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CHAPTER 1 

INTRODUCTION 

1 .l Stochastic Modeling 

Many real world phenomena require the analysis of systems in stochastic settings. So 

stochastic models have become increasingly important for understanding or making 

performance evaluation of physically realizable complex systems in various branches 

of science and in almost all walks of life. Recently there have been striking advances in 

both mathematical and statistical aspects of stochastic models. For dynamic system 

with a given probabilistic law of motion, the simple Markov model is often found to be 

appropriate. One of the greatest success stories for stochastic models is the 

development of computer communication networks. There are several interesting 

scenarios in the internet and the emerging next generation networks where stochastic 

modeling is applicable. 



Tijims (1994) gave an algorithmic approach to stochastic modeling with a wide 

variety of realistic examples. A. A. Markov at the beginning of twentieth century 

developed a probability model in which the outcomes of the successive trials are 

allowed to be independent on each other such that each trial depends on its 

predecessor. + 

Even Kolmogorov's axiomatic approach to probability may be considered as 

modeling of the real world concept of chance by a set of axioms so that probability 

measure can be studied mathematically. Since then several scientists have proposed 

stochastic models to describe different phenomena. Some of such models are - 

insurance risk models, dam models, inventory and queueing models, reliability models, 

model for population growth and epidemic models. This thesis is devoted to the study 

of some interesting models in queues, inventory and reliability, which are physically 

realizable though complex. 

A model may be iconic giving shape to an abstraction, symbolic, involving the 

mathematical relationships or statements underlying the various aspects of the 

phenomenon under observation. It provides an approximation to the real world 

situation. A model involving a random variable or a chance factor is called a stochastic 

or a probability model. Deterministic models may be viewed as special cases of 

stochastic models. As we believe in the philosophy - 'every thing in the universe is 

random', the stochastic models become our prime concern in any scientific study. 



In model building, the first step in the construction of a model is to identify the 

essential characteristics of the phenomenon and their inter relationships. Then we will 

analyze the model deducing the various observable characteristics, which would follow 

if the model is satisfactory. The next step in the model building is to fit a suitable 

model from the family of models, by choosing the value of one or more parameters of 

the model. If the fit is not satisfactory, one tries to modify the model. Once we arrive at 

the satisfactory model, it can be used for the purpose of prediction and control. 

Decision theory can be used to decide on the optimal action from the model. 

Janssen et. al. (1995) cited a variety of stochastic models in finance, insurance, 

economic forecasting, marketing etc. He described these models as an interface 

between stochastic modeling and data analysis and their applications in various fields. 

Krishna Reddy et. al. (1994) gave an elaborate account of stochastic models and 

optimization techniques to upgrade and modernize the existing technology. Software 

reliability and computer communication systems are closely related to optimization and 

stochastic modeling. Guttierrez (1 994) explained some stochastic models in operations 

research, earth and life sciences and information theory, from an application 

perspective. Brandt et. al. (1990) gave detailed account of stationary stochastic models 

with a special reference to queueing models. Kijima (1997) explained the transient 

behavior of Markov chains through monotone processes, reversibility and rate of 

convergence that provide good help for stochastic modeling. Wolf (1 989) explained 

many stochastic models - most of them are queueing models - with concrete basic 



knowledge of the theory and a very good literature of the models. For a systematic 

exposition of the basic theory and applications of stochastic models one may refer to 

Bhat (2000). More recently Latouche and Taylor (2000) explained some algorithmic 

methods for stochastic models. For a wide variety of stochastic models, the steady state 

and occasionally the transient measure of the underlying process can be expressed in 

terms of a matrix. That matrix is a minimal non-negative solution to a non-linear 

equation. M. F. Neuts first proposed such matrix solutions to stochastic models in the 

early 1970's. Chakravarthy and Alfa (1 997) obtained a number of stochastic models in 

which matrix analytic methods employed as a main tool. 

In stochastic modeling, the ideas in queue, inventory and reliability theory have 

considerable importance. Recently many articles are available by applying one of these 

theoretical concepts in the areas of the other or both. Several authors have studied 

these theories simultaneously. For example one can see Kalashnikov (1 994), Atkinson 

(1995), Kusaka and Mori (1995), Park et. al. (1996), Sharma and Chauhan (1996), Li 

Wei et. al. (1997), Wang (1997), Karaesmen and Gupta (1997), Gopalan (1999), Ke 

and Wang (1999) and Perry and Posner (1999). 

Each chapter in this thesis is provided with self-introduction, notations and 

some important references. The next three sections of this chapter review briefly the 

earlier developments of the theories of queue, inventory and reliability. Some 

analytical tools used in this work supplemented in section 1.5. A brief account of PH 



class of distributions is given in section 1.6. The final section presents an outline of the 

results obtained in this thesis is given. 

1.2 Queueing Models - An Outline 

Queueing theory is a well-developed subject of applied probability theory. The 

systematic study of the queueing theory was pioneered by A. K. Erlang at the 

beginning of twentieth century whose work initially started with telephone exchange 

problems. Since then many researchers throughout the world have continued his work. 

Amongst the known books available in the literature are those of Saaty (1961), Takacs 

(1 962), Prabhu (1965), Cohen (1969), Gross and Haris (1998) and Asmussen (1987). 

By now, there are many thousands of articles on queueing and related topics. The flow 

of new theories and methodologies has become very hard to keep up with. 

We have all experienced waiting for service some way or another. A queue is 

formed when customers arrive at a service facility and demand service. Clearly in 

different situations, there are different service facilities, service discipline, customer 

behavior etc. Thus a queueing model has the following basic characteristics: 

1) Arrival pattern of customers. 

2) Service pattern of servers. 

3) Number of service channels. 

4) System capacity. 

5) Queue discipline. 



The arrival pattern describes the manner in which the customers arrive and join 

in the queue. Usually the process of arrivals is stochastic and it is thus necessary to 

know the probability distribution of the inter arrival time, the time between the 

successive arrivals. The arrival can be either one at a time or in batches and if it is in 

batches, we should know the size of the batch. We have to examine the reaction of the 

customer upon entering the system. If a customer decides not to enter the queue upon 

the arrival the customer is said to have balked. The reneged customers are those who 

enter the queue and after some time loss patience and decide to leave. Besides these the 

customers may switch from one queue to another, if there is more than one parallel 

waiting lines, and this is known as jockey for position. These three situations are 

examples of queue with impatient customers. The arrival pattern independent of time is 

called stationary and not independent of time is called non-stationary. 

Most often, service pattern is described by a probability distribution of the 

average service time of a customer. Service may also be single or batch. Unlike from 

the arrival pattern service depends on the number of customers in the queue is referred 

as state-dependent service. Service can also be stationary or non-stationary. When we 

speak about service time, the system must be non-empty. If the system is empty, the 

service facility is idle. Thus we may say that queue length would be the result of two 

separate patterns - arrivals and services - which are generally assumed to be 

independent. 



Service channel refers the capacity of the servicing facility. That is the number 

of servers available. System capacity is the capacity of the waiting room, may be finite 

or infinite. In the case of finite system capacity, those customers who arrive after the 

room is full will be lost. Queue discipline refers to the manner in which customers are 

selected for service when a queue has formed. The most common discipline that can be 

observed in every day life is first come, first served FCFS. Some others are last come 

first served (LCFS), Random service selection (RSS) and Priority (PR) schemes. There 

are two general priority schemes, pre-emptive and non-pre-emptive. In the first, the 

customer with highest priority is allowed to enter service facility immediately even if a 

customer with lower priority is already in service. But in the second, the highest 

priority customer goes to the head of the queue and gets into service immediately after 

the customer presently in service served out. 

When we come to the notation of a queueing model, Kendall described a model 

by A/B/X/Y/Z where A indicates the inter arrival time distribution, B the service time 

distribution, X number of service channels, Y the system capacity and Z the queue 

discipline. Dshalalow (1995) included server capacity and busy period discipline in this 

notation by introducing two more abbreviations. If there is no limit on the system 

capacity and the queue discipline is FIFO, A/B/X can be taken as the notation of the 

queueing model. For example, M/M/l means arrival and service time follows 

exponential, there is only one server, the system capacity is infinite and the queue 

discipline is FCFS. 



Analysis of a queueing model mainly involves the probability distribution of 

the following random variables. 1) The system size - the number of customers in the 

system- 2) The waiting time in the system - the duration of the time a customer has to 

spend in the system before leaving. 3) Busy period - the period of time the server is 

continuously busy. 

The behavior of a queue at time t depends on t. However, most results arrived 

at in the literature are for the behavior of the system in equilibrium. That is as t + co. 

In such cases, the system is unaffected by the shift of time and is said to be in the 

steady state or the system is stationary. It should be noted that besides the fact that the 

study of a system in equilibrium is mathematically simpler, it is also considered to be 

more important in applications. 

The time dependent solution of M/M/l queue was first given by Bailey (1954) 

using the method of generating function. Even now so many articles aimed at the 

transient solutions of system size of M/M/l queueing models are available in standard 

journals. 

For non-Markovian queues, Palm (1943) and Kendall (1953) have used the method 

of regeneration points and imbedded Markov chain techniques respectively. The study of 

bulk queues is originated with the pioneering work of Bailey. For details of bulk queues, 

one may refer Medhi (1984) and Chaudhry and Templeton (1984). Queueing models in 

which the service process is subject to interruptions resulting from unscheduled 



breakdowns of servers, scheduled off periods, arrival of customers with pre-emptive and 

non-pre-emptive priorities or the server working on primary and secondary customers arise 

naturally. A detailed analysis of single server queues with server failure is given in 

Gnedenko and Kovalenko (1968). When the on-periods are not exponential, the model 

becomes complicated and one such model is studied by Federgruen and Green (1 986). 

The time dependent behavior as well as steady state behavior of WG/ l  and 

G/M/l queueing system first studied by Bhat (1968) in which bulk arrival and bulk 

service are considered and the behavior of the waiting time process is obtained. A 

review of papers based on the generalizations of the classical WG/ l  system is 

available in Medhi (1994). Atkinson (1995) considered an M/G/1/0 queue and obtained 

the transient analysis, which has application in reliability model for a single repairable 

component. 

In the case of vacation model, Miller (1964) analyzed a system in which the 

server goes for a vacation of random duration whenever it becomes idle. A queueing 

system in which, the server taking exactly one vacation at the end of each busy period, 

is called a single vacation system. When the system becomes empty, server starts a 

vacation and he keeps on taking vacations until on return from vacation at least one 

customer is present. Several authors analyzed vacation systems. For more details on 

queueing systems with vacations one may refer to Doshi (1 986, 1990). 



Models of retrial queues, GIG11 queues, tandem queues, queue with infinite 

servers, and queue with finite system capacity played a prominent role in the recent 

research. Kasahara et. al. (1996) considered an MlGllIK system with push-out scheme 

and multiple vacations and derived the Laplace - Stieltjes transform of waiting time 

distribution for the customer which is eventually served. Langaris and Katsaros (1997) 

considered an M/G/l/N model multiple server vacations and gated service policy. They 

analyzed the steady state probabilities and the customers waiting time. Frey and 

~Akahashi (1997) considered an MIGIIIN queue with vacation time and exhaustive 

service discipline and analyzed the queue length distribution at an arbitrary time as 

well as for the waiting time distribution. In 1998, they analyzed it using imbedded 

Markov chain technique, which makes analysis simple. 

Bogoyavlenskaya (1997) considered M/G/l/m queue and analyzed using 

Erlangian phase method and obtained the steady state distribution of the queue length. 

Chaudhry and Gupta (1999) considered a single server finite capacity queue with 

general bulk service rule where customers arrive according to Poisson process and 

service times of the batches are arbitrarily distributed. Using supplementary variable 

and imbedded Markov chain technique they presented the relations between state 

dependent probabilities at departure and arbitrary epochs. Pekoz (1999) derived 

formulas for moments of the number of refused customers in a busy period in MlGI/l/n 

and GI/M/l/n queueing systems. Frey and Takahasi (1999) considered an M ~ / G I / ~ / N  

finite capacity queue with close down time, vacation time and exhaustive service 



discipline under the partial acceptance strategy as well as under the whole batch 

acceptance strategy. 

Earlier we have revealed five basic characteristics of a queue for the case when 

there is only one stage of service. It is also possible in many situations that a customer 

has to go through several stages of service. Thus, he is in a series of queues so that his 

departure from one stage be his arrival at the next. Therefore the departure processes of 

different queues are of paramount importance in the study of queues i ! ~  tandem. A 

natural question, in cases where the only observables from the system are the 

departures, is whether or not from the behavior of the departures of queue one can 

identifi or gain some information about the unknown input process or service system. 

There is a vast literature on output processes from queues. Much of it is reviewed in 

Daley (1 976) and that review is updated later by Gnedenko and Konig (1 983). 

Usually in queueing models the server stops service when there is no customer 

in the queue and resumes service when a new customer joins the queue next time. This 

model fails to describe many real life situations where there is a control limit for 

shutting down and resuming of service. This may be treated as a model with removable 

server - the server being removed depending on the demand level. Queueing systems 

with removable servers were considered by Yadin and Naor (1963), Bell (1975) and 

Rhee and Sivazlian ( l  990) and other researchers. 

There are many real life queueing situations in which service is rendered with 

control limit policies. In these situations one can use single and batch service in the 



same queueing model, which will be profitable than either could provide. For example 

one can see Baburaj and Manoharan (1 997a) and Baburaj (2000). 

Apart from this, one can see some remarkable achievements of queueing theory 

in the various field of applied mathematics and other applied sciences. For some 

advanced developments in queueing one can refer Dshalalow (1995, 1997). He cited 

spatial queues, queues with Markovian arrival processes and some other major research 

areas in queueing theory by providing an elaborated list of references. 

1.3 Inventory Models - An out line. 

The study of inventory models started with the work of Harris in 1915, which 

formulated and optimized a simple inventory situation. The formula derived by Harris 

is an optimal production lot size given as a square root function of a fixed cost, an 

investment or holding cost, and demand. This formula is known as the economic order 

quantity (EOQ) formula. Most of the individual elements of current inventory models 

are available before 1950. 

An inventory is an amount of material stored for the purpose of sale or 

production. Inventory management of physical goods, or other products or elements is 

an integral part of logistic systems common to all sectors of the economy, such as 

business, industry, agriculture and defence. In an economy that is perfectly predictable, 

inventory may be needed to take advantage of the economic features of a particular 



technology, or to synchronize human tasks or to regulate the production process to 

meet the changing trends in demand. When uncertainty is present, inventories are used 

as protection against risk or stock-out. 

Inventory theory is concerned with the analysis of several types of decisions 

relating primarily to the problem of when and how much to buy of a given item. An 

analysis of an inventory consists of the following steps: 1) Determination of the 

properties of the system, 2) Formulation of the problem, 3) Development of a model of 

the system and 4) Derivation of a solution of the problem. 

The movement or flow of a single commodity into and out of a single storage 

point characterized the simplest type of inventory system. 

Inflow -------------- + Inventory ----m------------ + Outflow 

(Procurement) (Demand) 

Several policies may be used to control an inventory system; of these the most 

important policy is the two-bin or (S, S) policy. Under this particular policy, whenever 

the position inventory (sum of on-hand inventory and outstanding orders) is equal to or 

less than a value S, procurement is made to bring its level to S. Under a continuous 

review system, the (S, S) policy will usually imply the procurement of a fixed quantity 

Q = S - S of the commodity, while in periodic review systems the procurement quantity 

will vary. The (S, S) policy incorporates two decision variables S and S. The variable S 



is known as the reorder level, which identifies when to order, while both variables S 

and S identify how much to order. 

In an inventory problem, the objective function may take several forms, and 

these usually involve the minimization of a cost function or the maximization of a 

profit function. The cost function in general, consist of the additive contribution of the 

procurement, the holding cost, and the shortage cost. Under the (S, S) policy, in a 

number of situations, it is more convenient to determine the optimal values of the pair 

(S, Q) or (S, Q) instead of optimizing the objective function by determining the values 

of S and S. 

The inventory models are usually characterized by the demand pattern and the 

policy for replenishing the stock in the store. The replenishments ordered may arrive 

after a time lag L, which may be fixed or a random variable. This time lag L is called 

the lead-time. The time during which the inventory is empty is termed as a dry period. 

