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Anaesthesia is provided to assist the progress of surgery by minimising pain, patient

recall and discomfort during the surgical procedure. When anaesthesia is adequate

the patient feels no pain during the surgical procedure and often does not recall

the proceedings. One of the current challenges in Anaesthesia is the estimation

of patient’s Depth of Anaesthesia for adequate dosing of anaesthetic drugs. The

most formidable complications of anaesthesia are the awareness of the patient during

surgery due to the inadequate doses of anaesthetic drugs and overdose of anaesthetic

drugs which can cause prolonged recovery from anaesthesia. Therefore, continuous

estimation of patient’s anaesthetic depth prevents awareness due to the inadequate

administration of anaesthetic drugs and also avoid the overdose of drugs by opti-

mizing the quantity of drug delivered to a patient during surgery. Usually, depth

of anaesthesia is estimated using clinical parameters such as Blood Pressure (BP),

Heart Rate (HR), sweating, tearing etc. However, these parameters are incompetent

to provide the exact plane of anaesthesia because these parameters vary depending

on the patient, drug effect and surgical procedure. Hence, the scientific estimation

of patient’s Depth of Anaesthesia during surgery is a challenging task.

The understanding of the effect of anaesthetic drugs and their response

is very important for anaesthesia decision making and for patient’s dose calcula-

tion. Actually, the anaesthetic drugs cause effects on neurophysiological signals
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and clinical parameters such as Heart Rate and Blood pressure. In the current re-

search, multiple inputs derived from clinical and neurophysiological signals are used

to quantify the Depth of Anaesthesia. The data used for the study is obtained from

25 female patients who have undergone breast cancer surgery at Regional Cancer

Centre (RCC), Trivandrum, Kerala, India. The collected dataset includes waveform

data such as electroencephalogram (EEG) signal and numerical data such as Heart

Rate, Systolic Blood Pressure and Diastolic Blood Pressure. The EEG signals repre-

sent the neurophysiological signal and are collected using BIS sensor whereas Heart

Rate, Systolic and Diastolic Blood Pressure are extracted from the standard moni-

toring devices. These signals are collected from the patient throughout the surgical

procedure.

The objectives of the research are:

• Prepare the collected EEG signals and the standard monitoring parameters

for analysis by applying pre-processing techniques.

• Extract the time domain, frequency domain, time-frequency domain and non-

linear features from EEG signals.

• Extract features from vital parameters such as HR and BP collected from

standard monitoring devices.

• Analyze the extracted features during different anaesthetic phases awake, In-

duction, Maintenance and Recovery.

• Compare the extracted features with the commercially available Depth of

Anaesthesia monitoring Index(BIS)

• Select the combination of features which enhance the accuracy of classifica-

tion according to the Depth of Anaesthesia as deep anaesthesia, moderate

anaesthesia, light anaesthesia and awake.

• To develop an integrated index to estimate Depth of Anaesthesia by combining

the selected combination of EEG features and standard monitoring parameters.

The first stage of the research is concerned with data preprocessing. After

the data collection, the signals are preprocessed using filters to remove the noises
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from the data. Initially, the signals are segmented for the effective filtering and

analysis. Both the uniform segmentation and non-uniform segmentation are applied

to the signals. In the uniform segmentation, signals are divided into fixed time

intervals of 5 sec whereas the non-uniform segmentation is implemented by applying

modified Varri’s algorithm on the collected EEG signals. After segmentation, the

noises from the signals are removed by applying filtering methods. In the case of

EEG signals, a two-level filtering method is applied. In the first level, a 50 Hz notch

filter is designed to remove the power line interferences. In the second level, wavelet-

based thresholding algorithm is applied to the EEG signals to remove the artifacts.

The performance of the filter is evaluated by calculating 3 measures Mean Square

Error, Signal to Noise Ratio and Correlation Coefficient.

The second stage of the research is concentrated in different feature extrac-

tion methods. At the beginning of this stage, EEG signals are represented in various

domains to extract features that depict the amplitude and frequency variations. A

non-linear analysis is also done on EEG signals to study the complexity/regularity of

the EEG signals. The extracted time domain features include Standard Deviation,

Entropy, Energy, Mean Absolute Deviation, Zero Crossing Rate and Inter-Quartile

Range. Among these features Standard Deviation, Energy, Mean Absolute Devia-

tion and Inter-Quartile Range shows a direct relationship with Depth of Anaesthesia

whereas Entropy and Zero Crossing Rate shows an inverse relation with Depth of

Anaesthesia. The frequency domain features extracted from EEG signals are Spec-

tral Edge Frequency and Spectral Entropy. Both these features show an inverse

relation with DoA. The extracted time-frequency domain features are Wavelet En-

tropy (WEn) and Relative Wave Energy(RWE) of each EEG frequency band. All

these features vary in accordance with DoA. Finally, nonlinear features such as Ap-

proximate Entropy(ApEn) and Permutation Entropy(PEn) are extracted from the

collected EEG signals to study the complexity and nonlinear behaviour of EEG

signals during different phases of anaesthesia. In order to study the hemodynamic

variability due to the anaesthetic drugs, features such as ∆Heart Rate, ∆Mean Blood

Pressure and Pulse Pressure are extracted from the HR and BP data. Abnormali-

ties of these extracted features during the four phases of anaesthesia such as awake,

induction, maintenance and recovery are analyzed to quantify the variations. The

capability of the extracted features in estimating Depth of Anaesthesia is analysed
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by comparing the features with a commercially available DoA index(BIS index).

In the third stage, optimum features are selected by applying different fea-

ture ranking methods like ’T-Test’, ’Entropy’, ’Bhattacharyya’, ’ROC’ and ’Wilcoxon’.

The kNN, SVM, Multilayer Perceptron and Naive Base Classifier outputs are com-

pared based on their accuracy to select the best-ranked features of EEG signals from

the time, frequency, time-frequency and nonlinear analysis. In the case of hemody-

namic parameters Kruskal Wallis test is used to select the best features from the

extracted hemodynamic parameters.

In the last stage of the research, an Adaptive Neuro-Fuzzy Inference System

(ANFIS) model is implemented to estimate the multiparameter DoA index. In the

implementation process of ANFIS model, two algorithms called Subtractive cluster-

ing and Fuzzy C Means clustering are used to generate fuzzy functions and rules. A

hybrid learning algorithm consisting of Least Square Estimator(LSE) method and

the backpropagation gradient descent method is used to learn and adjust the ANFIS

parameters. Root Mean Square Error(RMSE) is calculated to compare the perfor-

mance of the two ANFIS models. ANFIS model based on subtractive clustering

algorithm produced lowest RMSE for the training, testing and combined data set.

Finally, a multiparameter Depth of Anaesthesia index is generated by integrating

EEG features and hemodynamic features using subtracting clustering based ANFIS

model.
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Chapter 1

Introduction

Anaesthesia is a medically induced clinical state that inhibits patients from sens-

ing pain during surgery. The word anaesthesia is originated from two Greek words

“an” meaning “without” and “aesthesis” meaning “sensation”. When anaesthesia

works the patient feels no pain during the procedure and often does not remember

the surgical proceedings. There are two types of anaesthesia namely General Anaes-

thesia (GA) and Regional Anaesthesia (RA). General anaesthesia is a drug-induced,

reversible state that leads to loss of consciousness, loss of pain perception and loss of

thought processing of the surgical procedures. Regional anaesthesia is accomplished

using drugs that temporarily block the sensation of pain in a certain area of the

body while the patient remains awake.

The advancement in medical research has transformed anaesthesiology into

an active area of research. Many of the surgical procedures would not be possible

without anaesthesia. In order to improve the quality and understanding of anaes-

thesia, implementation of uniform process and standardization in the field of anaes-

thesia is required. This emerges new technologies and research areas that promote

multidisciplinary research.

Estimation of patient’s Depth of Anaesthesia (DoA) during GA is one of

the current challenges in anaesthesia research because too little anaesthetic drugs

can make a patient aware during surgery. On the other hand, too much anaesthetic

drugs can result in anaesthetic overdosing that leads to prolonged recovery from

1
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anaesthesia. Therefore, continuous monitoring and estimation of anaesthesia prevent

patient awareness due to the inadequate dose of anaesthetic drugs and avoid the

overdose of anaesthetic drugs by optimizing the quantity of drug delivered to a

patient during surgery. Many of the anaesthesiologist control and monitor the DoA

by observing the parameters such as Blood Pressure(BP), Heart Rate(HR), Body

movement and Airway Pressure etc. These parameters are incompetent to provide

the exact plane of anaesthesia due to their insufficiency in giving exact dynamic

characteristics of anaesthetic drug effect. Use of other drugs like muscle relaxants

and vasodilators makes the analysis of those parameters difficult and unreliable

[Shalbaf et al. , 2013].

1.1 Depth of Anaesthesia (DoA)

Depth of Anaesthesia is defined as the drug-induced probability of non-response to

stimulation calibrated against the strength of the stimulus and difficulty of sup-

pressing the responses. DoA depends on three main factors: (1) The equilibration

of drug’s concentration in plasma with concentration of drug at its site of action

and with measured drug effect (2) The relationship between drug concentration and

drug effect (3) The influence of noxious stimuli [Kaul et al. , 2002]. The process of

Figure 1.1: Process of General Anaesthesia
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GA is presented in Figure 1.1. The three main components that an anaesthesiologist

has to suppress through anaesthetic drugs are consciousness, sensitivity to pain and

patient movement. Anaesthesiologist uses Intravenous (IV) anaesthetic drugs for

suppressing consciousness and would induce a state of unconsciousness called Am-

nesia (Hypnosis). Opioid drugs were used by the anaesthesiologist to suppress the

pain and would lead to a state of insensitivity to pain called Analgesia. The muscle

relaxant drugs were provided to prevent patient’s movement and would result in a

state of muscle relaxation called Akinesia. The combination of hypnotic, analgesic

and muscle relaxation drugs is referred as ‘triad of anaesthesia’.

The standard dose of these drugs is calculated based on the patient’s body

weight and age. Dose ratio can be modified according to the relative importance of

each component depending on the surgical and patient factors like previous history,

the physical condition of the patient, complexity of the surgery [Miller et al. ,

2014]. The effects of anaesthetic drugs are (1) transition from a state of wakeful-

ness to a state of unconsciousness (2) transition from a state of pain sensitivity to

state insensitivity to pain and (3) transition from muscle movement to muscle relax-

ation. The volatile anaesthetic agents called inhaled anaesthetics like nitrous oxide,

desflurane, isoflurane were provided for maintaining the anaesthesia till the end of

the surgery. Anaesthetic drugs were administered to the patients intravenously (by

needle into a vein) whereas administration of volatile anaesthetic agents was done

with the help of an endotracheal tube. The endotracheal tube also helps in venti-

lation of the patient during the surgery. The introduction of an endotracheal tube

into the trachea is called intubation which is done with the help of laryngoscope.

Laryngoscopy is done to visualize larynx after the administration of IV drugs.

The amnesia state defines that it is a state of drug-induced unconsciousness

in which patient neither perceives nor recalls surgical proceedings. Unconsciousness

can be induced by deep sleep or by anaesthetic drugs. What distinguishes the

unconsciousness of anaesthetic state from the non-responsiveness of normal sleep is

the stimulus intensity required to break the state of unconsciousness and arouse the

brain to conscious perception. The various stimuli that arouse the brain to conscious

perception include loud music, hard and cold operating table and painful stimuli.

But the hypnotic drugs are capable of producing profound depression on the neurons

of Central Nervous System (CNS) that even most painful surgical stimulus cannot
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awaken the patient from a state of unconsciousness. Hence, the consciousness can

be defined as the balance between excitation and depression of the neurons in the

CNS. Cortical neuron depression promotes unconsciousness. The neuron on the

CNS can be depressed pharmacologically by hypnotic drugs and other drugs such

as N2O. But this state of unconsciousness is difficult to measure directly because

of the variability in unconsciousness due to the varying depression of neuron in the

CNS. The variability in unconsciousness can only be measured by the analysis of

information on EEG. This EEG based quantification measures the conscious and

unconscious state by measuring the predictive probability of response that balance

the electrophysiological measures.

The various responses that the patient can have during the surgical stimu-

lation are the perception of pain and movement of the stimulated part. The patient

can also have hemodynamic responses like increase in HR and BP due to the stress

response of surgery. The analgesic drugs called Opioids are given to suppress these

responses. The magnitude of the painful stimulus is determined by the magnitude

of the painful outcomes of the surgery and also by the potency of the opioid. More

opioids are required to blunt the powerful surgical stimuli. Opioid primarily acts on

peripheral nervous system and have a little action on midbrain and thalamus. Opi-

oid receptors are widely distributed in those regions of CNS which mediate various

hemodynamic responses. After the interaction of opioid at the peripheral nervous

system, the resultant painful stimulus is then projected to the CNS. The pain output

from the peripheral nervous system is balanced by the analgesic drug concentration

attained by the administration of opioid. As the pain intensity increases the potency

of the opioid decreases. Then the painful stimuli projected from the peripheral ner-

vous system and surrounding environment stimulate the CNS. The CNS activates

the sympathetic neural and autonomic humoral pathways and which cause changes

in hemodynamic responses like HR and BP. Thus the response to the painful stim-

uli is measured by the probability of responsiveness to hemodynamic parameters

and different doses of analgesic drug administration. Muscle relaxants are used for

laryngoscopy and to improve the surgical access. They are neither a component of

anaesthesia nor an alternative to adequate anaesthesia. Hence, the effect of muscle

relaxant is not necessary for the measurement of DoA.
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1.2 Phases of General Anaesthesia

GA has four phases

1. Awake phase: This phase is 5-10 minutes before administration of IV anaes-

thetic agent. At this phase patient is premedicated and all the essential mon-

itors are attached to the patient.

2. Induction phase: The time of administration of IV anaesthetic agents to the

absence of response to the verbal stimuli checked by the anaesthesiologist is

the Induction phase. Usually, it is 1-5 minutes after the administration of IV

anaesthetic agents. During this phase laryngoscopy and intubation are done.

3. Maintenance phase: The period after the insertion of endotracheal tube and

administration of inhalation agent till the end of the surgery.

4. Recovery phase: The period after the cutoff of inhalation agent and adminis-

tration of reversal agent (Neostigmine and Glycopyrrolate) to till the Return

of Consciousness (RoC)[Miller et al. , 2014].

1.3 Effect of General Anaesthesia on EEG signals

EEG signals are the cortical electrical activity derived from summated excitatory

and inhibitory postsynaptic activity as a result of sub cortical events passing through

the thalamic nuclei. EEG signals are primarily analyzed by their frequency content

and amplitude. The amplitude range of EEG signal varies from 20µV to 200µV.

The primary range frequencies of interest for EEG signals is from one to 60 Hz. Five

main frequency ranges are normally included in all EEG studies: Delta (0.5-4 Hz),

Alpha (4-8 Hz), Beta (8-12 Hz), Theta (12-30 Hz), and Gamma (30-60 Hz). These

frequency ranges and their features are illustrated in the Table 1.1 [Al-Kadi et al.

, 2013].

The direct and indirect inhibitory effects of anaesthetic agents on EEG sig-

nals are (1) transition from low amplitude, high-frequency signals to high amplitude,
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Table 1.1: EEG Rhythms

Frequency
Range

Amplitude
Range

Features

32-60 Hz (γ) 3 µ V - 5 µ V Involved in learning, memory, in-
formation processing, anxiety, high
arousal and stress

16-32 Hz (β) 2 µ V - 20 µ V Associated with conscious thought,
logical thinking and active concen-
tration

8-16 Hz (α) 20 µ V - 60 µ V Associated with relaxed, alert state
of consciousness

4-8 Hz (θ) 20 µ V - 100 µ V Associated with drowsiness, day-
dreaming and sleep

0-4 Hz (δ) 20 µ V - 200 µ V Associated with the deepest levels of
relaxation and in deep stage of sleep

low-frequency signals and vice versa (2) the presence of spindles and K-complexes

in the case of very deep anaesthetic states [Voss & Sleigh, 2007]. But very deep

anaesthetic states are not analyzed in the present research as it would cause hemody-

namic instability of the patient during surgery and hence spindles and K-complexes

are beyond the scope of the present study.

1.4 Effect of General Anaesthesia on Hemody-

namic Parameters

As the anaesthetic drugs affect CNS as well as autonomic nervous system, the au-

tonomic nervous system activity should be evaluated to improve the accuracy of

estimation of DoA. The most common way of determining the activity of the au-

tonomic nervous system is that the quantification of the changes in Heart Rate

(HR) which is measured from the electrocardiogram (ECG) signal and Mean Arte-

rial Pressure (MAP) which measured from the Noninvasive Blood Pressure (NBP)

signal. The administration of hypnotic drugs such as propofol causes decrease in
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BP and minimal change in HR whereas laryngoscopy and intubation cause an im-

mediate increase in HR and BP which last for 5 minutes. Hence, opioid and local

anaesthetic drugs are given to bring down the BP and HR which in turn suppress

the stress response of Laryngoscopy and Intubation. During the surgical procedure

various surgical stimuli such as skin incision, sternotomy, skin closure, opening of

peritoneal cavity etc. may lead to increase in HR and BP. The hypnotic drugs

have poor analgesic effect whereas opioids have good analgesic property. Inhalation

agents and opioid play an important role in the maintenance period of anaesthesia.

Inadequate analgesia in the maintenance phase of anaesthesia is reflected by increase

in HR more than 90bpm and 15 percent increase in systolic blood pressure from the

initial blood pressure of the patient (Baseline BP).

1.5 Motivation of the Research

Estimation and monitoring of patient’s DoA have been changing with the evolution

of technology. For decades, depth of anaesthesia was estimated based on clinical pa-

rameters like Blood Pressure (BP), Heart Rate (HR) and the patient reactions like

sweating, tearing, and many more. However, the characteristics of these parameters

are patient dependent and hence accurate estimation of patient’s Depth of Anaesthe-

sia during surgery is a challenging task. One of the most formidable complications

of anaesthesia is the awareness of the patient during surgery due to the inadequate

doses of anaesthetic drugs. On the other hand overdose of anaesthetic drugs can

cause prolonged recovery from anaesthesia. Accurate estimation of the anaesthetic

depth will prevent these complications. The developments in mathematical mod-

elling of biological systems fascinate researchers to study EEG extracted parameters

for the estimation of Depth of Anaesthesia. The efforts made, for the estimation of

DoA from EEG was still a biased approach of analysis since it is unable to repro-

duce the same depth value every time we execute the EEG extracted parameters

for different patients with same anaesthetic drug combination. This challenge opens

new possibilities for the current research. In order to reduce the variability, some

other information is to be acquired, like heart rate, blood pressure other than EEG

signals. By including this information the estimation of the DoA was less subjective

and more accurate. The purpose of this research is to bridge this gap between the
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subjective perception of DoA monitoring and objective measurement of concomitant

physiological changes.

Modern anaesthesia is moving towards the monitoring, modelling, and clas-

sification of multiple inputs from clinical and physiological signals for the drug con-

trol of anaesthesia. There are no direct measurements available to estimate the

outcomes of anaesthetic drug effects such as Hypnosis (Amnesia), Analgesia and

Akinesia. Therefore intelligent modelling techniques using multiple inputs derived

from clinical and physiological signals are used to quantify these outcomes. During

surgery, the anaesthesiologist needs to know whether the depth of anaesthesia com-

posed of hypnotic component or analgesic component. As long as the EEG derived

parameters gives only the measure of consciousness or hypnosis, we cannot discrim-

inate the other outcome using EEG parameters alone [Duarte & Saraiva, 2009].

The effect of anaesthetic drugs, the degree of surgical stimuli and pain varies from

patient to patient. Also, the use of concomitant analgesic drugs produces different

results. The indirect indicators HR and BP reveals the adequacy of analgesic drugs

which are the classical parameters used by the anaesthesiologists. Intelligent mod-

elling of these multiple parameters derived from clinical and physiological measures

accelerate the accurate estimation of DoA.

1.6 Objective of the Research

The limitation of EEG based DoA monitors is that they may not reflect the clinical

status of a patient due to the effect of anaesthetic drugs on the autonomic nervous

system[Shalbaf et al. , 2015; Schneider et al. , 2014]. These monitors work

only on the hypnotic components of the anaesthetic drugs. Anaesthetic drugs cause

effects on neurophysiologic and hemodynamic parameters. The current research

estimates DoA by integrating central nervous system monitoring parameters which

are extracted from the EEG signals and autonomous nervous system monitoring

parameters derived from the standard monitoring devices. This intelligent model

analyzes whether the integration provides reliable information about the depth of

anaesthesia. The objectives of the research are:
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• Prepare the EEG signals and the standard monitoring parameters for analysis

by applying pre-processing techniques.

• Extract the time domain, frequency domain, time-frequency domain and non-

linear features from EEG signals.

• Extract the vital parameters such as HR and BP from standard monitoring

devices.

• Analyze the extracted features during different anaesthetic phases awake, In-

duction, Maintenance and Recovery.

• Compare the extracted features with the commercially available DoA monitor

Index (BIS)

• Select the combination of features which enhance the accuracy of classification

according to the depth of anaesthesia as awake, light anaesthesia, moderate

anaesthesia, and deep anaesthesia.

• To develop an integrated index to estimate Depth of Anaesthesia by combining

the selected combination of EEG features and standard anaesthetic monitoring

parameters.

1.7 Outline of the thesis

Present research handles the EEG signals, Systolic Blood pressure, Diastolic Blood

pressure, Mean Arterial Pressure (MAP) and Heart Rate collected during anaesthe-

sia for the estimation of DoA. Discrete Wavelet Transforms (DWT) based filtering

method is applied to pre-process the EEG signals. Preprocessing of other numeri-

cal data is done by removing the power line interference from the data. The time

domain, frequency domain, time-frequency domain and non-linear features are ex-

tracted from the EEG signals. The conceptual framework of the research is presented

in Figure 1.2. The time domain features Standard Deviation, Energy, Entropy and

Zero Crossover are extracted to study the variations in amplitude over time of the

EEG signal. The frequency domain features like Spectral Entropy and Spectral

Edge Frequency are extracted to analyze the response of EEG signal at different
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frequencies. The time-frequency domain features wavelet entropy and relative wave

energies are extracted to get the characteristics of EEG signals in both time and

frequency domains. Nonlinear features like Approximate Entropy and Permutation

Entropy are extracted to study the nonlinear behaviour of the EEG signals. The

performance of the extracted EEG features are evaluated by comparing with com-

mercially available BIS monitoring index of each patient. The dimensionality of the

feature vectors are reduced by applying Feature selection by feature ranking meth-

ods. The algorithms used for feature ranking are T-Test, Bhattacharyya, Wilcoxon,

ROC and Entropy. The combination of features which gives highest classification

accuracy in the anaesthetic EEG classification as awake, light anaesthesia, moder-

ate anaesthesia and deep anaesthesia is selected for the final DoA estimation model.

The features extracted from the standard monitoring devices to study the analgesic

effects of the patient are ∆HR and ∆MAP . Finally, the selected EEG features

and the extracted standard monitoring device parameters are fed to a Neuro-fuzzy

system to estimate the DoA Index. The efficiency of the model is checked using the

response given by the anaesthesiologist.

1.8 Thesis organization

The thesis consists of eight chapters and each chapter contributes relevant informa-

tion to establish the focus of our research.

Chapter 2-Literature Review : provides an overview of DoA moni-

toring techniques and its background knowledge. At first, this chapter briefly in-

troduces the history of DoA monitoring and overviews various algorithms, the core

features extracted from the signals and the methodology of analysis. This chapter

also provides details of various commercially available DoA monitors.

Chapter 3-Data Acquisition : gives an idea of data acquisition tech-

niques and the details of materials and equipment used for data acquisition. This

chapter also explains how the collected data is converted into a readable form for

the easiness of analysis. Finally, the demographic details of each data and their

representation are also given.
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Chapter 4-Pre-processing of Data to attenuate the effects of noises

: explains how the data is prepared for further analysis. This chapter describes the

signal processing and thresholding techniques used to remove the noises affected by

the collected signals. It is organized into two parts describing the segmentation and

filtering methods.

Chapter 5-Feature Extraction : has two parts. First part describes the

feature extraction from the EEG signals which aims to reduce the dimensionality

of the EEG signals and also helps to project the inherent properties of the EEG

signal. The second part gives the extraction of features from the standard monitoring

parameters.

Chapter 6-Feature Selection : has two sections. Feature ranking tech-

niques rank the features based on their discrimination ability. This chapter covers

various feature ranking techniques and how these techniques help to rank the fea-

tures. Feature classification helps to select the best combination of features from

the available feature set based on their classification accuracy.

Chapter 7- Adaptive Neuro-Fuzzy Inference System based Esti-

mation of Depth of Anaesthesia : contributes the formulation of a neuro-fuzzy

model using the multiple parameters. This chapter focuses on adaptive neuro-fuzzy

model to generate an integrated index for depth of anaesthesia estimation

Chapter 8- Conclusion : provides a summary of the results and contri-

butions of the research. This chapter also provides the information on the future

scope of the work.



Chapter 2

Literature Survey

One of the most important achievements in modern anaesthesia research is the ability

to measure DoA. During the last century researchers have gained new insights in the

area of biological signal analysis to measure DoA. EEG, EMG, ECG and BP are the

electrical representation of biological signals that reflect changes in the activity of the

human brain, muscles, heart and blood vessels by the administration of anaesthetic

drugs. Estimation of DoA is an important subject area since it helps to avoid patient

awareness due to the inadequate dose of anaesthetic drugs and also overloading of

anaesthetic drugs during the surgery.

This chapter provides the history of DoA monitoring and overviews the

different techniques and methodologies available for the estimation of DoA. The clin-

ical techniques used by anaesthesiologist for monitoring DoA are response to verbal

commands, loss of eyelash reflex, sweating and lacrimation. Commonly accepted

DoA monitoring technique is Evan’s Scoring system. Isolated forearm technique

and Surgical Stress monitor are some of the other techniques used for monitoring

DoA. Numerous concepts and techniques have been developed, which are directed

to quantify the changes in EEG signals during anaesthesia. These techniques were

built on statistical or spectral analysis. Most of the EEG based DoA monitor-

ing techniques extract different measures from time domain, frequency domain and

time-frequency domain representations for the quantification of DoA. In addition

to techniques and methodologies, this chapter presents some of the commercially

13
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available DoA monitors like Bispectral Index, Narcotrend, Entropy, Patient State

Index, Auditory Evoked Potential and Cerebral State Index.

2.1 History of DoA

Anaesthesia is an essential element of surgery. The discovery of anaesthetic effect

of ether by William Morton in 1846 was a turning point in the history of anaes-

thesia. The two major concerns during ether anaesthesia were frequent awareness

during the closing moments of anaesthesia and partial insensibility due to the brief

periods of ether administration. The excitement produced by ether anaesthesia was

prolonged and caused inevitable consequences. This is because the anaesthetic gas

ether controls all the components of general anaesthesia. In 1847, John Snow made

careful observations of the patient’s responses to ether and described five levels of

anaesthesia.

1. Consciousness and voluntary movement on command

2. Confused and disorderly voluntary movement on command

3. Unconsciousness and involuntary movement with respiration

4. Absence of involuntary movement with respiratory effort

5. Respiratory failure and eventual death

He recommended that patients should be operated in the fourth level of anaesthe-

sia[Snow, 1953]. Table 2.1-2.3 presents the advancement in DoA in chronological

order.

The concept of anaesthetic depth was the same over the next 90 years.

In 1934 John Lundy analyzed intravenous anaesthetic agent thiopental sodium and

introduced the concept of balanced anaesthesia with reduced use of multiple agents.

Hence, GA became safe and the dose of each agent became reduced which resulted

in fewer side effects. In 1937 Arthur Guedel designed a wall chart based on ocular

signs, muscle tone and respiratory parameters. This chart gained wide acceptance
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among the anaesthesiologists and became a useful tool to measure DoA[Atkinson &

GB Lee, 1984]. As ether was explosive and had several side effects newer fluorinated

anaesthetics like halothane, isoflurane, sevoflurane, desflurane were developed as

inhalation agent. During the same period, intravenous anaesthetic drug paraldehyde

along with intravenous opioid such as morphine was used in obstetric anaesthesia.

This was popularly known as ‘Twilight sleep’ which was subsequently abandoned

due to unpredictable side effects.

Claude Bernard in his study demonstrated that the muscle relaxant called

curare acts between the skeletal muscle and the nerve[Paton, 1976]. Lewis H Wright

convinced Herald R Griffith to use the drug curare during general anaesthesia for

abdominal surgery. In 1950 Cecil Gray and his colleagues developed the popular

‘Liverpool Technique’ using Nitrous Oxide (N2O), Oxygen (O2) and curare that

lead to light anaesthesia with profound muscle relaxation. This technique raised

the issue of inadequate anaesthesia and waking of patient with excruciating pain

during surgery. In 1954 D P Todd concluded that the use of curare leads to 6 fold

increase in postoperative complication and death. Hence, curare was replaced with

latest steroid based synthetic neuromuscular blocking agents such as Pancuronium

and Vecuronium [Miller et al. , 2014].

