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1
INTRODUCTION TO THE ELECTRIC

DIPOLE MOMENT OF THE ELECTRON

(EEDM)

1.1 Theoretical aspects

1.1.1 P and T violation

The electron’s electric dipole moment (eEDM) is an excellent probe of beyond the Stan-
dard Model physics [1, 2]. The Standard Model (SM), which contains in it the electroweak
theory and quantum chromodynamics (QCD), is by far the most successful theory of el-
ementary particles and their interactions that has been verified by experiments till date.
However, it stands incomplete, with phenomena like the oscillations of neutrinos and the
nature of dark matter not being taken into account by it [3]. Several theories go beyond the
SM, for example, supersymmetric (SUSY) models and their many variants.

The eEDM is a property that is intrinsic to an electron, just like its mass or charge.
It arises when two discrete symmetries, namely parity reversal (P) and time reversal (T)
symmetries, are simultaneously violated [4]. A proof of this is discussed below:

P basically switches ~r → −~r, where ~r refers to the usual spatial coordinates. The
parity operator, P , reverses the position operator’s (r) sign, that is, PrP−1 = −r. It is
also unitary, that is, P = P−1 = P †.

Consider a system, whose electric dipole moment (EDM) operator is d. The EDM
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Theoretical aspects

operator has in it the displacement operator. Also, since PrP−1 = −r, PdP−1 = −d.
When there is no external electric field, a stationary state, |ϕ〉, has a non-zero EDM, which
is

〈d〉 = 〈ϕ|d|ϕ〉 (1.1)

If P acts on |ϕ〉, to give |ϕ′〉, then

〈d〉 = 〈ϕ|P †PdP−1P |ϕ〉

= −〈ϕ′|d|ϕ′〉 (1.2)

The following equation is satisfied by the stationary state:

H|ϕ〉 = E|ϕ〉 (1.3)

That is,

PHP−1P |ϕ〉 = EP |ϕ〉

H|ϕ′〉 = E|ϕ′〉 (1.4)

Here, it is assumed that the Hamiltonian is invariant under space inversion, that is,
PHP−1 = H .

Therefore, both |ϕ〉 and |ϕ′〉 describe stationary states whose energies are the same,
given by E. If the energy level is non-degenerate, then |ϕ′〉 = c|ϕ〉, where c is an eigenvalue
of the parity operator, which means that it is either +1 or -1. Therefore,

〈ϕ|d|ϕ〉 = −〈ϕ′|d|ϕ′〉

= −c2〈ϕ|d|ϕ〉

= −〈ϕ|d|ϕ〉 (1.5)

The above equation is true, only if 〈d〉 = 0. This means that if the Hamiltonian is
invariant under parity, and if the stationary state is non-degenerate, then the EDM=0, for
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Introduction to the electric dipole moment of the electron (eEDM)

that system.

T refers to t → −t, where t denotes time. The physical interpretation of time reversal
is that it is equivalent to motion reversal.

If the Hamiltonian were to be unchanged under rotations, then its eigenvectors, J2

and Jz form a complete set, given by |E, j,m〉. Here, we make an assumption that the
degeneracy of these eigenvectors is associated with the (2j + 1) values of m only. The
Wigner-Eckart theorem gives the expression for the EDM in one of these states:

〈E, j,m|d|E, j,m〉 = CE,j〈E, j,m|J |E, j,m〉 (1.6)

Here, J is the angular momentum operator. Note that CE,j is not a function of m. We
can show that if |u′〉 = T |u〉, and if |v′〉 = T |v〉, then 〈u′|v′〉 = 〈u|v〉∗ [5]. If |u〉 is |ϕ〉,
and |v〉 is dα|ϕ〉, where dα is some component of the EDM operator, then

|u′〉 = |ϕ′〉 = T |ϕ〉

|v′〉 = Tdα|ϕ〉 = dα|ϕ′〉

The last equation uses the equality Tdα = dαT . Therefore,

〈ϕ′|dα|ϕ′〉 = 〈ϕ|dα|ϕ〉∗ (1.7)

dα is a Hermitian operator, and therefore

〈ϕ′|dα|ϕ′〉 = 〈ϕ|dα|ϕ〉 (1.8)

In a similar way:

〈ϕ′|J |ϕ′〉 = −〈ϕ|J |ϕ〉 (1.9)

This uses the equality dαJ = −Jdα. Moreover,
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Theoretical aspects

Jz|E, j,m〉 = ~m|E, j,m〉 (1.10)

TJzT
−1T |E, j,m〉 = ~mT |E, j,m〉 (1.11)

Jz(T |E, j,m〉) = −~m(T |E, j,m〉) (1.12)

Since Jz|E, j,−m〉 = −~m|E, j,−m〉, T |E, j,m〉 and |E, j,−m〉 are different only
by a phase factor (note that the degeneracy is due to m only). Hence, if |ϕ〉 = |E, j,m〉,
and |ϕ′〉 = T |E, j,m〉, then

〈ϕ|dα|ϕ〉 = 〈E, j,m|dα|E, j,m〉 (1.13)

〈ϕ′|dα|ϕ′〉 = 〈E, j,−m|dα|E, j,−m〉 (1.14)

When the above two expressions are substituted into equation (1.8), we obtain:

〈E, j,m|dα|E, j,m〉 = 〈E, j,−m|dα|E, j,−m〉 (1.15)

Similarly,

〈ϕ′|J |ϕ′〉 = 〈E, j,−m|J |E, j,−m〉 (1.16)

〈ϕ|J |ϕ〉 = 〈E, j,m|J |E, j,m〉 (1.17)

∵ 〈ϕ′|J |ϕ′〉 = −〈ϕ|J |ϕ〉,

〈E, j,−m|J |E, j,−m〉 = −〈E, j,m|J |E, j,m〉 (1.18)

When the equations (1.15) and (1.18) are used in equation (1.6), one sees that the EDM
vanishes. That is, under the assumptions of rotational invariance and time reversal invari-
ance, as well as the assumption that the degeneracy is only due to m, the EDM=0. The
proof that has been discussed follows Ballentine’s approach [5]. Note that this proof is
general, and is not limited only to the EDM of the electron (eEDM).

Hence, both P and T must be simultaneously violated for the electron, or for that matter,
any other elementary particle, to possess an intrinsic EDM. Note that due to the well known
CPT theorem, T violation would imply CP violation [6].
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Introduction to the electric dipole moment of the electron (eEDM)

P,T violating electric and magnetic moments

Consider the Schroedinger’s equation:

H(~r)ψ(~r) = Eψ(~r) (1.19)

The wave functions, ψ, are assumed to be non-degenerate. Performing a parity opera-
tion (P ) on it, we obtain:

PH(~r)P−1Pψ(~r) = PEψ(~r) (1.20)

H(~r)ψ(−~r) = Eψ(−~r) (1.21)

Note that the last line of the above equations assume that H is invariant under P . In
such a case, [P ,H ] = 0, and ψ(~r) are simultaneous eigenfunctions of P and H . Eigen-
function of P would mean that:

Pψ(~r) = Πψ(~r) (1.22)

Π is the eigenvalue, and it is either +1 (P-even) or -1 (P-odd). Independent of whether
the eigenvalue is positive or negative unity, the state still has a definite parity. However, if
the Hamiltonian were to have a P-odd term, then [P ,H ] is not zero, that is, the state no
longer is an eigenfunction of parity. The state is then said to not have a definite parity.

This idea indicates those moments that are P violating. Consider a system where the
state is an eigenfunction of parity. Then,

〈ψf |O|ψi〉 = 〈ψf |P−1POP−1P |ψi〉 (1.23)

= ΠfΠi〈ψf |POP−1|ψi〉 (1.24)

Since we deal with expectation values, the bra and the ket are the same state, which
means that ΠfΠi is one. Then, if the operator, O, is P-even (note that for a state to have a
definite parity, it is only the Hamiltonian that needs to be invariant under parity; here, we are
referring to some operator, O, which can be P-even or odd), then the matrix element may be
non-zero, but if the operator, O, is P-odd, then the matrix element is the negative of itself,
thereby making it zero. Now, replace O by all the electric multipole moments’ operators.
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Theoretical aspects

E0 (electric monopole operator), E2 (electric quadrupole operator), etc are P-even, so
there is no restriction on the matrix elements. However, E1 (electric dipole operator), E3

(electric octupole operator), etc are P-odd, and hence their expectation values are zero.

Now, note that this is true only if H is even under parity. If H were to change sign
when it is parity transformed, then the state is no longer an eigenfunction of parity, so the
above analysis does not apply. That is, P-odd electric moments are not restricted to vanish,
if H is odd under parity. In other words, H must be odd under parity, else, based on parity
selection rules given above, the P-odd electric moments vanish.

Let us now discuss about the magnetic moments. M0, M2, etc are P-odd, while M1,
M3, etc are P-even. Hence, if parity is violated, then those magnetic moments for which
the rank is even can also exist.

To summarize, the expectation values of E1, E3, etc can be non-zero, if H is P-
violating, while that of M0, M2, etc can be non-zero if the H is P-violating.

On a quick note, the reason why the odd electric moments are P-odd, while the even
ones are P-even, can be understood by looking at their general expressions. The compo-
nents of the electric multipole tensor operator can be shown to be [7]:

QE l,m ∝ rlYlm (1.25)

The operator’s parity is (−1)l. Therefore, the odd moments are P-odd, while the even
ones are P-even.

Similarly, for the magnetic multipole:

QM l,m ∝ ∇(rlYlm) · S (1.26)

Note that S is P-even, Ylm’s behaviour under parity is given by (−1)l, and ∇ is P-odd.
Therefore, the operator’s parity is (−1)l+1. This means that even moments are P-odd, and
the odd ones are P-even.

Let us now discuss T-violating moments. An expectation value can be non-zero, where
ψ is the eigenfunction of a Hamiltonian that is invariant under T , when:
a. O is T-even, and the rank of the operator, l, is even, or b. O is T-odd, and l is odd.

The proof of the above statement is not discussed here, and can be found, for exam-
ple, [7]. Now, the electric moment operators are T-even, and therefore l has to be even, if
the expectation value must not vanish, that is, the expectation values of E0, E2, etc are
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Introduction to the electric dipole moment of the electron (eEDM)

allowed. Now, the magnetic moment operators are T-odd, and hence the expectation values
of M1, M3, etc are allowed.

However, if H is T-odd, then the above constraint does not hold, that is, the expectation
value can be non-zero even if O is T-odd with l even, and O is T-even with l odd. Hence,
in this case, even E1, E3, etc’s expectation values are allowed. Similarly, those of M0,
M2, etc are also not constrained to vanish, if H is T-odd.

To summarize:

P, T invariant −→ E0,E2, . . .

P, T violating −→ E1,E3, . . . are also allowed

P, T invariant −→ M1,M3, . . .

P, T violating −→ M2,M4, . . . are also allowed

(1.27)

How many non-zero P,T violating electric and magnetic moments exist?

Consider the following expression from the Wigner-Eckart theorem: In a general matrix
element, 〈J ′M ′|Ok

q |JM〉 , where O is a tensor operator of rank k, with one of its compo-
nents being q, the matrix element is non-zero only if the condition |J −K| ≤ J ′ ≤ J +K

is satisfied (besides others).

For a free electron, the spin is 1/2, and it has no orbital angular momentum quantum
number. Also, we evaluate an expectation value. Therefore, J = J ′ = 1/2. Hence, for
the EDM, which involves an electric dipole operator, whose rank is 1, we can obtain J ′,
which is 1/2, by subtracting J and K. This means that this matrix element can be non-
zero. However, for the electric quadrupole moment, we can no longer satisfy the condition
mentioned above. This holds also for all the subsequent higher moments. Also, the same
argument can be extended to magnetic moments, where only the dipole moment is allowed
by the Wigner-Eckart theorem. The only P,T violating moment that is allowed for a spin-1/2
elementary particle is the electric dipole moment. A final note: electric charge is allowed
too (charge is a rank zero operator), but so is the magnetic monopole (a P,T violating
moment)!

However, for a spin-1 system, for example, both dipole and quadrupole moments are
allowed, for both the electric and the magnetic sectors. In this case, two P,T violating
moments are allowed, the electric dipole moment, and the magnetic quadrupole moment.

Note that for both the cases of spin-1/2 and 1, there are up to 2S+1 P,T violating mo-

7



Theoretical aspects

ments. This can also be found to be true for spins 3/2, 2, etc.

1.1.2 Connections with particle physics and matter-antimatter asym-
metry

If the electron is treated to be a point particle, it would have no EDM, since then we
have just a point charge. But, from a field theoretic viewpoint, the electron is viewed to be
always surrounded by a cloud of virtual particles. When one says that the electron has an
EDM, it basically refers to the asymmetry in this electron cloud.

In the SM, the first non-zero contribution to the eEDM arises only at the three-loop
level. However, in SUSY, for example, the first non-zero contribution comes even at the
one-loop level. This is because in SUSY, the complex phases involved in the emission
and re-absorption of virtual particles need not be the same (SUSY generally allows for
several CP violating phases, but the SM has just one (the phase in the CKM (Cabibo-
Kobayashi- Masakawa) matrix)). In SM, for example, they are (because there is just one
CP violating phase anyway), and hence they cancel out [1, 8, 9] (See figures 1, 2 and
3). Since the successively higher loops give rise to smaller and smaller contributions, the
eEDM predicted by SM is much smaller than that in a SUSY. In fact, the SM predicts an
eEDM less than 10−38 e cm, while SUSY and other beyond the SM theories predict much
larger eEDMs, by a few orders in fact [1].

Figure 1.1: One of the Feynman diagrams showing the SM contribution to eEDM at the
one-loop level: the phases (ϕ) at the two lower vertices cancel out. γ refers to the photon,
W to the W- boson, and e is the electron. The subscripts L and R indicate left-handed and
right-handed. In the SM case, eR = eL.

One sets an upper limit on the eEDM, by combining theory and experimental mea-
surement. This is used to set stringent constrains on SM extension theories. The cur-
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Figure 1.2: An illustration of how SUSY gives a contribution at the one-loop level: the
phases do not cancel out. The superscript double prime means that the particle is a super-
symmetric one.

Figure 1.3: SM contribution to eEDM at the three-loop level. u and d refer to the up and
down quarks respectively, and W refers to the W- boson. γ is a photon, and e refers to the
electron.

rent best limit using atoms comes from Tl (20 × 10−28e cm, with 90% confidence level),
while from molecules, it is from ThO [10] (0.87 × 10−28e cm), followed by YbF [11]
(10.5×10−28e cm), both at 90% confidence level (the latest in the race in HfF+, which has
set an upper bound of 1.3 × 10−28e cm, making it the second best [12]). Mercury mono-
halides are identified as promising candidates for eEDM searches, with their very large
effective electric fields, and several attractive experimental features.

EDMs also shed light on the matter-antimatter asymmetry in the universe [13]. We
believe that the early universe contained equal quantities of matter and antimatter. But, ob-
servations indicate strongly that the observable universe is currently dominated by matter.
The baryon asymmetry in the universe (BAU) is given by η:

9
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η =
nB

nγ

≈ 6.1+0.3
−0.2 × 10−10 (1.28)

Here, nB refers to the number density of net baryons, which is the difference between
the number density of baryons and that of anti-baryons. nγ is the number density of the
cosmic microwave background radiation (CMBR) photons.

Sakharov put forward three necessary conditions for baryogenesis [14]. Baryogen-
esis refers to the current BAU from an early universe, which was baryon symmetric. The
three conditions, called the Sakharov conditions, are 1. baryon number violation, 2. C
and CP violation, and 3. out-of-thermal equilibrium conditions. There are several models
that describe baryogenesis, while satisfying the three conditions, for example, electroweak
baryogenesis.

CP violation is a common condition for both the eEDM and the matter-antimatter
asymmetry. In the SM, CP violation is predominantly from the CKM matrix. If we were to
calculate the eEDM in the SM, as seen earlier, we get a value that is much smaller than what
SM extensions predict. Since the SM is incomplete, the natural question in this regard is if
there is any CP violation that is missing in this model. The SM value of η reinforces this,
because it is of the order of 10−18, whereas observations give ≈ 6.1+0.3

−0.2×10−10. Hence, the
search for a model to predict the right amount of CP violation so that one can reasonably
describe both these seemingly unrelated phenomena becomes important.

Because only one real field remains after the Higgs mechanism in the SM, there is
no CP violation from the Higgs sector. This is because one needs a complex phase for
CP violation. This can be illustrated by using a simple example [8], the time dependent
Schroedinger’s equation:

i~
dψ(~x, t)

dt
= − ~2

2m

d2ψ(~x, t)

dx2
+ V (~x)ψ(~x, t) (1.29)

For simplicity, V is made dependent on space and spin, but not time. Note that if
V is real, that is, it has no complex terms in it, then the time reversed version of the
Schroedinger’s equation tells us that if ψ(t) is a solution, so is ψ∗(−t). This is because
on the right hand side, not only does t go to -t, but also i to -i (since T is anti-unitary).
However, if V were to be complex, that is, V = |V |(cos(φ) + isin(φ)), in other words,
V = V e(iφ), where φ is called the complex phase, then T is violated, that is, upon oper-
ating the Schroedinger’s equation with the time reversal operator, the equation no longer
looks the same, due to an extra minus sign associated with the potential. We can say that

10
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the complex phase, φ specifies the degree of T violation in the system, or the degree of
CP violation (assuming CPT theorem). It is in a very similar way that complex phases in
quantum field theory also imply T violation. The only complex phase associated with the
weak sector in the SM is the CKM phase, which occurs in the CKM matrix.

Now, if one were to add another Higgs doublet (a two Higgs doublet model or 2HDM)
to the SM, one has CP violation from the Higgs sector too. The next question to address
is if this extra CP violation is sufficient to describe the observed BAU, and also connect it
to eEDM. The scalar CP violating parameter was determined from cosmology, by Kazar-
ian and Kuzmin, and from there, an estimate for the eEDM was obtained: |de| > 10−27 e
cm [13]. This idea was extended further by Nataraj and Das. The cut-off for de was from
the then-best limit on eEDM, from the Tl atom. Their preliminary results indicated that
η was still lower than the observed value, by a few orders [15]. They conclude that more
sources of CP violation may be required.
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1.2 Measuring eEDM

When an electric field ( ~E) is applied on a quantum mechanical system, for example, an
electron, there is a shift in the energy of the system, by ∆E, which is given by

∆E = −~de · ~E (1.30)

The proportionality constant is the eEDM, de. However, an electron just accelerates
away when an electric field is applied on it, so one uses electrically neutral systems, such as
atoms or molecules, with one unpaired electron (typically), to measure this shift in energy.

The idea behind an eEDM experiment is to look for spin precession of the electron
(Larmour precession) (for example, refer [16]). In the presence of a magnetic field, an
electron, with a magnetic dipole moment, say µ, precesses. This can be understood in a
semi-classical way:
The electron experiences a torque, ~τ = ~µ × ~B, which tries to align ~µ ∝ ~L (~L is the spin
itself, for a free electron) and ~B (since that’s the lowest energy configuration). However,
the torque also is the rate of change of angular momentum, and that change is perpendicular
to ~L. So, instead of aligning with the magnetic field, ~L (or ~µ) precesses around it. If φ is
the angle between ~L and the line connecting the tail of ~L with the head of d~L, then:
ω = dφ

dt
= dL

Ldt
= τdt

Ldt
= dE

L
; L is ~/2, for a spin-1/2 particle like the electron.

So, if one can run the entire picture backward in time, the precession should be in
the opposite direction. That is, if one can set up the experiment in such a way that it is
somehow equivalent to running the experiment backward in time, and if the precession
changes direction (and is different from the original precession frequency), it should be
a test of T violation. However, this does not work, since the magnetic field too switches
direction when t −→ −t. The resulting picture is not any different from the change in
precession frequency when B is flipped, so there is nothing to distinguish a simple field flip
and an actual time reversal. However, this idea can be extended to an electric field, since it
does not flip sign under a time reversal!

As seen earlier, since an electron accelerates away in an electric field, one uses neutral
systems like atoms or molecules. What one looks for is the spin precession in an electric
field, of an unpaired electron with an EDM, in the molecule. A magnetic field is usually
applied too, but for experimental purposes (more like a ‘carrier signal’, and nothing to
do with T violation detection), having to do with the ease of detecting a small change in
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a large signal (electric and magnetic fields), than a small change in a small signal (only
electric field). However, its effect is taken out by performing two measurements, one with
an electric field, and another with the electric field flipped. Then, the difference between
them is measured.

ω1 = −~µ · ~B − ~d · ~E (1.31)

ω2 = −~µ · ~B + ~d · ~E (1.32)

∆ω = ω2 − ω1

= 2~d · ~E (1.33)

Note that the constants involved in the expression (like ~) are not explicitly mentioned.
Finally, we add a quick note on how electric and magnetic fields behave under P and T
reversal.

Electric and magnetic fields under P and T reversal

A convenient way to think of an electric field, is a field line from a positive to a negative
charge. P ⇒ the origin just flips, and so the direction of the arrow for the field changes
too. Hence, ~E is P-odd. For a magnetic field, such an approach is not useful, since we
then need to think of a field line from one monopole to another, and we would want to
avoid monopoles. A convenient way is to think of a current loop, and P ⇒ a tangent to
the loop on the left side pointing downward becomes a tangent to the loop on the right side
pointing upward. Since the direction of rotation is preserved, as seen from this, ~B is P-even.

~∇ · ~E = ρ (1.34)

~∇× ~B =
∂ ~E

∂t
+ ~J (1.35)

All the constants have been omitted for simplicity. Since the Maxwell’s equations are
invariant under T (so the right and left hand sides must be the same when a time reversal
is performed), and since ρ is T-even (charge is a scalar, and hence so is charge density),
while J is T-odd (since ~j = ρ~v, and the velocity reverses sign under T), we can see that ~E
is T-even, while ~B is T-odd.
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1.3 eEDM from molecules

The interaction Hamiltonian of a diatomic, due to the eEDM is given by [17]

HeEDM − de

Ne∑
i=1

βσi ·Eintl
i (1.36)

The internal electric field, Eintl
i , experienced by an electron, is due to the two nuclei

and all the other electrons in the molecule. Ne is the number of electrons in the molecule.
The experimental quantity is the energy shift due to the effective electric field, and it is
given by

∆E = 〈ψ|HeEDM |ψ〉

= −de
Ne∑
i=1

〈ψ|βσi ·Eintl
i |ψ〉

= −deEeff (1.37)

∴ Eeff =
Ne∑
i=1

〈ψ|βσi.E
intl
i |ψ〉 (1.38)

Eeff has to be evaluated using many-body theory. Hence, the energy shift is mea-
sured in an experiment, while the effective electric field is calculated from theory. The ratio
of these two quantities is the eEDM. In the equation above, |ψ〉 is to the wave function of
a molecule in some state. Relativistic calculations are necessary, since non-relativistic cal-
culations give zero Eeff .

The evaluation of the two-body term in the expression for the internal electric field is
complicated. Hence, the following expression can be used [18]:

− de

Ne∑
i=1

βσi.E
intl = [−de

e
βσ · OOO,H0]

+ 2icde

Ne∑
i=1

βγ5p
2 (1.39)
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The index, ‘i’, gives the summation over the electronic coordinates, and H0 is the
Dirac-Coulomb Hamiltonian, which is given by

H0 =
∑
i

[cα.pi + βmc2 −
∑
A

ZA

|ri − rA|
]

+
∑
i6=j

1

|ri − rj|
(1.40)

Again, the summation over the electronic coordinates is given by i, and that over the
nuclear coordinates by A. The position vector from the origin to the site of an electron is
given by ri, and rA is that from the origin to a nucleus. The atomic number of the Ath

nucleus is given by ZA.

Using the above relation, it can be shown that:

Eeff =
2ic

e

Ne∑
i=1

〈ψ|βγ5p2
i |ψ〉 (1.41)

βγ5p
2
i is a one-body operator. This expression is easier to evaluate, due to the absence

of two-body operators. The derivation for this expression is given in Appendix B. The
appendix also explains why the non relativistic Eeff is zero.

