIL o (5.107) 

i 

The normalization relations obeyed by the null tetrad follow naturally from the 
. relations(5.102). By convention the Infeld-Van der Warden symbols are usually not written 

explicitly. They are inserted when needed for calculational purposes. 

Thus. for example, the relation between the metric tensor and the metric spinor is written 
simply as 

gab = E A B E A I B ~  (5.108) 

In addition to these other quantities there-are that coming from the spinor decomposition 
- #  of the Riemann tjensor. 



The Riemann tensor has the spinor expression 

Rabcd = XABCD~A'B '~C'D'  + ~ A B C ~ D ~ ~ A ~ B ~ E C D  + ~ A t B t c D f A B f c l D t  + ~ A ~ B ~ C ~ D ~ E A B E C D  

where 

and 

XABCD = XCDAB 
- 
QABC'DJ = @ABC'D' 

Along with this we have the scalar '4 

so that 
B XABC = 3AEACA = K 

This is an expression of the identity 

Ra[bcd]  = 0 

We further have 

In terms of these quantities the Einstein field equations become 

The Weyl spinor SABcD is defined as the symmetric part of SABCD 

We have 
XABCD = QABCD + A ( ~ A C E B D  + ~ A D E B C )  (5.118) 

The full Riemann tensor(5.109) becomes 



The terms involving a.4BCD alone give the \ilTeyl tensor 

The Bianchi identity 

Rab[cd;e] = 0 

becomes 

V;! XIBCD = V;' ~ ~ ~ ~ 1 ~ f  

Or 

This shows that when the vacuum Einstein field equations hold 

We have 

V A A ' ~ . A B C D  = O 

And when matter is present there is a source term 

Equation(5.125) plays an important role in the existence of the Killing spinor for the Kerr 
spacetime. 

In passing we note that the Newman-Penrose Weyl scalars are give11 in terms of the spinor 
basis o" and by 

A B C D  = aABcDo o o o 
l B C D  

Q1 = QABcDo. o o L 

A B C D  Q2 = !PABCDo o L L 

A B C D  
Q3 = a r l B C D ~  L L L 

A B C D  
Q4 Q A B C D ~  L L L 

The Ricci quantities are defined analogously. PVe now define the Iiilling spinor 

5.6.2 The Killing spinor 

l<illing spinor ;. \...DK'...N is a symmetric spinor with r primed iuid S unprimed indices 
-4 ~vliich satisfies 

P c.-l...D 
v ~ k l i . . . 4 ~  = O (5.128) 



As the terminology and the definition suggests, (A...DK1...N1 is associated with a conserved 
quantity. To see this we need to contract (A-.DK'...N' with a spinor analogue of a geodesic- 
vector and take the covariant derivative. For this we take a null vector p" which may 
always be written in the spinor form p" = T ~ T '  and contract E * . . . ~ ~ ' . . . ~ '  with the 7 " ~ ' s .  
Then demanding that 

p a ~ a ~ A 1  = 0 (5.129) 

which essentially means that the flag plane of the spinor rA1 is also parallely propagated, 
the quantity 

Q = [  A...DK1...N'- - 
? T A . . . T D T ~ ~ T K ' . . . T N ~  (5.130) 

is conserved. Indeed, taking the covariant derivative of Q we have 

pYV,Q = pYVyJ A...DK1...N'- Y Y '  - 
TA...?TNI = v (T A . . . ~ D ~ y r ~ K I . . . ~ N I ) ( A * " N '  

Y Y 1  A...N1 - 0 + T A . . . T ~ T ~ ~ T ~ I . . . T N I V  ( - (5.131) 

The first term vanishes due to parallel propagation of the flag plane of T*' (5.129) and 
the second term vanishes by the definition of the Killing spinor(5.128). This property of 
the Killing spinor may be compared and contrasted with that of the Killing tensor(5.21). 
Apart from the similarities, the additional requirement here is that the flag plane of T" 

vanish and that the Killing spinor need not be symmetric in the primed and unprimed 
indices, ie, r # S. When r = S the Killing spinor is Hermitian and Q is then a real 
conserved quantity essentially equivalent to the Carter constant for null geodesics. When 
r # s however, the Killing spinor is complex and therefore, Q is also complex. It contains 
additional information related to the flag plane of slrA' also. This information enables one 
to determine the propagation of polarization planes along null geodesics. Thus when the 
Killing spinor is complex, one cannot give it a direct interpretation associating it with a 

physical conserved quantity. Then one extracts a real quantity from Q by considering the 
quantity IQ1 by defining Q = QQ after obtaining the solution of Q[31]. Another method, 
which is the one relevant to  our purpose, is to  obtain an indirect interpretation by using 
the Killing spinor, along with the metric spinor, to build up the Killing-Yano tensor. This 
is because the Killing spinor of a type-D spacetime is essentially complex as we now discuss. 

+ From here onwards we shall be interested in the particular Killing spi~iors that is associated 
with the type-D nature of the spacetime. In type-D spacetimes there exists a symmetric 
spinor of valence two given by 

= Q ; " ~ O ( ~ ~ B )  (5.132) 

By the definition (5.128) this satisfies 

This is to be contrasted with the definition of the metric spinor(5.103) which may be 
written in an equivtllent form 

C A B  = ~ ~ [ A L B ]  (5.134) 



and whose covariant derivative also vanishes. 

This shows that the metric spinor is trivially a Killing spinor. 

The metric spinor naturally exists for any spacetime. However, the existence of the Killing 
spinor KAB,  as shown by Walker and Penrose, is intimately related to the type-D character 
of the spacetime. This has to with the fact that KAB is, apart from the basis spinors oA and 
L ~ ,  a multiple of the Weyl scalar Q2. Thus whereas EAB exists in any spacetime, including 
the case of the flat spacetime, the existence of KAB is restricted to type-D spacetimes. 
Indeed, from the definition(5.132) it is clear that on the one hand KAB as is defined is a 
Killing spinor only when Q2 is the only non-vanishing Weyl scalar. On the other hand, it 
vanishes not only in flat spacetime but even for a conformally-flat spacetime such as, for 
instance, the Einstein universe. The latter feature is significant in that it allows for an 
extension of the Killing spinor from the asymptotically flat Kerr spacetime to that of the 
asymptotically non-flat VEK spacetime. 

Coming back to equation(5.133), in the Kerr case, Walker and Penrose base their proof 
on the vacuum Bianchi identity(5.125). As stated in ref[42] the proof consists in rearrang- 
ing the Bianchi identity equation(5.125) so that it becomes (5.133). Thus there exists an 
explicit complex conserved quantity along any null geodesic in a vacuum type-D spacetime. 

After this review of the standard results we move on to the VEK spacetime. 

5.6.3 Killing spinor and the VEK spacetime 

The above discussion on the Killing spinor had two important assumptions. One is that 
the spacetime is of type-D. Another is that,  in addition, the spacetime is of vacuum. The 
former is true in the VEK case also and ensures that the only non-zero Weyl scalar is 
Q2. The latter seems to restrict the existence of the Killing spinor as when the space- 
time is of non-vacuum one no longer has the vacuum Bianchi identity(5.125) but rather 

4 the equation(5.126). Thus one is not certain whether equation(5.133) holds for the non- 
vacuum case also. Nevertheless, basing our expectations on the results obtained thus far, 
which strongly indicate that most of the standard Kerr results go through for the VEK case 
also. apart from subtle, non-trivial modifications we assume that equation(5.133) holds. 
Even if this woultl not be true, it might not be improbable that there exists a redefined 
Killing spinor which does satisfy equation(5.133). However, we do not pursue this point 
further in this thesis. We may remark that i t  is the existence of such unresolved issues, viz, 
how strong is the relation between the properties of the geodesics and the classification of 
the spacetime ~vhcn the assumption of vacuum and asymptotic flatness is relaxed, which 
makes the present investigations so signifitant and pressing. 



We now proceed to construct the Killing spinor K A B  for the VEK spacetime. 

I The definition of a Killing spinor for a type-D spacetime has been given in equation(5.132) 
above. In order to construct it explicitly one needs the Weyl scalar \I12 and also the basis 
spinors o-%ad L". The basis spinors may be obtained from the Newman-Penrose tetrad 
form l once a suitable choice of the Infeld-'Crander Warden symbols is made. We note that 
the expression for the Killing spinor contains the product of the basis spinors 0.4 and L B  

which is all we need evaluate. 