The use of muscle relaxant and intravenous anaesthetic agents changed the

concept of anaesthesia into balanced anaesthesia. Thus Guedel’s chart became irrel-

evant and anaesthesiologist started relying on clinical parameters such as pulse rate,

blood pressure and sweating. But these clinical parameters were inadequate to assess

the DoA. In 1963 Merkel and Eger introduced the concept of the Minimum Alveolar

Concentration (MAC) of inhalation agent at which 50% patient move in response

to a painful stimulus. This concept significantly enhanced the understanding of

volatile anaesthetic requirement and safe use of these drugs. MAC value helped the

anaesthesiologist to calculate the amount of anaesthetic agent delivered to paralyzed

patient. Eger drew attention to previous work by Seymore.S.Kety and Severinghaus

that the end-tidal partial pressure of anaesthetic gases at the steady state was the

same as the brain cerebral partial pressure of those gases. Hence, MAC has widely

used as a measure of end-tidal vapour concentration [Miller et al. , 2014].

In 1977, Tunstall attempted to measure awareness using isolated forearm



Chapter 2. Literature Survey 19

technique in which a tourniquet was inflated immediately prior to the administration

of muscle relaxant and the patient were informed to indicate whether he or she was

awake by movement of hand. The drawback of the test was in interpreting the result

as no patient would respond to commands during anaesthesia and none recalled the

events. It neither prevented awareness and nor was an effective monitor [Tunstall,

1977]. But the discovery of electroencephalogram (EEG) by a German psychiatrist

Hans Berger changed the concept of DoA and he suggested EEG for anaesthesia

monitoring.

2.1.1 History of EEG based DoA Monitoring

In 1937 Gibbs et al. reported the transition of EEG activity from low voltage

fast waves to high voltage slow waves after the administration of anaesthetic drugs.

In 1952 Faulconer demonstrated that different arterial concentration of ether had

different EEG patterns. He also demonstrated that presence of N2O reduced the

requirement of ether to produce the same effect on EEG pattern.

Analysis of EEG signals for exploring anaesthetic states lead to the evolu-

tion of different anaesthesia monitors. But the complexity of the EEG signals, as

well as its high sensitivity to various types of artifacts, prevented the development

in the area of anaesthetic monitoring for a long time. In 1991, Van de Velde and

Cluitmans gauged DoA by assessing EEG spectra from cats and concluded that

‘Spectral Edge Frequency’ is a favourable EEG feature for the assessment of DoA

[Van de Velde & Cluitmans, 1991; Gurman et al. , 1993]. In 1994, Watt

et al. classified DoA as light, moderate and deep anaesthesia by considering EEG

as a non-linear dynamic system. They found that adequate doses of anaesthetic

agents make changes in EEG frequency with increasing anaesthetic depth. These

changes in EEG frequency is favourable in the classification of EEG activity due to

the anaesthetic drugs [Watt et al. , 1994].

Power spectral analysis is the classic methodology used for the quantifica-

tion of EEG activity. It reflects the amount of EEG activity in different frequency

bands. In power spectral analysis, EEG signal is digitized first and then Fast Fourier

Transform (FFT) is applied to transform the time domain EEG signal to frequency



Chapter 2. Literature Survey 20

domain. In 1998 Rampil et al. suggested several EEG based variables like total

power, absolute and relative power, median edge frequency and spectral edge fre-

quency [Rampil, 1998].

In 2001 Zang et al. analyzed the complexity of EEG signals quantitatively

using Lempelziv complexity (LZC) algorithm [Zhang et al. , 2001]. In LZC analysis

the EEG signals are transformed into different sequences whose components are

some symbols. A counter is used to count the number of distinct patterns present in

the sequence. This counter is increased by one when a subsequence of consecutive

characters is encountered in the scanning process. The complexity of EEG dynamics

is high when the patient is awake because the brain is active during awake state.

In the anaesthetized state, the brain activity is less and therefore the complexity

measure shows low values. In between states indicate intermediate values with

gradual scaling. In the same year, Gugino et al. studied the changes in EEG by

the administration of anaesthetic drugs remifentanil, propofol and sevoflurane and

found that light anaesthesia is accompanied by decreasing posterior alpha waves and

increasing the intensity of frontal/central beta waves [Gugino et al. , 2001]. The

insufficiency of LZC measures is that it fails to capture the modulations of EEG

signals when the EEG contains rapid rhythms [Ibáñez-Molina et al. , 2015]. Also

in real-world applications, they are easily affected by artifacts due to its sensitivity

to the amplitude distribution [Bai et al. , 2015].

In 2005 Gifani et al. handled Detrended Fluctuation Analysis (DFA) on

EEG signals to differentiate awake and anaesthetized states [Gifani et al. , 2005]).

DFA on EEG signals provides a quantitative parameter based on the correlation

properties of the signal. The dominance of DFA is that it allows detection of long-

range correlations present in a non-stationary EEG signal. The DFA algorithm works

on the fractal and self-similarity properties of EEG signals which are originated from

the fractal structure and dynamic system of the brain. It detects the trend from the

integrated EEG signals. The results of DFA on EEG signals can clearly discriminate

awake to moderate anaesthesia levels but the moderate to deep anaesthesia states

cannot be discriminated. This was further proved by Jospin et al. and Kaplan et al.

in 2007 [Kaplan, 2006; Jospin et al. , 2007]. In order to overcome the difficulties of

DFA in discriminating deep anaesthesia level, Nguyen et al. developed an improved

detrended moving-average method in 2010[Nguyen-Ky et al. , 2010].
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From 2006-2011 Fan et al. and Frenets et al. adopted nonlinear meth-

ods like approximate entropy, Lempel-Ziv complexity (LZC), spectral entropy and

Higuchi fractal dimension (HFD) to measure EEG variations during anaesthesia

[Fan et al. , 2011; Ferenets et al. , 2006]. Their results indicate that these mea-

sures are sensitive to the dose of anaesthetic agents and frequency of EEG signals

[Ferenets et al. , 2007]. In 2014 Palendeng et al. used the phase and amplitude

of EEG signals as measures of DoA [Palendeng et al. , 2014].

To improve the accuracy and performance of DoA monitors the extracted

features were broadened to include techniques commonly associated with intelligent

systems. Most of the medical research applications uses intelligent techniques for

the estimation and classification of different physiological signals [Yuvaraj et al.

, 2014], [Nguyen et al. , 2015], [Übeyli, 2009b]. The intelligent modelling in

DoA monitoring incorporates the EEG measures as input to the Artificial Neural

Network, Fuzzy Inference systems and Hybrid systems. In 2008 Esmaeili et al.

developed a fuzzy rule-based system that integrates EEG features for the estimation

of DoA. Here the designed fuzzy classifier trains the system to learn the awake and

anaesthetized states from spectral EEG measures [Baig et al. , 2011; Esmaeili

et al. , 2008]. In 2013 the classification of DoA using ANN and EEG extracted

permutation entropy was done by Shalbaf et al. [Shalbaf et al. , 2013]. But the

computation of Permutation Entropy (PEn) is efficient in EEG analysis but it fails

to work in deep anaesthetic states [Shalbaf et al. , 2014].

There are several EEG based DoA monitors commercially available and

among these monitors, BIS monitor developed by Aspect Medical Systems in 1996 is

found to be a reliable comparison standard for DoA monitoring due to its usefulness

and effectiveness. BIS monitor provides a dimensionless index ranging from 0 to

100. 0 indicate no brain activity state (brain dead state) and 100 indicate fully

awake state. The range 0 - 100 can be subdivided into five states. The range 0-20

is the burst suppression state considered to be very deep anaesthetic state, 20-40

is deep anaesthetic state, 40-60 moderate anaesthetic state, 60-80 light anaesthetic

state and 80-100 is awake state. Moderate anaesthesia state is considered to be an

appropriate level for surgery under general anaesthesia [Zoughi et al. , 2012].

The limitations of BIS and EEG based DoA monitors is that these monitors
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cannot reliably detect all the levels of anaesthesia because of the changes in clinical

applications. EEG patterns are influenced by the age of the patient as the neurons

are lost irreversibly during normal ageing and EEG amplitude decreases as age

advances [Shalbaf et al. , 2013; Nguyen-Ky et al. , 2013]. Several case reports

have been reported that these monitors are unable to distinguish between the awake

and anaesthetized state [Messner et al. , 2003; Pilge et al. , 2006; Zanner et al.

, 2009; Schneider et al. , 2004].

Other limitations BIS and other existing monitors are that they showed

a long time delay in the transition from awake to anaesthetised state and vice-

versa. The estimated time delay of BIS index is 61 sec, Narcotrend monitor is 90

sec, Entropy module showed high time delay but no specific data is available and

Cerebral State Index module showed 106 sec time delay [Musizza & Ribaric,

2010]. Although the BIS index is a popular one, it received some criticisms, such as

non-responsive to some anaesthetic agents [Johansen et al. , 2000] and not robust

across patients [Hall & Lockwood, 1998]. Therefore it is not reliable to measure

DoA with the features extracted from EEG alone, but rather preferred the use of

multiple features that characterize different levels of anaesthesia from awake to deep

anaesthesia [Kortelainen et al. , 2011].

Anaesthetic drugs act on the CNS and autonomic nervous system. EEG

based monitors process the activity of the CNS only. The activities of autonomic

nervous system are reflected by the changes in hemodynamic parameters. The hemo-

dynamic parameters that reflect the changes in DoA are Heart Rate (HR) which

is derived from the Electrocardiogram (ECG) and Mean Arterial Pressure (MAP)

which is derived from non-invasive blood pressure signals Systolic Blood Pressure

(SBP) and Diastolic Blood Pressure (DBP). These hemodynamic parameters vary

with different levels of anaesthesia [Baharav et al. , 1995; Shieh et al. , 2005]. This

challenge opens new possibilities for the researchers to integrate the EEG features

and hemodynamic features. As a result, Schneider et al. in 2014, Shalbaf et al. and

Sadrawi et al. in 2015 tried to monitor DoA by combining hemodynamic parameters

and EEG parameters [Schneider et al. , 2014; Sadrawi et al. , 2015; Shalbaf

et al. , 2015]. In 2016 Mirsadeghi et al. differentiated consciousness and uncon-

sciousness using Locally Linear Embedding technique and quadratic discriminant

analysis. The Locally Linear Embedding technique is used for the dimensionality
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reduction of the EEG features [Mirsadeghi et al. , 2016]. The latest development

in DoA estimation was done by Kab-Mun Cha et al. in 2017 and the study quantifies

the dominant information flow in multichannel EEG signals [Cha et al. , 2017].

2.2 Basic Methods and Techniques for monitoring

DoA

There are many conventional methods to estimate DoA. They are mainly based on

the clinical signs and brain electrical activity. The clinical signs are used to assess

the intraoperative consciousness through surrogate indicators. The brain electrical

activity monitoring estimate consciousness based on the response on EEG, EMG

and Evoked potential due to the anaesthetic drugs.

2.2.1 Clinical techniques and conventional monitoring

The clinical techniques used for monitoring DoA are movement of the patient, re-

sponse of the patient to verbal commands, loss of eyelash reflex, pupillary response,

sweating and lacrimation. These techniques are simple, easy to perform and do

not require any computational analysis. One of the commonly used conventional

monitoring technique is Patient Response to Surgical Stimulus (PRST) also called

Evan’s scoring system where P, R, S, T stands for SBP, HR, Sweating and Tears

respectively. The score ranges from 0-8. But it is a poor indicator of awareness

as the hemodynamic response alone does not reflect the awareness or recall. This

scoring system provides an useful information regarding the adequacy of analgesia.

Details of Evan’s scoring system is given in Table 2.4 [Sinha et al. , 2007].

The drawback of the scoring system was that the various drugs such as Beta

blockers and opioid blunt the hemodynamic responses to pain. The local anaesthesia

techniques also dampen the sympathetic response to pain. The anticholinergic drugs

increase HR without the response to pain. This cause drying of secretion and prevent

lacrimation [Ghoneim & Block, 1997; Moerman et al. , 1993]. Intraoperative

consciousness can also be assessed by reflex and purposeful movement of patient.
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Table 2.4: PRST Scoring System [Kaul et al. , 2002; Evans & Davies, 1984]

Index Condition score

SBP <Base Value+15 mmHg 0
<Base Value+30 mmHg 1
>Base Value+30 mmHg 2

HR <Base Value+15 bpm 0
<Base Value+30 bpm 1
>Base Value+30 bpm 2

Sweating Nil 0
Skin moist 1
Visible beads of sweat 2

Tears No excess tears in open eyes 0
Excess tears in open eyes 1
Tears over flowing 2

But neuromuscular blocking agents prevent reflex and purposeful movement even in

the presence of pain. The studies of Sandin et al. and Sebel et al. have also proved

that the use of muscle relaxants does not inhibit the response of awareness [Sebel

et al. , 2004; Sandin et al. , 2000].

2.2.2 Isolated forearm technique

Isolated forearm technique is an experimental method for assessing awareness under

GA and was also used in various clinical trials for assessing awareness. In this

method, a tourniquet placed on patient’s forearm was inflated above the SBP just

before giving the muscle relaxant. After the administration of muscle relaxant, the

patient has to move his/her hand according to verbal command. It is late indicative

of intraoperative awareness and not all the patients recall the event. This technique

does not prevent awareness and can only be used for limited time as it would limit

the blood flow to the forearm [Russell, 1993; Tunstall, 1977].

2.2.3 Surgical Stress Monitoring

Surgical Stress Index (SSI) was developed by Huiku et al. and it was later known as

Surgical Pleth Index. SSI helps to quantify the surgical stress level of anaesthetized
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patients. SSI measures the balance between intensity of surgical stimulation and the

level of antinociception (opioid analgesia). SSI uses two parameters collected from

photoplethysmographic (PPG) waveforms [Huiku et al. , 2007]. The parameters are

the PPG waveform Amplitude (PPGA) and the Heart Beat-to-beat Interval (HBI).

The index range from 0 to 100 and values near 100 correspond to high-stress level

and values near zero represent low-stress level. SSI is calculated using the equation

SSI = 100− (0.7PPGA+ 0.3HBI). (2.1)

But the disadvantage of SSI is that it is minimally influenced by changes in the

hypnotic drug concentration whereas SSI is strongly dependent on the analgesic

concentration. Therefore SSI is used as a better measure of analgesia [Struys et al.

, 2007].

2.2.4 EEG based methods and techniques

During the last two decades, several methods based on EEG signals such as time

domain measures, frequency domain measures, time-frequency measures, entropy

measures and nonlinear dynamic measures have been proposed to evaluate the level

of consciousness during anaesthesia. The basic technologies behind all these mea-

sures are depicted below.

2.2.4.1 Time Domain measures

The time domain measures of EEG signals are characterized by the amplitude dis-

tribution and its moment of action.

Statistical Measures : The basic statistical features that describe the EEG

characteristics during anaesthesia are listed in Table 2.5

Hjorth parameters : The Hjorth parameters are the measures of signal com-

plexity. These measures are used in the analysis of EEG during sleep [Koht et al. ,
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Table 2.5: Statistical measures of EEG analysis

Fature Description

Mean x̄ = 1
n

∑n
i=1 xi

Standard Deviation σx =
√

1
n

∑n
i=1(xi − x̄)2

Maximum Value Maximum positive amplitude

Minimum Value Maximum negative amplitude

Skewness Measure of asymmetry of the distribution,

S =
1
n

∑n
i=1(xi−x̄)3

σ3
x

[Bedeeuzzaman et al. ,

2014]

Kurtosis Measure of flatness of the distribution, K =
1
n

∑n
i=1(xi−x̄)4

σ4
x

[Bedeeuzzaman et al. , 2014]

Median The middle value of set of ordered data

2012]and they are clinically useful tools for the quantitative description of an EEG

[Hjorth, 1970]. The Hjorth parameters are mobility and complexity. Mobility is

defined by equation 2.2

Mobility = δx =
σ′x
σx

(2.2)

where σx the variance of the time function and its value returns a large value if high

frequency components of the signal exists and vice versa, σ′x is the first derivative of

variance. The mobility parameter has a proportion of standard deviation of power

spectrum.

Complexity is the 2nd Hjorth parameter and is given by

Complexity = λx =
σ′′x/σ

′
x

σ′x/σx
(2.3)

where σ′′x is the second derivative of variance. Complexity parameter indicates how

the shape of a signal is similar to a pure sine wave. The value of complexity converges

to 1 as the shape of the signal gets more similar to a pure sine wave.



Chapter 2. Literature Survey 27

Burst Suppression Detection Burst suppression is an EEG pattern which has

periods of high-voltage electrical activity alternating with periods of no activity

in the brain. This pattern is commonly found in patients with inactivated brain

states due to general anaesthesia, coma and hypothermia. In order to quantify

the burst suppression patterns, the EEG signals were subjected to thresholding and

segmentation functions. This process separates burst and suppression patterns based

on the threshold voltage level. When the voltage of a particular EEG segment is

below the threshold level, it is classified as suppression and when it exceeds the

threshold, it is considered a burst. Burst Suppression Ratio (BSR) is the most

common burst suppression derivative in anaesthesia practice and is proposed by

Rampil et al. [Rampil, 1998]. It assigns binary values of 0 to bursts and 1 to

suppression patterns. If the BSR is 1 then it is indicated as a state with no electrical

activity in the brain, while the ratio shows 0 indicate that the brain is active. BSR

is calculated using the equation 2.4 [Liang et al. , 2014].

BSR% =
total time of suppression

epoch length
∗ 100% (2.4)

2.2.4.2 Frequency Domain measures

The basic technology behind frequency based EEG signal processing is the Fourier

Transform (FT) in which signals from the time domain is transformed to the fre-

quency domain. Since the EEG signals were recorded digitally, the Discrete Fourier

Transform (DFT) is commonly used to calculate the frequency components of the

signals. The DFT decomposes a sequence of values into components of different

frequencies. The discrete-time Fourier transform of a sequence x(n) is defined as

X(ejω) =
∞∑

n=−∞

x(n)e−jωn (2.5)

where the time index n is discrete, and ω is the normalized frequency. If there is

a finite duration signal with N samples then Discrete Fourier transform (DFT) is

defined as

X(k) =
N−1∑
n=0

x(n)W nk
N ↔ x(n) =

1

N

N−1∑
k=0

X(k)W−nk
N (2.6)
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where W = e
−j2π
N .

An efficient algorithm to compute the DFT is Fast Fourier Transform

(FFT). The DFT or FFT of a real signal is a complex number, having a real and an

imaginary part. The power in each frequency component represented by the DFT

or FFT is obtained by squaring the magnitude of that frequency component. Thus,

the power in the kth frequency component i.e. the kth element of the DFT or FFT is

calculated using the equation 2.7 [Stoica & Moses, 1997; Marple & Marple,

1987].

Pk =

∣∣∣∣X[k]

∣∣∣∣2 (2.7)

where

∣∣∣∣X[k]

∣∣∣∣ is the magnitude of the frequency component.

Power Spectral Density (PSD) PSD defines the distribution of the power of

a signal in frequency domain. PSD is generally evaluated by taking square of the

Fourier Transform of a signal or by evaluating the Fourier transform of the autocor-

relation function of a signal [Stoica & Moses, 1997; Marple & Marple, 1987].

They are the most commonly used feature in the development of DoA monitors and

served as one of the efficient ways to identify a large number of neurophysiological

signals. The power spectrum returns an array that contains the two-sided power

spectrum of a time-domain signal and that shows the power in each of the frequency

components.

2.2.4.3 Time-Frequency domain measures

Wavelet Analysis is a time-frequency analysis method which is capable of repre-

senting the characteristics of a signal in both time and frequency domains. At low

frequencies, it gives lower time resolution and high frequency resolution. At high fre-

quencies it gives high time resolution and lower frequency resolution. Basic wavelet

function is given by the equation

Ψa,b(t) =
1√
a

Ψ(
t− b
a

) (2.8)
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where a is the scale parameter and the b is the translation parameter. The Wavelet

Transform of a signal is given by the equation

W (a, b) =

∫
x(t)

1√
(a)

Ψ(
t− b
a

)dt (2.9)

where W (a, b) is the Wavelet coefficients of the signal x(t)

Discrete Wavelet Transform (DWT) is commonly used for EEG signal anal-

ysis and can capture various signal features like breakpoints, discontinuities, general

trends and self-similarities. DWT splits the EEG signals into different frequency

components which decide the five EEG rhythms: δ-band, θ-band, α-band, β-band

and γ-band. DWT with Mallat’s fast algorithm is commonly used for EEG signal

analysis [Mallat, 2008]. DWT can be interpreted as multi-stage filter banks with

High-Pass (HP) and Low -Pass (LP) filters performing a series of dilation. Coef-

ficients obtained after the HP filters are called detail coefficients while those after

the LP filter are called the approximation coefficients. Figure 2.1 shows the discrete

wavelet decomposition of a signal x(n).

Figure 2.1: DWT decomposition

At each level, the approximation/detail coefficients represent a filtered sig-

nal spanning i.e. only half of the frequency band. This improves the frequency

resolution as the frequency uncertainty is reduced by half. Following the Nyquist’s

theorem, the output of each LP and HP filter is decimated by a factor of two.

Various features that can be extracted from EEG signals after wavelet domain rep-

resentation are statistical features, zero crossing rate and wavelet energy. In EEG
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signal analysis x[n] represents the EEG signal and was passed through a high pass

filter g[n] and a low pass filter h[n]. Half of the samples were considered for further

analysis according to Nyquist rule. Decomposition of EEG signals into Detail and

Approximation coefficients are done with the equations 2.10 and 2.11 [Chun-Lin,

2010; Kessler et al. , 2003]

cAj(n) = Σg(l − 2n)cAj−1(l) (2.10)

cDj(n) = Σh(l − 2n)cDj−1(l) (2.11)

where cDj(n) and cAj(n) represents the Detail and Approximation coeffi-

cients of the EEG signal, h and g represents low pass and high pass filters to filter

the EEG signals. The actual signal is obtained by combining all the coefficients

starting from last level of decomposition. This type of decomposition provides good

time resolution at high frequencies and good frequency resolution at low frequencies

[Polikar, 1996].

2.3 Commercially available DoA Monitors

DoA monitors were developed during the last century. Most of these monitors were

EEG based DoA monitors. In addition to EEG based DoA monitors MAC based

DoA monitors are also available which measure the concentration of inhalational

agents. Some of the commercially available DoA monitors are shown in Table 2.6.

2.3.1 BIS Monitor

The BIS monitor was introduced by Aspect Medical Systems in 1992. Bispectral

analysis is the main component of the BIS monitor. It measures the phase relation of

the single channel EEG signals collected from patient’s forehead. The BIS monitor

generates a dimensionless index 0-100 depending on the DoA. Rampil et al. disclosed

some parts of the algorithm in 1998 [Rampil, 1998]. The basic block diagram of the

BIS algorithm is depicted in Figure 2.2. The single channel EEG signal collected
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Table 2.6: Commercially available DoA Monitors[Al-Kadi et al. , 2013]

Monitor Company Index
range

Works with Agents Not Work with
Agents

BIS Aspect Medical
Systems; Now
Covidien, USA,
1992

0-100 Propofol, midazo-
lam and isoflurane

Nitrous Oxide
and ketamine

Narcotrend Monitor Tech-
nik, Germany,
2000

0-100 Sevoflurane, propo-
fol/remifentanil

Neuromuscular
blocking agents

Entropy Datex-Ohmeda
Company in
2003

0-100,
1–91

Desflurane, sevoflu-
rane, propofol and
thiopental

Ketamine

Patient
State
Index

Physiomatrix,
USA,2001 ,Now
SED Line Sys-
tems

0-100 Propofol, alfen-
tanil, nitrous oxide

-

AEP Danmeter, Den-
mark, 2001

0-100 or
0-60

Propofol, midazo-
lam and isoflurane

Nitrous oxide
and ketamine

Cerebral
State
Index

Danmeter
A/S,Denmark,
2004

0-100 Propofol nitrous oxide

from the patient is sampled and preprocessed. Preprocessing stage performs the

artifact detection and removal algorithms. BIS algorithm detects two suppression

parameters. They are Burst Suppression Ratio (BSR) and Quazi Suppression Rate

(QSR). BSR is calculated from the intervals over 0.5 seconds in which EEG voltage is

below ± 5.0µ V. EEG signals having amplitude within the ± 5.0µ V limit are called

isoelectric EEG signals. QSR was calculated to detect burst suppression of erratic

EEG signals due to the power line interference and baseline drift. The frequency

analysis of BIS algorithm extracts the parameter relative β power and is calculated

using the equation 2.12 [Musizza & Ribaric, 2010]. Relative β power is defined

as the logarithm of ratio of sums of spectral energies of frequencies bands between
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Figure 2.2: Block diagram of BIS algorithm

30-47Hz and 11-20Hz.

βratio = log
P30−47Hz

P11−20Hz

(2.12)

The bispectral analysis measures the phase correlation of waves obtained

by Fourier analysis among different frequencies. This analysis helps to suppress

Gaussian noise, to increase signal/noise ratio, to identify non-linear situations.

Another parameter extracted from bispectral is the SyncFastSlow and is calculated

using the equation 2.13

SSratio = log
B0.5−47Hz

B40−47Hz

(2.13)

It is defined as the logarithm of ratio of sum of all spectral peaks between 0.5–47

Hz and 40–47 Hz. Finally, all parameters are fed to a weighting algorithm, which

produces the BIS index [Bruhn et al. , 2000b, 2006; Vakkuri, 2006; Nunes et al.

, 2012].
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2.3.2 Narcotrend Monitor

The Narcotrend monitor was introduced by MonitorTechnik in the year 2000. The

algorithm of Narcotrend monitor is presented in Figure 2.3. Here the time domain

and frequency domain features were extracted from the EEG signal for analysis. The

extracted spectral parameters include relative δ, θ, α, β, Spectral Edge frequency

(SEF), Median Frequency (MEF), spectral entropy and time domain features such

as Autoregressive (AR) parameters [Bauerle et al. , 2004; Kreuer & Wilhelm,

2006].

Figure 2.3: Block diagram of Narcotrend algorithm

Burst Suppression (BS) analysis was done similar to BIS index. The ex-

tracted features were passed through a classification function which classifies the

state of anaesthesia into five stages according to the work of Loomis et al. as A-

alpha, B-low voltage, C-spindle, D-spindle, E-random [Loomis et al. , 1937]. The

monitor calculates the surrogate parameters and was used in plausibility testing of

the generated index. Latest versions of the monitor generate the index range (0–100)

similar to BIS [Kreuer et al. , 2003].
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2.3.3 Entropy Monitor

Entropy Monitor was introduced by the Datex-Ohmeda in 2003. The idea behind

the Entropy Monitor is that increasing depth of anaesthesia increases the regularity

of the EEG signals and was inferred by the measure entropy. The block diagram of

the Entropy Monitoring algorithm is presented in Figure 2.4.

Figure 2.4: Block diagram of Entropy index algorithm

After digitization and preprocessing, the signal is divided into two fre-

quency bands 0.8–32 Hz and 0.8–47 Hz. Then FFT of both the bands was calcu-

lated with various window lengths. This technique is similar to wavelet analysis,

where different window lengths ensure optimal resolution for each frequency band.

The spectral entropy is then calculated from the power spectrum of the particular

epoch of the signal within a particular frequency band. The features extracted are



Chapter 2. Literature Survey 35

State Entropy (SE) and Response Entropy (RE) using the equations 2.14 and 2.15

[Musizza & Ribaric, 2010].

SE =
SEn[F0.8−32Hz]

log(N [F0.8−32Hz + F32−47Hz])
(2.14)

RE =
SEn[F0.8−32Hz + F32−47Hz]

log(N [F0.8−32Hz + F32−47Hz])
(2.15)

where SEn is the spectral entropy, N is the total number of frequency

components, F0.8−32Hz is the frequency range from 0.8 Hz to 32 Hz, F32−47Hz is

the frequency range from 32 Hz to 47 Hz and F0.8−32Hz + F32−47Hz is the frequency

range from 0.8 Hz to 47 Hz. The state entropy generates an index from 0 to 91

and RE generates an index from 0 to 100. Burst suppression analysis was done to

extract the BSR. The discrepancy of entropy monitor is that it generates two indices.

The index generated by SE incorporates the information from EEG frequency bands

only whereas RE contains information from EMG frequency bands. Entropy module

doesn’t generate a single index like BIS or Narcotrend monitor. The two indices are

interpreted as if the difference between the two are more than 10 then increased

EMG activity otherwise only the EEG activity [Viertiö-Oja et al. , 2004].