The eEDM a CP violating property, which is in the domain of particle physics. The
property is observed using experiments performed on an atom/molecule. This would be un-
der atomic, molecular and optical physics. The calculation of Eeff requires knowledge and
application of relativistic quantum chemistry. Hence, eEDM searches involve the synergy
of three different fields, as well as a combination of theory and experiment.

Recently, molecules have been preferred over atoms. This is because in molecules,
there is hybridization of the atomic orbitals, and the implication may be that the matrix
elements of the effective eEDM operator between some orbitals may be large. The effective
electric field depends the internal electric field in the molecule (of the order of MV/cm),
but in atoms,the effective electric fields are a function of an external electric field, of the
order of kV/cm.

From an experimental viewpoint, the energy shift of a molecular state due to eEDM is
given by

∆E = −deEeffη(Eexternal); (1.42)
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η(Eexternal) ∝ 〈ẑ · n̂〉 (1.43)

Here, η is called the polarization factor, and it is defined as being proportional to the dot
product of the z axis’ unit vector, defined by the applied electric field, and the internuclear
axis’ unit vector, n̂. In an ideal case, when this quantity is unity, then the molecule is said
to be fully polarized. What it means is that the external field and the internuclear axis are
along the same axis.

η can be obtained from experiment. Since the shift in energy due to an eEDM is
measured from experiment too, andEeff is computed from many-body theory (relativistic),
a combination of all these is required to set an upper limit on eEDM.

The figure of merit for an eEDM experiment is given by (for example, refer [19]):

δde ∼
1

2πEeff

√
NTτη

(1.44)

N refers to the number of uncorrelated molecules. T refers to the total time, and τ to
the coherence time of the state in which the molecule is prepared. Note that only the effec-
tive field and polarization factor come outside of the square root. However, the latter has a
multiplicative factor that is less than one always. Therefore, a large effective field plays a
vital role in enhancing the sensitivity of the experiment.

Polarization factor

The sensitivity of an eEDM experiment also depends on what is known as the polarizing
electric field, Epol. This is an indicator of how much one can polarize a molecule, that is,
align it in the direction of an external electric field. The lower the value of the external field
applied, for a given Eeff , the better the sensitivity is. The is given by 2B/D, where B is the
rotational constant for a molecule, and D is the permanent electric dipole moment of the
molecule (PDM). A sample calculation is given below, for HgF:

Epol = 2B/D

B =
~

4πµr2

∴ B =
1.054× 10−34 × 10−9

4× π × µ(2.00686× 10−10)2 × 1.675× 10−27
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= 7.16GHz

The numerator basically contains the reduced Plank’s constant (SI units), and the 10−9

is because the original expression for B has c in the denominator, which is 3 × 108, and
when we convert B to GHz, we multiply B in SI units with 0.3, and hence 0.3

3×108
gives us

a factor of 10−9. In the denominator, we have 1.675 × 10−27 to convert from AMU to SI
units (kg), the reduced mass. We, hence, obtain 7.162 GHz.

Now, to convert the resulting Epol in terms of kV/cm, convert this energy unit to J,
which gives us 4.75 × 10−24, and D into SI, which gives us 8.7027 × 10−30, hence the
electric field, which is the ratio of an energy term and a dipole term, is 5.457 kV/cm.

Let us quickly see how we arrive at the expression for polarization factor:

Consider a diatomic molecule in a state, |ψ0
α〉. An external field, E (a perturbation; this

is an important approximation), is applied. Therefore, the new wave function is:
|ψα〉 = |ψ0

α〉+ |ψ1
α〉+ · · ·

Let us evaluate: 〈ψα|D ·E|ψα〉, where D is the PDM of the molecule. Note that E is along
z, and D along n. Then:

〈ψα|D ·E|ψα〉 = D2E2
∑
m6=α

2
|〈ψ0

α|n · z|ψ0
m〉|2

∆E
(1.45)

∴ 〈ψα|n · z|ψα〉 ≡ η = DE
∑
m6=α

|〈J = 0|n · z|J = 1〉|2

B
(1.46)

Only the rotational states contribute significantly, since ∆E ∼ 1GHz, whereas for vi-
brational states, ∆E ∼ 10THz, and it is ∼ 100THz for electronic states. Also, note that
in the last equation above, only mixing between J = 0 and J = 1 states has been con-
sidered. The matrix elements between rotational states of same parity vanish, and higher
states’ mixings contribute lesser and lesser.

Finally, we note that for good sensitivity in the experiment, we need a good polarization
factor, which depends on the PDM of the molecule, the reduced mass of the system, the
bond length, the external field, and how well the molecule aligns with the external field.

A toy example

To get a feel for the numbers involved, let us assume a typical δE ≈ 200µHz [20].
Since δE = δdeEeff , and since Eeff is usually ∼ 109 V/cm, we immediately see that
δde ∼ 8 × 10−28 e cm (after converting Hz to eV, so that δde is in e cm). Now, if the
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effective field is two orders larger, the sensitivity is better by two orders!
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1.4 Summary

To summarize, we have discussed about the eEDM, and why it requires P and T symme-
tries to be violated simultaneously, along with a few other interesting details. We have also
discussed why the eEDM is important. It helps in extending physics beyond SM, using
a non-accelerator approach, and also provides insights in BAU. We also saw how obtain-
ing eEDM requires a combination of both theory and experiment, and how this area of
research connects particle physics, molecular physics, and many-body electronic structure
calculations. We also defined the effective electric field, Eeff , and saw that it can only be
calculated, using relativistic many-body theory. At the end of the chapter, we also briefly
mentioned the role of polarization factor, and got a feel for the numbers that are involved
in the experiment. Since we need to employ many-electron theory in our computations, the
next chapter shall serve as an introduction to it.
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2
MANY-ELECTRON THEORY

2.1 Introduction

Many-electron theory refers to the class of problems in quantum mechanics that involve
two or more electrons. In the present report, we shall be considering atoms or molecules,
which are many-electron systems. Such systems, when treated relativistically, are described
by what are called relativistic many-electron theories. These theories are useful in under-
standing and predicting the behaviour and properties of atoms and molecules. One such
example with atoms or molecules would be finding the electric dipole moment of the elec-
tron. These theories typically involve approximations to the wave function of the atom or
molecule one works with. Only the hydrogen atom has an exact analytical solution. Typi-
cally, we deal with larger atoms or molecules, and therefore make certain approximations,
and then proceed to solve for the atom or molecule’s wave function and other properties.
These theories are also very compute intensive. This report aims to give a brief overview
of some of these many-electron theories.

2.1.1 Born-Oppenheimer approximation

For us to solve electronic structure problems in molecules, we need to solve the Schroedinger’s
(or Dirac’s) equation:

H ′(~r, ~R)ψ(~r, ~R) = E ′ψ(~r, ~R) (2.1)

H’ contains in it the kinetic energy of N electrons, the kinetic energy of M nuclei, the
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electron-nucleus interaction potential, the nucleus-nucleus interaction potential, and finally,
the electron-electron interaction potential term. We do not consider any external fields for
the time being. We make our very first approximation in the choice of the potentials.
Instead of QED terms, we simply use classical Coulombic interactions as a first approxi-
mation. This turns out to be a very good approximation in most cases. Only in rare cases,
such as highly charged ions, for example, the higher order terms, such as the Breit terms
may become important. Now, solving the Schroedinger’s (Dirac’s) equation is a tedious
task, since it is a second order (or first, if it is the Dirac equation) differential equation,
in 3M+3N coordinates. We now make another approximation, the Born-Oppenheimer ap-
proximation, where the idea is that the time scales of motions of the electrons and the nuclei
are different, and since it is the electronic structure that we are interested in, we can only
solve the electronic Schroedinger’s equation, if we treat the slower species on a different
timescale. The slow moving nuclei are ‘frozen’. This can be understood by observing that
the mass of a nucleon is about a thousand times higher than that of an electron, and hence
the kinetic energy term of the former can be ignored. Mathematically, then, we are left
with H’, but without the nuclear kinetic energy term. This equation is called the electronic
Schroedinger’s equation. The nucleus-nucleus term is a constant now, since the nuclei are
fixed, and clamped nuclei means a constant bond length, R.

The approximations in quantum chemistry are at two levels, at the Hamiltonian level,
and at the wave function level. The classical potentials and the Born-Oppenheimer approx-
imation are at the level of the former. At the level of wave functions, we know that only
the H+

2 molecular ion has an exact solution, so we eventually need to resort to approxima-
tions. There are various ways to solve for the wave function, and the nature of the various
approximations depend on the approach taken to solve for the wave function.

2.1.2 Atomic units

We shall adopt atomic units in the computations, since it makes the equations more conve-
nient. It sets ~ = me = e = 4πεo = 1. The Schroedinger and Dirac Hamiltonians then
become, respectively:

HNR = −1

2
∇2 − Z

r
+

1

rij
(2.2)

Hrel = cα · p+ βc2 − Z

r
+

1

rij
(2.3)
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2.2 Hartree-Fock equations

The Hartree-Fock (HF) method is used to obtain the approximate ground state wave func-
tion of a many electron system. Before describing this method, we present the Rayleigh-
Ritz variational principle, on which it is based. The variational principle is used to get an
upper bound on the ground state energy of a system, with Hamiltonian H .

H|Φn〉 = En|Φn〉 (2.4)

Consider a general wavefunction, |ψ〉 =
∑

iCi|Φi〉, with the normalization |C0|2 +
|C1|2 + · · · = 1. Let ε = 〈ψ|H|ψ〉 = 〈H〉. Therefore,

ε = 〈ψ|H|ψ〉

=
∑
i,j

C∗
i Cj〈Φi|H|Φj〉

=
∑
i,j

C∗
i CjEjδij (2.5)

If Ci, Cj ∈ <, then

ε =
∑
i

|Ci|2Ei

= |C0|2E0 + |C1|2E1 + . . . (2.6)

Now,

ε ≥ |C0|2E0 + |C1|2E0 + . . .

= (|C0|2 + |C1|2 + . . . )E0 (2.7)

But, |C0|2 + |C1|2 + · · · = 1, and hence

ε ≥ E0. (2.8)
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Here, ε will be the energy functional, and E0 the ground state energy. 〈H〉 is an overes-
timate of E0, since if ψ happens to be one of the excited states, then obviously 〈H〉 > E0.

For an N electron atom,

H = −~2/2m
n∑

i=1

∇2
i + V Nuclear(ri)+

∑
i>j

e2/rij

=
∑
i

ti +
∑
i>j

vij (2.9)

The approximate ground state wave function, |Φ0〉, can be written in terms of a Slater
determinant:

|Φ0〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φa(1) φa(2) · · · φa(n)

φb(1) φb(2) · · · φb(n)

·
·
·

∣∣∣∣∣∣∣∣∣∣∣∣
(2.10)

Here, ϕa, ϕb, etc are the wave functions of single electrons, and they are referred to as
orbitals. Note that terms as a function of both i and j coordinates are present in H but not
in |Φ0〉. The variational principle is applied by constructing the energy functional given
below, and minimizing it with respect to the individual orbitals. Let us first consider:

ε = 〈Φ0|H|Φ0〉

=
∑
a

〈ϕa(1)|t(1)|ϕa(1)〉+
∑
a 6=b

〈ϕa(1)ϕb(2)|v(1,2)|ϕa(1)ϕb(2)〉

−
∑
a 6=b

〈ϕa(1)ϕb(2)|v(1,2)|ϕb(1)ϕa(2)〉

=
∑
a6=c

〈ϕa(1)|t(1)|ϕa(1)〉+ 〈ϕc(1)|t(1)|ϕc(1)〉

+
∑

a 6=b,a6=c

〈ϕa(1)ϕb(2)|v(1,2)|ϕa(1)ϕb(2)〉

−
∑

a 6=b,a6=c

〈ϕa(1)ϕb(2)|v(1,2)|ϕb(1)ϕa(2)〉

+
∑
b

〈ϕc(1)ϕb(2)|v(1,2)|ϕc(1)ϕb(2)〉
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−
∑
b

〈ϕc(1)ϕb(2)|v(1,2)|ϕb(1)ϕc(2)〉 (2.11)

The second line of the equation is obtained by using the Slater-Condon rules. It is
used to evaluate the matrix elements for determinantal states, for one and two particle
operators [1]. When ϕc −→ ϕc + δϕc, ε −→ ε+ δε. Therefore,

ε+ δε =
∑
a6=c

〈ϕa(1)|t(1)|ϕa(1)〉+ 〈δϕc(1)|t(1)|ϕc(1)〉

+ 〈ϕc(1)|t(1)|δϕc(1)〉+
∑

a 6=b,a6=c

〈ϕa(1)ϕb(2)|v(1,2)|ϕa(1)ϕb(2)〉

−
∑

a 6=b,a 6=c

〈ϕa(1)ϕb(2)|v(1,2)|ϕb(1)ϕa(2)〉

+
∑
b

〈δϕc(1)ϕb(2)|v(1,2)|ϕc(1)ϕb(2)〉

−
∑
b

〈δϕc(1)ϕb(2)|v(1,2)|ϕb(1)ϕc(2)〉

+
∑
b

〈ϕc(1)ϕb(2)|v(1,2)|δϕc(1)ϕb(2)〉

−
∑
b

〈ϕc(1)ϕb(2)|v(1,2)|δϕb(1)ϕc(2)〉 (2.12)

Only the terms that are linear in δϕc are retained. Now,

δε = (ε+ δε)− ε (2.13)

= 〈δϕc(1)|t(1)|ϕc(1)〉+ 〈ϕc(1)|t(1)|δϕc(1)〉

+
∑
b

〈δϕc(1)ϕb(2)|v(1,2)|ϕc(1)ϕb(2)〉

−
∑
b

〈δϕc(1)ϕb(2)|v(1,2)|ϕb(1)ϕc(2)〉

+
∑
b

〈ϕc(1)ϕb(2)|v(1,2)|δϕc(1)ϕb(2)〉

−
∑
b

〈ϕc(1)ϕb(2)|v(1,2)|δϕb(1)ϕc(2)〉 (2.14)

In order to apply the variational principle, a new energy functional is constructed, which
is given by:
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ε′ = ε−
∑
a

εa〈ϕa|ϕa〉 (2.15)

In the above equation, εas are Lagrange multipliers, which are introduced to enforce the
normalization of the orbital, ϕa. Varying ϕc, we get:

δε′ = δε− εc(〈δϕc|ϕc〉+ 〈ϕc|δϕc〉) (2.16)

That is,

δε′ = (〈δϕc(1)|t(1)|ϕc(1)〉 − εc〈δϕc|ϕc〉

+
∑
b

〈δϕc(1)ϕb(2)|v(1,2)|ϕc(1)ϕb(2)〉

−
∑
b

〈δϕc(1)ϕb(2)|v(1,2)|ϕb(1)ϕc(2)〉)

+ (〈ϕc(1)|t(1)|δϕc(1)〉 − εc〈ϕc|δϕc〉

+
∑
b

〈ϕc(1)ϕb(2)|v(1,2)|δϕc(1)ϕb(2)〉

−
∑
b

〈ϕc(1)ϕb(2)|v(1,2)|ϕb(1)δϕc(2)〉) (2.17)

According to the variational principle, since δε′ = 0, and also since |δϕc〉 6= 0 and
〈δϕc| 6= 0, we get:

t(1)|ϕc(1)〉

+
∑
b

〈ϕb(2)|v(1,2)|ϕb(2)〉|ϕc(1)〉

−
∑
b

〈ϕb(2)|v(1,2)|ϕc(2)〉|ϕb(1)〉 = εc|ϕc〉 (2.18)

〈ϕc(1)|t(1)

+
∑
b

〈ϕc(1)|〈ϕb(2)|v(1,2)|ϕb(2)〉

−
∑
b

〈ϕc(1)|〈ϕb(2)|v(1,2)|ϕb(1)〉 = εc〈ϕc| (2.19)
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The above set of coupled equations are called the Hartree-Fock equations. It is impor-
tant to note that there is one equation for each orbital.

Note that the HF approach assumes that one Slater Determinant is sufficient to describe
a wave function of a many-body system. This is not true always, for example, in sys-
tems with, say, two unpaired π electrons, the singlet π, the singlet π∗, and the triplet ππ∗

corresponding to m=1 and -1 can be represented as a single determinant, whereas that cor-
responding to m=0 requires two such determinants. In this thesis, only those systems with
one unpaired electron are considered. Therefore, the HF method is a good approximation.

2.2.1 Interpretation of the Hartree-Fock equations

The equations are interpreted using the information that the potential, φ(~r), experienced by
a particle at a point P, due to a charge distribution, whose charge density is ρ(~r), is given
by:

φ(~r) =

∫
ρ(~r′)dτ ′

|~r − ~r′|
(2.20)

where dτ is the three dimensional volume element at ~r′, and ~r is the distance from the
origin to the point P.

Also, one uses the fact that for a physical system with wavefunction ψ(~r) and with
charge q, the charge density is given by:

ρ(~r) = qψ∗(~r)ψ(~r) (2.21)

where ψ∗(~r)ψ(~r) is the probability density of the system.

Now, with the above information, and substituting v(1,2) = e2

r12
, one can interpret the

Hartree Fock equations as follows:

t(1)ϕc(1)

+
∑
b

∫
r2

ϕ∗
b(2)

e2

r12
ϕb(2)d

3~r2ϕc(1)

−
∑
b

∫
r2

ϕ∗
b(2)

e2

r12
ϕc(2)d

3~r2ϕb(1) = εcϕc
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t(1)ϕc(1)

+
∑
b 6=c

∫
r2

ϕ∗
b(2)

e2

r12
ϕb(2)d

3~r2ϕc(1)

−
∑
b 6=c

∫
r2

ϕ∗
b(2)

e2

r12
ϕc(2)d

3~r2ϕb(1)

+

∫
r2

ϕ∗
c(2)

e2

r12
ϕc(2)d

3~r2ϕc(1)

−
∫
r2

ϕ∗
c(2)

e2

r12
ϕc(2)d

3~r2ϕc(1) = εcϕc

t(1)ϕc(1)

+
∑
b 6=c

∫
r2

ϕ∗
b(2)

e2

r12
ϕb(2)d

3~r2ϕc(1)

−
∑
b 6=c

∫
r2

ϕ∗
b(2)

e2

r12
ϕc(2)d

3~r2ϕb(1) = εcϕc

Now, eϕ∗
b (2)ϕb(2)

r12
is ρb(2)

r12
, and its integral over r2 would be the potential, φb(r1), and

hence the Hartree-Fock equations become:

t(1)ϕc(1) +
∑
b6=c

eUb(1)ϕc(1)

−
∑
b6=c

∫
r2

ϕ∗
b(2)

e2

r12
ϕc(2)d

3~r2ϕb(1) = εcϕc;

Ub(1) =

∫
r2

ρb(2)

r12
d3~r2 (2.22)

In the second term,
∑

b6=c eUb(~r1) is the potential energy of the electron in coordinate 1
and state c, due to (N − 1) electrons’ charge distribution, in coordinate 2. There are a total
of N such equations for the N electrons. So, the Hartree Fock equations can be rewritten
as:

t(1)ϕc(1) + Vdirectϕc(1)− Vexchangeϕb(1) = εcϕc
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It is to be noted that the direct term appears even if the trial wavefunction is a simple
product, that is, the trial wavefunction is not antisymmetrized. It is also to be noted that the
exchange term doesn’t have a classical counterpart, it is a purely quantum effect.

To solve the Hartree Fock equations, one guesses ϕc(2), solve for ϕc(1), substitute it
back into the integral, and continue doing this till the solution converges. However, note
that one only solves for the approximate wavefunction here. This is because although the
Hamiltonian takes into account the electron-electron interaction, the trial wavefunction,
namely the Slater determinant, doesn’t! However, it turns out that if one takes a linear
combination of the Slater determinants, one obtains the exact wavefunction of the system.

2.2.2 Relativistic Hartree-Fock(Dirac-Fock) equations

When one uses the relativistic Hamiltonian; ie, the Dirac-Coulomb Hamiltonian, H takes
the form:

H =
∑

i{cαi.pi + βc2 + V Nuclear
i }+

∑
i>j 1/rij ,

and an orbital (single particle wave function) for the relativistic case can be expressed
as:

ϕ =


ϕ1

ϕ2

ϕ3

ϕ4

 =

(
v

w

)
=

(
g(r)χκm

if(r)χ−κm

)
; (2.23)

where g(r) and f(r) are the large and small components of the wave function, and χκm

represents a spin angular function of J2, JZ , L
2, and S2, and is given by:

χκm =

√
l +m+ 1

2

2l + 1
Ylm− 1

2

(
1

0

)
+

√
l −m+ 1

2

2l + 1
Ylm+ 1

2

(
0

1

)
; l = j − 1

2
(2.24)

χ−κm = −

√
l −m+ 1

2

2l + 1
Ylm− 1

2

(
1

0

)
+

√
l +m+ 1

2

2l + 1
Ylm+ 1

2

(
0

1

)
; l = j +

1

2
(2.25)

instead of the usual non-relativistic one, the same calculations as shown above repeats
with the changed Hamiltonian, and the resulting set of equations are called Dirac-Fock
(DF) equations. These equations are used for relativistic calculations. In the above set of
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equations,

κ = −(l + 1), forj = l +
1

2

= l, forj = l − 1

2
(2.26)

Mathematically, the orbitals are now four-component spinors.

2.2.3 Matrix formulation of Hartree-Fock/Dirac-Fock equations

The mean field equations, i.e HF/DF can be expressed as:

t|ϕc〉+ VDF |ϕc〉 = Ec|ϕc〉; (2.27)

VDF |ϕc〉 =
Nc∑
b=1

〈ϕb|v|ϕb〉|ϕc〉

−
Nc∑
b=1

〈ϕb|v|ϕc〉|ϕb〉 (2.28)

Here, VDF is the HF/DF potential and Nc refers to the number of core orbitals. Note
that the summation is over Nc, and not Nc − 1. Both the former and the latter would be the
same, since when b = c, the second and third terms on the right hand side of VDF cancel
out. Also, the coordinates are left out just for simplicity of writing down the equations, they
are very much present. The above set of equations are for the core. Let |ϕp〉 be a virtual
orbital. Then:

t|ϕp〉+ VDF |ϕp〉 = Ep|ϕp〉; (2.29)

VDF |ϕp〉 =
Nc∑
b=1

〈ϕb|v|ϕb〉|ϕp〉

−
Nc∑
b=1

〈ϕb|v|ϕp〉|ϕb〉 (2.30)

VDF , in this case, is a V N−1 potential, that is, an electron sees a mean potential due to
the other N − 1 electrons, as discussed earlier.

It is possible to combine the two equations into a single equation:
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t|ϕi〉+ VDF |ϕi〉 = Ei|ϕi〉; (2.31)

VDF |ϕi〉 =
Nc∑
b=1

〈ϕb|v|ϕb〉|ϕi〉

−
Nc∑
b=1

〈ϕb|v|ϕi〉|ϕb〉 (2.32)

Here, |ϕi〉 is a general orbital. Now, we want to solve the above equation. Let F ≡
t+ VDF . Then:

F |ϕi〉 = Ei|ϕi〉 (2.33)

Let |ϕi〉 =
∑
n

Cin|χn〉 (2.34)

∴
∑
n

〈χm|F |χn〉Cin = Ei

∑
n

Cin〈χm|χn〉 (2.35)∑
n

FmnCin = Ei

∑
n

SmnCin;Smn = 〈χm|χn〉 (2.36)

FC = ESC (2.37)

FS−1/2S1/2C = ES1/2S1/2C

FS−1/2C ′ = ES1/2C ′

S−1/2FS−1/2C ′ = EC ′

F ′C ′ = EC ′;F ′ = S−1/2FS−1/2 (2.38)

The above equation is an eigenvalue equation. The unknown is C ′. One solves the
above equation to get C ′ and hence C. Now, one needs to construct F .

