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CHAPTER 1

INTRODUCTION

1.1 Stochastic Modeling

Many real world phenomena require the analysis of systems in stochastic settings. So
stochastic models have become increasingly important for understanding or making
performance evaluation of physically realizable complex systems in various branches
of science and in almost all walks of life. Recently there have been striking advances in
both mathematical and statistical aspects of stochastic models. For dynamic system
with a given probabilistic law of motion, the simple Markov model is often found to be
appropriate. One of the greatest success stories for stochastic models is the
development of computer communication networks. There are several interesting
scenarios in the internet and the emerging next generation networks where stochastic

modeling is applicable.



Tijims (1994) gave an algorithmic approach to stochastic modeling with a wide
variety of realistic examples. A. A. Markov at the beginning of twentieth century
developed a probability model in which the outcomes of the successive trials are
allowed to be independent on each other such that each trial depends on its

predecessor.

Even Kolmogorov’s axiomatic approach to probability may be considered as
modeling of the real world concept of chance by a set of axioms so that probability
measure can be studied mathematically. Since then several scientists have proposed
stochastic models to describe different phenomena. Some of such models are —
insurance risk models, dam models, inventory and queueing models, reliability models,
model for population growth and epidemic models. This thesis is devoted to the study
of some interesting models in queues, inventory and reliability, which are physically

realizable though complex.

A mode] may be iconic giving shape to an abstraction, symbolic, involving the
mathematical relationships or statements underlying the various aspects of the
phenomenon under observation. It provides an approximation to the real world
situation. A model involving a random variable or a chance factor is called a stochastic
or a probability model. Deterministic models may be viewed as special cases of
stochastic models. As we believe in the philosophy — ‘every thing in the universe is

random’, the stochastic models become our prime concern in any scientific study.
b



In model building, the first step in the construction of a model is to identify the
essential characteristics of the phenomenon and their inter relationships. Then we will
analyze the model deducing the various observable characteristics, which would follow
if the model is satisfactory. The next step in the model building is to fit a suitable
model from the family of models, by choosing the value of one or more parameters of
the model. If the fit is not satisfactory, one tries to modify the model. Once we arrive at
the satisfactory model, it can be used for the purpose of prediction and control.

Decision theory can be used to decide on the optimal action from the model.

Janssen et. al. (1995) cited a variety of stochastic models in finance, insurance,
economic forecasting, marketing etc. He described these models as an interface
between stochastic modeling and data analysis and their applications in various fields.
Krishna Reddy et. al. (1994) gave an elaborate account of stochastic models and
optimization techniques to upgrade and modernize the existing technology. Software
reliability and computer communication systems are closely related to optimization and
stochastic modeling. Guttierrez (1994) explained some stochastic models in operations
research, earth and life sciences and information theory, from an application
perspective. Brandt et. al. (1990) gave detailed account of stationary stochastic models
with a special reference to queueing models. Kijima (1997) explained the transient
behavior of Markov chains through monotone processes, reversibility and rate of
convergence that provide good help for stochastic modeling. Wolf (1989) explained

many stochastic models — most of them are queueing models — with concrete basic

(V)



knowledge of the theory and a very good literature of the models. For a. systematic
exposition of the basic theory and applications of stochastic models one may refer to
Bhat (2000). More recently Latouche and Taylor (2000) explained some algorithmic
methods for stochastic models. For a wide variety of stochastic models, the steady state
and occasionally the transient measure of the underlying process can be expressed in
terms of a matrix. That matrix i1s a minimal non-negative solution to a non-linear
equation. M. F. Neuts first proposed such matrix solutions to stochastic models in the
early 1970’s. Chakravarthy and Alfa (1997) obtained a number of stochastic models in

which matrix analytic methods employed as a main tool.

In stochastic modeling, the ideas in queue, inventory and reliability theory have
considerable importance. Recently many articles are available by applying one of these
theoretical concepts in the areas of the other or both. Several authors have studied
these theories simultaneously. For example one can see Kalashnikov (1994), Atkinson
(1995), Kusaka and Mori (1995), Park et. al. (1996), Sharma and Chauhan (1996), Li
Wei et. al. (1997), Wang (1997), Karaesmen and Gupta (1997), Gopalan (1999), Ke

and Wang (1999) and Perry and Posner (1999).

Each chapter in this thesis is provided with self-introduction, notations and
some important references. The next three sections of this chapter review briefly the
carlier developments of the theories of queue, inventory and reliability. Some

analytical tools used in this work supplemented in section 1.5. A brief account of PH



class of distributions is given in section 1.6. The final section presents an outline of the

results obtained in this thesis is given.

1.2 Queueing Models - An Qutline

Queueing theory is a well-developed subject of applied probability theory. The
systematic study of the queueing theory was pioneered by A. K. Erlang at the
beginning of twentieth century whose work initially started with telephone exchange
problems. Since then many researchers throughout the world have continued his work.
Amongst the known books available in the literature are those of Saaty (1961), Takacs
(1962), Prabhu (1965), Cohen (1969), Gross and Haris (1998) and Asmussen (1987).
By now, there are many thousands of articles on queueing and related topics. The flow

of new theories and methodologies has become very hard to keep up with.

We have all experienced waiting for service some way or another. A queue is
formed when customers arrive at a service facility and demand service. Clearly in
different situations, there are different service facilities, service discipline, customer
behavior etc. Thus a queueing model has the following basic characteristics:

1) Arrival pattern of customers.

2) Service pattern of servers.

3) Number of service channels.

4) System capacity.

S} Queue discipline.
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The arrival pattern describes the manner in which the customers arrive and join
in the queue. Usually the process of arrivals is stochastic and it is thus necessary to
know the probability distribution of the inter arrival time, the time between the
successive arrivals. The arrival can be either one at a time or in batches and if it is in
batches, we should know the size of the batch. We have to examine the reaction of the
customer upon entering the system. If a customer decides not to enter the queue upon
the arrival the customer is said to have balked. The reneged customers are those who
enter the queue and after some time loss patience and decide to leave. Besides these the
customers may switch from one queue to another, if there is more than one parallel
waiting lines, and this is known as jockey for position. These three situations are
examples of queue with impatient customers. The arrival pattern independent of time is

called stationary and not independent of time is called non-stationary.

Most often, service pattern is described by a probability distribution of the
average service time of a customer. Service may also be single or batch. Unlike from
the arrival pattern service depends on the number of customers in the queue is referred
as state-dependent service. Service can also be stationary or non-stationary. When we
speak about service time, the system must be non-empty. If the system is empty, the
service facility is idle. Thus we may say that queue length would be the result of two
separate patterns — arrivals and services — which are generally assumed to be

independent.



Service channel refers the capacity of the servicing facility. That is the number
of servers available. System capacity is the capacity of the waiting room, may be finite
or infinite. In the case of finite system capacity, those customers who arrive after the
room is full will be lost. Queue discipline refers to the manner in which customers are
selected for service when a queue has formed. The most common discipline that can be
observed in every day life is first come, first served FCFS. Some others are last come
first served (LCFS), Random service selection (RSS) and Priority (PR) schemes. There
are two general priority schemes, pre-emptive and non-pre-emptive. In the first, the
customer with highest priority is allowed to enter service facility immediately even if a
customer with lower priority is already in service. But in the second, the highest
priority customer goes to the head of the queue and gets into service immediately after

the customer presently in service served out.

When we come to the notation of a queueing model, Kendall described a model
by A/B/X/Y/Z where A indicates the inter arrival time distribution, B the service time
distribution, X number of service channels, Y the system capacity and Z the queue
discipline. Dshalalow (1995) included server capacity and busy period discipline in this
notation by introducing two more abbreviations. If there is no limit on the system
capacity and the queue discipline is FIFO, A/B/X can be taken as the notation of the
queueing model. For example, M/M/1 means arrival and service time follows
exponential, there is only one server, the system capacity is infinite and the queue

discipline is FCFS.



Analysis of a queueing model mainly involves the probability distribution of
the following random variables. 1) The system size — the number of customers in the
system. 2) The waiting time in the system — the duration of the time a customer has to
spend in the system before leaving. 3) Busy period — the period of time the server is

continuously busy.

The behavior of a queue at time t depends on t. However, most results arrived
at in the literature are for the behavior of the system in equilibrium. That is as t — oo,
In such cases, the system is unaffected by the shift of time and is said to be in the
steady state or the system is stationary. It should be noted that besides the fact that the

study of a system in equilibrium is mathematically simpler, it is also considered to be

more important in applications.

The time dependent solution of M/M/1 queue was first given by Bailey (1954)
using the method of generating function. Even now so many articles aimed at the

transient solutions of system size of M/M/1 queueing models are available in standard

journals.

_For non-Markovian queues, Palm (1943) and Kendall (1953) have used the method
of regeneration points and imbedded Markov chain techniques respectively. The study of
bulk queues is originated with the pioneering work of Bailey. For details of bulk queues,
one may refer Medhi (1984) and Chaudhry and Templeton (1984). Queueing models in

which the service process is subject to interruptions resulting from unscheduled



breakdowns of servers, scheduled off periods, arrival of customers with pre-emptive and
non-pre-emptive priorities or the server working on primary and secondary customers arise
naturally. A detailed analysis of single server queues with server failure is given in
Gnedenko and Kovalenko (1968). When the on-periods are not exponential, the model

becomes complicated and one such model is studied by Federgruen and Green (1986).

The time dependent behavior as well as steady étate behavior of M/G/1 and
G/M/1 queueing system first studied by Bhat (1968) in which bulk arrival and bulk
service are considered and the behavior of the waiting time process is obtained. A
review of papers based on the generalizations of the classical M/G/1 system is
available in Medhi (1994). Atkinson (1995) considered an M/G/1/0 queue and obtained
the transient analysis, which has application in reliability model for a single repairable

component.

In the case of vacation model, Miller (1964) analyzed a system in which the
server goes for a vacation of random duration whenever it becomes idle. A queueing
system in which, the server taking exactly one vacation at the end of each busy period,
is called a single vacation system. When the system becomes empty, server starts a
vacation and he keeps on taking vacations until on return from vacation at least one
customer 1s present. Several authors analyzed vacation systems. For more details on

queueing systems with vacations one may refer to Doshi (1986, 1990).



Models of retrial queues, G/G/1 queues, tandem queues, queue with infinite
servers, and queue with finite system capacity played a prominent role in the recent
research. Kasahara et. al. (1996) considered an M/G/1/K system with push-out scheme
and multiple vacations and derived the Laplace - Stieltjes transform of waiting time
distribution for the customer which is eventually served. Langaris and Katsaros (1997)
considered an M/G/1/N model multiple server vacations and gated service policy. They
analyzed the steady state probabilities and the customers waiting time. Frey and
Takahashi (1997) considered an M/G/1/N queue with vacation time and exhaustive
service discipline and analyzed the queue length distribution at an arbitrary time as
well as for the waiting time distribution. In 1998, they analyzed it using imbedded

Markov chain technique, which makes analysis simple.

Bogoyavlenskaya (1997) considered M/G/1/m queue and analyzed using
Erlangian phase method and obtained the steady state distribution of the queue length.
Chaudhry and Gupta (1999) considered a single server finite capacity queue with
general bulk service rule where customers arrive according to Poisson process and
service times of the batches are arbitrarily distributed. Using supplementary variable
and imbedded Markov chain technique they presented the relations between state
dependent probabilities at departure and arbitrary epochs. Pekoz (1999) derived
formulas for moments of the number of refused customers in a busy period in M/GI/1/n
and GI/M/1/n queueing systems. Frey and Takahasi (1999) considered an M*/GI/1/N

finite capacity queue with close down time, vacation time and exhaustive service

10



discipline under the partial acceptance strategy as well as under the whole batch

acceptance strategy.

Earlier we have revealed five basic characteristics of a queue for the case when
there is only one stage of service. It is also possible in many situations that a customer
has to go through several stages of service. Thus, he is in a series of queues so that his
departure from one stage be his arrival at the next. Therefore the departure processes of
different queues are of paramount importance in the study of queues in tandem. A
natural question, in cases where the only observables from the system are the
departures, is whether or not from the behavior of the departures of queue one can
identify or gain some information about the unknown input process or service system.
There is a vast literature on output processes from queues. Much of it is reviewed in

Daley (1976) and that review is updated later by Gnedenko and Konig (1983).

Usually in queueing models the server stops service when there is no customer
in the queue and resumes service when a new customer joins the queue next time. This
model fails to describe many real life situations where there is a control limit for
shutting down and resuming of service. This may be treated as a model with removable
server — the server being removed depending on the demand level. Queueing systems
with removable servers were considered by Yadin and Naor (1963), Bell (1975) and

Rhee and Sivazlian (1990) and other researchers.

There are many real life queueing situations in which service is rendered with

control limit policies. In these situations one can use single and batch service in the



same queueing model, which will be profitable than either could provide. For example

one can see Baburaj and Manoharan (1997a) and Baburaj (2000).

Apart from this, one can see some remarkable achievements of queueing theory
in the various field of applied mathematics and other applied sciences. For some
advanced developments in queueing one can refer Dshalalow (1995, 1997). He cited
spatial queues, queues with Markovian arrival processes and some other major research

areas in queueing theory by providing an elaborated list of references.

1.3 Inventory Models — An out line.

The study of inventory models started with the work of Harris in 1915, which
formulated and optimized a simple inventory situation. The formula derived by Harris
is an optimal production lot size given as a square root function of a fixed cost, an
investment or holding cost, and demand. This formula is known as the economic order
quantity (EOQ) formula. Most of the individual elements of current inventory models

‘are available before 1950.

An inventory is an amount of material stored for the purpose of sale or
production. Inventory management of physical goods, or other products or elements is
an integral part of logistic systems common to all sectors of the economy, such as
business, industry, agriculture and defence. In an economy that is perfectly predictable,

inventory may be needed to take advantage of the economic features of a particular



technology, or to synchronize human tasks or to regulate the production process to
meet the changing trends in demand. When uncertainty is present, inventories are used

as protection against risk or stock-out.

Inventory theory is concerned with the analysis of several types of decisions
relating primarily to the problem of when and how much to buy of a given item. An
analysis of an inventory consists of the following steps: 1) Determination of the
properties of the system, 2) Formulation of the problem, 3) Development of a model of

the system and 4) Derivation of a solution of the problem.

The movement or flow of a single commodity into and out of a single storage

point characterized the simplest type of inventory system.

Inflow  ~----emmmeee- — Inventory — Outflow

(Procurement) (Demand)

Several policies may be used to control an inventory system; of these the most
important policy is the two-bin or (s, S) policy. Under this particular policy, whenever
the position inventory (sum of on-hand inventory and outstanding orders) is equal to or
less than a value s, procurement is made to bring its level to S. Under a continuous
review system, the (s, S) policy will usually imply the procurement of a fixed quantity
Q = S — s of the commodity, while in periodic review systems the procurement quantity

will vary. The (s, S) policy incorporates two decision variables s and S. The variable s

13



is known as the reorder level, which identifies when to order, while both variables &

and S identify how much to order.

In an inventory problem, the objective function may take several forms, and
these usually involve the minimization of a cost function or the maximization of a
profit function. The cost function in general, consist of the additive contribution of the
procurement, the holding cost, and the shortage cost. Under the (s, S) policy, in a
number of situations, it is more convenient to determine the optimal values of the pair
(s, Q) or (S, Q) instead of optimizing the objective function by determining the values

of sand S.

The inventory models are usually characterized by the demand pattern and the
policy for replenishing the stock in the store. The replenishments ordered may arrive
after a time lag L, which may be fixed or a random variable. This time lag L is called
the lead-time. The time during which the inventory is empty is termed as a dry period.
Asymptotic account of probabilistic treatment in the study of inventory systems using
renewal theoretic argument is given in Arrow et. al. (1958). A review of the problems

in the probability theory of storage systems is given by Gani (1957).

Most of the inventory models in the literature are concerned with determining
the optimal stocking policies at a single installation. But nowadays the models, which
determines optimal inventory management with more than a single installation attracts

considerable attention. Scarf et. al. (1963) gave a detailed account of multistage

14



inventory models. When demand is discrete the (S — 1, S) policy calls for the
placement of a replenishment order after each demand equal in magnitude to the size of
the demand. This policy has often advocated for controlling inventory of expensive and

slow moving items.

A detailed review of the work carried out in (s, S) inventory systems up to 1966
can be found in Veinote (1966). The earliest work on the decay problem is due to
Ghare and Schrader (1963) who considered the generalization of the standard EOQ
mode] without shortages. The view of Nahmias (1982) provides the state of art on
perishable inventory models until the beginning of eighties. Manoharan and
Krishnamoorthy (1989) considered an inventory problem with all items subject to
decay and derived the limiting probability distribuﬁon. Kalpakam and Arivarignan
(1989) analyze a perishable inventory model in which the inventoried ‘items have
lifetimes with negative exponential distribution with demands forming a Poisson
process. Krishnamoorthy and Varghese (1995) extended the above model, subject to
disasters. Kalpakam and Sapna (1996) analyzed a one-to-one ordering perishable
inventory model with renewal demands and exponential life times. Aggoun et. al.
(1997) deals with a parametric multi-period integer valued inventory model for
perishable items. In 1999 the same authors proposed a single-product, discrete time
inventory model for perishable items. Williams and Patuwo (1999) derived the
necessary equations to determine the single period, periodic review and optimal
incoming quantity for a single product with a useful lifetime of two periods, subject to

a known positive order lead time and a lost sales policy.