Asymptotic account of probabilistic treatment in the study of inventory systems using 

renewal theoretic argument is given in Arrow et. al. (1958). A review of the problems 

in the probability theory of storage systems is given by Gani (1 957). 

Most of the inventory models in the literature are concerned with determining 

the optimal stocking policies at a single installation. But nowadays the models, which 

determines optimal inventory management with more than a single installation attracts 

considerable attention. Scarf et. al. (1963) gave a detailed account of multistage 



inventory models. When demand is discrete the (S - 1, S) policy calls for the 

placement of a replenishment order after each demand equal in magnitude to the size of 

the demand. This policy has often advocated for controlling inventory of expensive and 

slow moving items. 

A detailed review of the work carried out in (S, S) inventory systems up to 1966 

can be found in Veinote (1966). The earliest work on the decay problem is due to 

Ghare and Schrader (1963) who considered the generalization of the standard EOQ 

model without shortages. The view of Nahrnias (1982) provides the state of art on 

perishable inventory models until the beginning of eighties. Manoharan and 

Krishnamoorthy (1989) considered an inventory problem with all items subject to 

decay and derived the limiting probability distribution. Kalpakam and Arivarignan 

(1989) analyze a perishable inventory model in which the inventoried items have 

lifetimes with negative exponential distribution with demands forming a Poisson 

process. Krishnamoorthy and Varghese (1995) extended the above model, subject to 

disasters. Kalpakam and Sapna (1 996) analyzed a one-to-one ordering perishable 

inventory model with renewal demands and exponential life times. Aggoun et. al. 

(1997) deals with a parametric multi-period integer valued inventory model for 

perishable items. In 1999 the same authors proposed a single-product, discrete time 

inventory model for perishable items. Williams and Patuwo (1999) derived the 

necessary equations to determine the single period, periodic review and optimal 

incoming quantity for a single product with a useful lifetime of two periods, subject to 

a known positive order lead time and a lost sales policy. 



Stidham (1974) has introduced and studied wide class of stochastic input- 

output systems. Berg et. al- (1994) considered a production/inventory system with 

unreliable machines. A production/inventory system consisting of a single processor 

producing three product types and a warehouse is considered by Altoik and Shiue 

(1995). Glasserman and Tayur (1996) developed a simple approximation for multi 

stage production inventory system with limited production capacity and variable 

demands. Arreola-Risa (1 996) studied an integrated multi-item production inventory 

system with stochastic demands and capacitated production and derived analytical 

expressions that lead to the optimal base stock levels. Gullu (1996) explored how total 

system costs and inventory positions are affected when forecasts are incorporated 

explicitly in production,inventory systems. 

Aviv and Federgruen (1997) considered a single item, periodic review 

inventory model with uncertain demands in which each period production volume is 

limited by a capacity level. Bar-Lev et. al. (1996) analyzed a stochastic 

production/inventory problem with compound Poisson demand and state (inventory 

level) dependent production rates. Ha (1997) considered the problem of production 

control and stock rationing in a make - to - stock production system with two priority 

customer classes and back ordering. Inder Furth (1 997) addressed a problem of product 

recovery management where a single product is stocked in order to fulfil a stochastic 

demand of customers who may return products after usage. Van-Houtum and Zijm 



(1997) studied incomplete convolutions of continuous distribution functions as they 

appear in the analysis of multistage production and inventory systems. 

Gullu (1 998) considered a single item, stochastic demand productionlinventory 

problem where the maximum amount that can be produced (ordered) in any given 

period is assumed to be uncertain. Kijima and Takimoto (1999) considered a single 

item single location, (T, S) inventory/production model with uncertain demands in 

which a production capacity is limited per period. Apart from stationary and time 

dependent behavior of system characteristics the effects of limited production capacity 

and the order-up-to-level on performance characteristics are also discussed. 

1.4 Reliability Models - An Outline 

The formation of reliability theory as a discipline started about half a century ago. 

Before that time the concept of reliability was looked at from an intuitive, subjective 

and qualitative point of view. The mathematical theory of reliability has grown out of 

the demands of modem technology and particularly out of the experiences in World 

War I1 with complex military systems. 

The term "reliability" encompasses a wide class of research topics, ranging 

from transistor reliability to the reliability of complex systems. The problems of 

failures, repairs, maintenance etc. are to be viewed seriously in the use of any 

equipments or systems, because of future performance or future life is entirely 



depending on such reliability characteristics. Today design and production engineers 

discuss methods of improving reliability in design and production stages. Nowadays, a 

new science was even invented with the aim of discussing how reliability is achieved 

by nature and of trying to initiate such methods in building similar electronic or 

mechanical devices. 

An equipment may be unreliable due to various reasons. They are infant 

mortalities, random failures and wear outs. One of the principal methods of improving 

system reliability is the introduction of redundancy. Repair and preventive 

maintenance are other methods of increasing system reliability. 

Reliability as a human attribute has been praised for a very long time. In 

reliability, we are mainly concerned with devices or systems that fail at an 

unpredictable random age of T > 0. This random variable is assumed to have a 

distribution F, F(t) = P[T I t], t E R, with a density f. Then reliability R(t) of the 

system is defined as 

P[T > I ]  = I - F([ )  = F ( [ )  . 

This function is also known as survival function. The failure rate h is defined on the 

support of the distribution by 

The failure rate h(t) measures the proneness to failure at time t and we have the relation 



I 

-J A(.S) dr 

~ ( t ) = e  [see Aven and Jensen (1 99911 

Epstein and Sobel (1953) began the work in the field of life testing, which 

marked the beginning of wide spread research using exponential distribution. Until 

1960 reliability was defined as the probability that an item will perform a required 

function under stated conditions for a stated period of time. Research on coherent 

structures (general system reliability) began with the paper by Birnbaum et. al. (1961). 

Barlow and Proschan (1965) stimulated the research work on the failure rate function 

and classes of life distributions defined in terms of this function. Barlow and Proschan 

(1975) can be viewed as first milestone in lifetime analysis, complex systems and 

maintenance models. 

Osaki and Nakagawa (1976) obtained a brief review of stochastic models on 

system reliability using stochastic processes such as Markov chains, Markov processes, 

renewal processes and semi - Markov processes. Ashok Kumar and Manju Agarwal 

(1980) reviewed different type of systems discussed in literature and various methods 

employed by different researchers in the analysis. Sherif and Smith (1981) provided an 

extensive bibliography of 524 references followed by Valdez-Flores and Feldman 

( 1  989) with 129 references on reliability models. 

The earlier works in the multi state coherent systems are available in Barlow 

and Wu (1978). Joseph and Manoharan (1997) obtained the transient and steady state 

probabilities of a repairable multi state system having different failure modes. 



Manoharan (1998) considered a multi state system that deteriorates over time and 

obtained the optimum performance level at which replacement is to be made. Shey - 

Huei (1999) proposed a generalized replacement model where a deteriorating system 

has two types of failures and is replaced at the N ' ~  type I failure (minor failure) or first 

type I1 failure (Catastrophic failure) or at the working age T, whichever occurs first. 

Shock models are described in Barlow and Proschan (1975). Perez - ocon and 

Gamiz - Perez (1995) derive a condition for a correlated cumulative shock model 

under which the system failure time is harmonically new better than used in 

expectation (HNBUE). Gasemyr and Natwig (1995) considered a binary monotone 

system whose component states are dependent such that shocks that destroy several 

components at once. They showed how the minimal path and cut sets of the two 

systems are related, and use it to examine the relation between the bounds on the 

reliability based on the two systems. Abouammoh et.al. (1995) considered a device 

subjected to shocks which arrive according to a counting process {N(t), t 2 0) and the 

probability that the device survives beyond t, and their ageing properties are studied for 

- 

H ( t )  when {N(t), t 2 0) is a non-homogenous Poisson process. 

Lee and Lee (1995) introduced a random shock model for a linearly 

deteriorating system and obtained the characteristic function (c.0 of X(t), the state of 

the system at the time t. Thangaraj and Stanley (1995) considered a system subject to 

shocks occurring randomly in time according to a general pure birth process and 



studied the rate of generation of information about the failure times of systems for 

different processes. 

Mitra and Basu (1996) considered the life distribution of a device subject to a 

sequence of shocks occurring randomly in time according to a homogenous Poisson 

process. Thangaraj and Sundararajan (1 997) proposed some multivariate replacement 

policies based on a number of shocks, cumulative damage caused due to shocks and 

the working age of the system subject to shocks. Again Gasemyr and Natwig (1998) 

presented a Bayesian approach based on autopsy data. 

Shei - Huei and Griffith (1996) considered a system subject to shocks that 

arrive according to a non-homogeneous Poisson process and describe two type of 

failures. Shei - Huei (1997) proposed and analyzed a generalization of the block 

replacement policy for a system subject to shocks and the average cost rate of 

replacement of failed items is obtained using renewal reward theory. Shei - Huei 

(1998) considered the same system and derived the expression for the expected long 

run cost per unit time. Sing et. al. (1998) dealt with the effect of the shocks on the 

different characteristics of a system having two main units and one protective unit and 

obtained several characteristics of the system using a regenerative point technique. 

Ebrahimi (1999) described a model in which each shock to the system causes a 

random damage that grows in time and system fails if the total damage exceeds a 

certain capacity or threshold. He obtained various properties of this model and derived 



sufficient conditions for the future rate order. Skoulakis (2000) studied a reliability 

system subject to shocks generated by renewal process. He derived closed expressions 

for the Laplace-Stieltjes transform and the expectation of the time to system failure for 

a more general system, which has very important special cases, such as k-out-of-n: F 

system. 

Sreehari (2000) developed a model in which a system may fail if two shocks 

occur with very little gap in between or the operating environment comprises of several 

stresses/shocks whose accumulated damage effect on the failure rate. Touzi (2000) 

studied the optimal insurance demand problem of an agent whose wealth is subject to 

shocks produced by some marked point process and concluded that below the critical 

value, agents prefer to be completely insured whereas above the upper critical value 

they take no insurance. 

Apart from these so many reliability models are developed under the premise 

that the operating environment is static. Now new models have been developed when 

the environment under which the items operate is dynamic. One of such type is a 

software reliability model on which plenty of articles are available in standard journals. 

1.4.1 Intermittently Used systems 

Generally we can classify a system as priority system, system with imperfect 

switchover, parallel system, system with preventive maintenance (PM) and 

intermittently used systems. In all the systems except the last there is a basic 



assumption that the system is required continuously. But there are situations where the 

systems are not required continuously. Such systems are known as intermittently used 

systems. These systems are 'needed' or 'not needed' during alternative periods of time, 

which are governed by a pair of random variables. 

Gaver (1963) laid stress on the point event called a disappointment 

characterized by the entry of the system to either the down state during a usage period 

or the need arising for the system when it is already in the down state. Srinivasan 

(1966) extended Gaver's result and later Srivastava et. al. (1971) considered the 

stochastic behavior of an intermittently working system with standbf redundancy. 

Nakagawa et. al. (1976) have considered the preventive maintenance policy and 

obtained the mean time to first disappointment. 

Srinivasan et. al. (1979) discussed intermittently used two dissimilar unit 

system and obtained various reliability measures. Kapoor and Kapoor (1 980) derived 

the explicit expressions for joint distribution of first uptime and disappointment time of 

an intermittently used two unit cold standby redundant system. Subramanian et. al. 

(1 98 1)  have analyzed an intermittently used n-unit standby redundant system. Sharma 

and Natarajan (1982) considered a general model where the random variable 

describing the need and no-need periods are independent and identically distributed, 

which are not necessarily exponential. 



In all the models considered so far it is usually assumed that the need is always 

for only one unit and the need and no-need periods alternate. But there may be 

situations that may warrant the use of one or more units for the satisfactory 

performance of the system. In such situations the number of units needed at any time 

may be described by a .stochastic process called the "need process". Sharafali et. al. 

( 1  988) introduced this concept for a two unit system with stochastic demand. 

1.4.2 Aspects of Ageing 

The notion of aging is first discussed in Bryson and Siddique (1969). The concept of 

ageing for life distributions has been found very useful in reliability theory. Based on 

these notions, results may be derived concerning the behavior of systems, bounds for 

survival functions, moment inequalities etc. It has been found useful for arriving at 

efficient algorithms for use in maintenance policies. 

Concerning the lifetime random variable T, the mean of T is denoted by p. For 

each t with ~ ( t )  > 0, F(x/ t )  = 
F(t + X )  

F([) 
= P ~ ( T  t r + x/T 2 t )  represents the survival 

function of a unit of age t. The remaining (residual) life, at age t, is E(T -t/T > r), 

m 

which may be shown to be JF(x/t)dr. When F1(t) = f(t) exists, we can define the 
0 

failure rate as 

h(l) = fi , for t such that F ( t )  > 0. 

It follows that, if h(t) exists, 



- log F ( x )  = ]h (r)dt , which represents the cumulative failure rate. 
0 

The following notions of positive (adverse effect) ageing are common in 

reliability theory. We say F is said to be 

(i) Increasing failure rate (IFR) if F(x/t)  is decreasing in 0 I t < co for each t 2 0. 

When the density exists, this is equivalent to h@) = fo being non-decreasing in t 2 0. 

1 
(ii) Increasing failure rate average (IFRA) if - -log F ( x )  is non-decreasing in X. 

X 

(iii) Decreasing mean residual life (DMRL) if the mean remaining life function 

m 

jF(x/t)dr is non-increasing in X. 
0 

(iv) New better than used (NBU) if F(x/t)  5 F(x) for t L 0, X r 0. 

m 

(V) New better than used in expectation (NBUE) if [F(x/t)dx 5 p for t t 0. 
0 

(vi) Harmonically new better than used in expectation (HNBUE) if 

m 

(vii) L - distribution if /exp(- st)F(t)dt t - f o r s20 .  
0 I + s  

(viii) New better than used in failure rate (NBUFR) if h(t) 2 h(0) for t 2 0. 



(ix) New better than used in average failure rate (NBAFR) if 

h(0) 2 ]I(X)G!X = 
- log F ( t )  

0 
t 

It is verified that among the positive ageing properties the following and only 

the following implications hold. 

IFR a IFRA 3 NBU S NBUFR 3 NBAFR 

U U 
DMRL S NBUE S HNBUE L .  

Note that we have a parallel discussion of the dual classes of life distributions, 

which can be similarly defined based on negative (beneficial effect) ageing. There exist 

a vast amount of literature examining the relevance of the above notions in reliability 

theory and survival analysis. Closure of classes of distributions possessing the above 

properties under formation of coherent structures, convolutions, mixtures etc. has been 

investigated. The preservation of the classes under various shock models has been 

extensively studied in the literature. 

1.5 Some Analytical Tools for the Analysis 

1.5.1 Renewal Process 

Renewal theory was first introduced by Feller (1 941). Later Smith (1 954) demonstrated 

its uses in the study of general theory of stochastic processes. Let {X,, n 2 1) be a 



sequence of non-negative independent and identically distributed random variables 

with a common distribution function (d. f.) F(.). Again let So = 0, and S, = XI  + X2 + 

. . . + X,, n 2 1. Then the process {N(t), t 2 O), where N(t) = Sup{n I S, I t) is called a 

renewal process. 

Define M(t) to be the expected value of N(t). Then M(t) is called the renewal 

function. The derivative of M(t), if it exists, is denoted by m(t) and is called the 

renewal density. The quantity m(t)dt represents the probability that a renewal occurs in 

(t, t + dt), which is important in practical applications. 

Let F,(x) = P{S, I X) be the d.f. of S,. Since Xi's are independent and 

identically distributed, F,(.) is the n - fold convolution of F with itself and for n = 0 we 

interpret it to be unity. It is easy to see that N(t) 2 n e S, I t. 

Thus the distribution of N(t) is given by 

P{N(t) = n) = F,(t) - F,+,(t) and 

~ ( t )  = 2 Fn ( t )  . 
n=l 

The renewal density satisfies the integral equation 

m(t) = f (t)+ ] f ( u )  m (t - U )  du where f ( t )  = ~ ' ( t ) .  
0 

A similar equation satisfied by the renewal function M(t) is given by 

The above equation is called the renewal equation. 



Now, suppose that X, has a distribution G(.) which is different from the 

common distribution F(.) of the remaining X2, X3, . . . , then the process {ND(t), t 2 0) is 

called a delayed renewal process where ND(t) = Sup{n ( S, I t). 