It is convenient to perform the following computations by going over to generalized I<err- 
Schild coordinates. This makes it possible also to  obtain the expression for the VEK 

L VITeyl scalar via a Yewman-Janis complex algorithm. Since in Chapter 6 we shall treat the 
generalized Kerr-Schild approach, we refer to that chapter for the details. Here we note 
that the generalized Kerr-Schild transformation is given by 

The tetrad forms(5.36) now become 
- 
A - p2 

e0 = - (du - a sin2 8d4) - = - 
P A 

e3 = sin 9 
-((? - + a2)d$ - adv) 

P 

We may pick out the tetrad coefficients e t  from the relation 

4 

The Infeld-Van Dclr Warden symbols can be chosen from the tetrad coefficients to be 

- 
Afa sin 0 

' F  
L- % 



sin 6 ( 2 M ~ i n :  AB - 2 +a 0 
0, - 

&(l - y) 2Mrasin  0 - (5.141) -., 
P- . I 

By means of the 0:' and the relation 

we find .the expression for the Killing spinor to be 

It remains to find the LVeyl scalar. To obtain it we proceed from expression for the VES 
+ Weyl scalar given in equation(5.98) and rewrite it as 

The Newman-Janis algorithm amounts to making the complex transformation 

R sin(r/R) + (R sin(r/R)) + ixa  cos 8 (5.145) 

where 

A Under this transforniation @2 becomes 

*;l3 - -M cos (r / R)  

- J- s i n ( r / ~ )  + i cos(r/ R)a  cos Q 

This reduces to the special case of the VES Weyl scalar as ( L  = 0 and the limiting Kerr 
LVeyl scalar as R +- oo. 

The IVeyl scalar \P2 vanishes when h1 = 0. Thus it is not possible to ];lake use of if for the 
case 114 = 0. In rriost work involving the Weyl scalar as applied 10 tile study of particle 

4 angular molnentum, as for instance, by Faridi[34], -11 is scaled off. Fol lo~~ing the same 
procedure we use instead of Q2 given in the above equation, the quantity Q given by 

* l13  = 
- cos ( r  / R)  

d w s i n ( r / ~ )  + i cos(r/R)a cos 0 

Substituting this in equation(5.143) we arrive at  the expression for the IGlling spinor of 
the VEK spacetirric as 

= - 
J m s i n ( r / ~ )  + i cos(r/R)a cos Q ) (5.149) 

'2p cos(r/ R) 4- P -  
a+ asin0 



This may be written in compact form using our notation as 

7 + i cos(r/R)a cos 0 
KAB = - 

2p cos (r / R) 4- a+ as in8  

This expression contains both the special case(a = 0) of the VES Killing spinor and the 
limiting case(R + W) of the VEK Killing spinor 

The VES Killing spinor is given by 

L And the Kerr Killing spinor is given by 

Having constructed KAB for the VEK spacetime, some remarks are in order. 

In the Kerr case, proceeding along the above lines Hughston and Sommers[43] have shown 
that for any vacuum spacetime possessing a Killing spinor X"B there exists a (complex) 
Killing vector ka given by 

A' AB ka = V B x  (5.153) 
i 

They have further shown[42] that this vector satisfies the relations k(,;b) = 0 without 
invoking the vacuum assumption. Moreover Floyd[30] and Penrose[32] have shown that in 
the Kerr spacetime the Killing vector ka which arises out of the Killing spinor KAB implies 
that the bivector 

Fab = z ( K ~ ~ E ~ ' ~ '  - E ~ B K A ' B ' )  

satisfies 

Fa(b;c) = 0 

The bivector Fab is identified as the Killing-Yano tensor. We base our work on the same 
expression with the Kerr quantities replaced by the VEK counterparts. 4 

5.7 The Killing-Yano Tensor 

The Killing-Yano tensor is an antisymmetric tensor or a differential form which satisfies 

As with the Killing tensor and the Killing spinor, the Killing-Yano tensor is associated 

* with a conserved cl~iantity. Indeed taking tht variant derivative of the expression 



we have 
e b.e pe( Ja ;e )  = P P ' . . - p C p d ~ a b . . . c d  + ...Fab...cd;epepb...pcpd = 0 (5.158) 

X 

The terms other than the last vanish due to the geodesic equations and the last term van- 
ishes by the definition of the Killing-Yano tensor(5.156). 

Since we shall be interested only in a Killing-Yano tensor of rank two, we shall confine 
ourselves to  it. The above definition(5.156) then reduces to  

The associated conserved quantity is then 

That is, Ja is a conserved vector field. This property plays a key role in defining an angular 
momentum-like structure for the VEK spacetime, naturally subsuming the Kerr case. It 
is now necessary to  obtain an explicit expression for Fab in the VEI< case. 

Employing the definition(5.154) and substituting the expression for the Killing spinor(5.152) 
into it, it is straight-forward to calculate Fab component-wise. We find that 

0 -a cos 8 ays in0 
C 

0 
a cos 8 0 0 -a2 sin2 8 cos 8 

0 0 ~ ( T ~ t a ~ )  sin 0 
C C 

0 a2 sin2 B cos B - y(y2 + a 2 )  sin 0 
C 0 

Or 

r 
= -a cos 8(du - a sin2 t9dq5) A dr  + - sin B(adt - (F" a2)dq5) A dB (5.162) c 

The contravariant form of the Killing-Yano tensor is given by 

O a cos 0( r2+a2)  - 
0 0 

a cos 0(y2+a2)  
- 0 0 -a2 cos 0 - 

aT&'oc 
P 

0 0 

0 a2 cos 0 
-. 
p2 

Taking the limit R + co we recover the Killing-Yano tensor for the Kerr spacetime. It 
is easily seen that the resulting expression coincides with the one given, for instance, in 
Faridi [34]. 

0 -a cos 8 a r  sin 8 0 
0 

- 
0 -a2 sin' B cos 0 

0 0 r (r2 + a2) sin 8 
a2 sin2 e cos o -r(r2 + a2) sin e 0 I 



l 
F = -Fabdxa A dxb 

2 ~ 4 ~ ; q  - 

= -a cos O(du - a sin2 Odq5) A dr + sin O(adt - (P + a2)d$) A dB (5.165) 
C 

Taking a = 0 in(5.161) we recover the VES expression 

0 0 

Fa, = 
0 0 
0 R sin3 ( r /  R) sin 0 

0 0 -Rsin3(r/R)sin0 0 

Or 
1 

F = -Fabdxa A dxb = Rsin3(r/R) sin Odd A dB (5.167) 
2 

Having obtained the Killing-Yano tensor we have constructed the key quantities which are 
associated directly or indirectly, with the Carter constant and the type-D nature of the 
VEK spacetime. 

5.8 Concluding Remarks 

In this chapter we have focused on a study of the Carter constant and the classification 
of the spacetime via the Newman-Penrose formalism. In the Kerr spacetime much of this 
is well established. The VEK spacetime on which we have based our investigations has 
an additional feature in that it describes a non-vacuum asymptotically non-flat rotating 
black hole. The black hole is surrounded by matter distribution which satisfies reasonable 
energy conditions. 

Starting with a discussion of Carter's discovery of the fourth constant in the Kerr case, we 
have shown by construction that the Carter constant exists in the VEK spacetime also. 
From the Carter constant we have obtained the Killing tensor and brought out its signif- 
icance by considering the special case of the Schwarzschild spacetime wherein the Killing 
tensor becomes reducible. 

Next, taking into account the fact that in the Kerr spacetime, the Icilling tensor is related 
to the Killing-Yano tensor which, in turn, is related to the type-D nature of the space- 
time, we have investigated the classification of the VEK spacetirne. By employing the 
Newman-Penrose formalism we have calculated the spin coefficients for the VEK space- 
time. We have sho\vn that unlike the Kerr case there is a non-vanishing spin coefficient 
E. Even though the rest of the results mirror that in the Kerr case, their expressions are 
considerably complicated. These spin coefficients contain as limiting cases the Kerr and 
the VES counterparts and of course the Schwarzschild ones also. The Bianchi identities 



contain non-zero Ricci terms also in addition to the Weyl scalars. 

Motivated by the significance of the type-D nature of a black hole spacetime we have stud- 
ied the classification of the VEIC spacetime. We have demonstrated explicitly and in detail, 
that the VES spacetime is type-D. We have shown that the only non-vanishing Weyl scalar 
is Q2. Turning to the Ricci terms, the only non-zero terms are Qoo, a l l ,  Q22 and the scalar 
A. That these terms which vanish in the Schwarzschild case do not do so here shows that 
the spacetime is non-vacuum. In the Einstein universe also the Ricci terms are non-zero 
which brings out the asymptotically non-flat nature of the spacetime. The optical scalars W 

and a vanish as in the Schwarzschild case whereas the optical scalar O is modified because 
of the background. 

We have discussed the 2-spinor formalism and constructed the Killing spinor for the VEK 
spacetime. By means of the Killing spinor we have calculated the Killing-Yano tensor and 
shown that in the limit R + oo this coincides with the Killing-Yano tensor of the Kerr 
spacetime. 