2.3.4 Patient State Index (PSI) Monitor

The PSI monitor was developed by the Physiometrix in 2001. PSI uses 4 channel

EEG signals for the analysis. Figure 2.5 shows the block diagram of PSI. At first

frequency domain analysis was applied to get the specific EEG frequency bands

(δ, θ, α, β, and γ) and of total EEG frequency band(0–50 Hz). Then six features

were extracted from the EEG power spectrum. They are 1) Absolute power gradient

between front-polar and vertex regions in γ, 2) Absolute power changes between

midline frontal and central regions in β and between midline frontal and parietal

region in α, 3) Total spectral power in the front-polar region, 4) Mean frequency of

the total spectrum in midline frontal region, 5) Absolute power in the δ band at the

vertex and 6) Posterior relative power in slow δ[Musizza & Ribaric, 2010]. All
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Figure 2.5: Block diagram of Patient State Index algorithm

the extracted features met with a plausibility analysis and a surrogate analysis. The

surrogate analysis includes BSR and arousal score. Arousal scores were assigned

retrospectively to each stage using the Observer’s Assessment of Alertness/Sedation

Scale (OAA/S). OAA/S rated 0 to 5 based on patient’s response to verbal commands

and painful stimuli. Finally, the Patient State Index (PSI) was calculated using an

averaging algorithm and which generate a dimensionless index from 0 to 100 similar

to BIS [Musizza & Ribaric, 2010; Prichep et al. , 2004; Drover & Ortega,

2006].
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2.3.5 Auditory Evoked Potential (AEP) Monitor

The AEP monitor was introduced by Danmeter in 2001. The new version of the AEP

monitor is called AEP-ARX-Index (also called A-line autoregressive index (AAI)),

which is not only based on AEP, but it also includes EEG spectral parameters. The

monitor uses autoregressive models with exogenous input (ARX) to detect the AEP.

The ARX was used because the method enables fast responses of the monitor. AAI

can be scaled as 0 to 60 or 0 to 100. The second scale is recommended and the

optimal anaesthesia is achieved if the index values are between 15 and 25. The

algorithm of the AEP index is shown in Figure 2.6.

Figure 2.6: Block diagram of Auditory Evoked Potential algorithm

After digitization and preprocessing the signal is passed through several

band-pass filters (BPF) to detect various features in different frequency bands. The

AEP index is calculated from the frequency range 25–65 Hz and which uses the

ARX model. The reconstructed amplitudes and latencies are evaluated after the

ARX analysis. At the same time the frequency band 3–47Hz is analyzed by an
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undisclosed algorithm which evaluates the propagation of EMG in the frequency

band. The AAI is generated using the equation 2.16 [Musizza & Ribaric, 2010].

AAI = k0AEP + k1 log
P30−47Hz

P10−20Hz

+ k2BS (2.16)

Where Where Pm−n is the sum of the spectral power in the frequency band m to

n. Burst Suppression (BS) is the percentage of burst suppression patterns detected

during the last 30 s and is given by the equation 2.17.

BS% =
tBS

30 Seconds
(2.17)

where tBS is the Burst Suppression time and k0, k1, and k2 are functions of the

Signal to Noise Ratio (SNR) and were determined during the averaging process of

the raw signal. It evaluates the detection quality of the signal under investigation

[Vereecke et al. , 2005; Horn et al. , 2009; Plourde, 2006].

2.3.6 Cerebral State Index (CSI) Monitor

The Cerebral State Index (CSI) monitor was introduced by the Danmeter in 2004.

This monitor algorithm is based on the EEG-algorithm of AEP and both use same

electrodes to collect the EEG signals. The advantage of CSI monitor is that it is

portable and the wireless device present in the monitor uses fuzzy logic to calcu-

late the CSI. The algorithm is depicted in Figure 2.7. At first one channel EEG

signals were preprocessed and passed through an artifact removal algorithm. The

features extracted from frequency domain analysis are βratio, αratio and Dratio and

were calculated using the equations 2.18-2.20 [Musizza & Ribaric, 2010].

βratio = log
P30−42.5Hz

P11−21Hz

(2.18)

αratio = log
P30−42.5Hz

P6−12Hz

(2.19)
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Figure 2.7: Block diagram of Cerebral State Index algorithm

Dratio = αratio − βratio (2.20)

where Pm−n is the sum of the spectral power in the frequency band m to n.

Burst suppression analysis was performed to extract the feature BSR. The

Burst Suppression (BS)% is calculated using the same equation as in 2.17. Finally,

all the extracted features were fed to a Fuzzy Inference System as input to calculate

the Cerebral State Index (CSI). The CSI monitor displays the CSI Index, EMG and

BSR value [Jensen, 2005].

2.3.7 Index of Consciousness (IoC) Monitor

The Index of Consciousness (IoC) monitor was developed by the Morpheus Medical

in 2007. The algorithm of IoC is presented in Figure 2.8. The features extracted from
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EEG signals are frequency domain parameter βratio and a nonlinear parameter. In

the nonlinear analysis, EEG signals are divided into subunits and assign a symbol

to each unit. The symbolic dynamics detects the complex non-linear properties

of the EEG and the outcome is inferred to DoA. Additionally, burst suppression

analysis was done to extract the feature BSR. Finally, all the extracted features

were combined through fuzzy logic system to generate an index from 0-100 [Jensen

et al. , 2008; Revuelta et al. , 2008].

Figure 2.8: Block diagram of Index of Consciousness monitor algorithm

2.4 Summary

This chapter provides a comprehensive review of the existing DoA monitors. The

chapter also covers the necessary background knowledge and the technology related

to Clinical signs of DoA and EEG based DoA. From the literature review of DoA, it

can be concluded that there are some limitations such as time delay and inflexibility

in describing all the phases of anaesthesia are associated with the existing methods.

Hence, developing a reliable index by integrating both the EEG extracted features

and hemodynamic features are necessary in the field of anaesthesia.



Chapter 3

Data Acquisition

Data Acquisition is a very important and time-consuming phase of any research.

This has to be done patiently and meticulously to obtain the desired result. This

chapter incorporates the detailed explanation of data acquisition procedure and all

equipment used for data acquisition. All the data used in this study was collected

from Regional Cancer Centre (RCC), Trivandrum, Kerala, India. Regional Cancer

Centre is an internationally acclaimed centre for cancer treatment and research. By

conducting a wide range of cancer research RCC provides state-of-the-art facilities

for cancer diagnosis, treatment, palliation and rehabilitation.

Before collecting real data from patients present research conducted a fea-

sibility study using the data selected from the University of Queensland Vital Signs

Data set [Liu et al. , 2012]. Four patients data who had undergone general anaesthe-

sia were analysed. The downloaded data included EEG signal and the correspond-

ing BIS index. The study classified EEG signals according to DoA as awake, light

anaesthesia, moderate anaesthesia and deep anaesthesia. Finally, the classification

accuracy obtained was 96.6%. The features extracted from the EEG signals were

Relative Wave Energy (RWE), Energy, Maximum value, Minimum value, Mean

value and Standard Deviation [Benzy & Jasmin, 2015]. The study was further

extended by collecting and analysing more patient’s data from RCC.

The RCC’s institutional procedures for clinical studies approval includes

details of the main researcher, the definition of the research problem, identification
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of responsible researcher in the hospital, obtaining approvals from the concerned

department involved in the study and obtaining approvals from the RCC research

department, Clinical protocol design, preparation of informed consent and finally

approval of Institutional Review Board (IRB) and Ethical Committee. Ethical Com-

mittee approval and informed consent are the key elements of the research on human

participants. The current study has got approval of institutional review board (Ap-

pendix A) and ethical committee (Appendix B) of RCC, Trivandrum. Following the

approval, data collection was initiated at the Anaesthesiology department of RCC.

Present chapter has three sections: 1. Clinical Protocol Design 2. Materials

and Equipment 3. Data overview. At first, a clinical protocol and informed consent

were submitted to Regional Cancer Centre for approval, both by the Institutional

Review Board and Ethical Committee. After the approval of institutional review

board and ethical committee all the patients who were willing to participate in

the study were selected by signing a consent form. The purpose and procedure of

data acquisition were clearly explained to the patient before signing the consent

form. Data for the current study were obtained from 25 female patients in the

age group 30-78 years who had undergone breast cancer surgery under General

Anaesthesia (GA). EEG signal, Heart Rate (HR), Systolic Blood Pressure (SBP) and

Diastolic Blood Pressure (DBP) are the signals collected from patients throughout

the surgical procedure. Finally, all the data obtained were transferred to a computer

and represented with respect to time to visualize the changes over time.

3.1 Clinical Protocol Design

Clinical Protocol Design is an important step in the process of data acquisition and

for the management of real-time clinical data with its regulatory standards. The

clinical protocol provides formal design or plan of the data collection procedure by

considering scientific, ethical, regulatory, and safety requirements. This was done to

ensure patient’s safety, data integrity and uniformity in data collection. The clinical

protocol designed for the current study includes selection criteria, premedication

procedure, medication procedure and finally the data collection procedure.
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3.1.1 Selection Criteria

The patients who gave consent to participate in the study by signing the informed

consent (presented in Appendix C) were included and scheduled for breast cancer

surgery under general anaesthesia. The informed consent was obtained by one of

the anaesthesiologists who participated in the study during the pre-anaesthetic visit.

The sample size of the study was determined using the Equation 3.1. This was the

equation used to calculate the sample size from an infinite population [Daniel &

Cross, 1995; Pourhoseingholi et al. , 2013; Charan & Biswas, 2013].

N =
Z2p(1− p)

e2
(3.1)

where N is the required sample size, Z is Z statistics for a level of con-

fidence. ie. The value from standard normal distribution corresponding to desired

confidence level, p is prevalence rate, which is estimated from previous studies pub-

lished in the same study domain and e is absolute error or precision.

Steps adopted for sample size calculation in the study is as follows

• Assume 95% confidence interval and the corresponding Z statistic value (Z) is

1.96

• Estimation of prevalence percentage p which provides the proportion (preva-

lence) of the study in the proportion of one. Prevalence percentage was se-

lected based on previous studies and it is 1.5% in the current study, therefore

p = 0.015 [Miller et al. , 2014].

• The absolute error selected in the study is 5% and therefore e = 0.05.

• Finally, Sample size was calculated using the Equation 3.1 and its value is

22.703 ∼ 25

Each patient was identified with a generated code for preserving privacy

and confidentiality and the collected data were registered during the procedures.

Exclusion criteria includes patient body weight 30% above or lower the average rec-

ommended weight (Height in cm− 105) in kg, serious cardiovascular or respiratory
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disease, neurological defect or contra-indication to the anaesthetic technique such as

difficult airway.

3.1.2 Pre-medication and Medication procedure

• Pre-medicate the patient with Alprazolam (0.25 to 0.5mg), Pantoprazole (40mg),

Domperidone (10mg) at 10 PM the day before surgery and 6 AM on the day

of surgery.

• Start an Intravenous line at 6 AM on the day of surgery and administer intra-

venous fluid 0.9% normal saline.

• Give the injections Glycopyrrolate (4µg/kg), Midazolam (20µg/kg), Fentanyl

(1µg/kg) just before the start of surgery.

• In addition, provide analgesic drugs like Paracetamol (1gram), Diclofenac

sodium (75mg), anaesthetic drug propofol (2mg/kg), muscle relaxant drug

Vecuronium Bromide (0.1mg/kg) intravenously.

• Ventilate the patient with Oxygen (O2)- Sevoflurane and Nitrous Oxide (N2O)

for maintaining the anaesthesia until the end of the surgery.

• Provide an additional dose of Fentanyl up to 2 µg/kg if Blood Pressure(BP)

or Heart Rate(HR) increased more than 20% of the baseline value. If BP or

HR is not controlled with Fentanyl then provide Nitro Glycerine (NTG) to

control BP and Metoprolol to control HR.

• At the end of the surgery give the injections Glycopyrrolate (8µg/kg) and

Neostigmine (0.05mg/kg) for the recovery of the patient.

3.1.3 Data collection Procedure

The study was focused on the hemodynamic and EEG signal variations of patient

during the anaesthetic procedure. Therefore, EEG signals, Heart Rate, Non-invasive

systolic BP and diastolic BP and BIS value were simultaneously collected from each



Chapter 3. Data Acquisition 45

patient during the 4 phases of anaesthesia (Awake, Induction, Maintenance and

Recovery) for comparison and analysis.

Data collection procedure of the study is as follows.

1. Set the BIS monitor and standard monitoring devices are in continuous mode

for monitoring

2. Register the baseline values of Heart Rate (HR), Systolic Blood Pressure

(SBP), Diastolic Blood Pressure (DBP) before the administration of anaes-

thetic drugs.

3. Record the awake dataset which are collected 5-10 minutes before administrat-

ing the anaesthetic agents. The dataset consists of EEG waveform data and

numeric data including BIS value (usually in the range 80-100), HR, SBP and

DBP. The pre-medication drugs were administered during this period.

4. Induce the patient with the anaesthetic drug, analgesic drug and muscle re-

laxation drug and record EEG signals from the time of administration to 1-5

minutes after administration of induction agents. Correspondingly record HR,

SBP, DBP and BIS value (usually in the range 20-40) continuously.

5. Start the inhalation agent O2 - Sevoflurane (sevo) and N2O

6. Start the surgical procedure and record EEG signals, HR, SBP and DBP. The

corresponding BIS value variation was in the range between 40-60.

7. At the end of the surgery, stop the inhalation agent (sevo) and start inducing

reversal drugs for the recovery of the patient. Record recovery EEG signals,

HR, SBP and DBP after the end of surgery to the return of conscious state

of the patient. Correspondingly record BIS value variations (Usually in the

range 60-80).

8. The attending anaesthesiologist’s response to the outcome DoA was also recorded

throughout the surgery as awake, light anaesthesia, moderate anaesthesia and

deep anaesthesia.
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9. The data corresponding to BIS value variation of 0-20 is not considered as it

would cause hemodynamic instability of the patient during surgery and hence

it is beyond the scope of the study.

3.2 Materials and Equipment

The physiological signals which are required for the current study were monitored

and acquired according to the protocol mentioned above. These signals were contin-

uously recorded throughout the surgical procedure using synchronization and data

acquisition software RugloopII c© Waves developed by Demed, Temse, Belgium. Af-

ter data collection, the files recorded were extracted to spreadsheets using Labgrab

2.20 c© software developed by Demed, Temse, Belgium.

The materials and Equipment used in data collection are listed below:

• BIS Sensor

• BISxTM System

• Phillips BIS Module

• Phillips Intellivue MP 80 Monitor

• Non-Invasive Blood Pressure (NIBP) Measurement Device

• Heart Rate Measurement Device (ECG electrodes)

• RugloopII c© Waves software (2000)

A brief description of the materials and equipment are given below:

3.2.1 BIS Sensor

BIS sensor is a non-invasive sensor introduced by Aspect Medical Systems and it is

used to record the electrical activity of the brain as EEG signals. It is a single-use
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sensor and it should be replaced after each use. There are four types of BIS sensors

used for EEG recording namely Quatro electrode sensor, extended sensor, pediatric

sensor and bilateral sensor as shown in Figure-3.1.

Figure 3.1: Types of BIS Sensors

1. BIS Quatro Electrode: This sensor is used for adult patients undergoing GA.

2. BIS Extended Sensor: Used for adult patients in ICU to record EEG data for

long period of time.

3. BIS Pediatric Sensor: Used for pediatric patients.

4. BIS Bilateral Sensor: To capture EEG signals from both hemispheres simulta-

neously in order to detect the differences in the brain signals. It is one of the

advanced modes of monitoring.

In the current study, BIS Quatro pre-gelled Electrode was used because

of its enhanced performance in deep anaesthetic states and resistant to interference

from noise sources like high-frequency electromyography (EMG) conditions in oper-

ating room/intensive care unit. BIS sensor was placed on the forehead and temporal

region of the brain according to the manufacturer’s instructions. This sensor is an

electrode strip consisting of four electrodes in which three of the electrodes collect

the EEG activity between the forehead and temporal regions of the brain. The

fourth electrode is used to measure the electromyographic resistance which reflects

muscle stimulation. This EMG value will rise with an increase in muscle tone or

movement [VISTA, 2008].
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The sensor can be assembled unilaterally at the left or right forehead ac-

cording to the international 10–20 electrode system. The basic electrode is placed

on the frontotemporal position FT9 on the left or FT10 position on the right and

the frontopolar position FPz as shown in Figure-3.2 indicates the reference elec-

trode. The electrode in the position FT7 on the left or FT8 on the right detects the

EMG activity. The electrode placed on the position FP1 or FP2 (on the right) is

the virtual ground which increases rejection of common mode [Nunes et al. , 2012;

Johansen, 2006].

Figure 3.2: BIS Sensor

3.2.2 BISxTM System

The BISxTM System developed by Aspects Medical Systems is used to receive, filter

and process the patient’s EEG signals. Figure-3.3 shows BISxTM System and is

placed near to patient’s head because to avoid the interference of other devices. It

has two cables called Monitor Interface Cable and Patient Interface Cable (PIC). The

Monitor Interface Cable connects the system to the monitor and the PIC connects

to the BIS sensor [VISTA, 2008].

3.2.3 Phillips BIS Module

Phillips BIS Module shown in Figure 3.4 which works as an interface between Aspects

BISx system and Phillips Intellivue MP-80 monitor. The Philips BIS module gives

high-resolution numeric and graphic trends to the monitor for displaying BIS related
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Figure 3.3: BISxTM System

data like EEG waveform, BIS index, Signal quality index, Suppression ratio and

EMG frequency band [IntelliVue, 2006].

Figure 3.4: BIS module

3.2.4 Phillip’s IntelliVue MP80 Monitor

The Philips Intellivue MP80 patient monitor offers monitoring solution for vari-

ous medical applications. Multiple measurements can be monitored by connecting

other modules to the monitor. This monitor can store the trends in data and

it can perform required calculations from the database. The display and pro-

cessing units of the monitor are separate components and it can display eight
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waves at a time. Other modules like Invasive blood pressure (M1006B), Tem-

perature (M1029A), Cardiac output (M1012A), Continuous cardiac output with

M1012A Option, Transcutaneous gas (M1018A), Mixed venous oxygen saturation

- SvO2 (M1021A), Recorder (M1116B), EEG (M1027A), Bispectral Index - BIS

(M1034A) and Spirometry (M1014A) can be plugged in to its Multi-Measurement

Server (MMS) and Flexible Module Server (FMS) slots. MMS and FMS were used

in the present study to connect 5-lead ECG (including arrhythmia) electrode and

BIS module respectively. The ECG electrode connected through MMS helps to

monitor ECG signal and HR. On the other hand, FMS module helps to provide the

EEG signal and BIS related parameters by connecting BIS module to the FMS slots

[Monitor, 2008; IntelliVue, 2006]. Figure-3.5 shows Phillip’s Intellivue MP80

Monitor with Multi-Measurement Server and Flexible Module Server.

Figure 3.5: Phillips IntelliVue MP80 Monitor
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3.2.5 Blood Pressure (BP) Measurement Device

Arterial blood pressure is one of the most important vital sign of the human body

and many of the diagnostic and remedial decisions are taken based on this mea-

sure. This can be measured invasively or non-invasively. Invasive BP measurement

method measures of arterial pressure directly by inserting a cannula needle in the

artery. But in Non-Invasive Blood Pressure (NIBP) measurement method, an oscil-

lometric device consisting of pneumatic cuff which acts as the pressure sensor and

measures the amplitude of pressure changes in the pneumatic cuff. The pneumatic

cuff is inflated and released by an electrically operated pump and valve. Blood

pressure is measured by occluding a major artery (typically the brachial artery in

the arm) with the pneumatic cuff. The device records and evaluates the oscillations

of arteries and calculates blood pressure. Blood pressure is measured using two

numbers: Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP). SBP

measures the pressure in the blood vessels when the heart beats whereas DBP mea-

sures the pressure in the blood vessels when the heart rests between beats [Weiss

et al. , 1995; Rantala, 2006].

Present study adopted NIBP method to acquire the BP signals and it

calculates the SBP and DBP based on the oscillations of the arteries with the help

of an algorithm. The calculated values are visualized on the display of Phillips’s

Intellivue MP80 monitor thorough the NIBP connector of the monitor.

3.2.6 Electrocardiogram (ECG) Electrodes

The electrocardiogram (ECG) provides the measure of electrical activity of the heart

over a period of time and it is measured using electrodes placed on the skin. The

ECG electrodes detect electrical changes in the skin due to the depolarizing and

repolarizing electrophysiologic patterns of heart muscles during each heartbeat. In

the current study, ECG electrodes were used to extract the parameter Heart Rate

(HR) in beats per minute (bpm) [MSP430, 2005]. The hemodynamic parameter HR

is included in the study to examine the abnormality on HR due to the anaesthetic

drug effect. Normal HR is in the range 60–100 bpm whereas HR above 100 bpm
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is defined as Tachycardia and HR below 60 bpm is defined as Bradycardia. If the

heart is not beating in a regular pattern then it is called arrhythmia.

In the study, ECG electrodes were placed on the patient according to the

5 lead placement system as shown in Figure 3.6. The five electrodes were placed on

the patient’s limbs and on the surface of the chest. The overall magnitude of heart’s

electrical potential is measured from different angles (”leads”) and is recorded as

ECG waveform over a period of time.

Figure 3.6: 5 Lead ECG electrode placement system

In order to display the ECG waveform on the Phillip’s Intellivue MP80

Monitor the electrode cable is connected to the ECG connector of the Phillip’s

IntelliVue MP80 Monitor. The arrhythmia option of the monitor performs an al-

gorithm called arrhythmia detection analysis on the patient’s ECG waveform and

calculates patients HR in beats per minute (bpm).

3.2.7 RugloopII c© Waves(2000)

RugloopII c© Waves is a Windows-based synchronization and data acquisition soft-

ware developed by Tom DeSmet (Demed Engineering, Gent, Belgium). It can record

and capture waveform data and numerical data electronically from Aspect Medical
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Systems A2000 or Datex-Ohmeda AS3/S5 monitor or Phillips Intellivue monitor

[Ribeiro et al. , 2009; DeSmet, 2000].

In the present research patient’s physiological signals were continuously

collected and recorded in the Personal Computer (PC) through RugloopII c© Waves

software installed in the PC. It captures all data from Phillips Intellivue monitor and

synchronizes them in the time reference. The software connects PC to the Philips

Intellivue Monitor through serial line or Ethernet connector. The Phillips Intellivue

monitor collects data from various devices at a different sampling rate. It collects

the real-time data and other processed variables like HR, SBP and DBP in every

5sec and BIS value in every 1sec. The waveform data (EEG signal) is sampled at

a sampling rate of 128 samples/sec. The waveform data (EEG Signal) is extracted

to ASCII files using software called Labgrab developed by Demed, Temse, Belgium.

Figure-3.7 shows the screenshot of RugloopII c© Waves software. Here the black

Figure 3.7: RugloopII c© Waves software
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color signal is the single channel EEG signal collected from the patient as waveform

data. The numerical data presented in the figure are the Noninvasive Systolic Blood

Pressure, Noninvasive Diastolic Blood Pressure, Noninvasive Mean Blood Pressure

and HR (represented as Pulse from Pleth) at a particular instant of a patient’s data.

The other parameters and wave data shown in the figure were not considered for the

current study.

3.3 Data Overview

A pictorial representation of flow of data in the study is presented in Figure 3.8. The

BIS sensor senses the electrical activity of the brain and sends the raw EEG infor-

mation through the cable and converter to the BIS module. BIS module processes

the EEG data according to an algorithm and provides BIS index and EEG data to

the monitor. The BP apparatus calculates the systolic blood pressure and diastolic

Figure 3.8: Data Flow

blood pressure based on an algorithm and passes to the monitor. Similarly, ECG

leads collects the ECG signals and the arrhythmia algorithm calculates Heart rate

from the ECG signals and monitored in the monitor. RugloopII c© Waves software
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loaded in the PC captures all the data monitored in the monitor through RJ 45

Ethernet LAN cable connector and store it on the PC.

Collected data from patients include EEG waveform data and numerical

data like BIS value, HR, SBP and DBP. The demographic details of the data col-

lected from all patients are given in Table 3.1. Data is presented as mean ± Standard

Deviation (SD). The summary of acquired data is depicted in Table 3.2.

Table 3.1: Patient demographic Details

Details Mean ± SD

Age (yrs) 53 ± 13
Weight (Kg) 57 ± 10
Height (cm) 155 ± 5

Table 3.2: Details of the collected data

Sensor Numeric/Waveform
data

Sampling fre-
quency

ECG Electrodes Heart Rate(bpm) 0.2 Hz
Oscillometric pressure sensor SBP (mmHg)) 0.2 Hz
Oscillometric pressure sensor DBP (mmHg) 0.2 Hz
BIS Sensor BIS Value 1 Hz
BIS Sensor EEG waveform (µ

V)
128 Hz

3.3.1 Data Representation

Time domain representation of the data/signals provides the information of signal

amplitude and time information. A raw signal represented in time domain needs

to be processed to find out more information in that signal. The collected signals

are categorized into four groups namely awake signal, induction signal, maintenance

signal and recovery signal.

• Awake signal: The signals collected 5-10 minutes before administrating the

anaesthetic agents. The corresponding BIS value variation is noted to be in

the range 80-100.
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• Induction signal: The signals acquired at the time of administration of in-

duction agents to 1-5 minutes after administration of induction agents. The

corresponding BIS value variation was in the range 20-40 which is the deep

anaesthetic signal.

• Maintenance signal: The signals obtained during the surgery. BIS value vari-

ation was in the range 40-60 and it is the moderate anaesthetic signal.

• Recovery signal: The signals collected after the end of the surgery to the return

of conscious state of the patient. BIS variation is in the range 60-80(Light

anaesthetic signal).

• The signals corresponding to BIS value variation of 0 - 20(very deep anaesthetic

signal) could not be obtained from the patients as it would cause hemodynamic

instability of the patient during surgery and hence it is beyond the scope of

the study.

Figure 3.9: EEG Signal Representation

Figure 3.9 shows the representation of a patient’s EEG signal in time domain and the

corresponding BIS index values as the depth of anaesthesia. Similarly, the changes
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in noninvasive blood pressure and heart rate of a patient in accordance with depth

of anaesthesia are shown in Figures 3.10 and 3.11 respectively

Figure 3.10: Blood Pressure Data Representation

Figure 3.11: Heart Rate Data Representation

3.3.2 Time and Frequency spectrum of EEG signal

Initially, the amplitude and frequency distribution of the awake, induction, main-

tenance and recovery EEG signals were analyzed using histograms and frequency
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distribution plots. These plots help to study the variations in EEG signals during

the different phases of anaesthesia. Figures 3.12 and 3.13 represent the histogram

and frequency spectrum corresponding to an EEG recording of a patient in each

anaesthetic phase.

Figure 3.12: Histogram of EEG signals

Figure 3.13: Frequency Spectrum of EEG signals
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According to Kelley et al average amplitude of the EEG signal increases and

the average frequency decreases when DoA increases[Kelley, 2003]. The horizontal

axis in the histogram representation is the amplitude of the signal and the vertical

axis is the frequency of occurrence. The amplitude variations of different anaesthetic

EEG signals are more visible in the histogram. Here the amplitude of the EEG

signal increases as the depth of anaesthesia increases. For awake EEG signals, the

amplitude range is -15 to +15 µV, induction signals are deep anaesthetic signals and

their amplitude range is -50 to +50µV, maintenance signals are moderate anaesthetic

signals and amplitude range is -40 to +40µV. Finally, recovery signals are light

anaesthetic signals and their amplitude range is from -25 to +25µV. The frequency

spectrum shown in Figure 3.13 reveals that the frequency of EEG signals reduces

when the depth of anaesthesia increases. Here, EEG signals of deep anaesthetic

state (induction phase) contain lower frequency components whereas the awake EEG

signals contain higher frequency components.

3.4 Summary

The first section of the chapter explains clinical protocol designed for data collection

including selection criteria, medication and pre-medication procedure and data col-

lection procedure. Next section provides the details of materials and equipment used

for data collection which includes BIS sensor, BISxTM system, Phillips BIS mod-

ule, Phillips Intellivue MP 80 monitor, NIBP measurement device, ECG electrodes

for heart rate measurement and the synchronization and data acquisition software-

RugloopII c© Waves. The last session explains the summary of collected data and

its representation. EEG signal, HR, SBP and DBP are the collected data from each

patient during the whole surgery. Finally, these data were represented in the time

domain to observe the variations during different phases of anaesthesia. .
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Preprocessing of Data to

attenuate the effects of noises

Data preprocessing aims to remove noises from the collected raw data and prepares

for further analysis. The dataset includes numerical data of vital signs like HR, SBP,

DBP and waveform data of EEG signals collected during anaesthesia. HR, SBP

and DBP are called hemodynamic variables which keep on changing in accordance

with the flow of blood in the blood vessels and with each contraction of the heart.

The noises affecting these variables are power line interferences and electromagnetic

interferences. Since the amplitude of EEG signal is very small (in µV ) they are easily

contaminated by noises due to electrode movement, disturbance in the power supply,

strong electromagnetic effect caused by other equipment and interference of other

signals like Electrocardiogram (ECG), Electromyogram (EMG), Electrooculogram

(EOG) etc. The presence of these noises inversely affects the accuracy of estimation

of DoA. Therefore it is necessary to attenuate these effects to get an optimized DoA

index.

