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Preface

Both experimental and lattice results show that the matter formed near and just

above the transition temperature is non-ideal. There are lots of attempts to explain

such a matter using various phenomenological models. The quark-gluon plasma

near Tc is called strongly coupled quark-gluon plasma (SCQGP) and can be treated

as the strongly coupled QED plasma with a few modifications due to color degrees

of freedom. The aim of this work is to study the screening potential and the

properties of bound states in SCQGP.

The thesis is structured as follows

The purpose of chapter 1 is to give a small introduction to QGP. We start with

the theory of quarks and gluons and a brief description of quantum chromody-

namics. We then give an introduction to the different phenomenological models of

QGP.

In chapter 2, we calculate the screening potential of a test quark entering

into the strongly coupled QGP using generalized hydrodynamic equations. Also,

we investigate the temperature dependence of the screening potential. We try

to explain the existence of bound states and the expected J/ψ suppression in

connection with the potential.

In chapter 3, we calculate the binding energy of the bound states of quarks by

solving the N-dimensional radial Schrödinger equation using this potential in three

different methods. i.e., analytical exact iteration method (AEIM), power series

method (PSM), and Nikiforov-Uvarov (NU) method. The energy eigenvalues have

1



been calculated in the N-dimensional space for any state (n, l).

In chapter 4, we study the binding energies of scalar diquarks using AEIM and

PSM and plotted as functions of temperature. Effective masses of diquarks are

calculated using the binding energies at finite temperature in the strongly coupled

quark-gluon plasma.

In chapter 5, the quarkonium properties are studied in two methods. i.e. AEIM

and NU Method. The variations in binding energy and mass spectra with tempera-

ture have been studied in the N-dimensional space. The dissociation temperatures

for different states of quarkonia are calculated in the N-dimensional space. Also, we

discuss the influence of dimensionality number on the dissociation temperatures.

In chapter 6, we study the properties of bc and cs mesons. Variations of

binding energy and mass spectra with temperature have been studied for different

dimensions. The dissociation temperatures for different states of bc and cs mesons

are also calculated.

Chapter 7 summarizes our results and provides conclusion and an outlook re-

garding our future work.
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Chapter 1

The Quark-Gluon Plasma

1.1 Introduction

In 1897, the electron was discovered by J.J. Thompson using a cathode-ray tube.

This event set the stage for modern particle physics. The proton and neutron

were discovered subsequently. These three particles were initially regarded as el-

ementary particles. But soon there occurred propagation in the inventory of the

so-called elementary particles. In 1937, the study of cosmic rays led to the discov-

ery of muons. A decade later, pions and strange particles were discovered. In the

1950s, the study was shifted from cosmic rays to man-made particle accelerators.

The use of particle accelerators helped to discover a large number of new particles

including mesons of spin higher than zero and baryons of spin higher than half

with various values of charge and strangeness. These new particles are generally

called hadrons. Though unstable, they exhibit similar behavior to protons and

neutrons. These hadrons including the nucleons are transformed into each other

in many complex ways. Now the physicists had to deal with these hadrons and
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their interactions. The interaction between hadrons came to be known by a new

name, the strong interaction.

The rapidly increasing number of hadrons showed that they could not be ele-

mentary. Studies on the classification mechanism, mass spectra and interactions of

hadrons revealed that the hadrons were made up of more fundamental elementary

particles -the quarks. In the 1960s, M. Gell-Mann and G. Zweig independently

proposed the quark model [1,2]. It was then necessary to understand the quark

dynamics which is responsible for the composition of hadrons and hadronic in-

teractions. The non-abelian gauge theory, first proposed by Yang and Mills [3]

was later found applicable to strong interactions also [4,5]. Gell-Mann named it

as Quantum chromodynamics (QCD). QCD is a gauge theory of strong interac-

tions based on color symmetry group SU(3) in which the non-abelian gauge field

called the gluon (which is a boson), belongs to the octet representation of color

SU(3). The color interactions between quarks are being mediated by the gluons

and hence the binding of quarks occurs. Gluons carry color charges and hence

they can interact with each other even in the absence of quarks.

Quarks fall into the fundamental triplet representation of the color SU(3) group.

Each quark carries a color quantum number which can have three values (red, blue,

green). Properties of quarks according to the standard model are given in Table

1.1 [6]. Six types of quarks have been discovered till now. (up (u), down (d),

strange (s), charm (c), bottom (b), and top (t) quarks). The electric charges for

the up, charm, and top quarks are +2
3
e and for down, strange, and bottom quarks,

−1
3
e. All the six quarks have spin 1

2
and baryon number, B=1

3
. Experimentally no

colored particles have been detected. So it is proposed that only uncolored particles

(color singlet) are observable. This is the hypothesis of color confinement. Thus

4



three quarks combine to form a colorless baryon and a quark and antiquark are

combined to form a meson.

In 1968, the first experimental evidence of quarks as constituents of hadrons

came from the inelastic electron-proton scattering experiments performed at the

Stanford Linear Accelerator Centre (SLAC). The scattering cross sections provided

evidence of elastic scattering from the point-like objects inside the proton [7]. The

experimental results at SLAC could be explained only if quarks inside a proton

are nearly free as was proposed by Feynman. Now there emerged a paradox.

The strong interaction is powerful to permanently confine the particles within the

hadron. But Feynman suggested that the interaction between the quarks should

be weak enough at short distances so that the quarks can behave as free particles

[8]. This paradox was solved by David Gross, Wilczek, and Politzer.

The theory of strong interactions which came to be called quantum chromo-

dynamics (QCD) was developed in the 1970’s by generalizing the existing gauge

theory of electromagnetic interactions - quantum electrodynamics (QED). The

fundamental difference between QCD and QED is that in QCD, the generators of

the symmetry do not commute with each other. Thus the theory is a non-abelian

gauge field theory, which have some paculiar properties, one of which provided the

solution to the paradox created by the SLAC experiment.

1.2 Asymptotic freedom and quark confinement

For QCD, when the energy-momentum transfer increases, the effective interaction

between quarks decreases, and when these variables tend to infinity, the theory

becomes a free field theory. This property was discovered by David Gross, Wilczek,

5



Table 1.1: Properties of quarks according to the standard model [6]

Quark Charge Mass Baryon number Isospin
up(u) +2/3 ≈ 4MeV 1/3 +1/2

down(d) −1/3 ≈ 7MeV 1/3 −1/2
strange(s) −1/3 ≈ 135MeV 1/3 0
charm(c) +2/3 ≈ 1.5GeV 1/3 0

bottom(b) −1/3 ≈ 5GeV 1/3 0
top(t) +2/3 ≈ 175GeV 1/3 0

and Politzer and it is called the asymptotic freedom [4, 5, 9, 10]. It results from

the anti-screening of the color charges. This property explains the SLAC results

where quarks behave as free particles, though they are confined.

The attractive force between quarks increases with separation and an infinitely

large amount of energy is required to separate them fully. Thus they are per-

manently bound to hadrons. This is called quark confinement, which is another

important property of QCD.

Thus at low energy, there is confinement and at high energy, there is asymp-

totic freedom in QCD. These two properties can be explained using the coupling

constant. The effective running coupling constant in QCD can be written as [11],

αs(µ) =
12π

(33− 2nf ) ln (µ2/Λ2
QCD)

(1.1)

where nf is the number of active quark flavor and ΛQCD is the QCD scaling

parameter

When the momentum scale µ approaches infinity, αs will go to zero. This

phenomenon is called asymptotic freedom.
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1.3 The QCD phase diagram

Figure 1.1: The QCD Phase Diagram [12]

The QCD phase diagram gives an idea about the different phases of QCD and

the corresponding phase transitions. Fig. 1.1 [12] shows the QCD phase diagram

as a function of temperature T and baryon chemical potential µB.

The available lattice simulations predict that, there are no phase transitions

and hence no phase boundaries at zero chemical potential and finite temperature.

Calculations also show a phase transition from hadronic phase to QGP for realistic

values of light quark masses (u, d, and s) at a temperature in the range 150-180

7



MeV. The early universe was in this region of small µB. RHIC and LHC also

explore this region.

As µB is increased at zero temperature, there occurs a first-order phase tran-

sition from the hadronic phase to the nuclear matter at about µB ≈ 940MeV .

As µB is increased further, neutron fluidity is occurred as in neutron stars. At

higher µB, high-density QGP is formed. Here there are different phases such as

color superconductor, which is formed due to the condensation of quark cooper

pairs. Many other phases are proposed in the high µB region such as Color Flavor

Locked (CFL) phase and crystalline color superconductor.

In the region of small T and finite µB, the first-order transition line ends at

the point with T = Tc and µB = µc and at which the phase transition is second

order. This point is called the critical point.

At high temperature and/or high baryon density, because of asymptotic free-

dom, the phase of QCD is described in terms of quarks and gluons degrees of

freedom. At sufficiently high temperature (T > ΛQCD, where ΛQCD is the QCD

scaling parameter), the quarks and gluons are weakly interacting. Such a system

can be described using perturbation theory. In the transition region, where the

hadronic description is not valid and perturbation theory is not feasible, then the

non-perturbative nature of QCD should be taken into account. The term strongly

coupled quark-gluon plasma is used to represent the QCD state near the transition

temperature.

At extremely high temperatures, QGP can be considered as an ideal gas of

quarks and gluons. Around the phase transition temperature, the coupling con-

stant is not weak and QGP can be considered as a non-ideal gas of quarks and

gluons.
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1.4 The quark-gluon plasma (QGP)

With the point that the quarks and gluons are confined within the hadrons, the

important prediction of QCD is that at very high temperature and/or density,

the hadrons dissolve into quarks and gluons. Such a state of deconfined quarks

and gluons is called the quark-gluon plasma (QGP). The properties of QGP are

expected to be extremely different from the hadronic matter at corresponding

energy densities.

The hadronic matter is strongly interacting but according to the asymptotic

freedom of non-abelian QCD, at very short distances and/or high momentum

transfer the constituent quarks and gluons are weakly interacting. Thus the equa-

tion of state should be the same as that of a free system. The number of degrees

of freedom in the hadronic phase consisting of pions is three, but the number of

degrees of freedom in QGP is (16 + 21
2
nf ), with nf the number of flavors.

The characteristic values of temperature and density at which the transition

from hadronic phase to QGP occurs correspond to Tc = 1012K and ρc = 1015g/cm3.

Studies on QGP in laboratory give a clear picture of the early universe. During the

first 10 µs after the big bang, the universe was filled with the QGP phase which

was in the form of a dilute gas of weakly coupled quarks and gluons. Because of

the expansion of the universe, the temperature decreased, neutrons and protons

were formed from QGP, and atomic nuclei were formed further. Fig. 1.2 shows

the evolution of the universe from Big-Bang up to toay [13]. QGP can occur natu-

rally at very high baryon number densities and low temperatures in astrophysical

compact objects (neutron stars). Many research projects are going on to produce

QGP in laboratory conditions (RHIC, LHC).
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Figure 1.2: Evolution of the universe from Big-Bang up to today [13]

1.5 The search for QGP

QGP is studied experimentally in heavy-ion collisions at Relativistic Heavy Ion

Collider (RHIC) and Large Hadron Collider (LHC) to provide critical data to the

quest of QGP. Powerful accelerators in the heavy-ion colliders make head-on col-

lisions between massive ions (Little bangs) to recreate the situation similar to the

early universe just after the Big Bang. Such heavy-ion collisions were performed for

more than 20 years at sufficiently high energies to produce the deconfined phase.

In 1986, the first attempt to create QGP was done using light nuclei at Alter-

nating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL),

USA with Silicon (Si) and Super Proton Synchrotron (SPS) at CERN, the Euro-

pean Organization for Nuclear Research, Switzerland with Sulfur (S). Later in the

early 1990s, collision with Gold ions (Au) was done at AGS and with Lead ions

(Pb) at SPS. The centre of mass energy per colliding nucleon-nucleon pair at AGS

and at SPS was 4.6 GeV and 17.2 GeV , respectively. In 2000, the evidence of a

new state was announced by CERN SPS. In the same year, RHIC at BNL started
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operation with four detectors PHENIX, STAR, PHOBOS, and BRAHMS with ten

times larger the centre of mass energy than previously available. In 2010, LHC

at CERN started Pb-Pb collisions at 14 times larger centre of mass energies than

RHIC. The analysis of Au-Au collision at
√
SNN = 200GeV at RHIC and Pb-Pb

collision at
√
SNN = 2.76TeV at LHC provided evidence for QGP [14]. The first

results from RHIC showed that the QGP is a strongly coupled system which is a

nearly perfect liquid [15]. The LHC results also gave clear evidence for the ideal

liquid nature of QGP seen at RHIC [16, 17]. Fig. 1.3 schematically illustrates the

nuclear collision time evolution.