15



Stidham (1974) has introduced and studied wide class of stochastic input—
output systems. Berg et. al. (1994) considered a production/inventory system with
unreliable machines. A production/inventory system consisting of a single processor
producing three product types and a warehouse is considered by Altoik and Shiue
(1995). Glasserman and Tayur (1996) developed a simple approximation for multi
stage production inventory system with limited production capacity and variable
demands. Arreola-Risa (1996) studied an integrated multi-item production inventory
system with stochastic demands and capacitated production and derived analytical
expressions that lead to the optimal base stock levels. Gullu (1996) explored how total
system costs and inventory positions are affected when forecasts are incorporated

explicitly in production/inventory systems.

Aviv and Federgruen (1997) considered a single item, periodic review
inventory model with uncertain demands in which each period production volume is
limited by a capacity level. Bar-Lev et. al. (1996) analyzed a stochastic
production/inventory problem with compound Poisson demand and state (inventory
level) dependent production rates. Ha (1997) considered the problem of production
control and stock rationing in a make — to — stock production system with two priority
customer classes and back ordering. Inder Furth (1997) addressed a problem of product
recovery management where a single product is stocked in order to fulfil a stochastic

demand of customers who may return products after usage. Van-Houtum and Zijm

16



(1997) studied incomplete convolutions of continuous distribution functions as they

appear in the analysis of multistage production and inventory systems.

Gullu (1998) considered a single item, stochastic demand production/inventory
problem where the maximum amount that can be produced (ordered) in any given
period is assumed to be uncertain. Kijima and Takimoto (1999) considered a single
item single location, (T, S) inventory/production model with uncertain demands in
which a production capacity is limited per period. Apart from stationary and time
dependent behavior of system characteristics the effects of limited production capacity

and the order-up-to-level on performance characteristics are also discussed.

1.4 Reliability Models - An Outline

The formation of reliability theory as a discipline started about half a century ago.
Before that time the concept of reliability was looked at from an intuitive, subjective
and qualitative point of view. The mathematical theory of reliability has grown out of
the demands of modern technology and particularly out of the experiences in World

War II with complex military systems.

The term “reliability” encompasses a wide class of research topics, ranging
from transistor reliability to the reliability of complex systems. The problems of
failures, repairs, maintenance etc. are to be viewed seriously in the use of any

equipments or systems, because of future performance or future life is entirely



depending on such reliability characteristics. Today design and production engineers
discuss methods of improving reliability in design and production stages. Nowadays, a
new science was even invented with the aim of discussing how reliability is achieved
by nature and of trying to initiate such methods in building similar electronic or

mechanical devices.

An equipment may be unreliable due to various reasons. They are infant
mortalities, random failures and wear outs. One of the principal methods of improving
system reliability is the introduction of redundancy. Repair and preventive

maintenance are other methods of increasing system reliability.

Reliability as a human attribute has been praised for a very long time. In
reliability, we are mainly concerned with devices or systems that fail at an
unpredictable random age of T > 0. This random variable is assumed to have a
distribution F, F(t) = P[T < t], t € R, with a density f. Then reliability R(t) of the
system is defined as

P[T >t]=1-F(t)= F(r) .
This function is also known as survival function. The failure rate A is defined on the

support of the distribution by

The failure rate A(t) measures the proneness to failure at time t and we have the relation

18



F(t)=e® [See Aven and Jensen (1999)).

Epstein and Sobel (1953) began the work in the field of life testing, which
marked the beginning of wide spread research using exponential distribution. Until
1960 reliability was defined as the probability that an item will perform a required
function under stated conditions for a stated period of time. Research on coherent
structures (general system reliability) began with the paper by Birnbaum et. al. (1961).
Barlow and Proschan (1965) stimulated the research work on the failure rate function
and classes of life distributions defined in terms of this function. Barlow and Proschan
(1975) can be viewed as first milestone in lifetime analysis, complex systems and

maintenance models.

Osaki and Nakagawa (1976) obtained a brief review of stochastic models on
system reliability using stochastic processes such as Markov chains, Markov processes,
renewal processes and semi - Markov processes. Ashok Kumar and Manju Agarwal
(1980) reviewed different type of systems discussed in literature and various methods
employed by different researchers in the analysis. Sherif and Smith (1981) provided an
extensive bibliography of 524 references followed by Valdez-Flores and Feldman

(1989) with 129 references on reliability models.

The earlier works in the multi state coherent systems are available in Barlow
and Wu (1978). Joseph and Manoharan (1997) obtained the transient and steady state

probabilities of a repairable multi state system having different failure modes.
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Manoharan (1998) considered a multi state system that deteriorates over time and
obtained the optimum performance level at which replacement is to be made. Shey —
Huei (1999) proposed a generalized replacement model where a deteriorating system
has two types of failures and is replaced at the N type I failure (minor failure) or first

type II failure (Catastrophic failure) or at the working age T, whichever occurs first.

Shock models are described in Barlow and Proschan (1975). Perez — ocon and
Gamiz — Perez (1995) derive a condition for a correlated cumulative shock model
under which the system failure time is harmonically new better than used in
expectation (HNBUE). Gasemyr and Natwig (1995) considered a binary monotone
system whose component states are dependent such that shocks that destroy several
components at once. They showed how the minimal path and cut sets of the two
systems are related, and use it to examine the relation between the bounds on the
reliability based on the two systems. Abouammoh et.al. (1995) considered a device
subjected to shocks which arrive according to a counting process {N(t), t > 0} and the

probability that the device survives beyond t, and their ageing properties are studied for

H (#) when {N(t), t = 0} is a non-homogenous Poisson process.

Lee and Lee (1995) introduced a random shock model for a linearly
deteriorating system and obtained the characteristic function (c.f) of X(t), the state of
the system at the time t. Thangaraj and Stanley (1995) considered a system subject to

shocks occurring randomly in time according to a general pure birth process and

20




studied the rate of generation of information about the failure times of systems for

different processes.

Mitra and Basu (1996) considered the life distribution of a device subject to a
sequence of shocks occurring randomly in time according to a homogenous Poisson
process. Thangaraj and Sundararajan (1997) proposed some multivariate replacement
policies based on a number of shocks, cumulative damage caused due to shocks and
the working age of the system subject to shocks. Again Gasemyr and Natwig (1998)

presented a Bayesian approach based on autopsy data.

Shei — Huei and Griffith (1996) considered a system subject to shocks that
arrive according to a non-homogeneous Poisson process and describe two type of
failures. Shei — Huei (1997) proposed and analyzed a generalization of the block
replacement policy for a system subject to shocks and the average cost rate of
replacement of failed items is obtained using renewal reward theory. Shei — Huei
(1998) considered the same system and derived the expression for the expected long
run cost per unit time. Sing et. al. (1998) dealt with the effect of the shocks on the
different characteristics of a system having two main units and one protective unit and

obtained several characteristics of the system using a regenerative point technique.

Ebrahimi (1999) described a model in which each shock to the system causes a
random damage that grows in time and system fails if the total damage exceeds a

certain capacity or threshold. He obtained various properties of this model and derived
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sufficient conditions for the future rate order. Skoulakis (2000) studied a reliability
system subject to shocks generated by renewal process. He derived closed expressions
for the Laplace-Stieltjes transform and the expectation of the time to system failure for
a more general system, which has very important special cases, such as k-out-of-n: F

system.

Sreehari (2000) developed a model in which a system may fail if two shocks
occur with very little gap in between or the operating environment comprises of several
stresses/shocks whose accumulated damage effect on the failure rate. Touzi (2000)
studied the optimal insurance demand problem of an agent whose wealth is subject to
shocks produced by some marked point process and concluded that below the critical
value, agents prefer to be completely insured whereas above the upper critical value

they take no insurance.

Apart from these so many reliability models are developed under the premise
that the operating environment is static. Now new models have been developed when
the environment under which the items operate is dynamic. One of such type is a

software reliability model on which plenty of articles are available in standard journals.

1.4.1 Intermittently Used systems
Generally we can classify a system as priority system, system with imperfect
switchover, parallel system, system with preventive maintenance (PM) and

intermittently used systems. In all the systems except the last there is a basic
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assumption that the system is required continuously. But there are situations where the
systems are not required continuously. Such systems are known as intermittently used
systems. These systems are ‘needed’ or ‘not needed’ during alternative periods of time,

which are governed by a pair of random variables.

Gaver (1963) laid stress on the point event called a disappointment
characterized by the entry of the system to either the down state during a usage period
or the need arising for the system when it is already in the down state. Srinivasan
(1966) extended Gaver’s result and later Srivastava et. al. (1971) considered the
stochastic behavior of an intermittently working system with standb§ redundancy.
Nakagawa et. al. (1976) have considered the preventive maintenance policy and

obtained the mean time to first disappointment.

Srinivasan et. al. (1979) discussed intermittently used two dissimilar unit
system and obtained various reliability measures. Kapoor and Kapoor (1980) derived
the explicit expressions for joint distribution of first uptime and disappointment time of
an intermittently used two unit cold standby redundant system. Subramanian et. al.
(1981) have analyzed an intermittently used n-unit standby redundant system. Sharma
and Natarajan (1982) considered a general model where the random variable
describing the need and no-need periods are independent and identically distributed,

which are not necessarily exponential.
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In all the models considered so far it is usually assumed that the need is always
for only one unit and the need and no-need periods alternate. But there may be
situations that may warrant the use of one or more units for the satisfactory
performance of the system. In such situations the number of units needed at any time
may be described by a stochastic process called the “need process”. Sharafali et. al.

(1988) introduced this concept for a two unit system with stochastic demand.

1.4.2 Aspects of Ageing

The notion of aging is first discussed in Bryson and Siddique (1969). The concept of
ageing for life distributions has been found very useful in reliability theory. Based on
these notions, results may be derived concerning the behavior of systems, bounds for
survival functions, moment inequalities etc. It has been found useful for arriving at

efficient algorithms for use in maintenance policies.

Concerning the lifetime random variable T, the mean of T is denoted by p. For

F(t+x)

Fr)

function of a unit of age t. The remaining (residual) life, at age t, is E(T —~t/T > t),

each t with F(r) >0, F(x/t) = =Pr{T > ¢+ x/T >t} represents the survival

which may be shown to be IF (x/ t)dx. When F'(t) = f(t) exists, we can define the
0

failure rate as

N’

(t
(1

It follows that, if A(t) exists,

~

|

, for t such that F(t) > 0.

AMt) =

~ry

N
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~log F(x)= j A (1)dt , which represents the cumulative failure rate.
0

The following notions of positive (adverse effect) ageing are common in

reliability theory. We say F is said to be

(i) Increasing failure rate (IFR) if F (x/t) is decreasing in 0 <t < o for each t > 0.

/()

When the density exists, this is equivalent to A(t)= = being non-decreasing in t > 0.

Fle)
(i1) Increasing failure rate average (IFRA) if — 1 log F (x) is non-decreasing in X.
X

(1i1) Decreasing mean residual life (DMRL) if the mean remaining life function

_[ F(x/t)dx is non-increasing in x.

0

(iv) New better than used (NBU) if F (x/t) < F(x) fort>0, x 0.
(v) New better than used in expectation (NBUE) if I F (x/ t)dx Spfort>0.
0

(vi) Harmonically new better than used in expectation (HNBUE) if

=]

_[F(x)dx < pexp(——t) fort > 0.
m

f

(vii) L - distribution if [exp(~ st)F(r)ar > 1—“— for s > 0.
; ; +5

(viil) New better than used in failure rate NBUFR) if A(t) = A(0) for t > 0.
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(ix) New better than wused in average failure rate (NBAFR) if

A(0) < 1 Il(x)dx = M_
ts !
It is verified that among the positive ageing properties the following and only

the following implications hold.

IFR = IFRA = NBU = NBUFR = NBAFR

U U
DMRL = NBUE = HNBUE = L.

Note that we have a parallel discussion of the dual classes of life distributions,
which can be similarly defined based on negative (beneficial effect) ageing. There exist
a vast amount of literature examining the relevance of the above notions in reliability
theory and survival analysis. Closure of classes of distributions possessing the above
properties under formation of coherent structures, convolutions, mixtures etc. has been
investigated. The preservation of the classes under various shock models has been

extensively studied in the literature.

1.5 Some Analytical Tools for the Analysis

1.5.1 Renewal Process
Renewal theory was first introduced by Feller (1941). Later Smith (1954) demonstrated

its uses in the study of general theory of stochastic processes. Let {X,, n > 1} be a
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sequence of non-negative independent and identically distributed random variables
with a common distribution function (d. f.) F(.). Again let So =0, and S, = X + X, +
..+ Xu, n > 1. Then the process {N(t), t = 0}, where N(t) = Sup{n | S, <t} is called a

renewal process.

Define M(t) to be the expected value of N(t). Then M(t) is called the renewal
function. The derivative of M(t), if it exists, is denoted by m(t) and is called the
renewal density. The quantity m(t)dt represents the probability that a renewal occurs in

(t, t + dt), which is important in practical applications.

Let Fy(x) = P{S, < x} be the d.f. of S, Since X;’s are independent and
identically distributed, Fy(.) is the n — fold convolution of F with itself and for n = 0 we
interpret it to be unity. It is easy to see that N(t) >n < S, < t.

Thus the distribution of N(t) is given by

P{N(t) = n} = Fy(t) - Fae1(t) and

=gam.

The renewal density satisfies the integral equation

J'f(u du where f() (t)

A similar equation satisfied by the renewal function M(t) is given by
j + [F)M (- u)dF(u) .

The above equation is called the renewal equation.
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Now, suppose that X; has a distribution G(.) which is different from the
common distribution F(.) of the remaining X5, X, ..., then the process {Np(t), t = 0} is

called a delayed renewal process where Np(t) = Sup{n | S, < t}.

Theorem 1.1. (Elementary Renewal Theorem) Let p = E(X,) with convention,

1

— =0, wheny = .

H Then limﬂ(—t) L .
o0 l‘ “

Theorem 1.2. (Key Renewal Theorem) If H(t) is a non-negative function of t such

that

jH(z) di <, then lim [H(t—u)dM (u) = 1 [H(t)dr.
{ox b “ 0

0

1.5.2 Stochastic Point Process
The theory of point processes introduced by Von Mises (1936). Srinivasan (1974)
obtained a detailed treatment of stochastic point processes with special reference to its

applications in management problems.

Let {Ty}, n = 0, £1, £2, ...... be a discrete parameter stochastic process
associated with the probability space {€, A, P} where each T, is finite valued and

non-negative with probability one.
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If T, is specified as above and if

T, ; if n20
t: k=01
T,->.T, ; if n<0

k=n

then the sequence {t,} is called a stochastic point process.

1.5.3 Product Densities
One of the ways of characterizing a general stochastic point process is through the

product densities (Srinivasan (1974)).

Let us introduce the following notation.
N(t, x) = the number of events in (t, t + x] which is a random variable, dy N(t, x) = the

number of events in (t + X, t + x + dx] and Py(t, x) = P[N(t, x) = n].

A point process defined on the real line is said to be orderly regular if

i P,(t,A) = P[N(t,A) 2 2] = o(A). (1.5.1)

n=2
An interesting consequence of (1.5.1) is given by the relation

E[N(t,A)] . P[N(1,A)21]

Im ———~==]lim ———~2—— . (1.5.2)
A0 A A0 A
Note:-
e EINGA] | PINGA) =1
A0 A A0
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It can be shown that, E [N(t, A)] = Var [N(t, A)] for small A.

Now the densities of the factorial moment measures can be conveniently
defined by

E(H N(x,, A, )j

hi{x,x,,,x )= lim COX, EX, E e EX
o % ") 888,50 A A A o "
n

) P[N(x,,A)=21 ; i=12,---,n]
= lim

SOX, EX, E £ X,
81,8y 8,0 AA, A,

n

Since hp(.) is a product of density of expectation measures at different points, the

density is aptly called product density.

We can introduce the product densities corresponding to the counting process,
which is defined by

Balt, X1, X2, -, Xn)dxy, dxa, ..., dxe = E[d, N(t,x,) d, N(t,x,) .. d, Nt x,)].

Even though the functions hy(.) are called the densities it is important to note

that their integration will not give probabilities, but will yield the factorial moments.

1.5.4 Markov Renewal Process

Markov renewal process is a generalization of both Markov process and renewal
process and is a blend of the two. It creates tools that are more powerful than those
ei-ther could provide. A detailed study of Markov renewal process (MRP) has been

made by Cinlar (1975).
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Suppose a particle or a system move from one state to another state with
random sojourn times between the states. The successive states visited form a Markov
chain and a sojourn time has a distribution, which depends on the state being visited as
well as the next state to be entered. Such a process becomes a Markov process if the
distributions of sojourn time are all exponential, independent of next state. The process

becomes renewal process if there is only one state in the state space ‘S’.

