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ABSTRACT  

 
This work proposes a unified visual speech synthesis 

framework for Malayalam and lip movement animation synthesis is 

performed with given grapheme sequence as input. Visual speech 

synthesisers are used in diverse applications including man machine 

interfaces, animated movies and assistive technology solution  for deaf 

people. The current research and development in the domain of visual 

speech synthesis is oriented more towards developing systems which 

can learn from utterances. The proposed framework uses Active 

Appearance Models (AAMs) for learning and synthesising facial 

movements. Comprehensive, carefully compiled and annoted audio 

visual speech corpora, developed as part of this work is used for 

training the AAM based Malayalam visual speech synthesiser. Many 

sub modules in the framework, including durational model, 

transcriptror and set of visually discernable phonemes are also 

developed as part of this work. An extensive study is conducted to 

model the colour peculiarities of mouth region pixels using the facial 

images in the audio visual speech corpora. ASM (Active Shape Model) 

and Convolution Neural Network (CNN) based lip tracking systems 

are also implemented   using  landmark points  detection strategy. Most 

of the lip annoted images for the AAM based lip movement synthesiser 

is obtained through the lip tracking systems.   

Grapheme to audio visual speech synthesis systems need to 

understand text, audio and visual domains of language representations. 

Standardisations, mappings from one domain to another and statistical 

analysis based on atomic units in each domain need to be carried out 



for the target language. Graphemes are the basic unit in the textual 

representation of a language. Phonemes, defined as the smallest 

distinctive sound units in a language, are considered to be the basic 

unit for speech. But the properties of phonemes exhibit wide variations 

based on its position in the word and context. In Malayalam, phonemes 

are further categorised in to allophones based on the positional and 

contextual variability, i.e. the contextual and positional variability is 

encoded in the allophone characterisation of Malayalam language. This 

computational linguistic feature of Malayalam is exploited in designing 

many components of the proposed work. Corpora in text, audio and 

visual modalities are created for the training and the conduct of various 

experiments related to lip tracking and visual speech synthesis.  The 

developed bench marked data sets including the word based text 

corpora, isolated phoneme audio visual speech corpora and isolated 

word audio visual speech corpora are designed and developed by  

accommodating  the allophonic variability in Malayalam.  

In the first phase of this work, phoneme and allophone based 

durational models are developed. In a text to speech synthesis system, 

the durational model predicts the duration sequence corresponding to 

the speech segment sequence.  Most of the co-articulation effects in 

Malayalam are encoded in the allophonic characterisations for each 

phoneme. So an allophone centric durational model is developed in 

this work. The silence corresponding to the articulatory formation 

stage for the anticipatory plosive is identified to be the main factor 

creating audio visual asynchrony in Malayalam. This intra phoneme 

silence is analysed from the speech corpora and a silence model is 



developed based on statistical methods. The silence duration 

information is incorporated to the durational model and used in the 

visual speech synthesis framework. A rule based text to phoneme and 

allophone transcription system is developed as part of this study. The 

sequence of graphemes is converted first in to a sequence of phonemes 

and then to the corresponding sequence of allophones.   

The next phase of the work addresses the issues pertaining in 

the visual domain of Malayalam speech. Identifying the viseme set in a 

language is the fundamental step.  Viseme set is the set of visually 

discernable mouth appearances, which is considered as the basic unit 

of visual speech. Many to one phoneme to viseme maps for Malayalam 

are developed using linguistic knowledge, perception testing and data 

driven approaches. Linguistic viseme set is formed by exploiting the 

expert knowledge in the linguistics of the language. Experiments are 

conducted to understand the visual perception of Malayalam phonemes 

by human subjects. Viseme set is prepared by recording and analysing 

the responses of human subjects. Geometric features of lips and 

Discrete Cosine Transform (DCT) based features of lips are used for 

data driven clustering. Viseme set is formed by clustering in the feature 

vector space. Hierarchical Agglomerative Clustering (HAC) is used for 

clustering. In HAC, initially each instance is treated as a separate 

cluster to iteratively form a single cluster accommodating all instances. 

Many to many phoneme to viseme maps is also developed using data 

driven method by taking allophone as the basic unit.  

The proposed visual speech synthesis framework is applied for 

synthesising mouth area movements with lips as the boundary. Mouth 



area mainly consists of lip, skin neighbourhood of lips, teeth, tongue 

and dark portions of mouth cavity. The colour of these mouth regions 

shows significant variation with respect to ethnicity. The study as part 

of this thesis performed the statistical and probabilistic analysis of 

colour of mouth region pixels in Indian context. The analysis is 

performed in different colour spaces. The colour spaces are ranked 

according to their performances against a multiclass Bayesian classifier.  

Lip tracking by land mark point localisation is another major problem 

addressed in this thesis. Active Shape Modelling (ASM) and 

Convolution Neural Networks (CNN) are used for lip land mark point 

localisation. The ranking of colour spaces is exploited in designing the 

ASM based lip tracking system. The ASM annoted images are used for 

training  CNNs and as training images for AAM based visual speech 

synthesis. 

In the last phase of the work all the components developed is 

integrated in to a text to visual speech synthesis frame work using 

independent Active Appearance Models (AAM).The lip movements 

corresponding to a Malayalam  text is synthesised using the framework. 

The frame work uses durational models, transcriptors, viseme set and 

tracking modules to develop the AAM based synthesiser.The 

conversion of input text into a sequence of atomic grapheme units is 

the first step in the synthesis process pipeline. The atomic unit can be a 

sequence of phonemes, allophones, visemes obtained from phonemes 

and visemes obtained from allophones. Finding the number of frames 

for each atomic unit is the second step in the synthesis framework, 

which uses the duration of actual utterance and average unit duration. 



The visual speech synthesiser in Malayalam using independent AAM 

creates the shape and texture of lip movements’ separately. The 

appearance and shape coefficients of frames corresponding to a 

phoneme or allophone are stored in a code book. Intermediate frames 

are generated using morphing in the coefficient space or morphing in 

the image space. Morphing in the image space is observed to be 

generating impossible frames. Finally, perception experiments are 

conducted with different visual basic units using morphing in the 

coefficient space based framework.From the experimental results, it is 

concluded that allophone is the perfect Atomic Visual Unit (AVU) for 

Malayalam visual speech synthesis.  
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background 

Language is not just a tool for expressing ideas, but a social, 

historical and aesthetic phenomenon. Knowledge, arts, literature and 

every such form of human achievements is born, evolved and 

memorised in one of the languages. Language is expressed either as 

speech or text. Both forms are now used equally, even though every 

language is evolved through speech.   In the initial stage of learning 

any language, one learns the conversion of speech to text and text to 

speech after familiarising with the basic symbols in each domain. To 

automate these conversions, scientists have been exploring various 

machine learning techniques. In this regard, the last decade witnessed 

plenty of landmark achievements. The perception of speech is 

primarily based on the audio cues generated from the speech signal. 

But the visual cues during speech are equally relevant in the speech 

perception and in the communication of non-linguistic factors such as 

emotional state.  The emphasis and punctuations added through facial 

expressions make direct conversation an effective mechanism of 

communication. This makes the design and development of visual 

component of speech in the man machine interface and speech 

synthesisers noteworthy. 
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The visual component of speech manifests as facial motion. 

Modelling the facial motion has been a subject of research for more 

than hundred years. Before the computing era, hand crafted cartoons of 

visual speech were generated by successively drawing a predefined set 

of mouth shapes. Computer generated human faces in character 

animations became a reality in 1970s. Over the years intelligibility and 

realism of the synthesised face images have improved drastically 

through incessant research and development in the domain.   The input 

to the facial motion synthesiser can either be a speech signal (speech 

driven systems) or a grapheme sequence (text driven systems).   The 

techniques for generating synthetic visual speech can be broadly 

classified as image based and model based approaches. The effective 

implementations of model based approaches use HMM (Hidden 

Markov Modelling), Active Appearance Models (AAMs) and Artificial 

Neural Networks (ANNs). Lip movement synthesis, a sub problem of 

facial animation creates realistic lip movements synchronised with the 

audio. Creation of realistic lip movements is one of the critical and 

costly component in character animation based multimedia 

productions. The mouth area movement studies are also significant for 

developing sign language synthesisers for deaf community.  

The tools in the domain of language computing have been 

attaining multilingual capability like never before and audio visual 

speech synthesis is no exception. The disparity in the lip movements of 

characters with the spoken words in multilingual productions is 

identified to be the most distracting factor effecting the appreciation. In 

this context, a production framework accommodating multilingual lip 
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movement for characters is springing up across the globe. Audio-visual 

speech synthesis in a language demands many language specific 

linguistic and computational explorations. Text to audio visual speech 

synthesis systems have to work in text, audio and visual domains of 

language representations. Standardisations, mappings from one domain 

to another domain and statistical analysis need to be carried out for the 

target language. Many of the Indian languages including Malayalam 

still continues to be a low resource language in the language 

computing domain. 

This thesis performs analysis and modelling supporting the 

development of tools for visual speech synthesis in Malayalam. This 

spans several areas of work such as transcriptions from text to phonetic 

representations, mappings to unique mouth shapes, modelling co-

articulation effects and finally combining them to build a framework 

for visual speech synthesis.  Importance is given to the analysis of the 

mouth regions of talking faces and the experiments on model based lip 

movement animation in Malayalam. 

1.2. Motivation 

Conversing in the mother tongue of a person, in which he/she is 

evolved into a social being, is natural, fast and comfortable for a 

human being. So equipping the machine to communicate in a person’s 

mother tongue is one of the main goals of research and development in 

our time with remarkable achievements. To exploit this favourable 

situation Malayalam still has to complete many preliminary 

investigations in the domain of language computing. This thesis is a 
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collection of investigations towards bringing out the inherent 

computational features of Malayalam language. The limitations of the 

current practice of localising and adapting English language computing 

tools to Indian regional languages is evident in many spheres.  It 

happens due to the considerable disparity in the computational 

linguistic structure of Indian languages with English like languages.  

A bench marked data set is the prime constraint in the research 

and development of language computing tools. An audio visual speech 

corpus in Malayalam has been developed as part of this work with the 

help of linguistics, which can be used for audio visual speech synthesis 

and recognition.  The data is procured by considering allophone as the 

basic speech unit. Malayalam is one of the few languages which have 

got a well-defined rule set for allophone characterisation. Allophone 

centric speech processing attempts have started recently in Malayalam. 

Allophone Transcription systems need to be developed for further 

advances in this direction. This work has developed a text to allophone 

transcription system for Malayalam language.  

The importance of visual component in speech perception is an 

established fact. The intimacy and feeling of completion in face to face 

communication can be mainly attributed to visual information. Facial 

motion image sequence synthesis corresponding to an utterance is 

important for man-machine interface and facial animation automation. 

Analysis of Parametric representations of Visual speech modality for 

classification performed in this work is crucial both for automatic lip 

reading systems and lip motion synthesis systems.  Even personalised 

versions of facial motion synthesis systems are emerging in the world. 
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Synthesis by analysis is the most successful approach. Colour is the 

most prominent component in the analysis and its variation across 

ethnicities is studied and established by many researchers. So the thesis 

performed an analysis to understand the colour probabilistic nature of 

mouth region components such as lip, teeth and tongue.   Point 

Distribution Models (PDM) with learning capabilities such as Active 

Shape Model (ASM) for segmenting deformable shapes is applied for 

lip segmentation. The massive visual corpus of talking mouth region 

with land mark points for outer and inner lip, developed as part of this 

work, is used for trying lip segmentation using deep learning networks.  

A Convolution Neural Network (CNN) implementation is developed 

for lip segmentation and analysis is performed by changing network 

parameters.  Finally the analysis performed on text, speech and visual 

forms of Malayalam speech is integrated to develop a visual speech 

synthesis framework for Malayalam. Active Appearance Model 

(AAM), trained on the own developed and labelled visual corpus, is 

the main component of speech animation framework derived out of 

this study for Malayalam Language. 

1.3. Outline of the Thesis Organisation 

The thesis is structured as 8 chapters. The review of literature 

in Chapter 2 places this work in the context of established and ongoing 

enquiries in the relevant areas. It starts with a general review on 

phoneme based duration models with special emphasis on models that 

captures contextual variability. The review in also conducted for the 

rule based, model based and data driven approaches to text to phoneme 

transcription. The works in languages like Malayalam with an 
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established rule set for transcription and allophone characterisation is 

explored in detail. Visual phoneme or viseme is the visual speech 

equivalent of a phoneme or the set of visually separable phonemes. 

Viseme set in language is created either by a many to one phoneme 

mapping or many to many phoneme mapping. The review on viseme 

set formation encompasses all type of mappings using different 

techniques. Review on the analysis and segmentation attempts on 

different mouth regions such as skin, lip, tongue and teeth is also 

discussed. The detailed review on lip segmentation and tracking uses 

image based, model based and edge based techniques in lip 

segmentation and tracking is also performed. The final review section 

describes the various recent attempts reported for facial animation.  

Chapter 3 explains the processes involved in the creation of 

comprehensive Malayalam audio visual speech corpora used in the 

work and consolidates the findings of in-depth investigations 

performed on the duration of allophonic variations of Malayalam 

phonemes, which will be used as the durational model of a visual 

speech synthesis system. Duration and its modelling are important cues 

in the intelligibility and naturality of synthesised audio visual speech. 

In a text to speech synthesis system durational model predicts the 

duration sequence corresponding to the speech unit sequence and those 

values are predicted based on many factors affecting duration. It is 

possible to capture most of positional and contextual variability from 

the textual representation of the sentence. A phoneme can appear in the 

start, middle and end of a word creating positional variability. The 

change in duration due to the effect of surrounding speech units is 
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called contextual variability. The effect due to neighbouring phonemes 

and position are generally known as co-articulation effects. Co-

articulation effects in Malayalam are modelled by Malayalam linguists 

as allophonic characterisations for each phoneme. A well-defined 

allophone formation rule set exists for Malayalam. This is exploited to 

develop a durational model accommodating co-articulation effects due 

to positional and contextual variability of phonemes by understanding 

the durational pattern of allophones. 

Chapter 4 explains the implementation constituents of the 

proposed grapheme to phoneme and allophone transcripter.  The given 

grapheme sequence, after appropriate pre-processing in the grapheme 

domain is converted first into sequence of phonemes, and this 

sequence is converted to the corresponding sequence of allophones. 

Grapheme to Phoneme transcripter is reported for many languages. 

The underlying implementation strategies can be classified into 

dictionary based, data driven and rule based approaches. Linguistic 

rule set can be formulated   for phonetically perfect languages such as 

Sanskrit with written and spoken form correspondence. The 

transcripter uses a rule based approach both for grapheme to phoneme 

and phoneme to allophone transcription.  The pre-processing 

performed for the transcription in the grapheme domain is explained in 

the initial section of the chapter. The next two sections explain the 

proposed grapheme to phoneme and phoneme to allophone 

transcription algorithms. The implementation of these transcriptors are 

verified by computing the frequency of occurrence of phonemes and 

allophones in a word corpora.  
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Chapter 5 illustrate different phoneme to viseme mapping 

strategies developed for Malayalam. The first section of the chapter 

explains the pre-processing performed on the images in the audio 

visual data set for executing the work.  Visual phoneme or viseme is 

the visual speech equivalent of a phoneme or the set of visually 

separable phonemes. The nature of mappings from phoneme set to 

viseme set is either many to one or many to many. Many to one 

phoneme to viseme mappings are developed based on the linguistic 

knowledge, perception testing and data driven approaches.  Geometric 

features extracted from lip region and Discrete Cosine Transform 

(DCT) of lip area are the features used for data driven clustering. The 

work exploited the benefit of an allophone set modelling co- 

articulation in Malayalam to design a many to many phoneme to 

viseme map. Data driven approaches are then used for developing 

allophone to viseme maps.  

Chapter 6 reports the in-depth analysis and facial feature 

segmentation experiments performed on the own developed visual 

speech corpora. Mouth motion accounts for the prominent non-rigid 

facial motion, especially during talking. Tracking of mouth regions 

such as lips, teeth and oral cavity has potential applications both in 

speech recognition and facial motion synthesis. The performance of 

colour components in different colour space is compared against 

Bayesian mouth region segmentation algorithms on image sequences 

of the frontal face while talking. Lip segmentation is attempted as a 

separate module using Active Shape Model (ASM) and Convolution 

Neural Networks (CNNs). The performance of different colour 
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components in different colour spaces is compared with Beysian 

classifier and ASM.  The date set for training the CNN is obtained 

from manual landmarking and from ASM based segmentation in a 

single speaker mode.  

Chapter 7 explains the visual speech synthesis framework 

developed for Malayalam using independent Active Appearance 

Models (AAMs). The framework uses the components developed as 

part of the work such as allophone based duration model, transcripter 

and viseme set. The system is conceptualised as a text to visual speech 

synthesis system with an additional component for receiving duration 

cue from actual utterance. The framework is successfully applied for 

generating lip movements corresponding to a Malayalam text. The lip 

landmarked dataset for AAM training is obtained by manual land 

marking and automatic techniques. Three separate models are 

implemented for lip movement synthesis, one for synthesising only 

shape and the other two synthesises both shape and texture.  The 

process flow of the proposed visual speech synthesis developmental 

framework is shown in figure 1.1. Perception experiments are 

conducted by taking allophone, phoneme, viseme mapped from 

allophone and viseme mapped from phoneme as inputs to the 

synthesiser. 
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Figure 1.1:  Process flow of the proposed visual speech synthesis 
developmental framework 

Chapter 8 concludes the work with important directions of 

future research. Audio visual asynchrony modelling, phonetic 

transcripter which can model non textural cues, analysis-synthesis 

approach to speech animation in Malayalam and Deep Neural Network 

(DNN) based speech animation are the important domains identified 

for related future work. 



 11

CHAPTER 2 

REVIEW OF RELATED WORK 

 

2.1 Introduction  

 The bimodal nature of speech perception is an established fact.  

Talking face image sequence corresponding to an audio can create 

realistic conversation environment and will surely make machines 

more human-friendly. The movement of visible articulators creates the 

varying image sequence corresponding to visual speech. Hand drawing 

of expressive facial movements is time consuming and demands the 

involvement of expensive manpower. The lower jaw, tongue, teeth, and 

lips are the visible articulators of the human speech production system. 

The attempts to automise the movements of these organs started in 

1970s, which is a basic polygonal mesh framework with mouth and 

eyes closing and openings. The last decades witnessed the emergence of 

a plethora of new techniques for facial movement automation, 

especially while talking. This chapter reviews the related work in 

various domains relevant to visual speech synthesis. This spans several 

areas of work such as transcriptions from text to phonetic 

representations, mappings to unique mouth shapes and modelling co-

articulation effects.  Importance is given to the visual speech element 

by performing the analysis of the mouth regions of talking faces 

analysis and the experiments on model based speech animation in 

Malayalam.  
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This study focuses on the development of visual speech 

synthesis framework in Malayalam, using Active Appearance Models 

(AAM). Active Appearance Model (AAM), a statistical data driven 

model is used for modeling lip shapes and texture. Independent AAM, 

which models shape and textures using separate set of coefficients, is 

employed in this work. The framework is conceptualized as a text to 

visual speech synthesis system. The detailed review of related works is 

structured in this chapter as follows. After the brief introduction in 

section 2.1, section 2.2 reviews the phoneme based and allophone 

based duration models and audio visual speech corpora reported from 

various languages. Section 2.3 lists the graphme to phoneme and 

allophone transcriptors developed in various languages using 

dictionary based, data driven and rule based approaches. Section 2.4 

reviews viseme set generation attempts based on linguistic knowledge, 

perception experiments and data driven approaches. Section 2.5 

reviews facial feature segmentation techniques reported in literature 

and section 2.6 reviews various visual speech synthesis frameworks 

reported in the literature. The review is concluded in section 2.7.  

2.2  Review on Durational Model for Speech Synthesis and the 

Development of Audio Visual Speech Corpora  

 Allophone based speech processing studies are reported in 

many languages. Piotr Kozierski et al. use an allophone centric 

approach for polish whispery speech recognition [1].  The paper 

checked the use of extended allophone set to improve the speech 

recognition. Long Nguyen et al. analysed the most frequenly occuring 

CV (Consonant Vowel) pairs in the Japaneese language and added 
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corresponding allophones to the phoneme set for speech processing[2]. 

Ten new phonemes are added from the frequently occurring CV unit 

list. In the work by Ji Xu et al. allophones representing pronunciation 

variations are automatically derived from Korean Speech data [3]. 

Gaussian Mixture Models (GMM) are used for measuring the 

candidate allophones and allophone set is derived using a decision tree 

based approach. The automatically derived allophone set is reported to 

outperform linguistically derived allophone set in experiments. A 

number of works uses allophones as the basic unit for concatenative 

speech synthesis.  

  Imed douben et al. integrated allophone based segments in to 

the data base for improving Arabic speech synthesis system [4].Report 

by Pavel A. Skrelin compares diphone and allophone based approach 

for Russian speech synthesis. In this work, the actual allophones are 

selected from utterances characterising the allophone phonetic context 

[5]. Barkhoda et al. compares the kurdish syllable, allophone, and 

diphone based speech synthesis systems [6]. Subjective tests with 

human evaluators are used for comparing the performance. Allophone 

based concatinative speech synthesis using neural networks is also 

attempted [7]. In their work different Linear Predictive Coding (LPC) 

based speech parameterisation is attempted and evaluated for 

concatenative speech synthesis. A sliding window input layer based 

neural network architecture is used in the implementation. Mazin et al. 

uses allophone/ diphone concatenation method for speech synthesis 

[8]. Alex carpov uses allophones and multi allophones for text to 

speech synthesis system [9]. An allophone rule set based strategy is 
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employed by Ka-Ho Wong to develop a language learning framework 

[10]. Gregor A. Kalberer has used an allophone-viseme transcription 

system for visual speech synthesis [11][12]. 

 Phoneme duration is dynamic and the variation is mainly 

attributed to effects due to neighbouring phonemes. Rule-

based approaches, statistical approaches, model-based approaches and 

its combinations are used for representing this variability. Ommer et 

al.primarily used a statistical approach for duration modelling in 

Turkish TTS [13]. Robert et al uses a decision tree based approach for 

duration modelling of Czech speech segments [14]. A Classification 

and Regression Tree (CART) approach is used by Alexandros et al.to 

model the duration of Greek phonemes [15]. A Long Short Term 

Memory Recurrent Neural Network framework, which tries to model 

the countable duration values are used by Bo Chenn et al.[16]. A 

neural network based Arabic phoneme prediction system is proposed 

by Yasser Hifny et al.[17]. Giedrius performs a decision tree based 

phoneme duration analysis for Lithuanian language [18].  Janneet et 

al.employes expanded state HMM for modelling Finnish language 

duration modelling [19]. Yonas et al. developed a data driven duration 

model for Amharic phonemes using classification and regression trees 

[20]. To improve the intelligibility of synthesised speech an HMM and 

Multilayer Perceptron hybrid model duration prediction is introduced 

by kalu et al.[21].  Tree based machine learning approaches is also 

used for Serbian language duration modelling [22]. Table 2.1 

summarises the durational modelling attempts in various Indian 

languages. 
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Table 2.1: Summary of the durational modelling works in various Indian languages 

Sl. 
No 

Title of the Paper Author Language method/Work used 

1 Duration characteristics of 
Hindi phonemes in continuous 
speech 

K 
SamudraVijaya 

Hindi Technical Report [23] 

2 Durational Characteristics of 
Hindi Stop Consonants 

K 
SamudraVijaya 

Hindi Stop consonants,  
Continous Speech data base 
[24] 

3 Modeling syllable duration in 
Indian languages using neural 
networks 

K S Rao et al. Hindi,Telungu,Tamil Syllable duration, using Neural 
Network [25] 

4 Modeling syllable duration in 
Indian languages using 
support vector machines 

K S Rao et al. Hindi,Telungu,Tamil Syllable duration, using 
Support Vector Machines [26] 

5 Duration Modeling Of Indian 
Languages Hindi And Telugu 

N.Sridhar 
Krishna et al. 

Hindi and Telungu Phoneme duration CART [27] 

6 Bengali Diphone Duration 
Modeling for Bengali Text to 
Speech Synthesis System 

Labiba Jahan et 
al. 

Benglai Diphone duration for speech 
synthesis [28] 

7 Significance of Duration in the 
Prosodic Analysis of 
Assamese 

D.Govind et al. Asameese Duration modification 
according to  
Prosody [29] 
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8 Duration Modeling in Hindi Somnath Roy et 
al. 

Hindi Syllable and Phoneme analysis 
for implementing prosody in 
speech synthesis [30] 

9 Duration Modeling For Telugu 
Language with Recurrent 
Neural Network 

V.S 
RameshBonda et 
al. 

Telungu Syllable Modelling using 
recurrent Neural Network [31] 

10 Durational Characteristics of 
Indian Phonemes for Language 
Discrimination 

B.L.Kanth et al. Hindi , Tamil and 
Telungu 

Duration Analysis for 
Language discrimination [32] 

11 Duration Analysis for 
Malayalam Text-To-Speech 
Systems 

D.P.Gopindah et 
al. 

Malayalam Statistical analysis of Vowel 
and Consonant duration [33] 

12 Modeling of Vowel Duration 
in Malayalam Speech using 
Probability Distribution 

D.P.Gopindah et 
al. 

Malayalam  A probabilistic  
Duration prediction system 
[34] 
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Audio visual database is the basic building block of audio visual speech processing applications. A standard 

isolated phoneme based and word based audio visual database is developed as part of this work. Table 2.2 lists the 

important audio visual speech corporas developed in different languages. 

Table 2.2:  Audio visual speech corpora developed for different languages  

Database - Year Speaker  
(Female, 
Male) 
 

Corpus - Repetition Video 
Parameters 
(Pixel size, 
FPS) 

Audio 
Parameters 
(Sampling 
Frq., bit) 

Special Features 

TULIPS1[01]  - 1995 12 (9,3) First four Englishdigit – 
twice. 

100 x 75, 30 
fps. 
Mouth region. 

Unknown Isolated digits. [35] 

DAVID [02] – 1996 124 Isolated digits. 
English-alphabet E-set. 
Video-conference control 
commands. 
‘VCVCV’ nonsense 
utterances. 

640 x 480, 
30fps. 
Full face. 
Frontal View. 

Unknown Speech/Person recognition. 
Contain 4 corpus with 
different research theme. 
Complex background and 
variable illumination. 
Contain individual speaker 
and more than one 
speakers during recording. 
[36] 

M2VTS [03] – 1997 
Multi Modal Verification 

37 Numbers (0 to 9) – 5 
times. 

286 x 350, 
25fps. 

48kHz, 16 bit. Speech verification, face 
recognition. 
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for Teleservices and 
Security applications 

Full face. 
Frontal view. 
 

Mostly French Speakers. 
Head rotation (left, right, 
up and down). 
Presence of glasses and 
hats. [37] 

XM2VTSDB [04] – 1999 
Extended M2VTS 
Database 

295 Three sentences 
(numbers and word) – 
twice.  

720 x 576, 
25fps. 
Full face. 
Frontal view. 
2 Camera used. 

32kHz, 16 bit. Personal identity 
verification. 
Head rotation (left, right, 
up and down). 
Recorded in extremely 
controlled condition. 
Text dependent. [38] 

AMP/CMU [05] – 2001 
Advanced Multimedia 
Processing Lab 

10 (3,7) 78 Isolated words (date 
and time, month, day and 
miscellaneous) – 10 
times. 

720 x 480, 25 
fps. 
Full face. 
Frontal view. 

16kHz, 16 bit. Lip reading. 
Presence of glasses and 
hats. 
Recorded in controlled 
situation. [39] 

AV Letters [06] – 2002 10 (5, 5) Isolated letters (A to Z) – 
3 times. 
Total 780 utterances. 

376 x 288, 
25fps. 
Full face. 
Frontal view. 

22.05kHz, 16 
bit. 

Speech recognition. [40] 

CUAVE [07] – 2002 
Clemson University 
Audio Visual 
Experiments 

36 (19, 17) 
Speaker pairs 
-20 

Isolated digits. 
Connected digits. 
Total 7000 utterances. 

720 x 480, 
29.97 fps. 
Shoulder and 
head. 
Frontal view. 

16kHz, 16 bit Speaker independent digit 
recognition. 
Speaker independent 
database. 
Contain individual speaker 
& speaker pairs. 
Head movement in side-to-
side, back-and-back. 
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Presence of glasses, facial 
hairs and hats. 
Fit to one DVD-data disk. 
[41] 

VidTIMIT [08] - 2002 43 (19, 24) 10 TIMIT sentences per 
speaker. 
First 2 sentences are 
same for all but 
remaining 8 are unique. 

512 x 384, 25 
fps. 
Frontal view. 

32kHz, 16 bit. Multi-modal person 
verification. 
Data acquisition with 3 
session. 
Extended head rotation. 
Change in speaker 
appearance and voice 
during each session. 
Variability in camera 
zoom factor and 
background noise. [42] 

BANCA [09] - 2003 52 (26,26) for 
each 
language 
class. 

Numbers. 
Names. 
Addresses. 
Date of birth. 
 

720 x 576, 
25fps. 
Shoulder and 
head. 
Frontal view. 
2 Camera used. 

32kHz, 12& 16 
bit. 
2 Microphone 
used. 

Multi-modal identity 
verification. 
4 Languages-English, 
French, Italian and 
Spanish. 
Recorded in controlled, 
degraded and adverse 
condition. 
Text independent. [43] 

AVICAR [10] – 2004 
Audio-Visual Speech in a 
Car. 

100 (50, 50) Isolated digits. 
Isolated letters. 
Phone numbers. 
TIMIT sentences. 
Total 59,000 utterances. 

720 x 480, 
30fps. 
Full face. 
4 Camera array. 
 

48kHz, 16 bit. 
8 Microphone 
array. 
 

Speech recognition in car. 
60% American English 
others Latin American, 
European, East Asian and 
South Asian. 
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Recorded in 5 noisy 
condition (automotive 
noise). [44] 

AV-TIMIT [11] - 2004 223 (106, 
117) 

450 TIMIT-SX 
sentences. 
Each speaker utter 20 
sentences. 
First sentences is 
common and other 19 
sentences are different. 

720 x 480, 30 
fps. 
Full face. 
Frontal view. 

16kHz, 16 bit. Speaker independent 
continuous speech 
recognition. 
Continuous phonetically 
balanced speech. 
Contain multiple speakers. 
Controlled office 
environment. 
Presence of facial hairs, 
glasses and hats.  
Recorded in different 
illumination condition. 
[45] 

VALID [12] – 2005 106 (29, 77) XM2VTS speech corpus. 576 x 720, 25 
fps. 
Full face with 
shoulder. 
Frontal view. 

32kHz, 16 bit. Multi-modal 
speaker/speech 
recognition. 
97 Europeans and 9 
Asians. 
5 Recording session – 1 
controlled and 4 
uncontrolled (varying 
noise, illumination). 
Presence of facial hairs. 
Text dependent. [46] 

GRID [13] – 2006 34 (16, 18) Command sentences. 
Each sentence contain six 

720 x 576, 25 
fps 

25kHz, 16bit Speech recognition. 
Mean age is 27.[47] 
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word sequence.  
Total corpus size 34,000. 

AV Letters 2 [14] - 2008 5 26 Isolated letters – 7 
times. 

1920 x 1080, 
50 fps. 
Full face. 
Frontal view. 

48kHz, 16 bit. Speech recognition. 
High-definition version of 
AV Letter database. [48] 

UWB-07-ICAVR [15] – 
2008 
University of West 
Bohemia-2007-Impaired 
Conditions audio visual 
speech Recognition 

50 (25, 25) 200 Sentences (50 shared 
and 150 unique). 
Total 10,000 continuous 
utterances. 
 

720 x 576, 50 
fps (high 
quality). 
640 x 480, 30 
fps (low 
quality). 
2 Camera used. 

44kHz, 16 bit. 
2 Microphone 
used. 

6 types of illumination 
condition 
Average age is 22. 
Czech language. [49] 

IV2 [16] – 2008 300 15 French sentences. 780 x 576, 25 
fps (high 
quality). 
640 x 480, 25 
fps (low 
quality). 
2 Camera used. 
Full face. 
Frontal and 
profile view. 

2 Microphone 
used. 

Face recognition. 
Majority data acquisition 
within single session.   
Pose, expression, 
illumination and glass 
variability. 
Different illumination 
levels and orientations. 
Iris image, 3D laser 
scanner face data. [50] 

DXM2VTS [17] – 2008 
Damascened XM2VTS 

295 XM2VTS database. 
Additional videos 
containing several 
degradation level of 
background noise. 

720 x 576, 25 
fps. 
Full face. 
Frontal view. 
2 Camera used. 

32kHz, 16 bit. Face recognition. 
Internal video distortion 
(blur, salt and pepper and 
rotation). 
External video distortion 
(zooming and dynamic 
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background noise). [51] 
OuluVS [18] - 2009 20 (3, 17) 10 daily use short phrases 

– 9 times. 
Total 817 sequences. 

720 x 576, 25 
fps. 
Full face. 
Frontal view. 

No audio Visual only recognition. 
[52] 
 

WAPUSK20 [19] - 2010 20 (9, 11) 100 GRID database 
sentence. 
Total 2000 sentences. 

640 x 480, 32 
fps. 
Full face. 
Frontal view. 

16kHz, 32 bit. 
4 audio 
channels 

Stereoscopic video. 
Speakers – 2 England, 1 
Greece, 1 Kazakhstan and 
1 Spain. 
All other native German 
speakers. 
Mean age is 29.[53] 

The following section describes a review of transcriptors developed for various languages. 
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2.3 Review on Transcripters in Various Languages  

Grapheme-to-Phoneme transcription plays an important role in 

speech processing applications such as speech recognition, speech 

synthesis and speech database construction. This section presents a 

review of methods used for the development of grapheme to phoneme 

and grapheme to allophone transcripters in various languages. The 

methods can be classified as linguistic,dictionary based and data 

driven.  Rule-based approaches uses expert linguistic and phonetic 

knowledge for transcription, whereas dictionary-based methods relies 

on storing maximum phonological information and using it for 

transcription.  Data-driven methods process trained data for 

automatically deriving the converter predominantly using machine 

learning techniques.   

Rule-based transcription system is applicable to languages 

having a defined correspondence between graphemes and phonemes. A 

regular correspondence exists for Arabic language and it is exploited 

for designing a transcription system in Arabic. Work by Yousif A. El-

Imam consist of a text segmentation and pre-processing stage. Pre-

processing is used for generating well-formed lexical items [54]. 

Bangla Grapheme-to-Phoneme (G2P) converter, developed by Ayesha 

et al. is based on some predefined rules for general cases and some 

specific rules to handle the exceptional case. Bangla pronunciation 

generator faces challenges like distinguishig the different vowel 

pronunciations. Heuristic assumptions are required in some situations 

[55]. Miohel Divay et al. designed a Grapheme to phoneme 

transcription for French based on letter-to-sound rules. In this system 
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the left hand side of each rule and the right hand side of each rule 

specifies the corresponding phonemes with the preceding and 

succeeding grapheme context [56]. In a work for Lithuanian language, 

words grapheme to phoneme conversion take place based on encoded 

knowledge. The conversion problem is divided into three consecutive 

algorithmic steps, syllable boundary identification, accentuation, and 

transcription. Linguistics engineering approach is used for designing 

specific rule set [18].   

Dictionary-based letter-to-phoneme transcription relies on 

storing maximum phonological knowledge in a lexicon. A 

comprehensive dictionary needs huge memory and tedious effort 

during creation. Jack Halpern on his study on Japanese speech 

technology discusses the complex allophonic variations based on a 

phonetic database. This database used directly in the development of 

acoustic models and can produce more accurate phonetic transcription 

[57]. Jozsef Domokos et al. presents a machine-readable language 

dictionary for Romanian language. The dictionary is available in a 

format, which is compatible to HTK and festival speech synthesis 

system. In this study parallel structure having Artificial Neural 

Network is used to design phonetic dictionary. This type of 

pronunciation dictionaries are very useful resources for spoken 

language technologies and used in ASR and TTS applications [58].  

Attila Novak et al. in Hungarian used the dictionary based 

method by using database of Hungarian geographic terms into phonetic 

representation. The construction of this dictionary includes several 

steps. After collecting word forms from large written corpus the 
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resulting words are cleaned and applied the transformation rules. 

Exceptions occurred during transformation process were corrected 

manually [59]. Researchers from Myanmar Ye Kyaw Thu et al. 

presented a grapheme to phoneme conversion using Myanmar 

dictionary [60]. Transcription for English and Thai developed by 

Aroonmanakun et al. implements a version of dictionary based 

approach. Transcriptions of Thai and English words are manually 

stored in the dictionary. Transcriptions of most of the words can be 

retrieved from the dictionary. The exceptional word set are generated 

by applying some special rules [61]. An English grapheme-to-phoneme 

system is developed to handle silent English words [62]. As part of the 

study carried out in Korean, Byeong chang kim developed a grapheme 

to phoneme converter using dictionary-based and rule-based hybrid 

method with phonetic pattern dictionary and letter-to-sound rules. The 

phonetic pattern dictionary, standing for the dictionary-based method, 

contains entries in the form of a morpheme pattern and its phonetic 

pattern. The conversion method consists of mainly two steps including 

morpheme to phoneme conversion and morphophonemic connectivity 

check [63]. 

In data-driven methods, the algorithm for transcription is 

learned automatically from data. Yousif A El. Imam explains different 

data driven approaches such as pronunciation by analogy (PbA), 

statistical methods based on stochastic theory and methods based on 

neural networks. PbA understands the pronunciation using similar 

parts of known words and their pronunciation. The statistical method 

sucessfully learns the grapheme–phoneme mapping with a certain 

probability. Trained neural networks using multilayer perceptrons 
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(MLP) with back-propagation training also gives promising results [1]. 

In Arabic, Khalid Nahar uses data driven methods to recognize and 

automatically transcribe Arabic phonemes. In their work, Ramya  

Rasipuram et al. developed an acoustic data driven G2P conversion 

method using KL-HMM and a well-trained multilayer perceptron 

(MLP) [64]. For Chinese language, Min-Siong Liang et al. developed a 

data-driven approach to phonetic transcription using text with speech 

augmentation, ASR with sausage searching net and pronunciation 

variation rules to convert Chinese text to Taiwanese. Data-driven rules 

are mainly used for developing pronunciation variation rules [65]. 