Theorem 1.1. (Elementary Renewal Theorem) Let p = E(X,) with convention, 

1 
- = 0, whenp = a. 
P Then lim- M(t) - - l .  

r+m t P 

Theorem 1.2. (Key Renewal Theorem) If H(t) is a non-negative function o f t  such 

that 

cc 
1 "  

/ H ( [ )  dl < m, then lim jH(t  - u)dM(u) = - j ~ ( f ) d t .  
I +m 

0 0 P 0 

1.5.2 Stochastic Point Process 

The theory of point processes introduced by Von Mises (1936). Srinivasan (1974) 

obtained a detailed treatment of stochastic point processes with special reference to its 

applications in management problems. 

Let {T,), n = 0, + l ,  +2, ... ... be a discrete parameter stochastic process 

associated with the probability space {a, A, P }  where each T, is finite valued and 

non-negative with probability one. 



If T, is specified as above and if 

then the sequence {t,) is called a stochastic point process. 

1.5.3 Product Densities 

One of the ways of characterizing a general stochastic point process is through the 

product densities (Srinivasan (l 974)). 

Let us introduce the following notation. 

N(t, X) = the number of events in (t, t + X] which is a random variable, d, N(t, X) = the 

number of events in (t + X, t + X + dx] and P,(t, X) = P[N(t, X) = n]. 

A point process defined on the real line is said to be orderly regular if 

An interesting consequence of (1.5.1) is given by the relation 

lirn E[N(t, 4 1  P[N(t, A) 2 l] = lim 
A + O  A A - 0  A 

lim E[N(t, A)] P[Ar(t, A) = l] 
= lim 

A + O  A A - + O  A 



It can be shown that, E p ( t ,  A)] = Var [N(t, A)] for small A. 

Now the densities of the factorial moment measures can be conveniently 

defined by 

P[N(x,,A,) 2 1 ; i = l, 2, ..., n] 
= lim ; X, # X ,  + - . . + X , .  

A, , A >  . . . . ,A,+o A,A, ... A,, 

Since h,(.) is a product of density of expectation measures at different points, the 

density is aptly called product density. 

We can introduce the product densities corresponding to the counting process, 

which is defined by 

hn(t, X I ,  ~ 2 ,  . . ., x ~ ) ~ x I ,  dx2, ., dxn = E[d,, N(t, X,)  dXl N(t, x2)  ... d," N( t ,  X,)] . 

Even though the functions h,(.) are called the densities it is important to note 

that their integration will not give probabilities, but will yield the factorial moments. 

1.5.4 Markov Renewal Process 

Markov renewal process is a generalization of both Markov process and renewal 

process and is a blend of the two. It creates tools that are more powerful than those 

either could provide. A detailed study of Markov renewal process (MRP) has been 

made by Cinlar (1 975). 



Suppose a particle or a system move from one state to another state with 

random sojourn times between the states. The successive states visited form a Markov 

chain and a sojourn time has a distribution, which depends on the state being visited as 

well as the next state to be entered. Such a process becomes a Markov process if the 

distributions of sojourn time are all exponential, independent of next state. The process 

becomes renewal process if there is only one state in the state space 'S'. 

Let (Q, A, P) be a probability space, N be the set of non-negative integers and 

R+ be the non-negative real numbers. On this probability space, the random variables 

X,,: Q+E and T,: R-+R+ are defined for each n E N so that 0 = To I T1 5 . . . where E 

is a finite set. These elements are said to form a MRP (X,T) with state space E if 

P[X,+I = j, T,+I - T, 5 t I XO, XI,  . .., X,,; TO, TI ,  ..., T,] = P[X,+l = j, Tn+l - T, _< t ( X,] 

tj nE N, j  E E, and t E R+. 

The semi Markov kernel Q has its (i, j)lh entry 

Q(i, j, t) = P[X,+I = j ,  T,+I - T, 5 t I X, = i] 

so that 

Q(i, j ,  t) is the distribution function of the sojourn time in i and P(i, j )  = Q(i, j ,  m) 
I 

is the transition matrix of the Markov chain {X,, n 2 0). 

The Markov renewal function is 



00 

R(i, j,t) = zpn (i, j,t) where 
n=O 

t 0 l i f i = j  gn+l(i, j,t) =E ~ ~ ( i , k , d u ) ~ " ( k ,  j,t-u)du, for n>_O and Q (i, j,t)=I(i, j)= 
k 0 

O i f i # j .  

The functions 

R(i, j, t) = E[the number of transitions into state j in (0, t) I X. = i; i, j E E] are called 

Markov renewal functions and {R(i, j, t); i, j E E, t E R+) is known as Markov renewal 

kernel. 

There are processes, which are non-Markovian and posses strong Markov 

property at certain selected random times. Then, imbedded at such intervals, one finds 

a MRP. 

1.5.5 Regenerative process 

Bellman and Harris (1948) first introduced regeneration points in the literature. Many 

stochastic processes have the property of regenerating themselves at certain points in 

time so that the behavior of the process after the regenerating epoch is a probabilistic 

replica of the behavior starting at time zero and is independent of the behavior before 

the regeneration epoch. That is, a stochastic process {X(t), t E T) with state space S 

and time index set T is said to be regenerative if there exists a random epoch S1 such 

that (i) {X(t + Sl), t E T) is independent of {X(t), 0 I t I Sl)and (ii) {X(t + S1), t E T)  

has the same distribution as {X(t), t E T). It is assumed that the index set T is either 

10, CO) or T is equal to 0, 1, 2, .... When T = [0, co) we have a continuous time 

regenerative process and in the other case a discrete time regenerative process. 



The existence of the regeneration epoch S1 implies the existence of further 

regeneration epochs S2, S3, ... having the same property as S1. That is regenerative 

process can be split into independent and identically distributed renewal cycles. A 

cycle is defined as the time interval between two consecutive regeneration epochs. 

In many practical situations a reward structure is imposed on the regenerative 

process {X(t), t E T). Let R, = the total reward earned in the n' renewal cycle, n = 1, 

2, . . . and assumed that RI, R2, . . . are independent and identically distributed random 

variables. Note that R, typically depends on L, = the length of the n~ renewal cycle , 

that is, L, = S, - S,-1 with So = 0. Define R(t) = the cumulative reward earned up to 

time t, for any teT. Then the process {R(t), t 2 0) is called a renewal reward process. 

Theorem 1.3. (Renewal reward theorem) 

lim- R(r) = - E(R') with probability I 
[ -+W t W , )  

or lim E(R(t)) _(R, - 
/+W t E(L,) ' 

Theorem 1.4. For a continuous time regenerative process {X(t), t 2 01, 

1 E(T, 
lirn - Jl, (u)du = - with probability 1 
/-+m t W, 

For a discrete time regenerative process {X(n), n = 0, 1, . . . ) 

1 " 
l im-Cl , (k)  = - 
n-+w n k=o 

E(T') E(L, with probability 1 



where IB is the indicator function and TB is the amount of time the process spends in 

the set B of states during one cycle. 

Theorem 1.5. For the regenerative process {X(t), t E T} 

E(T, lim P { X ( t )  E B )  = - 
l --*m E(L,  ) 

provided that the probability distribution of the cycle length has a continuous part in 

the continuous case and is aperiodic in the discrete time case. 

1.6 PH - Class of Distributions 

The class of phase type (PH) distributions represents the natural family to which 

Erlang's "method of stages" extends. The PH-class contains commonly used 

distributions like exponential, Erlangian, sum and mixture of exponential distributions. 

This family has gained widespread acceptance in recent years because of its 

computational properties in applied stochastic modeling. A non-negative random 

variable (or its distribution) is said to be of phase type if it is the time until absorption 

in a finite state, time-homogeneous Markov chain. This family was introduced by 

Marcel F. Neuts (Neuts (1975)) as a tool for unifying a variety of stochastic models 

and for constructing new models that yield to algorithmic analysis. These distributions 

are important in their own respects and have found useful in various fields such as 

queueing, reliability, survival analysis, branching process, telecommunications, 

computer science etc. 



There are two parallel discussions of PH- distributions. One corresponding to 

distributions on the non-negative integers obtained from absorption times in discrete 

parameter Markov chains, the other to distributions on the non-negative real line 

obtained from absorption times in continuous parameter Markov chain. We briefly 

present them here. 

1.6.1 Discrete Phase Type Distribution (DPH) 

We require the following properties of finite absorbing Markov chain. Consider a finite 

Markov chain {Y,, n 2 0) on the state space R = { l ,  2,  . . ., m, m + 1 ) .  Let its transition 

probability matrix be of the form 

where 

T = (T,A.~.,,, , T o  =(I;' T T , o = ( o  0  o ) l xm  
and Te+TO = e = ( l  l 1)'; 

Let A: (1 5 i 5 m )  denote the probability of ultimate absorption into any state m+l 

starting from given initial state i. Then we have the following elementary result. 

Theorm 1.6. A,' = 1 , 1 I i I m if, and only if, (I - T)-' exists. 

We shall assume that (I - T ) - I  exists so that the states { 1, 2, . . . , m) are transient 

and absorption into the state m + 1 starting from each one of them is certain. 



Also from the theory of Markov chains it is easy to prove the following result 

on absorption times. 

Theorem 1.7. If the initial state of the chain is chosen according to initial probability 

vector (a, a,,+,) = (al, a2, .. ., a,, a,+l), the probability p, of absorption at time n is 

n - l  0 given by p0 = a,+\ and p, = aT T , n >_ l .  

So we define 

Definition 1.1. A probability density {pk) on the set of non-negative integers is called 

a DPH if it is the density of the time until absorption in a finite state Markov chain with 

stationary transition probability matrix given by 

and initial probability vector (a, a,+I). Here T is an mxm sub-stochastic matrix such 

that Te + T O  = e and (I - T) is non-singular. 

The DPH density is given by 

PO = a,+1 

n-l 0 p n = a T  T , f o r n 2 1 .  

The pair (a, T) is called the representation of DPH and m is called the order. 



The probability generating function (pgf) of DPH density {pk) can be obtained 

which exists since (I - T)-'is non-singular. 

Hence the mean and variance of DPH can be obtained as 

Also the jth factorial moments can be obtained as 

Note that all raw moments of DPH density exists. 

Examples of DPH:- 

l .Geometric distribution pk = pqk , k 2 0 (0 < p < 1 ,  p + q = l )  has a DPH (a ,  T) of 

order 1 where a = q and T = q. 

2.Generalized negative binomial distribution (distribution of sum of geometric random 

variables) has a DPH (a,  T) of order m where a = (1, 0, . . ., O),.,, 



1.6.2 Continuous Phase Type Distribution (CPH) 

Consider a continuous time Markov chain (X(t), t 2 0) on (1, 2, . . ., m+l)where m +l  

is absorbing and others transient. Its infinitesimal generator Q by virtue of the 

absorbing state, has the block partition as 

where TO is called the exist vector, giving the conditional intensities of absorption and 

the mxm dimensional matrix T is called the phase type generator and it is always non- 

singular. Further since each raw in Q sums to zero, Te + TO = 0. 

The transition probability matrix P(t) =(Pi(t)) of the Markov chain X(t) 

satisfies the matrix differential equation 

~ ' ( t )  = ~ ( t )  Q 

with initial condition P(0) = I. The matrix solution of (1.6.2) is 

* Qntn  P(t) = exp (Qt) =C - 
n=O n! 

which has the corresponding Block partitioned form as 

Let Y = inf{t > 0: X(t) = m + l ) ,  the absorption time and (a ,  a, + *) be the 

initial probability vector. Then the probability F(t) that absorption occurs no later than 

time t, ie, the distribution of Y is given by, 



F(t) = 1 - a exp(Tt)e, t 2 0. 

This yields the continuous version as 

Definition 1.2. A distribution F on [0, m) is a CPH, if it is the distribution of time until 

absorption in a finite state Markov chain with generator 

and initial probability vector (a, a, + I), T = (T,) is a non-singular matrix of order m 

and satisfies Tii 5 0, 1 I i 1 0, TG 2 0 for i + j . The distribution F is given by 

F(x) = 1 - a exp(Tx)e, X 2 0. 

And we say F has representation (a, T),. 

Some basic analytical characteristics of CPH:- 

(i) If 0 < a, + I < 1, then F(.) has a jump of height a,+,, at 0. On (0, m), it has a 

density f(x) given by 

f (X) = a e x p ( ~ x ) ~ O  , X > 0. 

(ii) The survival function F(x) has the simple form, 

(iii) The Laplace Stieltjes transform is 

m 

(iv) The nth moment p,,' = j y " d ~ ( ~ )  = (-1)" n! a T-"e, n 2 1 .  
0 



I 

In particular mean p, = -aT -'e . 

Examples of CPH:- 

1 .The exponential distribution F(x) = 1 - e-lX , X 2 0, h > 0 has CPH representation 

(a,  T),witha= l , T = - h a n d m =  1. 

2.The generalized Erlang distribution of order m (convolution of m exponential 

distributions with parameters h] ,  h2, . . . , hm) has CPH (a, T), 

where a = (1,0, . . ., 0)1,, so that a, + 1 = 0, 

m 

3. Hyper exponential distribution ~ ( x )  = x ~ ,  (l - e-"I) P, , h,  > 0 , x ~ ,  = 1 has 
? 

r = l  

CPH (a,  T), where a = (PI, P2, . . ., Pm), T = -diag (AI, h2, . . ., h,) , so that a, + 1 = 0 

T and TO = (hl ,  h2, . .., h,) . 

When applied to PH- distributions many standard constructions of probability 

theory again yield PH- distributions, we say that the family of PH- distributions is 

closed under these constructions. Closure properties of great generality are known, but 

the practical useful ones are those for which a convenient representation for the 

resulting distribution can be written down. Neuts (1981) discusses the results under 



finite convolution, mixtures, maximum, minimum and other useful operations arising 

in stochastic models. 

1.7 An Overview of the Main Contributions of the Thesis 

In the literature we have many interesting stochastic models in queues, inventory and 

reliability describing various complex situations. In this thesis, we consider some 

models in queueing theory, inventory theory and reliability theory, which describe real 

life situations. It is important to have some knowledge of the structural aspects of 

distributions frequently encountered in the theory of queues. We shall have the 

investigation based on the properties such as unimodality and infinite divisibility, 

which could provide us an insight about the behavior of distributions. 

Keilson (1971) and Roster (1980) discuss the unimodality properties of 

distributions occurring in some situations. Unimodality and infinite divisibility are two 

of the most important concepts in distribution theory. Here we shall study these 

properties with regard to the stationary population size distribution {p,; n 2 0) of birth 

and death processes. 

In the classical queuing model the server stops service when there is no 

customer in the queue and resumes service when a new customer joins the queue next 

time. This model fails to describe many real life situations where there is a control limit 

for shutting down and resuming of service. An appropriate model in such a situation 



may the one with (a, b) policy. The stationary distribution of the system and its 

evaluation becomes important in such a study. 

Neuts (1 967), Cohen (1969) etc. considered Poisson arrival queues with single 

as well as batch service. Recently Baburaj and Manoharan (1997a) and Baburaj (2000) 

have considered a Markovian queueing system with single and batch services. This 

model with single control limit c on the batch size are found to be important in many 

real life situations, but if the control limit c is very large, the model suffers from the 

risk of perpetual change over from batch service to single service. We have developed 

a model by introducing a secondary limit a (< c). 

Inventory systems of (S - 1, S) type had been studied quite extensively in the 

past. Recently Schults (1990) established that (S - 1, S) policy is optimal when the 

renewal function of demand sizes is concave. Further he has shown that if the ratio of 

the re-order cost to the expected time between demands is smaller than a specified 

function of the lead time demand distribution and the holding and penalty costs, then it 

is optimal to order after each demand. So we have developed an (S - 1, S) policy in 

which the demand time and production time both follows PH - distributions F(.) and 

G(.) respectively and obtained the stationary distribution of the inventory level. The 

reason why the PH distributions are chosen in this work is that many researchers have 

been investigating these distributions and developing procedures to fit these 

distributions to given data sets (See for example Bobbio and Telek (1994) and 

Asmussen et a1 (1996)). 



Gaver (1963) first discussed intermittently used system and introduced 

"disappointment time". In most of the intermittently used systems one or more units 

may be required for the satisfactory performance of the system. In such situations the 

number of units needed at any time may be described by a stochastic process called the 

need process. Sharafali (1988) considered a two-unit system with stochastic demand 

and obtained various reliability measures. We consider a more general system with n- 

units and obtain analogous results. 

