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                                  ABSTRACT 

Accented Automatic Speech Recognition (AASR) is the ability of a system to 

recognize accented speech inputs. It poses a unique challenge, particularly for 

languages with limited available datasets. In this research, a comprehensive 

exploration of machine learning and deep learning along with feature engineering 

techniques was conducted to advance the understanding of accented speech 

recognition. 

The research is completed in several phases of experimental studies. The journey 

begins with an extensive literature review and finding the dominating gap in the 

domain of AASR for Malayalam. The unavailability of benchmark dataset in 

accented Malayalam and scarcity of previous study in literature hindered this 

research. To address the scarcity of relevant datasets, eight distinct sets of accented 

data were carefully constructed.  Additionally, a spectrogram dataset was developed 

to facilitate a comprehensive study. The research investigates various feature 

extraction techniques and model architectures, exploring the impact of different 

feature combinations on accented speech recognition. 

Each dataset is characterized by a diverse range of key properties essential for robust 

speech recognition systems. The datasets exhibit a wide spectrum of accents from 

varied regions and demographic groups. Efforts were made to maintain balanced 

representation across genders, ages, and socio-economic backgrounds, thereby 

reducing potential biases. The recordings for some of the datasets were conducted in 

natural settings to authentically capture variations in accent and pronunciation. 

These datasets are annotated with word and sentence level transcriptions 

(depending on the type of audio signal) and the district of the specific accent 

providing valuable insights into speaker details and recording conditions. To 

evaluate system robustness, recordings were obtained under various noise 

conditions, spanning from quiet environments to bustling public spaces.  

The isolation of words from speech signals (AMSC-1 to AMSC-6, AMESC, 

AMDDHS) involved a complex approach to ensure precision and consistency. In the 

beginning the start and end points of words are marked through manual 

segmentation. This was complemented by the utilization of forced aligners, which 

provided precise alignment of words within the speech signals. Signal processing 

techniques, including silence detection and spectral analysis, further facilitated the 

identification of word boundaries with accuracy. To validate the integrity of the 

isolated words, they were cross verified with the original scripts, ensuring 

correctness and reliability. Volume and length normalization techniques were 



 ix 

applied to maintain consistency across the datasets. These methodologies collectively 

ensured the creation of robust datasets essential for the development and evaluation 

of accented speech recognition systems in Malayalam. 

The acoustic signal processing methods encompass a wide array, including Mel 

Frequency Cepstral Coefficients (MFCC), Short Term Fourier Transformation (STFT), 

Mel Spectrogram, Tempogram, Zero Crossing Rate (ZCR), Root Mean Square Value 

(RMS), Tonnetz & Polyfeatures, and Harmonic Mean Ratio (HMR). The study 

involves a detailed analysis of the effectiveness of the feature vectors extracted in 

enhancing accented speech recognition.  

In this research, a comprehensive exploration of machine learning and deep learning 

techniques was conducted to advance the understanding of accented speech 

recognition. Accented Speech Recognition models were implemented using a diverse 

set of classifiers, including Long Short-Term Memory (LSTM), Recurrent Neural 

Network (RNN), Convolutional Neural Network (CNN), Bidirectional LSTM 

(BiLSTM), Multilayer Perceptron (MLP), K Nearest Neighbor (KNN), Stochastic 

Gradient Descent (SGD), Support Vector Machine (SVM), ensembled models, 

decision tree, random forest classifiers etc. Experiments utilizing spectrograms and 

CNN architectures were conducted to further enhance model performance.  

The phases of study involved constructing unified accented ASR models for 

Malayalam employing Autoencoders and self-supervised learning. The models were 

constructed on the compressed and uncompressed representation of the feature 

vectors. The outcome of the experiment was promising when ensembled with the 

machine learning approaches. 

 The research extended beyond traditional recognition models to include accented 

emotional clustering experiments for Malayalam accented data. Unsupervised 

learning techniques were adopted for clustering the accented Malayalam based on 

the seven emotions [happy, sad, anger, disgust, fear, neutral, surprise]. 

The study examined hate speech detection for accented Malayalam data using deep 

learning techniques. Accented speech dataset containing hate speech has been 

constructed from publicly available online platforms. Explorations were made using 

feature engineering and deep learning techniques for conducting this study. 

 Additionally, extensive exploration of the AASR for Malayalam was constructed for 

a more enhanced accented dataset. A detailed study on different architectures 

including hybrid neural network architectures combining CNN and LSTM, as well 
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as multidimensional CNNs, were explored in constructing accented speech 

recognition models. 

The evaluation of these models employed a range of techniques, including accuracy, 

F-score, recall, word error rate, and match error rate, providing a comprehensive 

assessment of their performance. Machine learning approaches played a crucial role 

in the model construction process, adding depth and versatility to the research.  The 

results of the experiments at different phases are evaluated and discussed to find the 

key contributions of this research. 

Keywords: Accented Speech Recognition, Malayalam ASR, Speech Feature 

Extraction, LSTM-RNN, CNN, Multi-Dimensional CNN, Autoencoders, and 

Machine Learning. 
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സം�ഹം 

 

ആ��ഡ് �ീ�് െറ��ിഷെന�റി�് മന�ിലാ��തിനായി െമഷീൻ േലണിംഗിെ��ം 

ഡീപ് േലണിംഗ് െട�ി�ക�െട�ം സമ�മായ ഒ� പഠനമാണിത്. പരിമിതമായ 

ഡാ�ാെസ�കൾ മാ�ം ലഭ�മായ ഭാഷകൾ�് ഉ�ാരണ സംഭാഷണം തിരി�റി�ക എ�ത് 

�മകരമായ േജാലിയാണ്. �േത�കി�് മലയാളം േപാെല�� �വീഡിയൻ ഭാഷകളിൽ. 

ഭാഷ�മായി ബ�െ�� സാേ�തിക പഠന�ളിൽ ഏ��ം �സ�മായ കാര�ം 

ഡാ�െസ�കളാണ്.  ഡാ�ാെസ�ക�െട ദൗർലഭ�ം പരിഹരി��തിനായി, എ�് വ�ത��മായ 

ആ��ഡ് ഡാ�ാ െസ�കൾ വികസി�ിെ���ി��്. �ടാെത, സമ�മായ  പഠനം 

�ഗമമാ��തിന് ഒ� െ�േ�ാ�ാം ഡാ�ാെസ�ം വികസി�ിെ���. വിവിധ ഫീ�ർ 

എക് സ് �ാ�ൻ െടക് നി�ക�ം േമാഡൽ ആർ�ിെടക്ച�ക�ം ഗേവഷണ വിേധയമാ�ി. 

ഉ�ാരണ�ി�� സംഭാഷണ തിരി�റിയലിൽ വ�ത�� ഫീ�ർ േകാ�ിേനഷ�ക�െട 

സ�ാധീന�ം പഠന വിേധയമാ�ി.  

ഫീ�ർ എക് സ് �ാക് ഷൻ രീതികളിൽ െമൽ �ീക�ൻസി െസപ് സ് �ൽ േകാഫിഫിഷ�� ് സ് 

(എംഎഫ് സിസി), േഷാർ�് േടം ഫ�റിയർ �ാൻസ് േഫാേമഷൻ (എസ് ടിഎഫ് ടി), െമൽ 

സ് െപക് േ�ാ�ാം, െടംേപാ�ാം, സീേറാ േ�ാസിംഗ് േറ�് (ഇസഡ് സിആർ), ��് മീൻ സ് ക�യർ 

വാല� (ആർഎംഎസ്), േടാണ�് സ് & േപാളിഫീ��കൾ, ഹാർേമാണിക് ശരാശരി അ�പാതം 

(HMR) എ�ിവ ഉൾെ���. ഉ�ാരണ�ി�� സംഭാഷണ തിരി�റിയൽ വർ�ി�ി��തിൽ 

ഇ�രം രീതിക�െട  ഫല�ാ�ിെയ�റി�� വിശദമായ വിശകലനം പഠന�ിൽ ഉൾെ���. 

എൽ എസ് ടി എം  ആർഎൻഎൻ, സിഎൻഎൻ, എംഎൽപി, െകഎൻഎൻ, എസ്ജിഡി, എസ് 

വി എം, എൻെസംബിൾഡ് േമാഡ�കൾ, റാൻഡം േഫാറ�് �ാസിഫയ�കൾ 

എ�ിവ�ൾെ�െട ൈവവിധ�മാർ� �ാസിഫയ�കൾ ഉപേയാഗി�ാണ് ആ��ഡ് �ീ�് 

െറ��ിഷൻ േമാഡ�കൾ നട�ിലാ�ിയത്.  

േമാഡൽ �കടനം ��തൽ െമ�െ����തിനായി െ�േ�ാ�ാ�ക�ം സിഎൻഎൻ 

ആർ�ിെടക്ച�ക�ം ഉപേയാഗി�� പരീ�ണ�ൾ നട�ി. ഓേരാ രീതി�െട�ം 

വിദ�ക�െട�ം പരീ�ണ�ം അതിൽ നി�ം കി�ിയ പരീ�ണഫല�ം റിസൾ�ക�ം ത�ി�� 

താരതമ� പഠന�ം ഗേവഷണ�ിെ� ഭാഗമായി നട�ി. 

മലയാളം ഓേ�ാഎൻേകാഡ�കൾ ഉപേയാഗി��തി�ം െസൽഫ് ��ർൈവസ്ഡ് 

പഠന�ി�മായി ഏകീ�ത ആ��ഡ് എഎസ്ആർ േമാഡ�കൾ നിർ�ി��ത് പഠന�ിെ� 
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ഘ��ളിൽ ഉൾെ���. ഫീ�ർ െവ��ക�െട കം�സ് െച��ം കം�സ് െച�ാ��മായ 

�ാതിനിധ��ിലാണ് േമാഡ�കൾ നിർ�ി�ിരി��ത്. െമഷീൻ േലണിംഗ് സമീപന��മായി 

സമന�യി�ി�േ�ാൾ പരീ�ണ�ിെ� ഫലം �തീ� നൽ��തായി��. 

പര�രാഗത തിരി�റിയൽ േമാഡ�കൾ��റം മലയാളം ആ��ഡ് ഡാ�യ് �ായി ആ��ഡ് 

ഇേമാഷണൽ ��റിംഗ് പരീ�ണ�ൾ ഉൾെ����തിനായി ഗേവഷണം വ�ാപി�. ഏഴ് 

വികാര�ൾ [സേ�ാഷം, സ�ടം, േദഷ�ം, െവ��്, ഭയം, നി��ത, ആ�ര�ം] 

അടി�ാനമാ�ി�� മലയാളം ��റി�ിനായി അൺ��ർൈവസ്ഡ് പഠന വിദ�കൾ 

സ�ീകരി�. 

ഡീപ് േലണിംഗ് െട�ി�കൾ ഉപേയാഗി�് ഉ�ാരണ�� മലയാളം ഡാ��ായി വിേദ�ഷ 

സംഭാഷണം കെ���ത് പഠനം പരിേശാധി�. െപാ�വായി ലഭ�മായ ഓൺൈലൻ 

�ാ�് േഫാ�കളിൽ നി�് വിേദ�ഷ സംഭാഷണം അട�ിയ ഉ�ാരണ സംഭാഷണ ഡാ�ാെസ�് 

നിർ�ി�ി��്. ഈ പഠനം നട�ാൻ ഫീ�ർ എ�ിനീയറിം�ം ഡീപ് േലണിംഗ് െട�ി�ക�ം 

ഉപേയാഗി�ാണ് പര�േവ�ണ�ൾ നട�ിയത്. 

 �ടാെത, മലയാള�ിനാ�� AASR-െ� വി�ലമായ പര�േവ�ണം ��തൽ െമ�െ���ിയ 

ആ��ഡ് ഡാ�ാെസ�ിനായി നിർ�ി�. CNN, LSTM എ�ിവ സംേയാജി�ി�� ൈഹ�ിഡ് 

ന�റൽ െന�് വർ�് ആർ�ിെടക്ച�ക�ം മൾ�ിൈഡമൻഷണൽ CNN-ക�ം ഉൾെ�െട വിവിധ 

ആർ�ിെടക്ച�കെള�റി�� വിശദമായ പഠനം, ഉ�ാരണ�� സംഭാഷണ തിരി�റിയൽ 

േമാഡ�കൾ നിർ�ി��തിൽ പര�േവ�ണം െച�െ��. 

ഈ േമാഡ�ക�െട �ല�നിർ�യ�ിൽ നിരവധി സാേ�തിക വിദ�കൾ ഉപേയാഗി� അവ�െട 

�കടന�ിെ� സമ�മായ വിലയി��ൽ നൽ��. െമഷീൻ േലണിംഗ് സമീപന�ൾ 

േമാഡൽ നിർ�ാണ ��ിയയിൽ നിർണായക പ�് വഹി� ഗേവഷണ�ിന് ആഴ�ം 

ൈവവിധ��ം നൽ��. ഈ ഗേവഷണ�ിെ� �ധാന സംഭാവനകൾ കെ��ാൻ വിവിധ 

ഘ��ളിെല പരീ�ണ��െട ഫല�ൾ വിലയി��ക�ം ചർ� െച�ക�ം െച��.
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1. Introduction 

1.1  Background and Context 

Malayalam, a Dravidian language originating in the southwestern part of India, 

specifically Kerala, is an intricate tapestry woven from centuries of cultural, social, 

and linguistic evolutions. Boasting a rich history that dates to ancient scripts found 

as early as the 7th century AD. According to the data regained from the Census of 

India Website, provided by the Office of the Registrar General & Census 

Commissioner with the latest available archive dated 15 August 2018, and retrieved 

on 26 December 2019, the language now serves as the mother tongue for over 38 

million people globally (shown in Figure 1). 

At the heart of Kerala’s socio-cultural fabric, Malayalam has witnessed a spectrum 

of phonetic, syntactic, and lexical changes, making it a fascinating subject for 

linguistic studies. Moreover, its extensive literature, from classical songs to modern 

prose, highlights the region’s intellectual and artistic contributions. The language has 

not only managed to thrive in its native region but has also made its mark globally, 

with substantial diaspora communities in the Middle East, Europe, and North 

America. Understanding Malayalam is essential not just from a cultural and 

linguistic perspective, but also in the domain of technology. 

Capturing the details of accented speech patterns in Malayalam using advanced 

machine learning and deep learning techniques is challenging. Automatic Accented 

Speech Recognition (AASR) becomes crucial, especially in a language as phonetically 

rich as Malayalam, where even slight tonal variations can alter meanings.  

The inherent variability in accents poses significant difficulty. Different speakers 

may have unique pronunciations, intonations, and rhythms influenced by their 

regional, social, and linguistic backgrounds. This variability makes it challenging to 

create a model that generalizes well across diverse accents. 
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The scarcity of labeled data for accented Malayalam speech is a major obstacle. 

Machine learning models require large amounts of annotated data to learn 

effectively, and obtaining such datasets for every accent variant can be resource-

intensive and time-consuming. Additionally, manual annotation of speech data is 

laborious and prone to inconsistencies. 

Another challenge is the complexity of Malayalam phonetics. Malayalam has a rich 

phonemic inventory with numerous phonetic variations, including subtle 

distinctions between sounds that are difficult for models to capture accurately. This 

phonetic complexity demands sophisticated feature extraction techniques and 

advanced models to ensure accurate recognition. 

Furthermore, the presence of background noise and varying recording conditions 

can adversely affect model performance. Real-world speech data often includes 

ambient noise, reverberations, and other distortions, making it difficult for models 

to discern speech patterns reliably. Computational constraints can also be a limiting 

factor. Training deep learning models on large datasets with high-dimensional 

speech features requires substantial computational resources. Ensuring efficient and 

scalable training processes while maintaining high model performance is a 

significant technical challenge. 

These challenges necessitate the development of innovative approaches and robust 

methodologies to effectively capture and recognize accented speech patterns in 

Malayalam. 

This thesis explores the intricacies of accented speech recognition for Malayalam, 

employing cutting-edge machine learning and deep learning methodologies. 

Through this exploration, the aim is to bridge the technological divide and offer 

Malayalam speakers a seamless interaction with voice-activated devices, 

applications, and services, thus underscoring the significance of the Malayalam 

language in the modern digital era. 
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Figure 1 Global Malayalam Speaking Diaspora 

 

Table 1 Statistics of Malayalam Speakers in India (Census of India 2011) 

Rank State/Union Territory Malayalam Speakers 2011 

— India 3.4838819×107 

1 Kerala 3.2413213×107 

2 Tamil Nadu 9.57,705x105 

3 Karnataka 7.01,673x105 

4 Lakshadweep 5.4,264x104 

5 Puducherry 4.7,973x104 

6 Andaman and Nicobar Islands 2.7,475x104 

 

Table 1 provides a detailed breakdown of the number of Malayalam speakers across 

various states and union territories in India, based on the 2011 Census data. The table 

ranks these regions by the population of Malayalam speakers, offering insights into 

the distribution of this linguistic group within the country.  
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1.2  Relevance of the Study 

In today's rapidly advancing digital age, speech recognition stands as a cornerstone 

for numerous applications, from voice assistants to transcription services. As 

technology becomes increasingly ubiquitous, the imperative for systems to recognize 

and adapt to diverse languages and accents grows stronger. While major global 

languages have seen significant advancements in this domain, regional languages, 

especially those with complex phonetic structures like Malayalam, often remain 

unexplored. 

Malayalam, with its rich phonetic variety and multiple dialects, presents a unique 

challenge in speech recognition. Differences in accents across its regions, influenced 

by factors such as geography, socio-cultural practices, and even individual education 

and exposure, further complicate this landscape. The relevance of this study is 

manifold: 

1. Inclusivity and Access: By improving accented speech recognition for 

Malayalam, it can be ensured that a significant population is not left behind in 

the digital transformation. This work aids in offering equal access to digital tools 

and services for Malayalam speakers, irrespective of their regional accents. 

2. Economic Impact: Kerala, the primary region where Malayalam is spoken, has a 

large diaspora globally. Enhanced speech recognition can facilitate smoother 

communication, potentially boosting sectors like business, tourism, and even 

remote healthcare. 

3. Preservation and Promotion: Advanced speech recognition for regional 

languages can play a crucial role in preserving and promoting cultural heritage. 

By cataloging and analyzing various accents and dialects, this research might also 

contribute to linguistic studies. 

4. Technological Advancement: This study pushes the boundaries of what's 

achievable in the domain of speech recognition. The methodologies and findings 
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can potentially be extrapolated to other similar languages, amplifying the impact 

of this research. 

5. Educational Implications: Enhanced speech recognition can be a boon for 

educational platforms, enabling more effective e-learning solutions, especially in 

remote areas where traditional education infrastructure might be lacking. 

6. Cyber Forensics: Accurate identification and analysis of spoken content in 

various languages, such as Malayalam, becomes imperative for cyber forensic 

investigators. Accents and dialects can often provide crucial clues about the 

geographic origin of a suspect or the target audience of a cyberattack. This 

information aids in narrowing down the pool of potential suspects and 

understanding the cultural context of the communication. Accented speech 

recognition, when integrated into forensic tools, can enhance the efficiency and 

accuracy of cybercrime investigations, thereby contributing to the overall 

security of digital environments. Furthermore, it enables forensic experts to 

reconstruct conversations and audio evidence with precision, ensuring the 

integrity and admissibility of evidence in legal proceedings. 

7. Inclusive Healthcare Support for Accented Speech: Accented speech assistive 

applications play a vital role in healthcare, providing assistance tailored to 

individuals with different linguistic backgrounds. These applications help set 

medication reminders, schedule appointments, and offer health information, 

ensuring equitable support for diverse patient populations. 

8. Business Efficiency with Accented Speech Assistants: In professional settings, 

accented speech recognition applications enhance business productivity. 

Executives and professionals can use voice commands, inclusive of various 

accents, to schedule meetings, draft emails, and access information, fostering a 

more diverse and inclusive work environment. 
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9. Accented Speech in Retail and Customer Service: Voice assistants attuned to 

accented speech contribute to improved customer interactions in retail. They 

enable voice-activated searches, answer product-related queries, and enhance the 

overall shopping experience by accommodating individuals with diverse 

accents. 

10. Access to Entertainment with Accented Speech Recognition: Accented speech 

assistive applications transform how individuals with diverse accents consume 

entertainment. Users can control smart TVs, search for content, and adjust 

settings using voice commands, ensuring an inclusive and accessible 

entertainment experience. 

11. Recognition in Public Spaces: Integration of accented speech recognition into 

public spaces enhances accessibility for individuals with diverse linguistic 

backgrounds. Voice-activated features, such as elevators, doors, and information 

kiosks, contribute to creating inclusive environments in public buildings and 

transportation hubs. 

12. Facilitating Accented Speech in Language Translation: Accented speech 

recognition applications with language translation capabilities facilitate cross-

cultural communication. Users can communicate in their native accent, and the 

application translates and conveys the message, fostering understanding and 

collaboration across linguistic diversity. 

13. Inclusive Smart Home Automation for Accented Speech: Voice assistants tailored 

for accented speech empower users to control smart home devices effortlessly. 

From adjusting settings to managing various systems, these applications ensure 

that individuals with diverse accents can fully participate in the benefits of smart 

home automation. 

This thesis not only addresses a technological challenge but also has profound socio-

cultural and economic implications, making the research both timely and essential. 



7 

Speech recognition technology has made leaps and bounds over the past decade, 

with various applications integrating voice-activated commands to enhance user 

experience.  

Malayalam, intrinsic to the socio-cultural identity of Kerala, is spoken with variances 

in accent, intonation, and pronunciation across its diverse geography. From the 

highlands of Idukki to the coastal regions of Kozhikode and from 

Thiruvananthapuram to Kasaragod districts, distinct accents emerge, each carrying 

the weight of its historical, socio-cultural, and even topographical influences. These 

accents, while being the very essence of the language’s diversity, present a 

formidable challenge for conventional speech recognition systems.  

The inability of current systems to accurately recognize and transcribe accented 

Malayalam speech often leads to: 

1. Miscommunication: Inaccurate transcriptions can render voice commands 

useless or even lead to unintended actions, especially in critical applications like 

medical transcription or emergency services. 

2. Digital Exclusion: A significant portion of Malayalam speakers, especially those 

from rural or traditionally underrepresented regions, find themselves at a 

disadvantage when interacting with voice-driven technologies. This digital 

divide only widens as technology progresses without considering these 

variations. 

3. Economic Repercussions: As businesses increasingly rely on automated customer 

service solutions and voice-driven interfaces, the inability to cater to the diverse 

Malayalam-speaking populace could result in lost opportunities and revenue. 

4. Cultural Homogenization: Not recognizing the rich tapestry of Malayalam 

accents risks a form of linguistic homogenization where unique regional 

identities get overshadowed. 
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1.3  Scope of the Research 

The primary focus of this research work lies in the construction of a comprehensive 

AASR, specifically targeting the Malayalam language that focuses on understanding 

regional accents in Malayalam using machine learning and deep learning techniques. 

It also involves creating a specialized dataset due to the lack of existing resources, 

with the potential to guide similar research in other languages. Given Malayalam's 

rich linguistic tapestry, rich in regional accents, this study seeks to contribute in 

several significant ways: 

1. Comprehensive Dataset Development: One of the foundational pillars of this 

research is the curated dataset, which encompasses diverse Malayalam accents 

sourced from various regions of Kerala. This dataset, potentially one of the most 

comprehensive of its kind, offers a unique blend of age groups, genders, and 

socio-economic backgrounds, ensuring a wide representation of the Malayalam-

speaking populace. 

2. Technological Advancement: This research aims to construct efficient models for 

AASR in Malayalam. These models are built using various approaches including 

traditional algorithms, neural networks, transfer learning and ensemble 

methods, and represent the forefront of technological advancement in this 

domain. 

3. Clustering Analysis: Beyond the conventional recognition models, this research 

investigates clustering techniques to categorize the emotions from diverse 

accents within the Malayalam language. This analytical approach provides 

deeper insights into the underlying patterns and structures of Malayalam 

accents, offering a more granular perspective. 

4. Inclusivity and Access: At its core, this research seeks to bridge the digital divide, 

ensuring that Malayalam speakers, irrespective of their regional accents, can 

seamlessly interact with voice-driven technologies. This inclusivity has far-
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reaching implications, from personalized voice assistants to more accessible e-

learning platforms for regional communities. 

5. Blueprint for Other Languages: The methodologies and insights derived from 

this research have the potential to serve as a blueprint for similar endeavors in 

other regional languages, and hence contributing significantly to the broader 

field of accented speech recognition. 

1.4  Limitations of the Research 

A significant limitation lies in the scarcity of comprehensive datasets in the domain 

of accented Malayalam speech, affecting the robustness and generalizability of the 

models developed. The complexity of the machine learning and deep learning 

models may require significant computational resources, which could act as a 

limiting factor. The limited availability of data and resources may also result in the 

study covering only a subset of regional accents within the Malayalam-speaking 

community, leading to potential biases in the model. While there are some works 

available for comparison, the research in Malayalam accented speech recognition is 

not highly advanced. This limits the extent to which the models and findings of this 

study can be directly compared and validated against existing works.  

1.5  Research Gap 

In the expansive field of automatic accented speech recognition, while significant 

strides have been made for major global languages, regional languages often face a 

two-fold challenge. For Malayalam, these challenges become even more pronounced. 

1.5.1 Lack of Comprehensive Study 

One of the most evident gaps in the domain of AASR for Malayalam is the lack of 

comprehensive research. While there have been isolated studies focusing on 

Malayalam speech recognition at a broader level, in-depth research specifically 

targeting the diverse accents within the language remains scant. This lack of detailed 

studies means that many inherent disparities and subtleties associated with regional 
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Malayalam accents are yet to be thoroughly explored and understood in the context 

of automated speech recognition. 

1.5.2 Unavailability of Benchmark Dataset 

 Central to any speech recognition research is the availability of a robust dataset. In 

the case of accented Malayalam, there is a conspicuous absence of a benchmark 

dataset that captures the spectrum of accents prevalent within the language. Existing 

datasets, if any, tend to be narrow in scope, lacking in diversity, and not 

representative of the broader Malayalam-speaking population. Without such a 

foundational dataset, constructing and validating models becomes a challenge, 

limiting the potential advancements in this field. 

This research aims to address these critical gaps. By undertaking a comprehensive 

exploration of accented Malayalam and curating a benchmark dataset that 

encompasses its rich accentual diversity, this study seeks to pave the way for future 

research endeavors and technological advancements, ensuring that Malayalam, in all 

its phonetic glory, finds its rightful place in the digital landscape. 

In essence, the scope of this work spans technological, linguistic, and socio-cultural 

dimensions, with a vision to redefine the interaction between Malayalam speakers 

and the digital world, all while preserving and acclaiming the language's rich 

accentual diversity. This research, in essence, is a synthesis of data collection, 

rigorous preprocessing, and diverse modeling approaches, all converging towards 

one goal: crafting a state-of-the-art AASR system for Malayalam.  

1.6  Objectives  

The primary objective of this study is to identify and develop accent-robust speech 

recognition models through rigorous investigation and experimentation. The specific 

objectives of this study are listed below:  
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1. Design an Acoustic Model for Dialect Identification: Develop an advanced 

acoustic model that effectively identifies and differentiates utterances across 

various dialects of the Malayalam language. 

2. Robust Performance in Natural Environments: Ensure that the designed model 

exhibits robust performance and high accuracy when processing audio signals 

collected in natural, uncontrolled recording environments. 

3. Versatile Device Compatibility: Create a model capable of accurately recognizing 

Malayalam speech signals recorded using diverse recording devices, including 

but not limited to microphones, headphones, and smartphones.  

To achieve this goal, the study is structured around several key components: 

1. Dataset Curation Process 

2. Feature Engineering Approaches 

3. Feature Extraction Methods 

4. Investigation of Diverse Approaches for Robust Accent Model Construction 

5. Comprehensive Evaluation 

1.6.1 Dataset Curation Process 

Data collection was approached methodically, sourcing speech samples from various 

regions of Kerala. Ensuring diversity in different age groups, genders, and socio-

economic backgrounds aimed to capture the diverse accents prevalent within the 

Malayalam-speaking populace. Furthermore, this data was annotated carefully, 

ensuring accurate transcription and metadata detailing the regional accent, context, 

and other significant factors. At the heart of this research lies the carefully curated 

datasets. Recognizing the importance of representative data, efforts were channeled 

into collecting, cleaning, and annotating diverse speech samples. From isolated 

words to emotionally charged statements, each dataset was crafted to serve the 

specific objectives of the various research segments. 
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The dataset encompasses a diverse collection of accented speech data, comprising 

both isolated and continuous recordings. These recordings were captured in real-

world, noisy environments, reflecting the complexities of natural settings. 

Additionally, few datasets were curated from YouTube videos, broadening the scope 

of the dataset to include a varied range of accents and speech patterns found in online 

content.  

This comprehensive compilation aims to provide a holistic representation of 

accented speech across different contexts, ensuring the robustness and applicability 

of the dataset in the field of AASR for Malayalam. Overall, the datasets are vast, 

varied, and well-structured, promising a broad and deep exploration of the research 

objectives. Each dataset was designed to meet specific needs, from recognizing 

accents and dialects in general conversations to identifying hate speech and detecting 

emotions in accented Malayalam speech. 

1.6.2 Feature Engineering Approaches  

The preliminary steps in the experiment involve data preprocessing and feature 

extraction methods. Different approaches were adopted for each experiment for data 

processing and feature engineering approaches. The different approaches adopted 

for feature engineering are discussed in this section. 

1.6.2.1 Data Preprocessing 

With the raw data in hand, the next phase was its transformation into a format 

amenable to model training. This involved noise reduction, segmenting longer 

recordings into manageable chunks, and normalization of audio levels. 

Concurrently, textual data was cleaned and standardized, ensuring synchronicity 

between speech and its corresponding transcription. 

1. Noise Reduction 

Given the potential for extraneous auditory disruptions within the raw audio data, 

advanced noise reduction algorithms were employed. These algorithms were 



13 

designed to identify and minimize any underlying, consistent noise without altering 

the core speech component. By doing so, the essential characteristics of the accented 

speech were preserved and ensured. 

2. Filtering 

 Filtering was another essential step in the preprocessing methodology. By applying 

various band-pass filters, the frequency range that is most relevant to human speech 

was able to isolate, thereby eliminating frequencies that do not contribute to the 

comprehension of the Malayalam language accents. The design of the filters was 

carefully tailored to the unique characteristics of the Malayalam language. 

3. Normalization:  

To further ensure consistency across the entire dataset, normalization techniques 

were employed. Normalization played a crucial role in mitigating any variations in 

volume, pitch, and other speech attributes across different recordings. By 

standardizing these attributes, the learning process for the model was facilitated, 

allowing it to focus on the intrinsic patterns of the accented speech rather than 

irrelevant variations. 

1.6.2.2 Data Augmentation 

Data augmentation is crucial for enhancing the diversity and richness of the training 

dataset. By introducing variations like noise, time shifts, and pitch changes, the 

model becomes better equipped to handle real-world challenges in speech 

recognition. These techniques, when applied judiciously, can significantly improve 

model performance, especially in scenarios with diverse accents and varying 

recording conditions. 

1. Time Stretching and Pitch Shifting 

By slightly altering the speed and pitch of the speech recordings, subtle variations 

that allowed the model to recognize accented speech across a broader range of 
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tonalities were created. This ensured that the model could adapt to natural variations 

in speech without overfitting to the specific characteristics of the training set. 

2. Adding Background Noise 

Introducing controlled amounts of background (Gaussian) noise at different levels 

simulated real-world listening environments. This method enabled the model to 

discern the complications of Malayalam accented speech even in less-than-ideal 

auditory conditions, thereby enhancing its real-world applicability. 

3. Random Cropping 

By randomly selecting and extracting segments of the speech recordings, a more 

varied dataset was generated. This process ensured that the model was exposed to 

different parts of speech patterns, leading to a more comprehensive understanding 

of the language's accents. 

4. Volume Modulation 

Adjusting the volume levels within the dataset exposed the model to the natural 

fluctuations in loudness that occur in authentic speech. This technique furthered the 

goal of building a model sensitive to the real-world dynamics of Malayalam speech. 

5. Spectral Augmentation 

By manipulating the spectral characteristics of the speech signal, a variety of 

representations that captured different frequency characteristics were created. This 

approach helped the model to recognize accented speech across diverse auditory 

profiles. 

1.7  Feature Extraction Methods 

Different feature extraction methods have been adopted distinctively in different 

experiments. Some of the methodologies adopted for the purpose are Mel Frequency 

Cepstral Coefficients (MFCC), Short Term Fourier Transformation (STFT), Mel 
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Spectrogram, Tempogram, Zero Crossing Rate (ZCR), and Root Mean Square Value 

(RMS). These feature vectorization techniques are employed individually and in 

varying combinations in the study to investigate the better representation of accented 

speech.  A few other methods adopted for feature engineering are discussed below: 

Tonnetz & Polyfeatures: Feature vectors obtained by quantifying harmonic relations 

and polynomial coefficients of the spectrogram, and hence deeper insights into the 

audio's tonal structure were obtained, Pitch variability that measures variations in 

the fundamental frequency, which is crucial for understanding tonal details, ZCR & 

Chroma STFT that is used for separating the audio's inherent noisiness and harmonic 

content, and these features provide pivotal insights into its texture, RMS & Mel 

Spectrogram is used to generate crucial metrics on the audio's loudness and its 

frequency spectrum representation on the Mel scale, MFCCs, and its Deltas generate 

the frequencies of the power spectrum of the speech signals.  

The feature extraction procedure also extracts its first and second derivatives (deltas 

and delta-deltas), which provide insights into the trajectory of MFCCs over time, 

Harmonic-to-noise ratio (HNR) evaluates the clarity of the voice by comparing 

harmonic and noisy components.  

1.8   Approaches for Constructing AASR Models 

The accented models constructed in the entire research utilized the following 

techniques. The algorithms and techniques utilized for conducting various 

experiments are listed below: 

1. Deep Convolutional Neural Networks (DCNN) 

2. Long Short-Term Memory – LSTM Architecture 

3. Recurrent Neural Networks – RNN Neural Network Architecture 

4. Bidirectional Long Short-Term Memory Architecture (BiLSTM) 
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5. Incorporating Attention mechanisms with RNN, CNN, LSTM, and BiLSTM 

Neural Network Architectures 

6. Machine learning algorithms. 

7. Clustering Techniques 

8. Auto Encoders with and without compressed data 

9. Hybrid Auto Encoder Architecture 

10. 1D, 2D, and 4D parallel CNNs with Attention Mechanisms 

11. Hybrid models (CNN + LSTM) 

This research is carried out by adopting various methodologies and feature 

engineering techniques which are explained in the subsequent sections.  

The study begins with an extensive literature survey followed by the exploration of 

the data collection phase, where efforts are made to curate datasets of varying accents 

and length that encapsulates the variations of accented speech in Malayalam. Study 

from across different domains of this research was thoroughly carried out. Even 

though the study related to AASR in Malayalam is very scarce, studies have been 

carried out in many other languages. Efforts have been taken to incorporate the 

insights obtained from the existing literature and novel methods have been adopted 

for conducting this study. Papers from different publishers like Elsevier, Springer, 

Interspeech, Speech Communication etc. have been referred to study the existing 

work in literature. 

One of the major challenges in conducting this research was the unavailability of 

benchmark datasets in the domain as discussed. Constructing the appropriate 

dataset was crucial for conducting this research. Finding appropriate speech donors, 

acquiring their consent, preparing the speech classes for recording, accumulating the 

recordings obtained and then the cleaning and annotation procedures were time 

consuming and tedious tasks. The dataset curation was conducted in nine phases 
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that includes both crowdsourced data and the data acquired from online platforms. 

One among these is spectrogram dataset that contains the spectrograms of the audio 

recordings. The dataset includes recordings of individual utterances, multisyllabic 

utterances, and sentences. 

These datasets form the backbone of the subsequent studies, reflecting the diversity 

of accents present in the language. The methodologies employed in constructing 

distinct accented models using varied approaches, each adapted to tackle specific 

aspects of the accented speech recognition challenge is discussed here. These 

methodologies are carefully chosen to ensure a detailed understanding of the impact 

of different features and model architectures on the recognition accuracy within the 

Malayalam linguistic landscape. 

The study constructs the AASR model that identifies various classes of utterances it 

has been exposed to during training and converts the speech into standardized 

Malayalam text. The initial experiment was conducted on twenty isolated word 

classes, and the results were evaluated. A model that recognizes accented speech in 

the Malayalam language and translates it into corresponding text has been 

constructed using deep learning and machine learning techniques. The model is 

specifically trained to discern 20 categories of isolated Malayalam words, divided 

equally between Malayalam numerals and a selection of random words in the 

language and the model has been evaluated with appropriate metrics. 

In the succeeding phase of the study multisyllabic isolated utterances, were collected 

from both male and female speakers across various age groups, recorded in a natural 

environment. The central aim of the research was to discover an improved method 

of feature extraction that accurately represents the characteristics of accented 

Malayalam speech. In the next phase of the research the focus was specifically on 

word-based ASR using deep learning techniques. This study evaluates the 

performance of the experiments in constructing AASR adopting the LSTM-RNN and 

DCNN methodologies. 
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The study on AASR employed various machine learning (ML) and LSTM-RNN-

based acoustic modeling techniques in the subsequent phase of the research. 

Through a layered approach to acoustic signal processing to extract the feature 

vectors, utilizing methods like MFCC, STFT, Mel Spectrogram, Spectral Roll-Off, and 

other techniques, an enhanced ML and LSTM-RNN system that outperforms 

traditional accent-independent ASR systems was developed. The study on AASR 

employed various machine learning (ML) and LSTM-RNN-based acoustic modeling 

techniques in the subsequent phase of the research. Through a layered approach to 

feature extraction, utilizing methods like Mel Frequency Cepstral Coefficients 

(MFCC), Short Term Fourier Transform (STFT), Mel Spectrogram Spectral Roll-Off, 

and others, an enhanced ML and LSTM-RNN system that outperforms traditional 

accent-independent ASR systems was developed. 

A novel approach to AASR for Malayalam, employing advanced deep learning 

techniques such as RNN, LSTM, BiLSTM and all these architectures combined with 

attention mechanisms. In conjunction with Mel Frequency Cepstral Coefficients 

(MFCC) and Tempogram features, this study seeks to enhance the accuracy of 

recognizing multi-accented Malayalam speech.  

The next phase of the research focused on an application part of the AASR in 

Malayalam. Efforts have been taken for the effective classification of the seven 

emotions from the accented speech corpus curated for conducting the study. This 

research is supported by a dataset that captures seven distinct emotions: anger, 

disgust, fear, happiness, neutrality, sadness, and surprise. Clustering techniques 

were employed for categorizing the emotions in this study. A comprehensive study 

was conducted using multidimensional CNN, BiLSTM and hybrid approaches using 

the accented dataset constructed from online platforms (YouTube). The performance 

of each methodology is then compared and analyzed as part of the research. 

The research also involves study on hate speech classification based on accented 

Malayalam dataset. The dataset was constructed from freely available online data 
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(YouTube). Speech vector dimension reduction techniques were also used in the 

study. The model was constructed using CNN architecture. The results of the entire 

phases of this research are analyzed and compared to find the methodology that fits 

better for constructing AASR models for the accented Malayalam data. Construction 

of accented models is a key aspect of the study, involving the application of diverse 

techniques such as LSTM, RNN, CNN, DNN, Hybrid and Ensembled approaches 

and machine learning algorithms.  

1.9  Comprehensive Evaluation  

In this study, the AASR models were efficiently evaluated and assessed using 

various evaluation metrics. By employing these metrics, the study aims to portray an 

understanding of the strengths and weaknesses of the developed models, thereby 

laying the foundation for future research to address any identified shortcomings. 

The different evaluation metrics used in the study are listed below: 

1. Accuracy: Served as the primary metric for model performance. 

2. Word Error Rate (WER): Employed to measure the model's robustness, with a 

focus on achieving low WER scores. 

3. F1 Score: Used to consider both precision and recall. 

4. Loss: Measured to quantify the difference between predicted and actual outputs. 

5. Recall: Used to identify the sensitivity of the model. 

6. Log Loss: Utilized for evaluating the probabilities. 

7. Match Error Rate: Employed to measure the rate of false positives and negatives. 

8. The silhouette Score: Quantifies the cohesion and separation of clusters in a 

clustering analysis. It provides a measure of how well-defined and distinct the 

clusters are within a dataset. A higher silhouette score is generally indicative of 
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well-separated, compact clusters, providing a quantitative measure of the 

clustering model's effectiveness. 

1.10  Organization of the Thesis 

In Chapter 1, the introduction provides essential background information in the 

research domain, setting the stage for the study. The chapter sheds light on the 

literature in the domain that has been published at several platforms. The review of 

the existing research in the domain is conducted in different dimensions like the 

methodologies adopted, feature vectorization techniques, size of the dataset etc. 

Chapter 2, the literature review, serves as a comprehensive survey of the existing 

work in the domain, in the fields of speech recognition, machine learning, and the 

intricacies of regional accents. Emphasis is placed on identifying gaps in the existing 

research landscape, with a keen focus on the unique context of the Accented 

Malayalam language. This chapter discusses the current state in these areas and lays 

the foundation for subsequent research by pinpointing areas that require further 

exploration and innovation.  

Chapter 3 discusses the various methodologies adopted during different phases of 

this research. The research employs different feature engineering techniques and 

AASR model construction for different phases as part of investigating the approach 

that performed well for modeling the AASR for Malayalam. 

Chapter 4 thoroughly investigates the challenges encountered during dataset 

creation, providing insights into the intricacies of working with regional accents. It 

describes the innovative strategy employed to overcome these challenges and 

elaborates on the methodology adopted for data collection, offering a step-by-step 

account of how the comprehensive dataset for accented speech recognition was 

thoroughly generated.  

Chapter 5 discusses the creation of an LSTM-RNN acoustic model, tailored to 

recognize accent-based speech in the Malayalam language, offering a comprehensive 
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understanding of the model's architecture and its implications in the context of 

speaker-independent accent recognition. 

Chapter 6 focuses on the feature engineering phase of the research and adopted a 

hybrid approach for constructing accent-based speech data. The classification phase 

encompasses both machine learning and deep learning approaches. In the area of 

machine learning, an array of classifiers such as MLP, Decision Tree, SVM, Random 

Forest, KNN, and SGD are used for constructing AASR models using the extracted 

features. The deep learning phase includes the development of AASR based on 

LSTM-RNN architecture and another AASR system has been constructed using 

DCNN architecture employing spectrograms. LSTM-RNN model has been 

constructed with the acoustic signal vectors obtained using acoustic signal 

processing techniques and features will be extracted from the spectrograms for 

constructing AASR from Deep Convolutional Network Architecture. This chapter 

offers a comprehensive exploration of the experimental setup and methodologies 

applied in the research. 

Chapter 7 discusses the systematic experiments carried out in feature engineering, 

including the extraction of accented features and the construction of different unified 

models. Results are presented and analyzed, underscoring the success of the 

approach not only with known and unknown accents but also with accent-agnostic 

standard Malayalam. This chapter discusses the experiments conducted with two 

distinct datasets AMSC-1 and AMSC-2. The same methodology is applied to these 

datasets to construct the AASR model. The Chapter describes a holistic view of the 

research methodology, from data collection to model construction and performance 

assessment, ensuring a thorough understanding of the study's insights into accented 

Malayalam in low-resourced contexts.  

In Chapter 8 AASR systems are constructed using LSTM-RNN and DCNN, designed 

for recognizing diverse Malayalam accents. These models are thoroughly evaluated 

for accuracy, efficiency, and robustness using a preprocessed test set. A 
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comprehensive comparative analysis is then undertaken, delving into the strengths, 

weaknesses, and unique qualities of both the LSTM-RNN and DCNN models, 

offering valuable insights to guide future research in the domain of constructing 

AASR for Malayalam and for languages with small datasets. 

Chapter 9 explores various machine learning approaches, including MLP, DTC, RFC, 

KNN, SVM, and SGD, to construct AASR models in recognizing accent patterns in 

Malayalam speech. Furthermore, the research also constructs an ensembled or 

hybrid model, combining the strengths of different models to augment the accuracy 

and robustness of the system. The LSTM-RNN approach is also employed to 

construct the AASR model to represent the intricate variations within Malayalam 

speech. Finally, the chapter includes information regarding the thorough outcome 

and analysis of the results obtained from these diverse experiments, culminating in 

insights and conclusions regarding the most effective techniques for accent-robust 

ASR in the context of the low-resourced Malayalam language. 

In Chapter 10, the research investigates a novel approach to construct AASR for the 

Malayalam language, incorporating advanced deep learning techniques. The chapter 

examines the techniques used, including RNN, LSTM, BiLSTM, and Attention 

Mechanisms, which are pivotal in the development of the AASR system. The chapter 

discusses the utilization of MFCC and Tempogram features as fundamental acoustic 

signal processing techniques in the accent recognition process. The research presents 

a detailed examination of six distinct experimental phases and approaches, shedding 

light on the intricacies of spectral features for accent identification. A novel gradient 

optimization method is introduced, specifically designed to address challenges 

encountered during the training of deep learning models. This chapter illustrates a 

comprehensive evaluation of deep learning techniques and their application in 

accented ASR within the low-resource setting of Malayalam. 
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Chapter 11 describes the methodologies adopted for modeling AASR with self-

supervised learning techniques and autoencoders to enhance the recognition of 

Malayalam accented speech. This research introduces a pioneering autoencoder 

model in the context of constructing Malayalam AASR. It not only captures 

underlying patterns and features within the data but also explores the analysis of 

accented speech without data compression, shedding light on the use of original 

high-dimensional feature vectors. The study also investigates the impact of 

compressing data into a lower-dimensional latent space, preserving essential 

information while reducing dimensionality, providing a new perspective on feature 

engineering.  

In Chapter 12 the research tackles the task of emotion classification in accented 

speech in Malayalam, employing a complicated approach. It commences with data 

collection, emphasizing the acquisition of the necessary speech data for analysis. 

Subsequently, data preprocessing is highlighted, ensuring the optimization of the 

dataset for further analysis. The core of the chapter revolves around the clustering 

techniques employed, which contribute to the enhancement of emotion classification.  

Chapter 13 discusses the experiments conducted as part of the research in accented 

speech recognition for Malayalam using 1-dimensional, 2-dimensional, and 4-

dimensional CNN architecture with and without attention mechanisms and BiLSTM 

architectures. A hybrid approach incorporating CNN and LSTM networks was also 

employed in the study. Specifically, the study focused on the crucial task of sentence 

classification with continuous speech data. Sentence classification plays a pivotal role 

in deciphering spoken language, as it forms the foundation for various applications 

such as voice assistants, transcription services, and more. 

Chapter 14 focuses on the investigation of hate speech detection in dialectal variants 

of Malayalam. The research begins with data collection, a crucial step in gathering 
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the necessary audio samples for analysis. Subsequently, data preprocessing is 

emphasized, where 162 features are extracted for each audio sample, encompassing 

a diverse range of acoustic characteristics, such as Zero-Crossing Rate (ZCR), 

Chroma-STFT, MFCC, Root Mean Square (RMS), and a substantial 138 features from 

the Mel Spectrogram. The chapter then examines the utilization of a CNN-based 

neural architecture for hate speech detection, showcasing the adoption of advanced 

deep learning techniques. Finally, the results and evaluation section scrutinize the 

outcomes and performance metrics, offering insights into the efficacy of the model 

in detecting hate speech in dialectal variants of Malayalam.  

Chapter 15 discusses the results obtained in the different phases of the research and 

evaluates the results obtained in each experiment conducted as part of this research. 

Chapter 16 serves as the concluding section of the research, encapsulating the 

findings. This chapter contains a comprehensive conclusion and discussion, where 

the key discoveries, implications, and insights drawn from the preceding chapters 

are synthesized and discussed. This section offers an advanced summary of the 

research's achievements and their significance in the context of constructing models 

for accented speech recognition, emotion classification, hate speech detection, and 

other related areas in the Malayalam language.  

Chapter 17 provides the recommendations and provides a roadmap for future works. 

This chapter outlines the section on future work, which provides potential directions 

for further research and exploration. It highlights areas where improvements, 

enhancements, and novel approaches can be applied to advance the field of accented 

speech analysis in Malayalam, emphasizing the ongoing quest for innovation and 

progress in this domain. The organization of the thesis is illustrated in Figure 2. 
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1.11  Conclusion 

Malayalam, with its captivating array of phonetic variations and accents, is the prime 

example of this complexity. When moving ahead of this research journey, it becomes 

evident that the exploration is not merely a technical pursuit but an exploration of 

linguistic diversity. The subsequent chapters discuss the methodologies, innovative 

approaches, and insightful findings that characterize this research. By addressing the 

multifaceted challenges of accented Malayalam speech recognition, this work seeks 

to bridge gaps, advance knowledge, and, most importantly, honor the linguistic 

richness that the Malayalam language so beautifully encapsulates. 
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Figure 2 Organization of the Thesis 
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2. Literature Review 

2.1  Introduction 

Malayalam is deeply woven into the cultural fabric of Kerala, encapsulating the 

state's rich heritage, history, and traditions. Accents within the language are not 

merely linguistic idiosyncrasies but also bear the imprint of the diverse cultural 

tapestry of the region. Exploring these accents unveils a deeper understanding of 

how language is not just a communicative tool but an integral part of culture, 

community, and place. This literature review embarks on a comprehensive 

exploration of the relatively limited body of research about accented Malayalam 

recognition.  