With this we have not only brought out the essential features of the VEK spacetime asso- 
ciated with the separability properties and the Petrov classification but also constructed 
the quantities that go into supporting an angular momentum structure as we shall see in 
the following chapter. 
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Chapter 6 

Geodetic Particle Angular 
Momentum in the VEK Spacetime 

6.1 Introduction 

In the present chapter we deploy the geometrical quantities constructed in Chapter 5 to 
the investigation of their relation to a possible angular momentum-like structure in the 
VEK spacetime defined by the Killing-Yano tensor. As in Chapter 5 ,  these studies involve 
an interplay of diverse concepts. These are the structure of the Killing and the Killing- 
Yano tensors, the generalized Kerr-Schild transformation and the background-black hole 
decomposition. We set up the stage for a fruitful study of these topics in the non-vacuum, 
asymptotically non-flat VEK spacetime. Thus the results obtained not only give insights 
into the nature of the VEK spacetime but to the limiting case of the Kerr spacetime also. 
We begin by giving a simplified account of the phase-space or symplectic formalism given in 
an unpublished preprint by Samuel and Vishveshwara[33]. We shall employ this approach 
throughout this chapter. An alternative approach to the investigation of particle angular 
momentum in the Kerr spacetime has been given by Faridi [34]. 

In the previous chapter we have investigated the separability properties of the geodesics 
and the classification of the spacetime. The remarkable fact is that the two lines of inves- 
tigation both lead to the Carter constant. This makes the problem of interpretation of the 
Carter constant particularly interesting as it does not admit any clear physical interpreta- 
tion. Some work related to such interpretation relevant to our present investigations is that 
of Samuel and Vishveshwara[33] and Faridi[34]. It is well-known that in the limiting case 
of the Schwarzschild spacetime, the Carter constant reduces to  the square of the particle 
angular momentum. Taking this clue, Samuel and Vishveshwara suggested a definition for 
the angular momentum about any axis for a particle in geodesic motion around a Kerr 
black hole. They showed that a physically reasonable definition was indeed possible based 
on a natural separation of the Hamiltonian into two parts, a kinetic part admitting a large 
symmetry group and a potential part with a smaller symmetry group. They showed that - 

1 their definition of angular momenta satisfied the bracket relations espected of them. Fur- 



ther, they calculated the precession of the angular momentum vector to  first order in the 
angular momentum parameter a. 

Faridi gave a construction of the Killing-Yano tensor for the Kerr metric and obtained 
the Carter constant. He showed that the Killing-Yano tensor was related to the angular 
momentum of Newtonian mechanics. The equation of precession has a non-trivial solution 
only for the case of a slowly rotating Kerr black hole valid to first order in the angular 
momentum parameter a. This led him to interpret the Carter constant as the squared 
length of the precessing angular momentum vector. 

Turning to  our present investigation of the particle angular momentum in the VEK space- 
time we may make the following observations. In curved spacetime, the .definition of 
physical quantities is non-trivial due to the absence of an isometry group as in the flat 
spacetime. In the flat spacetime the Poincare group allows us to define the energy, mo- 
mentum and angular momentum for a free particle. The momentum of the particle can be 
identified as the generator of spatial translations, the energy as the generator of time trans- 
lation and the angular momentum as the generator of rotations. Due to the natural action 
of the Poincare group on Minkowski spacetime, there is a meaningful notion of a global 
translation or rotation. In a general curved spacetime however, it is not possible to define 
any of these quantities in a natural manner. Nevertheless, in a stationary, axisymmetric 
spacetime the isometries associated with the Killing vectors do enable us to define physi- 
cally significant quantities which are conserved. In the special case of the static spherically 
symmetric spacetime, it is possible to  define the energy and the three components of the 
angular momentum about the centre of symmetry using the timelike Killing vector field. 
These quantities are conserved in the motion and asymptotically coincide with their flat 
counterparts. In the stationary, axisymmetric case of the Kerr spacetime only the energy 
and the angular momentum about the axis of symmetry can be defined. This is due to  the 
absence of a natural action of the full rotation group on an axisymmetric spacetime. 

Thus it appears that in a curved spacetime, physical quantities can be defined only when 
they are conserved. In the absence of such a criterion, one does not have any clue as to how 
to construct such quantities. This is contrary to the situation in the flat spacetime. There, 
for instance, due to the existence of the Poincare group, it is possible to define the angular 
momentum of a particle in a potential which is not spherically symmetric, even though it 
is not conserved. This definition relies on the separation of the Hamiltonian into a 'kinetic7 
and a 'potential' term. The first is spherically symmetric and depends only on the metric 
and not on the potential. The second term is the potential term wllich is not spherically 
symmetric. The first has a large symmetry group whereas the second has a smaller one. 
The kinetic part of the Hamiltonian may be used to define physical quantities like the an- 
gular momentum. Though it is not conserved in the motion, it can be meaningfully defined. . 



In the static, spherically symmetric Schwarzschild spacetime, we may define physical 
quantities by an analogous separation of the Hamiltonian into a kinetic and a poten- 
tial part. This is due to the separation of the metric into a background and a black 
hole term called the background black hole decomposition introduced by Ramachandra 
and Vishveshwara[21] as discussed in Chapter 2. In the Kerr spacetime such a separation 
is possible by going over into the Kerr-Schild coordinates. Thus in the Kerr spacetime, 
a physically reasonable definition of the angular momentum may be given as shown by 
Samuel and Vishveshwara. As already mentioned their definition is based on the Killing- 
Yano tensor. 

Therefore, in view of the above discussion, it would seem that defining the particle angular 
momentum in the VEK spacetime is far from trivial. It is well known that- even in the 
Kerr spacetime such a definition is not at  all straight-forward. There, attempts have been 
made to relate the Killing and the Killing-Yano tensors to particle angular momentum 
but still, a complete clarification of the role of these quantities is lacking. In this chapter 
it is our intention to investigate some of these issues in the context of the non-vacuum, 
asymptotically non-flat VEK spacetime. 

As usual we recover the Kerr results as limiting cases of the VEK counterparts. 

As has been pointed out in Chapter 3, we recall that when we speak here of conserved 
quantities like 'mass', 'energy' and 'angular momentum' in the VEK spacetime we really 
mean that these quantities have as limiting cases their usual counterparts defined in an 
asymptotically flat spacetime. We shall continue to call these as simply mass, energy and 
angular momentum respectively for convenience. 

The present chapter is organized as follows. In Section 6.2, we discuss the phase space 
formalism and show how to project quantities on spacetime to space. In Section 6.3, we 
discuss the relation between the Killing and the Killing-Yano tensors. We show that the 
Killing-Yano tensor constructed in Chapter 5 leads to exactly the Killing tensor. After a 
brief discussion on the Killing tensor, we discuss the significance of the Killing-Yano tensor. 
In Section 6.4, we discuss the background black hole decomposition for the quantities in 
the VEK spacetime as was done in the VES case in Chapter 2. In Section 6.5, we use 
the Killing-Yano tensor to define vector fields which satisfy the bracket relations and can 
be considered as analogues of the generators of particle angular momentum and discuss 
the corresponding bracket relations. We present calculations on the precession of particle 
angular momentum to first order in the angular momentum parameter a. Section 6.6 
carries some concluding remarks. 



6.2 The Phase Space Formalism 

Along with purely geometrical methods the use of Lagrangian and Hamiltonian methods 
in General Relativity has been wide-spread since the beginning of the subject itself. In 
the study of geodesics one employs these or the Hamilton-Jacobi method. Depending on 
the situation, one or the other approach may be found more suitable in carrying on the 
investigations. In the present case we have found the Hamiltonian or phase space approach 
to be convenient for our studies. 

The phase space or symplectic formalism allows one to deal with scalar analogues of the 
corresponding tensors. These scalars are obtained by contracting the tensors with geodesic 
vector fields. Thus, for instance, one avoids dealing with the Lie derivative and the con- 
nection coefficients. Instead, one has only to deal with the Poisson bracket. 

This formalism also enables us to project tensors on spacetime to  tensors on space. More- 
over, it is independent of the existence of a metric on the spacetime. It differs from the 
Geroch formalism which employs the metric tensor to project tensors onto the hypersurface 
orthogonal to the time-like Killing vector field. 

Let C be the configuration space, Ja a vector field on C and @ be the 3-manifold of the flow 
of Ja. Then there exists a natural mapping 

which assigns each point of C to the flow of Ja on which it lies. By means of this mapping 
various geometrical quantities may be projected onto 6. The only quantities relevant to 
our work are functions, vector fields and forms. 