Let (Q2, A, P) be a probability space, N be the set of non-negative integers and
R be the non-negative real numbers. On this probability space, the random variables
Xn: Q—>E and Typ: Q—R, are defined for eachn e Nsothat 0 =Ty < T, < ... where E
is a finite set. These elements are said to form a MRP (X,T) with state space E if
P[Xne1 =], Torr - To <t Xo, Xi, oy Xy To, Ty o, To] = P[Xnet =J, Taet - Ta <t | Xa]

VneN,jeE andt e R..
The semi Markov kernel Q has its (i, j)[h entry
QG, j, ) =P[Xn+1 =], Tos1 - Ta £ t| X =1]

so that

ZQ(i, J»t) is the distribution function of the sojourn time in i and P(i, j) = Q(i, j,)
J

is the transition matrix of the Markov chain {X,, n > 0}.

The Markov renewal function is
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© on
R(G,j,0)= Q" (i,j,t) where

n=0
O, j,0) =Y [ QG k,dw)Q" (k, j,t—w)du, for n20 and Q~ (i, j,0)=1(i, )=y "~
00 0ifi#j .

The functions
R(i, j, t) = E[the number of transitions into state j in (0, t) | Xo =1; i, j € E] are called
Markov renewal functions and {R(i, , t); 1, ] € E, t € Ry} is known as Markov renewal

kernel.

There are processes, which are non-Markovian and posses strong Markov
property at certain selected random times. Then, imbedded at such intervals, one finds

a MRP.

1.5.5 Regenerative process

Bellman and Harris (1948) first introduced regeneration points in the literature. Many
stochastic processes have the property of regenerating themselves at certain points in
time so that the behavior of the process after the regenerating epoch is a probabilistic
replica of the behavior starting at time zero and is independent of the behavior before
the regeneration epoch. That is, a stochastic process {X(t), t € T} with state space S
and time index set T is said to be regenerative if there exists a random epoch S; such
that (i) {X(t + S1), t € T} is independent of {X(t), 0 <t < S;}and (ii) {X(t + S;),t € T}
has the same distribution as {X(t), t € T}. It is assumed that the index set T is either

10, ) or T is equal to 0, 1, 2, .... When T = [0, «) we have a continuous time

regenerative process and in the other case a discrete time regenerative process.
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The existence of the regeneration epoch S; implies the existence of further
regeneration epochs S, S; ... having the same property as S; That is regenerative
process can be split into independent and identically distributed renewal cycles. A

cycle is defined as the time interval between two consecutive regeneration epochs.

In many practical situations a reward structure is imposed on the regenerative
process {X(t), t € T}. Let R, = the total reward earned in the n™ renewal cycle,n=1,
2, ... and assumed that R, Ry, ... are independent and identically distributed random
variables. Note that R, typically depends on L, = the length of the n™ renewal cycle ,
that is, Ly = Sy — Sp1 with Sg = 0. Define R(t) = the cumulative reward earned up to

time t, for any teT. Then the process {R(t), t > 0} is called a renewal reward process.

Theorem 1.3. (Renewal reward theorem)

RO _ER)
(meo f E(L)
i ER®) _ER)
oo f E(L)

with  probability 1

or

Theorem 1.4. For a continuous time regenerative process {X(t), t > 0},

liml IIB (u)du = _EEE%)) with  probability 1.

{—>0 t |

For a discrete time regenerative process {X(n),n=0, 1, ...}

ETy) with  probability 1

1 n
lim—) I,(k)=
n»wn; O 5w
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where [g is the indicator function and Ty is the amount of time the process spends in

the set B of states during one cycle.

Theorem 1.5. For the regenerative process {X(t),t € T}

limP{X(t) e B} = %—)
{ox E(Ll )
provided that the probability distribution of the cycle length has a continuous part in

the continuous case and is aperiodic in the discrete time case.

1.6 PH - Class of Distributions

The class of phase type (PH) distributions represents the natural family to which
Erlang’s “method of stages” extends. The PH-class contains commonly used
distributions like exponential, Erlangian, sum and mixture of exponential distributions.
This family has gained widespread acceptance in recent years because of its
computational properties in applied stochastic modeling. A non-negative random
variable (or its distribution) is said to be of phase type if it is the time until absorption
in a finite state, time-homogeneous Markov chain. This family was introduced by
Marcel F. Neuts (Neuts (1975)) as a tool for unifying a variety of stochastic models
and for constructing new models that yield to algorithmic anaiysis. These distributions
are important in their own respects and have found useful in various fields such as
queueing, reliability, survival analysis, branching process, telecommunications,

computer science etc.

34



There are two parallel discussions of PH- distributions. One corresponding to
distributions on the non-negative integers obtained from absorption times in discrete
parameter Markov chains, the other to distributions on the non-negative real line
obtained from absorption times in continuous parameter Markov chain. We briefly

present them here.

1.6.1 Discrete Phase Type Distribution (DPH)
We require the following properties of finite absorbing Markov chain. Consider a finite
Markov chain {Yn, n > 0} on the state space Q = {1, 2, ..., m, m + 1}. Let its transition

probability matrix be of the form
0
P T T
0 1

T=(T’j>lsr,_15m > TO:(TIO TZO T”('))T ’ O=(O 0 O)lxm
and Te+T°=e=(1 1 - 1).

where

Let 47 (1 <i<m) denote the probability of ultimate absorption into any state m+1

starting from given initial state i. Then we have the following elementary result.

Theorm 1.6. A4’ =1,1<i<m if, and only if, I - T)" exists.

We shall assume that (I — T)"' exists so that the states {1, 2, ..., m} are transient

and absorption into the state m + 1 starting from each one of them is certain.
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Also from the theory of Markov chains it is easy to prove the following result

on absorption times.

Theorem 1.7. If the initial state of the chain is chosen according to initial probability
vector (, Om+1) = (O, 02, ..., Om, Om+1), the probability p, of absorption at time n is
given by po = 0+ and p, = oT" - 0 ,n>1.

So we define

Definition 1.1. A probability density {px} on the set of non-negative integers is called
a DPH if it is the density of the time until absorption in a finite state Markov chain with

stationary transition probability matrix given by

T T°
P—l:o ]} (1.1)

and initial probability vector (o, om+1). Here T is an mxm sub-stochastic matrix such

that Te + T° = e and (I - T) is non-singular.

The DPH density is given by

Po™ Olm+1
pa=oT"' T fornx> 1.

The pair (o, T) is called the representation of DPH and m is called the order.

36




The probability generaﬁng function (pgf) of DPH density {px} can be obtained

as

PE)=3 p,2" =cpy + 2o -T)'T", 2|51,

n=0

which exists since (I — T) 'is non-singular.

Hence the mean and variance of DPH can be obtained as
P)=all-T)"e
P'(1)+P'()-[POF

’ 2
2a0(1~T)e—p, —(ul )

Also the j™ factorial moments can be obtained as

J i
n) = i(z)] = flaT(I-T)’e , j21.
dz/ ) |

Note that all raw moments of DPH density exists.

Examples of DPH:-
1.Geometric distribution p, = pq*, k=0 (0 <p<1, p+q=1) has a DPH (&, T) of
order 1 wherea=qand T =q.

2.Generalized negative binomial distribution (distribution of sum of geometric random

variables) has a DPH (a, T) of order m where o = (1, 0, ..., 0)1xm,

9 pn 0 -0 0

0 0
T=|. qf p:Z and T'=| . |whereqi+pi=1;i=1,2,..,m

60 0 - g, P
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1.6.2 Continuous Phase Type Distribution (CPH)
Consider a continuous time Markov chain {X(t),t >0} on {1, 2, ..., m+1}where m +1
is absorbing and others transient. Its infinitesimal generator Q by virtue of the

absorbing state, has the block partition as
T T°
Q =
0 0
where T is called the exist vector, giving the conditional intensities of absorption and

the mxm dimensional matrix T is called the phase type generator and it is always non-

singular. Further since each raw in Q sums to zero, Te + T°= 0.

The transition probability matrix P(t) =(Pj(t)) of the Markov chain X(t)

satisfies the matrix differential equation
P'(t)=P(t) 0 (1.6.2)

with initial condition P(0) = I. The matrix solution of (1.6.2) is

Qntn
1

n.

P(6) = exp (Q) =3

which has the corresponding Block partitioned form as

P(t) = [exp(Tt) e- exp(Tt)e} |

0 1

Let Y = inf{t > 0: X(t) = m + 1}, the absorption time and (o, o + 1) be the
initial probability vector. Then the probability F(t) that absorption occurs no later than

time t, ie, the distribution of Y is given by,
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F(t)=1 - aexp(Tt)e, t=0.

This yields the continuous version as

Definition 1.2. A distribution F on [0, «) is a CPH, if it is the distribution of time until

absorption in a finite state Markov chain with generator

T T°

0 0
and initial probability vector (o, oy + 1), T = (Tj;) is a non-singular matrix of order m
and satisfies T;; <0, 1 <1<0, T;; 2 0 for i # j . The distribution F is given by

F(x)=1-oaexp(Tx)e,x2>0.

And we say F has representation (o, T)p,.

Some basic analytical characteristics of CPH:-
(1) If 0 <om+1<1, then F(.) has a jump of height aim+1, at 0. On (0, ), it has a
density f(x) given by
f(x) = exp(TX)T® , x> 0.
(1) The survival function F(x)has the simple form,
F(x)= a exp(Tx)e.

(i)  The Laplace Stieltjes transform is

f'(s)= Texp(— sY)AF(») = tme1 + o(sI = T)"' T, Re(s) 2 0.

(iv)  The n" moment p,’ = _[y"dF(y) =-D"nlaT"e,n>1.
0
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1

In particular mean p, =-a7 'e.

Examples of CPH:-

1.The exponential distribution F(x) =1 -e™ |, x 20, A > 0 has CPH representation

(o, )mwitha=1,T=-Aandm=1.

2.The generalized Erlang distribution of order m (convolution of m exponential
distributions with parameters Aj, Ay, ..., Am) has CPH (a, T)m

where a = (1,0, ..., 0)1xm so that ot + 1 =0,

A A o - 0 0
0 =X, A, -

T= : :2 :2 : 7 and T°=
0 0 R A,

3. Hyper exponential distribution F(x)= iﬁ,(l —e™ )} B,,A, >0, ZBi =1 has

i=]

CPH (a, T)m where o = (B4, B2, ..., Bm), T = -diag (A1, A2, ..., Am) , Sothatom+; =0

and T = (A1, A2, ...y Am)

When applied to PH- distributions many standard constructions of probability
theory again yield PH- distributions, we say that the family of PH- distributions is
closed under these constructions. Closure properties of great generality are known, but
the practical useful ones are those for which a convenient representation for the

resulting distribution can be written down. Neuts (1981) discusses the results under
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finite convolution, mixtures, maximum, minimum and other useful operations arising

in stochastic models.
1.7 An Overview of the Main Contributions of the Thesis

In the literature we have many interesting stochastic models in queues, inventory and
reliability describing various c.omplex situations. In this thesis, we consider some
models in queueing theory, inventory theory and reliability theory, which describe real
life situations. It is important to have some knowledge of the structural aspects of
distributions frequently encountered in the theory of queues. We shall have the
investigation based on the properties such as unimodality and infinite divisibility,

which could provide us an insight about the behavior of distributions.

Keilson (1971) and Roster (1980) discuss the unimodality properties of
distributions occurring in some situations. Unimodality and infinite divisibility are two
of the most important concepts in distribution theory. Here we shall study these
properties with regard to the stationary population size distribution {p,; n > 0} of birth

and death processes.

In the classical queuing model the server stops service when there is no
customer in the queue and resumes service when a new customer joins the queue next
time. This model fails to describe many real life situations where there is a control limit

for shutting down and resuming of service. An appropriate model in such a situation
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may the one with (a, b) policy. The stationary distribution of the system and its

evaluation becomes important in such a study.

Neuts (1967), Cohen (1969) etc. considered Poisson arrival queues with single
as well as batch service. Recently Baburaj and Manoharan (1997a) and Baburaj (2000)
have considered a Markovian queueing system with single and batch services. This
model with single control limit ¢ on the batch size are found to be important in many
real life situations, but if the control limit ¢ is very large, the model suffers from the
risk of perpetual change over from batch service to single service. We have developed

a model by introducing a secondary limit a (< ¢).

Inventory systems of (S - 1, S) type had been studied quite extensively in the
past. Recently Schults (1990) established that (S - 1, S) policy is optimal when the
renewal function of demand sizes is concave. Further he has shown that if the ratio of
the re-order cost to the expected time between demands is smaller than a specified
function of the lead time demand distribution and the holding and penalty costs, then it
is optimal to order after each demand. So we have developed an (S - 1, S) policy in
which the demand time and production time both follows PH — distributions F(.) and
G(.) respectively and obtained the stationary distribution of the inventory level. The
reason why the PH distributions are chosen in this work is that many researchers have
been investigating these distributions and developing procedures to fit these
distributions to given data sets (See for example Bobbio and Telek (1994) and

Asmussen et al (1996)).
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Gaver (1963) first discussed intermittently used system and introduced
“disappointment time”. In most of the intermittently used systems one or more units
may be required for the satisfactory performance of the system. In such situations the
number of units needed at any time may be described by a stochastic process called the
need process. Sharafali (1988) considered a two-unit system with stochastic demand
and obtained various reliability measures. We consider a more general system with n-

units and obtain analogous results.

The question of preservation of various ageing properties under shock models

attracted many researchers in the past. Lately Klefsjo (1981) proved that

H(t)= P{N(t) = k} P, is HNBUE if P, has the discrete HNBUE property and

k=0
Abouammoh et al (1988) have proved the NBUFR and NBAFR preservation results.
We prove the corresponding theorems for the increasing likelihood ratio (ILR) class of
life distributions under a generalized Poisson shock model. We aléo get analogous

results for the dual class - decreasing likelihood ratio (DLR) class.

This thesis consists of seven chapters including this introductory chapter. We
have reviewed some developments in queue, inventory and reliability after giving a
brief introduction on stochastic models in the first four sections of this chapter. In
section 5, we give a brief description about the main basic tools used in the thesis. In
section 6 we obtain a brief account on PH — distribution. In this last section we present

an overview of the thesis.
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Our work starts with some structural aspects of distributions frequently
encountered in the theory of queues. In chapter 2, we study the properties unimodality
and infinite divisibility with regard to the stationary population size distribution of
birth and death processes and aim at some characterization results on certain queueing
models. After giving a brief review of the preliminary concepts and results, we obtain a
criterion for strong unimodality of the stationary population size distribution of a birth

— death process.

In light of this criterion we have, when the population size distribution {p,}

A

n

)
/un+l

exists, then it is log convex, if and only if {a,} is non-decreasing where a, =

n > 0. Using this criterion we have examined the strong unimodality of M/M/ew queues,
M/M/s; 1 < s < o0 queueing system and linear growth model with immigration. Further

we have proved that the stationary queue length distribution in M/M/s queueing system

is infinitely divisible if and only if either s =1 or s = 0.

In chapter 3; we consider a finite system capacity M/G/1/K queue with
removable server. Here the server being removed depending on the demand level.
Recently Baburaj and Manoharan (1997) considered a controllable queueing system
having two servers with bulk service rate and with all underlying distributions as

exponential. Here we consider single server queueing system with a finite capacity K
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and the service times are independent and identically distributed random variables with

distribution function G(.) with finite mean p.

The server employs an (a, b) — policy for the closing down and the starting up
of the station. That is we assume that customers arrive according to a Poisson process
and there is only one server in the system. The server depending on the queue length

serves the customers. Specifically, if the number of customers in the waiting line is
greater than or equal to ' b ', the server serves the customers according to first come
first served (FCFS) basis. When the number of customers in the waiting line reaches

a ', then the server stops the service and the station is closed down. It is resumed only

when a queue of ' b ' customers have accumulated where 0 <a<b <K.

For M/G/1/K model Cohen (1969) established the relationship

P,

n o= ,
1= py

/

0<j<K-l.

Using the regenerative process, we derive the same equation for M/G/1/K (a, b) —

policy (a general form of M/G/1/K model).

Expected busy period of this model obtained in terms of the expected busy
period of standard M/G/1/K model. An expression for the expected busy period of
standard M/G/1/K model is derived and a particular case when service time follows

exponential is also worked out. We also investigate stationary probabilities in terms of

45



expected busy period and then to find out the steady state probabilities by the relation

n, = P, . The method has been illustrated through numerical examples.

’ _I_PK

In chapter 4, another queueing model with single and batch service is
considered. Baburaj and Manoharan (1997a) and Baburaj (2000) have considered a
Markovian queueing system with single and batch services and with a single control
limit ¢ on the batch service. But in many real life situations, when the control limit ' ¢
1s very large the model suffers from the risk of perpetual change over from batch
service to single service. This problem may be overcome by the introduction of a
secondary limit ' a ' (< c¢), so that when a batch service has been on, the server may
continue the batch service even with a size less than ' ¢ ' but up to the limit a + 1 and

when the number of customers drops below a + 1 single service commences.

We analyze the model in detail and obtain the expression for steady state and
transient state distributions. Expected queue length and expected busy period are
considered. The distribution of busy period is also attempted. We consider a numerical

example illustrating the results.