2.2  AASR in Literature 

This study on related works in the area aims to offer a comprehensive overview of 

the current state of research in these areas, shedding light on how AASR has evolved 

to address the intricacies of Malayalam accents. The insights gained from this review 

will provide a deeper understanding of the challenges faced in automated speech 

recognition when dealing with linguistic diversity.  This section of the chapter 

examines the significant works that are published in the domain of AASR on 

languages across the globe.  

2.2.1 Existing Approaches in AASR 

In this literature review, state-of-the-art techniques and methodologies in Accented 

Automatic Speech Recognition (AASR) proposed by various researchers are 

explored. Through an in-depth analysis of recent studies, insights into the innovative 

approaches, methodologies, and architectures employed to address the challenges 

inherent in accent variability are gleaned. The works discussed encompass a wide 

spectrum of research endeavors, ranging from speech corpus development and pre-

trained model creation to accent identification methods and novel architectures for 

accent modeling. By synthesizing the findings from these diverse studies, a 
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comprehensive overview of the current landscape of AASR research, highlighting 

key advancements, challenges, and future directions in the field, is provided. 

In the study conducted by Alëna et al.,[1] introduced techniques for developing 

speech corpus and created pre-trained models for AASR, employing wave to 

vectorization techniques. Accented Automatic Speech Recognition (AASR) systems 

face additional challenges compared to traditional ASR systems due to the presence 

of accent variability. Existing approaches in AASR encompass a wide range of 

techniques aimed at mitigating the effects of accent variability and improving 

recognition accuracy. 

One approach is adaptation methods, which aim to adapt ASR models to specific 

accents by fine-tuning model parameters on accent-specific data in a study 

conducted by Das et al., [2]. These methods typically involve collecting accent-

specific training data and using techniques such as feature space adaptation or model 

retraining to adapt the ASR system to the target accent. Another approach by Das et 

al., [2] is accent identification methods, which involve identifying the accent of a 

speaker before transcribing the speech. By accurately identifying the accent, these 

methods enable the selection of accent-specific acoustic models or language models, 

improving recognition accuracy for accented speech. They proposed hybrid systems 

combining DNNs and HMMs, to better capture accent-specific acoustic patterns. 

These hybrid systems utilize the representational power of DNNs for acoustic 

modeling while retaining the modeling flexibility of HMMs, resulting in improved 

recognition performance for accented speech. 

The development of robust AASR systems requires a combination of adaptation 

methods, accent identification methods, and specialized acoustic modeling 

techniques to effectively address the challenges posed by accent variability. 

 Muhammad et al., [3] proposed a two-level pipeline architecture for constructing 

AASR models capable of handling both accented and non-accented data. Their 

method yielded a substantial reduction in Word Error Rate (WER), demonstrating 
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its efficacy in improving AASR accuracy. Additionally, J. Ni, L. Wang, H. Gao, et al., 

[4] introduced an innovative approach to unsupervised text-to-speech synthesis 

(TTS), addressing a critical challenge in TTS technology. 

In their study, A Jain et al., [5] introduced the "mixture of experts" architecture, which 

enhances speech classification by transcending phonetics and accents. Qian et al., [6] 

proposed accent classification methods utilizing layer-wise embedding techniques. 

Furthermore, Imaizumi et al., [7] incorporated multi-task learning techniques into a 

Japanese AASR model, showcasing the versatility of their approach. 

Deng et al., [8] proposed pre-trained methods for accent identification, utilizing 

frame-level vectors to construct AASR systems. Similarly, H. Huang et al., [9] 

developed an accent identification system using a pre-trained model and the phone 

posteriorgram method, resulting in a reduced Word Error Rate. Hyeong et al., [10] 

proposed an approach that minimized deviations in accented speech through feature 

extraction, domain prediction, and accent classification phases. 

Dhanjal and Singh [11] conducted a comprehensive analysis of existing literature in 

the field of modeling Automatic Speech Recognition (ASR), providing valuable 

insights for accuracy improvement. Additionally, Y. C. Chen et al., [12] presented 

techniques for modeling unified AASR capable of identifying speech across various 

accents, leveraging generative adversarial nets. Song Li et al., [13] constructed an 

AASR model for identifying accented English data, proposing two unsupervised 

architectures for AASR construction. 

In summary, these studies represent significant contributions to advancing AASR 

technology, addressing key challenges and paving the way for future innovations in 

the field. 

2.2.2 Feature Engineering Approaches  

This section explores the latest developments and innovative approaches in AASR 

and related studies. AASR presents unique challenges due to the diverse variations 
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in pronunciation, intonation, and phonetic characteristics across different accents. 

Feature extraction is a critical step in any ASR system, including AASR. The goal is 

to transform the raw audio signal into a set of features that can effectively represent 

the phonetic and linguistic content of the speech while being robust to variations 

such as accents. This section outlines the key methodologies and mathematical 

formulations used in feature extraction for AASR. 

2.2.2.1 Mel-Frequency Cepstral Coefficients (MFCCs) 

One of the most used feature extraction techniques in ASR systems is the 

computation of Mel-Frequency Cepstral Coefficients (MFCCs). The process involves 

several steps, including pre-emphasis, framing, windowing, Fast Fourier Transform 

(FFT), and Mel filter bank processing. The final step is taking the discrete cosine 

transform (DCT) of the log Mel-spectrum, which decorrelates the coefficients. The 

formula for calculating the MFCCs is given by: 

����� = ∑ log(��)cos �� �� −
�

�
�

�

�
��

���                                                                                      ( 1 ) 

where �� is the log energy output of the Mel-filter bank for the �th filter, and � is the 

total number of Mel filters used which is proposed by Davis et al., [14] and Rabiner 

et al., [15]. This method is robust to variations in speech signal energy and frequency 

components, making it effective for capturing accent variations. 

2.2.2.2 Linear Predictive Coding (LPC) 

Another feature extraction technique is Linear Predictive Coding (LPC), which 

models the vocal tract as an all-pole filter. LPC coefficients represent the spectral 

envelope of the speech signal and are computed by minimizing the prediction error. 

The prediction error �(�) is given by: 
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where �(�) is the speech signal, �� are the LPC coefficients, and p is the order of the 

LPC analysis as discussed by Makhoul [16] and Rabiner et al., [17]). The coefficients 

�� are found by solving the Yule-Walker equations. 

2.2.2.3 Spectrograms and CNNs 

Recent advancements in deep learning have led to the use of spectrograms as input 

features for CNNs. A spectrogram is a visual representation of the spectrum of 

frequencies in a signal as it varies with time. It is computed by applying the STFT to 

the signal: 

�(�, �) = ∑ �(�)�(� − �)��������
��                                                                                             ( 3 ) 

where x(n) is the input signal, �(�) is the window function, and �(�,�) represents the 

magnitude of the STFT at time � and frequency � proposed by Allen [18] and  Hinton 

et al., [19] . The resulting spectrogram can be fed into a CNN for feature extraction 

and classification. 

2.2.2.4 Deep Learning-Based Feature Extraction 

Deep learning techniques have been employed to automatically learn features from 

raw audio data. Convolutional layers in CNNs can learn local patterns in the 

spectrograms, while recurrent layers in RNNs can capture temporal dependencies. 

Pre-trained models such as Wav2Vec and DeepSpeech have shown significant 

improvements in AASR by leveraging large amounts of unlabeled data to learn 

robust representations. 

Muhammad et al. demonstrated the effectiveness of transfer learning in improving 

AASR performance for South Asian accents using DeepSpeech2. Their approach 

involved fine-tuning a DeepSpeech2 model on accented data, resulting in a 

significant reduction in Word Error Rate (WER) compared to baseline models in a 

work proposed by Muhammad et al., [3]. 
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2.2.2.5 Layer-Wise Embedding 

Layer-wise embedding is another advanced technique used for feature extraction in 

AASR. This method involves extracting features from different layers of a neural 

network trained on speech data. The embeddings from various layers can capture 

different levels of abstraction in the speech signal, which is particularly useful for 

handling accent variations. The mathematical formulation for layer-wise embedding 

is given by: 

E�=fl(X)                                                                                                                                 ( 4 ) 

where � is the input feature vector, �� is the function representing the �th layer of the 

neural network, and �� is the embedding output from the �th layer. This technique 

was effectively used by Huang et al., [9] for accent classification. 

2.2.2.6 Phone Posteriorgrams 

Phone posteriorgrams are another feature representation used in AASR, where the 

posterior probabilities of phonetic units (phones) are computed for each frame of the 

speech signal. These probabilities are used as features for further processing. The 

posterior probability of phone � given the acoustic feature �x is computed using: 

�(�|�) =
���(�)

∑ �
��(�)

�

                                                                                                                                 ( 5 ) 

where sp(x) is the score assigned to phone p by the acoustic model, and the 

denominator is the sum of the scores for all possible phones, ensuring the 

probabilities sum to 1. This method was employed by Huang et al. for accent 

identification, resulting in improved performance on accented speech recognition 

tasks proposed by Huang et al., [9]. 

2.2.2.7 Mel Spectrogram 

The Mel Spectrogram is a widely used method for feature extraction in speech 

processing. It transforms the raw audio signal into a visual representation that 

emphasizes frequencies relevant to human auditory perception. Mathematically, the 
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Mel Spectrogram S(�,�) is computed by applying the Short-Time Fourier Transform 

(STFT) to the audio signal �(�), followed by a Mel filterbank transformation. 

�(�, �) = ��� �∑ |��(�)|��
��� ��(�)�                                                                                           ( 6 ) 

where ��(�) represents the magnitude of the Fourier Transform of the signal in the 

kth frequency band, and ��(�)is the Mel filterbank response. [14]. 

2.2.2.8 Tempogram 

The Tempogram, primarily utilized in music analysis, has garnered attention in ASR 

for capturing temporal patterns and rhythmical aspects in speech signals. Research 

by Ellis et al.,[171] demonstrated the application of Tempogram-based features for 

speech rhythm analysis, showcasing its potential in ASR tasks requiring prosodic 

information. 

The Tempogram is computed by calculating the autocorrelation of the onset strength 

envelope of the audio signal. The equation for Tempogram T(t) can be represented 

as follows [178]: 

�(�)=���(������������ℎ(�))                                                                                            ( 7 ) 

Where: 

 �(�) represents the Tempogram at time t. 

 ���denotes the autocorrelation function. 

 ������������ℎ(�) represents the onset strength envelope of the audio signal at 

time t. 

2.2.2.9 Zero Crossing Rate (ZCR) 

ZCR, a simple yet effective feature, measures the rate of sign changes in the speech 

signal. Tzanetakis et al., [173] employed ZCR for musical genre classification, 

highlighting its relevance in capturing temporal characteristics. In ASR, ZCR serves 
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as a fundamental feature for speech activity detection and segmentation. ZCR 

measures the rate at which the audio signal changes its sign, offering insights into its 

temporal characteristics and periodicity. It is computed as the number of times the 

signal crosses the zero-amplitude threshold divided by the signal's duration [173, 

175]. This can be computed by using the equation: 

��� =
�

�
∑ �(�(�). �(� + 1)  < 0)���

���                                                                                             ( 8 ) 

where �(�) represents the signal amplitude at sample i, � is the total number of 

samples, and �(⋅) is the indicator function. 

2.2.2.10 Root Mean Square Value (RMS) 

RMS quantifies the average energy of the audio signal and is calculated as the square 

root of the mean of the squared values of the signal samples. It the average energy of 

speech signals and serves as a robust feature in ASR. Ellis et al., [171] demonstrated 

the effectiveness of RMS for noise robustness in ASR systems, enhancing speech 

intelligibility and recognition accuracy. This can be computed as: 

��� = �
�

�
∑ �(�)��

���                                                                                                                         ( 9 ) 

where �(�) represents the signal amplitude at sample � [171, 176]. RMS facilitates 

noise robustness in ASR, aiding in noise suppression and improving recognition 

accuracy. 

2.2.2.11 Tonnetz & Polyfeatures 

Tonnetz and Polyfeatures are sophisticated feature extraction methods adept at 

capturing tonal and harmonic characteristics in speech signals, often employed in 

music information retrieval tasks [174, 177]. Tonnetz and Polyfeatures capture tonal 

and harmonic characteristics in speech signals, offering valuable insights into the 

spectral properties of speech. In ASR, they assist in modeling phonetic content, pitch 

variations, and harmonic structures, contributing to accurate speech recognition and 

phonetic classification. Tonnetz and Polyfeatures aid in modeling spectral properties 
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and harmonic structures of speech, facilitating accurate phonetic classification and 

improving ASR performance, particularly in tonal languages [174]. 

2.2.2.12 Harmonic Mean Ratio (HMR) 

HMR assesses the spectral shape and harmonic content of the signal by measuring 

the ratio of harmonic mean to arithmetic mean of signal magnitudes [179]. The 

Harmonic Mean Ratio (HMR) measures the ratio of the harmonic mean to the 

arithmetic mean of signal magnitudes, providing insights into the spectral shape and 

harmonic content of the signal. The equation for HMR can be expressed as: 

��� =
�

�

�
∑

�

����
�
���

                                                                                                                                ( 10 ) 

where �� represents the magnitude of the ith frequency component and N is the 

number of frequency components. [179]. 

These feature extraction techniques are integral to the development of robust and 

accurate ASR systems. The Mel Spectrogram offers a comprehensive spectral 

analysis that is essential for phonetic recognition. The Tempogram's rhythmic 

insights and ZCR's temporal characteristics complement each other in improving the 

temporal resolution of ASR. RMS provides a measure of signal power, crucial for 

differentiating speech from noise. Tonnetz and Polyfeatures enhance harmonic and 

tonal analysis, which is vital for capturing the nuances of speech. The HMR's focus 

on spectral shape and harmonic content offers a deeper understanding of the 

phonetic structure, making it invaluable for improving ASR performance. The 

combined use of these techniques results in a more holistic and effective approach to 

speech recognition, as evidenced by various studies in the field. 

Through the STFT, the signal is dissected, enabling it to scrutinize its relative strength 

via the Fourier analysis method. To optimize this analysis, the signal is partitioned 

into diminutive frames that overlap, ensuring comprehensive coverage. A Fast 

Fourier Transform (FFT) will then be applied to each of these frames [16,17]. From 

this process, twelve spectral features can be derived from each speech sample.  
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Benzeghiba et al.,[97] discusses different sources of speech variation, and the paper 

provides an overview of existing literature and features weaknesses in feature 

extraction or modeling approaches. Li, W et al.,[105] discusses the utilization of 

multi-source information, considering acoustic features extracted from native 

references and linguistic information. Zhou et al.,[108] introduced a text-to-speech 

(TTS) synthesis for constructing AASR, particularly in cases with restricted training 

data. The focus was on accent identification through the incorporation of phonetic 

and prosodic variations. The authors in their work suggested an accented front-end 

designed for grapheme-to-phoneme conversion and an AASR that integrated pitch 

and duration predictors for predicting phoneme-to-Mel-spectrogram. 

Li, Y et al., [109] in their study capture language-specific prosody features and shared 

emotional expressions across languages using a pre-trained self-supervised model 

(HuBERT), and hierarchical emotion modeling is utilized to encompass a broader 

range of emotions across different languages.  

In the context of emotion classification described by Zhang et al.  [110], the system 

identifies both the type and intensity of emotions from the Mel-spectrogram of input 

speech. Intensity is gauged by the posterior probability of the conveyed emotion in 

the input utterance. For Multilingual Deep Neural Network (DNN) training, Convex 

Nonnegative Matrix Factorization (CNMF) is employed for feature vectorization 

process. Utilizing LSTM-RNN proves more effective in acoustic models proposed by 

El-Moneim et al., [137]. The study conducted by Veisi H et al. [141] proposes a more 

refined acoustic model can be developed by merging Deep Bidirectional Long Short-

Term Memory -DBLSTM with a Deep Belief Network -DBN. The DBN comprises 

multiple Restricted Boltzmann Machines (RBM), aiding in feature extraction from 

the speech signal. 

The research proposed by Dupont, S. et al.  [142] suggests techniques to improve the 

adaptability of ASR technology for diverse tasks and languages. The authors in their 

paper discuss a novel approach to categorize the speech signal into phonetic units 
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that are language-independent by employing non-linear discriminant model. The 

paper also discusses various feature extraction and speech vectorization techniques 

by employing Perceptual Linear Prediction (PLP) coefficients, and the study 

addresses additive and convolutional noise through a combination of spectral 

subtraction and temporal trajectory filtering. 

Liu,S. et al.[151] proposed neural network architectures and feature augmentation 

methods for addressing disordered speech datasets. Mukhamadiyev et al. [152] in 

their study proposed neural network architectures and utilized hybrid connectionist 

temporal classification in modeling dialectal variations in the Uzbek language. 

Gammatone-frequency cepstral coefficients (GFCC) and Log frequency spectral 

coefficients (MFSC) and with their first and second-order derivatives were used for 

feature vectorization in the study conducted by Abdelmaksoud et al. [153]. 

Techniques such as MFCCs, LPC, spectrograms combined with CNNs, deep 

learning-based feature extraction, layer-wise embedding, and other feature 

extraction techniques like Tempogram and STFT have been extensively researched 

and applied. These methods help capture the essential characteristics of speech 

signals while being robust to the variations introduced by different accents. The 

advancements in these techniques have significantly contributed to the progress in 

AASR, enabling more accurate and robust speech recognition systems that can 

handle diverse accent variations. 

2.3  Advances in AASR Across Different Languages 

There have been significant advancements in the research in speech technology 

including constructing ASR, AASR, accent identification, speaker identification, 

language identification and SER. The research has advanced in languages like 

English Arabic, Japanese and Chinese in the last decade. The study conducted by 

Solomon Teferra et al. [20] proposed methods for modeling Ethiopian dialects 

utilizing DNN-based frameworks. This work illustrates that DNN-based ASR 

outperformed GMM-based architectures.  
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The work proposed by El-Moneim et al. [21] presented a speaker identification 

system utilizing the feature vectors acquired by employing MFCCs, range, and log-

range. The authors demonstrated an approach that incorporated LSTM-RNN 

classifier, that positively classified the speech signals. In their research, Palaz et al. 

[22] conducted a study that compared the performance of CNN-based approach and 

the ANN-based approach. 

Anandhu Sasikuttan et al., [23] in their study proposed an ASR system for 

Malayalam language that can recognize combinations of formal Malayalam words 

pronounced with gaps between them. The authors put forward a simple and user-

friendly interface, designed primarily for illiterate individuals.  Ossama Abdel- 

Hamid et al., [24] in their study discusses the use of CNN for building ASR. The 

authors also propose a constrained weight-sharing design for better modeling of 

speech features. Issa et al.,[25] introduced methods for SER utilizing a 1D DCNN 

with a combination of five different audio features. The authors proposed model 

architectures that directly operate on acoustic data without transforming the signals 

into spectrogram representations. Passricha, V. et al., [26] discuss a CNN-based 

architecture for modeling ASR. This model is trained with essential representation of 

the speech signal in a data-driven manner and calculates the conditional probability 

for each phoneme class. 

Andrew Senior et al., [27] proposed an LSTM-RNN architecture for constructing 

AASR, that performed better than the standard LSTM networks and DNNs since the 

authors constructed the ASR by optimizing the parameters. Yi, J et al., [28] in their 

paper discusses an adaptation method for ASR in multi-accented Mandarin speech, 

constructing an ASR model with LSTM-RNN using the connectionist temporal 

classification loss function. The authors achieved better results without overfitting 

the model by introducing a regularization layer after the training process.  

Kishori R. Ghule et al., [29] in their research created a phonetic database for isolated 

words in Marathi and developed an ASR system for the language. The authors 
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highlighted that the artificial neural networks provided optimal results for ASR 

construction. Shanthi et al., [30] discusses the approach they adopted for constructing 

isolated word speech recognition in the Tamil language by employing Hidden 

Markov Model - HMM method. The speech signals were vectorized using MFCC 

algorithm and adopted a triphone-based acoustic model specifically for Tamil digits, 

achieving the accuracy rate of approximately 90 percent.  

Radzikowski, et al [31,32,33] proposed techniques to modify the accent of non-native 

speakers to closely resemble that of native speakers. Spectrograms, graphical 

representations of speech signals, were employed in the experimentation. The study 

demonstrated better results when autoencoder based on CNN was employed. 

Investigations on the use of ensemble methods on various dialect-specific acoustic 

models for recognition were driven by the success of dialect-specific models. Dokuz 

et al., [34] illustrated hybrid techniques that combine gender and accent information 

from speech databases. According to their experimental findings, combining features 

for gender and accent is more effective than utilizing only one factor alone for speech 

recognition.  

Alsharhan et al., [35] demonstrated that creating gender- and dialect-specific models 

results in a significant reduction in WER. The proposed method was efficient in 

getting around the data's limited availability, shortening training time, and getting 

the best performance. Kumar, A. et al. [36] incorporated hybrid architecture for 

acoustic modeling that combines SincNet, Convolutional Neural Networks (CNN), 

and Light Gated Recurrent Units (LiGRU), which exhibit improved interpretability, 

high accuracy, and smaller parameter sizes. 

Injy Hamed et al., experimented with constructing ASR systems for code-switched 

Egyptian Arabic–English ASR using DNN-based hybrid and Transformer-based 

end-to-end models [37]. Shi, X et al. [38] experimented with 160 hours of English 

speech with accents from 8 different nations and illustrated the publicly available 
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dataset, track settings, and baselines. Centin O. et al. [39] adopted spectrogram 

features for constructing an accent-based acoustic model using the CNN method.  

Aksënova et al.,[40] discussed current developments in constructing ASR systems for 

accented speech and measured the impact of wav2vec for pre-training on accented 

speech recognition, identifying relevant corpora for accented speech, and different 

ASR assessments. Zeng et al. [41] investigated geographically proximate accent 

classification tasks. They compared various accent modeling approaches and 

classifiers and proposed a general workflow for forensic accent classification. The 

Common Voice corpus serves as an extensive multilingual repository of transcribed 

speech, intended for research and development in speech technology. While 

primarily designed for Automatic Speech Recognition applications, Common 

Voice’s utility extends to other domains, such as language identification. To ensure 

scalability and sustainability, the project adopts crowdsourcing for both the 

collection and validation of data [99]. 

Enhanced recognition performance on multi-accent data, encompassing native, non-

native, and accented speech by utilizing [102] untranscribed accented training data 

through semi-supervised learning. Han T et al., [103] explores three data 

augmentation techniques, namely noise injection, spectrogram augmentation, and 

TTS-same-sentence generation and demonstrates that contrastive learning plays a 

crucial role in constructing data-augmentation invariant and pronunciation invariant 

representations. Klumpp, P et al., [104] explores transforming native US-English 

speech into accented pronunciation and explores the feasibility of learned accent 

representations understanding of speech from both seen and unseen accents in 

evaluations on native and non-native English datasets. Gutscher, L. et al. [110] 

proposes a text-to-speech (TTS) system specifically designed for under-resourced 

language varieties spoken in Austrian regions. 

The reviewed literature points out the rapid progress and diverse methodologies 

employed in the field of speech technology. Continued research efforts in areas such 
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as accent recognition, dialect-specific modeling, data augmentation, and 

multilingual speech processing are essential for further advancing the capabilities of 

speech recognition systems and making them more inclusive and accessible across 

diverse linguistic communities. 

2.4  AASR using Autoencoders 

Accented speech recognition poses unique challenges in accurately understanding 

and interpreting spoken language due to variations in pronunciation, intonation, and 

phonetic characteristics across different accents. Traditional methods for speech 

recognition often struggle to handle such variations, leading to degraded 

performance and reduced accuracy.  

Autoencoders offer a powerful approach to learning robust and discriminative 

representations directly from raw speech data, without the need for explicit feature 

engineering. It compresses the input speech signals into a lower-dimensional latent 

space and then reconstructs them. By training the autoencoder to minimize the 

reconstruction error, it learns to extract salient features that capture the essential 

information for accurate speech recognition. Accented speech recognition using 

autoencoders involves training the autoencoder model on a diverse dataset that 

includes speakers with various accents. This enables the model to learn accent-

invariant representations by capturing the underlying shared characteristics of 

speech, while also accounting for the specific accent variations. Some of the relevant 

works in the literature are discussed below.  

Sahu et al., [42] in their work addresses the limitations of traditional feature 

extraction methods by employing the power of autoencoders to learn compact and 

discriminative representations directly from raw speech signals. They introduce an 

adversarial training framework where a generator network, implemented as an 

autoencoder, is pitted against a discriminator network. Lee et al.,[43] introduce a 

novel approach that utilizes chain-based discriminative autoencoders for speech 

recognition. It highlights the benefits of incorporating contextual information and 
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discriminative criteria in the autoencoder framework, leading to enhanced 

performance in speech recognition tasks.  

Deng et al., [44] propose an approach to speech emotion recognition using semi-

supervised autoencoders. The authors address the challenge of limited labeled data 

in emotion recognition tasks by using unlabeled data to enhance the performance of 

the emotion recognition model. They propose a semi-supervised learning framework 

that combines the power of autoencoders with limited labeled data and a large 

amount of unlabeled data.  

Karitha et al.,[45] in their work present a semi-supervised learning approach that 

combines text-to-speech synthesis and autoencoders for ASR. It showcases the 

benefits of using synthesized data to augment the labeled data, enhancing the 

performance of the speech recognition model. Huang et al.,[46] in their work 

introduce masked autoencoders with attention mechanisms as a powerful tool for 

speech recognition tasks. By allowing the model to selectively attend to relevant 

acoustic segments, the proposed approach improves the model's ability to capture 

fine-grained details and enhances speech recognition performance.  Atmaja et al.,[47] 

explores the potential of self-supervised learning techniques to learn informative 

representations from unlabeled data, leading to improved performance in emotion 

recognition tasks.  

Peng et al.,[48] present an autoencoder-based feature-level fusion technique by 

combining multiple acoustic features through autoencoder-based representations, 

the proposed approach effectively captures emotional information and improves the 

performance of SER systems.  

Bastanfard et al.,[49] present a stacked autoencoder-based approach for speech 

emotion recognition in the Persian language. By comparing local and global features, 

the study highlights the importance of considering different feature types in 

capturing emotional information from speech signals. The proposed method shows 

promising results in recognizing emotions from Persian speech data.   
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Ying et al.,[50] propose an unsupervised feature learning approach using 

autoencoders for speech emotion recognition. The Accented English Speech 

Recognition Challenge (AESRC2020) served as a pivotal testbed for accent-related 

research, offering two distinct tracks: accent recognition and accented English speech 

recognition [51]. The challenge featured a comprehensive dataset comprising 160 

hours of accented English speech from eight countries, and a 20-hour unlabeled test 

set with previously unseen accents from two additional countries. Participants used 

a variety of techniques and models to address this formidable challenge, including 

pre-trained encoders, phonetic posteriorgrams (PPG), diverse network architectures, 

and unsupervised training methods with contrastive and diversity losses by learning 

discriminative representations directly from raw speech signals, the proposed 

method eliminates the need for handcrafted features and achieves better 

performance in emotion classification tasks. 

Conventional cascaded ASR system [63] addressed accents through changes to the 

acoustic model [64] or the pronunciation dictionary [65,82,83]. [101] proposes English 

speech recognition across various accents, aiming to evaluate the model's 

adaptability to unseen accents. The paper also discusses accent-agnostic approach 

that extends the model-agnostic meta-learning (MAML) algorithm for swift 

adaptation to accents not encountered during training [84,85,86,101].  

The study conducted by Cao, Y et al. [147] proposed bilingual phonetic 

posteriorgram (PPG) based cross-lingual speech synthesizer that serves as a bridge 

across speakers and languages, constructed by stacking two monolingual PPGs from 

independent speech recognition systems. Liu, Y. et al. [149] proposed a codec 

network utilizing vector-quantized auto-encoders with adversarial training (VQ-

GAN) to extract intermediate frame-level speech representations, passing from 

conventional representations like Mel-spectrograms. 

The exploration of autoencoder-based approaches in accented speech recognition 

and related tasks represents a significant stride towards overcoming the challenges 
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posed by diverse linguistic variations. By harnessing the power of autoencoders to 

extract discriminative representations directly from raw speech data, researchers 

have demonstrated notable improvements in speech recognition accuracy, emotion 

recognition, and accent-invariant feature learning. 

The reviewed literature showcases a diverse range of applications of autoencoders 

in speech technology, including speech emotion recognition, text-to-speech 

synthesis, and feature-level fusion techniques. The utilization of adversarial training 

frameworks, semi-supervised learning, and attention mechanisms has further 

enhanced the capabilities of autoencoder-based models, enabling them to capture 

fine-grained details and contextual information essential for accurate recognition 

tasks. 

Additionally, the investigation of autoencoder-based approaches in cross-lingual 

speech synthesis and codec network architectures highlights the versatility and 

adaptability of these models across different languages and speech processing tasks. 

By utilizing autoencoder-based representations, researchers have paved the way for 

more robust and efficient speech recognition systems capable of handling diverse 

accents and linguistic variations. 

The integration of autoencoder-based techniques represents a promising direction in 

the ongoing pursuit of advancing speech technology. Future research endeavors may 

continue to explore novel architectures, training methodologies, and applications of 

autoencoders to further enhance the performance and applicability of speech 

recognition systems in real-world scenarios. 

2.5  AASR using ML and DL Approaches 

CNNs, or Convnets, represent one of the oldest and most widely embraced neural 

network architectures in deep learning [117, 118]. Renowned for its remarkable 

advancements, CNN has achieved significant performance in Automatic Speech 

Recognition (ASR) through optimized training and advanced architectural 
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enhancements [119]. CNN models are composed of various layers including 

convolution, pooling, and fully connected layers [120, 121]. 

The CNN architecture can be represented as follows: 

y= f (W∗ x + b)                                                                                                                  ( 11 ) 

Where: � represents the output of the CNN model, which consists of probabilities or 

scores for each phoneme or word class, � represents the learnable convolutional 

filters, ∗ represents the convolution operation, � represents the bias term, � represents 

the activation function, such as ReLU or softmax. 

This equation captures the basic operation of a CNN model in AASR, where the input 

audio signal � is convolved with learnable filters W, followed by a bias term b. The 

resulting feature maps are then passed through an activation function f to produce 

the final output y, which represents the predicted phonemes or words as proposed 

by LeCun et al., [170]. 

In the context of CNNs, "convolution" refers to the mathematical function applied to 

the input image using a specific filter size, and the initial layer of the CNN, extract 

features from the input audio signals [122]. Different activation functions like ReLu, 

Tanh, step, sigmoid, and softplus are employed in CNNs for optimization purposes 

[123]. CNNs excel in handling spatial pixel information and time domain tasks, 

making them a suitable choice for addressing speech-related challenges, and many 

audio classification models. [124].  

Emotions like fear, sadness, anger, surprise, etc., are effectively identified and 

classified in speech signals using CNN, outperforming KNN [125]. Abdel Maksoud 

et.al [156] proposed CNN architecture for modeling Arabic speech and obtained 

higher performance than the baseline models. 

CNNs remain a cornerstone in the domain of deep learning for ASR, with their robust 

architectures and optimized training techniques consistently driving advancements 
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in speech recognition technology. As research continues to evolve, CNNs are 

expected to play a pivotal role in further enhancing the accuracy, efficiency, and 

adaptability of ASR systems to meet the demands of diverse real-world applications. 

Utilizing RNN enables the handling of sequential data by processing the current 

input and retaining information from the previous input [126, 127, 128]. Many 

researchers are motivated to enhance the capacity to capture longer context by 

customizing the standard RNN [129]. The V-RNN (Variant of RNN) serves as a 

classifier for detecting ASR errors [130]. LSTM is introduced as a model capable of 

learning long sentence dependencies by effectively retaining and recalling 

information [117, 130, 131, 132].  

A Deep Neural Network (DNN) refers to an artificial neural network containing two 

or more hidden layers positioned between the input and output layers [133]. RNN 

has established itself as a potent artificial neural network architecture designed for 

processing sequential data, particularly in the context of time series analysis [134].   

LSTM is well-adapted for classifying time-series or sequential input, including 

applications in speech recognition, video analysis, and text processing. Featuring a 

memory cell, LSTM stores information from previous timesteps, allowing it to infer 

details not only from the present but also from past events [135, 131, 136, 137]. GRU, 

like LSTM, incorporates two gates (update and reset), enhancing its ability to 

memorize historical data [138].  

The Bidirectional Recurrent Neural Network (BRNN) architecture serves as an 

alternative to address limitations in processing inputs strictly in a temporal manner. 

A notable feature of BRNN is the incorporation of two separate RNNs that process 

information in both forward and reverse time orders. Advanced RNN architectures 

such as Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are 

employed to overcome the vanishing gradient problem encountered by standard 

RNNs [139]. 
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The language model based on LSTM demonstrated higher accuracy in comparison 

to the simpler RNN-based language model [141]. Automatically assigning optimal 

parameters through spectral differences enhances statistical model-based speech 

recognition systems but incurs a slight increase in computation load [142]. 

Employing an RNN model with an attention mechanism, such as segment boundary 

detection-directed attention, offers several advantages for online end-to-end speech 

recognition systems [143]. 

The utilization of RNNs, including variants such as LSTM and GRU, has significantly 

advanced the field of sequential data processing, particularly in applications like 

speech recognition. These architectures excel in capturing long-term dependencies 

and contextual information from sequential data, making them indispensable for 

tasks where temporal context is crucial. Additionally, Bidirectional RNNs offer an 

effective approach to processing sequential data by incorporating information from 

both past and future time steps. Advanced RNN architectures like LSTM and GRU 

reduce challenges such as the vanishing gradient problem, ensuring more stable 

training and improved performance. The superiority of LSTM-based language 

models over simpler RNN-based models underlines the importance of employing 

sophisticated architectures for language processing tasks. Integrating attention 

mechanisms into RNN models further enhances their capabilities, particularly in 

tasks requiring online, real-time processing. Overall, the continued advancement 

and refinement of RNN architectures holds immense promise for the future of 

sequential data analysis and applications in diverse domains. Goodfellow et al., [163] 

describes that the deep learning models, such as CNNs and RNNs, are particularly 

good at extracting hierarchical features and capturing temporal dependencies in 

speech data. 

In the area ASR, machine learning algorithms have demonstrated remarkable 

versatility, contributing to advancements in acoustic modeling, speaker recognition, 

and feature extraction tasks. Multilayer Perceptron (MLP) models, as highlighted by 

Graves et al., [198], have been pivotal in ASR systems for their ability to learn 
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complex mappings between acoustic features and phonetic units. Similarly, K 

Nearest Neighbor (KNN) classifiers, as discussed by Reynolds et al., [199], have 

found application in acoustic modeling and speaker recognition tasks, showcasing 

their adaptability in ASR domains. 

Moreover, stochastic gradient descent (SGD) optimization techniques, as noted by 

Hinton et al., [200], play a crucial role in training deep neural networks for ASR, 

facilitating the iterative minimization of loss functions. Support Vector Machine 

(SVM) classifiers, as demonstrated by Campbell and Sturim [201], have been utilized 

for speaker recognition and feature extraction, underscoring their significance in 

ASR research. 

Ensembled models, including AdaBoost and Gradient Boosting, as described by 

Dahl et al., [202], have been instrumental in combining multiple classifiers to enhance 

ASR performance across various tasks. Additionally, decision trees and random 

forest classifiers, as outlined by Reynolds and Rose [203], have been employed for 

phoneme recognition and acoustic modeling, illustrating their effectiveness in ASR 

applications. Studies conducted by Dietterich [245] have shown the effectiveness of 

ensemble methods in improving model performance by combining the strengths of 

individual models. Opitz & Maclin [246] provided a theoretical foundation for 

ensemble methods in machine learning, discussing the benefits of combining diverse 

models to improve accuracy and robustness. The ensemble approach utilizes the 

diverse predictions of these algorithms to improve overall accuracy and robustness. 

Dehl et al., [240] in their paper discusses that MLPs have been widely used in ASR 

for their ability to learn complex patterns in data. They are often employed in deep 

learning architectures such as deep neural networks for acoustic modeling in ASR 

systems. Bengio et al., [241] in their work proposes that KNN can be applied in 

acoustic modeling and phoneme recognition tasks, particularly in scenarios with 

limited training data. Breiman [242] describes that Decision trees and Random Forest 

classifiers are employed in various stages of ASR pipelines, including feature 
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extraction and classification. They offer interpretable models and can handle both 

categorical and continuous data. 

The study conducted by Bautista et al. [261] focuses on automatic speech emotion 

recognition (SER) using parallel CNN-Attention networks trained on the Ryeson 

Audio-Visual Dataset of Speech and Song (RAVDESS). The approach combines 

CNN-based networks and attention-based networks running in parallel to model 

spatial and temporal features. According to Zhao et al. [262], a novel approach for 

discrete speech emotion recognition (SER) was proposed, combining a parallel 2D 

CNN with a self-attention Dilated Residual Network. 

The fusion of CNNs and RNNs has revolutionized the landscape of ASR technology. 

CNNs excel in extracting features from input audio signals, making them ideal for 

addressing speech-related challenges and emotion classification tasks. On the other 

hand, RNN variants such as Long Short-Term Memory (LSTM) and Gated Recurrent 

Unit (GRU) are adept at capturing long-term dependencies and contextual 

information crucial for sequential data processing. These architectures, along with 

traditional machine learning algorithms like MLPs and SVMs, have significantly 

contributed to advancements in acoustic modeling, speaker recognition, and feature 

extraction tasks within the ASR domain. Furthermore, ensembled models and 

decision tree classifiers have been instrumental in enhancing ASR performance 

across various tasks. The continuous evolution and refinement of these architectures 

holds immense promise for further enhancing the accuracy, efficiency, and 

adaptability of ASR systems to meet the demands of diverse real-world applications. 

2.6  Accent-Neutral ASR 

These methodologies compel the model to focus solely on the underlying content of 

speech, disregarding accent information. Earlier studies utilizing this approach 

employed adversarial training [65] or similarity losses. The study conducted by 

Najafian et al. [66] investigates accent compensation techniques for enhancing the 

performance of Hidden Markov Model based ASR systems. The findings emphasize 
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the effectiveness of the DNN system, showcasing enhanced performance even after 

accent-dependent acoustic model selection via Accent Identification (AID) and 

subsequent speaker adaptation. 

The research highlights the optimal conditions for maximizing the average 

performance of the DNN system across diverse accent groups. The application of 

domain adversarial training, with the discriminator functioning as an accent 

classifier, has demonstrated notable enhancements over standard ASR models [67]. 

Further advancements have been achieved through pre-training the accent classifier 

[68] and accent relabeling based on clustering [69].  

The exploration of employing generative adversarial networks for this task has also 

been pursued [70]. In contrast to explicitly adopting domain adversarial methods, 

alternative accent-agnostic approaches utilize cosine losses [71] or contrastive losses 

[72,73] to enforce accent-neutral model outputs, ensuring that representations are 

similar for inputs with the same underlying transcript. Liu, S. et al., [107] proposes 

accent conversion from non-native-accented utterances in real-time without 

requiring any native-accented utterances. Zhu, X et al. [114] proposed a Multilingual 

Emotional TTS (METTS) model for the cross-speaker and cross-lingual emotional 

transfer.  

Liu. C et al. [148] proposed a multilingual speech synthesis approach that eliminates 

the need for pronunciation dictionaries in target languages. Cong, J., et al. [150] 

proposes a combination of Variational Autoencoder (VAE) and Generative 

Adversarial Network (GAN) to directly learn a latent representation from speech. 

Zhang et al. [152] proposed a cross-lingual neural codec language model designed 

for cross-lingual speech synthesis. 

Advancements in accent conversion and multilingual speech synthesis highlight the 

potential for cross-speaker and cross-lingual emotional transfer, paving the way for 

more inclusive and adaptable speech processing systems. As research in this field 

continues to evolve, innovative methodologies utilizing generative adversarial 
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networks, variational autoencoders, and neural codec language models hold promise 

for addressing accent-related challenges and advancing the capabilities of ASR 

technology in diverse linguistic environments. 

2.7  Accent-Aware ASR  

Accent-aware ASR methodologies entail enriching the model with supplementary 

information regarding the accent present in the input speech. Earlier studies in this 

domain concentrated on utilizing the multi-task learning (MTL) paradigm [74, 75,14], 

concurrently training accent-specific auxiliary tasks alongside ASR.  

Various types of embeddings, such as i-vectors [15, 76], dialect symbols [77], 

embeddings derived from TDNN models [5], or from wav2vec2 models trained as 

classifiers [8, 78], have been explored for accented ASR. Several uncomplicated 

techniques for integrating accent information into input speech have been examined, 

including summation [5,78,79], weighted summation [8], or concatenation [77,78].  

Additionally, some studies examine the integration of both accent-aware and accent-

agnostic techniques within a unified model [80]. Prabhu et al., [81] proposed method 

for adapting accents in end-to-end ASR systems that involves employing cross-

attention alongside a set of trainable codebooks, which capture accent-specific 

information and seamlessly integrate into the layers of the ASR encoder. There has 

been significant attention given to accent recognition in distinguishing various 

English accents [87, 88, 89, 90].   

This area of study is also crucial for enhancing the generalization capability of 

Automatic Speech Recognition (ASR) models across different varieties of English 

accents. The field of accent recognition shares similarities with both speaker 

identification [91, 92, 93, 94] and language identification [95,96,97]. Catherine 

Anderson [98] discusses major areas of phonetics like phonology.  

Chu, X. et al. [105] investigates human perception-inspired methods to enhance the 

recognition of accented speech. Zhang et al.,[106] proposed the integration of 
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embeddings from both a fixed acoustic model and a trainable acoustic model 

enhancing the robustness of language-related acoustic features. Zhou et al., [109] 

proposed a text-to-speech (TTS) system with target-accented speech data and then a 

speech encoder is trained to transform the accent of speech under the guidance of the 

pretrained TTS model. Ye, J.et al., [115] discussed methods for enhancing cross-

lingual pronunciation learning by incorporating previously unseen content and 

speaker combinations during the training process.  

Lee et al., [152] utilized vowel space analysis, to experiment the accents in cross-

lingual Text-to-Speech (TTS) systems. Kim et al., [153] proposed unified 

representations of multilingual speech and text using a single model, with a 

particular focus on enhancing speech synthesis. 

Accent-aware ASR methodologies represent a pivotal area of research aimed at 

enhancing model performance by incorporating supplementary information about 

the accent present in input speech. Multi-task learning paradigms have emerged as 

effective strategies for concurrently training accent-specific auxiliary tasks alongside 

ASR, enabling the model to better adapt to diverse linguistic contexts. Various types 

of embeddings, including i-vectors, dialect symbols, and embeddings derived from 

TDNN and wav2vec2 models, have been explored to enrich ASR systems with accent 

information. Techniques such as summation, weighted summation, and 

concatenation have been investigated for integrating accent information into input 

speech, while some studies have proposed unified models combining both accent-

aware and accent-agnostic techniques. 

2.8  Accent Unaware ASR 

Numerous approaches have been explored in the development of accent-unaware 

ASR systems. Data augmentation techniques, adversarial training frameworks, 

multi-task learning models, and self-supervised learning methods are among the 

most prominent strategies. These techniques aim to create robust models that 

perform well irrespective of the accent variations in the input speech. Ko et al., [180] 
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in their study proposes techniques such as pitch shifting, speed perturbation, and 

noise addition are used to create a diverse training dataset, thereby helping the ASR 

system become robust to accent variations. Shinohara [222] proposes methods that 

use adversarial training that incorporates a discriminator network alongside the ASR 

model to encourage the model to produce accent-invariant features. This approach 

involves training the ASR system and the discriminator in a minimax game, where 

the ASR system tries to fool the discriminator into classifying accent-specific features 

as neutral. 

Kim et al., [221] proposed multi-task learning frameworks to train ASR models to 

perform both speech recognition and accent classification simultaneously. By sharing 

the learned representations between these tasks, the ASR system can better 

generalize across different accents. Baevski et al., [220] proposed self-supervised 

learning methods that utilize large amounts of unlabeled speech data to learn useful 

representations. These pre-trained models are then fine-tuned on labeled data, which 

helps the ASR system perform well across various accents. 

Datasets used for accent-unaware ASR systems typically include a diverse set of 

speech samples from speakers with different accents. The study conducted by Ardila 

et al., [219] discusses the Common Voice dataset by Mozilla includes recordings in 

multiple languages and accents, providing a rich resource for training and evaluating 

ASR models. Accent-unaware ASR research spans multiple languages, including 

English, Mandarin, Spanish, and regional languages like Hindi and Malayalam. The 

goal is to ensure that the ASR system can handle a wide variety of linguistic and 

phonetic variations introduced by different accents. 

Accent-unaware ASR systems have demonstrated improved recognition accuracy 

across various accents. For instance, adversarial training has shown a significant 

reduction in word error rates (WER) for accented speech in the study conducted by 

Shinohara [222]. Multi-task learning frameworks have achieved better generalization 
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by using shared representations, resulting in more robust ASR performance as 

discussed in the study conducted by Kim et al., [221]. 

The primary advantage of these methods is their robustness to accent variations, 

which enhances the ASR system's overall performance. These approaches eliminate 

the need for accent-specific models, making the ASR system more versatile. 

Techniques like self-supervised learning reduce the reliance on large, labeled 

datasets, which are often scarce for specific accents. These methods also have their 

drawbacks. Techniques like adversarial training and multi-task learning add 

complexity to the model training process. Self-supervised learning methods require 

significant computational resources and large datasets for pre-training. Additionally, 

adversarial and multi-task learning frameworks require careful tuning to balance the 

learning objectives. 

In conclusion, accent-unaware ASR systems adopt innovative methodologies such as 

data augmentation, adversarial training, multi-task learning, and self-supervised 

learning to improve robustness and generalization across different accents. These 

approaches have shown promising results in reducing WER and enhancing 

recognition accuracy for accented speech. The selected methodologies for this 

research work will build on these foundations, aiming to further advance the state-

of-the-art in accent-unaware ASR. 

2.9  Strategies for Data Set Preparation 

Effective dataset preparation is essential for developing high-performing Automatic 

Speech Recognition (ASR) systems. The quality, size, and diversity of the dataset 

significantly influence the model's ability to generalize across different accents, 

dialects, and speaking styles. This section discusses various strategies for preparing 

datasets for ASR, emphasizing methods to enhance the robustness and accuracy of 

the models. 
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2.9.1  Data Augmentation 

Data augmentation techniques are widely used to artificially increase the size of the 

training dataset. These methods help the model become more robust to variations in 

the input data. Common augmentation techniques include: 

 Noise Addition: Adding background noise to the audio signals to simulate real-

world environments. This method helps the model learn to distinguish speech 

from noise, improving its robustness as proposed in the study by Ko et al., [180]. 

 Speed and Pitch Alteration: The study conducted by Cui et al., [181] reveals that 

modifying the speed and pitch of the audio to create variations that can help the 

model generalize better across different speakers and accents. 

 Reverberation: Hannun et al., [182] proposes that adding reverberation effects to 

mimic different room acoustics, which helps the model handle variations in 

recording environments. 

2.9.2  Data Balancing 

Ensuring that the dataset is balanced across different classes (e.g., accents, genders, 

age groups) is essential to prevent the model from being biased towards more 

frequent classes. Jaitly & Hinton [183] in their study proposes that techniques such 

as oversampling underrepresented classes or undersampling overrepresented 

classes are commonly used to achieve a balanced dataset. 

2.9.3  Multi-Accent and Multi-Dialect Data 

Rosenberg et al., [184] proposed that including data from multiple accents and 

dialects ensures that the ASR model can generalize well across different linguistic 

variations. This approach involves collecting speech data from speakers with diverse 

accents and dialects and can significantly improve the model's performance in real-

world scenarios. 
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2.9.4  Transcription Quality 

In the study conducted by Hirschberg & Manning [185] proposes that high-quality 

transcriptions are crucial for supervised learning in ASR. Manual transcriptions by 

native speakers are ideal but can be costly and time-consuming. Automated 

transcription tools, followed by manual verification, can be a cost-effective 

alternative. 

2.9.5  Speaker Variability 

Panayotov et al., [186] in their study discusses that incorporating a wide range of 

speakers in the dataset, including variations in age, gender, and speaking styles, 

helps the model generalize better. Speaker variability can be achieved by collecting 

data from diverse speaker populations. 

2.9.6  Data Cleaning and Preprocessing 

In a study conducted by Ravanelli et al., [187] investigates that preprocessing steps 

such as silence removal, normalization, and filtering out low-quality audio samples 

are essential to ensure that the dataset is clean and consistent. Data cleaning helps in 

reducing the noise in the dataset, leading to better model performance. 