The current chapter has two sections: Data Segmentation and Data Filter-

ing. Data segmentation splits the datasets into shorter segments which are appro-

priate for the effective analysis of data. The data filtering method is necessary to

remove the contaminated noises which will degrade effects of signal analysis. These

two sections describe different segmentation and filtering methods which are applied

60
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to the collected dataset depending on the kind of data analyzed and the type of

noise present.

4.1 Segmentation

EEG signals and the hemodynamic variables are non-stationary because the statis-

tical characteristics of both vary with time. Therefore, for the subsequent analysis,

it is necessary to segment the datasets into sub-sections in hemodynamic variables

and epochs in EEG signals. Segmentation is done in the time domain such that each

segment is considered as approximately stationary. Segmentation can be performed

uniformly or non-uniformly.

4.1.1 Uniform segmentation

Uniform segmentation divides the signals or the datasets into fixed intervals with

time duration of 30 sec, 20 sec or even 1 sec. This method is widely used in data

segmentation application related to biomedical signal processing and other applica-

tions. The selection of suitable segment length affects the efficiency of analysis. But

the choice of segment length is usually influenced by the algorithm used for the data

analysis. Some algorithms require more data for analysis and thus longer segment

length is needed to obtain a reliable result. On the other hand use of longer segment

length increases the overall computational burden of the algorithm. Selection of

smaller segment length may exhibit a significant degree of non-stationarity, which

may cause the processing algorithm to lose its sensitivity and may end up with

misleading results. This conflict forces to adopt segment length which exceeds the

number of data points over which the signal is regarded as stationary [Motamedi-

Fakhr et al. , 2014; Azami et al. , 2012a,b].
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4.1.2 Non Uniform segmentation

Non-uniform segmentation is also called adaptive segmentation and is commonly

used in waveform data analysis. Here the signals are automatically segmented into

variable subsections based on statistical characteristics. That means it divides the

signal into segments of variable length. If the statistical characteristics of a signal

exhibit a considerable change, then the signal is segmented at the boundary of

change. Since statistical characteristics are the main concern in signal segmentation,

Standard Deviation (SD) and Fractal Dimension (FD) are some of the suitable tools

used for monitoring statistical characteristics variations along the signal. Here two

successive windows which slide along the signal and for each window SD or FD is

computed. If any changes on the signal characteristics are reflected on the extracted

SD or FD of the signal then the boundary of change would be the boundary of each

segment.

Present research tried to experiment both the segmentation methods. Non-

uniform segmentation is implemented by applying modified Varri’s algorithm on

collected EEG signals. In this algorithm, a feature called kurtosis is extracted from

EEG signals to find out the boundary of characteristic changes of the signal. The

feature kurtosis has opted because normal brain signals are having low kurtosis value

whereas the seizure EEG or spikes EEG are having high kurtosis value [Sanei, 2013;

Krajča et al. , 1991; Agarwal et al. , 1998; Azami et al. , 2015]. The algorithm

followed for adaptive segmentation is as follows

• Step 1: Select two connected windows W1 and W2, allow it to slide over the

EEG signal. The length of both windows together is defined by a parameter

Window Length (W) and each window has Length = 1
2
∗W .

• Step 2: Calculate the feature kurtosis for each window to indicate changes in

the signal characteristics and it is represented as Kui and Kui+1.

• Step 3: Use the function F to detect segment boundaries. The function F is

the degree of difference between the two consecutive kurtosis values, Kui and

Kui+1 extracted from both windows and is given by

F = [F1, F2, . . . , FN−1],where Fi = Kui+1 −Kui, i = 1, . . . , N − 1 (4.1)



Chapter 4. Preprocessing of Data to attenuate the effects of noises 63

where N is the total number of windows analyzed.

• Step 4: In order to localize the segment boundaries, apply two threshold func-

tions T1 and T2 to the F function. The local maxima above the threshold

value T1 is considered as the positions of the segment boundary in the tran-

sition of the signal from high-frequency low amplitude to low-frequency high

amplitude. On the other hand, local minima below the threshold value T2

is the segment boundary in the transition of signal from low-frequency high

amplitude to high-frequency low amplitude.

4.2 Filtering

In signal processing, filtering means complete or partial suppression of unwanted

components called noises from a signal. Mostly the biomedical signals like HR and

BP are affected by the noises from the external environment called environmental

noise. These are due to the disturbances in AC power line and electromagnetic

field created by other equipment in the operation theatre. But the EEG signals are

affected by the noises caused by external sources and physiological sources called

physiological noise. The physiological noises are the artifacts due to the interference

of ECG, Electromyography (EMG) and Electrooculography (EOG) signals. Usu-

ally, EEG signals collected through noninvasive methods have low Signal to Noise

Ratio (SNR) due to the artifacts caused by muscle and eye movements. Therefore,

contamination of EEG signals by the above-mentioned noises would affect the accu-

racy of DoA estimation. Hence, the estimation of DoA without removing the noise

may result in an incorrect assessment. The conventional filtering methods are not

able to eliminate artifacts well enough because they work based on the frequency

component of data whereas the EEG signals contain different scales and amplitudes.

Therefore, current research adopted wavelet-based filtering method to remove the

noises from the collected EEG signals. This allows shrinking of the amplitude of the

wavelet coefficient to remove artifacts.
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4.2.1 Technique used to remove environmental noises

The environmental noises or power line interferences are due to the difference in

the electrode impedance and stray currents in the cable connected to the patient.

Cables carrying signals from the patient to the monitoring equipment are prone

to electromagnetic interference (EMI) of frequency 50 Hz or 60 Hz by ubiquitous

supply lines [Mateo et al. , 2015]. The frequency of the power line interference lies

within the frequency range of the EEG signal. Therefore the first step in the EEG

signal prepossessing is to remove the power line interference produced by the electric

supply used in various devices such as ventilator, electric cutter, ECG recorder and

lots of specific lights in the operating room. Here a 50 Hz notch filter is used to

remove the power line interference from the EEG signals [Zoughi et al. , 2012].

4.2.2 Removing the physiological noise

As reported by Rampil et al. [Rampil, 1998] EEG signals are often contaminated

by EMG artifacts and eye blinking artifacts. Estimation of DoA without removing

these artifacts may lead to erroneous results. Artifacts due to eyeball movement

and blinking are known as Electrooculogram (EOG) artifacts and artifacts due to

muscle movements are called EMG artifacts [Sanei & Chambers, 2013]. EOG

artifacts are high amplitude and low-frequency signals and usually affect the lower

bands of EEG signals [Kavitha et al. , 2007]. Therefore, the characteristics of

EOG artifacts would affect the accuracy of DoA estimation. Similarly, the presence

of EMG artifacts in the EEG signals may result in unreliable estimation. Bowdle et

al. and Bruhn et al. reveal that BIS index provides an inaccurate output when more

EMG activity present in the EEG signal [Bowdle, 2006; Bruhn et al. , 2000a]. The

frequency spectrum of the EMG artifacts is greatly overlapped with EEG signals

and also the intensity of the EMG signals is larger than EEG signals.

Researchers have proved various techniques to remove these artifacts from

EEG signal like adaptive filtering method, empirical mode decomposition method,

independent component analysis (ICA), FIR-median Hybrid Filter, regression anal-

ysis in the frequency domain and wavelet transform analysis [Kavitha et al. , 2007;

Zeng et al. , 2013; Astolfi et al. , 2006; Woestenburg et al. , 1983; Croft &
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Barry, 2000]. However, a most popular technique to filter the artifacts from EEG

signals is wavelet-based threshold filtering [Yu, 2009].

4.2.2.1 Wavelet based threshold filter

In biomedical applications especially in EEG signals wavelet coefficients which are

small in value are considered as artifacts. Wavelet-based thresholding filter shrinks

the effect of those small coefficients or removes them without affecting the quality of

the signal in the wavelet domain. Finally, an inverse wavelet transform will retrieve

the desired signal from the wavelet domain.

In the present study wavelet-based thresholding algorithm is used to remove

the spikes and low-frequency noises from raw EEG signals. The mother wavelet

adopted for the wavelet analysis is db4 and the level of decomposition is 4. The db4

wavelet is selected as mother wavelet because its characteristics are more similar to

EEG signal characteristics. The six steps used for the computation of wavelet-based

thresholding algorithm is summarized below.

• Step 1: Select a basic wavelet function that matches the characteristics of

collected EEG signals.

• Step 2: Decompose the EEG signals into detail and approximation coefficients

to obtain the desired frequency resolution.

• Step 3: Calculate the standard deviation of the wavelet coefficients at each

level using Equation 4.2

σj = MAD(|cWj|)/0.6745. (4.2)

where MAD is the Mean Absolute Deviation, cWj is the wavelet coefficient at

level j

This method of estimating the standard deviation is typically used in wavelet

de-noising because it is less sensitive to outliers than the traditional calculation

of standard deviation [Donoho, 1995].
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• Step 4: Calculate the Universal threshold value using the Equation 4.3

T = σ
√

2log(n) (4.3)

where n is the length of the signal and T is the threshold value.

• Step 5: Apply Hard or soft thresholding based on the Equations 4.4 and 4.5

The hard threshold function is

cW ∗
j =

cWj, if |cWj| > T.

0, if |cWj| ≤ T.
(4.4)

where cWjis the coefficients of the sub-band.

The soft-threshold function is

cW ∗
j =

sgn(cWj)(|cWj| − T ), if |cWj| > T.

0, if |cWj| ≤ T.
(4.5)

• Step 6: The original signal is reconstructed from the retained coefficients using

inverse wavelet transform.

The major problem with wavelet-based thresholding is that it is very diffi-

cult to find out the optimal value of threshold T . If the value of T is small then it

will surpass the entire noisy coefficients and the result is still a noisy signal. On the

other hand, a large value of T makes a large number of coefficients as zero and will

shrink a maximum number of coefficients to smoothen the signal. This will result

in blurring of the signal. Therefore, it is necessary to find an optimum value for T

depending on the decomposition level and sub-band characteristics.

There are many threshold selection methods available in which SURE

Shrink is the one that used commonly in wavelet-based applications [Geetha &

Geethalakshmi, 2011; Tibdewal et al. , 2016; Mukhopadhyay & Mandal,

2013]. The SURE Shrink threshold is developed by Donoho and Johnstone and it

is a sub-band adaptive thresholding scheme where a different threshold is estimated

for each sub-band based on Stein’s Unbiased Risk Estimator (SURE). The SURE
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Shrink method can generate thresholds under a risk rule which minimizes SURE

with the shrinkage function and with the level of multiresolution [Mukhopadhyay

& Mandal, 2013; Xiao & Zhang, 2011; Antoniadis et al. , 2001; Donoho &

Johnstone, 1994].

The SURE Shrink threshold TSURE is defined as

TSURE = argmin
T≥0

SURE(T, cWj) (4.6)

where SURE(T, cWj) is given by

SURE(T, cWj) = N − 2.# {j : |cWj| ≤ T}+
N∑
j=1

min(|cWj|2, T 2) (4.7)

where N is the number of coefficients in the sub-band, # {} represents the cardinality

of the set.

This method is useful in the optimization of threshold because it orders

the wavelet coefficients in terms of magnitude and then selects the threshold as the

wavelet coefficient that minimizes the risk. The advantages of SURE Shrink is that

it uses the wavelet coefficients (cWj) at each level to choose the threshold value

TSURE.

4.3 Experimental results

4.3.1 Segmentation

Current research tried to experiment both uniform segmentation and non-uniform

segmentation. In uniform segmentation, the collected EEG signals are divided into

a non-overlapping rectangular window of 5 sec length (640 data samples). Figure

4.1 shows one segment EEG signal of a patient corresponding to different phases

of anaesthesia. The sampling frequency of the collected EEG signals is 128 sam-

ples/second. It can be observed from the figure that the amplitude of the EEG

signals increases with increase in DoA and frequency decreases with increase in
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DoA. Here induction phase is the deep anaesthetic phase, maintenance phase is a

moderate anaesthetic phase and recovery phase is the light anaesthesia phase.

Figure 4.1: Uniformily segmented EEG signal.

In non-uniform segmentation method, the window length selected is 5 sec

(640 data samples). Here the adaptive segmentation is driven by the amplitude and

frequency changes on the EEG signal. These changes are encountered by analyzing

the feature kurtosis. Figure 4.2 shows the adaptive segmentation of EEG signal

collected from a patient. EEG signal with high-frequency low amplitude region is

the awake phase signal region, the low-frequency high amplitude region is induction

phase region and medium frequency and medium amplitude region is maintenance

phase region. The F function is calculated using the equation 4.1 and is normalized

to standardize the values. The two threshold values T1 and T2 are selected on an

empirical basis and its value in the current study is ±0.35. From the figure, it is clear
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that the local maxima above the threshold T1 are the transition points of the signal

from the high-frequency low amplitude signal to low-frequency high amplitude signal

whereas the local minima below the threshold T2 are the transition of the signal from

the low-frequency high amplitude signal to high-frequency low amplitude signal.

These transition points are considered as the boundary of segmentation.

Figure 4.2: Non Uniformily Segmented EEG signals.

Further analysis of EEG signals is done with uniform segmentation in order

to synchronize the EEG signals and hemodynamic parameters with respect to time.

The collected hemodynamic parameters are numerical values and their sampling

frequency is 0.2 Hz.

4.3.2 Filtering the physiological noises from EEG signal

Wavelet-based threshold filtering is applied on the EEG signals to improve the accu-

racy of DoA estimation by suppressing the unwanted artifacts. The current research

adopted Discrete Wavelet Transform (DWT) with Daubechies-4 (db4) as mother
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wavelet for analysis based on the characteristics of the collected EEG signals. Se-

lection of levels of wavelet decomposition is usually done based on the dominant

frequency components of the signals. Here the levels are chosen in such a way that

the range of resulting frequency correlates with the five EEG rhythms: δ -band,

θ -band, α -band, β -band, and γ -band. The decomposition of the EEG signals

into its constituent frequency bands is obtained by successive convolution with high-

pass and low-pass filtering. The low-frequency components are obtained from the

approximation coefficients and high-frequency components are obtained from the

detail coefficients. Table 4.1 and Figure 4.3 shows the 4 level the decomposition of

EEG signal with sampling frequency 128 Hz. CA1, CA2, CA3 and CA4 are the

approximation coefficients and CD1, CD2, CD3 and CD4 are the detail coefficients

obtained after successive decomposition.

Table 4.1: Decomposition of EEG signal using DWT

Frequency Range Frequency Bands Wavelet Coef-
ficients

Frequency
Bandwidth

32-64Hz Gamma (γ) CD1 32

16-32Hz Beta(β) CD2 16

8-16Hz Alpha (α) CD3 8

4-8Hz Theta (θ) CD4 4

0-4Hz Delta (δ) CA4 4

Figure 4.3: Decomposition of EEG signals using DWT (4 level decomposition)
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In Table 4.1, the component CA4 represents the δ -band and CD4, CD3,

CD2 and CD1 represent the θ -band, α-band, β -band and γ-band respectively. The

sub-band frequencies obtained from the DWT coefficients of awake EEG signal of

a patient (including details coefficients CD1 - CD4 and one approximate coefficient

(CA4)) representing the EEG frequency bands are shown in Figure 4.4.

Figure 4.4: DWT coefficients of 8 sec duration awake EEG signals

The wavelet-based threshold filtering method filters each coefficient from

the sub-bands with a threshold function. In the current research SURE shrink

thresholding is incorporated to get the different threshold values at different levels.

To obtain the hard threshold, wavelet coefficient cWj with an absolute value below

the threshold T is replaced with 0. A wavelet coefficient with an absolute value above

the threshold is kept as it is. To obtain soft threshold, a coefficient with a magnitude
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above the threshold value is ’shrink’ and otherwise it is replaced with 0. The present

study calculated both soft threshold and hard threshold separately to compare the

efficiency of the filtering method. The application of this threshold value to CA4 and

all detail coefficients removed the unwanted noises from the coefficients. Finally, an

inverse wavelet transform is applied to the new coefficients to reconstruct the signals.

Figure 4.5 represents the output of wavelet-based threshold filtering when

applied to a 3 minute (23040 data samples) duration EEG signal collected from

a patient. The effectiveness of the filtered EEG signal is checked by calculating

the cross-correlation between raw EEG signal and filtered EEG signal. Figure 4.6

represents the cross-correlation outcome of the above mentioned 3 sec duration EEG

signal. The balance in the data graph indicates that there is a strong correlation

between the original EEG signal and the denoised signal. This shows that the

frequency information in original EEG signal and the denoised signal are still the

same.

Figure 4.5: Result of signal denoising using wavelet based thresholding method
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Figure 4.6: Cross correlation output

4.3.3 Performance Evaluation of the filter

Performance analysis is usually done to measure the efficiency of denoised signals.

In the present study performance of the filtered signals are evaluated by calculating

3 measures Signal to Noise Ratio (SNR), Mean Square Error (MSE) and correlation

coefficient.

SNR : is defined as the ratio of signal power to the noise power. It is used to

measure dominance of signal over the noises [Jianhui et al. , 2009]. SNR ratio is

expressed in dB. The value of the SNR is linear with the performance of the filter.

The higher value of SNR means that the performance of the filtering method adopted

is acceptable [He et al. , 2015].

Let X(i) = [x0, x1, ...., xn] is the collected EEG signal, X̂(i) = [x̂0, x̂1...x̂n] represents

the denoised EEG signal and then the noise signal is expressed as equation 4.8

N = X(i)− ˆX(i) (4.8)
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SNR is given by

SNR = 10log10

∑n
i=1X

2(i)∑n
i=1 |X(i)− X̂(i)|2

(4.9)

MSE : measures the average of squares of errors or difference between the original

signal and the denoised signal which is given by the equation 4.10

MSE =
1

n

n∑
i=1

[ ˆX(i)−X(i)]2 (4.10)

Correlation Coefficient (γ): is a statistical concept to measure how well a

denoised signal follows the original signal

The correlation coefficient is given by

γ =

∑n
i=1(xi − x̄)(x̂i − ¯̂x)√∑n

i=1(xi − x̄)2
∑n

i=1(x̂i − ¯̂x)2

(4.11)

Tables 4.2-4.5 indicate the performance evaluation result of wavelet-based

threshold filtering with different thresholding techniques applied to the entire 25

patient’s EEG data collected during the whole surgery. Here the performance is

compared by calculating the measures SNR, MSE and correlation coefficient. Table

4.2 and 4.3 represents the performance of wavelet-based SURE Shrink threshold-

ing technique applied with hard and soft thresholding respectively whereas Table

4.4 and 4.5 provides the performance of wavelet-based Universal thresholding tech-

niques applied with hard and soft thresholding. From the mean and standard de-

viation presented in the tables, it is evident that the wavelet-based SURE Shrink

thresholding applied with soft thresholding has better filtering performance than

other thresholding techniques because its SNR is high for all the 25 patient’s EEG

data and also the values of MSE is very small compared to all other threshold-

ing techniques. Therefore, current research adopted wavelet-based SURE Shrink

thresholding applied with soft thresholding for denoising the collected EEG signals.
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Table 4.2: Performance Evaluation of Wavelet denoising using SURE shrink
Threshold and Hard Thresholding

Patient Correlation SNR MSE

Patient 1 0.99994 38.03529458 0.022313494

Patient 2 0.99999 45.02328399 0.011673452

Patient 3 0.99998 42.38776316 0.018039378

Patient 4 0.99994 38.77505173 0.032461232

Patient 5 0.99995 38.95318857 0.017411208

Patient 6 0.99997 41.54181985 0.020176804

Patient 7 0.99999 45.19018456 0.01434957

Patient 8 0.99993 37.29763934 0.022213141

Patient 9 0.99997 41.03018241 0.01742742

Patient 10 0.99999 45.65539309 0.00761527

Patient 11 0.99995 39.33312044 0.024981269

Patient 12 0.99993 37.81588101 0.025151882

Patient 13 0.99998 41.78224008 0.012926934

Patient 14 0.99994 37.99121646 0.025570017

Patient 15 0.99998 42.58179226 0.01182634

Patient 16 0.99993 37.60320551 0.029589321

Patient 17 0.99997 41.85286537 0.019844594

Patient 18 0.99999 44.99702131 0.008696276

Patient 19 0.99965 30.91379258 0.069672835

Patient 20 0.99996 40.60693247 0.024462815

Patient 21 0.99996 40.49899834 0.018645194

Patient 22 0.99993 38.08433182 0.036534701

Patient 23 0.99997 42.12119842 0.018055264

Patient 24 0.99946 29.17142133 0.079651451

Patient 25 0.99994 38.70802136 0.024167648

Mean ± STD 0.99993±0.00011 39.9181±3.9285 0.0245±0.0167
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Table 4.3: Performance Evaluation of Wavelet denoising using SURE shrink
Threshold and Soft Thresholding

Patient Correlation SNR MSE

Patient 1 0.999997735 53.43902256 0.000642976

Patient 2 0.999999794 63.85570656 0.000152741

Patient 3 0.999999277 58.40007821 0.000451846

Patient 4 0.999998198 54.43131108 0.000882549

Patient 5 0.999999114 57.51500932 0.000242464

Patient 6 0.999999025 57.09759056 0.000561404

Patient 7 0.999999223 58.08720807 0.000736439

Patient 8 0.99999826 54.58281055 0.000415043

Patient 9 0.999998953 56.78948793 0.000462703

Patient 10 0.999999548 60.43932641 0.0002531

Patient 11 0.999997527 53.05771396 0.001059632

Patient 12 0.999995527 50.48399432 0.00136069

Patient 13 0.999999052 57.22365343 0.000369279

Patient 14 0.999995065 50.05667212 0.001589225

Patient 15 0.999998853 56.39403401 0.000491616

Patient 16 0.999997637 53.2543095 0.000805424

Patient 17 0.999999481 59.83804265 0.000315591

Patient 18 0.999999736 62.77248551 0.00014514

Patient 19 0.999883028 36.30908688 0.020115649

Patient 20 0.999999017 57.06215461 0.00055333

Patient 21 0.999998888 56.52961439 0.000465056

Patient 22 0.99999784 53.64483596 0.001015442

Patient 23 0.99999961 61.08060609 0.000229437

Patient 24 0.999966467 41.73460304 0.004414439

Patient 25 0.999998527 55.30872083 0.000528645

Mean ± STD 0.999993±0.000024 55.1755±5.9804 0.00153±0.00396
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Table 4.4: Performance Evaluation of Wavelet denoising using Universal Thresh-
old and Hard Thresholding

Patient Correlation SNR MSE

Patient 1 0.98469619 13.17669185 6.830112332

Patient 2 0.993020226 16.64899822 8.028379288

Patient 3 0.992112709 16.24426019 7.422870065

Patient 4 0.990832987 15.71659841 6.564631167

Patient 5 0.985283577 12.87268972 7.061204653

Patient 6 0.991049571 15.84937853 7.48335767

Patient 7 0.994460303 17.92399394 7.646416397

Patient 8 0.983008131 12.4445063 6.790836667

Patient 9 0.98873159 14.71095487 7.467166732

Patient 10 0.992177634 15.25749603 8.345935174

Patient 11 0.990118601 15.08002868 6.651562349

Patient 12 0.985517644 13.33295707 7.060945815

Patient 13 0.987342614 13.94788038 7.851117841

Patient 14 0.987540354 13.84012945 6.650276779

Patient 15 0.990274225 14.41267546 7.758219011

Patient 16 0.98721962 14.30491887 6.323589336

Patient 17 0.992443921 16.68832962 6.517721249

Patient 18 0.991902497 15.30259457 8.105429087

Patient 19 0.978335806 11.59959344 5.949540141

Patient 20 0.991758043 16.35782167 6.507549851

Patient 21 0.989816924 14.88444756 6.792380207

Patient 22 0.990555677 15.7731976 6.220409561

Patient 23 0.99179511 16.34769993 6.822659427

Patient 24 0.971957699 11.30798947 4.870088788

Patient 25 0.987575858 14.41299797 6.497356998

Mean ± STD 0.9883811±0.00500 14.73755±1.6543 6.96879±0.7755
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Table 4.5: Performance Evaluation of Wavelet denoising using Universal Thresh-
old and soft Thresholding

Patient Correlation SNR MSE

Patient 1 0.996145245 21.10840048 1.099656342

Patient 2 0.998793068 26.16361082 0.89777317

Patient 3 0.998449542 25.07589147 0.971423781

Patient 4 0.998088944 24.16588869 0.938169483

Patient 5 0.996042838 20.99363347 1.088389702

Patient 6 0.998416905 24.98340363 0.913469376

Patient 7 0.99891804 26.64173178 1.027268947

Patient 8 0.995748638 20.67486805 1.020674136

Patient 9 0.997693591 23.34464644 1.022790514

Patient 10 0.998366039 24.84502461 0.917745258

Patient 11 0.997305578 22.67535445 1.157153809

Patient 12 0.996661602 21.73469588 1.02020864

Patient 13 0.997376043 22.78136965 1.027028674

Patient 14 0.996739411 21.84049156 1.053909962

Patient 15 0.997692663 23.34305584 0.992485104

Patient 16 0.997003743 22.20735132 1.024991852

Patient 17 0.998123513 24.24816044 1.143174955

Patient 18 0.998196129 24.4161908 0.994068671

Patient 19 0.994465654 19.52792185 0.958628989

Patient 20 0.997994521 23.95941227 1.130468443

Patient 21 0.997425897 22.87030573 1.080030875

Patient 22 0.997952175 23.86570568 0.965090794

Patient 23 0.998037569 24.05300261 1.157239968

Patient 24 0.991722015 17.78333585 1.096483854

Patient 25 0.997024828 22.23922857 1.071799795

Mean ± STD 0.99721±0.00154 23.02170±2.03557 1.03080±0.07652
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4.4 Summary

This chapter explains two major areas of data preprocessing: segmentation and

filtering. The segmentation of signals was done for the effective analysis of the

data. Uniform segmentation of the collected EEG signals was done by splitting

the signals into equal time interval of 5 sec duration. Non-uniform segmentation of

EEG signals was done by calculating the feature kurtosis and splitting the signal

at boundary of change occurs. As a result, the EEG signals were segmented when

a change from low-frequency high amplitude to high-frequency low amplitude and

vice versa occurs. To denoise, the EEG signals current research adopted wavelet-

based threshold filtering method. Two thresholding techniques such as SURE Shrink

thresholding and Universal thresholding were experimented to improve the accuracy

of DoA estimation. Finally, the performances of the filter with different thresholding

techniques were compared by calculating the measures SNR, MSE and correlation

coefficient. The results revealed that wavelet denoising based on SURE Shrink

Threshold with soft thresholding technique was able to remove noises from the EEG

signals effectively.



Chapter 5

Feature Extraction

A feature is a functional component extracted from a signal or from a set of data

that represent the characteristics of data/signal without losing significant informa-

tion embedded in the data. The features are obtained by applying the different

feature extraction methods on the signals. Feature extraction part is included in the

current research to minimize the complexity of implementation and to reduce the

time consumption of information processing. In this chapter, the inherent properties

of EEG signals and hemodynamic variables are extracted as features. This chapter

has two parts:

1. Feature extraction from EEG signals

2. Feature extraction from hemodynamic variables

The variations on EEG signals due to the effects of anaesthetic drugs are

reflected as amplitude and frequency variations [Voss & Sleigh, 2007]. Feature

extracted from EEG signals depicts these amplitude and frequency variations and

thus the hypnotic state of the patient whereas features extracted from hemody-

namic variables can quantify the hemodynamic variability due to the anaesthetic

drugs. Therefore, features extracted from both EEG and hemodynamic variables

are necessary for the accurate estimation of DoA.

80
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5.1 Feature Extraction from EEG Signals

EEG signals are non-stationary signals arising from cortical, subcortical and brain-

stem structures in the brain. Analysis on these signals is a time-consuming process

because of the size of EEG data. In order to reduce the dimensionality of EEG sig-

nals, some features are extracted that represent the characteristics of original EEG

signal. If a surgery is of 3-hour duration then one patient’s collected EEG signal

consists of more than 13 lakh of data points (10800 seconds duration data). Analyz-

ing all these data points is a time-consuming process. Therefore, the dimensionality

of the EEG signals is reduced by extracting core features from the signals. A variety

of methods have been used to extract features from the time domain, frequency

domain and time-frequency domain representation of EEG signals. Apart from this

non-linear analysis provides some features that represent the distinguishing property

of EEG signal.

5.1.1 Time Domain Parameters

Time domain behaviour of a signal is one of the most important property that decides

the shape of the collected signals and carries information like amplitude, phase and

rate of change. Time domain analysis of EEG signals provides information about

the changes in the signal with respect to time based on the morphological features

of the signal. This analysis is purely statistical where mean, standard deviation and

variance are considered. The time domain parameters extracted from collected EEG

signals for the estimation of DoA are given below.

5.1.1.1 Variance and Standard Deviation

Variance and standard deviation of a signal measures how the signal is spread out

and indicates how much variation or dispersion from the mean exists. A low standard

deviation indicate that the data points of the signals are tend to be very close to

the mean and high standard deviation indicate that the data points are spread out

over a large range of values.
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The variance of a signal is the square of its standard deviation and it is

represented as.

var(x) = σ2 (5.1)

where σ is the Standard Deviation(SD) which is the Root-Mean-Square(RMS) de-

viation of data points from the mean x and is given by the equation

σ =

√∑
(xi − x)2

N − 1
(5.2)

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (5.3)

where N is the total number of data samples in the signal and xi is a data instance.