In chapter 5, we are considering an inventory model, which is of (S — 1, S) type.
In this model there is a production facility and a finished product warehouse for a
single commodity. For this model, the demand time as well as production time follows
independent PH - distributions. We analyze this general model and investigate the

stationary distribution of the inventory level.
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In chapter 6, we consider an intermittently used complex n-unit system with
stochastic demand. For this model, we obtain the expressions for the stationary
distribution, time to the first disappointment and mean number of disappointments. The

first order product density and sojourn time are also discussed.

In the last chapter, we study a generalized Poisson shock model and prove some
results for the ILR class of life distributions. We consider a device subjected to shocks

occurring randomly over time according to a counting process N = {N(t): t = 0}. Let

H 0= ZP{N () =k} 1;,( be the survival function then we prove the preservation of
k=0

ILR (DLR) properties when N is (i) homogeneous, (ii) non-homogeneous and (iii)

mixed Poisson processes.

The computations mentioned in the study are performed using computer
programs developed in FORTRAN and using the utility MATHCAD.
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CHAPTER 2

STRUCTURAL ASPECTS OF STATIONARY
POPULATION SIZE DISTRIBUTIONS OF THE

BIRTH AND DEATH QUEUES

2.1 Introduction

It i1s important to have some knowledge of the structural aspects of distributions
frequently encountered in the theory of queues. The properties such as unimodality and
infinite divisibility could provide us an insight about the behavior of distributions. We
shall have the investigation based on these properties. Several of the distributions in the
standard queuing models, such as those of queue length, waiting times and inter
departure times are of well known form like Poisson, exponential, geometric or
mixtures of these. Structural aspects of these distributions are already well established

in the existing literature. However there also exist cases in which one does not know
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much about these distributions and may have very few sketch papers to learn about

them.

Keilson (1971) and Roster (1980) discuss the unimodality properties of
distributions occurring in some situations. Keilson establishes certain results connected
with log-concavity and log-convexity and hence unimodality of passage time densities
of diffusion and birth death processes whereas Roster asserts that the first passage time
densities in state free Markov processes are unimodal. Here we shall study these
properties relative to the stationary population size distribution {pn; n > 0} of the birth
and death processes. The concept of unimodality and related topics are often the
underlying assumptions in estimation theory and decision theory and are employed in
many smoothing operations via convolutions, mixing and other suitable
transformations. Further, they are of substantial importance in optimization theory and

mathematical programming.

Many of the well-known distributions belong to either or both of the classes of
unimodal and infinitely divisible distributions. Unimodality and infinite divisibility are
two of the most important concepts in distribution theory. These properties as well as
related topics like strong unimodality, log convexity, self-decomposability, stability
etc. are of potential importance in both theoretical and practical problems in statistics
and allied fields. Indeed, these properties determine certain structural aspects of

probability distributions.
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In this chapfer we study these properties with regard to the stationary population
size distribution of birth and death processes and aim at some characterization results
on certain queuing models. Section 2.2 gives a brief view of the preliminary concepts
and results. In section 2.3 we consider a birth and death process and obtain conditions
for strong unimodality o.f its stationary population size distribution. Some special cases
are also investigated here. In the last section we characterize the M/M/s, 1 < s <
Queuing system via infinite divisibility properties of their stationary queue length

distribution.

2.2 Preliminaries

(a) Unimodality of distributions:- The notion of unimodality exists for both lattice as
well as non-lattice distributions each one having its own interpretation. However, one
can always construct a sequence of unimodal lattice distributions whose weak limit is a
given unimodal non-lattice distribution. In view of this fact, so much effort has been
devoted to the class of unimodal lattice distributions during the past few decades. It
should be noted here that the converse approach does not usually work and several of
the properties of the unimodal non-lattice distribution are not preserved by the

unimodal lattice distributions. We shall mention the following:

Definition 2.1. A d.f. F(x) is called unimodal if there exists at least one value x = xq
such that F(x) is convex on (-0 , X¢) and concave on (Xg , «). The point x¢ is called

vertex of F or alternatively F is said to have a mode at (about) x = xy. If the terms
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' convex ' and ' concave ' in definition 2.2.1 are replaced by ' strictly convex ' and

" strictly concave ' then F is said to be strictly unimodal about xo.

The following are known in the literature on unimodality.

Result 2.1. (Khinchin's characterization) A function ¢ on the real line, is the c.f. of a

unimodal d.f. with mode at x, if, and only if,

ixgt ! !
jw(u)du:e”"’jw(ut)du ; ~0<t<oo

0 0

o(r) =~

t

where y is some c.f.

It means that a random variable (r.v.) X is unimodal about x, if and only if it can be

d
expressed as X =YU + x, where Y is some random variable and U is a U(0,1) random

d
variable independent of Y ( — implies equality in distribution ).

Result 2.2, (Olstein and Savage characterization) A random variable X is unimodal
about some point Xy, if, and only if, the function tE{g(t(X-xc))] is non-decreasing in t,

for t > 0, for every bounded non-negative real Borel measurable function g.

Result 2.3. If a sequence of unimodal d.f.'s converge weakly to a d.f., then the latter is

also unimodal.
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Result 2.4. Convolution of two unimodal distribution is not necessarily again

unimodal.

Examples:- Most of the common distributions like uniform, normal, gamma (and
hence exponential), chi-square, beta, cauchy, F and student's t-distribution are

unimodal.

Remark 2.1. According to the definition (2.2.1), the only unimodal discrete
distributions are the degenerate ones. This necessitates the following definition to deal

with the corresponding structural aspects of lattice distributions.

Definition 2.2. A discrete distribution {px} with support on the lattice of integers is
said to be unimodal if there exists at least one integer ng such that
Pn2pPn-1 VNn<ng
and pp+1<pn Vn2ng
The point n = ny is called a vertex of {p,} or {pn} is said to be unimodal with mode at

(about) n = ny.

We state below some important results concerning lattice unimodality.

Result 2.5. A lattice distribution {p,}~_ is unimodal about ny, if, and only if,
gn = (ng — n + a)(pn - pn-1) With a € (0,1) arbitrary, is some lattice distribution

with ¢, ., > 0.
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Result 2.6. A lattice distribution{p,}7 is unimodal about some point no (= 0), if, and

only if, its probability generating function P(.) has the form

n(,+k 1

P(z)= J‘M"Hdu ; O<z<1
_Z ; 0

where o € (0,1) is arbitrary, Q(u) is the probability generating function of a lattice

distribution {g, }; for which ¢, .,> 0.

Result 2.7. If {p,}; is a lattice distribution and for some a € (0,1),

pn Pn - 1+(1-Ot)pn+| s n=1,2,...

then {p,}; isunimodal.

Result 2.8. If {p,}; with pp > 0 is a lattice distribution and for some a2 > 0, § > 0

a B
[p”“j <P | n=1,2, ..
pn pn+l

then it is unimodal.

Result 2.9. The weak limit of a sequence of unimodal lattice distribution is again

unimodal.

Examples of lattice unimodal distributions:- Discrete uniform, Poisson, binomial,

negative binomial (and hence geometric) distributions are all unimodal.
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Remark 2.2. Many lattice analogues of non-lattice unimodality results are valid.
However, there are some exceptions. For example, the analogues of Result 2.2.1 &

Result 2.2.2 are not valid except for trivial cases.

Strongly Unimodal distributions:- The fact that the convolution of two unimodal
distributions is not necessarily unimodal brought forth the notion of strong unimodality

which is given below.

Definition 2.3. A distribution is called strongly unimodal if its convolution with every

unimodal distribution is unimodal.

Since a degenerate distribution at the origin is trivially unimodal, it follows that

any strongly unimodal distribution is unimodal.

We have the results of Ibragimov(1956).

Result 2.10. The class of strongly unimodal distributions is closed under convolutions

and is also closed relative to weak convergence.
Result 2.11. A (non-degenerate) unimodal d.f. F is strongly unimodal if and only if, F

is absolutely continuous and there exists a version of the probability density function of

F which is log-concave.

54



Remark 2.3. In view of Result 2.2.11, it is evident that the class of strongly unimodal
distributions are precisely that of Polya frequency densities of order 2.(PF»).

Also we have

Result 2.12. A lattice distribution {p,., n = 0,1, £2, ......... } is strongly unimodal if
and only if it is log-concave.

That is,pnzzpn-l Pn+1 VN

Note:- Strongly unimodal lattice distributions have all moments and they are uniquely

determined by their moments.

Further extensions of unimodality concepts are a-unimodality, total unimodality

and also of multivariate random variables and they are omitted in this context.

(b) Infinitely divisible distributions:- A random variable X is said to be

d
decomposable if it can be written as X —X, +X, where X; and X, are two

independent non-degenerate random variables.

If for every a € (0,1) there exists a random variable X, independent of X such
that X = aX + X, then the random variable X (or its distribution) is said to be self-

decomposable (s.d.).

In terms of c.f.it may be written as:
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Definition 2.4. A ¢.f. ¢(t) on the real line is s.d.. 1L and only 1l for ¢ € (0. 1),
O = dlat) ¢ (1) . - <t<om,
Note that for o > 1. the above relation forces ¢ and ¢, to degenerate

characteristic functions.
Stable distributions are special cases of s.d. distributions. They are defined as:

Definition 2.5. A ¢.f. ¢(1) on the real line 1s said to be stable if for every positive by and
b, there exists some positive b such that, for every -co <t < o,

d(b1)h(bat) = d(bt) ¢M with (L real.
When ¢ satisfies the above equation with p = 0 then it is called strictly stable.

The class of s.d. distribution is a subset of the class of infinitely divisible distributions.
This class s defined as:

Definition 2.6 A c.f. ¢(0) on the real line is infinitely divisible if for everv n € N (the
sctof positive integers). there exist a ¢.f. ¢, (t) such that

(L) = (Dol te R.
Ihe properties of this class of distributions can be found in Lukacs (1970). For the
special case. when the random variable X takes only non-negative integer values, the

reader 1s relerred o Van Harn (1978).



2.3 Characterization of Birth-Death Model Via Unimodality

Consider a birth and death process with the birth rate {A,} n > 0 and death rate
{ma} n 2 1. It is well known that the stationary population size distribution of the

process {pn} is given by

A

n-1

po=——p,, , nzlL (2.3.1)

n

Also it is clear that {p,} exists as a distribution, if, and only if,

PILIPTS (2.3.2)

A
Denoting a, = ——,n >0, from (2.3.1) we have,

n+1
n-1
P, =[Ha1]p0 ; n21. (2.3.3)
We now have the following theorem.

Theorem 2.1. The stationary population size distribution {p,; n > 0} of a birth-death
process exists and is strongly unimodal with a mode at ny = min{n: a, < 1} if and only

if, the sequence {an}; n > 0 is non-increasing and a; < 1 for at least one integer i.

Proof:-

Suppose that {a,}n > 0 is non-increasing and a; < 1 for some i, then,
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n=0 po n=l j=0
i n-l 0 n-1
=1+ a+ >y, a,
n=1 j=0 n=i+l j=0

n=| n=i+1
!
—1+1_a° +a,
0
1-a, 1-aq,

We have py=an-| pn-1and pn+1 = a, P

p,, an—l pn-l

pn+1 an pn

. 2 an—l
Thatis, p, =——.p,_P,.,-
a

n

So we have pn2 > Pn-1Pn+ 1< {an}; n > 0 is non-increasing.

Now, since for non-increasing {a,}, |

No =min {n: a,<1} ifand only if p, =a5.| pn.1 2 pn-1 forn <ng
and Pn+1 =apPn <Pn for n >n,.

We have ny is the vertex of {ps}; n > 0.

The existence of some integer i > o for the only if part such that a; < 1 is evident

from (2.3.3) and the existence of {p,}. O
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Remark 2.4. When {p,} in the above theorem exists then it is a log-convex, if, and
only if, {a,} is non-decreasing. In this case, a, <1 V n =0, 1, .... However, in this

situation {p,} may not be a distribution.

In the light of theorem (2.1), we examine strong unimodality of the population

size distribution in equilibrium of different birth-death processes.

2.3.1 The Immigration-Death Processes (M/M/c queues)

For this process we have A, =X and p, =np, 0 <A, u<o,n=0,1,2, ....

Here a, =

Therefore {a,} is decreasing. Further, it is obvious that there always exist an integer i

such that a; < 1. Hence the stationary population size distribution (the queue length

distribution) {p,} exists and it is strongly unimodal with mode at ny = i In fact, we
7]

have {p,} is Poisson distribution with parameter —, which is known to be a strongly

unimodal lattice distribution.

2.3.2 The M/M/s, 1 <s < Queuing System

In thiscase A,=A,n>0

ny, n<s )
M, = , WwithO<A,pu<oo.
S, nzs
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n<s
Thus a, = (n+Du
_?»_ ;o n2s
SH

In view of theorem (3.1), it is clear that {p,} exists and is strongly unimodal, if,

. A
and only if, i < 1. The vertex will be at ng = —.
Sy H

Explicitly we have,

n!
S’l".\s! #

where py is determined by the condition Z p, =1.

n=0

p,=

2.3.3 The Linear Growth Model with Immigration
Here we have A, = A9 + n) and p, = np, n > 0, where 0 < A, Aq, L < o0,

Ay +nl

; n 2 0, which is non-increasing, if, and only if,
(n+1)u

Clearly, in this process a, =

Ao = A.

In this case, if Ao > 1 we have a, > 1 for some n > 0.

A —H
H—A

Since p <Ap = aij <1 foreveryi>

and p> %9 = aj <1 foreveryi=0, 1, 2,..., we have in view of theorem (2.3.1), that

{pn} exists and is strongly unimodal, if, and only if, A <A and A < pu.
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Ay = .
Clearly, then the vertex ng will be at zero if p > Ao and at { 0 :} if p <.
ﬂ —

2.4 A Characterization Result via Infinite Divisibility

Infinite divisibility properties of different stochastic processes have been studied by
several researchers in the past. This property has been employed as a tool for
characterizing certain queuing systems as seen in connection with the departure
processes in the works of Daley (1972), Shanbhag (1973), Natvig (1975) etc. We aim
at characterizing the M/M/s, 1 < s < o« queuing system via infinite divisibility
properties of their stationary queue length distribution {p,}. We know that in this
model the distribution in question is geometric when s = 1 and Poisson when s = oo,
which are both infinitely divisible. The infinite divisibility properties of {p,} for

1 < s <o has not been considered earlier. We have the following result.

Theorem 2.2. The stationary queue length distribution in an M/M/s queuing system is
infinitely divisible if, and only if, either s = 1 or s = o0 in which case the distribution is

self decomposable (it is stable only when s = o).

Proof:-

Recall that {p,} is given by
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2.4.1)

{pn} exists if i< 1.

Let P(.) denote the probability generating function of {p,}. Following Van Harn (1978)

we know that P is infinitely divisible if, and only if, it has the form

P(z) = c.e¥? where ¢ is the norming constant and Q(z) = Z q,z" ,qn20Vn21l.

n=1

Here ¢ = pg and thus
2
P(z)=po[1+qu+(z—g‘,)—+ ........ [1+22q+ +] 2.4.2)
On comparing the coefficients on both sides we have,

A
qgi=— and @ =q3=........ =qs=0.
]

Then we can write,

qx+l
p.\'+l :po[(Tl;_l)—i+qs+l}

)\'/ s+1
= pOl:L_u—)__+qs+|:|'

(s +1)!

Comparing this with (2.4.1) we get,

_ (A‘/“).\'+]
ot = s(s+1)1

Hence (2.4.2) implies,
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s+2
1

(s +2)!

ps+2'>‘p0[ +q1qs+lj|

'=po{(7‘/“)“2(2”2)}

s(s +2)!

In view of ps+2 given by (2.4.1), this means

1 2s+])

— 2 , which is impossible when s > 2.
so.st s(s+2)!

Therefore {p,} cannot be infinitely divisible when s > 2.

Note that for s = 2, when we compute q,'s it turns out that
15 (2Y

9 =—il—53(—J (Negative!) which contradicts our assumptions. Therefore {p.}
H

cannot be infinitely divisible (and hence self decomposable or stable) for any 1< s < 0.

O
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CHAPTER 3

M/G/1/K QUEUE WITH REMOVABLE SERVER

3.1  Introduction

In the classical queuing model the server stops service when there is no customer in the
queue and resumes service when a new customer joins the queue next time. This model
fails to describe many real life situations where there is a control limit for shutting
down and resuming of service. For instance, the manufacturing of certain products like
motor cars and other vehicles the demand of the customers are processed with a control
limit policy on service. The firm may stop production of the product when the demand
is less than a pre-assigned level and restart the production as soon as the demand
reaches a specific level. This may be treated as a model with removable server — the

server being removed depending on the demand level. Queuing systems with
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removable servers were considered by Yadin and Naor (1963) , Bell (1975), Rhee and

Sivazlian (1990) and other researchers.

Recently Wang, Kuo-Hsiung and Huang, Hui-Mei (1995) studied the optimal
operation of an M/Ex/1 queueing system with a removable service station under steady
state conditions and derived analytic closed form solutions of the controllable M/Ex/1
queueing system. Feinberg and Kim, Dong (1996) studied bicriterion optimization of
an M/G/1 queue with a server that can be switched on and off. Here one criterion is an
average number of customers in the system and another criterion is an average
operating cost per unit time where operating cost consists of switching and running
costs. Baburaj and Manoharan (1997) considered a controllable queuing system
having two servers with bulk service rule and studied the general characteristics of the
system in transient as well as the steady state, the busy period of the two servers and

also waiting time in the queue.