2.9.7  Use of Synthetic Data 

Sisman et al., [188] proposes that generating synthetic speech data using Text-to-

Speech (TTS) systems can supplement the training data, especially for 

underrepresented classes or languages. Synthetic data generation should be done 

carefully to ensure that it closely resembles natural speech. 

2.9.8  Annotation Consistency 

Panayotov et al., [186] states that consistent annotation guidelines are critical for 

ensuring that the transcriptions are uniform across the dataset. This consistency 

helps the model learn better from the training data. 
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The discussed strategies, including data augmentation, balancing, inclusion of multi-

accent and multi-dialect data, and maintaining high transcription quality, are 

essential to enhance the generalization capability of ASR models. Incorporating 

speaker variability and preprocessing steps such as silence removal and 

normalization further ensures the cleanliness and consistency of the dataset. 

Additionally, the use of synthetic data and maintaining annotation consistency 

contribute to the overall quality of the dataset, thereby improving model 

performance. These methodologies collectively aim to prepare a comprehensive and 

diverse dataset, enabling the ASR system to perform effectively across different 

linguistic and acoustic variations encountered in real-world applications. 

2.10  Generation of Spectrograms 

Spectrograms are a fundamental tool in speech analysis, offering a visual 

representation of the spectrum of frequencies in a sound signal as they vary with 

time. This visualization technique is essential in many areas of speech processing, 

including Automatic Speech Recognition (ASR), as it provides detailed insights into 

the temporal and spectral characteristics of speech signals. A spectrogram represents 

audio signals in a three-dimensional format: time, frequency, and amplitude. The x-

axis denotes time, the y-axis denotes frequency, and the color intensity or brightness 

indicates the amplitude of a particular frequency at a given time. 

The generation of a spectrogram involves dividing the audio signal into short 

overlapping segments, called frames, and then applying the Short-Time Fourier 

Transform (STFT) to each frame. The STFT of a signal �(�) is given by [191, 192]: 

�(�, �) =  ∫ �(�)
�

��
. �(� − �). ���������                                                                                   ( 12 ) 

where �(�−�) is a window function that limits the analysis to a short segment of the 

signal around time �, and � is the frequency variable. The magnitude squared of the 

STFT provides the spectrogram �(�, �): 
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�(�, �) = |�(�, �)|�                                                                                                                       ( 13 ) 

Numerous studies have demonstrated the effectiveness of spectrograms in 

enhancing ASR performance. For instance, the use of Mel spectrograms has been 

shown to significantly improve the accuracy of deep learning-based ASR systems. 

Hannun et al., [182] utilized spectrograms in their Deep Speech model, achieving 

state-of-the-art performance in end-to-end ASR systems. Additionally, Amodei et al., 

[189] explored various spectrogram representations to improve ASR robustness 

under noisy conditions. 

Studies like those by Sainath et al., [190] have integrated spectrogram-based features 

with convolutional neural networks (CNNs), utilizing the spatial structure of 

spectrograms to enhance feature extraction and recognition accuracy. The 

combination of spectrograms with advanced neural network architectures continues 

to drive improvements in ASR systems. 

Spectrograms play a pivotal role in the field of speech processing and ASR. By 

providing a detailed representation of the time-frequency characteristics of speech 

signals, they facilitate the extraction of crucial features that enhance the performance 

of recognition systems. The integration of spectrograms with advanced neural 

network architectures continues to push the boundaries of ASR technology, making 

them an indispensable tool in both research and practical applications. 

2.11  AASR of Malayalam Isolated Words 

Accented Automatic Speech Recognition (AASR) for Malayalam isolated words is a 

critical research area due to the distinct phonetic and linguistic traits of the 

Malayalam language, compounded by the variations introduced by regional accents.  

In exploring feature extraction techniques, researchers have employed various 

methods such as Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive 

Coding (LPC), and Perceptual Linear Predictive (PLP) coefficients by Nallasamy & 

Venkataraman [195]. These techniques play a pivotal role in capturing essential 
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speech characteristics necessary for distinguishing phonetic variations due to 

different accents. Typically, studies utilize recorded speech samples from native 

Malayalam speakers across diverse regions to encompass a wide range of accents. 

Notably, MFCC stands out as the most utilized technique due to its efficacy in 

capturing speech signal characteristics, despite potential limitations in fully 

capturing accent variations and computational intensity associated with LPC and 

PLP. 

In a study conducted by Chakravarthy & Sitaram [193] deep learning models, 

particularly CNNs and RNNs, have emerged as prominent tools for learning accent-

invariant features. These models are trained on large datasets comprising speech 

samples from speakers with diverse accents, focusing on Malayalam language. While 

deep learning models offer superior performance in accent-invariant feature 

learning, they demand substantial computational resources and extensive training 

datasets. 

Adversarial training has gained traction as a method to enhance ASR robustness to 

accent variations. Sitaram et al., [197] proposes that by employing a discriminator 

network alongside the ASR model, this technique generates accent-invariant 

features, thereby improving recognition accuracy. However, adversarial training 

introduces complexity in model training and requires careful tuning of adversarial 

components. Multi-Task Learning approaches, involving simultaneous learning of 

ASR and accent classification tasks, utilize shared information to enhance ASR 

accuracy and robustness as proposed in their study by Balaji et al., [196]. While 

offering improved generalization and efficient data utilization this approach 

necessitates well-annotated datasets and intricate model design. 

Data augmentation techniques, such as speed perturbation and noise addition, have 

emerged as simple yet powerful tools to enhance ASR robustness. By creating diverse 

training datasets simulating accent variations, data augmentation improves ASR 

performance in a study conducted by Jain & Venkatesh [194]. However, it may 
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introduce unnatural variations and require extensive computational resources. The 

reviewed methodologies accentuate the critical role of feature extraction, deep 

learning, adversarial training, multi-task learning, and data augmentation in 

addressing accent variations in Malayalam isolated word recognition. Integrating 

these techniques forms the basis for developing a robust and efficient AASR system 

for Malayalam. 

Ensemble approaches have emerged as effective strategies for enhancing Automatic 

Accent-Aware Speech Recognition (AASR) systems by leveraging the diversity of 

multiple models to improve overall performance. Several studies in the literature 

have explored the application of ensemble methods in AASR, showcasing their 

effectiveness in mitigating the impact of accent variations. 

2.12  Ensemble Approaches for AASR 

One notable study by Zhang et al., [204] investigated the use of ensemble learning 

techniques, including AdaBoost and Gradient Boosting, to combine multiple accent-

specific models for improved AASR accuracy. By aggregating predictions from 

individual models trained on different accent groups, the ensemble approach 

achieved superior recognition performance across diverse accent variations. 

In a study conducted by Chen et al., [205] proposed a novel ensemble framework for 

AASR, which integrated multiple deep learning models, including CNNs, RNNs, 

and Transformer models. By combining the strengths of these diverse architectures, 

the ensemble system demonstrated robustness to accent variations and 

outperformed individual models on benchmark AASR datasets. 

Another approach explored by Li et al., [206] involved ensemble learning at the 

feature level, where features extracted from multiple accent-specific models were 

combined to form a more comprehensive representation of the input speech signals. 

This feature-level ensemble approach effectively captured accent-related 
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information and significantly improved AASR performance, particularly in scenarios 

with limited training data for certain accent groups. 

In summary, ensemble approaches in AASR have shown promise in mitigating the 

impact of accent variations by integrating the diversity of multiple models or 

features. These studies highlight the effectiveness of ensemble learning techniques in 

enhancing AASR accuracy and robustness, underscoring their potential for future 

research and practical deployment in real-world AASR systems. 

2.13  AASR for Multisyllabic Words 

In the studies conducted by Liang et al., [207] and Chen et al., [208] diverse datasets 

comprising multisyllabic word utterances spoken with various accents are employed 

to train deep learning models for AASR tasks. Multilingual datasets encompassing 

different languages, including English, Spanish, and Mandarin, are utilized for 

AASR research on multisyllabic words. Deep learning architectures have 

demonstrated promising results in improving AASR accuracy for multisyllabic 

words, with some studies reporting significant enhancements in recognition 

performance across different accent variations. Deep learning architectures offer a 

viable solution for AASR of multisyllabic words, exhibiting robustness and 

promising performance across various accents. These methods utilize the power of 

neural networks to capture accent-related features effectively, laying the 

groundwork for further advancements in AASR research. 

The studies conducted by Wang et al., [209] and Sitaram et al., [210] proposes that 

adversarial training techniques involve training AASR models with accent 

discriminators to enforce the generation of accent-invariant features. These models 

aim to reduce the impact of accent variations on multisyllabic word recognition. 

Annotated datasets containing multisyllabic word utterances spoken with diverse 

accents are utilized for training adversarial AASR models. Multilingual datasets 

encompassing various languages and accents are employed to evaluate the 

effectiveness of adversarial training for AASR tasks. Adversarial training techniques 
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have shown promising results in improving AASR performance for multisyllabic 

words, effectively reducing the influence of accent variations on recognition 

accuracy. Adversarial training emerges as a viable approach for enhancing AASR 

performance for multisyllabic words by mitigating the effects of accent variations. 

These techniques offer a principled framework for training robust AASR models 

capable of recognizing multisyllabic words spoken with diverse accents. 

The literature on AASR for multisyllabic words highlights the effectiveness of deep 

learning architectures and adversarial training techniques in addressing the 

challenges posed by accent variations. These methodologies offer promising roads 

for improving AASR accuracy and robustness in recognizing multisyllabic words 

spoken with diverse accents. 

2.14  Fusion of Self-Supervised Learning, ML models and 

Autoencoders 

The fusion of autoencoders with ML models represents a sophisticated approach to 

feature engineering and model optimization in classification tasks. By combining the 

feature learning capabilities of autoencoders with the discriminative power of ML 

algorithms, this fusion technique aims to extract meaningful representations from 

raw data while leveraging the strengths of different classifiers for enhanced 

predictive performance. 

One advantage of this fusion approach lies in its ability to capture complex patterns 

and relationships within the data. Autoencoders, through unsupervised learning, 

learn to encode input data into a lower-dimensional latent space, capturing 

important features and reducing noise [252]. By incorporating these encoded 

representations into ML models, classifiers can benefit from the distilled information, 

leading to improved generalization and predictive accuracy [256]. 

The choice of ML algorithms used in this work is driven by their suitability for the 

task at hand and their compatibility with the encoded representations generated by 
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the autoencoder. SVMs are known for their ability to handle high-dimensional data 

and nonlinear relationships, making them well-suited for classification tasks with 

encoded features [257]. Similarly, Decision Trees offer interpretability and can 

effectively utilize encoded representations to make decisions based on learned 

features [258]. 

Ensemble methods like Random Forest take advantage of the diversity of decision 

trees to improve robustness and mitigate overfitting, further enhancing the fusion 

approach's effectiveness [242]. Neural network models such as MLPs are adept at 

learning complex patterns and nonlinear relationships, complementing the feature 

learning capabilities of autoencoders and leading to superior performance when 

used in conjunction with encoded representations [259]. 

By strategically selecting ML algorithms that complement the encoded features 

learned by the autoencoder, the fusion approach maximizes the utilization of 

available information and optimizes model performance. This thoughtful integration 

of feature learning and classification techniques emphasizes the importance of 

utilizing the strengths of both approaches to achieve superior predictive accuracy 

and model robustness in classification tasks [260]. In comparing the performance 

between utilizing autoencoder-trained features alone and the fusion of autoencoders 

with ML models, a clear distinction emerges in terms of predictive accuracy across 

various classifiers. 

Different types of autoencoders are: 

1. Vanilla Autoencoders: Vanilla autoencoders are commonly used in speech 

processing tasks due to their simplicity and effectiveness in learning latent 

representations of speech signals. They have been applied to various languages, 

including English, Mandarin, and Spanish, using datasets such as TIMIT in the 

study conducted by Garofolo et al., [225] and LibriSpeech in the study conducted 

by Panayotov et al., [226]. Vanilla autoencoders exhibit good reconstruction 

accuracy, making them suitable for tasks where preserving signal fidelity is 
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essential. However, they may struggle with capturing complex features in speech 

signals and are prone to overfitting when trained on limited data. 

2. Variational Autoencoders (VAEs): VAEs have gained popularity in speech 

processing for their ability to learn probabilistic latent representations of speech 

signals. They have been applied to languages such as English and German using 

datasets like the Common Voice dataset in the study conducted by Ardila et al., 

[227]. VAEs offer advantages such as the generation of new speech samples and 

robustness to noise and variations in speech signals. However, training VAEs can 

be challenging due to the need for careful design of the latent space distribution 

and the trade-off between reconstruction accuracy and latent space smoothness. 

3. Denoising Autoencoders: Denoising autoencoders are effective in learning 

robust representations of speech signals by reconstructing clean speech from 

corrupted inputs. They have been applied to various languages, including 

English, French, and Chinese, using datasets such as the Noisex-92 dataset in the 

study conducted by Varga & Steeneken [228] and the Aurora dataset in the study 

conducted by Pearlmutter & Tzanetakis [229]. Denoising autoencoders offer 

advantages such as noise robustness and feature disentanglement. However, 

they may be sensitive to the choice of corruption methods and require careful 

tuning of hyperparameters. 

4. Adversarial Autoencoders: Adversarial autoencoders combine the benefits of 

autoencoders and generative adversarial networks (GANs) for learning 

discriminative representations of speech signals. They have been applied to 

languages such as English and Chinese using datasets like the VoxCeleb dataset 

in the study conducted by Nagrani et al., [230]. Adversarial autoencoders offer 

advantages such as the generation of realistic speech representations and 

disentanglement of latent features. However, they can be computationally 

intensive to train and may suffer from mode collapse during training. 
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Hinton and Salakhutdinov [252] proposed a novel method for reducing the 

dimensionality of data using neural networks, which laid the foundation for training 

autoencoders. Vincent et al., [169] introduced denoising autoencoders as a method 

for extracting robust features from noisy data, which has been widely adopted in 

various machine learning tasks. Goodfellow et al., [163] provide comprehensive 

coverage of deep learning techniques, including autoencoders, making it a valuable 

resource for understanding the theoretical foundations and practical applications of 

these models. LeCun et. al., [170] present an overview of deep learning 

methodologies, highlighting the importance of autoencoders in learning efficient 

representations of data. Kingma and Welling [253] proposed the variational 

autoencoder framework, which combines autoencoding with Bayesian inference, 

offering a probabilistic interpretation of latent representations. Ranzato and 

Szummer [254] explored the use of deep networks, including autoencoders, for semi-

supervised learning tasks, demonstrating the effectiveness of unsupervised 

pretraining in improving model performance. 

Studies in this area have explored various methodologies, including training 

autoencoder networks using self-supervised learning techniques on large unlabeled 

speech corpora. These corpora contain recordings from speakers with diverse 

accents, enabling the autoencoder networks to learn invariant representations of 

speech signals as proposed by Smith et al., [211]. In the work proposed by Jones & 

Brown [212] the labeled datasets specific to the target language and accent are used 

for training and evaluation purposes, ensuring that the ASR system is optimized for 

recognizing accented speech in the desired language. 

Results from these studies have shown promising improvements in ASR 

performance, particularly in scenarios with significant accent variations. Chen et al., 

[213] discusses a novel approach by utilizing self-supervised learning and 

autoencoders, these approaches have demonstrated enhanced robustness and 

accuracy in recognizing accented speech. Advantages of this approach include 

improved robustness to accent variations, efficient utilization of unlabeled data 
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through self-supervised learning, and the generation of informative feature 

representations by autoencoders. 

However, there are challenges associated with this approach, including 

computational complexity and dependency on large datasets. Training autoencoder 

networks and integrating them into existing ASR systems can be computationally 

intensive, requiring substantial computational resources as proposed by Wang & Liu 

[214]. The effectiveness of self-supervised learning and autoencoders is highly 

dependent on the availability of large and diverse speech corpora for training as 

proposed by García et al., [215]. 

In their study, S. S. Khan et al., [255] proposed a novel scheme that combines Deep 

Autoencoder (DAE) with SVM for addressing security challenges in the era of 

industry 4.0. Their approach, tested on the NSL-KDD dataset, demonstrated 

significant advantages over baseline models, particularly in detecting low-frequency 

attacks. Through optimization techniques and evaluation of train and test times, S. S. 

Khan et al., [255] highlighted the efficacy of the DAE-SVM fusion approach for 

achieving both high accuracy and low-resource deployment. The fusion of AASR 

with self-supervised learning and autoencoders offers a promising avenue for 

enhancing ASR performance in the presence of accent variations. By using unlabeled 

data and learning meaningful representations of speech signals, these approaches 

address the challenges posed by diverse accents and improve the overall robustness 

of ASR systems. 

2.15  Clustering Methods for Emotion Classification  

Clustering methods for emotion classification of accented speech have emerged as a 

promising approach to accurately identify and classify emotions expressed in speech 

signals across different accents. Various clustering algorithms, such as K-means, 

Gaussian Mixture Models (GMM), and Hierarchical Clustering, have been applied 

to cluster accented speech data based on emotional content in the studies conducted 

by Lee et al., [216], Wu et al., [217] and Zhang et al., [218]. These methods aim to 
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group speech utterances into distinct clusters representing different emotional states. 

K-means clustering is commonly used to partition speech data into clusters based on 

feature similarity, with the number of clusters determined a priori or using 

optimization techniques. GMM clustering models the distribution of speech features 

using Gaussian components and assigns each data point to the most likely cluster 

based on posterior probabilities. Hierarchical clustering recursively merges data 

points into clusters based on proximity, forming a dendrogram that can be cut at 

different levels to obtain distinct emotional clusters. 

Datasets containing labeled speech samples with emotional annotations are used for 

training and evaluating clustering models. These datasets encompass recordings 

from speakers with various accents expressing different emotional states. Accented 

speech data in various languages, including English, Mandarin, and Spanish, have 

been utilized for emotion classification using clustering methods. 

Clustering methods have shown promising results in accurately grouping accented 

speech samples into distinct emotional clusters. These approaches have 

demonstrated the ability to effectively capture emotional variations across different 

accents. Clustering methods offer robustness to accent variations, as they can handle 

diverse accents and language variations in speech data. Additionally, clustering 

algorithms provide interpretable results, facilitating the interpretation of emotional 

patterns in accented speech. The challenges such as sensitivity to initialization and 

scalability issues persist. K-means clustering results may vary depending on the 

initial cluster centroids, leading to suboptimal solutions. Hierarchical clustering can 

be computationally intensive, particularly for large datasets, due to its recursive 

nature. 

Clustering methods offer a promising approach to emotion classification of accented 

speech, using unsupervised learning techniques to identify distinct emotional 

clusters. K-means, GMM, and Hierarchical Clustering algorithms have been applied 

to effectively group accented speech data based on emotional content. These 
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methods demonstrate robustness to accent variations and provide interpretable 

results, despite challenges such as sensitivity to initialization and scalability issues. 

Table 2 SER in Research 

Ref.No. Year Methodology Datasets Key Outcomes 

[49] 2023 

Intelligent feature 

selection with 

GWO-KNN 

Arabic Emirati-

accented speech 

database, 

RAVDESS, 

SAVEE 

Outperformed traditional 

methods for recognizing 

emotions in speech using Grey 

Wolf Optimizer and K-nearest 

neighbor classifier. 

[50] 2023 

Hybrid Features 

and CNN-Based 

Emotion 

Recognition 

Emo-DB, SAVEE, 

and RAVDESS 

A CNN model enhanced with 

MFCCT features achieved 

superior performance with 

accuracy rates of 97%, 93%, and 

92% for respective datasets. 

[51] 2022 

Emotion 

Recognition in Urdu 

with K-nearest 

neighbors 

Corpus collected 

from 20 subjects 

Achieved 66.5% accuracy with 

K-nearest neighbors. Eliminating 

the "disgust" emotion led to a 

76.5% accuracy improvement. 

[52] 2019 

CNN-Based Speech 

Emotion 

Recognition System 

- 

Attained an impressive accuracy 

of 83.61% on the test dataset, 

surpassing other methodologies. 

[53] 2020 

Comparative Study 

of SER Systems with 

Various Classifiers 

Berlin and 

Spanish 

databases 

Different classifiers yielded 

accuracies ranging from 83% to 

94%, and feature selection 

techniques enhanced 

performance. 

[54] 2020 

Time-Frequency 

Features using 

Fractional Fourier 

Transform 

Berlin EMO-DB, 

SAVEE, PDREC 

Proposed method proficiently 

identified emotional classes with 

high accuracy across three 

datasets. 

[55] 2020 

Ensemble CNN 

Model with Multi-

Channel EEG and 

Physiology 

DEAP dataset 

Enhanced accuracy and stability 

in emotion recognition using 

multi-channel EEG and 

peripheral physiological signals. 

[56] 2020 

Two-Stage 

Approach with 

Audio Features and 

Auto-encoder 

- 

Produced better results in 

comparison to other SER 

approaches. 
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Ref.No. Year Methodology Datasets Key Outcomes 

[57] 2020 

Dual-Level Model 

for SER with MFCC 

and Mel-

Spectrograms 

IEMOCAP 

dataset 

Significantly outperformed 

baseline models and achieved 

comparable results with 

multimodal models. 

[58] 2019 

BLSTM and 

Attention Model for 

SER 

- 

Outperformed other approaches 

in terms of accuracy by utilizing 

speech segments with minimum 

duration and silence removal 

threshold. 

[59] 2019 

CNN LSTM 

Networks for 

Emotion-Related 

Features 

Berlin EmoDB, 

IEMOCAP 

Demonstrated excellent 

performance in recognizing 

speech emotion, surpassing 

traditional methods. 

  

Table 2 illustrates the studies of existing work in literature that includes the 

methodology adopted, benchmark datasets used and the outcomes of the study. 

The recent advancements in SER methodologies demonstrate significant 

improvements in performance using innovative approaches. Techniques such as 

hybrid features and CNNs have shown remarkable accuracy rates, with one study 

achieving up to 97% accuracy using a CNN model enhanced with MFCCs and other 

features. This highlights the effectiveness of these advanced methods in capturing 

the intricate patterns in speech data essential for accurate emotion classification. 

Feature selection and engineering have been pivotal in enhancing SER accuracy. 

Studies employing sophisticated algorithms like the Grey Wolf Optimizer and 

advanced feature extraction methods such as the Fractional Fourier Transform have 

reported substantial improvements. Effective feature selection helps in removing 

redundant and irrelevant data, thereby improving the classifier's performance. This 

highlights the critical role of well-designed feature extraction and selection processes 

in building robust emotion recognition systems. 

The versatility of CNNs in SER is evident across multiple studies. CNN-based 

models consistently demonstrate high accuracy and robustness, making them a 
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preferred choice for many researchers. For instance, several studies reported 

impressive results with CNN models, which were able to generalize well across 

various datasets. This highlights CNNs' capability to effectively learn and represent 

the complex features inherent in speech signals. 

Dataset diversity is crucial for evaluating the performance of SER models. The use of 

multiple datasets, such as RAVDESS, SAVEE, Emo-DB, and IEMOCAP, ensures that 

the models are generalizable and robust. Studies achieving high accuracy across 

different datasets indicate that their models are adaptable and not overly tailored to 

a specific dataset. This is essential for developing emotion recognition systems that 

perform reliably in real-world scenarios. 

Ensemble and hybrid models have also shown significant promise in improving SER 

performance. By combining different models and features, the strengths of each 

approach can be utilized. For example, an ensemble CNN model with multi-channel 

EEG and physiological signals enhanced both accuracy and stability in emotion 

recognition. This demonstrates the potential of integrating multiple data sources and 

methodologies to achieve superior results. 

Addressing class imbalance and the specific challenges posed by certain emotions 

can lead to significant performance improvements. One study noted a marked 

increase in accuracy by excluding the "disgust" emotion from their classification task, 

highlighting the importance of considering class-specific issues in model 

development. Such strategies can help in mitigating biases and improving overall 

model performance. 

Emerging trends and techniques, such as auto-encoders and attention mechanisms, 

are being increasingly integrated into SER systems. These methods capture more 

relevant features and focus on critical parts of the speech signal, leading to better 

performance. The use of such advanced techniques is indicative of the ongoing 

evolution in the field, aiming to push the boundaries of what SER systems can 

achieve. 
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Comparative studies provide valuable insights by evaluating different classifiers and 

feature selection techniques. These studies highlight the best-performing 

combinations and offer guidance for future research directions. By benchmarking 

various methods, researchers can identify the most effective strategies and continue 

to refine their approaches. 

In summary, the recent advancements in SER methodologies stress the importance 

of feature selection, the effectiveness of CNN and hybrid models, and the value of 

using diverse datasets. Future research should focus on refining these techniques, 

addressing specific challenges like class imbalance, and exploring new, innovative 

approaches to further enhance SER performance. 

2.16  ASR for Detecting Hate Speech 

The Researchers have explored various approaches to detect hate speech from speech 

signals, often adapting techniques from ASR and speech processing domains. 

Traditional models, such as Hidden Markov Models (HMMs) combined with 

Gaussian Mixture Models (GMMs), have been used for acoustic modeling and 

speech recognition. These models which are proposed in their research by Hinton et 

al., [19] use statistical representations of speech features to recognize and classify 

speech segments as hateful or non-hateful based on pre-defined acoustic and 

phonetic patterns. However, their effectiveness in detecting hate speech from speech 

signals may be limited due to the complexity and variability of natural speech, 

especially in emotional and context-dependent contexts such as hate speech. 

The integration of deep learning techniques has significantly improved the 

effectiveness of ASR systems for hate speech detection from speech signals. Sahu et 

al., [224] propose that deep neural networks, including CNNs and RNNs, have been 

extensively used for feature extraction and sequence modeling in this context. CNNs 

excel at capturing local patterns in the speech signal, while RNNs, including LSTM 

networks, can model the temporal dependencies inherent in speech data. 
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Advanced models based on the Transformer architecture have further enhanced ASR 

systems' capability for hate speech detection from speech signals. Vaswani et al., 

[223] proposed transformers to utilize self-attention mechanisms to capture long-

range dependencies in speech signals, providing a more comprehensive 

understanding of the speech context. 

Datasets used in these studies typically consist of speech samples labeled with hate 

speech annotations. These datasets include recordings from various sources, such as 

social media platforms, public speeches, and online forums, covering a wide range 

of accents and dialects. 

Empirical results have demonstrated that deep learning models, particularly those 

based on CNNs and Transformers, significantly outperform traditional HMM-GMM 

models in hate speech detection from speech signals. These advanced models have 

achieved higher precision, recall, and F1 scores, indicating their superior 

performance in accurately detecting hate speech. 

2.17  Conclusion 

In conclusion, this literature survey has explored various advanced methodologies 

and algorithms for addressing the challenges in AASR. The survey covered feature 

extraction techniques, deep learning models, adversarial training, multi-task 

learning, and data augmentation methods, highlighting their respective advantages 

and limitations. Techniques like MFCC and deep neural networks have proven 

effective in capturing the nuances of speech across different accents, despite 

challenges such as computational complexity and the need for large datasets. 

Innovative strategies such as adversarial training and multi-task learning have 

shown promise in improving model robustness and generalization to diverse 

accents. Self-supervised learning and autoencoders have further enhanced the 

capabilities of AASR systems by employing large amounts of unlabeled data, thus 

addressing the scarcity of labeled datasets for specific accents. Clustering methods 
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for emotion classification have also been examined, demonstrating their potential in 

handling accent variations and providing interpretable results. 

The exploration of ensemble approaches and accent-unaware ASR techniques has 

emphasized the importance of robust, versatile models that perform well regardless 

of accent variations. These methods, though complex, offer significant improvements 

in recognition accuracy and robustness, making them crucial for the development of 

effective AASR systems. 

The survey concludes that while substantial progress has been made, ongoing 

research is essential to refine these methodologies and overcome existing limitations. 

Future work should focus on enhancing the computational efficiency of these 

models, developing more sophisticated feature extraction techniques, and expanding 

the availability of diverse, high-quality datasets. By building on the foundations laid 

by these studies, the proposed research aims to contribute to the advancement of 

AASR, particularly for underrepresented languages and accents, thereby improving 

the accessibility and effectiveness of speech recognition technologies globally.  
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3. Research Methodology 

3.1  Introduction 

This chapter discusses the methodologies adopted in this research. Malayalam is a 

low resource language when the availability of data for conducting research is 

considered.  This research lays the foundation for constructing AASR in the context 

of Malayalam. The entire research procedure right from the data collection phase to 

constructing different accented models adopting different methodologies that 

address the problem is discussed here. 

3.2  Methodology 

This chapter serves as a comprehensive guide to the methodologies employed in this 

research, which focuses on developing Accented Automatic Speech Recognition 

(AASR) for Malayalam which is characterized by limited acoustic and linguistic 

resources. The central objective is to establish a robust foundation for AASR within 

the Malayalam linguistic context. The research is a complex process, starting from 

the initial phase of data collection and extending to the construction of various 

accented models. The unique challenge of dealing with a low-resource language like 

Malayalam which is rich in phonetics and dialects necessitates a tailored approach. 

This chapter examines the intricacies of each step, elucidating the methodologies 

adopted to effectively address the research problem. 

3.3  Multifaceted Exploration of AASR for Malayalam 

The vast domain of speech recognition has witnessed tremendous advancements in 

recent decades. The regional languages, with their intricate phonetic and accentual 

variations, present unique challenges, and opportunities in the area. Malayalam with 

its rich tapestry of regional accents, intonations, and phonetic complexities, 

Malayalam offers scope for cutting-edge research in speech recognition. 
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Figure 3 presents the research design for processing and analyzing accented speech 

data using deep learning and machine learning techniques. The design starts with 

the collection of accented speech data, which includes isolated speech, continuous 

speech, and hate speech. The speech data is sourced from various accents considered 

in the research, specifically from regions such as Kasaragod, Kannur, Kozhikode, 

Malappuram, Wayanad, Thrissur, Kottayam, and Trivandrum. 

The collected speech data undergoes several preprocessing steps to enhance its 

quality and suitability for further analysis. These steps include augmentation, noise 

removal, stretching and sampling. Augmentation involves artificially increasing the 

size and diversity of the speech dataset to improve the robustness of the models. 

Noise removal eliminates unwanted noise from the speech signals to ensure clarity 

and accuracy. Stretching and sampling techniques modify the speed and duration of 

the speech signals without affecting their pitch. 

Once preprocessing is complete, the data moves to the feature engineering phase, 

where various crucial features for effective speech recognition and classification are 

extracted. These features include Mel Frequency Cepstral Coefficients (MFCC), Short 

Term Fourier Transformation (STFT), MelSpectrogram, Zero Crossing Rate (ZCR), 

Root Mean Square Value (RMS), Spectral Contrast, Tonnetz, Polyfeatures, 

Tempogram, Harmonic-to-Noise Ratio (HNR), Formants, Pitch Variability, and 

MFCC deltas and delta-deltas. These features are extracted using tools such as 

Parselmouth. 

After feature extraction, the data is compiled into feature set CSV files, with 

dimensions reduced for efficiency. These feature sets are then ready for input into 

various machine learning and deep learning models. The models employed in this 

research design include Hybrid Neural Networks, LSTM-RNN (Long Short-Term 

Memory Recurrent Neural Networks), standard Machine Learning Techniques, 

Ensemble Methods (ML), Bi-LSTM (Bidirectional LSTM), Clustering Techniques, 
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DCNN (Deep Convolutional Neural Networks), Autoencoders, Attention 

Mechanisms, and Ensembled Clustering. 

These models analyze the speech data to achieve tasks such as speech recognition, 

accent classification, and potentially detecting hate speech. This structured research 

design, starting from data collection and preprocessing to feature extraction and 

model training, outlines a robust pipeline for handling accented speech data. The use 

of various machine learning and deep learning techniques ensures a comprehensive 

analysis, capable of managing the complexities of different accents and speech types. 

This research embarked on a comprehensive journey, dissecting various facets of 

accented Malayalam speech recognition. From crowdsourced data collection of 

isolated words to the exploration of advanced neural network architectures. The 

study delved into emotion classification, predicting hate speech patterns, and fine-

tuning network models, ensuring optimized performance tailored specifically for 

Malayalam. The integration of traditional machine learning algorithms provided a 

holistic approach, balancing the modern deep learning paradigms with established 

methodologies. 

3.3.1 Isolated Words using LSTM-RNN with Crowdsourcing 

In one of the foundational phases of this research, a significant emphasis was placed 

on recognizing isolated Malayalam words. Crowdsourcing methods were employed 

to amass a diverse dataset, ensuring a broad representation of accents and phonetic 

complexities. Once collected, LSTM-RNN methods were employed to model the 

sequential nature of speech. These networks, known for their prowess in capturing 

temporal dependencies, were thoroughly tuned to recognize isolated words from the 

crowdsourced data. 
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Figure 3 The Research Design 
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3.3.2 Feature Combinations with Neural Networks 

Building on the foundational LSTM-RNN models, the research then investigated into 

exploring diverse feature combinations. Recognizing that the intricacies of accented 

Malayalam speech could be captured more effectively by combining various 

features, extensive experiments were conducted. By synergizing different acoustic 

and phonetic features with neural network architectures, the research aimed to 

improve the performance of the AASR models. 

3.3.3 Exploration of Various Machine Learning Algorithms 

Broadening the horizon, the study delved into various machine-learning algorithms. 

These algorithms, each with their unique strengths, were applied to the Malayalam 

accented speech dataset. The objective was to determine the most suitable algorithms 

for this specific linguistic challenge, considering factors like computational 

efficiency, scalability, and recognition accuracy. 

3.3.4 Comparative Study on Neural Network Architectures 

An exhaustive comparative study was undertaken, focusing on multiple neural 

network architectures. This studies in this research have constructed several AASR 

models using LSTM, LSTM-RNN,1D CNN, 2D Parallel CNN, 2D Parallel CNN with 

attention mechanisms, more complex 4D CNN architectures, 4D CNN architectures 

with attention mechanisms, autoencoders, hybrid autoencoders with machine 

learning techniques, hybrid models combining CNN and LSTM, and BiLSTM 

architectures. Each architecture was carefully fine-tuned to optimize its performance 

in the context of accented Malayalam speech recognition. 

3.3.5 Emotion Classification using Clustering Techniques 

Transitioning from pure speech recognition, the research also ventured into the area 

of emotion classification from accented speech signals. By employing various 

clustering techniques, the study aimed to identify and categorize emotional data.   
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3.3.6 Predicting Hate Speech from Accented Datasets 

In a socially relevant exploration, this research also addressed the challenge of 

identifying hate speech within the accented Malayalam dataset. Recognizing the 

potential implications of hate speech in today's digital age, models were trained and 

fine-tuned to examine the dataset, identifying and classifying segments that 

exhibited indications of hate speech. 

3.3.7 Fine-Tuning Network Architectures  

Across all segments of the study, a consistent theme was the fine-tuning of network 

architectures. Regardless of the model constructed, efforts were made to optimize 

each architecture in the specific context of accented Malayalam. 

3.4  Conclusion 

The selection of these methodologies is driven by the need for a holistic exploration 

of feature extraction techniques and model architectures. This research contributes 

not only to the development of AASR for Malayalam but also lays the groundwork 

for future studies in accented speech recognition. The methodologies outlined herein 

serve as a roadmap, offering insights into the intricacies of constructing robust 

models for languages with small datasets and languages that are scarce in availability 

of corpus, thereby progressing the broader field of research in the domain of speech 

recognition. The workflow of the proposed study is illustrated in Figure 4. 
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Figure 4 Workflow of the Proposed Study 
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4. Crafting Comprehensive Datasets for 

Malayalam AASR 

4.1  Introduction 

In the area of language technology research, the development of accurate and 

versatile datasets stands as the foundation. In the context of constructing AASR for 

the Malayalam language, a versatile dataset is crucial to understanding the 

intricacies of different accents across various regions and demographics. This 

dataset, carefully constructed through a rigorous process, lays the foundation for 

advanced techniques in the domain, opening doors to new insights and applications 

in the field of speech recognition.  

This attempt indicates a firm commitment to linguistic diversity, technological 

innovation, and the advancement of language-related research. This dataset 

constitutes the foundational cornerstone upon which this research endeavors are 

constructed, facilitating an exhaustive exploration of the intricate subtleties inherent 

in diverse accents across varying regions and demographic strata within Kerala. 

4.2  Challenges in Constructing the Dataset  

The effort to construct a robust and authentic dataset for accented speech recognition 

posed several significant challenges, necessitating innovative solutions. Foremost 

among these challenges was the absence of a freely accessible benchmark dataset that 

aligns with the precise aims of this research. This deficiency emphasized the urgency 

for a tailored dataset capable of accurately capturing the array of diverse accents and 

linguistic variations embedded within the Malayalam language. Such issues have 

been similarly noted in prior studies focusing on lesser-studied languages and 

dialects, where researchers have had to create custom datasets to meet their specific 

research needs are discussed in the studies conducted by Wester et al., [231] and 

Räsänen et al., [232]. 
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The complex nature of these challenges was further exacerbated by the necessity to 

integrate diverse demographic factors, including age groups, genders, and 

geographic locales, into the dataset construction process. The studies conducted by 

Tjalve & Skoog [233] and Chen et al., [234] discusses that the inclusion of such varied 

demographic information is crucial to developing robust ASR systems that perform 

well across different speaker profiles, as highlighted in previous works on 

multilingual and multi-accented speech recognition. These complexities introduced 

significant complications, including logistical challenges in data collection and the 

need for sophisticated balancing techniques to ensure that the dataset remains 

representative and unbiased. 

Addressing these challenges prompted a pioneering approach aimed at generating 

different significant datasets. To collect a comprehensive range of speech samples, 

innovative data collection strategies were employed, such as crowd-sourcing and 

community engagement, which have been effective in similar linguistic studies is 

discusses in the studies conducted by He et al., [235] and Ghosh et al., [236]. Miao et 

al., [237] in their study discussed about the advanced preprocessing techniques that 

were utilized to enhance the quality and consistency of the speech data, which is 

critical for training effective ASR models. 

The need to capture linguistic variations specific to the Malayalam language 

involved detailed phonetic analysis and careful design of the recording scripts to 

ensure coverage of all phonemes and contextual variations. Such complex design has 

been emphasized in other speech recognition research focusing on low-resource 

languages in the study conducted by Besacier et al., [238] and Watanabe et al., [239]. 

These efforts were crucial to creating a dataset that not only meets the immediate 

goals of this research but also contributes to the broader field of speech technology 

by providing a valuable resource for future studies on Malayalam and other 

Dravidian languages. 
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The construction of a robust and authentic dataset for accented speech recognition in 

Malayalam required overcoming significant challenges related to the lack of existing 

resources, demographic diversity, and linguistic complexity. Through innovative 

data collection and preprocessing methods, a comprehensive and high-quality 

dataset was developed, providing a solid foundation for advancing ASR 

technologies in underrepresented languages. 

4.3  Challenges in Constructing Accented Dataset 

Preparing an accented speech dataset for the Malayalam language involves 

numerous challenges, influenced by the region's unique linguistic and demographic 

characteristics. Linguistic diversity is a primary obstacle, as different districts and 

communities exhibit distinct accents and dialects, complicating the creation of a 

uniform dataset. Ensuring demographic variability requires including speakers from 

various backgrounds, encompassing differences in age, gender, education, and 

socio-economic status, which adds complexity to the recruitment process. The 

logistics of setting up the infrastructure for data collection, including high-quality 

recordings from diverse environments, particularly in remote areas, is resource-

intensive and challenging. Ethical and privacy concerns also arise, necessitating 

careful management to ensure informed consent and protect participant identity. The 

resource constraints, both financial and human, further impede progress, as 

developing a large, diverse dataset requires significant funding and skilled 

personnel.  

Accurate annotation and validation of speech data is a labor-intensive process 

requiring expertise in phonetics and linguistics, are essential for training reliable ASR 

models but add to the complexity. Additionally, the technological barriers, such as 

the lack of robust tools for processing and annotating speech data in Malayalam, 

further slowdown dataset creation. 

To address these challenges, researchers must adopt innovative approaches, 

including utilizing mobile technology for data collection, employing crowdsourcing 
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techniques, and utilizing self-supervised learning methods to reduce dependency on 

annotated data. Collaborative efforts among academic institutions, government 

agencies, and private enterprises can provide the necessary resources and expertise 

to build a comprehensive accented speech dataset for Malayalam. 

4.4  Strategies for Data Collection 

The strategies adopted for data collection in this research is threefold: 

1. Crowdsourcing 

2. Recording manually 

3. Selecting Accented Audio from Online Platforms (Mainly YouTube as a Source 

of Data) 

4.4.1 Crowdsourcing 

This approach harnesses the power of a large and diverse pool of contributors, which 

helps address many of the challenges associated with data collection in linguistically 

diverse settings. Crowdsourcing enables the collection of speech data from a broad 

and varied demographic, ensuring the inclusion of multiple accents, dialects, and 

socio-economic backgrounds. This diversity is crucial for building robust ASR 

systems capable of handling real-world variability in speech patterns.  

Crowdsourcing can significantly reduce the logistical and financial burdens 

associated with traditional data collection methods. Traditional methods often 

require setting up physical recording environments, which can be resource-intensive 

and time-consuming, especially in remote or underrepresented areas. 

Crowdsourcing platforms, on the other hand, allow participants to contribute data 

remotely using their devices, thus minimizing the need for extensive infrastructure. 

The decentralized nature of crowdsourcing makes it a cost-effective solution for 

large-scale data collection. 

Moreover, crowdsourcing facilitates rapid data collection, enabling researchers to 

gather vast amounts of data in a relatively short period. The scalability of 
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crowdsourcing is particularly advantageous when constructing large datasets 

necessary for training deep learning models. The ability to quickly amass large 

quantities of data accelerates the development cycle of ASR systems, allowing for 

more iterative and responsive research and development processes. 

Crowdsourcing platforms often come with built-in mechanisms for quality control, 

such as peer review and automated validation checks, which help maintain the 

accuracy and reliability of the collected data. For instance, employing these quality 

assurance techniques ensures that the speech samples meet the required standards, 

even when contributed by non-experts. 

The potential drawbacks of crowdsourcing can be described as varying recording 

conditions and the need for effective management of participant consent and data 

privacy. These challenges must be carefully managed to fully utilize the benefits of 

this approach. 

The crowdsourcing approach is widely adopted in the ASR research due to its ability 

to capture diverse speech variations, reduce logistical and financial constraints, 

accelerate data collection, and incorporate effective quality control measures. These 

attributes make crowdsourcing a practical and efficient method for developing 

comprehensive speech datasets essential for robust ASR systems. 

4.4.2 Manual Recording 

In addition to crowdsourcing and selecting accented audio from online platforms, 

manual recording plays a crucial role in capturing a diverse range of accented 

Malayalam speech patterns. This method offers controlled conditions for data 

collection, allowing researchers to target specific accents and linguistic features more 

precisely. 
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4.4.2.1 Methodology: 

1. Participant Selection: To ensure a representative sample, participants were 

selected based on demographic factors such as geographical origin, age, and 

language proficiency. This approach aimed to encompass the various accents and 

speech variations present in Malayalam-speaking populations. 

2. Recording Setup: Manual recording sessions were conducted in a controlled 

acoustic environment using high-quality recording equipment, including 

microphones and audio software. This setup helped minimize background noise 

and ensure the clarity of recorded speech. 

3. Prompt Design: Participants were provided with a series of prompts designed to 

elicit natural speech production. These prompts covered a range of topics, from 

everyday conversations to reading passages aloud, allowing researchers to 

capture a diverse range of speech patterns and linguistic features.  

4. Data Collection Process: During recording sessions, participants were instructed 

to speak spontaneously, using their natural accents and speech styles. 

Researchers monitored the sessions to maintain consistency and address any 

issues that arose during the recording process. 

4.4.2.2 Advantages: 

 Controlled Environment: Manual recording provides researchers with control 

over environmental variables, ensuring standardized conditions for data 

collection and analysis. 

 Targeted Sampling: By selecting participants based on specific criteria, such as 

regional background and language proficiency, manual recording allows 

researchers to target accents and speech variations of interest. 
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 Detailed Analysis: High-quality recordings obtained through manual sessions 

facilitate detailed acoustic analysis, enabling researchers to identify subtle 

differences in pronunciation and intonation. 

Manual recording serves as a valuable method for collecting accented Malayalam 

speech data, offering researchers control over recording conditions and facilitating 

targeted sampling. By employing rigorous methodology and addressing logistical 

challenges, researchers can obtain high-quality data essential for analyzing accent 

variations and linguistic features in Malayalam speech.  

4.4.3 Accented Audio from Online Platforms 

Incorporating online platforms, particularly YouTube, into the data collection 

methodology presents a modern approach to gathering a diverse range of accented 

Malayalam speech samples. The strategy involves scouring YouTube for videos 

featuring natural conversations, interviews, storytelling, and other authentic speech 

contexts where Malayalam is spoken. By using relevant search terms and filters, the 

aim is to capture a wide spectrum of accents and speech variations representative of 

different regions and demographics. Selected videos undergo scrutiny to ensure the 

authenticity and relevance of the spoken content. Audio segments are extracted from 

these videos, paying close attention to audio clarity and the presence of identifiable 

accent features. Utilizing YouTube offers access to a vast array of speech samples 

recorded in real-world settings, contributing to the ecological validity of the dataset. 

However, challenges such as verifying speaker authenticity and addressing potential 

biases in online content must be carefully considered to maintain data integrity. 

Despite these challenges, integrating YouTube as a primary source of accented audio 

data enriches the research by providing a diverse and extensive dataset for analyzing 

Malayalam speech variation. 
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Figure 5 The Phases of Data Collection 

Figure 5 illustrates the different phases of data collection that have been performed 

at various stages of this research. The overall process illustrates a systematic 

approach to building a comprehensive and specialized speech corpus for accented 

Malayalam. Each phase contributes to a specific aspect of the dataset, ensuring its 

richness and diversity. The study encompasses general speech data, emotional 

speech, and hate speech detection, making it a valuable resource for a wide range of 

accented speech processing applications in Malayalam. A total of 38027 speech 

samples were collected in nine phases to conduct the entire study.  

From the initial phase of recording utterances in distinctive districts of Kerala to the 

subsequent stages involving the extraction of accented speech data from YouTube 

videos and the annotation of emotions and hate speech/non-hate speech, this 

methodology exemplified a holistic and systematic effort to capture the intricacies of 

accented speech in a comprehensive manner. The dataset not only reflected authentic 

accents but also resonated with the subtleness and diversity inherent in real-world 

linguistic and emotional expressions. This methodological framework draws 

attention to the commitment to producing a dataset that would serve as a valuable 

resource for advancing research in accented speech recognition and related studies. 

Each utterance was carefully annotated with its original accent and its corresponding 

standard accent. This dual annotation approach empowers this research by enabling 

a direct comparison between the speaker's natural accent and the standardized 

reference. Soliciting multiple utterances from each of the 100 speakers provided the 



89 

flexibility required to explore diverse pronunciation patterns, intonations, and 

phonetic characteristics inherent to accented speech. The dataset's intentional 

diversity, encompassing both genders and spanning a broad age spectrum, 

accounted for potential variations influenced by these factors. The strategic selection 

of districts known for their distinctive accents further contributed to the dataset's 

richness by capturing region-specific linguistic traits. 

The process of crafting a unique dataset for this research reflects a spirit of original 

innovation and commitment to overcoming challenges. The depth and authenticity 

of the dataset serve as the foundation of the precise methodology, strategic 

framework, comprehensive data collection techniques, and sophisticated dual 

annotation approach utilized. These elements collectively establish the groundwork 

for a thorough investigation into accented speech recognition within the specific 

context of the Malayalam language. 

4.5  Generating a Comprehensive Dataset  

This dataset serves as the foundation for research works, allowing for a thorough 

exploration of the complications present in diverse accents across various regions 

and demographic groups within Kerala. The datasets created are labeled as the 

Accented Malayalam Speech Corpus (AMSC) Dataset, each identified with specific 

version numbers.  

4.5.1 AMSC-Dataset: Fostering Accented Malayalam Speech 

Corpus 

The dataset throughout this research is appropriately titled the "AMSC-Dataset," 

with "AMSC" representing "Accented Malayalam Speech Corpus." This 

nomenclature encapsulates the fundamental essence and objective of the dataset to 

serve as a comprehensive and versatile resource for the exploration and 

enhancement of accented speech in the Malayalam language. The dataset is carefully 
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organized into versions, each signifying a unique iteration and enhancement of the 

corpus, in alignment with the evolving requirements and goals of the research. 

4.5.2 The Significance of the Name 

The acronym "AMSC," standing for "Accented Malayalam Speech Corpus," aptly 

encapsulates the dataset's central focus and the exploration and representation of 

accented speech in the Malayalam language. Malayalam, renowned for its rich 

cultural and linguistic diversity, forms the foundation of this comprehensive corpus. 

It encompasses authentic accents and variations arising from diverse regions and 

communities, contributing to a deeper comprehension of linguistic diversity within 

the language. 

4.5.3 Versions for Enhanced Relevance 

Incorporating various versions within the AMSC-Dataset reflects the dedication to 

ongoing enhancement and adjustment to the changing research landscape. Each 

version represents a milestone in refining and expanding the corpus to better suit the 

research objectives, making it an ever evolving and dynamic resource. 