5.1.1.2 Energy

Energy of a signal is defined as the area under the squared signal and is used to

measure the signal strength. It is given by the equation

Es =
N−1∑
n=0

|x(n)|2 (5.4)

where x(n) represent discrete samples of a signal at regular interval of N points

stretching from 0 to N-1.

5.1.1.3 Entropy

Entropy is defined as a measure of uncertainty in a given random variable or it can

be defined as the measure of the order in a signal. Signal order is the degree of

randomness of the signal.

Let X be a signal of length N represented as X = x1, x2, ..., xN , then Entropy is

calculated using the equation

H(X) = −
N∑
i=1

p(xi)log10p(xi) (5.5)
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where p(xi) is a probability of a random value xi of the signal.

5.1.1.4 Mean Absolute Deviation (MAD)

Mean Absolute Deviation (MAD) is defined as the mean of absolute deviations from

the mean of a signal. It calculates the average distance from the mean of a signal.

Let X be a signal of length N represented as X = x1, x2, ..., xN , then MAD is given

by the equation.

MAD(X) =

∑N
i=1

∣∣∣∣xi − µ∣∣∣∣
N

(5.6)

where xi is a data point and µ is the mean of the signal.

5.1.1.5 Zero Crossing Rate (ZCR)

Zero Crossing Rate is the rate at which the waveform crosses zero. It can also be

defined as the rate of sign changes along the signal. ZCR gives information about the

number of zero-crossings present in a given signal. If the number of zero crossings is

more in a given signal, then the signal is changing rapidly and accordingly the signal

may contain high-frequency information. On the other hand, if the number of zero

crossing is less, then the signal is changing slowly and accordingly the signal may

contain low-frequency information. Thus ZCR gives indirect information about the

frequency content of the signal [Bachu et al. , 2008].

The zero-crossing rate of N samples of a signal starting at sample m is given by

[Iser et al. , 2008]

ZCR =
1

2(N − 1)

m+N−1∑
n=m+1

∣∣∣∣sgn {s(n)} − sgn {s(n− 1)}
∣∣∣∣, (5.7)

where

sgn {s(n)} =

+1, s(n)≥0.

−1, s(n)< 0.
(5.8)

where s(n) and s(n− 1) are the current value and the previous value respectively.
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5.1.1.6 Inter Quartile Range (IQR)

The interquartile range (IQR) is the measure of variability of a signal and divide

the signal into quartiles. Quartiles divide the rank-ordered signal data into four

equal parts. The values that separate the parts are called first, second, and third

quartiles and they are denoted by Q1, Q2, and Q3, respectively. IQR is also called

the midspread or middle 50%[Deller Jr et al. , 1993]. It is a measure of statistical

dispersion, being equal to the difference between 75th and 25th percentiles or between

upper and lower quartiles and is given by the equation.

IQR = Q3−Q1 (5.9)

In other words, the IQR is the 1st quartile subtracted from the 3rd quartile[Deller Jr

et al. , 1993].

5.1.2 Frequency Domain features

Frequency domain analysis examines the EEG signal based on the frequency spec-

trum. Fast Fourier Transform (FFT) and Wavelet Transform (WT) are the most

popular methods which transform a data/signal in time domain to frequency do-

main. Frequency domain analysis is an important approach to signal processing and

analysis, where the signal is examined with respect to frequency. Fourier analysis

provides amplitude and a phase spectrum, which is analogous to the histogram of

amplitudes and phase angles of signal components. It also plays an important role

in the implementation of filters and spectral analysis. When applied to EEG signals

it is mostly used to extract different spectral features, which are important for the

EEG applications. For the estimation DoA, current research extracted the frequency

domain features spectral entropy and spectral edge frequency.

5.1.2.1 Spectral Entropy (SEn) :

Spectral entropy is Shannon’s entropy computed over normalized power spectral

density function. Power spectral density is the distribution of power as a function
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of frequency. Spectral Entropy uses the amplitudes of the power spectrum of a

signal as probabilities in entropy calculation [Subha et al. , 2010; Fell et al. ,

1996]. Spectral Entropy calculation in the current research uses the following steps

[Sharma et al. , 2015]

1. Calculation of the Fast Fourier Transform (FFT) of EEG signal using the

equation

X(k) =
N−1∑
n=0

x(n).W nk
N (5.10)

where WN = e−j(
2Π
N

), k = 0, 1, ...N − 1 and X(k) is the Fourier transformed

form of the signal.

2. Calculation of Power Spectral Density (PSD) using the equation

PSD(K) = |X(k)|2 (5.11)

which is the squared magnitude of the FFT

3. Normalize the Power Spectral Density between [0-1] by computing the total

power spectral density and dividing the power level corresponding to each

frequency by the total power and is given by

PSDN(K) =
PSD(K)∑
PSD(K)

(5.12)

4. Finally, spectral Entropy is calculated using the equation

H(s) = −
∑

PSDN(k)log(PSDN(k)) (5.13)

The use of spectral entropy in the current study is that it permits sepa-

ration of frequency contributed from different frequency ranges of the signal. That

means it can separate high-frequency contribution of a signal from its low-frequency

contributions.
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5.1.2.2 Spectral Edge Frequency (SEF)

Spectral Edge Frequency is the frequency below which total power of the signal is

located. It is expressed as ”SEF x” which stands for the frequency below which

x percent of the total power of a given signal is located (usually x is in the range

75 to 95). 95 % spectral edge frequency has been widely used to assess Depth of

Anaesthesia [Doi et al. , 1997; De Deyne et al. , 1998]. Steps followed in the

current research for the Spectral Edge Frequency calculation is given below [Long

et al. , 1989]

1. Calculation of Fast Fourier transform of the EEG signal using the equation

X(f) =
N−1∑
n=0

x(n).W nf
N (5.14)

where WN = e−j(
2Π
N

), f = 0, 1, ...N − 1 and X(f) is the Fourier transformed

form of signal.

2. Calculation of Power spectrum P (f) by multiplying themselves with Fourier’s

transformed amplitudes of each element X(f).

P (f) = X(f) ∗X ′(f); (5.15)

where X ′(f) is the Fourier’s complex conjugated X(f)

3. Finally, Spectral Edge Frequency 95th percentile (SEF95) is calculated using

the equation ∫ SEF95

0

P (f)df = 0.95

∫ fs
2

0

P (f)df (5.16)

where fs is the sampling frequency

SEF performs the analysis of a signal in the energy plane (potency) as a

function of frequency. i.e. SEF95 is the frequency below which 95 % of the whole

potency (or energy) of the original signal is located.
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5.1.3 Time-Frequency Domain Features

In order to localize the EEG signals in both time and frequency domains simultane-

ously researchers use Time-Frequency domain representation. Time-frequency rep-

resentation of a signal can be done effectively using Wavelet Transform (WT). WT

is capable of providing the time and frequency information simultaneously, hence it

is called time-frequency representation of the signal. At low frequencies, it provides

lower time resolution and high-frequency resolution. At high frequencies, it gives

high time resolution and lower frequency resolution. That means higher frequencies

are better resolved in time and lower frequencies are better resolved in frequency

[POLIKAR, n.d.]. Most of the biomedical signals are non-stationary signals and

therefore WT is well suited for locating its transient events. Present study takes the

advantages of wavelet’s feature extraction and multiresolution analysis to analyze

various transient events in awake and anaesthetized states of EEG signals. Multires-

olution analysis decomposes EEG signals into a number of frequency bands. These

decomposed signals are capable of capturing transient features and localized in both

time and frequency context. For EEG signal analysis Discrete Wavelet Transform

(DWT) with Mallat’s fast algorithm is commonly used [Mallat, 2008].

Basic wavelet function is given by the equation

Ψa,b(t) =
1√
a

Ψ(
t− b
a

) (5.17)

where ’a’ is the scale parameter and ’b’ is the translation parameter. The wavelet

Transform of a signal is given by the equation

W (a, b) =

∫
x(t)

1√
(a)

Ψ(
t− b
a

)dt (5.18)

where ’W (a, b)’ is the wavelet coefficients of the signal x(t)

For the estimation of DoA, current research extracted the features Rela-

tive Wave Energy and Wavelet Entropy from collected EEG signals through DWT

analysis.
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5.1.3.1 Relative Wavelet Energy (RWE) and Wavelet Entropy (WEn) :

Two main features extracted from the wavelet domain representation are Relative

Wavelet Energy (RWE) and Wavelet Entropy (WEn). The feature RWE is extracted

to find out the degree of importance of different EEG frequency bands associated

with different anaesthetic phases such as awake, induction, maintenance and recov-

ery. WEn provides information about the degree of order/disorder associated with

multi-frequency EEG signals. WEn integrates frequency decomposition and entropy

principles to estimate the degree of order/disorder of collected EEG signals with a

high time-frequency resolution. The algorithm adopted for the extraction of WEn

and RWE features is as follows [Rosso et al. , 2001]

1. Decomposition of the EEG signals to its detail and approximation coefficients

using the DWT equations.

cAj(n) =
∑

g(l − 2n)cAj−1(l) (5.19)

cDj(n) =
∑

h(l − 2n)cDj−1(l) (5.20)

where cAj(n) and cDj(n) represents the detail and approximation coefficients

of the EEG signal, g and h represents low pass and high pass filter to filter the

EEG signals.

2. Calculation of total energy of the wavelet coefficients using the equation

Em,total =
4∑
j=1

m∑
k=1

|cDj(k)|2 =
∑
j

Em,j (5.21)

where m is the window length of EEG segment, j is the levels of decomposi-

tion(If 4 level decomposition is preferred then its value ranges from 0-4, Em,j

is the energy of the EEG segment at level j and which is given by

Em,j =
4∑
j=1

|cDj(k)|2 (5.22)
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3. Calculation of Relative Wavelet Energy(ρm,j) using the equation

ρm,j =
Em,j
Em,total

(5.23)

4. Wavelet Entropy is given by

WEnm(ρ) = −
∑

ρm,jlogρm,j (5.24)

WEn provides the information about the degree of order associated with awake

and anaesthetic EEG signals whereas RWE reveals the prominent frequency band

associated with DoA estimation. The advantage of Wavelet-based analysis is that it

can be localized in both time and frequency whereas the standard Fourier transform

is localized only in frequency.

5.1.4 Non linear Features

EEG signals are complex signals having nonlinear properties. Therefore, other than

the amplitude and frequency variations the complexity and nonlinear behaviour

of EEG signals are to be considered. Practically various measures are available

to characterize the complexity and behaviour of time series signals like Lempel-

Ziv (LZ) Complexity analysis, Approximate Entropy and Chaos-based estimates of

complexity. These analysis were based on regular, chaotic and stochastic behaviour

of time series signals [Lempel & Ziv, 1976; Pincus, 1991; Efstathiou et al. ,

2001]. According to Rain Ferenets et al., nonlinear properties of EEG signals are

very important to consider during general anaesthesia [Ferenets, 2007]. Current

research extracted the features Approximate Entropy (ApEn) and Permutation En-

tropy (PEn) to study the regularity/complexity property of collected EEG signals.

5.1.4.1 Approximate Entropy (ApEn)

Approximate entropy is an uncertainty measure originally proposed in the context

of dynamic systems and time series. The ApEn was introduced by Pincus et al.

to quantify the information available in the time series data. A low value of ApEn
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indicate that the time series data is deterministic while a high value indicate ran-

domness [Pincus & Keefe, 1992]. In the current research, approximate entropy

measures the regularity and the degree of randomness of the EEG signals during

different phases of anaesthesia, where each EEG signal is considered as a time series

data. The algorithm adopted for the calculation of approximate entropy is detailed

below [Guo et al. , 2010; Pincus & Keefe, 1992].

Consider an EEG signal X of length N which is indicated by X = {x(1), x(2), x(3)

.......x(N)}.
Let X(1), X(2), X(3)........X(N −m+ 1) are the sub segments of the EEG signal X

formed according to

X(i) = {x(i), x(i+ 1), x(i+ 2).......x(i+m− 1)}; for i = 1, 2, ....N −m+ 1 (5.25)

where m is the length of sub segment or number of subsequent samples

1. Calculate the distance between two sub segments X(i) and X(j) is given by

the equation

d[X(i), X(j)] = max|x(i+ k)− x(j + k)| (5.26)

where k = 0, 1, 2 . . .m− 1

2. Calculate the measure Cm
i which describes the similarity between sub segment

X(i) and other sub segment X(j) using the equation

Cm
i (r) =

Mm(i)

N −m+ 1
(5.27)

where Mm is the count for j(j = 1, 2....N −m+ 1, j 6= i) under the condition

d[X(i), X(j)] ≤ r; for i = N −m+ 1, r is a predetermined tolerance value de-

fined as r = k ∗std(signal); k is a constant (typically k = 0.2) and std(signal)

represents the standard deviation of the time series signal.

3. Compute φmi which is the average of natural logarithm of each Cm
i (r)

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

lnCm
i (r) (5.28)
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4. Approximate entropy is calculated using the equation

ApEn = φm(r)− φm+1(r) (5.29)

ApEn is insensitive to low level noises and hence, it is very suitable for EEG signal

analysis. Higher regularity of EEG signals produces smaller ApEn values and low

regularity produces higher ApEn values [Acharya et al. , 2012].

5.1.4.2 Permutation Entropy (PEn)

Permutation Entropy (PEn) was developed to overcome the difficulties of classical

entropy measures like Shannon entropy and Approximate Entropy. Most of the

classical entropy measures ignore the temporal order of the time series and therefore

it requires more computation time. In PEn the complexity of time series signal is

quantified using symbolic dynamics. This method was proposed by Bandt et al. in

2002[Bandt & Pompe, 2002]. It combines the concepts of entropy and symbolic

dynamics to create Permutation Entropy. The computational considerations of PEn

in the current research is detailed below[Shi et al. , 2016]

Consider a time series signal x(n) represented as x(n) = {x1, x2, ..., xN}

1. Represent the signal symbolically to generate N − (m− 1) vectors as{
X1, X2, . . . XN−(m−1)

}
which is defined by Xt = [xt, xt+τ , ..., xt+(m−1)τ ]

where the embedding dimension m determines how much information is con-

tained in each vector and τ is the delay component and its value in the current

study is 1

2. Calculate the ranks of the values in each sequence Xt = [xt, xt+τ , ..., xt+(m−1)τ ]

which leads to the rank sequence rt = r1, r2 . . . rm. The ranks are the indices

of the values in ascending sorted order of each sequence Xt as [xt ≤ xt+τ ≤
...xt+(m−1)τ ].

3. Create a permutation pattern πi = [r1, r2 . . . rm] with the offset of the permuted

values. For m different numbers, there will be m! possible order patterns. In
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general, to each time series, it is possible to associate a probability distribu-

tion Π, whose elements πi are the frequencies associated with the i possible

permutation patterns.

4. Compare the rank sequence of step 2 with all permutations pattern and count

the occurrences of the order pattern πi, which is denoted as C(πi) where i =

1, 2, 3...m!.

5. Calculate the relative frequency using the Equation

p(π) = C(π)/(N − (m− 1)τ) (5.30)

6. Finally, Permutation Entropy is calculated using the Equation

PEn = −
m!∑
m=1

p(π) ln p(π) (5.31)

The largest value of PEn is log(m!), which indicate that the time series is

completely random; the smallest value of PEn is zero, indicating the time series is

very regular. In short, the permutation entropy refers to the local order structure

of the time series which can give a quantitative complexity measure for a dynamic

time series. Permutation entropy calculation depends only on the selection of m.

When m is too small (less than 3), the scheme will not work well since there are

only a few distinct states for EEG signal. For long duration EEG signals high value

of m is better [Li et al. , 2014]. Current study opted the value of m as 3 to detect

the dynamic changes of EEG signals.

5.2 Feature Extraction from Hemodynamic Pa-

rameters

The introduction of hemodynamic variables in the estimation of DoA helps to pro-

vide information about changes in clinical parameters which are necessary for anaes-

thesia decision-making. EEG extracted features provide the hypnotic response of
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anaesthetic drugs whereas hemodynamic variability due to the drugs are measured

by extracting features from hemodynamic variables such as Heart Rate and Blood

Pressure. An increase in HR or BP is an indicator of increased sympathetic activity

and parasympathetic activity. The sympathetic activity of the body is the intense

physical activity and is usually called fight-or-flight response. The parasympathetic

activity is the opposite effect i.e. it relaxes the body and inhibits or slows many high

energy functions. Therefore, feature extraction from these hemodynamic variables

is more appropriate to study the analgesic state of the patient.

Collected hemodynamic variables in the current research are HR, SBP and

DBP. The features extracted from these variables are Change in Heart Rate (∆ HR),

Change in Mean Blood Pressure (∆MBP) and Pulse Pressure (PP). These extracted

features are good indicators of hemodynamic variability and are used in several

studies related to hemodynamic variables. Balick et al. used PP to measure the

hemodynamic instability during anaesthesia[Balick Weber et al. , 2011; Nora

et al. , 2007; Hosseinzadeh et al. , 2013].

The feature extracted from HR is ∆HR and is calculated using the equation

∆HR =
HR at the moment− baseline HR

baseline HR
× 100 (5.32)

The features extracted from BP signals are ∆ Mean Blood Pressure (

∆MBP ) and Pulse Pressure(PP) which are calculated using the equations

MBP =
SBP + 2×DBP

3
(5.33)

∆MBP =
MBP at the moment− baseline MBP

baseline MBP
× 100 (5.34)

PP = SBP −DBP (5.35)

Where baseline HR and baseline MBP are the average of HR and MBP collected



Chapter 5. Feature Extraction 94

from each patient before inducing the anaesthetic drugs.

The extracted features ∆ HR and ∆MBP are used instead of HR and

MBP because their values are patient dependent. That means their values vary

from patient to patient. Finally, the features ∆ HR and ∆MBP are normalized

using the Equation 5.36 to standardize their variations.

Xinorm =
Xi −Xmin

Xmax −Xmin

(5.36)

where Xi is the ith data point of feature X, Xmin and Xmax represents the minimum

and maximum values of feature X.

5.3 Experimental Results of EEG feature Extrac-

tion

5.3.1 Time Domain Features

The time domain features Standard deviation, Energy, Entropy, Mean Absolute

Deviation, Zero Crossover Rate and Inter-Quartile Range are extracted from the

collected EEG signals. Table 5.1 shows the extracted time domain features of six

continuous EEG epochs (30 seconds EEG data) from each anaesthetic phase of a

patient.

The feature values of Standard Deviation, Energy, Mean Absolute Devia-

tion and Inter-Quartile Range are high in induction phase (deep anaesthetic phase)

EEG signals and low in awake EEG signals whereas maintenance and recovery phase

EEG signals exhibits some intermediate values. But the feature values of recovery

phase EEG signals (light anaesthesia) are higher than the awake phase EEG signals

and lesser than maintenance phase EEG signals. This indicates that values of these

features increase with the increase in DoA. On the other hand, ZCR and Entropy

feature values decrease with increase in DoA.
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Table 5.1: Time Domain Features

Features EEG segment Anaesthetic Phases

Awake Induction Maintenance Recovery

STDEV 1 7.98 23.51 10.60 8.29
2 6.34 19.77 12.76 10.51
3 7.56 23.39 10.08 7.97
4 7.26 20.84 14.82 9.47
5 5.76 21.18 10.86 8.71
6 6.40 23.01 18.25 8.46

Energy 1 40941 334682 101234 68294
2 46038 224543 129391 58877
3 36573 364272 111278 54963
4 27809 307862 104408 48659
5 33742 431843 88398 54804
6 43742 237966 98687 41539

Entropy 1 1.73 1.13 1.27 1.43
2 1.69 1.13 1.4 1.47
3 1.68 1.13 1.38 1.47
4 1.55 1.19 1.33 1.47
5 1.65 1.2 1.3 1.48
6 1.76 1.18 1.31 1.45

MAD 1 4.57 17.8 11.63 10.53
2 4.83 19.8 13.01 8.63
3 4.3 16.97 12.79 9.45
4 4.13 21.34 13.46 9.7
5 5.07 16.06 12.8 8.64
6 4.17 19.1 12.36 9.04

ZCR 1 0.4 0.08 0.15 0.22
2 0.49 0.09 0.15 0.27
3 0.33 0.1 0.16 0.28
4 0.35 0.1 0.19 0.23
5 0.31 0.09 0.14 0.22
6 0.37 0.11 0.15 0.27

IQR 1 6.01 24.02 17.98 12
2 5.01 22.51 21 16
3 4 21.98 19.99 10.99
4 5.01 23.5 18.48 9.98
5 6.09 21.51 16.03 10.68
6 5.9 22.06 19.96 13.56
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To compare the generalized performance of time domain features during

the awake, induction, maintenance and recovery phases mean and the standard

deviation are calculated from all the 25 patients and are shown in Table 5.2.

Table 5.2: Mean ± standard deviation of extracted Time domain Features

Awake Induction Maintenanace Recovery

STDEV 7.59 ± 2.29 21.62 ± 2.38 11.40 ± 3.34 8.74 ± 2.93

Energy 37713 ± 12587 300118 ± 38153 96114 ± 34601 60279 ± 20005

Entropy 1.62 ± 0.05 1.18 ± 0.07 1.37 ± 0.11 1.52 ± 0.10

MAD 5.06 ± 0.95 17.00 ± 1.08 10.82 ± 2.07 8.87 ± 1.56

ZCR 0.39 ± 0.07 0.08 ± 0.01 0.13 ± 0.03 0.23 ± 0.03

IQR 6.62 ± 1.32 24.00 ± 2.46 17.58 ± 4.08 9.18 ± 2.30

Anaesthetic timeline of patient-24 is given in table 5.3 for reference. Figure

5.1-5.6 represents the extracted time domain features of patient-24 and its compar-

ison with BIS index. The transition from all the phases is well defined in all the

extracted features compared to BIS index. The 3 main transitions are

1. Awake to induction

2. Induction to maintenance

3. Maintenance to recovery.

From the figures it is evident that in the awake phase, values are low for the

features Standard deviation, Energy, Mean Absolute Deviation and Inter-Quartile

Range and high for ZCR and entropy. This indicates the conscious state of the

patient. In induction phase Standard deviation, Energy, Mean Absolute Deviation

and Inter-Quartile Range feature values are high and ZCR and entropy features

show low values to indicate the deep anaesthetic which is the unconscious state of

the patient. In the Maintenance phase, values of the features such as Standard

deviation, Energy, Mean Absolute Deviation and Inter-Quartile Range are below

induction phase values whereas the values are above induction phase for the features

ZCR and entropy. Usually, surgery is carried out during the Maintenance phase.

Finally, in the recovery phase, feature values decreases from the point of transition of

maintenance to recovery in the case of Standard deviation, Energy, Mean Absolute

Deviation and Inter-Quartile Range and increases in ZCR and entropy features.
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Table 5.3: Anaesthetic time line of a patient

Time Drug Events Drug dose

12:39:08 PM Recording Started

12:39:43 PM Midazolam Drugs Induced with 1mg

Glycopyrolate 0.2mg

Propofol(Anaesthetic
drug)

100mg

Vecronium Bromide (Mus-
cle relaxant)

15mg

Fentanyl(analgesic drug) 100 µ g

12:41:36 PM Sevoflurane and N2O Inhalation agent started

12:45:00 PM Sevoflurane Inhalation agent increased

12:46:23 PM Sevoflurane Inhalation agent reduced
slightly

12:51:43 PM Sevoflurane Inhalation agent increased

12:57:00 PM Fentanyl (analgesic drug) Analgesic drug to reduce
BP and HR

100µ g

1:06:45 PM Sevoflurane Inhalation agent reduced

1:14:07 PM Sevoflurane Inhalation agent closed

1:20:26 PM Neostigmate Reversal drugs given 2.5 mg

Glycopyrolate 0.4 mg

1:22:18 PM stopped recording

This indicates that in the recovery phase patient is coming out from the effects of

anaesthetic drugs.

The adjustments in the administration of inhalation agent sevoflurane also

affect the DoA estimation. If we increase the administration of the sevoflurane then

it would increase the DoA and vice versa. In the case of patient-24, adjustments in

the administration of inhalation agent sevoflurane was done at time points 12:41:36,

12:45:00, 12:51:43, 1:06:45 ,1:14:07 and 1:20:26 hours(refer Table 5.3). These ad-

justments of sevoflurane administration do not make any appreciable change in the

extracted time domain features (refer Figures 5.1-5.6). The influence of time do-

main features in the current research is that the transitions from awake to induction
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Figure 5.1: Comparison of BIS and extracted Standard deviation during the
four phases of anaesthesia

Figure 5.2: Comparison of BIS and Energy during the four phases of anaesthesia

and induction to maintenance are distinct in the entire time domain feature, but

these transitions are not recognizable in BIS. Comparison of BIS with extracted time

domain features is done by calculating Pearson correlation coefficient. Correlation

coefficient value near to zero indicates weak correlation whereas near to one indicates
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Figure 5.3: Comparison of BIS and Entropy during the four phases of anaes-
thesia

Figure 5.4: Comparison of BIS and MAD during the four phases of anaesthesia
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Figure 5.5: Comparison of BIS and ZCR during the four phases of anaesthesia

Figure 5.6: Comparison of BIS and IQR during the four phases of anaesthesia
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strong correlation of the BIS and the extracted EEG features. The Pearson correla-

tion coefficient values of patient-24 are shown Table 5.4 which are calculated using

the Equation 4.11(in Chapter 4). Similarly, the time domain features and Pearson

correlation coefficient values are calculated from the entire 25 patient’s EEG data.

In all the cases, the feature ZCR showed more correlation with BIS.

Table 5.4: Correlation of time domain features with BIS

STDEV Energy Entropy MAD ZCR IQR

Correlation coefficients -0.70 -0.66 0.70 -0.72 0.80 -0.71

5.3.1.1 Time delay between BIS and Extracted time domain features

Figure 5.7 shows the comparison of BIS and extracted time domain features of

patient-24 during the transition from awake phase to induction phase. The surgery

started at 12:39:08 PM. The drug Midazolam-1 mg and Propofol-100 mg was admin-

istered at 12:39:43 PM as sedative and anaesthetic drug. The values of the extracted

features Standard deviation, Energy, Mean Absolute Deviation and Inter-Quartile

Range are increased rapidly just after the administration of above-mentioned drugs

whereas entropy and ZCR values are decreased. It can be observed from the Figure

5.7 that BIS value shows a delay of 10-20 seconds from the extracted time domain

features in the transition from awake to induction phase. The standard deviation

increased steeply from the time point at 12:39:48 PM and reached its first peak at

12:39:58. The midpoint of these two time points i.e. 12:39:54 PM is used to calculate

the time delay between BIS and standard deviation. Similarly, time delay is calcu-

lated for all the time domain features. The average time delay of BIS in all patients

is 15 seconds from Standard deviation and Energy, 10 seconds from Entropy, MAD

and IQR, whereas the average delay is 20 seconds from ZCR. Figure 5.7 also depicts

the induction phase and it starts from the point of administration of the drugs to 1

minute after drug administration.
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Figure 5.7: Time delay between BIS and the extracted Time domain features
of patient-24

5.3.2 Frequency Domain Features

The frequency variations of collected EEG signals are examined by extracting the

features Spectral Entropy and SEF. Values of these features extracted from 6 con-

tinuous epochs (30 seconds data) of four anaesthetic EEG signals of a patient is
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shown in Figure 5.8. Values of the features spectral entropy and SEF decreases

with increase in depth of anaesthesia. Awake and recovery signals showed higher

values in both the features, whereas induction phase showed low values and main-

tenance phase showed some intermediate values. A high value of SEn corresponds

to increase in irregularity or unpredictability of the signal frequencies while a low

value represents a high level of regularity. In this study SEF95% is used and which

provide frequency below which 95% of the signal power is concentrated. In awake

EEG signal, 95% of the signal power is concentrated in the frequency range 50-60Hz

and SEF of recovery EEG signal is in the range 25-35Hz. Similarly 10-20 Hz in

maintenance EEG signals and 5-10Hz in induction EEG signals. The results indi-

cate that both the frequency domain feature values of EEG signals decrease with

increase in DoA, which suggests that Spectral Entropy and SEF of EEG signal can

differentiate different phases of anaesthesia.

Figure 5.8: Comparison of frequency domain features during the 4 anaesthetic
phases

Figure 5.9 and 5.10 represents the extracted frequency domain features of

the same patient-24 during the whole surgery and its comparison with BIS index.