Christina Leitner developed data driven automatic phonetic transcripter 

for German language, by comparing with the samples in the database 

followed by appropriate concatenation [66]. 

Transcriptors are also developed for various Indian languages 

by employing different techniques. For Bangla, Joyanta Basu et al. 

designed G2P conversion algorithm based on orthographic information 

based rules. The part of speech (POS) and context information are 

included in the conversion to reduce exceptional cases. This 

conversion system contains verb, adjective and exception dictionary 

[67]. Shammur Absar Chowdhury et al. developed an experimental 

Grapheme-to-phoneme conversion method for bengla using 

conditional random field. This method adopts the G2P transcription by 

Mosaddeque et al. and and Alam et al. and additionally designed a 

sequence classification model using Conditional Random Fields 

(CRFs), which is a popular probabilistic graphical model widely used 

in Natural Language Processing (NLP) [68]. In their work, Ravi Kiran 

et al. developed two separate phonetic transcription system for Bangla 

and Odia using HMMs and MFCCs [69].   
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Grapheme to phone conversion for Hindi by C.S. Kumar et al. 

employed context sensitive rules for developing transcriptors. The 

context sensitive rules are designed to accurately predict the 

pronunciation using the contextual information. Exception cases are 

stored in exception lexicon. A decision tree approach is also 

implemented to generate the different pronunciation variation 

depending on the context [70]. Monojit Choudhary developed 

computational framework for rule-based grapheme-to-phoneme 

mapping for Hindi [71]. Sandeep Chaware et al. combined Hindi and 

Marathi for rule-based phonetic matching [72]. Grapheme-to-Phoneme 

conversion tool developed for Marathi by Sangramsing N Kayte et al. 

uses a language independent rule processing engine. The rule 

processing engine contains information in the form of lexicon, rules 

and mapping [73]. Grapheme to Phoneme Conversion for Punjabi 

Language by Ankita Goel et al. implemented transcription based on 

the rule set derived from the words in the dictionary [74]. In Urdu, 

Sarmad Hussain et al. converted the urdu letters to corresponding 

sound by applying letter-to-sound rules on a normalized text [75]. 

Neeshali R Nandarge et al. developed phonetic transcription 

system for Kannada language. In their method tokenization is used to 

produce the phonetic sound [76]. A.G Ramakrishnan et al. used rule 

based approach for G2P conversion in Tamil. The input normalized 

text is converted using the letter to sound rules for Tamil. These rules 

are based on pronunciation dictionary and a rule based approach for 

exceptional cases [77]. N. Udayakumar et al. followed decision tree 

learning technique for an automatic grapheme-to-phoneme conversion 

in Tamil. Based on the nature of the neighbouring phones the phonetic 

variations of a phoneme can be captured using Decision trees. Decision 
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trees consist of nodes that contain the rules and leaves, which are 

labelled with target classes. When the object reaches a leaf, the class 

label of this leaf is used as the answer for the specific transcription. 

Rule-based system is used for bootstrapping the manually generated 

lexicon [78]. In Malayalam, Sumi S Nair et al. followed a rule-based 

method to convert grapheme form of a Malayalam word into phoneme 

form. G2P converter checks for suitable rules that matches the given 

grapheme [79]. Cini Kurian et al. build an automated transcription 

system for Malayalam by using HMMs with MFCC feature based on 

phonological rules for medium size vocabulary [80]. 

2.4  Review on Different Approaches Used in the Construction 

of Viseme Set  

 This section reviews different approaches used in literature for 

constructing the Viseme set in a language. Linguistic, perception based 

and data driven approaches are used for finding the Viseme set. 

Inlinguistic approach, viseme set is formed by exploiting the expert 

knowledge in the linguistics of the language. Phonetic properties, 

articulatory rules and visual intuition are used for classifying 

phonemes. In the perception based approach, experiments are 

conducted by human subjects to understand viseme classes. This 

method closely matches the way in which humans perceive visual 

speech. Data driven approach is used for automatically learning the 

natural division among phonemes in the parametric space. Visual 

features are extracted from the mouth region of talking faces and 

Viseme are formed by clustering in the feature space. Table 2.3 

presents the summary of various works reported for the formation 

Viseme set for various languages. 
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Table 2.3: Summary of the Viseme set formation methods for different languages  

Author – Year Linguistic Information Implementing Method Special Features 
Bozkrut– 2007 American English. 

46 phonemes - 16 viseme 
classes. 

Linguistics approach. 
HMM model was used for lip animation 
with audio speech as input. 
Contextual information was implemented 
using tri-phone model. 
 

TIMIT speech database. 
Compared phone, tri-phone, 
viseme and tri-viseme based 
HMM structure for lip 
animation. 
Acoustic observation consists of 
12 MFCC, energy, delta and 
acceleration coefficients 
resulting in 39 feature length. 
Applied for visual speech 
synthesis. [81] 

Lander – 1999 35 phonemes - 12 classic 
Disney mouth position. 

Linguistic approach Facial Animation. [82] 

Hazen – 2004 American English. 
50 phonemes - 14 viseme 
classes. 
There are 54 phonemes 
but 4 phonemes were 
merged to get 50 
phonemes. 

Data-driven approach. 
Agglomerative hierarchical clustering 
algorithm.  
Bottom-up clustering using maximum 
Bhattacharyya distances. 
96-dimension stacked PCA feature 
vectors. 

AV-TIMIT speech database. 
Viseme was represented by three 
consecutives frames with middle 
frame describe the static viseme 
of each phoneme. 
Before clustering some 
phonemes were merged [45] 

Lee – 2002 41 phonemes - 14 viseme 
classes. 
7 vowel, 6 consonant and 

Assumed to be linguistic approach. 
HMM modelling. 
Used context-independent recognition 

TIMIT speech database. 
Two approaches in building 
viseme recognizer-viseme 
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1 silence viseme. units (phone model). 
Produced a sequence of viseme symbols 
from speech waveform. 

HMMs and phoneme HMMs. 
[44] 

Montgomery – 
1983 

American English. 
15 vowels and 
diphthongs. 

3 methods- Perceptual analysis using 
confusion matrix, Physical measurements 
(height, width, area, acoustical and visual 
duration) and Correlation between the 
two. 

Study was restricted to vowels 
only. [84] 

Neti– 2000 42 phonemes - 12 viseme 
classes (excluding 
silence). 

Mixture of linguistic and data driven 
approach.  
Decision tree based HMM state clustering 
method. 
Models are trained using DCT visual 
features. 

IBM ViaVoive database was 
used. [85] 

Binnie– 1976 20 English consonants – 9 
viseme classes. 

Human testing. 
Confusion matrix. 

Consonants are only studied. 
20 English consonants were 
combined with the vowel /a/ to 
form 20 CV syllables. 
34 female observers has 
participated in the testing 
process. 
Mapping is done subjectively. 
[86] 

Fisher – 1968 23 initial consonants – 5 
viseme classes. 
20 final consonants – 5 

Multiple-choice intelligibility test. 
Confusion matrix. 

Studied visual perception of 
initial and final consonants. 
Mapping is done subjectively. 
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viseme classes. Fisher introduced the term 
viseme which is a compound 
word of visual and phoneme. 
[87] 

Bear – 2015 46 phonemes - Visemes 
ranging from 2 to 45. 

Viseme classes were obtained based upon 
the mapping of articulated phonemes, 
which was confused during phoneme 
recognition, into viseme groups. 

Designed Speaker-dependent 
viseme classes. 
Studied on LiLIR dataset. 
12 British speakers utter about 
1000 words totally. [88] 

Taylor – 2015 Created many-to-many 
mapping. 
Approximately 50000 
visual speech gestures – 
150 dynamic viseme 
classes. 

Clustered the speech gestures identified 
by AAM (Active Appearance Model) of 
jaw and lips. 
20 Dimension feature vector entirely 
describe the shape and appearance 
information. 
Dynamic visemes were learned entirely 
from visual data. 

KB-2K database was used. 
A single actor recite 2542 
phonetically balanced sentences 
from TIMIT database. 
Applied for automatic redubbing 
of video. [89] 

Jeffers – 1980 American English. 
43 phonemes -11 viseme 
classes. 

Pure linguistic approach. [90] 

Setyati– 2015 Indonesian language. 
49 phonemes – 12 viseme 
classes. 

Linguistic approach. Used Blend shape models for 
analysing the facial images. 
10 speakers were used for this 
study. [91] 

Mattheyses– 
2013 

Dutch language. 
Many-to-many phoneme-

Data driven approach. 
AAM (Active Appearance Model)-based 

Coarticulation effect was 
studied. 
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to- viseme mapping. representation of mouth region. 
Tree- based and k-means clustering 
approach was used. 

Applied for visual speech 
synthesis. [92] 

Seko– 2013 Japanese language. 
40 phonemes – 14 viseme 
classes (excluding 
silence). 

HMM modelling. CENSREC-1-AV database was 
used. [93] 

Yu – 2010 50 words – 60 classes of 
visual speech units 
(VSU). 

Data-driven approach. 
Used Expectation Maximization Principal 
Component Analysis (EM-PCA) as 
feature extraction method. 
Based on HMM classification.1 

Introduced new term “Visual 
Speech Unit (VSU)” which 
include transition information 
between consecutive visemes. 
Two speakers utter a total of 50 
words. [94] 

Chitu– 2009 Dutch language. 
40 phonemes – 18 viseme 
classes. 

Confusion matrix. [95] 

Damien – 2009 Arabic language. 
28 phonemes – 10 viseme 
classes. 

Data-driven approach. 
Geometrical features used. 

Four speakers utter four types of 
word sequences. [96] 

Melenchón– 
2007 

Spanish language. 
12 allophones – 6 viseme 
classes. 

Data-driven approach. 
12 PCA coefficients were used as feature 
vector. 

Three speakers utter 12 Spanish 
sentences. [97] 

Aschenberner– 
2005 

German language. 
42 phonemes – 15 viseme 
classes. 

Linguistic approach. Applied for speech synthesis. 
[98] 
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In Indian languages, the concept of Viseme is mostly used with 

bimodal automatic speech recognition attempts [99-100]. S.Sandosh 

Kumar developed a viseme set in Malayalam mainly using visual 

observations [101].  

2.5 Review on Facial Colour Analysis and Lip Tracking  

 Skin, lip, tongue and teeth are the different semantic regions 

around a talking mouth. There are a lot of investigations using different 

techniques and colour space to effectively segment these regions. 

RGB, normalised RGB, perceptual color spaces such as HSI, HSV, 

HSL, TSL, perceptually uniform colour spaces such as CIE Lab and 

CIE Luv, orthogonal colour spaces such as YCbCr,YIQ,YUV,YES. 

The range of algorithms employed includes simple thresholding, 

Bayees classification, Gaussian Mixture Models (GMM), Elliptical 

Boundary Models, self organising maps and neural networks. Table 2.4 

summarises the approaches used for skin segmentation in different 

colour spaces.  
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Table 2.4:  Details algorithms and techniques used for skin segmentation 

No Title of the Paper Author 
Colour 
Model 

Technique used 

1 Face-texture model based on SGLD and 
its application in face detection in a 
color scene 

Dai and Nakano YIQ Thresholding [102] 

2 Face detection in color images R.L. Hsu, M. Abdel-
Mottaleb, A.K. Jain 

YCbCr SGM [103] 

3 Unsupervised and adaptive Gaussian 
skin-color model 

L.M. Bergasa, M. Mazo, A. 
Gardel, M.A. Sotelo, L. 
Boquete 

RGB GMM [104] 

4  A SOM based approach to skin 
detection with application in real time 
systems 

D. Brown, I. Craw, J. 
Lewthwaite 

RGB 
HSV 
XYZ 
TSL 

SOM [105] 

5 Performance evaluation of single and 
multiple-Gaussian models for skin-color 
Modelling 

T.S. Caetano, S.D. 
Olabarriaga, D.A.C. Barone 

RGB SGM 
GMM [106] 

6 Lafter: lips and face real time 
Tracke 

N. Oliver, A. Pentland, F. 
Berard, 

RGB GMM [107] 

7  Robust face tracking using color K. Schwerdt, J.L. Crowely RGB The histogram-based Bayes 
classifier [108] 

8  Skin detection, a Bayesian 
network approach 

N. Sebe, T. Cohen, T.S. 
Huang, T. Gevers 

RGB BN [109] 

9  Tracking regions M. Störring, T. Koèka, H.J. RGB Thresholding 
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 of human skin through illumination 
changes 

Anderson, E. Granum [110] 

10 Gaussian Mixture model for human skin 
color and its application in image and 
video databases 

M.H. Yang, N. Ahuja LUV GMM(2) [111] 

11 Detection of human faces in colour 
images, 
 

C. Chen, S.P. Chiang XYZ Three lay- 
ered feed forward NN [112] 

12 Modeling facial colour and identity with 
Gaussian mixtures 

S. McKenna, S. Gong, Y. 
Raja 

HSV GMM [113] 

13 A novel approach for human face 
detection from color images under 
complex background 

Y. Wang, B. Yuan HSV Thresholding [114] 

14 A Bayesian approach to skin color 
classification in YCbCrcolor space 

D. Chai, A. Bouzerdoum YCbCr Histogram+MLP [115] 

15 Image chromatic adaptation using ANNs 
for skin color adaptation 

P. Kakumanu RGB NN [116] 

16 Statistical color models with application 
to skin detection 

M.J. Jones, J.M. Rehg RGB 
 

Bayes 
GMM(16) [117] 

17 Statistical models for skin 
Detection 

B. Jedynak, H. Zheng, M. 
Daoudi 

RGB MaxEnt. model [118] 

18 An elliptical boundary model for skin 
color 
Detection 

J.Y. Lee, S.I. Yoo XYZ Elliptical boundary model 
[119] 

19 Mixture clustering using 
multidimensional histograms for skin 

Z. Fu, J. Yang, W. Hu, T. 
Tan 

HSV GMM(14)+Histogram 
merging[120] 
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detection 
20 A probabilistic neural network for 

human face identification based on 
fuzzy logic chromatic rules 

I. Anagnostopoulos, C. 
Anagnostopoulos, V. 
Loumos, E. Kayafas 

RGB Fuzzy rules+probabilistic 
neural network (PNN) [121] 

21  Neural network-based skin 
color model for face detection 

M.J. Seow RGB NN [122] 

22  Mixture model for face- 
colormodeling and segmentation 

H. Greenspan 
 J. Goldberger 

RGB GMM(2) [123] 

23  Skin-color extraction in images with 
complex background and varying 
illumination 

Q.H. Thu, M. Meguro, M. 
Kaneko 

HSV GMM(4)+Multithresholding 
[124] 

24  Improving face verification using skin 
color information 

S. Marcel, and S. Bengio rgb Histogram+MLP [125] 

25  Adaptive skin-color filter, Pattern 
Recognition  

K.M. Cho, J.H. Jang, K.S. 
Hong 

HSV Thresholding [126] 

26 Adaptive skin colormodeling using the 
skin locus for selecting training pixels 

M. Soriano, J.B. 
MartinKauppi, S. Huovinen, 
M. Lääksonen 

RGB Skin locus thresholding 
[127] 

27 Skin color-based video 
segmentation under time-varying 
illumination 

L. Sigal, S. Sclaroff, V. 
Athitsos 

HSV Bayes [128] 
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 Tongue segmentation is addressed recently in some works 

especially for applications related to traditional Chinese medicine 

[129-134]. Jian-qiang Du et al. uses the hue and intensity component 

based thresholding scheme for tongue segmentation [135]. 

 Lip segmentation and tracking methods are classified as colour 

based, edge based, model based and hybrid approaches. Eveno et al. 

performed the most exhaustive survey for finding the appropriate 

colour space for lip – skin segmentation [136]. It compares 7 colour 

spaces and 12 additional special transforms and prepared a ranking of 

colour channels according to the suitability for segmentation. Axel et 

al. suggests a method for lip segmentation based on rgb-colour 

histogram [137]. Threshold-based segmentation strategies give a 

simple and effective approach to implement lip segmentation. 

Gritzman, Ashley D et al. propose a method called adaptive threshold 

optimisation (ATO) which selects the threshold by using feedback of 

shape information [138]. Statistical-colour model approach is used to 

automatically find and track the face and other facial features in the 

image [139- 140]. Shu-Hung et al. uses fuzzy clustering in the CIELab 

and CIELuv colour space clubbed with distance information for lip 

segmentation [141]. Similar approach by Simon Lucey et al. and Liew 

et al. uses connectivity information with fuzzy clustering [142]-[143]. 

Aashley et al. consolidate and compares the use of various colour 

models for lip segmentation purpose [144]. In the work of Menget et 

al. a 3 stage process is executed. In the first phase, CIE Lab and LUX 

colour space is used followed by a second phase using Gaussian model 

with hue and saturation values. The last phase uses a morphological 
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filter for lip region extraction [145]. A markov random field based 

approach for lip segmentation using the same colour space is also 

reported [146]. Vladimir et al. uses a colour based lip tracking 

component in a general facial feature tracking system [147]. M. 

Uleeses et al. developed a statistical chromaticity model for lip 

segmentation and used it in personal identification system [148]. The 

low contrast between lip and skin for most ethnicities is the main 

concern in edge based lip tracking systems. To overcome this, edge is 

tracked in transformed space such as discrete Hartley transform (DHT) 

[149].  

 Nicolas  et al. devised a jumping snake concept for developing 

a semi automatic lip tracking framework [150]. Localised colour active 

contours based approach implemented by Xin Liu et al. is found to be 

robust even frames with teeth and tongue [151]. Active contour or 

snake method in classical form with gradient vector flow is used for lip 

tracking in the work by Ghanshyam et al. [152]. In some other works 

variations of contour model is compared and the best is used for  

feature extraction in visual speech recognition applications[153][154].  

Lip fitting for multimedia application with snakes using an adaptive 

color model is implemented by paul et al. The system is capable of 

learning and adapting from examples [155]. In their work, Hadi et al. 

uses different energy functions for outer and inner lip contours. Outer 

lip contours uses balloon functions and canny edge detectors, while 

inner lip employs image gradient and balloon energy [156].  The AAM 

based lip contour land mark localisation scheme implemented by Piotr 
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et al. uses combined AAM, where a single model is used both for 

shape and texture in the implementation [157].   

ASM has been employed in many works for segmentation and 

tracking [158-159].  Tanveer et al. used ASM based lip tracking for 

geometrical visual feature extraction [160]. Simon et al. used a linear 

regression based pre processing followed by ASM for lip tracking 

[161]. In the multiphase approach employed for lip reading by LEI 

XIE et.al colour ASM, 2- D mesh corner search and global search 

using M-estimators are combined [162].  K.L. Sum et al. used ASM for 

outer lip contour extraction in this work. 14 land mark points are used 

outer lip shape feature points and cost function is estimated using 

fuzzy clustering analysis [163]. In the work by juergen et al. two 

separate ASM models are used for inner and outer lip [164]. In their 

work, quoc et al. improves the performance of ASM by using multiple 

features for representing landmark neighbourhood. Both normal 

profiles and gray scale patches are used as texture feature for search. 

The approach has also incorporated the temporal information in to the 

model [165]. 

 Recent attempts in lip tracking are mostly hybrid in their 

approach. Work by Brice et al. for analysis synthesis based lip 

animation framework starts with a low level segmentation in the LUX 

space and uses active contour estimation for inner and outer lip contour 

segmentation. Further the 3–D regularisation and repositioning is 

applied in the feedback loop for correction [166-167]. Shi-Lin Wang et 

al. uses shape guided fuzzy c-means clustering for lip tracking in 

challenging environment such as the presence of facial hair [168].  
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2.6 Review on Visual Speech Synthesis  

Visual speech synthesis is an active research area with many 

potential applications. This section reviews the important works 

reported in the literature for synthesising visual speech in various 

languages.  Eric et al. uses a unit concatenation framework for visual 

speech synthesis. Variable length video segments, which are optimally 

selected using Viterbi algorithm is used for concatenation. Factors such 

as co-articulation and temporal coherence are taken in to consideration 

while designing the system[169]. In the work, Gwenn et al. proposed a 

probabilistic model for generating lip movements corsponding to an 

audio. AAM is used for extracting features from video and HMM is 

used for aligning phonemes to speech signal using MFCC as a feature 

[170]. Oxana et al. uses a dendogram based method for clustering 

visemes. For synthesising facial movements a two phase approach is 

used. Trajectory planning in the parametric space is done using HMM, 

while the execution is done using conacatenation method [171]. In 

their unique approach Michel et al. analyses the relative influence of 

two sides of face in expressing emotions. They concluded that while 

happy emotion is symmetric, the sad emotion has an asymmetric 

nature [172]. Jie Yang et al. implemented an image based visual 

speech synthesis, in which visemes are the basic unit. The synthesis 

using visemes formed from automated data driven approaches is found 

to give minimum error, compared to synthesis using manual viseme set 

based method. The developed synthesis system is used as a 

communication agent in a bilingual translation framework [173]. 

Darren et al. developed a perceptual evaluation framework for using 
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“McGurk Effect” for talking head applications. Two psychology 

undergraduate students are used as human subjects in the work [174]. 

In their work, F. Elisei et al. aplied linear component analysis 

on an audio visual speech corpora to model and synthesis lip 

movements using a 3–D data driven approach. They found that six 

parameters are adequate to represent realistic lip movements. Coloured 

beads are used to mark land mark points in the face of human subjects 

[175]. Jonas Beskow, in his work used an opto-electronic motion 

tracking system to locate landmark points. The audio visual speech 

corpora consist of sentences uttered in different emotional states, 

during synthesis, the time aligned phonetic transcription is converted in 

to a trajectory in the control parameter space [176].  Olov Engwall 

describes visual speech synthesis system with an evaluation 

framework. The corpora consist of 460 phonetically balanced 

sentences, uttered by 40 speakers. The articulatory transitions between 

phonemes are labelled to be used for the concatenative visual speech 

synthesis system [177]. E.dey et al. uses a modified version of rhyme 

test for subjective evaluation of developed speech animation system, 

which is used in a pronunciation tutoring system [178]. Zhigang et al. 

used a concatenative approach for developing visual speech synthesis 

system. The video corpus is made from the utterances of a female 

actor. The corpora consist of 225 phoneme balanced sentence 

utterances with markers in the face. In this model users can set goals 

and constraings to produce emotionally varying visual speech [179]. In 

their work, Jose et al. employed a photogrammetric technique for 

visual speech synthesis. The main advantage of this work is that it 
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considers both anticipatory and preservatory co-articualtion.  In the 

work k-means algorithm is used for identifying articulatory patterns 

[180]. Jonas et al. describes ‘Furhat’ a robotic head, which uses facial 

animation frame work for human interaction. The four step process of 

using an animated face model, 3D mask printing, and distribution of 

colour uniformly and rigging with a projector is explained [181]. Eric 

et al. developed visual speech synthesis frameworks both using sample 

based and model based methods. Prosody analyser, audio renderer, 

visual prosody generator, co-articaulation engine and face rendering 

unit are the components of the frame work [182]. Ingmar et al. 

developed an animated tongue model using MRI data [183]. In their 

work Irene et al. developed a real time face animator from input text 

with options for representing non verbal cues. Linguistic information 

such as accent is used to improve the natural ness of visual speech. 

Wrinkles is introduced using vertex programme and register combiners 

[184]. Eric et al. reports the components used for developing a 

photorealistic talking head application from stored images. The facial 

parts are segmented and stored as bit maps for synthesis [185]. Michal 

et al. uses a production pipeline consist of analysis, expression 

classification, visual speech recognition and finally synthesis modules. 

The synthesiser uses a muscle model for generating animations for an 

MPEG-4 framework player [186]. In their work Richarod et al. uses 

Principal Component Analysis (PCA) for representing facial motion 

[187]. Darren et al. proposed a parametrically controlled deformable 

polynomial surface, for developing facial animation frameworks. Land 

mark points in face are captured using optical motion tracking system 

[174].    
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Tony et al. uses a generative model known as Multidimensional 

Morphable Model (MMM) to synthesis unknown face appearances 

from a training corpus. The recorded corpus consists of 30,000 images 

corresponding to 1- syllable and 2 – syllable words. The dimension of 

parametric vectors is 46 and the trajectory is obtained by treating it as a 

representation problem [188]. In concatenative synthesis appropriate 

segment selection in real time is the main challenge. Fu Jie et al. 

proposes a triphone based best unit selection method. The target cost 

for unit selection considers factors such as phonetic distance and co 

articulation [189]. ‘SYNFACE’ is a video telephony application for 

hearing impaired people. The main components of the application 

include phoneme recogniser and a 3-D synthetic face. An articulatory 

control model is used for face synthesis [190]. In their study, Ashish et 

al. established that a Viseme based acoustic model is sufficient for 

visual speech synthesis systems. The Viseme based model has the 

additional advantage of comparatively smaller training set and lower 

computational power demands [191]. The work by Salil et al. 

generates visual speech using a non parametric shifting state space 

model. The model is based on Gaussian processes. The system 

successfully models both preservatory and articulatorycoarticulation 

[192].   

Thanveer et al. describes a multilingual visual speech synthesis 

framework for Indian languages. The speech recogniser in one 

language maps the incoming audio to a sequence of phonemes. This 

sequence is converted in to the viseme set of target language. Facial 

animations are generated for Hindi and Telungu languages using the 
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proposed approach [193]. In the work proposed by Abdulrafay et al. 

lip is represented in a parametric space and this representation is used 

for synthesis in a animation framework developed using openGL 

[194]. V.AnandaNatarajan et al. describes the visual speech synthesis 

framework developed for Tamil. It is basically a mapping system from 

feature points in a 2- D images to 3-D images. The feature or landmark 

points in an image is automatically detected using a feature tracking 

algorithm. The computed feature points are mapped to a 3-D mesh of 

face by employing a 3 step process [195]. 

2.7 Conclusion  

 The thesis develops an integrated framework for Malayalam 

visual speech synthesis. Various components of the framework is 

reviewed in this chapter.  A detailed discussion has been carried out 

about the durational models developed for speech synthesis 

applications.  The detailed review of research works about transcriptors 

in various languages provided the insight for developing grapheme to 

allophone transcriptor in Malayalam. A summary of the strategies 

employed for viseme set formation in various languages is also 

presented. A review on the research works in segmentation of skin, lip 

and teeth are conducted with a special emphasis of lip segmentation 

and tracking. Finally various techniques for visual speech synthesis is 

reviewed for identifying relevant approaches in Malayalam visual 

speech synthesis.  
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CHAPTER 3 

Allophone based Durational Analysis of 
Malayalam Vowels and Consonants for 

Visual Speech Synthesis 

 

3.1 Introduction 

In the widely used 35 languages of the world one third is from 

India. Malayalam, a south Indian language spoken by around 35 

million people, is a classical Indian language and it is the official 

language of Kerala [196]. Malayalam, a low resource language, needs 

extensive studies to develop automatic language processing tools 

addressing its inherent peculiarities. This research work is an attempt 

towards this direction in the domain of visual speech analysis and 

synthesis. Speech being the most natural method of communication, 

interacting with a machine through speech is the most explored area in 

developing man – machine interfaces. Automatic speech recognition 

and synthesis are the main speech processing tasks. The study in one 

complements the developments in the other area. Speech is inherently 

bimodal, as a talking human being produces an audio signal and an 

image sequence. The facial movements while talking contributes both 

to the linguistic perception of the speech and to the perception of non-

linguistic cues such as emotional state of the speaker. The 

accompanying image sequence is more important in noisy environment 

or where there is a hearing impairment [197]. This work performs 

visual speech analysis in various domains for developing an effective 
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visual speech synthesis system in Malayalam with special emphasis on 

facial animation systems. Facial animation systems have reached the 

realm of reality by the effective convergence of computer vision and 

computer graphic domains [198].  

Effectiveness of speech synthesis systems greatly depends on 

results from language specific explorations on many features. Duration 

and its modelling is an important cue affecting the intelligibility and 

naturality of synthesised audio visual speech. This chapter investigates 

the phoneme and allophone durational patterns of Malayalam. 

Phoneme, being the basic speech unit, its durational analysis is 

important both for developing successful speech recognition and 

synthesis systems. The durational information of the input text 

sequence can be shared by both audio and visual components of an 

audio visual speech synthesiser. Durational model capturing the 

dynamics of continuous speech is crucial in all three methods of 

speech synthesis including target based synthesis, model based 

synthesis and concatenative synthesis to generate intelligible and 

natural sound with corresponding image sequence [199]. In a text to 

speech synthesis system durational model predicts the duration 

sequence corresponding to the speech unit sequence and those values 

are predicted based on many factors effecting duration. The phoneme 

durational pattern exhibits wide variations across languages and hence 

language specific models need to be developed.  

Phonetic identity of current segment, surrounding segments, 

positioning within the word and within the sentence, emotional state of 

the speaker etc. are factors affecting the duration of a segment [200]. It 
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is possible to capture most of positional and contextual variability from 

the textual representation of the sentence. A phoneme can appear in the 

start, middle and end of a word creating positional variation. The 

change in duration due to the effect of surrounding speech units is 

called contextual variability. The effect due to neighbouring phonemes 

and position are generally known as co-articulation effects. Co- 

articulation effects in Malayalam are modelled by Malayalam linguists 

as allophonic characterisations for each phoneme. A well-defined 

allophone formation rule set exists for Malayalam [201]. So a 

durational model accommodating co-articulation effects due to 

positional and contextual variability of phonemes can be developed by 

understanding the durational pattern of allophones. Such rule based 

approach for phoneme duration modelling has been reported for many 

languages. Rule based segmental duration approaches have started 

with the work of Klatt for English [202] which is the basis for many 

Text to Speech systems. Rule based duration models has been 

established for many languages including French, Brazilian and 

Portuguese [203-204]. A combined rule based and statistics based 

prosody modelling is also applied for concatenative speech synthesis in 

Tamil and Hindi [205].  

This chapter consolidates the findings of extensive 

investigation performed on the duration of allophonic variations of 

Malayalam Phonemes, which will be used as the durational model of a 

visual speech synthesis system in Malayalam to be discussed in chapter 

7. The rest of the chapter is arranged as follows. Section 3. 2 describes 

the vowel and consonant phoneme sets of Malayalam. Section 3. 3 
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analyses the allophonic variations of Malayalam phonemes with the 

help of linguistic rule set. Section 3. 4 explains the creation of various 

audio visual speech corpora used in this work. Section 3. 5explains the 

phoneme and allophone duration pattern emerged based on the 

statistical analysis of speech corpora. Section 3. 6 discusses the 

modifications required for the durational model in the specific context 

of visual speech synthesis and section 3. 7 concludes the chapter.  

3.2 Malayalam Phoneme Set  

The term phone refers to the instances of phonemes, the 

smallest distinctive sound units in a language, in actual utterances. As 

they vary from one language to another, International Phonetic 

Alphabet (IPA) identified and defined 150 phones among all 

languages. British English has over 44 phonemes. Malayalam has a 51 

member phoneme set including 11 vowels, 2 diphthongs and 38 

consonants [206].  

3. 2. 1 Malayalam Vowel Phonemes  

In a system of language, the vowels are produced by 

comparatively open configuration of the vocal tract, with vibration of 

the vocal cords but without audible friction [207]. The difference is 

made by changing the relative positioning of active articulators. 

Diphthongs are vowel glides or combination of vowels. Malayalam has 

11 monophthongs and 2 diphthongs [208]. The list of Malayalam 

vowel monophthongs is shown in table 3. 1. They are classified as 4 

front vowels (ഇ /i/, ഈ /i: /, എ /e/, ഏ /e : /), three central vowels (അ 
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/a/, ആ /a: /, ˇ /ə/) and four back vowels (ഉ /u/, ഊ /u: /, ഒ /o/, ഓ /o:/). 

The frequently used central vowel ˇ /ə/ can either be treated as a 

separate phoneme or an allophonic variation of ഉ /u/. In this study we 

have considered ˇ /ə/ as an allophone of ഉ/u/. The vowels ഐ /ai / and 

ഔ /au/ are considered as the diphthongal vowel phonemes of 

Malayalam.  

Table 3. 1 Monophthongal vowel phonemes in Malayalam 

  Front Central Back 

High Short i ഇ  u ഉ 

Long i: ഈ  u: ഊ 

Mid Short e എ ˇə o ഒ 

Long e: ഏ  o: ഓ 

Low Short  a അ  

 Long  a: ആ  
 

3. 2. 2 Malayalam Consonant Phonemes  

Consonants are speech sounds that are articulated with the 

complete or partial closure of the vocal tract [1]. Consonants can be 

classified based on place of articulation, manner of articulation and 

voicing. According to manner of articulation Malayalam Consonants 

can be broadly categorized as plosives or oral stops, nasals where the 

air flows through nose, fricatives where the tip of the tongue 

approaches alveolar ridge without actually contacting it, trills, lateral, 

approximant and glide. Malayalam has 38 consonants in which 21 of 

them are plosives. Plosives are again classified based on voice and 
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aspiration. The consonant set can also be classified as bilabial, 

labiodentals, dental, alveolar, retroflex, palatal, velar and glottal 

based on the relative positioning of articulators while producing the 

phone. As this work explores the dynamics of visible articulators the 

consonant classification based on the place of articulation is elaborated 

below. The Malayalam consonant classes formed based on the place of 

articulation is listed in table 3. 2.  

a. Bilabial  

The lower and upper lip touches each other, resulting in the 

closure of the mouth during the utterance of phonemes of this 

class. There are 5 Malayalam phonemes in this category.  

b. Labiodentals  

The active articulator lower lip touches the upper teeth. /v വ/ 

is the only labio dental in Malayalam.  

c. Dental  

The active articulator tongue touches the upper teeth with its tip 

for producing a dental phoneme. There are 5 Malayalam 

phonemes in this category.  

d. Alveolar 

The tip of the tongue either touches or approaches the ridge 

behind the teeth for producing these classes of phonemes. 

There are 6 Malayalam phonemes in this category.  

e. Retroflex  

The active articulator tongue curves to touch or approaches the 

area behind alveolar ridge to create retroflex sounds. There are 
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8 Malayalam phonemes in this category, forming the largest 

consonant group.  

f. Palatal 

Here the body of the tongue approaches or touches the palate of 

the roof of the mouth. The 7 Malayalam phonemes in this 

category also includes the glide /y യ/in the language 

g. Velar 

Here the back of the active articulator tongue touches the soft 

palate or velum. There are 5 Malayalam phonemes in this 

category.  

h. Glottal 

The identity of glottal as a consonant itself is controversial in 

the absence of point of articulation. Glottis is the primary 

articulation producing the glottal sound.  

Table 3. 2: Malayalam consonant classes based on place of 
articulation  

Class 
Label 

Phonemes Number 
Of Phonemes 

Bilabial /P /പ, /ph/ഫ, /b/ബ, /bh/ഭ, /m /മ 5 

Labiodental /v/വ 1 

Dental /t /ത, /th /ഥ/dh/ധ, /d/ദ, /n/̪ന 5 

Alveolar /ṟ /റ്റ, /n /ന, /s /സ, /r/ര/ṛ /റ,  

/l /ല/Â 

6 

Retroflex /ʈ/ട, / ʈh/ഠ, /ɖ/ഡ, /ɖh/ഢ, /ɳ /ണ, 

/ʂ/ഷ, /ɭ/ള/Ä, /ʐ /ഴ 

8 

Palatal /c/ച, /chഛ, / ɟ/ജ, /ɟh/ഝ, /ɲ/ഞ, 7 
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/ʃ/ശ, /y /യ 

Velar /k/ക, / kh/ഖ, /g/ഗ, /gh/ഘ, /ŋ/ങ 5 

Glottal /h /ഹ 1 

3. 3. Allophonic Variations in Malayalam 

As phoneme is an abstract cognitive concept, numerous 

realisations of any phoneme can be seen in real speech. We understand 

the sequence of sound as a sequence of phonemes. Allophone is a 

phonetic realisation of a phone and allophonic variations of a phoneme 

are caused by position, context and other non-linguistic reasons. 

Factors such as contextual and positional variability can be detected 

from the text while some others such as dialect cannot be detected 

from the text [14]. In their studies, Asher and V. R. Prabodhachandran 

Nair described the rules of Malayalam allophone formation [6, 15]. 

They have proposed linguistic descriptions for defining the allophones 

of each Malayalam phones. The linguistic descriptions can be 

converted to position and neighborhood-based rule set. Thus certain 

rule set for Malayalam vowel and consonant allophones based on 

position and neighbouring information’s are created. As part of the 

study, 107 allophones in Malayalam which include 76 consonant 

allophones, 28 vowel allophones and 3 allophones corresponding to 

diphthongs are identified. Section 3. 3. 1 describes the rule set used for 

the formation of Malayalam vowel allophones and section 3. 3. 2 

describes the same used for the formation of consonant allophones.  

3. 3. 1 Rule based Malayalam Vowel Allophone Formation  

A rule set for the formation of vowel allophones in Malayalam 

based on the position and neighbouring information are formed. The 



 53

vowel allophone characterisation depends mainly on the relative 

positioning of phonemes. The three allophones of vowel ഇ/i/, [yi], [I] 

and [iy] correspond to initial, middle and final positions respectively. 

But its long vowel counter part ഈ [i:] has just two allophones 

corresponding to initial and middle positions. The position and 

neighbourhood based rule set used for formation of Malayalam vowel 

allophones is listed in table 3. 3.  