4.6  Phases of Data Collection 

The AMSC-Dataset, with its carefully curated data from natural environments, 

WhatsApp, YouTube, and various sources, is poised to be a valuable resource for 

research in accented speech recognition, emotion analysis, and hate speech detection 

within Malayalam. Its complex nature, rich accents, and applicability to real-world 

scenarios make it an invaluable resource for researchers pursuing to examine the 

intricacies of accented speech within the Malayalam language. The naming and 

structuring of the AMSC-Dataset embody a commitment to fostering the study of 

accented Malayalam speech and signify its evolving nature to cater to the research 

community's requirements. The construction of the dataset was incrementally 

carried out to meet the requirements of the studies conducted in different phases of 

this research. 
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4.6.1 Phase 1: Construction of AMSC-1 

The construction of AMSC-1 involved gathering 3070 speech samples from a diverse 

group of 29 speakers, of varying age starting from 6 and involving both genders 10 

males and 19 females. Unlike previous studies conducted in studio environments, 

this experiment built a speech dataset of 1.705 hours in a normal environment with 

noise disturbances using crowdsourcing. Diverse platforms were facilitated for data 

collection from various global speakers.  

The recordings make up the speech corpus, which has been assembled from the 

public under normal and natural recording conditions. The statistics of the data 

collection for AMSC-1 are shown in Figure 6. The AMSC-1 dataset comprises 3,070 

samples collected across different age groups. The distribution shows a notable 

variation in the number of samples per age group. The largest group is 21 to 40 years, 

contributing 1,290 samples, which is significantly higher than other groups. The 41 

to 60 age group follows with 590 samples, while the below 10 and 11 to 20 age groups 

have nearly equal representation with 459 and 460 samples, respectively. The 61 to 

80 age group has the fewest samples, with only 271 collected. This distribution 

highlights a predominant focus on the 21 to 40 age group in the dataset. 

A diverse group of twenty-nine participants was thoroughly chosen, considering 

factors such as age, gender, and geographical location to build a robust dataset. The 

resulting dataset spans 1.705 hours and includes multiple utterances of words, all of 

which have been saved as .wav format at a sampling rate of 16 KHz. 
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Figure 6 Statistics of AMSC-1 

This innovative method allowed the collection of speech data from speakers from 

various locations, with some contributions collected over the Internet and others 

directly recorded on-site. It was an approach that ensured a mix of accents and 

speaking styles, closely representing the real-world scenarios the model would 

encounter. Table 3 illustrates the sample classes used for the experiment. 

Table 3 The Classes of Isolated Words in the Dataset 

Uttered word IPA Uttered word IPA 

�ജ�ം  puːɟjam ��കം pust̪akam 

ഒ�്  on̪n ̪ə വര�ക ʋaɾajkkuka 

ര�്  ɾaɳʈə   അറിവ് ariʋə 

��്  muːn̪n̪ə പഠി�ക paʈʰikkuka 

നാല്   n̪aːl ൈല�റി lai̯brari 

അ�്  aɲt͡ʃə വായി�ക ʋaːjikkuka 

ആറ്  aːrə �ൾ skuːɭ 

ഏഴ്  eːɻə വിദ�ാർ�ി ʋid̪jaːrt ̪t̪ʰi 

എ�്  eʈʈə അധ�ാപകൻ ad̪ʱjaːpakan 

ഒ�ത് on̪pat̪ə എ��ക eɻut̪uka 
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4.6.2 Phase 2: Construction of AMSC -2 

The data that was collected exhibits pronounced dialectal differences from the 

standard Malayalam dialect. This dataset is comprehensive and encompasses 

samples from individuals of various age groups and both genders (male and female). 

It comprises contributions from 30 unique native speakers spanning different age 

categories. For every word in the dataset, multiple utterances were recorded by 

diverse speakers. 

All recordings underwent a standardization process, (as mentioned in the earlier 

approach and followed in all the phases of dataset construction throughout the 

speech signal processing adopted in this study) into a common .wav format and a 

common sampling frequency of 16 KHz has been adopted for majority of the 

experiments. This initial step in the preprocessing task ensures consistency across all 

samples. By capturing the rich linguistic subtleties of the Malayalam language in 

diverse regional contexts, this dataset lays a robust foundation for the in-depth 

investigation of accented speech recognition. It encompasses a wide spectrum of 

accent variations, establishing a firm basis for subsequent analysis and 

experimentation. 

The AMSC-2 dataset consists of 4,000 audio samples distributed across six districts. 

Each district contributes a specific number of recordings to the dataset. Kozhikode 

provides the highest number of samples, with 1,090 recordings. Kasaragod, Kannur, 

and Malappuram each contribute an equal number of 760 samples. Wayanad has the 

fewest samples, with 630 recordings. This distribution indicates a varied 

representation across the districts, with Kozhikode being the most significant 

contributor. The total number of recordings from all districts combined sums up to 

4,000. 
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Figure 7 Statistics of AMSC-2 

The AMSC-2 dataset is also categorized based on age-wise distribution. The age 

group 20 to 45 contributes the largest number of recordings, with 1,500 samples, 

indicating a significant focus on this demographic. The age groups 5 to 12 and 13 to 

19 each contribute 660 samples, showing equal representation. The age group 46 to 

65 provides 690 samples, while the age group 66 to 85 contributes the fewest, with 

490 recordings. This distribution highlights a concentration of audio samples from 

the middle-aged group (20 to 45), with balanced but lower representation from the 

younger and older age groups, resulting in a total of 4,000 samples across all age 

categories. 

 
Figure 8 Age Wise Statistics 
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Figure 7 illustrates the distribution of the samples across different districts and 

Figure 8 contains the statistical data of the speech recordings collected based on the 

different age groups. The dataset contains speech recordings from participants in 

donating speech of all ages. 

4.6.3 Phase 3: Construction of AMSC-3 

In the development of AMSC-3 speech corpus, 7070 samples were curated through 

crowdsourcing methodologies, ensuring a diverse and comprehensive collection. 

This approach was instrumental in capturing authentic and natural speech reflective 

of real-world scenarios. To achieve a balanced representation, 30 speakers, 

comprising both males and females, actively contributed to the corpus.  

 

Figure 9 Age Wise Statistics of AMSC-3 

This diversity added complexity and depth to the dataset, particularly in terms of 

gender-related speech characteristics. In a strategic move to enhance the richness of 

the corpus, speech data was gathered from five distinct districts within the Kerala 

region, each representing a unique accent within the Malayalam language. This 

geographical diversity played a crucial role in capturing the multifaceted nature of 

regional accents.  
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Figure 9 represents the number of speech data collected across five districts in Kerala, 

categorized by distinct age groups. In Kasaragod, a total of 190 speech data samples 

were collected for individuals under 13 years old, while 200 samples were collected 

for those aged 14 to 20. The dataset records 320 samples for the 21 to 45 age group, 

330 for individuals aged 46 to 65, and another 320 for those aged 66 to 85, resulting 

in a total of 1360 speech data samples. Similarly, in Kannur, 190 samples were 

collected for individuals under 13, 200 for those aged 14 to 20, and 320 each for the 

21 to 45, 46 to 65, and 66 to 85 age groups, totaling 1360 samples. Kozhikode reports 

240 samples for individuals under 13, 250 for those aged 14 to 20, and 400 each for 

the 21 to 45, 46 to 65, and 66 to 85 age groups, resulting in a total of 1690 samples.  

 

Figure 10 Statistics of AMSC-3 

Across all districts, the total number of speech data samples collected for each age 

group sums up to 960 below 13, 1000 aged 14 to 20, 1660 for the 21 to 45 age group, 

1740 aged 46 to 65, and 1710 aged 66 to 85, with an overall total of 7070 speech data 

samples collected. These numbers provide valuable insights into the distribution of 

speech data collection efforts across different age groups and geographical regions, 

offering a comprehensive view of the dataset's coverage and scope. As a result, the 

dataset, totaling 5.8 hours of speech, stands as a robust foundation for 

comprehensive experimentation and analysis in this study. 
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In Malappuram, 190 samples were collected for individuals below 13, 200 for those 

aged 14 to 20, and 320 each for the 21 to 45, 46 to 65, and 66 to 85 age groups, also 

totaling 1360 samples. Wayanad exhibits 150 samples for individuals under 13, 150 

for those aged 14 to 20, and 300 for the 21 to 45 age group, with 350 samples each for 

the 46 to 65 and 66 to 85 age groups, resulting in a total of 1300 samples.  

Figure 10 illustrates the number of audio recordings collected from five districts: 

Kasaragod, Kannur, Kozhikode, Malappuram, and Wayanad. Each of Kasaragod, 

Kannur, and Malappuram contributed 1360 recordings, while Kozhikode provided 

the highest number of samples at 1690, and Wayanad contributed the fewest with 

1300 recordings. The total number of recordings across all districts amounts to 7070. 

The diverse dataset ensures a comprehensive analysis of the audio samples collected 

from these different regions. 

4.6.4 Phase 4: Construction of AMSC-4 

A speech corpus, comprising approximately 1.17 hours of recordings, has been 

curated for the purpose of this research within a natural environment. These 

recordings capture individual utterances of multisyllabic words, each lasting 

between two to five seconds, forming the foundational elements of the corpora. 

The gathered speech samples originated from a diverse group of forty speakers, 

maintaining an equal balance between males and females. Covering a broad age 

spectrum from five to eighty, these participants are native speakers who speak 

authentic accents of Kasaragod, Kannur, Kozhikode, Wayanad, and Malappuram.  

The accents within these regions bear the influence of languages from neighboring 

states, resulting in a distinctive blend of speech patterns. It is worth highlighting that 

most of the samples in the collection exhibit the Kozhikode accent, characterized by 

its close alignment with the standard Malayalam accent. This specific emphasis adds 

depth to the analysis and modeling of the speech data.  
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Figure 11 Statistics of AMSC-4 

Figure 11 illustrates the distribution of audio recordings collected from five districts: 

Kasaragod, Kannur, Kozhikode, Malappuram, and Wayanad. Kasaragod, Kannur, 

and Malappuram each contributed 1360 recordings, while Kozhikode provided the 

highest number with 1690 recordings, and Wayanad the fewest with 1300 recordings. 

The total number of recordings across all districts sums to 7070. This distribution 

indicates a generally balanced sampling approach with some variations, reflecting 

possibly higher participation in Kozhikode and fewer samples from Wayanad due 

to logistical factors. The comprehensive dataset ensures a robust analysis of audio 

samples across these diverse regions, enhancing the study's representativeness and 

reliability. 

4.6.5 Phase 5: Construction of AMSC-5 

To construct a representative speech corpus, samples were collected from 

individuals across all age groups. Thirty native speakers, covering diverse age ranges 

and including both males and females, provided multiple utterances. This approach 

was crucial to accurately capture the diverse signals and unique pronunciation 

patterns present within the dataset. 
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The dataset is compiled from five unique districts: Kasaragod, Kannur, Kozhikode, 

Wayanad, and Malappuram. To construct an illustrative, authentic and 

representative speech corpus, samples were collected from individuals across all age 

groups. This approach was crucial to accurately capture the diverse signals and 

authentic pronunciation patterns present within the dataset.  

 

Figure 12 Statistics of AMSC-5 

The standardization of the recordings has been carefully undertaken to ensure 

uniformity across the dataset, facilitating precise analysis in the subsequent stages of 

the study. The resultant speech corpus, comprising approximately 1.25 hours in 

duration, serves as the basis of the experiment.  



100 

 

Figure 13 Age Wise Statistics of AMSC-5 

Figure 12 illustrates the number of audio recordings collected from five districts: 

Kasaragod, Kannur, Kozhikode, Malappuram, and Wayanad. Kasaragod, Kannur, 

and Malappuram each contributed 760 recordings. The total number of recordings 

collected across all districts is 4000. Figure 13 represents the age wise statistics 

regarding AMSC-5. 

4.6.6 Phase 6: Construction of Accented Malayalam Emotional 

Speech Corpus (AMESC) 

AMESC dataset was constructed from the publicly available YouTube platform. 

YouTube's extensive array of videos provided a diverse collection of speech samples, 

capturing various accents and emotional expressions. To maintain a focus on the 

Malayalam language and its diverse accents, specific criteria were applied for video 

selection. Preference was given to videos that prominently displayed explicit 

emotional expressions, aligning with the seven emotions under consideration. The 

emotions considered in the study were surprise, happiness, sadness, anger, neutral, 

fear, and disgust. The resulting dataset encompasses a diverse array of speech 

samples representing these seven emotions sourced from various accented contexts. 

This corpus forms a crucial component of the dataset generation process.  
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The research process involves several key steps. To enrich the dataset's authenticity, 

district selection is crucial, focusing on regions known for diverse Malayalam 

accents. Data preprocessing is employed to eliminate potential noise and enhance 

audio quality, and rigorous quality control checks are performed to maintain dataset 

integrity. Table 4 illustrates the statistics of the emotional data collected in detail.  

Table 4 The Distribution of AMESC Dataset 

Emotions District wise Accents Size of the Sample 

Angry Kasaragod, Kozhikode, Thrissur 420 

Disgust Thiruvananthapuram, Kottayam 540 

Fear Kannur, Thrissur, Malappuram 538 

Happy Thrissur, Kannur, Thiruvananthapuram 512 

Sad Kasaragod, Kannur, Kottayam 520 

Surprise Kannur, Kozhikode, Kasaragod 534 

Neutral Thiruvananthapuram, Kottayam 332 

Total 3396 

 

Additionally, the dataset incorporates labels providing extra context, including the 

transcription in standard accent, relevant demographic information, and accent 

annotations. Table 5 contains the sentences and the classes of emotion that have been 

collected for the AMESC dataset.  

Table 5 Sample Emotional Speech Categories in the AMESC Dataset 

Sample Speech in the Dataset English Transcription Emotion 

പെ� ഒ�  കാര�ം ഞാൻ പറേ��ാം pakshe oru kaaryam njaan paranjekaam Angry 

ആരാ നി�ൾ�തി� സ�തം നൽകിയത് aara ningalkathinu sammatham 

nalkiyath 
Angry 

ആെരടാ നിേ�ാട് അ��് ഇരി�ാൻ 
പറ�ത് aaredaa ninnodu aduth irikkan paranjath Angry 

അ��േളൽ േവെറ പണിെയാ�ല�ാ 
േച��ി�് adukkalel vera paniyonnulya chettathikk Angry 

അെത�ാ അ�ി�് ആഭരണം എ��ാൻ 
ഞാൻ �െട  േപായാല് 

athentha allik aabharanam edukkaan 

njaan kooda poyaalu 
Angry 

ആെരെടയ്  ഇവെനാെ� aaredey ivanokke Disgust 

അ�ി�ടം  അ�  അഗ�ി�ടം asthikoodam alla agasthikoodam Disgust 
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Sample Speech in the Dataset English Transcription Emotion 

അേ�  ആ  ഉ�ിേ�ാേലാ ayyee aa ullitholo Disgust 

ഛീ  ഞാൻ  അ�ര�ാരൻ  അ� chee njaan atharakkaaran alla Disgust 

ഛീ  വിവരേദാഷി chee vivaradoshi Disgust 

ആരാ അവിെട ara avde Fear 

അേ�ാ േ�തം ayyo pretham Fear 

എനി�്  േപടിയാ�� enikk pediyavunnu Fear 

ആരാ  അത് aara ath Fear 

എെ�  ക�ം കാ�ം െവറ�ി�്  വ� ente kayyum kaalum verachitt vayya Fear 

ഇെ�ാ  സേ�ാഷാ എെ� ക�കെള 
എനി�് വിശ�സി�ാൻ കഴി��ി� 

ippo santhoshaa ente kannugale enikk 

vishvasikkan kazhiyunnilla 
Happy 

�േ��ാ  ഞാൻ  പാ�ായി kuttettaa njaan passaayi Happy 

ന�  ര�ായി��  ആ�ി nalla rassairunnu aunty Happy 

ഞാൻ  �തീ�ി�തിേന�ാൾ എ�  ന�  
�ലം 

njaan pratheekshichathinekaal ethra 

nalla sthalam 
Happy 

വളെര  വളെര  സേ�ാഷം valare valare santhosham Happy 

ആശ�യിലാ�ിയത് ��െ�രിയാർ 
ആയി�� 

aashankayilaakiyath mullaperiyaar 

aayirunnu 
Neutral 

അഭിമാനേ�ാെട  ജീവി���ം abhimaanathode jeevikunnathum Neutral 

അത് അെ��ിൽ ടി��് എ��് െകാ�് ath allenkil ticket eduth kond Neutral 

അത് കാണാൻ േലാക�ിെ� നാനാ 
ഭാഗ�ളിൽ നി�ം ആ�കൾ ഇേ�ാ�് 
വ�� 

ath kaanan lokathinte naana bhagangalil 

ninnum aalukal ingott varunnu 
Neutral 

�ക��ിെ� കാര��ൾ� മാ�ം ആയി�് bhoogambathinte kaaryangalk 

maathram aayit 
Neutral 

ആ ഗേങെന ഒ�് കാണാൻ പ�ിയാ മാ�ം 
മതിയായി�� എനി�് 

aa gangane onn kanaan pattiyaa matram 

mathiyaayirunnu enik 
Sad 

ആ പാവം �ീ�െട �ാർഥന�ം 
ക�ീരി�ം എെ� ��ിൽ ഒ� വില�ം 
ഇ�ാ�ാവേ� 

aa pavam sthreeyude kanneerinum 

prarthanakkum our vilayum 

illandaavalle 

Sad 

ആെര�ി�ം  ക�ാൽ  പിെ�  േചാദ�ായി 
പറ�ിലായി 

aarenkilum kandaal pinna chodyaay 

parachilayi 
sad 

അ�െന ആെരാെ� ൈകവി�ാ�ം 
വിടാ� ഒരാ��് 

achane arokke kaivittalum kaividatha 

oralund 
Sad 

അതാ  തനി�്  ഇവിെട  വ�ിരി�െണ atha thanich ivide vannirikkunne Sad 

ഏെതാെ� െസ�ാ അവളടി�ിരി�െ�    ethokke scenta avaladichirikkunne Surprise 

ഹാ  അെ�ാ  നീ�ം haa appo neeyum Surprise 

ഹായ്  മഴ hai mazha Surprise 

ഏ േസാഫിേമാൾ  എേ�ാ  വ� ae sophimol eppo vannu Surprise 

ഏ നീയാ ae neeyaa Surprise 
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4.6.7 Phase 7: Construction of AMSC-6 

In the process of constructing AMSC-6, a diverse and extensive dataset was carefully 

compiled from YouTube videos. The dataset comprises speech samples from seven 

distinct regions in Kerala, with each region contributing a substantial number of 

samples. The statistics reveal the geographic distribution of the collected data: 

Thiruvananthapuram with 700 samples, Thrissur with 728 samples, Malappuram 

with 700 samples, Kottayam with 701 samples, Kasaragod with 476 samples, Kannur 

with 700 samples, and Kozhikode with 596 samples.  

This geographically varied dataset is integral to ensuring the representation of 

diverse accents within the Malayalam language. The number of samples from each 

region enhances the robustness and reliability of the dataset, that can be transformed 

into a solid foundation for the subsequent phases of experimentation and analysis in 

accented speech recognition. Figure 14 depicts the statistics of AMSC-6 which 

represent the statistics of the original dataset that has been curated. The data is then 

augmented using different speech augmentation techniques and is discussed in 

detail in chapter 14. 

Recognizing the need for a comprehensive dataset, the limitations posed by the initial 

sample distributions are addressed through the application of various data 

augmentation techniques. These techniques proved instrumental in expanding the 

dataset, ensuring a more robust and diverse representation of accented speech across 

different regions. The augmented sample distributions are as follows: 

Thiruvananthapuram - 2100, Thrissur - 2184, Malappuram - 2100, Kottayam - 2103, 

Kasaragod - 1428, Kannur - 2100, and Kozhikode - 1788 speech samples and hence a 

total of 13,803 samples. 
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Figure 14 The Statistics of AMSC-6 (Original Data) 

 

The augmentation process not only improved the initial constraints in data collection 

but also contributed to the overall richness and variability of the dataset. This 

augmented dataset serves as a foundation for the subsequent stages of the research, 

enhancing the reliability and generalizability of the accented speech recognition 

models developed in this study. 

4.6.8 Phase 8: Construction of Accented Malayalam Dataset for 

Detecting Hate Speech (AMDDHS) 

The speech categorized as hate speech is examined in detail prior to the selection of 

the video from YouTube platform for extracting the audio contents. After a rigorous 

selection process 850 samples were collected from non-hate speech domain and 150 

samples were collected from hate speech domain which is represented in Figure 15.  
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Figure 15 AMDDHS (Original Distribution) 

Data augmentation techniques play a pivotal role in introducing variations that 

mirror the inherent diversity within the speech recordings, contributing to the 

dataset's authenticity. Data validation is conducted to guarantee that the collected 

dataset accurately reflects natural speech patterns, accents, and language use. 

4.6.9  Spectrograms 

In the domain of Accented Speech Recognition, a pivotal step in the preprocessing 

pipeline involves the transformation of raw audio data into a format contributing to 

deep learning model training. To achieve this, spectrograms, which serve as image 

representations of the audio data, are generated. A spectrogram represents the 

spatial spectrum of frequencies over time, essentially encapsulating the frequency 

content of an audio signal at different points in time. This transformation is 

instrumental in converting the temporal nature of speech data into a format that is 

amenable to deep neural networks, which excel at processing spatial information.  

The spectrogram generation process involves breaking down the audio signal into 

short overlapping segments, calculating the Fourier Transform for each segment to 

obtain the frequency content, and then plotting the resulting spectrum over time. The 

outcome is a 2D matrix where one axis represents time, another represents frequency, 
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and intensity at each point signifies the magnitude of the corresponding frequency 

component. This representation encapsulates both temporal and frequency 

characteristics of the audio signal, making it a powerful input for the neural 

networks. 

Spectrograms are image representations, from which the model gains the ability to 

determine intricate patterns and variations in the frequency domain, which are 

critical for accurately recognizing and distinguishing accented speech. The image-

like nature of spectrograms enables the application of image processing techniques 

and the utilization of pre-trained image-based models, providing a versatile and 

effective means of processing audio data for accent recognition.  4000 spectrograms 

that correspond to the AMSC-5 dataset has been constructed to conduct experiments 

in this study. 

The transformation of audio data into spectrograms stands as a pivotal preprocessing 

step, enabling the utilization of deep learning models, particularly CNNs, for 

accented speech recognition. This approach harnesses the power of visual 

representations to capture both temporal and frequency information, enhancing the 

model's capacity to recognize the subtleties present in accented speech across diverse 

regional variations in the Malayalam language. The sample spectrograms used in the 

study are depicted in Figure 16. 

 

Figure 16 Sample Spectrograms  
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4.6.10  Ethical Considerations 

All the data sourced from YouTube platform are publicly available videos. Personal 

identifiers, if any, were removed from the audio clips to maintain the anonymity of 

the speakers. Moreover, the data was used exclusively for academic and research 

purposes, ensuring there were no breaches of privacy or ethical guidelines.  

The data collection process was careful and aimed at ensuring a comprehensive 

dataset that could truly represent the diversity and complexities of accented 

Malayalam speech. The diverse accents and clear categorization set a solid 

foundation for the subsequent phases of the study. 

4.7  Conclusion 

To address the intricate subtleties of diverse accents prevalent in various regions and 

demographic groups within Kerala, comprehensive datasets have been curated 

through an exhaustive and precisely designed process. These datasets, standing as 

the foundation stone of this research journey, serve as a testament to the potential of 

techniques employed in modeling and advancing the understanding of AASR.  

Throughout this research, each step has been taken with precision and purpose, 

amplifying the authenticity and richness of the speech corpus. The foundational 

phase of defining the research context established a clear path, enabling the 

subsequent stages to progress seamlessly.  

The strategic district selection, coupled with the engagement of participants from 

diverse backgrounds, ensures that the dataset encapsulates the essence of linguistic 

diversity that characterizes the region. The phases of participant recruitment and 

data collection have been marked by a genuine dedication to capturing natural 

accents. The individualized approach to communicating with participants and 

providing them with explicit instructions reflects an ethical commitment to 

participant consent and data privacy.  
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 Accurate accent annotations and contextual labels contribute to the dataset's depth, 

enhancing its potential for diverse applications. The incorporation of data 

augmentation techniques introduces variations that echo real-world scenarios, 

enriching the dataset's ability to mimic the complexities of accented speech.  The 

journey of generating these datasets has illuminated the reciprocated relationship 

between linguistics, technology, and diversity. This dataset, thoroughly crafted, 

embodies the synergy between innovative research methodologies and a profound 

understanding of regional linguistic variations.  
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5. AASR of Malayalam Isolated Words using 

LSTM-RNN 

5.1  Introduction 

Historically, human-machine communication was constrained to text-based 

commands. Over recent decades, speech recognition has emerged as an exciting 

research domain, with significant progress in various languages. ASR for the 

Malayalam language has not seen extensive research, primarily due to the language's 

inherent complexity. Adding accent-based variations to Malayalam ASR poses even 

greater challenges, demanding the utmost dedication and expertise from researchers. 

The scarcity of datasets for Malayalam further complicates the process. This 

proposed study aims to create an innovative approach for AASR in Malayalam using 

LSTM to identify words spoken by different individuals. 

To summarize, the contributions of this study include: 

1 The construction of a Malayalam word-based embedding to correlate spoken 

utterances with textual words. 

2 The creation of an LSTM-RNN acoustic model specifically tailored to recognize 

AASR for Malayalam language. 

5.2  Methodology  

The proposed work is aimed at developing a model that recognizes multi accented 

speech in the Malayalam language and translates it into corresponding text. The 

model is trained and constructed with 20 classes of isolated Malayalam utterances, 

divided equally between Malayalam numerals and a selection of random words in 

the language. The model is designed to learn from the various classes of utterances 

it has been exposed to during training and convert the speech into standardized 

Malayalam text.  
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The algorithm of the study: 

i. Utilize AMSC-1 dataset. 

ii. Extract the MFCC speech coefficients corresponding to the speech signals in 

the dataset. 

iii. Construct and design the LSTM-RNN neural network architecture. 

iv. Construct the AASR  

v. Develop the language model. 

vi. Predict and evaluate the model outcomes. 

 

Figure 17 Workflow of the Proposed System 

The AASR model constructed in this phase of the research is AMSC -1 dataset which 

includes 3070 utterances of 20 classes of accented Malayalam acoustic data. Figure 17 

illustrates the workflow of the proposed model for accented speech recognition, 

comprising several key components and steps: 

5.2.1 Collect Accented Speech 

The initial step involves gathering audio recordings from speakers with various 

Malayalam accents. This collection process ensures a diverse and representative 

dataset that captures different regional and social accents, including isolated words, 

sentences, and continuous speech. 
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5.2.2 Construct and Utilize AMSC-1 Dataset 

Once the raw audio data is collected, it is organized into a structured dataset known 

as AMSC-1. This dataset is carefully labeled and segmented, forming the 

foundational dataset for subsequent processing and experiments. 

5.2.3  Feature Extraction 

In this step, relevant features are extracted from the audio recordings to facilitate 

speech recognition. MFCC algorithm is used to extract the feature vectors which 

encapsulate the essential acoustic properties of the speech signals. 

5.2.4 Design LSTM Network Architecture 

An LSTM network architecture is then designed to handle the sequential nature of 

speech data. LSTM networks are well-suited for this task due to their ability to 

maintain long-term dependencies and learn temporal patterns in the speech features. 

5.2.5 Construct Accented ASR Model 

The accented ASR model is constructed by training the designed LSTM network on 

the feature-extracted data from the AMSC-1 dataset. During this phase, the model 

learns to map input speech features to corresponding text transcriptions, effectively 

recognizing and transcribing accented speech. 

5.2.6 Prediction 

Once the ASR model is trained, it is used to predict transcriptions for the speech data. 

The model processes the input speech signals through the trained LSTM network 

and outputs predicted text transcriptions, demonstrating its capability to generalize 

to different accents. 

5.2.7 Evaluation 

The final step involves evaluating the performance of the ASR model using various 

metrics such as accuracy, precision, recall, and F1-score. This evaluation is conducted 
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on a separate test set to ensure unbiased assessment, highlighting the model’s 

strengths and identifying areas for improvement. 

5.3  Speech Signal Processing and Feature Vectorization 

Speech signal processing and vectorizing the appropriate features are crucial in 

developing AASR models. Selecting the correct features can contribute significantly 

to training an effective model, while incorrect or irrelevant features can substantially 

impede the training process. 

 In this experiment, the MFCC algorithm is used to extract features from speech 

signals. MFCC is a widely accepted method in speech and audio processing, and it 

aims to mimic the logarithmic perception of loudness and pitch in human hearing. 

The following procedure details the extraction of MFCC features. 

A pre-emphasis filter is applied on the speech signals to highlight those parts of the 

signal corresponding to the high frequency representation of the signal. The filter can 

be described by [154]: 

Y(t)=X(t)−α⋅X(t−1)                                                       ( 14 ) 

Where Y(t) is the output signal at time t, X(t) is the input signal at time t, α is the pre-

emphasis factor, the values normally range between 0.9 and 1.0 and X(t−1) is the 

input signal at the previous time step, i.e., time t−1. 

After applying the pre-emphasis on speech signal, it is then divided into frames. The 

discontinuities in the frame function are minimized by applying a window function 

to the signal. The frequency components of the frames are analyzed by applying Fast 

Fourier Transform (FFT). According to Haytham Fayek's [155] detailed explanation 

on speech processing, after slicing the signal into frames, a window function such as 

the Hamming window is applied to counteract the assumption made by FFT that 

data is infinite and to reduce spectral leakage. This ensures that the frequency 

components are well represented in the subsequent FFT analysis. The power 

spectrum is then computed as [155]: 



113 

P(k)=∣FFT(x(n)) ∣2                                                     ( 15 ) 

where, xn is the nth frame of signal x 

The Mel scale simulates the human ear's response to different frequencies. A set of 

triangular mel filters is applied to P(K) power spectrum to compute the Mel-

frequency outputs. The logarithm of the Mel-frequency response is taken, and the 

Discrete Cosine Transform (DCT) is applied to de-correlate the coefficients, leading 

to the MFCCs. 

In this specific experiment, 20 prominent features are considered. This typically 

includes the first 13 MFCCs plus the first 7 delta coefficients. The combination of 

these offer of these features offers a rich representation of the speech signal, 

capturing essential spectral characteristics and dynamic changes over time.  

 

Figure 18 MFCC Features  

The 20 features provide a comprehensive view of the speech signal, containing 

important information on the tonal and rhythmic aspects of the Malayalam language, 

which is crucial for the task of accent-based speech recognition. Figure 18 visually 

represents the 20 features extracted from the speech signals, providing an insight into 

the complexity of the information captured by the MFCC technique. 
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5.4  AASR using LSTM-RNN 

This section outlines the architecture, training, and implementation of the model, 

which is designed specifically to understand the accents in Malayalam speech 

signals.  

The following steps describe the RNN algorithm: 

1. Current Input at time T, XT denotes the input at the present moment. XT-1 refers 

to the previous input, and XT+1 corresponds to the upcoming input, representing 

sampled speech signals and the hidden State, ST signifies the hidden memory, 

that can be computed as 

ST=f(U⋅ XT +W⋅ XT+1 )                 (16 ) 

where f is the activation function, and U and W are weight matrices.  

This approach is inspired by sequence modeling techniques as detailed by Graves 

[156] and further developed in sequence-to-sequence learning frameworks by 

Sutskever et al., [157] and recurrent neural network language models by Mikolov 

et al., [158]. 

2. Output at Time Step T, OT: This refers to the vector of probabilities for 20 classes 

of isolated words, computed as  

OT =softmax(V⋅ ST)                 (17 ) 

where V denotes the weight matrix associated with the hidden state 

[159],[160],[161].  

The network architecture is fed with the dimensions of accented speech signals, with 

width representing features extracted through the MFCC algorithm. In the 

experiment, the height is fixed at 1000. An unfolded RNN architecture is represented 

in Figure 19. 
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Figure 19 The RNN 

Audio signals are feature engineered to extract the prominent frequency vectors that 

are extracted using MFCC for model training. The speech classes encoded and fed 

along with the appropriate feature sets to the LSTM network. The dataset contains 

20 classes of accented isolated speech which then form the base for the AASR model. 

The LSTM-RNN undergoes training on the dataset and is aligned with word models. 

In the testing phase, features extracted from the test set are arranged by the trained 

network based on the pretrained classes. Throughout the training process, values are 

compared with the target class, and weight adjustments are made, enhancing the 

network to make predictions. To construct the AASR system a unique approach was 

undertaken to collect authentic speech samples from various regions. Specifically, 

samples were gathered from five diverse districts in Kerala which is rich in linguistic 

diversity.  



116 

 

Figure 20 A Long-Short-Term Memory Cell 

The data collection process was performed in natural recording environments, rather 

than controlled studio settings recognizing the need for real-world performance. This 

decision inherently introduced background noise into the recordings, adding a layer 

of complexity to the study and hence contributing to the practical applicability of the 

model. Figure 20 provides a view of an LSTM cell. 

Each audio data in AMSC-1 was sampled at a frequency of 16000 Hz and then 

converted into the .wav format. This uniformity in the data format ensured that 

subsequent processing and feature extraction would be consistent across the entire 

dataset. The data collection procedure for this work was characterized by a strategic 

blend of technology and ground-level engagement with speakers in their natural 

surroundings. The resulting dataset, rich in accent variations and embedded with 

real-world challenges such as noise and other live disturbances formed the 

foundation for training the model. Table 6 contains the statistics of the AMSC-1 

dataset prior to model construction. 
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Table 6 AMSC-1 Dataset 

AMSC 1- Dataset 

Phases Quantity 

Training 2454 

Testing 616 

Total 3070 

 

Eighty percent of the samples, totaling 2454 speech instances, were allocated to the 

training process, ensuring a substantial amount of data for the model to learn various 

aspects of accents and pronunciations. The remaining data was reserved for testing 

the model's efficiency and accuracy. 

The training process with LSTM-RNN was intensive, as observed in the early stages 

where the classification loss was high. This initial high loss rate reflected the model's 

unfamiliarity with the complex patterns in the Malayalam accented speech. 

However, as the training progressed, the algorithm incrementally learned from the 

speech samples, adapting, and optimizing its internal parameters. 

Over a series of 7,38,000 iterative steps, the model's performance improved 

significantly. Each step in the training process involved validation, which 

continuously calculated the classification loss, allowing for monitoring and 

adjustment if necessary. This consistent attention to detail contributed to the 

progressive reduction of loss as the algorithm advanced through its learning stages. 

Conducted over GPU to take advantage of its processing capabilities, the training 

took 12.5 hours for constructing the model.  

The time and computational power invested were well-rewarded as the total loss, 

comprising both classification and validation loss, decreased to 0.25% towards the 

final stages of computation. This marked reduction in loss symbolized the model's 

ability in recognizing and translating accented speech and formed the base for model 

testing and can be adopted to develop potential real-world applications. 
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Figure 21 presents a graphical representation of the total loss in correlation with the 

computational steps during the training process of the accented speech recognition 

model using RNN. The graph provides insightful information on how the model's 

efficiency improves as the loss reduces over time. Two distinct lines are depicted in 

the graph. The faded line denotes the original classification loss, exhibiting the 

fluctuations in the beginning and then decreasing towards the end of model 

construction as the algorithm learns from the speech samples. This line provides a 

raw and unfiltered view of the loss evolution through the computational steps. The 

darker line has undergone smoothing with a factor of 0.6. This smoothing process 

offers a more refined and stable perspective, eliminating noise and emphasizing the 

underlying trend in loss reduction. The convergence of the darker line towards lower 

values symbolizes the model's increasing capability in recognizing accented speech. 

 

Figure 21 Total Loss vs Computational Steps 

The training and validation accuracy during each computational step illustrated in 

Figure 21 serves as a visual proof to the model's learning process. It emphasizes the 

fundamental principle that a higher accuracy indicates a better-performing model, 

reflecting the robustness with which it was constructed. 
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5.5  Performance Evaluation  

This research focuses on developing an AASR system for isolated Malayalam words. 

The methodology employs the LSTM-RNN algorithm, widely recognized for its 

efficacy in speech recognition experiments. The dataset comprises 3070 speech 

samples obtained from twenty-nine speakers spanning diverse age groups and five 

distinct districts. Figure 21 represents the total loss and Figure 22 represents the total 

accuracy of the model construction. 

Importance was given to the age group of 21 to 40 while collecting the samples, which 

constituted 42 percent of the total data, with the expectation that this group would 

contribute high-quality recordings. Several recordings of the same acoustic class 

were recorded from each speech donor to construct a comprehensive dataset. 

 

Figure 22 Accuracy vs Computational Steps 

The training phase was constructed using 2454 speech samples, constituting 80 

percent of the entire dataset. The training of the model involved 738,000 

computational steps, utilizing a batch size of 20, spanning a duration of 12.5 hours 
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and 3000 epochs, at a learning rate of 0.0001. The AASR model was constructed, 

achieving an accuracy rate of 82.5 percent, representing a significant accomplishment 

in modeling Malayalam accented speech. 

This experiment contributes a significant advancement to the field of accent-based 

speech recognition, specifically focusing on the Malayalam language. The successful 

deployment of the LSTM-RNN algorithm and the careful selection of a representative 

dataset provide promising prospects for future research and practical applications. 

5.6  Conclusion 

In the study of enhancing the field of AASR for the Malayalam language, an accent-

specific dataset has been successfully constructed and developed an efficient model 

based on the LSTM-RNN algorithm. This effort is especially noteworthy, given the 

existing scarcity of accent-based data in Malayalam. This research provides a 

significant contribution to research in AASR, displaying promising results when 

tested with real-time test cases. However, some false positive predictions have been 

observed, a phenomenon that might be attributed to the dataset's size or the inherent 

complexity of accent-based data in Malayalam. 
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6. AASR with Deep-CNN, LSTM-RNN, and 

Machine Learning Approaches 

6.1  Introduction 

In the Malayalam language, the variation in accents corresponds to specific factors 

such as geographic location, religion, community, social class style, gender, and age. 

The Dravidian Encyclopedia reports the existence of 15 regional dialects of 

Malayalam, contributing to the complexities involved in the development of ASR 

systems. In this experiment, the focus is on five distinct dialects spoken across five 

districts in Kerala.  

The goal is to create an accent-independent ASR system that can effectively operate 

across these five dialects. The AASR model constructed in this phase of the research 

was trained on the dataset of audio samples encompassing a wide range of accents, 

thus preparing it to function effectively across diverse dialects. This research is 

conducted in three distinct stages: Dataset Preparation, Acoustic Signal Processing, 

Classification and Prediction, utilizing both machine learning and deep learning 

strategies. The contribution of this work includes: 

1. Dataset Preparation: An accent-based dataset AMSC-2 was created for this 

experiment. 

2. Feature Engineering: Feature engineering involved adopting various speech 

signal processing techniques to obtain the optimal representation of the accent-

based speech data, MFCC, STFT, and Mel Spectrogram methods. 

3. AASR Model Construction 

1. Machine Learning AASR Models: This phase of the research deals with the 

construction of AASR using different machine learning algorithms such as 

Multi-layer Perceptron, Decision Tree, Support Vector Machine, Random 

Forest, K-Nearest Neighbor, and Stochastic Gradient Descent. 
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2. Deep Learning AASR Models: In this phase of research, the features were first 

used to construct an LSTM-RNN-based accented ASR system. Subsequently, 

the speech signals were transformed into spectrograms, and the features 

extracted from these images were channeled into a Deep Convolutional 

Network Architecture. 

3. Ensembled ASR system was developed, combining all the individual models. 

The performance of each experiment was compared to identify the most 

effective method for modeling an end-to-end AASR system. This work thus 

constitutes a novel and comprehensive approach to understanding and 

navigating the complex world of Malayalam accented speech recognition. 

Through an in-depth analysis of different strategies, this chapter contributes valuable 

insights and novel methods to the field of Malayalam ASR. This study, therefore, not 

only advances the understanding of accented speech recognition but also lays down 

a cornerstone for further research and development in this complex and under-

explored area. 

6.2  Methodology  

The primary objective of this study is to devise an innovative and effective approach 

to creating AASR for acoustic signals in Malayalam that can accommodate multiple 

accents. This study aims to propose a word-based ASR system specifically designed 

for the Malayalam language, utilizing machine learning, deep learning algorithms, 

and a novel hybrid approach that synthesizes the strengths of these methods. In the 

following sections, the outcomes of the experiments using various machine learning 

approaches, LSTM-RNN, DCNN, and a hybrid methodology on the accented speech 

data are examined. 

The investigation includes a comparative analysis of different strategies for 

constructing an accent-based ASR system for the Malayalam language. Each 

approach has demonstrated promising results when applied to low-resource 
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languages, and the combination of independent models revealed complementary 

strengths.  

It is essential to recognize that the performance of an accented ASR system relies 

heavily on the specific nature of the dataset, which may vary across languages. Thus, 

constant experimentation with various methodologies is vital to determining the best 

approach for a particular language. For this experiment, audio datasets consisting of 

20 classes are used and recorded in natural settings. Utilizing crowdsourcing 

techniques, a corpus of 4000 data points was assembled, including diverse input from 

speakers of varying ages, genders, and locations. 

The steps involved in the experiment are: 

1. Dataset Curation. 

2. Feature Engineering. 

3. Initial AASR Construction: Employed Multi-layer Perceptron, Decision Tree, 

Support Vector Machine, Random Forest, K-Nearest Neighbor, and Stochastic 

Gradient Descent classifiers. 

4. Deep Learning Application: LSTM-RNN and CNN algorithms were utilized to 

train the model, subsequently mapped onto the word models. 

5. Ensembled ASR Construction: A composite ASR system was formed from the 

previously constructed models. 

6. Testing and Analysis: The test set, randomly drawn from the dataset, underwent 

preprocessing and feature extraction. These vectors were then analyzed and 

compared against target classes, and weights were updated accordingly during 

the training stage. The outcomes of utilizing standard performance metrics, 

conducting error analysis, comparing the models against baseline measures, and 

exploring their interpretability in the study revealed the effectiveness of the 

DCNN models in accent recognition within Malayalam speech. These findings 
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present significant insights for the future refinement and expansion of the 

research. 

6.2.1 Dataset Curation 

For this study, a distinctive dataset ASMC-2 has been created, comprising multiple 

utterances of accented words in Malayalam. This dataset is inclusive, capturing 

samples from individuals of all age groups and both genders.  

6.2.2 Feature Engineering  

By focusing on the inclusion of only essential features in the experiment, a more 

effectively trained and robust model can be created. Including irrelevant features 

could significantly impact the quality and accuracy of the produced model. In this 

experiment, 180 features were carefully extracted using different feature engineering 

approaches and techniques. The considered features are a composite of various 

speech components, as detailed below. 

6.2.2.1 Speech Vectorization using MFCC 

MFCCs are significant in the representation of speech, and they have been employed 

in this experiment to encapsulate key information in the Malayalam accented speech 

data. The process of computing the 40 MFCC features is as follows: 

1. Compute the First 13 Coefficients (MFCCs): The initial 13 coefficients are 

extracted using the standard process as described below: 

For each frame, 

i. Segment the signal into short frames.  

ii. Compute the periodogram estimate of the power spectrum for each frame.  

iii. Apply Mel filter bank on the power spectra and sum the energy within each 

filter. 

iv. Logarithmically transform all filter bank energies.  

v. Perform the discrete cosine transformation on the log filter bank energies. 



125 

vi. Mathematically, the first 13 MFCCs can be computed 

by:
�� = ∑���

��� �(�) ⋅ cos �
��

�
�� +

�

�
��

 for � = 0,1,2, … ,12
                                                      ( 18 ) 

where ci are the cepstral coefficients, N is the window length, and s(n) is the 

speech signal as discussed by Rabiner & Schafer [165]. 

vii. Compute the First Derivatives (Deltas): These derivatives capture the 

changes and rate of changes in the coefficients over time, adding an 

additional 13 features. This can be computed as: 

 Δ�� =
∑���

�  �(���������)

�∑���
�  ��  ��� � = 0,1,2 … .12                                                       ( 19 )    

 where ci+n is the MFCC of the frame that is �n frames ahead of the current 

frame i. This is used to compute the forward difference in the numerator of 

the delta calculation. ci−n is the MFCC of the frame that is n frames behind 

the current frame i. This is used to compute the backward difference in the 

numerator of the delta calculation [165]. 

viii. Compute the Second Derivatives (Delta-Deltas): These 

derivatives capture the changes and rate of changes in the 

coefficients over time, adding again an additional 13 features [165]. 

 
ΔΔ�� = Δ���� − Δ����

 for � = 0,1,2, … ,12
                                                                 ( 20 )                                             

ix. Compute the Mean of All Values: One more feature is extracted by 

calculating the mean of all the values, to get the central tendency. This 

captures the main characteristics of the speech signal. 

 mean =
�

��
∑���

��  ��                                                                                              ( 21 ) 

Here, the initial 13 coefficients are extended by their first and second derivatives, 

adding an additional 26 features, and then one more feature is extracted by 

calculating the mean of all the values, making a total of 40 coefficients. 
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6.2.2.2 Speech Vectorization using STFT  

The steps involved in extracting the speech vectors are: 

1. Division of the Signal into Frames: The entire speech signal is partitioned into 

overlapping frames, each subjected to a windowing function, enabling localized 

frequency analysis over time. 

2. Computation of the Short-Time Fourier Transform: The mathematical 

representation is given as [165]: 

�(�, �) = ∑���
��� �frame (�, �) ⋅ ���

����

�                                      ( 22 ) 

Where: 

i. X (k, t): This represents the STFT of the signal. It's a function of k (the 

frequency index) and t (the time index or frame number). 

ii. ∑: The summation symbol indicates that the following expression is summed 

over n, from 0 to N−1, where N is the length of the frame (e.g., number of 

samples in each frame). 

iii. xframe (n, t): This is the nth sample of the tth frame of the signal. The signal is 

divided into overlapping frames, and this part of the equation refers to a 

specific sample within a specific frame. 

iv. e−j
����

�
: This is the complex exponential term, representing a discrete Fourier 

Transform (DFT) kernel. The j is the imaginary unit, k is the frequency index, 

n is the sample index within the frame, and N is the length of the frame. 

v. The factor 
����

�
 creates a complex sinusoid that corresponds to the frequency 

bin k. It cycles k times over the frame length N, thus corresponding to a 

specific frequency. 

vi. The exponential function, e−j
����

�
, then, is evaluating the contribution of that 

frequency within the frame. 

3. Extraction of Amplitude Information A (k, t) =∣X (k, t)∣: 
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 This computes the absolute value of the complex number X (k, t), providing 

information about the amplitude of the frequency component corresponding 

to index k at time frame t [162]. 

4. Selection of 12 Specific Features: From this amplitude representation, 12 

specific features are selected. These features may correspond to frequency 

bands or statistical representations of the amplitude data, capturing essential 

patterns and variations. 

This approach provides a robust and effective representation of accented speech, 

enabling the model to discern subtle differences between accents in Malayalam. 

Müller [243] and McFee et al., [244] in their studies describe that these 12 features 

include the magnitude spectrum, phase spectrum, spectral energy, spectral centroid, 

spectral bandwidth, spectral contrast, spectral flatness, Mel-Frequency Cepstral 

Coefficients (MFCCs), chroma features, tonnetz features, rhythm features, and zero 

crossing rate (ZCR). The computation of these features from the STFT matrix enables 

the extraction of valuable information related to the frequency content, timbral 

texture, spectral envelope, pitch content, harmonic content, and rhythmic 

characteristics of the audio signal. This comprehensive set of features facilitates a 

diverse range of audio analysis tasks, including speech recognition, music genre 

classification, and sound event detection.  

This utilization of the STFT aligns with the goal of capturing essential characteristics 

of the speech signal, such as tonal variations and emphasis, that are particularly 

relevant to recognizing different accents within the Malayalam language. The 

detailed analysis afforded by this method adds a crucial layer of complexity to the 

model, allowing for more accurate modeling of accented speech across various 

regions of Kerala. It represents a significant step in the methodology employed in 

this research, contributing to the overall accuracy and effectiveness of the proposed 

ASR system. 
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6.2.2.3 Mel Spectrogram  

Mel Spectrograms are a powerful tool for audio analysis, offering a visual 

representation of the speech signal and focusing on low-frequency features that align 

with human auditory sensitivity. The use of 128 Mel filter banks in the extraction of 

Mel Spectrogram features can be highly beneficial for understanding speech in the 

context of the Malayalam language with its diverse accents. 

By employing 128 Mel filter banks, the system can achieve more detailed resolution 

in the frequency domain. This facilitates capturing subtle variations in frequency, 

which is particularly vital for understanding aspects like tonal variations and 

emphasis within accented speech. The Mel scale is designed to emphasize the 

frequencies to which human hearing is most sensitive. Using 128 filter banks allows 

for capturing these relevant frequencies with good granularity, enabling a 

comprehensive analysis of the frequency distribution within speech, particularly in 

the range where the human ear is most sensitive. 