Similar to time domain features all the anaesthetic phases and their transitions are

well defined. Here values of both the frequency domain features in the awake phase

are high and when DoA increases their values gets reduced. Therefore, the deep

anaesthetic state (induction phase) is having the lowest values. One of the major

advantages of SEn is that the effect of inhalation agent, sevoflurane is more visible.
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Figure 5.9: BIS and the spectral Edge Frequency

Figure 5.10: BIS and the Spectral Entropy

It is clear from the Figure 5.10 that at 12:51:43 administration of sevoflurane was

increased which in turn increases the DoA which is reflected in the feature SEn as

decrease in its values. This event is slightly reflected in feature SEF. When the

administration of sevoflurane is reduced its action is well reflected in both time

domain and frequency domain features. SEF and SEn showed high correlation with

BIS and their Pearson correlation coefficient values are 0.78 and 0.75 respectively.
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The time delay between BIS and the frequency domain features of patient-

24 are shown Figure 5.11. The BIS index shows a delay of 15 sec with SEF and 10

sec with SEn.

Figure 5.11: Time delay between BIS and Frequency Domain Features

5.3.3 Time-Frequency (Wavelet) Domain features

The advantage of wavelet-based analysis in the current research is that the decompo-

sition of the EEG signals into its constituent frequency bands using multiresolution

analysis of wavelet transform. Here awake and anaesthetized EEG signals are de-

composed into its frequency ranges delta, theta, alpha, beta and gamma using the

multiresolution analysis. Wavelet Entropy (WEn) and Relative Wave Energy (RWE)

features are extracted from the frequency bands delta, theta, alpha and beta of EEG

signals from each patient. These decomposed frequency bands and their details and

approximations are given in Table 4.1 and Figure 4.3 of chapter 4.

As mentioned in chapter 4 Daubechies-4 mother wavelet with 4 level of

decomposition is used. Table 4.1 and Figure 4.3 shows the 4 level the decompo-

sition of EEG signal with sampling frequency 128Hz. cA1,cA2,cA3 and cA4 are

the approximation coefficients and cD1,cD2,cD3 and cD4 are the detail coefficients

obtained after successive decomposition. The RWE and WEn are calculated from
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frequency bands δ, θ, α, β and γ using the equation given in equations 5.23 and 5.24.

Therefore, the detail coefficient cD1, cD2, cD3, cD4 and approximation coefficient

cA4 are used for the RWE and WEn calculation.

The variations of Wavelet Entropy extracted from 30 seconds (6 epochs)

EEG signals of a patient is shown in Figure-5.12. Similar to all other features wavelet

entropy also decreases with increase in depth of anaesthesia. The results indicate

that WEn of EEG signal vary with change in DoA, which implies that WEn can

also be employed as a feature of EEG signal to differentiate phases of anaesthesia.

Figure 5.12: Comparison of Wavelet Entropy during the 4 phases

Figure 5.13 represent the extracted WEn feature of the patient-24 during

the whole surgery and its comparison with BIS index. It is evident from the figure

that the administration of sevoflurane was increased at two-time points 12:45:00 and

12:51:43 to increase the depth of anaesthesia which is reflected in the feature values

of WEn as decrease in values. When the administration of sevoflurane is reduced

its action is also well reflected as an increase in the values of WEn. WEn is the

only feature which clearly depicts the effect of sevoflurane and N2O. The Pearson

correlation coefficient value of WEn and BIS is 0.52 and which indicate that WEn is

less correlated to BIS. But the advantage of WEn is that the effect of the inhalation

agent sevoflurane can be observed as increase or decrease in values depending on

the administration of sevoflurane. The time delay between the BIS and WEn of

patient-24 is shown Figure 5.14. The BIS index shows a delay of 20 sec with WEn.
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Figure 5.13: Comparison of BIS and Wavelet Entropy during the 4 phases of
anaesthesia

Figure 5.14: Time delay between BIS and Wavelet Entropy

RWE variations of one epoch EEG signal from all the four anaesthetic

phases of a particular patient is shown in Table 5.5. RWE values of gamma band are

high in the awake phase because when a patient is awake high-frequency components

will be more active. But when anaesthetized the RWE values of low-frequency com-

ponents will be active. Therefore during deep anaesthetic state (Induction phase)
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Table 5.5: Comparison of RWE of Different frequency bands

Frequency
Range

RWE Awake Induction Maintenance Recovery

32-64 RWEγ 0.4408 0.0127 0.015 0.1775

16-32 RWEβ 0.1926 0.0492 0.0706 0.182

8-16 RWEα 0.1385 0.107 0.2028 0.4262

4-8 RWEθ 0.0868 0.0826 0.3289 0.144

0-4 RWEδ 0.1413 0.7485 0.382 0.0694

RWE value of delta band is high. In the maintenance phase RWE values of theta

and delta shows almost similar values and in recovery phase, RWE values of alpha

band is active compared to other bands

Figure 5.15: Comparison of Relative Wavelet Energy during the 4 phases

The RWE distribution of a patient’s EEG signal during the four anaesthetic

phases is shown in Figure 5.15. It can be observed from the figure that the Relative

Wave Energy of the awake phase is high for high-frequency bands. When anaes-

thetized, Relative Wave Energy of the low-frequency bands becomes high. During

the induction phase, RWE of the delta band (0-4) is more predominant. Main-

tenance phase shows high RWE values for low-frequency bands delta, theta and
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alpha. In the recovery phase, RWE of high-frequency bands is high compared to

low-frequency bands.

5.3.4 Nonlinear features

The nonlinear features extracted from collected EEG signals are ApEn and PEn. To

compare the generalized performance of nonlinear features during the 4 anaesthetic

phases, mean and standard deviation (SD) are calculated and presented in Table 5.6.

Low values of features ApEn and PEn indicates the anaesthetized state, whereas high

values indicate that the patient is awake. ApEn and PEn values are high for awake

signals because of the increased randomness in the EEG signal. Induction phase

EEG signals are more regular compared to all other EEG signals. Therefore, the

value of ApEn and PEn in the Induction phase shows low values. The results reveal

that ApEn and PEn values of EEG signal vary greatly with the changes in DoA,

which suggest that the ApEn and PEn can be selected as two relevant features of

EEG signal that can differentiate different phases of anaesthesia.

Table 5.6: Mean ± standard deviation of extracted Nonlinear Features

Extracted EEG
Features

Awake Induction Maintenance Recovery

ApEn 1.39 ± 0.10 0.76 ±0.09 1.11 ± 0.11 1.24 ± 0.72

PEn 2.52± 0.09 2.33±0.04 2.39± 0.12 2.46 ± 0.07

Figure 5.16 and 5.17 represents the extracted nonlinear features of patient-

24 and its comparison with BIS index. All the anaesthetic phases and their transi-

tions from one phase to another are well defined in the extracted features. Values of

both the features are high in awake EEG signals and when DoA increases their val-

ues gets reduced. Therefore, the deep anaesthetic state (induction phase) is having

the lowest values. The administration of inhalation agent-sevoflurane has less effect

on non-linear features.

The time delay of the BIS with ApEn and PEn of patient-24 is shown

Figure 5.18 which are 15 sec and 10 sec respectively. The correlation of features
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Figure 5.16: Comparison of BIS and Approximate Entropy during the 4 phases
of anaesthesia

Figure 5.17: Comparison of BIS and Permutation Entropy during the 4 phases
of anaesthesia

ApEn and PEn with BIS is calculated and Pearson correlation coefficient values are

0.75 and 0.61 respectively.
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Figure 5.18: Delay between BIS and nonlinear features

5.3.5 Hemodynamic features

The hemodynamic features extracted from the patients are ∆HR, ∆MBP and PP.

Normally values of these features decrease with increase in DoA. Figure 5.19 shows

the ∆HR, ∆MBP and PP variations of the patient-24 which is a special case of

hemodynamic instability.

After the administration of anaesthetic drugs the values of the features

∆HR,∆MBP and PP decreases similar to all other EEG extracted features. It

can be observed that in the maintenance phase all the three the features increase

drastically from the time point 12:49:23 PM causing a hemodynamic instability.

But this variation is not visible in BIS and EEG extracted features. Here anaes-

thesiologist first tried to stabilize these features by increasing the inhalation agent

sevoflurane and showed no effect on the hemodynamic variables. Then he admin-

istered the analgesic drug Fentanyl-100µg to the patient and which resulted in the

reduction of the extracted hemodynamic parameters. These indications reveal that

underdosing of drugs causes hemodynamic instability, but monitoring with EEG

extracted parameters does not show this effect, which can lead to inadvertent anaes-

thetic overdosing or underdosing.
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Figure 5.19: BIS and extracted hemodynamic features

5.4 Summary

This chapter provides the details of core features that vary in accordance with DoA.

The chapter has two main sections explaining EEG extracted features and hemody-

namic features. In the first section, features extracted from time domain, frequency

domain, time-frequency domain and nonlinear analysis were used to study the am-

plitude, frequency and complexity/regularity of EEG signals. The extracted time

domain features include Standard Deviation, Entropy, Energy, Mean Absolute Devi-

ation, Zero Crossing Rate and Inter-Quartile Range. Among these features Standard
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Deviation, Energy, Mean Absolute Deviation, and Inter-Quartile Range showed a

direct relationship with DoA whereas Entropy and ZCR showed an inverse relation

with DoA. The frequency domain features SEF and SEn also showed an inverse

relation with DoA. The extracted wavelet domain features include Wavelet Entropy

(WEn) and Relative Wave Energy (RWE) of each EEG frequency band. All these

features vary in accordance with DoA. Finally, nonlinear features such as ApEn

and PEn were extracted from collected EEG signals to study the complexity and

nonlinear behaviour of EEG signals during different phases of anaesthesia

In the next section, the hemodynamic variability due to the anaesthetic

drugs is analyzed by extracting the features such as ∆HR, ∆MBP and Pulse Pressure

from the HR and BP data. This chapter also compares the variations of these

extracted features during the four phases of anaesthesia such as awake, induction,

maintenance and recovery. When comparing the extracted features with BIS, BIS

showed a delay of 10-20 sec and also all the transitions were well defined in the

extracted features.
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Feature Selection

The performance of the extracted features is evaluated by applying a range of classi-

fiers such as k-Nearest Neighbor (kNN), Support Vector Machine (SVM), Multilayer

Perceptron (MLP) and Naive Base Classifier (NBC) which classifies different anaes-

thetic states as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia.

The purpose of these classifiers is to verify the transitions of different anaesthetic

states of extracted features in the feature vector. In the present research extracted

feature vector accommodates 19 features consisting of 6 time-domain features, 2 fre-

quency domain features, 6 time-frequency domain features, 2 nonlinear features and

finally 3 hemodynamic features. But the main dilemma in considering a large num-

ber of features is that it is very difficult to determine which feature or combination

of features provides better classification accuracy[Cheng et al. , 2006]. Therefore,

it is exceptionally important to select an optimal subset of feature vector from the

high dimensional feature vector.

The first part of this chapter explains different feature selection meth-

ods adopted for the classification of EEG extracted features as different anaesthetic

states. The advantages of feature selection are that it reduces the system complexity

and processing time which in turn improves the overall performance of the system.

Finally, Kruskal-Wallis (KW) statistical test is applied to the selected features to

check the discriminating capability of the features as awake, light anaesthesia, mod-

erate anaesthesia and deep anaesthesia. Thus KW test would check the efficiency of

selected features depending on the class separability of the features [Ho & Basu,

114
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2002]. The second part of this chapter describes different classification methods

used in the current study and their outcomes. The performance of these classifiers

is compared with different combination of features.

Feature selection method selects a minimally sized subset of feature vec-

tor from the extracted feature vector, without affecting the classification accuracy

significantly and maintaining the original class distribution of the features. Some-

times features in the feature vector may be unnecessary, uninformative or diverted

from the application. On the other hand, some features may not have any relevance

if they stand alone, but together with other features, they may provide synergic

performance to the application [Guyon & Elisseeff, 2003].

Generally, feature selection methods are categorized into two as Filter

method and Wrapper method. Filter method evaluates the applicability of features

in the feature vector by looking at the intrinsic properties of the data. A suitable

ranking criterion is used to score the features and a threshold value is used to remove

the features below the threshold. Afterwards, this subset of feature vector is used

as input to the classification algorithm. Filter method checks the applicability of

each feature in the feature vector using the measures like distance, area, correlation

and consistency. Advantages of filter methods are that they are fast, scalar and

independent of the learning algorithm. Some of the filter feature selection methods

are Person correlation, Linear Discriminant Analysis (LDA), Analysis of Variance

(ANOVA) and Chi-square test. Pearson’s Correlation is usually used as a measure

for quantifying linear dependence between two continuous variables. LDA is used

to find a linear combination of features that characterizes or separates two or more

classes of a categorical variable. ANOVA is similar to LDA except for the fact that

it is operated using one or more categorical independent features and one continu-

ous dependent feature. It provides a statistical test of whether the means of several

groups are equal or not. Chi-Square is a statistical test applied to the groups of

categorical features to evaluate the likelihood of correlation or association between

them using their frequency distribution [Kaushik, 2016].

In wrapper method, different combinations of feature subset are prepared

and then a predictive model evaluates the combination of feature subset and finally

assigns a score based on model accuracy. The computational cost of wrapper method
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is high when compared with filter method and therefore filter model is considered as

computationally efficient. However, in the performance concern wrapper model is

better than filter model [Yu & Liu, 2004]. Some of the wrapper methods are forward

selection, backward elimination, and recursive feature elimination method. Forward

selection is an iterative method in which it starts with no feature in the model. In

each iteration, keeps on adding the features which are making improvements to the

model. This is continued till an addition of a new variable does not improve the

performance of the model. In backward elimination, start with all the features and

removes the least significant feature at each iteration which improves the perfor-

mance of the model. This process is repeated until no improvement is observed on

removal of features. Recursive Feature elimination is a greedy optimization algo-

rithm which aims to find the best performing feature subset. It repeatedly creates

models and keeps aside the best or the worst performing feature at each iteration. It

constructs the next model with the left features until all the features are exhausted.

It then ranks the features based on the order of their elimination [Kaushik, 2016].

In the present research, feature selection is carried out by ranking the features in

the order of class separability which is a combined feature selection method.

6.1 Feature Ranking

Feature ranking methods rank the features based on their predictive scores. Features

with highest predictive scores are selected to form a feature subset. Different feature

ranking measures are ‘T-Test’, ‘Entropy’, ‘Bhattacharyya’, ‘ROC’and ‘Wilcoxon’.

Each of these measures assigns a rank to the features in the feature vector and

generates a feature ranking list. Top-ranked features from the ranking list of each

measure are selected analytically to the feature subset[Osei-Bryson & Barclay,

2015]. Finally, the ability of selected features in terms of class separability is tested

using Kruskal-Wallis (KW) statistical test.
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6.1.1 T-Test

The Student’s T-Test is a statistical method which evaluates the class discriminating

nature of each feature in the feature vector. This method analyses the features

and checks whether the means of two independent classes (samples) coming from

the population (normal distributions) are statistically different from each other.

According to Student’s T-Test if the hypothesis is true (null hypothesis is rejected)

then the feature is able to differentiate two subclasses of the feature.

The outcome of T-Test is expressed in terms of probability and is called

p-value. The computation procedure of p-value calculates t-statistics of each feature

corresponding to each class. The equation of t-statistic value calculation is given by

ti =
x̄1 − x̄2√(
σ2

1

n1
+

σ2
2

n2

) (6.1)

where ti is the t-statistics value of the ith feature in the feature vector, x1 and x2 are

means of two classes x1 and x2, σ1 and σ2 are the within-class standard deviations

of the two classes, n1 and n2 are the number of samples in the two classes.

The t-statistics evaluates the difference between the mean of two classes

and a within-class standard deviation is included to standardize the differences. This

t-statistic value is converted to a p-value either by software or by looking it up in

a t-table. If p-value is below the significance level (α) then the null hypothesis is

rejected and thus conclude that there is a significant difference between the two

population means. The value of α is usually 0.05 (5%).

In case of multiclass classification, the result of all the feasible two-class

combinations of each feature is summed up to get a predictive score and this indicates

the overall significance of the feature. Then the feature with a highest predictive

score is selected for the feature subset [Saez-Rodriguez et al. , 2014].
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6.1.2 Bhattacharyya Distance method

In statistics, the Bhattacharyya distance is used to measure the similarity of two

continuous or discrete probability distributions. Therefore, this method can be used

as a class separability measure to evaluate the statistical dependence between two

classes of a feature [Choi & Lee, 2003]. Bhattacharyya distance between two

normally distributed classes is computed using Equation 6.2

BDx1,x2 =
1

4
ln(

1

4
(
σ2
x1

σ2
x2

+
σ2
x2

σ2
x1

+ 2)) +
1

4
(
(x̄1 − x̄2)2

σ2
x1

+ σ2
x2

) (6.2)

where x̄1 and x̄2 are the means of the two classes x1 and x2 and σ2
x1

and σ2
x2

are the

variances of the two classes x1 and x2 respectively[Reyes-Aldasoro & Bhalerao,

2006; Kailath, 1967].

A high value of Bhattacharya Distance refers to strong class separability

[Klette & Zunic, 2004]. In case of multiclass classification, the distance obtained

from all feasible two-class combinations of each feature is averaged to get a predictive

score and this indicates strong separability of the classes. Finally, features with

highest predictive score are selected for the feature subset.

6.1.3 Entropy Ranking Method

Entropy is a measure of information conveyed by the probability distribution func-

tion of a particular feature. Here the divergence of two classes is tested by calculating

a measure called Relative Entropy. It is also called Kullback–Leibler divergence and

it assumes that both the classes are normally distributed. Let the probability func-

tion of the first class distribution is pk and the second class distribution qk, then the

relative entropy of p with respect to q is defined by the Equation 6.3

REp,q =
∑
k

pklog(
pk
qk

) (6.3)

The smaller the value of relative entropy, the more similar is the distribution of two

classes and conversely [Theodoridis et al. , 2008]. In multiclass distribution, the

relative entropy value obtained from all the feasible two-class combinations of each
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feature are averaged to get a predictive score and this indicates strong separability

of the classes. Finally, features with highest predictive score are selected for the

feature subset.

6.1.4 Receiver Operating Characteristics (ROC) Method

Receiver Operating Characteristics (ROC) Curve is a commonly used method to

evaluate the performance of a classification algorithm. ROC curve is a feature rank-

ing method which measures the individual significance of features in the feature

vector [Fawcett, 2006]. The advantage of ROC curve method is that it provides

information about the overlapping of classes. In Figure 6.1(a), we can see two over-

lapping probability density functions (pdf) describing the distribution of a feature

in two classes together with a threshold T . Here one pdf is shown inverted for

interpretation purpose. Class 1 of the feature is the values coming on left side of

Figure 6.1: (a)Two overlapped class distribution of a feature and (b) ROC curve

threshold line and class 2 is the values at right side of the threshold line. The error

probability of class 1 of a feature is indicated as α and the probability of a correct

decision of class 1 is (1 − α). Similarly, β and (1 − β) represents the error and

correct probabilities of class 2 of the same feature. The ROC curve is a plot of the

true positive rate against the false positive rate at different threshold settings. By

moving the threshold over all possible positions, we get different values of α and β.

If the two classes are completely overlapped, then at any position of the threshold

we get α = 1−β and the corresponding ROC curve is a straight line shown in Figure
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6.1b where the two axes are α and 1−β. As the two-class distributions move apart,

the corresponding ROC curve departs from the straight line. Less overlap of the

classes contributes larger area between the curve and the straight line in the ROC

plot, whereas complete overlapping of the classes contributes zero. Therefore the

Area Under the ROC Curve (AUC) can be used as a measure of class discrimination

capability of a feature [Theodoridis et al. , 2008]. The maximum AUC (=1) repre-

sents high separability of the classes and it happens when the two class distributions

are not overlapped each other. AUC =0.5 represents a chance of discrimination that

the ROC curve is located on the diagonal line in ROC space. The minimum AUC

should be considered a chance level i.e. AUC=0.5 while AUC=0 means the incorrect

classification of classes [Hajian-Tilaki, 2013].

6.1.5 Wilcoxon rank sum test Method

The Wilcoxon rank sum test is also called Mann-Whitney test, is a statistical test

which can be used for ranking the features. It compares two unpaired classes of a

feature. It is a non-parametric test in which no assumptions about the distribution

of classes are needed [contributors, 2017a].

Let X be a class of a feature with m observations represented as X = x1, x2...., xm

and Y be another class with n observations represented as Y = y1, y2...., yn then null

hypothesis, H0 is

• H0 : X = Y ; which indicate that two distributions are same and it is to be

tested against an alternative hypothesis H1

• H1 : X 6= Y ; or H1 : X < Y ; orH1 : X > Y

The test procedure is as follows;

• Step 1: Combine all m + n observations into one group and rank them in

ascending order. (If some observations have tied values, then group all the

tied observations and assign the average rank to tied values in that group.

These ranks are called adjusted ranks)
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• Step 2: Find the sum of ranks for all observations in X and Y using the

Equations 6.4 and 6.5

SX =
m∑
i=1

Rxi (6.4)

SY =
n∑
j=1

Ryj (6.5)

where Rxi is the ranks assigned to class X, and Ryi be the ranks assigned to

Y.

• Step 3: Find the U statistics using the Equations 6.6 and 6.7

U1 = SX −
m(m+ 1)

2
(6.6)

U2 = SY −
n(n+ 1)

2
(6.7)

• Step 4: The test statistic, U is the smaller value of U1 and U2 (min(U1, U2))

and if the value of U is less than or equal to the critical value in the signifi-

cance table, then reject H0 in favor of H1 and if value of U exceeds the critical

value then accept H0. The critical value is determined from significance table

using the number of observations (m and n) and two sided level of significance

(α=0.05). For example, if m = 7 and n = 8 then critical value in the signifi-

cance table with level of significance (α=0.05) is 10. Here the test condition

to accept or reject the hypothesis is U≤ 10. For larger dataset, U is approxi-

mately normally distributed therefore the value of U is standardized using the

Equation 6.8

Z =
U − µU
σU

(6.8)

where µU and σU are the mean and standard deviation of U and is given by

the equations

mU =
U1 + U2

2
=
mn

2
(6.9)

σU =

√
mn(m+ n+ 1)

12
(6.10)

Finally, the significance of Z is checked in the normal distribution table [con-

tributors, 2017a; Nachar et al. , 2008].
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6.2 Kruskal-Wallis(KW) statistical test

Kruskal-Wallis test or One-way ANOVA (Analysis of variance) on ranks is a non-

parametric method which checks whether the samples originate from the same dis-

tribution or not [Daniel, 1990; Statistics, 2013]. Kruskal-Wallis test will provide

the idea of medians of two or more groups and checks whether they are different or

not. Similar to other statistical tests, KW test calculates the test statistic and com-

pare it to distribution cut-off point. In KW test, test statistic is called H statistic

and the hypotheses are defined as

H0: Median of two populations is equal. H1: Median of two populations is different.

Steps for the KW test is as follows

• Step 1: Sort the observations of the features in ascending order.

• Step 2: Rank the sorted data points and if any tied values present then give

an average rank.

• Step 3: Add the different ranks of each output class.

• Step 4: Calculate the H statistic using the equation 6.11

H =

[
12

N(N + 1)

c∑
k=1

T 2
k

nk

]
− 3(N + 1) (6.11)

where N = Total number of observations across all output class(group)

c =Number of output class (groups)

Tk= Sum of ranks of all observations in class k

nk = Number of observations in class k

• Step 5: Compute critical chi-square value, χ2
α:k−1 with k−1 degrees of freedom

and looking under the desired significance of alpha level.

• Step 6: Compare the H value and critical chi-square value. If H statistic

is greater than critical chi-square value then reject the null hypothesis (H0).

If H statistic is not greater than chi-square value then there is not enough

evidence to suggest that the means are unequal [Chan & Walmsley, 1997;

Wikipedia, 2017c].
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6.3 Feature classification

In this work, the performance of selected features is assessed by evaluating the

class separability nature of features by classifying them as awake, light anaesthesia,

moderate anaesthesia and deep anaesthesia. Different classification techniques are

popular in EEG based applications. Based on this, present study compares the

outcome of different classifiers such as k-Nearest Neighbor (kNN), Support Vector

Machine (SVM), Multilayer Perceptron (MLP) and Naive Base Classifier (NBC).

The purpose of these classifiers is to select optimum features which classify all the

four anaesthetic states for DoA estimation. Finally, classification accuracy is the

criterion used to evaluate the performance of classifiers. Classification accuracy is

defined as the number of correctly detected anaesthetic states as a fraction of the

total number of applied sample sets. It is calculated using the equation 6.12

Accuracy(%) =
Nc

Nt

∗ 100 (6.12)

where Nc is the number of correctly classified samples and Nt is the total number

of samples[Dutta et al. , 2010]. Details of different classifiers used are given below

6.3.1 k-Nearest Neighbor (kNN)

kNN classifier is one of the accurate and simplest classifiers used for pattern recog-

nition. It uses a data mining algorithm called kNN algorithm and is widely applied

in many fields. Based on this algorithm, an object is classified by a majority vote of

its neighbors. That means an object being assigned to the class in which most of it’s

k nearest neighbors belongs to (k is a positive integer). When k = 1, the object is

assigned to the class in which its single nearest neighbor belongs to. The neighbors

of the object are selected from the training set objects whose class is known to the

algorithm. But there is no explicit training required. The training phase of the al-

gorithm performs only the storing of feature vectors and class labels of the training

samples. In the classification phase, an unlabeled vector (test vector/query vector)

is classified by assigning the label which is nearest to that test (query) instance

[Larose, 2005].
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Let the test vector X1i = X11, X12, X13......, X1m and the training vector X2j =

X21, X22, X23, ......, X2n then the steps for the kNN classification is as follows

• Step 1: Determine k which is a user-defined constant.

• Step 2: Calculate the Euclidean Distance(ED) between the query instance X1i

and all the training samples of the training vector using the equation 6.13

ED(X1i,X2j) =

√
Σ(X1i–X2j)

2 (6.13)

• Step 3: Sort the distances and determine k minimum distance (kmin) nearest

neighbors based on the equation 6.15

kmin =
{
MIN(ED(X1i,X2j))

}
k

(6.14)

• Step 4: Gather the output class of the k nearest neighbors from the output

class of the training vector Y 2j = Y 21, Y 22, Y 23, ......, Y 2n

• Step 5: Assign the prediction value of a query instance to majority of output

class in which nearest neighbors belongs.

The optimal value of k is selected by inspecting the data. Choosing a small value

for k shows higher noise influence on the result. On the other hand, a large value of

k is more precise and reduces the overall noise but it is computationally expensive.

K-fold cross-validation is one of the methods used retrospectively to determine a

good value of k where all observations are used for both training and validation,

and each observation is used for validation exactly once. The optimal value of k for

most of the datasets used in different fields is between 3-10 [Rashmi et al. , 2016].

In the current study, k value selected through k-fold cross validation is 5.

6.3.2 Support Vector Machine (SVM)

Support vector machine (SVM) is a discriminative classifier formally defined by a

separating hyperplane. Consider a feature vector consisting of training data set and
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corresponding labels, then the SVM classifier can build a model which can predict

classes for new data points. That means the classifier assigns class values (label)

for the new data points. SVM classifiers are categorized into two: Linear SVM

Classifier and Non-Linear SVM Classifier. In linear SVM classifier, training data

samples are plotted in space and they are expected to be separated by an apparent

gap. This gap is used to predict the hyperplane that divides the two classes. This

hyperplane is drawn based on maximum-margin hyperplane which is the maximum

distance from the hyperplane to nearest data point of either class. Non-Linear SVM

Classifier is implemented using kernel plot to maximum-margin hyperplanes. i.e. If

the data points are not linearly separable in a p-dimensional(finite) space then the p-

dimensional space is mapped into a much higher dimensional space and the Kernel

trick is used to draw the non-linear hyperplanes [Ray et al. , 2016; Wikipedia,

2017e]. Kernel trick is a mapping function called kernel functions used to transform

the data space to a higher dimensional space and the kernel function holds a non-

linear function. In the current research Radial Basis Function (RBF) is used as

kernel function. The RBF Kernel function is given by

K(X,X ′) = exp−||X −X
′||2

2σ2
(6.15)

where K(X,X ′) is the kernel on two feature vectors X and X ′ in the input space,

||X − X ′||2 is the squared Euclidean distance between the two feature vectors and

σ is a free parameter [Wikipedia, 2017d].

Since the SVM classifier is originally designed for binary classification we

can effectively extend it to multi-class classification. Several methods have been

proposed to construct a multi-class classifier by combining several binary classifiers.

Two approaches which are most commonly used for multi-class SVM classification

are One-Against-All (OAA) and the One-Against-One (OAO). In One-Against-All

approach, a binary SVM is used to distinguish each class from all other classes and

the winner-takes-all strategy is used to obtain the final decision. The OAO multi-

SVM approach is trained for each of all possible pairs of classes. That means for Q

classes, one would need to train n = CQ
2 classifiers and final decision is obtained by

majority voting (max-wins voting) [Lajnef et al. , 2015]. OAA approach showed

less accuracy in many practical situations whereas OAO is computationally more

expensive to solve a multi-class problems [Bennani & Benabdeslem, 2006].
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In order to achieve high accuracy with limited computation time in multi-

class classification problems, present study adopted Dendrogram based Support Vec-

tor Machine (DSVM) approach for the classification of anaesthetic stages as awake,

light anaesthesia, moderate anaesthesia and deep anaesthesia. DSVM is a decision-

tree based SVM classification method and here a dendrogram represents a tree di-

agram which depicts the hierarchical arrangement of nodes produced as a result of

clustering.