Figure 1.3: Schematic representation of Relativistic Nuclear Collisions (Courtesy
to Prof. Steffan Bass)

1.6 The QGP signatures

The identification of QGP generation in relativistic heavy-ion collisions has ap-

peared to be difficult [18]. The quarks and gluons in the deconfined plasma could

not be measured directly. The signals of QGP can be extracted from the analysis

of the particles produced at the final state. Some of the techniques for signaling

QGP are discussed next.
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1.6.1 Direct photon production

QGP can be observed directly through the electromagnetic radiation emitted by

the quarks in the early stage. Since photons can escape the medium without

much interaction, they seem to be a direct signal of QGP and they can provide

information on the properties of QGP. In [19, 20], it is explained how photons

become evidence for the production of QGP in high-energy heavy-ion collisions.

Photons are produced in the QGP medium by processes like annihilation (q+ q →

γ+g ) and Compton scattering ( q+g → γ+q , q+g → γ+q ). Fig. 1.4 shows the

diagrams for the production of direct photons via the QCD Compton scattering

process and annihilation process [21]. Since the photons are produced during the

decay of pions and muons in heavy-ion collisions, it is not easy to measure the direct

photons from the electromagnetic interaction of the constituents of the QGP.

There are many meaningful works for the subtraction of the photons from

the π0 and µ0 background to obtain direct photons. In [22], a measurement of

direct photon production in Pb+Pb collisions at 158 AGeV has been carried out

in the CERN WA98 experiment. A significant direct photon excess is observed at

pT > 1.5GeV/c. To minimize the contribution of photon from the hadron phase,

photon transverse momentum pT must be greater than 2 GeV/c. In the hot QGP,

photons have transverse momentum in the range 2 - 3 GeV/c [23]. Photons at

this pT are also produced by the collision of constituents of the projectile nucleons

with that of target nucleons. In order to get the net photons from the QGP, the

contributions from the other sources must be subtracted.
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Figure 1.4: Feynman diagrams for direct photon production at leading order via
the QCD Compton scattering process (left) and annihilation (right) [21]

1.6.2 Dilepton production

In QGP, the virtual photons that are produced by the annihilation of quark and

antiquark decay into lepton pairs L+L− (e+e− and µ+µ− ) which are termed as

dileptons. These dileptons pass through the medium towards particle detectors

without any further collisions. Thus they provide critical information about the

interior of the fireball. Due to the effects of the medium, the quark dispersion

relation in QGP changes in such a way that sharp gaps arise in the production

rate of low mass dileptons. This is an important signature for the presence of

deconfinement. Fig. 1.5 illustrates different elementary processes contributing to

the dilepton production [24].

The dilepton mass can be written as,

M2 = (P+
L + P−L )

2
(1.2)

Where P+
L and P−L are the four-momenta of the dilepton. The dilepton’s transverse
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Figure 1.5: Diagrams contributing to the dilepton production from a QGP: (a)
Born mechanism, (b) gluon-Compton scattering (GCS), (c) vertex correction, (d)
gluon Bremsstrahlung (NLODY), where virtual photons (wavy lines) split into
lepton pairs [23]

momenta can be written as,

PT = (P+
L )T + (P−L )T (1.3)

where (P+
L )T and (P−L )T are the transverse momenta of the dilepton.

1.6.3 Quarkonia suppression

Bound states of heavy quarks and their antiquarks are called quarkonia. The

bound state of a charm quark and anti-charm quark (cc) is called charmonium,

and the corresponding bottom and anti-bottom quark pair (bb) is known as bot-

tomonium. They are formed during the initial hard collision and carry information

about the initial stages of the QGP. Their binding energies are large so that they

can survive in the QGP medium. The binding energy of the heavy quarkonium

states is studied in [25,26]. Quarkonium suppression means the decrease in the

production of quarkonia in the region where QGP is formed compared to the case

where no QGP is formed in heavy-ion collision experiments. The main reason for

this is the interaction of quarkonium with the QGP medium.
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Thus the QGP formation affects the quarkonium suppression. The experimen-

tal evidence of the NA50 collaboration shows the anomalous J/ψ suppression in

Pb+Pb collisions [27]. In [28] the phenomenon of anomalous J/ψ suppression has

been studied in detail. In this thesis, we try to explain the quarkonium suppres-

sion in connection with the screening potential between quarks in strongly coupled

quark-gluon plasma (SCQGP).

1.6.4 Strangeness enhancement

It is one of the most important probes for the detection of QGP. It is the ob-

servation of the abundance of strange particles (hadrons) in the detector. The

strange quarks and antiquarks are easy to be created in a hot and dense QGP

which combine with the other quarks to form a large number of strange hadrons.

Fig. 1.6 shows the strange hadron production from QGP [29]. The strangeness

evolution in QGP [30] can be described by the processes uu → ss , dd → ss and

gg → ss . The gluonic process provides a faster production rate. Thus the yield

of strange and multi strange mesons and baryons has been strongly enhanced in

the presence of QGP [31]. The WA97 collaboration [32] experimentally proved the

enhancement in the production of multistrange hyperons in particular Ω
+

and Ω
−

in Pb+Pb collisions at 158AGeV .

1.6.5 Jet quenching

Jet quenching means the modification of the energy of the hadron jet by the

QGP. During nuclei collision, the partons produced with very high transverse

momenta fly off to all possible directions and finally form narrow cones of hadrons
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Figure 1.6: Strange hadron production from QGP [29]

called jets. The energies of these jets are modified by the QGP medium. The

comparative study of jet energies with the same in the proton-proton collision

may lead to the identification of QGP. Thus the study of jet quenching is an

important tool for understanding the QGP. Fig. 1.7 explains the jet quenching in

a head-on nucleus-nucleus collision [33]. The energy loss can be observed through

the nuclear modification factor RAA.

RAA(pT , b) =
1

TAA(b)

[
dNAA

d2pT dy

dσpp
d2pT dy

]
(1.4)

Here the numerator is a single particle momentum distribution of a jet in

the nucleus-nucleus collision and traveling through the thermal medium and the

denominator is the same in the proton-proton collision. TAA(b) is the nuclear

thickness function and b is the impact parameter. If this ratio is less than unity,

it is a measure of jet quenching in the medium [34, 35, 36, 37].
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Figure 1.7: Jet quenching in a head-on nucleus-nucleus collision [33]

1.6.6 Anisotropic flow

Anisotropic flow provides information about the thermodynamics and collective

flow of the hot and dense medium. In non-central collisions, the pressure and

energy profile are not symmetric in the plane perpendicular to the beam axis. The

large pressure gradient will lead to a larger expansion velocity and asymmetrical

particle emission. This distribution can be explained by Fourier expansion. The

first Fourier coefficient gives the strength of the direct flow and the second Fourier

coefficient is called the elliptic flow. The higher coefficients are for studying the

initial state fluctuations and to obtain the ratio of shear viscosity to energy density

(η/s ) of the hot medium. The azimuthal momentum anisotropy is represented as,

E
d3N

d3p
=

1

2πpT

d2N

dpTdy

[
1 +

∞∑
n=1

2νn cos

[
n
(
φ− ψ

)]]
(1.5)

where φ is the azimuthal angle of the particle and ψ is that of the reaction

plane in the laboratory frame. 1.8 shows the magnitude of ellipti flow for different
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particle species [38].

Figure 1.8: Elliptic flow in heavy ion collision [38]

1.7 Phenomenological models

A phenomenological model means a group of predictions about a system according

to a theory. Using a phenomenological model, the properties of a system can

be predicted. These predictions are experimentally verified. There are many

phenomenological models about QGP. Some of them are explained below.

1.7.1 MIT Bag Model

It is a very simple phenomenological model. It was developed by Chodos et al.

[39] in 1974 at the Masachusetts Institute of Technology in Cambridge (USA).

According to this model, quarks are confined to move in a given spatial region

forced by external pressure. The quark confinement can be visualized as an elastic

bag (usually spherical in shape but can be deformable) in which the quarks move

freely around as long as we don’t try to pull them apart. If we try to pull a

quark, then the bag stretches and resists the pulling, B is the pressure exerted by

the vacuum on quarks and gluons. In this model, quarks are considered massless.

Here quark confinement occurs due to the balance of the pressure B exerted on

the bag from outside and the kinetic energy of quarks. B is called the bag pressure
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which incorporates the non-perturbative effects of QCD (B ≈ 200MeV ). By

compressing the bags against each other phase transition can be occurred. The

pressure and energy in terms of Bag constant are,

P =
37π2

90
T 4 −B(T ) (1.6)

ε =
37π2

90
T 4 +B(T ) (1.7)

The bag model gives an estimation of the critical temperature of the phase

transition. It is very simple and easy to apply. This model could easily explain

the properties of low-lying hadrons. It has some drawbacks too. The physics at the

boundary of the bag is too complicated because of the sharpness of the boundary

of the bag. The size of the bag is too large so that the bags would touch each other

at normal nuclear density. Also, the chiral symmetry breaks at the boundary of

the bag (bag surface).

1.7.2 The quasi particle QGP model (qQGP)

Within the approach of this model, the interacting plasma is considered as a system

of massive quasi-particles. This model was independently proposed by Satz et al.

and Peshier et al. [40, 41]. According to Peshier et al. in gluon plasma, all

thermodynamic quantities can be derived from the partition function.

PV

T
= −

∞∑
k=0

ln(1− e−βεk) (1.8)

Where β = 1
T

, εk is the single particle energy of the quasi-gluon,

εk =
√
k2 +m2(T ) (1.9)
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Where k is the momentum and m(T ) is the temperature-dependent mass. The

pressure is similar to ideal gas with temperature dependent mass and can be

denoted as Pi.

Later the thermodynamic inconsistency of the quasi-particle model was reme-

died by introducing the temperature-dependent bag pressure term in the expression

of pressure and energy density [42, 43].

P = Pi −B(T ) (1.10)

ε = εi +B(T ) (1.11)

In [44] the authors proposed the self-consistent quasi particle model without

the external terms like B(T). In this model, all the thermodynamic quantities

can be derived in a self-consistent manner. Such models obtained good results in

agreement with the lattice data.

1.7.3 Cornell Potential Model

The effective potential between quark and antiquark which has the form Coulomb

+ linear potential is termed as Cornell potential. Cornell potential was successful

in studying non-relativistic systems such as mesons. The Cornell potential can be

read as,

V (r) = −a
r

+ br (1.12)

where a and b are constants.

At short distances, the Cornell potential becomes V (r) ≈ 1
r
, which is known

as the Coulomb like term and arises from the gluon exchange between quark and
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antiquark and at large distances V (r) ≈ r, which is the linear term which arises

from the higher-order effects.

In [45], EOS of QGP was derived using the Cornell potential model based on

Mayer’s theory of plasma and the results were compared with the lattice QCD

results of the gluon plasma. EOS for quark-antiquark plasma was derived in

[46] and the results were in agreement with the 2-flavor and 3-flavor lattice QCD

results. Also, the Cornell potential succeeded in explaining the spectra of both

charmonium and bottomonium [47]. In [48], using Cornell potential EOS was

obtained and the dissociation temperatures of quarkonia were found out.

1.7.4 Relativistic Harmonic Oscillator (RHO) Potential

Model

RHO potential model was initially proposed by S. B. Khadkikar and S. K. Gupta

[49]. It has been proved successful in explaining many properties of hadrons. Later

a confinement model was formulated by S. B. Khadkikar and V. Kumar [50]. These

two models are collectively called the RHO model. Energy eigenvalues for quarks

and gluons are given as,

En =
√
M2

q + (2n+ 1)Ωq (1.13)

En =
√
Cg(2n+ 1) (1.14)

with n=1,2,3,...

where Mq is the mass of a quark, Ωq is the size parameter which is energy

dependent, and Cg is ’frequency’ of gluon fields.
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This model was used to find out the hadronic and mesonic masses and the

results were found in agreement with the experimental results. The leptonic width

also agrees with the experimental result. The confinement behavior of this model

has been found smooth compared to the bag model. This model was helpful in

describing many features of hadron spectroscopy, baryon magnetic moments and

properties of glueballs, nucleon antinucleon annihilation, etc.

In [51], the authors found out the EOS of infinite gluon system with classical

and quantum energy eigenvalues and both EOS show T 4 dependence of pressure

and energy density at high pressure.