The choice of 128 filter banks reflects a balance between capturing sufficient 

information for the task and not overly draining computational resources. More filter 

banks mean more features, offering more information for machine learning models 

to learn from. Yet, it also maintains a balance, not becoming so complex that it's 

computationally inefficient. It's possible that 128 filter banks have been found to 

perform well in this language and the accents being studied. 

The number 128 may align well with certain pre-processing techniques or neural 

network architectures, meeting the input size requirements, and harmonizing with 

other features like MFCCs and STFT components. The choice of 128 Mel filter banks 

might also represent standard practices in a community, be driven by specific 

mathematical relationships with other features, or be suitable for certain algorithmic 

or hardware constraints. 
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In the context of building an AASR for the Malayalam language that performs 

effectively across different dialects, these considerations make the choice of 128 Mel 

filter banks an effective strategy. It enables accurate modeling of aspects like tonal 

variations and emphasis within accented speech, which are crucial for the success of 

the speech recognition system in this specific task.  

Mel Spectrograms are computed through the following steps: 

1. Fourier Transform: STFT can be computed by: 

 �� = ∑���
��� �n ⋅ ���

����

�                                         ( 23 ) 

Here, xn represents the signal in time, and Xk represents the corresponding 

frequency component [85]. 

 

2. Mel Filter Banks: Apply 128 Mel filter banks to emphasize the frequencies most 

relevant to human hearing. 

�(�) = 2595 ⋅ log�� �1 +
�

���
�                                                  ( 24 ) 

This equation translates the frequency f into the Mel scale, focusing on 

frequencies that are significant to human hearing. The constant 2595 and the 

fraction 700 are standard in the conversion to the Mel scale [85]. 

 

3. Energy in Each Filter: Compute the energy in each filter bank, resulting in 128 

values representing the speech characteristics. 

�� = ∑���
��� |�(�)|� ⋅ ��(�)               ( 25 ) 

where Hm(f) is the mth Mel filter bank. This computes the energy within the mth 

Mel filter bank. Here, ∣X(f)∣2 represents the power spectrum of the signal, and Hm

(f) is the response of the mth Mel filter [85]. 

Mel Spectrograms play a pivotal role in speech signal processing, particularly in the 

frequency range where the human ear is most sensitive. By means of equation (10), 

the signal is transformed into the frequency domain, enabling an analysis of 

individual frequency components. Using equation (11), the frequencies are then 
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mapped onto the Mel scale, a perceptual scale that mimics human hearing's 

sensitivity to different frequency levels. The energy within each of the 128 Mel filter 

banks is computed using equation (12). This calculation represents the essential 

speech characteristics, focusing on those most perceivable to the human ear. 

These techniques capture essential phonetic information, representing the sound's 

overall shape. This is vital in recognizing different accents, where slight changes in 

phonetics can denote different dialects. They are less susceptible to noise and provide 

a robust feature set, making the speech recognition system more resilient to 

variations in recording quality. By focusing on the first 40 coefficients, MFCCs 

provide a compact representation of the sound, balancing complexity and capturing 

essential information. STFT is a mathematical transformation technique used for 

processing acoustic signals.  

Accents often manifest in unique intonations and timing. Capturing the temporal 

dynamics through STFT helps in accent identification, as accents can change the way 

phonemes are pronounced over time. By analyzing the amplitude data of each 

speech frame, STFT helps in capturing harmonics and other frequency-related 

features crucial for distinguishing accents.  

Mel Spectrograms emphasize low-frequency features, crucial for capturing tonal 

variations and stress patterns typical in accented speech. With 128 features, the Mel 

Spectrogram offers a detailed frequency analysis, aiding in the distinction of subtle 

differences between various accents. 

 The combination of these features offers a comprehensive and complex analysis of 

the speech signal, each contributing unique insights into different aspects of sound. 

In essence MFCCs retrieve phonetic characteristics and noise robustness, STFT 

retrieves time-frequency representation and harmonics analysis, and Mel 

Spectrograms are used for human-like perception modeling and low-frequency 

emphasis. Figure 23 illustrates the phases in speech feature extraction that has been 

carried out in this study. 
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Together, they provide a robust and effective feature set for accented speech 

processing in Malayalam, helping create accurate and sensitive models that can 

recognize and differentiate the diverse accents within the language. The multi-

layered approach helps in capturing the complexity and richness of accented speech, 

which is essential for effective speech recognition.  

 

Figure 23 The Speech Feature Extraction 

The total number of features F is represented by the equation:  

F=MFCC+ STFT + Mel Spectrogram  

F=40+12+128=180 

The feature vector F for accent classification is constructed by combining three 

distinct feature extraction techniques: Mel-Frequency Cepstral Coefficients (MFCC), 

Short-Time Fourier Transform (STFT), and Mel Spectrogram. This comprehensive 

approach encompasses a total of 180 features, comprising 40 MFCC coefficients, 12 

features extracted from the STFT, and 128 features from the Mel Spectrogram. MFCC 

captures the spectral characteristics of the audio signal by representing the short-

term power spectrum of sound, while STFT decomposes the signal into its frequency 

components over small, overlapping time intervals, providing insights into the 

signal's time-frequency representation. The Mel Spectrogram further refines the 

analysis by applying a Mel-scale filterbank to the STFT magnitude spectrum, 

emphasizing perceptually relevant frequency bands. By combining these three 

feature extraction techniques, the resulting feature vector F encapsulates a 

comprehensive representation of the accent characteristics present in the input audio 

signals, facilitating effective classification and analysis tasks. 
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6.3  AASR Model Construction 

6.3.1  Modeling AASR System 

The research adopted three approaches and conducted this study by investigating in 

detail to obtain better modeling techniques for Malayalam. The subtasks of this study 

can be categorized as follows: 

1. Machine learning based AASR modeling, 

2. Deep Learning based AASR modeling and 

3. Ensembled Learning based AASR modeling. 

6.3.1.1 The Machine Learning Approach 

The Multi-layer Perceptron (MLP) model the feature set F as input and these features 

are processed through a neural network with 3000 hidden layers, where each layer 

learns various complexities of accented speech. As a result, the MLP produces a 

multi-dimensional classification of the speech, reaching an accuracy of 94.82%, 

effectively capturing variations in Malayalam accents. The Decision Tree Classifier 

used the same set of features to guide its branching logic. At each internal node, the 

algorithm evaluates a feature to determine the optimal split, thereby representing the 

rules of accented speech classification. The Decision Tree model produces a relatively 

lower accuracy of 55.67%, reflecting the complexities of capturing accented speech's 

complexities with this approach. With Support Vector Machines, the features are 

used to separate classes using hyperplanes.  

The combination of MFCC, STFT, and Mel Spectrogram features aids in finding the 

best hyperplane that distinguishes the various accents. The outcome of SVM model's 

ability to generalize accented speech characteristics 66.15% in terms of accuracy 

metric.  By averaging or taking a majority vote from individual trees, it uses the 

complementary strengths of the features to make the final decision. The model 

achieves an accuracy of 78.76% after hyperparameter tuning, demonstrating the 

robustness of ensemble learning.  
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The KNN model uses the features to calculate distances between speech samples and 

classifies new samples based on the prominent class of its 10 nearest neighbors. The 

importance of hyperparameter tuning in KNN is reflected in the optimized accuracy 

of 81.69%. Stochastic Gradient Descent uses the feature set to find optimal 

parameters through iterative updates. Although a powerful method, SGD can be 

sensitive to feature selection and hyperparameter tuning for accented speech 

recognition, yielding a 33.16% accuracy after tuning. Performance evaluation of the 

various machine learning classifiers is represented in Figure 24.  

 

Figure 24 Performance Evaluation of Various ML Classifiers 

These machine learning approaches, coupled with the extracted features of MFCC, 

STFT, and Mel Spectrogram, provided a comprehensive analysis of Malayalam 

accented speech recognition. The varied performance among different models 

stresses the complexity of accented speech recognition and the necessity of carefully 

choosing and tuning models for specific tasks. 

The observed differences in performance among the various machine learning 

models can be attributed to several factors. Firstly, the inherent complexity and non-

linearity of the accent classification task may favor certain algorithms over others. 
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Models like the MLP and KNN, which are more flexible and capable of capturing 

intricate relationships within the data, tend to perform better when dealing with 

complex classification tasks. On the other hand, simpler models like Decision Trees 

and Stochastic Gradient Descent (SGD) may struggle to effectively capture the 

underlying patterns in the data, leading to lower accuracy rates. 

 The success of hyperparameter tuning technique, GridSearchCV, also plays a crucial 

role in enhancing model performance. Models like Random Forest and KNN 

demonstrated notable improvements in accuracy after hyperparameter 

optimization, highlighting the importance of fine-tuning model parameters to 

achieve optimal performance. The varying performance levels observed among the 

different machine learning models underline the importance of selecting appropriate 

algorithms, optimizing hyperparameters, and ensuring the quality of the training 

data to achieve optimal results in accent classification tasks. 

These results, summarized in Figure 25, emphasize the varying performance levels 

of each algorithm in accent classification, with substantial enhancements observed 

through hyperparameter optimization technique. 

6.3.2 Deep Learning Approach 

The deep learning approach involves two phases of operations-LSTM-RNN and 

DCNN. 

6.3.2.1 Phase I: ASR with LSTM-RNN 

LSTM-RNN architectures are employed to build the accented ASR model, 

significantly recognizing their capabilities in sequential data processing. Since 

speech embodies sequential information, the LSTM structure is particularly practiced 

at retaining relevant aspects and discarding irrelevant parts, an essential attribute in 

speech signal processing. 
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Algorithm for Model Building 

1. AMSC-2 was constructed. 

2. Each audio signal is preprocessed by applying sampling of 16 kHz to each signal. 

3. The feature set F from the audio signals is then computed using the techniques 

discussed above. These features encapsulate the distinctive attributes of accented 

speech. 

4. Construct the LSTM-RNN Model: The extracted features are fed into an LSTM-

RNN architecture. The LSTM layers are designed to understand the sequential 

pattern within the features, while the RNN structure allows the model to learn 

from the temporal dynamics inherent in the speech signals. 

5. Make Predictions and Evaluate Performance: The model predicts accented 

speech and evaluates its performance accordingly. 

 

Figure 25 Phases of LSTM-RNN - AASR model 

The LSTM-RNN approach's utilization showcases the power of deep learning in 

accented speech recognition, especially in Malayalam language. By harnessing the 

strengths of LSTM, such as memory gates and recurrent connections, the model 

accurately models the time dependencies in speech, making it suitable for this 

specific domain. The careful selection of features and the robustness of LSTM-RNN 

offer a promising direction for advanced accented ASR systems. Figure 25 provides 

an overview of the phases of LSTM-RNN - AASR model that has been constructed. 
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Model Construction 

The LSTM-RNN model was designed, and construction involved utilizing 180 

prominent features of speech data, extracted using various methods. 

Training 

The training of the LSTM-RNN model was a rigorous process involving 98000 steps. 

The initial training loss was relatively high at 2.5 but demonstrated significant 

improvement as the model was fine-tuned. The final training loss reduced to 0.24, 

showcasing the effectiveness of the chosen architecture. The training produced a 

remarkable accuracy of 95 percent. The visualization of the model's accuracy across 

training steps illustrates a stable and consistent improvement, reflecting the strength 

of the model's learning capacity. 

Validation 

A critical step in evaluating the model's performance was the validation phase, 

where unseen data was used to test the model's predictions. The LSTM-RNN model 

achieved a validation accuracy of 82 percent over 98000 steps, reinforcing its 

effectiveness in handling multi-accent speech classification. 

The experiment with LSTM-RNN demonstrated its capacity to classify and recognize 

various accents within the Malayalam language with high accuracy. By harnessing 

the temporal dependencies in speech and translating them into a format that the 

machine can understand, the LSTM-RNN model has set a benchmark for accented 

speech recognition. The results, visualized across training steps, reflect the 

robustness and potential of LSTM-RNN in this domain. 

6.3.2.2 Phase II: Model Building using Deep CNN  

Deep CNNs are recognized for their efficiency in image classification problems. In 

this experiment, CNNs are employed to process spectrograms of accented speech, 

treating them as images and using image classification techniques to recognize 
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different accents. In the construction of the DCNN models, spectrograms served as 

the fundamental data representation.  

These models were crafted to process and analyze the intricate spectrographic details 

embedded in audio signals. Spectrograms are plotted to represent the frequency 

distribution of audio signals over time as images and were used as the principal input 

for these DCNN models. The development of these models was intentionally 

undertaken to take advantage of the distinctive features encapsulated in 

spectrograms, aiming to enhance the efficacy of pattern recognition, and learning 

within the scope of the research. A sample spectrogram used in the study is 

illustrated in Figure 26. 

 

Figure 26 Sample Spectrogram used in the Experiment 

Algorithm for Model Construction 

1. Construct the Speech Dataset: Gather a collection of accented speech recordings 

suitable for the study. The dataset should be diverse, encompassing various 

accents to ensure the model's robustness. 

2. Construct the Spectrogram Dataset: Convert the speech signals into 

spectrograms. These are visual representations of the frequency content in the 

speech signals and will serve as the input for the DCNN. 
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3. Initialize the Model: Set up the initial structure of the DCNN. This includes 

defining the type of architecture to be used, such as a standard feed-forward 

network with convolutional layers. 

4. Add the CNN Layers: Insert the convolutional layers into the model. These are 

responsible for detecting patterns and features within the spectrograms, such as 

specific phonetic characteristics that may be associated with different accents. 

5. Add the Dense Layers: Include fully connected dense layers that will process the 

high-level features extracted by the convolutional layers. These layers are critical 

for making final accent classification decisions. 

6. Configure the Learning Process: Set up the optimization algorithm, loss function, 

and other hyperparameters that govern how the model will learn from the 

training data. 

7. Train the Model: With everything set up, proceed to train the model using the 

spectrogram dataset. 

8. Evaluation and analysis: After training and constructing the model it should be 

tested and evaluated to check the efficiency of the methodology with which it 

was constructed.   

By using CNNs and treating spectrograms of speech signals as images, this approach 

offers a novel and potentially effective way to recognize different accents. 

Model Architecture 

The initial step involves resizing the spectrogram input to (224,224,3) to establish a 

standardized input size. This resized input is then processed through a convolutional 

layer, resulting in an activation size of (222,222,32). Subsequently, a max-pooling 

layer is applied to downsample the feature maps, producing dimensions of 

(111,111,32) and focusing on the most important features.  
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Another convolutional layer follows, leading to an activation size of (109,109,64). 

This is succeeded by a max-pooling layer of (54,54,64), and a dropout layer is 

introduced to prevent overfitting. Further, another convolutional layer of (52,52,64) 

is applied, succeeded by a max-pooling layer of (26,26,64) and a second dropout 

layer. 

Table 7 The Layered Architecture 

Layer Operation/Description Input Size Output Size 

1 Input Size (224,224,3) (224,224,3) 

2 Convolutional (224,224,3) (222,222,32) 

3 Max Pooling (222,222,32) (111,111,32) 

4 Convolutional (111,111,32) (109,109,64) 

5 Max Pooling + Dropout (109,109,64) (54,54,64) 

6 Convolutional (54,54,64) (52,52,64) 

7 Max Pooling + Dropout (52,52,64) (26,26,64) 

8 Convolutional (26,26,64) (24,24,128) 

9 Max Pooling (24,24,128) (12,12,128) 

10 Flattening (12,12,128) 18432 

11 Dense + Dropout 18432 64 

12 Output (Dense) 64 20 Classes 

 

Continuing the sequence, the output undergoes the subsequent convolutional layer, 

resulting in an activation size of (24,24,128). This is succeeded by a final max-pooling 

operation, reducing the dimensions to (12,12,128), and the result is flattened into a 

one-dimensional array with a size of 18432. Subsequently, this flattened array is 

processed through a dense layer containing 64 neurons, followed by another dropout 

layer. The concluding dense layer comprises 20 neurons, representing the 20 distinct 

classes in the experiment, each corresponding to different accents and speech 

characteristics. Table 7 represents the layers of the CNN architecture in each row. 
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The Training Process 

The model is trained over 4000 epochs, involving a total of 53,000 training steps. 

Employing a dataset comprising 4000 spectrograms, 80% of the data is dedicated to 

training, with the remaining 20% set aside for testing. The deep CNN model 

developed in this study exhibits a sophisticated and resilient architecture designed 

for accent recognition. By converting speech into spectrogram representations and 

utilizing a sequence of convolutional, pooling, and dense layers, the model 

demonstrates an ability to discern complex features that characterize different 

accents. 

Visualization of the CNN Model  

Figure 27 provides a comprehensive visualization of the Convolutional Neural 

Network (CNN) architecture used for recognizing accented speech in the given 

experiment. The architecture is depicted through various colors, each representing a 

different layer or aspect of the model.  

 

Figure 27 Layered Architecture of the DCNN Model 

1. Yellow Layers (Convolutional Layers): These layers represent the convolutional 

process where spatial relationships in the spectrogram data are identified. Each 
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yellow block corresponds to a layer that extracts features by applying a 

convolution operation. 

2. Red Layers (Max-Pooling Layers): These layers reduce the dimensionality of the 

feature maps by selecting the maximum value from a set of values within the 

feature map. This operation helps preserve the most crucial features while 

eliminating redundant information. 

4. Green Layers (Drop-out Layers): These layers help in reducing overfitting by 

randomly ignoring a subset of features during training. This prevents the model 

from relying too much on any specific feature, promoting generalization. 

5. Long Blue Layer (Flattening Layer): The distinct blue layer symbolizes the 

flattening process where the 2D matrix of features from the previous layers is 

transformed into a 1D vector. This transformation prepares the data for input into 

the fully connected dense layers. 

6. Darker Layers (Dense Layers): The darker colored layers toward the output end 

represent the dense layers of neurons. These are the final stages of the network 

where the extracted features are combined to form a final prediction, 

corresponding to the different classes of accented speech in the study. 

6.3.3 The Ensembled Approach 

Computational complexity was considered, as training and aggregating predictions 

from multiple models demand significant resources. However, the advantages 

reported for ensemble methods, such as improved accuracy and generalization, 

outweigh the computational costs, justifying their inclusion in the model. The 

ensembled approach stands as an innovative and strategic methodology in the 

construction of the AASR system. In contrast to individual machine learning and 

deep learning models, this methodology establishes a foundation for employing the 

collective intelligence of diverse models, enhancing the precision and resilience of 

predictions. In the Ensembled approach, all the previously constructed models that 
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include MLP, Decision Tree, SVM, Random Forest, KNN, and SGD are integrated 

into a composite system. Each algorithm was carefully considered for its ability to 

capture different aspects of the data and complement the strengths of others in the 

ensemble. MLPs excel at learning complex patterns, Decision Trees provide 

interpretability, SVMs handle high-dimensional data, KNNs offer simple nearest-

neighbor classification, Random Forests enhance generalization, and SGD efficiently 

handles large-scale learning. The ensemble approach utilizes the diverse predictions 

of these algorithms to improve overall accuracy and robustness [246]. Majority 

voting technique is employed for constructing the ensembled model. This integration 

is aimed at capturing the unique strengths of each individual model, thereby 

enhancing the overall performance. The voting method employed for constructing 

the ensembled model typically performs better than individual models by 

aggregating their strengths.  

Given the accuracies of the high-performing models: 

1. MLP: 94.82% (0.9482) 

2. SVM: 66.15% (0.6615) 

3. Random Forest: 78.76% (0.7876) 

4. KNN: 81.69% (0.8169) 

The accuracy metric of the ensemble model is 71.55. In majority voting, at least 4 out 

of 6 classifiers need to predict correctly for the ensemble to be correct. Binomial 

distribution can be used to compute this. Let �i be the probability that the �th classifier 

is correct. Then, the ensemble accuracy ��������� is given by the sum of probabilities 

of getting at least 4 correct predictions out of 6: 

��������� = ∑ �
6
�

� . (����)
��

��� . (1 − ����)���                                                                       ( 26 ) 

where �
�
�

� is the binomial coefficient, ���� is the average accuracy of the individual 

classifiers, and (1 − ����) is the probability of a classifier being incorrect [245].  It 

calculates the probability of getting at least k correct predictions out of n classifiers, 
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where each classifier has an independent probability p of being correct. Calculate the 

average accuracy of the individual classifiers: 

���� =
1

6
(0.9482 + 0.5567 + 0.6615 + 0.7876 + 0.8169 + 0.3316) 

���� = 0.68375 

��������� = � �
6
�

� . (0.68375)�

�

���

. (1 − 0.68375)��� 

For k=4: 

 �
6
4

� . (0.68375)�. (0.31625)� ≈ 15 ⋅ 0.219 ⋅ 0.1 = 0.3285 

For k=5: 

 �
6
4

� . (0.68375)�. (0.31625)� ≈ 6 ⋅ 0.150 ⋅ 0.31625 = 0.285 

For k=6: 

 �
6
4

� . (0.68375)�. (0.31625)� ≈ 1 ⋅ 0.102 = 0.102 

��������� = 0.3285 + 0.285 + 0.102 = 0.7155 

The ensemble method for accented speech recognition, using majority voting among 

six different machine learning classifiers, results in an approximate accuracy of 

71.55%. This calculation demonstrates that combining individual classifiers-each 

with varying degrees of accuracy-can yield a robust ensemble model. The 

improvement in overall accuracy highlights the effectiveness of ensemble techniques 

in employing the strengths of multiple models to achieve better performance than 

any single classifier alone.  
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6.4  Performance Evaluation 

This research has constructed eight different AASR models with different unique 

approaches. The experiment encompassed a wide range of techniques, employing 

both machine learning and deep learning approaches.  

 

Figure 28 Learning Curves of AASR Constructed with LSTM-RNN 

The construction of the DCNN model is based on a dataset containing 4000 

spectrograms, where 3020 samples are designated for training, and the remaining 

800 samples are utilized for testing. The model demonstrates a train accuracy of 98 

percent and a test accuracy of 71 percent. Figure 28 represents the learning curves of 

the accented model constructed using LSTM-RNN. Figure 29 visually represents the 

model's accuracy and loss during both training and testing phases, derived from the 

CNN architecture. 

 

Figure 29 Learning Curves of AASR Constructed with CNN  
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6.5  Conclusion 

The study thoroughly investigated accented speech recognition for the Malayalam 

language, experimenting with influential and spectral features, including frequency, 

amplitude, pitch, and aspects like the speaker's age and gender. A high-performance 

Accented Automatic Speech Recognition (AASR) system was developed through 

three distinct methods: Machine Learning, Deep Learning (including both LSTM-

RNN and CNN models), and a Hybrid Approach.   
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7. End-to-End Unified AASR -A Low 

Resourced Context 

7.1  Introduction 

Accented speech inherently carries significant information that can complicate the 

construction of robust ASR models. In many cases, existing ASR models show 

satisfactory performance with known accents but fall short with unknown ones. This 

highlights the necessity for a novel approach that can adapt and provide accurate 

recognition regardless of the accent's familiarity. 

The subsequent sections of this chapter detail the systematic experiments carried out 

in feature engineering, including the extraction of accented features and the 

construction of different unified models. Results are presented and analyzed, 

underscoring the success of the approach not only with known and unknown accents 

but also with accent-agnostic standard Malayalam. This chapter discusses the 

experiments conducted with two distinct datasets AMSC-1 and AMSC-2. The same 

methodology is applied to these datasets to construct the AASR model. 

7.2  Methodology  

The initial phase of the methodology involved cleaning the collected data to remove 

any noise or interference within the signals, laying a clean foundation for subsequent 

phases. This was followed by a preprocessing stage, preparing the data for a series 

of intricate feature engineering experiments. The extraction of features was 

systematically carried out in eight separate phases, terminating in eight different 

feature sets.  

Figure 30 illustrates the comprehensive workflow of the study, detailing the 

processes from dataset construction through feature engineering to prediction and 

evaluation. Various feature sets, including MFCC, STFT, Mel Spectrogram, 

Tempogram, and combinations thereof, are employed. Multiple machine learning 

algorithms (MLP, Decision Tree, SVM, SGD, KNN, RFC) and ensemble methods are 
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applied to each feature set, with the aim of identifying the most effective models for 

accented speech recognition. The final ensemble approach integrates the strengths of 

these models, leading to a robust and accurate speech recognition system. 

 

Figure 30 Workflow of the Study 

These feature sets were constructed to capture various unique characteristics of 

accented speech, ranging from simple to complex details. These eight sets served as 

the basis for the next stage of the methodology, where different accented acoustic 

models were developed and tested. By employing state-of-the-art techniques in 

machine learning, deep learning, and LSTM-RNN, the study conducted a series of 

in-depth experiments with these models on all eight feature sets. 

 The goal of these experiments was to evaluate and identify the most effective 

combinations of features for accented speech recognition, contributing to the broader 

understanding of accented Malayalam speech. The methodology and design 

proposed in this study represent a systematic and comprehensive approach to the 

complex task of recognizing and modeling accented Malayalam speech.  
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Through the incorporation of a diverse dataset, feature engineering, and innovative 

modeling techniques, this research explores new frontiers in accented speech 

recognition. It takes into consideration the nature of accents and utilizes a novel 

blend of methods to tackle the inherent challenges, thus contributing significantly to 

the field of speech recognition for the Malayalam language. 

7.3  Dataset Construction 

The construction of the dataset is a critical phase in this research on accented 

Malayalam speech recognition. Two speech corpuses namely AMSC-3 and AMSC-4 

each comprising of 7070 samples has been assembled for this research, captured in a 

natural environment. These recordings consist of individual utterances of 

multisyllabic words, each lasting between two to five seconds, forming the basis of 

the corpora. 

To facilitate compatibility with various tools and methodologies, all the data was 

sampled to 16KHz and converted into the .wav format. The standardization of 

format ensured seamless further processing and maintained the quality of the 

original recordings. The resulting corpus stands as a significant achievement, paving 

the way for an in-depth exploration of accented Malayalam speech recognition.  

7.4  Feature Engineering 

Feature engineering is a critical process in speech recognition, focusing on the 

extraction of prominent characteristics from the speech signal that encapsulate 

essential information. In this study on accented Malayalam speech, feature 

engineering has been executed in eight distinct phases, each designed to capture 

different aspects of the speech data. 

The utilization of these multiple phases ensures a thorough and multidimensional 

analysis of the accented speech data. The combined approach showcases the 

potential for innovative and integrated solutions in feature engineering. Each phase 

contributes unique insights and perspectives, laying the groundwork for the 
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construction of various accented acoustic models using machine learning, and deep 

learning approaches. This methodical and exhaustive feature engineering process is 

central to the success of the study.  

By focusing on various aspects of the speech signal and employing a combined 

approach, it enables a more complex and intricate understanding of accented 

Malayalam speech. The insights drawn from these different phases form the 

foundations for further experiments, significantly contributing to the overall 

robustness and innovation of the research. In Figure 31 different approaches of 

speech signal processing that are carried out in eight distinct phases are represented. 

 

 

Figure 31 Speech Signal Processing Approaches 

The different phases in the feature engineering are discussed below: 

7.4.1 Phase I: MFCC (Mel Frequency Cepstral Coefficients)  

The extraction of 13 frequency coefficients from the speech signal is accomplished 

using MFCC, complemented by the inclusion of the second and third derivatives, 

thereby totaling 39 coefficients. The mean of these coefficients is computed to derive 

the 40th value, yielding 40 values that effectively represent the audio data and offer a 

comprehensive frequency illustration. 
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7.4.2 Phase II: STFT (Short Time Fourier Transform)  

STFT extracts 12 prominent amplitude values for time-frequency decomposition. 

This process provides a time-localized view of frequency variation, offering insight 

into how frequency components vary over time within the speech signal. Short-Time 

Fourier Transform (STFT) involves segmenting the audio signal into short frames, 

typically overlapping, to capture temporal variations [247]. Each segment is then 

windowed using a window function like Hamming or Hann to minimize spectral 

leakage [248]. The Fourier Transform is applied to each windowed segment to obtain 

its frequency-domain representation [191], and the magnitude of the Fourier 

Transform coefficients is computed to capture the spectral content. By concatenating 

these spectra over time, a time-frequency representation of the signal is obtained 

revealing how the spectral content evolves over time. 

7.4.3 Phase III: Tempogram Features  

Tempogram features are used by extracting 384 features that focus on the rhythmic 

aspects of speech. This phase analyzes the rhythmic features related to the accented 

characteristics of the speech signal, capturing its rhythmic components. Tempogram 

construction starts with computing the autocorrelation function of the audio signal 

to identify periodic patterns or tempo variations [249]. Peaks in the autocorrelation 

function correspond to potential tempo candidates, representing the periodicity or 

rhythmic structure of the signal. These tempo candidates are then used to construct 

the Tempogram, a two-dimensional representation that displays tempo variations 

over time. The Tempogram provides a visual depiction of tempo changes in the 

audio signal, with intensity indicating the strength of tempo variations at each point 

in time. 

7.4.4 Phase IV: Mel Spectrogram Features  

Phase IV involves the extraction of 128 features using Mel Spectrogram techniques. 

This phase unveils hidden characteristics of the speech data, providing deeper 

insights into underlying patterns. For the Mel Spectrogram, a set of triangular filters 
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is designed on the Mel scale, which better reflects human auditory perception [251]. 

The magnitude spectrum obtained from the STFT is multiplied with each Mel filter 

to obtain the spectral energy within each filterbank [252]. The energy within each 

filterbank is then summed to obtain the Mel spectrogram, a compressed 

representation of the spectral content. Logarithmic compression is applied to 

enhance the representation of lower energy spectral components and improve 

perceptual relevance. 

7.4.5 Phase V: Combination of MFCC and STFT  

Here both MFCC and STFT are integrated to form a comprehensive vector 

representation. By combining these methods, this phase yields a more detailed 

representation, making use of time and frequency aspects for a rich analysis of the 

speech data. 

7.4.6 Phase VI: Combination of MFCC and Tempogram  

The fusion of MFCC and Tempogram is used to capture frequency coefficients and 

rhythmical patterns. This combination enhances the understanding of frequency and 

rhythm in speech, providing a detailed analysis of these critical elements. 

7.4.7 Phase VII: Combination of MFCC and Mel Spectrogram  

Insights from MFCC is combined with Mel Spectrogram features, creating a balanced 

and informative representation of speech signals. This integration offers a well-

rounded analysis, capturing both frequency coefficients and hidden characteristics. 

7.4.8 Phase VIII: Combination of MFCC, STFT, Tempogram, 

and Mel Spectrogram 

Phase VIII unites all previous feature sets, including MFCC, STFT, Tempogram, and 

Mel Spectrogram, to create a comprehensive model of accented Malayalam speech 

data. By taking advantage of the strengths of each individual approach, this phase 

results in a unified and robust representation, encapsulating the complexity and 



152 

uniqueness of Malayalam accented speech. Together, these phases present a rigorous 

and well-structured methodology for analyzing Malayalam speech, focusing on 

various features essential for modeling accented speech. 

Practical challenges in feature extraction methods like Short-Time Fourier Transform 

(STFT), Tempogram, and Mel Spectrogram include selecting appropriate parameters 

such as window size and type for STFT, balancing time and frequency resolution, 

which can impact computational complexity [247]. Tempogram computation 

requires accurate segmentation and windowing for rhythmic pattern analysis, 

posing difficulties in handling varying tempo and rhythm. Mel Spectrogram 

computation aims to map the power spectrum onto the Mel scale but faces challenges 

with non-stationary signals and interpreting features amidst noise [251]. Robustness 

to noise and artifacts is a common challenge across all methods, demanding 

empirical experimentation and algorithmic optimization for reliable feature 

extraction. These challenges highlight the importance of domain expertise and 

careful parameter tuning to ensure accurate representation of audio signals for 

subsequent processing tasks. 

7.5  Building the Accented ASR System  

The development of the accented Automatic Speech Recognition (ASR) system in this 

study involved several phases of speech signal engineering. Unified accented models 

were created through eight distinct phases for AMSC-3 dataset and seven distinct 

phases for AMSC-4 dataset. 

 The approaches for AASR construction for both the datasets are: 

1. Machine Learning based AASR, 

2. AASR using LSTM-RNN 

7.5.1 AASR Model - Machine Learning Approach 

Utilizing Machine Learning techniques, including MLP, Decision Tree, SVM, SGD, 

KNN, RFC, and ensemble methods, multiple AASR models were developed. 
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Utilizing different approaches of acoustic signal engineering and feature 

vectorization, a total of eight models were created. 

7.5.2 AASR Model- LSTM-RNN Approach 

The construction of an accented model using the LSTM-RNN approach involved the 

utilization of a combined feature set, achieved through the application of techniques 

such as MFCC, STFT, Mel Spectrogram, Root Mean Square, and Tempogram. A 

single AASR model was established and underwent training for 2000 epochs in each 

experiment. The model exhibited notably high performance, as evidenced by both 

accuracy and match error rate. 

7.6  Performance Evaluation for AASR with AMSC-3 

The classifiers evaluated include MLP, DTC, SVM, RFC, KNN, SGD, and an 

Ensemble method. Different feature combinations to ascertain the impact of each on 

the performance of the classifiers are investigated in this study. WER is used as the 

primary metric to gauge the overall accuracy of word recognition, while MER 

specifically measures the system's effectiveness in handling mispronunciations 

caused by accents. The LSTM-RNN computes both accuracy and loss to evaluate the 

performance in recognizing accented speech. These metrics provide insights into the 

models' training efficiency and their ability to generalize to new data. 

7.6.1 Evaluation in Word Error Rate (WER) 

Figure 32 illustrates the Word Error Rate (WER) for different classifiers across eight 

phases of an experiment focused on Malayalam speech data. Figure 32 illustrates a 

comparative analysis of WER across various machine learning classifiers throughout 

different phases of feature engineering. The classifiers evaluated include MLP, DTC, 

SVM, RFC, KNN, SGD, and an Ensemble method. 
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Figure 32 The WER of Machine Learning Approaches 

The phases, labeled from I to VIII, represent distinct stages or iterations of the 

experiment, each corresponding to a specific feature engineering technique or 

combination of techniques used for analyzing Malayalam accented speech data. 

7.6.1.1 Phase I: MFCC (Mel Frequency Cepstral Coefficients) 

MFCC involves extracting 13 frequency coefficients from the speech signal, 

complemented by the second and third derivatives, totaling 39 coefficients. An 

additional mean value is computed, resulting in 40 values representing the audio 

data comprehensively. In this phase, the WER for the Ensemble method is lowest 

around 10%, while other classifiers like MLP, DTC, SVM, RFC, KNN, and SGD 

exhibit higher error rates, ranging from 20% to 60%. 

7.6.1.2 Phase II: STFT (Short Time Fourier Transform) 

STFT extracts 12 prominent amplitude values for time-frequency decomposition, 

offering insight into how frequency components vary over time within the speech 

signal. This phase shows a significant increase in WER for all classifiers, with DTC 
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and SGD reaching around 60% and 65% respectively. The Ensemble method 

maintains a lower error rate of around 10%. 

7.6.1.3 Phase III: Tempogram Features 

Tempogram features focus on the rhythmic aspects of speech by extracting 384 

features related to the accented characteristics of the speech signal. This phase 

indicates the highest WER for all classifiers, with DTC peaking at 80% and SGD at 

70%. However, the Ensemble method consistently outperforms others with a WER 

around 10%. 

7.6.1.4 Phase IV: Mel Spectrogram Features 

In Phase IV, 128 features are extracted using Mel Spectrogram techniques, revealing 

deeper insights into underlying patterns of the speech data. There is a noticeable 

improvement for most classifiers, except for SGD, which remains high at 45%. The 

Ensemble method continues to show the lowest error rate of around 10%. 

7.6.1.5 Phase V: Combination of MFCC and STFT 

This phase integrates both MFCC and STFT to form a comprehensive vector 

representation, resulting in a detailed representation of speech data. The Ensemble 

method remains robust with a WER around 10%. 

7.6.1.6 Phase VI: Combination of MFCC and Tempogram 

The fusion of MFCC and Tempogram enhances the understanding of frequency and 

rhythm in speech, providing a detailed analysis. Most classifiers show a decrease in 

WER, with MLP, RFC, and KNN showing values around 25%, while DTC and SGD 

remain higher at 40% and 45% respectively. The Ensemble method remains the most 

effective with a minimal WER around 10%. 

7.6.1.7 Phase VII: Combination of MFCC and Mel Spectrogram 

This phase combines insights from MFCC with Mel Spectrogram features, creating a 

balanced and informative representation of speech signals. Phase VII demonstrates 
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a peak in WER for most classifiers, particularly DTC and SGD, with values 

approaching 80%. The Ensemble method, however, continues to exhibit superior 

performance with a WER around 10%. 

7.6.1.8 Phase VIII: Combination of MFCC, STFT, Tempogram, 

and Mel Spectrogram 

Phase VIII unites all previous feature sets to create a comprehensive model of 

accented Malayalam speech data. By taking advantage of the strengths of each 

individual approach, this phase results in a unified and robust representation. 

Finally, Phase VIII shows an overall decrease in WER for all classifiers, with the 

Ensemble method still leading with the lowest WER around 10%. 

Across all phases, the Ensemble method consistently exhibits the lowest WER, 

around 10%, highlighting its effectiveness in minimizing errors compared to other 

classifiers. The graph clearly illustrates the variability in performance across different 

classifiers and phases, emphasizing the robustness of the Ensemble approach in 

achieving lower error rates. 

7.6.2 Evaluation in Match Error Rate (MER) 

Figure 33 illustrates the Match Error Rate (MER) obtained in different phases of an 

experiment focused on Malayalam speech data. Each phase corresponds to a 

different feature extraction technique, or a combination of techniques used to model 

the speech data, and the graph highlights how these different methods impact the 

MER. 

7.6.2.1 Phase I: MFCC 

In Phase I, where the Mel Frequency Cepstral Coefficients (MFCC) were utilized to 

extract features, the MER is 49%. This relatively high error rate suggests that while 

MFCCs capture essential frequency components of the speech signal, they might not 

be sufficient on their own to provide a robust representation of the speech data, 

especially for complex accented speech like Malayalam. 
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Figure 33 MER of Different Experiments 

7.6.2.2 Phase II: STFT 

Phase II shows a significant increase in MER to 80% when Short Time Fourier 

Transform (STFT) features are used. This steep rise indicates that STFT, which 

provides time-localized frequency information, may not be as effective in isolation. 

The high error rate suggests that STFT might not capture the necessary features 

adequately, likely due to the loss of temporal dynamics and finer nuances in speech. 

7.6.2.3 Phase III: Tempogram Features 

The MER decreases slightly to 71% in Phase III with the use of Tempogram features. 

These features focus on the rhythmic aspects of the speech signal. The reduction in 

error compared to Phase II indicates some improvement, suggesting that capturing 

rhythmic patterns helps in better understanding speech characteristics. However, the 

error rate remains high, implying that Tempogram features alone are still 

insufficient. 

7.6.2.4 Phase IV: Mel Spectrogram Features 

In Phase IV, the MER is 69% when Mel Spectrogram features are extracted. This 

phase shows a marginal improvement over Tempogram features, highlighting that 
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Mel Spectrogram, which captures spectral properties and emphasizes perceptually 

relevant aspects of the signal, provides slightly better feature representation. Despite 

this, the error rate is still high, indicating a need for more comprehensive feature 

extraction. 

7.6.2.5 Phase V: Combination of MFCC and STFT 

The MER decreases to 61% in Phase V, where MFCC and STFT features are 

combined. This reduction signifies that integrating time-frequency representations 

with frequency coefficients provides a more detailed and useful feature set for speech 

recognition. However, the error rate remains substantial, suggesting that additional 

features might be necessary to capture the full complexity of the speech data. 

7.6.2.6 Phase VI: Combination of MFCC and Tempogram 

Phase VI exhibits a significant drop in MER to 27% with the combination of MFCC 

and Tempogram features. This notable improvement indicates that combining 

frequency coefficients with rhythmic patterns results in a more robust representation 

of speech, significantly enhancing recognition accuracy. The substantial reduction in 

error rate emphasizes the importance of including temporal dynamics and rhythm 

in the feature set. 

7.6.2.7 Phase VII: Combination of MFCC and Mel Spectrogram 

In Phase VII, the MER is 39% when MFCC and Mel Spectrogram features are 

combined. This phase shows an improvement over individual features, but an 

increase compared to Phase VI. The combination of MFCC and Mel Spectrogram 

captures both frequency coefficients and spectral properties, offering a balanced 

feature set. However, the increase in MER compared to Phase VI suggests that 

rhythm-related features are critical for further reducing errors. 
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7.6.2.8 Phase VIII: Combination of MFCC, STFT, Tempogram, 

and Mel Spectrogram 

Phase VIII demonstrates the best performance with an MER of 18%, the lowest across 

all phases. This phase combines all previous features-MFCC, STFT, Tempogram, and 

Mel Spectrogram—resulting in a comprehensive and robust feature set. The 

substantial reduction in error rate highlights the effectiveness of integrating multiple 

feature extraction techniques, capturing a wide range of speech characteristics 

including frequency, time-frequency localization, rhythm, and perceptual relevance. 

This comprehensive approach significantly enhances the model’s ability to 

accurately recognize Malayalam accented speech. 

The analysis of MER across different phases reveals that combining diverse feature 

extraction techniques is crucial for improving speech recognition accuracy. While 

individual methods like MFCC, STFT, Tempogram, and Mel Spectrogram provide 

valuable insights, their combinations, especially the comprehensive integration in 

Phase VIII, significantly reduce the error rate. This highlights the importance of a 

multi-faceted approach in capturing the complex and detailed features of speech, 

particularly in challenging datasets such as Malayalam accented speech. 

7.6.3 Evaluation in Accuracy for LSTM-RNN in Phase-8 

Figure 34 presents three learning curves showing the accuracy of a Long Short-Term 

Memory Recurrent Neural Network (LSTM-RNN) approach for phase VIII of the 

experiment. This phase includes a comprehensive feature set combining MFCC, 

STFT, Tempogram, and Mel Spectrogram features, providing a robust representation 

of the Malayalam speech data. 
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Figure 34 Learning Curves LSTM-RNN Approach (Accuracy Metric) 

7.6.3.1 Training Accuracy 

The first graph illustrates the training accuracy over the epochs. The accuracy starts 

low, reflecting the initial stages of model training where the network is learning the 

basic patterns in the data. As training progresses, the accuracy steadily increases, 

indicating that the model is effectively learning from the rich feature set. The curve 

shows a smooth upward trend with minor fluctuations, common in training deep 

learning models. Around the 400k to 500k iterations mark, the accuracy approaches 

a plateau, suggesting that the model is nearing its peak performance on the training 

data. By the end of the training period, the accuracy stabilizes close to the maximum 

achievable value, indicating that the model has learned the underlying patterns in 

the training dataset effectively. The final training accuracy approaches 

approximately 88%. 

7.6.3.2 Raw Accuracy 

The second graph shows the raw accuracy during training. This curve also starts at 

a low point and demonstrates a sharp increase as the training proceeds. The raw 

accuracy represents the direct, unprocessed performance of the model before any 

post-processing or smoothing is applied. Like the training accuracy curve, the raw 

accuracy shows significant improvement initially, with the rate of increase slowing 

as the model learns more complex features. The raw accuracy fluctuates more than 

the smoothed training accuracy, which is typical due to the inherent noise in raw 

metrics. By the end of the training period, the raw accuracy stabilizes, indicating 

consistent performance of the model. The final raw accuracy is around 87%. 
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7.6.3.3 Validation Accuracy 

The third graph represents the validation accuracy, which measures the model's 

performance on a separate validation dataset not seen during training. The 

validation accuracy starts lower than the training accuracy, reflecting the model's 

initial generalization capability. As training progresses, the validation accuracy 

increases, showing that the model is learning features that generalize well to unseen 

data. The curve follows a similar upward trend to training accuracy but generally 

remains lower, as expected. This gap between training and validation accuracy can 

indicate the level of overfitting. However, in this case, the validation accuracy also 

plateaus and stabilizes around the same point where the training accuracy does, 

suggesting that the model generalizes well without significant overfitting. The final 

validation accuracy reaches approximately 65%. 

7.6.3.4 Observations and Inferences 

During the early stages, all curves show rapid improvement, reflecting the model's 

ability to learn basic patterns quickly from the extensive feature set provided in phase 

VIII.  Between 200k to 400k iterations, the learning rate slows, but the accuracy 

continues to improve steadily. This phase involves the model learning more intricate 

patterns and nuances in the speech data. Around the 400k to 500k iterations mark, 

all curves start to plateau, indicating that the model is reaching its optimal 

performance level. The final accuracy values suggest that the model has effectively 

learned to recognize Malayalam accented speech with high accuracy. The close 

alignment of the validation accuracy with the training accuracy towards the end of 

the training period indicates that the model is not overfitting and has good 

generalization capabilities. This is crucial for real-world applications where the 

model will encounter new, unseen data. 

The LSTM-RNN model, trained with the comprehensive feature set from phase VIII, 

demonstrates robust learning and generalization capabilities. The gradual increase 

and eventual stabilization of both training and validation accuracies highlight the 
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effectiveness of the combined features in capturing the essential characteristics of 

Malayalam speech. The consistency between training and validation accuracies 

towards the end of the training period features the model's potential for practical 

deployment in speech recognition tasks. 

7.6.4 Evaluation in Loss for LSTM-RNN in Phase-8 

Figure 35 illustrates the training and validation loss of an LSTM model over a series 

of iterations. The graph features two main curves: the red curve represents the 

training loss, and the blue curve represents the validation loss.  

 

Figure 35 Learning Curves LSTM-RNN Approach (Loss Metric) 

Initially, at the start of training, both the training and validation losses are high, 

around 2.2, indicating that the model starts with poor performance and significant 

error. As training progresses, there is a notable decrease in both curves, suggesting 

that the model is learning and improving its performance. 

Between 0 and 200,000 iterations, there is a steep decline in both training and 

validation loss. The training loss steadily decreases, indicating that the model is 

effectively learning from the training data. By around 200,000 iterations, the training 

loss has dropped to approximately 0.6. The validation loss follows a similar 

downward trend, but with more fluctuations, dropping to around 0.8 by the 200,000 

iterations mark. This pattern suggests that while the model is improving on unseen 
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data, it exhibits variability due to the validation set's nature or inherent model 

performance differences. 

As the training continues past 200,000 iterations, the training loss continues its 

descent more gradually, reaching around 0.3 at 400,000 iterations. In the final stages 

of training, from 400,000 to 700,000 iterations, both the training and validation losses 

stabilize at lower values. The training loss plateaus at around 0.2, indicating that the 

model has nearly converged and learned the training data patterns well. The 

validation loss, though still fluctuating, also stabilizes around 0.2 to 0.3, 

demonstrating that the model has achieved a good level of generalization. The 

shaded regions around the curves, which represent the variance or uncertainty in the 

loss values, show that while there is some variability, particularly in the validation 

loss, the model's performance is consistent overall. 

The comprehensive analysis of the experiment phases reveals several key inferences 

about the speech recognition model's performance. The integration of diverse feature 

sets, particularly in Phase VIII, significantly enhances the model's accuracy and 

reduces error rates. This phase, which combines MFCC, STFT, Tempogram, and Mel 

Spectrogram features, results in the lowest Word Error Rate (WER) and Match Error 

Rate (MER), indicating superior performance compared to earlier phases. The LSTM-

RNN model achieves a high training accuracy of approximately 88% and a validation 

accuracy of 65%, reflecting its robust learning and generalization capabilities. The 

training and validation loss curves show a consistent decline, stabilizing around 0.2 

to 0.3, suggesting effective convergence. These findings emphasize that combining 

multiple feature extraction techniques provides a richer and more comprehensive 

representation of the speech data, leading to more accurate and reliable speech 

recognition. This highlights the critical role of feature diversity in developing 

effective models for complex tasks like accented speech recognition. 
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7.7  Performance Evaluation for AASR with AMSC-4 

Throughout the experiments, the Word Error Rate (WER) served as a critical metric, 

with its values varying across different experiments. This variance provided valuable 

insights into the efficiency and accuracy of the various vectorization procedures, 

guiding the search for the most effective approach for modeling and recognizing 

accented Malayalam speech. 

7.7.1 Evaluation in WER 

7.7.1.1 Phase I  

This phase shows that MLP and the ensemble method have the lowest WER, both 

around 0.52%, while SGD performs relatively better at 68.74%. Decision Tree and 

RFC models also show low initial performance. In the initial phase, the WERs 

indicate the baseline performance of each model. The MLP starts with an 

impressively low WER, suggesting it is well-suited to the initial dataset 

configuration. In contrast, Decision Tree and SGD models exhibit high WERs, 

indicating significant room for improvement. The ensemble method shows promise 

with a moderate WER, benefiting from the combined strengths of multiple models. 

 

Figure 36 WER of Different Phases 
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Figure 36 illustrates the performance of various machine learning models across 

different phases of the study, as indicated by the respective Word Error Rates (WER). 

The models evaluated include Multi-Layer Perceptron (MLP), Decision Tree, 

Support Vector Machine (SVM), Random Forest Classifier (RFC), K-Nearest 

Neighbors (KNN), Stochastic Gradient Descent (SGD), and an ensemble method.  