Table 3. 3: Position and neighbourhood based rule set used for the 

formation of Malayalam vowel allophones 

Sl. No.  Phoneme Allophone Position Rule 

1 ഇ /i/ 

[i] Middle 
Metadata: Low high front 
unrounded short vocoid. 
Neighbourhood: Any 

[yi] Initial 

Metadata: High front 
unrounded long tense vocoid 
with onglide.  
Neighbourhood: Any 

[yi] Final 

Metadata: High front 
unrounded short tense vocoid 
with offglide.  
Neighbourhood: Any 

2 ഈ /i: / 

[yi: ] Initial 

Metadata: High front 
unrounded long tense vocoid 
with onglide.  
Neighbourhood: Any 

[i: ] Middle 

Metadata: High front 
unrounded tense long vocoid; 
medially.  
Neighbourhood: Any 

3 എ /e/ [ye] Initial 

Metadata: Higher mid front 
unrounded short tense vocoid 
with onglide.  
Neighbourhood: Any 
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[ey] Initial 

Metadata: Higher mid front 
unrounded short tense vocoid 
with offglide[ j].  
Neighbourhood: Any 

 
[E] Middle 

Metadata: Mean mid front 
unrounded short vocoid. 
Neighbourhood: Any 

4 ഏ /e: / 

[ye: ] Initial 

Metadata: Higher mid front 
unrounded long tense vocoid 
with onglide.  
Neighbourhood: Any 

[er: ] Final 

Metadata: Higher mid front 
unrounded long tense vocoid 
with offglide [j].  
Neighbourhood: Any 

[e: ] Middle 
Metadata: Higher mid front 
unrounded long tense vocoid.  
Neighbourhood: Any 

5 അ /a/ 

[ʌ] 
Inital& 
Final 

Metadata: Low mid back 
vocoid in the initial syllable 
and word.  
Neighbourhood: Any 

[A] Middle 
Metadata: Low mid central 
vocoid in the medial syllable.  
Neighbourhood: Any 

6 ആ /a:/ 

[a: ] - 

Metadata: Low back long 
tense vocoid after velar 
consonants.  
Neighbourhood: Left : Velar 
Consonants 

[a: ] - 

Metadata: Low central long 
vocoid after all non-velaric 
consonants.  
Neighbourhood: Left : Non-
velar Consonants 

7 ഉ /u/ 

[wu] Initial 

Metadata: High back rounded 
tense short vocoid with 
onglide [w].  
Neighbourhood: Any 

[uw] Final 

Metadata: Higher back 
rounded tense short vocoid 
with offglide [w].  
Neighbourhood: Any 
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[ɯ] Middle 

Metadata: High back 
unrounded short vociod in the 
medial syllable.  
Neighbourhood: Any 

[ə] Final 

Metadata: Higher mid central 
unrounded open vocoid, 
between consonant and vowel 
in the word boundary with 
open juncture.  
Neighbourhood: Any 
Other: Open juncture.  

[ə*] - 

Metadata: In open juncture 'ə' 
is in free variation after the 
following some phonemes.  

Neighbourhood: [ɳ] [ɭ] [ṛ] [l]] 

[ɯv] - 

Metadata: Low high back 
unrounded vocoid after some 
phonemes.  
Neighbourhood: Right : 
Labial, dental, palatal, and 
velar plosives and labial, and 
dental nasals and non-retroflex 
fricatives and labio-dental 
continuants.  
Other: In Sanskrit words 

[U] - 

Metadata: Low high back 
rounded tense vocoid, after 
word initial consonant.  
Neighbourhood: Right : 
Consonant as the first letter in 
a word 

8 ഊ /u: / 

[wu: ] Initial 

Metadata; High back rounded 
long tense vocoid with onglide 
[w].  
Neighbourhood: Any 

[u] 
Other than 

Initial 

Metadata: High back rounded 
tense vocoid, elsewhere.  
Neighbourhood: Any 

9 ഒ /o/ 

[wO] Initial 

Metadata: Higher mid back 
rounded tense short vocoid 
with onglide [w] in the initial 
position. Neighbourhood: Any 

[O] Middle 
Metadata: Mean mid back 
tense rounded short vocoid.  
Neighbourhood: Any 



 56

10 ഓ /o: / 

[wO: ] Initial 

Metadata: Higher mid back 
rounded tense long vocoid 
with onglide.  
Neighbourhood: Any 

[O] 
Medial 

and Final 

Metadata: Higher mid back 
tense long vocoid. 
Neighbourhood: Any 

 

The following section describes the formation of rule set for 

Malayalam consonant allophones.  

3. 3. 2. Rule Based Malayalam Consonant Allophone Formation  

The rule set characterising allophones of 38 Malayalam 

consonants is listed in table 3. 4. While the rule set of vowel allophone 

formation mainly focuses on the position of the phoneme segment, 

consonant allophones varies both with position and neighbourhood 

phonemes. For example the first allophone of പ [P] is characterised 

by position, but the rule of formation of second allophone demands 

vowels on either side. The third and fourth allophones are medial but 

differ in the neighbouring phonemes or the context in which it appears. 

Nineteen consonants in Malayalam have just one allophone, i. e. these 

consonants are unaffected by neighbouring phonemes or position of 

occurrence. /P /പ, /t /ത/, /c/ ച, /k/ ക, /ŋ/ ങ etc. are the consonants 

with the largest number of allophones.  
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Table 3. 4: Rule set for the formation of Malayalam consonant 

allophones 

Sl. No. Phoneme Allophone Rule 

1 പ /P/ 

[p] 
 

Metadata: Voiceless tense bilabial stop 
contoid. Iinitially.  

[β] 
Metadata: Voiced bilabial approximant. 
Voiced bilabial stop contoid with more lax 
quality . Intervocalically 

[b] 
Metadata: Slightly voiced bilabial stop . 
Slightly voiced bilabial stop contoid In 
medial nasal – plosive cluster. 

[P] 
Metadata: Voiceless most tense bilabial 
stop contoid. Medially singly or in a cluster 
except when preceded by nasal.  

2 ഫ /ph/ [ph] 

Metadata: -Voiceless aspirated bilabial 
stop.  
Occurs initially and medially in Sanskrit 
loans 

3 ബ /b/ 
[B] 

Metadata: Voiced tense bilabial stop 
contoid. In consonant clusters.  

[b] 
Metadata: Voiced lax bilabial stop contoid. 
. occurs initially and intervocally.  

4 ഭ/bh / [bh ] 

Metadata: Voiced aspirated labio-labial 
stop.  
Occurs initially and medially in Sanskrit 
loans.  

5 മ /m/  

[mh̪] 
Metadata: Voiceless bilabial nasal contoid . 
1. Before velar fricative 

[M] 
Metadata : More tense bilabial nasal 
contoid . 1 In consonant clusters when 
preceded by alveolar flap 

[m] 
Metadata: Labio – dental nasal. 1 Before 
labio – dental continuant 

[m] Metadata : labial nasal . , Elsewhere 

6 വ /v/ 

[w] 
Metadata: Voiced bilabial continuant. 
Preceded by consonants except flapped in 
consonant clusters.  

[v] 

Metadata: Voiced labiodental continuant. 1 
Initially 2 In the clusters in medial position, 
where [w] does not appear. 3. Mostly short 
and rarely long in intervocalic position.  

7 ത /t/  [t] 
Metadata: Voiceless lamino-dental stop. , 
Voiceless tense dental stop contoid, Occurs 
initially.  
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[ti] 

Metadata: Voiceless most tense dental stop 
contoid . In clusters except when not 
preceded by nasals and [j], medially when 
geminated.  

[ð] 

Metadata: Voiced lamino dental 
approximant possibly with slight friction. 
More voiced dental stop contoid with more 
lax quality. Intervocalically or preceded by 
[j] 

[d]̪ 

Metadata: voiced lamino-dental stop. 
Slightly voiced dental stop contoid with lax 
quality. Medially preceded by nasal.  

8 ഥ /th/ [th] 
Metadata: Voiceless aspirated dental stop. 
Voiceless aspirated lamino-dental stop . 
Medially in Sanskrit loans.  

9 ദ /d/ 

[ḍ] 
Metadata: voiced tense dental stop contoid . 
medially in consonant clusters 

[d] 
Metadata: voiced dental stop contoid with 
lax quality.  Initially, intervocalic, and in 
clusters.  

10 ധ /dh / [dh ] 
Metadata: Voiced aspirated lamio dental 
stop. Occurs initially and medially in 
Sanskrit loans.  

11 ന /n/̪ 

[n]̪ 
Metadata: More tense dental nasal contoid. 
1. Preceded by alveolar flap.  

[n] 

Metadata: Less tense dental nasal contoid. 1 
Elsewhere, i. e. short initially and before the 
other dental consonants 2. Long in 
intervocalic position 

12 äv/ṟ/ 

[d] 

Metadata: Voiced alveolar stop.  
Voiced lax alveolar stop contoid. 1 In a 
medial homorganic nasal stop [In such 
sequence the -n is a stem-final consonant 

and [ r ̠] is the first consonant of the 

genitive case suffix] 2. After a nasal 

[t] 

Metadata: Voiceless tense alveolar stop 
contoid.  
Voiceless apico-alveolar stop with, for 
some speakers, a slight palatal quality and/ 
or a hint of affrication. 1 As identical 
consonant cluster in intervocalic position. . 
2 Medially when it is long . .  

 
13 

ന/n/ [nh] 
Metadata: Voiceless alveolar nasal contoid.  
When preceded by velar fricative /h/ 
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[n] 

Metadata: Voiced alveolar nasal contoid, 
elsewhere. . 1. Word final position 2. Short 
before other alveolar consonant 3 Short or 
long in intervocalic position 

 
14 
 

സ/s/ [s] 

Metadata: voiceless apico alveolar fricative. 
Occurs initial medial and final position. In 
the case of final /s/ there is an alternative 
pronounciation with an added 
enunciativevowel’. , Voiceless denti – 
alveolar sibilant slit fricative . . Singly in 
initial position and in clusters, long 
intervocally and medially 

 
15. a 

ര/r/ [r] 

Metadata: voiced apicodenti alveolar tap . 
1. Word initially 2. The second consonant 
in some initial consonant sequence. 3. 
Intervocalically. 4. In a number of medial 
clusters.  
Voiced palatalized denti alveolar flap 
contoid . 1. Word initially 2. 
Intervocalically 3. before [j] 4. after [ b] [d] 
or [ g] 

15. b റ /ṛ/ [ṛ] 

Metadata: - Voiced apico-alveolar tap or 
trill . 1. Word initially 2. Second consonant 
in initial consonant sequences 3. 
Intervocalically 4. In a number of medial 
sequences Voiced velorized alveolar flap. 1. 
Rarely in initial position 2. Intervocalically 
3. Finally 4. Followed by consonants except 
[j] 5. After consonants except [b] [d] [ g] 

 
16 
 

ല/Â /l/ [l] 

Metadata: Voiced apico – alveolar lateral . 
1 Word initially 2 The second element in 
some word initial clusters 3. 
Intervocalically 4 Medially as a geminate 
consonant. 5. Word-finally. Voiced 
frictionless alveolar lateral contoid . 1. 
Rarely in word initial position 2. Short or 
long intervocalically 3. Finally 4. In clusters 

 
17 
 

ട/ʈ/ 

 

[ɖ] 

Metadata: Slightly voiced and laxed 
retroflex stop contoid. . Voiced sub 
laminopostalveolar (Retroflex) . After 
homorganic nasal.  

[ɽ] 
Metadata: More voiced and lax retroflex 
plosive contoidintervocalically.  
Voiced sublamino post alveolar flap. .  
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[ʈ] 

Metadata: Voiceless tense retroflex plosive 
contoid. voicelesssublamino post alveolar 
(Retroflex). In word initial position in loan 
words.  

[T] 
Metadata: Voiceless retroflex plosive 
contoid with more tense quality. . In 
consonant cluster; not preceded by nasal.  

 
18 
 

ഠ/ʈh/ 

[ʈʰ] 
Metadata: Voiceless aspirated tense 
retroflex. .  
Intervocalically and preceded by nasal 

[Tʰ] 
Metadata: Voiceless aspirated more tense 
retroflex. .  
Elsewhere; not after nasal in clusters.  

 
19 

ഡ/ɖ/  [ɖ]  

Metadata: Voiced sublamino postal velar 
stop . Voiced retroflex stop. Occurs initially 
and medially. Both intervocalically and in 
the sequence / d/ lax when short and tense 
when long .  

 
20 

ഢ/ɖh / [ɖh ] 

Metadata: Voiced aspirated sublamino-
postalveolar stop. Medially in a small 
number of Sanskrit loans .  

 
21 

ണ/ɳ/ [ɳ] 

Metadata: Voiced sub lamino – palatal 
(retroflex) nasal.  
Retroflex nasal contoid. Occurs medially ie, 
1. Intervocalically 2. Medially as a 
geminate 3. In the following medial clusters 

ɳʈ, ɳɖ , ṛɳ, ɳj, ʂɳ. Short in word final 

position [tu: . ] 

 
22 

ഷ /ʂ/ [ʂ] 

Metadata: Voiceless apico alveolar 
fricative. Voiceless retroflex more long, 
tense sibilant groove fricative . In initial, 
medial and final positions in loan words.  

 
23 f/Ä /ɭ / [ɭ] 

Metadata - Voiced sublamino palatal 
(retroflex) lateral . 1 The second element in 
some word initial clusters in loans 2. 
Intervocali ally 3. Medially as a geminate 
consonant. 4. FinallyVoiced frictionless 
retroflex lateral contoid . 1. Finally 2. In 
clusters 3 Short or long intervocalically. 4. 
Rarely in initial position.  
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24 

ഴ/ʐ/ [ʐ] 

Metadata : Voiced sublamino palatal 
approximant. 1 Intervocalically 2. First 
element in medial consonant clusters 3. 
Finally (in which, there is alternative with 
vocalic release) 
Voiced retroflex continuant. 1 Medially, 
intervocalically 2. In consonant clusters.  
VRP posits that the concerned Malayalam 
sound is without even a trace of friction and 

employs a new symbol [ỵ ] instead of (ʐ).  

 
25 
 
 

ച/c/ 

[c]  -  

[c]̬ 
Metadata : Voiceless aspirated tense velar 
plosive; initially .  

[ɟ] 

Metadata: Voiced lamino – palato- alveolar 
stop, slightly affricated. Occurring medially 

after / ɲ /.  

[C] 
Metadata: Voiced palatal affricate with 
maximum tense quality. In clusters; not 
preceded by nasals. .  

26 ഛ/ch/ 
[cʰ] 

Metadata: Voiceless aspirated tense palatal 
affricate, occurs initially .  

[Cʰ] Metadata: In consonant clusters.  

 
27 

ജ/ɟ/ 

[J] 
Metadata: Voiced tense palatal affricate in 
consonant clusters.  

[j] 
Metadata: Voiced palatal lax affricate. 
Initially before a vowel, and 
intervocalically.  

 
28 

ഝ/ɟh / [ɟh ] 

Metadata: Voiced aspirated lamino-
palatoalveolar affricate. Found only in 
Sanskrit loans  
Initially and medially 

 
29 

ഞ/ɲ / [ɲ ] 

Metadata: Voiced lamino – palatal nasal. 1 

Word initially 2. In the sequence -ɲj - in 

Sanskrit loans, where there is alternative of 
a long palatal nasal. 3. In the initial and 

medial sequence - ɟɲ 4. In the sequence - 

ɲc - in a small number of native words 

forms. 5. as a geminate consonant in native 
words. Palatal nasal contoid. 1 Word 
initially (short) 2. Short when followed by 
other palatal consonant 3. Long in 
intervocalic position.  
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30 
 

ശ/ʃ / [ʃ ] 

Metadata: Voiceless lamino palatal alveolar 
(retroflex) . Voiceless palatal sibilant slit 
fricative. Occurs initially and medially in 
loans. In initial position followed by a 
vowel in clusters, intervocally. [long/short].  

 
31 
 

യ/y / [y ] 

Metadata: - Voiced close front dorso – 
palatal semivowel . 1. occurs word initially: 
2. Intervocalically 3. Medially as a 
geminated consonant 4. Finally as a variant 
of / j / 5. In word initial and medial clusters.  
Voiced palatal continuant . occursshort in 
initial and final position 2. short and long in 
medical position, in consonant clusters, and 
intervocalically position.  

 
32 
 

ക/k/ 

[k] 

Metadata: Voiceless dorso velar plosive in 
initial position, and medially when doubled. 
Voiceless tense velar contoid; in initial 
position.  

[kj] 

Metadata : Voicelesspalataliseddorso velar 
plosive in the environment of preceding 
front vowel. Voiceless, most tense 
palatalised velar plosive contoid in the 
environment of preceding front vowel/in 
the sandhi environment where [ j] precedes.  

[ɣ]̥ 

Metadata: Voiced dorso velar approximant 
in intervocalic position. Variant realistions 

in this environment are [h] and [ɦ]. Not 

palatalised, not following high front vowel.  

[ɠ] 

Metadata : Voiceddorso velar stop when 
preceeded by a nasal. Not palatalised, velar 
stop contoid with a little voiced and lax 
quality in the environment preceded by a 
nasal.  

[ʈ] 
Metadata : The sequence [kʂ] [�] is 

pronounced with retroflexion.  

 
[K] 

Metadata : Voiced velar contoid with most 
tense quality, in clusters except the contoid 
occurs after [j] or a nasal.  

 
33 

ഖ/kh/ 

[kh] 
Metadata: Voiceless aspirated tense velar 
plosive contoid. Intervocalicallyand when 
preceded by a nasal.  

[Kh] 
Metadata: Voiceless aspirated tense velar 
plosive. Initially.  

[Kh] 
Metadata: Voiceless aspirated, more tense 
velar plosive. Elsewhere .  
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34 
 

ഗ/g / 
[G] - 

[g] 
Metadata : Voiced and lax elsewhere ie, 
intervocalically and initially .  

 
35 

ഘ/gh/ [ɡh] 

Metadata: In borrowing from Sanskrit, 
occurs in initial and medial position.  
VRP opines that it is represented in 
orthography only, not realized in speech. 
However, he considers it as an allophone of 
/Kh /] 
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ങ/ŋ/ 

[ŋ] 

Metadata: Voiced dorso – velar nasal. 1. In 
the sequence - ŋg - in Sanskrit loans. 2. In 
the Sequence - ŋk - bridging a morpheme 
juncture in a small number of word forms in 
the native lexicon. 3. As a geminated 
consonant in native words. 4. In the 
sequence - ŋk - in English loans.  

[ŋj] 
Metadata: Voiced dorso – palato velar 
nasal. 1. In native lexicon, where geminate 
[ŋ] follows a front vowel.  

[ŋ<] 

Metadata: Pre velaric nasal contoid with 
clear palatalization and tense quality. 1 In 
the names of fruits and plant except the one 
which occurs after a long low vowel.  

[ŋ>] 

Metadata: Post velaric nasal contoid. 1 
Long and tense when after a vowel in low-
back region 2 Short before homorganic 
plosive.  

[ŋ'] 
Metadata : Tense mid - velaric nasal 
contoid . Else where 
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ഹ /h/ 

[H] 
Metadata : Voiceless extremely short velar 
fricative . – Finally.  

[h] 
Metadata: Voiceless velaric or glottal 
fricative. 1. Initially 2. After vowel 3. In 
clusters 4. Intervocalically 

 

A rigid rule based allophone characterisation framework is one 

of the peculiarities of Malayalam language. This work has utilised the 

rule set for developing the basic components of an allophone based 

speech synthesis system. The implementation of a grapheme to 

allophone transcription system using this rule set is described in 

chapter 4.  
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3.4 Creation of Audiovisual Malayalam Speech Data Set 

A phoneme based audiovisual speech corpora considering the 

allophonic variability is the primary requirement for carrying out 

research and development in audiovisual speech recognition and 

synthesis. The database creation is executed as a two phase process. In 

phase 1 the phoneme set, allophone set and inventory of words in each 

allophonic category with male and female utterances are developed. 

This work has been carried out as part of the Malayalam phonetic 

archive project owned by Thunchath Ezhuthachan Malayalam 

University (TEMU), Kerala, India. In the second phase, an audio visual 

data set of isolated phoneme utterances and continuous word 

utterances is created. The audio visual speech corpora is based on the 

allophone based specifications and listings defined by TEMU project.  

3. 4. 1 TEMU Malayalam Phonetic Archive  

The TEMU data set is a comprehensive corpora created based 

on a carefully compiled inventory of phones which are currently 

employed in the Malayalam language. The author of this work is also 

involved directly in the project by providing proper directions for 

content listing and technical support for digitization and web 

publishing. Malayalam phoneme segments are recorded in its 

standardized orthography followed by a number of examples of its 

occurrence in phonologically relevant different positions. Allophones 

are listed together and pronunciation of each example recorded from 

the natural speech is demonstrated in both male and female voices. The 

data comprises of 11 vowels, 2 diphthongs and 38 consonants, and its 

allophonic variation with 900 spoken words as examples. This archive 
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is presently available in public domain under creative commons 

license. The dataset is archived and published in web portal [15]. The 

following section describes the process of developing a comprehensive 

audio visual speech dataset in detail.  

3. 4. 2 Comprehensive Malayalam Audio Visual Speech Dataset 

Audio visual speech corpora of 10 different speakers based on 

the specifications and listings defined by TEMU repository is 

developed for the research purpose. The Malayalam Audio Visual 

Speech Corpus – Isolated Phoneme (MAVSC-IP) consisting of data 

procured from 10 female speakers is developed. This dataset is further 

used for the purpose of mouth region colour analysis, lip tracking and 

lip motion synthesis. Each speaker uttered 51 Malayalam phonemes of 

Malayalam in a silence-phoneme-silence mode. A Malayalam Audio 

Visual Speech Corpus – Isolated Word (MAVSC-IW), consist of 214 

word utterances procured from 10 female speakers is also developed. 

Each speaker uttered 214 words (consist of 2 words from each 

allophone category) accommodating the allophonic variability in 

Malayalam. The list of words is spoken by reading continuously 

without break to bring the co articulation effect of continuous speech. 

The same set of 10 speakers is involved in the creation of both 

MAVSC-IP and MAVSC-IW corpora. Five frames with maximum 

phoneme or allophone visual presents is manually selected for each 

utterance. In all these data set creations, the data procurement is 

restricted to female speakers only, so as to avoid the complexity that 

may arise due to facial hairs in further processing. All the female 

speakers belong to the age group of 20 to 45 years and cover the skin 

tone variability in Indian sub-continent. The videos are captured using 

a HDR-CX405 Sony Handycam having frame rate of 25fps with a 
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resolution of 1280 x 720 in MP4 format and audio sampled at 

44100Hz. The recording is done in an ordinary office room with 

normal lighting condition. All the spoken video samples are taken in 

the frontal face talking mode. MAVSC-IP data set consists of around 

2500 frames and MAVSC-IW consists of around 10, 500 frames.  

The audio only data set provided by TEMU is used for 

estimating the average phoneme and allophone based duration in 

Malayalam. The durational model formed from the average behaviour 

is adjusted based on the audio visual asynchrony analysis performed on 

the audiovisual data samples taken from MAVSC-IP and MAVSC-IW 

corpora. The following section describes the durational properties of 

the Malayalam vowel and consonant allophones derived on the basis of 

the detailed analysis conducted on the TEMU dataset.  

3.5 Durational Analysis of Malayalam Vowel and Consonant 

Allophones  

Duration is one of the most important cues deciding the 

intelligibility and naturality of synthesised speech. Malayalam 

phonemes exhibit wide variability in duration during continuous 

speech. The duration of a phoneme varies depending on the context 

and position it appears. Allophone characterisation in Malayalam 

captures the positional and contextual variability of Malayalam 

Phonemes. So an allophone based durational pattern analysis can 

model the contextual and positional variability in duration. Section 3. 

5. 1 analyses the durational variation of vowel allophones and section 

3. 5. 2 analyse the durational variations in consonant allophone of 

Malayalam.  
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3. 5. 1 Durational Analysis of Malayalam Vowel Allophones  

This section consolidates the detailed investigation performed 

on the duration of Malayalam vowel speech segments. The word 

samples uttered by both male and female are taken from the TEMU 

data sets are used for the durational analysis. An allophone centric 

durational analysis is performed, instead of the conventional phoneme 

based durational model. The duration of isolated phoneme utterances 

and the duration of allophone in sample word utterances are computed. 

The mean duration of each allophone is reported. The mean duration of 

allophones each phonemes is compared with isolated phoneme 

utterances. Table 3.5 consolidates the durational statistics of 

Malayalam vowel allophones separately for male and female speakers.  

Table 3. 5: Durational statistics of Malayalam vowel allophones 

Sl. No Vowel Allophone 
Average Duration 

(in sec) 
Male Female 

 
1 

 

ഇ /i/ 

[i] 0. 08871 0. 12866 
[yi] 0. 11778 0. 14847 
[yi] 0. 09356 0. 10311 

 
2 

ഈ /i: / 
[yi: ] 0. 20628 0. 22192 
[i: ] 0. 20229 0. 22763 

 
3 

എ /e/ [ye] 0. 12792 0. 14015 
[E] 0. 08989 0. 10110 

 
4 

ഏ /e: / 
[ye: ] 0. 24340 0. 25133 
[er: ] 0. 20149 0. 11787 
[e: ] 0. 20317 0. 24064 

 
5 

അ /a/ [ʌ] 0. 11452 0. 15527 

[A] 0. 08414 0. 08588 

 
6 

 

ആ /a: / 
[a: ] 0. 22137 0. 26522 

[a] 0. 21536 0. 27507 

 
 

ഉ /u/ [wu] 0. 09610 0. 10346 
[uw] 0. 10917 0. 08431 
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7 [ɯ] 0. 07510 0. 07979 

[ə] 0. 15100 0. 08847 
[ə*] 0. 13990 0. 08253 

[ɯv] 0. 06245 0. 07106 

[U] 0. 08139 0. 07943 
 

8 
ഊ /u: / [wu: ] 0. 19784 0. 24334 

[u] 0. 19789 0. 21948 

 
9 

ഒ /o/ [wO] 0. 10789 0. 11639 

[O] 0. 09402 0. 13223 

 
10 

ഓ /o: / [wO: ] 0. 24083 0. 26733 

[O] 0. 20402 0. 23338 

 

The average of Malayalam vowel allophone durations is 142. 

84ms for males and 155. 63 ms for females. The range of vowel 

allophone duration is from 41. 55 ms to 289. 36 ms for male and 43. 16 

ms to 330. 0 ms for female. The difference between phoneme duration 

in isolated phoneme utterances and actual duration during continuous 

speech in different context (manifested as allophones) is an important 

cue for speech synthesis application. A graph depicting the difference 

is shown in figure 3. 1.  

 

Figure  3. 1 Comparison of duration of isolated vowel phonemes 
and vowel allophones  



 69

The following section describes the duration alanalysis 

performed on Malayalam consonant allophones.  

3.5.2 Duration Analysis of Malayalam Consonant Allophones  

This section consolidates the detailed investigation performed 

on the duration of Malayalam consonant speech segments. The speech 

corpora and the methodology of analysis is the same as employed for 

duration analysis of vowel allophones. Table 3.6 consolidates the 

durational statistics of Malayalam consonant allophones.  

Table 3.6: Durational statistics of Malayalam consonant allophones 

Sl. No. Consonants Allophone 
Average Duration in Seconds 

Male Female 
1 P പ [p] 0. 01340 0. 03024 

[β] 0. 02416 0. 02316 

[b] 0. 03509 0. 03309 

[P] 0. 03216 0. 03016 

2 ph ഫ [ph] 0. 05521 0. 05321 

3 b ബ [B] 0. 08418 0. 08218 

[b] 0. 07514 0. 07714 

4 bh ഭ [bh] 0. 07674 0. 09839 

5 m മ [m̪h] 0. 07099 0. 03903 

[M] 0. 09796 0. 06659 

[m] 0. 09531 0. 09075 

[m] 0. 08339 0. 08211 

6 v വ [w] 0. 03924 0. 03214 

[v] 0. 08288 0. 07236 

7 t ത [t] 0. 01341 0. 02404 

[t''] 0. 03007 0. 03109 

[ð] 0. 02965 0. 02846 

[d̪] 0. 01431 0. 02676 

8 th ഥ [th] 0. 06104 0. 06526 
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9 d ദ [ḍ] 0. 04851 0. 02513 

[d] 0. 02243 0. 02335 

10 dh ധ [dh] 0. 04455 0. 03448 

11 n ̪ന [n̪] 0. 08948 0. 07447 

N 0. 10796 0. 15118 

12 ṟ äv [d] 0. 02843 0. 02232 

[t] 0. 01488 0. 01821 

13 n ന [n] 0. 16886 0. 15322 

[n] 0. 12224 0. 14245 

14 s സ [s] 0. 11396 0. 13874 

15 r ര ṛ റ [r] 0. 10939 0. 12834 

16 l ല/Â [l] 0. 14006 0. 12209 

17 ʈ ട [ɖ] 0. 02822 0. 01282 

[ɽ] 0. 01426 0. 01430 

[ʈ] 0. 10374 0. 10111 

[T] 0. 02006 0. 01256 

18 ʈh ഠ [ʈ] 0. 02513 0. 03250 

[T] 0. 03658 0. 03232 

19 ɖ ഡ [d] 0. 01608 0. 02910 

20 ɖh ഢ [dh] 0. 04557 0. 05465 

21 ɳ ണ [ɳ] 0. 08460 0. 09675 

22 ʂ ഷ [sh] 0. 14175 0. 15000 

23 ɭ ള/Ä [ɭ] 0. 06460 0. 04564 

24 ʐ ഴ [ʐ] 0. 08493 0. 09225 

24 
 

c ച [c] 0. 04773 0. 05961 

[c]̬ 0. 03856 0. 04505 

[ɟ] 0. 04609 0. 05339 

[C] 0. 08531 0. 06377 

25 ch ഛ [cʰ] 0. 09809 0. 08155 

[Cʰ] 0. 09645 0. 08601 

26 ɟ ജ [J] 0. 06379 0. 07052 

[j] 0. 05652 0. 05273 

27 ɟh ഝ [jh] 0. 08089 0. 09455 
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28 ɲ ഞ [ɲ] 0. 09071 0. 09066 

29 ʃ ശ [ʃ] 0. 11473 0. 16944 

30 y യ [y] 0. 06059 0. 09967 

31 k ക [k] 0. 02758 0. 02120 

[kj] 0. 04233 0. 02900 

[ɣ]̥ 0. 05296 0. 04231 

[ɠ] 0. 03121 0. 02515 

[ʈ] 0. 02236 0. 02452 

[K] 0. 02247 0. 02217 

32 kh ഖ [kh] 0. 05651 0. 05491 

[Kh] 0. 06391 0. 05405 

[Kh] 0. 07139 0. 05729 

33 g ഗ [G] 0. 02534 0. 05021 

[g] 0. 05686 0. 08251 

34 gh ഘ [ɡh] 0. 07507 0. 07607 

35 ŋ ങ [ŋ] 0. 13133 0. 13329 

[ŋj] 0. 10551 0. 11969 

[ŋ<] 0. 09054 0. 15796 

[ŋ>] 0. 14165 0. 15324 

[ŋ'] 0. 15364 0. 18484 

36 h ഹ [H] 0. 0857 0. 0854 

[h] 0. 08746 0. 08921 

 

The range of consanant duration varies from 13. 3 ms to 168. 4 

for male and 12. 4 ms to 184. 3 ms for females. The average duration 

of consonants is much smaller compared to that vowels. A vargga 

classification also exists in Malayalam for consonant phonemes. There 

are 5 vargga classes in Malayalam. Kavarggam /(k/ ക, /kh /ഖ, /g/ ഗ, 

/gh /ഘ, /ŋ /ങ) , chavarggam (/c/ ച, /chഛ, / ɟ/ ജ, /ɟh /ഝ, /ɲ/ ഞ) , 

tavarggam (/ʈ/ ട, / ʈh/ഠ, /ɖ/ ഡ, /ɖh/ഢ, /ɳ /ണ/) , thavarggam (/t /ത, /th 

/ഥ, /dh/ധ, /d/ദ, /n/̪ന) and and pavarggam (/P /പ, /ph/ഫ, /b/ബ, 
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/bh/ഭ, /m /മ) each consisting of 5 consonants. The 5 consonants in each 

vargga are characterised linguistically as –voiceless unaspirated, -

aspirted, +voiced unaspirated, +aspirated and Nasal (eg. k ക: -

voiceless unaspirated, kh ഖ-: -aspirted, g ഗ: +voiced unaspirated, 

gh ഘ: +aspirated, ŋ ങ : Nasal). A similar durational pattern exists 

across voiceless unaspirated, -aspirted, +voiced unaspirated, +aspirated 

and nasal consonants in a vargga. Figure 3. 2 shows the durational 

pattern of ka-vargga class.  

 

Figure 3. 2: The durational pattern among consonants in a vargga 

class, 1. –voiceless unaspirated, 2. –aspirted, 3. +voiced 

unaspirated, 4. +aspirated, 5. Nasal 

The first 4 phonemes in each vargga class (expect nasals) and 

alveolar /ṟ/ �combine to form the plosive set in Malayalam. The nasals 

(/m /മ, , /n/̪ന, /n /ന, /ɲ/ ഞ/ɳ /ണ, /ŋ/ ങ), fricatives (/s /സ, /ʂ/ ഷ, , /ʃ 
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/ശ, /h /ഹ), trills (/r/ര/ṛ /റ), laterals (/l /ല/ൽ, , /ɭ/ ള/ൾ), approximants 

(/ʐ /ഴ) and Glides (/v/വ, /y /യ) are the remaining linguistic consonant 

classes in Malayalam. The durational analysis based on this 

classification is performed. The average duration of plosive is around 

40 ms. Table 3.7 shows the average duration of each class of 

consonants. From the table it is evident that plosives have the smallest 

duration compared to other classes of consonants.  

Table 3. 7: Average duration of each class of consonants 

Consonant Class Average Duration 
in second (male) 

Average Duration in 
second (female) 

Plosive 0. 03959 0. 04004 

Nasal 0. 10894 0. 11574 

Fricative 0. 10872 0. 12656 

Trill 0. 10939 0. 12834 

Lateral 0. 10233 0. 08386 

Approximant 0. 08493 0. 09225 

Glide  0. 060903 0. 06805 

 

From the experimental results, it is evident that the Malayalam 

consonant and vowel allophone duration information together with the 

allophone transcriptor can be used for the development of visual 

speech synthesis systems which is detailed in the following chapters. 

The duration analysis performed so far is solely based on the audio 

speech signals. The following section explains the findings of some 

preliminary investigations on the audio visual asynchrony in 

Malayalam.  
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3.6 Audiovisual Asynchrony Model for Malayalam  

Co-articulation reveals itself differently on two speech 

modalities and causes asynchrony between them [9]. Investigating and 

modelling the audiovisual asynchrony in a language is important for 

visual speech synthesis. Modelling this asynchrony is a key aspect for 

improving the naturality and intelligibility of audiovisual speech 

synthesis systems. The audiovisual speech asynchrony is observed to 

be different for different languages. An almost perfect audio visual 

synchrony has been reported for Japanese language [210]. Speech 

synthesis system has been developed in French which addresses the 

asynchrony in the language [211]. An elaborate scheme with separate 

audio -only and video–only HMMs has been employed for developing 

an asynchrony modelling frame work for Russian language [212].  

This work performed a preliminary analysis to understand the 

audio visual asynchrony of Malayalam speech based on the MAVSC-

IW corpora. Audio and image sequence of selected Malayalam words 

are labelled as phoneme sequences in both audio and visual domain. 

The audio also contains portions labelled as silence. The detailed 

durational information in the audio and visual domain for the word 

XÀ¡w/tharkam/is given in table 3.8. Silence is the principal origin of 

asynchrony. It is evident that a significant audio visual synchrony 

exists between the audio and video manifestations in portions without 

silence.  

Table 3.8: Durational information in the audio and visual domain 

for the word XÀ¡w /tharkam/ 
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Phoneme/ 
Silence 

Audio 
(start) 

Audio 
(end) 

Video (start) Video (end) 

Silence 0. 68 0. 8   
Th 0. 86476 0. 88491 0. 68 0. 88 
A 0. 88894 0. 98966 0. 92 0. 96 
r 0. 99772 1. 13067 1 1. 08 

silence 1. 13067 1. 20722   
K 1. 20722 1. 23945 1. 12 1. 24 
a 1. 23945 1. 40060 1. 28 1. 32 
m 1. 39658 1. 53356 1. 36 1. 52 

 

A similar phenomenon where the silence creates an audiovisual 

asynchrony, is evident in most utterances. So the most crucial aspect in 

modelling the audio visual asynchrony in Malayalam is incorporating 

silence in the visual durational information. As the first step, the work 

performed a detailed analysis of interphone silence on sample words to 

model it. Out of the 900 words in the CMLTEMU dataset, 300 words 

are found to have silence between phonemes. Inter phoneme silence is 

preceded by plosive consonants in almost all occurrences. The silence 

is attributed to the stop phase or obstruction phase of plosive 

formation. The silence corresponding to the stop phase of a plosive is a 

property of the plosives or stop consonants [213].  

It is also observed that, in the visual domain the articulatory 

positioning during silence (stop phase) has the maximum visual 

phoneme presence. For example consider the frames of the absolute 

closure corresponding to the articulatory preparation forthe consonant 

phoneme /P /പ, in the Malayalam word Idp¸v /karuppu/, which is 

shown in figure 3.3.  
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Figure 3.3: The frames corresponding to to the articulatory 
preparation for the consonant phoneme പ/P/, in the word Idp v̧ 

/karuppu/.  

 

The phoneme /pa/ is visually more evident during silence 

created by complete block of air flow. Hence the duration of silence 

corresponding to the articulatory formation stage for the anticipatory 

plosive should be added to the plosive duration. Based on the 

observation a strategy is formulated for incorporating silence to the 

durational model to get rid of audio visual asynchrony in visual speech 

synthesis. Text to visual speech synthesis systems and audio to visual 

speech synthesis systems are addressed separately in the following 

way.  

i. For an audio to visual speech synthesis system silence can 

easily be segmented from the audio signal. The duration of the 

silence is added to the next consonant phoneme duration.  

ii. In a text to visual speech synthesiser duration is computed 

using information obtainable from text. In this context, Pre 

computed silence duration models are required. The solution 

adopted in this work is to compute the mean silence duration 

before each plosives from sample utterances. The average 

silence duration before plosives extracted from the sample 

utterances is summarised in table 3.9. Plosives with similar 
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silence behaviour are grouped together and average silence 

duration across each group is listed in the table.  