Here we consider a single service queuing system with a finite capacity K.
Customers arrive at the system according to a Poisson process with parameter A and
enters the system if the total number of the customers present in the system is less than
or equal to K-1. Otherwise they leave the system without receiving service. Customers
are served according to FCFS basis. The successive service times are independent and
identically distributed random variables with distribution function G(.) with finite

mean L .
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The server employs an (a,b) — policy for the closing down and the starting up of
the station. That is we assume that customers arrive according to a Poisson process and
there is only one server in the system. The customers are served by the server
depending on the queue length. Specifically, if the number of customers in the waiting
line is greater than or equal to ' b ', the server serves the customers according to FCFS
basis. When the number of customers in the waiting line reaches ' a ', then the server
stops the service and the station is closed down. It is resumed only when a queue of

" b’ customers have accumulated where 0 <a<b<K.

In section 3.2, the model is analyzed and the relationship between the limiting
distribution of process at arbitrary time epoch and the limiting distribution of the
process at the departure epoch is established. An expression for busy period is obtained
in section 3.3. In section 3.4, the stationary probabilities are obtained in terms of
expected busy period. This provides a simple method for calculating these limiting

probabilities. Some numerical examples are given in section 3.5.

3.2 Analysis of the Model

Let X(t) = the number of customers in the system at an arbitrary time instant t > 0.
Clearly {X(t), t = 0} is not a Markov Process. Let tj, t5, ..., t,, ... be the service

completion of the successive customers. Define X, = X(t,+), n = 1. That is, the number

of customers in the system immediately after the departure of the n™ served customer.
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Assume Xo = a (That is, a server terminates at t = 0 leaving ' a ' customers in the
system.).

Let pj(t) = Pr[X(t) =j};2a<j<K and mj(n)=Pr[X,=jl;a<j<K-1.

We are interested in the following probability distributions:

p; =limp, (1) and n, = limn,(n).

n—o0

For standard M/G/1/K model (treated as (0,1) - policy), it is easy to
calculate the above distributions and to observe that the two distributions are related by

(Refer Cohen (1969))

__Pi
l—pk,

n 0<j<K-1 (3.2.1)

j

This may be obtained by successively calculating the two distributions and comparing

them. It is of interest to know the relation for the general model considered here.

3.2.1 Relation between {p;} and {m;}
{X(1), t 2 0} is a regenerative process for which the regeneration cycles are the busy
cycles T|,Ta, ..., Tn, ... where T; = the duration between the i shutting down and

(i+1)" shutting down, i > 1. Let T be a random variable distributed as T,j=>1.

It can be proved that by the theory of regenerative process (ref. Stidham

(1972))

= ETUD e,k (3.22)
E(T)
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where T(j) = The amount of time (in a busy cycle) during which the number of

customers in the system is equal to j.

Also {X,, n > 0} is a discrete time regenerative process for which the 1*
regenerative cycle consists of the epochs (0, 1, 2, ..., N; - 1) the second cycle consists
of the epochs (Nj, Ny + 1, ..., Ny + Ny - 1) etc. where N; (i 2 1) is the number of
customers served during the i™ busy period. Let N be a random variable distributed as
N, i = 1. Since the distribution of N is non-periodic, it follows from the theory of

regenerative process that,

:00)

, Jj=a,a+],...,K-1 323
J E(N) J ( )

where N(j) = number of served customers in a busy period, leaving j customers in the

system.

Now,

E(N(j)) = Expected up crossings of the process {X(t), t >0} to state j + 1 during [0,T}]
= A E(T()). 3.2.4)

Note that,
E(N)= Y E(NG)

= Y AE(T())
= L [E(T) - E(T(K)].

Using (3.2.2),

_ET(K) _
Pe =gy = BT = ET).py
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E(N) = AME(T) - E(T).px)]
= M1 - pE(T)]. (3.2.5)
From (3.2.3),

B < EVG)

J

P,
1-p, ’

There fore, 7, = j=a,at+l,a+2,...,K-1.

3.3 Expected Busy period

For the well-known M/G/1 queuing system with infinite waiting room Takacs (1967)
and Cohen (1969) obtained the distribution of the maximum number of customers
present simultaneously during a busy period. Cohen (1971) obtained an expression for
the distribution of the busy period for the M/G/1 system with finite system capacity, ie,

the busy period in the M/G/1/K system with the standard (0,1) - policy.

A random variable X in the standard model will be denoted in the (a, b) - policy

with finite capacity K as X f , and this notation will be followed in the sequel.

Let B f , be the random variable denoting the busy period in the M/G/1/K model

with server operating under (a, b) — policy. Put af, = E(BY,) and oy =ag,. It is
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evident that, the random variables B., and B,,°, have the same distribution. Also one

a
-a

can view B{,“ as the sum of independent random variables as given below.

b-a~1

K-a _ K-a-i
BO,b—a - zBO,l ‘

i=0

K~-a
koo
Hence o, = Y o
n=K-b+1

n

Let p(j; n, 1) = Prob. {j customers enter the M/G/1/n system during a service

beginning with one customer in the system}.
Then,

o = E(S) and

n-1 Jj=1
a, =ES)+Y p(in)da,, , n>1
J=1 i=0

n-2

= ES)+ Y. a, (1-x,-x —..—x;), n>1
i=0

© A i
where x, = I #‘i dS(t) , 120 and S(t) = cumulative distribution function of
PO |

service time.

This may be written as follows.

o = E(S) and

nz2.

n—i

n-2
X0, = E(S)+ > (1-x, —...— x,)ot
i=]

70



[ x, 0 0 o 0 oy, ] TEWS)T

=¥ X 0 e 0 oy E(S)

This may be re-writtenas | -, - ¥ X, o 0] a, |=|E®)

| = Vk-a-2 T Vk-a-3 TVk-a-a 0 X0 |[Okea | LE(S)
whereyi=1-xp-%x;-...-x%x; for i=1,2,...,K-a-2.

Solving this linear system we get, an; n=2,3, ..., K - a.

3.4 Calculation of Stationary Probabilities.

The stationary probabilities 7; ‘s can be computed as follows:

E(NE (j
We have n; = ——( ”’bK(J)),
E(Na,b)
K-a
afb = zan
n=K-~-b+1

and E(N,).E(S) = af, .

We shall first of all find an expression for E(N:b (D;j=a,a+1,..,K-1.
Clearlly E(NX,(j) = E(NE;?,(j - a)). B4.1)

For convenience we shall put N(f;fa (j—a)= Nb'.(' ().

Let n¥()=EWSG):i=01,..,K-1. (3.4.2)

Obviously 7% (0) =1. Also o = E(S)
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LK (0).ES) =a.
We shall prove that
Ny GDES) =0, ;0<i<b.

Forj' =1,2,..., K - 1, we have,

i min(j,b'~1) ' .
nyGN= 2 G- (3.4.3)
i=0
. ' . K-l ' . :
and nf ()= p(5 K, D+ Y. p(; K, Dmf () - (3.4.4)
I=1

Using (3.4.3) and (3.4.4) we get

j-2

5 ()= =% == x40 DIA=-8 )+ 3 (=% —emx, (G =1)

for1<j<K'-1 (3.4.5)
where §j | is Kronckers Delta

= (1).E(S) = =%

E(S).

0

Now using (3.3.1), the above implies

nWES) =a, -a,. (3.4.6)

Also from (3.3.1) we have the recursion relation for oy, =0, forj>2,

xo(ocj.+l - ocj.) =(1-x, —...—xj._l)oc2 +j22(1—xO =X )0 )-

j 1+1 f—i

(3.4.7)

Since o) = E(S), using (3.4.5) and (3.4.6) it follows that
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K'-j-1

o, =1+m; -
So we conclude that for b = 1,
niUE®=a, 5 0<j<b.

Consider the case b > 1.

min(j, b -1)

Wehave nf (/)= > nf'(j -1,

i=0

For1<j<b,
ny GES) =Y G -D.E(S)

j-1

=a, +Z(aj'—i+l —aj'-i)
i=0

=Qq .

j+1

Forb<j<K -1,
< b-1 S
Ny G)-ES) =0 '(j - 1).E(S)
i=0

b'-1
zz(a/- i+1 —aj'—i)
i=0

=0 . -

J+l J-br”
Hence we get,
o o ; 0<j <b
K . +1
(JES) =4 < <K
ny (F)-E(S) {a/.+l—a,._b-+,;b <j <K -1-

This gives

; asj<b

E(VE, ().ECS) = { e

Jma+l j—b+|;
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(3.4.8)

(3.4.9)



That is, expected number of served customers in a Busy period leaving ' j ' customers

in the system for M/G/1/K under (a,b) - policy is equal to the expected increment of the

served customers in a busy period for the model with (0,1) - policy, when the capacity

is increased frommax (0,j-b+1)toj-a+1

Hence we get,

Using equation (3.2.5) we have,

E(Ng3) =M= pay (K)ET,3)-

Now, E(TX) = -b%‘l +ak,

K-a
and E(N;,)ES) =as,= D a,.

n=K-b+1
So from equation (3.4.11) we get,

E(NX)
1__ K K = a,b
pa,b ( ) ;\‘ E(Ta‘Kb)

A Zoc,

I=K-b+1

E(S){(b —a)+ A 'fa,]

1=K~b+1
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Note:- The steady state probabilities can be computed in terms of the moments of busy -

period as described above.

Remark 3.1 Similar argument can be used to arrive at the result for the infinite

capacity case by assuming that p < 1.

3.5 NUMERICAL EXAMPLE

Let S follows an exponential distribution with parameter p.

Then we have

xn=—kin—+]— ; n=0,1,2, ...
(A +p)
and
1 — n
an=~.1 P ; n=1,2,... where p=&-
uol-p

Following the method suggested in the last section we compute the stationary
probability distributions {r;} and {p;}. When S follows an exponential distribution
with parameter p, then the stationary probabilities {nj} and {p;} for different values of

A and p (For the same a, b and K) are given as follows:
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DA=05,1=08,a=5,b=10and K=25.

J ; Pi
1 0 0
2 0 0
3 0 0
4 0 0
5 0.07502 | 0.02308
6 0.12191 | 0.03751
7 0.15121 { 0.04652
8 0.16953 | 0.05216
9 0.18098 | 0.05568
10 0.11311 | 0.03480
11 0.07069 | 0.02175
12 0.04418 | 0.01359
13 0.02761 | 0.00850
14 0.01726 | 0.00531
15 0.01079 | 0.00332
16 0.00674 | 0.00207
17 0.00421 | 0.00130
18 0.00263 | 0.00081
19 0.00165 | 0.00051
20 0.00103 | 0.00032
21 0.00064 | 0.00020
22 0.00040 | 0.00012
23 0.00025 | 0.00008
24 0.00016 | 0.00005
25 - 0.69232

Table 3.1
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2D)A=08,p=12,a=5b=10and K=25

J T Pj

1 0 0

2 0 0

3 0 0

4 0 0

5 0.06672 | 0.04574
6 0.11120 | 0.07623
7 0.14085 | 0.09656
8 0.16062 | 0.11012
9 0.1738 [ 0.11915
10 0.11587 | 0.07943
11 0.07724 | 0.05296
12 0.05150 | 0.03530
13 0.03433 | 0.02354
14 0.02289 | 0.01569
15 0.01526 | 0.01046
16 0.01017 | 0.00697
17 0.00678 | 0.00465
18 0.00452 { 0.00310
19 0.00301 | 0.00207
20 0.00201 | 0.00138
21 0.00134 | 0.00092
22 0.00089 | 0.00061
23 0.00060 | 0.00041
24 0.00040 | 0.00027
25 - 0.31444

Table 3.2
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CHAPTER 4

SINGLE AND BATCH SERVICE M/M/1 QUEUE WITH A

SECONDARY LIMIT ON BATCH SIZE

4.1 Introduction

We consider a Markovian queueing system with single and batch service. Customers
arrive according to a Poisson Process with parameter A and are served by a single
server. The server serves the customers either one at a time or in batches according to
the control limit policy - (a, c) for the batch size. Specifically after a service
completion epoch, if the system size (n) is less than or equal to the control limit 'c’,
then the server serves the single customer according to FCFS rule and the service time
is exponentially distributed with parameter p; and if n > ¢, then he serves all the units
in a batch where the service time is exponentially distributed with parameter p,

independent of batch size. But once the batch service (machine mode) has been
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initiated it is changed to single service (manual mode) not when the batch size is 'c’ but

at a lower level 'a' below 'c'. This will avoid perpetual transfer from one type of service

to the other.

Several authors considered Poisson arrival queues with single as well as batch
service. For example see Neuts (1967), Cohen (1969), Chaudhry and Templeton (1984)
etc. There are many real life queueing situations in which service is rendered with
control limit policies. For example it may be possible to process jobs manually or by
machine. When the number of jobs to be processed is not more than a fixed number it
will be profitable to do them manually and if the number of jobs exceeds that fixed

number, processing by machine is turns out to be cheaper.

A single and batch service with single control limit 'c' on the batch service are
found to be important in many real life situations, but when the control limit 'c' is very
large the model suffers from the risk of perpetual change-over from batch service
(machine) to single service (manual). This problem may be overcome by the
introduction of a secondary limit 'a' (< ¢) so that when a batch service has been on, the
server may continue the batch service even with a size less than 'c’ but up to the limit
a + 1 and when the number of customers drops below a + 1 manual service

commences.

Baburaj and Manoharan (1997a) have considered a Markovian queueing system

with single and batch services and obtained expressions for the steady state
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probabilities of the system size. Jacob et. al. (1997) dealt with a single server queueing
model with Poisson arrivals and a new bulk service rule for which steady state
probabilities and waiting time distributions are obtained. Dshalalow and Dikong (1999)
studied M/G/1 type queues with modulated bulk input, state dependent batch service
and (r, N) — hysteretic discipline of idle and busy periods and obtained explicit
formulas for the stationary distribution of the queueing process and other
characteristics using semi regenerative and first excess level techniques. Dikong and
Dshalalow (1999) dealt with a bulk input-batch service queueing system and (r, N) —
hysteretic control with state dependent service and analyzed the model using first
excess level technique. Baburaj (2000) have given a transient distribution of a single

and batch service queueing system with accessibility to the batches.

In this chapter we consider a single and batch service M/M/1 model with a
secondary limit on batch size and obtain the transient state and steady state
probabilities, expected queue length, busy period distribution and hence expected busy

period and variance of busy period. A numerical illustration is given in the last section.

4.2 Analysis of the Model

Let X(t) denote the number of customers in the waiting line at time t and Y(t) denote
the type of service given by the server at time t. Specifically Y(t) = 0, 1, 2 according as
the server is idle, busy with a single service or busy with a batch. Then {Y(t), X(t)}

constitutes a Markov chain with state space S = S; U S, U S3 where S; = {(0, 0)},
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S,={(l,n);n=0,1,2,...,c-1} and S3= {(2, n); n 2 0}.

Let us denote P(i, j, t) = P{Y(t) =i and X(t) = j}. The transient distribution of
the system P(i, j, t), then satisfy the following system of difference differential
equations.