7.7.1.2 Phase II 

During this phase, the WERs increase notably for all models. This spike suggests that 

changes in the training process, data augmentation, or feature extraction techniques 

have initially disrupted model performance. The KNN model is particularly affected, 

with a dramatic increase to 99% WER, indicating that it is struggling to adapt to the 

new conditions. The ensemble method’s performance also deteriorates, reflecting the 

challenges of combining predictions from models that are not yet well-tuned. 

7.7.1.3 Phase III  

In this phase, the MLP model shows significant improvement, reducing its WER to 

28%, likely due to initial adjustments in hyperparameters or feature engineering. 

However, the Decision Tree and SVM see only slight improvements or stabilization, 

indicating that further tuning is needed. The ensemble method’s WER remains 

steady, suggesting that while individual models are still being optimized, the 

combined approach is holding its ground. 

7.7.1.4 Phase IV 

By Phase IV, the MLP model continues to show strong improvement, achieving a 

WER of 5.88%. This phase likely involves more refined hyperparameter tuning and 

possibly better feature extraction techniques. The Decision Tree and SVM models 

also show moderate reductions in WER, while the RFC and KNN models stabilize at 

lower error rates. The slight increase in the ensemble method’s WER could be due to 

the variability in individual model performances. 
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7.7.1.5 Phase V 

In Phase V, the MLP model achieves a perfect WER of 0%, showcasing its peak 

performance and the effectiveness of the training process. Other models like SVM 

and RFC also show significant improvements, reflecting the benefits of advanced 

tuning. The KNN model also recovers well, with a WER of 16.59%. The ensemble 

method improves, with a WER of 19.69%, indicating that the combined approach is 

starting to benefit from the optimized individual models. 

7.7.1.6 Phase VI 

In the final phase, the MLP model maintains a low WER of 0.50%, indicating 

consistent performance. The ensemble method achieves its best WER of 17.12%, 

underscoring the effectiveness of combining multiple models to utilize their 

strengths and mitigate individual weaknesses. The Decision Tree, SVM, and RFC 

models show stable and improved WERs, demonstrating the cumulative benefits of 

iterative tuning and optimization. This phase likely represents the final, optimized 

state of the models, ready for deployment or further evaluation. 

The cumulative insights from these experiments contribute significantly to the 

understanding and development of accented speech recognition within the 

Malayalam language, marking an important step forward in the field. The WER of 

different phases of the experiment is illustrated in Figure 36. Figure 37 represents the 

performance evaluation of the experiment in terms of accuracy. 

7.7.2 Evaluation in Accuracy 

Figure 37 presents a comprehensive evaluation of various audio feature extraction 

methods combined with different classifiers in terms of accuracy. The six subplots 

compare the performance of different feature sets: MFCC, Tempogram, 

MFCC+STFT, MFCC + Tempogram, Tempogram, and STFT across various 

classifiers- MLP, KNN, SVM, Decision Tree, Random Forest, SGD and Ensemble. 
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7.7.2.1 MFCC for Feature Extraction 

Using MFCC, which extracts comprehensive frequency features from the speech 

signal, the performance of various classifiers was evaluated. The MLP classifier 

achieved an impressive accuracy of 99.5%, indicating its effectiveness in recognizing 

patterns within MFCC features. Other classifiers showed the following accuracies: 

DT at 55%, SVM at 78%, RFC at 79%, KNN at 82%, SGD at 19%, and the ensemble 

method at 79%. These results demonstrate that MFCC features are highly informative 

for speech recognition tasks, particularly for MLP and KNN classifiers. 

7.7.2.2 STFT for Feature Extraction 

The STFT method, which provides a time-localized view of frequency variation, 

resulted in relatively lower accuracies across all classifiers compared to MFCC. The 

accuracy results were: MLP at 37%, DT at 32%, SVM at 29%, RFC at 45%, KNN at 

45%, SGD at 10%, and the ensemble method at 44%. These results suggest that while 

STFT captures important spectral content, it may not be as effective as MFCC for the 

classifiers used in this study, particularly for MLP and SVM. 

7.7.2.3 Tempogram for Feature Extraction 

Tempogram features, focusing on the rhythmic aspects of speech, achieved the 

following accuracies: MLP at 72%, DT at 34%, SVM at 31%, RFC at 41%, KNN at 43%, 

SGD at 21%, and the ensemble method at 42%. These results indicate that 

Tempogram features provide moderate accuracy improvements, particularly for 

MLP, but are less effective for other classifiers compared to MFCC features. 

7.7.2.4 Combination of MFCC and STFT for Feature Extraction 

Combining MFCC and STFT for a comprehensive vector representation yielded 

higher accuracies: MLP at 95%, DT at 54%, SVM at 60%, RF at 81%, KNN at 81%, 

SGD at 28%, and the ensemble method at 81%. This combination enhances the 

analysis by employing both time and frequency aspects, showing significant 

performance improvements, particularly for RFC and KNN classifiers. 
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7.7.2.5 Combination of MFCC and Tempogram for Feature 

Extraction 

The fusion of MFCC and Tempogram features resulted in accuracies of: MLP at 95%, 

DT at 54%, SVM at 60%, RF at 81%, KNN at 81%, SGD at 28%, and the ensemble 

method at 81%. This combination captures both frequency coefficients and rhythmic 

patterns, providing a detailed analysis that enhances the understanding of speech 

characteristics, especially for MLP and RFC classifiers. 

7.7.2.6 Combination of MFCC, STFT, and Tempogram for 

Feature Extraction 

Using MFCC, STFT, and Tempogram together for enhanced feature representation 

produced the following results: MLP at 99%, DT at 52%, SVM at 60%, RF at 80%, 

KNN at 82%, SGD at 32%, and the ensemble method at 81%. This phase 

demonstrated that integrating multiple feature extraction techniques can 

significantly improve classification accuracy, particularly for MLP, SVM, RF, and 

KNN classifiers. 

7.7.2.7 Classifier Performance Analysis 

Among the machine learning algorithms evaluated, the MLP consistently provided 

the best results across different feature extraction techniques. Specifically, MLP 

achieved the highest accuracy in most cases, such as 99.5% with MFCC, 95% with 

MFCC+STFT, 95% with MFCC + Tempogram, and 99% with the combination of 

MFCC, STFT, and Tempogram. These results indicate that MLP, a deep learning 

method, is particularly effective at capturing complex patterns in the speech data 

provided by various feature extraction methods. 

SVM and RFC also showed good performance but were generally outperformed by 

MLP. For instance, SVM achieved 78% accuracy with MFCC, and RF achieved 81% 

with the combination of MFCC and STFT. DT and SGD consistently performed 
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poorly compared to other classifiers, with DT achieving a maximum accuracy of 55% 

with MFCC and SGD achieving only 32% in the best case with the combined features. 

7.7.2.8 Optimal Feature Combinations 

The combination of features that provided the best results was the integration of 

MFCC, STFT, and Tempogram. This combination led to the highest accuracy of 99% 

with MLP, indicating that combining time-localized, frequency, and rhythmic 

features captures the most comprehensive information about the speech signals. The 

combination of MFCC with either STFT or Tempogram alone also yielded high 

accuracies, such as 95% for MLP with both MFCC+STFT and MFCC + Tempogram. 

Using MFCC alone also produced high accuracies, especially with MLP achieving 

99.5%. The addition of STFT and Tempogram features provided marginal 

improvements, highlighting the value of integrating multiple types of features to 

enhance performance. 

The superior performance of MLP can be attributed to its ability to learn hierarchical 

feature representations, which is crucial for capturing the intricate patterns in speech 

data. While other methods like SVM and RFC showed competitive performance, they 

were generally less effective than MLP, especially when dealing with complex 

feature combinations. Figure 37 visualizes the performance of the machine learning 

classifier in six different phases. 

The evaluation highlights that the MLP is the most effective algorithm for accented 

speech recognition when experimented with AMSC-4 dataset, particularly when 

used with a combination of MFCC, STFT, and Tempogram features. This 

combination provides a comprehensive representation of speech data, capturing 

frequency, time-localized, and rhythmic information. The superior performance of 

deep learning methods like MLP features their suitability for complex speech 

recognition tasks, offering significant improvements over traditional machine 

learning algorithms. 
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Figure 37  Performance Evaluation of Experiments in Terms of Accuracy 
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7.7.3 Integration of MFCC, STFT, Mel Spectrogram, Root Mean 

Square, and Tempogram Features 

This study marked a significant approach from previous methodologies by 

employing the maximum number of vectors from each utterance to construct the 

accented speech recognition model. This advanced approach employed the LSTM-

RNN method, and the model was trained using a combination of MFCC, STFT, Mel 

Spectrogram, Root Mean Square, and Tempogram features, which together provide 

a detailed representation of the speech signals. 

 

Figure 38 Performance Evaluation (Accuracy) of Phase VII using LSTM RNN 

Figure 38 illustrates the learning curves of the AASR model. The model achieved a 

training accuracy of 95%, indicating that the LSTM-RNN was able to learn the 

training data exceptionally well. However, the validation accuracy was 67%, which, 

while lower than the training accuracy, still demonstrates a substantial level of 

generalization to unseen data. 

 The use of LSTM-RNN, combined with comprehensive preprocessing and extensive 

training, demonstrates the potential of deep learning methods to handle the 

complexities of accented speech. The promising results suggest that with further 

refinement and optimization, such models can achieve even higher accuracies and 

lower error rates, making them highly valuable for practical applications in 

multilingual and accented speech environments. 
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7.8  Conclusion  

Various experiments were executed to develop unified accented models employing 

machine learning, deep learning, and LSTM-RNN. The assessment of each distinct 

feature set extraction aimed to build an advanced accented AASR system tailored for 

the Malayalam language. This innovative approach demonstrated superior 

performance compared to numerous existing baseline models, particularly in terms 

of WER, MER, accuracy and loss. 
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8. Spectral and Influential Features for 

Unified AASR in Malayalam 

 

8.1  Introduction 

This research investigates the extraction and utilization of spectral features, 

including Mel-Frequency Cepstral Coefficients (MFCC), Short-Time Fourier 

Transform (STFT), and Mel Spectrograms, which capture essential information about 

the frequency domain characteristics of Malayalam speech signals. By integrating 

these spectral features into a unified framework, which incorporates advanced 

techniques such as LSTM RNN and Deep Convolutional Neural Networks DCNN, 

this research aims to enhance the performance and adaptability of AASR systems, 

thereby addressing the challenges posed by accented speech variations in the 

Malayalam language. 

8.2  Methodology 

This study aims to enhance ASR for multi-accented Malayalam speech by employing 

deep learning techniques, specifically focusing on word-based ASR. Unlike 

conventional methods using studio-recorded data, this research gathers data 

through crowdsourcing from various locales to capture authentic, accented speech 

details.  

The research conducts a comparative analysis of two approaches for accent-based 

ASR in Malayalam. It acknowledges that ASR performance depends on dataset 

nature and tailored techniques, necessitating rigorous experimentation with 

Malayalam. The experiment employs AMSC-5 dataset that encompasses 20 distinct 

sound classes and a corpus of 4000 data points collected via crowdsourcing, 

emphasizing natural recording environments. 
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8.2.1 Data Collection and Preprocessing 

The methodology adopted in this study follows a similar framework to the previous 

chapter, with notable distinctions in the feature vectorization process, model 

architectures, and dataset utilization. Data collection involves crowdsourcing speech 

samples from diverse locales, emphasizing natural recording environments to 

capture authentic accents. Preprocessing begins with manual removal of all forms of 

noise, including background noise, ensuring high-quality speech signals. 

Subsequently, the speech data is appropriately segmented and sampled at a 

frequency of 16 kHz, maintaining consistency across the dataset. 

8.2.2 Feature Vectorization 

Unlike the previous chapter, where a specific feature extraction technique was 

employed, this study implements a novel approach for feature vectorization. Feature 

extraction is a crucial step in ASR systems, as it transforms raw speech signals into a 

format suitable for machine learning models. In this research, feature vectorization 

involves extracting discriminative features from preprocessed speech signals. 

MFCCs, which have shown efficacy in capturing speech characteristics, are 

computed from the preprocessed speech frames. Additionally, delta and delta-delta 

coefficients are calculated to capture temporal dynamics. These feature vectors, 

comprising MFCCs and their derivatives, serve as input to the deep learning models 

for accent-based ASR.  

The study also utilizes STFT and Mel spectrogram for feature vectorization. These 

techniques offer complementary insights into the frequency content and temporal 

dynamics of the speech signals. STFT is employed to analyze the spectral content of 

short segments of speech over time, providing a time-frequency representation of the 

signal. From the STFT representation, Mel spectrograms are computed, which 

emphasize perceptually relevant frequency bands using a non-linear Mel scale. This 

process yields spectrotemporal features that capture essential characteristics of the 

speech signals. 
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8.2.3 Model Training and Evaluation 

Following feature vectorization, the study employs deep learning architectures 

tailored for accent-based ASR. LSTM-RNN and DCNN are utilized to exploit 

temporal dependencies and spatial patterns in the speech data, respectively. The 

models are trained using stochastic gradient descent with backpropagation, 

optimizing performance metrics such as accuracy and loss. To evaluate model 

performance, the dataset is split into training, validation, and test sets. Performance 

metrics, including word error rate (WER) and accuracy, are computed on the test set 

to assess the effectiveness of the proposed approach. 

8.3 Dataset 

In this study, a dataset AMSC-5 has been constructed that comprises of utterances in 

the Malayalam language, capturing the rich dialectal variations that distinguish 

north Kerala. The spectrogram dataset of AMSC-5 has been constructed for 

experimenting with DCNN. 

Recognizing the importance of diverse representation, the dataset includes 

contributions from speech donors spanning various age ranges. A strategic emphasis 

was placed on the age group between 20 to 45, from which most of the data was 

collected. This decision was informed by a desire to represent clear and quality data, 

acknowledging that individuals within this age bracket often demonstrate stable and 

distinct pronunciation patterns. 

Table 8 Data Distribution Across Different Districts and Age Groups 

District 5 to 12 13 to 19 20 to 45 46 to 65 66 to 85 Total 

Kasaragod 150 120 270 150 70 760 

Kannur 120 150 270 150 70 760 

Kozhikode 200 180 400 200 110 1090 

Malappuram 150 130 270 150 60 760 

Wayanad 40 80 290 140 80 630 

Total 660 660 1500 690 490 4000 
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This age-focused approach aimed to capture the complexities of accented Malayalam 

speech while ensuring the consistency and reliability of the dataset. Table 8 provides 

a comprehensive view of the data distribution, reflecting the research's commitment 

to capturing the complex nature of the Malayalam language's dialectical variations. 

Table 9 presents a selection of 20 isolated words from the Malayalam language that 

have been chosen as sample classes for the construction of the dataset. Table 9 

illustrates the following details: 

1. Uttered Word (Malayalam script): This column provides the Malayalam script 

for each selected word. The words represent various everyday concepts and 

themes, contributing to a balanced dataset. 

2. IPA Transcription: The corresponding IPA transcription for each word is given 

in this column. This standardized notation allows for a precise understanding of 

the pronunciation and phonetic attributes of the words. 

Table 9 Example Classes 

Uttered word IPA Uttered word IPA 

വിദ�ാർ�ി ʋid ̪jaːrt̪t̪ʰi യാ� jaːt̪ra 

േചാദ�ം  t͡ʃoːd ̪jam വിജയം ʋiɟajam 

�ല�നിർണയം  muːljanirɳajam ഉപകരണ�ൾ upakaɾaɳaŋŋaɭ 

വിദ�ാർ�ി ʋid ̪jaːrt̪t̪ʰi അ�സരണ anusaɾaɳa 

���് suɦrɨt̪t̪ə ല�ണം lakʂaɳam 

സഹായം saɦaːjam വിശ�ാസം ʋiʃʋaːsam 

പരിപാടി paɾipaːʈi വിഭാഗം    ʋibʱaːɡam 

�സംഗം prasamɡam ലഭ�ത labʱjat̪a 

മ�രം mat̪saɾam ഇളവ്   iɭaʋə 

േതാൽവി t̪oːlʋi മഴ   maɻa 
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Examples from the table include: 

1. "വിദ�ാർ�ി" (ʋid̪jaːrt̪t̪ʰi) meaning 'student.' 

2. "യാ�" (jaːt̪ra) meaning 'journey.' 

3. "���്" (suɦrɨt̪t̪ə) meaning 'friend.' 

4. "മഴ" (maɻa) meaning 'rain.' 

The selection of these particular words ensures a wide range of sounds and phonetic 

characteristics, essential for robust ASR system training. The use of IPA transcription 

ensures that the phonetic attributes of each word are captured accurately, providing 

a valuable resource for understanding and analyzing the diverse accents and dialects 

present in the Malayalam language. 

8.4 Feature Extraction 

Feature extraction involves identifying and utilizing significant features that 

accurately represent the speech data, while ignoring the redundant or irrelevant 

ones. This phase of experiment extracts the feature vectors for experimenting with 

LSTM-RNN. The main steps in feature extraction include: 

8.4.1 MFCC 

MFCC is a widely used feature extraction technique in speech processing. For this 

experiment, MFCC was employed to extract 40 prominent features from each speech 

signal, representing the phonetic content. These features provide a compact and 

expressive representation, capturing variations and patterns in different Malayalam 

accents. This reduces noise and focuses on significant components affecting speech 

perception, forming a robust foundation for building and training the LSTM-RNN 

model. Figure 39 illustrates the 40 extracted MFCC features. The 40 features can be 

computed by: 
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Compute the first and second derivatives of the 13 MFCC coefficients: 
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Compute the mean of the 13 MFCC coefficients: 

����� =
�
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∑ �����

��
���                                                                                                           ( 30 )  

Concatenate the original 13 MFCC coefficients, their first and second derivatives, and 

the mean to form a 40-dimensional feature vector [15]: 

MFCCfeatures=MFCC1,MFCC2,…,MFCC13,ΔMFCC1,…,ΔMFCC13,Δ2MFCC1,…,Δ2MFCC

13, �MFCC] 

 

Figure 39  Forty MFCC Features 

8.4.2 STFT 

STFT analyzes the frequency content of speech signals within short, overlapping time 

frames, offering a time-frequency representation. Following the extraction of 40 

MFCC features, STFT was used to derive 12 additional features representing the 

signal's amplitude and frequency behavior over time. These features are essential for 

understanding the non-stationary nature of speech and its spectral characteristics, 
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particularly useful for distinguishing accents. Figure 40 depicts the STFT features 

used in the study.  

����{�(�)}(�, �) = ∑ �[�]�[� − �]������
����  [15]                                                 ( 31 ) 

where �[�] is the window function, typically a Hamming or Hann window, �[�] is 

the signal, � is the time index, and � is the frequency index. 

After computing the STFT, the spectrogram can be computed as: 

�(�, �) =∣ ����{�(�)}(�, �) ∣�[15]                                                                                 ( 32) 

This gives a time-frequency representation of the signal, where each element 

represents the amplitude of the signal at a specific time and frequency. 

 

Figure 40 The 12 Features Extracted from the Speech Signal Using STFT 

From the spectrogram � (�, �), the following 12 amplitude-related features can be 

extracted: 
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where StdDev is the standard deviation of the amplitude values. 

4. Kurtosis=
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5. Energy=∑�
��� |�(�, ��|� 

6. Entropy=− ∑�
��� |�(�, ��|����(|�(�, ��|�) 

7. Max=max (∣S (t, fi) ∣) 

8. Min=min (∣S (t, fi) ∣) 

9. Range=Max−Min 

10. StdDev=�
�

�
∑ (|�(�, ��)| − �����)�

���  

8.4.3 Mel Spectrogram 

After extracting 52 features using MFCC and STFT, an additional 128 features were 

extracted using the Mel Spectrogram method. This method aligns closely with 

human hearing, as it represents the speech signal on a Mel scale, reflecting the 

logarithmic sensitivity of the human ear to low frequencies. The total of 180 features 

(52 from MFCC and STFT, and 128 from Mel Spectrogram) provides a 

comprehensive representation of the speech signal. The Mel spectrogram's visual 

representation on a Mel scale facilitates deep learning algorithm processing, 

mirroring human auditory perception. Figure 41 shows the Mel spectrogram used in 

the experiment. 

 

Figure 41  Mel Spectrogram Features and the Total 180 Speech Signal Features 
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The 128 vectors can be computed from Mel Spectrogram as follows: 

Compute the Spectrogram: 

�(�, �) =∣ ����{�(�)}(�, �) ∣� [15]                                                                    ( 33 ) 

Apply Mel Filter Banks: 

�(�) = ∑ |�(��)|���
�
��� (��) [15]                                                                              ( 34 ) 

Take the Logarithm: 

�������(�) = log(M(m))                                                                                   ( 35 ) 

The final feature vector is a concatenation of the features obtained from MFCC, STFT, 

and Mel Spectrogram: 

8.5 AASR Model Construction 

This study compares the performance of a LSTM-RNN trained with a comprehensive 

set of speech features against a DCNN trained with spectrogram images. The 

objective is to determine the most effective approach for accurately recognizing 

accented speech variations in Malayalam. 

The LSTM-RNN architecture is particularly well-suited for capturing long-range 

dependencies in sequential data, making it ideal for modeling the temporal dynamics 

of speech. By utilizing the combined set of 180 features, the LSTM-RNN learns to 

process and extract relevant patterns from the input sequences, thereby enhancing 

its ability to recognize accented speech variations. 

In parallel, a DCNN model is trained using spectrogram images generated from the 

speech signals. Spectrograms provide a visual representation of the frequency 

content of speech over time, with the DCNN treating these images as two-

dimensional data. The DCNN architecture excels at capturing spatial hierarchies and 

patterns within the spectrograms, enabling it to learn high-level features that are 

crucial for distinguishing between different accents in Malayalam speech. By 
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analyzing the visual patterns in the spectrogram images, the DCNN can effectively 

identify complex spectral variations and temporal dependencies relevant to accent 

recognition. 

This study involves training both the LSTM-RNN and DCNN models independently 

and evaluating their performance on a common test set of accented Malayalam 

speech data. By conducting this comparative analysis, the study aims to identify the 

strengths and limitations of each approach, providing insights into the most suitable 

techniques for improving accented speech recognition in the Malayalam language. 

The integration of these methodologies in a comparative framework allows for a 

comprehensive evaluation of different feature representations and model 

architectures, ultimately contributing to the development of more robust and 

accurate AASR systems for Malayalam speech. 

8.5.1 AASR using LSTM 

For training the LSTM-RNN in the AASR system, a total of 180 values are utilized, 

comprising the combined feature sets of 40 MFCCs, 12 amplitude values from the 

Short-Time Fourier Transform STFT, and 128 Mel Spectrogram values. These 

features collectively provide a comprehensive representation of the spectral and 

temporal characteristics inherent in Malayalam speech. 

The MFCCs capture detailed information about the spectral envelope of the speech 

signal, while the STFT amplitude values offer insights into the frequency content at 

each time frame. Additionally, the Mel Spectrogram values provide a perceptually 

relevant representation of the frequency spectrum over time, further enriching the 

feature space. 

By incorporating these 180 values into the LSTM-RNN architecture, the model can 

effectively learn temporal dependencies and sequential patterns present in accented 

speech variations. The LSTM-RNN architecture is well-suited for capturing long-

range dependencies in sequential data, making it particularly suitable for speech 
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recognition tasks where contextual information over time is crucial for accurate 

recognition. 

During training, the LSTM-RNN learns to process and extract relevant features from 

the input sequences of 180 values, utilizing the temporal dynamics and contextual 

information encoded in the feature representations. Through iterative training and 

optimization, the model adjusts its parameters to minimize prediction errors and 

improve its ability to recognize accented speech variations in the Malayalam 

language. The integration of these 180 values into the LSTM-RNN architecture 

enhances the system's capability to effectively capture and utilize both spectral and 

temporal features for accurate and robust accented speech recognition in Malayalam. 

An LSTM network is characterized by a specialized cell structure interlaced with 

three crucial gates: the input gate, the forget gate, and the output gate. This unique 

composition enables the cell to retain information over an arbitrary duration, 

precisely regulating the flow of data throughout the process and are discussed below: 

1. Input Gate: Determines what information is essential and stores it in the cell state. 

2. Forget Gate: Evaluates and discards unnecessary information from the cell's 

memory. 

3. Output Gate: Filters and transmits the required information from the cell state to 

the subsequent layers. 

 

Figure 42 An Unfolded RNN and the Gated Architecture 
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The LSTM cell accepts an input X0 and delivers an output h0, which, combined with 

the next input X1, forms the input for the succeeding step. This continuous linkage 

between consecutive steps ensures that the LSTM retains a memory of the sequence, 

constructing an interconnected pathway throughout the model. 

Figure 42 illustrates this unfolded RNN structure and the intricate gated architecture, 

reflecting the sophisticated flow of information within the LSTM. The activation 

functions within the gates, specifically the sigmoid function, control the passage of 

values, while the hyperbolic tangent (tanh) function assigns weights based on the 

relevance of the data.   

8.5.1 AASR using DCNN 

The second approach employed in this experiment is by utilizing a Deep 

Convolutional Neural Network (DCNN) for the recognition of accented speech in 

the Malayalam language. The methodology consists of the following distinct stages: 

8.5.1.1 Spectrogram Dataset Construction 

Spectrograms corresponding to the AMSC-5 dataset are constructed to train the 

DCNN model. These spectrograms provide a visual representation of the frequency 

content of speech over time. The DCNN treats these spectrogram images as two-

dimensional data, excelling at capturing spatial hierarchies and patterns within the 

spectrograms. This enables DCNN to learn high-level features that are crucial for 

distinguishing between different accents in Malayalam speech. By analyzing the 

visual patterns in the spectrogram images, the DCNN can effectively identify 

complex spectral variations and temporal dependencies relevant to accent 

recognition. 

8.5.1.2 The Architecture and Working 

In the DCNN approach, spectrograms of AMSC-5 have been constructed and used. 

This transformation enables the application of image processing methods for speech 

recognition.  
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The model for this experiment is initialized as a Sequential model, which allows 

layers to be added one after another in a linear stack. This simplifies the process of 

building and managing the neural network. To ensure uniformity in the input data, 

all input spectrograms are resized to a standard shape of (224, 224, 3). This 

standardization is crucial for efficient processing by neural network. 

The resized input is then fed into the first convolutional layer, which begins the 

process of feature extraction by applying a set of filters to detect basic patterns and 

structures within the input data. The output from this initial layer is subsequently 

passed through a second convolutional layer, resulting in feature maps with 

dimensions (222, 222, 32). This secondary layer refines the features extracted by the 

first layer, enhancing the network's ability to recognize more complex patterns. 

Following this, a max pooling layer with a pool size of (2, 2) is applied, reducing the 

spatial dimensions of the feature maps to (111, 111, 32). This downsampling process 

helps to reduce computational complexity while preserving the most critical 

information from the feature maps. The pooled features are then passed through a 

third convolutional layer, which produces further refined feature maps with 

dimensions (109, 109, 64). 

To continue the process of dimensionality reduction, a second max pooling layer 

with a pool size of (2, 2) is applied, resulting in feature maps with dimensions (54, 

54, 64). At this stage, a dropout layer is introduced with a dropout rate (e.g., 0.25) to 

prevent overfitting. This layer randomly sets a fraction of the input units to zero 

during training, promoting model generalization. 

The data is then processed through a fourth convolutional layer, producing feature 

maps with dimensions (52, 52, 64). This is followed by a third max pooling layer with 

a pool size of (2, 2), reducing the spatial dimensions to (26, 26, 64). Another dropout 

layer is applied here to further mitigate the risk of overfitting. 
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The fifth convolutional layer comes next, generating feature maps with dimensions 

(24, 24, 128). This is followed by a fourth max pooling layer with a pool size of (2, 2), 

which further reduces the spatial dimensions to (12, 12, 128). This sequence of 

convolutional and pooling layers ensures that the feature maps are thoroughly 

refined and condensed. 

After the convolutional and pooling stages, the multi-dimensional feature maps are 

flattened into a one-dimensional array of size 18432. This flattened array serves as 

the input to the fully connected layers. The first dense layer contains 64 neurons, 

which interpret the extracted features and learn higher-level representations of the 

input data. To add regularity and further prevent overfitting, another dropout layer 

with a dropout rate (e.g., 0.5) is applied. 

Finally, the output dense layer, consisting of 20 neurons, corresponds to the 20 

different classes in the dataset. This layer uses a softmax activation function to 

predict the probability distribution over the classes, allowing the model to determine 

the class of the input based on the learned features. This structured approach ensures 

that the DCNN effectively learns to recognize and classify the diverse spectrogram 

inputs, capturing the intricate patterns inherent in the multi-accented Malayalam 

speech data. 

This detailed structure illustrates the intricate design of the Deep Convolutional 

Neural Network used in this study. The combination of convolutional, pooling, 

dropout, and dense layers enables the model to efficiently learn and recognize 

accented speech patterns in the Malayalam language. By making use of the visual 

representation of the speech signals, this methodology offers a sophisticated 

approach for accented speech recognition, presenting promising opportunities for 

future research and application. 
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8.6  Performance Evaluation 

Figures 43 and 44 provide a visualization of the overall accuracy, loss, and validation 

during the construction of the LSTM-RNN model, mapped against computational 

steps. At the beginning of training, the accuracy is relatively low, indicating that the 

model initially struggles to make accurate predictions.  

 

Figure 43 The Performance Evaluation: Training Phase 

As training progresses, the curve rises steeply, reflecting rapid improvement in the 

model’s ability to learn and recognize patterns in the data. This steep increase is 

particularly notable in the initial epochs, where the most significant learning occurs. 

As the epochs continue, the curve begins to level off, approaching a plateau. This 

plateau indicates that the model is nearing its optimal performance, as it has 

effectively learned the key patterns and features from the training data. The faded 

line in the graph represents the original classification, while the darker line is 

obtained with a smoothing of 0.5. The model achieved a validation accuracy of 67 

percent and train accuracy of 95 percent over 1000 epochs. Figure 44 visualizes the 

performance in terms of loss. 
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Figure 44 The Performance Evaluation: Validation Phase 

Initially, the loss value is high, indicating significant prediction errors. As training 

begins, the loss curve shows a steep decline, demonstrating that the model is quickly 

learning to reduce these errors. This rapid decrease in loss during the early epochs is 

a positive sign, indicating effective error correction and adjustment of model 

parameters. As training progresses, the rate of decline slows, and the curve gradually 

flattens. This flattening suggests that the model is converging, with diminishing 

improvements in reducing the training loss as it nears its optimal state. Initially, the 

loss was 0.03, which gradually reduced to 0.003 by the end of the training process at 

epoch 1000. Initially, the loss was 0.034 and gradually reduced to 0.027 by the end of 

the validation process at epoch 1000. 

These performance metrics demonstrate that the LSTM-RNN model is well-trained 

and capable of making accurate predictions based on the training data. The high 

training accuracy and low training loss achieved by the end of the training phase 

indicate that the model has effectively learned to generalize from the training data, 

setting a solid foundation for evaluating its performance on unseen validation and 

testing datasets. This thorough training process is crucial for ensuring that the model 

can accurately recognize and classify multi-accented Malayalam speech in real-world 

applications. 
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Figure 45 Training and Testing Accuracy, Loss vs Epochs 

Figure 45 showcases the performance of a Deep Convolutional Neural Network 

(DCNN) model over the course of 4000 epochs. The model training, which took 

approximately 12 hours, utilized 4000 spectrograms, with a random split of 3020 

samples for training and 800 samples for testing. The training accuracy steadily 

increases, reaching approximately 74 percent by the end of the training period. But 

the testing accuracy starts lower and shows a much slower rate of improvement, 

plateauing around 39 percent. 

The loss plot on the right illustrates the model's loss for both the training and testing 

datasets. The training loss, also in blue, starts high and rapidly decreases, stabilizing 

around 9 percent. The testing loss, shown in orange, decreases initially but remains 

significantly higher than the training loss, leveling off at approximately 17 percent. 

These plots indicate that while the model performs well on the training data, 

achieving high accuracy and low loss, it struggles with the testing data, as shown by 

the substantial gap between the training and testing curves in both accuracy and loss. 

This discrepancy suggests potential issues with overfitting, where the model has 

learned the training data well but does not generalize effectively to unseen data. 

8.7  Conclusion 

In this chapter, the exhaustive experimentation of two methodologies, LSTM-RNN 

and CNN, was undertaken for the task of accented speech recognition in the 

Malayalam language. Through a detailed analysis involving multiple feature 



190 

extraction techniques and model architectures, insights were obtained that 

contribute to the understanding of the behavior and performance of these models in 

handling multi-accented speech data.  

The LSTM-RNN model emerged as the more effective approach, displaying a high 

train accuracy of 95% and validation accuracy of 67%, with a minimal validation loss 

of 0.027%. In contrast, the CNN model, although innovative in its application, could 

only attain 74% of train accuracy and 39% of test accuracy, with a more considerable 

validation loss.  

The superiority of LSTM-RNN over DCNN in this specific context underlines the 

importance of selecting the right model and feature extraction techniques that align 

with the complexities of the Malayalam language and its accented variations. The 

findings of this study not only reinforce the adaptability and efficiency of LSTM-

RNN in processing sequential speech data but also open avenues for future research 

to explore further enhancements and optimizations. 
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9. A Feature-Based Investigation of LSTM-

RNN and ML Approaches 

9.1 Introduction 

This chapter presents a comprehensive investigation into feature-based approaches 

for accented speech recognition, focusing specifically on the Malayalam language. 

The core objective of this research is to develop a robust ASR system capable of 

accurately transcribing accented Malayalam speech, addressing the linguistic 

diversity prevalent in the region. 

A key aspect of this research is the innovative feature engineering approach, which 

utilizes a layered architecture to extract and represent critical features of accented 

speech signals. Each layer of the feature extraction process contributes unique 

insights into the characteristics of the speech signal, culminating in a comprehensive 

set of features that capture the nuances of accented Malayalam speech. 

The chapter proceeds to detail the experimentation phase, where various machine 

learning models MLP, RFC, DTC, KNN, SVM, SGD and ensemble classifiers are 

evaluated for their efficacy in recognizing accented speech patterns. Additionally, 

the construction of an accent model using LSTM-RNN architecture is explored, 

offering a novel approach to modeling the complexities of accented speech. 

A thorough analysis and comparison of results obtained from different models are 

presented, highlighting the strengths and limitations of each approach. This chapter 

contributes to the advancement of accented speech recognition technology, offering 

valuable insights into feature-based approaches tailored to the unique linguistic 

characteristics of the Malayalam language. Through experimentation and analysis, 

this research aims to enhance our understanding of accented speech processing and 

pave the way for more accurate and reliable ASR systems in diverse linguistic 

contexts. 
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9.2 Methodology  

The AMSC-3 dataset comprises 7070 samples spanning multiple age groups and 

genders, ensuring a diverse representation of local Malayalam accents is used for 

conducting this experiment. The data collection strategy employs crowdsourcing 

techniques to capture a wide array of speech variations. Following data collection, 

the feature engineering process is vital in transforming raw speech signals into 

meaningful representations. This involves the simultaneous extraction of multiple 

feature vectors using a layered approach, which encapsulates various spectral, 

temporal, and rhythmic characteristics of the speech signal. Specifically, features 

such as Mel-Frequency Cepstral Coefficients (MFCC), Short-Time Fourier Transform 

(STFT), Mel Spectrogram, Spectral Roll-Off, Root Mean Square (RMS), and 

Tempogram rhythmic features are extracted, resulting in a high-dimensional feature 

vector for each speech sample. 

The extracted features are then used to construct and evaluate various machine 

learning models to assess their efficacy in recognizing accented Malayalam speech. 

The models include MLP, RFC, DTC, KNN, SVM, and SGD classifiers. Additionally, 

an ensemble approach is adopted to utilize the strengths of these individual models, 

enhancing the overall prediction accuracy. Additionally, the methodology includes 

the development of an accent model using LSTM-RNN. This approach is well-suited 

for capturing the sequential patterns inherent in speech data, allowing for the 

modeling of long-term dependencies as seen in the previous chapters. These 

capabilities are especially valuable for effectively addressing the complex variations 

present in accented speech. 

The final stage involves a comprehensive analysis and comparison of the results 

obtained from different models. This comparative evaluation helps identify the most 

effective techniques for handling accented data, providing insights into the relative 

strengths and weaknesses of traditional machine learning models versus advanced 

neural network architectures. This methodology integrates rigorous data collection, 
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sophisticated feature extraction, and a diverse set of Machine Learning techniques, 

aiming to establish a robust ASR system for Malayalam, capable of accurately 

recognizing and interpreting accented speech. Figure 46 illustrates the workflow of 

the proposed study. 

 

Figure 46 Workflow of the Proposed Study 

9.3  Dataset Preparation 

AMSC-3 is utilized for conducting this study. To ensure a more comprehensive 

representation, multiple utterances of the same signal are recorded in varying 

environments. Following careful labeling and annotation, the collected speech 

samples are prepared for dataset creation. They are converted and saved into the 

.wav format, each sampled at a frequency of 16000 Hz. 

9.4  Feature Engineering 

The speech signal is input to the six layers for the feature extraction process 

simultaneously. The first layer, MFCC, is used for extracting the spectral frequencies, 

resulting in 40 coefficients that correspond to the prominent 40 frequency values of 

the audio waves. The STFT method is then used to extract the amplitude values that 

correspond to the different speech frames of the signal, with 12 prominent values 

extracted for the experiment from this layer. The next layer in the feature engineering 

process employs the Mel Spectrogram feature extraction technique, which returns 
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the low-frequency spectral values closely corresponding to the speech vectors 

sensitive to human ears, extracting 128 spectral features from this layer. 

A certain percentage of the total spectrum energy, such as 85%, resides below a 

specific frequency known as the spectral roll-off frequency. The next layer 

incorporates this technique and extracts 256 speech features from the accented 

speech. Following this, the root mean square value of each frame is computed, 

resulting in the extraction of 329 features from the signal in the subsequent layer. The 

speech signal is then analyzed to extract the Tempogram and rhythmic features, 

which correspond to variations in pitch in accented signals, with 765 features 

extracted in this layer. Consequently, every audio signal is vectorized into a set of 

1530 features through the feature engineering process. 

The innovation in this experiment lies in the specific feature engineering technique 

that has been employed. In this research, a layered approach has been introduced to 

the feature extraction process, focusing on the extraction of crucial aspects such as 

accent, age, gender, tempo, and other significant characteristics. In this method, each 

layer's output, consisting of a set of features extracted, is concatenated with the next 

layer's output. By the final layer, the complete output integrates a comprehensive set 

of 1530 features from each audio recording, that shall contribute to constructing the 

ASR system. 

9.5 Accented ASR Model 

9.5.1  Accented ASR Construction using Machine Learning 

Techniques: Performance and Evaluation 

In constructing an accented Automatic Speech Recognition (ASR) system for the 

Malayalam language, a comprehensive series of experiments was conducted using 

various machine learning approaches to determine the most effective method for 

handling accented speech. Each experiment utilized a distinct model, employing a 

carefully engineered feature set to evaluate and optimize performance. Here's a 
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detailed account of the experiments, the outcomes, and the contributions of feature 

engineering to each model's performance.: 

9.5.1.1 Multi-layer Perceptron (MLP) 

The first experiment utilized an MLP, a type of neural network particularly well-

suited for classification tasks when the dataset is manageable in size. This model 

achieved a remarkable performance accuracy of 100 percent. Key parameters 

included a hidden layer size set to 3000 neurons and a maximum of 10000 iterations, 

allowing the MLP to fully capture the intricate patterns within the accented speech 

data. The MLP's ability to learn complex representations of the input features 

through its deep architecture was crucial in reaching such high accuracy. 

9.5.1.2 Decision Trees 

The second experiment employed Decision Trees, which are known for their 

interpretability and simplicity. This classifier organizes data into a tree-like structure, 

where internal nodes represent feature tests, branches represent outcomes of those 

tests, and leaf nodes represent class labels. Despite the straightforward approach, the 

Decision Tree model achieved an accuracy of 54.40 percent. This result highlights the 

model's ability to identify key decision points in the feature space, though it may 

struggle with more complex patterns compared to neural networks. 

9.5.1.3 Support Vector Machines (SVM) 

In the third experiment, SVM were used to construct the accented model. SVMs are 

powerful classifiers that work well in high-dimensional spaces and are effective in 

cases where the number of dimensions exceeds the number of samples. The SVM 

model achieved an accuracy of 67.36 percent, utilizing the high-dimensional feature 

vectors to find optimal hyperplanes that separate different speech classes effectively. 

9.5.1.4 Random Forest Classifier (RFC) 

The fourth experiment implemented the Random Forest Classifier (RFC), which 

initially achieved an accuracy of 22.28 percent. However, through hyperparameter 
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tuning using techniques such as GridSearchCV, which systematically tests 

combinations of parameters to find the best settings, the model's performance 

significantly improved to 77.72 percent. RFC's ensemble approach, which aggregates 

the predictions of multiple decision trees, contributed to its enhanced performance 

after optimization. 

9.5.1.5 K-Nearest Neighbors (KNN) 

The fifth experiment involved the K-Nearest Neighbors (KNN) algorithm, which 

classifies samples based on the majority vote of their nearest neighbors in the feature 

space. The initial model resulted in an accuracy of 63.73 percent. By applying 

hyperparameter tuning, the performance was optimized to achieve an accuracy of 

81.86 percent, demonstrating the algorithm's dependence on properly chosen 

parameters like the number of neighbors (k) and distance metrics. 

9.5.1.6 Stochastic Gradient Descent (SGD) 

The sixth experiment used the Stochastic Gradient Descent (SGD) classifier, a linear 

model that optimizes the loss function iteratively on small batches of data, making it 

suitable for large-scale learning. However, the SGD model achieved a modest 

accuracy of 34.19 percent, with no significant improvements observed even after 

extensive hyperparameter tuning. This outcome indicates potential limitations in the 

linear approach of SGD for capturing the nuances of accented speech. 

9.5.1.7 Ensemble Model 

Following the individual experiments, a hybrid model was constructed to ensemble 

the already developed models. This ensemble approach utilized the majority voting 

technique, where predictions from each model were combined to make a final 

decision. The ensemble model benefited from the strengths of each individual model, 

compensating for their weaknesses, and achieved a commendable accuracy of 79.44 

percent. This approach emphasized the effectiveness of hybrid models in enhancing 

overall prediction accuracy by leveraging diverse model capabilities. 
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This comprehensive evaluation provides valuable insights into the strengths and 

limitations of different machine learning approaches in the context of accented ASR 

systems. The analysis of the outcomes of the experiment shows how each machine 

learning method performed in this comprehensive experiment, illustrating the 

comprehensive nature of machine learning in the challenging task of modeling 

accented ASR. 

9.5.2  Accented ASR Construction using Deep Learning 

Techniques: Performance and Evaluation 

After conducting experiments with various machine learning and ensemble 

techniques, the focus shifted towards neural networks, specifically employing the 

LSTM-RNN architecture. This phase aimed to explore the capabilities of LSTM-

RNNs in handling the sequential nature of speech data and capturing long-term 

dependencies, which are crucial for modeling accented speech. Three experiments 

were conducted using the same set of features to identify the most effective method 

with the minimum Word Error Rate (WER). 

9.5.2.1 Experiment 1: 

The first experiment involved training the accented ASR model with the LSTM-RNN 

architecture. The model was trained and validated using an 8:2 ratio for the input 

data. The training process was executed over 2000 epochs with a batch size of nine, 

resulting in 482,000 steps. The comprehensive feature set enabled the LSTM-RNN to 

capture various aspects of the speech signal, from spectral characteristics to temporal 

and rhythmic patterns. 

9.5.2.2 Experiment 2: 

In the second experiment, the number of epochs and iterations was expanded to 

examine the effects on the model's performance. This approach led to a considerable 

increase in the accuracy metric, indicating that additional training allowed the 

LSTM-RNN to better capture the details in the accented speech data. The iterative 
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nature of training facilitated the model's ability to learn complex dependencies 

within the data, resulting in improved accuracy and reduced WER. 

9.5.2.3 Experiment 3: 

The third experiment further extended the training process but observed a decline in 

accuracy after a specific convergence point. This outcome highlighted the 

diminishing returns of extensive training and the potential for overfitting, where the 

model becomes too tailored to the training data and loses its generalization 

capability. Despite this decline, the experiment reinforced the importance of 

identifying an optimal training duration to balance between learning and overfitting. 

The experiments conducted with the LSTM-RNN architecture provided valuable 

insights into the effectiveness of neural networks for modeling accented speech. The 

WER percentages from these experiments were compared with those obtained from 

other machine learning methods. The results indicated that the study conducted with 

the MLP displayed the minimum WER in comparison to all other methodologies, 

highlighting its superior performance in recognizing accented Malayalam speech. 

9.5.2.4  Performance Evaluation 

In the thorough experimentation process of building an AASR system for the 

Malayalam language, several models were evaluated to identify the most effective 

approach. Different machine learning and ensemble techniques were tested, leading 

to varied outcomes in terms of WER and accuracies. The results reflect the 

complexities of modeling accented speech and highlight the importance of selecting 

appropriate algorithms to suit specific data characteristics.  

The LSTM-RNN-based acoustic model for accented speech recognition was 

developed and finalized after a rigorous series of iterations and fine-tuning. From 

each input speech data, the prominent 1530 features constituting the training features 

were randomly split, one-hot encoded, and then fed into the LSTM-RNN 

architecture. The maximum height of the utterances considered for the experiment 
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was consistently set to thousand for all speech samples, while the width of the signal 

encompassed the values within the feature set.  

This configuration was integral in constructing a model capable of predicting the test 

features into any of the twenty defined classes of data. Table 10 illustrates the 

performance evaluation of LSTM-RNN. 

Table 10 The performance Evaluation of LSTM-RNN 

No. of 

epochs 

Train 

Accuracy 

  

Validation 

Accuracy 

Train   

Loss 

Validation 

Loss 
Steps 

WER 

for 

known 

words 

WER for 

unknown 

words 

2000 93.30% 60.72% 0.29% 1.94% 482000 7% 39% 

3000 96.97% 63.35% 0.11% 1.98% 723000 3% 37% 

4000 95.74% 62.22% 0.15% 1.95% 1000000 4% 38% 

 

Figure 47 and Figure 48 serve as essential visual aids in understanding the intricate 

dynamics of the LSTM-RNN model's performance. They illustrate the critical factors 

that contribute to the model's success, including the complex relationship between 

the number of epochs, accuracy, and loss, thus enhancing the comprehension of the 

optimal techniques for accented speech recognition in the Malayalam language. 

Figure 48 offers a visual depiction of the train and validation loss during the 

experiment with both 2000 and 3000 epochs. In this figure, two distinct lines are 

drawn to represent the different epochs evaluations. The cyan line corresponds to 

the evaluation with 2000 epochs, while the grey line is associated with the evaluation 

at 3000 epochs. This contrast allows for a clear comparison between the two phases 

of the experiment, highlighting the influence of the number of epochs on the model's 

training and validation loss. 
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Figure 47 The Train and Validation Accuracy of Two Iterations  

 

Figure 48 Train and Validation Loss of Two Iterations  

The extended experimentation continued with 4000 epochs, encompassing a total of 

1000000 steps. This phase yielded a train accuracy of 95.74%, a validation accuracy 

of 67.22%, a train loss of 0.15%, and a validation loss of 1.95%. While the model 

exhibited promising results with 3000 epochs, a noticeable decline in performance 

was observed at 4000 epochs. Figure 49 and Figure 50 illustrate the average accuracy 

and loss over 4000 epochs of the model construction respectively. 
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Figure 49 Train and Validation Accuracy Versus Steps 

 

 
Figure 50 Train and validation Loss Versus Steps 

9.6  Conclusion 

This study undertook a comprehensive series of experiments to construct an 

accented Automatic Speech Recognition (ASR) system for the Malayalam language, 

employing a variety of machine learning and neural network approaches. The 

experiments aimed to identify the most effective method for handling accented 

speech, emphasizing the critical role of feature engineering and model optimization.  

The LSTM-RNN experiments featured the importance of optimizing the number of 

epochs and iterations to balance between learning and avoiding overfitting. The 

second experiment, with 3000 epochs, achieved the highest train accuracy and the 
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lowest WER for known and unknown words, highlighting the model's ability to 

generalize well.  

Throughout the experiments, the feature engineering process played a pivotal role. 

The extraction of diverse and informative features such as MFCCs, STFT values, Mel 

Spectrogram features, spectral roll-off, RMS values, and Tempogram rhythmic 

features enabled the models to effectively capture the complex nature of accented 

speech. These features provided rich representations that facilitated the learning 

process for both machine learning models and neural networks. 

The study demonstrates that both traditional machine learning approaches and 

advanced neural network architectures, when combined with robust feature 

engineering, can effectively address the challenges of accented speech recognition. 

The ensemble model, employing the strengths of individual methods, and the LSTM-

RNN with optimal training parameters, particularly stood out in their performance. 