F = t+ VDF

Fmn = tmn + (VDF )mn (2.39)

tmn = 〈χm|t|χn〉 (2.40)

(VDF )mn = 〈χm|VDF |χn〉 (2.41)

Now,
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VDF |ϕi〉 =
Nc∑
b=1

〈ϕb|v|ϕb〉|ϕi〉 −
Nc∑
b=1

〈ϕb|v|ϕi〉|ϕb〉

|ϕi〉 =
∑
n

Cin|χn〉 (2.42)

|ϕb〉 =
∑
k

Cbk|χk〉 (2.43)

This gives:

VDF

∑
n

Cin|χn〉 =
Nc∑
b=1

(
∑
kln

C∗
bkCbl〈χk|v|χl〉Cin|χn〉

−
∑
kln

C∗
bkCbl〈χk|v|χn〉Cin|χl〉) (2.44)

For a given value of i,

∑
n

〈χm|VDF |χn〉Cn =
Nc∑
b=1

(
∑
kln

CnC
∗
bkCbl〈χmχk|v|χlχn〉

−
Nc∑
b=1

(
∑
kln

CnC
∗
bkCbl〈χmχk|v|χnχl〉) (2.45)

For a given n,

〈χm|VDF |χn〉 =
Nc∑
b=1

(
∑
kl

C∗
bkCbl[〈mk|v|ln〉 − 〈mk|v|nl〉]) (2.46)

=
∑
kl

Pkl[〈mk|v|ln〉 − 〈mk|v|nl〉]; (2.47)

where

m = χm, k = χk, etc, and Pkl =
∑
b

C∗
bkCbl

Pkl is called the density matrix.
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For the relativistic case,

ϕi =

(
ϕlarge

ϕsmall

)
(2.48)

For each of these components, one solves for the coefficients. That means that if there
are N coefficients for the non-relativistic case, then there would be 2N coefficients for the
relativistic case.

So, if one knows the χs, the matrix elements of t, VDF , F , S and F ′ can be constructed.
We now consider the form of χ:

χk(r) ∝ rnke−ζkr
2

(2.49)

For example,

ϕi(r) =
N∑
k=1

Cikχk(r) (2.50)

∴ ϕi(r) =
N∑
k=1

Cikχk(r) ∝
N∑
k=1

Cikr
nke−ζkr

2

(2.51)

The χs are called basis sets, and must be chosen by us, to give as an input to the code/
program, from a suitable database. ζ decides the ‘width’ of the orbital. For example, a
small ζ gives a diffuse function, while a large one a tight function. The former is useful
to account for far nuclear region properties, while the latter for near-nuclear regions. The
basis sets must be kinetically balanced, i.e., the large and small components should satisfy
a proper relationship. [2] The relation is as follows:

ϕL
p =

∑
i

CL
i χ

L
i (2.52)

ϕS
p =

∑
i

CS
i χ

S
i (2.53)

χL = (constant)(
d

dr
+
κ

r
)χS (2.54)

The superscripts, ‘L’ and ‘S’, refer to the large and small components, respectively. We
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shall shortly discuss why kinetic balance is necessary:

When one uses finite basis sets for calculations (of properties like energy, for example),
a common problem that is encountered is that of variational collapse. What this means is
that because the Dirac equation admits negative continuum in its spectrum, during numeri-
cal computations of a bound state, single particle state can have very large negative energy.
When one employs the kinetic balance condition, it ensures that there is no variational col-
lapse, but with errors of the order of c−4 for the total DF energy [3]. Also, kinetic balance
first ensures that the kinetic energy is properly represented in the non-relativistic limit [2].

Lastly, we shall discuss the form of χ. The form written above is called a Gaussian
Type Orbital (GTO). Another alternative is to use Slater Type Orbitals (STOs). They fall
as e−ζkr, and this is closer to the actual hydrogenic wave function. However, computing
molecular matrix elements is far harder than in the case of GTOs, since the latter satisfy
the Gaussian Product Theorem, which tells us that the product of two Gaussians (while
evaluating matrix elements, we either encounter two or four of the GTOs, depending on
whether we want to evaluate one or two electron integrals) gives another Gaussian (with
some other centre) [4]. This means that for a two electron integral, which has four centres
(and hence is also called a four-centre integral), we can apply the product theorem and
reduce it to a two-centre integral. This greatly simplifies the matrix elements, thereby
saving a lot of computational time and effort. Also, one can use a linear combination of
GTOs to mimic an STO! Due to these two major reasons, GTOs are preferred nowadays.

The GTOs can be either centred around nuclei (atom-centred), or somewhere along the
bond length. We use the former. If an atomic orbital is described by one basis function, it is
called a minimal basis. If we use two functions to describe an orbital, it is called a double
zeta (DZ) basis, three is called triple zeta (TZ), and so on. For example, the carbon atom has
5 orbitals, so a minimal basis has 5 functions, DZ has 10, and so on. QZ sets are generally
more accurate than TZ, and TZ more than DZ sets. However, the accuracy comes at heavy
computational cost. If the finite basis sets are expanded sufficiently, and if they approach
towards an infinite set of complete functions, it is referred to as approaching the basis
set limit. Computational complexity severely limits going beyond QZ basis sets for fairly
large molecules. An orbital in a molecule can get polarized (get shifted) in the presence
of another orbital, for example, an s orbital can get polarized by p, etc. Those functions
that polarize orbitals in an atom are called polarizing functions. Dunning et al realized that
basis sets prepared by optimizing them at the HF level may be insufficient for correlation
calculations. Those sets that are optimized using a correlated scheme, like CI, are called
correlation consistent sets. Also, since valence electrons play the major role in chemistry,
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only valence valence correlations are considered, while obtaining basis sets. If all these
factors are put into basis sets, they are called cc-pVNZ (correlation consistent, polarized,
valence N zeta, where N can stand for double, triple, etc). If diffuse functions are added,
a prefix, ‘aug’ is added. Diffuse functions have very small values of ζ, which means that
the Gaussian decays slower, that is, it accounts for regions far away from the nucleus (the
‘tail’ regions of an atomic orbital). This is particularly useful when we evaluate properties
that are sensitive to the far-nuclear region. Most of the above discussions on basis sets can
be found in several resources online, especially Ref.s [5, 6]

2.2.4 Dirac-Fock energy calculations for some atoms

The DF energies of some atoms were calculated using the GRASP2 (General Purpose Rel-
ativistic Atomic Structure Program 2) code. [7] The DF energy is given by :

EDF = 〈Φ0|H|Φ0〉

=
∑
a

〈ϕa(1)|t(1)|ϕa(1)〉+
∑
a 6=b

〈ϕa(1)ϕb(2)|v(1,2)|ϕa(1)ϕb(2)〉

−
∑
a 6=b

〈ϕa(1)ϕb(2)|v(1,2)|ϕb(1)ϕa(2)〉

(2.55)

Here, H is the Dirac-Coulomb Hamiltonian, and the Φ0 is built out of four-component
single particle wave functions, ϕi. ϕa and ϕb refer to the occupied orbitals.

We calculated the energies of the following atoms:

The first column gives the atomic number of the atom. The second column gives the
names of the atoms chosen. The third column gives the DF energies calculated using
GRASP (in au). The fourth column gives the HF energies (in au) [8, 9]. The last column
gives the difference between the HF and the DF energies. Note that as the atomic number
increases, the difference in the energy EDF −EHF increases substantially. This is because
as the atomic number increases, the nuclear charge increases. Hence, the electrons have
to move faster. The higher the velocity of an object, the more the relativistic effects. The
trend in the previous table illustrates the same. Figure 1 shows atomic number (Z) versus
the difference in the energy EDF − EHF

The above table gives the atomic number and the name of the elements, and the expec-
tation values of the 1s and the 2s orbitals (in au). Note that for a given element, the former
is lesser than the latter. This can be explained by the fact that the inner orbital electrons
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Table 2.1

Z Element EDF EHF EDF − EHF
EDF−EHF

EDF
× 100

4 Be -14.57589 -14.57302 −2.87× 10−3 0.02
5 B -24.53661 -24.52906 −7.55× 10−3 0.03

10 Ne -128.69193 -128.54710 -0.14483 0.11
12 Mg -199.93480 -199.61463 -0.32017 0.16
13 Al -242.33112 -241.87671 -0.45441 0.19
18 Ar -528.63762 526.81751 -1.82011 0.34
20 Ca -679.71015 -676.75818 -2.95197 0.43
31 Ga -1942.56614 -1923.26100 -19.30514 0.99
36 Kr -2788.86060 -2752.05500 -36.80560 1.32
38 Sr -3178.07998 -3131.54570 -46.53478 1.46
49 In -5880.43779 -5740.16910 -140.26869 2.38
54 Xe -7446.89516 -7232.1384 -214.75676 2.88
56 Ba -8135.64446 -7883.54380 -252.10066 3.09
70 Yb -14067.67141 -13391.45600 -676.21541 4.81
80 Hg -19468.87432 -18408.99100 -1239.88332 5.44
81 Tl -20269.38272 -18961.82500 -1307.55772 6.45

Figure 2.1: Z vs difference between DF and HF energies

experience more nuclear charge, and hence more attraction, due to which the electrons
move faster. Hence, the inner electrons have more pronounced relativistic effects than the
outer ones. This means that they would experience more length contraction than the outer
electrons.

This can also be understood in the following way: when the velocity of an inner elec-
tron in the vicinity of a nucleus increases, so does its rest mass. The average distance of an
electron from the nucleus is the inverse of the rest mass (the Bohr radius is inversely propor-
tional to the mass of the electron), and hence the orbital contracts. The outer orbitals then
"fall down" towards the contracted inner ones, and hence they too are contracted. In fact,
mercury being a liquid can be explained using this effect. Since the 6s orbital contracts,
it mimics a closed shell, and hence less reactivity, and therefore, the weak Vander-Waal
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Hartree-Fock equations

Table 2.2

Z Element 〈r〉1s 〈r〉2s
4 Be 4.1× 10−1 2.64
5 B 3.25× 10−1 1.97

10 Ne 1.5× 10−1 1.64
12 Mg 1.3× 10−1 6.8× 10−1

13 Al 1.2× 10−1 6.2× 10−1

18 Ar 8.6× 10−2 4.1× 10−1

20 Ca 7.6× 10−2 3.6× 10−1

31 Ga 4.8× 10−2 2.2× 10−1

36 Kr 4.1× 10−2 1.8× 10−1

38 Sr 3.9× 10−2 1.7× 10−1

49 In 2.9× 10−2 1.3× 10−1

54 Xe 2.7× 10−2 1.14× 10−1

56 Ba 2.5× 10−2 1.09× 10−1

70 Yb 1.9× 10−2 8.3× 10−2

80 Hg 1.65× 10−2 6.9× 10−2

81 Tl 1.63× 10−2 6.8× 10−2

88 Ra 1.4× 10−2 6.0× 10−2

bonds between Hg-Hg lead to not a solid, but a liquid.

A more mathematical way to understand this is as follows:

l′ = l

√
1− v2

c2

∴ a′o = ao

√
1− v2

c2

r = 2n2h2εo/meZe
2

∵ n2(h/2π)2 = mvr,

v = Ze2/2nhεo

In atomic units,

v = Z/n ∴ a′o = ao

√
1− Z2

(nc)2

This gives us a relation between the atomic number of the atom, the principal quantum
number of the electron that we are considering, and the length contracted atomic orbital.
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This result is not too different in molecules.
Also, note that as the atomic number increases, for a given orbital, the expectation value

decreases. This also can be explained by the fact that for a given orbital, more the atomic
number, more the nuclear charge experienced, and greater the speed of the electrons. And
since the faster electrons experience more relativistic effects than slower ones, the orbitals
of a heavier element is expected to experience more length contraction.
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2.3 Electron correlation

Electron correlation refers to the physical effects beyond those embodied in the mean field
approximation. In other words, we must take into account not just the interaction of an
electron with a mean potential due to other electrons, but its instantaneous interaction with
each of the remaining electrons. In the real space, electrons scatter, and this, in the or-
bital picture, is viewed as excitations from an occupied orbital to an unoccupied (virtual)
one [10].

If E is the actual energy of a many-electron system, that is, E is the energy that is
obtained by solving the Schroedinger’s equation exactly, and if EDF is the energy obtained
for the same system at the DF level, then the correlation energy is given by:

Ecorr = E − EDF (2.56)

Examples of many-electron theories that take electron correlation into account are:
Configuration interaction (CI), Multi-Configuration Hartree-Fock (MCHF), Many-Body
Perturbation Theory (MBPT), Coupled Cluster Methods (CCM), and their relativistic ex-
tensions.
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2.4 Configuration Interaction

Consider a wavefunction, |ψ〉, such that:

|ψ〉 = c1|Φ1〉+ c2|Φ2〉 (2.57)

So, 〈ψ| = 〈Φ1|c1 + 〈Φ2|c2 (2.58)

c1 and c2 are assumed to be real in the above case. c1 and c2 are the unknowns, and |ϕ1〉
and |ϕ2〉 are known. Let the energy functional to be minimized be ε.

ε = 〈ψ|H|ψ〉 − E〈ψ|ψ〉 (2.59)

The Lagrange multiplier imposes the constraint that the wave function will be normal-
ized.

x = 〈ψ|H|ψ〉 (2.60)

= (〈Φ1|c1 + 〈Φ2|c2)H(c1|Φ1〉+ c2|Φ2〉)

= 〈ψ1|c1Hc1|Φ1〉+ 〈ψ1|c1Hc2|Φ2〉

+ 〈ψ2|c2Hc1|Φ1〉+ 〈ψ2|c2Hc2|Φ2〉

= c21〈Φ1|H|Φ1〉+ c1c2〈Φ1|H|Φ2〉

+ c2c1〈Φ2|H|Φ1〉+ c22〈Φ2|H|Φ2〉 (2.61)

If we call 〈Φ1|H|Φ1〉 as H11, and so on, for short-hand. Also, Hij is a number. So are
c1 and c2. So, they commute. Also, H is Hermitian, and hence H12 = H21. Therefore:

〈ψ|H|ψ〉 = c21H11 + 2c1c2H12 + c22H22 (2.62)
δε

δc1
= 0 =⇒ 2c1H11 + 2c2H12 = 2Ec1 (2.63)

δε

δc2
= 0 =⇒ 2c2H22 + 2c2H21 = 2Ec2 (2.64)

That is,
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(
H11 H12

H21 H22

)(
c1

c2

)
= E

(
c1

c2

)
(2.65)

This is basically an eigenvalue problem.
The above set of equations can be generalized to any number of configurations:

|ψ〉 = c0|Φ0〉+
∑
ia

cai |Φa
i 〉+

∑
a.b,i.j

cabij |Φab
ij 〉+ . . . (2.66)

= (c0 +
∑
ia

cai a
†i+

∑
a.b,i.j

cabij a
†b†ji+ . . . )|Φ0〉 (2.67)

= (c0 +C1 +C2 + . . . )|Φ0〉 (2.68)

Note that in the notation that we have adopted, we are not explicitly indicating the cre-
ation and annihilation operators in bold font. The entire analysis can be extended to its rel-
ativistic version, where one uses the Dirac-Coulomb Hamiltonian, and the non-relativistic
wave function is replaced by the four-component one, just as we had discussed in the sec-
tion that describes the HF method.
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2.5 Multiconfiguration Hartree-Fock(MCHF)

In CI, the single particle orbitals, ϕs, are known, and the coefficients are the unknowns, and
one varies the energy functional with respect to the coefficients. In SCF (example: HF/DF),
the ϕs are unknown, the coefficient is known, and one varies the energy functional with
respect to the ϕs. In multiconfiguration Hartree-Fock/Dirac-Fock(MCHF/DF), the energy
functional is varied with respect to both the ϕs and the coefficients.

ε = 〈ψ|H|ψ〉 −
∑
a

εa〈ϕa|ϕa〉; (2.69)

|ψ〉 =
∑
n

Cn|Φn〉 (2.70)

∴ ε =
∑
mn

CmCn〈Φm|H|Φn〉 −
∑
a

εa〈ϕa|ϕa〉 (2.71)

Here, |Φn〉 is the nth Slater determinant. The single particle orbitals in the Slater deter-
minants can be either occupied or virtual. Note that in the HF/DF case, the single particle
orbitals are all occupied.

The variational parameters in MCHF/DF are both the single particle orbitals and the
coefficients. The equations obtained by varying the orbitals and the coefficients are respec-
tively:

hMCHF/DF |ϕi〉 = εi|ϕi〉 (2.72)

HC = EC (2.73)

The single-particle Hamiltonian, hMCHF/DF , contains the generalized direct and ex-
change potentials, which depend on the orbitals and the coefficients. Here, both the orbitals
and the coefficients are guessed, then substituted into the above two equations. The first
equation gives new orbitals, and the second new coefficients, which are in turn put into the
equations as the second set of guesses. This is done iteratively till the solutions converge.

Again, this too can be extended into the relativistic domain.
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2.6 Many Body Perturbation Theory

If H0 is the unperturbed Hamiltonian, and E0 the mean field(Hartree-Fock/Dirac-Fock)
energy, then the unperturbed Schroedinger equation would be:

H0|ψ0〉 = E0|ψ0〉; (2.74)

H0 =
∑
i

ti +
∑
i

V DF
i

The Schroedinger equation corresponding to the actual wavefunction of the system
would be:

H|ψ〉 = E|ψ〉; (2.75)

H =
∑
i

ti +
∑
ij

1

rij

∴ H ′ = H −H0

=
∑
ij

1

rij
−
∑
i

V DF
i (2.76)

And, |ψ〉 = |Φ0〉+ |Φ(1)
0 〉+ |Φ(2)

0 〉+ . . . (2.77)

where |ϕ(1)
0 〉 contains one order of H ′, |ϕ(2)

0 〉 contains two orders of H ′, etc.
This holds for both the relativistic (denoted by the subscript rel) and non-relativistic

cases (denoted by the subscript NR).

ti,NR = −~2/2
n∑

i=1

∇2
i + V Nuclear(ri) (2.78)

ti,rel =
∑
i

cαi.pi + βc2 + V Nuclear
i (2.79)

One can also use a relativistic version of MBPT, as described in earlier sections.
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Many-Electron Theory

2.7 Coupled Cluster Method

The coupled cluster method’s wave function is given by:

|ψ〉 = eT |Φ0〉 (2.80)

Here, T is called the cluster operator. This method is considered to be the gold standard
of electronic structure theory. Since this is the method that will be employed in the work
related to this thesis, this approach shall be discussed elaborately in the next chapter.
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2.8 Summary

This chapter was an introduction to many-electron theory. The chapter begins with the
Born-Oppenheimer approximation, and atomic units. We discussed the Hartree-Fock method
in detail, since it is this wavefunction that is chosen as the model state for coupled clus-
ter calculations, in the subsequent chapters. The subsections included the interpretation of
the HF/DF equations, matrix formalism, and also DF calculations in some atoms, that il-
lustrated the importance of relativistic effects. We then discussed electron correlation, and
some theories that take into account this phenomenon. We conclude the chapter with a very
brief section on the coupled cluster method. The next chapter will elaborate on it in great
detail. It will also discuss our implementation of the method for problems of our interest.
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3
THE COUPLED CLUSTER METHOD

3.1 The Coupled Cluster wave function

The coupled cluster method (CCM) is the current gold standard of all electronic structure
calculations. It is a non-perturbative approach. The coupled cluster ansatz is:

|ψ〉 = eT |Φ0〉 (3.1)

where Φ0 refers to the Hartree-Fock or Dirac-Fock wavefunction. Consider the atom
Beryllium (Be) as an example to describe the coupled cluster method. The 1s and 2s orbitals
have two electrons each, and these together are called occupied orbitals. The orbitals 2p,
3s, and so on, are called unoccupied or virtual orbitals. Now, electron correlations involve
interactions between electrons leading to virtual excitations. In this case, the electrons
from the 1s and 2s orbitals interact and lead to virtual excitations of one or more of these
electrons into the virtual orbitals. All the occupied orbitals are called holes, and all the
virtual orbitals are called particles, pretty much in the sense of an excited particle leaving
behind a hole. This is the standard notation. In the above expression, Φ0, which is in fact
the Fermi vacuum, is taken as the model state, that is, a state on which some operator(s)
act to lead to the virtual excitations. In this case, the states 1s and 2s constitute the model
state, and some operator(s) act on them to excite them to different virtual states.

Let us consider a single excitation, that is, one of the electrons get excited to some
virtual orbital. This is also called a one hole-one particle excitation, because the electron
that gets excited leaves behind a hole, creating a particle in that virtual orbital to which it
is excited. Mathematically, this can be described as an annihilation operator acting on the
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The Coupled Cluster Method

model state to destroy an electron from it, and a creation operator acting on this state to
create a particle in some virtual orbital:

|Φa
i 〉 = a†aai|Φ0〉 (3.2)

= a†i|Φ0〉 (3.3)

The above equation basically says that a hole i from the Fermi vacuum goes to a particle
a, leading to the state |Φa

i 〉. The notation of aa being replaced by just a, and ai by just i is
used in the last line of the above equation. Also, we adopt the notation where the creation
and annihilation operators are not represented in bold, like the other operators. Note that
since a single excitation, say, from 2s to 3s is easier than one from 1s to 3s, the former has
more weightage when one writes down the probability amplitude for these excitations. Let
us call that weight tai . Also, since any one of the four electrons in the Fermi vacuum can
get excited to any of the virtual orbitals, we consider all possible single excitations. Hence,
we obtain the following amplitude for all possible single excitations:

∑
ia

tai |Φa
i 〉 (3.4)

We sum over all possible single excitations in the sense that either a single excitation
occurs from 1s to 3s, or a single excitation can occur from 1s to 3p, and so on. In other
words, it means that each of these excitations are independent events where either of them
occur, but not more than one simultaneously.

In a similar way, one also takes into account double excitations, or two hole- two par-
ticle excitations. They give rise to the amplitude, based on arguments similar to that pre-
sented for single excitations:

∑
i>j,a>b

tabij |Φab
ij 〉 (3.5)

Likewise, one can write down amplitudes for triple excitations and quadruple excita-
tions. For Beryllium, the highest excitation possible is a quadruple excitation. But for
atoms with more electrons, it goes higher accordingly. So, in general, one obtains for the
probability amplitude:
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The Coupled Cluster wave function

|ψ〉 = |Φ0〉+
∑
ia

tai |Φa
i 〉+

∑
i>j,a>b

tabij |Φab
ij 〉+ . . . (3.6)

= |Φ0〉+ T1|Φ0〉+ T2|Φ0〉+ . . . (3.7)

where T1 =
∑

ia t
a
i a

†i, etc. Here, T1, T2, etc are called clusters.
One notices that there can be more possible excitations. For example, there can be two

one hole-one particle excitations happening simultaneously. The amplitude for such an
excitation would be given by:

∑
i>j,a>b

tai t
b
j|Φab

ij 〉 =
1

2!
T 2
1 |Φ0〉 (3.8)

The factor of 1
2!

is to avoid overcounting. Likewise, one gets 1
3!
T 3
1 , 1

4!
T 4
1 , etc. Also,

there would be terms like 1
3!
T 3
2 , 1

4!
T 4
2 , etc.

There can also be terms that involve simultaneous single and double excitations, single
and triple excitations, and so on. Each of those terms that contain T1T2, T 2

2 , etc are said
to be coupled clusters. For example, the coupled cluster T1T2 contains the clusters T1 and
T2.

When one takes all of these excitations into account, the probability amplitude auto-
matically takes an exponential form:

|ψ〉 = eT |Φ0〉 (3.9)

which is the coupled cluster wave function!
The coupled cluster method is valid both in the non-relativistic and the relativistic

regimes. For the relativistic case, the reference state, |Φ0〉, is a determinantal state, which
is built out of 4-component orbitals (single particle wave functions). Also, the Hamiltonian
typically contains the one-electron Dirac terms and the two-electron Coulomb interactions.
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3.2 Baker Campbell Hausdorff expansion

The expansion is given by:

e−TAeT =
∞∑
n=0

1

n!
[A,T ](n) (3.10)

A and T are operators. Also, [A,T ](n) = [[A,T ](n−1),T ].
Proof of Baker Campbell Hausdorff (BCH) expansion:
Let A′(λ) ≡ e−λTAeλT .

d

dλ
A′(λ) = −e−λTTAeλT + e−λTAT eλT

= e−λT (AT − TA)eλT

= e−λT [A,T ]eλT

d2

dλ2
A′(λ) = −e−λTT [A,T ]eλT + e−λT [A,T ]T eλT

= e−λT [[A,T ],T ]eλT , etc.