1.7.5 The Strongly Interacting Quark-Gluon Plasma

Model (sQGP)

Heavy ion experiments and lattice calculations show that the QGP displays strong

interaction between the constituents in the regime T = Tc to T = 3Tc. In [52],

the properties of bound states like colorless and colored pairs of gq, qq, and gg at

T > Tc were studied using the sQGP model. Also, their binding energies were

calculated and zero binding endpoints were located. In the limit of the high cou-

pling constant ( Γ >> 1), the one component plasma shows liquid state properties

[53]. In [53], the transport coefficients – self-diffusion, shear viscosity, and thermal

conductivity were studied. Two types of collective modes (longitudinal and trans-

verse modes) have been understood in OCP and transverse mode arises because

of strong correlations.
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1.7.6 Strongly Coupled Quark-Gluon Plasma Model

(SCQGP)

In this model, QGP near Tc is proposed as a strongly coupled plasma called the

strongly coupled quark-gluon plasma (SCQGP). At sufficiently high temperatures,

QGP is a quasi-color-neutral gas of colored particles (like quarks and gluons) which

exhibit collective behavior. In this model QGP near Tc can be treated as strongly

coupled QED plasma with appropriate modifications due to the color and flavor

degrees of freedom and quantum effects. In [54], the author derived a modified

equation for energy density as,

ε =

(
2.7 + Uex(Γ)

)
nT (1.15)

with n = 1.1afT
3.

The coupling constant is defined as the ratio of the average potential energy

to the average kinetic energy of the particles of SCQGP.

Γ =
〈P.E.〉
〈K.E.〉

(1.16)

Γ =

(
4.4πaf

3

) 1
3

gcαs(T ) (1.17)

With af = (16 + 21
2
nf )

π2

90
.

In SCP, gc = 1 but in SCQGP, it is different for gluon and flavored plasma. in

SCP αs = 1
137

and in SCQGP,

αs(T ) =
6π

(33− 2nf ) ln (T/ΛT )

(
1− 3(153− 19nf )

(33− 2nf )2

ln

(
2 ln (T/ΛT )

)
ln (T/ΛT )

)
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After this introduction, in the next chapter (chapter 2), a new screening po-

tential between quarks in SCQGP has been proposed. Also, the temperature

dependence of this potential has been explained. The binding energy of the bound

states of quarks is calculated by solving the N-dimensional radial Schrödinger

equation using this potential in three different methods. i.e., analytical exact it-

eration method (AEIM), power series method (PSM), and Nikiforov-Uvarov (NU)

method in chapter 3. Using the results, effective masses of diquarks and the heavy

quarkonium properties such as binding energies, mass spectra, and dissociation

temperatures are discussed in chapter 4 and chapter 5. Finally, we study the

properties of bc and cs mesons in chapter 6. Chapter 7 summarizes the work

presented in this thesis.
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Chapter 2

Screening of a Test Quark in the

Strongly Coupled Quark Gluon

Plasma

2.1 Introduction

As discussed in chapter 1, quark-gluon plasma (QGP) is a special kind of plasma

where electric charges in plasma are replaced by the color charges of quarks and

gluons mediating the strong interaction between them. Such a state of matter

can be expected to occur at sufficiently high temperature (≥ 150 MeV) and/or

densities (>10 times nuclear density) [1]. These conditions could be fulfilled in

the early universe after a few microseconds or in the interior of neutron stars

and these conditions are recreated in the laboratory by heating nuclear matter to

temperatures above the quark-gluon confinement temperature with high energy

nuclear collisions at the RHIC at Brookhaven National Laboratory or the LHC at
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CERN [2]. During these collisions, the hot and dense fireballs are created and they

undergo thermalization, cooling, hadronization, chemical, and thermal freeze-out

into hadrons. The search for QGP can be done by the detection and analysis of

these hadrons, photons, etc. It has been proposed that the QGP near and above

Tc is a strongly coupled coulombic plasma of color charges (SCQGP) [3]. The

strongly coupled quark-gluon plasma is in several ways similar to some kinds of

electromagnetic plasmas containing electrically charged particles that show some

liquid-like or even solid-like behavior [4].

In plasma physics, the screening of charges is considered as one of the im-

portant collective effects. The Debye screening potential can be derived from

the Linearized Poisson’s equation within a homogeneous, isotropic plasma. The

Coulomb potential of a charge Q at rest, in the plasma, is modified into Debye

Huckel or Yukawa potential [5],

φ(r) =
Q

r
exp

(
− r

λD

)
(2.1)

where λD is the shielding radius of the sphere.

Bound states of heavy quarks, in particular J/ψ mesons, are produced in the

initial hard scattering processes of the collision and will be dissociated in the QGP

due to the screening of the quark potential and break up by the energetic gluons [6].

Hence the J/ψ suppression has been considered as one of the important signatures

for the QGP formation [7]. A J/ψ meson suppression was observed experimentally

[8] and it was interpreted as a major indication of the QGP formation in RHIC

[9].

Experimental data suggest that QGP near to the confinement phase could be

in liquid phase and for a transition from the liquid phase to the solid phase, a
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Lennard Jones type interaction may be required [10]. In [11] a new attractive

potential between the ions that are shielded by degenerate electrons in quantum

plasmas was reported. A similar screening potential was found for a color charge

at rest by using a polarization tensor beyond the high-temperature limit in [12].

The screening potential of a parton moving through QGP was calculated in [1]

using semi-classical transport theory.

In this chapter, we try to find out the screening potential between quarks in

SCQGP, through generalized quantum hydrodynamic (G-QHD) approach. We

shall use the generalized QHD equations [13] for the quarks in SCQGP, supple-

mented by Poisson’s equation. In G-QHD model, pressure and Bohm’s potential

are included [14]. Here the plasma is of high density, so exchange and correlation

functions are neglected. Pressure is derived from the ground state energy equa-

tion of quarks in SCQGP. Here we demonstrate that the potential around a quark

in strongly coupled quark-gluon plasma resembles the Lennard Jones type poten-

tial which may be responsible for the phase transition of SCQGP. We also try to

explain the expected J/ψ suppression in connection with the screening potential.

2.2 Strongly coupled quark-gluon plasma

Strongly coupled plasma means the plasma where the plasma parameter, which

may be defined as the ratio of average potential energy to average kinetic energy of

the particles is equal to or greater than 1. In strongly coupled quark-gluon plasma,

the interparticle potential energy dominates over the thermal energy of particles.

Thus the coupling parameter for strongly coupled quark-gluon plasma is expected

to be of the order of one [15]. So the theory of SCQGP can be explained using the
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traditional mathematical descriptions of SCP.

Consider the quark-gluon plasma as a deconfined, quasi-color-neutral system of

quarks, antiquarks, and gluons with color coulombic interactions. It can be treated

in a similar way as the quantum electrodynamic plasma with a few modifications

due to color degrees of freedom. The plasma parameter can be written as,

Γ =
〈P.E.〉
〈K.E.〉

=
4
3
αs

a

T
(2.2)

where αs is the coupling constant, a is usually referred to as the ion-sphere

radius or the Wigner-Seitz radius and can be estimated as a = ( 3gc
4πnf

)
1
3 Where

gc incorporates the color degrees of freedom, nf stands for the number density

corresponding to the particular flavor and T is the absolute temperature.

Taking the typical value of αs ≈ 0.5 , a ≈ 1fm and near the critical temper-

ature Tc ≈ 200MeV , Γ ≈ 2
3

which is of the order of 1. Thus QGP near Tc is

strongly coupled plasma. For a degenerate electron system with number density

n, we can use the Fermi energy, EF = h2

2m
(3π2n)

2
3 instead of T . Since SCQGP is

like the strongly coupled quantum electrodynamic plasma, we can write

Γ =
4
3
αs

a

EF
= 0.543rs (2.3)

with

rs =

(
3gc

4πnf

) 1
3 4Mqαs

3

where Mq is the quark mass, gc incorporates the color degrees of freedom and nf

stands for the number density corresponding to the particular flavor [16]. For a

quark system consisting of u and d quarks, the quark mass can be considered as

Mq ≈ mp

3
and αs ≈ 0.5. Also we can take

[
4Mqαs

3

]−1
≈ 1fm, the hadron radius
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[16]. For SCQGP,

P =
2∑

f=1

−nfrsf
3

∂EG
∂rs
−B (2.4)

Here B is the confinement parameter in the form of MIT Bag constant. The

general formula for the ground state energy per quark is known [16] using the

method of Pade approximants [17]. By integrating this equation we get

dEG
dr

=
8Mqα

2
s

9

[
− 0.0614r1/2s + 0.0791rs + 0.0158r3/2s − 0.2741r2s + 0.6609r5/2s

−4.3951r3s − 44250 log
(
r1/2s − 4.1005

)
− 2944300 log

(
r1/2s + 5.0194

)
+505797 log

(
2(r1/2s + 1.50483)

)]
(2.5)

Eq.(2.5) is obtained from the equation of state of degenerate electron system

with a few modifications. It could be applicable at finite temperature since SCQGP

can be treated in a similar way as the strongly coupled QED plasma. Using

the above-mentioned EOS of QGP, the mass-radius relation of compact stars was

estimated [16], which confirms the experimental result [18].

2.3 Screening potential in SCQGP through G-

QHD approach

For Strongly Coupled QGP, rs ≤ 1 and Γ is of the order of 1 and it can be

considered as collisionless. Thus the interaction energy between the partons will

be greater than the kinetic energy. Here no magnetic effects are considered. Within

the hydrodynamic limit, plasma can be treated as liquid and can be described in
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terms of macroscopic variables that obey the equations of motion. Various color

components of plasma have the same temperature and hydrodynamic velocities

when local equilibrium is attained.

The G-QHD equations are

∂nf
∂t

+∇.(nfu) = 0 (2.6)

Mq

(
∂u

∂t
+ u.∇u

)
=

(
4αs
3

) 1
2

∇φ− gcn−1f
∂P

∂nf
∇nf +∇VB (2.7)

∇2φ =

(
4αs
3

) 1
2

(nf − nf0)−Qδ(r) (2.8)

Where VB is the Quantum Bohm potential, VB = − 1
2Mq

1√
nf
∇2√nf . Let nf =

nf0 + nf1, where nf1 << nf0.

Linearize the resultant equations to obtain perturbation density, nf1 and insert

in to Eq.(2.8). The Fourier transformation in space leads to the electric potential

around an isolated quark. Thus we have

φ(r) =
Q

8π3

∫
eik.r

k2D
d3k (2.9)

Where D is the dielectric constant, r denotes the position relative to the in-

stantaneous position of the test quark and Q is the charge of the test quark. The

inverse dielectric constant can be written as

1

D
=

k2

k2s
+ αk

4

k4s

1 + k2

k2s
+ αk

4

k4s

(2.10)

Where k2s =
Mqω2

p

gc

(
∂P
∂nf

) is the inverse Thomas Fermi screening length and α =
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ω2
p

2gc

(
∂P
∂nf

)2 measures the importance of quantum recoil effect.

∂P
∂nf

can be calculated by using Eq.(2.4) and (2.5).

∂P

∂nf
= 2

(
− 70315.3n

−1/3
f + 0.0023n

−2/3
f − 0.0002n

−5/6
f − 0.1044n

−4/3
f

−0.0083n
−7/6
f + 17240.6n

−1/2
f + 365329n−1f

) (2.11)

Inserting Eq.(2.10) in Eq.(2.9),

φ(r) =
Q

16π3

∫ (
1 + b

k2 + k2+
+

1− b
k2 + k2−

)
eik.rd3k (2.12)

Where b = 1√
1−4α and k2± = k2s

(1∓
√
1−4α)
2α

.

The above integral was evaluated for different values of α. The boundary

condition is φ→ 0 at r →∞ . Eq.(2.12) becomes

φ(r) =
Q

8πr

[
(1 + b)e−k+r + (1− b)e−k−r

]
(2.13)

For α → 0, the modified Thomas-Fermi screened Coulomb potential can be

recovered.

φ(r) =
Q

4πr
e−ksr (2.14)

For α→ 1
4
, we have k+ = k− =

√
2ks and

φ(r) =
Q

4πr

(
1 +

ks√
2
r

)
e−
√
2ksr (2.15)

For α = 1,

φ(r) =
Q

4πr

(
cos (kir) +

1√
3

sin (kir)

)
e−krr (2.16)
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Where

ki =
ks
2

,

kr =

√
3

2
ks

With α >> 1 the exponential cosine-screened Coulomb potential is recovered.

φ(r) =
Q

4πr

(
cos (ksr∗)

)
e−ksr∗ (2.17)

Where r∗ = r

(4α)
1
4

2.4 Suppression of J/ψ meson

The two-body potential associated with the dipole created by two test charges q1

and q2 at positions r1 and r2 respectively can be represented as,

φ(r1 − r2) =
q1q2
16π3

∫ (
eik.(r1−r2)

k2D
+
e−ik.(r1−r2)

k2D

)
d3k (2.18)

This two-body potential is equal to the one-body potential given by Eq.(2.9).