A function f on C is projectible if there exists a function f on @ from which f is obtained 
by pulling f to C 

f =z*J (6.2) 
1 

This implies f is preserved by the flow of J and satisfies 

In coordinate form this may be written as 

Next, a vector field X is projectible if X( f )  is a projectible function provided f is also 
projectible. That is - 



The second term vanishes since f is projectible. Here we have made use of the relation 

Therefore the condition becomes 

(L,X)f = 0 

This tells us that LSX is a vertical vector field, ie, proportional to  c. In terms of coordinates 
this means that the spatial components of X  satisfy 

and the time component X 0  remains unrestricted. 

If X = X"$ is a projectible vector field, its projection is given by 

In terms of coordinates this means that one drops the time components and 2 is simply 

a 2 = x k -  ax" 
Turning to forms, a l-form a is projectible if a(X) is a projectible function provided X is 
a projectible vector field. That is 

Since X  is arbitrary both the terms on the right hand side must vanish separately 

In terms of coordinates this takes the form 

Now that we have shown how to project functions, vector fields and l-forms it is easy to 
generalize the results to tensors. 

In analogy with vcctor fields contravariant tensors are projectible if their Lie derivatives 
with respect to J have only time components. That  is, the projection of 



Next, in analogy .with l-forms covariant tensors are projectible if their Lie derivative van- 
ishes and the tensors have no time components. The projection of a 2-form P = Pa,,dxa@dxb 

N is 

B = pkldzk @I dxl (6.16) 

The above discussion was centred on the configuration space. We now consider the phase 
space l?. Since C is four dimensional, F is an eight dimensional manifold. 

Let J be a vector field on C. The quantity 

is then a function on F. Let M be the submanifold of F defined by = const = q on M .  
A 

Then the 2-form wr on l? can be pulled back to M by means of the inclusion mapping 

to give the 2-form 
'* 

W = Z W M  

Because J is constant on M the vector field X< is tangent to M and in the kernel of W .  

Thus 
ix,w = i*(ixcwM) = i*dJ = di*J = dq = 0 (6.20) 

The flows of the vector field X< foliates M into a six dimensional space f and there is a 
b natural mapping 

r l : M + f  (6.21) 

W is 7r1 projectible since equation(6.20) is satisfied and since 

as W is a closed form. The projection G is given by 

r( f is endowed with a symplectic 2-form G. The Hamiltonian X is also projectible since 

&(?l) = {X, J) = 0 (6.24) 

The reduction of F to f allows us to reduce the dynamics on l? to that on f' via the 
Hamiltonian 

- 1 !l2 1 kl 
= -- + -9 (pk - ~ A ~ ) ( P I  - qAl) (6.25) 

2 900 2 
where 

g0k Ak = - (6.26) 
900 

1 

TVe nonr connect the phase space formalism to the usual spacetime counterpart. 



Consider a particle moving in the spacetime Q. The phase space l? associated with Q is 
defined as the cotangent bundle over Q, l? = T*Q. If Q has coordinates xa, a = 0,1,2,3, 

k l? has coordinates (xa,p,) .  l? is an eight dimensional manifold endowed with a l-form 

This defines the symplectic 2-form 

which by construction, is naturally closed. 

b 

It is also non-degenerate. That is, ixwr = 0 +- X = 0. 

The symplectic form leads to an association between functions on l? and vector fields. If f 
is a function on l? we have 

i x f  wr = df (6.30) 

defines an unique vector field X! on l?. If f and g are two functions on l?, the Poisson 
bracket is defined by 

{ f , d  = xg(f) (6.31) 

where X ,  is given by 
f 

ag a a9 a X ,  = -- - -- a ~ ,  axa axa a ~ ,  
The above discussion is entirely independent of the existence of a metric. 

We now consider the metric tensor gab on Q. The Hamiltonian is 

The dynamical vector field associated with it is defined by 
9 

XXwr = dH 

where 

This implies that if r is an affine parameter we have the Hamilton equations 



The above equations are equivalent to the geodesic equation 

with U" = 5. The connection between spacetime isometries and the phase space coun- 
terparts is as follows. 

Let the metric admit an isometry. That is, there exists a Killing vector field 5" on Q and 
the Killing equations are satisfied 

J is the infinitesimal generator of a point transformation of the system. In phase space 
this transformation is equivalent to  a canonical transformation generated by the function 
f = tapa given by 

As an example, let '$ be the timelike Killing vector in flat spacetime. Then the quantity E = 
p p a  is the energy of the particle. E is a constant of the motion since from equation(6.39) 

dE a b c  c - = { E ,  'h!} = -l (g F E - g c b ~ c  - g4Ct~)p4pb = 0 (6.41) 
d r  

Thus, an isometry of the spacetime implies a constant of the motion which is linear in the 
four-momentum p,. is the physical quantity conjugate to  the cyclic coordinate singled 
out by the isometry. We shall find that this point is significant in that it implies that non- 
linear, in particular, quadratic constants of motion do not correspond to  Killing vector 
fields. Thus, to provide a frame-work to incarporate such non-linear constants of motion 
we need a generalization of Killing vectors to Killing tensors. In Chapter 5, Section 5.3 we 
introduced the Killing tensor Kab. The analogue of the Lie derivative of the metric with 
respect to a Killing vector may be written as 

We now consider the phase space view. 

If a spacetime admits a Killing tensor, there exists a quadratic constant of motion K = 

Kabpapb which satisfies 

The defined in equation(6.42) is known as the Schouten-Nijenhuis bracket. It is a gen- 
eralization of the Lie bracket to symmetric tensor fields of rank greater than one. The 

Schouten-Nijenhuis bracket has the following properties. 



1. It coincides. with the Lie derivative if one of its arguments is a vector field and with 
the Lie bracket if both are vector fields. 

2. Ordinary derivatives in equation(6.42) may be replaced by covariant derivatives with- 
out affecting the expression. 

3. It is antisymmetric in its arguments and the Jacobi identity is satisfied. 

In the spacetime view therefore, one needs to use with the Schouten-Nijenhuis bracket 
while dealing with the Killing tensor. The phase space view allows us to avoid this. In 
phase space one has to  deal only with the Poisson bracket of functions. Instead of dealing 
directly with the Killing tensor, for example, one deals with the function K = Kabpapa. 

4 
With this we have not only discussed the frame-work on which the discussion in this chapter 
will be based but also given some motivation to prefer the phase space approach over the 
conventional spacetime approach. We now go on t o  relate the properties of the geodesics 
to the classification of the spacetime via the Killing and the Killing-Yano tensors. 

6.3 Relation Between the Killing and the Killing-Yano 
Tensors 

Following on the construction of the Killing-Yano tensor, it was pointed out by Floyd that 
*. 

the Killing tensor may be expressed in terms of the Killing-Yano tensor as 

The Killing-Yano tensor may therefore be regarded as a 'square root' of the Killing tensor. 

It is pertinent to  relate the Killing-Yano tensor to the Carter constant. Contracting Fab 
with a four-momentum p, we have 

J~ = Fabpa 

4 - This is parallely propagated along geodesics 

And since the Carter constant is expressed through the Killing tensor we may substitute 
the expression for the Killing tensor in terms of the Killing-Yano tensor to obtain 

Thus one sees that it may be possible to _relate J a  to the particle angular momentum. 



We now focus on the Killing and the Killing-Yano tensors corresponding to the VEK space- 
time and constructed in Sections 5.3 and 5.7. 

First we elaborate in more detail the relation between the metric, the Killing and the 
Killing-Yano tensors. 

Since Fab may be considered as a 'square root' of and since the tetrad coefficients e i  
may be considered as a square root of the metric tensor, it is interesting to express the 
Killing tensor as 

ab AB a b K = q  kAkB (6.48) 

where the k i  may be considered as the tetrad coefficients for the Killing tensor. 
Now expressing the Killing tensor in terms of the Killing-Yano tensor we have 

Comparing equations(6.48) and (6.49) we have 

From this we may express the tetrad coefficients of the Killing tensor in terms of the tetrad 
coefficients of the metric tensor and the Killing-Yano tensor as 

where the i has been included to take care of the negative sign in equation(6.50) We may 
also write the relations between the tetrad coefficients and the other quantities in matrix 
form 

T g = e e  

K = kTk 

k  = ieF 
F = -,. -1k ~e (6.52) 

4 
The last equation in the above obtained by inverting the third shows that  we may inter- 
pret the Killing-Yano tensor, in turn, as apart from the imaginary unit, the product of the 
'square roots' of the metric and the Killing tensors. 

We exhibit here the tetrad coefficients for the VEK spacetimc since knowing these is 
equivalent to kr~o~ving the Killing and the metric tensors. We haw. 