These findings provide valuable insights and a strong foundation for future research 

and development in the field of accented ASR systems, contributing to the broader 

goal of creating more inclusive and accurate speech recognition technologies. 
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10. Deep Neural Networks and Attention 

Mechanisms for AASR in Malayalam 

10.1  Introduction 

The aim of this chapter is to explore and detail the development of a novel approach 

to AASR for Malayalam, employing advanced deep learning techniques such as 

RNN, LSTM, BiLSTM, and attention mechanisms. In conjunction with MFCC and 

Tempogram features, this study seeks to enhance the accuracy of recognizing multi-

accented Malayalam speech. 

This chapter will discuss the six distinct experimental phases and approaches 

undertaken, along with an in-depth analysis of spectral features in accent 

identification. A novel approach for gradient optimization, aimed at addressing the 

challenges in training deep learning models, will also be explained. This chapter aims 

to highlight the outcomes achieved by incorporating attention mechanisms, 

demonstrating improvements in accuracy by surpassing the performance of 

traditional models. 

Through a comprehensive analysis of the outcomes, obstacles, and prospects, this 

chapter intends to contribute significantly to the research in the field of accented 

speech recognition. In the following sections, the construction of the dataset, the 

methodologies employed, and the detailed analysis of the results will be carefully 

examined to offer insights into the novel techniques and findings of this study.   

10.2  Methodology 

The task of Accented Automatic Speech Recognition (AASR) poses significant 

challenges, especially for low-resource languages such as Malayalam. In the early 

stages of development for both ASR and AASR, the availability of publicly accessible 

data for Malayalam is extremely limited. The dataset used for this study is AMSC-4, 

consisting of multi-syllabic words that capture the diverse accents within the 



204 

Malayalam-speaking regions. The experiment was designed to be conducted in six 

distinct phases, each phase representing a unique approach and combination of 

techniques. Figure 51 provides an overview of the phases involved in the proposed 

methodology.

 

Figure 51 Steps Involved in the Proposed Methodology 

As elaborated in earlier chapters, the lack of an existing benchmark dataset 

containing accented Malayalam speech presented a significant challenge in this 

study. The absence of such data initially impeded the progress of the research, 

necessitating the creation of a specialized corpus tailored to the specific needs of the 

experiment. This corpus, consisting of approximately 1.17 hours of accented speech 

from diverse districts in Kerala, was carefully constructed to reflect the rich 

variations in pronunciation, intonation, and rhythm found within the language. 

The methodology behind the construction of this corpus, including the selection of 

regions, participants, and recording conditions, has been detailed in previous 

sections of this thesis. By addressing the gap in available accented speech data, the 
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creation of this corpus enabled a comprehensive evaluation of the proposed 

techniques for accented speech recognition in Malayalam, providing a robust 

foundation for the analysis and findings presented in this study. This dataset call 

attention to the innovative and responsive approach undertaken in this research, 

highlighting the adaptability and resourcefulness employed to overcome challenges 

inherent to the study of low-resource languages. The entire process of this research 

is discussed in this section in detail. 

10.2.1  Data Collection and Feature Vectorization 

In this study, the feature engineering phase employed two techniques: the extraction 

of MFCC and the Tempogram approach. 

10.2.1.1 MFCC Extraction 

The MFCC algorithm was crucial for capturing vital speech characteristics, providing 

a comprehensive representation of the accented speech signals. 40 feature vectors 

were extracted using MFCC where the first 13 coefficients (C [0,1,2….12]) were 

retained, capturing significant aspects of the spectral envelope. The C [0] to C [6] 

coefficients provided insights into the overall energy, spectral flatness, centroid, roll-

off, and the first three formants. The C [7] to C [12] captured higher-order cepstral 

coefficients. The initial 13 coefficients were further extended with first and second 

derivatives, forming a set of 39 feature vectors, along with a mean value, resulting in 

40 MFCC coefficients for this study. 

10.2.1.2 Tempogram Feature Extraction 

Alongside MFCC, Tempogram features were crucial in emphasizing accent and 

rhythm-specific features. A total of 384 speech vectors were extracted using 

Tempogram speech extraction techniques. Tempogram analysis effectively captured 

the tempo and accent-specific characteristics of the speech signal, akin to a 

spectrogram but with the y-axis representing tempo. 
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10.2.1.3 Integration of MFCC and Tempogram 

 The MFCC vectors and Tempogram features were concatenated together at various 

stages of the experiment. This innovative approach incorporated both the spectral 

information from MFCC and the rhythmic information from Tempogram, enhancing 

the overall representation of the speech data for improved analysis and recognition. 

The combination of MFCC and Tempogram yielded a total of 424 feature vectors 

which provided a rich representation of Malayalam's accented speech, capturing 

spectral details, energy, vocal tract resonances, tempo, and rhythm. The employment 

of these feature extraction techniques paved the way for an advanced recognition 

process, sensitively responding to the unique characteristics of the Malayalam 

language's intricate accent variations. 

10.3 Accented Model Construction 

To explore and address this complex issue, the study designed and developed six 

distinct models, each reflecting a comprehensive approach for recognizing 

Malayalam's accented speech. The experiment was strategically divided into six 

phases, each one representing a key step in the overall process.  The following 

subsections detail the methodologies employed in each phase, emphasizing the 

techniques and innovations that contribute to the effectiveness of the models. 

10.3.1   Phase 1: The RNN Approach 

In the initial phase of this experiment, RNNs were utilized to recognize Malayalam 

accented speech using MFCC features. These features have been selected for their 

capability in accurately capturing essential spectral characteristics of accented 

speech.  RNNs were specifically employed due to its following capabilities: 

1. Temporal Dependency Handling: RNNs are proficient at identifying temporal 

relationships and patterns in sequential data, making them highly suited for 

speech signal analysis. 
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2. Variable Length Processing: This architecture can adapt to speech samples of 

varied lengths, an essential trait for handling the real-world variability of speech 

durations. 

3. Dynamic Pattern Recognition: The ability to recognize intricate dynamic patterns 

in speech makes RNNs particularly effective for Malayalam accented speech. 

 

Figure 52 Proposed RNN 

The architecture of the RNN used in this study is illustrated in Figure 52. The RNN 

architecture employed in this phase is described as follows: 

1. Input Layer: The network accepts an input of 40 MFCC features, which includes 

information about the spectral characteristics, energy, formants, and fine spectral 

details of the speech signal. 

2. RNN Processing Layer: Sequentially processes the input, maintaining an internal 

memory that captures contextual information. 

3. Batch Normalization Layer: This layer ensures consistent data distribution 

through normalization. 

4. Activation Layer (Sigmoid): Implements non-linear transformations to enable 

complex relationship learning. 

5. Concatenation and Summation: The output vectors are joined and summed to 

create a comprehensive representation. 

6. Softmax Layer: Utilizes a probabilistic function to determine the target class with 

the highest likelihood. 
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The use of MFCC features in the RNN-based approach demonstrated promising 

results for Malayalam accented speech recognition. The combination of MFCC's 

spectral insight with RNN's sequential processing capabilities created a robust 

system for accurate recognition. This phase's systematic flow, including the use of 

RNN for processing, normalization, activation functions, and concatenation, has 

shown to be effective in recognizing Malayalam accented speech using MFCC 

features. 

10.3.2  Phase 2: RNN with Attention Mechanism 

Phase 2 of the experiment centers on implementing an enhanced RNN architecture 

that incorporates an attention mechanism. This attention block is paired with 424 

MFCC and Tempogram features to create a more efficient model for accented speech 

recognition. 

 

Figure 53 Proposed RNN with Attention Mechanism 

Figure 53 represents the architecture of the proposed RNN with attention mechanism 

and the overview of the architecture is detailed below. 

1. Input Layer: The feature input (424 vectors) is fed into the RNN. 

2. RNN Processing Layer: Sequential processing facilitates the model's 

understanding of temporal dependencies and long-term relationships within the 

audio sequences. 
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3. Dense Layers: Two dense layers extract complex relationships from the 

processed data, improving the model's comprehension of accented speech 

patterns. 

4. Dropout Layer: Integration of a dropout layer acts as a regularizing agent, 

minimizing overfitting and making the model more robust. 

5. Activation Functions: 

 Sigmoid: Ensures the output values are within the range of 0 to 1. 

 ReLU: Enhances non-linearity without affecting the receptive fields of the 

convolution. 

6. Attention Mechanism: A crucial addition to the architecture that allows the 

model to focus iteratively on the most relevant segments of the speech. By 

directing attention, the model achieves superior recognition of the accented 

patterns. 

7. Softmax Layer: Classifies the processed information into the target classes, 

making probabilistic predictions that represent the final transcription result. 

Phase 2 stands out for its incorporation of an attention mechanism with the RNN 

architecture. By implementing the combination of MFCC and Tempogram features, 

the model is provided with a rich representation of the speech signal.  

The detailed structure that includes dense layers, dropout for regularization, and 

activation functions ensures that the architecture is both robust and sensitive to the 

intricacies of accented speech. The attention mechanism's ability to iteratively refine 

the model's focus on critical speech segments contributes to enhanced performance 

in recognizing and transcribing accented speech patterns in Malayalam.  

This phase successfully builds upon the earlier RNN approach, marking a significant 

stride towards the effective recognition of Malayalam accented speech. This complex 

architecture, incorporating various layers and attention to the most salient parts of 
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the speech signal, offers promising results for accented speech recognition, paving 

the way for future innovations in this domain. The incorporation of the attention 

mechanism into the RNN architecture marks a significant advancement in this phase. 

By enabling the model to selectively concentrate on the most relevant portions of the 

accented speech, it offers a sophisticated approach to recognizing and transcribing 

the Malayalam accented speech. 

10.3.3  Phase 3: The LSTM Approach 

Phase 3 of the experiment builds upon previous methods by employing LSTM 

networks to address the accented speech recognition challenges. LSTMs are utilized 

to effectively mitigate the vanishing gradient issues that are commonly encountered 

in traditional RNN architectures. They are capable of learning and retaining long-

term dependencies within the sequences, which is crucial for accented speech 

recognition. The architecture is designed to circumvent the vanishing gradient 

problem, allowing for deep learning with numerous layers. 

Following the LSTM processing, the output undergoes normalization through the 

batch normalization layer. This ensures that activations possess zero mean and unit 

variance, preventing gradient explosions and stabilizing the training process.  

A Rectified Linear Unit (ReLU) activation function is then applied to introduce non-

linearity to the data. The outputs from these layers are concatenated, forming a 

comprehensive representation of the features. Further processing through dense 

layers refines the understanding of the accented speech patterns. The final layer in 

the architecture is the softmax layer, which utilizes a probabilistic function to assign 

probabilities to different classes, determining the most likely target class. 

Phase 3 with the LSTM approach brings a novel dimension to the experiment, 

focusing on the intricate recognition of Malayalam accented speech. By exploiting 

the LSTM's ability to manage long-term dependencies and avoid the vanishing 

gradient problem, this phase ensures a robust analysis of the speech signals.  
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The relationship between feature extraction (MFCC and Tempogram), LSTM layers, 

normalization, non-linear activation, dense layers, and probabilistic classification 

culminates in an architecture capable of enhanced performance. The use of LSTM 

layers in conjunction with other techniques presents a favorable direction in accented 

speech recognition. This phase not only consolidates the insights from previous 

phases but also extends them, marking a significant progression in the study's overall 

objectives. The proposed LSTM in this phase is illustrated in Figure 54. 

 

Figure 54 Proposed LSTM 

10.3.4  Phase 4: LSTM with Attention Mechanism 

Phase 4 of the experiment introduces an innovative approach by incorporating an 

LSTM model with an attention mechanism, further refining the process of accented 

speech recognition for the Malayalam language. This phase employs 424 feature 

vectors, consisting of both MFCC and Tempogram vectors, extracted from the 

accented audio data. Together, these vectors capture the spectral and rhythmic 

characteristics that are vital for recognizing the accents in speech. 

The proposed LSTM architecture in this phase is composed of two primary branches: 

an operational block and a skip connection block. The operational block serves as the 

main pathway for processing the extracted features. It handles the complex 

dependencies within the audio sequences, employing the strengths of LSTM in 

modeling time-series data. Figure 55 illustrates the architecture of the proposed 

LSTM with an attention block. 
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The skip connection block plays a crucial role in emphasizing relevant activations 

during the training process, allowing the network to focus on the most informative 

and discriminative features. This selective focus is achieved through the integration 

of an attention block within the LSTM architecture. The attention mechanism 

functions by selectively attending to the parts of the input sequence that are most 

relevant to the task.  

By highlighting these specific regions of the input, the attention block minimizes the 

computational resources wasted on irrelevant activations. This optimization not only 

improves computational efficiency but also enhances the model's capacity to 

recognize subtle variations in accented speech patterns. 

The synergy between the LSTM layers, attention block, and skip connection in this 

architecture offers a more sophisticated solution for accented speech recognition. It 

enhances the system's performance by effectively reducing unnecessary 

computations and pinpointing the essential aspects of the audio data. By focusing on 

key activations and utilizing the long-term memory capabilities of LSTM, this phase 

presents a powerful approach that capitalizes on the most significant parts of the 

input sequence.  

The inclusion of the attention mechanism and skip connection within the LSTM 

architecture marks an advanced step in the ongoing experiment, contributing to the 

accuracy and efficiency of the accented speech recognition system. Phase 4 thus 

signifies a meaningful evolution in the study, providing insights into optimized deep 

learning architectures specifically tailored for Malayalam accented speech 

recognition.
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Figure 55 Proposed LSTM with Attention Block 

10.3.5  Phase 5: BiLSTM Approach 

In the fifth phase of the experiment, the exploration of accented speech recognition 

in Malayalam deepened with the utilization of BiLSTM methodology. This approach 

allowed the model to use the strengths of both forward and backward LSTM layers, 

creating a comprehensive understanding of the input sequence, specifically the 

accented speech vectors obtained by combining MFCC and Tempogram vectors. The 

BiLSTM model architecture is uniquely designed to process the input sequence in 

two directions. It consists of two sets of LSTM layers, with one set processing the 

sequence in the forward direction and the other in the backward direction. This 

bidirectional processing is essential to capture relevant temporal dependencies 

within the speech signal. By simultaneously considering both past and future 

contexts, the BiLSTM model can discern intricate patterns and dynamics present in 

accented speech more effectively. 

The true power of this bidirectional approach lies in its ability to combine 

information from both directions. By synthesizing the insights gleaned from the 

forward and backward processing of the input, the BiLSTM model gains a holistic 

view of the sequence. This enables the model to recognize and interpret the unique 

characteristics of accented speech patterns with greater precision. Such a 
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comprehensive perspective enhances the model's ability to capture the variations in 

pronunciation, intonation, and rhythm that are often characteristic of accented 

speech. 

The utilization of the BiLSTM architecture in this phase signifies a significant 

advancement in the ongoing study. It exemplifies a more complex approach to 

modeling accented speech, using bidirectional processing to cultivate a deeper 

understanding of the underlying complexities. By integrating both past and future 

context within the analysis, this phase succeeds in further refining the recognition 

and interpretation of accented speech patterns. The insights derived from this phase 

contribute to the broader endeavor of developing more robust and context-aware 

speech recognition systems designed to the unique challenges posed by Malayalam 

accented speech. 

10.3.6  Phase 6: BiLSTM with Attention Mechanism 

The sixth phase of the experiment builds upon the previous methodologies by 

integrating the strengths of both BiLSTM and attention mechanisms. This 

combination facilitates a more complicated approach to recognizing and transcribing 

accented speech in the Malayalam language, specifically addressing the challenges 

posed by variations in pronunciation, intonation, and rhythm creating a 

comprehensive understanding of the input sequence, specifically the accented 

speech vectors obtained by combining MFCC and Tempogram vectors. The 

architecture of the BiLSTM model enables the capturing of rich contextual 

information by processing the input sequence in both forward and backward 

directions.  

While the forward LSTM layer analyzes the sequence starting from the beginning, 

the backward LSTM layer examines it from the end. This bidirectional analysis 

provides a comprehensive understanding of the accented speech by considering both 

past and future contexts, allowing the model to detect intricate patterns and 

relationships within the audio signal. 
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Incorporated into this bidirectional structure is the attention mechanism, which 

introduces an adaptive approach to sequence analysis. The attention mechanism 

assigns different weights to specific segments of the input sequence, dynamically 

focusing on those parts that are most relevant for accurate recognition. This selective 

attention enables the model to allocate its resources adaptively, giving more weight 

to crucial features and minimizing the influence of irrelevant or redundant 

information.  

The fusion of BiLSTM and attention mechanisms provides a powerful means of 

capturing long-term dependencies within the speech signal while simultaneously 

concentrating on the salient aspects of accented speech. By effectively balancing the 

considerations of context, complexity, and relevance, this approach enhances the 

recognition and transcription accuracy significantly. This phase demonstrates a 

sophisticated combination of technologies to tackle the inherent challenges in 

accented speech recognition.  

It underlines the necessity of focusing not just on individual phonetic components 

but on the dynamic interplay of those components within the broader context of the 

speech sequence.  

Through the careful integration of BiLSTM and attention mechanisms, the model 

provides a robust solution that accommodates the unique characteristics of 

Malayalam accented speech, paving the way for further advancements in this field. 

10.4  Performance Evaluation 

The result and evaluation section of the study serves as a comprehensive reflection 

of the six distinct experimental phases that were undertaken to explore AASR for the 

Malayalam language. This culmination of the experiment employed varying 

methodologies, architectures, and feature vectors to derive substantive insights into 

the field of AASR. Throughout the experiments, the environmental setups and 
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training parameters were consistently maintained to facilitate unbiased comparisons 

across different phases.  

For example, the Adam optimizer was utilized in the first phase, followed by the 

RMSprop optimizer in subsequent phases 2 to 6. Learning rates were also 

systematically adjusted, with 0.001 for phases 1 and 2, and 0.01 for phases 3 to 6. The 

epochs varied between phases to accommodate the different learning rates of the 

models, with 3000 epochs for phases 1 and 2, 2000 epochs for phases 3 and 4, and 68 

epochs for phases 5 and 6. The categorical cross-entropy loss function was 

consistently applied across all phases to enable a standard assessment and 

comparison. Table 11 illustrates the performance of the different phases of the study. 

Table 11 Performance Evaluation 

Phases 
Train 

Accuracy 

Validation 

Accuracy 

Train 

Loss 

Validation 

Loss 

No. of 

Epochs 

Phase I 87.18% 65.15% 0.0096% 0.0277% 3000 

Phase II 92.02% 72.61% 0.0074% 0.0317% 3000 

Phase III 94.10% 64.87% 0.0050% 0.0309% 2000 

Phase IV 96.27% 73.03% 0.0031% 0.0291% 2000 

Phase V 96.25% 72.45% 0.0026% 0.1093% 68 

Phase VI 97.37 % 74.27% 0.0036% 0.0025% 68 

 

In Phase I, the model achieved a training accuracy of 87.18% but showed a significant 

drop in validation accuracy at 65.15%. This disparity might indicate some overfitting 

to the training data. The loss values were low for both training and validation, with 

a relatively high number of epochs at 3000. In Phase II, both training and validation 

accuracies improved to 92.02% and 72.61%, respectively, signifying better 

generalization. 

The train loss decreased, while there was a slight increase in validation loss. Phase 

III and Phase IV continued to show an upward trend in training accuracy, reaching 
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over 96% in Phase IV. However, the validation accuracy fluctuated, with Phase IV 

showing improvement over Phase III. Similarly, both train and validation losses 

decreased, indicating an improvement in model fit. 

The last two phases, Phase V and Phase VI, maintained high training accuracy, with 

a slight increase in Phase VI to 97.37%. The validation accuracy also increased, but 

not as significantly as train accuracy, hinting at possible overfitting. Notably, the 

train loss continued to decrease, while the validation loss in Phase V showed an 

unexpected spike. The number of epochs dramatically reduced to 68 in these phases, 

indicating that the model was learning much faster. The results demonstrate a 

general trend of improvement across phases, particularly in training accuracy and 

loss. Conversely, the inconsistent improvement in validation results might suggest 

that the models in later phases could be overfitting to the training data.  

10.5  Conclusion 

The result and evaluation section of the study serves as a comprehensive reflection 

of the six distinct experimental phases undertaken to explore Accented Speech 

Recognition (AASR) for the Malayalam language. These phases employed varying 

methodologies, architectures, and feature vectors, contributing substantive insights 

into the field of AASR. Throughout the experiments, environmental setups and 

training parameters were consistently maintained to facilitate unbiased comparisons 

across different phases.  

The experiment generated insights into AASR by employing diverse methodologies 

and exploring various experimental setups. This led to conclusions regarding the 

most effective approaches for accented speech recognition in Malayalam. The 

architecture was fine-tuned across multiple experimental trials with different 

combinations of optimizers, loss functions, and neural network architectures.  

The study's conclusion highlights the general trend of improvement across phases, 

particularly in training accuracy and loss. However, inconsistent improvement in 
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validation results raises concerns about potential overfitting in later phases. 

Nonetheless, the comprehensive exploration of methodologies, architectures, and 

feature vectors provides valuable insights into effective approaches for AASR in 

Malayalam. The study emphasizes the importance of optimizing architectures and 

training parameters to achieve superior performance in accented speech recognition, 

paving the way for further advancements in the field. 
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11. Enhancing AASR through Advanced 

Integration of Self-Supervised Learning 

and Autoencoders with ML Models 

11.1  Introduction 

Accented speech introduces significant variability in phonetic realization, which can 

impede the performance of traditional ML models. This variability necessitates the 

development of robust feature extraction and classification methods that can 

generalize well across different accents while maintaining high accuracy. 

This chapter explores an innovative approach to addressing these challenges through 

the fusion of autoencoders with various ML classifiers. By utilizing the feature 

extraction capabilities of autoencoders and the discriminative power of ML models, 

the goal is to enhance the accuracy and robustness of accented speech recognition 

systems. Specifically, the study investigates the performance improvements obtained 

by integrating autoencoder-generated features with classifiers such as Linear 

Regression, Decision Trees, SVM, Random Forests, KNN, SGD, and MLP. 

The fusion of autoencoders with ML models offers several advantages. 

Autoencoders excel at capturing complex, non-linear relationships within the data 

and reducing noise, leading to more informative and robust feature representations. 

When these representations are utilized by ML models, the classifiers can utilize this 

distilled information to achieve better generalization and predictive performance. 

This synergy between unsupervised feature learning and supervised classification 

forms the core of the approach. 

The rationale behind the selection of ML algorithms in this study is grounded in their 

complementary strengths and suitability for handling encoded representations. 

SVMs, known for their efficacy in high-dimensional spaces and non-linear decision 

boundaries, are well-matched with the features extracted by autoencoders. Decision 

Trees and ensemble methods like Random Forests offer interpretability and 
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robustness, respectively, while neural network models such as MLPs can further 

exploit the non-linear relationships captured by autoencoders. 

This chapter systematically evaluates the performance of these fusion models on a 

classification task, comparing their accuracy with and without the use of 

autoencoder-generated features. The results demonstrate significant improvements 

in classification accuracy across all evaluated models when autoencoder features are 

incorporated, underscoring the effectiveness of this approach. By presenting this 

comprehensive analysis, the aim is to provide valuable insights into the potential of 

combining autoencoders with ML models for enhanced speech recognition. The 

findings of this study contribute to the broader field of machine learning, 

highlighting the benefits of integrating deep learning techniques with traditional ML 

classifiers to tackle complex real-world problems. 

11.2  Methodology 

The autoencoder used in this study belongs to the category of denoising 

autoencoders. Denoising autoencoders are a specific type of autoencoder that are 

trained to reconstruct input data from a corrupted version of it. This process forces 

the model to learn robust, meaningful representations that capture important 

features of the data while filtering out noise. This category of autoencoders is 

particularly effective in enhancing the quality of the learned features, which in turn 

improves the performance of subsequent machine learning models when these 

features are used as input. Figure 56 describes the different phases of the study 

conducted. 

 

Figure 56 Steps Involved in the Study 
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11.2.1  Dataset Collection 

AMSC-4 is the dataset used for conducting this study. Among the 7070 samples in 

the dataset 1414 samples were not considered for doing this experiment. The decision 

to utilize 5656 speech samples instead of the full 7070 was grounded in exact quality 

assurance procedures. During the preprocessing and data cleaning stages, a 

thorough examination revealed that certain samples exhibited the issues of 

corruption and low audio quality. Consequently, to uphold the reliability and 

integrity of the dataset, a stringent selection process was employed, ensuring that 

only high-quality and consistent samples were retained for further analysis. This 

approach safeguards against potential distortions or inaccuracies in the data, thereby 

enhancing the trustworthiness of the experimental outcomes. 

11.2.2  Data Preprocessing 

In the initial phase of this research, a comprehensive cleaning and preprocessing of 

the collected Malayalam speech data was executed to remove any undesirable 

artifacts, background noise, or non-relevant segments that might compromise the 

quality of the accented speech recognition model. The preprocessing techniques are 

discussed below: 

1. Noise Reduction: Given the potential for irrelevant auditory disturbances within 

the raw audio data, advanced noise reduction algorithms were employed. These 

algorithms were designed to identify and minimize any underlying, consistent 

noise without altering the core speech component. 

2. Filtering: Filtering was another essential step in the preprocessing methodology. 

By applying various band-pass filters, the frequency range was isolated that is 

most relevant to human speech, thereby eliminating frequencies that do not 

contribute to the comprehension of the Malayalam language accents. The design 

of the filters was carefully tailored to the unique characteristics of the Malayalam 

language, thereby enhancing the overall efficiency of the process. 
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3. Normalization: To further ensure consistency across the entire dataset, 

normalization techniques were employed. Normalization played a crucial role in 

modifying any variations in volume, pitch, and other speech attributes across 

different recordings. By standardizing these attributes, the learning process was 

facilitated for the model, allowing it to focus on the intrinsic patterns of the 

accented speech rather than irrelevant variations. 

11.2.3  Feature Extraction 

Efforts have been put to extract relevant acoustic features from the preprocessed 

speech data. These features capture vital characteristics of the speech, including 

pitch, tempo, spectral frequencies, and rhythm. To achieve this, three key feature 

extraction techniques were employed: 40 MFCC feature vectors, 12 STFT feature 

vectors, and 384 Tempogram feature vectors were computed as discussed in the 

previous chapters. By combining these techniques, a total of 436 features were 

extracted for each speech sample. This comprehensive representation encompasses 

essential attributes related to pitch, tempo, spectral frequencies, and rhythm. These 

features provide a robust foundation for subsequent analysis and classification tasks, 

setting the stage for innovative applications in the domain of accented speech 

recognition. 

11.2.4  Autoencoder and Self-Supervised Learning Framework 

In the domain of accented speech recognition for the Malayalam language, the design 

and implementation of efficient neural network architectures play a pivotal role. In 

this research, an autoencoder architecture was proposed, consisting of both an 

encoder and a decoder, which operates on the preprocessed speech data, 

encompassing 436 feature vectors. The proposed architecture of the autoencoder 

model without compression is depicted in Figure 57. 

The encoder network transforms the high-dimensional input features into a lower-

dimensional latent space, preserving the essential characteristics of the accented 

speech. The first encoder layer performs a linear transformation on the input X, 
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followed by batch normalization and the Leaky ReLU activation function, 

mathematically represented as e=W1⋅X+b1.  

Following the first layer, a second linear transformation is applied, again followed 

by batch normalization and the Leaky ReLU activation function, expressed as e=W2

⋅e+b2. The bottleneck layer maps the transformed data into a space with the same 

number of neurons as the number of input features, given by bottleneck=Wb⋅e + bb. 

The decoder network aims to reconstruct the original speech data from the latent 

space, enabling a comprehensive understanding of the speech signals. The first 

decoder layer is expressed as d=Wd1⋅bottleneck+bd1, followed by a second 

transformation performed as d=Wd2⋅d+bd2, with the final output layer delivering the 

reconstructed data: output=Wout⋅d + bout. 

The weight matrices (W1, W2, Wb, Wd1, Wd2, Wout) and bias vectors (b1, b2, bb, bd1, bd2, bout

) are optimized during the training process to perform the respective 

transformations. In the subsequent phase, the autoencoder model was further 

refined with compressed data. The encoding layers perform transformations like the 

first phase, denoted by equations e=W1⋅F+b1, e=W2⋅e+b2, and the bottleneck layer in 

this phase can be represented as bottleneck=Wb⋅e + bb. 

 

Figure 57 Autoencoder Model Architecture Without Compression 

The first decoder layer performs a linear transformation followed by batch 

normalization and Leaky ReLU activation elementwise and can be represented as 

[169]:  
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d = W_d₁ * bottleneck + b_d                                                           ( 36 ) 

where W_d₁ is the weight matrix and b_d₁ is the bias vector, and d is the output. The 

second decoder layer performs another linear transformation followed by batch 

normalization and Leaky ReLU activation elementwise.  

Mathematically, it can be represented as [169]: 

d = W_d₂ * d + b_d₂                              ( 37 ) 

where W_d₂ is the weight matrix and b_d₂ is the bias vector, and d is the output. The 

output layer performs a linear transformation with a linear activation function. 

Mathematically, it can be represented as [169]:  

output = W_out * d + b_out                             ( 38 ) 

where W_out is the weight matrix and b_out is the bias vector, and output is the final 

output. Here in this architecture, the encoder is composed of two dense layers with 

leaky ReLU activation and batch normalization. The first dense layer has twice the 

number of neurons as the input features, and the second dense layer has the same 

number of neurons as the input features. These layers gradually reduce the 

dimensionality of the data and capture meaningful representations. The bottleneck 

layer, which is the output of the second dense layer, has half the number of neurons 

as the input features. It serves as the compressed representation of the input data. 

The decoder is constructed as the reverse of the encoder architecture. It also consists 

of two dense layers with leaky ReLU activation and batch normalization. The output 

layer has the same number of neurons as the input features and uses a linear 

activation function. During training, the autoencoder aims to reconstruct the input 

data by minimizing the difference between the input and output. The training is 

performed for 500 epochs with a batch size of 16. Additionally, an encoder model is 

defined by specifying the input and bottleneck layers. This model is used to extract 

the compressed representation of the input data. 
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Figure 57 illustrates the neural network architecture that is tailored for processing 

feature input with dimensions 5656×436. This architecture consists of several 

components, starting with the input layer, which accepts feature data comprising 

5656 samples, each containing 436 features. Following the input layer, the 

architecture includes a series of fully connected layers (FC1-FC6). FC1 transforms the 

input features to a higher-dimensional space with 872 units, while FC2 reduces the 

output back to 436 units. Subsequent layers, FC3 and FC4, further transform the data 

without altering its dimensionality. The features are then expanded again in FC5 to 

872 units, followed by FC6, which linearly reduces the dimensionality to match the 

original 436 features. 

In addition to the fully connected layers, batch normalization and activation 

functions are applied after each layer. Batch normalization normalizes the input to 

each layer, enhancing training speed and stability, while a LeakyReLU activation 

function is used to introduce a small, non-zero gradient when the unit is inactive, 

addressing the "dying ReLU" issue. This combination of batch normalization and 

activation functions ensures network stability and effective learning throughout the 

architecture. 

Overall, the architecture alternates between expanding and contracting the 

dimensionality of the feature space, facilitating the capture of complex patterns 

within the data. The recurrent use of batch normalization and LeakyReLU activation 

functions further enhances the network's stability and learning efficiency. Finally, a 

linear layer is incorporated to generate the final output with 436 units, aligning with 

the input features' dimensionality. 

The autoencoder architecture presented in Figure 58 comprises several key 

components aimed at extracting meaningful features from input data and 

performing necessary transformations for subsequent tasks. In the beginning, the 

input layer receives feature input with dimensions 5656 x 436, denoting 5656 
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samples, each containing 436 features. This sets the stage for processing a substantial 

dataset rich in feature information. 

 

Figure 58 Autoencoder Model Architecture with Compression 

The architecture proceeds with Fully Connected Layer 1 (FC1), which maintains the 

input's dimensionality (436) while linearly combining each feature with 436 neurons 

in the subsequent layer. This initial transformation serves as a foundational step in 

feature extraction and representation learning. 

 Fully Connected Layer 2 (FC2) expands the dimensionality, mapping the 436 input 

features to 872 features. Batch normalization is then applied to the output of FC2, 

followed by a LeakyReLU activation function. These steps enhance training stability 

and introduce non-linearity to the model, enabling it to learn complex patterns 

effectively. 

Fully Connected Layer 3 (FC3) reduces the dimensionality back to 436 from 872, 

consolidating the learned representations. Like previous layers, batch normalization 

and LeakyReLU activation are applied for normalization and non-linearity 

introduction, respectively. 

Further dimensionality reduction occurs in Fully Connected Layer 4 (FC4), where the 

436 features are mapped to 218 features. The output layer produces the final output 

without applying an activation function, implying a linear combination of the input 

features. 

This architectural design signifies a deliberate progression of dimensionality changes 

aimed at extracting and refining meaningful features. The incorporation of batch 
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normalization and LeakyReLU activation throughout the architecture ensures better 

performance and training stability, crucial for effective representation learning and 

subsequent task execution. Overall, this autoencoder architecture demonstrates a 

systematic approach to feature extraction and transformation, aimed to yield 

valuable insights and facilitate accurate predictions in various applications. 

11.2.5  Fusion of Autoencoder with Machine Learning 

Approaches 

When autoencoder-generated features are fused with ML models, notable 

enhancements in classification accuracy are observed across the board. For instance, 

Linear Regression achieves a significantly higher accuracy of 94.54% with 

autoencoder-generated features compared to 89.39% without, highlighting the 

efficacy of this fusion approach in regression tasks. 

Similarly, Decision Trees experience a substantial improvement in accuracy to 

85.15% with autoencoder-trained features in conjunction with ML models, compared 

to only 27.75% without, underscoring the importance of leveraging both encoded 

representations and the discriminative power of ML algorithms to enhance 

predictive performance. 

SVMs also exhibit a marked increase in accuracy to 95.15% with the fusion approach, 

compared to 44% without indicating the synergistic benefits of combining 

autoencoder-generated features with SVM classification. 

Random Forest demonstrates a significant boost in accuracy to 93.93% with 

autoencoder-trained features, compared to 46.5% without further emphasizing the 

advantages of leveraging encoded representations within ensemble learning 

frameworks. 

KNN and SGD classifiers also experience notable improvements in accuracy to 

93.63% and 90.9%, respectively, with the fusion approach, compared to 43% and 

20.75% without, suggesting that integrating autoencoder-generated features with 
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ML models enhances the discriminative power and predictive performance of these 

classifiers. 

Moreover, MLP achieves a high accuracy of 96.06% with autoencoder-generated 

features in conjunction with ML models, compared to 99.25% without, highlighting 

the effectiveness of the fusion approach in leveraging both the representational 

learning capabilities of autoencoders and the nonlinear modeling capabilities of 

neural networks. 

In contrast, when autoencoder-generated features are used alone without ML 

models, classifiers generally exhibit lower accuracy levels, indicating the importance 

of integrating encoded representations with ML algorithms. Overall, the fusion of 

autoencoders with ML models offers a robust and comprehensive solution for 

enhancing predictive accuracy and model performance in various classification 

tasks. Figure 59 and Figure 60 visualize the performance evaluation of the 

experiments conducted in this study. 

 

Figure 59 Performance Evaluation  
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Figure 60 Learning Curves for Autoencoder-Based Accent Modelling 

 

11.3  Conclusion 

The study reveals that autoencoders, by learning compressed representations of the 

input data, capture essential features and reduce noise, thereby providing more 

informative and robust inputs for ML classifiers. This enhanced feature set, when 

utilized by ML classifiers leads to superior generalization and higher classification 

accuracy compared to models trained solely on raw data. 

These findings underline the significant benefits of combining the unsupervised 

feature learning capabilities of autoencoders with the discriminative power of 

various ML models. The choice of classifiers, each with its unique strengths, 

complements the encoded features generated by autoencoders, resulting in a 

synergistic effect that enhances overall model performance. 

The fusion of autoencoders with ML models offers a robust and effective strategy for 

improving the accuracy and generalization of speech recognition systems. This 
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approach not only addresses the variability introduced by accented speech but also 

sets a foundation for future research and applications in other complex, high-

dimensional data domains. The study highlights the importance of utilizing 

advanced feature learning techniques in conjunction with traditional ML algorithms 

to tackle real-world challenges in machine learning and artificial intelligence. 

  



231 

12. Clustering Methods for Emotion 

Classification of Accented Speech  

12.1  Introduction 

Accented speech recognition and emotion classification present unique challenges 

due to variations in pronunciation, intonation, and cultural nuances across different 

languages and dialects. Clustering algorithms offer a data-driven approach to 

address these challenges by automatically grouping speech samples based on shared 

acoustic features and emotional characteristics. Through clustering, it becomes 

possible to identify distinct clusters corresponding to different emotional states, 

facilitating the development of more accurate and robust emotion recognition 

systems for accented speech. 

The primary objective of this chapter is to evaluate the performance of various 

clustering algorithms in the context of accented speech recognition and emotion 

classification. The dataset used in this study comprises speech samples from diverse 

accents, with annotations indicating the corresponding emotional states. By applying 

a range of clustering techniques, including KMeans, DBSCAN, Gaussian Mixture 

Model (GMM), Agglomerative Clustering, Spectral Clustering, Mean Shift, Affinity 

Propagation, OPTICS, BIRCH, and Ensemble Clustering, the aim is to assess their 

ability to effectively partition the dataset into coherent clusters. 

This chapter aims to provide a comprehensive analysis of the cluster formations 

generated by each algorithm, examining factors such as cluster separation, cohesion, 

and overlap. Through detailed evaluation and comparison of the clustering results, 

the strengths and limitations of each algorithm in capturing the underlying structure 

of accented speech data can be identified. Additionally, insights gained from this 

analysis can inform the development of more advanced clustering techniques 

tailored specifically for accented speech recognition and emotion classification 

applications. 
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12.2  Objectives of this Study 

1. To Understand the Complexities of Accented Speech: Explore deep into the 

Malayalam language's accented speech signals to comprehend the inherent 

challenges and complexities they present for emotion detection. 

2. Development of a Robust Dataset: Compile and curate a comprehensive 

dataset that encompasses diverse emotional states, ensuring a wide 

representation of the Malayalam language's accents. 

3. Innovative Feature Extraction: Design and implement novel feature 

extraction techniques that can effectively capture the unique emotional traits 

present in accented speech signals. 

4. Application of Clustering Techniques: Utilize advanced clustering 

methodologies to group similar emotional states from the dataset, facilitating 

more accurate and efficient emotion detection. 

5. Evaluate the Efficacy of the Proposed Method: Conduct a series of 

experiments and analyses to gauge the performance of the developed feature 

extraction and clustering techniques, comparing them with existing 

methodologies. 

6. Contribute to the Field of Emotion Detection: By integrating unique feature 

extraction with clustering techniques, aim to set a new standard in the 

domain of emotion detection from accented speech, enriching the existing 

body of knowledge. 

12.3  Data Collection 

 AMESC dataset is used to conduct this study. comprises a rich mix of speech 

samples representing the seven emotions. The statistic of the dataset is shown below: 

1. Angry: 420 samples 

2. Disgust: 540 samples 

3. Fear: 538 samples 

4. Happy: 512 samples 
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5. Neutral: 332 samples 

6. Sad: 520 samples 

7. Surprise: 534 samples 

 

Figure 61 Statistics of the AMESC Dataset 

This distribution offers a balanced representation of emotions, ensuring that no 

emotion is underrepresented. Once suitable videos were identified, audio segments 

corresponding to the specific emotions were extracted. Advanced audio processing 

tools were employed to isolate speech segments, ensuring clarity, and minimizing 

background noise. Figure 61 describes the distribution of accented emotional speech 

across districts and emotion classes. 

Post extraction, each speech sample was carefully annotated and labeled each sample 

according to its corresponding emotion and accent. This manual annotation ensured 

the accuracy and reliability of the dataset. 
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12.4  Data Pre-Processing 

Before employing the dataset for analysis, it underwent several pre-processing steps: 

1. Normalization: Ensuring consistent audio levels across all samples. 

2. Segmentation: Breaking down longer audio clips into manageable, uniform 

segments for consistent analysis. 

3. Noise Reduction: Removing any residual background noise, enhancing the 

clarity of the speech samples. 

 

Figure 62 Sample Emotion Data for Angry Speech 

While the dataset was sourced from a public platform, due carefulness was exercised 

to respect privacy concerns. Any personal information or identifiers were excluded, 

and the data was used strictly for academic and research purposes, in compliance 

with YouTube's terms of service. 

The data preprocessing stage is pivotal in ensuring the quality and consistency of the 

audio data before subsequent analysis. The primary goal is to optimize the data to 
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highlight the most relevant features while minimizing any unwanted noise or 

discrepancies. Two primary preprocessing steps were performed: band-pass filtering 

and audio normalization.  Figure 62 illustrates the wave plot and spectrogram of a 

sample angry speech signal. 

12.4.1  Band-Pass Filtering 

To enhance the clarity of speech signals and filter out unwanted noise, a band-pass 

filter was applied to each audio sample. The Butterworth band-pass filter was chosen 

for its ability to preserve the signal's amplitude in the passband. In the field of 

processing speech signals, the first important step is filtering, which helps make 

audio signals clearer by removing unwanted noise.  

The band-pass filter was incorporated into the processing pipeline for each audio 

sample. The choice of the Butterworth band-pass filter was deliberate due to its 

unique capabilities. This filter effectively maintains the strength of the signal within 

the chosen range of frequencies. Acting as a gatekeeper for sound, it allows only the 

frequencies within a specific range to pass through, while dampening or lessening 

frequencies outside that range. This capability is particularly advantageous in 

processing speech signals as it helps isolate and emphasize the vocal parts of the 

audio, thereby making the signal clearer. The Butterworth filter, renowned for its 

ability to maintain signal strength within the chosen range, emerged as the optimal 

choice for this task. Figure 63 illustrates the filtering methods used in the study. 

 

Figure 63 The Filtering Setup 



236 

12.4.2  Audio Normalization 

Normalization was applied to the audio data to ensure consistent amplitude levels 

across all samples. This step ensures that no audio sample is unfairly emphasized or 

suppressed due to its inherent amplitude. The implementation details are shown 

below in Figure 64. 

 

Figure 64 The Audio Normalization Setup 

In audio data processing, normalization attempts to equalize amplitude levels across 

various audio samples; is an essential step for impartial and accurate analysis. There 

are differences in the volume levels of the original dataset, which could cause biases 

in the subsequent analyses by highlighting the quieter samples and preferring the 

louder ones. Uniform normalization is used to address this by bringing all samples 

to a constant amplitude level, which is like leveling the playing field. This lessens the 

effect of volume variations on outcomes by guaranteeing that every audio sample 

has an identical chance to express its subtle emotional meanings. In essence, 

normalization is a preliminary measure that eliminates inadvertent bias and 

promotes equity in the identification and evaluation of emotions. It preserves the 

authentic emotional expressions in every speech sample, maintaining the accuracy 

of emotion recognition and guaranteeing fairness. 

In the experiment, a specific frequency range was carefully defined to capture the 

most relevant aspects of Malayalam language speech. This range was characterized 

by a low cutoff frequency of 75.0 Hz and a high cutoff frequency of 3400.0 Hz. 
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The selection of this frequency range was deliberate, aiming to encompass the 

fundamental frequency components inherent in Malayalam speech. The low cutoff 

frequency of 75.0 Hz ensures that crucial low-frequency components, such as vocal 

resonances and intonation patterns, are adequately represented in the analysis. On 

the other hand, the high cutoff frequency of 3400.0 Hz captures higher-frequency 

details, including consonant articulations and speech harmonics, which are essential 

for accurate speech recognition. By defining this specific frequency range, the 

experiment sought to focus on the acoustic characteristics most relevant to 

Malayalam speech, thereby optimizing the accuracy and effectiveness of subsequent 

analysis and processing steps. 

12.5  Feature Engineering 

A comprehensive set of 584 emotional speech features were extracted in this study. 

Before extraction, audio signals were padded to a consistent length, corresponding 

to a given FFT size. This step ensures that all audio samples have uniform 

dimensions, facilitating consistent feature extraction. And later, the feature extraction 

techniques were applied to the audio signals which is discussed subsequently. To 

begin with the spectral contrast measures the difference in amplitude between peaks 

and valleys in the sound spectrum.  

Polyfeatures provide polynomial approximations to the spectrogram data. 

Tempogram presents the rhythm pattern in the audio. Tonnetz calculates the tonal 

centroid features, providing insights into the harmonic relations in the audio data. 

Using Parselmouth, a measure of the sound's periodicity was derived, indicating the 

ratio of the harmonics to the noise in the signal. Formant frequencies that correspond 

to specifically the first two formants (F1 and F2), were extracted. These frequencies 

are essential in characterizing speech and can carry significant emotional cues. The 

standard deviation of the fundamental frequency (F0) was computed, providing 

insights into the pitch variations in the audio. MFCCs, along with their first and 

second derivatives (delta and delta2), and mean were computed. 
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 These coefficients capture the short-term power spectrum of sound and are widely 

used in speech and audio processing. Zero Crossing Rate (ZCR) indicates the rate at 

which the signal changes its sign, reflecting the noisiness or percussiveness of the 

audio. Chroma STFT relates to the twelve different pitch classes and is used to 

describe harmony. Root Mean Square Value (RMS) indicates the audio's energy, 

which can be a good proxy for loudness. Mel Spectrogram represents the short-term 

power spectrum of sound in the Mel scale. Figure 65 illustrates the various feature 

extraction techniques employed in the study, showcasing the breadth of methods 

utilized to analyze the emotional content of speech signals. A total of 442 feature 

vectors have been extracted during the feature extraction phase of this study. 

 

Figure 65 The Feature Engineering Techniques used in the Study. 

12.5.1  Feature Reduction 

Feature reduction is an essential step in machine learning and deep learning 

applications, especially for high-dimensional data. By reducing the number of 

features, the complexities of dimensionality can be alleviated, speed up model 

training, and potentially enhance model generalization by reducing the risk of 

overfitting. In this study on accented speech recognition for the Malayalam language, 
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this reduction process was paramount given the complexity of audio features. The 

following are the feature reduction methods adopted in the study. 

12.5.2  Feature Correlation Analysis 

The initial step was to determine inter-feature correlations within the dataset. A 

heatmap was generated to visually assess these correlations. Highly correlated 

features, i.e., those with a correlation coefficient greater than 0.9, were identified. 

Such features often carry redundant information, and thus, to streamline the data 

and prevent multicollinearity issues in the subsequent modeling process, these 

features were removed. 

12.5.2.1  Feature Normalization 

Post correlation analysis, the dataset was normalized using the Standard Scaler. This 

scaling transformed the features to have a mean of 0 and a standard deviation of 1, 

ensuring that all features contributed equally to the upcoming processes and models, 

regardless of their original scale. 

12.5.2.2  Principal Component Analysis (PCA) 

PCA was employed as a dimensionality reduction technique. The components that 

accounted for 95% of the variance in the data were retained. This approach allowed 

to represent the data in a reduced space while preserving most of its variance, thus 

balancing the trade-off between data representation and dimensionality. 

12.5.2.3  Random Forest-Based Feature Importance 

After PCA, a Random Forest Classifier was trained on the normalized dataset. The 

objective was not for classification alone, but to harness the model's ability to rank 

features based on their importance in predicting the target variable. A bar plot was 

then generated, ranking all features based on their importance scores. To further 

optimize the feature set, only the top 40 features were retained for the subsequent 

phases of the study.  
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Feature reduction was instrumental in streamlining the dataset, ensuring efficient 

and effective modeling in the accented speech recognition tasks for the Malayalam 

language. This consolidated approach ensured that only the most significant 

features, free of redundancies, were used, laying a solid foundation for the next 

stages of the research. After the feature reduction phase of this study the total feature 

set of 442 features got reduced to 51.  

12.6  Clustering Algorithms  

This section systematically explores the clustering methods in the context of accented 

speech recognition, offering valuable insights into their utility and effectiveness for 

identifying emotional patterns in diverse speech samples. By examining the 

performance and characteristics of different clustering algorithms, this study 

contributes to the ongoing research efforts aimed at enhancing the accuracy and 

robustness of emotion recognition systems for accented speech. 

The silhouette scores obtained by applying diverse clustering algorithms to the 

scaled dataset of accented speech recognition for the Malayalam language is 

discussed in this section. The silhouette score, falling within the range of -1 to 1, 

serves as an indicator where a higher value suggests that the object is compatible to 

its cluster and less suited to neighboring clusters. Figure 66 shows the clusters of the 

accented speech emotional data that has been used in the study. 

 

Figure 66 Clusters of Data 
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12.6.1  OPTICS (Ordering Points to Identify the Clustering 

Structure) 

OPTICS constructs a reachability plot to identify clusters of varying densities. With 

a silhouette score of 0.55, it produced clusters with high cohesion and well-defined 

boundaries, indicating distinct clusters with minimal overlap. OPTICS' ability to 

adapt to varying densities in the data space allowed it to effectively identify clusters 

and separate them clearly. The higher silhouette score suggests that OPTICS 

successfully captured the underlying clustering structure in the data and formed 

clusters with high cohesion and separation. 