P(0, 0, t) =-AP(0, 0, t) + wP(1, 0, t) + pP(2, 0, t) (4.2.1)
P(1,0,t)=-(A + u)P(, 0, t) + AP(0, 0, t) + W P(1, 1, t) + woP(2, 1, 1) (4.2.2)
P'(1,n, t)y=-A+u)P(l,n, t) +AP(l,n-1,t) + ,P(l,n+1,t) + P2, n+ 1,t);

l1<n<a-1 (423)

P(l,n,t) =-A + )P, n, t) + AP(1, n - 1, t) + P, n+ 1,t); a<n<c2

(4.2.4)

P(l,c-1,t)=-(A+w)P(1,c-1,) +AP(1, c- 2, 1) (4.2.5)

P(2,0,8)=-(A+1,)P (2,0,0)+ A P(Lc~1,1)+p, > P(2, n,1) (4.2.6)
n=a+l

P(2.n,t)=-(A+ w)P2, 0, ) + AP, n-1,1) ;n>0. 4.2.7)

Let P'(i, j, s) denote the Laplace transform of P(i, j, t). We shall assume that
P(0,0,0) = 1. So,
(s +A)P(0,0,s)-1=wP(1,0,s)+mwP(2,0,s) (4.2.8)
(s+A+u)P'(1,0,s)=AP'(0,0,s) + wP'(1, 1, s) + ®P'(2, 1, 5) (4.2.9)
(st A+ p)P'(1,n,8)=AP°(1,n-1,s) + WP (I,n+1,s)+wP' 2, n+1,s);
l<n<a-1 (4.2.10)

(s+A+pu)P (1,0, s)=AP(I,n-1,s)+wP(I,n+1,s);a< n<c—-2 (4.2.11)
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(s+A+p)P(1,c-1,8)=AP (1,c-2,5) (4.2.12)

(s+A+1,)P (2,0,5)=AP (Lc—1,s)+p, ip(z, n,s) (4.2.13)

n=a+l

(st A+ uz)P*(Z, n,s)= XP'(Z, n-1,s;n>0- (4.2.14)

Solving (4.2.14) as a difference equation in P’ (2, n, s) we get,
P'(2,n,s)=A(s)R; n>0 (4.2.15)

where A(s) = P'(2, 0, s) and

R=—Pt .
s+A+u,

From (4.2.13),

a+l
P'(l,c—l,s)=14;(2[s+}t+,uz—-,u2 )

A I-R (4.2.16)

From (4.2.11),
P’'(1,n,s)=P'(1,a,5)0"%a< n<c-2 (4.2.17)
where 0 is the positive root less than unity of the equation

p,zz-(s+K+p1)2+k=O-

So using (4.2.12) we get,

) A(S) a+l
P'(,a,s)= N (s+k+p2 i, 1—_—1€J

=AG)Ki(s) . (Say) (4.2.18)
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From (4.2.10),

) ) ., A(S)Rn+l .
P(l,n,s)=P(1,0,5)0 —MZ—W ; l1<n<a-1
where K(z) = u|z7' -(stA+p)z+ A,

So,

. 1 S+A+u pw,Re

P'(1,0,s)= A(s)ea—_l[K, (s)(-T] - g,ej - KZ(R)]

= A(s)Ka(s)- (Say)

: (Hsz (8)+p, )'*'; :

P(0,0,5)= 4
0.0.5) Sy S+

Now using the condition,

c-| 0

P*(0,0,5)+> P (1,n,s)+ > P (2, n, s)=l
n=0 n=0 S

we get,
F }.l. l_ea l_ec‘—a—l 7!
K L+ ——|+K +

Z(S)Lm 1—eJ '(s)[ -6 }
}\' 1 RZ I_Ra—l Ra+l
()= T +
s(s+M)| ’ls+A K@R)(1-R) A(-R)
S+A+u, 1
+

| A 1-R |
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4.3 Steady State Distribution

Using final value theorem on Laplace transforms the steady state distribution of the

queue size can be obtained as

P(i, j)=lim P(i, j, t)= limsP* (i, /, 5)-

{—=®

Hence from (4.2.15) to (4.2.22) the steady state distribution can be obtained as

1
P(0,0)= B.X[ple +u,] (4.3.1)
P(1,0)=B.L, (4.3.2)
rn+l

P(l,n)=B| L0, - , ; 1<n<a-1 433
L n) 29 Ty Ko ( )
P(1,n)=B.Li8,""* ; a<n<c-2 (4.3.4)
PAc=1)=B | A+p, - re 43.5
; Y Ky — M, =, (4.3.5)
P2,n) =Bs" ;n20 (4.3.6)

where

L = l'irrox K, (s)

1 ra+1
- A+ —
e]c_z_,,lzli Hy —H, l—r:]
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L= lirr(}K2 (s)

B=1jrr()1s.A(s)
a c-a-l
L, ﬁ+1_el +L]1—el +
A 1-8, 1-6,

Atp, 1
A 1-r

where K'(r) = wr? - (L + pnpr+ A,

91=£ and r=limR = A

uz‘[

" =0T A,

44 Expected Queue Length

The expected queue length L is given by

1 r2(l_ra-1) pa+l

I—K'(r)(l—r)—?»(l—r
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Lzel [(1 ’91 )_2 (1 - ela-l )_ (a _I)OIH (1 - el )_] ]+
L li—e2o -0, e (-0, [la- 10" ~ (-2,

ela—l

=B e Y = )= (a1 (=) [
5 =y (=)= (@=1p (1 -r)"]

a+l
el A+p, _PzL— +r(l—r)~2
A 1-r

. (4.4.])

N

N

4.5 Busy Period Distribution

In this model the server is idle only when the system is empty. Thus the busy period
T commences with the arrival of a unit to the empty system and lasts till the system

is empty again.

Let b(t) = P{t < T <t+dt, X(t+dt) =0} -

Then b(t) = %P(O, 0,1).

Hence the Laplace transform b'(s) is given by

b'(s) =s.P(0, 0, 5) -

In order to find the distribution of the busy period we consider the system avoiding

the zero state. Here we assume that P(1, 0, 0) = 1.

Hence we get the following difference differential equations.
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P(0, 0, t) = wP(1, 0, t) + uP(2, 0, t) (4.5.1)
P(1,0,0)=-wP(1,0,t)+ P, 1,0+ wP2, 1,1 (4.5.2)
P(l,n,t)=-+u)P(, 0, t)+AP(1,n- 1, ) + WP, n+ 1, ) + 1P, n+ 1, t);

l<n<a-1 (4.5.3)

P(l,nt)=-(A+ p)P(l,n, )+ AP(1,n-1,t) + wP(l,n+1,t) ; a<n<c-2

(4.5.4)

P(l,c-1,t)=-(A+p)P(1,c-1,0)+AP(1,c-2,1) (4.5.5)

P(2,0,1)=~(A+p,)P2,0,0)+ A P(L,c =1, 1)+p, > P2, n,1) (4.5.6)
n=a+l

P(2,n,t)=-(A+p)P2,n, ) +AP2,n- 1,1) ;n>0 . (4.5.7)

Taking Laplace Transform on both sides of (4.5.1) - (4.5.7) we have the

following set of equations.
sP*(0, 0, s) = wP'(1,0,s) + 1P"(2, 0, 5) (4.5.8)
(s +m)P'(1,0,8) - 1=P°(1, 1,8) + P2, 1, 5) (4.5.9)
(s+A+u)P’(1,n,s)=AP°(I,n-1,s) +wP'(I,n+1,8)+wP (2, n+1,s);

1< n<a-l (4.5.10)
(s+A+u)P'(I,n,s)=AP°(I,n-1,s)+wP'(I,n+1,s);a< n<c-2 (4.5.11)

(s+A+u)P(1,c-1,8)=AP'(1,c-2,5) (4.5.12)

(s+A+p,)P(2,0,5)=AP (Lc—1,5)+p, > P(2,n,s) (4.5.13)

n=a+l

87



(s+A+uw)P(2,n,s)=AP'2,n-1,s); n>0. (4.5 .14)

Solving (4.5.14) as a difference equation in P"(2, n, s) we get,
P(2,n,s)=A(s)R";n>0 (4.5.15)

where A (s) = P‘(2, 0,s) and

R=—2
S+A+U,

From (4.5.13),

a+l
P'(,c-1,5)= A';s)(s+l+p2 - 1R RJ- (4.5.16)

From (4.5.11),
P(1,n,s)= P'(1,a,s) 0™ a< n<c—2 (4.5.17)
where 0 is the positive root less than unity of the equation

wmz’ - (s+A+p)z+Aa=0.

So using (4.5.12) we get,

. A (S) Ra+l
P (1, a, s)= xzéf‘z‘” [s+k+u2 -, l—R]

=A1(5).Ki(s) . (Say) (4.5.18)

From (4.5.10),
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P(,ns)=P(1,0,5) 0" —p, ———

where K(z) = plzz -(stAtp)z+ A

So,

S+A+ R
H _ule) K, J

P(1,0,s)= A,(s)%(Kl (s)( N “K(®)

= Ai(8).Ka(s)- (Say)

From (4.5.9),

2

(s 4+ 14 (9K, (5) -1 =—ulAl(S)Kz(S)@+uzAl(S)%R)szx(S)R

4,(s)= [(s + 1)K, () + 1, Ky (50 - 1y ]—(.RGS“MR:‘

R -1
= [Kz ($)(s + 1y —p,0) -, R(1 +‘m‘>‘)} .

From (4.5.8),

sP*(0,0,5)= “1A|(S)K2(s)+P2A1(S)

= AI(S)[I’J'IK2(S)+HZ] :

Hence the Laplace transform b'(s) of b(t) is given by

b'(s) = Ai(s).[mKa(s) + 2] -

&9

(4.5.19)

(4.5.20)

(4.5.21)

(4.5.22)



From the above expression one may compute the expectation and variance of

the busy period using the following formula.

E(T)=lim —i[b'(s)ﬂ .

s>50 ds

/(r) -ty Lo )] -6t

Remark 4.1. Expected busy period in the steady state is given as follows:
In this model the busy periods T and idle periods I alternate and form a busy cycle.

From the theory of renewal process we have

P(0, 0) = lim P[x(t)=0,7(t)=0]

E(1)
E(I)+E(T)

A=l +p] (4.5.23)
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4.4 Numerical Example

1. Consider the model with A = 0.5, u; = 0.8, p, = 0.4, a =5 and ¢ = 10. We use
equations (4.3.1) - (4.3.6) for the determination of the steady state probabilities. The
steady state probabilities {P(i,n),i=0,1,2andn =0, 1, 2, ...} are calculated using

the equations(4.3.1) — (4.3.6) on a computer, the results are given below.

P(0, 0) = 0.38625

P(1,n) | P(2,n)
0.24078 | 0.00126
0.14419 | 0.00070
0.09056 | 0.00039
0.05684 | 0.00021
0.03566 | 0.00012
0.01801 | 0.00007
0.01126 | 0.00004
0.00703 | 0.00002
0.00440 | 0.00001
0.00220| 0

- O

- 0

ololeiw|anun|hwin|—olZ

v

Table 4.1

The total probability is verified to be equal to one.

2. We consider some models with different values of a and c. The values of expected

busy periods in steady state using (4.5.23) are given in the following table. Here also

A=05nm=08and up,=04.
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alc—

10

11

12

14

16

18

20

3.01483

3.01810

3.02009

3.02207

3.02283

3.02312

3.02324

3.08974

3.10886

3.12054

3.13220

3.13670

3.13845

3.13913

3.14266

3.16925

3.18556

3.20189

3.20820

3.21066

3.21162

3.17803

3.20838

3.22704

3.24577

3.25302

3.25584

3.25694

3.20118

3.23345

3.25334

3.27333

3.28108

3.28410

3.28527

3.21617

3.24943

3.26966

3.29062

3.29864

3.30177

3.30299

0|

3.22583

3.25958

3.28044

3.30147

3.30963

3.31282

3.31406

Table 4.2
Expected busy period is monotonically increasing, but the rate of increase is very small

for larger values of a and c.

2. For the same model as in example 2, we computed the expected queue length

using (4.4.1) and the results are given in the following table. Here also A = 0.5,

pn=08and p, =04.

adc—

10

11

12

14

16

18

20

0.84968

0.85795

0.86419

0.87210

0.87611

0.87803

0.87893

0.86337

0.87620

0.88520

0.89580

0.90082

0.90314

0.90418

0.88361

0.89993

0.91103

0.92372

0.92954

0.93216

0.93332

0.90379

0.92253

0.93512

0.94929

0.95566

0.95850

0.95975

0.92125

0.94160

0.95518

0.97035

0.97711

0.98010

0.98140

0.93530

0.95668

0.97090

0.98672

0.99373

0.99682

0.99816

R[N | N R W

0.94611

0.96812

0.98274

0.99897

1.00615

1.00930

1.01066

Table 4.3
Expected queue length also monotonically increasing, but the rate of increase is very

small for larger values of a and c.
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CHAPTER 5

A GENERAL PRODUCTION INVENTORY (S-1, S)

POLICY

5.1 Introduction

Inventory systems of (S - 1, S) type had been studied quite extensively in the past. The
one for one (S - 1, S) policy which is also known as " sell one buy one policy " when
demands are unit sized, is a special case of the well known (s, S) inventory control
policy with s = S - 1. Thus when demand is discrete the (S - 1, S) policy calls for the
placement of a replenishment order after each demand equal in magnitude to the size of
the demand. This policy has often been advocated for controlling inventory of

expensive and slow moving items.
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Higa et al (1975) studied the customer waiting in an (S - 1, S) production /
inventory system with geometric Poisson demand arrivals and exponentially
distributed replacement times. Smith (1977) obtained an appropriate formula for the
cost minimizing S in an (S - 1, S) pure inventory system with Poisson demand arrivals
and an arbitrary replenishment time distribution. Examples of more recent studies of
multi-echelon repairable systems employing the (S - 1, S) policy include Muckstadt
and Thomas (1980), Shanker (1981), Hausman and Scudder (1982), Graves (1985) and

Sherbrooke (1986) etc.

Schults (1990) established that (S - 1, S) policy is optimal when the renewal
function of demand sizes is concave. Further he has shown that if the ratio of the re-
order cost to the expected time between demands is smaller than a specified function of
the lead time demand distribution and the holding and penalty costs, then it is optimal
to order after each demand. Parthasarathy and Vijayalakshmi (1996) carried out a
numerical analysis of an (S — 1, S) inventory model with a constant rate of decay and
random lead time having an exponential distribution. Cheng, Ki Ling (1996) analyzed
an (S — 1, S) inventory model with compound Poisson demands and derived
expressions of performance measures such as the steady state distribution and the
expectation of the number of backlogged units. Smith and Dekker (1997) discussed the
(S = 1, S) stock model where demand follows a renewal process and the lead time is

deterministic.
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In this chapter we are considering a production inventory (S - 1, S) model in
which there is a productivon facility and a finished product warehouse for a single
commodity. The production continues until the on-hand stock reaches ' S ', that is when
there are S units in the system, ready for sale, S - 1 will be in the wafehouse and one
will be at the production facility. In the finished product warehouse there are S spaces
to allocate the finished products. If all the S spaces are full then the production facility
will not produce further units. In a similar manner, if all the S spaces in the warehouse
are vacant (that is free of products) then no demands will be entertained. That is the

demands will be rejected at that time.

In this inventory model, the time between successive demands is assumed to
follow a PH-distribution F(.) which has the irreducible representation (o, T) of order m
and is given by

Fx)=1-aexp(Tx)en ; x20. (5.1.1)
The row vector o and the matrix T are of dimension m. e, is a column vector of order

m with all its components equal to one. The vector T° is defined by

T°=-Tem.

The production times are mutually independent and independent of the demand
process and have common probability distribution G(.) of phase type with the
irreducible representation (3, U) of order n and is given by

Gx)=1-Bexp(Ux)e,; x20. (5.1.2)
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The row vector B and the matrix U are of dimension n. e, is a column vector of order n

with all its components equal to one. The vector U is defined by

UO=-Uen-

Thus the stock level can be described by a stochastic process {I(t), t > 0} with
1(0) = S. So I(t) denotes the on-hand inventory level at arbitrary time t. The principal
quantity of interest is the probability mass function of the inventory level at any

arbitrary time t on the time axis.

That is,

P{I(t)=n},n=0,1,2, ...,S.

Here T and U are generators of Markov process describing the generation of
demands and production. The PH - distribution has a probabilistic interpretation by its
definition so that it can be considered as the distribution of time between demands and
the distribution of production time in two networks where the sojourn time at each
node of the network has an exponential distribution. So F(x) and G(x) could be

interpreted as the distribution of time spent in their networks.

The above production inventory system can be studied by a direct analysis of
the behavior of the physical inventory level and the status of the processor. The reason
why the PH - distributions are chosen in this work is that many researchers have been

investigating these distributions and developing procedures to fit these distributions to
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given data sets (See for example Bobbio and Telek (1994) and Asmussen et al (1996)).
Also various algorithms have been already developed for problems in applied
pfobability where PH - distributions are involved (see Neuts (1981)). This way
production facility, which stops not when the warehouse is full, will achieve a higher
level of productivity than the case where it stops when the warehouse is full.

The next section introduces the notations used and some preliminaries. In
section 5.3, the system is analyzed in detail to obtain the stationary distribution of

inventory level.

5.2 Notations and Preliminaries

Let I, denotes the identity matrix of order m, I, denotes the identity matrix of order n
and A®B denotes the Kronecker (tenser) product of the matrices A and B. If A= [a;]
and B = [b;] are rectangular matrices of dimensions m; x n; and m; x n,, then their
Kronecker product A®B is the matrix of dimension m;m; x n;n; which can be written

in block partitioned form as follows:

a8 apB - a,B
ayB ayB - a,B .
am,lB am,ZB t am,n, B

Some useful properties of the Kronecker product that are repeatedly used in this
chapter are given as follows: (Refer Bellman (1974))

L. A®B+C)=A®RB+A®C
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I.. (A+B)®(C+D)=A®C+A®D+B®C+B®D

Il. (A®B)(C®D)=AC®BD.

5.3 Stationary Distribution of the Inventory level

Let X(t) denote the state of the inventory at time t. Then {X(t), t > 0} may be
considered as homogeneous Markov process on the state space
Q={0,)=12,....m}U {14, ky1=12,...,8;j=1,2,....,m;k=1,2, ..., n}
where (0, j) represents that the system is empty and the demand is at phase j, while

(i, j, k) represents that there are ' i ' units in the system and the arriving demand and

being produced unit are at phases'j 'and 'k ' respectively.