∴ A′(λ) = A′(0) + λ
d

dλ
A′(0) +

1

2!
λ2

d2

dλ2
A′(0) + . . .

= A+ λ[A,T ] +
1

2!
λ2[[A,T ],T ] + . . .

A′(1) = A+ [A,T ] +
1

2!
[[A,T ],T ] + . . .

or, e−TAeT = A+ [A,T ] +
1

2!
[[A,T ],T ] + . . .

=
∞∑
n=0

1

n!
[A,T ](n) (3.11)
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3.3 The linked cluster theorem

We first begin with a few basic ideas that will be used in the proof of the linked cluster
theorem. Let ABC . . . represent a string of creation and annihilation operators. Then, the
normal product of this string is defined by: {ABC . . . } : i† and a to the right of other
operators, that is, all hole creation and particle annihilation operators are to the right of the
other operators in the string. It follows that:

〈Φo|{ABC . . . }|Φ0〉 = 0 (3.12)

This is because further holes cannot be created in the Fermi vacuum, and particles
cannot be destroyed from it since there is none.

Contraction of two general operators p† and q is defined by:

︷︸︸︷
p†q = p†q − {p†q} (3.13)

Consider the cases where p and q are particles, and the cases where they are holes, with
either p or q serving as a creation operator, and the other as an annihilation operator:

Case 1:

ba† = {ba†}+
︷︸︸︷
ba† (3.14)

Now, [a†, b]+ = δab, that is, ba† = −a†b + δab. So, {ba†} = −a†b. Hence, ba† =

−a†b+
︷︸︸︷
ba† . Therefore,

︷︸︸︷
ba† = δab (3.15)

Case 2:
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a†b = {a†b}+
︷︸︸︷
a†b (3.16)

Note that {a†b} = a†b (3.17)

∴
︷︸︸︷
a†b = 0 (3.18)

Case 3:

i†j = {i†j}+
︷︸︸︷
i†j (3.19)

Note that {i†j} = −ji† (3.20)

∴
︷︸︸︷
i†j = δij (3.21)

Case 4:

ij† = {ij†}+
︷︸︸︷
ij† (3.22)

Note that {ij†} = ij† (3.23)

∴
︷︸︸︷
ij† = 0 (3.24)

Wick’s theorem tells that if ABC . . . are a string of creation and annihilation operators,
then:

ABC . . . = {ABC . . . }+
∑

single contractions

︷︸︸︷
ABCDE . . .

+
∑

double contractions

︷︸︸︷
AB

︷︸︸︷
CDE . . .+ . . . (3.25)

〈Φ0|ABC . . . |Φ0〉 =
∑

fully contracted products

〈Φ0|

︷ ︸︸ ︷
A

︷ ︸︸ ︷
B
︷ ︸︸ ︷
C . . .|Φ0〉 (3.26)

Normal product form of an operator, A, is defined also by:
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AN = A− 〈Φ0|A|Φ0〉 (3.27)

For the Hamiltonian,

HN = H − 〈Φ0|H|Φ0〉 (3.28)

The normal ordered Hamiltonian is, in second quantized form:

HN =
∑
pq

hpq{p†q}+
1

4

∑
pqrs

〈pq||rs〉p†q†sr; (3.29)

〈pq||rs〉 = 〈pq|v|rs〉 − 〈pq|v|sr〉 (3.30)

An object is defined as an arbitrary operator containing the same number of creation
and annihilation operators standing inside a normal product. Let A and B be two different
objects. From the generalized Wick’s theorem:

AB = {AB}+
︷︸︸︷
AB (3.31)

BA = {BA}+
︷︸︸︷
BA (3.32)

Since A and B are made up of even number of creation and annihilation operators, one
obtains:

{AB} = {BA}

Then,

AB −BA = [A,B] (3.33)

= {AB}+
︷︸︸︷
AB−{BA} −

︷︸︸︷
BA (3.34)

=
︷︸︸︷
AB−

︷︸︸︷
BA (3.35)

Now, consider the Schroedinger equation:
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H|ψ〉 = E|ψ〉 (3.36)

HeT |Φ0〉 = EeT |Φ0〉 (3.37)

e−THeT |Φ0〉 = E|Φ0〉 (3.38)

Let us consider the part e−THeT from the right hand side. Let us use an object, A, for
a more general treatment. Then, from the Baker Campbell Hausdorff expansion seen in the
previous section, one obtains:

e−TAeT =
∞∑
n=0

1

n!
[A,T ](n) (3.39)

The first term, which would be just A, is connected, since it is just a single piece. The
second term would be:

[A,T ] =
︷︸︸︷
AT −

︷︸︸︷
TA

Now, a normal ordered operator is defined in two ways:

AN = A− 〈Φ0|A|Φ0〉 (3.40)

AN = A−
︷︸︸︷
A (3.41)

∴
︷︸︸︷
A = 〈Φ0|A|Φ0〉 (3.42)

This would mean that the second term in [A,T ] would be zero, since
︷︸︸︷
TA = 〈Φ0|TA|Φ0〉,

and the action of a cluster operator T on the bra model state gives a zero.

The second term is zero, since a particle creation operator acting on the bra model state
gives a zero. Therefore,

[A,T ] =
︷︸︸︷
AT

The third term gives:

[A,T ](2) = [[A,T ],T ]

= [
︷︸︸︷
AT ,T ]

=

︷ ︸︸ ︷︷︸︸︷
AT T −

︷ ︸︸ ︷︷︸︸︷
TA T
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=

︷ ︸︸ ︷︷︸︸︷
AT T (3.43)

The above result uses the fact that the contraction between two T s is zero. In general,

[A,T ](n) =

︷ ︸︸ ︷︷ ︸︸ ︷
AT . . . T (3.44)

Therefore, one can write:

e−TAeT = {AeT}c (3.45)

where the subscript c indicates that only the connected terms are taken into account.
This is the linked cluster theorem.

There are two approaches to obtaining the energy and amplitude equations. One is
the algebraic approach, where one uses the idea of the BCH expansion and the fact that
the commutators terminate after certain number of terms, depending on the operator in
question. The second is the diagrammatic approach, where one uses the linked cluster
theorem to rewrite e−TAeT as {AeT}c, and then use the idea of level of excitation to obtain
the energy and amplitude equations through Feynman-like diagrams, called the Goldstone
diagrams.
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3.4 Energy and amplitude equations

H|ψ〉 = E|ψ〉 (3.46)

(H − EDF )|ψ〉 = (E − EDF )|ψ〉;EDF = 〈Φ0|H|Φ0〉 (3.47)

HN |ψ〉 = ∆E|ψ〉 (3.48)

HNe
T |Φ0〉 = ∆EeT |Φ0〉 (3.49)

e−THNe
T |Φ0〉 = ∆E|Φ0〉 (3.50)

∴ ∆E = 〈Φ0|e−THNe
T |Φ0〉 (3.51)

And, 〈Φab...
ij... |e−THNe

T |Φ0〉 = 0 (3.52)

The last two equations are called the energy and amplitude equations.
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3.5 Coupled Cluster Singles and Doubles approximation:
energy and amplitude equations

In the CCM, if one takes T = T1 + T2, then it is called the Coupled Cluster Singles and
Doubles (CCSD) approximation, that is, only the single and double excitations are taken
into account. The energy equation remains the same, but there would only be two amplitude
equations:

〈Φ0|e−THNe
T |Φ0〉 = ∆E (3.53)

〈Φa
i |e−THNe

T |Φ0〉 = 0 (3.54)

〈Φab
ij |e−THNe

T |Φ0〉 = 0 (3.55)

Consider the energy equation:

∆E = 〈Φ0|e−THNe
T |Φ0〉 (3.56)

= 〈Φ0|(HNe
T )c|Φ0〉 (3.57)

Now, in the above equation, if we expand the series eT , we see that the first term
〈Φ0|HN |Φ0〉 = 0. This is because the normal ordered Hamiltonian has hole creation and
particle annihilation operators to its right, which act on the ket Fermi vacuum to give zero.
Also, terms from T3 and beyond, as well as their higher powers do not contribute. Also,
T 2
2 and higher powers do not contribute. And T 3

1 and higher powers do not contribute.
This can be seen using the idea that the maximum number of operators the normal ordered
Hamiltonian can have is four, and that those terms of T that have beyond four operators
cannot contract fully with HN . Therefore, one gets:

∆E = 〈Φ0|HNT1 +HNT2 +HN
T 2
1

2!
|Φ0〉 (3.58)

To obtain a more specific form, one uses the fact that the normal ordered Hamiltonian
is made up of a one-electron part and a two-electron part. Then, one sees that the energy
equation for CCSD takes the form:
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∆E =
∑
ia

fiat
a
i +

1

4

∑
a>b,i>j

〈ij||ab〉tabij

+
1

2

∑
a>b,i>j

〈ij||ab〉tai tbj (3.59)

In a similar way, we obtain the amplitude equations for CCSD:

Singles amplitude equation:

∑
c

fact
c
i −
∑
k

fkit
a
k +

∑
kc

〈ka||ci〉tck +
1

2

∑
kcd

〈ka||cd〉tcdki −
1

2

∑
kcl

〈kl||ci〉tcakl

+
∑
kcd

〈ka||cd〉tcktdi −
∑
kcl

〈kl||ci〉tcktal −
∑
klcd

〈kl||cd〉tcktdi tal +
∑
klcd

〈kl||cd〉tcktdali

−1

2

∑
klcd

〈kl||cd〉tcdkital −
1

2

∑
klcd

〈kl||cd〉tcakl tdi tdi = 0 (3.60)

Doubles amplitude equation:

∑
c

〈ab||cj〉tci −
∑
c

〈ab||ci〉tcj −
∑
k

〈kb||ij〉tak +
∑
k

〈ka||ij〉tbk

+
∑
c

fbct
ac
ij −

∑
c

fact
bc
ij −

∑
k

fkjt
ab
ik +

∑
k

fkit
ab
jk +

1

2

∑
kl

〈kl||ij〉tabkl +
1

2

∑
cd

〈ab||cd〉tcdij

+
∑
kc

〈kb||cj〉tacik −
∑
kc

〈kb||ci〉tacjk −
∑
kc

〈ka||cj〉tbcik +
∑
kc

〈ka||ci〉tbcjk

+
∑
kc

〈ak||ci〉tcbjk −
∑
kc

〈bk||ci〉tcajk +
1

2

∑
kl

〈kl||ij〉taktbl −
1

2

∑
kl

〈kl||ij〉tbktal

+
1

2

∑
cd

〈ab||cd〉tci tdj −
1

2

∑
cd

〈ab||cd〉tcjtdi −
∑
kc

〈kb||ic〉taktcj +
∑
kc

〈kb||jc〉taktci

+
∑
kc

〈ka||ic〉tbktcj −
∑
kc

〈ka||jc〉tbktci +
1

2

∑
klcd

〈kl||cd〉tacik tdblj − 1

2

∑
klcd

〈kl||cd〉tacjktdbli

−1

2

∑
klcd

〈kl||cd〉tbciktdalj +
1

2

∑
klcd

〈kl||cd〉tbcjktdali +
1

4

∑
klcd

〈kl||cd〉tcdij tabkl −
1

2

∑
klcd

〈kl||cd〉tacij tbdkl

+
1

2

∑
klcd

〈kl||cd〉tbcij tadkl −
1

2

∑
klcd

〈kl||cd〉tabik tcdjl +
1

2

∑
klcd

〈kl||cd〉tabjktcdil −
1

2

∑
klcd

〈kl||cd〉tacil tdbkj

+
1

2

∑
klcd

〈kl||cd〉tbcil tdakj −
1

2

∑
klcd

〈kl||cd〉tacik tbdlj +
1

2

∑
klcd

〈kl||cd〉tbciktadlj +
1

2

∑
klcd

〈kl||cd〉tackitbdlj
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−1

2

∑
klcd

〈kl||cd〉tackjtbdli +
1

2

∑
klcd

〈kl||cd〉tcail tdbkj −
1

2

∑
klcd

〈kl||cd〉tcbil tdakj −
1

2

∑
klcd

〈kl||cd〉tackl tdbij

+
1

2

∑
klcd

〈kl||cd〉tackl tdbji +
1

2

∑
kcd

〈kb||cd〉tcjtdi tak +
1

2

∑
kcd

〈ka||cd〉tci tdj tbk −
1

2

∑
kcd

〈kb||cd〉tci tdj tak

−1

2

∑
kcd

〈ka||cd〉tcjtdi tbk +
1

2

∑
kcl

〈kl||cj〉tci tbl tak −
1

2

∑
kcl

〈kl||cj〉tci tbktal −
1

2

∑
kcl

〈kl||ci〉tcjtbl tak

+
1

2

∑
kcl

〈kl||ci〉tcjtbktal −
∑
kcl

〈kl||ci〉tcktablj +
∑
kcl

〈kl||cj〉tcktabli +
∑
kcd

〈ka||cd〉tcktdbij

−
∑
kcd

〈kb||cd〉tcktdaij +
∑
kcd

〈ak||dc〉tdi tbcjk −
∑
kcd

〈ak||dc〉tdj tbcik −
∑
kcd

〈bk||dc〉tdi tacjk

+
∑
kcd

〈bk||dc〉tdj tacik +
∑
kcl

〈kl||ic〉tal tbcjk −
∑
kcl

〈kl||jc〉tal tbcik −
∑
kcl

〈kl||ic〉tbl tacjk

+
∑
kcl

〈kl||jc〉tbl tacik +
1

2

∑
kcl

〈kl||cj〉tci tabkl −
1

2

∑
kcl

〈kl||ci〉tcjtabkl −
1

2

∑
kcd

〈kb||cd〉taktcdij

+
1

2

∑
kcd

〈ka||cd〉tbktcdij +
∑
kcd

〈ak||dc〉tci tdbjk −
∑
kcd

〈ak||dc〉tcjtdbik +
∑
kcl

〈kl||ic〉taktcblj

−
∑
kcl

〈kl||ic〉tbktcalj −
∑
kcb

〈ak||bc〉tcjtbdik +
∑
kcb

〈ak||bc〉tci tbdjk −
∑
kcl

〈kl||cj〉tcl tabki

+
∑
kcl

〈kl||cj〉tcl tbaki −
∑
kcd

〈ka||cd〉tdktcbij +
∑
kcd

〈ka||cd〉tdktcbji −
∑
kcl

〈kl||ic〉taktcbjl

+
∑
kcl

〈kl||ic〉tbktcajl +
∑
kcld

〈kl||cd〉tci taktdj tbl −
∑
kcld

〈kl||cd〉tcktdi tablj +
∑
kcld

〈kl||cd〉tcktdj tabli

−
∑
kcld

〈kl||cd〉tcktal tdbij +
∑
kcld

〈kl||cd〉tcktbl tdaij +
1

2

∑
kcld

〈kl||cd〉tci tdj tabkl −
1

2

∑
kcld

〈kl||cd〉tcjtdi tabkl

+
1

2

∑
kcld

〈kl||cd〉taktbl tcdij −
1

2

∑
kcld

〈kl||cd〉tbktal tcdij −
∑
kcld

〈kl||cd〉tci taktdblj +
∑
kcld

〈kl||cd〉tcjtaktdbli

+
∑
kcld

〈kl||cd〉tci tdktablj −
∑
kcld

〈kl||cd〉tci tdktbalj +
∑
kcld

〈kl||cd〉taktdi tcblj −
∑
kcld

〈kl||cd〉tdj taktcbli

+
∑
kcld

〈kl||cd〉tci taktdbjl −
∑
kcld

〈kl||cd〉tci tbktdalj = 0(3.61)

One of the common criticisms of the truncated CCM is that it is not variational, and
hence, we cannot say how reliable the energies that we obtain by solving them are. This is
because unlike a variational theory, the calculated energy is not an upper bound to the exact
energy. However, we can address this in the following way: full CI is variational, and full
CI and full CC give the same energy. And if CCSD, for example, is a good approximation
to full CC (as we shall see subsequently, by comparing CC with MBPT), then we expect
the energy obtained from CCSD to be close to that from full CC. And therefore, the CCSD
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energy is indeed reliable.
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3.6 CCM vs MBPT

We begin by examining the MBPT wave function, and then connecting it with the CCM
terms:

|ψ〉MBPT = |Φ0,α〉+ |Φ(1)
α 〉+ |Φ(2)

α 〉+ · · · (3.62)

|Φ(1)
α 〉 =

∑
S

(C
(1)
S +C

(1)
D + . . . )|Φ0,α〉 (3.63)

|Φ(2)
α 〉 =

∑
S

(C
(2)
S +C

(2)
D + . . . )|Φ0,α〉 (3.64)

We are basically rewriting the perturbative corrections to the wave function at a particu-
lar order as a summation over single, double, · · · excitations, at that order. This is justified,
since if we take the corrections to the wave functions in this form, to all orders, and add
them up, we get back the coupled cluster wave function. This already tells us that CCSD,
for example, contains in it single and double excitations, to all orders of perturbation in the
residual Coulomb interaction.

Now, let us consider the first order correction to the wave function, in MBPT:

|Φ(1)
α 〉 =

∑
n6=α

|Φn〉〈Φn|H ′|Φ0,α〉
Eα − En

(3.65)

H ′ = v − vHF (3.66)

If |Φn〉 = |Φa
i 〉, then note that the bra is a one-hole one-particle excitation, while the ket

is the reference state. Therefore, this matrix element represents T1. Specifically, it is that
part of T1 that is contained in C

(1)
s .

If |Φn〉 = |Φab
ij 〉, then:

〈Φn|H ′|Φ0,α〉 = 〈ab|v|ij〉 − Exch (3.67)

This is like T2, more specifically the part of T2 that is contained in C
(1)
D .

The second order correction to the wave function, in MBPT, is:

62



The Coupled Cluster Method

|Φ(2)
α 〉 =

∑
m,n6=α

|Φn〉〈Φn|H ′|Φm〉〈ψm|H ′|Φ0,α〉
(Eα − En)(Eα − Em)

(3.68)

We can already see that if Φn is a Slater determinant with two holes excited to two par-
ticles, and if Φm is one with one-hole one-particle excitation, then both the matrix elements
look like T1 each, and therefore the entire term is like the part of T 2

1 , which is contained in
C

(2)
D . Note that if Φn is a single excitation determinant, while Φm is double, then we obtain

a term that contains in it T1T2. This mapping can be repeated for all the other excitations.
Note that this way of looking at CC helps us to intuitively identify which excitations may
be important (for energy calculations). Consider an example, both T1 and T2 occur in first
order in perturbation, while T 2

! occurs in second. Since in perturbation theory, the second
order correction is supposed to be smaller than the first, this analysis points that T1 and T2

may be more important than T1T2.
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3.7 CCM vs CI

In CI, consider the Configuration Interaction Singles Doubles (CISD) approximation:

C1 = T1

C2 = T 2
1 + T2 (3.69)

On the other hand, with the same level of hole-particle excitations, |ψCCSD〉 = e(T1+T2)|Φ0〉.
We see that the CCSD approximation contains all the powers of T1 and T2. This is due to
the exponential nature of the CCSD wave function. Of course, in an actual calculation, we
cannot take into account all the terms.

CCM is size extensive independent of the level of truncation. Only full CI is size
extensive, any truncation to it makes it lose the property of size extensivity. Consider an N
particle system with the ground state wave function |ψ〉. If the system is made up of two
sub-systems, A and B, such that there are Na particles in A and NB particles in B, then at
r → ∞, HAB −→ HA +HB; [HA,HB] = 0. That would imply that:

EAB = EA + EB (3.70)

|ψ〉 = |ψA〉 ⊗ |ψB〉 (3.71)

A system is said to be size extensive if it satisfies the above two equations.

Now, consider the SUBn scheme, that is, the m-body partitions of the operator S (for
CCM) or F (for CI) are truncated, such that one retains only the components with m ≤ n.
All the higher partitions m > n is set to zero. Consider the SUB2 scheme. In CCM, it is
the CCSD approximation:

|ψ〉 = eT |Φ0〉

= eTA+TB |Φ0〉

= eT
A
1 +TA

2 +TB
1 +TB

2 |Φ0〉 (3.72)

Now,
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|ψA〉 ⊗ |ψB〉 = eTA|ΦA
0 〉 ⊗ eTB |ΦB

0 〉

= eTA+TB |ΦA
0 〉 ⊗ |ΦB

0 〉

= eTA+TB |Φ0〉

= eT
A
1 +TA

2 +TB
1 +TB

2 |Φ0〉 (3.73)

Both the expressions for |ψ〉 are the same.
For CISD (Configuration Interaction Singles and Doubles) scheme:

|ψ〉 = (1 +C1 +C2)|Φ0〉

= (1 +CA
1 +CB

1 +CA
2 +CB

2 )|Φ0〉 (3.74)

Now,

|ψA〉 = (1 +CA
1 +CA

2 + . . . )|Φ0〉

|ψB〉 = (1 +CB
1 +CB

2 + . . . )|Φ0〉

|ψA〉 ⊗ |ψB〉 = (1 +CB
1 +CB

2 +CA
1 +CA

1 C
B
1 +CA

1 C
B
2

+ CA
2 +CA

2 C
B
1 +CA

2 C
B
2 )|Φ0〉 (3.75)

Clearly, the above two expressions for |ψ〉 are not the same. Hence, CISD is not size
extensive. In a similar way, it can be shown that any order of truncation leads to loss of size
extensivity. Diagrammatically, the extra terms would correspond to the unlinked diagrams.
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3.8 The expectation value

We know that:

|ψ〉 = eT |Φ0〉 (3.76)

〈ψ| = 〈Φ0|(eT )† (3.77)

Then, the expectation value of a general operator,A, in CCM is given by:

〈A〉 =
〈ψ|A|ψ〉
〈ψ|ψ〉

(3.78)

=
〈Φ0|(eT )†AeT |Φ0〉
〈Φ0|(eT )†eT |Φ0〉

(3.79)

= 〈Φ0|eT †ANe
T |Φ0〉C + 〈Φ0|A|Φ0〉 (3.80)

The last expression is due to Cizek [1]. N means that the operator is normal ordered,
and C refers to the condition that each term must be connected. This form of expectation
value vastly simplifies the expression, where we need to truncate both the numerator and
the denominator. Note that the expression still requires us to truncate the two infinite series’
in the numerator. A ‘proof’ of the expression will be discussed in the section where the
diagrammatic reformulation of CCM is presented.
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3.9 The relativistic CCM

The relativistic version of the CCM uses the Dirac Hamiltonian, instead of the Schroedinger
one, and also uses a four-component wave function, similar to that discussed in the rela-
tivistic Hartree-Fock equations’ section.

Usually, one chooses the Dirac-Coulomb Hamiltonian (as seen in the Dirac-Fock sec-
tion), where the electron-nucleus and the electron-electron interactions are classical, Coulom-
bic ones:

H =
∑

i{cαi.pi + βc2 + V Nuclear
i }+

∑
i>j 1/rij ,

Again, as discussed in the Dirac-Fock section, a general orbital is represented as:

ϕ =


ϕ1

ϕ2

ϕ3

ϕ4

 =

(
v

w

)
=

(
g(r)χκm

if(r)χ−κm

)
; (3.81)
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3.10 The Normal Coupled Cluster Method (NCCM)

In this variant of the coupled cluster method, the bra and the ket are defined differently:

H|ψ〉 = E|ψ〉 (3.82)

〈ψ̃|H = 〈ψ̃|E (3.83)

where

|ψ〉 = eT |Φ0〉;T =
∑
I 6=0

TIC
+
I (3.84)

〈ψ̃| = T̃ e−T 〈Φ0|; T̃ =
∑
I 6=0

1 + T̃IC
−
I (3.85)

In the above equations, TIs refer to the t amplitudes, and C+
I to the usual operators

associated with hole-particle excitations. C−
I refers to the set of creation and annihilation

operators that are associated with de-excitation.