The question of preservation of various ageing properties under shock models 

attracted many researchers in the past. Lately Klefsjo (1981) proved that 

00 

H(!)  = P { N ( t )  = k )  P, is HNBUE if F, has the discrete HNBUE property and 
k =O 

Abouammoh et a1 (1988) have proved the NBUFR and NBAFR preservation results. 

We prove the corresponding theorems for the increasing likelihood ratio (ILR) class of 

life distributions under a generalized Poisson shock model. We also get analogous 

results for the dual class - decreasing likelihood ratio (DLR) class. 

This thesis consists of seven chapters including this introductory chapter. We 

have reviewed some developments in queue, inventory and reliability after giving a 

brief introduction on stochastic models in the first four sections of this chapter. In 

section 5, we give a brief description about the main basic tools used in the thesis. In 

section 6 we obtain a brief account on PH - distribution. In this last section we present 

an overview of the thesis. 



Our work starts with some structural aspects of distributions frequently 

encountered in the theory of queues. In chapter 2, we study the properties unimodality 

and infinite divisibility with regard to the stationary population size distribution of 

birth and death processes and aim at some characterization results on certain queueing 

models. After giving a brief review of the preliminary concepts and results, we obtain a 

criterion for strong unimodality of the stationary population size distribution of a birth 

- death process. 

In light of this criterion we have, when the population size distribution {p,) 

4 exists, then it is log convex, if and only if {a,) is non-decreasing where an = - , 
Pn+l 

n 2 0. Using this criterion we have examined the strong unimodality of M/M/m queues, 

M/M/s; 1 5 s I m queueing system and linear growth model with immigration. Further 

we have proved that the stationary queue length distribution in M/M/s queueing system 

is infinitely divisible if and only if either S = 1 or S = m. 

In chapter 3; we consider a finite system capacity M/G/l/K queue with 

removable server. Here the server being removed depending on the demand level. 

Recently Baburaj and Manoharan (1997) considered a controllable queueing system 

having two servers with bulk service rate and with all underlying distributions as 

exponential. Here we consider single server queueing system with a finite capacity K 



and the service times are independent and identically distributed random variables with 

distribution function G(.) with finite mean p. 

The server employs an (a, b) - policy for the closing down and the starting up 

of the station. That is we assume that customers arrive according to a Poisson process 

and there is only one server in the system. The server depending on the queue length 

serves the customers. Specifically, if the number of customers in the waiting line is 

greater than or equal to ' b ', the server serves the customers according to first come 

first served (FCFS) basis. When the number of customers in the waiting line reaches 

' a ', then the server stops the service and the station is closed down. It is resumed only 

when a queue o f '  b ' customers have accumulated where 0 5 a < b I K. 

For M/G/l/K model Cohen (1 969) established the relationship 

Using the regenerative process, we derive the same equation for M/G/I/K (a, b) - 

policy (a general form of M/G/l/K model). 

Expected busy period of this model obtained in terms of the expected busy 

period of standard M/G/l/K model. An expression for the expected busy period of 

standard M/G/l/K model is derived and a particular case when service time follows 

exponential is also worked out. We also investigate stationary probabilities in terms of 



expected busy period and then to find out the steady state probabilities by the relation 

. The method has been illustrated through numerical examples. X ,  =- 
l -P,  

In chapter 4, another queueing model with single and batch service is 

considered. Baburaj and Manoharan (1997a) and Baburaj (2000) have considered a 

Markovian queueing system with single and batch services and with a single control 

limit c on the batch service. But in many real life situations, when the control limit ' c ' 

is very large the model suffers from the risk of perpetual change over from batch 

service to single service. This problem may be overcome by the introduction of a 

secondary limit ' a ' (< c), so that when a batch service has been on, the server may 

continue the batch service even with a size less than ' c ' but up to the limit a + 1 and 

when the number of customers drops below a + 1 single service commences. 

We analyze the model in detail and obtain the expression for steady state and 

transient state distributions. Expected queue length and expected busy period are 

considered. The distribution of busy period is also attempted. We consider a numerical 

example illustrating the results. 

In chapter 5, we are considering an inventory model, which is of (S - 1, S) type. 

In this model there is a production facility and a finished product warehouse for a 

single commodity. For this model, the demand time as well as production time follows 

independent PH - distributions. We analyze this general model and investigate the 

stationary distribution of the inventory level. 



In chapter 6, we consider an intermittently used complex n-unit system with 

stochastic demand. For this model, we obtain the expressions for the stationary 

distribution, time to the first disappointment and mean number of disappointments. The 

first order product density and sojourn time are also discussed. 

In the last chapter, we study a generalized Poisson shock model and prove some 

results for the ILR class of life distributions. We consider a device subjected to shocks 

occurring randomly over time according to a counting process N = {N(t): t 2 0). Let 

m 

~ ( t )  = P{N(t) = k)  P, be the survival hnction then we prove the preservation of 

ILR (DLR) properties when N is (i) homogeneous, (ii) non-homogeneous and (iii) 

mixed Poisson processes. 

The computations mentioned in the study are performed using computer 

programs developed in FORTRAN and using the utility MATHCAD. 



CHAPTER 2 

STRUCTURAL ASPECTS OF STATIONARY 

POPULATION SIZE DISTRIBUTIONS OF THE 

BIRTH AND DEATH QUEUES 

2.1 Introduction 

It is important to have some knowledge of the structural aspects of distributions 

frequently encountered in the theory of queues. The properties such as unimodality and 

infinite divisibility could provide us an insight about the behavior of distributions. We 

shall have the investigation based on these properties. Several of the distributions in the 

standard queuing models, such as those of queue length, waiting times and inter 

departure times are of well known form like Poisson, exponential, geometric or 

mixtures of these. Structural aspects of these distributions are already well established 

in the existing literature. However there also exist cases in which one does not know 



much about these distributions and may have very few sketch papers to learn about 

them. 

Keilson (1971) and Roster (1980) discuss the unimodality properties of 

distributions occurring in some situations. Keilson establishes certain results connected 

with log-concavity and log-convexity and hence unimodality of passage time densities 

of diffusion and birth death processes whereas Roster asserts that the first passage time 

densities in state free Markov processes are unimodal. Here we shall study these 

properties relative to the stationary population size distribution {p,; n 2 0) of the birth 

and death processes. The concept of unimodality and related topics are often the 

underlying assumptions in estimation theory and decision theory and are employed in 

many smoothing operations via convolutions, mixing and other suitable 

transformations. Further, they are of substantial importance in optimization theory and 

mathematical programming. 

Many of the well-known distributions belong to either or both of the classes of 

unimodal and infinitely divisible distributions. Unimodality and infinite divisibility are 

two of the most important concepts in distribution theory. These properties as well as 

related topics like strong unimodality, log convexity, self-decomposability, stability 

etc. are of potential importance in both theoretical and practical problems in statistics 

and allied fields. Indeed, these properties determine certain structural aspects of 

probability distributions. 



In this chapter we study these properties with regard to the stationary population 

size distribution of birth and death processes and aim at some characterization results 

on certain queuing models. Section 2.2 gives a brief view of the preliminary concepts 

and results. In section 2.3 we consider a birth and death process and obtain conditions 

for strong unimodality of its stationary population size distribution. Some special cases 

are also investigated here. In the last section we characterize the M/M/s, 1 I S I a 

Queuing system via infinite divisibility properties of their stationary queue length 

distribution. 

2.2 Preliminaries 

(a) Unimodality of distributions:- The notion of unimodality exists for both lattice as 

well as non-lattice distributions each one having its own interpretation. However, one 

can always construct a sequence of unimodal lattice distributions whose weak limit is a 

given unimodal non-lattice distribution. In view of this fact, so much effort has been 

devoted to the class of unimodal lattice distributions during the past few decades. It 

should be noted here that the converse approach does not usually work and several of 

the properties of the unimodal non-lattice distribution are not preserved by the 

unimodal lattice distributions. We shall mention the following: 

Definition 2.1. A d.f. F(x) is called unimodal if there exists at least one value X = xo 

such that F(x) is convex on ( -a  , xo) and concave on (xo , a ) .  The point xo is called 

vertex of F or alternatively F is said to have a mode at (about) X = xo. If the terms 



' convex ' and ' concave ' in definition 2.2.1 are replaced by ' strictly convex ' and 

' strictly concave ' then F is said to be strictly unimodal about xo. 

The following are known in the literature on unimodality 

Result 2.1. (Khinchin's characterization) A function $ on the real line, is the c.f. of a 

unimodal d.f. with mode at xo, if, and only if, 

where I,Y is some c.f. 

It means that a random variable (r.v.) X is unimodal about xo if and only if it can be 

d 
expressed as X = YU + X, where Y is some random variable and U is a U(O, 1) random 

d 

variable independent of Y ( = implies equality in distribution ). 

Result 2.2. (Olstein and Savage characterization) A random variable X is unimodal 

about some point xo, if, and only if, the function tE[g(t(X-xo))] is non-decreasing in t, 

for t > 0, for every bounded non-negative real Bore1 measurable hnction g. 

Result 2.3. If a sequence of unimodal d.f.'s converge weakly to a d.f., then the latter is 

also unimodal. 



Result 2.4. Convolution of two unimodal distribution is not necessarily again 

unimodal. 

Examples:- Most of the common distributions like uniform, normal, gamma (and 

hence exponential), chi-square, beta, cauchy, F and student's t-distribution are 

unimodal. 

Remark 2.1. According to the definition (2.2.1), the only unimodal discrete 

distributions are the degenerate ones. This necessitates the following definition to deal 

with the corresponding structural aspects of lattice distributions. 

Definition 2.2. A discrete distribution {pk) with support on the lattice of integers is 

said to be unimodal if there exists at least one integer no such that 

p n 2 p n . l  k f n s n o  

and p, + I 5 p, kf n 2 no. 

The point n = no is called a vertex of {p,) or {p,) is said to be unimodal with mode at 

(about) n = no. 

We state below some important results concerning lattice unimodality. 

Result 2.5. A lattice distribution {p , ) :a  is unimodal about no, if, and only if, 

qn = (no - n + a)(p, - p, - 1) with a E (0,l) arbitrary, is some lattice distribution 

with q,",, > 0. 



Result 2.6. A lattice distribution{p,); is unimodal about some point no (2 O), if, and 

only if, its probability generating function P(.) has the form 

where a E (0,l) is arbitrary, Q(u) is the probability generating function of a lattice 

distribution { g n  ); for which qn,,+, > 0. 

Result 2.7. If {p,); is a lattice distribution and for some a E (0,1), 

p n 2 a p n - 1  + ( l  - a ) ~ ~ + ~  , n =  1,2, ... 

then { p n  ): is unimodal. 

Result 2.8. If {p , } :  with p0 > 0 is a lattice distribution and for some a > 0, P > 0 

then it is unimodal. 

Result 2.9. The weak limit of a sequence of unimodal lattice distribution is again 

unimodal. 

Examples of lattice unimodal distributions:- Discrete uniform, Poisson, binomial, 

negative binomial (and hence geometric) distributions are all unimodal. 



Remark 2.2. Many lattice analogues of non-lattice unimodality results are valid. 

However, there are some exceptions. For example, the analogues of Result 2.2.1 & 

Result 2.2.2 are not valid except for trivial cases. 

Strongly Unimodal distributions:- The fact that the convolution of two unimodal 

distributions is not necessarily unimodal brought forth the notion of strong unimodality 

which is given below. 

Definition 2.3. A distribution is called strongly unimodal if its convolution with every 

unimodal distribution is unimodal. 

Since a degenerate distribution at the origin is trivially unimodal, it follows that 

any strongly unimodal distribution is unimodal. 

We have the results of Ibragimov(l956). 

Result 2.10. The class of strongly unimodal distributions is closed under convolutions 

and is also closed relative to weak convergence. 

Result 2.11. A (non-degenerate) unimodal d.f. F is strongly unimodal if and only if, F 

is absolutely continuous and there exists a version of the probability density function of 

F which is log-concave. 



Remark 2.3. In view of Result 2.2.1 1, it is evident that the class of strongly unimodal 

distributions are precisely that of Polya frequency densities of order 2.(PF2). 

Also we have 

Result 2.12. A lattice distribution {p,; n = 0, f 1, + 2, ......... ) is strongly unimodal if 

and only if it is log-concave. 

2 That is, p, 2 p,. l p, + 1 V n. 

Note:- Strongly unimodal lattice distributions have all moments and they are uniquely 

determined by their moments. 

Further extensions of unimodality concepts are a-unimodality, total unimodality 

and also of multivariate random variables and they are omitted in this context. 

(b) Infinitely divisible distributions:- A random variable X is said to be 

d 

decomposable if it can be written as X,X, +X, where XI and X2 are two 

independent non-degenerate random variables. 

If for every a E (0,l) there exists a random variable X, independent of X such 

that X = a X  + X,, then the random variable X (or its distribution) is said to be self- 

decomposable (s.d.). 

In terms of c.f.it may be written as: 



Ilcfinition 2.4. A c.f. $(t) o n  tlic real line is s.d.. 11'. and o n 1  11'. thr (I. r (0. I ) ,  

()( 1 $ ( a t )  (bu it) . -u- < t < m .  

'dote that for a >_ 1 .  the a b o ~ c  relation Sorccs 9 and 4,, to degenerate 

clia~ ,lcteristic l i~~ictions.  

Stable distrihl~tions arc spcci;~I C;ISCS 0S5.d. ~ l i s t r~b~~t io i i s .  They are defined as: 

Definition 2.5. A c.l'. $(t) 011 tlie re;~I Iiiie is said to be stable if for cvery positive bl and 

b2 tlicre cxisls some positive b s ~ ~ c l i  that, for every -co < t < co, 

4,(bl t)b(b2t) = $(bt) c' '" with 11 real. 

U'licn 4, satisiics the above equation ~vitli p = 0 the12 it  is called strictly stable. 

?'lie class ofs .d .  distribution is a subset of tlie class of infinitely divisible distributions. 

I'liis class is ilclincd as: 

1)cf'inition 2.6 ..I c.t'. $ ( t )  o n  the real line is inlinitely di\.isible if f o r  cvcry n E N (the 

hct  0 1 '  posili\ cb i~itcgel-s). tlicre exist a c.1.. (I,, (t) such that 

1 ((t),,(O~"> t F_ R .  

I'llc ~-ropcr-l~c.; 01' this class ol' distsilli~tions can bc Sound in 1,ukacs (1970). For the 

s~~cc ia l  u s c .  \vlic~i llic random vnriahlc X takes only non-negative integer values, the 

I-c;lclcs is rcl21-red LO \'a11 t larn ( 1078). 



2.3 Characterization of Birth-Death Model Via Unimodality 

Consider a birth and death process with the birth rate {h,) n 2 0 and death rate 

{p,,) n 2 1. It is well known that the stationary population size distribution of the 

process {p,) is given by 

Also it is clear that {p,) exists as a distribution, if, and only if, 

Denoting an = - In  , n 2 0, from (2.3.1) we have, 
P n + ]  

We now have the following theorem. 

Theorem 2.1. The stationary population size distribution {p,; n 2 0) of a birth-death 

process exists and is strongly unimodal with a mode at no = min(n: a, < 1) if and only 

if, the sequence {a,); n 2 0 is non-increasing and ai < 1 for at least one integer i. 

Proof:- 

Suppose that {a,)n 2 0 is non-increasing and ai < 1 for some i, then, 



m n - l  

T b = l + ~ n a ,  
n = ~  PO n=l J = O  

= 1 + & f i a j +  2 f ia ,  
n = l  j = O  n = i + l  j = O  

1-a; 
= l+ -  '71 +ao .- 

l -a ,  l -a, 

We have p, = a, - I p,. I and p, + I = a, p, 

2 an-I 
That is, p, = - . P ~ - ~ P ~ + I .  

an 

So we have p," > p,. l p, + lo {a,}; n > 0 is non-increasing. 

Now, since for non-increasing {a,}, 

No=min {n:a,<l)  ifandonlyifp,=a,-1pn.12pn-lfornIno 

and pn+l =%P,  <P, for n2no.  

We have no is the vertex of {p,); n 2 0. 

The existence of some integer i 2 o for the only if part such that ai < 1 is evident 

from (2.3.3) and the existence of {p,). 