For two quarks, the potential shows attraction and thus bound state of quarks is

formed. The existence of colored bound states (eg. diquarks) of partons at rest has

been claimed by analyzing lattice data [19]. For a quark-antiquark system, q1q2 < 0

. Thus the two-body potential is inverted, showing a maximum. This may lead

to short living mesonic resonances and an enhancement of the attraction between

quarks and antiquarks of mesonic states moving through SCQGP [1] which results

in the expected suppression.
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2.5 Temperature dependence of screening poten-

tial

For deriving Eq.(2.16), the value of αs has been fixed (αs ≈ 0.5) but by considering

the temperature dependence of αs from [20] we get,

αs(T ) =
6π

(33− 2nf ) ln (T/ΛT )

(
1− 3(153− 19nf )

(33− 2nf )2

ln

(
2 ln (T/ΛT )

)
ln (T/ΛT )

)
(2.19)

The screening potential between quarks at finite temperature plays an impor-

tant role in the study of various bound states in Quark Gluon Plasma. Theoret-

ically many forms of screening potential have been proposed [21]. The study of

static quark potential is significant for several reasons. Phenomenologically the

properties of bound states of quarks can be derived from potential models [22]. So

it is necessary to find out the temperature dependence of the potential [23]. Substi-

tuting Eq.(2.19) in Eq.(2.13), we get the temperature-dependent quark potential

as φ(r, T ) .

2.6 Results

In Fig. 2.1, the profiles of the potential given by the Eq.(2.14), (2.16), and (2.17)

for different values of α are displayed. It can be seen that the new short-range

attractive electric potential that resembles the LJ type potential for α = 1 while for

the smaller values of α the attractive potential vanishes. In high density strongly

coupled plasma, with Bohm’s potential, the attractive potential exists only for

α ≥ 1. We have investigated the temperature dependence of screening potential
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Figure 2.1: Variation of electric potential with r for different values of α

in strongly coupled quark-gluon plasma. The result is displayed in Figures 2.2

and 2.3. The attractive potential for α ≥ 1 is plotted against temperature. For

plotting the graphs, we have taken the density n=0.589, Mq = 1, Q=1 and h̄ = 1

(in the case of QGP, Lorentz Heaviside units are used). The potential shows a

minimum near to the critical temperature Tc. The minimum potential near Tc will

give rise to bound states (diquarks). This potential satisfies both the screening

and the confinement type forces just like the Cornell potential.

In strongly coupled systems with high density, quantum effects are important

[24]. Here the results have been obtained in the non-relativistic domain, but QGP

composes an ultra-relativistic system. Since Coulomb interaction is common in

both cases, it may be concluded that the screening effect is present in SCQGP. The

minimum potential can give rise to bound states (diquarks) if thermal fluctuations
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Figure 2.2: Variation of screening potential φ(r, T ) with temperature T

do not destroy them. Here nonabelian effects are included in the expression for

pressure. They cannot be treated separately in this method. Since there is an

attraction even in complex plasmas and in QGP, close to the critical temperature

[15], this seems to be a general feature of weakly as well as strongly coupled

plasmas. Therefore, there will not be any qualitative change of the screening

potential due to nonperturbative or nonabelian effects [1]. For a J/ψ meson, the

binding may become weaker and of shorter range due to screening in QGP [7].

When the screening radius falls below the binding radius, the quark and antiquark

can no longer be bound and the bound state becomes dissociated. The quarkonium

dissociation points therefore determine the temperature and energy density of the

QGP [22].

From direct finite temperature lattice studies, both in quenched and in full
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Figure 2.3: The potential φ(r) between the quark and antiquark as a function of
r for different temperature

QCD as well as in lattice-based potential work, it can be shown that the J/ψ meson

can survive up to T ≥ 2Tc [25]. At temperature above the critical temperature,

QGP is strongly coupled quark-gluon plasma (SCQGP) and the screening potential

explains the expected J/ψ suppression.
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Chapter 3

Calculation of Binding Energy of

Bound States of Quarks in

Strongly Coupled Quark Gluon

Plasma

3.1 Introduction

There occurs a phase transition from a confined hadronic phase to a deconfined

partonic phase at critical temperature (Tc), as discussed in section 1.3. This phase

of deconfined quarks and gluons is called quark-gluon plasma (QGP) [1]. At ex-

tremely high temperatures QGP can be considered as an ideal gas of quarks and

gluons because of the very weak interaction. At temperature near Tc, QGP can be

considered as strongly coupled and termed as strongly coupled quark-gluon plasma

(SCQGP) [2].
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The existence of bound states above the critical temperature can be studied by

using the effective temperature-dependent potential in the QGP. In fact, no strictly

stationary bound state can exist in QGP as the interaction with the particles in

the medium will lead to a definite lifetime for all bound states [3]. The bound state

properties in quark-gluon plasma can be studied using two different approaches.

The first one is a direct calculation using QCD [4] and the other one is the use

of a potential model [5,6,7]. The nonrelativistic interaction potential model can

reproduce the experimentally observed mass spectra of bound states [8,9]. This

approach uses the potential as a function of the relative separation between the

particles and the binding energy can be calculated mathematically by solving the

Schrödinger equation.

N-dimensional non-relativistic radial Schrödinger equation can be solved for

the interaction potential for different bound states in SCQGP. For solving the SE,

the interaction potential should be known. A confining potential is a mathematical

representation of a force that governs the dynamics of the particles in a particu-

lar system. Depending on the nature of interaction among the particles, a large

number of confining potentials have been used. Some of them are Harmonic [10],

Cornell [11], Coulomb [12], Coulomb perturbed [13], Ring-shaped [14], Double-

ring shaped [15], Gaussian, modified Gaussian [16] Energy-dependent harmonic

[17] etc.

There exist a number of exact, approximate, and numerical methods to solve

the SE. In the last chapter, the existence of bound states has been discussed in the

context of new attractive potential between the quarks in SCQGP. In this chapter

we try to find out the binding energy of bound state of quarks in strongly coupled

quark-gluon plasma by solving the N-dimensional Schrödinger equation for two
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particles interacting via the two-body potential in three different methods i.e.,

analytical exact iteration method (AEIM) [18], power series method via a suitable

ansatz to the wave function (PSM) [13] and the Nikiforov- Uvarov (NU) method

[19].

3.2 Exact solution of the N-dimensional

Schrödinger equation with the two

body potential in SCQGP at finite

temperature

3.2.1 Analytical exact iteration method (AEIM)

The N-dimensional non-relativistic radial Schrödinger equation for two particles

[18, 20] interacting via the two-body potential is given by[
d2

dr2
+
N − 1

r

d

dr
− l(l +N − 2)

r2
+ 2µ

(
Enl − Φ(r)

)]
Ψ(r) = 0 (3.1)

where n , l and N are the principal quantum number, angular quantum number

and the dimensional number respectively. µ is the reduced mass of two particles,

µ =
Mq1Mq2

Mq1 +Mq2

Substituting Ψ(r) = R(r)

r
N−1

2
in Eq.(3.1)[

d2

dr2
+
N − 1

r

d

dr
− l(l +N − 2)

r2
+ 2µ

(
Enl − Φ(r)

)] R(r)

r
N−1

2

= 0 (3.2)
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[
d2

dr2
−
l(l +N − 2) + N2−4N+3

4

r2
+ 2µ

(
Enl − Φ(r)

)]
R(r) = 0 (3.3)

where φ(r) is the two-body potential represented by the following equation [21]

φ(r) =
Q

4πr

(
cos (kir) +

1√
3

sin (kir)

)
e−krr (3.4)

where

ki =
ks
2

kr =

√
3

2
ks

with Q = q1q2

Substituting Eq.(3.4) in Eq.(3.3) and rearranging,

d2R(r)

dr2
=

[
− 2µEnl +

2µQ

4πr

[(
cos (kir) +

1√
3

sin (kir)

)
e−krr

]

+
l(l +N − 2) + N2−4N+3

4

r2

]
R(r)

(3.5)

The analytical exact iteration method (AEIM) assumes the wave function as

[18],

R(r) = fn(r) exp
(
gl(r)

)
(3.6)

with,

fn(r) = 1, n = 0 (3.7)

fn(r) = Π
(
r − α(n)

i

)
, n = 1, 2, 3, ..... (3.8)

gl(r) = −1

2
αr2 − βr + δ ln r, α > 0, β > 0 (3.9)
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From Eq.(3.6),

d2Rnl

d2r
=

[
gl”(r) + gl(r)

2 +
fn”(r) + 2g′l(r)f

′
n(r)

fn(r)

]
Rnl(r) (3.10)

At n=0, substituting Eq.(3.7) and Eq.(3.9) in Eq.(3.10) , equating with Eq.(3.5)

and comparing the powers of r on both sides, we get

α =

√√√√[2µQ

4π

[
−k

2
i kr
2

+
kik2r
2
√

3
− k3r

6
− k3i

6
√

3

]]
(3.11)

β =

2µQ
4π

[
−k2i

2
− kikr√

3
+ k2r

2

]
2

√√√√[2µQ
4π

[
−k2i kr

2
+ kik2r

2
√
3
− k3r

6
− k3i

6
√
3

] ] (3.12)

δ =
1

2
±
√

1

4
+ l(l +N − 2) +

N2 − 4N + 3

4
(3.13)

EN
0l =

Q

4π

(
−kr +

ki√
3

)
− β2

2µ
+

α

2µ
(1 + 2δ) (3.14)

EN
0l =

Q

4π

(
−kr +

ki√
3

)
−

[
Q
4π

[
− k2i

2
− kikr√

3
+ k2r

2

]]2
[
Q
π

[
− k2i kr

2
+ kik2r

2
√
3
− k3r

6
− k3i

6
√
3

]]

+

√√√√[2µQ
4π

[
− k2i kr

2
+ kik2r

2
√
3
− k3r

6
− k3i

6
√
3

]]
2µ

(
1±

√
1 + 4l(l +N − 2) +N2 − 4N + 3 + 1

)
(3.15)

At n=1, substituting Eq.(3.8) and Eq.(3.9) in Eq.(3.10), equating with Eq.(3.5)

and comparing the powers of r, we get
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EN
1l =

Q

4π

(
−kr +

ki√
3

)
− β2

2µ
+

α

2µ

(
1 + 2(δ + 1)

)
(3.16)

EN
1l =

Q

4π

(
−kr +

ki√
3

)
−

[
Q
4π

[
− k2i

2
− kikr√

3
+ k2r

2

]]2
[
Qπ

[
− k2i kr

2
+ kik2r

2
√
3
− k3r

6
− k3i

6
√
3

]]

+

√√√√[2µQ
4π

[
− k2i kr

2
+ kik2r

2
√
3
− k3r

6
− k3i

6
√
3

]]
2µ

(
3±

√
1 + 4l(l +N − 2) +N2 − 4N + 3 + 1

)
(3.17)

Similarly at n=2,

EN
2l =

Q

4π

(
−kr +

ki√
3

)
− β2

2µ
+

α

2µ

(
1 + 2(δ + 2)

)
(3.18)

EN
2l =

Q

4π

(
−kr +

ki√
3

)
−

[
Q
4π

[
− k2i

2
− kikr√

3
+ k2r

2

]]2
[
Q
π

[
− k2i kr

2
+ kik2r

2
√
3
− k3r

6
− k3i

6
√
3

]]

+

√√√√[2µQ
4π

[
− k2i kr

2
+ kik2r

2
√
3
− k3r

6
− k3i

6
√
3

]]
2µ

(
5±

√
1 + 4l(l +N − 2) +N2 − 4N + 3 + 1

)
(3.19)

The iteration can be repeated many times and the exact energy formula at

finite temperature can be written as,

EN
nl =

Q

4π

(
−kr +

ki√
3

)
− β2

2µ
+

α

2µ

(
1 + 2(δ + n)

)
(3.20)
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EN
nl =

Q

4π

(
−kr +

ki√
3

)
−

[
Q
4π

[
− k2i

2
− kikr√

3
+ k2r

2

]]2
[
Q
π

[
− k2i kr

2
+ kik2r

2
√
3
− k3r

6
− k3i

6
√
3

]]

+

√√√√[2µQ
4π

[
− k2i kr

2
+ kik2r

2
√
3
− k3r

6
− k3i

6
√
3

]]
2µ

(
2(n+ 1) +

√
1 + 4l(l +N − 2) +N2 − 4N + 3

)
(3.21)

where

ki =
ks
2

kr =

√
3

2
ks

k2s =
Mqω

2
p

gc
∂P
∂nf

By considering the temperature dependence of αs from the literature [2] we

get,

αs(T ) =
6π

(33− 2nf ) ln (T/ΛT )

(
1− 3(153− 19nf )

(33− 2nf )2

ln

(
2 ln (T/ΛT )

)
ln (T/ΛT )

)

Eq.(3.21) gives the expression for the binding energy of the bound state of

quarks.
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3.2.2 Power series method (PSM)

In N-dimensional space, the Schrödinger equation can be written as Eq.(3.1). In

order to find out the solution to Eq.(3.1) ansatz for the wave function is taken as,