Let Xi = X1, X2, ..., Xn be a set of samples each one of which is labeled as Yi =

Y1, Y2, ..., Yn , Yi ∈ C1, C2, ..., Ck where C1, C2, ..., Ck are k number of classes and

k ≤ n. Then DSVM method of classification has two major steps

• Step 1: Define the tree with its binary branching using known classes which

gives the structure of the dendrogram. Practically it is implemented by cal-

culating the centre of gravity of the features for each class and then applying

Agglomerative Hierarchical Clustering (AHC) over all the k centers. AHC is

a bottom-up approach clustering method in which clusters have sub-clusters,

which in turn have sub-clusters [Lajnef et al. , 2015]. The dendrogram tax-

onomy that resulted from an AHC analysis is shown in Figure 6.2

Figure 6.2: Hierarchical grouping of classes using AHC method[Bennani &
Benabdeslem, 2006]

• Step 2: Apply SVM algorithm to each node of the tree diagram and train

the algorithm using the elements of two subsets of each node. Consider an

example shown in Figure 6.2. It represents clustering of 6 classes in which

SVM1 is trained using elements of C5, C2, C1, C3, C6 and C4 where elements

of C5 and C2 are considered as positives and elements of C1, C3, C4 and C6
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as negatives, SVM12is trained using elements of C4, C6, C1 and C3 where

elements of C4 and C6 are considered as positives and elements of C1 and C3

as negatives. The concept is repeated for each SVM associated node in the

taxonomy [Bennani & Benabdeslem, 2006; Lajnef et al. , 2015]

6.3.3 Multilayer Perceptron (MLP) Neural network

Artificial Neural Network (ANN) is a mathematical model which works based on

the learning process of neural networks in the human brain. It is normally used as

a classifier to discriminate the different signals/data. ANN is widely used in various

medical applications because of its adaptive nature. ie. The structure of the model

changes based on the external or internal information that flows through the network

during the learning phase [Haykin, 1994].

A Multilayer Perceptron (MLP) Neural network is a class of feedforward

artificial neural network consisting of minimum three layers: an input layer, hidden

layer and an output layer. Each layer consists of a number of highly interconnected

processing elements called neurons, which usually operate in parallel. Here each

neuron i in the hidden layer add up its input signals Xj after multiplying with its

weights Wij which is the strengths of each connection and finally computes its output

Yi using equation 6.16

Yi = f(ΣWijXj) (6.16)

where f is the activation function and is used to transform the weighted sum inputs

influencing the neurons. It can be a sigmoidal function, threshold function, hyper-

bolic tangent or a radial basis function [Übeyli, 2009a]. The input layer of the

network supplies input vector (Feature vector in the current study) to the neurons

in the hidden layer. There can be multiple numbers of hidden layers and the output

of neurons in each hidden layer acts as input to the next layer. Finally, the output

of the hidden layer neurons is passed to the output layer. The output of neurons in

the output layer of the network constitutes overall response of the network.

Neural network uses an iterative process to learn its environment and ap-

plies adjustments to its weights. This type of learning is determined by the manner

in which parameter changes take place. Backpropagation algorithm is one of the
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methods used for adjusting the weights in a multilayer feed-forward neural network.

Backpropagation calculates the error contribution of each neuron after a batch of

data is processed and then the weights are adjusted by a gradient descent optimiza-

tion algorithm. This will adjust the weights of neurons by calculating the gradient

of the loss function. This technique is called backward propagation because the

error is calculated at the output and distributed back through the network layers

[Wikipedia, 2017a].

Basic backpropagation algorithm has three steps.

• Step 1: Input layer of the ANN receives input patterns as input and are

propagated within the network to reach output unit. This forward pass results

an output called actual or predicted output.

• Step 2: The actual or predicted outputs are subtracted from the desired out-

puts to produce an error signal, where desired outputs are provided along with

input training patterns.

• Step 3: The error signal is passed back through the neural network to com-

pute the contribution of each neuron in the hidden layer and to derive the

corresponding adjustment needed to produce the desired output. The con-

nection weights are then adjusted and the neural network has learned from an

experience [McCollum, 1998; Blais & Mertz, 2001; Ridella et al. , 1997]

6.3.4 Naive Bayes classifiers (NBC)

Naive Bayes classifiers (NBC) are probabilistic classifiers which work based on

Bayesian theorem with an assumption of independence between the features. It

assumes that value of a particular feature in the class is independent of value of any

other feature. Bayes theorem works on conditional probability and it calculates the

posterior probability of an event from its prior knowledge.

Let X = x1, x2, . . . , xn represents n features, then conditional probability of target

class Ck given predictor attribute X for each of k possible outcomes of classes Ck is
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calculated using Bayes’ theorem presented in equation 6.17.

P (Ck | X) =
P (X|Ck)P (Ck)

P (X)
(6.17)

where P (Ck|X) is the posterior probability of the target class Ck given predictor

attribute X,P (Ck) is the prior probability of class Ck, P (X|Ck) is the likelihood

probability of predictor given class and P(X) is the prior probability of predictor.

Accordingly, NBC predicts the membership probabilities of each class or data point

of a particular class. The class with highest probability is recognized as most likely

class [Agarwal et al. , 2015]. Since the data used in the present study deals with

continuous data, it is assumed that each class is distributed according to a Gaussian

distribution. Therefore, current work adopted Gaussian Naive Bayes algorithm.

Let xi be a continuous feature of training dataset X = x1, x2...., xn. Then the

computation of Gaussian Naive Bayes algorithm is as follows

• Step1: Segment the training data based on the target class

• Step2: Compute the mean and variance of xi in each class

• Step3: Compute the probability distribution of observations(v) of feature xi

given a class Ci (i.e.p(xi = v | Ci)) using the equation 6.18

P (xi = v | Ci) =
1√

2πσ2
ci

exp
− (v−µci )

2

2σ2
ci (6.18)

where µci is the mean of observations in feature xi associated with class Ci and σ2
ci

is corresponding variance of xi associated with class Ci [Agarwal et al. , 2015].

6.4 Experimental Results

Current work takes the advantage of five feature ranking functions to rank the

features. Wilcoxon sum-rank test and Student’s t-test checks whether each feature

is differentially expressed between two classes whereas Entropy and Bhattacharyya

distance calculates the distance between the distributions of two classes. Finally,

the ROC tests the individual significance of the features. MATLAB Bioinformatics
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toolbox is used to compute these scoring functions. EEG extracted features and

their corresponding outputs are passed through these scoring functions to get best

features according to their class separability measures. Different classifier such as

kNN, SVM, MLP, and NBC and their outcomes in terms of accuracy is computed

to check the efficiency of features in classifying them as awake, light anaesthesia,

moderate anaesthesia and deep anaesthesia.

The datasets for training and validation incorporates extracted features

from the EEG signals and hemodynamic signals of all the 25 patients consisting

15302 vectors. 12242 vectors are utilized for constructing the model by training and

the remaining vectors 3060 are used for the validation of the classification model.

The class separability of features can also be checked using Kruskal-Wallis statistical

test. The output class used for feature selection, classification and Kruskal-Wallis

test are the anaesthetic depth provided by attending anaesthesiologist as awake, light

anaesthesia, moderate anaesthesia and deep anaesthesia for each patient’s data. The

list of EEG extracted features passed through the feature ranking functions is given

in Table 6.1.

Table 6.1: EEG Extracted Features

Feature name Domain Abbreviation

Standard Deviation

Time Domain

SD
Energy
Entropy
Mean Absolute Deviation MAD
Zero Crossing Rate ZCR
Inter Quartile Range IQR

Spectral Edge Frequency
Frequency Domain

SEF
Spectral Entropy SEN

Wavelet Entropy

Time-Frequency Domain

WE
RelativeWaveEnergyγBand RWEγ
RelativeWaveEnergyβBand RWEβ
RelativeWaveEnergyαBand RWEα
RelativeWaveEnergyθBand RWEθ
RelativeWaveEnergyδBand RWEδ

Approximate Entropy
NonLinear

ApEn
Permutation Entropy Pen
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The feature ranking helps to select the most relevant features from the

available feature vector. The features with higher ranks are selected and features

with lower ranks are ignored. This reduces the complexity of classifiers without

sacrificing their performance. At first, all the 6-time domain features of the EEG

signals are passed through different classifiers like kNN, SVM, MLP and NBC with-

out applying any feature ranking functions. The outcome of different classifiers in

classifying different anaesthetic states as awake, light anaesthesia, moderate anaes-

thesia and deep anaesthesia is depicted in Table 6.2.

Table 6.2: Different Classifier outcomes without using any feature ranking meth-
ods to the Time domain EEG features

SL No Time Domain
features

Classifier Accuracy

1 SD

kNN=75%, SVM=74%,
MLP=82.6%, NBC=75%

2 Energy
3 Entropy
4 MAD
5 ZOR
6 IQR

The outcome of different feature ranking techniques when applied to the

time domain EEG features are shown in Table 6.3. The table also presents different

classifier outcomes in terms of accuracy when selected ranked features which are

highlighted in the table are given as input to the classifiers. The feature name and

its corresponding serial number are given in the bracket. The highest classification

accuracy obtained are kNN=83%, SVM=76%, MLP=82.8%, NBC=83%. This is

obtained when top ranked features of Student’s t-test are applied as input to the

specified classifiers. Finally, the features selected from the time domain for DoA

estimation are ZCR and SD.

The frequency domain features and non-linear features provide good clas-

sification accuracy without passing through the feature ranking technique and are

depicted in Table 6.4. The classification accuracy obtained when both the frequency

domain features as input to the classifiers is kNN=86%, SVM=81%, ANN=86%,

NBC=84% which is the highest classification accuracy obtained than if applied
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Table 6.3: Feature Ranking techniques to Time domain features and different
classifier outputs with selected ranked features as input

Ranking
Method

Rank Time Domain Fea-
tures

Classifier Accuracy

1 ZOR(5)
2 SD (1)
3 Entropy (3)
4 MAD (4)
5 IQR (6)

Students t-test

6 Energy (2)

kNN=83%, SVM=76%,
MLP=82.8%,NBC=83%

Bhattacharya
Distance

1 Energy(2)
2 IQR (6)
3 SD (1)
4 MAD (4)
5 ZOR (5)
6 Entropy (3)

kNN=75% ,SVM=61%,
MLP=63.3%,NBC=63%

1 ZOR (5)
2 Energy (2)
3 IQR (6)
4 Entropy (3)
5 MAD (4)

Entropy

6 SD (1)

kNN=75%, SVM=77%,
MLP=82.2%, NBC=82%

1 ZOR (5)
2 Entropy (3)
3 IQR (6)
4 MAD (4)
5 SD (1)

Wilcoxon

6 Energy(2)

kNN=82%, SVM=76%,
MLP=82.5%, NBC=82%

1 ZOR(5)
2 Entropy(3)
3 MAD (4)
4 SD (1)
5 Energy (2)

ROC

6 IQR (6)

kNN=82%, SVM=76%,
MLP=82.5%, NBC=82%

alone. Therefore both features SEF and SEn are selected from the frequency do-

main analysis. ApEn and PEn are the features selected from non-linear analysis

and these two features provide its maximum accuracy when they are applied to-

gether to the classifiers. The classifiers output is given by kNN=84%, SVM=74%,
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Table 6.4: Frequency domain and nonlinear features with their classification
accuracy without any feature ranking technique

Feature Domain EEG Features Classifier Accuracy

SEF
Frequency Domain

SEN
kNN=86%, SVM=81% ,
ANN=86% , NBC=84%

ApEn
NonLinear

PEn
kNN=84%, SVM=74%,

ANN=78.2%, NBC=78%

ANN=78.2%, NBC=78%. The classifier outputs of Time-Frequency domain fea-

tures without applying any feature ranking techniques is kNN=81%, SVM=79%,

ANN=82.9%, NBC=80% and this has been represented in Table 6.5.

Table 6.5: Different Classifier outcomes without using any feature ranking meth-
ods to the Time-Frequency domain EEG features

SL No Time-Frequency
Domain features

Classifier Accuracy

1 WEn

kNN=81%, SVM=79%,
ANN=82.9%, NBC=80%

2 RWEγ
3 RWEβ
4 RWEα
5 RWEθ
6 RWEδ

From Table 6.6 it is evident that the classifier accuracy is increased when

highlighted features from the time-frequency domain are applied to the classifiers.

It is high when the features RWEγ, RWEβ and WEn are selected as input to the

classifiers. These 3 features are selected based on the Bhattacharya Distance feature

ranking method which shows highest classification accuracy. When comparing the

classification accuracies of features with and without feature ranking techniques, it

can be observed that the classification accuracy is increased after applying feature

ranking techniques. The EEG features selected after feature ranking technique for

the estimation of DoA are shown in Table 6.7. Finally, performance of the classifiers

in terms accuracy, sensitivity, specificity and precision are compared in Table 6.8

when all the selected EEG features are given as input to the classifiers. The total
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accuracy of the KNN, SVM, MLP, NBC classifiers are 93%, 91%, 93%, 92% re-

spectively. Class wise accuracy also calculated to check the performance of selected

features during different stages of anaesthesia.

Table 6.6: Feature ranking techniques applied to Time-Frequency domain fea-
tures and classifier output with selected ranked features

Feature
Ranking
Method

Rank Time-Frequency
Domain Features

Classifier Accuracy

Students t-test

1 RWEβ(3)

kNN=82%, SVM=76%,
ANN=80.2%, NBC=78%

2 WEn(1)
3 RWEδ(6)
4 RWEγ (2)
5 RWEα(4)
6 RWEθ(5)

Bhattacharya
Distance

1 RWEγ (2)

kNN=82%, SVM=80%,
ANN=84.7%, NBC=82%

2 RWEβ(3)
3 WEn(1)
4 RWEδ(6)
5 RWEα(4)
6 RWEθ(5)

Entropy

1 RWEγ (2)

kNN=81%, SVM=73%,
ANN=82.9%, NBC=81%

2 RWEβ(3)
3 RWEδ(6)
4 WEn(1)
5 RWEα(4)
6 RWEθ(5)

Wilcoxon

1 RWEδ(6)

kNN=81%, SVM=76%,
ANN=80.9%, NBC=80%

2 RWEθ(5)
3 RWEγ (2)
4 RWEβ(3)
5 WEn(1)
6 RWEα(4)

ROC

1 RWEγ(2)

kNN=82%, SVM=80%,
ANN=84.7%, NBC=82%

2 WEn(1)
3 RWEβ(3)
4 RWEδ(6)
5 RWEθ(5)
6 RWEα(4)
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Table 6.7: Selected EEG features for DoA Estimation

Feature name Domain Abbreviation

Zero Crossing Rate
Time Domain

ZCR
Standard Deviation SD

Spectral Edge Frequency
Frequency Domain

SEF
Spectral Entropy SEN

Wavelet Entropy
Time-Frequency Domain

WE
RelativeWaveEnergyγBand RWEγ
RelativeWaveEnergyβBand RWEβ

Approximate Entropy
NonLinear

ApEn
Permutation Entropy Pen

Table 6.8: Performance comparison of Classifiers when all the selected EEG
features are given as input to the classifiers

Clas
sifi

er

Acc
ura

cy

Sen
sit

ivity

Spec
ificit

y

Pre
cis

ion

Confusion Matrix
Class-1 Class-2 Class-3 Class-4

KNN 93% 84% 94% 82%

Class-1 1427 199 0 0
Class-2 122 950 27 0
Class-3 1 47 112 10
Class-4 0 0 21 143

Class Accuracy 89% 87% 97% 99%

SVM 91% 79% 93% 76%

Class-1 1397 235 0 0
Class-2 150 884 24 0
Class-3 2 76 108 22
Class-4 1 1 28 131

Class Accuracy 87% 84% 95% 98%

MLP 93% 84% 94% 84%

Class-1 1436 228 0 0
Class-2 114 941 29 1
Class-3 0 27 108 5
Class-4 0 0 23 147

Class Accuracy 91% 87% 96% 99%

NBC 92% 84% 94% 80%

Class-1 1377 169 1 0
Class-2 173 942 27 0
Class-3 0 85 117 11
Class-4 0 0 15 143

Class Accuracy 90% 87% 95% 99%
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6.4.1 Kruskal-Wallis test on EEG features

The discrimination ability of selected EEG features extracted from all the 25 patients

during the whole surgery can also be tested by applying Kruskal-Wallis statistical

test to the features. The output groups for discrimination are awake, light anaes-

thesia, moderate anaesthesia and deep anaesthesia which is the anaesthetic depth

provided by the attending anaesthesiologist for each patient. The p-value obtained

after Kruskal-Wallis test are shown in Table 6.9.

Table 6.9: p-value of the EEG features as a result of Kruskal-Wallis
statistical test

Domain Features P-Value

Time Domain SD 1.64X10−5

Energy 1.55X10−4

Entropy 7.01X10−3

MAD 3.93X10−4

ZCR 2.01X10−6

IQR 0.037

Frequency Domain SEF 2.057X10−10

SEN 7.35X10−11

Time Frequency Domain Wen 4.16X10−5
RWEγ 3.27X10−8
RWEβ 4.8X10−6
RWEα 1.93X10−3

RWEθ 7.40X10−2

RWEδ 1.46X10−4

Non Linear ApEn 2.15X10−6

Pen 1.28X10−6

Lowest p-values among time domain features are for the features ZCR

and SD which indicates that these features have highest discrimination ability com-

pared to other features. Both the frequency domain features and Non-linear fea-

tures showed lowest p-value to indicate highest discrimination ability. In case of

time-frequency domain features WEn, RWEγ and RWEβ features showed highest

discrimination ability. The other features with lowest discrimination ability (high

p-value) are eliminated from further processing because of its lowest discrimination

capability.
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The box plots of selected EEG features during different anaesthetic phases

obtained as a result of Kruskal-Wallis test is presented in Figure 6.3. Here we can

visualize the class separability of the selected EEG features. The features ZCR,

SEF, SEn and RWEγ shows good class seperability compared to all other features.

The classification classes are overlapped to some extend in the remaining features.

The box plots of WEn and RWEβ features reveals that the moderate anaesthesia

and light anaesthesia classes are overlapped.

Figure 6.3: Box plot of the selected EEG features resulted from Kruskal-Wallis
test

6.4.2 Kruskal-Wallis test on hemodynamic parameters

As we have seen in the previous chapter that EEG measures and hemodynamic

parameters both change with an anaesthetic drug effect. Therefore, it is important

to check the classification capability of hemodynamic parameters according to DoA.

Here Kruskal-Wallis test is applied to the extracted hemodynamic parameters such as

a change in Heart Rate (∆HR), change in Mean Arterial Blood Pressure (∆MBP ),

Pulse Pressure (PP) and the output class for KW test is the same that we have used
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for the classification of EEG features. The p-value obtained after Kruskal-Wallis

test are shown in Table 6.10.

Table 6.10: p-value of the hemodynamic parameters as a result of
Kruskal-Wallis statistical test

Features P-Value

∆HR 3.7X10−3

∆MBP 3.6X10−4

PP 0.34

The lowest p-value is for the features ∆HR and ∆MBP which indicate

that these features have highest discrimination ability compared to the hemody-

namic feature Pulse pressure. Therefore, the feature PP is eliminated from further

processing because of its lowest discriminating ability. The box plots resulted from

the Kruskal-Wallis test is shown in Figure 6.4(a) and (b). When comparing the box

plot of selected EEG features and hemodynamic features, hemodynamic parameters

have low discrimination ability.

Figure 6.4: Box plot of the ∆HR and ∆MBP resulted from Kruskal-Wallis test

6.4.3 Performance comparison with similar work

Performance comparison of selected EEG features and hemodynamic features in

classification is done with one recent work by Shalbaf et al. [Shalbaf et al. ,

2015] and is presented in Table 6.11. Here Shalbaf et al. used the EEG features

like Permutation Entropy, Modified Permutation Entropy and the hemodynamic



Chapter 6. Feature Selection 139

Table 6.11: Comparison of classification accuracy with the results of [Shalbaf
et al. , 2015]

Author Classifier
used

Features Accuracy

Shalbaf et al.
[Shalbaf et al. , 2015]

MLP Classifier

Permutation Entropy 66.90%

Modified permutation
Entropy

85.10%

Hemodynamic features 53.50%

Modified Permutation
Entropy + Hemody-
namic features

89.40%

Proposed method
KNN, SVM,
MLP, NBC

All the selected EEG fea-
tures

86%, 82%,
86%, 84%

Hemodynamic features 64%, 66%,
47%, 55%

EEG features + Hemo-
dynamic Features

89%, 84%,
91%, 88%

features like HR and BP for the DoA classification whereas proposed study used

all the selected EEG features and selected hemodynamic features. Both the study

provides almost similar results.

6.5 Summary

In this chapter different feature ranking methods like ’T-Test’, ’Entropy’, ’Bhat-

tacharyya’, ’ROC’ and ’Wilcoxon’ are used to select the optimum features from the

feature vector. The kNN, SVM, MLP and NBC classifier outputs are compared

based on their accuracy to select the best-ranked EEG features in the time domain,

frequency domain and non-linear analysis. The feature combination which provided

highest classification accuracy in the time domain are Standard Deviation (SD)
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and Zero Crossing Rate (ZCR). Both the frequency domain features showed highest

classification accuracy and therefore both the features were selected for final model

development. Then the time-frequency domain features selected based on their clas-

sification accuracy and discrimination ability were WEn, RWEγ and RWEβ. The

combination of both the non-linear features (ApEn and PEn) were selected because

their combination showed comparatively higher classification accuracy than if taken

alone. In the case of hemodynamic parameters Kruskal Wallis test is used to select

the best features from the extracted hemodynamic parameters. Based on this test,

best features selected from the extracted hemodynamic parameters are ∆HR and

∆MBP.



Chapter 7

Adaptive Neuro-Fuzzy Inference

System based Estimation of Depth

of Anaesthesia

The integration of the expert system with patient monitoring devices improved

the quality of medical research. The present chapter is focused to estimate DoA

by integrating multiple parameters extracted from EEG signals and hemodynamic

variables through Adaptive Neuro-Fuzzy Inference System (ANFIS). These systems

works based on fuzzy sets and Artificial Neural Network (ANN) structures and is

introduced in the study to develop an integrated Index. The ANFIS structures

can successfully model the systems with nonlinear relationships between input and

output. The speed and accuracy of parameter learning, the smaller number of

adjustable parameters and the performance of model classification are the main mo-

tivation for the use of ANFIS models compared to other machine learning methods.

EEG extracted features provide the information available on electroencephalogram

signals during anaesthesia which help to extract the hypnotic changes due to the

anaesthetic drugs. Extracted hemodynamic parameters provide information about

changes in autonomic nervous system due to the administration of anaesthetic drugs

during surgery. This chapter presents a novel DoA index generated using an Adap-

tive Neuro-Fuzzy Inference System based on subtractive clustering algorithm. The

inputs provided to the ANFIS model are selected EEG features and hemodynamic

141
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features. Finally, the generated index is compared with BIS index.

7.1 Adaptive Neuro-Fuzzy Inference System (AN-

FIS)

Adaptive Neuro-Fuzzy Inference System is an intelligent system which integrates Ar-

tificial Neural Network (ANN) and Takagi-Sugeno fuzzy inference system principles.

It captures the advantages of both the systems in a single framework and enhances

the overall performance of the system. It takes the advantage of the fuzzy system to

present the knowledge which is gained from data in an interpretable manner. On the

other hand, it employs neural network to acquire the learning ability to adjust the

membership functions parameters and fuzzy rules directly from the data[Abraham,

2005; Wang et al. , 2006]. The generated fuzzy rules help to approximate the non-

linear functions whereas the membership function parameter describes the system

behaviour. At first, ANFIS learns the features from the data set and then it adjusts

the system parameters [Jang, 1993].

In the present study, ANFIS model receives selected features (both EEG

and hemodynamic) as input and provide a dimensionless index as output which

varies in accordance with Depth of Anaesthesia (DoA). Therefore, this model can

be effectively used for continuous assessment of DoA. Here the ANFIS model is

implemented using both Fuzzy C Means (FCM) clustering and subtractive clustering

method to learn and adjust their parameters.

7.1.1 Architecture of ANFIS Model

The architecture of Adaptive Neuro-Fuzzy Inference System consists of five layers.

A first-order Sugeno fuzzy inference system model with two inputs x and y, one

output f and two fuzzy If-Then rules is as follows:

Rule1 = If x is A1 and y is B1 Then f1 = p1x+ q1x+ r1 (7.1)
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Rule2 = If x is A2 and y is B2 Then f2 = p2y + q2y + r2 (7.2)

where A1, A2, B1 and B2 are the fuzzy functions of inputs x and y whereas p1, q1, r1,

p2, q2 and r2 are the design parameters of the output function which are determined

during the training process of the network model.

Figure 7.1: Architecture of ANFIS model
[Muniraj & Chandraseka, 2011; Keshavarzi et al. , 2017]

In the basic architecture, each layer consists of a set of nodes and they are

connected through directed links as in Figure 7.1. Each node is a processing unit

that performs a particular function based on the input signals on it. These nodes

are of two types: (1) Adaptive node represented by squares (2) Fixed node indicated

by circles. An adaptive node contains fuzzy functions with modifiable parameters

whereas fixed node contains a fixed function with empty parameter set [Chang

et al. , 2014]. The characteristics of each layer in the architecture are described

below:

• Layer 1: The main function of this layer is fuzzification of received inputs. All

the nodes present in this layer are adaptive nodes and each input is assigned

a membership value by the node function. Node output of layer 1 is expressed

as

O1
i = µAi(x); i = 1, 2 (7.3)

O1
i = µBi−2(y); i = 3, 4 (7.4)
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where µAi and µBi−2 are membership functions of fuzzy sets Ai and Bi re-

spectively. Commonly used membership functions are bell-shaped, Gaussian,

sigmoidal and triangular. If Gaussian membership function is selected then

Equation 7.5 is used for µAi(x) calculation. For generalized bell membership

function Equation 7.6. is employed for the µAi(x) calculation.

µAi(x) = exp

[
−
(
x− ci

2ai

)2]
(7.5)

µAi(x) =
1

1 +

∣∣∣∣x−ciai

∣∣∣∣2bi (7.6)

where ai, bi and ci are the parameters of the membership function and that

decides the shape of the membership functions. They are called premise pa-

rameters.

• Layer 2: Each node in this layer is fixed and is labeled as Π. This layer

calculates the firing strength of a rule via multiplication. The output of layer

2 is the multiplication of the signals coming into the nodes and is represented

as Equation 7.7.

O2
i = wi = µAi(x) ∗ µBi(x); i = 1, 2 (7.7)

where wi is the output that represents the firing strength of each rule.

• Layer 3 : All the nodes in this layer are fixed nodes. They are labeled as N

and play an important role of normalization. i.e. The ratio of ith rules firing

strength to the sum of all rules firing strengths. The output of this layer is

known as normalized firing strength and is represented as

O3
i = w̄i =

wi
Σiwi

; i = 1, 2 (7.8)

• Layer 4: In this layer all the nodes are adaptive nodes. Each node computes

the contribution of ith rule towards the model output. It is calculated as the

product of normalized firing strength and a first order polynomial (which is



Chapter 7. Estimation of Depth of Anaesthesia Using Neuro-Fuzzy Inference
System 145

the Takagi-Sugeno type linear approximator fi). It is expressed as Equation

7.9.

O4
i = w̄i ∗ fi = w̄i ∗ (pix+ qiy + ri); i = 1, 2 (7.9)

where w̄i is the normalized firing strength from the third layer and pix +

qiy+ ri is the parameter in the node. These parameters are called consequent

parameters.

• Layer 5: The single node present in this layer is a fixed node that computes

the overall output of the ANFIS model. The output of this layer is the sum of

all incoming signals towards the node. It is represented as Equation 7.10.

O5
i = Σi(w̄i ∗ fi) =

Σiwi ∗ fi
Σiwi

; i = 1, 2 (7.10)

7.1.2 Estimation of parameters for the ANFIS model

The task of estimation of parameters for the ANFIS architecture is required to tune

all modifiable parameters namely premise parameters (ai, bi, ci) and the consequent

parameters (pi, qi, ri). These parameters are fine-tuned using learning algorithm

which can train both the parameters to adapt to its environment. Before applying

the learning algorithms the initial membership functions and rules are determined

to speed up the learning process.

7.1.2.1 Selection of Initial Fuzzy Functions and Rules for the ANFIS

model

In typical fuzzy systems, rules and membership functions are decided by an expert

who has a thorough knowledge about the input-output relationship of the system

to be modelled. But in ANFIS model no experts are available to determine the

number of fuzzy functions and rules. Two commonly used methods for determining

the number of membership functions and fuzzy rules for the ANFIS model are Grid

partitioning and Scatter partitioning.
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Grid partitioning method Grid partitioning is one of the techniques used for

initializing the structure of fuzzy inference system. Wang et al. used this fuzzy par-

tition to extract fuzzy rules from numerical data [Wang & Mendel, 1992]. Here

fuzzy rules are generated by finding all possible combinations of input membership

functions. The numbers of rules are determined based on the number of member-

ship functions of each input variable. The centers of the membership functions are

uniformly partitioned in the range of input variables which determines the initial

values of premise parameters.