And 
0 -ia cos Bp 

6 0 0 

a s  - 0 ia2 cos 0 sin2 B& 
ka = P - 

P 
iPa sin B - 0 -iFsin B ( F 2 i  

P 
- 
D 

We note also the relations 

A p2 sin I3 
det(ea ) = - 

5 
a2 cos2 

d e t ( k t )  = 
p2 sin I3 

a2 cos2 1 3 5 ~ ~ ~  
d e t ( ~ " ~ )  = 

p4 sin2 8 

We now express the metric, the Killing and the Killing-Yano tensor in terms of the Newman- 
Penrose tetrad. We have 

6.3.1 Some remarks on the Killing and the Killing-Yano tensors 

It is instructive to discuss the above form of the Killing and the Killing-Yano tensors with 
respect to the Kerr case. 

In the Kerr case there exist theorems which imply that[9] 

1. A type-D vacuum solution admits a Killing tensor 

with 
A + iB = const (+)-'l3 

2. If a spacetime admits a non-degenerate Killing-Yano tensor, then this tensor can be 
written as 

Fah = A(Zanb - naZb) + iB(mam6 - mamb) (6.59) 

From equations(G.56) we immediately verify that the above relations hold with A = 
-acosI3 and B = 'T'. The Kerr counterparts are, as usual, contained as limiting cases. 
In view of this it would be interesting t o  see whether analogous theorems can be formu- 

4 
lated in the non-vacuum, asymptotically non-flat case also. However, we shall not pursue 



this point here. . 

We now turn to discuss the possibility of defining angular momentum-like quantities. 

By construction and also from the discussion in the previous section it follows that the 
quantity K = ~ " ~ p . p b  is a quadratic constant of the motion. In Chapter 5 we have given 
some motivation to expect that the Carter constant, and therefore, the Killing tensor is 
somehow related to the analogue of angular momentum of the particle. To this end we 
considered the limiting case of the Schwarzschild spacetime. In the VEK case, as in the 
Kerr spacetime, there are no natural definitions of analogues of the angular momentum 
about the z and y axes. It is still possible to see whether there exist vector fields L, and L, 
which are not Killing vectors but, nevertheless, have the properties of angular momentum- 
like operators. If such vector fields exist, then in terms of these the Killing tensor can be 
expressed analogous to the Schwarzschild case. As shown by Samuel and Vishveshwara, 
such a decomposition does not exist even in Kerr case. Their argument goes as follows. 

If L,, L,, L, are angular momentum operators they must possess the following properties. 

1. They must satisfy the Lie bracket relations 

2. Each orbit of these vector fields should form a two dinlensional sutmanifold of Q 

If we define S as the three dimensional submanifold of Q generated by the vector fields 
L,, L,, L, and E ,  the normal to S would be orthogonal to these four sector fields. If Kab 
can be expanded in terms of the L,, L,, L, it follows that the normal to S is annihilated by 
K " ~ .  But this is a contradiction since the Killing tensor of a stationary, axially symmetric 
spacetime is non-degenerate. 

det(Kab) # 0 (6.61) 

As to the possibility that a non-linear combination of Kab and the Killing tensors formed 
out of the Iizilling vectors may admit the decomposition the same argument shows that the 
normal to  S is an eigenvector of Kt  with constant eigen values. As we shall show below 
the eigenvalues of I(," are doubly degenerate. 

Therefore though the Carter constant can be interpreted as the 'square' of the angular 
momentum in the Schwarzschild and the VES cases, such an interpretation fails in the 
general case. 

The inability to relate the Killing tensor $0 the particle angular momentum motivates us 
to turn our attention to the Killing-Yano tensor. 



6.3.2 Significance of the Killing-Yano tensor 

In Chapter 5 ,  Section 5.7 we have discussed some properties of the Killing-Yano tensor. 
We wish to find what grounds there are to expect that this tensor may be related to the 
particle angular momentum. As with the Killing tensor, it is instructive to examine the 
limiting Schwarzschild case of R + m, a = 0 when the Killing-Yano tensor(5.162) acquires 
the form 

F = r3s in0dQAd4 (6.62) 

Going over to cartesian coordinates ( t  , X , y , z) by the transformation 

X = r s inQcos4  

y = r sin Qsin q5 

2 = rcoso 

we find that 
F = zdx A dy + xdy A dz + ydz A dx 

Or 
c d 

Fab = cabcdx 

where, Ja is the time-like Killing vector (1,0,0,0). 
The vector Jb = Fabpa has components 

JO = 0 

J X  = YPz - zp, 
Y - J - zpx - xp, 

JZ = zp, - YPx 

And the following Poisson bracket relations expected of the angular momentum components 
in flat space are satisfied 

By means of the projection formalism given in Section 6.2 we project F to space. We see 
that F projects to 

p = zdx A dy + zdy A dx + ydx A dx. (6.68) 

where the tilde rcfers to the projected quantity. 

The three-dual of F has the components 



This is the CO-vector field normal to the spheres on which the angular operators act. Thus 
we see that the hyper-surfaces orthogonal to the dual of the spatial projection of the 
Killing-Yano tensor are the orbits of the rotation group. We note that the quantity 

is constant on the spheres defined by the spherical symmetry. The angular momentum 
components can also be defined in terms of F as 

These coincide with the J' S defined above. 

The analysis of the above limiting case reveals, therefore, that if we wish to relate the 
Killing-Yano tensor to angular momentum-like quantities, the following steps are necessary. 

1. Make a transformation that brings the metric to a form analogous to  a flat metric. 
We generalize this to  our requirement to mean that the metric be expressed as a sum 
of the background metric plus another term. 

2. Going over to cartesian-like coodinates. The above step should be performed before 
this is made possible. 

3. Project the Killing-Yano tensor onto space following the formalism of Section 6.2.  

4. Find its three dimensional dual G = gidxi  and check whether it is hypersurface 
orthogonal ie, G ~ d g  = 0. 

5. Find the surfaces to  which G is orthogonal. 

The first two steps consist in making a suitable transformation for the metric to facilitate 
the use of cartesian-like coordinates. This is accomplished by a generalized Kerr-Schild 
transformation. 

In the Kerr case it is well known that casting the metric in a Kerr-Schild form enables one 
to write the metric as a combination of the flat and a term composed of the null tetrad 
form 1. Since tlic Killing-Yano tensor is independent of the 'mass' term M it naturally re- 
mains unaffected hy the absence of the source and therefore refers rather to  the background 
spacetime. Thus, expressing F in terms of Kerr-Schild coordinates should bring it to a form 
analogous to that in the Schwarzschild case. That this is indeed the case is borne out by 
the work of Samuel and Vishvesh1vara[33~ and Faridi[34] as already mentioned. It remains 
for us to see whot,lier the Killing-Yano tensor of the VEI< spacetinle may also be expressed 
in terms of coortlinates analogous to the Kerr-Schild coordinates. In our investigations 



on the VES spacetime we have seen that the VES metric may be cast in a generalized 
Kerr-Schild form. We have introduced a 'background black hole decomposition' to exploit 
this feature and employ it to the study of conserved quantities. We do a similar analysis 
in the present case and show that such a decomposition gives much insight into the nature 
of the quantities associated with the VEK spacetime. 

6.4 The Background-Black Hole Decomposition 

We recall that the background-black hole decomposition allows us to exploit features associ- 
ated with a generalized Kerr-Schild form of the metric. We first develop this decomposition 
for the VEK case and then consider the significance of casting the metric in a generalized 
Kerr-Schild form. 

Recalling the procedure followed in Chapter 2 we first decompose the Newman-Penrose 
tetrad forms into background and black hole terms. In terms of the generalized Boyer- 
Lindquist coordinates it is not possible to achieve this. Therefore we need to go over to a 
transformation to new coordinates (u7 r ,  Q ,$ )  by 

In terms of these coordinates the metric assumes the form 

where 

In terms of these coordinates the Newman-Penrose tetrad forms become 

-.) 

i sin 0  
111. = rnadxa = - ( a d u  - ( T ~  + a2)d$)  - - 

fip, 
-i sin 0  - 

111 = ( a d u  - (i2 + a 2 ) d $ )  - - d0 d z  d z  



and the following relations are useful. 

I A n  = (du-asin2Bd$)Adr 

m A m = -a sin B(adu - ( P ~  + a2)dq5) A dB (6.79) 

We now express all the tetrad forms in terms of the corresponding Einstein background 
quantities. 

the subscript E referring to the Einstein universe. 

In terms of the decomposed tetrad forms the metric becomes 

4 

This may be writtcn in the form 

Since 1: is null its index can equally be raised with gab or ggb 

4 The present form of the quantities facilitate the introduction of cartesian-like coordinates 
by another transformation 

And the full metric: may be espressed as 



The Newman-Penrose tetrad form l assumes the form 

The metric given by equation(6.82) is of a generalized Kerr-Schild form. As R + oo the 
metric reduces to  the Kerr metric in a Kerr-Schild form 

gab = qab -f hFlflf 

where F refers to the flat background. 