Ψ(r) = exp(−ηr2 − δr)G(r) (3.22)

Here η and δ are positive parameters that are to be determined in terms of potential

parameters. G(r) is assumed in series form as,

G(r) =
∞∑
n=0

anr
n+l (3.23)

Where a0 and a1 are non zero expansion coefficients. Now substituting Eqs.(3.22)

and (3.23) in Eq.(3.1) and collecting the coefficients of like powers of r, we get

∞∑
n=0

an

[(
(n+ l)(n+ l − 1) + (N − 1)(n+ l)− l(l +N − 2)

)
rn+l−2

+

(
− δ − δ(n+ l)− δ(N − 1)− 2µQ

4π

)
rn+l−1

+

(
δ2 − 2η(n+ l)− 2η(N − 1) + 2µE − 2µQ

4π

(
− kr +

ki√
3

))
rn+l

+

(
4ηδ − 2η − 2µQ

4π

(k2r
2
− kikr√

3
− k2i

2

))
rn+l+1

+

(
4η2 − 2µQ

4π

(
− k3r

6
+
kik

2
r

2
√

3
− k2i kr

2
− k3i

6
√

3

))
rn+l+2

]
= 0

(3.24)

Equating each coefficient of r to zero, we get the following set of relation

(n+ l)(n+ l +N − 2)− l(l +N − 2) = 0 (3.25)
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−δ(n+ l +N)− 2µQ

4π
= 0 (3.26)

4ηδ − 2η − 2µQ

4π

(
k2r
2
− kikr√

3
− k2i

2

)
= 0 (3.27)

4η2 − 2µQ

4π

(
−k

3
r

6
+
kik

2
r

2
√

3
− k2i kr

2
− k3i

6
√

3

)
= 0 (3.28)

2µE = −δ2 +
2µQ

4π

(
−kr +

ki√
3

)
+ 2η(n+ l +N − 1) (3.29)

In order to find out the eigenvalues from Eq.(3.29), the ansatz parameters η and

δ should be known which can be obtained from Eq.(3.28) and (3.26) respectively.

η =

√
2µQ

16π

(
−k

3
r

6
+
kik2r
2
√

3
− k2i kr

2
− k3i

6
√

3

)
(3.30)

δ = − 2µQ

4π(n+ l +N)
(3.31)

After substituting the values of η and δ the energy eigenvalue can be written as,

EN
nl = − 2µQ2(

4π(n+ l +N)

)2 +
Q

4π

(
−kr +

ki√
3

)

+ 2

√
Q

32πµ

(
−k

3
r

6
+
kik2r
2
√

3
− k2i kr

2
− k3i

6
√

3

)
(n+ l +N − 1)

(3.32)

Eq.(3.32) gives the expression for the binding energy of the bound state of quarks.
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3.2.3 Nikiforov-Uvarov (NU) Method

a) A brief description of NU method

Consider a second-order differential equation of the form

Ψ′′(s) +
τ̃(s)

σ(s)
Ψ′(s) +

σ̃(s)

σ2(s)
Ψ(s) = 0 (3.33)

where σ(s) and σ̃(s) are polynomials of maximum second degree and τ̃(s) is a

polynomial of maximum first degree with an appropriate s = s(r) coordinate

transformation.

If

Ψ(s) = Φ(s)χ(s) (3.34)

Substituting Eq.(3.34) in Eq.(3.33)

2Φ′(s)χ′(s)+Φ(s)χ′′(s)+Φ′′(s)χ(s)+
τ̃(s)

σ(s)

(
Φ(s)χ′(s)+Φ′(s)χ(s)

)
+
σ̃(s)

σ2(s)
Φ(s)χ(s) = 0

Rearranging the terms we get,

φ(s)χ′′(s)+
(

2Φ′(s)+
τ̃(s)

σ(s)
Φ′(s)

)
χ′(s)+

(
Φ′′(s)+

τ̃(s)

σ(s)
Φ′(s)+

σ̃(s)

σ2(s)
Φ(s)

)
χ(s) = 0

Dividing throgh out by Φ(s)

χ′′(s) +
(2Φ′(s)

Φ(s)
+
τ̃(s)

σ(s)

)
χ′(s) +

(Φ′′(s)

Φ(s)
+
τ̃(s)

σ(s)

Φ′(s)

Φ(s)
+

σ̃(s)

σ2(s)

)
χ(s) = 0

The coefficient of χ′(s) is taken in the form τ(s)/σ(s), where τ(s) is a polynomial
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of degree atmost one. Then

2Φ′(s)

Φ(s)
+
τ̃(s)

σ(s)
=
τ(s)

σ(s)
(3.35)

This happens only if

Φ′(s)

Φ(s)
=
π(s)

σ(s)
(3.36)

Therefore

2π(s)

σ(s)
+
τ̃(s)

σ(s)
=
τ(s)

σ(s)

That is

2π(s) + τ̃(s) = τ(s)

Thus

π(s) =
1

2

(
τ(s)− τ̃(s)

)
and

τ(s) = τ̃(s) + 2π(s); τ ′(s) < 0 (3.37)

The term Φ′′(s)/Φ(s) in the coefficient of χ(s) can be written as

Φ′′(s)

Φ(s)
=
(Φ′(s)

Φ(s)

)′
+
(Φ′(s)

Φ(s)

)2

Using Eq.(3.36),

Φ′′(s)

Φ(s)
=
(π(s)

σ(s)

)′
+
(π(s)

σ(s)

)2
(3.38)

Now the coefficient of χ(s) is transformed in to a more suitable form,

Φ′′(s)

Φ(s)
+
τ̃(s)

σ(S)

Φ′(s)

Φ(s)
+

σ̃(s)

σ2(s)
=

σ(s)

σ2(s)
(3.39)
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Substituting Eq.(3.38) in Eq.(3.39),

−π(s)σ′(s)

σ2(s)
+
π′(s)

σ(s)
+
π2(s)

σ2(s)
+
π(s)τ̃(s)

σ2(s)
+

σ̃(s)

σ2(s)
=

σ(s)

σ2(s)

Therefore

σ(s) = σ̃(s) + π2(s) + π(s)
(
τ̃(s)− σ(s)

)
+ π′(s)σ(s)

Substituting the right hand sides of Eq.(3.35), Eq.(3.38) and Eq.(3.39), Eq.(3.33)

reduces to an equation of hypergeometric type as

χ′′(s) +
τ(s)

σ(s)
χ′(s) +

σ(s)

σ2(s)
χ(s) = 0 (3.40)

with

σ(s) = π(s)
Φ(s)

Φ′(s)
(3.41)

As a consequence of the algebraic transformations above, the functional form of

Eq.(3.33) is protected in a systematic way. If the polynomial σ(s) in Eq.(3.40) is

divisible by σ(s), we can write

σ(s) = λσ(s)

Where λ is a constant. Then Eq.(3.40) is reduced to,

σ(s)χ′′(s) + τ(s)χ′(s) + λχ(s) = 0 (3.42)
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To determine the polynomial π(s),

σ(s) = σ̃(s) + π2(s) + π(s)
(
τ̃(s)− σ(s)

)
+ π′(s)σ(s) = λσ(s)

That is

σ̃(s) + π2(s) + π(s)
(
τ̃(s)− σ(s)

)
−Kσ(s) = 0

with

K = λ− π′(s) (3.43)

The solution of this quadratic equation for Π(s) gives

π(s) =
σ′(s)− τ(s)

2
±

√(
σ′(s)− τ(s)

2

)2

− σ(s) +Kσ(s) (3.44)

where π(s) is a polynomial of first degree. The values of K in the square root

of Eq.(3.44) can be calculated if the expressions under the square root are square

of expressions. This is possible if its discriminant is zero. χ(s) = χn(s) is a

polynomial of nth degree which satisfies the hypergeometric equation, in order to

obtain an eigen value solution through the NU method, a relation between λ and

λn must be set up which is given by,

λ = λn = −nτ ′(s)− n(n− 1)

2
σ′′(s), n = 0, 1, 2.... (3.45)

χn(s) is a hypergeometric type function whose polynomial solutions are given by

the Rodrigue’s relation

χn(s) =
Bn

ρn

dn

dsn
(σ′′(s)ρ(s)) (3.46)
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where Bn is a normalization constant and ρ(s) is the weight function that

satisfies the equation

d

ds
ω(s) =

τ(s)

σ(s)
ω(s);ω(s) = σ(s)ρ(s) (3.47)

b) Solution of N-dimensional Schrödinger equation at finite temperature

The Schrödinger equation for two particles interacting via a spherically symmetric

potential φ(r) in N- dimensional space is given by Eq.(3.1), where φ(r) is given by

Eq.(3.4). Now the N-dimensional Schrödinger equation can be written as,

[
d2

dr2
+ 2µ

[
E − Q

4πr

[(
cos (kir) +

1√
3

sin (kir)
)
e−krr

]
−
l(l +N − 2) + N2−4N+3

4

2µr2

]]
R(r) = 0

(3.48)

or [
d2

dr2
+ 2µ

(
E − Q

4π

[
1

r
+

(
−kr +

ki√
3

)
+

(
k2r
2
− kikr√

3
− k2i

2

)
r

+

(
−k

3
r

6
+
kik

2
r

2
√

3
− k2i kr

2
− k3i

6
√

3

)
r2
]
−
l(l +N − 2) + N2−4N+3

4

2µr2

)]
R(r) = 0

(3.49)

Putting r = 1
x
, equation becomes
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[
d2

dx2
+

2x

x2
d

dx
+

2µ

x4

(
E − Q

4π

[
x+

(
−kr +

ki√
3

)
+

(
k2r
2
− kikr√

3
− k2i

2

)
1

x
+

(
−k

3
r

6
+
kik

2
r

2
√

3
− k2i kr

2
− k3i

6
√

3

)
1

x2

]
−
l(l +N − 2) + N2−4N+3

4

2µ
x2

)]
R(x) = 0

(3.50)

or [
d2

dx2
+

2x

x2
d

dx
+

2µ

x4

[
E − Ax−B − C

x
− D

x2

−
l(l +N − 2) + N2−4N+3

4

2µ
x2
]]
R(x) = 0

(3.51)

where

A =
Q

4π

B =
Q

4π

(
−kr +

ki√
3

)

C =
Q

4π

(
k2r
2
− kikr√

3
− k2i

2

)

D =
Q

4π

(
−k

3
r

6
+
kik

2
r

2
√

3
− k2i kr

2
− k3i

6
√

3

)
Now expand C

x
and D

x2
in a power series around the characteristic radius r0 of the

meson up to the second-order, Setting y = x − δ, where δ = 1
r0

. Now we expand

C
x

and D
x2

in a power series around y = 0 [19] as,

C

x
= C

(
3

δ
− 3x

δ2
+
x2

δ3

)
(3.52)

and

D

x2
= D

(
6

δ2
− 8x

δ3
+

3x2

δ4

)
(3.53)

60



Substituting Eq.(3.52) and (3.53) in Eq.(3.51),[
d2

dx2
+

2x

x2
d

dx
+

2µ

x4

[
E − Ax−B − C

(
3

δ
− 3x

δ2
+
x2

δ3

)

−D
(

6

δ2
− 8x

δ3
+

3x2

δ4

)
−
l(l +N − 2) + N2−4N+3

4

2µ
x2
]]
R(x) = 0

(3.54)

or we can write

[
d2

dx2
+

2x

x2
d

dx
+

2µ

x4

[
−D1 +D2x−D3x

2

]]
R(x) = 0 (3.55)

where

D1 = −
[
E −B − 3C

δ
− 6D

δ2

]

D2 = −A+
3C

δ2
+

8D

δ3

D3 =
C

δ3
+

3D

δ4
+
l(l +N − 2) + N2−4N+3

4

2µ

Comparing Eq.(3.33) and Eq.(3.55) we get,

τ(s) = 2x

σ(s) = x2

σ(s) = 2µ
(
−D1 +D2x−D3x

2
)

By following NU method,

π =
√

2a− 2bx+ (K + 2c1)x2 (3.56)
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where

a = 2µD1

b = 2µD2

c1 = 2µD3

The constant K is chosen such as the discriminant of the function under the

square root is zero i.e

∆ = 4b2 − 8a(K + 2c1) = 0

b2 = 2a(K + 2c1)

K =
b2

2a
− 2c1

π =
2a− bx√

2a
(3.57)

Thus

τ = 2x± 2(2a− bx)√
2a

(3.58)

We choose the positive sign in the above equation for bound state solutions.