Remark 2.4. When {p,) in the above theorem exists then it is a log-convex, if, and 

only if, {a,) is non-decreasing. In this case, a, I 1 b' n = 0, 1, . . . . However, in this 

situation {p,) may not be a distribution. 

In the light of theorem (2. l), we examine strong unimodality of the population 

size distribution in equilibrium of different birth-death processes. 

2.3.1 The Immigration-Death Processes (M/M/oo queues) 

For this process we have h, = h and p, = np , 0 < h, p < CO, n = 0, 1,2,  

Here a, = 
a 

(n+ l )p 'n 'o .  

Therefore {a,) is decreasing. Further, it is obvious that there always exist an integer i 

such that a, < 1. Hence the stationary population size distribution (the queue length 

/t distribution) {p,) exists and it is strongly unimodal with mode at no = - . In fact, we 
P 

A have {p,} is Poisson distribution with parameter - , which is known to be a strongly 
P 

unimodal lattice distribution. 

2.3.2 The M/M/s, 1 I s < co Queuing System 

In this case h,= h, n 2 0 

np, n < s 
P. = {  , with 0 < h, p < CO . 

sp ,  n 2 s  



h 
; n < s  

Thus a, = ( n  + 1 ) ~  
h 

; n 2 s .  
S I-' 

In view of theorem (3. l), it is clear that {p,) exists and is strongly unimodal, if, 

a a 
and only if, - < 1. The vertex will be at no = - . 

SP P  

Explicitly we have, 

00 

where p0 is determined by the condition p,, = 1 . 
n=O 

2.3.3 The Linear Growth Model with Immigration 

Here we have h, = h0 + nh and CLn = np, n 2 0, where 0 < h, ho, p c m. 

Clearly, in this process a, = 
A., + nA. 

; n 2 0, which is non-increasing, if, and only if, 
(n+ l b  

h(, 2 h. 

In this case, if h. 2 p we have an 2 1 for some n 2 0. 

a - P  Since p < h. a a, < 1 for every i > 
P - 2  

and p > h0 a ai < 1 for every i = 0, 1, 2,. . ., we have in view of theorem (2.3.1), that 

{p,} exists and is strongly unimodal, if, and only if, h < h. and h < p. 



Clearly, then the vertex no will be at zero if p > h. and at --- [:I] if p I 10. 

2.4 A Characterization Result via Infinite Divisibility 

Infinite divisibility properties of different stochastic processes have been studied by 

several researchers in the past. This property has been employed as a tool for 

characterizing certain queuing systems as seen in connection with the departure 

processes in the works of Daley (1 972), Shanbhag (1973), Natvig (1 975) etc. We aim 

at characterizing the M/M/s, 1 I s I oo queuing system via infinite divisibility 

properties of their stationary queue length distribution {p,). We know that in this 

model the distribution in question is geometric when S = 1 and Poisson when S = m, 

which are both infinitely divisible. The infinite divisibility properties of {p,) for 

1 < S < m has not been considered earlier. We have the following result. 

Theorem 2.2. The stationary queue length distribution in an M/M/s queuing system is 

infinitely divisible if, and only if, either s = 1 or S = m in which case the distribution is 

self decomposable (it is stable only when S = m). 

Proof:- 

Recall that {p,) is given by 



A 
{p,) exists if - < 1. 

W 

Let P(.) denote the probability generating hnction of (p,). Following Van Ham (1978) 

we know that P is infinitely divisible if, and only if, it has the form 

m 

P(z) = c .eQ"' where c is the norming constant and Q(z) = qn z n  , qn 2 0 V n 2 1. 
n=I 

Here c = p0 and thus 

On comparing the coefficients on both sides we have, 

Then we can write, 

Comparing this with (2.4.1) we get, 

(h lpy"  
4 s + l  - s(s + l)! ' 

Hence (2.4.2) implies, 



In view of ps+* given by (2.4. l), this means 

1 2(s + 1) 
z 2  , which is impossible when S > 2. 

S .S! s(s+2)!  

Therefore {p,} cannot be infinitely divisible when S > 2. 

Note that for S = 2, when we compute q,'s it turns out that 

(Negative!) which contradicts our assumptions. Therefore {pn} 

cannot be infinitely divisible (and hence self decomposable or stable) for any l<  S < m. 



CHAPTER 3 

M/G/l/K QUEUE WITH REMOVABLE SERVER 

3.1. Introduction 

In the classical queuing model the server stops service when there is no customer in the 

queue and resumes service when a new customer joins the queue next time. This model 

fails to describe many real life situations where there is a control limit for shutting 

down and resuming of service. For instance, the manufacturing of certain products like 

motor cars and other vehicles the demand of the customers are processed with a control 

limit policy on service. The firm may stop production of the product when the demand 

is less than a pre-assigned level and restart the production as soon as the demand 

reaches a specific level. This may be treated as a model with removable server - the 

server being removed depending on the demand level. Queuing systems with 



removable servers were considered by Yadin and Naor (1963) , Bell (1975), Rhee and 

Sivazlian (1 990) and other researchers. 

Recently Wang, Kuo-Hsiung and Huang, Hui-Mei (1995) studied the optimal 

operation of an M/EK/l queueing system with a removable service station under steady 

state conditions and derived analytic closed form solutions of the controllable M/EK/I 

queueing system. Feinberg and Kim, Dong (1996) studied bicriterion optimization of 

an M/G/1 queue with a server that can be switched on and off. Here one criterion is an 

average number of customers in the system and another criterion is an average 

operating cost per unit time where operating cost consists of switching and running 

costs. Baburaj and Manoharan (1997) considered a controllable queuing system 

having two servers with bulk service rule and studied the general characteristics of the 

system in transient as well as the steady state, the busy period of the two servers and 

also waiting time in the queue. 

Here we consider a single service queuing system with a finite capacity K. 

Customers arrive at the system according to a Poisson process with parameter h and 

enters the system if the total number of the customers present in the system is less than 

or equal to K-l. Otherwise they leave the system without receiving service. Customers 

are served according to FCFS basis. The successive service times are independent and 

identically distributed random variables with distribution function G(.) with finite 

mean p . 



The server employs an (a,b) - policy for the closing down and the starting up of 

the station. That is we assume that customers arrive according to a Poisson process and 

there is only one server in the system. The customers are served by the server 

depending on the queue length. Specifically, if the number of customers in the waiting 

line is greater than or equal to ' b ', the server serves the customers according to FCFS 

basis. When the number of customers in the waiting line reaches ' a ', then the server 

stops the service and the station is closed down. It is resumed only when a queue of 

' b ' customers have accumulated where 0 5 a < b 5 K. 

In section 3.2, the model is analyzed and the relationship between the limiting 

distribution of process at arbitrary time epoch and the limiting distribution of the 

process at the departure epoch is established. An expression for busy period is obtained 

in section 3.3. In section 3.4, the stationary probabilities are obtained in terms of 

expected busy period. This provides a simple method for calculating these limiting 

probabilities. Some numerical examples are given in section 3.5. 

3.2 Analysis of the Model 

Let X(t) = the number of customers in the system at an arbitrary time instant t 2 0. 

Clearly (X(t), t 2 0)  is not a Markov Process. Let tl, t ~ ,  ..., tn , ... be the service 

completion of the successive customers. Define X, = X(t,+), n 2 1. That is, the number 

of customers in the system immediately after the departure of the nth served customer. 



Assume X. = a (That is, a server terminates at t = 0 leaving ' a ' customers in the 

system.). 

Let pj(t)=Pr[X(t)=j]; a S j  I K and xj(n)=Pr[Xn=j]; a I j  I K -  1. 

We are interested in the following probability distributions: 

p = limp, ( r )  and n, = limn,(n). 
[-+m n 4 m  

For standard M/G/l/K model (treated as (0,l) - policy), it is easy to 

calculate the above distributions and to observe that the two distributions are related by 

(Refer Cohen (1 969)) 

This may be obtained by successively calculating the two distributions and comparing 

them. It is of interest to know the relation for the general model considered here. 

3.2.1 Relation between {pj) and (nj) 

(X(t), t 2 0) is a regenerative process for which the regeneration cycles are the busy 

cycles TI,T2, ..., T,, ... where Ti = the duration between the i' shutting down and 

( i + ~ ) ~ ~  shutting down, i t 1. Let T be a random variable distributed as T,, j t 1. 

It can be proved that by the theory of regenerative process (ref. Stidham 



where To) = The amount of time (in a busy cycle) during which the number of 

customers in the system is equal to j. 

Also (X., n 2 0) is a discrete time regenerative process for which the lSt 

regenerative cycle consists of the epochs (0, 1, 2, . . ., NI  - 1) the second cycle consists 

of the epochs (NI, NI  + 1, ..., NI + N2 - 1) etc. where Ni (i 2 1) is the number of 

customers served during the ith busy period. Let N be a random variable distributed as 

N,, i 2 1. Since the distribution of N is non-periodic, it follows from the theory of 

regenerative process that, 

where N(j) = number of served customers in a busy period, leaving j customers in the 

system. 

Now, 

E(N(j)) = Expected up crossings of the process {X(t), t 2 0) to state j + 1 during [O,T1] 

Note that, 

Using (3.2.2), 



E m )  = h[E(T) - E(T).PK)I 

= h[( 1 - ~K)E(T)]. 

From (3.2.3), 

E ( N )  = E ( N ( J ) )  

PJ . There fore, X ,  = - , j = a , a +  l , a + 2 ,  ..., K -  l .  
1-P, 

3.3 Expected Busy period 

For the well-known M/G/1 queuing system with infinite waiting room Takacs (1967) 

and Cohen (1969) obtained the distribution of the maximum number of customers 

present simultaneously during a busy period. Cohen (1971) obtained an expression for 

the distribution of the busy period for the M/G/l system with finite system capacity, ie, 

the busy period in the M/G/l/K system with the standard (0,l) - policy. 

A random variable X in the standard model will be denoted in the (a, b) - policy 

with finite capacity K as x~:~ and this notation will be followed in the sequel. 

Let be the random variable denoting the busy period in the MIGIIIK model 

K with server operating under (a, b) - policy. Put a:, = E(B~:~) and a, = a,,, . It is 



evident that, the random variables B,:, and B&_"~ have the same distribution. Also one 

can view B & - ~ ~  as the sum of independent random variables as given below. 

b - a - l  

K -  a 

Hence a*,b = C a n  . 
n=K- b + l 

Let pCj; n, 1) = Prob. {j customers enter the M/G/l/n system during a service 

beginning with one customer in the system}. 

Then, 

a,  = E(S) and 

n - l  I -  I 

where X, = dS(t) , i 2 0 and S(t) = cumulative distribution function of , i! 

service time. 

This may be written as follows. 

a,  = E(S) and 



3.4 Calculation of Stationary Probabilities. 

The stationary probabilities nj 'S can be computed as follows: 

This may be re-written as 

We have n = 
E(Na:b ( J ) )  

E(N,Xb) ' 

- - 
a2 

a3 

a, 

- 
X0 0 0 0 ... 

- Yl X0 0 0 . . . 

- y2 - Yl X0 
... 0 

. . . 

and E ( N , I ) . E ( S )  = a:, . 

- YK-0-2 - YK-0-3 -YK-a-4 X ~ -  

We shall first of all find an expression for E ( N : ~  ( j ) )  ; j = a, a + 1, . . . , K- l .  

Clearly E ( N ~ : ~  ( j ) )  = E(N&?~ ( j  - a) )  . (3.4.1) 

For convenience we shall put N&iO ( j  - a )  = N: ( j '  ) . 

-E(S)- 

= 

Let q r ' ( j ' )  = E ( N ; ' ( j t ) ) ;  j l= 0,1, ..., K'- l .  

Obviously (0) = 1 . Also a, = E(S) 

wherey,= 1 - x o - X I  - . . .  -xi for i =  1,2, ..., K - a - 2 .  

Solving this linear system we get, a, ; n = 2, 3, . . ., K - a. 

- 
E(S)  

E ( S )  

E(S)  



:. ? , X '  (o) .E(S)  = a , .  

We shall prove that 

  or j' = 1,2 ,  . . ., K' - 1 ,  we have, 

K ' -  l 

and q : ( j ' )  = P ( j ' ;  K ' ,  l ) +  x P ( l ;  K ' ,  l ) r l : ( j ' )  . 
/ = l  

Using (3.4.3) and (3.4.4) we get 

K '  
, , J-2 

xoq l  ( j ' )  = (l  - X ,  -...- X . )[l + q : - J - 1 ( l ) ] ( l - 6  ) +  z(1-X, - . . . - x / )qF- ' ( j '  - 1 )  
.I -1 J .I 

/ = l  

for 1 I j' < K'- 1 (3.4.5) 

where 6j1,1 is Kronckers Delta 

1 - X ,  
a q:' ( l ) .E(S)  = - E ( S ) .  

X 0  

Now using (3.3.1), the above implies 

qF' ( ~ ) . E ( s )  = a2 - a l .  (3.4.6) 

Also from (3.3.1) we have the recursion relation for a - a , for j' 2 2 , 

(3.4.7) 

Since a,  = E(S), using (3.4.5) and (3.4.6) it follows that 



So we conclude that for b' = 1, 

T-,:' ( ~ ' ) . E ( s )  = a,.+ l ; O < j ' < b l .  

Consider the case b' > 1. 

min( j', b - l )  , 

We have T-,; ' ( j8)  = E T - , f - ' ( j V  - j ) .  
r = O  

! 4 

For l < j  < b ,  

J 

$' ( j ' ) . E ( S )  = x q ~ ' - l ( j '  - i ) .E(S)  
r=O 

i - l  

r=O 

b - l  

Hence we get, 

This gives 



That is, expected number of served customers in a Busy period leaving ' j ' customers 

in the system for MIGIIIK under (a,b) - policy is equal to the expected increment of the 

served customers in a busy period for the model with (0,l) - policy, when the capacity 

is increased from max (0 , j - b + 1 )  to j - a + 1 

Hence we get, 

Using equation (3.2.5) we have, 

K b - a  
Now, E(T, ,)  = - 

h + .:b 

and E ( N , ~ ) E ( s )  = at,,= C a n  
n = K - b +  l 

So from equation (3.4. l l )  we get, 



Note:- The steady state probabilities can be computed in terms of the moments of busy ' 

period as described above. 

Remark 3.1 Similar argument can be used to arrive at the result for the infinite 

capacity case by assuming that p < 1. 

3.5 NUMERICAL EXAMPLE 

Let S follows an exponential distribution with parameter p. 

Then we have 

and 

1 l - p "  a, = -.- 
h 

; n = 1 , 2 ,  ... where p = - .  
P l - P  

Following the method suggested in the last section we compute the stationary 

probability distributions {n,} and {pj). When S follows an exponential distribution 

with parameter p, then the stationary probabilities {nj) and {pj) for different values of 

h and p (For the same a, b and K) are given as follows: 



l)h = 0.5, p = 0.8, a = 5, b = 10 and K = 25. 2) h = 0.8, p = 1.2, a = 5, b = 10 and K = 25 

Table 3.1 Table 3.2 



4 j 2s 4 j 25  

Graph of Table 3.1 

Graph of Table 3.2 



CHAPTER 4 

SINGLE AND BATCH SERVICE MINI11 QUEUE WITH A 

SECONDARY LIMIT ON BATCH SIZE 

4.1 Introduction 

We consider a Markovian queueing system with single and batch service. Customers 

arrive according to a Poisson Process with parameter h and are served by a single 

server. The server serves the customers either one at a time or in batches according to 

the control limit policy - (a, c) for the batch size. Specifically after a service 

completion epoch, if the system size (n) is less than or equal to the control limit 'c', 

then the server serves the single customer according to FCFS rule and the service time 

is exponentially distributed with parameter p, and if n > c, then he serves all the units 

in a batch where the service time is exponentially distributed with parameter p2 

independent of batch size. But once the batch service (machine mode) has been 



initiated it is changed to single service (manual mode) not when the batch size is 'c' but 

at a lower level 'a' below 'c'. This will avoid perpetual transfer from one type of service 

to the other. 

Several authors considered Poisson arrival queues with single as well as batch 

service. For example see Neuts (1 967), Cohen (1 969), Chaudhry and Templeton (1 984) 

etc. There are many real life queueing situations in which service is rendered with 

control limit policies. For example it may be possible to process jobs manually or by 

machine. When the number of jobs to be processed is not more than a fixed number it 

will be profitable to do them manually and if the number of jobs exceeds that fixed 

number, processing by machine is turns out to be cheaper. 