The fact that the VEK metric is expressible in a generalized Kerr-Schild form is significant. 
I t  is known that a metric which is expressible in a  err- child form are algebraically 
special[9] of type-11. Indeed, from the Kerr-Schild form(6.87) it can be shown[44] that 

This leads to  the condition 
I ~ . R ~ ~ ~ ~ ~ ! ~ ~ ~  = o 

In the case of a vacuum spacetime the Riemann tensor coincides with the Weyl tensor and 
therefore the above condition becomes 

which implies that the spacetime represented by a metric which can be expressed in a 
Kerr-Schild form is of type-11. The tetrad form 1 corresponds to a repeated null direction 
of the Weyl tensor. The Goldberg-Sachs theorem which is applicable in the vacuum case 
then implies that l is also shear-free. 

When the metric is of a generalized Kerr-Schild form also it is known that the correspond- 
ing spacetime is of type-11. However, due to the absence of a theorem like that of Goldberg 
and Sachs, one caiinot conclude that 1 is shear-free. But as we have shown explicitly, the 
VEI< metric is indeed type-D. 

4 

We now proceed to decompose the various geometrical quantities i~itroduced above. 

First, the Hamiltollian takes the form 

Thus the four-mo~iientum is given by 



This may be written in the form 

where is the four-momentum of a particle corresponding to  the metric of the Einstein 
universe. We note that l E  - p = l . since l is null. 

The energy and the azimuthal angular momentum are therefore given by 

where we have substituted the expressions for the components of l. 
L 

In terms of the cartesian-like coordinates we have 

Next, the Killing tensor may be decomposed as 

This may be written in the form 

2Mr 2 2 K = KE + *a cos 0 l E  @ l E  
P 

Kab = - a2 cos2 0 h~fi!? (6.97) 

In this form the eigenvalues of the Killing tensor are easy to find. We see that 1: is an 

4 eigenvector of 
a b E -  a b E -  2 2 b K 1, - KElb - a cos 0lE (6.98) 

The eigenvalues are given by 

The decomposed form of the Killing-Yano tensor is 



Explicitly, the expression is the same as that obtained in Chapter 5 where if we recall, it 
was calculated directly in terms of generalized Kerr-Schild coordinates 

v 

i 
0 -a cos 0 a f  sin B 

C 
0 

a cos 0 0 0 -a2 sin2 13 cos 8 
Fah = ay  sin 8 0 0 P(f2+a2) sin 0 

C C 
0 a2 sin2 0 cos 0 - "f2+a2) sin B 

C 
0 

- 
= -a cos 0(du - a sin2 0dq5) A dr + sin ~ ( a d t  - (T2 + a2)d4)  A dB (6.102) c 

0 a cos B(P2+a2) - 
P 

0 P 
a cos B(i2+a2) 0 0 -a2 cos 0 

pab 1 
0 0 

a2 cos 0 - 
pL 

& 
p s1n0 0 

In terms of the Newman-Penrose tetrad F takes the simple form 

F = -acos81Al+ iTmA7ii 

Fab = -a COS 8(lanb - lbna) + iT(mamb - mb7iia) (6.104) 

9 This immediately allows us to find the eigenvector and the eigenvalues of F. We find that 
l is an eigenvector of F 

Fabla = -a COS Olb (6.105) 

and the eigenvalues are given by 

4 6.5 Particle Angular Moment urn 

Before we proceed to cast this into a cartesian-like form we need to perform the steps 
outlined in Section 5 .  To this end we project the Killing-Yano tensor onto space 

Its three dimensional dual is given by 
- 



Evaluating the components we find 

m u 2  cos B 
S2 = 

p2 

whence - 
'7 
L 

S = & d  X " -  -- ( ~ d r  + a2 cos O sin Ode) 
d z p <  

This expression simplifies to  

Fdr + a2 cos O sin Odd 
S = Jcy 

It  is a straight-forward verification that 

Thus S is hypersurface orthogonal. We therefore write 

where g = and 
1 

f = -(p2 + a2 sin2 0) 
2 

Therefore the surfaces orthogonal to  S are given by 

F2 + a2 sin2 O = constant (6.115) 

In accordance with the steps(5) we identify these as the surfaces on which the angular 
momentum operators act. To find these operators we need to make a transformation 
to  the cartesian-like coordinates defined by equations(6.84) under which the Killing-Yano 
tensor acquires the form 

O O O a  
0 z (6.116) 

-a -X 

We see that this form of the Killing-Yano tensor is similar, apart from the time compo- 
nent containing t r ,  to that  in the limiting case of the Schwarzschild spacetime given by 
equation(6.68). - 



We note that the dual of F is given by 

We find that 
d 3 = O  

Therefore 3 may be written as F = d A  where A may be thought of as a vector potential. 
For 3 we find that 

1 1 1 
A = --(F* + ij2 + z2 )d t  - -aijdx + - a ~ d y  (6.120) 

2 2 2 
1 We, now proceed to see whether the analogy with the Schwarzschild case may be built up. 

We project to space to obtain 

This has a similar form as the Schwarzschild counterpart. 
2. 

Its three dimensional dual is 
G = T d x  +ijdy +Zdz  

Thus we now define the angular momentum on space via 

Its three components are 

These components define vector fields on space given by 



We lift these vector fields to spacetime. Since the time component is left unspecified the 
lifts are not unique. We fix the time component by imposing that the lifts be orthogonal 
to the timelike Killing vector c with respect to the flat metric 

This means that the time components of these vector fields are zero. Now the angular 
momentum components thus defined by this fixing 

L, = YP, - ZP, 

L, = ZPx - XP, 
L, = XP, - YPx 

satisfy the Poisson bracket relations 

{L,, L,) = L, 

{L,, L,) = L, 

{L,, Lx) = L, 

These definitions of angular momentum lead to physically meanirigful results as we shall 
show below 

We stlldy the dynamical evolution of the angular momentum vect,or ro first order in a and 
to second order in 1/R. To do this we need to find the equatioiis of lilotion for L,, L,, L, 
given by 

Using the expression for the Hamiltonian given in equation(6.91) we find 

where the dot doriotes differentiation with respect to the proper time parameter ' T ' .  

This means that the angular momentum vector of the particle prc.c.osses about that of the 
VEK black hole, preserving its magnitude. In higher orders thew appears to be no such 
straight-for~vard interpretation. Moreover it is possible that the11 the magnitude of the 
vector too changos with ' r' as is true in the Kerr case. 



In Chapter 4, we have seen that the gyroscopic precession in the VEK spacetime departs 
significantly from that in the the Kerr case. Here we have an analogous precession of the 
angular momentum-like vector which is a dynamical quantity. 

Concluding Remarks 

In this chapter we have carried out a detailed investigation of the particle angular momen- 
tum structure in the VEK spacetime. We have been motivated by the need to understand 
the nature of quantities that go into defining the angular momentum vector in the space- 
time of a stationary, axisymmetric black hole when the spacetime is surrounded by matter 
distribution and the background is no longer asymptotically flat. 

We have investigated the relation between the Killing and the Killing-Yano tensors. The 
Killing tensor has been obtained as the 'square' of the Killing-Yano tensor. Both these 
tensors have been expressed through the Newman-Penrose tetrads to further clarify their 
structure. We have shown that these tensors contain the Kerr counterparts as limiting 
cases. By constructing a tetrad for the Killing tensor we have further exhibited the re- 
lations between the metric, the Killing and the Killing-Yano tensors. The eigenvalues of 
these tensors have been calculated. 

4 We have introduced the background-black hole decomposition for the VEK spacetime and 
discussed the generalized Kerr-Schild (and the Kerr-Schild as a special case) transforma- 
tion and its significance. By employing this decomposition we have expressed the Newman- 
Penrose tetrad in terms of background and black hole terms. Further, we have split the 
Hamiltonian, the four-momentum, and the Killing tensor into background and black hole 
terms. We have shown that the Killing-Yano tensor has only a background term. 

Focusing on the Killing-Yano tensor we have employed the phase space formalism to project 
it to the three dimensional space. By means of the projected tensor we have defined quan- 

4 tities analogous to the components of particle angular momentum. These components 
satisfy the Poissori bracket relations expected of them. We have shown that to first order 
in the angular momentum parameter and to second order in the inverse of the background 
parameter, the angular momentum vector precesses about the rotational axis preserving 
its magnitude. 