The limitation of Grid partitioning method is that the number of rules

grows rapidly as the input dimension increases. If n inputs and N fuzzy subsets for

each individual input then the number of rules which is possible for Grid partitioning

is nN . Therefore, the number of rules increases exponentially when the number of

inputs increases. For example, if 3 membership functions are used in the fuzzy model

with 7 inputs, then the numbers of rules generated are 37 = 2187. This results in

poor output and more processing time for a high dimensional input dataset. Scatter

partitioning method is the solution to overcome this problem. In MATLAB grid

partitioning is implemented using a GENFIS1 function. In the current research

11-dimensional feature vector is selected for ANFIS modelling and this leads to a

huge number of rule generations. Therefore, Grid partitioning is not preferred in

the current research.

Scatter partitioning method This method eliminates the limitations of grid

partitioning and it divides the input space into rule patches. In this method, the if

parts of the fuzzy rules are positioned at arbitrary locations in input space. If the

rules are represented by n-dimensional Gaussians then the centers of the Gaussians

are not confined to corners of a rectangular grid. But are chosen based on clustering

algorithm which works on the training data. The two main clustering algorithms

available are

(1) Fuzzy C Means clustering

(2) Subtractive clustering
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7.1.2.2 Subtractive Clustering

Subtractive clustering method was introduced by Chiu et al, in 1994[Chiu, 1994].

In this method, data points are normalized to [0-1] in each dimension. Subtractive

clustering method calculates the density of neighbouring data points to find optimal

data point within a cluster. The next cluster and its centre are determined by re-

moving data points within the radial distance of the first cluster. This procedure is

continued till all the data points are clustered within a radial distance of a cluster

centre. This technique is used for generating fuzzy rules when the input size is large.

This method provides optimized rules by considering the radii specified along with

the training data set.

Let X = X1, X2, X3..., Xn represent n input data points with M dimension.

Then the data points are first normalized within a hypercube as stated by Chiu et al

[Chiu, 1994]. Xi is considered as a data point having potential cluster centre under

a density measure given by

Di =
n∑
j=1

exp

[
−||Xi −Xj||2

( r1
2

)2

]
(7.11)

where r1 represents a radius that defines a neighbourhood or range of in-

fluence. The value of r1 is a positive constant given by the user along with the data

set and ranges from zero to one. Data points outside the radius contribute slightly

to the density measure. The data point Xi with the highest density Di measure is

considered as the centre of the first cluster and is denoted as Xc1 under the density

measure Dc1.

The density measure then recalculated using the Equation 7.12. Here the

first cluster is removed by subtracting an amount that is a function of their distances

to the first centre.

Di = Di −Dc1 exp

[
−||Xi −Xc1||2

( r2
2

)2

]
(7.12)

where ||Xi−Xc1|| is the distances to the first cluster centre, r2 represents the radius

of the second fuzzy cluster and is given by r2 = r1 ∗ η and η is the quash factor.
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This factor is used to multiply the radii values that determine the neighbourhood

of a cluster centre, so as to quash the density measure for outlying points to be

considered as part of that cluster. This is used to prevent closely spaced cluster

centers.

The process of determining the cluster centers is repeated until the kth

cluster centre density measure, Dck satisfies the conditions given in Equation 7.13

and 7.14. That means after the density measure revision, the data point to the next

higher density measure is selected as a second cluster centre candidate. Whether this

point is accepted as a new cluster centre or not depends on its potential according

to the following conditions:

Dck < εDc1 (7.13)

ε̄Dc1 > Dck > εDc1 (7.14)

where ε and ε̄ are the reject ratio and accept ratio represented as a small

fraction. This is because it is difficult to determine the best ε since a high ε produces

too few clusters and a low ε produces too many clusters. If the first condition is

true then Xc1 is rejected as a new cluster centre and the clustering is ended. If the

second condition is true then Xc1 is accepted as a new cluster centre and the above

procedure is repeated.

The membership function for the cluster center Xck is given as

µk = exp

[
− ||Xi −Xck||2

( r1
2

)2

]
(7.15)

where Xi represents an input. Once the cluster centers are established, the number of

fuzzy rules and antecedent parameters are found through the membership functions.

Optimization of the rule consequent parameters is made through the Least Squares

Estimator (LSE).
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7.1.2.3 Fuzzy C Means Clustering

Fuzzy C Means clustering method partitions a set of data into several clusters based

on the similarity of data points within a cluster. That means the degree of member-

ship functions decides the cluster groups. Fuzzy C-Means clustering was developed

by Dunn in 1973 [Dunn, 1973] and was improved by Bezdek in 1981 [Bezdek,

2013]. Here each data point belongs to two or more clusters and the cluster cen-

ters are determined by minimizing an objective function. This objective function is

defined in Equation 7.16

Jm =
c∑
j=1

n∑
i=1

[
Uij

]m∣∣∣∣∣∣∣∣xi − cj∣∣∣∣∣∣∣∣2 (7.16)

Where

∣∣∣∣∣∣∣∣xi − cj∣∣∣∣∣∣∣∣ is the distance between each data point and the cluster centre, m

is the fuzziness coefficient which is a real number greater than 1, xi is the ith input

of d-dimensional data, Uij is the degree of membership function of input xi in the

cluster j and cj is the center of the cluster. ||xi − cj|| is the Euclidean distance

between the jth cluster centers and ith data point. The membership function Uij

and the cluster centers cj are updated during the training process of ANFIS model

for the optimization of the objective function using the Equation 7.17 and 7.18

Uij =
1∑c

k=1

[
||xi−cj ||
||xi−ck||

] 2
m−1

(7.17)

cj =

∑
i[U

m
ij ].xi∑

i[Uij]
m

(7.18)

This iteration will stop when Max[Uk+1
ij −Uk

ij] ≤ ε where ε is a termination

criterion and its value is between 0 and 1, whereas k and k + 1 are the iteration

steps. The biggest advantage of the Fuzzy C-Means algorithm is its ability to find

clusters of overlapping.
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7.1.2.4 Hybrid Learning Algorithm

The first layer of ANFIS architecture contains nonlinear premise parameters and

the fourth layer contains linear consequent parameters which are modifiable over

time. These parameters are adapted to its input-output dataset using a learning

algorithm which trains and update these parameters to adapt to its environment.

Present study adopted Hybrid learning algorithm proposed by Jang et al. to train

these parameters [Jang, 1993]. It combines the Least Square Estimator (LSE)

method and the backpropagation gradient descent method for training.

In ANN, back propagation algorithm is used to learn and adjust the weights

between the neurons from input-output training samples. In ANFIS model premise

and consequent parameters plays the role of weights. In the parameter estimation

process, premise parameters are learnt using backpropagation algorithm and the

consequent parameters are determined using LSE method.

The learning process has two steps:

1. In the forward pass, the premise parameters are assumed fixed whereas the

output of each node go forward and the consequent parameters are estimated

using LSE method. The LSE method is applied to accelerate the convergence

rate in the hybrid learning process.

2. In the backward pass, the consequent parameters are assumed fixed and the er-

ror signals which is the difference between the actual output and the generated

output which is propagated back. This is called backpropagation algorithm

and is used to update the premise parameters (ai, bi, ci).

Thus the combination of LSE and backpropagation algorithm is used to train the

ANFIS parameters and to develop a model from the input-output dataset. The

advantage of this algorithm is overall optimization of the consequent parameters for

the given premise parameters [Suparta & Alhasa, 2016].
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7.2 Experimental Results

Adaptive Neuro-Fuzzy Inference System is implemented to generate an index that

continuously measures the anaesthetic depth based on extracted features. The se-

lected EEG features and hemodynamic parameters are given as inputs to the Adap-

tive Neuro-Fuzzy System. Present study tried to generate fuzzy membership func-

tions and rules by applying two clustering methods 1. Fuzzy C Means clustering

2. Subtractive clustering. Parameter identification is tackled by hybrid learning

algorithm that combines back-propagation gradient descent algorithm and the least

squares method. The architecture of ANFIS model for the estimation of DoA is

shown in Figure 7.2.

Figure 7.2: ANFIS structure for the estimation of DoA

Standard Deviation, Zero Crossing Rate, Spectral Edge Frequency, Spec-

tral Entropy, Wavelet Entropy, Relative Wave Energy of γBand, Relative Wave

Energy of βBand, Approximate Entropy, Permutation Entropy, Change in HR and

change in MBP are the inputs to the ANFIS model and DoA index is the output

which varies in accordance with the depth of anaesthesia. The datasets for training

and validation incorporates extracted features from the EEG signals and hemody-

namic signals of all the 25 patients consisting 15302 vectors of 11 dimensions. In

this work, 80% of the datasets is used as training data and 20% as testing data.

Therefore, 12242 vectors of 11 dimensions are utilized for constructing the model by

training and the remaining vectors 3060 of 11 dimensions are used for the validation

of the developed ANFIS model.
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7.2.1 Subtractive clustering

ANFIS model with subtractive clustering method is used in the present DoA es-

timation study to generate fuzzy membership functions and fuzzy rules. In this

method along with the training and validating data, cluster radius is also provided.

Present study tried different cluster radius to generate fuzzy membership functions

and fuzzy rules. The best fuzzy model that generate fuzzy membership functions

and fuzzy rules for the current study is selected through trial and error by specifying

the radius which provides four membership functions as awake, light anaesthesia,

moderate anaesthesia and deep anaesthesia for each input. Finally, radius value

provided along with training and validation data set to generate four membership

functions and rules is 0.6. The other parameters selected for subtractive cluster-

ing method are quash factor = 1.25, accept ratio = 0.5 and reject ratio = 0.15

[Celikyilmaz & Turksen, 2009]. The MATLAB function GENFIS2 is used to

generate an initial Fuzzy Inference System for ANFIS training based on subtractive

clustering. GENFIS2 accomplishes this by extracting a set of rules that model the

data behavior. The generated input membership function type through GENFIS2

function is ‘gaussmf’and output membership function type is ‘linear’.

Figure 7.3-7.5 represents the initial membership functions of all the inputs generated

through subtractive clustering method.

Figure 7.3: Initial Membership functions of ANFIS model based on subtractive
clustering of the inputs STD, ZCR, SEF and SEn before training
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Figure 7.4: Initial Membership functions of ANFIS model based on subtractive
clustering of the inputs WEn, RWEγ and RWEβ before training

Figure 7.5: Initial Membership functions of ANFIS model based on subtractive
clustering of ApEn, PEn ∆HR and,∆MBP before training

Next step is to tune the parameters of ANFIS model for the chosen mem-

bership functions and is usually executed by applying learning algorithms. In this

study, a most popular hybrid learning algorithm is used to adapt the parameters

of the ANFIS model. The initial step size selected for training and validation is
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0.01 which is provided to control the learning rate of the network model. The max-

imum number of training and validation epochs selected is 500. After training, the

parameters of the membership functions are adapted to deliver better matching be-

tween input data and output data. As a result, the shape of the initial membership

functions of all the inputs changes and is shown in Figure 7.6-7.8

Figure 7.6: Membership functions of final ANFIS model based on subtractive
clustering of inputs STD, ZCR, SEF and SEn after training

Figure 7.7: Membership functions of final ANFIS model based on subtractive
clustering of inputs WEn, RWEγ and, RWEβ after training
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Figure 7.8: Membership functions of final ANFIS model based on subtractive
clustering of inputs ApEn, PEn ∆HR and,∆MBP after training

The performance of the ANFIS model with subtractive clustering is evalu-

ated by calculating the statistical measure Root Mean Square Error (RMSE) using

Equation 7.19

RMSE =

√√√√ 1

n

n∑
i=1

(X̂i −Xi)2 (7.19)

where Xi is the actual output and X̂i is the desired output.

The optimal ANFIS model is selected based on RMSE values of subtractive

clustering and Fuzzy C Means clustering algorithms based ANFIS models. The

RMSE gives more accurate value of the error between models generated output and

desired (target) output. The ANFIS models are trained using the training data sets,

while the test datasets are used to evaluate the prediction capability of the trained

ANFIS models.

The prediction capability of the developed ANFIS model based on sub-

tractive clustering in the training data set, testing data set and combined dataset

are represented in Figure 7.9, 7.10, 7.11 respectively. The comparison between tar-

get output and generated output are shown in the figures and it is clear that the

generated output follows the same track of target output. The error between the
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target output and generated output and the error distribution are also shown in the

figures. The RMSE of training data sets, testing datasets and combined data sets

are 0.40255, 0.47554 and 0.41793 respectively.

Figure 7.9: The performance of subtractive clustering based ANFIS model in
the Training data set

Figure 7.10: The performance of subtractive clustering based ANFIS model in
the Testing data set

Figure 7.12 depicts RMSE curve during training and validation (testing) of

data sets. It can be observed that the model is found to converge in < 500 epochs in

both the training and testing datasets and the figure also indicate that no overfitting

during training and testing process as both follow approximately the same trends.
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Figure 7.11: The performance of subtractive clustering based ANFIS model in
the combined data set

Figure 7.12: RMSE for training and validation of ANFIS model with subtractive
clustering

7.2.2 Fuzzy C Means Clustering

The Fuzzy C Means algorithm is a clustering algorithm where each item may belong

to more than one group and the degree of membership function for each item is given

by a probability distribution over the clusters. In this method, the initial condition

of cluster centers influences the performance of the algorithm and the rules are
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predetermined by fixing the number of centers. The parameters specified in the

current study to implement Fuzzy C Means clustering is the fuzziness coefficient

as 2 and the number of clusters is 4. The MATLAB function GENFIS3 is used to

generate an initial Fuzzy Inference System for ANFIS training based on Fuzzy C

Means clustering. The generated input membership function type through GENFIS3

function is ’gaussmf’. Figure 7.13-7.15 represents the initial membership functions

of all the inputs generated through Fuzzy C Means clustering method. The hybrid

Figure 7.13: Initial Membership functions of ANFIS training based on Fuzzy C
Means clustering of the inputs STD, ZCR, SEF and SEn before training

Figure 7.14: Initial Membership functions of ANFIS training based on Fuzzy C
Means clustering of the inputs WEn, RWEγ and,RWEβ before training
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Figure 7.15: Initial Membership functions of ANFIS training based on Fuzzy C
Means clustering of ApEn, PEn ∆HR and,∆MBP before training

learning algorithm is used to adapt the parameters of ANFIS model and to get

fuzziness functions and rule functions. The initial step size selected for training

and validation is 0.1 which is provided to control the learning rate of the network

model. The maximum number of training and validation epochs selected is 700.

After training, the parameters of the membership functions are adapted to deliver

better matching between input data and output data. As a result, the shape of the

initial membership functions of all the inputs is changed and are shown in Figure

7.16-7.18

Figure 7.16: Membership functions of final ANFIS model based on Fuzzy C
Means clustering of inputs STD, ZCR, SEF and SEn after training
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Figure 7.17: Membership functions of final ANFIS model based on Fuzzy C
Means clustering of inputs WEn, RWEγ and RWEβ after training

Figure 7.18: Membership functions of final ANFIS model based on Fuzzy C
Means clustering of inputs ApEn, PEn ∆HR and,∆MBP after training

The prediction capability of the developed ANFIS model based on Fuzzy

C Means clustering in the training dataset, testing data set and combined data set

are represented in Figure 7.19, 7.20, 7.21 respectively.
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Figure 7.19: The performance of Fuzzy C Means clustering based ANFIS model
in the Training data set

Figure 7.20: The performance of Fuzzy C Means clustering based ANFIS model
in the Testing data set

The comparison between target output and generated output are shown in

the figures and it is clear that the generated output follows the same track of target

output. The error between the target output and generated output and the error

distribution are also shown in the figures. The RMSE of training data sets, testing

datasets and combined data sets are 0.43217, 0.4862 and 0.4435 respectively.
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Figure 7.21: The performance of Fuzzy C Means clustering based ANFIS model
in the combined data set

Figure 7.22: RMSE for training and validation of ANFIS model with Fuzzy C
Means clustering

Figure 7.22 depicts RMSE curve during training and validation (testing) of

data sets. It can be observed that the model is found to converge in < 700 epochs in

both the training and testing datasets and the figure also indicate that no overfitting

during training and testing process as both follows approximately the same trends.

The comparison summary of both the ANFIS models is given in Table

7.1. The subtractive clustering method provides less RMSE for training, testing and
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combined data set. Therefore subtractive clustering based ANFIS model is used for

DoA index generation.

Table 7.1: Comparison of ANFIS models

ANFIS Model Initial Training RMSE of RMSE of RMSE of
based on Step Size Iterations Training Testing Combined

Dataset Dataset Dataset

Subtractive
Clustering 0.01 500 0.40225 0.47554 0.41793

Fuzzy C Means
Clustering 0.1 700 0.43217 0.4862 0.4435

7.2.3 Multiparameter DoA Index

Multiparameter DoA Index for the current study is developed using subtractive

clustering based ANFIS model. Figure 7.23 represents the DoA index generated for

the patient-24 and its comparison with BIS index. Here all the anaesthetic phases

and their transitions are well defined and the index values of awake phase are high

compared to all other phases. When anaesthetic depth increases the generated DoA

index value gets reduced. This shows that the deep anaesthetic state (induction

phase) is having the lowest values. The effect of the inhalation agent sevoflurane

is also evident in the Figure 7.23 i.e. at time 12:45 and 12:51:43 administration

of sevoflurane is increased to increase the DoA which is reflected as a decrease

in the index values. When sevoflurane is closed its action is well reflected in the

generated index as increased DoA index values. Another important indication that

can be observed from the figure that during the maintenance phase HR increases

drastically from the time point 12:53:08 PM. This is indicated by an increase in the

value of the generated DoA index, but these variations are not seen on the BIS. Here

anaesthesiologist administered the analgesic drug Fentanyl-100µg to the patient at

12:57:00 which resulted in reduction of the extracted hemodynamic parameters. This

is also clearly visible in the generated DoA index. The effect of hypnotic drugs and

the analgesic drugs makes variations on anaesthetic depth and which is visible in

the generated DoA index.
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Figure 7.23: Comparison of BIS and the generated DoA index

The time delay between the BIS and generated DoA index of patient-24 is

shown Figure 7.24. The BIS index shows a delay of 15 sec with DoA index. This

indicates that the generated Multiparameter DoA index is much faster than BIS

index which helps the anaesthesiologist in quicker decision making.

Figure 7.24: Time delay between BIS and the generated DoA index
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7.3 Summary

The present chapter provides the estimation of Depth of Anaesthesia by combining

EEG extracted features and hemodynamic features through Adaptive Neuro-Fuzzy

Inference System. EEG extracted features provide the information available on elec-

troencephalogram signals during anaesthesia and which helps to extract the hypnotic

changes due to the anaesthetic drugs. The extracted hemodynamic parameters pro-

vide information about the changes in the autonomic nervous system due to the

administration of anaesthetic drugs during surgery. In the implementation pro-

cess of ANFIS model, two algorithms subtractive clustering algorithm and Fuzzy C

Means clustering algorithm are used to generate fuzzy functions and rules. Hybrid

learning algorithm is used to learn and adjust the ANFIS parameters. RMSE is

calculated to check the performance of the two ANFIS models. ANFIS model based

on subtractive clustering algorithm showed lowest RMSE for the training, testing

and combined data set. Therefore, the final Multiparameter DoA index is generated

by implementing an ANFIS based subtractive clustering algorithm which uses both

the selected EEG and hemodynamic features as inputs.



Chapter 8

Conclusions and Future Options

Estimation of patients DoA is helpful to tailor the dose of anaesthetic drugs admin-

istered to a patient during surgery and it is not only for keeping the patient under

adequate anaesthesia but also for preventing the patient from overdosing of anaes-

thetic drugs. Anaesthetic drugs cause effects on Central Nervous System (CNS) and

autonomic nervous system. Therefore, the analysis of EEG signals helps to quan-

tify the degree to which the Central Nervous System is depressed by anaesthetic

drugs whereas the hemodynamic parameters are the indicators of autonomic ner-

vous system. Main focus of the current study was reliable estimation of DoA by

integrating neurophysiological signal and hemodynamic parameters. Understanding

of the anaesthetic drug effects and patient’s response to the drugs are essential for

the quantification of DoA from the information available on neurophysiological sig-

nal and hemodynamic signals. The adopted algorithms and modelling techniques in

the study helped to characterize these effects in an effective manner.

8.1 Summary of Major Contributions

The significant achievements of the study were presented in Chapters 3 to 7 and the

detailed contributions are summarized below:
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The data used in the study was obtained from 25 female patients who

underwent breast cancer surgery at RCC, Trivandrum. The study protocol was ap-

proved by the institutional review board and the medical ethical committee of RCC.

A written consent was obtained from all the patients who had participated in the

study. The collected dataset includes waveform data such as EEG signal and nu-

merical data such as Heart Rate (HR), Systolic Blood Pressure (SBP) and Diastolic

Blood Pressure (DBP). These signals were collected from the patient throughout

the surgical procedure which includes all the anaesthetic phases awake, induction,

maintenance and recovery for the continuous estimation. The sampling frequency of

the EEG signals collected using BIS sensor was 128Hz and the sampling frequency

of HR and BP collected from standard monitoring devices was 0.2 Hz.

To improve the accuracy of DoA estimation current study adopted pre-

processing steps including segmentation and filtering methods. Both uniform seg-

mentation and non-uniform segmentation was tried on EEG signals for the effective

filtration of the signals. Uniform segmentation was implemented on collected EEG

signals by splitting the signals into equal time interval of 5 sec duration. Non-

uniform segmentation of EEG signals was done by extracting the feature kurtosis

and then splitting the signal at the time point at which change occurs. As a result,

the EEG signals were segmented when a change from low-frequency high amplitude

to high-frequency low amplitude and vice versa occurs. In order to remove the arti-

facts from the EEG signals, a wavelet-based threshold filtering method was adopted.

The threshold level was calculated using SURE Shrink thresholding and Universal

thresholding method by applying soft and hard thresholding. The performance of

the filter with different thresholding techniques were compared by calculating the

measures SNR, MSE and correlation coefficient. The results of these measures re-

vealed that Wavelet denoising using SURE Shrink Threshold and soft Thresholding

technique showed high Signal to Noise Ratio, high correlation coefficient values and

low MSE compared to other thresholding techniques.

Different feature extraction methods were adopted to extract features from

the collected signals. The time domain features extracted from EEG signals includes

Standard Deviation, Entropy, Energy, Mean Absolute Deviation, Zero Crossing Rate

and Inter-Quartile Range. The feature values of Standard deviation, Energy, Mean

Absolute Deviation and Inter-Quartile Range were high for induction phase (deep
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anaesthetic phase) EEG signals and low for awake EEG signals. Moderate and re-

covery phase showed intermediate values. The feature values of recovery phase (light

anaesthesia) obtained were higher than the awake phase and lesser than moderate

phase. This proved that these feature values increases with increase in DoA. On the

other hand, ZCR and Entropy feature values decrease with increase in DoA. The

frequency domain features extracted from EEG signals are SEF and SEn and their

feature values decrease with increase in DoA. The extracted time-frequency domain

features were Wavelet Entropy (WEn) and Relative Wave Energy (RWE) of each

EEG frequency band. All these extracted features showed variations in accordance

with DoA. Nonlinear features such as ApEn and PEn were extracted from the col-

lected EEG signals to study the complexity and nonlinear behaviour of EEG signals

and they showed an inverse relation with DoA. All these features were analysed

during the whole duration of surgery involving 25 patients. When comparing with

BIS index of each patient these features showed an earlier response than BIS. That

means BIS showed a delay of 15 sec with the features Standard Deviation, Energy

and SEF, 20 sec delay with Zero Crossing Rate and Wavelet Entropy whereas all

the other features showed a delay of 10 sec. In order to study the hemodynamic

variability due to the anaesthetic drugs features such as ∆HR, ∆MBP and pulse

pressure were extracted from the HR and BP data. Normally, these feature values

decreased with increase in DoA. The special cases in which HR or BP increased

due to the inadequate dose of analgesic drugs and its effect variations were clearly

evident in the extracted hemodynamic features.

Dimensionality of the extracted feature vector was reduced by selecting

optimum features by applying different feature ranking methods such as ‘T-Test’,

‘Entropy’, ‘Bhattacharyya’, ‘ROC’and ‘Wilcoxon’. Outputs of different classifiers

such as kNN, SVM, MLP and NBC in terms of accuracy was used to find the dis-

criminating ability of the features as awake, light anaesthesia, moderate anaesthesia

and deep anaesthesia. Based on this discrimination capability, the feature combi-

nation with highest classification accuracy was selected for the final DoA estima-

tion model. The feature combination which provided highest classification accuracy

from the time domain representation was Standard Deviation and Zero Crossing

Rate. Both the frequency domain features showed highest classification accuracy

and therefore both the features were selected for final model development. Then the
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time-frequency domain features selected based on their classification accuracy and

discrimination ability are WEn, RWEγ and RWEβ. The combination of both the

non-linear features ApEn and PEn were selected because their combination showed

comparatively higher classification accuracy than if taken alone. Kruskal Wallis test

was used to show the discriminating ability of hemodynamic features and the best

features selected from the extracted hemodynamic parameters are ∆HR and ∆MBP.

Final Adaptive Neuro-Fuzzy Inference System (ANFIS) model to estimate

DoA index was implemented by using selected EEG features and hemodynamic fea-

tures as inputs. Two algorithms such as Subtractive clustering and Fuzzy C Means

clustering were tried to generate fuzzy functions and fuzzy rules. The learning

algorithm opted to learn and adjust the ANFIS parameter was hybrid learning al-

gorithm. The performance of the two clustering algorithms and their corresponding

ANFIS models were tested by calculating the measure RMSE. ANFIS model based

on subtractive clustering algorithm showed lowest RMSE for the training dataset,

testing dataset and the combination of two datasets. Finally, multiparameter DoA

index was estimated by implementing an Adaptive Neuro-Fuzzy Inference System

based on subtractive clustering algorithm which integrates both the selected EEG

and hemodynamic features. The estimated index showed the effect of anaesthetic

drugs as decreased values when the dose increased and it showed increased values if

depth decreases. That means the estimated multiparameter DoA index values de-

creased with increase in DoA. In addition, the generated index showed 15 sec faster

response than BIS index.

8.2 Advantages of the study

Advantages of the present multiparameter DoA estimation method is that

1. The derived features and parameters exposed direct/inverse correlation with

DoA

2. The discrimination of different anaesthetic states such as awake, light anaes-

thesia, moderate anaesthesia and deep anaesthesia was clearly visible in the

extracted features



Chapter 8. Conclusions and Future Options 170

3. Continuous assessment of DoA was performed during the whole surgery

4. A novel DoA index was estimated that clearly respond to the changes due to

various anaesthetic drugs

5. The estimated multiparameter DoA Index showed an earlier time response

than Bispectral Index (BIS) during the transitions of anaesthetic states

6. The estimated multiparameter DoA index would improve the patient safety

by delivering adequate dose of anaesthetic drugs to the patient if they used in

real-time

7. It also helps to assist the anaesthesiologist in faster decision making and man-

agement during anaesthesia

8.3 Limitations and Future options of the research

Although the study has reached the objectives that specified in the study, there

are some limitations which inhibit the efficiency of DoA estimation. The current

research did not analyze very deep anaesthetic state signals (BIS value range 0-20)

as it may cause hemodynamic instability to the patient and also against the ethical

considerations of the study. It would be useful in DoA index calculation of surgeries

which last for long time duration.

In this study, single-channel EEG signals were considered for the estimation

of DoA. Multi-channel EEG signals can be considered in future which would help

in the localisation of the brain activity in the specified regions in which anaesthetic

drugs affect.

This study is limited to breast cancer patients only not including pediatric,

geriatric, trauma, neurosurgical, cardiothoracic, renal and pregnant patients. In

future studies above mentioned cases may be considered for the effective analysis of

deeper planes of anaesthesia.

As future option more parameters like etCO2, end-tidal inhalation anaes-

thetic agent parameters can be considered for more effective analysis.
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Corbalá, Rebecca, & Omran, El-Sayed Ewis. 2017. Application of ANFIS-based

subtractive clustering algorithm in soil Cation Exchange Capacity estimation us-

ing soil and remotely sensed data. Measurement, 95, 173–180.

Kessler, BM, Payne, GL, & Polyzou, WN. 2003. Wavelet notes. arXiv preprint

nucl-th/0305025.

Klette, Reinhard, & Zunic, Jovisa. 2004. Combinatorial Image Analysis: 10th Inter-

national Workshop, IWCIA 2004, Auckland, New Zealand, December 1-3, 2004,

Proceedings. Vol. 3322. Springer.

Koht, Antoun, Sloan, Tod B, & Toleikis, J Richard. 2012. Monitoring the nervous

system for anesthesiologists and other health care professionals. Springer.
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