τ ′ = 2− 2b√
2a

(3.59)

By using Eq.(3.43), we obtain

λ =
b2

a
− 2c1 −

b√
2a

(3.60)

λn = −n
(

2− 2b√
2a

)
− n(n− 1) (3.61)
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From Eq.(3.45),

λ = λn

b2

a
− 2c1 −

b√
2a

= −n
(

2− 2b√
2a

)
− n(n− 1)

b2

2a
− b√

2a
(1 + 2n) = −n2 − n+ 2c1

(
b√
2a
− (2n+ 1)

2

)2

=
1

4
+ 2c1

b√
2a
− (2n+ 1)

2
=

√
1

4
+ 2c1

b√
2a

=
(2n+ 1)

2
±
√

1

4
+ 2c1

b2

2a
=

(
(2n+ 1)

2
±
√

1

4
+ 2c1

)2

a =
b2

2
(

(2n+1)
2
±
√

1
4

+ 2c1

)2
D1 =

2µD2
2(

(2n+ 1)±
√

1 + 8µD3

)2

−E +B +
3C

δ
+

6D

δ2
=

2µ
(
−A+ 3C

δ2
+ 8D

δ3

)2(
(2n+ 1)±

√
1 + 8µ

(
C
δ3

+ 3D
δ4

+
l(l+N−2)+N2−4N+3

4

2µ

))2

The energy eigen values at finite temperature in N-dimensional space can be writ-
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ten as

EN
nl = B+

3C

δ
+

6D

δ2
−

2µ
(
−A+ 3C

δ2
+ 8D

δ3

)2(
(2n+ 1)±

√
1 + 8µC

δ3
+ 24µD

δ4
+ 4

(
l(l +N − 2) + N2−4N+3

4

))2

(3.62)

Eq.(3.62) gives the expression for the binding energy of the bound state of quarks.

3.3 Conclusion

In this work, we have used the screening attractive potential to study the forma-

tion of bound states of quarks in a simple manner. Using this attractive potential,

Schrodinger’s equation is solved for getting the binding energy of the bound state of

quarks in strongly coupled quark-gluon plasma in three different methods. These

three methods incorporate no different Physics. But they are three ways for ob-

taining the results by solving SE. These are done in order to compare the numerical

results such as binding energy, mass spectra and dissociation temperatures.
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[1] R. Pasechnik and M. Šumbera, Phenomenological review on quark–gluon

plasma: Concepts vs. observations, Universe 3 (1), 7 (2017).

[2] V. M. Bannur, Strongly coupled quark gluon plasma (SCQGP), J. Phys. G:

Nucl. Part. Phys. 32, 993 (2006).

[3] M. Escobedo, J. Soto, and M. Mannarelli, Non-relativistic bound states in a

moving thermal bath, Phys. Rev. D 84, 016008 (2011).

[4] H. Mutuk, Mass spectra and decay constants of heavy-light mesons: A case

study of QCD sum rules and quark model, Advances in High Energy Physics,

Vol. 2018, Article ID 8095653 (2018).

[5] K. K. Pathak and D. K. Choudhury, Open flavour charmed mesons in a quan-

tum chromodynamics potential model, Pramana-J. Phys. 79 (6), 1385 (2012).

[6] K. K. Pathak, D. K. Choudhury, and N. S. Bordoloi., Leptonic decay of

heavy–light mesons in a QCD potential model, Int. J. Mod. Phys. A 28 (2),

1350010 (2013).

65



[7] H. Hassanabadi, M. Ghafourian, and S. Rahmani, Study of heavy-light mesons

properties via the variational method for Cornell interaction, Few-Body Syst.

57, 249 (2016).

[8] S. M. Ikhdair and R. Sever, Bc meson spectrum and hyperfine splittings in the

shifted large-N-expansion technique, Int. J. Mod. Phys. A 18 (23), 4215 (2003).

[9] P. Gupta and I. Mehrotra, Heavy quark spectroscopy, Ind. J. Phys. 85 (1), 111

(2011).

[10] A. Jahanshir, Di-mesonic molecules mass spectra Indian Journal of Science

and Technology, Vol 10 (22) (2017).

[11] S. N. Gupta, S. F. Radford, and W. W. Repko, Quarkonium spectra and

quantum chromodynamics, Phys. Rev. D 26, 3305 (1982).

[12] S. Rahmani and H. Hassanabadi, Mass spectra of meson molecular states for

heavy and light sectors, Chin. Phys. C 41, 093105 (2017).

[13] R. Kumar and F. Chand, Energy spectra of the coulomb perturbed potential

in N-dimensional Hilbert space, Chin. Phys. Lett. 29, 060306 (2012).

[14] B. J. Falaye, The Klein-Gordon equation with ring-shaped potentials: Asymp-

totic iteration method, J. Math. Phys. 53, 082107 (2012).

[15] F. Yasuk and A. Durmus, Relativistic solutions for double ring-shaped oscil-

lator potential via asymptotic iteration method, Phys. Scr. 77, 015005 (2007).

[16] S. Bednarek, B. Szafran, K. Lis, and J. Adamowski, Modeling of electronic

properties of electrostatic quantum dots, Phys. Rev. B 68, 155333 (2003).

66



[17] P. Gupta and I. Mehrotra, Study of heavy quarkonium with energy dependent

Potential, J. Mod. Phys. 3 (10), 1530 (2012).

[18] M. Abu-Shady, T. A. Abdel-Karim, and E. M. Khokha, Binding energies and

dissociation temperatures of heavy quarkonia at finite temperature and chem-

ical potential in the N-dimensional space, Advances in High Energy Physics,

Volume 2018, Article ID 7356843 (2018).

[19] M. Abu-Shady, T.A. Abdel-Karim, and S.Y. Ezz-Alarab, Masses and thermo-

dynamic properties of heavy mesons in the non-relativistic quark model using

the Nikiforov–Uvarov method, J. Egypt. Math. Soc. 27, 14 (2019).

[20] T. Das and A. Arda, Exact analytical solution of the N-dimensional radial

Schrödinger equation with pseudoharmonic potential via Laplace transform ap-

proach, Advances in High Energy Physics, Vol. 2015, Article ID 137038 (2015).

[21] K. T. Rethika and V. M. Bannur, Screening of a test quark in the strongly

coupled quark gluon plasma, Few-Body Syst 60, 38 (2019).

67



Chapter 4

Binding Energies and Effective

Masses of Diquarks in SCQGP

4.1 Introduction

In [1], it is proposed that near and above Tc there are multiple bound states of

quasi-particles which are very important for the thermodynamics of the QGP.

At T ≥ Tc, it has been argued that there is no color confinement and there is

Coulomb-like interaction at small distances with a Debye type screening at large

distances [2].

The deconfined quarks and gluons pair up non-perturbatively in order to lower

the energy of the system. This may lead to the formation of a system of two

quarks called diquark [3] or multi quark system consisting of more number of

quarks. These multi-quark systems can be studied using different models such as

the MIT bag model [4] and the Potential model [5]. Out of all possible multi-

quark states, the study of diquarks is more important in the context of QGP
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formed in RHIC experiments [6]. In 1964 GellMann first mentioned the possibility

of diquarks. A diquark is any system of two quarks considered collectively. The

idea of diquarks has been used in hadron physics for describing many properties of

hadrons [3]. This study is also important in the context of astrophysical conditions

[7], especially in cosmological contexts involving early phases of the evolution of the

universe [8]. The question about the existence of diquarks as quasi-bound states

in cold quark matter was emerged in [6], in which the authors have claimed that

the quark-diquark matter was energetically more favorable than the free quark

matter. The idea of the possible existence of quasi-bound states of quarks and

gluons including diquarks with the temperature in the range Tc ≤ T ≤ 4Tc was

put forward by Shuryak et al. [1]. In [9] it was shown that the Λc/D
0 ratio

could be enhanced by a factor of 4-8 than the case without diquarks in quark-

qluon plasma. Diquark correlations play an important role inside baryons. Two

quarks bound in a color anti triplet configuration can couple with a single quark to

form a color singlet baryon. Recent studies of baryons as bound states of a quark

and a confined diquark are done [10]. Some lattice simulations also indicate the

existence of correlations in the diquark channel. A diquark in its ground state has

positive poarity and may be a scalar (Spin 0) or an axial vector (Spin 1). It has

been pointed out that the production of scalar diquarks is much larger than the

vector diquarks. Evidence for scalar diquarks has been confirmed by lattice QCD

simulation [11].

In chapter 2, a new screening potential is proposed and in chapter 3, the bind-

ing energy of the bound states of quarks is calculated by solving the Schrodinger’s

equation using this potential in three different methods i.e., analytical exact iter-

ation method (AEIM), power series method (PSM) and Nikiforov - Uvarov (NU)
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method. In this chapter, we calculate the binding energies of scalar diquarks in two

methods i.e., analytical exact iteration method (AEIM) and power series method

(PSM). The scalar diquark masses are calculated using the ground state binding

energy of the bound states in strongly coupled quark-gluon plasma (SCQGP).

Also, the relativistic correction is done to the light diquark mass.

4.2 Binding energy of diquarks

4.2.1 Analytical exact iteration method (AEIM)

Using Eq.(3.21), the binding energy of diquarks in the strongly coupled quark-

gluon plasma at N=3 can be written as,

Enl =
Q

4π

(
−kr +

ki√
3

)
−
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Q4π

[
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− kikr√
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(4.1)

4.2.2 Power series method (PSM)

Using Eq.(3.32), the binding energy of diquarks in the strongly coupled quark-

gluon plasma at N=3 can be written as,

Enl = − 2µQ2

(4π(n+ l + 3))2
+
Q

4π

(
−kr +

ki√
3

)

+ 2
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32πµ
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2
− k3i
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√

3

)
(n+ l + 2)

(4.2)
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where Q = q1q2

The ground state binding energies of different scalar diquarks in two methods

were given in Fig. 4.1 as functions of temperature.

4.3 Effective mass of diquarks

Using the binding energy, the mass of diquark can be calculated as [12],

M∗
D = Mq1 +Mq2 + Enl (4.3)

where Mq1 and Mq2 are the masses of constituent quarks, M∗
D is the effective

mass of the diquark and Enl is the binding energy given by Eq.(4.1) and (4.2).

Effective masses of scalar diquarks were calculated using the ground state

binding energy of the diquarks in two methods at temperature 1.05Tc, where

Tc = 175MeV and the result is given in Table 3.1. Since the heavy diquark

states are weakly bound, the nonrelativistic treatment could be completely justi-

fied. A similar conclusion would be reached for light qq pairs. Since the binding is

weak, relativistic correction may be excluded. But here we try to do the relativistic

correction in a simple manner.

4.4 Relativistic Correction

The potential used above was evaluated for static charges without spin and there-

fore it does not include the effects of particle velocities and spin. The relativistic
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Figure 4.1: Dependence of diquark binding energy in units of the constituent quark
mass on temperature
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Table 4.1: Diquark Masses

Quark Content AEIM PSM
[qq]0 0.5072 ( 0.4609) 0.5343 ( 0.4954)
[qs]0 0.7023 0.8124
[ss]0 0.8991 0.9972
[qc]0 1.3711 1.7319
[sc]0 2.5588 2.3914
[sb]0 5.4453 5.5172
[qb]0 5.2437 5.3313
[cc]0 2.9431 3.1144
[cb]0 6.9690 6.8582
[bb]0 10.0144 10.0373

effect can be included by the substitution of the effective Coulomb coupling by [2]

αs → αs(1− β1β2) (4.4)

where β1 and β2 are the velocities (in units of c) of both the particles. Since the

velocities are always opposite in C.M., the coupling increases. Let < v2 >= 0.12

for light quarks at T
Tc

= 1.05 [2]. If we include this correction to the potential we

get larger binding. By including this correction at T ≈ Tc, the light quarks become

relativistic. The relativistically corrected light diquark mass is written in brackets

in Table 4.1. If the particle velocity becomes the speed of light this correction

doubles the coupling.

4.5 Results and Discussion

In the current chapter, we have investigated the binding energies of some scalar

diquarks. In Fig. 4.1, the light diquark binding energy looks considerable than the

heavy diquark and light-heavy diquarks. This shows the relatively large possibility
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for the existence of light diquarks near the transition temperature. The diquarks

can be described as elementary excitations stimulating the many-body interactions

and behave like scalar bosons [13]. Two quarks should be antisymmetric in color

so that a total color singlet state is obtained. Recent lattice works have found

that the bound states can persist to at least T = 2Tc [2]. This new potential

also supports this condition. In general, diquark masses have contributions from

the constituent masses, the confining and spin-dependent part of the quark-quark

interaction [14]. These contributions are additive in a simple potential model [15].