Thus we see that in the VEK spacetime it is possible to define an analogue of the particle 
angular momentum associated with the Killing-Yano tensor. 111 spite of the apparent 
similarity to  the 1l;crr case, there is here a considerable modification in that the background 
parameter now figures in a significant manner. Lastly, all of the above results reduce to 



the Kerr counterparts as the background parameter tends to infinity. Thus, the entire 
discussion may be taken over, over by specialization to the Kerr case. 
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Chapter 7 

Conclusion 

In the present thesis we have investigated two prototypes of black holes in non-flat back- 
grounds. We have been motivated by the need to understand the natures of black holes 
when the well-known features of asymptotic flatness and time independence are given up. 
Our approach has been to  study specific examples in order to gain insight into the nature 
of black holes wherein one or both the above features are absent. In this thesis, however, 
we retain time independence. We have taken as specific examples the family of solutions 
given by Vaidya that represent black holes in cosmological backgrounds. One of this rep- 
resents the Kerr black hole and the other represents the Schwarzschild black hole, in the 
background of the Einstein universe. We may, however, note that these spacetimes are in 
reality non-vacuum solutions that in the limit go over to the respective black holes and 
the Einstein universe. These spacetimes may be viewed as those of black holes surrounded 
by matter distribution satisfying reasonable energy conditions. The basic purpose of this 
study is to compare and contrast the we11 known properties of the usual black holes with 
those in non-vacuum surroundings. We now give a brief summary of the results obtained. 

Summary of Results 

We have begun by investigating the Vaidya-Einstein-Schwarzschild(VES) black hole con- 
structed by Nayak, Mac Callum and Vishveshwara. This VES spacetime is asymptotically 

i non-flat but is time independent. The event horizon coincides with the Killing horizon. By 
. studying this spacetime, we have shown that the introduction of the non-flat background 

modifies the Schwarzschild results considerably. As opposed to the Schwarzschild case, the 
nature of the null geodesics is drastically affected. The time-like circular geodesics behave 
in a radically different manner as compared with their Schwarzschild counterparts. Regard- 
ing the classical tests- the gravitational redshift is modified from that in the Schwarzschild 
spacetime and the perihelion precession and light bending undergo an increase. 

We have nest focused on the Vaidya-Einstein-I<err(VEK) blacl; hole. The VEK event 
l~orizon is a Killing horizon as in the case of the Kerr spacetime. By concentrating on the 



geometry of the event horizon, we have shown that the background gives rise to significant 
modifications in the geometrical and physical quantities associated with the black hole. 
The event horizon shrinks from its limiting Kerr magnitude as the background influence 
increases and the stationary limit surface gets more distorted. This manifests itself as an 
enlargement of the ergosphere. The distortion of the horizon can be ascertained by com- 
puting its equatorial and polar circumferences and studying the variation of the oblateness 
parameter. The oblateness parameter is given by the difference of the equatorial and polar 
circumferences divided by the equatorial circumference. We have studied this by two differ- 
ent approaches. In the first instance, to compare the results with those obtained by Smarr 
in the Kerr case, we have varied the distortion parameter without varying the background 
parameter. In this formalism the equatorial circumference remains the same as that of the 
Kerr horizon which of course varies with the distortion parameter. Nevertheless, the polar 
circumference progressively decreases but more slowly than in the Kerr case. The combined 
effect is that the oblateness parameter increases more slowly as compared with the Kerr 
case. In a sense, these computations reveal the variation of the oblateness modified by the 
background and as compared with the Kerr horizon. 

We have showed that further insight can be gained into the structure of the horizon by 
investigating the oblateness as an explicit function of the angular momentum parameter 
and the background parameter. As we have pointed out there exist both modulated and 
direct effects. 

The modulated effect is obtained by varying the angular momentum parameter for different 
fixed values of the background parameter. Here we have found a totally unexpected effect. 
That is, whereas the equatorial circumference increases monotonically with the angular 
momentum parameter for all values of the background parameter, the polar circumference 
first decreases as the angular momentum parameter increases, starting from the Kerr value, 
and then increases after a critical value of the background parameter. Nevertheless, the 
oblateness parameter increases with the angular momentum parameter for all values of 
the background parameter. On the other hand the direct effect is obtained by varying the 
circumferences with the background parameter. Here, one sees that both the equatorial 

3 
and the polar circumferences decrease as the background parameter decreases, ie as the 
background influence increases. However, the oblateness parameter increases a .  the back- 
ground parameter decreases. 

Another quantity that indicates the change in the geometry of the event horizon is its 
surface area. As was done in the case of the circumferences, we have studied two different 
effects of the bacliground on the area. First the modulation of rotation by the background 
and second the direct effect of the background. In the first case, for large values of the 
background parameter the area decreases monotonically with the angular momentum pa- 
rameter as in the Icerr case. Then for a critical range of values of the background parameter 
the area increases, attains a maximum and then, decreases. Finally for small values of the 



background parameter it increases monotonically with the angular momentum parameter. 
This effect is also a novel one which reveals the peculiarity of the background influence. 
Next, we have the direct effect of the background. ,4s the background parameter decreases 
thereby enhancing the background effect, the area decreases and asymptotically approaches 
the Kerr value as the background effect goes down. 

Turning to the angular velocity of the VEK event horizon, we have shown that it goes 
up significantly as the background influence increases. By means of the surface gravity of 
the VEK horizon we have shown that the extreme VEK black hole occurs as in the Kerr 
case. However the equatorial tangential velocity defined in analogy with the Kerr case is 
no longer that of light. Motivated by this we have classified the VEK black hole into two 
types. We have shown that in addition to the extreme type, another type of black hole the 
'limiting black hole' may be defined for which this velocity is that of light. 

By investigating the intrinsic geometry as represented by the Gaussian curvature we have 
shown that the VEK black hole may be classified into two distinct classes. The first class 
consists of black holes with positive Gaussian curvature and the second consists of black 
holes with negative Gaussian curvature. In the Kerr case studied by Smarr, this classifi- 
cation is on the basis of two constant 'limiting' values of the distortion parameter. In the 
VEK case however, the corresponding 'limiting' values are no longer constants but depend 
on the angular momentum parameter and the background parameter the background pa- 
rameter. The topology of the VEK event horizon is that of a 2-sphere as may be expected 
for any normal black hole. 

From a study of the geometry we have moved on to investigate some physical effects in the 
VEK spacetime. By studying circular geodesics we have shown that there is a significant 
departure of the VEK results from the usual Kerr counterparts. This is due to the match- 
ing of the Vaidya spacetime to the Einstein universe wherein there are no circular geodesics 
a t  all. In the Kerr spacetime only one null circular geodesic exists. Corresponding to this 
there is one co-rotating and one counter-rotating orbit. Timelike geodesics exist all the 
way up to infinity. In contrast, the VEK case allows two different possibilities depending 
on the background parameter. 

In the first case two null circular geodesics are present. There is an inner null geodesic and 
an outer null geodesic. Each of these have one co-rotating and one counter-rotating orbit. 
Timelike geodesics exist between the inner and the outer null geodesics. 

In the second case only one null geodesic exists. Corresponding to this is one CO and one 
counter-rotating orbit. There is a complete absence of timelike circular geodesics. 
The impact pararrieter also reflects this feature as we have shown in the special case of the 
VES spacetime. 



By investigating the phenomena of gyroscopic precession in the VEK spacetime we have 
shown that the background affects the precession in both modulated and direct effects. 
The first torsion which in the Kerr case coincided with the Schwarzschild Keplerian fre- 
quency now no longer coincides with the VES generalized Keplerian frequency. It is now 
a function of the angular momentum parameter as well in contrast to the Kerr case. This 
brings about a pronounced modification of the results from the Kerr case. In particular 
this gives rise to a generalized version of the Schiff precession. Moreover, even in the special 
cases of the generalized versions of the Fokker-De Sitter precession in the VES spacetime, 
the background prevents the first torsion from being equivalent to the generalized Keple- 
rian frequency. Finally, the generalized version of the Thomas precession in the Einstein 
universe is also considerably modified. 

As mentioned in the introductory chapter, a study of the Carter constant and the Petrov 
classification sheds light on the connection between the properties of the geodesics and the 
classification of the gravitational field. Thus, starting with a discussion of Carter's discov- 
ery of the fourth constant in the Kerr case, we have shown by construction that the Carter 
constant exists in the VEK spacetime also. From the Carter constant we have obtained 
the Killing tensor and brought out its significance by considering the special case of the 
Schwarzschild spacetime wherein the Killing tensor becomes reducible. 