A single and batch service with single control limit 'c' on the batch service are 

found to be important in many real life situations, but when the control limit 'c' is very 

large the model suffers from the risk of perpetual change-over from batch service 

(machine) to single service (manual). This problem may be overcome by the 

introduction of a secondary limit 'a' (< c) so that when a batch service has been on, the 

server may continue the batch service even with a size less than 'c' but up to the limit 

a + 1 and when the number of customers drops below a + 1 manual service 

commences. 

Baburaj and Manoharan ( l  997a) have considered a Markovian queueing system 

with single and batch services and obtained expressions for the steady state 



probabilities of the system size. Jacob et. al. (1997) dealt with a single server queueing 

model with Poisson arrivals and a new bulk service rule for which steady state 

probabilities and waiting time distributions are obtained. Dshalalow and Dikong (1999) 

studied M/G/l type queues with modulated bulk input, state dependent batch service 

and (r, N) - hysteretic discipline of idle and busy periods and obtained explicit 

formulas for the stationary distribution of the queueing process and other 

characteristics using semi regenerative and first excess level techniques. Dikong and 

Dshalalow (1999) dealt with a bulk input-batch service queueing system and (r, N) - 

hysteretic control with state dependent service and analyzed the model using first 

excess level technique. Baburaj (2000) have given a transient distribution of a single 

and batch service queueing system with accessibility to the batches. 

In this chapter we consider a single and batch service M/M/l model with a 

secondary limit on batch size and obtain the transient state and steady state 

probabilities, expected queue length, busy period distribution and hence expected busy 

period and variance of busy period. A numerical illustration is given in the last section. 

4.2 Analysis of the Model 

Let X(t) denote the number of customers in the waiting line at time t and Y(t) denote 

the type of service given by the server at time t. Specifically Y(t) = 0, 1, 2 according as 

the server is idle, busy with a single service or busy with a batch. Then {Y(t), X(t)) 

constitutes a Markov chain with state space S = S1 U S2 U S3 where S, = ((0, O)), 



S2= {(l ,  n); n = 0 ,  1,2, ..., c -  1) and S j =  ((2, n); n > 0 ) .  

Let us denote P(i, j, t) = P{Y(t) = i and X(t) = j) .  The transient distribution of 

the system P(i, j, t), then satisfy the following system of difference differential 

equations. 

~ ' ( 0 ,  0, t) = -hP(O, 0, t) + pIP(l,  0, t) + p2P(2, 0, t) (4.2.1) 

pl(l,O, t) = -(h + p~)P( l ,  0, t) + hP(0, 0, t) + plP(1, l ,  t) + pzP(2, 1, t) (4.2.2) 

~ ' ( 1 ,  n, t) = -(h + ~ I ) P ( I ,  n, t) + hP(1, n - l ,  t) + plP(1, n +  l ,  t) + p2P(2, n +  l ,  t); 

l l n l a - l (4.2.3) 

~ ' ( 1 ,  n, t) = -(h + pl)P(l, n, t) + hP(1, n - 1, t) + pIP(l ,  n + 1, t); a I n I c-2 

(4.2.4) 

P ' ( ~ , c -  1 , t ) = - ( h + p ~ ) P ( l , c -  l , t ) + h P ( l , c - 2 , t )  (4.2.5) 

Let ~ * ( i ,  j, S) denote the Laplace transform of P(i, j, t). We shall assume that 

P(O,O,O) = 1. So, 

(S + A)P*(o, 0, S) - 1 = p 1 ~ * ( 1 ,  0, S) + p2pL(2, 0, S) (4.2.8) 

(S + h + p1)~*(1 ,  0, S) = ~ P * ( o ,  0, S) + plPL(l, 1, S) + p2~*(2, 1, S) (4.2.9) 

(S+ h + p1)~*(1,  n, S) = h ~ * ( l ,  n - 1, S) + plPL(l, n + 1, S) + p2~*(2, n + 1, S); 

l l n l a - l  (4.2.10) 

( s + h + p ~ ) ~ * ( l , n , s ) = h ~ * ( l , n - 1 , s ) + p ~ ~ * ( l , n + 1 , s ) ; a I  n I c - 2  (4.2.11) 



Solving (4.2.14) as a difference equation in P* (2, n, S) we get, 

where A(s) = ~ * ( 2 , 0 ,  S) and 

From (4.2.13), 

From (4.2.1 l),  

~ * ( l , n , s ) = ~ * ( l , a , s ) 8 " - ~ ; a 1  n I c - 2  

where 8 is the positive root less than unity of the equation 

p l z 2 - ( s + h + p , ) z + h = O .  

So using (4.2.12) we get, 

= A(s).Kl(s) . (Say) 



From (4.2. IO), 

~ ' ( 1 ,  n, S) = p*(l,O, S) 8" -p ,  
A(S) R "+l  . 

, l l n s a -  l (4.2.19) 
K(R) 

where K(z) = p1z2 - (S+ h + p1)z + h ,  

p' (l, 0, S) = A(s) 

= A(s).Kz(s) . (Say) 

Now using the condition, 

C-l m 1 P * ( O , O , S ) + ~ P * ( I , ~ , S ) + ~ P * ( ~ , ~ , ~ ) = -  
n=O n=O S 

we get, 

S + ~ + P ,  1 i h 
+- 

I-R 



4.3 Steady State Distribution 

Using final value theorem on Laplace transforms the steady state distribution of the 

queue size can be obtained as 

~ ( i ,  j) = lim ~ ( i ,  j ,  t )  = IimsP* (i, j ,  S ) .  
[+m S + O  

Hence from (4.2.15) to (4.2.22) the steady state distribution can be obtained as 

P(2, n) = B.rn ; n 2 0 

where 

L, = lim K, (S) 
s-10 



L, = lim K, ( S )  
s - t o  

["+L 
h l - r  

where K'( r ) = plr2 - (h + pl)r + h, 

h h 0 -- and r=l imR=-.  1 - 
P1 S-0 h + ~ 2  

4.4 Expected Queue Length 

The expected queue length L, is given by 

c-l 00 

L, = Cn.p( l ,n)+ C n . ~ ( 2 , n )  
n=l n=l 

L2BIn - p2  - + ~ n . B . ~ , 8 , ~ - '  + ( c  - 
K + (r) I . = ,  'I l - r  



4.5 Busy Period Distribution 

In this model the server is idle only when the system is empty. Thus the busy period 

T commences with the arrival of a unit to the empty system and lasts till the system 

is empty again. 

> (4.4.1) = B .  

Let b(t) = P{t I T < t + dt, X(t + dt) = 0) . 

d 
Then b(t) = - P(0, 0, t )  . 

dt 

' ~ ~ e ~ [ ( l  -0])-~(1 -ela-1)- (a -l)ela-l(1 -el)-l]+ 

L l c-2 l] [ ( i - e , ) - 2 ( e  -elc~')+(i-~l)-1[(a-i)81a-1 - ( ~ - 2 ) 8 ,  - 
0,  "-l 

I 

k r 2  [(l -r)-2(l - ru-I  )- (a - l)ru-'(1 - r)-l]+ 
K *  (4 

a+l c - l  
- [ h 2  h -P2 -Iir(l I - r  -r)-2 

, 

Hence the Laplace transform b*(s) is given by 

b*(s) = s.P*(o, 0, S) 

In order to find the distribution of the busy period we consider the system avoiding 

the zero state. Here we assume that P(l, 0,O) = 1. 

Hence we get the following difference differential equations. 



~ ' ( 0 ,  0, t) = plP(l,O, t) + pzP(2,0, t) (4.5.1) 

P ( l , O , t ) = -  ~ I P ( ~ , O , ~ ) + ~ I P ( I ,  l , f)+p2P(2,  1,t) (4.5.2) 

~ ' ( 1 ,  n, t) = - (h + p~)P( l ,  n, t) + hP(1, n - 1, t) + plP(l, n + l, t) + p2P(2, n + l ,  t); 

l l n l a - l  (4.5.3) 

Taking Laplace Transform on both sides of (4.5.1) - (4.5.7) we have the 

following set of equations. 

SP*(O, 0, S) = p 1 ~ * ( 1 , 0 ,  S) + p2~*(2, 0, S) (4.5.8) 

(S + P,)P*(~,  0, S) - l = pIp*(l, 1, S) + p*P*(2, 1, S) (4.5.9) 

(S + h + ~ I ) P * ( I ,  n, S) = hP*(l, n - 1, S) + ~ I P * ( I ,  n +  1, S) + p2p*(2, n + 1, S) ; 

1 5  n s a - l  (4.5.10) 

( ~ + h + ~ ) ~ * ( l , n , s ) = h ~ * ( l , n -  l , s ) + p I P * ( l , n +  l , s ) ; a <  n < c - 2  (4.5.11) 

(S + h + pl)P*(l, c - 1, S) = hP*(l, c - 2, S) (4.5.12) 



Solving (4.5.14) as a difference equation in ~ ' ( 2 ,  n, S) we get, 

P1(2, n, S) = Al(s) R" ; n 1 0  (4.5.1 5) 

where Al(s) = ~ ~ ( 2 ,  0, S) and 

From (4.5.13), 

From (4.5.1 l), 

~ ~ ( 1 ,  n, S) = ~ ' ( 1 ,  a, S) On-a; a 1 n 2 c - 2 

where 0 is the positive root less than unity of the equation 

2 plz - ( s + h + p l ) z + h = O -  

So using (4.5.12) we get, 

From (4.5.10), 



A, (S) R "'l 
P* (1, n, S) = P* (I, 0, S) 8" - p, ; I l n l a - I  

K(R) 

where K(z) = p1z2- (S + h + p I ) z +  h . 

so,  

From (4.5.9), 

R,  
(S + p , ) ~ ,  (S)- l = - P I A ,  ( 4 ~ 2  (s)B + P2~1(s)- + p 2 4  ( 4 ~  0) 

From (4.5.8), 

"*(0,0, S)= P , A , ( ~ ) ~ , ( ~ ) + P , A , ( ~ )  

= ~ , ( s ) b , ~ 2 ( s ) +  p21 - 

Hence the Laplace transform b*(s) of b(t) is given by 

b'(s) = AI(S).[I*IK~(S) + 1121 - 



From the above expression one may compute the expectation and variance of 

the busy period using the following formula. 

Remark 4.1. Expected busy period in the steady state is given as follows: 

In this model the busy periods T and idle periods I alternate and form a busy cycle. 

From the theory of renewal process we have 

P(O, 0) = lim P[x(~) = 0, ~ ( t )  = 0] 
l +O 



4.4 Numerical Example 

1. Consider the model with h = 0.5, p1 = 0.8, p2 = 0.4, a = 5 and c = 10. We use 

equations (4.3.1) - (4.3.6) for the determination of the steady state probabilities. The 

steady state probabilities {P(i, n), i = 0, 1, 2 and n = 0, 1, 2, . . .) are calculated using 

the equations(4.3.1) - (4.3.6) on a computer, the results are given below. 

Table 4.1 

The total probability is verified to be equal to one. 

2. We consider some models with different values of a and c. The values of expected 

busy periods in steady state using (4.5.23) are given in the following table. Here also 

h = 0.5,pl = 0.8 and p2 = 0.4 - 



Table 4.2 

Expected busy period is monotonically increasing, but the rate of increase is very small 

for larger values of a and c. 

2. For the same model as in example 2, we computed the expected queue length 

using (4.4.1) and the results are given in the following table. Here also h = 0.5, 

p1 = 0.8 and p* = 0.4. 

Table 4.3 

Expected queue length also monotonically increasing, but the rate of increase is very 

small for larger values of a and c. 



10 C 

Graph of Table 4.2 for a = 5. 

Graph of Table 4.3 for a = 5. 



CHAPTER 5 

A GENERAL PRODUCTION INVENTORY (S - 1, S) 

POLICY 

5.1 Introduction 

Inventory systems of (S - 1, S) type had been studied quite extensively in the past. The 

one for one (S - 1, S) policy which is also known as " sell one buy one policy " when 

demands are unit sized, is a special case of the well known (S, S) inventory control 

policy with S = S - 1. Thus when demand is discrete the (S - 1, S) policy calls for the 

placement of a replenishment order after each demand equal in magnitude to the size of 

the demand. This policy has often been advocated for controlling inventory of 

expensive and slow moving items. 



Higa et a1 (1975) studied the customer waiting in an (S - 1, S) production / 

inventory system with geometric Poisson demand arrivals and exponentially 

distributed replacement times. Smith (1977) obtained an appropriate formula for the 

cost minimizing S in an (S - 1, S) pure inventory system with Poisson demand arrivals 

and an arbitrary replenishment time distribution. Examples of more recent studies of 

multi-echelon repairable systems employing the (S - 1, S) policy include Muckstadt 

and Thomas (1980), Shanker (1981), Hausman and Scudder (1982), Graves (1985) and 

Sherbrooke (1 986) etc. 

Schults (1990) established that (S - 1, S) policy is optimal when the renewal 

function of demand sizes is concave. Further he has shown that if the ratio of the re- 

order cost to the expected time between demands is smaller than a specified function of 

the lead time demand distribution and the holding and penalty costs, then it is optimal 

to order after each demand. Parthasarathy and Vijayalakshrni (1996) carried out a 

numerical analysis of an (S - 1, S) inventory model with a constant rate of decay and 

random lead time having an exponential distribution. Cheng, Ki Ling (1996) analyzed 

an (S - 1, S) inventory model with compound Poisson demands and derived 

expressions of performance measures such as the steady state distribution and the 

expectation of the number of backlogged units. Smith and Dekker (1 997) discussed the 

(S - 1, S) stock model where demand follows a renewal process and the lead time is 

deterministic. 



In this chapter we are considering a production inventory (S - 1, S) model in 

which there is a production facility and a finished product warehouse for a single 

commodity. The production continues until the on-hand stock reaches ' S l, that is when 

there are S units in the system, ready for sale, S - 1 will be in the warehouse and one 

will be at the production facility. In the finished product warehouse there are S spaces 

to allocate the finished products. If all the S spaces are full then the production facility 

will not produce hrther units. In a similar manner, if all the S spaces in the warehouse 

are vacant (that is free of products) then no demands will be entertained. That is the 

demands will be rejected at that time. 

In this inventory model, the time between successive demands is assumed to 

follow a PH-distribution F(.) which has the irreducible representation (a, T) of order m 

and is given by 

F(x)= 1 - aexp(Tx)e ,  ; x 2 0 .  (5 .  l .  l )  

The row vector a and the matrix T are of dimension m. em is a column vector of order 

m with all its components equal to one. The vector TO is defined by 

0 T = - T em. 

The production times are mutually independent and independent of the demand 

process and have common probability distribution G(.) of phase type with the 

irreducible representation (P, U) of order n and is given by 

G(x) = 1 - P exp (U X) e, ; X L 0. 



The row vector P and the matrix U are of dimension n. e, is a column vector of order n 

with all its components equal to one. The vector U' is defined by 

U ' = - u e n .  

Thus the stock level can be described by a stochastic process {I(t), t 2 0) with 

I(0) = S. So I(t) denotes the on-hand inventory level at arbitrary time t. The principal 

quantity of interest is the probability mass function of the inventory level at any 

arbitrary time t on the time axis. 

That is, 

P{I(t) = n), n = 0, 1, 2, ..., S. 

Here T and U are generators of Markov process describing the generation of 

demands and production. The PH - distribution has a probabilistic interpretation by its 

definition so that it can be considered as the distribution of time between demands and 

the distribution of production time in two networks where the sojourn time at each 

node of the network has an exponential distribution. So F(x) and G(x) could be 

interpreted as the distribution of time spent in their networks. 

The above production inventory system can be studied by a direct analysis of 

the behavior of the physical inventory level and the status of the processor. The reason 

why the PH - distributions are chosen in this work is that many researchers have been 

investigating these distributions and developing procedures to fit these distributions to 



given data sets (See for example Bobbio and Telek (1994) and Asmussen et a1 (1996)). 

Also various algorithms have been already developed for problems in applied 

probability where PH - distributions are. involved (see Neuts (1981)). This way 

production facility, which stops not when the warehouse is full, will achieve a higher 

level of productivity than the case where it stops when the warehouse is full. 