Table 3.9: The average silence duration before plosives 

Class of Plosive 
Isolated Consonant Clusters 

Male Female Male Female 
Voiceless 
Unaspirated 
Expect bilabial 

0. 05741 
 

0. 06502 
 

0. 1363 
 

0. 1517 
 

Aspirated Expect 
Bilabial 

0. 0843 
 

0. 0919 
 

0. 140722 
 

0. 1523 

Voiced Un aspirated 
Expect bilabial 

0. 0818 0. 0858   

Aspirated Expect 
Bilabial 

0. 0787 0. 0708   

P പ 0. 0968 0. 1208 0. 1394 0. 15203 

ph ഫ 0. 0922 0. 1133   

b ബ 0. 07347 0. 07345   

 

Naturally the silence duration for consonant clusters is higher compared to 

isolated consonants.  

3.7 Conclusion  

A detailed investigation is performed on the duration of 

allophonic variations of Malayalam Phonemes in this chapter. The 

durational properties obtained as part of the experiments can be 

effectively used for developing visual speech synthesis system in 

Malayalam. Rule set for the formation of Malayalam vowel and 

consonant allophones are derived as part of this study. The process 

involved in the creation of audio visual dataset is also explained in 

detail. Durational properties of the Malayalam vowel and consonant 
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allophones are analysed. The phoneme and allophone duration patterns 

emerged from the statistical analysis of speech corpora are presented. 

It is found that the range of vowel duration varies from 13. 3 ms to 

168. 4ms for male and varies from 12. 4 ms to 184. 3 ms for female. 

The average duration of consonants is much smaller compared to those 

vowels. Plosives have the smallest duration compared to other classes 

of consonants. The average duration of plosive is 40ms. An 

investigation is performed which reveals the basic natute of audio 

visual asynchrony in Malayalam and the findings can be effectively 

used for the development of Malayalam visual speech synthesis 

system. It is also observed that the inter phoneme silence in Malayalam 

is mainly attributed to the stop phase or obstruction phase of plosive 

formation.  
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Chapter 4 

Rule based Grpaheme to Phoneme and 
allophone transcripter in Malayalam  

 

4. 1 Introduction 

Developing audiovisual speech synthesisers in mother tongue 

will be a mile stone activity in bridging the digital divide, a growing 

concern of governments and other organisations towards ensuring 

equality. Language specific explorations are required for discovering 

the components such as phoneme set, allophonic variations, viseme set 

and co-articulation effects in the audio and visual domain. Audio-

visual speech synthesis systems often consider phoneme as the basic 

unit of synthesis. A phoneme is actually a mental abstraction forming 

in the brain of the listener. There might be infinite variations 

corresponding to a phoneme in the actual utterance. The variation 

happens due to many factors such as dialectics variation, emotional 

state of the speaker and co-articulation effects. The intelligibility and 

naturality of synthesised audiovisual speech depends on the ability of 

the system in incorporating these factors. While designing a text to 

audio visual speech synthesis system, conversion of the set of 

graphemes to a sequence of phonemes to get a phonemic transcription 

is the first stage. To accomplish a true phonetic representation 

additional information cues representing emotional, dialectical and co-

articulation effects need to be incorporated into the phoneme sequence. 
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The allophonic variations of Malayalam phonemes explained in the 

last chapter accommodate most of the co articulation effects.  

Co-articulation refers to changes in the articulation of a speech 

segment depending on preceding (backward or carry over co-

articulation) and upcoming segments (forward or anticipatory co-

articulation). Forward co-articulation is due to phonemes yet to be 

released. Carry over articulation is due to some phonemes happened at 

a previous time instant [199, 214]. Co-articulation happens either due 

to activities in brain or due to the inertia of motor systems. 

Anticipatory co-articulation is attributed to neuronal activities, but both 

motor system inertia and neuronal activities are responsible for carry 

over co-articulation. Allophone formation rule set in Malayalam 

characterises and enumerates the possible variations a phoneme can 

attain due to positional and contextual influences. So this work 

assumes that allophone characterisation in Malayalam encodes the co-

articulaion effects on a phoneme. Additional information cues 

modelling continuous speech is visible in an allophone centric 

approach, compared to the phoneme based approach. This aspect is 

extremely significant in automatic speech processing, especially in 

developing audiovisual speech synthesis systems. A grapheme to 

allophone transcripter is an indispensable prerequisite for the allophone 

centric paradigm shift in Malayalam speech processing. This chapter 

explains the three stage development process of a grapheme to 

phoneme and allophone transcripter in Malayalam which can be used 

for speech synthesis and recognition applications.  
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Pre-processing, grapheme to phoneme conversion and phoneme 

to allophone mapping are the implementation stages of the proposed 

allophone transcripter. Firstly, the given grapheme sequence, after 

appropriate pre-processing in the grapheme domain is converted first 

in to a sequence of phonemes, and this sequence is converted to the 

corresponding sequence of allophones. Grapheme to Phoneme 

transcripter is reported for many languages. The underlying 

implementation strategies can be classified into dictionary based, data 

driven and rule based approaches. Dictionary based approach uses a 

phonetic dictionary with a transcribed phoneme sequence entry for 

each word. Storing and accessing this huge lexicon creates real time 

access issues. The huge manual labour of linguistic experts required 

for data preparation is another demerit of dictionary based approach 

[215]. Data driven approach uses machine learning algorithms to 

understand the behaviour of grapheme to phoneme transcription to 

automate the conversion. Hidden Markov Models (HMM), Artificial 

Neural Network (ANN) and Classification and Regression Trees 

(CART) using inductive learning technique etc. are the prominent 

techniques reported in the literature for this purpose [216-217]. 

Linguistic rule set can be formulated for phonetically perfect languages 

such as Sanskrit with written and spoken form correspondence. 

Successful implementations are also emerging in many languages 

which effectively combine different methods. Grapheme to Allophone 

transcriptors are reported for many languages such as Slovain and 

Arabic [218-219]. The phonetic or broad transcriptors whichuse 

allophone characterisation for encoding contextual information are 

reported from Spanish and Polish languages [54, 220].  
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 The proposed work uses a rule based approach both for 

grapheme to phoneme transcription and phoneme to allophone 

transcription. This chapter explains the algorithm and implementation 

stages of a rule based Malayalam grapheme to phoneme and allophone 

transcripter. Pre-processing brings different class of graphemes to a 

unified framework required for the phoneme and allophone 

transcription. A comprehensive statistical and probabilistic analysis is 

performed, based on the novel phoneme and allophone converter 

developed as part of this study on standard word and sentence corpora. 

Statistical properties of phonemes and allophones thus derived can be 

used for the development of various language computing tools. Section 

4.2 elaborates the processing steps employed for the development of 

grapheme to phoneme and allophone transcription. Section 4.3 

sketches the steps in grapheme to phoneme transcription followed by 

the detailed explanation of phoneme to allophone transcription 

algorithm. Section 4.4 analyses and interprets the frequency of 

occurrence of phoneme and allophone using the newly developed 

transcripter and Section 4.5 concludes the chapter with relevant future 

directions.  

4. 2 Pre-processing for the Development of Malayalam Graphemes 

to Allophone Transcription 

Pre-processing brings different classes of graphemes to a 

unified framework required for the grapheme to allophone 

transcription. This Section explains the classification inherent in 

Malayalam orthography and the pre-processing performed on each 

class of graphemes. Malayalam is considered to be having an 
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alphasyllabary writing system, which combines the features of an 

alphabet based and syllable based orthographic structure [201]. Even 

though the writing system of Malayalam language is based on the set 

of alphabet known as ‘aksharamala’ (the garland of letters), the vowel 

signs in Malayalam makes it possible to write consonant vowel 

sequences as a single unit. The consonant vowel sign combinations are 

valid syllables in Malayalam. The Malayalam orthographic symbols 

are categorised as vowels, vowel signs, diphthongs, consonants, 

consonant compounds, anusvaram, chandrakala and chillukal. The 

following sections describe the pre-processing strategies required for 

each class of graphemes. A symbol array corresponding to the 

sequence of graphemes is the output of the pre-processing stage. As 

part of pre-processing some graphemes are replaced with other 

graphemes, while some others change its relative positioning.  

4.2.1 Pre-processing for Vowels and Dependent Vowel Signs 

Table 4.1 presents the grapheme symbols corresponding to 

Malayalam vowels and diphthongs with IPA symbols. Pre-processing 

causes no changes to these symbols or its positioning. They are 

mapped as such to the symbol array. Hence the vowels and diphthong 

graphemes in Malayalam are listed in Table 4.1, remains the same after 

pre-processing.  
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Table 4.1: Malayalam Vowels and Diphthongs with IPA Symbols 

അ ഇ ഉ എ ഒ ഋ ഐ 

/a/ /i/ /u/ /e/ /o/ /ṛ/ /ai/ 

ആ ഈ ഊ ഏ ഓ - ഔ 

/a: / /i: / /u: / /e: / /o: / - /au/ 

 

Table 4.2 lists the dependent vowel signs of Malayalam 

language with examples and adopted pre-processing strategy for each. 

A vowel sign always occurs with a consonant known as the effected 

consonant. The vowel signs in Malayalam generally occur either to the 

left or right of the effected consonant. But the symbols /െ◌ാ/ and േ◌ാ 

has two components, one each in the left and right of effected 

consonant. The pre-processing unifies the positioning by placing all 

vowel signs to the right of the effected consonant.  

Table 4. 2 Vowel signs in Malayalam with example usage 

Vowel  
Sign 

Corresponding 
Vowel 

Example 

Relative  
Position 

With the effected 
consonant  

ി ഇ/i/ കി/ki/ Right 

ു ഉ/u/ കു/ku/ Right 

െ എ/e/ കെ/ke/ Left  

ൊ ഒ/o/ sIm/ko/ 
Left and Right 

ൃ ഋ/ṛ/ കൃ/kṛ/ Right 

ാ ആ/a: / കാ/ka: / Right 

ീ ഈ/i: / കീ/ki: / Right 

ൂ ഊ/u: / കൂ/ku: / Right 

േ ഏ/e: / കേ/ke: / Left  

ോ ഓ/o: / sIm /ko: / 
Left and Right 
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4. 2. 2 Pre-processing for Consonant and Consonant Compounds 

In Malayalam, a consonant grapheme symbol is associated for 

each consonant phoneme introduced in chapter 2. Each consonant 

grapheme symbol is retained as such after pre-processing. Consonant 

compounds form a prominent class of grapheme symbols in 

Malayalam. Consonant compounds are formed as a combination of 

more than one consonant in Malayalam. Based on the difference in the 

required pre-processing, consonant compounds are classified into nine 

categories [222]. Pre-processing replaces each consonant compound 

with its constituent consonants. For example ½ is replaced as 

മ+മ<m>+<m>, its constituent consonants and ­ is replaced as 

(ണ+ട<na>+<ʈa>), consonants forming ­. The work employed a 

look-up table strategy for replacing consonant compounds with its 

constituent consonants. Table 4.3 shows a sample look up table 

depicting the conversion of each class of compound consonants. The 

look-up table consists of a total of 93 entries which maps the entire 

Malayalam consonant compounds.  
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Table 4. 3: Portions of look-up table for replacing consonant 

compounds with constituent phonemes 

Compound Consonant  Constituent Consonants  
¯ ത, ത(<t>, <t>) 
. . .  . . .  
¸ പ, പ(<pa>, <pa>) 
. . .  . . .  
© ഞ, ച(<ɲa>, <ca>) 
. . .  . . .  
´ ന, ത(<na>, <ta>) 
. . .  . . .  
« ട, ട(<ʈa>, <ʈa>( 
. . .  . . .  
Ó ഹ, ന(<ha>, <na>) 
. . .  . . .  
{à ക, ത, റ(<ka>, <ta>, <ṛa>) 
. . .  . . .  
Æ വ, വ(<va>, <va>) 
. . .  . . .  
¦ ങ, ക(<ŋ><ka>) 

 

4. 2. 3. Pre-processing applied for Special grapheme symbols 

In Malayalam Anusvaram, chandrakala, chillukaland 

consonant diacritics are treated as special symbols. Anusvaram 

represented by grapheme symbol / ◌ം/ is actually a consonant മ/m / 

after a vowel. Anusvaram is usually considered as a vowel in grapheme 

categorisation. Chandrakala ◌് /ə/, a diacritic, occurs in the word 

ending attached to a consonant without a natural vowel ending. Chillu 
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is special class of consonants which is characterised by the absence of 

an inherent vowel following the consonant. The 5 grapheme symbols 

under this class are ¬, ³, À, Â, Ä  corresponding to the base 

characters <ṇa> ണ, <na> ന, <ra> ര, <la> ല and <ḷa> ള. Pre-

processing retaines Anusvaram, chandrakala and chillu as such for 

further processing.  

Malayalam has 4 special grapheme symbols for representing 

the consonant–approximant combination, known as consonant 

diacritic. The occurrence of the symbol is replaced by corresponding 

approximant to the right of the effected consonant. Table 4. 4 shows 

the usage of different approximant signs with ക /ka/ as the effected 

consonant. The table also shows the portion of the signs with respect to 

the effected consonant. Diacritics are replaced by the consonant 

approximant combination as per the usage given in Table 4. 4. For 

example, Iy<kya>is replaced by ‘ക്+യ’ combination.  

Table 4.4: Use of approximant signs based on the corresponding 

approximant withക /ka/ as the effected consonant 

Approximant 
Sign with consonant 

ക /ka/ 

Corresponding 
Approximant 

 

Position of the sign  
With respect to the 
effected consonant 

Iy <kya> യ Right 

Ir<kra> ര Left 

¢ <kla> ല Under 

Iz<kva> വ Right 
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As part of pre-processing the input text is converted into a symbol 

array based on the rules described in section 4. 2. 1 to 4. 2. 5. The 

symbol array formed after applying processing the word sXm¸n is 

shown in Table 4. 5.  

Table 4.5: The symbol array after the pre-processing on the 
example Malayalam word sXm¸n 

sXm¸n 
X t#m ] ] C 

 

The following section describes the process involved in the 

development of Malayalam text to allophone transcritper in detail.  

4.3  Comprehensive Malayalam Grapheme to Allophone 

Transcripter  

The grapheme to allophone transcripter is implemented in two 

phase frame work. Initially, the sequence of graphemes corresponding 

to a given word, α1, α2. . . αm is initially mapped to a sequence of 

phonemes β1, β2. . . β n  

f(α1, α1. . . αm) = β1, β2. . . β n 

In the second stage, each phoneme β is mapped to one of its allophones 

γi’s  

g(β1, β2. . . βn) = γ1, γ2. . . γn 

The set of graphemes, phonemes and allophones in Malayalam is 

described in chapter 3. The mapping functions f and g receives the 



 89

current instance, position and neighbouring instances as inputs. Section 

4. 3. 1 discusses the proposed algorithm for grapheme to phoneme 

transcription and section 4. 3. 2 elaborates the phoneme to allophone 

transcription process proposed as part of the work.  

4. 3. 1 Grapheme to Phoneme Transcription Algorithm  

The grapheme to phoneme mapping for Malayalam is 

implemented using a rule based approach. The output obtained from 

the previous pre-processing step, symbol_array, is the input to this 

algorithm. Phonemic_Out_Array is the output of this transcription 

algorithm, which is an array containing the sequence of phonemes 

corresponding to the grapheme sequence.  

The detailed subroutine based algorithm used for grapheme to 

phoneme transcription is available in the work by Vivek [12]. The 

transcription rules employed in each subroutine is summarised as 15 

groups in table 4. 6. The second column of the table displays the 

instance of the symbol array which acts as a rule set. The current 

symbol is highlighted in a different colour. One left neighbour and two 

right neighbours are also considered for making decisions. Don’t care 

conditions are indicated by a /-/. The framework uses the look up 

tables, for vowel signs and long vowels as shown in Table 4. 7 and for 

plosive aspirated consonants as shows in table 4. 8.  
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Table 4. 6: Summary of the grapheme to phoneme transcription 

rules  

Sl. 
No. 

Description Action 

Group 1 

1.  <ൻ> <റ> <െ> - 
 

Insert / / to 
Phonemic_Out_Array 

2.  <ൻ> <റ> <്> <റ> 
 

Insert / റ്റ/ to 

Phonemic_Out_Array 
and advance 

symbol_Array by two 
positions 

Group 2 

3.  
vowel or 

vowel 
symbol 

◌ം - - 

 

Insert / മ് / to 

Phonemic_Out_Array 

4.  
Any other 

symbol 
◌ം - - 

 

Insert / അ + മ് / to 

Phonemic_Out_Array 
Group 3 

5.  <ന> <യ> - 
 

Insert /ന/്to 

Phonemic_Out_Array 

6.  
<ന> NOT 

<യ> 

- 

 

Insert /ന1്/to 

Phonemic_Out_Array 

7.  

ര<r>, 

റ/ർ<

ṛ> 

<ന> - 

 

Insert /ന1്/to 

Phonemic_Out_Array 

8 
- <ന> Any 

Dental  

Insert /ന1്/to 

Phonemic_Out_Array 

9.  vowel <ന> <ന> vowel 
 

Insert /ന1്/to 

Phonemic_Out_Array 
and advance 

Symbol_Array by one 
position 

10.  Other <ന> others other 
 

Insert /ന/്to 

Phonemic_Out_Array 
Group4 

11.  - Aspirated Plosive - - 
 

Insert corresponding 
entry from 

Look_Up_Table2 in to 
Phonemic_Out_Array 
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12.  
- Un Aspirated 

Plosive 
- - 

 

Insert plosive to 
Phonemic_Out_Array 

Group 5 

13.  
- Long vowels or 

Vowel symbols 
- - 

 

Insert corresponding 
entry from 

Look_Up_Table1 in to 
Phonemic_Out_Array 

Group 6 

14.  - All remaining cases Vowel - 
 

Insert / symbol + 

/മ്/(CHANDRAKALA) 

/ to 
Phonemic_Out_Array 

15 
- All remaining cases NOT 

Vowel 
- 

 

Insert / symbol + /മ്/ + 

/അ/ to 

Phonemic_Out_Array 

 

Table 4. 7: Look-up table for vowel signs and long vowels 

Sl. No: Grapheme  Phoneme 
1 ി ഇ/i/ 

2 ു ഉ /u/ 

3 െ എ /e/ 

4 ൊ ഒ /o/ 

5 ൃ ഋ /ṛ/ 

6 ാ or ആ /a: / അഅ /a: /  

7 ീ or ഈ /i: / ഇഇ/i: / 

8 ൂ or ഊ /u: / ഉഉ /u: / 

9 േ or ഏ /e: / എഎ /e: / 

10 ോ or ഓ /o: / ഒഒ /o: /  
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Table 4. 8: Lookup table for plosive aspirated  

Sl. No: Grapheme  Phoneme 

1 ഫ് /ph/ പ്ഹ്/Ph/ 

2 ഥ ്/th/  ത്ഹ്/t h/ 

3 ഠ്/ʈh/ ട്ഹ്/ʈh/ 

4 ഛ/്ch/ ച്ഹ്/t h/ 

5 ഖ് /kh/ ക്ഹ്/k h/ 

6 ഭ് /bh/ ബ്ഹ്/b h/ 

7 ധ ്/dh/ ദ്ഹ്/d h/ 

8 ഢ് /ɖh/ ഡ്ഹ്/ɖ h/ 

9 ഝ് /ɟh/ ജ്ഹ്/ɟ h/ 

10 ഘ് /gh/ ഗ്ഹ്/g h/ 

 

The Phonemic_Out_Array, an array of Malayalam phonemes 

corresponding to the input grapheme sequence obtained from the stage, 

is the output of grapheme to phoneme transcripter in Malayalam. The 

same Phonemic_Out_Array wil also act as the input to the phoneme 

allophone converter which is described in the following section.  

4. 3. 2 Phoneme to Allophone Transcripter 

The allophone characterisation of Malayalam phonemes is 

described in section 2. 3. The Malayalam allophone set consists of 107 

elements. The 51 Malayalam phonemes and its corresponding 

allophones are depicted in table 4. 9.  
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Table 4. 9: Malayalam Phonemes with Allophone 

Phoneme Allophone 
Symbols 

Phoneme Allophone 
Symbols 

Phoneme Allophone 
Symbols 

അ/a/ [ʌ] ങ/ŋ/ [ŋ] ഫ/ph/ [pha] 

[A]  [ŋj] ബ/b/ [B] 

ആ/a: / [a: ]  [ŋ<]  [b] 

[a]  [ŋ>] ഭ/bh / [bha] 

ഇ/i/ [i]  [ŋ'] മ/m/ [m̪h] 

[yi]    [M] 

[yi]    [m] 

ഈ/i: / [yi: ] ച/c/ [c]  [m] 

[i: ]  [c]̬   

ഉ/u/ [wu]  [ɟ] യ/y / [ya] 

[uw]  [C] ര/r/ [ra] 

[ɯ] ഛ/ch / [cʰ] ല/l/ [la] 

[ə]  [Cʰ] വ/v/ [w] 

[ə*] ജ/ɟ / [J]  [v] 

[ɯv]  [j] ശ/ʃ / [Sa] 

[U] ഝ/ɟh / [jha] ഷ/ʂ/ [sha] 

ഊ/u: / [wu: ] ഞ/ɲ / [ɲa] സ/s/ [sa] 

[u] ത/t/ [t] ഹ/h/ [H] 

എ/e/ [ye]  [t'']  [h] 

[ey]  [ð] ള/ɭ / [ɭa] 

[E]  [d]̪ ഴ/ʐ/ [ỵa] 

ഏ/e: / [ye: ] ഥ/th/ [tha] റ/ṛ/ [ṛə] 

[er: ] ദ/d/ [ḍ] ന/n/ [nh] 

[e: ]  [d]  [n] 

ഒ/o/ [wO] ധ/dh / [dha]  [Tʰ] 
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[O] ന/n/̪ [n]̪   

ഓ/o: / [wo: ]  N   

O ട/ʈ/ [ɖ]   

ഐ /ai/ [ai]  [ɽ]   

[ei]  [ʈ]   

ഔ /au/ [au]  [T]   

  äv/ṟ/ [d]   

ക/k/ [k]  [t]   

 [kj] ഠ/ʈh/ [ʈʰ]   

 [ɣ]̥     

 [ɠ] ഡ/ɖ/ [da]   

 [ʈ] ഢ/ɖh / [dha]   

 [K] ണ/ɳ/ [ɳa]   

ഖ/kh / [kh]     

 [Kh] പ/P/ [p]   

 [Kh]  [β]   

ഗ/g / [G]  [b]   

 [g]  [P]   

ഘ/gh/ [ɡh]     

 

The phoneme to allophone converter maps the phoneme 

sequence to its corresponding allophone sequence where each 

phoneme β is mapped to one of its allophones γi’s  

g(β1, β2. . . βn) = γ1, γ2. . . γn 
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For a grapheme to phoneme transcripter the number of allophones in 

the output sequence is always equal to the number of phonemes in the 

input sequence.  

 In the rule based phoneme to allophone converter, each 

phoneme is mapped to one of its allophones based on the allophone 

formation rule. The mapping rules for a phoneme is frames basedon 

the positioning and left-right neighbours of phoneme. The three 

positioning options are characterised as word initial, word final and 

middle. All phonemes occurring in positions other than word 

beginning and word end are treated as middle phonemes. Most of the 

vowel allophone mappings are based solely on positioning. In 

Malayalam all vowels apart from ഔ/<au>/ has got more than one 

allophone characterisations, while there are 19 consonant phonemes 

with just one allophone. The pseudo code for the proposed phoneme to 

allophone algorithm is given bellow.  

Phoneme to Allophone Conversion Algorithm for Malayalam – 

Pseudo- code 

// Input : Phonemic_Out_Array, the sequence of phonemes obtained 

from grapheme to phoneme transcripter  

//Output : Allophonic_Out_Array, the sequence of allophones 

corresponding to the input  

 Len_Array=length(Phonemic_Out_Array) 

Current_Pos = 1 

While(Curent_Pos <= Len_Array) 
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{ 

  Curent_phone = Phonemic_Out_Array[Curent_Pos] 

  Left_Phone = Phonemic_Out_Array[Curent_Pos -1] 

  Right_Phone = Phonemic_Out_Array[Curent_Pos +1] 

  if (Curent_Pos =1) then 

   Position=Initial 

  else if (Curent_Pos = Len_Array) then 

   Position=Final 

  else 

   Position=Middle 

  end if  

Allophonic_Out_Array[Curent_Pos]= 

Phone_to_Allophone(Phonemic_Out_Array, . . .  

Curent _phone, Position, Left_Phone, Right_Phone) 

  Curent_Pos = Curent_Pos + 1 

 } // end while  

 

Phone_to_Allophone is a subroutine which map the current phoneme to 

its allophone. The mapping requires current phoneme, its position with 

the neighbouring phonemes. Hence the Phonemic_Out_Array and 

position are passed as arguments to the subroutine in addition to the 

current phoneme. The pseudo code for Phone_to_Allophone conversion 

is given bellow.  
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Phone_to_Allophone(Phonemic_Out_Array, Curent_Phone, Position, 

Left_Phone, Right_Phone) 

{ 

 If( isVowel(Curent_Phone)) then 

Vowel_to_Allophone (Curent_Phone, Position, 

Phonemic_Out_Array, Left_Phone, Right_Phone) 

 else 

Consonant_to_Allophone (Curent_Phone, Position, 

Phonemic_Out_Array, Left_Phone, Right_Phone) 

 End if 

} 

Phone_to_Allophone subroutine just checks whether the 

current phone is a vowel orconsonant. Vowel_to_Allophone subroutine 

will be called for vowels based on the isBoolean check operation 

which returns TRUE if the current phoneme is a vowel.  

 

isVowel(Current_Phone)  

{ 

if(Curent_Phone==’അ’ or Curent_Phone==’ആ’ or 

Curent_Phone==’ഇ’ or Curent_Phone==’ഈ’ or 

Curent_Phone==’എ’ or Curent_Phone==’ഏ’ or 

Curent_Phone==’ഉ’ or Curent_Phone==’ഊ’ or 

Curent_Phone==’ഒ’ or Curent_Phone==’ഓ’ or 

Curent_Phone==’ഐ’ or Curent_Phone==’ഔ’) then 
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  return TRUE 

else 

  return FALSE 

 endif 

} 

The Vowel_to_Allophone conversion routine converts the vowel 

phoneme to corresponding to vowel allophone.  

Vowel_to_Allophone (Curent_Phone, Position, Phonemic_Out_Array, 

Left_Phone, Right_Phone) 

{ 

 If (Curent_Phone==’അ’ and position==initial and 

position==final ) then 

  Return (‘[ʌ]’) 

 Else if (Curent_Phone==’അ’ )then 

  Return(‘[A]’) 

 Else if (Curent_Phone==’ആ’ )then 

  res= call check_Velar() 

  if res== true then 

   return (‘[a: ]’) 

  else 

   return false 

 else if (Curent_Phone==’ആ’ )then 

  return(‘[a: ]’) 
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 else if (Curent_Phone==’ഇ’ and position==final) then 

  return(‘[y i ]’) 

 else if (Curent_Phone==’ഇ’ and position==initial) then 

  return(‘[ y i]’) 

 else if (Curent_Phone==’ഇ’ and position==middle) then 

  return(‘[i]’) 

 else if (Curent_Phone==’ ഈ’ and position==initial) then 

  return(‘[ y i: ]’) 

 else if (Curent_Phone==’ ഈ’ and position==middle) then 

  return(‘[i: ]’) 

 else if (Curent_Phone==’എ’ and position==initial) then 

  return(‘[ y e]’) 

 else if (Curent_Phone==’എ’ and position==final) then 

  return(‘[e y]’) 

 else if (Curent_Phone==’എ’ and position==middle) then 

  return(‘[E]’) 

 else if (Curent_Phone==’ഏ’ and position==initial) then 

  return(‘[ y e: ]’) 

 else if (Curent_Phone==’ഏ’ and position==final) then 

  return(‘[e r : ]’) 

 else if (Curent_Phone==’ഏ’ and position==middle) then 

  return(‘[e: ]’) 
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 else if (Curent_Phone==’ഉ’ and position==initial) then 

  return(‘[ w u]’) 

 else if (Curent_Phone==’ഉ’ and position==final) then 

  return(‘[u ]’) 

 else if (Curent_Phone==’ഉ്’ and position==final) then 

  return(‘[ə]’) 

 else if (Curent_Phone==’ഉ’ )then 

  res= call check_Lateral() 

  if res== true then 

   return (‘[ə*]’) 

  else 

   return false 

 else if (Curent_Phone==’ഉ’)then 

  return(‘[ɯ]’) 

 Else if (Curent_Phone==’ഊ’ and position==initial) then 

  Return(‘[ w u: ]’) 

 Else if (Curent_Phone==’ഊ’) then 

  return(‘[u]’) 

 else if (Curent_Phone==’ഒ’ and position==initial) then 

  return(‘[ w O]’) 

 else if (Curent_Phone==’ഒ’ and position==middle) then 

  return(‘[O]’) 
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 else if (Curent_Phone==’ഓ’ and position==initial) then 

  return(‘[ W. O: ]’) 

 else if (Curent_Phone==’ഓ’) then 

  return(‘[O]’) 

 else if (Curent_Phone==’ഐ’ and position==initial) then 

  return(‘[ai]’) 

 else if (Curent_Phone==’എ’ and Right_Phone==’യ’ )then 

  return(‘[ei]’) 

} 

The Vowel_to_Allophone subroutine uses check_Velar and 

check_Lateral routines to check corresponding class of consonants in 

the neighbourhoods.  

Boolean check_Velar(curent_phone, Left_Phone) 

{ 

 If(Left_Phone==’ക’ or Left_Phone==’ഖ’ or 

Left_Phone==’ഗ’ or Left_Phone==’ഘ’ or Left_Phone==’ങ’) then 

  Return   True 

 Else 

  Return   False 

 End if 

} 

Boolean check_Lateral(curent_phone){ 
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 If(Left_Phone==’¬’ or Left_Phone==’À ’ or 

Left_Phone==’Â’ or     Left_Phone==’Ä’){ 

  Return True 

 } 

 Else 

  Return False 

 End if 

} 

The subroutine Consonant_to_Allophone processes consonant 

phoneme to return corresponding allophone. The python 

implementation of Consonant_to_Allophone employes separate 

functions for each consonant phoneme. As the number of rules 

characterising consonant allophones is comparatively large and each 

comprises complex logic, presenting each sub routine with if-else 

sequence will obscure the description. Hence a table based description, 

as shown in table 4. 10 with allophone and corresponding rule set is 

adopted for Consonant_to_Allophone subroutine. For example the first 

entry in the table depicts the subroutine for പ/pa/ and can be 

interpreted as 

-- 

if(Position==initial) then 

 return [p] 

else if(Check_Intervocalic()) 
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 return [β] 

else if (Position!=initial AND Left_Phone==’മ’) 

 return [b] 

else if(NOT check_Nasal())  

 return [P] 

----- 

Table 4. 10: Allophone and rule set used for the implementation of  
Consonant_to_Allophone subroutine 

Phone Allophone Mapping logic 
പ/P/ [p] If(Position==initial) then  

[β] p=Check_Intervocalic() 
If (p ==TRUE) then 

[b] If (Position!=initial AND 
Left_Phone==’a’)then 

[P] p=check_Nasal() 
if(p==false) then 

ബ/b/ [b] p=Check_Intervocalic() 
If (p ==TRUE) then 

[B] Else 

ത/t/ [t] If(Position==initial) then 
[ð] p=Check_Intervocalic() 

If (p ==TRUE and 
Left_Phone==’a’) then 

[d]̪ p=check_Nasal() 
if(p== TRUE and 
position==middle) then 

[t''] p=check_Nasal() 
if(p==false) then 

ദ/d/ [ḍ] p=Check_Cluster() 
If (p ==TRUE) then 

[d] Else 
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�/ṟ/ [t] If(Position!=initial) then 
[d] p=check_Nasal() 

if(p==true) then 

ട/ʈ/ [ʈ] If(Position==initial) then 

[ɖ] If(Position!=initial AND 
Left_Phone==’ണ’) then 

[ɽ] p=Check_Intervocalic() 
If (p ==TRUE) then 

[T] If(Position!=initial) then 

ഠ/ʈh/ [ʈʰ] p=Check_Intervocalic() 
q=check_Nasal() 
If (p ==TRUE and 
q==TRUE) then 

[Tʰ] Else 

ച/c/ [c] If(Position==initial) then 

[ɟ] If(Position!=initial AND 
Left_Phone==’R’) then 

[C] p=check_Nasal() 
if(postion!=initial and 
Right_Phone===’ച’ and 

p==false) then 

[c]̬ Else  

ജ/ɟ / [J] Else  
[j] If(Position==initial) then 

ക/k/ [ʈ] If(Right_Phone==’j’) then 

[ɠ] If(Left_Phone==’Mv’) then 

[ɣ]̥ p=Check_Intervocalic() 
If (p ==TRUE and left==’ 
യ’ and Right_Phone!=’ I’) 

then 
[kj] p=check_LeftVowel() 

if(p==TRUE and 
Right_Phone===’I’)then 

[k] If(Position==initial and 
Right_Phone===’I’) then 

[K] Not coded 
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ഖ/kh / [Kh] If(Position==initial) then 

[kh] p=Check_Intervocalic() 
q=check_Nasal() 
If (p ==TRUE and 
q==TRUE) then 

[Kh] Else  

ഗ/g / [g] If(Check_Intervocalic() and 
position==initial) then 

[G] Else  

ഘ/gh / [ɡh] Curent_phone 

മ/m / [M] If(check_alveolarFlap()) then 
[m] If(Right_Phone==’വ’)then 

[mh̪] If(Left_Phone==’ഹ’) then 

[m] Else 

ന/n ̪/ [n]̪ If(check_alveolarFlap()) then 

N Else  

ന/n/ [nh] If(Left_Phone==’ഹ’) then 

[n] Else  

ങ/ŋ/ [ŋ] If(Right_Phone==’ക’)then 

[ŋj] If(check_FrontVowel())then 
[ŋ>] If(check_BackVowel())then 

[ŋ<] If(check_VowelDiphthongs()) 
then 

[ŋ'] Else 

ഹ/h/ [H] Curent_phone 

വ/v/ [v] If(Right_Phone==’ഉ’)then 

 [w] Else 
 

The conversion of consonant phonemes to its allophones uses the 

following 8 subroutines.  

Boolean Check_Intervocalic (curent_phone) 

{ 
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 If(Left_Phone==’അ’ or Left_Phone==’ഇ’ or Left_Phone==’ഉ’ 
or Left_Phone==’ഒ’ or Left_Phone==’എ’) 

 { 

  If(Right_Phone==’അ’ or Right_Phone==’ഇ’ or 
Right_Phone==’ഉ’ or  Right_Phone==’ഒ’ or Right_Phone==’എ’){ 

  Return True 

  Else 

   Return False 

  Endif 

} 

Else 

 Return False 

End if 

} 

Boolean check_Nasal (curent_phone) 

{ 

 If(position==middle){ 

  If(Left_Phone==’മ’ or Left_Phone==’ണ’ or 
Left_Phone==’ങ’ or  Left_Phone==’ഞ’ or Left_Phone==’ന’) 

   Return True 

  Else  

   Return False 

  End if 

 } 
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 Else  

  Return False 

 End if 

} 

Boolean check_leftVowel (curent_phone) 

{ 

 If(Left_Phone==’അ’ or Left_Phone==’ഇ’ or Left_Phone==’ഉ’ 
or Left_Phone==’ഒ’ or Left_Phone==’എ’){ 

  Return True 

 Else 

  Return False 

 End if 

} 

Boolean check_alveolarFlap (curent_phone) 

{ 

 If(Left_Phone==’À ‘ or Left_Phone==’റ’ or Left_Phone==’ര’) 

  Return True 

 Else  

  Return False 

 End if 

} 

Boolean check_frontVowel(curent_phone){ 

 If(Left_Phone==’ഇ’ or Left_Phone==’ ഈ’ or 
Left_Phone==’എ’ or  Left_Phone==’ഏ’){ 
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  Return True 

 } 

 Else 

  Return False 

 End if 

} 

Boolean check_Voweldiphthongs(curent_phone){ 

 if(check_Vowel()) 

 { 

  if(Left_Phone==’ഐ’ or Left_Phone==’ഔ’){ 

   return True 

  } 

  Else 

   Return False 

  End if 

 Else 

  Return False 

 End if 

} 

 

Boolean check_BackVowel(curent_phone){ 

 If(Left_Phone==’ഉ’ or Left_Phone==’ ഊ’ or Left_Phone==‘ഒ’ 
or Left_Phone==’ഓ’) 

  Return True 
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 else 

  Return False 

 End if 

} 

Boolean check_Lateral (curent_phone) 

{ 

 If(Left_Phone==’¬’ or Left_Phone==’ À ’ or Left_Phone==’ 

Â’ or  Left_Phone==’ Ä’){ 

  Return True 

 } 

 Else 

  Return False 

 End if 

} 

The next section discusses the usage of the proposed grapheme 

to allophone transcripter to derive the phoneme and allophone statistics 

of Malayalam language with atext corpora consisting of 82, 324 words.  

4.4. Phoneme and Allophone Statistical Analysis Based on the 

Proposed Grapheme to Allophone Transcripter 

Statistical linguistics at the phoneme, word and sentence level 

is part of the general language modelling frame work [223-227]. The 

developed grapheme to allophone transcripter in Malayalam is used for 

statistical analysis at the phoneme and allophone level. The results 

obtained in the analysis can be effectively integrated in the various 
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phases of development of automatic speech recognition, automatic 

translation, audiovisual speech synthesis, spell checking systems etc. 

Knowledge about the permissible phoneme and allophone 

combinations in a language is decisive in language identification 

systems [228-232]. The pattern analysis of phoneme and allophone 

combinations, which can be obtained by applying transcription on 

word and sentence corpora can improve the performance of spell 

checking systems [233-234]. Frequency of occurrence of Japanese and 

Russian phonemes and diphones based on a respective corporas are 

reported inliterature [235-236]. Frequency of occurrence analysis of 

phonemes is used for concatenative speech synthesis in Catalan 

language [237]. Initiatives in Polish language are instrumental in 

developing corpora, grapheme to phoneme transcripter and in 

performing statistical analysis at grapheme, phoneme and word level 

[228]. An attempt in Malayalam is made by N. Sreedevi et al. based on 

manual selection and conversion on a limited word data set [239].  