3.10.1 Amplitude equations by variational principle

Consider the energy functional:

x = 〈ψ̃|H|ψ〉 (3.86)

= 〈Φ0|(
∑
I 6=0

T̃IC
−
I + 1)e−

∑
I 6=0 TIC

+
I He

∑
I 6=0 TIC

+
I |Φ0〉 (3.87)

According to the variational principle:

δx

δT̃I
= 0 =⇒ 〈Φ0|C+

I e
−THeT |Φ0〉 = 0 (3.88)

δx

δTI
= 0 (3.89)

=⇒ δ

δTI
〈Φ0|(

∑
I 6=0

T̃IC
−
I + 1)e−

∑
I 6=0 TIC

+
I He

∑
I 6=0 TIC

+
I |Φ0〉 = 0 (3.90)
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Using
∑

I 6=0 T̃IC
−
I = T̃ − 1, we get:

δ

δTI
〈Φ0|T̃ e−

∑
I 6=0 TIC

+
I He

∑
I 6=0 TIC

+
I |Φ0〉 = 0

〈Φ0|T̃ e−THC+
I e

T |Φ0〉 − 〈Φ0|T̃C+
I e

−THeT |Φ0〉 = 0 (3.91)

In the second term in the left hand side, the order of C+
I and e−T can be changed, since

they commute. Therefore, we get:

〈Φ0|T̃ e−T [H , C+
I ]e

T |Φ0〉 = 0 (3.92)

3.10.2 Amplitude equations by projection

A general bra state, 〈Φgen|, looks like:

〈Φgen| = 〈Φ0|C−
I

Here, 〈Φgen| can be 〈Φa
i |, 〈Φab

ij |, etc. So, a compact notation for the ket amplitude
equations would be:

〈Φ0|C+
I e

−THeT |Φ0〉 = 0 (3.93)

Now,

〈ψ̃|H = 〈ψ̃|E

〈Φ0|T̃ e−TH = 〈Φ0|T̃ e−TE

〈Φ0|T̃ e−THeT = 〈Φ0|T̃E

〈Φ0|T̃ e−THeTC+
I |Φ0〉 = 〈Φ0|T̃EC+

I |Φ0〉 (3.94)

Consider the right hand side:

〈Φ0|T̃EC+
I |Φ0〉 = 〈ϕ0|T̃C+

I E|Φ0〉

= 〈Φ0|T̃C+
I e

−TEeT |Φ0〉

= 〈Φ0|T̃C+
I e

−TE|ψ〉
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= 〈Φ0|T̃C+
I e

−THeT |Φ0〉

= 〈Φ0|T̃ e−TC+
I HeT |Φ0〉 (3.95)

Therefore, we get:

〈Φ0|T̃ e−THeTC+
I |Φ0〉 − 〈Φ0|̃e−TC+

I HeT |Φ0〉 = 0 (3.96)

〈Φ0|T̃ e−T [H , C+
I ]e

T |Φ0〉 = 0 (3.97)

3.10.3 The expectation value

It was seen in an earlier section on the expectation value computed using CCM that the
numerator as well as the denominator were infinite series’, and that they are terminated on
physical grounds. It was also seen in earlier sections that the BCH expansion terminates
automatically owing to the nature of the Hamiltonian. If the bra and the ket states are
treated differently so as to allow the BCH expansion to automatically terminate the infinite
series, the need to approximately terminate terms on physical grounds is avoided. That is
exactly what NCCM achieves.

〈A〉 =
〈ψ̃|A|ψ〉
〈ψ|ψ〉

(3.98)

=
〈Φ0|T̃ e−TAeT |Φ0〉

〈Φ0|T̃ |Φ0〉
(3.99)

The denominator gives(for NCCSD, say):

〈Φ0|T̃ |Φ0〉 = 〈Φ0|(1 + T̃1 + T̃2)|Φ0〉

= 1

This is because:

〈Φ0|1|Φ0〉 = 1

〈Φ0|T̃1|Φ0〉 = 〈Φ0|tiai†a|Φ0〉

= 0
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Likewise, 〈Φ0|T̃2|Φ0〉 = 0

Therefore,

〈A〉 = 〈Φ0|T̃ e−TAeT |Φ0〉 (3.100)

Since the denominator is unity (and hence no infinite series) and since e−TAeT termi-
nates depending on the rank of A, for example, e−THeT terminates at the fourth commu-
tator, NCCM expectation value avoids the issue of truncating a series.
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3.11 Diagrammatic representation of the CCM

In this section, we shall introduce the diagrammatic approach to CCM. This becomes par-
ticularly useful, when we need to evaluate expectation values, for example, where we can
directly arrive at the form of an expectation value, without going through any of the tedious
algebra.

Let us revisit the linked cluster theorem:

e−TAeT = {AeT}c (3.101)

Let us write down the normal ordered Hamiltonian, which we saw earlier:

HN =
∑
pq

hpq{p†q}+
1

4

∑
pqrs

〈pq||rs〉p†q†sr; (3.102)

〈pq||rs〉 = 〈pq|v|rs〉 − 〈pq|v|sr〉 (3.103)

We shall expand the one-body part of the Hamiltonian in the following way:

∑
pq

hpq{p†q} =
∑
ab

hab{a†b}+
∑
ij

hij{i†j}

+
∑
ai

hai{a†i}+
∑
ai

hia{i†a} (3.104)

= I + II + III + IV (3.105)

The four terms above correspond to the four diagrams in Figure 1, respectively. These
type of diagrams are Feynman-like, and are called the Goldstone diagrams. The figure does
not explicitly contain the symbols in the text, but upward arrows indicate particle lines, and
downward hole lines. We shall, at this point, introduce the idea of level of excitation (LOE).
We assign an LOE of 0 for diagrams a and b, 1 for c, and -1 for d. This can be understood
in the following way: In figure a, s particle ’excites’ into a particle, and hence no LOE is
assigned to it. The same holds for b. However, in c, a hole excites into a particle, and we
assign an low of 1. When a particle de-excites into a hole, then we say that the low is -1.

We can rewrite the two-body part of HN in a similar way, and associate with each term
a diagram, with a certain LOE.
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∑
pqrs

〈pq||rs〉p†q†sr =
∑
abcd

〈ab||cd〉a†b†dc

+
∑
ajbi

〈aj||bi〉a†j†ib+
∑
abci

〈ab||ci〉a†b†ic

+
∑
aibc

〈ai||bc〉a†i†bc+
∑
ijkl

〈ij||kl〉i†j†lk

+
∑
kaij

〈ka||ij〉k†a†ji+
∑
jkia

〈jk||ia〉j†k†ai

+
∑
abij

〈ab||ij〉a†b†ji+
∑
ajbi

〈aj||bi〉a†j†ib

+
∑
ijab

〈ij||ab〉i†j†ba (3.106)

= I + II + III + IV + V + V I + V II + V III + IX +X(3.107)

Note that the second and the ninth diagrams are actually one and the same (Refer Figure
3.2).
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Figure 3.1: One-body normal ordered operators
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Figure 3.2: Two-body normal ordered operators

These diagrams are one set of the building blocks of Goldstone diagrams that we would
use to either solve the CCSD equations or expectation value expressions. Let us consider

73



Diagrammatic representation of the CCM

the latter situation. Consider an expectation value problem, in the CCSD framework. We
still need the diagrammatic counterpart for the T operators. Since they basically excite a
hole to a particle, their diagrams (T1 and T2) are as shown in Fig. 3.3.
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Figure 3.3: Coupled cluster operators, T1 and T2

Finally, since the expression by Cizek requires that each of the terms must be connected,
we illustrate what a connected diagram is, in Fig. 3.4.
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Figure 3.4: Connected and unconnected diagrams: an example

One has to assemble the different blocks for each term in the expectation value expres-
sion, with accordance to the rules of LOE.

For example, the CCSD energy equation’s diagrams are constructed as follows: We
already saw that only T1, T2, and T 2

1 terms contribute. We can also understand this dia-
grammatically. The energy equation is:

∆E = 〈Φ0|e−THNe
T |Φ0〉 (3.108)

= 〈Φ0|(HNe
T )c|Φ0〉 (3.109)

From the left hand side of the equation, it is clear that the LOE=0 (since the correlation
energy is just a number). Hence, the right hand side must have the same LOE too. Hence,
if we were to construct a diagram with T1, whose LOE=1, the other block(s) must have an
LOE=-1. We also require that the final diagram be connected. There is also an additional
requirement that there must be no open lines. With these considerations, we get a. from
Fig. 5. Similarly, we see that with T2, we obtain b. from Figure 3.5. We also obtain another
diagram satisfying these conditions, for T 2

1 .
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Figure 3.5: CCSD energy diagrams

Before proceeding to show how the diagrammatic approach to solving a CCSD ex-
pectation value problem simplifies things, a quick outline of Cizek’s expression shall be
presented. This largely follows the approach in Bartlett’s book; mostly qualitative, but still
retaining the essential concepts in an otherwise complicated derivation.

The expectation value of an operator, A, as seen earlier, is:

〈A〉 =
〈ψ|A|ψ〉
〈ψ|ψ〉

(3.110)

Now, the identity AN = A − 〈Φ0|A|Φ0〉 seen earlier implies that 〈ψ|AN |ψ〉 =

〈ψ|A|ψ〉 − 〈Φ0|A|Φ0〉〈ψ|ψ〉. Therefore,

〈A〉 =
〈ψ|AN |ψ〉
〈ψ|ψ〉

+ 〈Φ0|A|Φ0〉 (3.111)

=
〈Φ0|(eT )†AeT |Φ0〉
〈Φ0|(eT )†eT |Φ0〉

+ 〈Φ0|A|Φ0〉 (3.112)

The basic approach is to factorize the numerator, preferably into terms of which one
has the same form as the denominator. Note that all the diagrams in the denominator are,
by definition, connected, since the open lines of a T † term ‘connects’ with those of a T

term. The numerator will have several terms, with the diagrams of each term having con-
nected and disconnected parts. For example, consider 〈Φ0|T †

2T
†
1ONT2|Φ0〉. The diagrams

corresponding to this term are shown in Fig. 3.6. Now, when one achieves such a factor-
ization, the common term in the numerator and the denominator cancel, leaving behind the
expression for the expectation value as:

〈A〉 = 〈Φ0|(eT )†ANe
T
C + 〈Φ0|A|Φ0〉 (3.113)

A sample example of how expressions can be directly obtained through diagrams, with-
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Figure 3.6: Expectation value diagrams: a sample

out having to go through the tedious procedure of applying Wick’s theorem, is as follows:
Consider the contraction of the one-body operator denoted as d in Figure 3.1, and IV in
the expression for the one-body part of the Hamiltonian, with T1. The one-body part is∑

ia i
†a, and the T1 part is

∑
jb t

b
ja

†j. Diagrammatically, we just join the hole arm of one
diagram to the hole arm of the other, and the particle arm of one to the particle arm of the
other. This corresponds to a full contraction, and therefore the net summation has only
i and a now. We are then left with

∑
ia t

a
i hia. This approach helps a lot when we apply

it to terms like 〈Φ0|T †
2T

†
1ONT2|Φ0〉, for example. Let us look at this using Figure 3.6.

There are two ways of joining the hole arm to a hole arm and a particle arm to a particle
arm. The figure shows one of those two ways (called the direct term, the other gives the
exchange term). We now simply say that there are four contractions in the two loops, and
only four indices are left behind: two hole indices and two particle indices. We therefore
obtain:

∑
i>j a>b t

i
at

ab
ij hjb. We also need to take into account the sign changes that occur

due to the anti-commutation relations, when we follow the algebraic way. This is taken
care of by using the rule: (−1)h+l, for the sign, where h is the number of hole lines and l
is the number of loops. Also, to avoid over counting, we add a factor of 1/2, for equivalent
vertices. Using these rules, one can quickly obtain the final expressions for any term in an
expectation value expression.
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3.12 Calculating the effective electric field using CCM

The effective electric field, like most other properties, is an expectation value problem. In
order to calculate it, we need the wave function of the molecule. We obtain that by solving
the relativistic CCSD equations. We already saw that we need to have already solved the
DF equations, in order to solve the CCSD equations. Therefore, we first solve the DF
equations. This is done in a program called UTChem [2]. We also perform atomic orbital
(AO) to molecular orbital (MO) integral transformations here. We use the C8 molecular
symmetry to reduce the computational cost [3]. Note that to solve the DF equations, we
need to give as input the bond length of the molecule that we are interested in, and also
the basis sets, which are, as seen earlier, the trial functions that are used for solving the DF
equations. We then need to obtain the t amplitudes, by solving the CCSD equations. This
is done by the Dirac08 program [4].

The RCCM equations are solved in Dirac08 using the Jacobi method. The idea is to
rewrite the CC equations in the form AX = B.
A11X1 + A12X2 + · · ·+ A1nXn = B1 ⇒ X1 = (B1 − (A12X2 + · · ·+ A1nXn))/A11

A21X1 + A22X2 + · · ·+ A2nXn = B2 ⇒ X2 = (B2 − (A22X2 + · · ·+ A2nXn))/A22

· · ·
∴ Xn

i = Bi −
∑

j 6=i

AijX
(n−1)
j

Aii

Subsequently, the idea is to guess the amplitudes, obtain a new set of amplitudes, and
repeat, till convergence is obtained.

We also use what is called the T1 diagnostic, to see how reliable our CCSD calculations
are. It is defined by:

T1 =

√
t1 · t1
N

(3.114)

The numerator is the dot product of the single excitation amplitude with itself, and the
denominator, N, is the number of independent correlated electrons. Empirically, if this
quantity is greater than or equal to 0.02, the employed coupled cluster method is probably
not too reliable, and the results may not be very accurate [5, 6].

We then need to write an expectation value code to obtain the final value of Eeff . Note
that this is the algorithm for solving any expectation value problem, using a single reference
RCCM. Therefore, we can also compute the PDM of a molecule, using this procedure.

Finally, we add a quick note on the no-pair approximation, where all the excited con-
figurations are built up of positive energy orbitals. If this were not so, the result would
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be spurious, since negative energy states can’t be treated properly within the conventional
formulation of these methods [7]. All our calculations are performed in the no-pair approx-
imation.
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3.13 Interplay between relativistic and correlation effects

3.13.1 Introduction

Before applying the RCCM to the HgX molecules, we evaluated the PDM of the SrF
molecule [8], and compared it with experiment. This was a good test of the accuracy
of our RCCM. SrF was chosen, because Sr is a moderately heavy atom, due to which the
relativistic effects are pronounced, as compared to a fluoride of a lighter alkaline earth atom
like Mg or Ca. An alkaline earth monofluoride was chosen since it contains only a single
valence electron, making it a suitable candidate to test a single reference coupled cluster
method, the type that one would use for molecules such as HgX. Also, a high precision
measurement of the molecule’s PDM is available for comparison with experiment [9].

Moreover, it is among the few molecules that have been laser-cooled thus far [10]. A
knowledge of the PDM is also useful in determining the long-range dipole-dipole interac-
tion [11], among ultracold molecules in optical lattices. These interactions will give rise
to novel quantum phases, for example, the elusive supersolid state (the simultaneous exis-
tence of the superfluid and the density wave phases) [12]. At ultracold temperatures, these
molecules can also be used for high precision spectroscopy [13, 14]. An experiment for the
search for parity violation using this molecule is currently underway [15].

Later, this work was extended to all the alkaline earth monofluorides, up to BaF, and
with a larger basis. This was motivated by the fact that the entire class of molecules and
their PDMs are of importance in many applications. For example, after SrF, experiments
to laser cool CaF and BaF are in progress. In turn, this opens new avenues for various
high precision experiments on the molecules, for example, for CaF, see: Ref. [16]. BaF
becomes importance in the context of the NAM [17, 18].

Also, this provides us with a test bed to try understand the interplay between relativistic
and correlation effects. For example, the effective electric field (Eeff ) and the coupling
constant of the nuclear anapole moment (NAM), κA, depend on the degree of hybridization
of the orbitals. Hence, there are similarities in the correlation trends for these proper-
ties [19]. Furthermore, Eeff arises entirely from relativistic interactions [20, 19, 21, 22],
while κA is enhanced by relativistic effects. Our work on the interplay between relativistic
and correlation effects should be useful in the context of theoretical studies for Eeff , and
also κA.

Moreover, the PDMs of these molecules have been extensively computed, using sev-
eral approaches [23, 24, 25, 26, 27, 28, 29, 30, 8, 31], and just as in SrF, high precision
experimental data are available for some of these molecules [32, 33].
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PDMs are also important in determining the polarizing electric field, Epol [34], which
plays a role in the sensitivity of eEDM search experiments. Experimental measurements of
the PDM are not always available for a proposed eEDM candidate, and in such cases, accu-
rate many-body calculations of the PDM become necessary. This point shall be discussed
later in Chapter 6, where we compute the PDMs of the HgX molecules.

3.13.2 Theory

The PDM of a molecule, D, is given by:

D =
〈ψ|D|ψ〉
〈ψ|ψ〉

= 〈Φ0|eT †DNe
T |Φ0〉C + 〈Φ0|D|Φ0〉

= 〈Φ0|eT †DNe
T |Φ0〉C + 〈Φ0|(−

∑
i

eri +
∑
A

ZAerA)|Φ0〉

= 〈Φ0|eT †DNe
T |Φ0〉C + 〈Φ0|(−

∑
i

eri)|Φ0〉

+
∑
A

ZAerA〈Φ0|Φ0〉

= 〈Φ0|eT †DNe
T |Φ0〉C + 〈Φ0|(−

∑
i

eri)|Φ0〉

+
∑
A

ZAerA (3.115)

where D is the electric dipole moment operator and e is the charge of the electron.
The summation over the electronic coordinates is indicated by i, and that over the nuclear
coordinates is indicated by A. ri is the position vector from the origin to the site of an elec-
tron, and rA is the position vector from the origin to the coordinate of a nucleus. ZA is the
atomic number of theAth nucleus. We have invoked the Born-Oppenheimer approximation
in the fourth line of the equations given above. The fluorine atom chosen to be at the origin.
Hence, the PDM can be expressed as

D = 〈Φ0|(1 + T1 + T2)
†DN (1 + T1 + T2)|Φ0〉C

+ 〈Φ0|(−
∑
i

eri)|Φ0〉+ ZAere (3.116)

where re is the equilibrium bond length for the molecule AF, with A=Be, Mg, Ca, Sr
or Ba. Note that the eT term has only been expanded linearly in T . Later, we shall check
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the validity of this approximation too, and conclude that this is indeed a very reasonable
approximation. The first term captures the electron correlation effects, while the second is
the electronic contribution from the DF calculations. The third gives the nuclear contribu-
tion. We shall define the first two terms as the electronic terms, and the third as the nuclear
term. The PDM depends on the mixing of opposite parity orbitals. Since their orbitals are
hybridized, this is achieved already in polar molecules.

We shall add a quick note on the origin dependence of the PDM. It can be shown that
for a system whose net charge is zero, for example, neutral molecules such as those that we
considered, the PDM is independent of origin. If the original PDM, D (with some origin
that we chose and then calculated), were to be computed after shifting the origin by a, then
the new PDM, Da would be:

Da =

∫
r′aρ(r

′)dτ ′

=

∫
(r′ − a)ρ(r′)dτ ′

=

∫
r′ρ(r′)Dτ ′ + a

∫
ρ(r′)dτ ′

= D + aQ

In the above equations, ρ refers to the charge density, and Q is the total charge of the
system. For a neutral molecule, Q is zero, and hence the PDM does not change, when we
displace the origin. We tested this for BeF and MgF, and found that the maximum change
in the PDM was for MgF at the QZ level, at about three percent.

3.13.3 Calculation and results

The bond lengths used for BeF, MgF, CaF, SrF and BaF are 1.361, 1.75, 1.967, 2.075 [25,
35] and 2.16 [26, 36] Angstrom respectively.

The details of the basis sets used are shown below in Table I.

The exponential parameters for Sr and Ba were taken from Dyall’s basis sets [37]. Then,
diffuse and polarization functions from the Sapporo-DKH3 [38] basis sets were added to it.
The exponential parameters of the cc-pV (correlation consistent-polarized valence) basis
sets from the EMSL Basis Set Exchange Library [39, 40] were used, for Be, Mg, Ca and F.
The calculations were done at the DZ, TZ, and QZ levels.

Basis sets optimized using Hartree-Fock theory may not be suitable for studying corre-
lations, and hence correlation consistent basis sets were employed. Polarization functions
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are added, to take into account the fact that one orbital may be polarized by another, for
example, the s orbital due to p, etc [41]. Also, diffuse functions are added to Sr and Ba
to capture effects associated with far nuclear region. This is especially relevant, for prop-
erties like the PDM and Eeff . The basis sets for Ca does not contain aug-cc-pV diffuse
functions, since they are not available for it. For Be, the difference in the PDMs at the QZ
level between cc-pV and the aug-cc-pV basis sets is negligible at the CCSD level (1.1 and
1.12 for cc-pV and aug-cc-pV respectively). For MgF, the CCSD PDM increases by around
2 percent (3.07 and 3.13D respectively for cc-pV and aug-cc-pV). Hence, for the lighter
elements, diffuse functions do not seem to modify the PDM significantly. For CaF, adding
diffuse functions to Ca, by combining Dyall and Saporro basis sets, changes the PDM by
2.2 percent. The PDM of SrF, however, changes by over 6 percent when diffuse functions
are added to it [42]! Hence, diffuse functions may become important for heavier systems.
Note that diffuse functions have not been added to F, since adding diffuse functions to F
does not significantly modify the PDM [42].

Table 3.1: Details of the basis sets used

Atom Basis
Be cc-pVDZ: 9s, 4p, 1d

cc-pVTZ: 11s, 5p, 2d, 1f
cc-pVQZ: 12s, 6p, 3d, 2f, 1g

Mg cc-pVDZ: 12s, 8p, 1d
cc-pVTZ: 15s, 10p, 2d, 1f

cc-pVQZ: 16s, 12p, 3d, 2f, 1g
Ca cc-pVDZ: 14s, 11p, 5d

cc-pVTZ: 20s, 14p, 6d, 1f
cc-pVQZ: 22s, 16p, 7d, 2f, 1g

Sr Dyall+Sapporo: 20s, 14p, 9d
Dyall+Sapporo: 28s, 20p, 13d, 2f

Dyall+Sapporo: 33s, 25p, 15d, 4f, 2g
Ba Dyall+Sapporo: 25s, 19p, 13d

Dyall+Sapporo: 31s, 25p, 15d, 2f
Dyall+Sapporo: 37s, 30p, 18d, 3f, 2g

F cc-pVDZ: 9s, 4p, 1d
cc-pVTZ: 10s, 5p, 2d, 1f

cc-pVQZ: 12s, 6p, 3d, 2f, 1g

Table II presents the results of the calculations of energies and the PDMs of the molecules,
both at the DF and the CCSD levels. The values have been rounded off to the second deci-
mal place.

As the molecules get heavier (more relativistic), the absolute value of the correlation
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Table 3.2: Summary of the calculated results of the present work

Molecule Method Basis E(au) PDM(D)
BeF DF DZ -114.07 1.32

DF TZ -114.23 1.31
DF QZ -114.26 1.30

CCSD DZ -114.38 0.93
CCSD TZ -114.59 1.06
CCSD QZ -114.67 1.10

Expt - - -
MgF DF DZ -299.51 3.21

DF TZ -299.52 3.21
DF QZ -299.57 3.16

CCSD DZ -299.96 2.84
CCSD TZ -300.02 3.02
CCSD QZ -300.11 3.07

Expt - - -
CaF DF DZ -779.31 2.89

DF TZ -779.33 2.82
DF QZ -779.37 2.77

CCSD DZ -780.09 3.01
CCSD TZ -780.21 3.13
CCSD QZ -780.31 3.16

Expt - - 3.07(7)
SrF DF DZ -3277.67 2.83

DF TZ -3277.70 2.95
DF QZ -3277.74 3.01

CCSD DZ -3278.85 2.95
CCSD TZ -3279.01 3.42
CCSD QZ -3279.13 3.60

Expt - - 3.4676(1)
BaF DF DZ -8235.25 2.42

DF TZ -8235.27 2.28
DF QZ -8235.31 2.65

CCSD DZ -8236.55 2.69
CCSD TZ -8236.71 3
CCSD QZ -8236.82 3.40

Expt - - 3.170(3)

energy increases. For a given molecule, the CCSD value of the PDM increases with the
size of the basis set.