Next, taking into account the fact that in the Kerr spacetime, the Killing tensor is related 
to the Killing-Yano tensor which, in turn, is related to the type-D nature of the space- 
time, we have investigated the classification of the VEK spacetime. By employing the 
Newman-Penrose formalism we have calculated the spin coefficients for the VEK space- 
time. We have shown that unlike the Kerr case there is a non-vanishing spin coefficient 
E. Even though the rest of the results mirror that in the Kerr case, their expressions are 
considerably complicated. These spin coefficients contain as limiting cases the Kerr and 
the VES counterparts and of course the Schwarzschild ones also. The Bianchi identities 
contain non-zero Ricci terms also in addition to the Weyl scalars. 

f 
Motivated by the significance of the type-D nature of a black hole spacetime we have stud- 
ied the classification of the VEK spacetime. We have demonstrated explicitly and in detail, 
that the VES spacetime is type-D. We have shown that the only non-vanishing Weyl scalar 
is Turning to the Ricci terms, the only non-zero terms are Qoo, a l l ,  and the scalar 

A. That these terms which vanish in the Schwarzschild case do not do so here shows that 
the spacetime is non-vacuum. In the Einstein universe also the Ricci terms are non-zero 
which brings out the asymptotically non-flat nature of the spacetime. The optical scalars W 

and a vanish as in the Schwarzschild case whereas the optical scalar C3 is modified because 
of the background. 



We have discussed the 2-spinor formalism and constructed the Killing spinor for the VEK 
spacetime. By means of the Killing spinor we have calculated the Killing-Yano tensor and 

Y shown that in the limit of the background parameter tending to infinity this coincides with 
the Killing-Yano tensor of the Kerr spacetime. 

With the above apparatus in hand, we have investigated the relation between the Killing 
and the Killing-Yano tensors. The Killing tensor has been shown to be a 'square7 of the 
Killing-Yano tensor. Both these tensors have been expressed through the Newman-Penrose 
tetrads to further clarify their structure. We have shown that these tensors contain the 
Kerr counterparts as limiting cases. By constructing a tetrad for the Killing tensor we 
have further exhibited the relations between the metric, the Killing and the Killing-Yano 
tensors. The eigenvalues of these tensors have been calculated. r 

We have introduced the background-black hole decomposition and discussed the Kerr- 
Schild and the generalized Kerr-Schild transformations and their implications for the 
Kerr and the VEK cases respectively. By employing this decomposition we expressed the 
Newman-Penrose tetrad in terms of background and black hole terms. Further, we have 
split the Hamiltonian, the four-momentum, and the Killing tensor into background and 
black hole terms. We have shown that the Killing-Yano tensor has only a background term. 

Focusing on the Killing-Yano tensor we have employed the phase space formalism to project 
+ it to space. By means of the projected tensor we have defined quantities analogous to the 

components of particle angular momentum. These components satisfy the Poisson bracket 
relations expected of them. We have shown that to first order in the angular momentum 
parameter and to second order in the inverse of the background parameter, the angular 
momentum vector precesses along the central black hole preserving its magnitude. 

The above results clearly demonstrate that the effect of the background on the properties 
of the usual black holes are significant. VCTe see that the results may be classified into three 
groups. In the first, the properties of the black holes are retained. Such is the case with 

+ the gravitational redshift discussed in Chapter 2 and the existence of the Carter constant 
and the Petrov classification of the VES spacetime discussed in Chapter 5 .  These prove to 

. be similar to  that in the flat case. In the second case, the properties of the black holes are 
considerably modified. This is the case with the perihelion precession, the bending of light 
considered in Chapter 2, the geometry of the ergosphere, the angular velocity, topology, 
and the nature of the spin coefficients corresponding to the VEK black hole as shown in 
Chapter 5 .  In the third case, the properties of the black holes are radically altered. This 
includes the behavior of circular geodesics and the classification of the timelike geodesics 
in the VES spacetime discussed in Chapter 2, circular geodesics in the VEK spacetime and 
the nature of gyroscopic precession discussed in Chapter 4. Thus the background has a 
significant impact at  various levels of complexity, from minor modifications to total depar- 



ture from the standard cases. 

Y We have shown that a study of specific examples gives considerable insight into the nature 
of black holes which are not asymptotically flat. The effect of the background on the prop- 
erties of the usual black holes is clear and patent. As a prototype the Vaidya cosmological 
black holes on which we have based our investigations are specific and restricted. It is not 
a t  all unlikely that the above effects may be retained or even enhanced in more realistic 
models. 

We now proceed to discuss some significant issues that suggest themselves in course of our 
investigations. 

Discussion 

In the following, we enumerate and discuss some of the significant issues that have arisen 
and need to  be addressed further. 

1. From the above summary we have seen that the influence of the non-flat background 
on physical and geometrical properties of the black hole is three-fold in that they 
are either retained, modified or radically altered. It would be instructive to perform 
a detailed classification of physical phenomena based on these criteria. Such a study 
can play the role of an issue by itself. 

2. In our investigations on the VEK black hole we have seen that the surface area of 
the horizon behaves in a radically altered manner in contrast to the Kerr black hole. 
The physical reason behind this behavior may not be obvious since the VEK black 
hole is surrounded by matter distribution. Moreover, it is not clear as to how the 
rotation of the background itself contributes to  this effect. It would be interesting 
and instructive to study this issue in detail. 

f 

3. The angular velocity of the VEK horizon increases monotonically as the background 
influence increases. As in the case of the surface area, the part that the rotation of 
the background plays in bringing about this effect would be of considerable interest. 

4. It is well known that the surface area of the black hole plays a significant role in 
that it serves as a point of departure for black hole thermodynamics. In the Kerr 
case, the variation of the mass of the black hole may be expressed in terms of the 
variations of the surface area and the angular momentum with constant coefficients 
which turn out to be essentially the surface gravity and the angular velocity of the 



horizon respectively. In the VEK case, however, as borne out by our preliminary in- 
vestigations(n0t included in the present thesis) the corresponding coefficients are not 
constants but functions of the mass, the angular momentum and the background pa- 
rameters. Moreover, it seems to be possible to  admit the variation of the background 
parameter as an additional contribution. This feature, together with the radically 
altered behavior of the area indicates that it is not unlikely that there may be a sig- 
nificant departure from the standard black hole thermodynamics. Along with these, 
there is associated, the physical interpretation of the area as analogous to  the entropy 
of the black hole. In the VEK spacetime in contrast to the Kerr case, we may have 
to take into account a possible additional contribution to  the black hole entropy from 
the matter surrounding the black hole. Thus, a study of black hole thermodynamics 
of the VEK black hole starting from an investigation of the behavior of the surface 
area seems to be an important and promising issue. 

5. Another issue has to do with the way in which Machian ideas are associated with 
our investigations. In the case of the Kerr black hole, the dragging of inertial frames 
and related phenomena are often considered as a manifestation of the so called Mach 
principle. This is because of the effect of the black hole on its surrounding. The 
vacuum, flat background itself obviously has no direct influence on the physical phe- 
nomena associated with the black hole. In the VEK case, on the other hand, there 
is clearly an effect of the background on the physical phenomena as well as on the 
black hole. This is a novel feature arising out of the non-flat background. In this 
respect, the background-black hole decomposition that we have introduced may be 
of help in separating out the effects of the black hole from Machian effects due to the 
background representing the matter content of the rest of the universe. 

6. The question of stability that we alluded to in Chapter 1 comes up again here in the 
form of the stability of the VEK spacetime. As is well-known, the usual black hole 
spacetimes are stable whereas the Einstein universe is not. It is not clear as to the 
nature of the stability of a composite spacetime subsuming both the black hole and 
the Einstein universe. The stability or otherwise of a composite spacetime that yields 
either the black hole or the Einstein universe as limiting cases is an open question. 

7. Lastly, apart from the VES and the VEK black holes which have the Einstein uni- 
verse as background, one would like to  have more realistic models. There remains 
here the issuc of time independence. As mentioned in the beginning, in the present 
thesis we have retained time independence but relaxed asymptotic flatness. A more 
realistic situation, however, would necessitate the relaxation of time independence 
also. This would entail, for instance, the extension of the background from a static 
to an expanding universe, in accordance with observational data. In his investigations 
on the cosmological-black hole metrics, Vaidya originally gave a metric which was 
supposed to incarporate a black hole in the Robertson-Walker universe. However, it 



can be shown that the 'event horizon' of this spacetime does not satisfy the defining 
property of the black hole as being a null surface with the light cone tangential to 
it. Thus, it fails to be a one-way membrane and as such cannot be called an event 
horizon at  all. Therefore, this spacetime fails to qualify as a candidate for being a 
black hole. Therefore, arriving at  a suitable generalization of the black hole in a time 
dependent universe is indeed a basic issue that needs to  be addressed. Here also, the 
background-black hole decomposition may be useful in generating new solutions that 
incarporate black holes in non-flat and non-static backgrounds. 

TO conclude, we have made a beginning in attempting to understand the nature of black 
holes in non-flat backgrounds when the standard features of the well-known black holes 
namely vacuum exterior and asymptotic flatness are given up. As we have pointed out in 
the above paragraphs, there are several interesting and significant issues that need to be 
addressed and tackled in order to arrive a t  a more realistic picture of black holes in non-flat 
backgrounds. Such investigations, however, must be reserved for the future. 
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