This section reports the estimated phoneme and allophone 

frequency of occurrence on a word and sentence corpora in Malayalam 

to verify the effectiveness of the proposed transcripter in the above 

mentioned applications. The phonemic corpora for the analysis is 

obtained from grapeme to phoneme transcripter. The allophone 

corpora, obtained by applying phoneme to allophone transcripter, can 

act as a phonetic data base which can model the positional and 

neighbourhood information of phoneme occurrence. The word corpora 

is taken from the online Malayalam-English dictionary Olam [32]. The 

words and phoneme counts in the corpora are given in table 4.11.  
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Table 4. 11: Word and phoneme counts of text corpora 

Source Number Of Words 
Number Of 
 Phonemes 

Oalam  
Online dictionary  

82, 324 7, 63, 392 

 

A detailed analysis of frequency of occurrence of Malayalam 

allophones is carried out against the text corpora. The frequency of 

occurrence of each allophone with its percentage of occurrence is 

given in Table 4. 12.  

Table 4.12: The frequency of occurrence of each allophone with its 

percentage of occurrence  

Phoneme Allophone Frequency Percentage 

അ/a/ [ʌ] 2512 0. 721347818 
[A] 53902 15. 47853904 

ആ/a: / [a: ] 3784 1. 086616299 

[a] 14565 4. 182496403 

ഇ/i/ [i] 24816 7. 126181308 
[yi] 781 0. 22427255 
iy 1698 0. 487598963 

ഈ[i: ] [yi: ] 27 0. 00775334 

[i: ] 2026 0. 581787691 

ഉ[u] [wu] 684 0. 196417957 
[uw] 2095 0. 601601783 

[ɯ] 17215 4. 943472405 
[ə] 5791 1. 662947935 
[ə] 0 0 
[ə] 0 0 
[U] 1704 0. 489321927 

ഊ/u: / [wu: ] 1659 0. 476399693 

[u] 0 0 
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എ/e/ [ye] 
695 0. 199576725 

[ey] 3212 0. 922360347 
E 5711 1. 639975074 

ഏ/e: / [ye: ] 168 0. 048243007 
er: 1332 0. 382498126 

[e: ] 3502 1. 005636966 

ഒ/o/ [wO] 360 0. 103377872 

[O] 1401 0. 402312218 

ഓ/o: / [wo: ] 173 0. 049678811 

O 3688 1. 059048866 

ഐ /ai/ 
[ai] 499 0. 143293217 
[ei] 0 0 

പ/P/ 

[p] 3621 1. 039809096 
[β] 966 0. 27739729 
[b] 519 0. 149036432 
[P] 5867 1. 684772152 

ബ/b/ 
[B] 797 0. 228867122 
[b] 208 0. 059729437 

മ/m/ 

[mh̪] 2 0. 000574322 
[M] 191 0. 054847704 
[m] 662 0. 19010042 
[m] 16747 4. 809081172 

ത/t/ 

[t] 1441 0. 413798649 
[t''] 13597 3. 904524792 
[ð] 3666 1. 05273133 

[d]̪ 692 0. 198715243 

ദ/d/ 
[ḍ] 545 0. 156502612 

[d] 1661 0. 476974015 

ന/n/̪ 
[n]̪ 184 0. 052837579 
N 2187 0. 628020572 

ന/n/ 
[nh] 6 0. 001722965 
[n] 20572 5. 907471061 

റ്റ/ṟ/ 
[d] 716 0. 205607101 
[t] 911 0. 261603448 

ട/ʈ/ 
[ɖ] 2053 0. 589541031 

[ɽ] 3592 1. 031481434 



 113

[ʈ] 111 0. 031874844 

[T] 6021 1. 728994909 

ഠ/ʈh/ 
[ʈʰ] 63 0. 018091128 

[Tʰ] 44 0. 012635073 

ച/c/ 

[c] 880 0. 252701465 

[c]̬ 2581 0. 74116191 

[ɟ] 160 0. 045945721 

[C] 1933 0. 55508174 

ഛ/ cʰ/ 
[cʰ] 45 0. 012922234 

[Cʰ] 35 0. 010050626 

ജ/ɟ / 
[J] 599 0. 172009293 

[j] 782 0. 224559711 

ക/k/ 

[k] 10254 2. 944546387 

[kj] 6 0. 001722965 

[ɣ]̥ 5147 1. 478016408 

[ɠ] 574 0. 164830274 

[ʈ] 749 0. 215083406 
[K] 0 0 

ഖ/kh/ 

[kh] 173 0. 049678811 
[Kh] 27 0. 00775334 
[Kh] 203 0. 058293633 

ഗ/g / 
[G] 1099 0. 31558967 
[g] 501 0. 143867538 

ഘ/gh/ [ɡh] 276 0. 079256369 

ങ/ŋ/ 

[ŋ] 2571 0. 738290302 
[ŋj] 122 0. 035033612 
[ŋ<] 0 0 
[ŋ>] 1784 0. 512294788 
[ŋ'] 0 0 

ഹ/h/ 
[H] 0 0 
[h] 1078 0. 309559294 

വ/v/ 
[w] 6090 1. 748809001 
[v] 2131 0. 61193957 
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ഫ/ph/ [ph] 384 0. 11026973 

ഭ/bh / [bh] 1272 0. 365268481 

ഥ/th/  [th] 795 0. 228292801 

ധ/dh / [dh] 1756 0. 504254287 

സ/s/ [s] 5877 1. 68764376 

റ/ṛ/ [ṛ] 5564 1. 597762443 

ല/l/ [l] 8456 2. 428231348 

ഡ/ɖ/ [ɖ] 647 0. 185793009 

ണ/ɳ/ [ɳ] 6559 1. 883487395 

ഷ/ʂ/ [ʂ] 2193 0. 629743537 

ഢ/ɖh / [ɖh] 19 0. 005456054 

ള/ɭ / [ɭ] 5981 1. 717508478 

ഴ/ʐ/ [ʐ] 1052 0. 302093115 

ഝ/ɟh / [ɟh] 0 0 

ഞ/ɲ / [ɲ] 1083 0. 310995098 

ശ/ʃ / [ʃ] 1978 0. 568003974 

യ/y / [y] 13865 3. 981483874 

ഔ/au/ [au] 221 0. 063462527 

ര/r/ [r] 9093 2. 611152749 

 

From the table 4.12, it is observed that അ/a/ is the most 

frequently occurring phoneme and ത/t/ is the top among consonants. The 

probability distribution of Malayalam phonemes in decreasing order is shown 

in figure 4. 1. Phoneme ഝ/ɲ / is the least frequently occurring phoneme in 

Malayalam.  
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Figure 4.1: The probability distribution of Malayalam phonemes 

in decreasing order 

Table 4.12 also shows the non-uniform pattern in the frequency 

of occurrence of allophones of the same phoneme. Figure 4.2 depicts 

the pattern in the frequency of occurrence of vowel allophones grouped 

in to phonemes.  

 

Figure 4. 2: Frequency of occurrence of vowel allophones grouped 
in to phonemes 
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The vowel allophone characterisation mainly depends on the 

positioning of the phoneme. Naturally the most occurring allophones 

will be the ones corresponding to the middle positioning. Figure 4.3 

shows the allophone based frequency of occurrence distribution for 5 

consonant phonemes with maximum number of allophones.  

 

Figure 4. 3: Allophone based frequency of occurrence distribution 
for 5 consonant phonemes with maximum number of allophones 

4. 5 Conclusion  

This chapter explains the proposed implementation constituents 

of Malayalam grapheme to phoneme and allophone transcripters. The 

rule based approach gives satisfactory results in Malayalam 

transcription. Pre-processing brings different class of graphemes to a 

unified framework required for the phoneme and allophone 

transcription. A comprehensive statistical and probabilistic analysis 

based on the developed phoneme and allophone converter is performed 

on standard Malayalam word corpora. അ/a/ is the most frequently 

occurring phoneme and ത/t/ is the top among consonants. Phoneme 
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ഝ/ɲ / is the least frequently occurring phoneme in Malayalam. From 

the experiments it is evident that, the frequency of occurrence of 

allophones of the same phoneme varies significantly. The allophones 

positioned in the middle are found to be the most frequently occurring. 

The results of this analysis can be used for developing various 

language computing tools in Malayalam.  
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Chapter 5 

Malayalam Viseme Set Formation based on 
linguistic knowledge, perception 

experiments and parametric approaches   

 

5.1 Introduction  

  The characteristics of phoneme set, allophonic variations and 

the method of construction of transcripters in Malayalam are discussed 

in the previous chapters. The centre of discussion, so far has been on 

the auditory and textual domain representations of language. The 

human perception of speech is bimodal in nature and brain combines 

audio and visual cues through a complex process of cortical integration 

[240]. This chapter performs studies to understand the relevant 

characterisations of visual cues in Malayalam speech to be used for 

audiovisual speech synthesis and recognition applications. Identifying 

visually separable atomic units of Malayalam speech is one of the 

prime tasks realised in this work. The atomic unit of visual speech is 

termed as visual phoneme or viseme in the literature. Speech is 

produced through a complex process starting with phonemic 

conversion of utterance happening in the brain and its realisation by 

movements of articulatory organs such as jaw, lips, teeth, tongue, 

velum, larynx, nasal cavity and oral cavity. The relative positioning of 

visible articulators such as lip, tongue, teeth and jaw contributes to the 

characterisation of viseme set. The identification and synthesis of 

visually discerning phonemes in a language is fundamental in 
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developing visual speech synthesisers.  The Viseme set quantifies the 

capability of visual cues in bimodal speech recognition. This chapter 

explains the classification of phonemes based on visual cues and 

establishes a phoneme to viseme mapping for Malayalam.  The aim of 

the work is to express speech as a sequence of viseme which has to be 

generated either from a sequence of phonemes or from a sequence of 

allophones. 

 It can be easily observed that all phonemes are not visually 

separable.  Consider the example of four dental consonants 

ത/്t/,ഥ/്th/,ദ്/d/,ധ്/dh/ in Malayalam, these consonants are formed by 

the active articulator tongue touching the invisible alveolar ridge inside 

the mouth. So it is not possible to visually discern these four 

consonants. The articulatory processes differentiating voiced and 

voiceless consonants are also not visible.  Generally, for any language, 

we can identify group of phonemes with indistinguishable appearance 

on the visible articulators, which lead to a many to one phoneme - 

viseme mapping. The main intend of this study is to produce phoneme 

to viseme maps in a many to one fashion. But the visual manifestation 

of phonemes varies for different instances due to co-articulation 

effects. The visible articulator configuration of a phoneme is effected 

by the inertia of the articulatory organs and due to the anticipatory 

preparation for the future phonemes. The alteration due to impending 

phonemes is particularly evident in consonant vowel combinations 

such as �/p/+ഉ/u/. So the same phoneme exhibits context dependent 

differences in visual manifestations.  Malayalam is one of the few 

languages in which allophone formations happening due to contextual 
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and positional variability can be explained in a rigorous rule based 

approach. So the co-articulation effects can be modelled in Malayalam 

speech using an allophone centric approach. 

Phoneme to viseme maps are developed from linguistic 

knowledge, perception experiments conducted using visual speech 

segments without audio and by clustering performed in the parametric 

space based on different visual features. Many to one phoneme to 

viseme maps are developed for Malayalam using linguistic knowledge, 

perception testing and data driven approaches. Geometric features of 

lips and Discrete Cosine Transform (DCT) based features are used for 

data driven clustering. The benefit of having an allophone set in 

Malayalam for modelling co articulation effects and to design a many 

to many phoneme to viseme map is exploited as part of this work. 

Allophone to viseme map is generated using data driven approach. 

Section 5.2 discusses various viseme set formation strategies. Section 

5.3 explains the different phoneme to viseme mappings in Malayalam 

derived using linguistic, perception based and data driven approaches.  

Section 5.4 discusses the data driven allophone to viseme mapping 

performed to obtain a viseme set which incorporates co-articulation 

effect. Section5.5 concludes the chapter with future directions.      

5.2 Viseme Set Formation Strategies  

A viseme is the visual speech equivalent of a phoneme or the 

set of visually separable phonemes. Many researchers have analysed 

the importance of the phoneme to viseme mapping in the context of 

speech processing. The number and nature of viseme are language 
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dependent. Hence a language specific exploration is needed for 

establishing the viseme set in a language. Among all the realms of 

language processing establishing the atomic unit for representing the 

language is considered as the first step towards automisation. The 

studies on Viseme set for visual speech representation and processing 

starts with the work of Woodward and Barber in 1960.They have 

proposed a hierarchy of visual contrasts in speech segments for lip 

reading [241]. The paper ‘Hearing Lips and Seeing Voices’ by  

Mcgurk et al. [242] is a land mark work in understanding the influence 

of  visual modality in speech perception. Many approaches are used in 

literature for defining a viseme. Fisher in 1968 has coined the term 

viseme by concatenating visual and phoneme [87]. Homophone is an 

alternate term used in some works for representing the visually 

contrasting speech segments [243]. Auer et al. use the concept of 

Phonemic Equivalent Classes (PEC) to group visually similar 

phonemes[244].Saenko et al. conceptualise visemes as facial and oral 

articulatory gestures formed for uttering a phoneme[45]. Most 

approaches conceptualized viseme as a static mouth shape in 2D or 3D 

[245,188,246,247]. But recent practices rely more on using the realistic 

concept of dynamic Viseme where an image sequence is used instead 

of a static frame approximation [248]. The most popular approach is 

defining a viseme as a group of phonemes with similar facial and oral 

appearance. Practically the approach can be viewed as grouping of 

phonemes which are visually identical with regard to the  mouth area, 

predominantly on the lips. The viseme set created as part of MPEG-4 

facial animation framework [249] is shown in table 5.1. 
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Table 5.1: The Viseme set created as part of MPEG-4 facial 

animation framework 

Viseme 
No. 

Phonemes Example Viseme  
No. 

Phonemes Example 

1 p, b, m 
put,  bed, 

mill 8 n, l not, lot 

2 f, v far, voice 9 R Red 

3 T,D think, that 10 A: Car 

4 t, d tip, doll 11 E Bed 

5 k, g call, gas 12 I Tip 

6 tS,dZ,S 
chair,join, 

she 13 Q Top 

7 s, z sir, zeal 14 U Book 

 

Basically  there are three approaches for obtaining visemes 

from a many to one mapping:  

i. Linguistic knowledge based approaches 

ii. Perception experiments with human subjects  

iii. Data-driven approach.  

Some authors blend linguistic and perception experiments 

based approaches and name them as subjective assessments[250]. 

Section 5.2.1 discusses these three approaches used for viseme set 

formation in Malayalam.  

Different phonemes can have similar visual mouth appearance. 

The phonemes which have almost same visual mouth appearance or 
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common visible articulatory dynamics are grouped to a single viseme 

class. It can be observed from the literature that the size of the viseme 

set varies with in the range of 10 to 20. This shows that the number of 

viseme classes is highly language dependent. 

5.2.1 Approaches to Viseme set Formation  

Linguistic knowledge, perception experiments and data driven 

methods are used for the construction of Malayalam phoneme to 

viseme maps. The following section explains these three methods in 

detail.  

i. Linguistic Knowledge based Approach 

Viseme set is formed by exploiting the expert knowledge in the 

linguistics of the language. Phonetic properties, articulatory rules and 

visual intuition are used for classifying phonemes [251]. For English 

language Jeffers & Barley [90] mapped 43 phonemes into 11 visemes, 

which are shown in table 5.2. Another linguistic map prepared by 

Bozkurt et al. [81] consisting of 45 phonemes mapped to 15 visemes is 

shown in table 5.3. 



 124

Table 5.2:  English viseme classes prepared by Jeffers & Barley 

constructed by mapping 43 phonemes into 11 visemes  

Viseme 
Class 

Phonemes 
Set 

Viseme 
Class 

Phonemes Set 

/A /f/ /v/ /G /oy/ /ao/ 

/B 
/er/ /ow/ 
/r/ /q/ /w/ 

/H /s/ /z/ 

/C 
/b/ /p/ /m/ 

/em/ 
/I 

/aa/ /ae/ /ah/ /ay/ /eh/ /ey/ /ih/ 
/iy/ /y/ /ao/ /ax-h/ /ax/ /ix/ 

/D /aw/ /J /d/ /l/ /n/ /t/ /el/ /nx/ /en/ /dx/ 
/E /dh/ /th/ /K /g/ /k/ /ng/ /eng/ 

/F 
/ch/ /jh/ /sh/ 

/zh/ 
/S /sil 

 

Table 5.3:  English viseme classes prepared by Bozkurt et al. 

constructed by mapping 43 phonemes into 15 visemes 

Viseme 
Class 

Phonemes Set 
Viseme 
Class 

Phonemes Set 

S Silence  V9 /g/,/ hh/, /k/,/ ng/ 
V2 /ay/,/ ah/ V10 /R/ 

V3 /ey/, /eh/, /ae/ V11 
/l/, /d/,/ n/,/ en/, 
/el/, /t/ 

V4 /Er/ V12 /s/, /z/ 

V5 
/ix/, /iy/, /ih/, /ax/, 
/axr/,/y/ V13 /ch/, /sh/, /jh/, /zh/ 

V6 /uw/,/ uh/,/ w/ V14 /th/, /dh/ 
V7 /ao/, /aa/, /oy/, /ow/ V15 /f/, /v/ 
V8 /Aw/ V16 /m/,/ em/, /b/,/ p/ 

 

ii. Perception Experiments 

The perception based approach focuses on conducting 

perception experiments on human subjects by matching visual speech 
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to audio segments. The works using this approach generally create a 

confusion matrix as a first step for arriving at the viseme set. 

Confusion matrix helps to find the set of phonemes which are visually 

confused by the human subjects and such phonemes are mapped to 

form a viseme [252-253, 92]. The viseme set formed through such 

experiments can model the human perception of visual speech exactly. 

Hence the visual speech synthesis systems using this viseme set can 

produce convincing lip synching experience. The difficulty with this 

approach is the time and the manual labour required for the conduct of 

perception experiments. Creating confusion matrix based on HMM 

based automatic speech recognisers is an emerging alternative 

[254,255].  

iii. Data Driven Approach 

This approach is used for automatically learning the natural 

division among phonemes in the parametric space. Visual features are 

extracted from the mouth region of talking faces and viseme are 

formed by clustering it in the feature space [252]. Various visual 

features have been reported in literature.  Based on the type of 

information embedded in the features, they are broadly classified into 

three groups: appearance-based features, geometry-based features and 

hybrid features [255]. For appearance-based approach, entire mouth 

region is assumed to be carrying relevant information. But it is 

computationally infeasible to use entire pixels in the Region of Interest 

(ROI) for clustering or similar processing. The usual practice is to use 

selected coefficients from any one of the transformed domains. 

Principle Component Analysis (PCA),Discrete Cosine Transform 



 126

(DCT), Discrete Wavelet Transform (DWT), Linear Discriminant 

Analysis (LDA),optical flow based features and Active Appearance 

Model (AAM) coefficients  are the the widely used transforms used for 

viseme set formation [97,255,256,89].  Geometric visual features 

explicitly model speaker’s lip contour and extracts geometrical features 

from it. Height and width and area of mouth, nose to chin distance, 

inner width and height of lip, area of inside mouth, dark region inside 

the mouth etc. are the geometrical visual features that are reported in 

the literature [96]. The visual speech recognisers also operate in one of 

the parametric spaces. Hence viseme set formed through data driven 

approaches are more relevant in visual speech recognition applications.  

5.3 Malayalam Phoneme to Viseme Mapping  

Malayalam language consists of 51 phonemes. The following 

section demonstrate the experimental studies conducted to perform 

phoneme to viseme mappings based on linguistic knowledge, 

perception experiments and data driven methods. The following 

section describes the pre-processing performed on the  MAVSC – IP 

and MAVSC – IW images for various phoneme to viseme mapping 

experiments.  

5.3.1 Visual Speech Data Set Preparation  

The images in the MAVSC – IP and MAVSC – IW data set 

which are introduced in chapter 3 are used for various viseme set 

formation experiments explained in this chapter. The lip region of the 

subset of images from MAVSC – IP and MAVSC – IW data set is 

manually landmarked for feature extraction. To extract geometrical 
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features the lip contour is needed to be accurately marked. The lip 

contour is obtained from the landmark points marked manually on each 

image. Lip contour is defined using 36 shape feature points on the lip. 

20 points are used for marking the outer lip, while 16 land mark points 

defines the inner lip. The image with lip contour marked manually 

using 36 land mark points is shown in figure 5.1.  

 

Figure 5.1. Manual labelling of landmark points in the inner and 

outer lip  

The outer lip is represented by 20 points. Assuming an oval 

shape for lip, points 1,6,11 and 16 corresponds to 4 points, which 

meets two axes. These points are characterised by the presence of 

corners. Four almost equidistant points are marked between each 

pair(1,6),(6,11),(11,16) and (16,1). Similarly for inner lip points 

21,25,29 and 33 are the land mark corner points.  Three almost 

equidistant points are marked between each pair(21,25),(25,29) and 

(29,33).  

Manual land marking is performed on a subset of the data set 

corresponding to 5 speakers from MAVSC-IP and MAVSC-IW 

datasets. Speakers selected from both data sets are made mutually 

exclusive to obtain manually processed data for maximum number of 



 128

speakers.  The image sequences from 10 speakers are used for 

clustering experiments in the parametric space. 

5.3.2 Linguistic Knowledge based viseme mapping  

Malayalam Phonemes are categorised based on the manner, 

organs of articulation and place of articulation. The visual speech 

appearance depends primarily on lip and lower jaw movements.  

Visibility of teeth and tongue is also a contributing factor.  This section 

explores the possibilities of forming a viseme set from the linguistic 

knowledge about the language and its phoneme set. There are many 

phoneme to viseme maps reported for English, and two examples of 

the same are presented in table 5.2 and 5.3. But there are significant 

differences in the phoneme set of English and Malayalam. English 

language consists of 12 vowels, 8 diphthongs and 25 consonants. 

English phoneme set has two additional vowel phonemes compared to 

the 10 vowels in Malayalam, and 6 additional diphthongs compared to 

the 2 diphthongs in Malayalam. Malayalam language has 38 member 

consonant set, of which approximately 20 phonemes can only find a 

matching pair in English phoneme set. The viseme set obtained 

through Malayalam linguistic knowledge and comparison with existing 

phoneme to viseme linguistic map in English is explained bellow.  

Initially, each vowel is assigned to a separate viseme class. But 

monophthongal short and long phonemes of the same vowel is placed 

in the same class, as phoneme duration is considered as the major 

difference between long and short vowels. The two diphthongs are 

assigned to separate viseme classes.  The viseme set for vowels and 
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diphthongs in Malayalam based n  linguistic understanding, is given in 

table 5.4. 

Table 5.4: Malayalam viseme set of vowels and diphthongs 

generated using linguistic knowledge 

Viseme Viseme class description Phoneme set 

Viseme 1 Front, High – Vowel ഇ/i/ ,  ഈ/i:/ 

Viseme 2 Front, Mid – Vowel എ/e/ , ഏ/e:/ 

Viseme 3 Central, Low – Vowel അ/a/ , ആ/a:/ 

Viseme 4 Back, High – Vowel ഉ/u/ , ഊ/u:/ 

Viseme 5 Back, Mid – Vowel ഒ/o/ , ഓ/o:/ 

Viseme 6 Diphthong 1 ഐ/ai/ 

Viseme 7 Diphthong 2 ഔ/au/ 

 

The consonant viseme set is constructed based on the existing 

place of articulation based classification in the language. One of the 

major diffrence in malayalam consonant phonemes with its English 

counterpart is the presence of consonatns characterised as athigharam 

(voice less aspirated) and ghosham (voiced aspirated plosieves). In real 

life situations, voiced aspirated phonemes like ഭ്-/bh/, ധ-്/dh/, ഢ്/ɖh/, 

ഝ്-/ɟh/ and ഘ്-/gh/ are often misinterpreted with the corresponding 

voiceless unaspirated phonemes and some voiceless aspirated 

phonemes (ഥ/ th  / ,ഠ/ʈh/ , ഛ/ch /, ഖ/ kh /) are often confused with 

coresponding voiceless unaspirated phonemes. This observation is 

considered while assigning viseme class for voice less aspirated and 

voiced aspirated phonemes.  
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Viseme 8, the first consonant viseme class is formed from 

bilabial plosives  expect ഫ്/ph/ .വ-va, the only true labiodentals in the 

Malayalam and the bilabial - plosive-voiceless aspirated ഫ്/ph/ are 

placed in the next viseme class with resect to the linguistic 

classifications given in table 5.1 and 5.2. Viseme 10 consists of dental 

consonants which have got the maximum teeth visibility. The velar 

consonants and the only glottal phoneme ഹ-ha are placed in the next 

class based on the linguistic classification strategies adopted in other 

languages. Viseme set 12, 13 and 14 are linguistically characterised as 

alveolar, retroflex and palatal consonants respectively in Malayalam. 

Due to the significant differences in the phoneme set in these 

categories a comparison with English viseme set is found irrelevant  

for these 3 classes of viseme. For example, many phonemes such as 

ര്/r/,റ്/ṛ/ and ഴ്/ʐ/ have no comparable counterparts in English. Many 

phonemes such as സ്/s/(to s as in sir) and ല്/l/ (to l as in lot)which are 

in the same linguistic class in Malayalam are treated differently in the 

construction of  English viseme set. The Malayalam Viseme set 

corresponding to consonant phonemes generated using linguistic 

knowledge  is given in table 5.5. 

  



 131

Table 5.5: Malayalam viseme set corresponding to consonants 

generated from linguistic knowledge 

Viseme Viseme class description Phoneme set 

Viseme 8 
Bilabial - Plosive-voiced 
and voice less unaspirated, 
Nasal 

 
പ്/p/ , മ്/m/, ബ്/b/ , ഭ്/bh/ 

 

Viseme 9 
Bilabial - Plosive-
voiceless aspirated 
And  Labiodental 

 
ഫ്/ph/, വ/്v/ 

 

Viseme 10 Dental 
ത/്t/ , ഥ/്th/ , ദ്/d/ , ധ/്dh/ , 

ന/്n/̪ 

Viseme 11 
Velar 
 
Glottal 

ക്/k/ , ഖ്/kh/ , ഗ്/g/ , ഘ്/gh/ 

, ങ/്ŋ/  

ഹ്/h/ 

Viseme 12 Alveolar 
äv/ṟ/ , ന/്n/ , സ്/s/ , ര്/r/ , റ്/ṛ/ 

, ല്/l/ 

Viseme 13 
 
Retroflex 
 

ട്/ʈ/ , ഠ്/ʈh/ , ഡ്/ɖ/ , ഢ്/ɖh/ , 

ണ്/ɳ/ , ഷ്/ʂ/ , ള/്ɭ/,ഴ്/ʐ/  

Viseme 14 Palatal 
ച/്c/ , ഛ്/ch/ , ജ്/ɟ/ , ഝ്/ɟh/ , 

ഞ്/ɲ/ , ശ്/ʃ / , യ/്y/ 

 

5.3.3 Perception Experiments Based Viseme Mapping  

This is an attempt carried out to model the visual perception of 

Malayalam phonemes by native speakers.  Viseme set is formed by 

identifying how individuals with normal hearing ability perceive 

phonemes [29]. The participants of this experiments include equal 

number of males and females with in the age group of 20 to 35 with 

normal hearing abilities. Visuals of isolated Malayalam utterances are 

shown to such participants without audio.  The participants are 
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requested to record the phoneme as perceived by them. A web based 

frame work is developed to record the responses of participants and to 

conduct subsequent analysis. The web interface of the developed 

framework  is shown in figure 5.2. The results obtained with 

perception experiments conducted with a combined vowel and 

consonant phoneme set are found to be of poor performance. Hence 

perception experiments are conducted separately for vowels and 

consonants. The phoneme to viseme mapping is generated finally  by 

computing the average behaviour of responses recorded by the 

participants.   

 

Figure 5.2: Interface of the web frame work developed for the 
conduct of perception experiments  

The conclusions derived from the perception experiments are 

given bellow. 

i. Out of the total 400 responses from 40 participants, vowels 

recorded a recognition accuracy of 78%.Most of the wrong 

identifications are between short and long phonemes of the 

same vowel. 95% recognition accuracy is recorded for the two 

diphones in Malayalam. So according to the perception 
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experiments, each vowel phoneme and diphone can be 

considerd as a  separate viseme  

ii. The analysis cannot derive a reliable viseme mapping (as in the 

case of vowels) from perception experiments. A variant of 

confusion matrix based approach is used for finding the 

mapping[258]. Confusion matrix finds out the set of phonemes 

which are visually confused by the participants and such 

phonemes are grouped to form a viseme. Mutual confusion in 

this context is defined as phoneme ‘i’ assigned to phoneme ‘j’, 

and phoneme ‘j’ assigned phoneme ‘i’. But due to the way 

native speakers of the Malayalam language learns the alphabet, 

the participants have a tendency of mapping to certain 

phonemes in a group.  In a ‘varggam’, the users show a 

tendency to choose the first phoneme in the 5 member group.  

So phonemes which are correctly identified by more than 75% 

of participants are assigned separate viseme class. Phonemes, 

which are confused to one of these viseme classes in more than 

75% cases is assigned to the corresponding class.  Some 

phonemes shows a totally fractured mapping and cannot be 

assigned to any specific class. The results of the perception 

experiments based phoneme to viseme map for Malayalam 

consonants is shown in table 5. 6. 
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Table 5.6: Perception experiment based phoneme to viseme map 

for Malayalam consonants 

Viseme  Phoneme set 

Viseme 1 ങ/്ŋ/ 

Viseme 2 ച/്c/ , ഛ്/ch/ , ജ്/ɟ/ 

Viseme 3 ഞ് 

Viseme 4 ത/്t/ , ഥ/്th/ , ദ്/d/ , ധ്/dh/ , ന/്n/̪ 

Viseme 5 പ്/p/ , ബ്/b/  

Viseme 6 മ്/m/, 

Viseme 7 ഭ/്bh/ 

Viseme 8 യ/്y/ 

Viseme 9 ഫ്/ph/, 

Viseme 10 വ/്v/ 

Viseme 11 ല്/l/,ര്/r/ ,ള/്ɭ/,äv/ṟ/,റ്/ṛ/  

Unassigned 
Phonemes  

ഝ്/ɟh/ , ശ്/ʃ / ,  

ക്/k/ , ഖ്/kh/ , ഗ്/g/ , ഘ്/gh/ ,  

ഹ്/h/, ന/്n/ , സ്/s/ , ട്/ʈ/ , ഠ്/ʈh/ , ഡ്/ɖ/ , ഢ്/ɖh/ , 

ണ്/ɳ/ , ഷ്/ʂ/ , ഴ്/ʐ/  

 

From table 5.6 it can be seen that the perception experiment 

based approach fails to assign viseme classes to 16 phonemes in 

Malayalam which are listed in the last row of the table.  
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5.3.4 Data Driven Approach based Phoneme to Viseme Mapping  

This section describes the attempts performed to compare the 

viseme set formed using   linguistic and perception based approaches 

with viseme set based on the proposed data driven approach. In data 

driven approach visual features are extracted from the mouth region of 

talking faces and viseme are formed by clustering in the feature space. 

Both geometric features and appearance-based features are used as 

visual cues. The geometrical feature used in this study is computed as 

the distances from centroid to land mark points .The method used for 

labelling the 36 landmark points is already explained in section 5.3. 

Centroid is computed as the mean of 36 landmark points.  

 DCT of the mouth region is the appearance based feature used 

in this work. Hierarchical agglomerative clustering is used to find the 

viseme set by performing clustering in the feature space.  The centroid 

based features are extracted from landmarked images. DCT is applied 

on a rectangular area enclosing the lip defined by the centroid. The 

following section presents a brief explanation of the visual features 

used for data driven approach based viseme set formation.  

a. Centroid to Landmark Point Distance (CLPD) features  

Centroid to Landmark Point Distance (CLPD) feature is the 

geometrical feature used in the study. In general the usual geometrical 

feature set consist of outer lip width,outer lip height,inner lip 

width,inner lip height, outer lip area  and inner lip area. Figure 5.3 

demonstrates the phoneme based variability of these geometric 

features. 
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(a)  

 
(b) 

 
(c) 

Figure 5.3: The variation of geometrical features with respect to 
the 51 phonemes are represented along the x-axis and the y-axis 
shows the measurements in pixels (a). The phoneme based 
variation in lip outer width and height; (b). The phoneme based 
variation in lip inner width and height; (c). The phoneme based 
variation in outer and inner lip area.  

The CPLD feature vector consist of 36 values, which are the 

Euclidian distances measured from centroid to the 36 land mark points 

characterising lip boundary.  This feature, compared to conventional 

width and height information carries much more relevant information 

on the shape of the lip region during utterance. Euclidean distance 
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between centroid and ith cardinal point in each frame 

on the equation 5.1 

Centroid Distance (d

�(��������� − ����������)� + (

Figure 5.4 presents a a box plot 

with respect to all 36 values in the CPLD feature vector used for 

representation of Malayalam phonemes. 

indicates the median with edges that shows

distance variations. Whiskers show the extremes except some outliers 

which are represented by plus signs.

Figure 5.4:  Box plot of landmark point number versus distance (in 
pixels) between centroid and the land mark points corresponding 
to Malayalam Phonemes.  
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point in each frame computed based 

Centroid Distance (di) = 

(��������� − ����������)�     (5.1) 

a box plot that depicts the variation found 

CPLD feature vector used for visual 

phonemes. In the box plot central line 

e median with edges that shows 25% and 75% of the 

Whiskers show the extremes except some outliers 

which are represented by plus signs. 

 

:  Box plot of landmark point number versus distance (in 
id and the land mark points corresponding 
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b. DCT based Feature  

Discrete Cosine Transform (DCT) is the most commonly 

accepted visual feature extraction method proposed by various 

researchers [259]. A two-dimensional DCT of an M-by-N image is 

represented as 

D (i, j) = ∑ ∑ �(�, �)cos (
(����)��

��

�
���

�
��� ) cos (

(����)��

��
)                (5.2) 

where I(i, j) is the grey-scale image of the Region Of Interest(ROI). 

The DCT returns a 2-dimensional matrix having M*N coefficients. 

Most of the visually significant information and hence energy is 

concentrated in a few coefficients  of DCT, which represent the low 

frequency aspect of an image. To avoid the curse of dimensionality, 

these low frequency components are selected in a zig-zag manner 

starting from DCT component D (1, 1).  In this study, the 25 DCT 

coefficients extracted from a rectangular area around the centroid are 

used as the visual feature.  

5.3.5 Hierarchical Agglomerative Clustering (HAC) for Viseme set 

Generation    

Viseme set is formed by performing clustering in the feature 

vector space. The four different feature vectors used for the clustering 

are CPLD features extracted from a single frame representation of a 

phoneme, CPLD features extracted  from five frame representation of   

a phoneme , DCT based features extracted from a single frame 

representation of a phoneme, DCT based features  extracted from five 

frame representation of a phoneme. Clustering experiments are also 
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conducted using the combination of these features.   Hierarchical 

agglomerative clustering [260], where initially each instance is treated 

as a separate cluster to iteratively form a single cluster accommodating 

all instances, is used for the conduct of clustering experiments. Here , 

single linkage clustering is used for merging clusters and Euclidian 

distance measure is used for computing the distance [261].   Single link 

distance between Ci and Cj is the minimum distance between any 

instances in Ci and Cj 

����(��, ��)= ����,�{�(�, �), � ∈ �� ∧ � ∈ ��}                           (5.3) 

The hierarchical agglomerative clustering algorithm used for the 

generation of viseme set is given bellow [260].   

Hierarchical agglomerative clustering Algorithm  

Input : Set of Instances X1, X2.....Xn 

Output : The set of clusters in C  

Step1: Initialise C such that {C1, C2.....Cn} = { X1,X2.....Xn} // each 

instance in a separate    cluster 

Step 2: While (size(C)>1) do 

Step 3 : (min1,min2)  =  ����,� ��������, ���� // min1 and min2 

are the indexes of minimum distance cluster pairs and 

����(��, ��) between cluster Ci and Cj computed as given in 

equation 5.3 

C = C – {Cmin1, Cmin2} 
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C = C ∪{Cmin1Cmin2} 

Step 4: Update the distance measures to reflect new clustering   

Step 5: Repeat step 2 to 4 

5.3.5.1 Experimental Results and Analysis 

Clustering experiments are conducted using HAC algorithm 

with different features. Clustering experiments are conducted by 

varying the number of clusters from 10 to 20. When the number of 

clusters are set below 12, all the front vowels show a tendency to 

cluster in to a single group. When it is set above 14, the grouping 

deviates from the pattern followed in linguistic and perception based 

clustering. The viseme set arrived out of linguistic knowledge and 

perception based clustering as detailed in section 5.4.1 and section 

5.4.2  are compared with viseme set generated based on the data driven 

approach.  Clustering experiments are also conducted by combining 

DCT and CPLD features. The clustering with CLPD and DCT 

combined feature set extracted from 5 frames is found to be closest to 

the visme set formed form linguistic knowledge. The data driven 

viseme set with number of clusters fixed as 14 and 20 for combined 

CLPD and DCT features are given in table 5.7 and table 5.8 

respectively.  
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Table 5.7: The Malayalam viseme set generated out of data driven 

approach by HAC using CPLD and DCT combined  features,with 

number of clusters 14. 