We can partially understand this, by rewriting the terms in equation 3.116. This shall
be done only for the DF and the 〈Φ0|DNT1|Φ0〉C (called the DT1 term hereafter) terms,
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since these are the terms that contribute in a significant way to the PDM. The former can
be rewritten as:

DDF = 〈Φ0|D|Φ0〉

=
∑
m

〈ϕm|d|ϕm〉 (3.117)

=
∑
m

∑
k,l

C∗L
m,kC

∗L
m,l〈χL

mk|d|χL
ml〉

+
∑
m

∑
k,l

C∗S
m,kC

∗S
m,l〈χS

mk|d|χS
ml〉 (3.118)

The summation, m, is over the MOs, while k and l are over the AOs. ϕm is the mth

MO. χ refers to an AO. The superscripts, L and S, refer to the large and small components,
respectively.

In a similar way, the DT1 term can be rewritten in the following way (the subscript, ‘C’,
is dropped hereafter):

〈Φ0|DNT1|Φ0〉 =
∑
i,a

tai 〈ϕi|dN |ϕa〉

=
∑
i,a

∑
k,l

taiC
∗L
i,kC

∗L
a,l 〈χL

ik|d|χL
al〉

+
∑
i,a

∑
k,l

taiC
∗S
i,kC

∗S
a,l 〈χS

ik|d|χS
al〉 (3.119)

The final value of PDM depends on the cancellation between these terms, with some
of them being positive, while others negative. As the basis set is increased from DZ to
TZ, and then to QZ, the number of χs per MO increase. In this class of molecules, the net
CCSD PDM increases with increase in basis, after all the cancellations. Physically, one
can expect the PDM to change with basis, since the QZ set is closer to the actual wave
function than the TZ set, and TZ closer than DZ. Hence, a change in basis would translate
into some change in the PDM, depending on how the results converge. Here, convergence
refers to the difference in QZ and TZ PDMs being less than that between TZ and DZ. The
CCSD PDMs do show convergence, except for BaF. It may be attributed to either of the
following two cases, or both: 1. there may be more correlation effects to account for, or 2.
insufficient optimization of the basis sets. The PDM increases from BeF to SrF, that is, the
quantity increases with the system becoming more relativistic. However, the PDM drops
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from SrF to BaF. Also, the absolute value of the correlation effects monotonically increase
with the system becoming more relativistic (from 0.2 D for BeF to 0.75 D for BaF), with
MgF as an exception. The T1 diagnostic was around 0.02 or lesser, for all of the molecules,
and for all the basis sets.

At the QZ level, the PDMs that we calculated differ from experiment by about 3, 4 and
7 percent, for CaF, SrF and BaF respectively.

The CCSD values of the electronic (QZ) and nuclear contribution to the PDM for the
molecules are shown in Table III.

Table 3.3: Electronic (at the CCSD level, with QZ basis sets) and nuclear contributions to
the PDM for all the alkaline earth monofluorides

Molecule Electronic terms Nuclear term
BeF -25.05 26.15

MgF -97.80 100.87
CaF -185.81 188.97
SrF -375.16 378.76
BaF -577.64 581.04

The nuclear term depends on two parameters: the atomic number of the alkaline earth
atom (Z), and the equilibrium bond length. Hence, this term increases from BeF to BaF. The
electronic terms, on the other hand, depend on the many-body theory used to evaluate the
wave function, that is, how much correlation a method (under a given truncation scheme)
captures, and on the choice of basis sets. The ratio of the absolute values of the electronic
and the nuclear terms can provide us with a sense of which term ‘grows’ faster among them.
From BeF to BaF, they are 0.96, 0.97, 0.98, 0.99 and 0.99 respectively. The ratio is slightly
higher (in the third decimal place) for BaF, than SrF. This implies that the electronic term
‘grows’ faster, with increase in Z. Since the nuclear term is proportional to Z, the electronic
terms may be a slightly more sensitive function of Z.

The contributions from each of the 10 terms in Eq. 3.116 is considered, in order to
inspect the correlation trends. The last term is the DF contribution. Since D is a one-body
operator, when the Slater-Condon rules are applied to the 〈Φ0|DNT2|Φ0〉C (which will be
denoted by DT2 hereafter, and so on for the other terms) and the T †

2D terms, they vanish.
Also, the 〈Φ0|DN |Φ0〉C is zero, since the expectation value of a normal ordered operator
between Slater determinants vanishes.

The DF term contributes the most to the PDM, followed by the DT1 term. The latter
includes in it important pair correlation effects, like the Breukner pair effect [43]. The
DT1 term is not very significant in BeF and MgF though. In fact, for MgF, the dominant
correlation term is T †

2DT2. The DT1 term can be understood as the off-diagonal matrix el-
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Table 3.4: Contributions from the individual terms to the PDM for all the alkaline earth
monofluorides

Term BeF MgF CaF SrF BaF
DF -24.85 -97.72 -186.20 -375.75 -578.39

DT1 -0.08 -0.02 0.21 0.31 0.4
DT2 0 0 0 0 0
T †
1D -0.08 -0.02 0.21 0.31 0.4

T †
1DT1 -0.02 -0.02 -0.02 -0.03 -0.05
T †
1DT2 0.02 0.01 0.02 0.02 0.02
T †
2D 0 0 0 0 0

T †
2DT1 0.02 0.01 0.02 0.02 0.02
T †
2DT2 -0.06 -0.04 -0.05 -0.04 -0.04

ement between the Slater determinant, and a state, where one orbital is excited to a virtual
state, that is, a one hole and one particle excitation in all orders of residual Coulomb inter-
action. This can be easily seen from the diagrammatic representation of this term, where
an electron jumps into a virtual state, and then falls back into its original hole state, after
interacting with the PDM operator [8]. When we examine the trends, we observe that the
DT1 term increases monotonically from BeF to BaF. This is strongly tied to the correlation
trend in the three heavier molecules. The second most important correlation contribution
is from the T †

2DT2 term, which follows no specific trend, but is always negative. Hence,
its effect is to always reduces the PDM. Also, its value is almost the same for all the con-
sidered AEMs, that is, it seems to have a rather weak dependence on Z, as compared to the
DT1 term.

The fractional contributions of the correlation effects increase from MgF to BaF, with
BaF’s contribution being 0.22 D.

Also, the PDM depends on the difference between the nuclear term is from the elec-
tronic terms. It was already seen that among the latter, the DF term dominates. Hence, one
can say that the DF term’s effect is to ‘cancel out’ a large fraction of the nuclear contribu-
tion. The correlation terms can either ‘cancel out’ or enhance the PDM, as seen from Table
IV, for example, they add up to -0.2 for BeF, and 0.75 for BaF). For BeF and MgF, it plays
the role of canceling, while for the heavier ones, it adds up.

In the Table below, a quick summary of previous calculations and experiment is pre-
sented, and is compared with our results.

Semi-empirical models, on the PDMs of AEMs, and then the experimental measure-
ments’ values, shall be discussed first in this section, followed by a detailed comparison of
our work with ab initio calculations.
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Table 3.5: Comparison of present work with previous calculations and experiment

Molecule Work Method PDM(D)
BeF Langhoff et al [25] CPF 1.086

Buckingham et al [29] MP2 1.197
Kobus et al [30] FD-HF -1.2727
This work (QZ) 1.10

Expt - -
MgF Torring et al [23] Ionic model 3.64

Langhoff el al [25] CPF 3.077
Mestdagh el al [26] EPM 3.5

Buckingham el al [29] MP2 3.186
Kobus el al [30] FD-HF -3.1005
This work (QZ) 3.06

Expt - -
CaF Torring et al [23] Ionic model 3.34

Rice et al [24] LFA 3.01
Langhoff et al [25] CPF 3.06
Mestdagh et al [26] EPM 3.2
Bundgen et al [27] MRCI 3.01
Allouche et al [28] LFA 3.55

Buckingham et al [29] MP2 3.19
Kobus et al [30] FD-HF -2.6450
This work (QZ) 3.16

Expt [32] 3.07(7)
SrF Torring et al [23] Ionic model 3.67

Langhoff et al [25] CPF 3.199
Mestdagh et al [26] EPM 3.59
Allouche et al [28] LFA 3.79

Kobus et al [30] FD-HF -2.5759
Prasannaa et al [8] CCSD 3.41

Sasmal et al [31] Z-vector 3.4504
This work (QZ) 3.60

Expt [45] 3.4676(1)
BaF Torring et al [23] Ionic model 3.44

Mestdagh et al [26] EPM 3.4
Allouche et al [28] LFA 3.91

This work (QZ) 3.40
Expt [33] 3.170(3)

Torring et al [23] performed one of the earliest calculations of the PDMs of the AEMs.
They did so by employing an ionic model, and calculated the PDMs of MgF, CaF, SrF and
BaF. Their results are then compared with the Rittner model [44], and also with experiment
(whatever was then available). The PDM of CaF was experimentally determined to be
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3.07(7) D, by Childs et al [32], and that of SrF by Kandler et al [45]. Later that year,
the Ligand field approach (LFA) was implemented to obtain 3.01 D for CaF’s PDM [24].
Ernst et al [33] measured BaF’s PDM to be 3.170(3) D one year later. An electrostatic
polarization model (EPM) for calculating the PDMs of MgF, CaF, SrF, BaF, and several
other systems was developed by Mestdagh et al [26]. In 1993, the LFA was extended by
Allouche et al [28], and the PDMs of Ca, Sr and Ba monohalides were calculated.

Langhoff et al [25] were the first to use an ab initio approach to compute the PDMs
of some of the AEMs (and several other molecules), viz., BeF, MgF, CaF, and SrF. They
used the experimental values of bond lengths for their calculations (Refer Table III in their
work). They used extended STOs (Slater Type Orbitals), and added to them diffuse and
polarization functions. Their basis sets were: Be: (6s, 4p, 1d), Mg: (8s, 6p, 4d, 2f), Ca:
(10s, 8p, 4d, 2f), Sr: (12s, 10p. 7d, 3f), and F: (6s, 5p, 4d, 2f). The largest basis sets that
we used also contain in them diffuse and polarization functions. Also, as seen from Table
3.1, they are larger. They used the CISD and a size extensive version of CISD, called the
coupled pair functionals (CPF) method. Since CPF is better than CISD, only their CPF
results are used for comparison with our work. However, not all electrons are correlated
in their work. Also, their calculations are non-relativistic. Hence, due to a larger basis, a
method that can account for higher order correlations, given a level of truncation, and a
fully relativistic, all-electron calculation, is an improvement over their results.

The MRCI SD approach was used by Bundgen et al [27], to calculate the ground state
PDM of CaF. Their bond length was slightly lesser than the one used by us. Their con-
tracted GTOs were: Ca: [8s, 7p, 3d, 1f] and F: [5s, 4p, 1d], with a total of 17 electrons
correlated in their work. In our fully relativistic work, a larger basis set is employed, and
all the electrons are correlated. Also, MRCI SD is not size extensive.

To calculate PDMs of BeF, MgF and CaF (and other properties), Buckingham et al [29]
used non-relativistic MP2. They calculated the bond lengths first, and then computed the
PDMs. They used contracted GTOs: Be: [5s, 3p, 1d], Mg: [6s, 5p, 3d], Ca: [9s, 6p, 3d],
and F: [5s, 4p, 2d]. MP2 is size extensive, but their calculations are non-relativistic, and
also, MP2 captures single and double excitations, but only to the first order of perturbation
in the residual Coulomb interaction.

The work by Kobus et al [30] involved calculating the PDMs by using finite difference
HF. However, for heavier AEMs, their results get less accurate, since the correlation effects
get important with Z, and HF does not account for them.

Sasmal et al [31] calculated the PDM of SrF to improve upon our earlier result [8],
using the Z-vector approach in the RCCM.
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3.14 Summary

In this chapter, we discussed the coupled cluster method in great detail. That included the
linked cluster theorem, and the diagrammatic representation of CCM. Later, we discussed
the application of a relativistic CCSD method to computing the PDMs of AEMs, which are
of importance in high precision experiments that probe fundamental physics. We also ana-
lyzed the results, and tried to understand the interplay between relativistic and correlation
effects. We then compare our results with previous works. Now that we have established
the accuracy of our method, and applied it successfully to the PDM of AEMs, we apply
it to mercury monohalides in the next chapter, and identify these molecules as promising
candidates for future eEDM searches.
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4
EFFECTIVE ELECTRIC FIELDS IN

MERCURY MONOHALIDES USING THE

RELATIVISTIC COUPLED CLUSTER

METHOD

4.1 Introduction

This chapter, and the next, are the most important ones in the thesis. In this chapter, we
identify mercury monohalides as promising future candidates for eEDM measurements,
using our fully relativistic coupled cluster approach.
. We shall first address the question of how and why we chose mercury monohalides (HgX).
We recall the figure of merit for an eEDM experiment:

δde ∼
1

2πEeff

√
NTτη

(4.1)

We need a molecule, in some state, with a large Eeff , and if possible, a large polar-
ization factor. Long coherence times and a large number of molecules are experimental
factors. Note that all of these conditions are not usually satisfied! The goal is to find a
molecule (or molecules), in some state (s), which can give us high experimental sensitivity.
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4.1.1 Why HgX?

Taking these factors into account, we have chosen mercury halides (HgF, HgCl, HgBr and
HgI; the latter two may be suitable for experiment). Two factors point towards large values
of Eeff for HgX:
1. It is believed that Eeff scales as Z3, with Z being the atomic number of the heavier
atom. This indicates that a heavy system like HgX may give a large Eeff ,
2. Also, there has been some previous works that identified HgF as promising (for exam-
ple, [1]); however, since computational resources and many-body techniques were not as
advanced, the results were not usually in agreement with one another. Also, in the diamag-
netic sector, Hg atom is among the leading candidates to probe hadronic sources of P and
T violating interactions, and has provided very good bounds on such interactions [2]. This
motivates us to try if a diamagnetic system containing Hg can give us promising results for
eEDM. Finally, we note that the properties of these type of systems (with a single unpaired
valence electron) can be computed accurately, using single reference methods. Also, they
are sensitive to eEDM in their ground states itself, unlike systems in some metastable state
having two valence electrons. The latter class of systems require a more complicated de-
scription [3]. Experimentally, the heavier HgX molecules are more electrically polarizable
than HgF, and this in turn leads to better control over systematic effects. In this chapter,
we provide the results for the Eeffs of HgX, followed by a very brief discussion on the
experimental aspects. Before proceeding to discuss these, we shall take a look at some of
the theoretical aspects of Eeff .

4.1.2 Only the SOMO survives in Eeff

In the expression for EDF
eff , we can show that only the singly occupied molecular orbital

(SOMO) survives. This is because the rest of the terms cancel out. This can be understood
as follows:

MO∑
i

〈ϕi|heff
eEDM |ϕi〉 =

(MO−1)/2∑
i′

[〈ϕi′|heff
eEDM |ϕi′〉

+

(MO−1)/2∑
i
′

〈ϕi
′ |heff

eEDM |ϕi
′〉]

+ 〈ϕv|heff
eEDM |ϕv〉 (4.2)

Here, we have decomposed the left hand side of the equation into three terms. The first
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and the second summations in the right hand side are the contributions from the doubly
occupied orbitals in the Kramer’s pairs, ϕi′ and ϕi

′ . The last term is the contribution from
SOMO. The Kramer’s pair orbitals are related to each other by the time reversal operator
(τ ) [4]:

|ϕi
′〉 = τ |ϕi′〉 (4.3)

−|ϕi′〉 = τ |ϕi
′〉 (4.4)

Therefore,

〈ϕi
′|heff

eEDM |ϕi
′〉 = 〈ϕi′|τ †heff

eEDMτ |ϕi′〉

= −〈ϕi′ |heff
eEDM |ϕi′〉 (4.5)

From here, we can see that all terms, except the SOMO term, cancel pairwise.

The last step can be understood in the following way:

τ †hτ = (−iσyτo)
†h(−iσyτo) (4.6)

Here, a shorthand notation for heff
eEDM , which is just ‘h’, is used. The relation τ =

−iσyτo is true for spin-1/2 particles, such as the electron [4]. τo is the complex conjugation
operator, and σy is one of the Pauli matrices (in our specific case, it is its 4× 4 version).

Let us first evaluate (−iσyτo), and define it as, say, M . We do this, since this is a real
quantity, and it simplifies things. It is:

M =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 (4.7)

Using the relation (AB)† = B†A†, one obtains:

τ †hτ = τ †
oM

†hMτo (4.8)
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= τ †
ohτo (4.9)

Using the fact that τo|ϕ〉 = |ϕ∗〉, and 〈ϕ|τ †
o = 〈ϕ| (where ϕ is some MO), one obtains:

〈ϕ|τ †
ohτo|ϕ〉 =

(
ϕL
α ϕL

β ϕS
α ϕS

β

)


0 0 p2 0

0 0 0 p2

−p2 0 0 0

0 −p2 0 0




ϕL∗
α

ϕL∗
β

ϕS∗
α

ϕS∗
β


= −〈ϕL

α|p2|ϕS∗
α 〉 − 〈ϕL

β |p2|ϕS∗
β 〉

+ 〈ϕS
α|p2|ϕL∗

α 〉+ 〈ϕS
β |p2|ϕL∗

β 〉 (4.10)

The matrices above use the fact that h = 2icde
e

βγ5p
2. The factor 2icde

e
does not affect

our analysis, so it is ignored. Also, βγ5 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

, in the Dirac basis, which

is what we use throughout. Now, when −〈ϕ|h|ϕ〉 is evaluated independently, it gives the
same result as 〈ϕ|τ †

ohτo|ϕ〉. Therefore, τ †
ohτo = −h.

In the next subsection, we shall decompose the expression for Eeff in a way that makes
it suitable for analysis.

4.1.3 What does Eeff simplify into?

Let us evaluate the expression for Eeff , not at the DF level, but for, say, the Dirac-Coulomb
Hamiltonian. The expression we need to evaluate is 2ic〈ψ|βγ5p

2|ψ〉. Only the SOMO
survives, as seen in the earlier section, so we need to solve for 2ic〈ϕ|βγ5p

2|ϕ〉. ϕ is the
SOMO. We obtain:

2ic〈ϕ|βγ5p
2|ϕ〉 = 2ic

(
ϕL†

ϕS†

)(
0 p2

−p2 0

)(
ϕL

ϕS

)
(4.11)

= 2ic(−〈ϕL|p2|ϕS〉 − 〈ϕS|p2|ϕL〉) (4.12)

= −4ic〈ϕL|p2|ϕS〉 (4.13)

Note that two points have been used here. The first is that the two terms do not cancel
out, because of the subtle fact that the small component has an i in it. Because of that,
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its conjugate transpose does not give back the small component, but the minus of it! The
second is that p2 is Hermitian. Also, note that the final Eeff is real, because of the i in the
small component.

4.1.4 DF effective electric field in terms of basis sets

Consider the expression given above, but replace the general wave function by the DF
one. For example, ϕL is the large component of the DF 4-component spinor. In practice,
what we solve for are actually the coefficients accompanying a known basis set. Therefore,
expanding the large component gives us: ϕL =

∑
k C

L
k |χL

k 〉. Here, CL
k is the coefficient

that we obtain after self consistently solving the DF equations, and χk is a basis function.
When this is done for the bra and the ket, one obtains:∑q

k=1

∑2q
l=q+1C

∗S
k CL

l 〈χS
v,k|p2|χL

v,l〉
This is very similar to the expression for the DF PDM in chapter 4, which we analyzed,

except that L and S do not mix in a given matrix element. Note that in the above expression,
the factor of 2c is not explicitly mentioned.

99



Results

4.2 Results

Table I gives the results of our calculations, both at the DF and the CCSD levels. It also
gives the details of the basis sets chosen (cc-pV DZ for F, Cl and Br [5], and Dyall’s c2v for
Hg and I [6]). As in the case of the AEMs, none of the core orbitals were frozen. The bond
lengths used were (in nm): HgF (0.200686) [7], HgCl (0.242), HgBr (0.262), HgI (0.281)
[8]. The values of Eeff are extremely large for all the HgX candidates; they are about one
and a half times larger than ThO’s effective field [3], and five times that of YbF [9]. Also,
the T1 diagnostics indicate that the CCSD calculations were reliable.

Molecule Method Basis T1,dia Eeff (GV/cm)
HgF DF Hg:22s,19p,12d,9f,1g - 104.25

F:9s,4p,1d
HgCl DF Hg:22s,19p,12d,9f,1g - 103.57

Cl:12s,8p,1d
HgBr DF Hg:22s,19p,12d,9f,1g - 97.89

Br:14s,11p,6d
HgI DF Hg:22s,19p,12d,9f,1g - 96.85

I:21s,15p,11d
HgF CCSD Hg:22s,19p,12d,9f,1g 0.0268 115.42

F:9s,4p,1d
HgCl CCSD Hg:22s,19p,12d,9f,1g 0.0239 113.56

Cl:12s,8p,1d
HgBr CCSD Hg:22s,19p,12d,9f,1g 0.0255 109.29

Br:14s,11p,6d
HgI CCSD Hg:22s,19p,12d,9f,1g 0.0206 109.30

I:21s,15p,11d

Table 4.1: Summary of the calculated results (Eeff ) of the present work.

The table given below compares our result for Eeff in HgF with previous calculations.
No previous calculations are available for the other HgX candidates.

Work Eeff (GV/cm)
Y Y Dmitriev et al. [1] 99.26
Meyer et al.[10] 68
Meyer et al.[11] 95
This work 115.42

Table 4.2: Effective electric field, Eeff , in the HgF molecule.

Dmitriev et al. made use of relativistic effective core potentials (ECP) to obtain the
value of Eeff in HgF. The minimal atomic basis set for F, and five relativistic valence
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orbitals 5d3/2, 5d1/2, 6s1/2, 6p1/2, and 6p3/2 for Hg, were used. Meyer et al. obtained Eeff

for the same molecule, using a non-relativistic software,in order to compare the results of
their method with those from other approaches.

Correlation effects contribute ∼ 10%, with cancellations between the eight terms that
constitute them. Table III illustrates this by showing their contributions, in HgF.

Term Contribution (GV/cm)
DF 104.25

Heff
EDMT1 10.08

Heff
EDMT2 0

T †
1H

eff
EDM 10.08

T †
1H

eff
EDMT1 -3.91

T †
1H

eff
EDMT2 0.22

T †
2H

eff
EDM 0

T †
2H

eff
EDMT1 0.22

T †
2H

eff
EDMT2 -5.52

Table 4.3: Contributions from the individual terms to the effective electric field of HgF.

Since the sensitivity of an eEDM experiment is ∝ Eeff
√
N , where N is the number of

molecules whose spin precession is detected, one can look at how the HgX molecules fare
in this regard. There is a possibility that large quantities of these molecules can be produced
in at ultracold temperatures, for example, by photo-associating laser-cooled mercury and
magnetically trapped halogen atoms [12]. The sensitivity of an eEDM experiment also
depends on coherence time. This can possibly be taken care of by using an intense and
slow beam or fountain of these molecules, which may lead to a coherence time of about ∼1
s. These molecules can be detected efficiently too: a repulsive A2Π state above their X2Σ

state (the ground state) can dissociate into Hg (1S) and X (2P ) atoms. One can, hence, state-
selectively photodissociate HgX, and use the idea of laser-induced cycling fluorescence on
the resulting Hg atom. This can lead to highly efficient detection. Finally, one must be able
to polarize eEDM candidate molecules as much as possible by lab electric fields ( kV/cm),
to take full advantage of their effective electric fields. The relevant quantity that decides the
required lab field is Epol = 2Be/D, where D is the molecular dipole moment (PDM) and
Be is the rotational constant of the molecule. On these grounds, HgBr and HgI are attractive
eEDM candidates, because of their large Eeff and low Epol. This shall be discussed in detail,
in the next chapter.
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4.3 Summary

In this chapter, we have established HgX as potential candidates for future eEDM experi-
ments. In the next chapter, we shall perform a detailed theoretical analysis of the Eeff of
these molecules.
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5
HGX: ANALYSIS OF EFFECTIVE

ELECTRIC FIELDS

5.1 Introduction

Previously, the effective electric fields of HgX were computed, and the molecules were
identified as promising candidates for eEDM experiments in the future [1]. In this chapter,
we shall elaborate on the previous work, in great detail. Particularly, the different contribu-
tions to Eeff are analyzed, at both the Dirac-Fock and CCSD levels.
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5.2 Results and discussions

The bond lengths and the basis sets we used are the same as those in the previous chapter.
For the TZ calculations, we again used Dyall’s basis and cc-pvTZ basis. Presented below
are the results that we obtained:

Term HgF HgCl HgBr HgI
DF 104.25 103.57 97.89 96.85

Heff
EDMT1+ cc 20.16 19.34 22.18 24.78
T †
1H

eff
EDMT1 -3.91 -3.58 -4.07 -4.77

T †
1H

eff
EDMT2+ cc 0.44 0.194 -0.2 -0.30

T †
2H

eff
EDMT2 -5.52 -5.96 -6.5 -7.26

Total 115.42 113.56 109.29 109.30

Table 5.1: Contributions, from the individual terms, to the effective electric field of HgX.
cc refers to complex conjugate, of the term that it accompanies.