The next section introduces the notations used and some preliminaries. In 

section 5.3, the system is analyzed in detail to obtain the stationary distribution of 

inventory level. 

5.2 Notations and Preliminaries 

Let I, denotes the identity matrix of order m, I, denotes the identity matrix of order n 

and ABB denotes the Kronecker (tenser) product of the matrices A and B. If A = [aij] 

and B = [bij] are rectangular matrices of dimensions m, X nl and m2 X n2, then their 

Kronecker product A@B is the matrix of dimension mlm2 X nln2 which can be written 

in block partitioned form as follows: 

Some useful properties of the Kronecker product that are repeatedly used in this 

chapter are given as follows: (Refer Bellman (1 974)) 

I. A @ ( B + C ) = A @ B + A @ C  



5.3 Stationary Distribution of the Inventory level 

Let X(t) denote the state of the inventory at time t. Then {X(t), t 2 0) may be 

considered as homogeneous Markov process on the state space 

Q={(O , j ) / j= l , 2  ,... , m } U { ( i , j , k ) / i = 1 , 2 , . . . , S ; j = 1 , 2  ,..., m ; k = l Y 2 , . . . , n }  

where (0, j) represents that the system is empty and the demand is at phase j, while 

(i, j, k) represents that there are ' i ' units in the system and the arriving demand and 

being produced unit are at phases ' j ' and ' k ' respectively. 

The states are labeled in the lexicographic order. The infinitesimal generator of 

the process in block-partitioned form is given by 

where A = TO cc €3 I, 

B=In,€3UoP 

C = T @  I ,+I ,@U 



Let n, denote the stationary probability of the state o E Q. 

Define no = (nol, no2 , . . . , no,) 

xi = (n i ,~ ,~ ,  xi, I , &  a - . ,  Xi, I , , ,  ni,2, 1, a . . ,  ni,m,n); i = 1, 2, a . - ,  S. 

Under our assumption, the stationary distribution X,; o E R is the unique solution of 

the steady state equilibrium equation (See Neuts (1981)) 

n Q = O ,  n e =  l wheren=(no,n1,n2, ..., nS). 

That is, 

no T + n1 B'= 0 (6.3.1) 

n o A 1 + n l  C + 7 t 2 B = 0  (6.3.2) 

n i . l A + n i C + ~ i + l B = O  ; i = 2 , 3 ,  ..., S -  1 (6.3.3)' 

X$,-1 A + xs D = 0 (6.3.4) 

Multiplying on the right of both sides of (6.3.2), (6.3.3) and (6.3.4) by the matrix 

I, C3 e, and using the properties of Kronecker product, we get 

To + (T 8 e, - I, 8 U') + ~2 (1, 8 U') = 0 (6.3.6) 

ni.1 (TO a 8 e,) + ni (T 8 en - I, 8 U') + ni+l (I, 8 U') = 0; 

i = 2 ,  3, ..., S - 1 (6.3.7) 

n s . l ( ~ o  a C3 e,) + ns[(T +  TO^) €3 e, - I, €3 uO)] = 0 (6.3.8) 



Adding equations (6.3.1), (6.3.6), (6.3.7) and (6.3.8) we get 

no (T +To a )  +nl[ (T+ TO a )  Qe,] +n2 [(T+T' a )  Q e,] 

+ ... + n ~ - ~  [ ( T + T ' ~ ) @  e,] +ns  [ (T+TOa)  Qe,] = 0 .  

Since A €3 e, = (I, €3 e,) A, we can write the above equation as 

Now multiply on the right both sides of (6.3.1), (6.3.6), (6.3.7) and (6.3.8) by 

ni.1 ( ~ O s e , )  -ni [(~O€3e,)+(e, @U0)] +n,+i (e,@UO)=O; i=2, 3, ... S - I. 

and xs - l  (To €3 en) - ns(e, €3 U') = 0. 

nl (em €3 U') = no TO and 

Again multiplying on the right both sides of the equations (6.3.2) and (6.3.3) by 

the matrix I, €3 (e,P - In) we have, 

7tl[T€31n+Im@U] [Im@ (en P - I n ) = O  

and n,.l[~O a €3 (en P - I.) + ni[T €3 1. + I, €3 U] [I, Q (e, p - I.) = 0 ; 



The first equation reduces to 

xl(T €3 (e, p - I,)+ I,@ [U (en P -In>]> = O  

Thatis,n~[T@(e. p - I n ) - l m @ u ] = n ~ ( I m @ U O ~ )  

= [(Im 8 U O) U r n @  B)] 

= -nOIT@ P] (Using(6.3.1)) 

and the second equation becomes, 

ni[T 8 (e. P - 1. ) - I, 8 U] = ni (I, 8 U 'p) + ni.1 [To a8 1.1- ni.1 [To a @ e. P] 

= xi (I, 8 U 'p) + xi-l[TO a 8 In] - xi.l[~O 8 e.][ a 8 P] 

= xi (I, 8 U 'p) + ni.1 [To a 8 1.1 - ni[em 8 U '1 [ a 8 P] 

(Using (6.3.1 0)) 

= 7 ~ i  (Im @ U 'P) + 71,-I [To In] - ni[ema 8 U 'p] ; 

i = 2 ,  3, ..., S - 1. 

Putting U* = T 8 (e, P - I, ) - I, 8 U, the above two equations becomes 

~ I U *  = -  nOIT €3 P] (6.3.1 l )  

xi u * = ~ ~ ( I ~ @ U ~ ~ ) + T C ~ . ~ [ T ~ ~ @ I ~ ] - ~ ~ [ ~ ~ ~ @ U ~ ~ J ; ~ = ~ , ~ ,  ... S-1. (6.3.12) 

Similarly after multiplying on the right both of (6.3.2) and (6.3.3) by the matrix 

(em a - I,) C3 I,, and putting T* = (em cl - I, ) €3 U - T @ I,, we get 

x i ~ * = x i ( ~ 0 a € 3 ~ ) + n i + ~ [ ( ~ m - e m a ) @ ~ 0 ~ ;  i =  1 ,2 ,3 ,  ... S -  1 .  (6.3.13) 

Now combining (6.3.1 1) - (6.3.13) and (6.3.4), we have 

n l u *  = - no ( T B  P) (6.3.14) 

x iu* = - n i - l ~ *  ; i = 2, 3, ..., S - 1 (6.3.15) 



Following Neuts (1 981) we see that the irreducible matrix Q* = T + TO a is the 

generator of a homogeneous Markov process and it is sub-stable (A matrix is stable if 

all its eigen values have their real parts are strictly less than zero. It is sub-stable if their 

real parts are less than or equal to zero.). The eigen values of Q*@ I. + I, C3 U are the 

sum of the eigen values of the sub-stable matrix Q* and the stable matrix U (See 

Bellman (1974)). Hence Q*@ I + I G3 U is stable and invertible. 

Next we prove that T* and U* are invertible. 

Consider T* = - (T @ I, + ( I, - em a )  €3 U). By our assumption T and U are stable 

matrices. T* can be rearranged as 

T* = - (T @ I,)[I €3 U-' + T-'( I, - em a )  @ I] ( I, @ U). (6.3.17) 

First of all we prove that T-l( I, - em a) is sub-stable. Let h be an eigen value of 

T"( I, - em a )  and v be the corresponding eigen vector. Assume that Re (h) > 0 where 

Re (h) = real part of h. We have hv = T-'v - (av) T-' em. 

Since T and T-' are stable, h" cannot be an eigen value of T and h cannot be an eigen 

value of T-' . 

Hence a v  # 0 .  

- I  

Further v = ($1 (i I,,, - i) em . 



:. a v  = - a - Im - T e,,, ) [i J' 

The Laplace Stieltjes transform of F(x) is given by 

~ ' ( s )  = 1 - S a (S I, - T)-' em 

But the Laplace Stieltjes transform of a non-negative random variable is strictly 

positive in the right plane. Hence T-'(I, - em a )  is sub-stable. 

Now, since U" is stable and T-'( I, - em a )  is sub-stable, 

I 63 U-' + ~" ' (1 ,  - em a )  B 1. is stable and invertible. More over (T B I.) and ( I, C3 U) 

are invertible. Hence from (6.3.17) we conclude that T* is invertible. 

By the same argument U* is invertible. 

Now the stationary distribution ni; i = 1, 2, . . . , S is given by 

n1 = - no (T C3 P)u*-' 

7ti = - 7ti-1Ttu*-'; i =2,  3, ..., S - 1 

and n ~ = - r r s . ~ ( ~ O a Q I n ) [ ( T + ~ O a ) ~ Q I n + l , ~ ~ ] ~ l .  

By defining the matrices, 



MO = - (T 63 p) U*-' (6.3.19) 

M = T* U*-' (6.3.20) 

and MS-' = -  TO^ @ I,)[(T+ TOa)  @ I, +I, @ U]-' (6.3.21) 

which are respectively of dimensions m X mn, mn x mn and mn X mn. It is clear that 

ni; i =  l , 2 ,  ..., S 

can be obtained by the following formula 

In order to find no we substitute the above values in (6.3.9) to get 

That is 

S-2 

where W = I ,  + ( z M , M '  + M ~ M ~ ~ - ~ M , - , ) ( ~ , , ,  Be, )  

Since T + To a is irreducible, the system 

v ( T + T O a ) = O ;  ve,= l (6.3.25) 

has a unique solution. Thereforefrom (6.3.23) we get n o w  = CV, where c is a constant 

and v is a vector. 

On applying the normalizing condition (6.3.5) we get c = I. 

Hence in order to obtain xo we need to solve the system 



now = v, 

and the stationary probabilities can be calculated using the formula (6.3.22). 

NI 

and p, = Err,, . 

Then {pi ; i = 0, 1, 2, ..., S) represents the stationary distribution of the inventory 

level. 

Calculation of the stationary probability distribution of the inventory level:- 

Based on the forgoing analysis the following algorithmic procedure is 

suggested for the computation of {pi; i = 0, 1,2, . . ., S) .  

Inputs: 

Integers m, n and S 

ROW vectors a = ( a l ,  az, . . ., a,) 

P = (PI,  P2, Pn) 

Matrices T = (Tij)rnxm 

U = (Uij)nxn ' 

Compute: 

U' = -Tern 

U* = T C3 (e,P - I,,) - 1, C3 U 

T* = (e,a - I) €9 U - T €9 I, 



MO = - ( T B  P)U*-' 

M = T* U*-' 

MS - I = - (T'CX 8 I) [(T +  TO^) 8 I, + I, B U]-' 

Solve for v = (vl, v2, . . ., v,) from the system v(T + ~ ' a )  = 0, ve, = 1. 

Solve for xo = (no*, x02, . . ., xOm) from the system xOW = V. 

Calculate: 

x i = {  
~ , M , M ' - '  f o r i = l , 2  ,..., S-l 

no M0MS-* M,-, for i = S . 

The stationary probabilities are: 

Pi'TCiemn ; i =  1,2, ..., S 

Numerical Illustration:- 

Suppose that in a production - inventory system with S = 10 the inter-demand 

-2.5 2.5 
times follow a CPH (a ,  T), where m = 3, a = (1, 0,O) and T = 

The production times follow a CPH (P, U), where n = 4, P = (1, 0, 0, 0) and 



Using the above procedure the stationary distribution {pi ; i = 0, 1, 2, . . ., 10) is 

computed and its graph is given below: 

Graph of {pi) 



CHAPTER 6 

INTERMITTENTLY USED COMPLEX N-UNIT SYSTEM 

WITH STOCHASTIC DEMAND 

6.1 Introduction 

A system in general can be classified as one of two types according to its usage. One is 

when a system is constantly in use and second is one, which is intermittently used. In 

this intermittently used systems continuous failure free performance may not be 

necessary. For example telephone devices computer etc. Gaver (1963) first discussed a 

one unit intermittently used system and introduced "Disappointment time". Srinivasan 

( 1  966) extended Gaver's results to two-unit redundant system with arbitrary failure and 

exponential repair time distributions to obtain the first passage time to disappointment 

and mean time to disappointment using supplementary variable technique. Natarajan 

and Shahul Hameed (1988) studied an intermittently used k out of n: F system with the 

assumption that the failures will be detected only during the usage period and obtained 



expression for the distribution of time to the first disappointment etc by identifying 

suitable regeneration points. Sharafali et. al. (1988) considered a complex two-unit 

system with stochastic demand and obtained the various reliability measures. We 

extend this work to an intermittently used n-unit systems. In most of the intermittently 

used systems one or more units may be required for the satisfactory performance of the 

system. In such situations the number of units needed at any time may be described by 

a stochastic process called the "need process". The next section treats the model, in 

which all the underlying distributions are assumed to be exponential. For this model 

apart from obtaining expressions for time to the first disappointment and mean number 

of disappointments, an attempt is made to derive the first order product density of a 

disappointment. The last section considers the sojourn times. 

6.2 The Model 

A. 

The system consists of n units subject to failure and a single repair facility. The need 

process is governed by a Markov process. The assumptions for the model are given 

below. 

l .There are n identical units, whose lifetime distributions are negative exponential with 

1 
mean - . 

a 

2.There is only one repair facility and repairs are taken in FIFO order. 

3.Each unit is new after repair. 



1 
4.The repair time distribution is negative exponential with mean - 

P 

5.The need process is governed by a Markov Process (Y(t), t 2 0)on the state space 

(0, 1, 2, . . . , n) . Here Y(t) represents the number of units required for the satisfactory 

performance of the system at time t. The infinitesimal generator of this Markov Process 

{Y(t), t 2 0) is assumed to be 

0 1 2 ... n 

0[-h0 h,, ho2 ... hen l 
l AI, h ,  ?Ll2 

A = 2 h,, - h, . .. 
1 . 

h,, 

6.If at any time the number of operable units is less than the number of units required 

for the satisfactory performance of the system, then the system enters the down state. If 

more no of units are in the operable system than required, then the operable units not in 

use will behave like cold standbys. 

7.During the system down, the need will last for a duration governed by the respective 

exponential distribution and will not wait for a system recovery 

6.3 State of the System 

Let X(t) represent the number of units in the repair facility and Y(t), the state of the 

need process at time t. Clearly {X(t), Y(t)) is a Markov Process on the state space 



E = E o U  El U ... U E,, where Ei = {(i,O), (i,l), ..., (i,n)), i = 0,1, ..., n. The 

infinitesimal generator of this process {(X(t), Y(t))), t 2 0) is easily seen to be Q given 

as follows. 

E~ El E:! ' n -2  En-l E n 
. . . 

where 

Let Pij(t) = P [X(t) = i, Y(t) = j], i, j = 0, 1, 2, . . ., n and P(t) = [Poo(t), Pol(t), . . ., pn,(t)lT. 

Then by Chapman-Kolmogrov equation 

~ ' ( t )  = P(t) Q 

or = exp{Q(t))P(O) 

where P(0) is the initial state probability. 



6.4. Stationary Distribution 

where k = 0, 1, 2, ..., n be the stationary distribution. This is the solution of the 

n 

equations nQ = 0 with nke  = I 
k=O 

nQ = 0 gives 

Adding these equations we get 

This implies that no + xl + . . . + n, must be invariant measure for the Markov Process 

with the generator A. Assume that A possesses the invariant measure and let it be q .  

Here 

By solving (6.4.1) and (6.4.2), 

we get the solution for 



6.5. Distribution of the time to the First Disappointment 

A disappointment is said to occur whenever the number of operable units at any time 

becomes less than Y(t) at that instant of time. Thus the set of states of disappointment 

is D = {(l,n), (2,n-l), (2,n), (3,n-2),(3,n-I),(3,n), . . ., @,l), (n,2), . . ., ( v ) )  (Totally 

n(n + 1) 
in number). So the infinitesimal generator of {(X(t), Y(t)), t 2 0) can be 

2 

rearranged corresponding to the set of up-states U and set of disappointment states D as 

follows. 

where 

with v, = -(h, + p + na), 



0 ... P ' n o  "' ' 'n ,n-I  
0 ... 0 0 

0 ... 0 0 . . a  P 'n-1.0 ... 0 0 
0 ... 0 0 ... 0 h . 0  . . . 0 0 

and 

( l ,  n )  
(2 ,n - l )  

(2, n )  

Q,, = i 
(n,l> 

n,n 

-- (ln + P) o o ... o . . . o 
0 - - I  + P In-1.n ... 0 ... 0 

P 'n,n-1 - (hn  + p )  ... o ... 0 

O O O . . a  - ( h , + ~ )  ... '1 ,n  

L 0 0 0 'n.1 . S .  - (hn + p )  . . . 