The states are labeled in the lexicographic order. The infinitesimal generator of

the process in block-partitioned form is given by

0 1 2 3 S-1 S
o7 4 0 0 0 0 |
1 |B C 4 0 0 0
2|0 B C 4 0 0
" 5300 0 B C 0o 0
S-10 0 0 0 C 4
slo 0 o B D |

where A=T00c®ln
B=In]®UOB

C=T® L +1H®U
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D=(T+T) @+, ®U
A=T'a®p

B=T® U’

Let n,, denote the stationary probability of the state o € Q.
Define ny = (71, o2, ---5 Tom)

T = (TG T, 1,2 «eos T L,mo T2, 1> -eos Miom,n); 1= 1,2, ..., S,
Under our assumption, the stationary distribution m,; ® € Q is the unique solution of
the steady state equilibrium equation (See Neuts (1981))

1 Q=0, me=1 where n = (g, Wy, T2, ..., Ts).

That is,

T T+m B =0 (6.3.1)

A+ C+mB=0 (6.3.2)

T A+ C+mnB=0;i=2,3,..,S-1 (6.3.3)

s A+rs D=0 (6.3.4)
s

T, €, +Zn,emn =1. _ (6.3.5)

=l
Multiplying on the right of both sides of (6.3.2), (6.3.3) and (6.3.4) by the matrix
Im ® e, and using the properties of Kronecker product, we get
T o+ (T®e-1n®UN+m ((®UY=0 (6.3.6)
T (TP a®e) + T (T en-In® U+ miyy (n ® UM =0;

1=2,3,..,5-1 (6.3.7)

51T a0 ® ep) + ms[(T + TPo) ® e - Iy ® UH] =0 (6.3.8)
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Adding equations (6.3.1), (6.3.6), (6.3.7) and (6.3.8) we get
o (T+T0 o) + m[(T+T o) ® en] + 73 [(T+ T ) @ en]
+ s [(THT o) ® en] + g [(T+ T o) ® e4] = 0-

Since A ® e, = (I, ® e,) A, we can write the above equation as

[no +in,(1m ®e, )} (T+7T°%)=0- (6.3.9)

i=l

Now multiply on the right both sides of (6.3.1), (6.3.6), (6.3.7) and (6.3.8) by
€m, We get,
T +m(Em®UN=0
T -1 [(T°® en + e ® UN] + 712 (e ® U =0
ﬁi_l (T'®ep) -7 [(T' @ ep) + (em ® U] + 1y (mn® U =0;i=2,3,...S- 1.

and s 1(T? ® ey) - ms(em ® U%) = 0.

NIB 2950 T
From the above cquations, we have 519 <2 3 JEN / M
7 (em ® U% =7y T and
i1 em @O UY) =m (T°®ey);i=1,2,3,...,8- 1. (6.3.10)

Again multiplying on the right both sides of the equations (6.3.2) and (6.3.3) by
the matrix I, ® (e,p - I,) we have,
MTR L+ @ U] [In® (enP-1,)=0
and T[T 0 ® (en B -L)+M[TO® L+ ® U] [[n® (en B -1,)=0;

i=2,3,...,8-1
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The first equation reduces to
T{T® (e f-l) +Im®[U (enP-1n)]} =0
That is, 11[T ® (eq B - In) - Im® U] = 1;(1n ® U B)
=m [((n® U°) (ln® B)]
=-m[T®PB] (Using (6.3.1)
and the second equation becomes,
T[T ® (ea B -In) - In® U] =71 (I ® U °B) + 1t [T® 0® L)- i [T o0 @ e, B]

=1 (In® U B) + 1 [T o ® L] - it [T’ ® en][ @ @ B]

(I ® U %B) + 1 [T 0 ® 1] - mi[en ® U [ a ® B]
(Using (6.3.10))
= 1 (In® UB) + [T a ® I,] - mema ® U °B] ;
i=2,3,..,8-1.
Putting U'=T® (en B -In) - In® U, the above two equations becomes
mU" =-m[T ® B] (6.3.11)

AU =1 (In® U B) + iy [T’ o® I,] - milema ® U B ;i=2,3,...S—1. (6.3.12)

Similarly after multiplying on the right both of (6.3.2) and (6.3.3) by the matrix
(em - L) ® I, and putting T = (em o -In) @ U-T®I,,, we get

AT =m (TP a @D+ M [(In-em) ® UB), 1=1,2,3,...S-1. (6.3.13)

Now combining (6.3.11) - (6.3.13) and (6.3.4), we have
mU =-n (T ® B) (6.3.14)

U =-n,T ;i=2,3,...,S-1 (6.3.15)
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and  [(T+T' ) @ L+ In ®Ul=- ns(T° @ I)- (6.3.16)

Following Neuts (1981) we see that the irreducible matrix Q =T+ T aisthe
generator of a homogeneous Markov process and it is sub-stable (A matrix is stable if
all its eigen values have their real parts are strictly less than zero. It is sub-stable if their
real parts are less than or equal to zero.). The eigen values of Q' ® I, + I, ® U are the
sum of the eigen values of the sub-stable matrix Q and the stable matrix U (See

Bellman (1974)). Hence Q'® I + 1 ® U is stable and invertible.

Next we prove that T" and U” are invertible.
Consider T =- (T ® I, + (Im - em o) ® U). By our assumption T and U are stable
matrices. T" can be rearranged as

T =-(TRL)IQU' + T (In- ema) ®I] (In ® U). (6.3.17)

First of all we prove that T"'( I, - em o) is sub-stable. Let A be an eigen value of
T (In- em a) and v be the corresponding eigen vector. Assume that Re (L) > 0 where
Re () = real part of A. We have Av =Ty - (av) T e
Since T and T are stable, A" cannot be an eigen value of T and A cannot be an eigen
value of T,

Hence av = 0.

-
Further v = (oc_vj (llm —Tj e, .
ISUAUN
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-1
:la(lz —T) e =1. (63.18)
xS

The Laplace Stieltjes transform of F(x) is given by

F()=1-sa(slh-T)"en

-1
(L =1_la(l1m_r] e =0 by(6.3.18).
A Ao

But the Laplace Stieltjes transform of a non-negative random variable is strictly

positive in the right plane. Hence T (I, - e o) is sub-stable.

Now, since Ulis stable and T"( Im - em @) is sub-stable,
I®U' + T'(In - em @) ® I, is stable and invertible. More over (T®1I,) and (In ® U)
are invertible. Hence from (6.3.17) we conclude that T is invertible.
By the same argument U is invertible.
Now the stationary distribution ni; i=1, 2, ..., S is given by
m=-n(T®PU""
m=-n,T U™ 1=2,3,...,8-1
and ms=-7s(TPa @ L)(T+T’ ) ® 1, + 1, ® UT".

By defining the matrices,
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Mo=-(T®B)U"! (6.3.19)
M=TU"" (6.3.20)
and Mg.; =- (T°a @ [T+ T’ ) ® I, + [, ® U] (6.3.21)
which are respectively of dimensions m x mn, mn x mn and mn x mn. It is clear that
n;i=1,2,...,S

can be obtained by the following formula

MM i=12,.85~1
T, = . ' (6.3.22)
MM "M, ,; i=S
In order to find my we substitute the above values in (6.3.9) to get
S-2
m{]ﬂ, + (Z MM+ MMM, J(Im ®e, )J [r+7°]=0
i=0
That is
TeW(T+T ) = 0 (6.3.23)
5-2 )
where W =1 + [Z M M' + MOM“'ZMS_IJ (1,®e,) (6.3.24)
1=0
Since T+ Tais irreducible, the system
V(T+Ta)=0; vem=1 (6.3.25)

has a unique solution. Therefore-from (6.3.23) we get oW = cv, where ¢ is a constant

and v is a vector.

On applying the normalizing condition (6.3.5) we getc =1.

Hence in order to obtain my we need to solve the system
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oW =V,

and the stationary probabilities can be calculatéd using the formula (6.3.22).

If we denote p; = ZZnijk; i=12,..S8

j=1 k=1
m

and p, =Zn0/ .

/=

Then {p; ; i=0, 1,2, ..., S} represents the stationary distribution of the inventory

level.

Calculation of the stationary probability distribution of the inventory level:-

Based on the forgoing analysis the following algorithmic procedure is

suggested for the computation of {p;;i=0,1, 2, ..., S}.

Inputs:
Integers m, n and S
Row vectors a = (a1, o, ..., Om)
B=(Bi, B2, .-, Bn)
Matrices T = (Tij)mxm
U = (Ujj)axn *
Compute:
U= -Ten

U'=T® B -1)-1n®U

T =(n-D®U-T®I,
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My=-(T®B)U""

M=TU""

Ms_;=- (T ® ) [(T+ T’0) ® I + 1, ® U]

S-2
S Rt
i=0
Solve for v = (vy, va, ..., V) from the system v(T + Toa) =0, ven=1.
Solve for mo = (w1, o2, - .-, Tom) from the system W =v.
Calculate:

nMM™ fori=1,2,..,8-1
n‘ =
! oMM M., fori=S.

The stationary probabilities are:
Pi = TiCmn ; 1= 1,2,...,S

Po = ToCm.

Numerical Illustration:-

Suppose that in a production — inventory system with S = 10 the inter-demand

-25 25 0
times follow a CPH (a, T)m where m=3,00=(1,0,0)and T=| 0 =25 25
0 0 =25

The production times follow a CPH (B, U), wheren=4, B = (1, 0, 0, 0) and

-35 35 0 0
0 =35 35 0
0 0 -35 35
0 0 0 =35

U:
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Using the above procedure the stationary distribution {p; ; i = 0, 1, 2, ..., 10} is

computed and its graph is given below:

505 T T I T
04 [~ \ —
4
\\.
0.3 | -
P \
_K._
02— \;\ —
o1 \\& ~
“
%
o, | [ Koo - L
0 2 4 6 8 10
0 k 10
Graph of {pi}

108



CHAPTER 6

INTERMITTENTLY USED COMPLEX N-UNIT SYSTEM

WITH STOCHASTIC DEMAND

6.1 Introduction

A system in general can be classified as one of two types according to its usage. One is
when a system is constantly in use and second is one, which is intermittently used. In
this intermittently used systems continuous failure free performance may not be
necessary. For example telephone devices computer etc. Gaver (1963) first discussed a
one unit intermittently used system and introduced "Disappointment time". Srinivasan
(1966) extended Gaver's results to two-uﬁit redundant system with arbitrary failure and
exponential repair time distributions to obtain the first passage time to disappointment
and mean time to disappointment using supplementary variable technique. Natarajan
and Shahul Hameed (1988) studied an intermittently used k out of n: F system with the

assumption that the failures will be detected only during the usage period and obtained
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expression for the distribution of time to the first disappointment etc by identifying
suitable regeneration points. Sharafali et. al. (1988) considered a complex two-unit
system with stochastic demand and obtained the various reliability measures. We
extend this work to an intermittently used n-unit systems. In most of the iﬁtermittently
used systems one or more units may be required for the satisfactory performance of the
system. In such situations the number of units needed at any time may be described by
a stochastic process called the "need process". The next section treats the model, in
which all the underlying distributions are assumed to be exponential. For this model
apart from obtaining expressions for time to the first disappointment and mean number
of disappointments, an attempt is made to derive the first order product density of a

disappointment. The last section considers the sojourn times.

6.2 The Model

-

The system consists of n units subject to failure and a single repair facility. The need
process is governed by a Markov process. The assumptions for the model are given

below.

1. There are n identical units, whose lifetime distributions are negative exponential with

1
mean —.
a

2.There is only one repair facility and repairs are taken in FIFO order.

3.Each unit is new after repair.
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4.The repair time distribution is negative exponential with mean —.
1!

5.The need process is governed by a Markov Process {Y(t), t > 0}on the state space
{0, 1, 2, ..., n}. Here Y(t) represents the number of units required for the satisfactory
performance of the system at time t. The infinitesimal generator of this Markov Process

{Y(t), t 2 0} is assumed to be

0 1 2 n
0 (_ Ko 7‘01 }‘02 }\'On |
1 7‘10 "}“1 }\’IZ )\'In
A=2 )‘20 )‘21 - }"2 }\‘ln
h L 7\'n0 )\’nl )\‘n2 T x'n_d

6.If at any time the number of operable units is less than the number of units required
for the satisfactory performance of the system, then the system enters the down state. If
more no of units are in the operable system than required, then the operable units not in
use will behave like cold standbys.

7.During the system down, the need will last for a duration governed by the respective

exponential distribution and will not wait for a system recovery

6.3 State of the System

Let X(t) represent the number of units in the repair facility and Y(t), the state of the

need process at time t. Clearly {X(t), Y(t)} is a Markov Process on the state space
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E=EyUE U .. UE, where E = {(i,0), (i,1), ..., (i,n)}, i=0,1, ..., n. The

infinitesimal generator of this process {(X(t), Y(t))}, t = 0} is easily seen to be Q given

as follows.
Ey Ey Ey Eyn Epy E
Ey [ 4-abe, abe,, 0 0 0 ]
El }l[ A — p.[ - aAen_l aAen_l 0
E, 0 wl A-pl—ahe,_,
Q= :
E, 5 0 o A-ul - abe, ale, 0
E,_ 0 0 0 w A-yl -ahe| ahe
E, | 0 0 0 0 ul A-pl |
where

A(en) = diag(0, 1,2, ..., n)
A(en1) = diag(0, 1, 2, ..., n-1, 0)

Alen) = diag(0, 1, 2, ..., n-2, 0, 0)

A(ey) =diag(0,1,2,0,...,0)

A(er) = diag(0, 1,0, ..., 0).

Let Py(t) = P [X(®) =i, Y(® =, 1,j =0, 1, 2, ..., n and P(t) = [Poo(t), Por(®), .-, Pan(®)]"
Then by Chapman-Kolmogrov equation
P®=Pt)Q

or P(t) = exp{Q(t)} P(0)

where P(0) is the initial state probability.
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6.4. Stationary Distribution

Let = (7o, 7y, ..., T) With T = (Tko, k1, - .5 Tkn)

where k = 0, 1, 2, ..., n be the stationary distribution. This is the solution of the

equations Q = 0 with ane =1.

k=0

nQ =0 gives

no[A—Aen]+ um, =0
an,Ae, +n,(A-pl ~ale, ) +pn, =0
anAe,  +m,(4—pul —ahe, ,)+un, =0
: =: } (6.4.1)
an, ,Ae, +7, (4 —ul —ahe)+pn, =0
an, Ae, + 7, (4-wl) =0

Adding these equations we get
(mp+m+ ... + M)A =0.
This implies that my + 7, + ... + 7, must be invariant measure for the Markov Process
with the generator A. Assume that A possesses the invariant measure and let it be 7.
Here
T+m+...+m,=n. (6.4.2)
By solving (6.4.1) and (6.4.2),
we get the solution for

7T = (T, 1, -5 Tn)e
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6.5. Distribution of the time to the First Disappointment

A disappointment is said to occur whenever the number of operable units at any time
becomes less than Y(t) at that instant of time. Thus the set of states of disappointment
is D = {(1,n), (2,n-1), (2,n), (3,n-2),(3,n-1),(3,n), ..., (n,1), (n,2), ..., (n,n)} (Totally

nnt D number). So the infinitesimal generator of {(X(t), Y(t)), t > 0} can be

rearranged corresponding to the set of up-states U and set of disappointment states D as

follows.
U D
U B
0= {Qu D} (6.5.1)
DBU QD
where
(00) (0.7)  (10) (La-1) (20) (n-11)  (n0)
(00) [~2g g, 0 o 0 0 0 o |
R 1S/ U S S S S
o) | oo 0 vo o Moo 0 0 0
% = (1) o 0 xn;,,o vn._, 0 0 0
(270) 0 - 0 oo 0 (g tp) 0 0
% IS A T S
n0 Lo 0 0 - 0 0 0 - (g + ) |

with v, = -(A, + p + na),
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(00) [ 0 0
(O,n) na 0
(1,0) | %o, 0

* T (Ln-1)r,,, (n-Da
(2’0) 0 xO,n—l
(n—1,1)
(n0) |

(n1) - (n.n)
0 0 ]
0

0

0 0
0 0
a 0
)\'0,1 )\'O,n_l

| (0,0) -+ (0,n) (1L0) - Ln-1) (20 - (n-11) (n0)

(1> n) FO l“l }\'nO
(2,n-1)|0 0 0
(2,n) |0 0 0
B, = : P
(n1) 10 0 0
(n,n) L0 0 O
and
(Ln)  (2,n-1)
(Ln) [-(h, +p) 0
(2,n-1)] O —(A,_, +p)
(2,’7) “ )\'n,n—l
Q/) = : 5
(n,1) 0 0
nn | 0 0

(2.7)

A
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n0
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Our problem is to obtain the distribution of random variable D, which represents the
time to the first disappointment. Hence we dump together the states of the Markov
process {(X(1), Y(1)), t = 0} into a single absorbing state D. We so obtain the absorbing

Markov process with generator

Let us assume that the process starts in a state U and so let 13U (0) be the row

vector of initial state probabilities corresponding to the situation. Now the time to the

first disappointment is the same as the time to absorption in the Markov process with
the generator Q given as above. If Gp(t) is the distribution function of the time to the
first disappointment then

Gy () =1~ F, (0)exp{tQ,}.
One may note that this is phase type distribution representing the distribution of the

absorption time in the Markov process described above. Clearly the moments are given
by

E(D*) = (DK B,(0)0; e, k=0,1,2,

6.6 Product Density of a Disappointment

Let hp(t) be the first order product density of a disappointment at t. Now hp(t) is the

probability that a disappointment occurs in (t, t + dt).
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By considering the various possibilities of entering into the states of disappointment we
have

h () 5 (r) 5 nij %l ()
t)=a ip . .\)+ .o P ).
D i=1 Jmi iz0 k=1 brTirET

The expected number of disappointment in (0, t) is given by

E[N(D,1) = IJ'hD (u)du.