Viseme 
Number  

Phonemes 

Viseme-1 ഷ്-/ʂ/, äv-/ṟ/ 

Viseme-2 ക്-/k/, ഖ്-/kh/, ഗ്-/g/, ഘ്-/gh/, ങ-്/ŋ/, ച്-/c/, ഛ-്/ch/, ജ്-/ɟ/, 

ഝ്-/ɟh/, ഞ്-/ɲ/, ത-്/t/, ഥ്-/th/, ദ്-/d/, ധ-്/dh/, ട്-/ʈ/, ഠ്-/ʈh/, 

ഡ്-/ɖ/, ഢ്-/ɖh/, ണ്-/ɳ/, ശ-്/ʃ /, സ്-/s/ 

Viseme-3 യ-്/y/, ര്-/r/, ല്-/l/, ഹ്-/h/, ള-്/ɭ/, ഴ്-/ʐ/, റ്-/ṛ/, ന-്/n/ 

Viseme-4 ന-്/n ̪/ 

Viseme-5 ഫ്-/ph/ 

Viseme-6 വ-്/v/ 

Viseme-7 ഇ-/i/, ഈ-/i:/ 

Viseme-8 മ്-/m/ 

Viseme-9 പ്-/P/, ബ്-/b/, ഭ്-/bh/ 

Viseme-10 ഐ-/ai/ 

Viseme-11 അ-/a/, ആ-/a:/ 

Viseme-12 എ-/e/, ഏ-/e:/ 

Viseme-13 ഉ-/u/, ഊ-/u:/, ഒ-/o/, ഓ-/o:/ 

Viseme-14 ഔ-/au/ 
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Table 5.8: The Malayalam viseme set generated out of data driven 

approach by HAC using CPLD and DCT combined  features,with 

number of clusters 20. 

Viseme 
Number  

Phoneme 

Viseme-1 ഇ-/i/ 

Viseme-2 ഈ-/i:/ 

Viseme-3 ഢ്-/ɖh/ 

Viseme-4 ഖ്-/kh/, ഗ്-/g/, ഘ്-/gh/, ങ്-/ŋ/, ച-്/c/, ഛ്-/ch/, ജ്-/ɟ/, 

ഝ്-/ɟh/, ഞ്-/ɲ/, ത-്/t/, ഥ-്/th/, ദ്-/d/, ധ്-/dh/, ട്-/ʈ/, ഠ്-

/ʈh/, ഡ്-/ɖ/, ണ്-/ɳ/, ശ്-/ʃ /, സ്-/s/ 

Viseme-5 ഷ്-/ʂ/ 

Viseme-6 äv-/ṟ/ 

Viseme-7 ഹ്-/h/ 

Viseme-8 യ-്/y/, ര്-/r/, ല്-/l/, ള-്/ɭ/, ഴ്-/ʐ/, റ്-/ṛ/, ന്-/n/ 

Viseme-9 ക്-/k/ 

Viseme-10 ഭ്-/bh/ 

Viseme-11 പ്-/P/, ബ്-/b/ 

Viseme-12 ന-്/n̪/ 

Viseme-13 ഫ്-/ph/ 

Viseme-14 വ-്/v/ 

Viseme-15 മ്-/m/ 

Viseme-16 ഐ-/ai/ 

Viseme-17 അ-/a/, ആ-/a:/ 

Viseme-18 എ-/e/, ഏ-/e:/ 

Viseme-19 ഉ-/u/, ഊ-/u:/, ഒ-/o/, ഓ-/o:/ 

Viseme-20 ഔ-/au/ 

 

Clustering is also performed separately for vowel and 

consonant phonemes with CPLD and DCT combined features. When 

the number of clusters is assigned value 7, the vowel phonemes found 
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an exact match with viseme set formed based on the linguistic 

knowledge. The consonant alone viseme set (the number clusters is 

fixed as 10) using combined features(CPLD and DCT) is given in table 

5.9.  

Table 5.9: The Malayalam viseme set formed from consonant 

phonemes generated out of data driven approach by HAC using 

CPLD and DCT combined  features,with number of clusters 10 

Viseme Phonemes 
Viseme-1 ക്-/k/,ഖ്-/kh/, ഗ്-/g/, ഘ്-/gh/, ങ-്/ŋ/ 

Viseme-2 ച-്/c/, ഛ-്/ch/, ജ്-/ɟ/, ഝ്-/ɟh/, ഞ്-/ɲ/, 

Viseme-3 ത-്/t/, ഥ്-/th/, ദ്-/d/, ധ-്/dh/, ട്-/ʈ/, ഠ്-/ʈh/, ഡ്-/ɖ/, ഢ്-

/ɖh/, ണ്-/ɳ/, ശ-്/ʃ /, സ്-/s/ 

Viseme-4 ഭ്-/bh/ 

Viseme-5 പ്-/P/, ബ്-/b/ 

Viseme-6 ഷ്-/ʂ/, äv-/ṟ/ 

Viseme-7 യ-്/y/, ര്-/r/, ല്-/l/, ഹ്-/h/, ള-്/ɭ/,  ഴ്-/ʐ/, റ്-/ṛ/, ന-്/n/,ന-്

/n̪/ 
Viseme-8 ഫ്-/ph/ 

Viseme-9 വ-്/v/ 

Viseme-10 മ്-/m/ 

 

The viseme sets obtained using linguistic knowledge (Table 

5.5), perception experiments (Table 5.6) and clustering experiments 

are analysed in detail to frame a reliable phoneme to viseme map in 

Malayalam, which can be used for visual speech synthesis 

applications. The final Malayalam viseme set thus obtained is given in 

table 5.10.  The vowel and diphone visme set obtained from linguistic 

and data driven approaches is exactly same. Most of the users 
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participated in perception experiments can discern between long and 

short vowels of the same vowel phoneme. This fact has not been 

considered in arriving at the final vowel viseme set, as duration is 

observed to be the main factor which helped users to identify between 

long and short vowels.  

Table 5.10: The final viseme set for vowels and diphthongs in 

Malayalam for the use of visual speech synthesis applications 

Viseme  Viseme Class Malayalam Phoneme 

Viseme 1 Front, High – Vowel ഇ/i/ ,  ഈ/i:/ 

Viseme 2 Front, Mid – Vowel എ/e/ , ഏ/e:/ 

Viseme 3 Central, Low – Vowel അ/a/ , ആ/a:/ 

Viseme 4 Back, High – Vowel ഉ/u/ , ഊ/u:/ 

Viseme 5 Back, Mid – Vowel ഒ/o/ , ഓ/o:/ 

Viseme 6 Diphthong 1 ഐ/ai/ 

Viseme 7 Diphthong 2 ഔ/au/ 

 

The final consonant viseme set is obtained by updating viseme 

set obtained using linguistic knowledge (Table 5.5) using relevant 

observations from viseme set obtained using other two approaches. 

The consonants മ്/m/, ഭ്/bh/ , ഫ്/ph/ and വ/്v/  are assigned to separate 

viseme classes, both in perception experiments and data driven 

clustering. Hence they are assigned separate viseme class in the final 

viseme set. This is a significant change from the viseme set formed 

from linguistic knowledge. No other significant change from linguistic 

knowledge based mapping shows a similar uniform behaviour in 

perception based and data driven approaches. Hence linguistic 
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knowledge based mapping is adopted for remaining phonemes. The 

final consonant viseme set with 12 members is given in table 5.11. 

Table 5.11: The final viseme set for consonants in Malayalam for 

the use of visual speech synthesis applications 

Viseme Set Viseme Class Phoneme 

Viseme 8 
Bilabial - Plosive-
voiced and voice less 
unaspirated, Nasal 

 
പ്/p/ , ബ്/b/ ,  

Viseme 9 
Bilabial - Plosive-
voiced and voice less 
unaspirated, Nasal 

മ്/m/, 

Viseme 10 
Bilabial - Plosive-
voiced and voice less 
unaspirated, Nasal 

ഭ/്bh/ 

 

Viseme 11 
Bilabial - Plosive-
voiceless aspirated 
And  Labiodental 

 
ഫ്/ph/ 

Viseme 12 
Bilabial - Plosive-
voiceless aspirated 
and Labiodental 

വ/്v/ 

 

Viseme 13 Dental 
ത/്t/ , ഥ/്th/ , ദ്/d/ , ധ്/dh/ , 

ന/്n/̪ 

Viseme 14 
Velar 
 
Glottal 

ക്/k/ , ഖ്/kh/ , ഗ്/g/ , ഘ്/gh/ 

, ങ/്ŋ/  

ഹ്/h/ 

Viseme 15 
Alveolar 
 
 

äv/ṟ/ , ന/്n/ , സ്/s/ , ര്/r/ ,  

റ്/ṛ/ , ല്/l/ 

Viseme 16 
 
Retroflex 
 

ട്/ʈ/ , ഠ്/ʈh/ , ഡ്/ɖ/ , ഢ്/ɖh/ , 

ണ്/ɳ/ , ഷ്/ʂ/ , ള്/ɭ/, ഴ്/ʐ/  

Viseme 17 
 
Palatal 

ച/്c/ , ഛ്/ch/ , ജ്/ɟ/ , ഝ്/ɟh/ , 

ഞ്/ɲ/ , ശ്/ʃ / , യ/്y/ 
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The next section describes the results of allophone to viseme 

mapping using data driven methods with combined feature set.  

5.4 Allophone to Viseme Mapping  

Defining the viseme set in a language is the principal 

foundation in visual speech synthesis and recognition applications. 

Malayalam viseme set generated by performing phoneme to viseme 

mapping using linguistic knowledge, perception based and data driven 

techniques are discussed in the previous sections. But the Phenomenon 

of visual co-articulation creates visible differences while uttering the 

same phoneme in different contexts. Both backward and forward co-

articulation are observed in visual domain. The lip rounding for final 

phonemes for the word ‘boots’ is an example of backward visual co-

articulation, while the lip rounding happening for the initial phonemes 

during the utterance of the word ‘school’ is an example of forward or 

anticipatory co-articulation. The existence of a phoneme in various 

visual representations is an established fact [250]. This contextual 

variability demands a many to many phoneme to Viseme map.  Many 

attempts have been reported in literature to theoretically model visual 

co articulation effects [262-263,214]. Pichara et al. in a study using 

Vowel Consonant Vowel (VCV) utterances of hearing impaired and 

normal human subjects established visual co-articulation effects in 

identifying consonants [264]. A. P. Breen et.al used visual database of 

tri-viseme to model visual co-articulation for mouth shape 

generation[265].  
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The contextual phoneme variations in Malayalam are modelled 

using allophonic characterisations. The allophonic characterisations 

and allophonic transciptors of the language is already discussed in 

Chapter 3. Allophone based many to many phoneme to Viseme 

mapping is attempted for many languages. Many works considers an 

allophone set as a finer subdivision on phoneme set. Some consonant 

phonemes are further categorised as rounded consonants or widened 

consonants according to the vowel context [11-12]. There are methods 

of using machine learning approaches to compute the allophonic 

variations in the visual domain [266].Most of the contextual variability 

in Malayalam is accommodated in the allophone characterisation 

which are unique to the language. Hence a many to many phoneme to 

viseme mapping is also attempted in this work using the allophone set 

defined in chapter 3.  In this study, a novel attempt is made to perform 

allophone to viseme mapping using data driven approach with 

combined  DCT and CPLD  feature set extracted from 5 frames for a 

phoneme.  Hierarchical Agglomerative Clustering (HAC) is used to 

derive the mapping.  Instead of fixing the number of viseme (as in the 

phoneme to viseme mapping), the number of visemes is decided based 

on the natural clustering in the feature space.  

Dendogram analysis performed on the hierarchical clustering 

tree is the method used for understanding the clustering pattern in the 

parametric space. A hierarchical clustering tree is visualised using a 

dendogram, where the instances are represented as leaf nodes. Moving 

up from the leaf to root node the sequence of merges leading towards a 

single cluster has been traced. The intermediate nodes express the 
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proximity between data instances. The height quantifies the distance 

between instances and formed clusters. Dendogram analysis can bring 

out the natural clustering within the data. The height difference 

between two successive layers can be taken as a clue for natural 

division. If the height difference between two layers is small it 

indicates the absence of natural division between joined sets at this 

level. If the height difference is significant between successive levels 

the scenario pinpoints a natural division. In a dendogram X – axis 

represents objects or clusters and Y- axis represents distance or 

dissimilarity between objects and clusters. The natural division is 

performed based on the computation of inconsistency coefficient, 

which quantifies the height difference between successive levels in a 

hierarchy. The value of inconsistence coefficient of a link in a tree 

measures the difference in height of the link with the average height of 

the links bellow it [261]. A high value of inconsistency coefficient 

indicates a natural division at that level. The natural clusters obtained 

after clustering using inconsistency coefficients for vowel allophones 

is shown in table 5.12 and table 5.13 shows similar results obtained for 

consonant allophones. Dendogram analysis is implemented using 

Matlab toolbox.   
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Table 5.12: Malayalam viseme set formed from the vowel 

allophones based on natural clustering with CPLD and DCT 

combined features  

Viseme set Allophones 
Viseme-1 Cþ-C¶v-[in̪n̪ə], ഇ--വടി-[vaʈi], ഈ-ഈണം-[i:ɳam], 

ഈ-ചീര-[ci:ra] 

Viseme-2 ഇ- Nn{Xw -[citram], ഉ-അത-്[atə], ഉ-കൃഷി-[kṛɯvʂi] 

Viseme-3 എ- ]ns¶-[pinne] 

Viseme-4 അ-അല-[ala], ആ- \msf-[na:ɭe], എ- FhnsS-[eviʈe] 

Viseme-5 ഏ- thWw -[ve:ɳam] 

Viseme-6 ആ-കാലം-[ka:lam] 

Viseme-7 ഉ-പാല്-[pa:l] 

Viseme-8 ഉ- D¨-[ucca], ഉ- \n¶p-[nin̪n̪u], ഉ- Idp¸v-[kaṛuppə], ഉ- 

Ip«n -[kuʈʈi], Du- þ Dua-[u:ma], ഊ- Iqa³-[ku:man], ഒ-

ഒരുമ-[oɾuma], ഒ- sImSn -[koʈi], ഓ- Hmc v̄ [o:ṛttə], 

ഓ-t]mbn-[po:ji], ഔ-ഗൗരവം-[gauravam] 

Viseme-9 ഏ-G«³-[e:ʈʈan], ഏ-]pdtI-[puṛake:], ഐ-ssX-[tai], 

ഐ-s\bv-[daja] 

Viseme-10 അ-hc¨p-[varaccu], എ-shfp¯-[veɭutta] 

 

From table 5.12, it can be seen that 10 viseme classes are 

formed from the vowel allophones after natural clustering using 

combined CPLD and DCT features.  It can also be observed that  

allophones of same phoneme are present in  different clusters for many 

vowels.  
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Table 5.13: Malayalam viseme set  formed from the consonant 

allophones based on natural clustering with CPLD and DCT 

combined features  

Viseme Set Allophones 
Viseme-1 ഖ്-tcJ-[re:Kha], ങ്- þ am§-[ma:ŋŋa], Mvþ-s]-§Ä-

[peŋŋal, ഠ്-കഠിനം-[kaʈʰinam] 

Viseme-2 ശ-്tiഷം-[ʃe:ʂəm] 

Viseme-3 ത-്N´-[canta] 

Viseme-4 ന-്Ah\v-[avən] 

Viseme-5 ട്-h­n-[vaɳʈi] 

Viseme-6 ക്-XÀ¡w-[taṛkkam] 

Viseme-7 ന-്NnÓw-[cihnam] 

Viseme-8 ക്-I -̈hSw-[kaccavaʈam], ഖ്-tJZw-[Khe:dam],  ച്-ചായ-

[ca:ja], ഛ-്ഛായ-[cʰa:ja], ജ്-ജാതി-[ɟa:ti], ഝ്-ഝഷം-

[ɟʰaʂəm], ഞ്-R§Ä -[ɲaɲɲaɭ], ട്-കുട-[kuʈa], ത-്തിര-

[tiɾa], ദ്-ap{Z-[mudɾa], ധ-്ധാരാളം-[dha:ra:ɭəm] 

Viseme-9 ഠ്-കുഷ്ഠം-[kuʂTʰam] 

Viseme-10 ഡ്-പണ്ഡിതന്-[pʌɳɖiðan] 

Viseme-11 ക്-F¦nev-[eŋɡil] 

Viseme-12 ത-്നെയ്തു-[nejtu] 

Viseme-13 ഥ-്AÀ°w-[aṛtham] 

Viseme-14 ര്-cm{Xn-[ɾa:tṛi] 

Viseme-15 ട്-h«w-[vaʈʈam] 

Viseme-16 ദ്-ദയ-[daja] 

Viseme-17 യ-്bm{X-[ja:tṛa] 

Viseme-18 ഘ്-BtLmjw-[a:ɡho:ʂam], ന-്tNÀ¶p-[ce:ṛnnu] 

Viseme-19 ക്-£oWw-[kʂi:ɳam], ഗ്-ഭംഗി-[bhaŋgi] 

Viseme-20 ഹ്-സഹായം-[saha:jam] 

Viseme-21 ട്-Sn¸p-[ʈippu] 

Viseme-22 ഖ്-മുഖം-[mukham] 

Viseme-23 ന-്\Ã-[n ̪alla] 
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Viseme-24 ക്-Nncn¡p-[ciɾikkju:], 

Viseme-25 ണ്-പണം-[paɳam] 

Viseme-26 ങ-്tX§-[te:ŋŋa] 

Viseme-27 ഹ്-നമഃ-[namaH] 

Viseme-28 ഗ്-ഗാനം-[ga:nam], റ്-{]iv\w-[pṛaʃnam] 

Viseme-29 ല്-temIw-[lo:kam], വ-്kÀhw-[saṛvam 

Viseme-30 വ-്Pzme-[ɟwa:la] 

Viseme-31 ഢ്-ഗൂഢം-[ɡu:ɖʰʌm] 

Viseme-32 മ്-സംവരണം-[samwaɾaɳam] 

Viseme-33 ക്-പകല്-[paɣal], ങ-്]S-h-e§-[paʈavalaŋŋa], ച-്

വാചകം-[va:c ̬akam], ച്-k©n-[saɲɟi], ച-്hfÀ¨-

[vaɭaṛCa], ഛ-്AÑ\v-[aCʰacn], ജ്-cmPyw-[ɾa:ɟjam], ത-്

kXyw-[satjam], ഷ്-ഭാഷ-[bha:ʂa], സ്-a\Êv-[manassə], ള-്

മകള-്[maɣaɭ], ഴ്-മഴ-[maỵa], äv-Fsâ-[enr̠e], ä-sXäv-[ter ̠r̠ə] 

Viseme-34 ങ-്s]m§pw-[po:ŋŋum], പ്-പകുതി-[pakuti], പ്-

ഉപകാരം-[uβaka:ram], പ്-Xp¼-[tumpa], പ്-XoÀ¸v-

[ti:ṛppə], ഫ്-ഫലം-[phaləm], ബ്-AÀ_pZw-[aṛbudam], 

ബ്-_m¡n-[ba:kki], ഭ്-`mcy-[bha:ɾja], മ്-{_mÒW³-

[bɾa:mhaɳan], മ്-HmÀ½-[o:ṛma], മ്-മരം-[maɾam] 

 

The Malayalam consonant allophones are mapped to 34 viseme 

classes after performing natural clustering. Most of the allophones of 

the labial consonants are accommodated in a single viseme class. This 

is in contrast to the clustering behaviour of isolated phoneme 

utterances of labial consonants. As in the case of vowels, the 

allophones of many consonant phonemes are mapped to different 

viseme classes. This shows the relevance of allophone based mapping 

in the visual speech processing of Malayalam language.  
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5.5 Conclusion  

This chapter derived the process of development of  Malayalam 

viseme sets using different approaches. Phoneme to Viseme maps are 

developed based on linguistic knowledge, perception experiments and 

data driven clustering methods. Centroid to land mark points distances 

based geometric features of lips and Discrete Cosine Transform(DCT) 

coefficients  of lip area are the visual features used for clustering. The 

final phoneme to viseme map, with 17 members is formed by 

comparing viseme sets obtained using three approaches. More research 

in all the three methods have potential scope for improvement in the 

visme set. Many to many phoneme to viseme maps are generated using 

data driven approach by exploiting the well-defined allophone set in 

Malayalam. Designing perception experiments for allophone to viseme 

mapping is a possible future work in the area.  
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Chapter 6 

Mouth region Analysis and Lip 
Segmentation from Talking Frontal Face 

Images 

 

6.1 Introduction  

Facial feature extraction and analysis is an active research area 

with potential applications in computer vision, visual speech 

recognition, data driven animation and automatic sign language 

processing. Mouth motion accounts for the prominent non-rigid facial 

motion, especially during talking. Synthesis of head, eyes and mouth 

movements in a realistic and expressive manner is the most appealing 

aspect of animated characters and virtual agents. These movements 

reflect the internal state of characters, which decides the level of 

engagement with the audience. Earlier approaches used markers and 

sensors for tracking target regions, which is retargeted to a synthesis 

framework. Automatic video analysis frameworks are employed for 

face synthesis in many applications [166, 267, 268]. In these models 

the targeted region is extracted and its features are rendered to 2-d or 

3- d animated models.  In their work, Hadi Seyedarabi et al. track 

facial characteristic points to generate facial emotions [269]. Systems 

with low cost sensors for facial tracking and subsequent retargeting to 

animated figures are also coming up [270, 271].  Development of 

personalized character animations, mimicking the minute features of 

individuals with real time tracking techniques is an emerging area of 
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application[270]. An analysis synthesis framework for facial motion 

animation, especially lip motion synthesis for speech animation is an 

emerging research topic [272,166,267,273]. Attempts are also made to 

track facial expression for imparting expressions to animation 

characters [269].  

Nowadays Automatic Speech Recognition (ASR) has changed 

its mode of operation from audio-only speech recognition System to 

Audio-Visual Speech Recognition System (AV-ASR). The 

performance of Audio-only ASR degrades drastically in the noisy 

environment [274-275]. In the light of this fact researchers in this field 

have incorporated the visual information with its audio counterpart 

which improves the robustness by providing complementary 

information [276-277]. Human’s major visual speech information is 

provided by the lower part of the face, especially the mouth region. 

The reliability of a visual speech recognition system deeply depends on 

the accurate tracking of mouth. The statistical modeling of mouth 

region pixels is important both for visual speech analysis and speech 

synthesis. Such an analysis is not performed adequately in the context 

of the color tone of Indian subcontinent. This chapter discusses 

detailed statistical and probabilistic analysis of the pixel intensities in 

the mouth region comprising of skin, lip, teeth, tongue and inner mouth 

cavity. The analysis is performed in RGB, Normalized RGB, HSV, 

CIE La*b*, and YCbCr colour models. A 5 class Bayesian classifier is 

designed to test the distinguishing power of mouth region pixels in 

different colour spaces. The 15 color components are ranked based on 

the performance of Bayesian classifier on each colour component. 
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Results of ranking based on overall classification performance and 

region wise classification performance are reported separately.   

Lips are the most dynamic visible articualtory organs of human 

speech productions system. Lip based features are used most 

frequently for visual speech recognition applications. The idea used in 

this work for lip segmentation is to represent inner and outer lip 

contours using 36 shape feature points and train the system to find 

these landmark points. Active Shape Model (ASM) and Convolution 

Neural Network (CNNs) are used to perform lip segmentation using 

this approach. Training and testing are executed on MAVSC- IP and 

MAVSC-IW data sets. ASM is usually performed on the gray scale 

images. In this work ASM training and searching are carried separately 

for top performing color components identified in the Bayesian 

classifier based study. H of HSI color model is found to be performing 

best in finding the landmark points. The segmented images using ASM 

in a single speaker mode are used for training neural networks and for 

training the visual speech synthesizer.  

Deep neural networks are widely used for solving computer 

vision problems such as object tracking [278]. But the concept is rarely 

used for tracking lips from frontal face talking images. In this work a 

CNN is designed to segment the inner and outer lip contour using land 

mark localization technique. The proposed CNN architecture with 6 

convolution layers is finalized after experimenting with different 

network parameters. Rest of the chapter is organized as follows. After 

the introduction in section 6.1, section 6.2 discusses the mouth region 

pixel analysis and multiclass Bayesian classifier. Section 6.3 explains 
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ASM based lip land mark localization with experimental results. 

Section 6.4 discusses the theoretical aspects of CNN and its adaptation 

for lip tracking with experimental results. Section 6.5 concludes the 

work with future research directions.  

6.2 Mouth region analysis in different Colour Spaces  

Mouth area mainly consists of lip, skin neighborhood of lips, 

teeth, tongue and dark portions of mouth cavity. The range of human 

skin colour varies from white to black with discernable complexions 

including yellow, copper coloured and olive coloured [279]. The 

difference is primarily due to melanin content which varies greatly 

with ethnicities. The lip colour harmonizes with the background skin 

colour making lip segmentation using colour information quite difficult 

[280]. There are studies exploring the correlation of teeth colour with 

skin colour for various ethnicities [281]. So, while performing studies 

on colour based segmentation of skin or lip, researchers ensure the 

presence of images representing different ethnicities [282, 283, 284]. 

But the images selected are mostly of African, Mongolian and Anglo-

Saxon ethnic groups. The wide ethnic and skin colour variability in 

Indian subcontinent is not addressed properly. This work performs the 

statistical and probabilistic analysis of mouth region pixel colors in 

Indian context for different color spaces. The results of analysis are 

incorporated to a multiclass Bayesian classifier for ranking the color 

components according to its effectiveness in segmenting different 

mouth regions. The conclusions derived from this work can be used for 

developing effective visual speech synthesis and recognition systems 

which incorporate the colour ethnic peculiarities and conditions of 



 157

Indian subcontinent.   Even though lip segmentation and tracking have 

been studied deeply, only very few works have addressed the problem 

of segmenting different mouth regions including teeth and tongue. 

Tongue segmentation is addressed recently in some works, especially 

for applications related to traditional Chinese medicine [129-133]. Lip 

segmentation attempts can be broadly classified into two classes, 

namely Model based approach and Colour based approach [134]. In 

model based approach, mathematical models of lip contour are used as 

a set of model parameters for lip segmentation.  Active shape and 

appearance model, snake model and deformable templates are widely 

used methods in this category [159,163]. In colour based approach, the 

colour triplet values of skin and lip pixels are used as the basic 

information for segmentation [291-293,144,294]. 

Lip, tongue, teeth and skin colour of human beings greatly vary 

with ethnicity. In Indian context the contrast between lip and skin 

colour is found to be low compared to other ethnicities. Statistical 

analysis of mouth region pixel colours in Indian context is an urgent 

requirement for developing native tools in the domain of visual speech 

recognition and synthesis. This work is an attempt towards this 

direction. Colour can be represented in different colour spaces such as 

RGB, normalized RGB, HSI, CIE Lab and YCbCr. The discriminating 

power among mouth regions is different for different colour spaces.  

Selection of optimum colour space which performs segmentation 

process effectively is still being actively debated among researchers. 

The optimum colour space is also varies depending on the colour 

properties of the population or ethnicity. The statistical analysis of 
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pixels in skin and lip region of peoples in Indian subcontinent is 

performed in 5 different colour spaces. From the detailed review 

reported in chapter 2 on skin, lip and other mouth area segmentation, it 

is evident that there are 5 colour spaces which are most frequently used 

and reported to be most effective for the purpose. The following 

section describes the properties ofthese 5 colour spaces including 

RGB, Normalized RGB, HSV, CIE La*b*, and YCbCr which are used 

for this study. 

6.2.1 Properties of Different Colour Spaces 

 A colour space is a mathematical representation of a set of 

colours. Most of the colour spaces are derived from the RGB colour 

space. Different colour spaces are suitable for different image 

processing applications. RGB, Normalized RGB, HSV, CIE La*b*, 

and YCbCr are the five colour spaces considered in this study. 

a) RGB Colour Space 

RGB colour space is the simplest and most widely used method 

in computer graphics. Luminance of a given RGB pixel is a linear 

combination of the R, G and B values. High correlation between 

channels, significant perceptual non-uniformity and mixing of 

chrominance and luminance data make RGB a bad choice for colour 

analysis and colour based recognition algorithms 

b) Normalised RGB Colour Space  

 Normalised RGB is invariant to changes of surface orientation 

relative to the light source [295]. The normalised RGB values  are 
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represented as r, g, and b .These values are obtained by a normalisation 

procedure as shown bellow. 

r =
�

�����,   
, g =

�

�����
 , b =

�

�����
                 (6.1) 

c) HSV Colour Space 

Hue, Saturation and Value (HSV) colour space is a non-linear 

transformation of RGB colour space into a cylindrical coordinate 

representation. Hue is the wavelength at which the enegy is maximum 

or the colour of the pixel is most prominent. Saturation is the slope of 

the bandwidth curve around the central maximum[296]. This class of 

colour model is the most intuitive or artistic way of describing a 

colour. This model is closest to the way humans percvieve colour. 

Hence it is the most widely used model in computer vision 

applications. Jim et al. gives detailed algorithm for converting from 

RGB to HSV [297]. 

d) CIE L*a*b* Colour Space 

In La*b* the ‘L’ channel represents the human perception of 

luminosity and the ‘a*’ and ‘b*’ components provide colour 

information.  The range of L channel varies between black and white 

and the channel ‘a*’ varies from red to green similarly channel ‘b*’ 

varies from blue to yellow. It encodes the perceptual difference in 

colours when viewed by humans [298]. 
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e) YCbCr Colour Space 

In YCbCr, the gray scale information is carried by the ‘Y’ 

component and colour information is provided by two colour channels, 

Cband Cr. Cb is obtained as the difference between blue component 

and a reference value and Cr is obtained as the difference between red 

component and a reference value. The Y value is obtained as a 

weighted sum of R, G, and B triplet [298]. 

6.2.2 Visual Speech Database Pre-Processing  

 The lip landmarked images taken from the MAVSC- IP and 

MAVSC-IW are used for analysis and classification experiments.The 

colour information from around one billion pixels belonging to face 

images of 10 speakers is used. The teeth and tongue regions inside the 

inner lip portion are segmented using a semi-automatic thresholding 

technique. The threshold for teeth and tongue are fixed separately for 

each speaker, through user intervention. A mask is created for each 

image in  the data base with separate labels for skin, lip, tongue, 

teeth and inside mouth dark region (with corresponding labels 

0,1,2,3and 4 respectively). Background pixels are eliminated by 

selecting a rectangular window based on the centroid of land mark 

points. The cropped images and the mask with labels are employed for 

performing statistical analysis of different regions. Figure 6.1 shows 

the output images and mask after preprocessing for two different 

images in the database. The images in the second column display the 

image mask with separate labels for skin, lip, tongue,teeth and inside 

mouth dark regions.   
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Figure 6.1: Sample images and corresponding mask image after 

pre-processing  

6.2.3. Statistical Analysis of Colour Properties of Pixels of 

Mouth Regions 

This section consolidates the statistical analysis performed on 

the images for understanding the colour properties of different mouth 

regions. Better understanding of the colour properties will help the 

development of mouth region segmentation tools adapted to the colour 

peculiarities of Indian subcontinent.  The colour information can also 

be used for developing native speech animation applications. The 

properties of 15 colour components(from five colour spaces) in five 

different mouth regions is performed on the images from MAVSC- IP 

and MAVSC-IW datasets. Statistical properties including mean, 

standard deviation, class conditional probabilities and prior 

probabilities are estimated for pixels in each region. Other than skin, 

lip, tongue and teeth a separate class is employed to dark pixel region 

inside the mouth cavity. The statistics is obtained after analysing pixels 

in the mouth region images captured from 10 speakers.  Table 
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6.1shows the mean and standard deviation of colour components 

belonging to 5 colour spaces obtained from 5 different mouth regions.  

Table 6.1: Mean and standard deviation of mouth regions in 15 

colour components from 5 different colour spaces 

Colour 
Compo

nent 

Mean Standard Deviation 

Skin Lip Teeth Tongue Dark Skin lip Teeth 
Tongu

e 
Dark 

 HSV  
H 0.116 0.682 0.564 0.770 0.865 0.370 0.353 0.045 0.079 0.095 
S 0.131 0.134 0.137 0.125 0.238 0.024 0.041 0.043 0.031 0.088 
V 0.521 0.513 0.737 0.522 0.289 0.054 0.088 0.136 0.106 0.110 

La*b* 
L 53 49.48 71.01 50.52 25.86 5 7.68 12.74 10 11.63 
a* 128.75 135.3 123.3 135.5 135.7 4.01 3.44 4.39 2.58 2.85 
b* 134.29 127.8 120.6 121.6 125.5 3.88 2.47 2.94 2.32 2.47 

RGB 
R 133 130.6 157.6 129.1 72.6 13.8 22.6 25.5 25.85 28.91 

G 125.8 113.8 177.9 
117.0

4 
58.4 12.8 18.4 36.13 25.04 26.03 

B 115.64 118.2 187.6 131.8 66.09 12.11 20.12 34.73 27.63 26.45 
Normalised RGB 

R 0.3556 0.360 0.302 0.342 0.374 0.006 0.011 0.010 0.008 0.026 
G 0.359 0.314 0.338 0.309 0.289 0.013 0.008 0.009 0.008 0.019 
B 0.3088 0.325 0.359 0.348 0.336 0.010 0.008 0.009 0.008 0.019 

YCbCr 
Y 108.93 102.5 148.5 105.0 54.59 10.77 16.80 28.32 21.86 22.96 
Cb 122.45 127.3 135.1 132.4 129.1 3.01 1.98 2.81 2.11 1.55 
Cr 131.85 134.9 118.4 132.0 133.5 2.26 3.19 5.05 2.17 2.67 

 

RGB and YCbCr are defined in the 0- 255 range, while HSV 

and nRGB are defined in the range 0 - 1.  In La*b* colour space L is 

defined over the range 0 - 100 and a* and b* is defined in the range 0 – 

255. The dynamic range of mouth region pixels is below 50% of the 

possible range for all components in the RGB space. But the hue 

component of HSV space encompasses more than 75% of the possible 

range which is the maximum of all colour components. The class 
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conditional probabilities and prior probabilities of different mouth 

region pixels are also estimated for 15 colour components. The 

estimated values are used in naive Bayesian classification discussed in 

the section 6.2.4. The class conditional probability distribution of 

different mouth regions for the Hue component in the HSV colour 

space and Cr component in the YCbCr is shown in figure 6.2 and 

figure 6.3 respectively.  

 
Figure 6.2: Class conditional probability of H Component of HSV 

 

Figure 6.3: Class conditional probability of Cr Component of 
YCbCr(Normalised in the 0 – 1 range ) 
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 In the distribution of H component, teeth representing pixels 

have a distinct domain represented by blue colour in the figure 6.2, 

while lip pixels have colour presence in both low and high values of 

the spectrum. From the figure it is clear that, there is considerable 

overlap in the teeth, tongue and mouth cavity pixels in this colour 

space. The distinctiveness of teeth pixels is repeated in Cr values also, 

but the dynamic range of Cr values is comparatively small. In order to 

rank the effectiveness of colour components for practical purposes 

such as segmentation more objective evaluations are needed. The 

following section describes the performance evaluation of different 

colour components for mouth region classification implemented using 

naive Bayesian approach.  

6.2.4 Mouth region Segmentation based on Bayesian Classifier 

A 5 class Bayesian classifier is designed to test the 

distinguishing power of mouth region pixels in different colour spaces. 

Skin, lip, tongue, teeth and dark pixel region inside mouth cavity are 

the 5 visually different areas in the mouth region. The class conditional 

probabilities and prior probabilities computed from the MAVSC-IP 

and MAVSC-IW training dataset are used for the implementation of a 

multiclass Bayesian classifier for mouth region pixel classification. 

The detailed description of the proposed Bayesian classifier is given in 

following section.  

Naive Bayesian Classifier 

Bayesian classification has a training phase which computes the 

class conditional probability or likelyhood for each class and the prior 
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probability for each class. Bayesian classification has been employed 

for solving skin and lip segmentation problems [115,299,300,301].  

The idea is to divide the colour space in to histogram bins, where each 

bin stores the count corresponding to the occurrence of that colour in 

the training database. The counts are converted into class conditional 

probability measures. In this work, Bayesian classification is attempted 

to label each pixel either as skin, lip, teeth, tongue or dark region pixel 

inside the mouth cavity. Let wi’s be the set of classes (in this case 5 

mouth regions) and x is the colour value of the current pixel, Bayes’ 

theorem calculates the posterior probabilityP�
w�

x� �, the probability of 

observing the ith mouth region, given a  colour value x : 

��
��

�� � =
���

��� �.�(��)

�(�)
                          (6.2) 

P�x
w�� � is the class conditional probability or likely hood,P(w�) is the 

prior probability for each class (both calculated from the training data) 

. As p(x) is the same for all classes, it is neglected and classification is 

based only on the value in the numerator of equation (6.2) [302].  A 

pixel with colour value x is assigned a label (representing the class 

membership) computed using equation (6.3) 

����� = ������
� ����

��� �. �(��)�  (6.3) 

In the testing phase a mask is created corresponding to each image, 

where each pixel is assigned a label based on its identified class. 

Figure 6.4 shows the image and the mask obtained after Bayesian 

classification on an image which is not in the training set.   
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Figure 6.4: Original image and image mask created using 
Multiclass Beyesian Classifier in b* Colour Component of La*b* 

space 

. 

The mask thus obtained for 15 colour components can be 

compared with the ground truth mask prepared as part of pre-

processing. Region wise and overall classification accuracies are 

computed by comparing the mask obtained from Bayesian 

classification and ground truth mask. 

 Performance Evaluationof Mouth Region Pixel Classification  

The selection of colour space is crucial for discriminating 

different mouth regions. The objective of this work is to identify the 

optimal colour component for classifying mouth regions pixels in the 

context of skin tone of the Indian subcontinent.  The performance of 

the multiclass segmentation in different colour spaces is compared. 

The segmented image mask obtained using Bayesian classification is 

used for comparison. The accuracy of classification is computed 

separately for each region by comparing with the ground truth mask. 

The 15 colour components are arranged according to their region wise 

performance in table 6.2. From the table it can be seen that, the overall 

performance and tongue segmentation performance is best for hue 

component in the HSV colour space. Lab –a for skin, nRGB – G for 
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lip, YCbCr – Cr for teeth and RGB- R for dark regions inside mouth 

cavity are other toppers in the list. The classification 7 accuracy is 

found to be lowest for tongue segmentation. Figure 6.5 is the graphical 

representation of overall segmentation accuracy of different colour 

components. 