The terms that we obtain from the linear expectation value expression, as well as the
total Eeff are shown in Table I. Extending this computation from HgF (as in our previous
work) to all HgX enables us to study the trends in Eeff . Moreover, we had identified HgBr
as promising, in our earlier work. Therefore, theoretical details about the HgX molecules
other than HgF also become useful.

The DF contribution is the largest, and we observe that it decreases from HgF to HgI.
Electron correlation accounts for about 9 percent of the total Eeff . From this, we can
conclude that for these molecules, both Eeff as well as the amount of correlation does not
strongly change with Z of the lighter atom. Among the correlation terms, the largest is
the Heff

eEDMT1 term, while the second and the third most important contributions are from
the T †

2H
eff
eEDMT2, and the T †

1H
eff
eEDMT1 terms, respectively. We also observe that they have

a reducing effect on Eeff . As we go from HgF to HgBr, the overall values of Eeff drop.
Note that HgBr and HgI have almost the same values of Eeff , even though the DF value of
the latter is smaller than the former. We can explain this observation, from the fact that the
difference betweenHeff

eEDMT1, and the combined T †
1H

eff
eEDMT1+T

†
2H

eff
eEDMT2 terms is larger,

in the case of HgI.
We shall now try to understand how the correlation trends vary in the Eeffs of HgX,

when compared with those in our previous and ongoing works. We had performed the
same analysis, both in our earlier work on the PDM of SrF [2], as well as the PDMs of
the other alkaline earth monofluorides (AEMs) [3]. Although Eeff and PDM appear to be
completely different properties, they share similarities, for example, both depend on the
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mixing of opposite parity orbitals. Therefore, it becomes worthwhile to see if there are
any similarities in their correlation trends. We begin by comparing the correlation trends
between the Eeff of HgX and the PDMs of the AEMs. Although both are systems with
one outer, unpaired electron, we observe that in AEMs, electron correlation can reduce
(for example, BeF, by around 20 percent) or increase (for example, BaF, by around 20 per-
cent) the PDM, whereas the effect of correlations on the Eeffs of HgX is almost constant.
We further notice that the PDMs of HgX follow a completely different trend; correlations
decrease the PDM very significantly [4]. Next, we compare the correlations between the
Eeffs of HgX and YbF, and also RaF. As seen earlier, YbF sets among the best limits for
eEDM, while RaF is a promising eEDM candidate. For HgX, correlations come to about
nine percent, while for YbF, it is about twenty percent [5]. In the case of RaF [6], it is
around thirty percent. All of these are systems with one unpaired electron, and their heav-
ier atoms’ atomic numbers are similar, but their effective fields and their correlation effects
are vastly different. Let us compare the correlations in HgI and RaF, for example. The
correlation effects are around nine percent in HgI, due to nearly half of the Heff

eEDMT1 term
being cancelled out by the other correlation terms. In RaF, the Heff

eEDMT1 term accounts for
around 20 GV/cm, while the rest only to -0.5 GV/cm. That is, the values that we finally ob-
tain are due to several cancellations at work, both at DF and the correlation levels. We shall
now attempt to understand further how these cancellations are, for HgX. Also, the above
mentioned brief discussion points towards the requirement of detailed theoretical studies,
in order to understand better the correlation effects as well as the trends, of these class of
polar molecules.

Figure I shows some of the Goldstone diagrams from the expectation value expression,
given by equation (3.116). The diagrams given are those that correspond to the DF term,
Heff

eEDMT1, T
†
1H

eff
eEDMT1 , the direct counterparts of the T †

1H
eff
EDMT2, and the T †

2H
eff
eEDMT2

terms. We do not give the conjugate diagrams, since they give the same result.

b.a. c.

e.d.

Figure 5.1: Goldstone diagrams for Eeff : a. DF term, b. Heff
eEDMT1, c. the T †

1H
eff
eEDMT1

term, d. Direct diagrams of the T †
1H

eff
eEDMT2 term and the T †

2H
eff
eEDMT2 term, respectively.

We shall only consider the Heff
eEDMT1 diagram (just for illustration), since it contributes
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the most to the effective electric field. This term is expanded as

∑
i,a

[〈ϕi|{heff
eEDM}|ϕa〉〈ϕa|t|ϕi〉]C (5.1)

The summation is over i and a, with ‘i’ referring to the occupied orbitals (holes), and
‘a’ to the virtual orbitals (particles). The above expression is obtained by applying the
Slater-Condon rules to the original expression, 〈Φ0|{Heff

eEDM}T1|Φ0〉C . Mathematically,
Heff

eEDMT1 is an all-order residual Coulomb interaction, which leads to an electron from
an occupied orbital, ‘i’, jumping into a virtual orbital, ‘a’, and then falling back into the
same state, ‘i’, after the interaction of the particle with the eEDM. This diagram represents
several correlation effects, like the Brueckner pair correlation (BPC) [7], among others, but
is not at all obvious from the Goldstone diagram, because the T1 part embodies in it the
residual Coulomb interaction, to all orders of perturbation. For greater clarity, we consider
a prototypical second order BPC (See Figure 2), as one example of the several physical
effects contained in a coupled cluster diagram. The figure is a many-body perturbation
theory (MBPT) diagram, and it represents a valence orbital, denoted by v, interacting with
a core orbital, i, through one order of Coulomb interaction, so that i is excited to a virtual
orbital, a, and v to b. Then, a and b interact through an order of Coulomb interaction (and
hence a total of two orders of Coulomb interaction), so that a returns to the orbital i, and b to
c. Then, c interacts with a single particle’s eEDM (denoted by O), and de-excites to v. This
diagram is equivalent to Heff

eEDMT
(2),BPC
1 , where the superscript denotes a perturbation that

is second order in the residual Coulomb interaction, due to BPC. We can extend these BPC
effects to higher orders in the Coulomb interaction, for example, figure 3, which shows a
third order BPC. As mentioned earlier, the Heff

eEDMT1 term accounts for all orders of this
effect, as well as many other such physical effects. This example is a testament of the
power of a coupled cluster theory.

v

c

b

O

a i

Figure 5.2: A MBPT diagram, representing 2nd order Brueckner pair correlation
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O
c

b’

v
b

a’

a
i

Figure 5.3: A MBPT diagram, representing 3rd order Brueckner pair correlation

Table II gives the contributions to Eeff , at the DF level, with TZ basis sets. The same
analysis with the DZ basis sets isn’t presented, since TZ is closer to the actual wave function
than DZ, and also, the results using both the basis sets display the same trend. Before
we start the discussion on the results, we shall quickly comment on the notation. In the
second column, for example, s − p1/2, refers to

∑
s

∑
p1/2

C∗S
s CL

p1/2
〈χS

v,s|p2|χL
v,p1/2

〉. The
first and the second summations are over all the small component basis sets, and the large
component basis sets of the s and p1/2 angular momentum functions, respectively. We
recall that the mixing between orbitals of same parity is zero, and therefore, terms that mix
s and d, for example, vanish. We have only given s, p1/2, p3/2, d3/2, d5/2, and f5/2 orbitals
for Hg, and s and p1/2 for X, in the Table, since the other terms contribute negligibly to
EDF

eff . We can also observe this in the Table, by looking at the difference between the rows
labelled, ‘Total’, which is the sum of the mixings associated with the orbitals considered,
and ‘DF’, which is the total contribution at the DF level. This difference decreases from F
to Br. The combined s− p1/2 and p1/2 − s contribution from Hg dominates, accounting for
over hundred percent of the total DF value of Eeff for HgF, HgCl, and HgBr. In the case
of HgI, the halide atom’s contribution becomes important, and hence we do not see such
overwhelming dominance of the term from the heavy atom.

We also see that for all of the terms, the absolute magnitude for Hg drops, as we go
from from F to I. In X, however, we observe the opposite trend, especially in the case of
HgI, where the contribution increases Eeff by more than 2.5 GV/cm.

Since the he angular momentum functions are, in a strict sense, not atomic orbitals, but
actually terms from the basis sets that we choose, we cannot narrow down on the principal
quantum numbers of the orbitals that contribute significantly. What we can do, however, is
intuitively guess that the major contribution is from the 6s and the 6p1/2 (virtual) orbitals of
the Hg atom, since they lie close in energy. Also, their radial overlap is large. Moreover, we
can also expect that the matrix elements of the eEDM operator between these two orbitals
of opposite party be large.

That the s − p1/2 and p1/2 − s mixing in the heavier atom is important in the Eeff of
HgF has been pointed out in the past, for example, Ref.s [8]. We shall compare the results
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that we obtained with the previous works a little later in this chapter. We have, in our work,
accounted for not only the s− p1/2 and p1/2 − s mixing, but also that of the other orbitals,
and for both the atoms in HgX. We then see that the s − p1/2 mixing of the heavier atom
that dominates, among all other terms. In the Table, we have only shown the result for
s − p1/2 and p1/2 − s mixing in the halide atom. This is because we found that the other
contributions from the lighter atom are negligible. Also, note that in HgI, for example, the
‘lighter’ atom is heavy enough for relativistic effects to become pronounced. However, it
is surprising to see that even so, the s− p1/2 and p1/2 − s mixing from I is very small.

Finally, we see that it is not just the large values of the s − p1/2 and the p1/2 − s

mixings (of the heavier atom) that matter, but what remains when they cancel each other’s
contributions. This illustrates the important idea of cancellations, which occur in these kind
of ab initio calculations. In the case of iodine (for HgI), the two terms by themselves cannot
be neglected, but since they cancel each other out almost completely, they leave behind a
very small contribution to the DF Eeff .

Atom Mixing HgF HgCl HgBr HgI
Hg s− p1/2 -266.29 -262.07 -249.39 -242.34
Hg p1/2 − s 373.37 367.74 349.42 339.56
Hg p3/2 − d3/2 31.22 25.22 21.84 20.99
Hg d3/2 − p3/2 -32.26 -26.35 -22.48 -21.84
Hg d5/2 − f5/2 -0.91 -0.51 -0.39 -0.33
Hg f5/2 − d5/2 0.92 0.52 0.4 0.33

X s− p1/2 -2.78 -4.85 -10.58 -17.19
X p1/2 − s 2.79 4.92 11.17 19.87

Total: 106.06 104.62 99.99 99.05
DF 105.47 104.03 99.55 98.99

s− p1/2 and p1/2 − s 107.08 105.67 100.03 97.22

Table 5.2: Summary of the DF results, of the contributions from various orbitals’ mixings,
at the TZ level

We shall now try to expound why the Heff
eEDMT1 term (and its complex conjugate) is

large, among the seven non-zero correlation terms. We already observed that the DF con-
tribution is the leading one among others, and this is because of the large difference between
the large s − p1/2 and p1/2 − s terms, of Hg (the notation is same as that in Table II). We
recall that s is an occupied orbital, and that p1/2 is a virtual. If we only focus only on
the matrix elements (their values are several orders larger than their corresponding coef-
ficients), we see that those of the form,〈o|heff

eEDM |v〉 (denoting occupied orbitals as, ‘o’,
and virtual as, ‘v’), occur not only in the DF term, but also in the expression for Heff

eEDMT1

(which means that it also contains matrix elements between s and p1/2). The difference
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is that Heff
eEDMT1 also has a t1 amplitude, which is an indicator of the “weight" associated

with a given one-hole one-particle excitation. The t amplitudes are like probability am-
plitudes, and are therefore lesser than one. This means that we can see the amplitude as
having a “reducing" effect on the Heff

eEDMT1 term, for every combination of i and a. This is
presumably why Heff

eEDMT1 is not as large as the DF contribution; the large matrix elements
come with the smaller values of the t1 amplitudes. This is, of course, not the only reason
why the DF term is much larger than the other terms. It is because the term also contains
matrix elements of the type 〈o|heff

eEDM |o〉 and 〈v|heff
eEDM |v〉, and their net cancellation also

contributes in the final value of the DF term. Also, there are cancellations between several
terms that make Heff

eEDMT1, recalling that not all matrix elements or the t1 amplitudes are
positive.

Let us now examine the matrix elements, of the form 〈o|heff
eEDM |v〉. They appear only

in Heff
eEDMT1 and T †

2H
eff
eEDMT1 (and its complex conjugate). But, we observe that the latter

is, in fact, very small, compared to the former. This is probably because to two reasons,
the first being the nature of the cancellations that occur among the four terms that make
T †
2H

eff
eEDMT1:

∑
i>j,a>b

[tab∗ij t
a
i 〈b|h

eff
eEDM |j〉+ tab∗ij t

b
j〈a|h

eff
eEDM |i〉

−tab∗ij t
a
j 〈b|h

eff
eEDM |i〉 − tab∗ij t

b
i〈a|h

eff
eEDM |j〉] (5.2)

We have neither mentioned explicitly that the operator is normal ordered, nor that each
term is connected. These four terms, respectively, are 0.72, 0.24, -0.03, and 0.77, for HgF,
the representative case (this is because we expect the trends to be similar for the other HgX).
All these four terms have matrix elements of the form, 〈o|heff

eEDM |v〉. Among those, two
are dominant, but they almost cancel each other out. The second reason can be attributed
to the presence of another t amplitude, t2, which is also less than one, and this “reduces"
the net contribution even more.

The T †
1H

eff
eEDMT1 term is made of matrix elements of types 〈o|heff

eEDM |o〉 and 〈v|heff
eEDM |v〉.

To see their contribution, we expand T †
1H

eff
eEDMT1:

−
∑
i,j,a

ta∗i t
a
j 〈j|h

eff
eEDM |i〉+

∑
i,a,b

ta∗i t
b
i〈a|h

eff
eEDM |b〉

−
∑
i,a

ta∗i t
a
i 〈i|h

eff
eEDM |i〉+

∑
i,a

ta∗i t
a
i 〈a|h

eff
eEDM |a〉 (5.3)
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= I + II + III + IV (5.4)

The first term corresponds to Figure 1. c, while the second is similar to the figure,
except that the eEDM vertex occurs not between two holes, but between two particles. The
third term is same as the first again, except that both the holes are the same orbitals, that
is, the interaction of the hole with the eEDM leaves the particle unchanged. The fourth is
once again, same as the second, but with the two particles being the same orbital, instead
of two holes. We have expanded T †

1H
eff
eEDMT1 in this particular fashion, so that we can

discern which type of matrix elements contribute to it significantly. Table III summarizes
the contributions to this term.

Term Contribution (GV/cm)
I 10−3

II 2.94
III -4.44
IV 2.4

Table 5.3: The terms that contribute to T †
1H

eff
eEDMT1

From the Table, we observe that a significant contribution to the magnitude of these
terms come from those that contain the eEDM operator between the same orbitals (terms
II and III). These matrix elements are non-zero, even though heff

eEDM is P-odd. This is
due to the fact that the orbitals are actually MOs, and each MO is a linear combination
of basis functions, of different angular momenta. In fact, in T †

2H
eff
eEDMT2 term, the major

contribution is also from matrix elements between the same orbitals (-4.7 GV/cm).

Table IV presents a summary of the results obtained from previous works. Since the
results are available for HgF only, we briefly discuss those, and compare them with our
result. The very first work on HgF’s Eeff was by Kozlov [9]. They adopted a relativistic,
and semi-empirical calculation. The main theme of the paper was the nuclear anapole
moment, and electron-nucleus P and T violating interactions. Because it is a semi-empirical
calculation, it cannot break the final value of Eeff into its constituent DF and correlation
parts. Therefore, their Table only gives the final result.

In a later work, Dmitriev et al [10] calculated the Eeff of HgF. They used their calcu-
lated bond length, of 2.11 Angstrom, and employed a minimal atomic basis set for F. For
Hg, they used five relativistic valence orbitals, 5d3/2, 5d5/2, 6s1/2. 6p1/2, and 6p3/2. Their
final result for Eeff was about 100 GV/cm. We can describe their computation as quasi
relativistic, because it requires the addition of the spin-orbit interaction to a non-relativistic
Hamiltonian, whereas our work is fully relativistic, in that we use a Dirac-Coulomb Hamil-
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tonian, instead of an effective one. This approach has the spin-orbit interaction as well as
other effects built into it. Dmitriev et al also did not account for orbital mixing beyond d5/2.
Also, the effect of F was not taken into account, and only the principal quantum numbers
5 and 6 were considered. Our work makes no such restrictions. Finally, they had used
CI, with only three outer electrons excited. We do not freeze any of the occupied orbitals,
and therefore, the Hilbert space that we have considered, in order to accurately capture the
correlation effects, is larger than that that they used. We also note that our error estimate
of 5 percent is better than theirs, which is 20 percent. Also, their estimate of Eeff does
not separate the DF and correlation contributions, while we have provided a detailed de-
scription of both, in our work. Finally, fortuitous cancellations may be why their HgF Eeff

closely agree with ours. For example, in their work, they also calculated the PDM of HgF
to be 4.15 D. But, we obtain 2.61 D, at the CCSD level!

Meyer et al [8] calculated Eeff of several molecules, including HgF. They used their
non-relativistic software for this, to compare it with the accuracy of their method. In a later
work, they improved their result to 95 GV/cm [11].

In our previous work on HgX [1], we had used the relativistic coupled cluster method,
and shown that Eeff , for all the HgX molecules, is much larger than the rest of the current
eEDM candidates. In this work, we have performed a detailed analysis of the physical
effects involved at the DF as well as the correlation levels. We wish to emphasize that we
also decompose the final value of Eeff , into its DF and correlation contributions, in order
to analyze them.

Work Eeff (GV/cm)
Y Y Dmitriev et al. [10] 99.26
Meyer et al.[8] 68
Meyer et al.[11] 95
This work 115.42

Table 5.4: Effective electric field, Eeff , in the HgF molecule, calculated in earlier literature

The error estimates are the same as that in our previous work, since we are only ex-
pounding the theoretical aspects of the earlier work, here(Refer [1]). However, in our
latest ongoing work, we have improved upon the Eeffs of HgX, using a finite field ap-
proach [12]. The non-linear terms in the expectation value expression, in fact, contribute
much lesser than our earlier estimate, which is 3.5 percent.
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5.3 Summary

We have computed the effective electric fields of mercury monohalides, without freezing
any of the occupied orbitals. We used Dyall’s basis for Hg and I, whereas for the other
halides, we used the cc-pV basis. We show that the DF term contributes the most to Eeff

(about ninety percent). Also, we report the trends in some of the correlation terms, at the
DZ level. We observe that the one hole-one particle excitation contributes the most, at
the coupled cluster level. We also present an example of a physical effect (which can be
seen explicitly in MBPT) that this diagram subsumes. Also, we study the mixings of those
atomic orbitals that significantly contribute to the DF value of Eeff . We also observe their
trends, at the TZ level. The s− p1/2 mixing in Hg is found to contributes the most to EDF

eff .
In the next chapter, we shall compute the PDMs of HgX molecules, since the PDM plays
an important role in the sensitivity of an eEDM experiment.
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6
PERMANENT DIPOLE MOMENTS OF

HGX

6.1 Introduction

As seen in the previous chapters, PDMs play a role in estimating the sensitivity of an eEDM
experiment. One needs to take into account the extent to which a molecule can be polarized,
by an external lab field. A molecule with as high an Eeff as possible, and in which one can
polarize it with as low a lab field as possible, is a good option for eEDM search experiment,
besides other experimental features. The latter is quantified by the polarizing electric field,
Epol = 2B/D, where B is the rotational constant, and D the PDM. In this chapter, the
PDMs of HgX and their correlation trends shall be discussed.

From our earlier work [1] as well as that of others [2], we have observed that correlation
effects for the PDM of a one valence electron diatomic seems to be around ten percent.
However, the HgX molecules’ PDMs show an entirely different trend! This illustrates the
importance of accurate many-body calculations of not just quantities like effective electric
fields, but also those such as PDMs, where experimental data is not yet available.
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6.2 Results

The same bond lengths from our earlier work on HgX were used. We also used the same
basis sets, for consistency in the calculations.

Table I gives the details of the DF and the CCSD contributions to the PDMs.

Table 6.1: Summary of the calculated results of the present work; the basis set for Hg:
22s,19p,12d,9f,1g

Molecule Method PDM(D)
HgF DF 3.959

HgCl DF 4.23
HgBr DF 4.40

HgI DF 3.915
HgF CCSD 2.609

HgCl CCSD 2.721
HgBr CCSD 2.364

HgI CCSD 1.644

The DF values of PDM increase from HgF to HgBr, and reduces slightly for HgI. The
same trend is observed in the effective fields too, of these molecules. However, the simi-
larities end there, since unlike the HgX Eeffs, which had almost the same amount of cor-
relation, HgX PDMs’ correlation effects are drastically different. In fact, HgI’s correlation
terms account for over hundred percent of the DF value! This would mean that the sensitiv-
ity of the HgI eEDM experiment would be almost twice as high, if one were to only use the
DF value. This illustrates the kind of scenarios, where accurate computation of properties
are necessary, when experimental values aren’t available. Most other eEDM candidates do
not appear to have such large correlation contributions, for example, the PDM of YbF at the
DF level is 3.21 D, and is 3.6 D at the CCSD level [2]. As the lighter element’s Z increases,
so does the correlation contribution. In the work on AEMs’ PDMs, it was observed that the
quantity’s correlation part increases with Z of the heavier atom. However, in this case, the
heavier atom is always Hg. Also, for HgX, correlations reduce the PDM, like in the case of
BeF, MgF, and CaF. However, the correlations increase the PDMs of SrF, and BaF. YbF’s
PDM also increases when correlations are taken into account [2].

Let us now discuss the electronegativity aspect. Usually, if there is a large difference
in electronegativity of the two atoms that bond, then a large value of the PDM is expected
(since the separation of charges is larger). However, for HgX, the CCSD results show that
HgCl has the highest PDM.

Table II gives a summary of the results for the PDM of HgF obtained earlier by other
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many-body techniques and experiment.

Table 6.2: Summary of the PDMs of HgX from previous works and the present one

Molecule Method Reference PDM(D)
HgF CI Yu Yu Dmitriev et al 4.15

DF This work 3.959
CCSD This work 2.609

HgCl CI Wadt 3.28
DF This work 4.23

CCSD This work 2.721
HgBr CI Wadt 2.62

DF This work 4.40
CCSD This work 2.364

HgI DF This work 3.915
CCSD This work 1.644

Yu Yu Dmitriev et al [3] computed the PDM of HgF to be 4.15 D, using a bond length
of 2.11 Angstrom. Their CI study used a Complete Active Space Self Consistent Field
(CASSCF) program, with their active space including three outer electrons. Wadt [4] cal-
culated the PDMs for HgCl and HgBr using CI (with effective core potentials (ECPs)),
while calculating some quantities that he felt would be of use, for experimentalists trying
to design efficient high-power visible-ultraviolet lasers, using the two molecules. He em-
ployed non-relativistic ECPs for Cl and Br, but relativistic ones for Hg. The basis sets were
of the DZ type, with polarization functions.