The spin-dependent contribution may include a contribution from flavor-spin and

color-spin dependent interaction terms. The masses are expected to get the largest

contribution from the constituent mass term and the confinement part [14], the

spin-dependent part is related to the mass splitting of the S=0, S=1 diquarks and

it is not considered here as we have reported only the scalar diquark masses.
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Chapter 5

Heavy Quarkonium Properties at

Finite Temperature in Strongly

Coupled Quark Gluon Plasma

5.1 Introduction

The bound states of a heavy quark and its antiquark are generally referred to

as quarkonia. Other than the vector ground states J/ψ and Υ both the cc and

bb systems give rise to many other stable states of different quantum numbers.

The stable charmonium spectrum consists of 1S scalar ηc and vector J/ψ, three

1P states χc (scalar, vector, and tensor) and 2S vector state ψ′. The stable bot-

tomonium spectrum contains Υ, χb, Υ′, χ′b and Υ” [1]. Heavy quarkonium has

received more theoretical attention because heavy quark states are dominated by

short-distance physics and can be treated using heavy quark effective theory [2].

Both experimental and theoretical studies suggest that the dissociation tempera-
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tures of heavy quarkonia are slightly smaller than twice the critical temperature

[3]. Because of the large mass, the velocity of heavy quarks is smaller and hence

the spectrum of the quarkonia comprised of heavy quarks can be estimated using

potential-based nonrelativistic treatments [4]. It has been argued that the screen-

ing above the critical temperature is strong enough to lead to the dissociation

of the J/ψ state which may be considered as the signal of QGP formation [5].

Charmonium suppression and screening may be related as in [6].

Various potential models have been used to study the quarkonium properties

at finite temperature, the first work in this field was done by Karsch, Mehr, and

Satz [7]. Heavy quarkonium suppression has been an interesting subject after the

theoretical work of Matzui and Satz [5]. Later Digal, Petreczky, and Satz reported

the dissociation temperatures of quarkonia in hadron and QGP phases [8, 9]. Re-

cent research successfully attempted to estimate the mass spectra of charmonium

and bottomonium mesons and to determine the binding energy and dissociation

temperature of heavy quarkonia [10, 11, 12]. In [4, 11, 12] the authors tried to

solve the Schrödinger equation at finite temperature for the charmonium and bot-

tomonium states using an effective temperature-dependent potential. The binding

energy of the heavy quarkonium states is studied in [13, 14]. At finite chemical po-

tential and in a small temperature region the dissociation of quarkonia states was

studied in a deconfined medium of quarks and gluons [15]. In [8, 9, 16, 17], where

the color singlet free energy was directly inserted into the Schrödinger equation,

the dissociation temperature of J/ψ was found to be 1.10 Tc [8] and 0.99 Tc [16],

and all other charmonium states were melting below the transition temperature,Tc.

In [18], where a parameterization of the lattice color singlet potential was used,

the dissociation temperature of Tc was calculated at 2 Tc and also the dissocia-
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tion temperatures of different states of charmonium and bottomonium were also

reported. In [19, 20, 21], dissociation temperatures were obtained using spectral

analysis.

In this chapter, we use the solution of the N-dimensional radial Schrödinger

equation with generalized two-body potential proposed in chapter 2 at finite tem-

perature using the analytical exact iteration method (AEIM), Power Series Method

(PSM), and Nikiforov-Uvarov (NU) method to determine the binding energy of

heavy quarkonia. We try to find out the mass spectra and dissociation tempera-

tures of heavy quarkonium states. Also, the influence of the dimensionality number

has been investigated on the binding energy and mass spectra of heavy quarkonium

at finite temperature.

5.2 Binding energy of quarkonium

5.2.1 Analytical exact iteration method (AEIM)

For quarkonium, Mq = Mq = m and Q = −q2

Using Eq.(3.21),

EN
nl =

Q

4π
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−kr +

ki√
3

)
−

[
Q
4π
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2
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3
+ k2r

2

]]2
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(5.1)
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where

ki =
ks
2

kr =

√
3

2
ks

k2s =
Mqω

2
p

gc
∂P
∂nf

5.2.2 Power Series Method (PSM)

Using Eq.(3.32),

EN
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(5.2)

5.2.3 Nikiforov-Uvarov (NU) method

Using Eq.(3.62),

EN
n,l = B +

3C

δ
+

6D

δ2
−

m
(
−A+ 3C

δ2
+ 8D

δ3

)2(
(2n+ 1)±

√
1 + 4mC

δ3
+ 12mD

δ4
+ 4

(
l(l +N − 2) + N2−4N+3

4

))2

(5.3)

Eq.(5.1), Eq.(5.2), and Eq.(5.3) give the expressions for binding energy of

quarkonium.
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5.3 Variation of Binding energy of quarkonium

with temperature

By considering the temperature dependence of αs from the literature [22] we get,

αs(T ) =
6π

(33− 2nf ) ln (T/ΛT )

(
1− 3(153− 19nf )

(33− 2nf )2

ln
(

2 ln (T/ΛT )
)

ln (T/ΛT )

)

The binding energy of quarkonia such as charmonium and bottomonium is

calculated in the N-dimensional space for any state at finite temperature using

Eq.(5.1), Eq.(5.2), and Eq.(5.3). Here m = Mc for charmonium and m = Mb

for bottomonium mesons. The variation of binding energy with temperature for

different states of quarkonia is shown in Figures 5.1 - 5.9.
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Figure 5.1: (a) Variation of J/ψ binding energy on temperature T and (b) Varia-
tion of χc binding energy on temperature T (AEIM)
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Figure 5.2: (a) Variation of J/ψ binding energy on temperature T and (b) Varia-
tion of χc binding energy on temperature T (PSM)
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Figure 5.3: (a) Variation of J/ψ binding energy on temperature T and (b) Varia-
tion of χc binding energy on temperature T (NU Method)
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Figure 5.4: (a) Variation of Υ binding energy on temperature T and (b) Variation
of χb binding energy on temperature T (AEIM)
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Figure 5.5: (a) Variation of Υ binding energy on temperature T and (b) Variation
of χb binding energy on temperature T (PSM)

86



1.0 1.5 2.0 2.5 3.0 3.5
0

50

100

150

200

T�Tc

M
HM

eV
L

(a)

1.0 1.5 2.0 2.5 3.0 3.5
0

50

100

150

200

T�Tc

M
HM

eV
L

(b)

Figure 5.6: (a) Variation of Υ binding energy on temperature T and (b) Variation
of χb binding energy on temperature T (NU method)
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Figure 5.7: Variation of quarkonium binding energy on temperature T for different
values of N (AEIM)
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Figure 5.8: Variation of quarkonium binding energy on temperature T for different
values of N (PSM)
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Figure 5.9: Variation of quarkonium binding energy on temperature T for different
values of N (NU method)
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5.4 Mass spectra of quarkonia

For calculating the mass of heavy quarkonium the following relation is used [23].

M = 2Mq + EN
nl (5.4)

5.4.1 Analytical exact iteration method (AEIM)

Substituting Eq.(5.1) into Eq.(5.4), the mass spectra for different states of heavy

quarkonia as a function of temperature is given by,
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5.4.2 Power Series Method (PSM)

Substituting Eq.(5.2) into Eq.(5.4), the mass spectra for different states of heavy

quarkonia as a function of temperature is given by,

M = 2m− mQ2(
4π(n+ l +N)

)2 +
Q

4π

(
−kr +

ki√
3

)

+2

√
Q

16πm

(
−k

3
r

6
+
kik2r
2
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3
− k2i kr

2
− k3i

6
√

3

)
(n+ l +N − 1)

(5.6)
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5.4.3 Nikiforov-Uvarov (NU) method

Substituting Eq.(5.3) into Eq.(5.4), the mass spectra for different states of heavy

quarkonia as a function of temperature is given by,

M = 2m+B+
3C

δ
+

6D

δ2
−

m
(
−A+ 3C

δ2
+ 8D

δ3

)2(
(2n+ 1)±

√
1 + 4mC

δ3
+ 12mD

δ4
+ 4

(
l(l +N − 2) + N2−4N+3

4

))2

(5.7)

The mass spectra of different states of heavy quarkonia as function of temper-

ature are plotted in Fig. 5.10 - 5.18.
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Figure 5.10: The mass spectra of charmonium and bottomonium as a function of
temperature T for 1S and 1P states (AEIM)
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Figure 5.11: The mass spectra of charmonium and bottomonium as a function of
temperature T for 1S and 1P states (PSM)

94



1S

1P

1.5 2.0 2.5 3.0
3600

3700

3800

3900

4000

4100

4200

4300

T�Tc

M
HM

eV
L

(a)

1S

1P

1.0 1.5 2.0 2.5 3.0 3.5
10 120

10 140

10 160

10 180

10 200

10 220

10 240

T�Tc

M
HM

eV
L

(b)

Figure 5.12: The mass spectra of charmonium and bottomonium as a function of
temperature T for 1S and 1P states (NU method)
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Figure 5.13: The mass spectra of charmonium as a function of temperature T for
1P state for different charm quark mass and (b) the mass spectra of bottomonium
as a function of temperature T for 1P state for different bottom quark mass (AEIM)
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Figure 5.14: The mass spectra of charmonium as a function of temperature T for
1P state for different charm quark mass and (b) the mass spectra of bottomonium
as a function of temperature T for 1P state for different bottom quark mass (PSM)
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Figure 5.15: The mass spectra of charmonium as a function of temperature T for
1P state for different charm quark mass and (b) the mass spectra of bottomonium
as a function of temperature T for 1P state for different bottom quark mass (NU
method)
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Figure 5.16: (a)The mass spectra of charmonium as a function of temperature T
for 1S state for different values of N , (b) the mass spectra of bottomonium as
a function of temperature T for 1S state for different values of N ,(c) the mass
spectra of charmonium as a function of temperature T for 1P state for different
values of N and (d) the mass spectra of bottomonium as a function of temperature
T for 1P state for different values of N (AEIM)
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Figure 5.17: (a)The mass spectra of charmonium as a function of temperature T
for 1S state for different values of N , (b) the mass spectra of bottomonium as
a function of temperature T for 1S state for different values of N ,(c) the mass
spectra of charmonium as a function of temperature T for 1P state for different
values of N and (d) the mass spectra of bottomonium as a function of temperature
T for 1P state for different values of N (PSM)
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Figure 5.18: (a)The mass spectra of charmonium as a function of temperature T
for 1S state for different values of N , (b) the mass spectra of bottomonium as
a function of temperature T for 1S state for different values of N ,(c) the mass
spectra of charmonium as a function of temperature T for 1P state for different
values of N and (d) the mass spectra of bottomonium as a function of temperature
T for 1P state for different values of N (NU method)
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5.5 Dissociation temperature of heavy

quarkonium in N-dimensional space

When the binding energy of a quarkonium falls below the temperature, that state

is weakly bound and it can be destroyed by thermal fluctuations by transferring

energy. The dissociation temperature is defined as the smallest temperature where

no resonance structure can be observed in reality. The value of binding energy

need not be reached zero for the dissociation of quarkonia. There are a lot of

previous works which have determined the dissociation temperatures for different

states of quarkonia. In [24] the dissociation temperatures were calculated from

the thermal width. In Ref. [4] the upper bound for the dissociation temperature

of quarkonium states was found by using the condition Γ(T ) ≥ 2Ebin(T ). In [12]

the upper bound and lower bound for the dissociation temperatures have been

calculated by the conditions Ebin = T and Ebin = 3T respectively. In [10, 25] the

condition of vanishing binding energy have used for calculating the dissociation

temperature for different states of heavy quarkonium. In this chapter, we use

the condition Ebin = T to find out the dissociation temperatures for the different

states of quarkonium. We have obtained the dissociation temperatures for different

states of quarkonium using AEIM and NU method and are summarized in Table

5.1, Table 5.2, and Table 5.3.
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Table 5.1: The dissociation temperature (TD) with Tc = 175MeV for the quarko-
nium states using Mc = 1710MeV and Mb = 5050MeV at N=3

State J/ψ χc ψ′ Υ χb Υ′

TD(AEIM) 1.47Tc 1.62Tc 1.62Tc 0.77Tc 0.82Tc 0.82Tc
TD(PSM) 1.46Tc 1.61Tc 1.62Tc 0.79Tc 0.83Tc 0.83Tc
TD(NU) 1.72Tc 1.81Tc 1.84Tc 1.04Tc 1.06Tc 1.07Tc

Table 5.2: The dissociation temperature (TD) with Tc = 175MeV for the quarko-
nium states using Mc = 1710MeV and Mb = 5050MeV at N=4

State J/ψ χc ψ′ Υ χb Υ′

TD(AEIM) 1.54Tc 1.71Tc 1.71Tc 0.8Tc 0.85Tc 0.85Tc
TD(PSM) 1.55Tc 1.72Tc 1.73Tc 0.84Tc 0.85Tc 0.85Tc
TD(NU) 1.77Tc 1.82Tc 1.86Tc 1.07Tc 1.08Tc 1.09Tc

5.6 Results and Discussions

Fig. 5.1 and Fig. 5.4 show the variation of the binding energy of heavy quarkonia

with temperature for 1S and 1P states respectively, where binding energy is cal-

culated using the analytical exact iteration method. Fig. 5.2 and Fig. 5.5 show

the variation of the binding energy of heavy quarkonia with temperature for 1S

and 1P states respectively, where binding energy is calculated using the Power

Series method. Fig. 5.3 and Fig. 5.6 show the variation of the binding energy of

heavy quarkonia with temperature for 1S and 1P states respectively, where bind-

ing energy is calculated using the Nikiforov-Uvarov method. It has been observed

that the binding energy becomes weaker with increasing temperature. This result

Table 5.3: The dissociation temperature (TD) with Tc = 175MeV for the quarko-
nium states using Mc = 1710MeV and Mb = 5050MeV at N=5

State J/ψ χc ψ′ Υ χb Υ′

TD(AEIM) 1.63Tc 1.81Tc 1.81Tc 0.83Tc 0.88Tc 0.88Tc
TD(PSM) 1.61Tc 1.83Tc 1.82Tc 0.83Tc 0.82Tc 0.88Tc
TD(NU) 1.8Tc 1.85Tc 1.87Tc 1.08Tc 1.09Tc 1.1Tc
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agrees with the literature [4, 10]. Fig. 5.7, Fig. 5.8, and Fig. 5.9 show the depen-

dence of binding energy on dimensionality number (N). It is clear from the figure

that the binding energy increases with the dimensionality number. This result also

agrees with [10].