Table 6.2:The 15 colour components are arranged according to 
their region wise classification performance 

Over all Skin Lip Teeth Dark Tongue 

HSV – H Lab – a nRGB – G HSV-H RGB – R HSV – H 

Lab – b RGB – G nRGB – B YCbCr - Cr YCbCr – Y Lab – b 

Lab – a YCbCr – Y YCbCr – Cb nRGB - R HSV – S Lab – a 

YCbCr – Cb Lab – L Lab – b nRGB - B Lab – L RGB – G 

RGB – G Lab – b HSV – H YCbCr - Cb RGB – G YCbCr – Cb 

nRGB – G RGB – R Lab – a Lab – b RGB – B nRGB – G 

YCbCr – Y HSV – H RGB – G RGB – B nRGB – G YCbCr – Y 

Lab – L HSV – S YCbCr – Cr Lab – a nRGB – B Lab – L 

nRGB – B YCbCr – Cr nRGB – R RGB – G HSV – V YCbCr – Cr 

YCbCr – Cr RGB – B YCbCr – Y Lab – L nRGB – R nRGB – B 

RGB – R nRGB - G Lab – L YCbCr - Y HSV – H RGB – R 

RGB – B YCbCr - Cb RGB – R RGB – R YCbCr – Cb RGB – B 

HSV – S nRGB - B RGB – B nRGB - G YCbCr – Cr nRGB – R 

nRGB – R nRGB - R HSV – V HSV – S Lab – a HSV – S 

HSV – V HSV – V HSV – S HSV – V Lab – b HSV – V 
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Figure 6.5: Overall segmentation accuracy of different colour 
components. 

The percentage of overall accuracy ranges from 4.82 %( HSV - 

V) to 84.19 %( HSV-H). The skin accuracy is of the range 6.59 %( 

HSV - V) to 99.48 %( Lab-a), while the lip performance range is 2.02 

%( HSV-S) to 92.73 %( nRGB-G). 99% of teeth pixels are correctly 

identified in both YCbCr – Cr and HSV-H colour components, while 

teeth pixel identification is very small for S and V components of HSV 

colour space. The range of accuracy for dark pixels varies from 0(Lab-

a,b) to 96.8(RGB-R). The accuracy is lowest for tongue identification 

which is in the range 0(Lab-b) to 79.8(HSV-H). 

6.3 Lip Segmentation using Active Shape Model (ASM) 

Lip is the most important visible articulator in human speech 

production system. Lip motion accounts for more than 80% of visual 

cues during a conversation and plays a pivotal role in speech 

perception [117]. Hence the segmentation, tracking and synthesis of 
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lips are one of the most attempted tasks. A detailed report of different 

algorithms and their effectiveness in lip segmentation and tracking is 

presented in chapter 2. The wide assortment of techniques used for lip 

tracking start with simple thresholding scheme to Bayesian classifiers 

and Gaussian Mixture Models(GMM) based Estimation 

Maximisation(EM) algorithms, and currently to the widely used 

machine learning algorithms including deep learning approaches.   

This section elaborates on the use of Active Shape Model 

(ASM) , for lip segmentation and the experimental results obtained on 

the data set including MAVSC-IP and MAVSC-IW.  ASM is a 

statistical model defined based on Principal Component Analysis. 

Many attempts are reported in literature which use ASM for lip 

segmentation and localisation. Fabian et al. used ASM for lip contour 

localisation [303].  The work analysis the tracking results by attempting 

improvements in initialisation methods, profile models and in search 

algorithms. Luettin et al. [164] and Matthews et al. [304] used ASM 

for lip tracking as part of feature extraction procedure. Kyung et al. 

uses an approach which blends ASM and snake model for lip contour 

extraction [289].  ASM has 3 components, 

i. Training component from which a shape model is generated 

ii.  Profile model characterising the neighbourhood of 

landmark points  

iii.  A search procedure for locating shape in unknown images. 

The following section describes the method used for lip shape 

modelling using ASM. 
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6.3.1 Lip Shape Modelling using ASM 

Shape is the geometrical attribute of an object after removing 

translation, rotation and scale effects from its representation [305]. 

Shape being a salient visual feature in an image, its representation, 

searching and synthesis are decisive in many applications.  Shape is 

represented by contour based and region based approaches. In contour 

based approaches only the contour of the interested shape is considered 

while the entire image region forming the shape is taken into account 

for region based approaches. Shape representation by a set of land mark 

points or shape feature points is the most prominent approach. A land 

mark is defined as a point of correspondence on each object that 

matches between and within populations [305]. This scheme is known 

as point distribution model for representing shape. For shape processing 

in 2 – D, the (x,y) coordinates of n land mark points representing the 

shape are concatenated to form a vector (x1,y1,x2,y2....xn,yn). 

In this implementation outer and inner lip shape contours are 

represented by 36 land mark points or shape feature points.  The outer 

lip contour is represented by 20 points, while the inner lip contour is 

represented by 16 points. A detailed description of the shape feature 

points and manual land marking performed on the visual speech 

corpora is described in chapter 5. Shape feature points are generated for 

all phonemes by manual land marking. The spatial arrangement of 

shape feature points in images representing ത/ t / and ഫ/ ph / are 

shown in figure 6.6. 
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Figure 6.6: lip shape feature points for phonemes

In ASM, the shape and its variability are

space. Before applying PCA, a pre

Procrustes shape Alignment (GPA)

coordinates of land mark points [309]

movements of the speaker are removed using Procrustres shape 

alignment procedure. Even though the video is captured in ideal 

conditions, variability introduced by changes in position and orientation 

of the talking faces exists for some 

due to translation, rotation and scaling effect

Generalised Procrustes Analysis (GPA) to the shape vectors and R

of Interests (ROIs) of selected frames. GPA aligns the set of given 

shapes with respect to a mean shape which is computed from the same 

set of shapes. GPA is an iterative procedure which updates the 

orientation, scale and origin of the current mean on each pass. The 

iterative scheme used by Cootes 

Similarity transformations (Scaling, rotation and linear translations

applied for aligning lip shapes.  
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lip shape feature points for phonemesത / t / andഫ / ph / 

shape and its variability are represented in the PCA 

space. Before applying PCA, a pre-processing stage with Generalised 

GPA) procedure is applied on the shape 

[309]. Distortions introduced by slight 

are removed using Procrustres shape 

lignment procedure. Even though the video is captured in ideal 

conditions, variability introduced by changes in position and orientation 

images. Such changes that happened 

due to translation, rotation and scaling effects are corrected by applying 

Generalised Procrustes Analysis (GPA) to the shape vectors and Region 

of selected frames. GPA aligns the set of given 

shapes with respect to a mean shape which is computed from the same 

an iterative procedure which updates the 

orientation, scale and origin of the current mean on each pass. The 

 et al. is used in this work [309]. 

Scaling, rotation and linear translations) are 
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GPA will make sure that PCA captures only local non rigid 

transformations [306] of lips by ensuring that GPA removes the effects 

due to translation, rotation and scaling. After this, PCA is applied on the 

coordinates of the shape feature points.  PCA computes most 

appropriate and significant set of axes for representing the data using 

minimum dimensions, and hence it is one of the most widely used 

dimensionality reduction techniques [332]. In this work PCA is applied 

on the 36 shape feature points obtained from the manually land marked 

images. The shape feature points are vectorised, which forms a 72 

dimensional vector corresponding to each image. PCA finds a more 

appropriate representation for these vectors using fewer number of 

dimensions and the steps for computing PCA is given bellow. 

Step 1:  The mean of the shape vectors can be calculated as 

X� =
1

N
�(X�)

�

���

 

Step 2: Calculate the Covariance matrix as  

∑ =
1

N
�(X� − X�)(X� − X�)�

�

���

 

Step 3: Compute the Eigen vectors φi and Eigen values λi of  arranged 

such that λi> λi+1 

The principal axes in the covariance space are calculated as the 

Eigen vectors of the covariance matrix. The set of Eigen vectors S is 

arranged according to the decreasing value of λi, Eigen values. The set 
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of Eigen vectors with the largest values of   λi is only chosen for 

representation. The number of retaining Eigen vectors are a decision 

based on the trade-off between dimensionality reduction and accuracy 

[308]. The new set of coefficients in the PCA space is obtained by 

multiplying the matrix of Eigen vectors, with largest Eigen values with 

the original shape vectors.    

Any shape in the training data set can now be approximated in 

the reduced dimensional PCA space. ASM training computes the mean 

shape from the set of training images. The variation from the mean is 

the PCA based model coefficient for representing a shape. 

Let x be a member in the training set, x can be represented in 

the new space as 

� = �̅ + ��   (6.4)  

Where p=(p1,p2,...,pt) , the ser of Eigen vectors corresponding to the t 

largest Eigen values(��′�) of the covariance matrix  and b is a t – 

dimensional matrix given by 

 � = ��(� − �̅)   (6.5) 

b is the vector of model parameters representing the given shape x, 

known as shape parameters. We can vary the parameter b to obtain 

different shapes, by ensuring that b varies within the limit 3���to-3��� 

[309] images. In this implementation 9 Eigen vectors with the largest 

Eigen values are retained for representing shape in the PCA space. 

Figure 6.7 shows the variation in the shape due to the first 3 modes 

corresponding to the 3 largest Eigen values.  
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Figure 6.7:  The variation in the shape due to the first 3 modes 

6.3.2 ASM Profile Model  

Profile model characterises the appearance context of each 

shape feature point in the shape model.  The best fit among 

neighbourhood pixels of a candidate shape feature point is selected in 

ASM search by comparing the corresponding profile vectors. A profile 

model is either 1D or 2 D. In Coote’s original model a 1-D whiskers, 

which runs through the land mark point and perpendicular to the shape 

boundary is used [309]. Figure 6.8 shows the placement of whiskers on 

lip land mark points. 
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Figure 6.8: The 1 - D profile vector of outer land mark points 

Let us discuss the making of the profile vector for a single land 

mark point. Let, P = [g1,g2,…gN] is the 1-D whisker vector 

characterising the current land mark point. Instead of the original 

vector the gradient of the vector is used, which is represented 

as[��
� ,��

� ,…��
� ] and computed using equation (6.6) 

��
� = �� − ����    (6.6) 

The gradient vector is normalised to remove the variation due to 

illumination changes using equation (6.7) 

 

���
� =

��
�

∑ ���
���

���

   (6.7) 

The vector [���
�, ���

� … . ���
�] is the normalised profile vector of 

greyscale gradients. The data is assumed to be a multivariate Gaussian 

distribution and the profile model is represented as mean and 

covariance matrix computed separately for each land mark point. The 
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mean profile ��
���and covariance matrix Sk are derived from normalised 

profile vectors of kth land mark points using all training images. The 

process is repeated to find the mean and covariance of all land mark 

points which forms the profile representation in ASM model.  

During ASM search, a candidate profile vector is formed by 

applying equation (6.6) and (6.7) on texture values of the current 

whisker. The candidate profile vector, x is compared with the model 

profile of the land mark point using Mahalanobis distance. 

Mahalanobis distance is defined as  

�������� =  �(� − ��
���)���

��(� − ��
���)6.8 

Where ��
��� is the mean and �� is the covariance matrix 

[309,289] 

A 2 – D profile, instead of the 1- D whiskers, is reported to be 

improving performance of ASM search [310]. The work by Fabian et 

al successfully implemented a 2- D profile vector for ASM based lip 

tracking [303]. The present work also employs the same technique. 

The 10x10 profile region around 4 land mark points is shown in figure 

6.9. Unlike 1-D profile, which is orthogonal to shape edge the 2-D 

profile window is straight and aligned with the original image grid.   

Mean and covariance matrix of the profile vectors computed across 

training images is the profile representation in the ASM model. Each 

profile square region is made in to a long vector for computing mean 

and covariance.  The following sequence steps is used for extracting 2-

D profile vector 
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1. The intensity gradient is captured by applying a 3x3 mask to 

the pixels in the profile window around the neighbourhood of 

each landmark point. The mask used in the work is �
0      0    0
0 − 2     1
0     1     0

� 

2. Divide each element by the sum of absolute value of all 

elements (normalisation) 

3. A sigmoid equaliser is applied to reduce the dynamic range and 

avoid outliers, which is defined as �� =
�

���(�)��
, where c 

decides the shape of the sigmoid function.  

4. The square region is vectorised to calculate mean and 

covariance  

 

Figure 6.9:The 10x10 profile region around 4 land mark points 

During ASM search x-displacements are orthogonal to the 

shape edges and y-displacements are tangents to the shape edges 

following the approach adopted by S. Milborrow [310]. 
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6.3.3Active Shape Model Search 

The ASM search is an iterative procedure with two phases. 

After initialisation the first phase relocate each shape feature point and 

second step corrects the location of points to maintain the relative 

positioning which is encoded in the shape model. The initial shape is 

either obtained from the previous frame or obtained by placing the 

mean shape in the image based on a computed centroid. The centroid is 

found either through user intervention or as the midpoint of mouth 

region image extracted using Viola John’s algorithm [336]. 

The ASM search Algorithm is given bellow and the 

implementation is based on Cootes original work expect in profile 

selection. 2- D profile which is found to be better performing for lips 

than the 1-D whisker, is used for search.  

 

 ASM search Algorithm  

Input: Image ROI, Model 

Output: Land mark points representing lip shape in Y 

1. Initialise shape Y 
2. Repeat the following steps until convergence 

Find a new shape X from Y by recomputing the location of 
each land mark point 

Find Y by adjusting X to conform to the shape model 
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The steps for relocating the land mark points executes a profile 

vector matching across the neighbourhood pixels of the current land 

mark point. The profile vector is computed for each point in the 

neighbourhood. The computed values are compared with the model 

values based on the Mahalanobis distance given in equation (6.8) and 

the best fit neighbourhood pixel is the new land mark point.  

Step 4 of ASM search algorithm performs the mapping of 

suggested shape from step 3 to the model space, to maintain the 

relative positioning of land mark points. The distance between X and 

model shape can be calculated as  

��������(�, �(�̅ + ��))                                              (6.9) 

Step 4 tries to find T and b that minimises the distance given in 

equation (6.9). T, the similarity transform on a pixel (x,y) can be 

represented as  

�
��

��� = �
����_�
����_�� �

� ���∅     � ���∅
−� ���∅  ����∅

� �
�
��                              (6.10) 

Where tran_x and tran_y are translation coefficients and  is 

the amount of rotation and S is the scaling parameter. The iterative 

procedure for finding optimum T and b is given in Cootes paper [309]. 

The proposed multi resolution based improvement of ASM search is 

used in this work. The shape feature points are extracted from the full 

resolution image. But the profile vector is calculated at each resolution 

levels, coarse to fine resolutions. Profile vector at separate resolutions 

expands the capture region of shape feature points. The ASM search 
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starts with coarse resolution image and proceeds towards finer 

resolution image. An up sampled version of the coarse resolution 

search output is the input to the next high resolution search. Profile 

vectors at three resolution levels are used in this work, which is shown 

in figure 6.10.  

 

Figure 6.10: Profile vectors at 3 resolution levels 

Figure 6.11 shows the results at different iterations. Red dots 

show the updated current points and blue dots show the values before 

current updating.  Line is drawn connecting updated points.  
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Figure 6.11: Intermediate results during ASM search, red dots 
show the updated current points and blue dots show the values 
before current updating 

6.3.4 Experimental Results  

The ASM training and searching are executed in different in 

different colour spaces.Land mark localisation using ASM is executed 

for 6 different top performing colour components (found using 

Bayesian classifier) using a single speaker dataset with 600 training 

images and 100 testing images. The Euclidian distance between the 

actual landmark points and the computed points for the test images is 

the metric used for comparisons. The sum of Euclidian distance for the 

36 land mark points, between the computed and the actual is found for 

each image in the test data set, and the average of it for the 100 images 

is computed to be used as a comparison metric. Table 6.3 lists the 

average Euclidian distance in ASM search for different colour 

components for a single speaker training and testing framework. The 

lower Euclidian distance (highest performance) is obtained using H 

component of HSI colour space.  
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Table 6.3:The average Euclidian distance in ASM lip tracking for 

different colour components. 

Sl. 
No 

Colour 
Component 

Average Euclidean Distance (in 
pixels) 

1 HSV – H 55.43 

2 Lab – b 67.6 

3 Lab – a 79.3 

4 YCbCr – Cb 81.2 

5 RGB – G 92.67 

6 nRGB – G 93.3 

 

The average Euclidian distance for 1 – D whisker is 18.1 and 

for 2 – D profile vector is 15.43 in the hue space.Hence 2 – D profile 

vectors are used for tracking. The final tracked lip varies significantly 

based on the initialisation. Figure 6.12 shows different tracking results 

for the same image with 3 different centroid initialisations.  The central 

image, which is the correctly tracked one, starts with centroid 

initialised approximately to the geometrical centre of the lip.  

 

Figure 6.12: Different tracking results for the same image with 3 
different centroid initialisations.   
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The tracking results on different images of a single speaker 

using H component of HSI space in the semi-automatic framework 

with centroid initialisation are given in figure 6.13.  

 

 

 

Figure 6.13: The tracking results on different images of a single 
speaker using H component of HSI space in the semi-automatic 
framework with centroid initialisation 

 

A subset of the images in the MAVSC-IW and MAVSC-IW 

datasetsis manually landmarked (selected images of 3 speakers) for the 

extraction of lip geometric features, which is explained in the last 

chapter.  ASM trained and searched on a single speaker dataset in hue 

component space is employed for land marking the remaining images 
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in the dataset. Selected images for each speaker are land marked 

manually and the ASM is trained using these images.  The minimum 

number of images used in the training set is 100, which is used to 

landmark a dataset with more than 1000 images. Lip shape is 

initialised either using manual centroid marking or initialisation from 

pervious frame methods.  These images,landmarked using ASM search 

are used both for convolution neural network and for lip movement 

synthesis applications to be discussed in the next chapter.  

6.4 Lip Segmentation using Convolution Neural Networks (CNNs) 

Finding the appropriate set of features for representing data to 

solve a problem is crucial for both humans and machines. 

Conventional machine learning approaches use features selected by 

human beings and machine just computes these features. The task 

assigned to machine is the mapping from feature to the desired output. 

On the other hand deep learning discovers the appropriate feature for 

solving the problem by a process known as representation learning. 

The machine learned representation is found to outperform hand-

designed representations in many domains. Auto encoders are a class 

of effective learning representation algorithms. Deep learning creates a 

hierarchy of representations in which higher level representations are 

explained in terms of lower level representations [337]. Deep learning 

is not a new technique. On the other hand its genesis dates back to 

1940s. It appears to be new because of its huge popularity due to big 

successes in areas such as driver less cars and speech recognition. The 

first artificial neural networks, inspired by biological neurons have 

been created in the middle of last century. Deep learning systems are 
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applied the multiple levels of composition of human brain perception 

framework. Another contributing factor to the success of the deep 

learning systems is the exponential increase in the training dataset. The 

generation of digital natives creates data from every aspect of their day 

to day life. Convolution Neural Networks (CNNs) are feed forward 

neural networks which use convolution layers for feature extraction.  

Conventional feed forward networks are the simplest ANNs first 

devised in 1960s.  Section 6.4.1 explains the peculiarities and 

architecture of CNNs and section 6.4.2 describes the implementation 

details of CNN for lip segmentation and tracking with experimental 

results.  

6.4.1 Architecture of Convolution Neural Networks (CNNs) 

A neural network is a collection of artificial neurons. In each 

node(neuron) the input values are multiplied with weight to compute 

the net output of a neuron. Convolution neural networks are special 

feed forward neural networks designed for solving image processing 

tasks mostly in the domain of computer vision. CNNs consist of 3 type 

of layers, convolution layers, pooling layers and fully connected layers. 

Convolution layers, characterising the network are intended for 

extracting features from the images. Pooling layers are intended for 

down-sampling and the fully connected layers are exactly similar to 

conventional feed forward neural network layers. As CNNs deal 

mostly with images, the layers are 3-dimensionalwhich corresponds to 

the width, height and depth (number of colour channels) of images.  

The convolution layers are not fully connected and has an important 

property known as parameter sharing. 
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The number of parameters or weights in a fully connected 

network with image input is enormously large. Consider the first layer 

receiving a 512x512x3 images, in a fully connected network. Each 

neuron in the layer need to be connected to 7,86,432(512x512x3) 

nodes in the previous layer. Each connection is associated with a 

weight. With ‘m’ neurons in each layer and ‘n’ layers with  7,86,432 

weights per neuron, the network has to operate in a huge parametric 

space. Naturally the whole process of training and applying will be 

very slow and may lead to over fitting. In fact the neurons in 

convolution layer operate on selected blocks to extract a single feature. 

The neurons in a single layer extract the same feature from different 

regions of an image which results in a uniform connection weight and 

the property is called shared weights. A different layer of neurons acts 

on the same region to extract a different feature. A hierarchy of 

features can be created by making the output of one convolution layer 

as the input of another convolution layer.  

The convolution layer operates by mimicking the mathematical 

operation convolution. In image processing a convolution is obtained 

by sliding a convolution mask across the pixels in the image. The mask 

coefficients are multiplied with corresponding pixels and added, which 

replaces the original pixel. The convolution operation using a 3x3 

mask is depicted in figure 6.14. 
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Figure 6.14: The convolution operation on two adjacent pixels with 

a 3x3 mask 

The coefficients can be changed to extract different kinds of 

features. Every neuron performs a similar operation of element wise 

multiplication followed by addition. The connection weights are made 

to mask coefficients in order to perform convolution. If the size of the 

convolution mask is 5x5, the dimension of weight matrix for a neuron 

will be 5x5x3. The number of neurons in a layer depends on a factor 

known as stride, which is the distance of mask shift for each 

calculation. For example in a 512x512x3 image, with stride 1 the 

number of neurons will also be 512x512(padding is needed). But if the 

stride is 2 for the same image the number of neurons will be 256x256. 

Generally for an image of dimension WXH stride S, the number of 

neurons will be (W/S, H/S) with proper padding. In the first case (with 

stride 1) there will be 512x512x5x5x3 connection weighs. But all 

neurons share the same weight, bringing down the number of different 

weights to just 75(5x5x3). The above property is known as shared 

weights. The concept of drop out is used to overcome problems due to 
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over fitting. The idea is to drop random nodes and its connections 

during training with a given probability. A network with n nodes can 

have 2n possible sub networks. During testing an approximate 

averaging method is used for finding the network parameters. The next 

section discusses the details of using CNNs for lip tracking using 

landmark localisation.  

6.4.2 CNNs for Lip Segmentation by Landmark Localisation  

The general approach used in this work for lip segmentation 

and tracking is to identify the landmark points representing inner and 

outer lip contours. The same approach is used for lip segmentation 

using CNNs. The network is trained with annoted images, which in 

turn learns the mapping from images to landmark points.The network 

is implemented using pytorch, which is one of the most popular 

research platforms [338]. The various phases of implementation is 

explained bellow.  

1. Information about the images and keypoints in this dataset are 

summarized in CSV files 

2. Image Pre-processing - A composition of the following 

operations is applied on the dataset.  

I. The RGB images are converted to gray scale images 

II. The image is rescaled to the size 224x224, after appropriate 

rescaling and croppingof the data. 

III. Normalizing the images and key points; turning each RGB 

image into a grayscale image with a colour range of [0, 1] and 
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transforming the given keypoints into a range of [-1, 1] 

IV. Turning these images and keypoints into Tensors,which is a 

multidimensional array [338] 

3. Define the network with dimension,stride and padding for each 

layer. The specification of the convolution layers of the CNN 

used in this work arrived after several experiments by varying 

network parameters and functions is given in table 6.4. 

Table 6.4:The specification of the convolution layers of the CNN 

used in this work  

Layer 
Input 

Dimension 
Filter 
Size 

padding Striding 
Output 

dimension 
Convolution 

layer 1 
224x224x1 7x7x1 1 3x3 74x74x32 

Convolution 
layer 2 

74x74x32 5x5x1 0 3x3 24x24x64 

Convolution 
layer 3 

24x24x64 5x5 1 3x3 8x8x128 

Convolution 
layer 4 

8x8x128 3x3 0 1x1 6x6x256 

Convolution 
layer 5 

6x6x256 3x3 0 1x1 4x4x512 

Convolution 
layer 6 

4x4x512 1x1 0 1x1 4x4x512 

 

The convolution layers are followed by three fully connected 

layers. The first layer consists of 1024 nodes and the number of nodes 

in the last output layer is fixed to be 72, which is the (x,y) coordinates 

of 36 landmark points. The dropout for fully connected layers is fixed 

to 0.3.  
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4. Training the network: The network is trained using 10,000 

landmarked Images from MAVSC-IW and MAVSC-IW 

datasets. Images landmarked using ASM are also included in 

the training database after a manual inspection. Batch size used 

is 200, which is applied after shuffling. The Adaptive Moment 

Estimation or Adam optimization algorithm is used to train the 

network. The Adam optimization algorithm is a combination of 

gradient descent with momentum and RMSprop algorithms 

[339]. 

5. The test data set consists of 2000 images. Data is visualised by 

displaying original and tracked landmark points on test images. 

The output of 9 images in the testing dataset is given in figure 

6.15. Original landmark points are shown in pink, while green 

circles indicates the land mark points found by the trained 

network.  
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Figure 6.15: The output of 9 images in the testing dataset,original 
landmark points are shown in green, while pink
the land mark points found by the trained network.

 

Tracking experiments are conducted by varying network 

parameters and input data set. The Euclidian

the training data set) between the actual land mark points and 

generated points is the metric used for comparison.

Euclidian distance corresponding to 
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The output of 9 images in the testing dataset,original 

landmark points are shown in green, while pink circles indicates 
the land mark points found by the trained network. 

Tracking experiments are conducted by varying network 

The Euclidian distance (the average of 

between the actual land mark points and 

generated points is the metric used for comparison. The average 

dian distance corresponding to different network configurations is 
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shown in table 6.5. Finally the configuration with six convolution 

layers and Selu activation function, with lowest average Euclidian 

distance is used in this work. 

Table 6.5: The average Euclidian distance for different network 
configurations with number of epochs=100and dropout=0.3 

Layers Activation function Average Euclidean 
distance 

Convolutional layer-6 

fully conncted layer-3 

Selu 17.5054 

Convolutional layer-6 

fully conncted layer-3 

Relu 729.872 

Convolutional layer-6 

fully conncted layer-3 

Elu 244.1181 

Convolutional layer-5 

fully conncted layer-3 

Selu 17.6913 

Convolutional layer-4 

pooling layers-4 

Fully connected layers-3 

Selu 144.2143 

Convolutional layer-4 

pooling layers-4 

Fully connected layers-3 

 

Relu 

188.5379 

Convolutional layer-4 

pooling layers-4 

Fully connected layers-3 

Elu 211.4157 

 

Convolutional layer-5 

fully conncted layer-3 

Relu 117.2315 

Convolutional layer-5 

fully conncted layer-3 

Elu 194.7534 
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Experiments are conducted by varying the number of epochs, from 

100 to 700. But no improvements in the Euclidian distance are reported 

above 500 for any of the network configurations.  

6.5 Conclusion  

In this chapter statistical analysis is performed on the MAVSC-

IW and MAVSC-IW images for understanding the colour properties of 

different mouth regions in Indian skin tone context. Hue of HSI colour 

space is identified to be the best performing colour component in 

mouth region pixel classification experiment conducted with Bayesian 

Classifier.  ASM, trained and searched on a single speaker dataset in 

hue component space is employed for land marking images in the 

MAVSC-IW and MAVSC-IW dataset. These images, landmarked 

using ASM search is used both for experiments with CNN and for lip 

movement synthesis applications. Finally experiments are conducted 

with CNNs for lip segmentation using land mark localisation method.  
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Chapter 7  

Comprehensive Malayalam visual speech 
synthesis framework using Independent 

Active Appearance Models 

 

7.1 Introduction  

Speech is bimodal in nature. The contribution of the visual part 

in the perception of speech, especially in the noisy environment is an 

established fact [311,242,312,276]. Image sequence of talking face 

with audio can create realistic conversation environment and will 

surely make machines more human-friendly. Audio visual speech 

synthesis has potential applications in facial animation automation, 

building user friendly interfaces, audio visual speech perception 

studies, developing support system for persons with hearing 

disabilities, virtual teleconferencing, e-learning etc.The first attempt for 

speech synthesis was purely mechanical, before the computing era 

where mechanical articulators supplemented an artificial vocal tract 

[313]. The attempts to automise facial movements started in 1970s, 

which was a basic polygonal mesh framework with closing and 

openings of mouth and eyes [314]. Then comes, limited set of hand 

drawn images representing posters such as mouth opening and mouth 

closed. where the realism is in the hands of an artist. Construction of 

hand drawings corresponding to expressive facial movements is time 

consuming and demands the involvement of expensive manpower.  

Demeny used a chrono photograph for displaying speech movements 
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[313].One of the initial works in the automisation of mouth synthesis 

was by Norman P. Erber and Carol Lee De Filippo in 1978. Lines 

representing mouth movements were analyzed and displayed using 

photo transistors and oscilloscopes [315]. An early attempt during 

digital era by Allen A. Montgomery in 1980, synthesised speech 

animation by displaying a sequence of limited set of primitive lip 

shapes [316]. The progress in 1980s started with facial muscle 

modeling, progressively leading towards the development of facial 

action system [317,188]. Tin Toy, a pixar production in 1998 is 

considered to be the first truly computer generated realistic character 

[199]. The last decades witnessed the emergence of a plethora of new 

techniques for facial movement automation, especially while talking. 

Different facial animation techniques are used in these days to automate 

the movements of visible articulators [315]. Hidden Markov Modeling 

based approaches to lip motion synthesis can successfully incorporate 

co-articulation effects to the system [318,171,319,320]. Time delay 

neural networks are also used for lip synthesise with temporal 

correlation and computational advantages [321]. Dimensionality 

reduction techniques are also used effectively to synthesis lip images by 

combining syllables [186]. Yu Ding et al. use Gaussian Mixture Model 

(GMM), called lip shape GMM for a lip animation synthesis framework 

[322]. Sign speech synthesis systems with special emphasis on lip 

movements are also emerging in different languages [323]. 

The lower jaw, tongue, teeth, and lips are the visible 

articulators of the human voice production system. The movement of 

visible articulators creates the varying image sequence corresponding 
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to visual speech. Lip being the most dynamic visible articulator, lip 

motion synthesis is the most crucial component in making character 

animations believable. A realistic conversation experience can be 

imparted to the viewer by synthesizing realistic lip movements. Teeth 

visibility can also be explained in terms of lip shape.Speech animation 

is moving the facial features of a graphic model to synchronise the lip 

motion with the audio to give the impression of speech production 

[324]. Unrealistic speech animation distracts the viewers and prevents 

them from developing an attachment to the animated characters. The 

unpleasant experience created by the mismatch of lip movements and 

audio is a regular issue in cartoons in regional languages like 

Malayalam. Close up views of characters helps to develop attachment 

with characters. Hence production firms are keen on developing 

expressive speech animations. The conventional approach was to use 

performance capture systems together with a team of experienced 

animators. But this model is not suitable for low budget productions. 

Moreover multi lingual productions demand separate development for 

each language.  The massive demand for low budget multilingual 

productions with lot of character animations is the main reason for the 

emergence of automated alternates to speech animation.  

 This study focuses on the development of visual speech 

synthesis framework in Malayalam, using Active Appearance Models 

(AAM). Active Appearance Model (AAM), a statistical data driven 

model, is used for modeling lip shapes and texture. Independent AAM, 

which models shape and textures using separate set of coefficients, is 

employed in this work. The framework is conceptualized as a text to 
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visual speech synthesis system. The framework integrates all 

components explained in the previous chapters for the development of  

visual speech synthesizer in Malayalam. Even though the proposed 

framework is capable of synthesizing complete facial movements 

corresponding to a given sequence of phonemes or allophones, the 

work attempts to synthesis the lip movements only. The lip colour or 

texture used in character animations are not always their real life 

counterparts. So a separate synthesis framework is developed for 

creating the dynamics of lip shapes only.  The complete shape and 

appearance synthesis framework uses morphing technique for 

generating intermediate frames.  Perception experiments are conducted 

to compare the naturalness of phoneme, allophone and viseme based   

implementations of the synthesis framework.   

 The chapter is arranged as follows. After the introduction, 

section 7.2 introduces the theoretical foundations of lip modelling using 

independent AAMs. Section 7.3 describes the development of 

Malayalam visual speech synthesis framework using independent AAM 

and section 7.4 presents the experimental results of applying the 

framework for lip motion synthesis corresponding to Malayalam text. 

Section 7.5 concludes the work.  

7.2 Talking Lip Modeling using Independent AAM  

Active Appearance Models (AAMs) introduced by T.F. Cootes, 

G.J.Edvards and C.J.Taylor is considered to be the most successful 

model for interpreting deformable objects [324]. It is extensively used 

in medical image processing, computer vision and image synthesis 

applications to explain the shape and appearance of objects by model 
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parameters. The complexity in modelling the variability of deformable 

objects persuades researchers to develop different avenues. Pieces and 

spring model based approach used by Martin et al. for representation 

and matching of images is perhaps the first deformable model used for 

image segmentation [325]. A viscous flow based model for brain is 

proposed by G.E. Christenson et al. [326]. Active contours, the idea 

popularly known as snakes proposed by Kass et al. are a landmark in 

the development of deformable models [288]. Eigen faces is one of the 

most successful methods in face recognition which uses PCA for 

representing face [327]. Active Shape Models (ASMs) and Appearance 

models belong to the category of interpretation by synthesis methods. 

This category of methods search objects by synthesising objects in 

their model parameter space. AAM has two components, a training 

component from which a shape and appearance model is generated and 

a search procedure using this model. This work employs modelling 

scheme used in AAM for representing the lip and its variability while 

talking for Malayalam. 

 AAMs are extensively used in visual speech synthesis 

applications. In the work by W Mattheyses et al., independent AAMs 

with eight Eigen vectors for representing shape and 134 eigen vectors 

representing textures are used for photorealistic visual speech 

synthesis. The entire visual data base is converted into AAM model 

space and appropriate speech segments for the synthesis are selected in 

the model space [328]. In a similar work by W Mattheyses et al. 

segment selection is executed by using both target and join costs [92]. 

In their work Theobald et al. performed the subjective and objective 
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comparison of acoustic driven and phonetic transcription based visual 

speech synthesisers. Independent AAM coefficients are used for 

representing the visual articulators in both schemes. Mel Frequency 

Cepstrum Coefficient (MFCC) is used as the acoustic feature and the 

mapping to AAM model space is performed by a feed forward 

Artificial Neural Network (ANN) [329]. A person specific facial 

appearance model using a variant of AAM with options for adding 

visual emphasis is a similar work [330]. The work by R. Anderson et 

al. tried to synthesis expressive speech. The inability of conventional 

AAMs to model local changes such as blinking of eyes is addressed in 

this work. An extension of HMM, known as cluster adaptive training, 

is used for synthesis in this work [331]. A multilevel training phase, 

employed in the work by M.M. Cohen et al. uses 184 prototype images 

corresponding to 45 phonemes. AAM search is used for land marking 

the remaining images in the corpora [214].  In the independent AAM 

approach, shape and appearance models are modelled separately, while 

a combined AAM models shape and appearance using a single set of 

parameters. In their work, Iain Matthews et al. discusses the 

advantages and disadvantages of both methods [306]. The following 

section describes theoretical foundations of independent AAM in 

detail.   

7.2.1 Independent Active Appearance Model (AAM)  

Active Appearance Model (AAM) is a generative statistical 

technique, which learns from the training examples. A set of images 

with landmark points charactering the object of interest is the training 

database for AAM modelling. The  procedure  adapted for fixing the 
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landmark points in the inner and outer lip on images in MAVSC – IP 

and MAVSC – IW datasets are already explained in chapter 

6.Representing shape using a set of landmark points is known as Point   

Distribution Model (PDP), in which land mark points are concatenated 

to a  vector of vertex locations as  (x0,y0,x1,y1……….xn,yn)
T.The 

procrustres analysis based pre-processing employed on the land 

marked images in the training data set is also described in chapter 6.  

The next step is to apply Principal Component Analysis (PCA) to the 

set of concatenated vector of landmark points. PCA computes most 

appropriate and significant set of axes for representing the data using 

minimum dimensions [332]. The new set of axes in the PCA space is 

computed as the Eigen vectors of the covariance matrix. The most 

important Eigen vectors, based on Eigen value are only selected, 

resulting in dimensionality reduction. In the PCA space linear shape 

variations can be represented as deviations from the mean shape. 

� = �� + ∑ ����
�
���      (7.1) 

where S0 is the base mean shape, Pi are the set of shape model 

parameters and  Si are the eigen vectors corresponding to ‘l’ largest 

Eigen values.  

For an independent AAM an appearance model is obtained by 

applying PCA on the appearance values of pixels inside the object 

boundaries. An image mask is applied to the training images to remove 

all pixels outside the object boundaries. The shape and hence the 

number of pixels inside the lip will be different for different frames. 

The training images are shape normalised by warping to the mean 
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shape by using a piecewise affine warp. Warping involves coordinate 

transformations and image resampling.  In piecewise affine warp 

employed in this implementation of AAM uses Delaunay triangulation 

of landmark points. A triangle correspondence is established between 

all S0,Si pairs. During a forward warp from S0 to Si the algorithm finds 

the enclosing triangle for a pixel in S0 and maps to Si by finding the 

triangle correspondence [306,333].  The number of pixels inside the 

shape normalised patches for all images will be the same.   

PCA applied on shape normalised textures creates a model space for 

appearance. In the AAM, space appearance can be modelled as   

  

� = �� + ∑ ��
�
��� λ�     (7.2) 

where A0 is the base mean appearance, Ai  are the Eigen images 

corresponding to the largest m eigen values  and  λi are the set of 

appearance model parameters.  

In this work independent AAM is applied for synthesis of shape 

and appearance. In the independent AAM model the shape and 

appearance is a point in the (p1,p2..pl,λ1λ2….λm) space, i.e model 

coefficient space. So the object synthesis can be converted as a 

problem of finding the appropriate trajectory in the model space.  