Table 6.3: Electronic (at the CCSD level) and nuclear contributions to the PDM

Molecule Electronic terms Nuclear term
HgF -768.599 771.208

HgCl -919.565 922.286
HgBr -1004.465 1006.829

HgI -1078.199 1079.843

Table III gives the electronic and nuclear terms, just as in the AEM work. Their ratio
differ from one another only in the third decimal place. However, it increases monotoni-
cally, with increase in Z. The electronic term, hence, ‘grows’ faster than the nuclear term,
that is, it is slightly more sensitive to Z, than the latter.

The terms in Table IV show that the DF term is the largest, just as in the AEMs. It is at
least three magnitudes larger than the DT1 term, which is the largest correlation term. But,
since the large DF value is almost cancelled out by the nuclear term, each of the correlation
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Table 6.4: Contributions from the individual terms to the PDM

Term HgF HgCl HgBr HgI
DF -767.249 -918.056 -1002.430 -1075.929

DT1 -0.504 -0.619 -0.867 -1.033
DT2 0 0 0 0
T †
1D -0.504 -0.619 -0.867 -1.033

T †
1DT1 -0.343 -0.277 -0.349 -0.299
T †
1DT2 0.110 0.111 0.151 0.176
T †
2D 0 0 0 0

T †
2DT1 0.110 0.111 0.151 0.176
T †
2DT2 -0.219 -0.216 -0.254 -0.257

terms become very important. Both the DF and the DT1 terms increase as we go from HgF
to HgI. The T †

1DT1 term, along with the DF and the DT1 terms, reduce the PDM.

Table 6.5: Contributions from the SOMO to the DF PDM

Molecule SOMO %Fraction
HgF -11.958 1.56

HgCl -13.028 1.42
HgBr -13.040 1.3

HgI -12.690 1.18

As seen earlier, only the SOMO contributes to Eeff . This is not so for the PDM. All of
the MOs contribute. Table V shows that if the DF PDM is decomposed as being comprised
of SOMO and the rest of the orbitals, the former contributes to only about 1.5 percent of
the total PDM.

The values of Eeff/Epol, for the HgX molecules, are presented in Table VI. The quan-
tity is related to the sensitivity of an eEDM experiment by the relation: Epol ≡ 2B/D. This
tells us that this quantity is dictated predominantly by how heavy a molecule is. But, if the
PDM were to be an order or two lesser, it can compensate for Z.

Table 6.6: Enhancement factor for an eEDM experiment, due to Eeff and the PDM

Molecule Eeff (GV/cm) Epol (kV/cm) Eeff/Epol (×107)
HgF 115.42 4.29 2.69

HgCl 113.56 1.63 6.97
HgBr 109.29 0.85 12.86

HgI 109.30 0.77 14.19

In our earlier work, the PDMs used were from Dmitriev and Wadt’s work, to evaluate
Epol. Here, this is improved upon, where our RCCM values of the PDM are used. We see
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that the polarizing field changes from about 2 kV/cm, to about a kV/cm, for HgBr. This
again reinforces the need for accurate many-body calculations, when experimental data is
not available.

Only the equilibrium bond length is not computed using our CCSD method, in this
work. This is under the assumption that both Eeff and the PDM do not vary strongly near
the equilibrium separation.
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6.3 Summary

In this chapter, we calculated the PDMs of the HgX molecules. We decomposed the prop-
erty in terms of its constituent terms, just as in the previous chapters. An important differ-
ence between the PDM and Eeff is illustrated, by looking at the SOMO contribution to the
PDM. We compare our results with earlier calculations on the PDM of HgF. Finally, we
now compute the new value of Eeff/Epol, using our PDM results.

In the next chapter, we shall discuss about possible future directions of the work carried
out in this thesis.
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7
FUTURE WORK

7.1 Introduction

We plan on working in three broad directions. The first is to improve the existing results, by
employing better basis sets, for example. For this, we are carrying out work on understand-
ing the basis set dependence of properties. The second is to improve the results by using a
better many-body technique. For example, we saw in Chapter 3 that NCCM is better than
CCM, in that we do not need to truncate the expectation value expression. Another alterna-
tive is to not use the expectation value approach at all for evaluating properties, but rather
use an energy derivative approach, called the finite field coupled cluster method (FFCC).
The third direction for future work is to search for possibly better eEDM candidates. We
shall elaborate on these three aspects in this Chapter.
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7.2 Basis set dependence

In this section, we shall discuss some preliminary results from our calculations of PDMs of
SrF, with various basis sets, and observe how it changes. We use three basis sets for each
atom. For Sr, we use Dyall’s basis, which does not contain in it diffuse and polarization
functions. Then, we append to the Dyall basis diffuse and polarization functions taken from
Sapporro’s basis. We finally use the full Sapporro basis sets. For F, we use cc-pVNZ basis,
and then the ccpcV-NZ basis, which take into account the core-core effects [1, 2]. Finally,
we use aug-ccpV-NZ basis, which adds to the cc-pV basis sets diffuse functions. This gives
an estimate of the sensitivity of the property in the far-nuclear regions.

In the table given below, the first column gives the basis sets used for Sr, while the first
row mentions the basis used for F. The first number in a cell is the CCSD PDM, while
the number in parenthesis is the percentage fraction difference of the value obtained with
respect to experiment (% frac.), that is, (calculated value-experiment)/experiment.

Table 7.1: Summary of the calculated results of SrF at the CCSD level

CCSD n cc-pVNZ cc-pCVNZ aug cc-pVNZ
Dyall DZ 3.20 (-7.72) 3.21 (-7.43) 3.79 (9.30)
Dyall TZ 3.34 (-3.68) 3.40 (-1.95) 3.63 (4.68)
Dyall QZ 3.38 (-2.53) 3.39 (-2.24) 3.57 (2.95)

Dyall+Sapporo DZ 2.96 (-14.64) 2.96 (-14.64) 3.51 (1.22)
Dyall+Sapporo TZ 3.41 (-1.66) 3.43 (-1.08) 3.56 (2.66)
Dyall+Sapporo QZ 3.60 (3.82) 3.60 (3.82) 3.58 (3.24)

Sapporo+diff DZ 2.96 (-14.64) 2.97 (-14.35) 3.58 (3.24)
Sapporo+diff TZ 3.42 (-1.37) 3.43 (-1.08) 3.56 (2.66)
Sapporo+diff QZ 3.57 (2.95) 3.57 (2.95) 3.58 (3.24)

From the Table, we observe that core-core correlations are not so important, but the
diffuse functions are. That is, the PDM can be thought of as a property that is sensitive to
the far-nuclear region. Note that Sr is very heavy, as compared to F. We plan on extending
the work to BeF, where BeF is much lighter with respect to F, and MgF, where the masses of
the atoms are comparable. This will provide us with a better perspective on the dependence
of PDM on the choice of basis sets. In the end, we plan on applying our knowledge of basis
set dependence to the mercury halides’ PDMs as well as Eeff . These results are not only
aimed at improving the accuracy of our earlier results by including those physical effects
that may be more important, but also be extremely useful in evaluating accurately Eeff of
molecules like YbF, whose experimental results are already available.
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7.3 The finite field coupled cluster method

Since we have established that HgX are excellent candidates for eEDM search, we need to
perform precise calculations of their effective electric fields (higher quality basis sets). We
can also improve the result by using a different/modified many-body technique: the finite
field method. In the finite field coupled cluster method (FFCC), a property is expressed as
an energy derivative, instead of an expectation value problem.

Consider an unperturbed Hamiltonian, H0. It satisfies the equation:

H0|ψ0〉 = E0|ψ0〉

If we apply a perturbation, H ′, to it, then:

H(λ) = H0 +H ′ (7.1)

H(λ)|ψ(λ)〉 = E(λ)|ψ(λ)〉

E(λ) = E0 + λE1 + · · · (7.2)

E1 = 〈ψ0|H ′|ψ0〉 (7.3)

But, E(λ) is also:

E(λ) = E0 + λ
∂E

∂λ
|λ=0 + · · · (7.4)

In the CCM, |ψ0〉 = eT |Φ0〉. Since the CCM is non-variational, the energy derivative is
actually equal to the expectation value expression and a correction term [3].

∴ ∂E

∂λ
|λ=0 ≈ 〈ψ0|H ′|ψ0〉 (7.5)

Any first order property can now be defined as an energy derivative, instead of solving
the expectation value expression. If we compute a property using the energy derivative
approach, we account for both the non-linear terms in the expectation value expression,
which we had neglected, as well as this coupled cluster correction term.

Now, let us derive an expression for the derivative:

Consider a molecule, described by the Dirac-Coulomb Hamiltonian, H0. Its total en-
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ergy, E, is given by the sum of its Dirac-Fock (DF) energy,EDF , and the correlation energy,
∆E.

E = EDF +∆E (7.6)

If the system is perturbed by λH ′, where λ is the perturbation parameter, and H ′ is the
perturbation operator, then the total energy is

E(λ) = EDF (λ) + ∆E(λ) (7.7)

Now,

EDF (λ) = 〈Φ0|H(λ)|Φ0〉 (7.8)

= 〈Φ0|H0|Φ0〉+ λ〈Φ0|H ′|Φ0〉 (7.9)

Here, |Φ0〉 is the DF wave function of the unperturbed system. Therefore,

E(λ)− E

λ
=

∆E(λ)−∆E

λ
+ 〈Φ0|H ′|Φ0〉 (7.10)

The left hand side of the above equation is the familiar forward difference formula, for
calculating a first derivative.

If H ′ is the eEDM Hamiltonian, and if λ can be thought of as -de, then the above
expression, is actually the effective electric field, Eeff . We can extend this to a central
difference version:

E(λ/2)− E(−λ/2)
λ

=
∆E(λ/2)−∆E(−λ/2)

λ
+ 〈Φ0|H ′|Φ0〉 (7.11)

And:

∂E

∂de
= Eeff (7.12)

∂E

∂ε
= D (7.13)
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This method removes the issue of having to truncate higher order terms in the CCSD ex-
pectation value expression, because the correlation energy requires no truncation! The
conversion factors for the PDM and Eeff are 2.541 and 5.142 respectively. The former is
because 1 atomic unit (for electric dipole moment) corresponds to 2.541 Debye. The latter
is because 1 atomic unit (for the electric field) corresponds to 5.142×1011 V/m, which is
5.142GV/cm. A six-point central difference version of the energy derivative is:

Eeff =
45(∆Eλ/4 −∆E−λ/4)− 9(∆Eλ/2 −∆E−λ/2) + (∆E3λ/4 −∆E−3λ/4)

60(λ/4)

+ O((λ/4)6) (7.14)

Our goal is to apply both two and six point formulae to AEMs, and HgX, and understand the
importance of the non-linear terms in the expectation value expression. We have carried out
preliminary calculations on these molecules, and as of now, it appears that for the AEMs,
results from the linear expectation value is not very different from that obtained using the
energy derivative, for both the PDMs and Eeffs.
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Table 7.2: FFCC results for AEMs

Molecule Quantity CCSD 2 pt FFCC
BeF DZ PDM 0.93 1.01

Eeff 0.003 0.003
BeF TZ PDM 1.06 1.12

Eeff 0.004 0.004
BeF QZ PDM 1.10 1.15

Eeff 0.005 0.005
MgF DZ PDM 2.84 2.91

Eeff 0.06 0.06
MgF TZ PDM 3.02 3.08

Eeff 0.06 0.06
MgF QZ PDM 3.07 3.13

Eeff 0.07 0.07
CaF DZ PDM 3.01 3.07

Eeff 0.23 0.23
CaF TZ PDM 3.13 3.17

Eeff 0.27 0.27
CaF QZ PDM 3.16 3.19

Eeff 0.28 0.28
SrF DZ PDM 2.95 3.02

Eeff 1.91 1.99
SrF TZ PDM 3.42 3.46

Eeff 2.14 2.12
SrF QZ PDM 3.6 3.62

Eeff 2.17 2.16
BaF DZ PDM 2.69 2.77

Eeff 6.48 6.42
BaF TZ PDM 3 2.96

Eeff 6.65 6.60
BaF QZ PDM 3.4 3.41

Eeff 7.41 6.46
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7.4 Better eEDM candidates?

We had identified HgX as promising candidates for eEDM experiments. The next question
is if there are other candidates that are as promising, or maybe even better candidates.
From an experimental viewpoint, alkali atoms can be produced in larger numbers, than the
halides. If so, would mercury alkalis be suitable candidates? We are currently working
on the effective fields and the PDMs of these molecules. Since the bond lengths of these
molecules, the mercury alkalis (HgH, HgNa, HgK, HgRb, and HgCs) is not very well
known, we need to obtain the bond length of each of these molecules, by plotting the
potential energy curve, at the CCSD level. Preliminary calculations on HgH has shown
that its PDM is too small to provide good sensitivity for an eEDM experiment, although
its Eeff ≈ 100GV/cm. We expect that HgLi and HgNa will have larger PDMs, and
reasonable effective fields, making them potential candidates.
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7.5 Summary

In this chapter, we explored possibilities for future work in various directions. Preliminary
work on basis set dependence of a property like PDM on SrF using the CCSD method,
and at QZ level of basis, indicates that diffuse functions are important in moderately heavy
systems like SeF, while core-core correlations can be completely ignored. Further work in
this direction, and on more molecules, shall be carried out in the future. Our initial set of
results using FFCC indicates that the linear expectation value approach may be accurate.
We will extend the work for HgX, as well as a few other systems of interest in fundamental
physics. We have started work on the HgA molecules as potential candidates for eEDM
search experiments.
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i Appendix

i.1 Appendix A: The eEDM Hamiltonian

The correct relativistic form of the eEDM Hamiltonian is derived here. We start with the
magnetic dipole interacting with a spin 1/2 particle. It takes the form:

HM1 =
κµ

2
σµνF

µν (15)

Here, κ is some constant, σµν = i
2
[γµ, γν ], and F µν is the electromagnetic field tensor,

given by ∂µAν − ∂νAµ. In matrix form, it is given by:


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 (16)

There is no factor of 1/c for the components of the electric field, since we use natural
units, in particle physics.

Now, using the approach by Salpeter, an EDM can be considered as an odd-parity
counterpart of the MDM, that is, HE1 = γ5HM1. Also, κµ is replaced by −ide, where the
‘i’ is to ensure that the resulting Hamiltonian is Hermitian. That leads us to

HE1 =
ide
2
γ5σµνF

µν (17)

= −deβ(~σ · ~E − i~α · ~B) (18)

An outline of the derivation to obtain the final expression is given below:

Let us first examine the structure of F µν , to simplify the algebra involved. If µ = ν,
then F µν = 0, and therefore that part of HE1. The second step is to separate out the terms
with the electric and magnetic fields. This is straightforward, since from the matrix form
of Fµν , we see that the first row and the first column contain only the electric fields, and the
rest the magnetic fields. Armed with this information, we rewrite HE1 as:
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HE1 =
ide
2
γ5(σ0jF

0j + σi0F
i0 + σijF

ij) (19)

The third step is to examine the properties of the matrix elements of F µν and σµν . The
relevant properties are that F µν = −F νµ, and σµν = −σνµ. The former is a well known
property, and can be found in many text books on electrodynamics, while the latter can be
seen in the following way:

σµν =
i

2
[γµ, γν ] (20)

=
i

2
(γµγν − γνγµ) (21)

= − i

2
(γνγµ − γµγν) (22)

= −σνµ (23)

Because of this, σ0jF 0j = σi0F
i0. Therefore,

HE1 =
ide
2
γ5(2σ0jF

0j + σijF
ij) (24)

Now, let us evaluate the first term:

ideγ
5σ0jF

0j = ideγ
5(σ01F

01 + σ02F
02 + σ03F

03) (25)

= ideγ
5(σ01E

1 + σ02E
2 + σ03E

3) (26)

Here, Ei refers to the ith component of the electric field. Consider only the first term:

ideγ
5σ01E

1 = ideγ
5 i

2
[γ0, γ1]E1 (27)

= ide
i

2
(γ5γ0γ1 − γ5γ1γ0)E1 (28)

= ide
i

2
(−γ0γ5γ1 − γ0γ5γ1)E1(∵ {γ0, γ5} = 0, {γ0, γ1} = 0) (29)

= ide
i

2
(2βΣ1)E1(∵ γ0 is β, γ1 is α1, and γ5γ1 = −Σ1) (30)

= −deβΣ1E1 (31)
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Repeating this for the other two terms, we obtain:

ideγ
5σ0jF

0j = −deβ~Σ · ~E

Now, let us evaluate the second term of HE1:

Expanding σijF ij , recalling that those terms where i = j vanish, and also using the
facts that Fij = −Fjiand σij = −σji, we obtain:

ide
2
γ5σijF

ij = ideγ
5(σ12F

12 + σ13F
13 + σ23F

23) (32)

From the matrix form of F µν , we read off F 12 as -B3, F 13 as B2, and F 23 as -B1.

Using the facts that γ5 = iγ0γ1γ2γ3, and also the fact that the α matrices (or γi; i=1, 2,
and 3) anti-commute in each of the terms, we obtain:

idβα · ~B

A quick sample calculation for only idγ5σ12F 12 is provided below, for illustration pur-
poses:

idγ5σ12F
12 = idiγ0γ1γ2γ3(

i

2
(γ1γ2 − γ2γ1))(−B3) (33)

= −id
2
γ0(γ1γ2γ3γ1γ2 − γ1γ2γ3γ2γ1)(−B3) (34)

= −id
2
(−2γ3)(−B3) (35)

= −idα3B3 (36)

Therefore, we finally obtain:

HE1 = −dβ(~σ · ~E − iα · ~B) (37)

In atoms and molecules with one unpaired electron, the electric term dominates over
the magnetic one, and therefore, we obtain the familiar expression

HE1 = −dβ~σ · ~E (38)

where
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~E = −[~∇, V/q] (39)

V is the potential from the Dirac-Coulomb Hamiltonian.

i.2 Appendix B: Derivation of the effective eEDM Hamiltonian, and
why Eeff = 0 for the non-relativistic case

Let us start with the commutator, [−de
e
βσ · ∇, Ho].

[βσ · ∇, Ho] = [βσ · ∇, cα · p] +mc2[βσ · ∇, β] + [βσ · ∇, V ] (40)

= 1 + 2 + 3

Note that the summation over the number of electrons is not mentioned,it does not
change the overall derivation. Also, the potential, V = V (x, y, z), is general, and not
necessarily central, since we are dealing with molecules.

Let us first evaluate 1:

[βσ · ∇, cα · p] =
ic

~
[βσ · p, α · p] (41)

=
ic

~
[β
∑
j

σjpj,
∑
k

αkpk] (42)

=
ic

~
∑
j,k

pjpk[βσj, αk] (43)

This is allowed, since pj and pk are only the components of p, and are, hence, numbers.

∴ [βσ · ∇, cα · p] =
ic

~
∑
j

p2j [βσj, αj] (44)

+
∑
j

∑
k 6=j

pjpk[βσj, αk]

Let us evaluate the first term’s commutator:
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[βσj, αj] = βσjαj − αjβσj (45)

= −βγ5α2
j + αjβγ5αj (46)

= −βγ5 + (−βαjγ5αj)(∵ α2
j = I, and αj, β = 0) (47)

= −βγ5 + (−βγ5α2
j )(∵ αjγ5 = γ5αj) (48)

= −2βγ5 (49)

Hence, the first term is: −2 ic
~
∑

j p
2
jβγ5.

And the second term’s commutator is:

[βσj, αk] = βσjαk − αkβσj (50)

= βσjαk + βαkσj (51)

= β(σjαk + αkσj) (52)

= β(−γ5αjαk − αkγ5αj)(∵ σj = −γ5αj) (53)

= −βγ5(αjαk + αkαj) (54)

= 0 (55)

∴ [βσ · ∇, cα · p] = −2 ic
~
∑

j βγ5p
2
j .

Now, let us evaluate 2:

mc2[βσ · ∇, β] = mc2
i

~
[βσ · p, β] (56)

(57)

[βσ · p, β] =
∑
k

pk[βσk, β] (58)

=
∑
k

pk[−βγ5αk, β] (59)

=
∑
k

pk(−βγ5αkβ + β2γ5αk) (60)

=
∑
k

pk(−βγ5(−βαk) + γ5αk) (61)
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=
∑
k

pk(βγ5βαk + γ5αk) (62)

=
∑
k

pk(−β2γ5αk + γ5αk) (63)

=
∑
k

pk(−γ5αk + γ5αk) (64)

= 0 (65)

Finally, let us evaluate 3:

Note that the potential, V, has a one-body (electron-nucleus interaction) and a two body
part (electron-electron interaction):

V = ev(ri) + evij (66)

= ev + ev′ (67)

V is the potential energy, and v is the potential. The former has only one coordinate
index, and hence we shall denote ∂

∂xi
(say) as ∂

∂x
.

[βσ · ∇, ev] = β[σx
∂

∂x
, ev] + β[σy

∂

∂y
, ev] + β[σz

∂

∂z
, ev] (68)

= βσx[
∂

∂x
, ev] + βσy[

∂

∂y
, ev] + βσz[

∂

∂z
, ev] (69)

= eβσx
∂v

∂x
+ eβσy

∂v

∂y
+ eβσz

∂v

∂z
(70)

= −eβσxEx − eβσyEy − eβσzEz (71)

= −eβσ · Eintl (72)

In the second term, v′, we have an additional index, j, which is not equal to i. The above
mentioned argument for the commutator holds for the latter too. This is because the steps
given above hold, independent of what the form of the potential is, as long as there is a
dependence of the potential on x, y, and z.

The electric field term can be interpreted as the internal field, since v involves electron-
nuclei and electron-electron interactions. Also, we have used ∂v

∂x
= −Ex, and so on, since

the force is conservative (although it is not central, since we are dealing with molecules).
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Hence, we get:

[βσ · ∇, Ho] = −2
ic

~
∑
j

βγ5p
2
j − eβσ · Eintl (73)

∴ −eβσ · Eintl = [βσ · ∇, Ho] + 2
ic

~
∑
j

βγ5p
2
j (74)

Finally, we see that when we take the expectation value of the above expression, the first
term vanishes. This is because the commutator involves two terms, both containing Ho,
which implies that both the terms give an energy term corresponding to it (this is because
Eeff is the expectation value of the unperturbed wave function, which is the eigenstate of
the unperturbed Hamiltonian, by definition). Since the energy is a number, we can take it
out as a common term, and the remaining two terms cancel.

Let us now look at the non-relativistic case, in detail, for completeness. Since in the
non-relativistic case, we can view β as unity, we shall use this motivation to start with
the commutator, [−de

e
σ · ∇, Ho], which is the same as the one that we started with, in

the relativistic case, except that β has been set to unity. Also, Ho is the non-relativistic
Hamiltonian.

[σ · ∇, Ho] = [σ · ∇, −~2∇2

2m
] + [σ · ∇, V ] (75)

= 1 + 2 + 3

If we recast the ∇s in the first term as momenta, then we can directly see that the end
result is zero, since when we expand the dot products of both the terms involved in the
commutator, the components of momenta are just numbers, and can be taken out. The
second term is calculated in a way similar to that in the previous derivation, except that the
β is missing. Hence, we obtain:

[σ · ∇, Ho] = −eσ · Eintl (76)

The right hand side is the eEDM operator, and when we take its expectation value
(which is Eeff ), it is equal to the expectation value of the left hand side, which is zero, as
discussed in the previous derivation. Hence, for a non-relativistic case, Eeff is zero.

Finally, let us comment on the case of a finite nucleus. Independent of whether we
choose a point nucleus or a finite one, the commutator, [βσ · ∇, ev], gives the same result,

139



Appendix

since v is conservative (this can be seen in the following classical way: if the force can
be represented as the negative gradient of the potential, and if its curl is zero, then it is
conservative). Therefore, independent of whether we use a point or a finite nucleus, the
non-relativistic Eeff is zero, and the relativistic may not be zero. However, the value
of Eeff itself depends on the type of finite nucleus that we use, since each model for a
finite nucleus modifies the electron-nucleus potential differently in the near-nuclear region,
which means that the wave function we finally obtain is expected to be slightly different,
and therefore Eeff is expected to be slightly different too.
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