Fig. 5.10, Fig. 5.11, and Fig. 5.12 show the mass spectra of heavy quarkonia

with temperature for 1S and 1P states. It is clear from the figures that the mass

spectra decrease with increasing temperature for 1S and 1P states. The values of

the 1P state are larger than the values of the 1S state. This also agrees with [10].

Fig. 5.13, Fig. 5.14, and Fig. 5.15 show the behavior of mass spectra of J/ψ

state and Υ state with temperature for two different values of constituent quark

mass. The increase of constituent quark mass leads to increasing mass spectra of

charmonium for 1S state. Thus the mass spectra of heavy quarkonia increase with

increasing quark mass. This also agrees with the previous findings [11]. Fig. 5.16,

Fig. 5.17, and Fig. 5.18 show the variation of mass spectra with dimensionality

number. The increase in dimensionality number increases the mass spectra as

in [10]. The values of binding energy and mass spectra of different quarkonium

states agree with the previous reports for the lower dimension. Comparing these

values with the experimental results [26], it can be concluded that out of the

three methods, the Nikiforov-Uvarov method has the minimum error. As the

dimensionality number increases, these values also increase.

In Table 5.1, we have summarized the dissociation temperatures for different

states of cc and bb at N=3. Considering the results obtained via AEIM, we found

that due to color screening the bottomonia states dissolve at temperatures near

the critical temperature and the charmonia states exist up to higher temperatures.

The dissociation temperature of J/ψ, χc, and ψ′ states agree with [10]. The dis-
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sociation temperature of Υ′′ agrees with [8,9]. The dissociation temperature of χb

agrees with [9, 17]. The value of dissociation temperature of Υ is slightly lesser

than that reported in some literature [4, 10]. The results obtained through PSM

are comparable with that obtained via AEIM. It is observed that the dissociation

temperature becomes slightly higher when calculated through NU method. The

dissociation temperature of J/ψ state agrees with [27]. The dissociation temper-

ature of χb agrees with [3]. In Table 5.2 and Table 5.3, we have summarized the

dissociation temperatures for different states of cc and bb at N=4 and N=5. The

above three tables display the effect of dimensionality number on the dissociation

temperature of different quarkonium states. It is clear from the tables that the

increasing dimensionality number leads to increasing dissociation temperature for

different quarkonium states.
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Chapter 6

Properties of bc and cs mesons at

Finite Temperature in Strongly

Coupled Quark Gluon Plasma

6.1 Introduction

In RHIC experiments the production and survival of heavy quarkonia have been

considered as a tool to test the deconfinement for a long time [1]. Initially, these

studies were focused on charmonia and bottomonia only. During the last few

years, a rapid increase in the number of new mesonic states has been observed by

various collider experiments leading to a new focus on hadron spectroscopy [2,3,4].

In p-p collisions, production of cc and bb appears to be more favorable whereas

in A-A collisions production of Bc meson (bc or cb) is more relevant [5]. The

bottom-charmed meson family is the only quarkonium bound state consisting of

two heavy quarks with different flavors (cb for positively charged channel and bc for
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negatively charged channel) and due to this special feature, we can include these

in the category of heavy-light mesons [6]. It is the heaviest and latest discovered

double heavy meson predicted by the standard model [6]. Unlike the charmonium

and bottomonium states the Bc mesons do not annihilate into gluons and thus

these states are very stable [7]. Recently LHCb presented evidence for three new

excited charm-strange mesons [8,9,10]. These states are important due to their

narrow widths and low masses [11]. experimental information on the spectrum of

the cs meson states is limited.

In this chapter, we try to find out the binding energies and mass spectra of bc

and cs mesons at finite temperature. For studying the temperature dependence of

binding energy and mass spectra of bc and cs mesons, we shall use a nonrelativistic

treatment because of the large constituent quark masses. We also calculate the

dissociation temperatures of these mesons in strongly coupled quark-gluon plasma

for different dimensionality numbers.

6.2 Variation of binding energy of bc and cs mesons

with temperature

The binding energy of bound state of quarks is calculated in the N-dimensional

space for any state at finite temperature using the Nikiforov-Uvarov method [12]

which is given by Eq.(3.62).

Here Mq1 = Mb and Mq2 = Mc for bc meson and Mq1 = Mc and Mq2 = Ms for

cs meson.

The variation of binding energy with temperature for different states of bc and
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cs mesons is shown in Figures 6.1 and 6.2.
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Figure 6.1: Variation of bc binding energy on temperature T

6.3 Mass spectra of quarkonia

For calculating the mass of bc meson the following relation is used [12].

Mbc = Mb +Mc + EN
nl (6.1)

For calculating the mass of cs meson,

Mcs = Mc +Ms + EN
nl (6.2)

Substituting from Eq.(3.62) in to Eq.(6.1) and (6.2), the mass spectra for dif-
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Figure 6.2: Variation of cs binding energy on temperature T

ferent states of bc meson as a function of temperature is given by,

Mbc = Mb +Mc +B +
3C

δ
+

6D

δ2

−
2µ
(
−A+ 3C

δ2
+ 8D

δ3

)2(
(2n+ 1)±

√
1 + 8µC

δ3
+ 24µD

δ4
+ 4(l(l +N − 2) + N2−4N+3

4
)

)2

(6.3)

and the mass spectra for different states of cs meson as a function of temperature

is given by,

Mcs = Mc +Ms +B +
3C

δ
+

6D

δ2

−
2µ
(
−A+ 3C

δ2
+ 8D

δ3

)2(
(2n+ 1)±

√
1 + 8µC

δ3
+ 24µD

δ4
+ 4(l(l +N − 2) + N2−4N+3

4
)

)2

(6.4)
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Table 6.1: The dissociation temperature (TD) with Tc = 175MeV for the bc meson
states using Mc = 1710MeV and Mb = 5050MeV

State 1S 1P 2S
TD(N = 3) 1.23Tc 1.25Tc 1.25Tc
TD(N = 4) 1.24Tc 1.26Tc 1.26Tc
TD(N = 5) 1.25Tc 1.27Tc 1.27Tc
TD(N = 3)[5] 1.90Tc 1.05Tc 1.04Tc

Table 6.2: The dissociation temperature (TD) with Tc = 175MeV for the cs meson
states using Mc = 1710MeV and Ms = 540MeV

State 1S 1P 2S
TD(N = 3) 1.33Tc 1.35Tc 1.36Tc
TD(N = 4) 1.34Tc 1.36Tc 1.37Tc
TD(N = 5) 1.35Tc 1.36Tc 1.38Tc

6.4 Dissociation temperature of bc and cs

mesons in N-dimensional space

Here we use the condition Ebin = T to find out the dissociation temperatures [13]

for the different states of bc and cs mesons. The dissociation temperatures for

different states are summarized in Tables 6.1 and 6.2.

6.5 Results and Discussions

Fig. 6.1 and Fig. 6.2 show the variation of binding energy of bc and cs mesons with

temperature. As the temperature increases, the binding becomes weaker. This

result agrees with the literature [14]. Fig. 6.3 shows the variation of mass spectra
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Figure 6.3: The mass spectra of different states of bc and cs mesons as a function
of temperature T for different values of N
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Figure 6.4: The mass spectra of bc 1S state as a function of temperature T for
different quark mass at N=3

of bc and cs mesons with temperature for different dimensionality numbers. From

the figure, it is clear that the mass spectra decrease with increasing temperature

and increase with the increasing dimensionality number. Fig. 6.4 and Fig. 6.5 show

the behavior of mass spectra of bc and cs mesons with temperature for different

constituent quark masses. The mass spectra increase with increasing quark mass

which is in agreement with the previous findings [14]. In Table 6.1 and Table

6.2, the dissociation temperatures for different states of bc and cs mesons are

summarized. We have found that both bc and cs mesonic states can dissociate at

temperatures above the critical temperature (Tc < TD < 2Tc). Also, the results

are compared with [5]. It is clear from the table that the increasing dimensionality

number leads to increasing dissociation temperatures of bc and cs mesonic states.
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Figure 6.5: The mass spectra of cs 1S state as a function of temperature T at N=3
for different component quark mass
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Chapter 7

Conclusions and Future plans

Recent experiments show clear evidence for the strongly coupled nature of QGP

at temperatures near the transition temperature. In this regime, QGP seems to be

close to a strongly coupled Coulombic plasma with an effective coupling constant

≈ 0.5-1 and multiple bound states of quasiparticles. These bound states play

an important role in the thermodynamics and transport properties of the QGP.

Recent lattice works have found that the charmonium states and the mesonic

bound states of light quarks can survive upto T ≤ 2Tc. In this work, we have

conducted a study to explore the properties of bound states in strongly coupled

quark-gluon plasma.

7.1 Conclusions

The major outcomes of the present work are summarized as follows.

� The screening potential of a color charge entering into the high-density

strongly coupled quark-gluon plasma is calculated using the hydrodynamic
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approach.

� The screening potential is plotted as a function of r for different values of

α. For smaller values of α the attractive potential vanishes. For α ≥ 1 , the

screening is remarkable. A minimum in the potential shows the formation

of bound states.

� The temperature dependence of the screening potential between quarks in

the high density strongly coupled quark-gluon plasma is investigated. A

minimum in the potential near Tc shows the formation of bound states. The

screening potential may lead to the expected suppression of J/ψ mesons.

� In this work, we have calculated the screening attractive potential to study

the formation of bound states of quarks in a simple manner.

� We report the solution of the N-dimensional radial Schrödinger equation in

which two-body potential in SCQGP is generalized. The energy eigenval-

ues have been calculated in N-dimensional space for any state with quan-

tum numbers (n, l). The binding energy for the bound states of quarks is

calculated by solving Schrödinger’s equation using this attractive potential

in three different methods. i.e., analytical exact iteration method (AEIM),

power series method (PSM), and Nikiforov-Uvarov (NU) method. Thus three

expressions for the binding energy of the bound state of quarks have been

obtained.

� Using these results, in this work, we have calculated the masses of diquarks

using the attractive screening potential in the high-density strongly coupled

quark-gluon plasma.
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� The results are applied for studying the properties of quarkonia (charmonium

and bottomonium). The effect of temperature on binding energy and mass

spectra of heavy quarkonia are studied. The dependence of binding energies

of 1S and 1P charmonium and bottomonium on temperature are studied.

The result is in agreement with the existing literature.

� The effect of dimensionality number on binding energy and mass spectra is

also studied and compared it with previous works.

� We have determined the dissociation temperature for different states of heavy

quarkonia at finite temperature and compared with the previous works.

� Also, the variations in binding energy and mass spectra of bc and cs mesons

with temperature are studied and we reported the dissociation temperatures

of bc and cs mesons.

� By comparing the numerical results with experimental values, we can observe

that out of the three mathematical methods, the NU method has minimum

error.

7.2 Future plans

In the present work, we proposed a new attractive potential and properties of

bound states are studied using this potential.

� In this work, only the screening effect is considered. So in future, the present

work can be extended to study all the collective effects in strongly coupled

quark-gluon plasma including waves and instabilities.
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� Recent trends indicate that the properties of heavy and light mesons can be

studied by solving the relativistic Schrödinger equation. So in future, the

relativistic Schrödinger equation can be solved within the framework of the

new screening potential.

� It is possible to investigate the transport coefficients of SCQGP.

� Also, the magnetized QGP can be studied in this model.
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