Equation (7.1) and (7.2) for shape and appearance representation can 

be rewritten in matrix form as  

�_��� = �� + ��   (7.3)  

�_��� = �� + �λ   (7.4)  
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where s0 is the base shape  and a0 is the base mean appearance, s is the 

matrix of shape Eigen vectors and a is the matrix of appearance Eigen 

vectors, p and  are the shape and texture model parameters  

respectively, s_new is the synthesised shape and a_new is the 

synthesised texture.  

The inverse mapping, to find the shape and appearance coefficients 

given an example image, can be obtained from (3) and (4) as   

 � = ��(�_��� − ��)     (7.5) 

 λ = ��(�_��� − ��)     (7.6) 

Combined AAMs, which is not used in this work, are obtained by 

applying a further PCA on shape and appearance parameters. The next 

section explains the modelling and synthesis of talking lip movements 

using independent AAM.  

7.2.2 Talking Lip Modelling  

This section explains the use of independent AAM for 

modelling of lip area towards generating talking lips. A phoneme or 

allophone based training corpus used in this study is capable of  

accommodating  all possible lip variability during talking. The 

procedure used to prepare the  lip landmarked images in MAVSC – IP 

and MAVSC – IW datasets are already explained in chapter 6. Active 

Appearance Model (AAM) uses both hand annoted images and images 

accurately annoted by ASM and CNN for training and testing. Mouth 

area is the important dynamic portion for visual speech synthesis. The 

mouth area consists of lips, teeth, tongue and mouth cavity. Lips are 
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always visible, but the visibility of other areas

the  phoneme uttered.  

 The annoted lips can be used for the training AAM.

work shape and texture are modelled se

considered as a point in the model space consisting of shape and 

texture coefficients. The synthesiser has to find the appropriate 

trajectory in the model space corresponding to a phoneme 

sequence. Inverse mapping is performed on the model coeffi

the trajectory to find a sequence of mouth region pixels.

contour is represented by 20 points, while the inner lip conto

represented by 12 points. Figure 7.1

feature points (xn,yn), including outer lip and i

frames of a single speaker.  

 

Figure 7.1 : Scatter Plot of shape feature points for 51 phonemes
Malayalam 
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always visible, but the visibility of other areas are highly dependent on 

The annoted lips can be used for the training AAM. In this 

work shape and texture are modelled separately.  An image is 

a point in the model space consisting of shape and 

texture coefficients. The synthesiser has to find the appropriate 

trajectory in the model space corresponding to a phoneme or allophone 

sequence. Inverse mapping is performed on the model coefficients in 

the trajectory to find a sequence of mouth region pixels.  The outer lip 

contour is represented by 20 points, while the inner lip contour is 

re 7.1 displays the scatter plot of shape 

outer lip and inner lip points in all  

 

: Scatter Plot of shape feature points for 51 phonemes in 
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In this work, 9 Eigen vectors with the largest Eigen values for 

representing shape in the PCA space are selected. After 9, the Eigen 

values is observed to be approaching zero. The model coefficient space 

is 9 dimensional instead of the original 72 dimensional shape vectors.  

Similarly this 50 Eigen vectors with the largest Eigen values for 

representing appearance in the PCA space are selected. After 50, the 

Eigen values is observed to be approaching zero. The model texture 

coefficient space is 50 dimensional instead of the original 72,000 (the 

number of pixels in the lip region) dimensional appearance vectors.  

Phoneme based and allophone based AAM training is 

performed using MAVSC–IP and MAVSC–IW.  The training and 

modelling is performed separately for single speaker and multi speaker 

mode. Frontal face images from 10 speakers, corresponding to 

Malayalam phonemes and allophones  are used for training in the multi 

speaker mode. After the training phase, the shape and model 

coefficients corresponding to the key frames of phonemes or 

allophones are computed using inverse mappings. In the proposed 

implementation shape is represented by 9 shape coefficients. The shape 

generated from 9-dimensional ASM coefficients corresponding to five 

Malayalam short vowel phonemes and the consonant phoneme പ /P/ 

(with closed inner lip) are given in table 7.1. The original shapes from 

training images are also shown for comparison. 



 205 

Table 7.1: Comparison between the original (red) and the model 

generated shape (blue) of selected Malayalam phonemes  

 

The mean normalised appearance image generated from 50-

dimensional coefficient vector is wrapped to the generated shape of the 

corresponding phoneme. The synthesised appearances for selected 

phonemes is shown table 7.2. 

 

  

Malayalam 
Phoneme 

Shape 
Comparison 

Malayalam 
Phoneme 

Shape 
Comparison 

അ/a/ 

 

ഉ/u/ 

 
ഇ/i/ 

 

ഒ/o/ 

 
 
 
 

എ/e/ പ/P/ 
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Table 7.2: AAM synthesised lip appearances for selected 
Malayalam phonemes 

Malayalam 
Phoneme 

Synthesised Lip Malayalam 
Phoneme 

Synthesised Lip 

അ/a/ 

 

ഔ/ou/ 

 

 
ഇ/i/ 

 

ത/t/ 

 
 

  
ഒ/o/ 

 

 

ച/c/ 

 

 
 

A look up table of shape and appearance coefficients 

corresponding to phonemes, allophones and visemes generated after  

AAM training is stored for the purpose of visual speech synthesis. The 

AAM coefficient values averaged over all speakers is used for 

synthesising lip motions.  The AAM coefficient values for each viseme 

is obtained by averaging the coefficient values  corresponding to 

phonemes or allophones which are grouped to form the viseme.  

The following section discusses the complete Malayalam visual 

speech synthesis framework developed using Independent AAMs. 

Even though the marking key points and subsequent modelling are 

conducted for mouth region alone, the framework is general and can be 
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effectively applied for the complete talking face synthesis in 

Malayalam. 

7.3 Malayalam Visual Speech Synthesis Framework using 
Independent AAM  

A comprehensive visual speech synthesis framework for 

Malayalam using independent AAMs is proposed in this work . It is 

conceptualised as a text to visual speech synthesis system with options 

for synchronising with an input audio. The approach falls under the 

category of target based synthesis where trajectory is obtained by 

combining static frames, with certain intermediate approximations. 

Phoneme, allophone and viseme based look up tables for shape and 

appearance coefficients are the back bone of the proposed speech 

animation framework. The system is conceptualised as a word based 

framework consisting of 3 phases. In the first phase, the input text is 

converted to the sequence of Atomic Visual Units (AVU) of speech. 

The AVU can be phonemes, allophones or visemes (mapped from 

phonemes or mapped from allophones). In the second phase, the 

number of frames for each atomic unit is computed and the target 

image  synthesis is performed  in the final phase. Face image sequence 

corresponding to the given grapheme sequence, synchronised with the 

audio is generated in the final phase. Figure 7.2 depicts the 3 phase 

implementation of proposed visual speech synthesiser in Malayalam.  
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Figure 7.2: Process flow for the conversion of input text to the 

corresponding sequence of face images 

In the first phase, the input text is converted in to sequence of 

AVUs , which is  depicted  in figure 7.3.  
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Figure 7.3: Process flow for the conversion of input text to the 

sequence of AVUs 

(P1,P2..Pn), (A1, A 2.. A n), (V1,V2..Vn) and (AV1,AV2..AVn) 

represent sequence of phonemes, allophones, visemes obtained from 

phonemes and visemes obtained from allophones respectively. The 

output from the first phase is a sequence of atomic visual speech units 

(AVU1, AVU2...AVUn) where n is the number of phonemes or 

allophones or visemes corresponding to a word.  

In the second phase, the duration of each AVU in the output 

sequence is computed. Consider the use of framework in the 

application like character animation, the lip synchronisation with the 

input audio is very critical. The sequence of operations performed in 

phase 2 is given bellow 

1. The audio of the spoken word (Wi) and the sequence of atomic 

units (AVU1, AVU2...AVUn) obtained  from phase 1 are the 

input to this phase. 

Input Text 
Text to Phoneme 

Transcripter 
Phoneme to 
Allophone 

Transcripter 

Phoneme to 
Viseme Mapping  

Allophone to 
Viseme Mapping  

P1P2...Pn A1A2...An 

V1V2...Vn AV1AV2...AVn 

A1A2...An P1P2...Pn 
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2. The actual duration of the input spoken word (Wi) is computed 

as D. The frame allocator computes the number of frames for 

each AVU. The procedure used for computing the number of 

frames for each AVU is explained in the following section. 

Duration table provides the average duration of Malayalam 

phonemes and allophones consolidated in chapter 2. The 

average duration of plosive consonants used is assigned as the 

sum of plosive duration and silence durations as explained in 

chapter 2. 

3. Sequence of AVUs with its corresponding number of frames is 

the output from phase 2 operation. 

The process flow of phase 2 operation is shown in figure 7.4.  

      Duration Table  

 

 

 

  

 

 

 

 

 

Figure 7.4: Process flow for computing the number of frames for 

AVUs   

Spoken 

word(Wi) 

AVU1...AVUn 

D 
Duration of   Wi 

(D) 

AVU1...AVUn 

F1F2...Fn 

Frame  

 

Allocator 

AVU1 (.,....) 

;....... (.,....) 

..... (.,....) 

AVUn (.,....) 
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The frame allocator computes the number of frames for each 

AVU, using the following procedure. Let D is the actual duration of 

spoken word. The allocator first finds the sum of average durations of  

AVUs in the sequence, which is obtained from the duration table and 

let it be d. The duration of the word in actual utterance (D)is not the 

same as the sum of average phoneme durations (d).  

Allocator finds the fractional unit duration of the ith unit as  

fractional_durationi = average _duration of AVUi/d (7.7) 

The target duration of the ith unit for the synthesiser is computed as  

unit_durationi = fractional_durationi x D (7.8) 

The number of frames corresponding to duration unit_durationi  is 

computed  as  

   �� = �����(
����_���������

�����_��������
) (7.9) 

where frame_duration is the duration of a frame obtained as 1/ frame 

rate. The elapsed time due to the round off to the nearest integer is 

assigned to the initial phonemes in the order. The remaining fractional 

time, which is less than a frame duration after the mentioned  

computations is summed for each word and will be added to the 

duration of the last phoneme in the sentence. In general application 

where the input audio is not available (where synchronisation need not 

be considered) the duration can be computed solely based on the 

average duration information.  
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In phase 3, the image synthesis module generates the  visual 

speech image sequence using inputs obtained from phase 2.Three 

separate models are designed to perform this synthesis operations, 

which are described below. The first model synthesises the shape of 

target object , while the remaining 2 models can synthesise both shape 

and texture of frontal face talking images corresponding to a given 

text.  

i. Shape Synthesis Framework (SSF) 

SSF generates the sequence of shape of target object 

corresponding to a grapheme sequence. The SSF model depicted in 

figure 7.5 uses ASM coefficients to generate target object shapes 

corresponding to a phoneme, allophone or viseme. In this framework, 

the shape for an AVU is represented by a single set of coefficients 

corresponding to a single frame. The intermediate shapes are generated 

by linear interpolation.  The model is particularly relevant for the 

synthesis of lip motion during talking.  Lip shapes generated by the 

model can be used for lip motion synthesis in character animation. The 

lip colour or texture in character animations are not their real life 

counterparts. In such applications, lip colour is chosen based on the 

overall colour theme assigned to the character.   
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Figure 7. 5: Block diagram of

The sequence of operations performed in 

model is explained bellow.  

1. The phoneme sequence AVU

the number frames corresponding to 

phase 2) are given as inputs to the

213 

 

: Block diagram of SSF framework 

 

nce of operations performed in the proposed SSF 

phoneme sequence AVU1 AVU 2... AVU n and F1, F2...Fn , 

es corresponding to each AVU (obtained from 

inputs to the SSF framework . 
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2. Coefficient generation block: The coefficient generation block 

works in an iterative fashion. The inputs (AVUi, AVUi+1) and 

Fi in a pass represent adjacent AVUs and the number frames for 

the corresponding transition respectively. The shape 

coefficients for AVU are taken from the look up table. Linear 

interpolation is used for generating the shape coefficients for 

intermediate frames. The increment in the model space is 

calculated as the difference between AVUs at the two ends, 

divided by the number of frames for the transition.  AVU0 is 

either the silence viseme or the last AVU of the preceding 

word.  

3. Facial image synthesis block: The matrix of coefficients 

corresponding to the word is the input to this block. Shape is 

reconstructed from shape coefficients.  The reconstructed 

shapes are combined with the background image after 

appropriate colouring and added to form the synthesised video 

corresponding to the given audio. Translation, rotation and 

scaling effects can be applied to the shape to suit different 

applications. 
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ii. Face Image Synthesis using 

Space (SMCS ) 

Both shape and texture of frontal face images

the given can be synthesised using the 

figure 7.6. The basic flow is the same as

Figure 7. 6: Block diagram of

The sequence of operations performed in the proposed SMCS 

model for facial image synthesis is listed below. 
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sing Morphing In the Coefficient 

frontal face images corresponding to 

synthesised using the SMCS framework depicted in 

The basic flow is the same as that of the shape synthesiser.   

 

: Block diagram of SMCS framework 

The sequence of operations performed in the proposed SMCS 

model for facial image synthesis is listed below.  
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1. The phoneme sequence AVU1 AVU 2... AVU n and F1, F2...Fn, 

the number frames corresponding to each phoneme are the 

inputs to the SMCS framework. 

2. Coefficient generation block: The coefficient generation block 

works in an iterative fashion. The inputs (AVUi,AVUi+1) and Fi 

in a pass represents adjacent AVUs and the number frames for 

the corresponding transition respectively. The shape and 

appearance coefficients for AVU are taken from the look up 

table. The coefficients for intermediate frames are generated by 

morphing in the coefficient space. Linear, spline and cubic 

morphing methods are used and compared as part of the 

implementation of the framework. AVU0 is either the silence 

viseme or the last AVU of the preceding word.  

3. Facial image synthesis block: The matrix of shape and 

appearance coefficients corresponding to the input word is 

given as the input to this block. Shape is reconstructed from 

shape coefficients and texture for the mean shape is synthesised 

from the appearance coefficients. In the next step, the mean 

texture is wrapped to the target shape. The reconstructed 

images are combined with the background face image to 

generate the visual speech.  

iii. Face Image Synthesis using Morphing in the Image Space 

(SMIS) 

In this method morphing is performed in the image space, 

instead of the coefficient space as done in the SMCS method. The 
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detailed flow of the SMCS framework is depicted 

input and output for the SMIS module 

framework. For each iteration, the images corresponding to adjacent 

AVUs are synthesised from the shape and appearance coefficients. 

Intermediate frames are generated by morphing these

spline and cubic morphing methods are used and compared as part of 

the implementation of the framework. 

Figure 7.7 : Block diagram for SMIS

The methods discussed so far can be used for the synthesis of 

frontal face talking images corresponding to a given grapheme 
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of the SMCS framework is depicted in figure 7.7. The 

for the SMIS module are the same as that of SMCS 

the images corresponding to adjacent 

are synthesised from the shape and appearance coefficients. 

Intermediate frames are generated by morphing these images. Linear, 

morphing methods are used and compared as part of 

the implementation of the framework.  

 

: Block diagram for SMIS 

methods discussed so far can be used for the synthesis of 

frontal face talking images corresponding to a given grapheme 
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sequence. In this work, the frameworks are applied for synthesising the 

lip movement sequence corresponding to a grapheme sequence.  The 

details of experimental results using SSF,SMCS and SMIS frameworks  

for  lip movement synthesis corresponding to Malayalam text are 

discussed in the next section in detail.  

7.4 Experimental Results and Analysis on the implementation  of  

SSF,SMCS and SMIS Frameworks for Lip Movement 

Synthesis 

The framework is applied for generating lip movements 

corresponding to a given text. Speech animation is the task of moving 

the facial features of a graphics model to synchronize lip motion with 

the spoken audio and give the impression of speech production 

(301).Automatic Speech Animation has application for multimedia 

production, gaming, and low-bandwidth communication and in speech 

and language therapy.  The synchronisation with incoming speech for 

lip movements is crucial as humans are sensitive to facial movements 

while talking. The frames in which a character speaks are generally 

taken as close up shots to develop an emotional attachment with the 

viewer. Hence a slightest glitch in the lip movements become 

noticeable and distracts the viewers from the movie. It is quite time 

consuming to create this demanding realism in speech animation.  A 

plethora of techniques are used for speech animation in recent years.  

The simplest method, employed for low budget productions, is 

to keep a library of shapes corresponding to phonemes or visemes with 

an interpolation scheme for the generation of intermediate frames. 
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Multidimensional Morphable Model (MMM) is an example of this 

approach. Stitching real speech segments without interpolation is 

another popular low cost method. Performance driven animation with 

sophisticated post production work is used for high budget 

productions. Here the articulatory movements of a human actor are 

captured and transferred to a graphic model. Even though it lacks 

flexibility the model can incorporate the emotional nuances and 

subtleties of the human actor [37]. In this work SSF, SMCS and SMIS 

frameworks are used for lip movement synthesis. After performing 

independent AAM modelling each instance of the lip can be 

considered as a point in the 59 dimensional model space, comprising of 

9 shape coefficients and 50 texture coefficients. A point in the model 

space corresponds to a particular lip shape and texture attained by the 

lip while talking. An utterance of a word can be generated as a 

trajectory in the model space using SSF, SMCS and SMIS frameworks. 

Synthesis experiments are conducted with all the 3 models. The results 

of experiments and its analysis are discussed in the following sections 

in detail.  

7.4.1 Experimental Results for Lip Movement Synthesis using  

SSF Frameworks  

The sequence of lip shapes corresponding to a text are 

synthesised using SSF framework. Table 7.3 shows the image 

sequence for the initial phonemes of the Malayalam word 

പകുതി/pakuthi/ (with sequence of phonemes as /]/+ /A/+ /I/+ 

/D/+/X/+/C/) of duration 0.89 seconds with frames 25 per second.   
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Table 7.3: Synthesised images obtained   for the initial 3 phonemes 

of Malayalam word /pakuthi/ using SSF based framework  

Phonee 
പ - അ 

Transition 

അ- ക 

Transition 

ക - ഉ 

Transition 

Frame 1 

   
Frame 2 

   
Frame 3 

   

Frame 4 

   

Frame 5 

  

 

 

A simple colouring scheme, with separate colours for lip and 

inner mouth region are used in the implementation. Lip motion image 

sequences are generated using phoneme based, allophone based and 

viseme based models.  
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7.4.2 Experimental Results using  SMCS Frameworks for Lip 

Movement Synthesis  

This section discusses the the experimental results obtained on 

the generation of the lip images corresponding to most frequently 

occurring consonant-vowel combinations in Malayalam using SMCS 

framework. The sequence of lip images generated using allophone, 

viseme from allophone, phoneme and visme from phoneme as input to 

SMCS framework are shown in figure 7.8 to figure 7.11.  

 

Figure 7.8 : Images corresponding to I2 /ka/ to D1/u/ transition 

generated with allophone based lip motion synthesis using SMCS 

 

Figure 7.9 : Images corresponding N /cha/ - Hu /ou/ transition 

generated with viseme (from allophone) based lip motion synthesis 
using SMCS 

 

Figure 7.10 : Images corresponding to ട /ta/ - ഒ/o/ transition 

generated with phoneme  based lip motion synthesis using SMCS 
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Figure 7.11: Images corresponding to പ /pa/ - അ /a/ transition 

generated with viseme from phoneme  based lip motion synthesis 
using SMCS  

Experiments are repeated by changing the method of morphing 

as linear, spline and cubic morphing. But these change in morphing 

methods is observed to be not making any significant difference   in 

the synthesised image. 

7.4.3 Experimental Results using  SMIS Frameworks  for Lip 

Movement Synthesis  

This section discusses the the experimental results obtained on 

the generation of the lip images corresponding to most frequently 

occurring consonant-vowel combinations in Malayalam using SMIS 

framework. Figure 7.12 shows intermediate frames generated during 

the transition ത/tha/ to ഇ/e/.  

 

Figure 7.12 : Images corresponding to ത /tha/ - ഇ/e/ transition 

generated with viseme from phoneme  based lip motion synthesis 
using SMIS  
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But morphing in the image space creates unrealsitic textures. 

Example intermediate frames generated during  ക/ka/ to ഉ/u/, ച /cha/ 

- ഔ /ou/  consonant vowel transitions are depicted in figure 7.13.  

 

 

Figure 7. 13: Examples of intermediate unrealistic frames  
generated using SMIS  lip motion synthesis framework    

It can be observed that SMCS framework is generating realistic 

intermediate frames. Considering the advantage of SMCS framework 

in synthesising realistic textures, SMCS is  used for the conduct of 

further experiments. Perception experiments with SMCS framework 

based lip image sequences are conducted for evaluating allophone, 

phoneme and viseme based AAM models, which is discussed in the 

next section. 
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7.4.4 Perception Experiments Based Evaluation of SMCS 

Framework for Lip Motion Synthesis 

Set of 35 Malayalam words are selected for conducting 

experiments for the performance evaluation of different lip movement 

synthesis models. The set of words selected for the study, which are 

phoneme and allophone rich is listed in table 7.4.  

Table 7.4: List of Malayalam words used for the conduct of 

perception experiments with corresponding allophonic 

transcription 

Sl. 
No. 

Word Coresponding sequence of allophone 

1 വഹ് നി വ1്  അ2 ഹ്2 ന1്1 ഇ3 

2 ഖജനാവ് ഖ്2 അ2 ജ്2 അ2 ന2് ആ2 വ2് ഉ4 

3 Cu\mw-t]¨n ഈ1 ന1്2 ആ2 മ്4 പ്3 ഏ3 ച4് ഇ3 

4 അനാച്ഛാദനം 
അ1 ന1്2 ആ2 ഛ2് ആ2 ദ്2 അ2 ന്12 

അ2 മ്4 

5 കുഷ്ഠം ക്1 ഉ7 ഷ്1 ഠ്2 അ2 മ്4 

6 O{XIw ഛ1 അ2 ത2് റ്1 അ2 ക്3 അ2 മ്4 

7 aT-b³ മ്1 അ2 ഠ1 അ2 യ1് അ2 ന1്2 

8 Aán-ss`-c-h³ 
അ1 ഗ്1 ന1്1 ഇ1 ഭ1 ഐ1 ര്1 അ2 വ1് 

അ2 ന1്2 

9 Dµp-cpIÀWnI 
ഉ1 ന്12 ദ്2 ഉ3 ര്1 ഉ3 ക്3 അ2 ര്1 ണ്1 

ഇ1 ക്3 അ2 

10 കദംബപുഷ്പ 
ക്1 അ2 ദ്2 അ2 മ്4 ബ്1 അ2 പ്2 ഉ3 

ഷ്1 പ്4 അ2 

11 tIc-f-¯nse 
ക്1 ഏ3 ര്1 അ2 ള1് അ2 ത2് ത2് ഇ1 

ല്1 എ2 
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12 
H¶-c-\q-äm-­p-ap-
¼mWv 

ഒ1 ന1്2 ന1്2 അ2 ര്1 അ2 ന1്2 ഊ1 

റ്റ്2 ആ2 ണ്1 ട്1 ഉ3 മ്4 ഉ3 മ്4 പ്3 

ആ2 ണ1 ഉ4 

13 ]ucm-h-Im-i-Ncn{Xw 
പ്1  ഔ1 ര്1 ആ2 വ1് അ2 ക്1 ആ1 ശ1് 

അ2  ച2് അ2 ര്1 ഇ1 ത്2 റ്1 അ2 മ്4 

14 Fgp-X-s¸-«n-cn-¡p¶ 
എ1 ഴ്1 ഉ3 ത3് അ2 പ്4 പ്4 എ3 ട്4 ട്4 

ഇ1 ര്1 ഇ1 ക്2 ക്2 ഉ3 ന1്2 ന1്2 അ2 

15 CXp-t]mse ഇ2 ത്2 ഉ3 പ്4 ഓ2 ല്1 എ2 

16 D°m-\-ho-c³ 
ഉ1 ത്2 ഥ1് ആ2 ന2് അ2 വ1് ഈ2 ര്1 

അ2 ന1്2 

17 X\ntb ത1് അ2 ന2് ഇ1 യ1് ഏ2 

18 G[nX ഏ1 ധ1് ഇ1 ത്3 അ2 

19 Hm´p-sIm¯n ഓ1 ന1്2 ത4് ഉ3 ക്3 ഒ2 ത2് ത2് ഇ3 

20 Pe-ssh-ZypXn 
ജ്1 അ2 ല്1 അ2 വ1് ഐ1 ദ്1 യ1് ഉ3 

ത3് ഇ3 

21 Ut -̂ZmÀ ഡ്1 അ2 ഫ1 ഏ3 ദ്2 ആ2 ര്1 

22 Q¦mcw ഝ1 അ2 ങ4് ക്4 ആ1 ര്1 അ2 മ്4 

23 സുഖം സ്1 ഉ7 ഖ്1 അ2 മ്4 

24 തമാഖു ത1് അ2 മ്4 ആ2 ഖ്3 ഉ2 

25 \£-{X-NnÓw 
ന2് അ2 ക്5 ഷ്1 അ2 ത2് റ്1 അ2 ച്2 

ഇ1 ഹ്2 ന1്1 അ2 മ്4 

26 t\À¶p-sI-«pI 
ന2് ഏ3 ര്1 ന1് ന1് ഉ3 ക1 എ3 ട്4 ട്4 

ഉ3 ക്3 അ2 

27 KqVmMv{Ln 
ഗ്2 ഊ1 ഢ്1 ആ2 മ്4 ങ1് ഘ്1 അ2 ര്1 

ഇ3 

28 ചടകാമുഖം 
ച1് അ2 ട്2 അ2 ക്1 ആ1 മ്4 ഉ3 ഖ്1 

അ2 മ്4 

29 സംവരണം 
സ്1 അ2 മ്3 വ1് അ2 ര്1 അ2 ണ്1 അ2 

മ്4 

30 Nnc-k-©nX 
ച1് ഇ1 ര്1 അ2 സ്1 അ2 ഞ്1 ച്3 ഇ1 

ത3് അ2 
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31 ]S-h-e§ 
പ്1 അ2 ട്2 അ2 വ1് അ2 ല്1 അ2 ങ്1 

ങ1് അ2 

32 
sNs¼mÂ¯mÀ_m-
W³ 

ച1് എ3 മ്4 പ്3 ഒ2 ല്1 ത2് ത2് ആ2 

ര്1 ബ്1 ആ2 ണ്1 അ2 ന1്2 

33 tSmS ട്1 ഓ2 ട്3 അ2 

34 Ahsâ അ1 വ1് അ2 ന1്2 റ്റ്1 എ2 

35 sN¿-s¸« 
ച1് ഐ2 യ്1 അ2 പ്4 പ്4 എ3 ട്4 ട്4 

അ2 

 

Lip movement synthesis is performed from phoneme, 

allophone, viseme (mapped from phoneme) and viseme (mapped from 

allophone) based models using SMCS framework. Perception 

experiments are conducted to evaluate the synthesised images. For 

evaluation, the scheme proposed by Likert [334], in which the 

participants are asked to rate the naturalness in a 5 point scale is 

adopted. The scaling starts with 1(very unnatural) and ends with 5 

(very natural) [335].  

Three speakers with normal hearing and seeing conditions are 

selected as participants for the experiment. The synthesised image 

sequences corresponding to the 35 words using SCMS  is displayed to 

the participant with audio from the original utterances. Four set of 

visuals is generated and displayed for each of the word  with 

allophone, viseme(from allophone), phoneme and  viseme(from 

phoneme)  as basic AVUs used for AAM training. Each user marks 

one of the five options for rating the synthesised image corresponding 

to each word in each of the four modes. Options are provided for 

recording the rating.The sum of scaled responses for all words is used 
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for preparing evaluation metric. A consolidated report of the 

performance evaluation experiments is given in table 7.5 

Table 7.5: Consolidated report of responses evaluating SMCS 

synthesised lip images with different AVUs of 3 participants 

Atomic Visual Speech Unit 

P
ar

ti
ci

p
an

t 
1 

P
ar

ti
ci

p
an

t 
2 

P
ar

ti
ci

p
an

t 
 3

 

A
ve

ra
ge

 

Synthesiser with allophone as basic unit 116 112 126 118 

Synthesiser with Viseme obtained through 
mapping from Allophone as basic unit 

110 108 120 112.67 

Synthesiser with Phoneme as basic unit 100 96 100 98.67 

Synthesiser with Viseme obtained through 
mapping from phonemes as basic unit 

96 94 98 96 

 

From the experimental results, it is evident that the allophone 

based approach for lip movement synthesis is found to be more 

promising. The difference between the allophone based and viseme 

(mapped from allophone) based approach is observed as very minimal.  

Similarly the difference between performance of the phoneme based 

and viseme  (formed from phoneme) based approach is also found very 

minimal.  

7.5 Conclusion  

This chapter describes a novel comprehensive framework 

developed for visual speech synthesis for Malayalam. The components 

such as durational models, phoneme and allophone transcripters, 
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viseme set generated using linguistic knowledge, perception 

experiments and data driven methods and lip movement synthesis 

algorithms are combined to form an efficient visual speech synthesiser. 

Independent AAM is used for the parametric modelling of visual 

speech. In this work the proposed framework is successfully applied 

for generating talking lip movements for Malayalam. Three separate 

models are implemented for lip movement synthesis. The SSF 

framework synthesises shape, whereas SMCS and SMIS frameworks 

synthesises both shape and texture. Perception experiments are 

conducted by taking allophone, phoneme, viseme (mapped from 

allophone) and viseme (mapped from phoneme) as inputs to the 

synthesiser. Perception based evaluation revealed the advantages of 

using allophone as the basic unit for lip synthesis applications. From 

the results of the perception experiments it is also evident that 

significant perception difference is not observed while using viseme 

instead of underlying phonemes or allophones as Atomic Visual Unit 

(AVUs).   
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Chapter 8 

CONCLUSION 
 

 

“Speech is rather a set of movements made audible than 

a set of sounds produced by movements” 

8.1 Conclusion  

Inputs from multiple channels, which are integrated in the brain 

makes human-human communication easy, accurate and robust. 

Incorporating this multimodal information integration capability of the 

brain in to machines is expected to revolutionise human computer 

interaction. The perception of speech is multimodal, even though 

speech perception is primarily based on the audio cues generated from 

the speech signal. But the importance of visual cues in the perception 

of speech and in the communication of non-linguistic factors such as 

emotional state is an established fact.  The emphasis and punctuations 

added by facial expressions is one of the decisive factors in making 

face to face talking the most effective communication mechanism. The 

frequently quoted example is of a raised eyebrow, which acts as 

question mark. Blind people understand speech by touch. Taste and 

smell are not in anyway involved with speech. This thesis explored the 

visual aspects of speech for realising a visual speech synthesis 

framework in Malayalam.  

Text to audio visual speech synthesis systems need to 

understand text, audio and visual domains of language representations. 
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Standardisations, mappings from one domain to another and statistical 

analysis based on atomic units in each domain need to be carried out 

for the target language. Graphemes are the basic unit in the textual 

representation of a language. Phonemes, defined as the smallest 

distinctive sound units in a language, are considered to be the basic 

unit for speech. But the properties of phonemes exhibit wide variations 

based on its position in the word and context. In Malayalam, phonemes 

are further categorised in to allophones based on the positional and 

contextual variability, i.e. the contextual and positional variability is 

encoded in the allophone characterisation of Malayalam language. This 

computational linguistic feature of Malayalam is exploited in designing 

many components of the proposed work. Malayalam phoneme set 

consists of 10 monophthongs, 2 diphthongs and 38 consonants. As part 

of the study, 107 allophones in Malayalam which include 76 consonant 

allophones, 28 vowel allophones and 3 allophones corresponding to 

diphthongs are identified and listed. Corpora in text, audio and visual 

modalities are created for the training and the conduct of various 

experiments related to tracking and synthesis.   

Detailed investigation is performed on the duration of 

allophonic variations of Malayalam allophones, which is used as the 

durational model of visual speech synthesis framework. Further 

investigations are performed to understand the  audio visual 

asynchrony in Malayalam. It is observed that the interphoneme silence 

in Malayalam is mainly attributed to the stop phase or obstruction 

phase of plosive formation. A rule based text to phoneme and 

allophone transcription system is developed as part of this study. The 
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rule based approach gives satisfactory results in Malayalam 

transcription. Pre-processing brings different class of graphemes to a 

unified framework required for the phoneme and allophone 

transcription. A comprehensive statistical and probabilistic analysis 

based on the developed phoneme and allophone converter is performed 

on standard Malayalam word corpora. 

Viseme set is the set of visually discernable mouth 

appearances, which is considered as the basic unit of visual speech. 

Separate viseme sets for Malayalam language are developed as part of 

this work based on phoneme to viseme mappings and allophone to 

viseme mappings. Phoneme to Viseme maps are developed from 

linguistic knowledge, perception experiments and data driven 

clustering methods. Geometric features of lips and  Discrete Cosine 

Transform (DCT) are the visual features used for clustering. The final 

phoneme to viseme map, with 17 members is finalised by comparing 

viseme sets obtained using these three approaches. 

 Mouth area mainly consists of lip, skin neighbourhood of lips, 

teeth, tongue and dark portions of mouth cavity. The colour of these 

mouth regions shows significant variation with respect to ethnicity. 

The statistical and probabilistic analysis of colour of mouth region 

pixels in Indian context is performed as part of this study. The analysis 

is performed in different colour spaces. The colour spaces are ranked 

according to their performances against a multiclass Bayesian classifier.  

Lip tracking by land mark point localisation is another major problem 

Active Shape Modelling (ASM) and Convolution Neural Networks 

(CNN) are used for lip land mark point localisation. The ranking of 
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colour spaces is exploited in designing the ASM based lip tracking 

system.  

Finally a text to visual speech synthesis frame work using 

independent Active Appearance Models (AAM) is implemented. The 

lip movements corresponding to input text is synthesised using the 

framework. The frame work comprises of  durational models, 

transcriptors, viseme set and lip tracking modules to develop the AAM 

based synthesiser. 

8.2 Contributions of the thesis  

The main contributions of the work are listed, which can be 

summarised in the following way. 

i. The development of an isolated phoneme and isolated word 

audio visual speech corpora in Malayalam. Image sequences 

corresponding to speech utterances of 51 phonemes (from 10 

speakers) and speech utterances of 214 words (from 10 

speakers) are procured and arranged in a web framework for 

easy navigation and access. The corpora consist of around 

13,000 frontal face images. The inner and outer lip contours are 

manually marked using 36 land mark points for a subset of 

images in the corpora. The corpora, the first of its kind in 

Malayalam, can be used for further research leading to the 

development of successful audio visual speech synthesis and 

recognition tools in Malayalam.  

ii. An allophone based durational model, which accommodates the 

contextual variability of Malayalam phonemes in continuous 
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speech is developed as part of this work. The preliminary 

studies performed revealed the nature of audio visual 

asynchrony in Malayalam. 

iii. A grapheme to phoneme and allophone transcripter for 

Malayalam is developed as part of this work. The developed 

transcripter carries the potential for the development of 

language computing tools in Malayalam, which considers the 

inherent computational linguistic features of Malayalam 

language.   

iv. The phoneme to viseme mappings generated in Malayalam 

using linguistic, perception and data driven approaches are the 

other important contribution of this work. The proposed viseme 

set will act as a foundation for future studies in the domain of 

Malayalam visual speech processing. The allophone to viseme 

maps generated is a catalyst towards allophone centric 

paradigm shift in Malayalam speech processing. 

v. The ranking of colour components in different colour spaces 

for classification of mouth region pixels in to skin, lip, teeth 

and tongue is another contribution of the work. Considering the 

dearth of such studies in Indian skin tone context, the ranking 

can be used for developing native mouth motion analysis and 

tracking systems.  A Hue (HSI colour model) based ASM lip 

segmentation framework is also proposed as part of this work. 

Works performing lip segmentation and tracking using deep 

neural network are rare in literature. A Convolution Neural 

Network based lip tracking system is also developed by 
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landmark localisation and tested with MAVSC-IP and 

MAVSC-IW data sets.  

vi. The thesis proposes a unified frame work for visual speech 

synthesis using independent AAM in Malayalam, using the 

components developed as part of the work. A lip motion 

animation synthesiser with grapheme sequence as input for 

Malayalam is developed and evaluated as part of this work. The 

reliable visual speech synthesisers in Malayalam for 

applications such as Human Computer Interaction (HCI), 

assistive technology for deaf community and talking face 

models may evolve in the public domain with the proposed 

framework as starting point.   

8.3 Future Directions 

More investigations are needed for exactly modelling audio 

visual asynchrony in Malayalam. A speech to phoneme and allophone 

transcriptor for Malayalam is required for developing speech driven 

facial motion synthesis systems.  Extracting emotional cues from 

speech and creating expressive visual speech is also an important 

future direction. The statistical properties of phonemes and allophones 

in Malayalam derived using transcriptors can be used for language 

computing applications such as language identification.  

Viseme is the set of visually separable units. The viseme set in 

Malayalam is developed using various methods in this work and the 

same is used as a component in the visual speech synthesis framework. 

The concept of visual severability is very important for developing 
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visual speech recognisers in a language. The phoneme/allophone to 

viseme maps developed in this work, especially using data driven 

techniques can be incorporated in visual speech recognition systems in 

Malayalam. The visually separable phoneme classes can be validated 

using classifiers such as artificial neural networks.  

A Performance driven facial animation systems has been used 

for many successful productions. Earlier approaches used markers and 

sensors for tracking target regions, which is retargeted to a synthesis 

framework.  But the current practice is to use sophisticated algorithms 

for tracking regions and to use them for real time modelling and 

synthesis of facial movements. The detailed study performed on colour 

properties of mouth region pixels in Indian context can be used for 

designing real time tracking systems in an analysis synthesis 

framework. 

A speech animation system in Malayalam can be developed for 

the character animation using the framework proposed in the work.  In 

this work, the synthesiser framework is applied for creating lip 

movements corresponding to a text.  A complete facial motion 

synthesis system can also be developed using the same framework. An 

image dataset with land marking on full face is the only additional 

requirement for developing facial motion synthesiser in Malayalam. 

Speech driven visual speech synthesisers can be developed using the 

AAM as part of future research. Deep Neural Network (DNN) based 

visual speech synthesisers trained with AAM coefficients is another  

possible direction for future implementations.  
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