Our problem is to obtain the distribution of random variable D, which represents the 

time to the first disappointment. Hence we dump together the states of the Markov 

process {(X(t), Y(t)), t 2 0) into a single absorbing state D. We so obtain the absorbing 

Markov process with generator 

Let us assume that the process starts in a state U and so let kU(0) be the row 

vector of initial state probabilities corresponding to the situation. Now the time to the 

first disappointment is the same as the time to absorption in the Markov process with 

the generator Q given as above. If GD(t) is the distribution function of the time to the 

first disappointment then 

G, ( l )  = 1 - 4, (0) exp{tQ,, 1. 

One may note that this is phase type distribution representing the distribution of the 

absorption time in the Markov process described above. Clearly the moments are given 

by 

6.6 Product Density of a Disappointment 

Let hD(t) be the first order product density of a disappointment at t. Now h ~ ( t )  is the 

probability that a disappointment occurs in (t, t + dt). 



By considering the various possibilities of entering into the states of disappointment we 

have 

n  n  n - j  j 

D 
i = l  j = i  i = o  k = l  

The expected number of disappointment in (0, t) is given by 

6.7 Total Sojourn Time 

Let S,:;' ( t )  denote the total sojourn up to t in the state (m, j) starting from (r, i) at t = 0. 

Let the elements of Q in (6.5.1) can be written as 

Q = (Q;;' ) 

where 

Q,:;' < 0 for (m, j) = (r, i) 

and Q,:;' 2 0 for (m, j) (r, i). 

Define 

M,, , ( 2 ;  l )  = E exp - C z,, 'S,": ( 0  [ i ( m * ' )  l1 
and M(z; t) = (Moo(z; t), MOI(Z; t), . . . , Mnn(z; t)lT 

with z = (zoo, ~01, . . ., znn). 



So for (r, i) E E, 

Therefore 

M * (z; S) = [I - A* (z; S)]-' A* (z; S) e (6.7.1) 

where M * (z; S) is the Laplace transform of M(z; t) and 

A* (z; S) = diag 
1 . . * 1 

> 7 

S + ZO.O - Q:;: ' S + z,,, - Q:;: S + Z n , n  -Q;:; 

The Laplace transform of the Moment Generating Function of the total time 

spent in the state of disappointment up to any time t is obtained by putting 

n(n + 1) 
Z=z(O,0 ,0 ,  ..., 0, 1, 1, ..., 1lT(with l's) in (6.7. l). 

2 

Total time spent in each of the up states prior to the occurrence of a 

disappointment is obtained by taking SmJ, (m j) E U be the total time spent in the 

state (mj)  

we get, 

E exp - Cz,,,S:: =P,(o)[A(z)-Q,]-'~,e [ { m .  l 1  
where A(z) = diag(a,o, zo,~, . . ., z,,~). 

By differentiating (6.7.2), we get the mean vector 



Remark 6.1. When the number of units n = 2, then the results of this chapter are in 

agreement with those of Sharafali et. al. (1 988). 



CHAPTER 7 

SOME GENERALIZED POISSON SHOCK MODELS 

AND THEIR CLOSURE PROPERTIES 

7.1 Introduction 

Suppose that a device is subjected to shocks occurring randomly over time according 

to counting process N = {N(t): t 2 0).  Let P, be the probability that the device survives 

- - 

k shocks, k = 0, 1, 2, . . ., where it is reasonable to assume that 1 = P, 2 P, 2 ...... . Then 

- 

it follows that the probability H(t) of survival function of the device is given by, 

Shock models of this kind have been studied by Esary et a1 (1973) when N is 

homogeneous Poisson process. by A - Hameed and Proschan (1973) when N is a non- 

homogeneous Poisson process or a birth process and by Block and Savits (1978) when 



N is still more general counting process. In all these cases the authors prove that 

~ ( t )  is IFR, IFRA, DMRL, NBU or NBUE under suitable conditions on N if 

- 
has the corresponding discrete property. Klefsjo (1981) proved that H([) is 

HNBUE if P, has the discrete HNBUE property and Abouarnmoh et a1 (1988) have 

proved the NBUFR and NBAFR preservation results. In this chapter we are proving 

the corresponding theorems for the ILR class of life distributions. We also get the dual 

class DLR. 

Let F be a life distribution (F(0-) = 0) and F = 1 - F be the corresponding 

survival function. Also let f be its density function. 

- 
Definition 7.1. A life distribution F (or its survival function F)  is said to be ILR or 

Polya Frequency of order 2 (PF2) if log f is concave. 

That is f + A> is decreasing in ' t ' for any A > 0 
f ( t )  

'(') is decreasing in ' t l. or equivalently - 
f C) 

If log f is convex, then F is DLR. 

- m 

Definition 7.2. A discrete distribution {pr) (or its survival probabilities P, = p, , 
) = , + l  



k = 0, 1, 2, . . .) is called discrete increasing likelihood ratio (Discrete ILR) or discrete 

PF2 if PL*" is decreasing in k for every m > 0. (The reader may refer to Ross (1983) 
P k  

for the above definitions of ILR and DLR class of distributions) 

In section 7.2 and 7.3, we prove the preservation of ILR (DLR) properties when 

N is a homogeneous and non-homogeneous Poisson processes respectively. Section 7.4 

is concerned with a mixed Poisson shock model and similar results are proved under 

suitable conditions on the probability of shocks and the mean value function of the 

process. 

Throughout this chapter increasing is short for non-decreasing and decreasing is 

short for non-increasing. We remark that the result of section 7.3 in fact was proved in 

Esary et a1 (1973) but the method used here may be of intrinsic interest. 

7.2 Shock models and Preservation Results 

Let a device be subject to shocks occurring randomly over time according to a 

- 

homogeneous Poisson process with intensity h. Then the probability H ( t )  of survival 

of the device until time ' t ' is given by 

* e-'l - 
" t )  = 1 Pk , t 2 O -  

k = O  k ! 



Survival functions with this form have a number of attractive properties. Some of them 

are discussed in this chapter. If P, of surviving k shocks in (7.2.1) is assumed to ( - 
be a deterministic function of k alone and not any random damages, it is reasonable to 

- - - 
assume that 1 2 PO 2 P; 2 ...... . The density of H(t) has a jump of magnitude 1 - PO at 

the origin and for t > 0 

Moreover the hazard rate 

is seen to be less than or equal to h. 

- 
Also h(t) = h for some t > 0 a P, = 0 V k > 0 in which case h(t) = h V t > 0. 

- - 
An interesting example of H(t) as defined in (7.2.1) occurs with P, = €lk, 0 < 0 < 1, 

- 

k = 0, 1, 2, . . . . In this case H([) = exp (-h (1 - 9) t) is exponential. It can be seen that 

- - 

H ( t )  is exponential if and only if P, = Ok for some 0 I 9 < 1. 



- - 

7.2.1. Properties of H (t) from the properties of P, 

- 

Certain kinds of properties when imposed on P, in (7.2.1) are reflected as analogous 

- 

properties of H(t) . For example, if P, is decreasing in k then H([) is decreasing in t. 

- 

When P, has geometric distribution then H(t) has exponential distribution. Various 

- 

other properties of the P, of interest in reliability are found to carry over to H(t) . 

The main preservation results are given in the following theorem. 

- - 

Theorem 7.1. (i) If P, is decreasing in k then H(t) is decreasing in t. 

m e - " ( ~ t ) ~  - 
(ii) Let ~ ( t )  = 1 

- - - 

P, when 1 = PO 2 P; 2 ....... , then H(t) has a PF2 density 
k=O k! 

if - "+I is decreasing in k = 1,2, . . . . That is if {pt, k L 1 ) is a PF2 sequence. 
Pk. 

(iii) ~ ( r )  is IFR if P, is discrete IFR. ( - 
(iv) H([) is IFRA if P, is discrete IFRA. ( - )Io 
(V)  H ( [ )  is NBU if Pk is discrete NBU. i - 
(vi) ~ ( t )  is NBUE if P, is discrete NBUE. ( - 



(vii) ~ ( t )  is DMRL if P, is discrete D M U .  ( - )I, 
Note: Similar results hold for the dual classes representing beneficial ageing. 

Suppose that the process N is a mixture of homogeneous Poisson process, then 

~ ( r )  is given by 

where h is a random variable with distribution function G(.). 

Then we have 

Theorem.6.2. (Manoharan et. al. (1992)) The PH- distribution is preserved by the 

transformation (7.2.2) when G(.) is a distribution with finite support. 

Specifically, if the shock probabilities {pk) has DPH (a,  T), G has a support 

on {XI, hz7 . . . , hk) with mixing density {rl, r2, . . . , rk) , then the survival distribution 

function H(t) has CPH distribution with representation (a*, T*),~ 

where a* = (r la ,  rza, . . ., rka) and 

Also the mean of the distribution H(t) is 



where pi = a(1- T)-l e is the mean of {pk}. 

In particular, if the shocks arrive according to a homogeneous Poisson process 

with parameter h and the shock probabilities {pk) has DPH distribution with mean P;, 

then H(t) is of CPH with mean p, = p p .  (t) 
Now we prove the following preservation result. 

Theorem 7.3. The survival function ~ ( t )  in (7.2.1) has ILR property if P, has the ( - 
discrete ILR property. 

Proof: 

Differentiating (7.2.2), we have 

e-'' (ht) 
hl(t) = hi C 

k=O k! 
( P I + *  - Pk+l ) ' 

Let 

For tl < t2, let the determinant 



Now for k < 1 and t l  < t2, the first determinant is 5 0 and since {pk) is discrete ILR, the 

second determinant is 2 0. Hence D 1 0 .  

3 g(t) is decreasing in t 

3 log h(t) is concave 

=. h(t) is ILR . 



In the DLR case we get the following theorem 

Theorem 7.4. The survival function ~ ( t )  in (7.2.1) is DLR if Pk has the discrete ( -  
DLR property. 

7.3 A Non - Homogeneous Poisson Shock Model 

If the shocks occur according to a non-homogeneous Poisson process with mean value 

function A(t) and event rate h(t) = ~ ' ( t )  both defined on the domain [0, m), with h(0) as 

the right hand derivative of A(t) at t = 0 and the device has the probability of 

- 
surviving first k shocks, then its survival function H(t) is given by 

and density function is 

Under the suitable assumptions on A(t), various geometric probabilities of 

- 
have counter parts as corresponding properties of H(t) . Similar relationships 

hold among h(t), pk, and h(t). 



h(r) is decreasing. If in addition h(t) is Theorem 7.5. (i) If pk is decreasing then - 

decreasing then h(t) is decreasing. 

h(t) (ii) If pk is decreasing and log concave, and h(t) is increasing then - is log concave. 
h(t) 

If in addition, h(t) is log concave then h(t) is log concave. 

- 
(iii) IfP, is discrete IFR and A(t) is convex (that is h(t) is monotonic increasing in t), l 

then ~ ( t )  is IFR. 

(iv) 1f P, is discrete IFRA and A(t) is star-shaped, then H([) is IFRA. 

(v) 1f P, is discrete NBU and A(t) is super-additive, then H@) is NBU. 

(vi) 1f P, is discrete NBUE and A(t) is star-shaped, then ~ ( t )  is NBUE. 

(vii) I f 4  is discrete DMRL and A(t) is convex, then ~ ( r )  is DMRL. 

Note: The same corresponding results hold for the dual classes also. 

So we have 

Theorem 7.6. If P, has discrete ILR property, pk is decreasing in k and h(t) is ( - l:=,, 
- 

increasing and log concave, then H(t) in (7.3.1) is ILR. 



" e - ^" 'Ak ( t )  

Put g(t) = E P k + l  

k=O k! 

so that h(t) = h(t) g(t) . 

First we prove that g(t) is log concave. 

Let g * ( t ) =  - - 

" Ak ( t )  z ( ~ k + 2  - P k + l )  
Ir=n 

For tl < t ~ ,  Consider the determinant 

Since h(t) is increasing and pk is decreasing. By the same way as done in the 

proof of theorem (7.2.1) we have 



Now since A(tl) I A(t2) and k < 1, the first determinant is negative and since {pk) is 

discrete ILR, the second determinant is positive. Hence D i 0, which implies that g*(t) 

is decreasing in t and therefore that log g(t) is concave. 

From (6.3.3), since h(t) is concave, we conclude that h(t) is ILR. 

In a similar way we get a dual theorem in the DLR case. 

Theorem 7.7. If P, has discrete DLR property, pk is increasing in k, h(t) is i - 
- 

increasing in t and log concave, then H(t) in (7.3.1) is DLR. 

7.4 Mixed Poisson Shock Model and Closure of ILR Property 

If N is a mixed Poisson process with mixing distribution given by the random variable 

- 
h having distribution G, then the survival function of the device H(t) is given by 

e - A ( t ) ~ k  (t) ik 1 
& ( I )  = E { ~  

k = O  k! 

where A(t) = hA(t), h is a random variable following a distribution G and A(t) 

is a deterministic differentiable function o f t  with ~ ' ( t )  = a(t). 

We have 

The density function h(t) is given by 



Now we prove 

Theorem 7.8. The survival function ~ ( t )  in (7.4.1) is ILR if P, is discrete ILR, ( - )Io 
{pk) is decreasing and a(t) is an increasing log concave function. 

m m 

h(t) = a(t)g(t) where g(t) = a(t) j ~ e - ~ ( " Z  [hA(t)lk p,+, dC(h). 
0 ,=O k! 

For t l  < t2, let the determinant 

m m 

D ~ ,  = j L e - u ( l 2 ) ~  [ha(t2)1k p,,, ~ G ( A )  
0 k=O k!  



Since a(t) is increasing and pk is decreasing, 

Now, using the basic composition formula (refer Karlin (1968)) and proceeding in a 

similar manner as in the proof of theorem (7.2.1) it can be seen that 

where M = DI ID22 - DI2D21. 

Using the facts that A(t) is increasing in t and {pk) is discrete ILR, it can be verified 

that the first and third determinants are positive and the second one is negative. Hence 

D 10. 

Therefore g*(t) is decreasing in t. 

That is log g(t) is concave. 

That is h(t) is log concave, since a(t) is log concave. 

- 
Corollary 7.1. The survival function H(t) in a homogeneous mixed Poisson model is 

m 

R if ( is discrete ILR. 
k =O 

The corresponding dual theorem under mixed Poisson model is the following. 

- 

Theorem 7.9. The survival function H(t) in (6.4.1) is DLR if is discrete DLR, 

{pk} is increasing and a(t) is decreasing log convex function. 



CONCLUDING REMARKS 

In this study we have investigated certain stochastic models in queues, inventory and 

reliability and augmented some interesting results concerning their stationary and time 

dependent aspects. The unimodality properties of stationary population size 

distribution of the birth and death process and the characterization result presented in 

chapter 2 have great importance in queueing networks. This suggests further 

motivation for studying the stationary characteristics of similar queueing models under 

general distributional assumption. 

In many real life situations we can see that there is a control limit for shutting 

down and resuming service and we have developed in chapter-3, a simple procedure to 

obtain the stationary distribution of the appropriate queueing model in such a situation. 

By introducing a secondary limit to the single and batch service MIMl1 queueing 

system we can escape from perpetual change over from batch service to single service. 

We develop such a model and analyzed it in fourth chapter with numerical illustration. 

Deviating from Markovian assumption to non-Markovian one may develop algorithmic 



solution using regenerative or semi-regenerative process to compute the steady state 

and transient state probabilities. In a similar manner if one can relax the exponential 

assumption and perform the analysis of intermittently used n-unit system, it will be a 

quite worthwhile work. Since we derive the stationary distribution of (S - 1, S) 

production/inventory system under a versatile class of PH- distributions, which covers 

most of the commonly used distribution like exponential, gamma, hyper exponential 

etc., the results can be considered to be more robust. 

There are many interesting problems concerning various stochastic models 

considered in this thesis. Practical experience over the past has suggested a much more 

flexible family of models. Current attempts to extend the models have been restricted 

to models, which have closed form properties. The power of Markov chain Monte 

Carlo (MCMC) methods may be used to explore new models which do not posses the 

simple structure necessary to give closed form properties but instead provide a much 

broader class of models and inference flexibility. 
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