6.7 Total Sojourn Time

Let S,",’;f (¢) denote the total sojourn up to t in the state (m, j) starting from (r, i) at t = 0.
Let the elements of Q in (6.5.1) can be written as
Q= (o)
where
QY <0 for (m,j)=(r,1)
and QY 20 for(m,j) = (r, i).

Define

M, (z;t)= El:exp{— zzm,,Sr",'}/ (f)H

(m, J)

and M(z; t) = Moo(z; 1), Mo1(z; 1), ..., Man(z; 1))7

with z = (zo0, 2015 ..., Znn).
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So for (r,1) € E,

M,, (z; t) = exp{— (z,,, -0/ )t}+ Z ]exp{— (z,,,. - Q,’,’ ) u} Q,",",.iM,,,’k (z;t —u) du-
(m, k)eE §

Therefore

M'(z;5)= [I—A*(z; s)]—lA' (z;5)e (6.7.1)

where M *(z; 5) is the Laplace transform of M(z; t) and

- . 1 1 1
A(z;s)zdzag 00> AR — |
S+Zgo=Woo StZo1 o S+z,, =0,
The Laplace transform of the Moment Generating Function of the total time

spent in the state of disappointment up to any time t is obtained by putting

n(n+1)

2=2(0,0,0,..,0, 1,1, ..., D (with 1’s) in (6.7.1).

Total time spent in each of the up states prior to the occurrence of a
disappointment is obtained by taking S™, (m,j) € U be the total time spent in the
state (m,))

we get,

Eliexp{— >z, SM H =P, (0)Az)-Q, "' Bye (6.7.2)

(m, j)eU

where  A(z) = diag(zo,0, 0,15 --+» Zn,0)-

By differentiating (6.7.2), we get the mean vector
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o= lsee] ] el ]

-k, (0) &Ie-

H

Remark 6.1. When the number of units n = 2, then the results of this chapter are in

agreement with those of Sharafali et. al. (1988).
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CHAPTER 7

SOME GENERALIZED POISSON SHOCK MODELS

AND THEIR CLOSURE PROPERTIES

7.1 Introduction

Suppose that a device is subjected to shocks occurring randomly over time according

to counting process N = {N(t): t 2 0}. Let ﬁk be the probability that the device survives
k shocks, k=0, 1, 2, ..., where it is reasonable to assume that 1 = 130 > 131 >....... Then
it follows that the probability H (¢) of survival function of the device is given by,
i{(t):iP{N(r) k)P, - (7.1.1)
k=0

Shock models of this kind have been studied by Esary et al (1973) when N is
homogeneous Poisson process. by A - Hameed and Proschan (1973) when N is a non-

homogeneous Poisson process or a birth process and by Block and Savits (1978) when
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N is still more general counting process. In all these cases the authors prove that

H (H)1s IFR, 1IFRA, DMRL, NBU or NBUE under suitable conditions on N if

(1;,(} has the corresponding discrete property. Klefsjo (1981) proved that H (t)is
k=0

HNBUE if 1;/( has the discrete HNBUE property and Abouammoh et al (1988) have
proved the NBUFR and NBAFR preservation results. In this chapter we are proving
the corresponding theorems for the ILR class of life distributions. We also get the dual

class DLR.

Let F be a life distribution (F(0-) = 0) and F=1-Fbe the corresponding

survival function. Also let f be its density function.

Definition 7.1. A life distribution F (or its survival function F ) is said to be ILR or

Polya Frequency of order 2 (PF,) if log f is concave.

A)

That is f—%:—)— is decreasing in 't ' for any A> 0
t

[

or equivalently 7 (t) is decreasing in 't ".

If log f is convex, then F is DLR.

Definition 7.2. A discrete distribution {px} (or its survival probabilities f_’k = Z p,,

J=k+1
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k=0,1,2,..)is called discrete increasing likelihood ratio (Discrete ILR) or discrete

PF, if Pram s decreasing in k for every m > 0. (The reader may refer to Ross (1983)
P

for the above definitions of ILR and DLR class of distributions)

In section 7.2 and 7.3, we prove the preservation of ILR (DLR) properties when
N is a homogeneous and non-homogeneous Poisson processes respectively. Section 7.4
is concerned with a mixed Poisson shock model and similar results are proved under
suitable conditions on the probability of shocks and the mean value function of the

process.

Throughout this chapter increasing is short for non-decreasing and decreasing is
short for non-increasing. We remark that the result of section 7.3 in fact was proved in

Esary et al (1973) but the method used here may be of intrinsic interest.
7.2 Shock models and Preservation Results

Let a device be subject to shocks occurring randomly over time according to a

homogeneous Poisson process with intensity A. Then the probability H (¢) of survival

of the device until time 't ' is given by

; iewo") . 120- (72.1)

k=0
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Survival functions with this form have a number of attractive properties. Some of them

®

are discussed in this chapter. If (I;k) of surviving k shocks in (7.2.1) is assumed to
k=0

be a deterministic function of k alone and not any random damages, it is reasonable to

assume that 1> 150 21-), 2 ....... The density of H(t) has a jump of magnitude 1 - 1;0 at

the origin and fort > 0

© —M
=2 < (lt g M i t>0 (72.2)
k=0

where p,,, = ng—P,;, , k=0, 1, 2,...

Moreover the hazard rate

M)= A <1-4 >0

is seen to be less than or equal to A.

Also A(t) = A for somet> 0 < I;k =0V k>0 in which case A(t)=A V t> 0.
An interesting example of H (t) as defined in (7.2.1) occurs with };k =05 0<0<1,
k=0,1,2,.... In this case I_J(t) =exp (-A (1 - 8) t) is exponential. It can be seen that

1—1(t) is exponential if and only if 1;k = 0" for some 0 < O < 1.
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7.2.1. Properties of l:{(t) from the properties of P—k

Certain kinds of properties when imposed on 15k in (7.2.1) are reflected as analogous
properties of H (t) . For example, if ]3,( is decreasing in k then H (#) is decreasing in t.
When };k has geometric distribution then H (t) has exponential distribution. Various

other properties of the }_’k of interest in reliability are found to carry over to H ®).

The main preservation results are given in the following theorem.

Theorem 7.1. (i) If PZ,‘ is decreasing in k then H (¢) is decreasing in t.

© -M - - -
(i1) Let H z ¢ (M) P, whenl=F2PF2=... , then H(¢) has a PF; density

k=0

if pk+l
Py

is decreasing ink =1, 2, .... That is if {px, k = 1} is a PF; sequence.

(iii) H(r)is IFR if (ﬁkj is discrete IFR.

k=0

(iv) H(t)is IFRA if (ﬁk] is discrete IFRA.

k=0

(v) H(r)is NBU if (ij is discrete NBU.
k=0

-]

(vi) H(t)is NBUE if (ﬁk) is discrete NBUE.

k=0
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@miﬂosDMRLw(é) is discrete DMRL.

k=0
Note: Similar results hold for the dual classes representing beneficial ageing.

Suppose that the process N is a mixture of homogeneous Poisson process, then

f_{(l) is given by
H() = jii%ﬂ—ﬁkdc;(x) (7.2.3)
0 k=0 .

where A 1s a random variable with distribution function G(.).

Then we have

Theorem.6.2. (Manoharan et. al. (1992)) The PH- distribution is preserved by the

transformation (7.2.2) when G(.) is a distribution with finite support.

Specifically, if the shock probabilities {px} has DPH (a, T)n G has a support
on {A|, Az, ..., A} with mixing density {r|, r,, ..., ¢}, then the survival distribution

function H(t) has CPH distribution with representation (o, T )mx

where o = (na, na, ..., rga) and
AT -1) 0
o 0 M-
0 0 @)

Also the mean of the distribution H(t) is
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where p, =a(l —T) e is the mean of {pi}.

In particular, if the shocks arrive according to a homogeneous Poisson process

with parameter A and the shock probabilities {px} has DPH distribution with mean p'p,

then H(t) is of CPH with mean pu,, = (%)pp :

Now we prove the following preservation result.

Theorem 7.3. The survival function H (t)in (7.2.1) has ILR property if [I;k) has the

k=0

discrete ILR property.

Proof:

Differentiating (7.2.2), we have

’ = oM () p)k
h ([)—_— 7‘225‘_1(;’)_(@&2 "Pk+1)‘
k=0 :

Z lz pk+2 pk+l)
k=0

°°(7»t)
20

For t; < ty, let the determinant

Let g(t)= :I((tt)) A
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2 (hty) o
Z kh' >(pk+2 pkH) Z pA+2 pA+l)
]): k=0 . k=0
i(le)“
1‘ k:oi Xl Pia P
2, (hey) 2 ()
;07/; Pria ;7]!*,0;(&
a0 )
T P P,
S P& e
a ) (e :
:;Z( kz‘) £ PiaPra — / k‘ ) PiaPra

M)

I
-]
-M

>
oy

\—/

,\

= Pv2Pri = PraPia)

—_~£ -+ ] ') (‘ll[p/“np[H pl+2pk+l]
k<! k>!

k! /! I k!

:Z{(W () () Gt}

- } [pk+2p/+l pl+2pk+l]

Piv2  Pin
pk+1 p/+]

Now for k <1 and t; <t,, the first determinant is < 0 and since {px} is discrete [LR, the
second determinant is > 0. Hence D < 0.
D<0=g(t)-gt)<0
=> g(t) is decreasing in t
= log h(t) is concave

= h(t)is ILR . 0
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In the DLR case we get the following theorem

o

Theorem 7.4. The survival function H (1)in (7.2.1) is DLR if (1;,() has the discrete

k=0

DLR property.
7.3 A Non - Homogeneous Poisson Shock Model

If the shocks occur according to a non-homogeneous Poisson process with mean value

function A(t) and event rate A(t) = A(t) both defined on the domain [0, ), with A(0) as

the right hand derivative of A(t) at t = 0 and the device has the probability 15,( of

surviving first k shocks, then its survival function H(¢) is given by

_ w . —A() Ak .
Hin=3 A ) P t>0 (73.1)
k=0 k!
and density function is
o _-A(t) Ak
h(t) = k(t)zf——fﬂ Pis» >0 (7.3.2)
k=0 .

Under the suitable assumptions on A(t), various geometric probabilities of
(};k) have counter parts as corresponding properties of H () . Similar relationships
k=0 )

hold among A(t), pk, and h(t).
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Theorem 7.5. (i) If py is decreésing then ﬁ}% is decreasing. If in addition A(t) is

decreasing then h(t) is decreasing.

(11) If pk 1s decreasing and log concave, and A(t) is increasing then i_((?j is log concave.
If in addition, A(t) is log concave then h(t) is log concave.

(iii) If 1;,( 1s discrete IFR and A(t) is convex (that is A(t) is monotonic increasing in t), .
then H(¢)is IFR.

(v) If };k 1s discrete IFRA and A(t) is star-shaped, then H (r)1s IFRA.

(v) If I;k is discrete NBU and A(t) is super-additive, then H () is NBU.

(viy If f;k is discrete NBUE and A(t) is star-shaped, then H (t) is NBUE.

(vii) If P, is discrete DMRL and A(t) is convex, then H(¢) is DMRL.

Note: The same corresponding results hold for the dual classes also.

So we have

Theorem 7.6. If (};kj has discrete ILR property, px is decreasing in k and A(t) is

k=0

increasing and log concave, then H (")in(7.3.1)is ILR.
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Proof:-

—A(I)Ak (t) »
k+1

g)= i

k=0

Put

so that h(t) = A(t) g(t)-

First we prove that g(t) is log concave.

© A/( (t)
¢ ( k+2 T k+l)
Let ()= £ K(t);‘) d Ai) ’
& t) Z kft) P

For t; <t,, Consider the determinant

= A
)"(tz )Z k(' : )(Pk+2 ~ Pia )
k=0 .
D=
= A1)

; k’ pk+l

© Ak ' ©
Z k(' 2 ) pk+2 z
k=0 4 k=0

< Mt)

© Ak t ©
Z k(' 2 )pk+l Z
k=0 4 k=0

Since A(t) is increasing and py is decreasing. By the same way as done in the

proof of theorem (7.2.1) we have

AN() NG,

D < At k! I ||Pe
©2LIA) Ao
k! il

130

Pia
pl+l

}‘(t )Z”: k( )(Pk+2 pk+l)

k=0
> A )
o k!
k+2
P

P

(7.3.3)




Now since A(t;) < A(ty) and k < 1, the first determinant is negative and since {px} is
discrete ILR, the second determinant is positive. Hence D < 0, which implies that g (t)
is decreasing in t and therefore that log g(t) is concave.

From (6.3.3), since A(t) is concave, we conclude that h(t) is ILR. O

In a similar way we get a dual theorem in the DLR case.

0

Theorem 7.7. If (1;,() has discrete DLR property, px is increasing in k, A(t) is

k=0

increasing in t and log concave, then H (t)in (7.3.1) is DLR.
7.4  Mixed Poisson Shock Model and Closure of ILR Property

If N is a mixed Poisson process with mixing distribution given by the random variable

A having distribution G, then the survival function of the device H (#) is given by

where A(t) = AA(t), A is a random variable following a distribution G and A(t)

is a deterministic differentiable function of t with A'(t) = a(t).

We have
- ® —M(l)
H() = [> A0 [M(’ X 5 acon. (7.4.1)
k= .
The density function h(t) is given by
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h(f)=a(’)TKe'M("i%pk+,dG(k) , >0 (7.4.2)

Now we prove

Theorem 7.8. The survival function H (t)in (7.4.1) is ILR if (13") is discrete ILR,
k=0

{p«} 1s decreasing and a(t) is an increasing log concave function.

Proof:-
h(t) = a(t)g(t) where g(t) = a(t)??»e MO i[k—%gl]— DiadG(L)-
0 k=0 .
,( ) a(r) P‘z —M(l)i M(t)] Pk+2 Pra ) dG()\)
Letg'(r)=2 D =0
g(r) g

k .
Rl [
Ixe i )Z X! P dG(X)
0 .

0

For t; <ty, let the determinant

_(a(y)Dy, a(,)D,
D, D,

whereD = P“z _M(IZ)Z[M(IZ)] (pk+2 pk+l)dG()")

J.x'2 M) z [M(t )] pk+2 pk+| ) dG(}")

D, = fre e S TG, ag
k=0

w M(t S M 1 ¢
D, = P‘e_ (.)Z[__%lpm dG(\) -

0
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Since a(t) is increasing and py is decreasing,

D <a(t2)[D11D22 - Di2Day]

Now, using the basic composition formula (refer Karlin (1968)) and proceeding in a

similar manner as in the proof of theorem (7.2.1) it can be seen that

. A( ()2

o ” )\’zle—klA(zz) )\2 -24(4)

A <A, ;"2 k<l

k!
) e EE 0 AC) )

I )

where M = D|1D22 - D12D21.

Pri2
pk+1

pl+2
p1+1

dG(A)dG(r,)

Using the facts that A(t) is increasing in t and {py} is discrete ILR, it can be verified

that the first and third determinants are positive and the second one is negative. Hence

D<0.
Therefore g'(t) is decreasing in t.
That is log g(t) is concave.

That is h(t) is log concave, since a(t) is log concave.

Corollary 7.1. The survival function H (f)ina homogeneous mixed Poisson model is

[LR if (lskj is discrete ILR.
k=0

The corresponding dual theorem under mixed Poisson model is the following.

Theorem 7.9. The survival function 1_1(t) in (6.4.1) is DLR if (};k)

{pk} 1s increasing and a(t) is decreasing log convex function.
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CONCLUDING REMARKS

In this study we have investigated certain stochastic models in queues, inventory and
reliability and augmented some interesting results concerning their stationary and time
dependent aspects. The unimodality properties of stationary population size
distribution of the birth and death process and the characterization result presented in
chapter 2 have great importance in queueing networks. This suggests further
motivation for studying the stationary characteristics of similar queueing models under

general distributional assumption.

In many real life situations we can see that there is a control limit for shutting
down and resuming service and we have developed in chapter-3, a simple procedure to
obtain the stationary distribution of the appropriate queueing model in such a situation.
.By introducing a secondary limit to the single and batch service M/M/1 queueing
system we can escape from perpetual change over from batch service to single service.
We develop such a model and analyzed it in fourth chapter with numerical illustration.

Deviating from Markovian assumption to non-Markovian one may develop algorithmic
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solution using regenerative or semi-regenerative process to compute the steady state
and transient state probabilities. In a similar manner if one can relax the exponential
assumption and perform the analysis of intermittently used n-unit system, it will be a
quite worthwhile work. Since we derive the stationary distribution of (S — 1, S)
production/inventory system under a versatile class of PH- distributions, which covers
most of the commonly used distribution like exponential, gamma, hyper exponential

etc., the results can be considered to be more robust.

There are many interesting problems concerning various stochastic models
considered in this thesis. Practical experience over the past has suggested a much more
flexible family of models. Current attempts to extend the models have been restricted
to models, which have closed form properties. The power of Markov chain Monte
Carlo (MCMC) methods may be used to explore new models which do not posses the
simple structure necessary to give closed form properties but instead provide a much

broader class of models and inference flexibility.
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