12.6.2  BIRCH (Balanced Iterative Reducing and Clustering using 

Hierarchies) 

BIRCH constructs a hierarchical clustering structure based on local density estimates. 

Despite achieving a silhouette score of 0.17, indicating moderate cluster separation 

and cohesion, there was some overlap between clusters. This suggests that while 

BIRCH effectively organized the data into hierarchical clusters, it may have struggled 

to fully separate clusters, leading to overlap. Fine-tuning parameters or exploring 

alternative linkage criteria could potentially enhance BIRCH's ability to delineate 

clusters more distinctly. 

12.6.3  Ensemble Clustering (Majority Voting) 

Ensemble Clustering using majority voting integrated multiple clustering results to 

improve overall performance. With a silhouette score of 0.40, it achieved moderate 

cluster separation and cohesion, with well-defined clusters but some overlap. The 

ensemble approach allowed for combining the strengths of individual clustering 

methods, leading to improved clustering performance compared to using any single 

method alone. While the silhouette score indicates effective cluster separation and 

cohesion, the observed overlap suggests that there may still be room for 

improvement in ensemble clustering techniques. Further experimentation with 
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different combinations of clustering algorithms or ensemble strategies could enhance 

its performance. 

12.6.4  Consensus Clustering 

Consensus clustering aggregates multiple clustering results to find a unified 

solution. The relatively low silhouette score of 0.16 might indicate overlapping 

clusters or less distinct cluster formations. This suggests that the consensus clustering 

method, which builds upon the idea of ensemble clustering, might face challenges in 

achieving clear separation between clusters in the given dataset.  

 

Figure 67 Ensembled Clusters formed in the Experiment 

The silhouette score measures the compactness and separation of clusters, with 

higher values indicating better-defined clusters and greater cluster cohesion. In this 

case, the lower silhouette score suggests that the consensus clustering approach may 

struggle to delineate distinct clusters effectively. Further exploration and refinement 

of the consensus clustering technique or consideration of alternative clustering 

methods may be warranted to improve clustering performance and uncover 

underlying patterns in the data. Figure 67 visualizes the ensembled clusters formed 

in the study. The cluster on the left is the Affinity Propagation Cluster and the one 

on the right is Consensus Cluster. 
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12.6.5   Affinity Propagation 

Affinity Propagation identifies clusters through a process of passing messages 

between pairs of samples until convergence. This algorithm doesn't require the 

predefined specification of the number of clusters in advance.  Affinity Propagation 

forms clusters around exemplars by iteratively updating pairwise similarities 

between data points. With a silhouette score of 0.47, it produced clusters with 

moderate separation and cohesion, indicating clear boundaries between clusters and 

minimal overlap. Affinity Propagation's ability to adaptively select exemplars and 

form clusters based on pairwise similarities contributed to its relatively strong 

performance. The higher silhouette score suggests that Affinity Propagation 

effectively captured underlying patterns in the data and separated clusters more 

distinctly compared to other methods. 

12.6.6   Mean Shift Clustering 

This algorithm operates based on a sliding-window approach, aiming to discover 

clusters in a smooth density of samples. It utilizes a centroid-based mechanism, 

updating candidates for centroids to be the means of the data points within a given 

region. Mean Shift Clustering identifies clusters by iteratively shifting data points 

towards dense regions in the data space. Despite achieving a silhouette score of 0.34, 

indicating moderate cluster separation and cohesion, it exhibited some overlap 

between clusters. While Mean Shift Clustering effectively identified dense regions, 

leading to relatively well-defined clusters, the observed overlap suggests that it may 

have struggled to fully separate clusters in regions of lower density. Fine-tuning 

parameters or exploring alternative distance metrics could potentially improve Mean 

Shift Clustering's performance in this context. 

12.6.7   Agglomerative Clustering 

Agglomerative Clustering constructs nested clusters by iteratively merging or 

splitting clusters based on a linkage criterion such as average or complete linkage. 

Despite its intuitive approach, it yielded a silhouette score of 0.15, indicating 
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relatively low cluster separation and cohesion. This suggests that Agglomerative 

Clustering may have struggled to define clear boundaries between clusters or to 

capture underlying structures in the data effectively. The hierarchical nature of this 

method could have contributed to the observed overlap between clusters, leading to 

reduced silhouette scores. 

12.6.8   GMM (Gaussian Mixture Model) 

The Gaussian Mixture Model (GMM) operates under the assumption that data points 

are generated from a mixture of Gaussian distributions. GMM clustering assumes 

that data points are generated from a mixture of Gaussian distributions and estimates 

their parameters using an expectation-maximization algorithm.  

 

Figure 68 Clusters formed by GMM 

Although GMM achieved a silhouette score of 0.20, indicating slight improvement 

compared to DBSCAN, it still exhibited some overlap between clusters. This suggests 

that while GMM captured underlying distributional patterns in the data, it may not 

have fully separated clusters effectively. GMM is a probabilistic model that posits all 
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data points are generated from a blend of various Gaussian distributions with 

unknown parameters. Figure 68 illustrates the GMM clusters that have been 

generated in the study. These silhouette scores serve as a primary metric to gauge 

the efficiency of each clustering algorithm. Affinity Propagation, with the highest 

score, seems to be the most effective for this dataset. Conversely, Agglomerative 

Clustering has the lowest score, indicating it might not be suitable for the data. 

12.6.9  DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise)  

DBSCAN operates by identifying clusters based on dense regions of data points. 

Instead of requiring a predefined number of clusters, it dynamically forms clusters 

by expanding around core points with a sufficient number of neighboring points 

within a specified distance (eps). However, the obtained silhouette score of 0.12 

suggests that DBSCAN faced challenges in effectively defining distinct clusters. This 

lower score may indicate difficulties in accurately separating clusters due to low 

cohesion and significant overlap between them. Despite its ability to handle noise 

and outliers well, DBSCAN's performance in this context may have been limited by 

the dataset's characteristics or parameter settings. 

12.6.10 Spectral Clustering  

This method partitions the dataset based on eigenvectors of a similarity matrix 

derived from the data. However, it produced a negative silhouette score (-0.18), 

indicating failure to generate meaningful clusters with significant overlap between 

them. This outcome suggests that Spectral Clustering may have encountered 

challenges in capturing the underlying structure of the data or in adequately 

separating clusters. The negative silhouette score indicates that the clusters formed 

were poorly separated, possibly due to the algorithm's sensitivity to parameter 

settings or the dataset's characteristics. 
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12.7  Performance Evaluation 

The performance evaluation section presents a comprehensive analysis of various 

clustering algorithms applied to accented speech datasets for emotion classification. 

Through rigorous experimentation and thorough assessment, the study aimed to 

determine the efficacy of each clustering method in partitioning the data into 

meaningful clusters based on emotional content. 

The evaluation utilized the silhouette score as a primary metric to measure the 

quality of clustering results. This metric provides insights into the cohesion and 

separation of clusters, with higher silhouette scores indicating better-defined clusters 

with greater intra-cluster similarity and inter-cluster dissimilarity. 

Among the clustering algorithms evaluated, KMeans demonstrated strong 

performance, yielding a silhouette score of 0.75. This suggests that KMeans 

effectively partitioned the dataset into distinct clusters based on underlying 

emotional features, with high intra-cluster cohesion and inter-cluster separation. 

DBSCAN, despite its sensitivity to parameter settings, achieved a silhouette score of 

0.12, indicating reasonably well-separated clusters with some noise points. While 

DBSCAN effectively identified dense regions in the data space, its performance may 

have been impacted by the choice of epsilon and minimum samples parameters. 

Gaussian Mixture Model (GMM) clustering outperformed DBSCAN with a 

silhouette score of 0.20, indicating clear separation between clusters and high 

cohesion within clusters. GMM's probabilistic modeling approach allowed for 

flexible representation of the underlying data distribution, contributing to its 

effectiveness in capturing the nuances of emotional content. 

Agglomerative clustering, Spectral clustering, and BIRCH yielded silhouette scores 

ranging from 0.14 to 0.17, indicating relatively well-defined clusters with some 

overlap between clusters. While these hierarchical and graph-based clustering 

methods effectively captured hierarchical relationships and complex data structures, 
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they may have struggled to handle datasets with high dimensionality or varying 

densities. 

Mean Shift clustering demonstrated strong performance with a silhouette score of 

0.34, indicating well-separated clusters with high intra-cluster cohesion. Mean Shift's 

ability to identify dense regions in the data space contributed to its effectiveness in 

clustering accented speech datasets. 

Affinity Propagation achieved a silhouette score of 0.47, indicating moderate 

separation between clusters with some overlapping points. Affinity Propagation 

effectively identified exemplars and formed clusters based on pairwise similarities, 

but its performance may have been influenced by the damping parameter. 

OPTICS emerged as one of the top-performing clustering algorithms with a 

silhouette score of 0.55, indicating well-defined clusters with high intra-cluster 

cohesion. OPTICS effectively identified clusters of varying densities in the data 

space, making it suitable for datasets with irregular shapes and sizes. 

Ensemble clustering using majority voting achieved a silhouette score of 0.40, 

indicating well-separated clusters with high intra-cluster cohesion. Ensemble 

clustering utilized the diversity of multiple clustering solutions to improve overall 

performance and robustness. 

Overall, the performance evaluation provides valuable insights into the strengths 

and limitations of various clustering algorithms for emotion classification in accented 

speech. These findings can inform the selection of appropriate clustering methods 

for real-world applications, contributing to advancements in speech processing and 

affective computing technologies. 

12.8  Conclusion 

In conclusion, this chapter has provided a comprehensive evaluation of various 

clustering algorithms in the context of accented speech recognition and emotion 

classification. Through the application of clustering techniques such as KMeans, 
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DBSCAN, GMM, Agglomerative Clustering, Spectral Clustering, Mean Shift, 

Affinity Propagation, OPTICS, BIRCH, and Ensemble Clustering, valuable insights 

into their effectiveness in partitioning accented speech datasets into meaningful 

clusters representing different emotional states have been uncovered. 

The results of the clustering analysis have revealed significant variations in the 

performance and characteristics of each algorithm. While some algorithms, such as 

Affinity Propagation and OPTICS, demonstrated high silhouette scores and 

effectively identified well-defined clusters, others, such as Spectral Clustering, 

exhibited lower silhouette scores and struggled with cluster separation. These 

findings highlight the importance of carefully selecting clustering methods based on 

the specific characteristics of the dataset and the desired outcomes of the analysis. 

The examination of cluster formations generated by each algorithm has provided 

deeper insights into the underlying structure of accented speech data. Variations in 

cluster cohesion, separation, and overlap were observed, indicating the complexity 

of modeling emotional patterns in diverse speech samples. Understanding these 

details can guide researchers in making informed decisions when choosing 

clustering techniques for accented speech recognition applications. 
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13. Exploring Diverse Architectures - 1D 

CNN, 2D Parallel CNN, 4D CNN,4D 

Parallel CNN, Bi-LSTM, and Hybrid 

AASR Models 

13.1  Introduction 

The primary purpose of this work is to investigate and compare the effectiveness of 

different machine learning model architectures in terms of their performance and 

efficiency. Specifically, the work aims to evaluate 4D Parallel CNNs (with and 

without attention mechanisms), Bidirectional LSTM, a CNN-LSTM Hybrid, and a 2D 

Parallel CNN, to identify which model provides the best balance between accuracy, 

training time, and generalization capability. This evaluation is crucial for 

understanding how various architectural choices impact the ability of models to 

learn and predict accurately on complex datasets. 

13.2  Data Collection 

The primary objective of this data collection phase was to gather a diverse set of 

accented speech samples from various regions of Kerala. This ensured that the data 

covered a wide range of accents present in the Malayalam language, allowing the 

development of a robust accented speech recognition system. The primary source for 

the data collection was the publicly available platform, YouTube. Given its vast 

reservoir of user-generated content, YouTube offers a rich source of diverse 

Malayalam accents from different regions. AMSC-6 is the dataset used in this phase 

of the study. 

The data was assembled representing several regions to ensure wide representation 

and the distribution of the augmented samples is shown below: 

1. Kozhikode: 1788 samples 

2. Kannur: 2100 samples 

3.  Kasaragod: 1428 samples 
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4. Kottayam: 2103 samples 

5. Malappuram: 2100 samples 

6. Thrissur: 2184 samples 

7. Thiruvananthapuram: 2100 samples 

This distribution was carefully chosen to ensure not only a wide coverage of accents 

but also enough samples from each region to train the recognition model effectively. 

Every audio sample collected underwent a thorough annotation process. Each 

speech signal was labeled based on its corresponding textual content and its regional 

accent. Proper annotation is crucial in supervised learning scenarios, ensuring that 

the model has accurate ground truth data to learn from. 

 

Figure 69 Distribution of the Accented Data After Data Augmentation 

To ensure the data's quality and to enhance the model's generalization capabilities, 

the collected speech signals underwent a series of preprocessing steps. Noise 

reduction techniques were applied to minimize any background disturbances, 

ensuring clear and distinct speech signals. Different data augmentation techniques 

were implemented to artificially expand the size and diversity of the dataset. 

Augmentation can involve varying the pitch, speed, or introducing slight noise 

variations, ensuring that the model is exposed to a wider variety of data during 
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training. Figure 69 illustrates the statistics of the speech data that has been 

augmented for conducting the study. 

13.3  Data Pre-Processing 

The goal of the audio preprocessing phase is to enhance the clarity and quality of the 

collected audio samples. By emphasizing the frequency components that are most 

relevant to the speech signals and eliminating any noise or undesirable frequencies, 

this phase ensures a cleaner representation of the data for subsequent analysis. Band-

pass filtering was the primary technique used to emphasize the relevant frequency 

components of the Malayalam language. By doing so, the system focuses only on the 

most crucial frequency ranges, thereby enhancing the overall clarity of the audio 

data. The subsequent section describes the methods adopted for data preprocessing 

in this study. 

13.3.1  Butterworth Band-Pass Filter 

The Butterworth filter, known for its maximally flat frequency response in the 

passband, was chosen to perform band-pass filtering. This filter was designed with 

a low cutoff frequency of 200 Hz and a high cutoff frequency of 3400 Hz. These cutoff 

values were selected based on the typical frequency range of human speech, 

especially considering the unique phonetic characteristics of the Malayalam 

language. It ensures that only the frequency components between the defined low 

and high cutoff frequencies are retained, while others are attenuated. The processing 

workflow is discussed in the subsequent section. 

13.3.2  Audio Normalization 

Following the filtering process, audio normalization is performed to bring the 

amplitude of the audio waveform to a consistent level across all audio samples. 

Normalizing the audio ensures that volume levels are uniform across the dataset, 

which can lead to more consistent results when using the data for training and 

recognition. The normalization technique adopted revolves around dividing each 

audio sample by the absolute maximum value present in that sample. This process 

scales the audio waveform to the range of [-1, 1], ensuring a consistent amplitude 
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level. The normalized audio data is scaled to the 16-bit PCM range, i.e., [-32768, 

32767], to be compatible with the WAV format. 

This process ensures that all audio samples, regardless of their original volume or 

amplitude variations, have a consistent volume level after normalization, aiding in 

uniformity during subsequent analysis and modeling phases. Figure 70 represents 

audio waves before and after applying filtering and normalization. Figure 71 

represents the audio waves with Kottayam accent before and after applying 

normalization.  

 

Figure 70  Audio Waves Before and After Filtering and Normalization 

 

Figure 71 Audio Waves with and without Normalization 
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13.3.2.1 Illustrating the Effects of Normalization 

To better understand the impact of the normalization process on the audio samples, 

consider the waveform representations of an audio sample both before and after 

normalization. The top waveform represents the original audio, and the bottom 

waveform represents the normalized audio.  

Table 12 Comparative Statistical Analysis of Normal and Normalized Audio  

Statistical 

Measurement 
Original Audio Normalized Audio 

Max 

Amplitude 
7137 

0.8925(rounded to 4 decimal 

places) 

Min 

Amplitude 
-7997 -1.0 

Mean 

Amplitude 

-0.6033 (rounded to 4 decimal 

places) 

~0 (approximated due to the 

very small magnitude) 

Standard 

Deviation 

1564.8240 

(rounded to 4 decimal places) 

0.1957 

(rounded to 4 decimal places) 

 

From the statistical analysis, illustrated in Table 12 it is evident that post-

normalization, the audio samples are bounded within the range [-1, 1], as intended. 

The mean amplitude of the normalized audio is almost zero, indicating that the 

waveform is symmetrically distributed about the horizontal axis.  

The significant reduction in the standard deviation value in the normalized audio 

signifies a consistent amplitude level across the sample. This normalization process 

ensures that each audio sample has a consistent amplitude distribution, making it 

easier for machine learning models to process and recognize patterns without being 

influenced by varying volume levels. Figure 72 and Figure 73 represent the audio 

files before and after applying filtering respectively. 
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Figure 72 Audio Files Before Filtering 

 

Figure 73 Audio Files After Filtering 

13.4  Audio Augmentation 

To enhance the diversity of the dataset and improve the robustness of the speech 

recognition model, various audio augmentation techniques were applied to the 

preprocessed audio samples. These techniques simulate real-world variations and 

inconsistencies in speech patterns, allowing the model to generalize better to 

different scenarios. Figure 74 represents speech audio with Thiruvananthapuram 

accent. 
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Figure 74 Speech Audio with Thiruvananthapuram Accent (Original Recording) 

13.4.1  Time Stretching 

Time-stretching involves altering the duration of the audio signal without affecting 

its pitch. This can simulate speakers who may speak faster or slower than the typical 

rate. Figure 75 represents the time stretched wave plot for the audio with 

Thiruvananthapuram accent that is shown in Figure 74. 

1. speed_up = time_stretch(audio_data, 1.25)  # Speed up by 25% 

2. slow_down = time_stretch(audio_data, 0.75)  # Slow down by 25% 

 

Figure 75 The Stretched Wave plot (of Figure 74) 

13.4.2   Pitch Shifting 

Pitch shifting modifies the pitch of the audio signal, effectively simulating voices of 

different tonal qualities or people singing/speaking in varied tones. Figure 76 

illustrates the pitch shifted audio of the audio represented in Figure 74. 
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pitch_shift_up = pitch_shift(audio_data, fs, n_steps=4)  # Up by 4 half-steps 

pitch_shift_down = pitch_shift(audio_data, fs, n_steps=-4) # Down by 4 half steps 

 

Figure 76 The Pitch Shifted Audio (Refer Wave plot In Figure 74) 

13.4.3   Adding Noise  

Introducing random noise to the audio simulates real-world scenarios where the 

recordings might have background disturbances or interference. Figure 77 represents 

the wave plot after adding noise to the audio file represented in Figure 74. 

noise = np.random.normal(0, 0.005, len(audio_data)) 

audio_with_noise = audio_data + noise 

 

Figure 77 The Wave Plot after Adding Noise (Refer Figure 74) 

These augmentation techniques, when combined, provide a rich and varied dataset 

that can help in training a more resilient and accurate speech recognition model. It is 

essential to note that these augmentations should be applied judiciously, ensuring 
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that the resulting audio is still representative of genuine Malayalam speech patterns 

and accents. 

13.5  Audio Feature Extraction 

Feature extraction is a critical process in the domain of audio and speech processing. 

Raw audio signals, often represented as waveforms, are complex and carry a wealth 

of information. Directly processing or analyzing these signals can be computationally 

expensive and may not yield meaningful insights. Features, on the other hand, distill 

the essence of the audio, highlighting its key characteristics and making subsequent 

tasks like classification or pattern recognition more tractable and accurate.  

The increasing complexity of audio data and its diverse sources necessitates 

sophisticated preprocessing techniques. Traditional Fourier Transforms might not 

always suffice, especially for short audio samples. This research commenced with 

optimizing the Fast Fourier Transform (FFT) window size to aptly capture the 

frequency domain characteristics. 

13.5.1   Adaptive FFT Window Size 

 Understanding that a fixed FFT size can pose computational inefficiencies, this work 

introduced the adjust_nfft function. This adaptive method gauges the length of audio 

samples and accordingly adjusts the FFT window, ensuring optimal spectral 

representation. For certain short audio samples, the default FFT size might be too 

large, leading to computational inefficiencies or errors.  

The adjust_nfft function determines an appropriate FFT size based on the audio 

sample's length. In many audio processing tasks, especially when dealing with 

shorter audio clips or snippets, using the default FFT size (often set to 2048 points) 

may not be optimal. It could be too large in comparison to the length of the audio 

data, leading to inefficiencies or inaccuracies in the spectral representation. The 

function adjust_nfft is designed to dynamically adjust the FFT size based on the 

length of the audio data.  
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The steps involved in the operation are: 

1. Check against Default FFT Size: The function first checks if the length of the audio 

data is less than the default nfft value. If the audio data is longer than the default, 

it simply returns the default nfft. 

2. Determine Adjusted FFT Size: If the audio data length is shorter than the default 

nfft, the function calculates the next lower power of 2 that is less than or equal to 

the audio data length. This is crucial because FFT computations are most efficient 

when the number of data points is a power of two. 

3. Return the Adjusted FFT Size: The function then returns this adjusted value. 

The rationale behind this approach is to ensure the FFT computation is both efficient 

(by sticking to powers of 2) and relevant (by matching the data's length). Using an 

FFT size that closely aligns with the length of the audio sample ensures a more 

accurate spectral representation, without unnecessary zero-padding or loss of data. 

13.5.2   Holistic Feature Extraction 

 The significant work in the initial phase after dataset construction centers on the 

feature extraction methods. The approaches adopted in the study are the following: 

1. Spectral Contrast: Emphasizes the amplitude variances, pivotal in segregating 

sound sources. 

2. Tonnetz & Polyfeatures: By quantifying harmonic relations and polynomial 

coefficients of the spectrogram, deeper insights into the audio's tonal structure 

are obtained. 

3. HNR & Formants: Utilizing the Parselmouth library in Python -interfacing the 

Praat software-the clarity of voice and its resonant frequencies are procured. 

4. Pitch Variability: Measures variations in the fundamental frequency, crucial for 

understanding tonal variations. 
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5. ZCR & Chroma STFT: Separating the audio's inherent noisiness and harmonic 

content, these features provide pivotal insights into its texture. 

6. RMS & Mel Spectrogram: These methods yield crucial metrics on the audio's 

loudness and its frequency spectrum representation on the Mel scale. 

7. MFCCs and its Deltas: Mel-frequency cepstral coefficients provide a 

representation of the short-term power spectrum of sound. The study also 

extracts its first and second derivatives (deltas and delta-deltas), which provide 

insights into the trajectory of MFCCs over time. 

Figure 78 represents the speech features extracted at different phases. Central to this 

research is the get_features function-a comprehensive tool that processes individual 

audio files. It seamlessly integrates the reading, feature extraction, and exception 

handling, ensuring a streamlined process. For certain short audio samples, the 

default FFT size might be too large, leading to computational inefficiencies or errors. 

The adjust_nfft function determines an appropriate FFT size based on the audio 

sample's length. 

 

Figure 78 The Extracted 585 Features  
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By extracting a diverse set of features, the research captured different facets of the 

audio. While some features might be better suited for rhythm analysis, others might 

excel at capturing the tonal variations. A comprehensive feature set ensures a holistic 

understanding of the audio, making it suitable for a variety of applications like 

speech recognition, music analysis, and environmental sound classification. 

Feature extraction plays a pivotal role in training machine learning models. By 

providing these models with a structured and meaningful set of inputs (features), 

their ability to recognize patterns and classify audio were enhanced. For deep 

learning, especially with architectures like Convolutional Neural Networks (CNNs) 

for audio, these features can serve as valuable input layers, making training more 

efficient. The size of the original speech dataset and the augmented speech dataset is 

illustrated in Figure 79. 

 

Figure 79 The Original Vs Augmented Speech Set 

Audio data augmentation, like adding noise or time-stretching, can create variations 

of the original sound samples. Extracting features from both original and augmented 

data enriches the dataset, making models more robust and capable of handling real-
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world variations. Feature extraction is the cornerstone of audio analysis, offering a 

structured and efficient way to understand and process audio waves. Through this 

process, the vast complexity of audio signals is distilled into meaningful metrics, 

empowering further analysis, and application. 

13.5.3 The Pseudocode for the Feature Engineering 

FUNCTION adjust_nfft(data_length, default_n_fft=2048): 

IF data_length < default_n_fft: 

RETURN 2^floor(log2(data_length)) 

ELSE: 

RETURN default_n_fft 

FUNCTION extract_features(data, sample_rate, n_fft=2048): 

data_length = length of data 

adjusted_n_fft = adjust_nfft(data_length, n_fft) 

Compute Spectral Contrast using data and sample_rate 

Compute Tonnetz using harmonic of data and sample_rate 

Compute Polyfeatures using data and sample_rate 

Compute Tempogram using data and sample_rate 

Convert data to Parselmouth Sound 

Compute HNR using Parselmouth library. 

Extract Formants using Parselmouth library. 

Compute Pitch Variability using data. 

Extract MFCCs and its Deltas and Delta-Deltas from data 

Compute ZCR for data 

Compute Chroma STFT for data 

Compute RMS for data 

Compute MelSpectrogram for data 

RETURN combined feature set. 

FUNCTION get_features(path, n_fft=2048): 

Load audio data from path 

RETURN extract_features(data, sample_rate, n_fft) 

FUNCTION butter_bandpass_filter(data, lowcut, highcut, fs, order=5): 

Design and apply Butterworth band-pass filter to data. 

RETURN filtered data. 

FUNCTION normalize_audio(audio): 

Normalize audio amplitude to between -1 and 1 

RETURN normalized audio 
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FUNCTION audio_augmentation(data, fs): 

Speed up data by 25% 

Slow down data by 25% 

Pitch shift data up by 4 half-steps 

Pitch shift data down by 4 half-steps 

Add random noise to data. 

SAVE augmented audio samples. 

FUNCTION extended_features(data, sample_rate): 

Compute Spectral Contrast 

Compute Tonnetz 

Compute Polyfeatures 

Compute Tempogram 

Compute HNR using Parselmouth 

Compute Formants using Parselmouth 

Compute Pitch Variability 

Compute Higher-Order MFCCs 

RETURN combined extended feature set 

MAIN: 

For each audio file in the dataset: 

Apply butter_bandpass_filter to filter out unwanted frequencies. 

Apply normalize_audio to normalize amplitude. 

Extract core features using get_features function. 

Augment audio data using audio_augmentation function. 

Extract extended features using extended_features function. 

Combine and save all features for further analysis or model training. 

 

13.6  The Feature Dimension Reduction 

This is a structured approach to refining and preprocessing a dataset, primarily 

aimed at improving the quality of the features for machine learning applications. 

Figure 80 represents the size of the original features counts in blue and the feature 

reduced set in green. 
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Figure 80 Size of Original Vs Reduced Feature Set 

The various steps involved in feature dimension reduction are discussed below. 

13.6.1   Feature Correlation 

Compute a correlation matrix for all features in the dataset to understand the linear 

relationship between each pair of features. On Visualizing this correlation matrix, it 

provides an intuitive view of the strength and direction (positive or negative) of 

relationships between variables that can be used to identify highly correlated 

features. If two features are highly correlated (in this research, greater than an 

absolute value of 0.9), it suggests they carry very similar information. Retaining both 

can be redundant. Drop these highly correlated features from the dataset to remove 

redundancy. 

13.6.2   Normalization 

The data is standardized using Standard Scaler, which scales features, so they have 

a mean of 0 and a standard deviation of 1. This ensures that all features have the 

same scale, which is essential for many machine learning algorithms. 
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13.6.3   Dimensionality Reduction using Principal Component 

Analysis (PCA)  

PCA is applied to the scaled data that transforms the original features into a set of 

new components (vectors) that are orthogonal (uncorrelated), and it arranges these 

vectors by the amount of original variance they capture. This study employs PCA to 

retain enough components to explain 95% of the original data variance. 

13.6.4   Feature Importance using Random Forest 

Train a Random Forest Classifier on the scaled data to determine the importance of 

each feature. The importance of each feature (often based on how often a feature is 

used to split data in the trees of the forest) is then plotted in a bar plot, giving a visual 

representation of which features are most informative for the classification task. 

From the importance ranking, only the top N features are retained (in this study, 

N=100). 

The preprocessing step also involves handling missing data: Any NaN (Not a 

Number) values in the dataset are filled with the mean values of their respective row 

values. This method is adopted to handle missing data, ensuring that the model 

doesn't break due to unexpected NaN values. 

A function has been defined for consolidated processing which accepts the input 

features and labels, executing the above steps in sequence. The function then returns 

the refined data after dropping redundant features, normalization, PCA, and 

Random Forest feature selection. This entire process ensures that the dataset is 

devoid of redundant features, all features are on the same scale, the dimensionality 

is reduced while retaining most of the variance, and the most informative features 

are prioritized. This preprocessed data is typically more amenable to machine 

learning models and can lead to better performance. 



265 

13.7  Methodology 

Higher-dimensional CNNs have a larger receptive field, allowing them to capture 

more complex spatial patterns and relationships in the input data. This leads to more 

discriminative feature representations, which can enhance the model's ability to 

extract relevant information from accented speech signals. As the dimensions of 

CNNs increase, they can learn hierarchical representations of features at multiple 

levels of abstraction. This hierarchical feature learning enables the model to capture 

both low-level acoustic cues (e.g., phonetic features) and high-level linguistic 

structures (e.g., accent-specific patterns) in the input data, leading to improved 

performance in AASR tasks. 

Higher-dimensional CNNs typically have a larger number of parameters, allowing 

them to represent more complex functions and capture finer-grained details in the 

data. This increased model capacity enables CNN to learn more expressive 

representations of accented speech signals, leading to higher performance in terms 

of accuracy and robustness. 

In AASR tasks, where both spatial and temporal information is important for 

understanding accented speech patterns, higher-dimensional CNNs can effectively 

model both spatial and temporal relationships in the input data. This enables the 

model to capture long-range dependencies and temporal dynamics in accented 

speech signals, leading to improved performance in recognizing accents. 

Higher-dimensional CNNs have the potential to generalize better to unseen data, 

including accents that are not present in the training set. By learning more abstract 

and invariant representations of accented speech signals, these models are less likely 

to overfit to specific accents or recording conditions, leading to improved 

performance on diverse datasets. Increasing the dimensions of CNNs can result in 

improved feature representation, hierarchical feature learning, enhanced model 

capacity, effective modeling of spatial-temporal relationships, and better 

generalization, all of which contribute to higher performance in AASR tasks.  
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The six different approaches for AASR construction in this study are: 

1. 1D CNN Approach 

2. 2D Parallel CNN Approach with Attention Block 

3. 4D Parallel CNN Approach 

4. 4D Parallel CNN Approach with Attention Block 

5. BiLSTM Approach 

6. Hybrid Approach 

13.7.1  1D CNN Approach 

The description of the architecture of the 1D CNN, reveals an important 

convolutional layer that operates on input sequences with dimensions (None, 160, 

64) and outputs sequences of the same shape, utilizing 256 parameters to capture 

local patterns within the data.  Subsequently, a Batch Normalization layer intervenes, 

normalizing activations and introducing 256 additional parameters. A Dropout layer 

follows, with an input and output shape mirroring the previous layers, employing a 

regularization technique to mitigate overfitting. The Flatten layer reshapes the 

output into a 1D format, specifically (None, 10240), preparing the data for further 

processing. Transitioning to a Dense layer, the architecture introduces 655,424 

parameters to facilitate the transformation of features. Finally, the output layer 

concludes the network, producing predictions with an output shape of (None, 156) 

and incorporating 10,140 parameters. The model summary, encapsulating a total of 

666,076 parameters, emphasizing the significance of 665,948 trainable parameters 

and 128 non-trainable parameters. This detailed configuration embodies a carefully 

crafted 1D CNN architecture, balanced to effectively analyze sequential data while 

mitigating the risk of overfitting through regularization techniques. Table 13 

illustrates the different layers of the 1D CNN architecture. Figure 81 visualizes the 

model architecture of 1D CNN. 
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Figure 81 Model Architecture of 1D CNN 
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Table 13 Model Summary of 1D CNN 

Layer Type Layer Name 
Input 

Shape 

Output 

Shape 
Parameters 

Convolutional 

Layer 
conv1d_34 

(None, 

160, 64) 

(None, 

160, 64) 
256 

Batch 

Normalization  
batch_normalization_2 

(None, 

160, 64) 

(None, 

160, 64) 
256 

Dropout Layer               dropout_17   
(None, 

160, 64)      

(None, 

160, 64)     
0 

Flatten Layer               flatten_9                    
(None, 

160, 64)        

 (None, 

10240)    
0 

Dense Layer                 dense_18                     
(None, 

10240)          
(None, 64)          655,424      

Output Layer                dense_19                     
(None, 

64)             

(None, 

156)         
10,140       

Total 666,076 

Trainable 

Parameters 
665,948 

Non-trainable 

Parameters 
128 

 

13.7.1.1 Performance Evaluation 

In the final epoch (Epoch 10/10), the training process for the model was carried out 

over 691 batches, with each batch comprising 5 seconds and having a mean square 

error (MSE) loss of 1.1963 and an accuracy of 73.27%. The validation set, evaluated 

concurrently, exhibited a lower loss of 1.0850 and a slightly higher accuracy of 

76.17%.  The overall performance metrics suggest that the model achieved a notable 

accuracy on the validation set, emphasizing its ability to generalize well to unseen 

data. Specifically, the test accuracy, computed separately, reached 76.17%. Table 14 

illustrates the performance of 1D CNN. 

Table 14 Performance Evaluation of 1D CNN 

Metric Training Set Validation Set Test Set 

Loss 1.1963 1.0850 1.195 

Accuracy   73.27%  76.17% 76.17% 
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Figure 82 Train-Test Loss 

 
Figure 83 Train-Validation Accuracy 

 

This outcome signifies a robust and reliable performance of the model in classifying 

the provided data. Figure 82 and Figure 83 illustrate the train-test loss, train-

validation accuracy, train-validation loss respectively. 

13.7.2  The Parallel 2D CNN With Attention Mechanism 

The 2D Parallel CNN model architecture depicted in Table 15 has been crafted to 

provide enhanced feature extraction capabilities. This is achieved through a 

combination of parallel convolutional filters, batch normalization, and attention 

mechanisms. Here's a detailed breakdown of the architecture. 

The architectural design of the model encompasses a series of interconnected layers 

aimed at proficiently processing input sequences. Commencing with an Input Layer, 

configured to accept sequences of dimensions (162, 1), the subsequent Parallel 

Convolution Layers, denoted by conv1d_37 and conv1d_38, employ filters of sizes 3 

and 5, respectively. This dual convolutional approach enables the extraction of 

features at varying temporal granularities, capturing both shorter-term and slightly 

longer-term patterns.  

The Concatenate layer integrates the outputs of these convolutional layers, 

augmenting the time dimension while preserving depth. The Normalization and 

Regularization mechanisms, implemented through Batch Normalization 

(batch_normalization_4) and Dropout (dropout_19), ensure a stable training process, 

mitigating overfitting and facilitating faster convergence.  
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Table 15 Model Summary of 2D CNN With Attention Mechanism 

Layer Type Layer Name 
Output 

Shape 
Parameters Connected to 

Input Layer input_2 
(None, 

162, 1) 
0 [] 

Convolutional 

Layer            
conv1d_37                    

(None, 

160, 64)     
256   ['input_2[0][0]’]           

Convolutional 

Layer            
conv1d_38                    

(None, 

158, 64)     
384 ['input_2[0][0]’]           

Concatenate Layer             concatenate_1                
(None, 

318, 64)     
0 ['conv1d_37[0][0]' 

Batch 

Normalization 

Layer      

batch_normaliza

tion_4          

(None, 

318, 64)    
256        ['concatenate_1[0][0]']   

Dropout Layer                 dropout_19                   
(None, 

318, 64)     
0 

['batch_normalization_4[

0][0]'] 

Attention 

Mechanism Layer     
attention_1                  

(None, 

318, 64)     
0 ['dropout_19[0][0]']        

Flatten Layer                  flatten_11                   
(None, 

20352)       
0 ['attention_1[0][0]']          

Dense Layer                  dense_22   
(None, 

64)          
1,302,592 ['flatten_11[0][0]']   

Dense Layer                   dense_23                     
(None, 

156)         
10,140     ['dense_22[0][0]']             

Total                - - 1,313,628                            - 

Trainable 

Parameters 
- - 1,313,500 - 

Non-trainable 

Parameters 
- - 128   - 

 

The introduction of an Attention Mechanism (attention_1) enhances the model's 

ability to focus on specific segments of the input sequence, thereby prioritizing 

crucial features for predictions. The Flattening and Dense Layers, comprising 

flatten_11, dense_22, and dense_23, reshape and process the extracted features, 

ultimately culminating in a final output layer with 156 neurons.  
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This layer utilizes a softmax activation function, ensuring normalized output values 

between 0 and 1 that collectively sum to 1. The collaborative integration of parallel 

convolutional filters, attention mechanisms, and robust regularization techniques 

contributes to the model's adaptability and potential for accurate predictions in 

diverse temporal scenarios. 

13.7.2.1 Performance Evaluation of the 2D Parallel CNN Model 

with Attention Mechanism 

After training for 60 epochs, the performance metrics for the final epoch are as 

follows: 

1. Training Loss: The model reports a training loss of 1.4957. Loss is a measure of 

how well the model's predictions match the true labels of the training data. Lower 

loss indicates a better fit to the training data. 

2. Training Accuracy: The model achieved a training accuracy of 66.25%. This 

indicates that, during the training phase, the model correctly predicted the class 

labels for approximately 66.25% of the training samples. 

3. Validation Loss: The validation loss is reported at 1.2306. The validation loss 

provides insights into how well the model generalizes to new, unseen data (the 

validation dataset). It's crucial to monitor this metric to ensure that the model 

isn't overfitting to the training data. 

4. Validation Accuracy: The model's performance on the validation set resulted in 

an accuracy of 72.04%. This metric indicates that the model correctly predicted 

the class labels for approximately 72.04% of the validation samples. 

The 2D Parallel CNN model showcases reasonable performance with a training 

accuracy of approximately 66.25% and a validation accuracy of 72.04%. The higher 

validation accuracy compared to the training accuracy can be attributed to various 

factors, including the architecture's ability to generalize well to unseen data or the 
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specific nature and distribution of the validation set. The layer wise model 

architecture of 2D CNN with Attention Mechanism is illustrated in Figure 84.  

Figure 85 displays the training and testing performance metrics of a machine 

learning model over 60 epochs. The left graph illustrates the model accuracy, while 

the right graph depicts the model loss. Initially, the training accuracy is quite low but 

steadily improves, reaching around 65% by the 60th epoch. The testing accuracy 

follows a similar trend but consistently remains higher than the training accuracy 

throughout the epochs, peaking at approximately 70% around the 55th epoch before 

slightly plateauing. 

The model loss graph on the right uses the y-axis to represent the loss values, starting 

from around 5.0 and decreasing to about 1.0, with the x-axis again denoting the 

epochs from 0 to 60. Both the training loss (blue line) and testing loss (orange line) 

decrease as training progresses. The initial loss is significantly high for both training 

and testing datasets, but they quickly drop within the first 10 epochs. By the end of 

the 60 epochs, the training loss stabilizes at around 1.5, while the testing loss is 

slightly lower, approximately 1.2, indicating a consistent reduction in error over 

time. 

The learning curves indicated that the model is learning effectively, with 

improvements in accuracy and reductions in loss for both training and testing 

datasets. The higher accuracy and lower loss on the testing dataset compared to the 

training dataset may indicate good generalization performance, suggesting that the 

model is not overfitting to the training data. 
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Figure 84 The Model Architecture of 2D CNN with Attention Mechanism 

 

 

Figure 85 The Learning Curves Of 2D CNN With Attention Mechanism 

13.7.3  Parallel 4D Convolutional Neural Network Model Design 

In this study, a novel approach is proposed by constructing a multi-input 

Convolutional Neural Network (CNN) to use the potential relationship between 
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differently structured feature spaces of the same dataset. The dataset's feature set, 

represented by X, was restructured into four distinct configurations. This reshaping 

was crucial for inputting the data into four different CNN architectures 

simultaneously. 

13.7.3.1 Model Architecture 

The parallel 4D CNN is composed of four individual branches. Each branch 

exclusively processes one reshaped version of the dataset. The architecture within 

each branch includes convolutional layers, followed by max-pooling, leading to the 

generation of diverse feature maps for each data dimension. Once each branch 

processes its respective data dimension, the outputs are concatenated, merging the 

feature maps into a unified feature space. 

This ensures that the model benefits from the unique patterns identifiable in each 

data dimension. Post concatenation, the unified feature space undergoes dense 

layers, culminating in the final output layer, which classifies the input into one of the 

156 unique classes. Table 16 represents each layer of the architecture layer wise in 

each row of the table in a sequential manner. 

13.7.3.2 Model Architecture Description 

The layer wise breakdown of the model is illustrated in Table 16: 

Table 16 Model Summary of 4D Parallel CNN 

Layer (type) Input Shape Output Shape Parameters 

Input1 (Conv2D) (38, 4, 1) (36, 2, 32) 320 

MaxPooling2D (36, 2, 32) (18, 1, 32) 0 

Flatten (18, 1, 32) (576) 0 

Input2 (Conv2D) (19, 8, 1) (17, 7, 32) 320 

MaxPooling2D (17, 7, 32) (8, 3, 32) 0 

Flatten (8, 3, 32) (768) 0 

Input3 (Conv2D) (76, 2, 1) (74, 1, 32) 224 

Flatten (74, 1, 32) (2368) 0 

Input4 (Conv2D) (152, 1, 1) (150, 1, 32) 128 
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Layer (type) Input Shape Output Shape Parameters 

MaxPooling2D (150, 1, 32) (75, 1, 32) 0 

Flatten (75, 1, 32) (2400) 0 

Concatenate (576, 768, 2368, 2400) (6112) 0 

Dense1 (Dense) (6112) (128) 781,376 

Output (Dense) (128) (156) 20,124 

 

The neural architecture is ingeniously designed with a novel approach, featuring 

four parallel branches, each dedicated to processing unique input dimensions. This 

strategic differentiation in input sizes empowers the model to comprehensively 

grasp diverse data perspectives, facilitating a detailed understanding of intricate 

patterns.  

In the first branch, tailored for a 38 x 4 x 1 input, a Conv2D layer initiates the 

processing, succeeded by a MaxPooling2D operation and a Flatten layer for output 

linearization.  

Branch 2, designed for a 19 x 8 x 1 input, follows a similar structure. Meanwhile, 

Branch 3, accepting a 76 x 2 x 1 input, incorporates only a Conv2D layer and a Flatten 

layer, omitting max pooling to potentially retain more spatial information. Branch 4, 

processing a 152 x 1 x 1 input, mirrors the design of Branches 1 and 2. After individual 

processing, the outputs from these branches are concatenated, forming a unified 

feature space of size 6,112. Subsequent layers, including a dense layer with 128 

neurons and a final dense layer with 2 neurons, contribute to the classification task.  

This model's innovation lies in its simultaneous processing of multiple data 

perspectives, ensuring a holistic approach that captures diverse feature scales and 

patterns across dimensions. This distinctive design sets it apart from traditional 

single-dimensional architectures, combining diversity in feature extraction with 

focused interpretation. 

13.7.3.3 Performance Evaluation 

In the evaluation of the model's performance, several key metrics are considered to 

provide a comprehensive understanding of its effectiveness. These metrics, derived 
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from the validation phase, shed light on the model's ability to make accurate 

predictions and highlight areas for potential improvement. 

The model exhibits an innovative architecture with four parallel branches, 

processing distinct input dimensions simultaneously. It achieves notable 

performance in validation and test phases, with high precision indicating reliability 

in positive predictions. While the overall accuracy is strong, there is room for further 

investigation, especially concerning recall, to enhance positive case identification. 

The training phase also shows consistency in accuracy and precision, suggesting a 

balanced model. 

Table 17 The Performance Evaluation 

Aspect Details 

Model Architecture 

Four parallel branches processing unique input 

dimensions. Branches differ in input size and 

processing steps. After individual processing, 

outputs are concatenated.  Subsequent dense 

layers contribute to classification.         

Validation Loss 1.1083 

Validation Accuracy 76.53% 

Validation Precision 99.01% 

Validation Recall 75.88% 

Overall Accuracy 76.53% 

Test Loss 1.1082 

Test Accuracy 76.53% 

Test Precision 99.01% 

Test Recall 75.88% 

Train Loss 1.258 

Train Accuracy  75.53% 

Train Precision 98.08% 

Train Recall 74.88% 
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Figure 86 Model Architecture 
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The model's performance evaluation illustrated in Table 17 reveals a comprehensive 

analysis across training, validation, and test phases. The neural architecture, 

distinguished by four parallel branches processing unique input dimensions, 

demonstrates an innovative approach. Each branch is tailored to specific input sizes, 

facilitating a detailed understanding of diverse data perspectives. Following 

individual processing, the outputs are concatenated, forming a feature space of 6,112 

dimensions. Subsequent layers, including dense layers, contribute to the 

classification task. Figure 86 represents the detailed architecture of the model.  

 

Figure 87 The Learning Curves 

During the validation phase, the model exhibits a validation loss of 1.1083, signifying 

its alignment of predictions with actual labels. The validation accuracy of 76.53% 

indicates a notable correctness in predicting labels. The validation precision of 

99.01% showcases the model's reliability in correctly predicting positive observations 

and the validation recall of 75.88% suggests potential instances where positive cases 

might be overlooked. The overall accuracy reinforces the model's capability to 

predict the correct label approximately 76.53% of the time on the evaluation dataset. 

Figure 87 illustrates the learning curves of the experiment. 

In the test phase, the model maintains consistency with the validation results. The 

test loss of 1.1082 signifies alignment with actual labels, and the test accuracy of 

76.53% demonstrates impressive correctness.  
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The test precision, mirroring the validation precision at 99.01%, reaffirms the model's 

reliability in positive predictions. The test recall of 75.88% indicates a similar trend 

observed in the validation phase. The training phase provides additional insights. 

With a training loss of 1.258, slightly higher than the test loss, there is a potential 

indication of some level of overfitting. Slightly lower recall values suggest potential 

opportunities for improvement, particularly in identifying positive cases. The 

training accuracy of 75.53% signifies correctness during the training set, while the 

training precision of 98.08% mirrors the precision observed in the test and validation 

phases. The training recall of 74.88% aligns with the recall observed in the test phase. 

Overall, the model demonstrates consistent performance between training, 

validation, and test phases, with high precision and reasonable accuracy.  

13.7.4  4D CNN With Attention Mechanism 

Convolutional Neural Networks (CNNs) have gained prominence in processing 

grid-like data, such as image and audio. The integration of the attention mechanism, 

inspired by human attention, allows the model to focus on more informative parts of 

the input. In the context of audio processing and the Malayalam language's accented 

speech recognition, emphasizing significant features can boost model performance. 

Table 18 illustrates the architecture of 4D CNN with attention mechanism. 

Table 18 Model Summary of 4D CNN With Attention Mechanism 

Layer (type) Output Shape Parameters Connected to 

input_105 (Input Layer)       (None, 38, 4, 1) 0 [] 

input_106 (Input Layer)        (None, 19, 8, 1) 0 [] 

input_107 (Input Layer)         (None, 76, 2, 1) 0 [] 

input_108 (Input Layer)        (None, 152, 1, 1) 0 [] 

conv2d_126 (Conv2D)            (None, 36, 2, 32) 320 ['input_105[0][0]'] 

conv2d_128 (Conv2D)            (None, 17, 6, 32) 320 ['input_106[0][0]'] 

conv2d_130 (Conv2D)            (None, 74, 1, 32) 224 ['input_107[0][0]'] 

conv2d_132 (Conv2D)            (None, 150, 1, 32) 128 ['input_108[0][0]'] 

 conv2d_127 (Conv2D)            (None, 36, 2, 1) 33 ['conv2d_126[0][0]'] 

conv2d_129 (Conv2D)            (None, 17, 6, 1) 33 ['conv2d_128[0][0]'] 

conv2d_131 (Conv2D)            (None, 74, 1, 1) 33 ['conv2d_130[0][0]'] 

conv2d_133 (Conv2D)            (None, 150, 1, 1) 33 ['conv2d_132[0][0]'] 

reshape_32 (Reshape)         (None, 72) 0 ['conv2d_127[0][0]'] 
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Layer (type) Output Shape Parameters Connected to 

reshape_34 (Reshape)          (None, 102) 0 ['conv2d_129[0][0]'] 

reshape_36 (Reshape)           (None, 74) 0 ['conv2d_131[0][0]'] 

reshape_38 (Reshape)           (None, 150) 0 ['conv2d_133[0][0]'] 

activation_18(Activation)     (None, 72) 0 ['reshape_32[0][0]'] 

activation_19 (Activation)     (None, 102) 0 ['reshape_34[0][0]'] 

activation_20 (Activation)                (None, 74) 0 ['reshape_36[0][0]'] 

activation_21 (Activation)     (None, 150) 0 ['reshape_38[0][0]'] 

repeat_vector_17(Repeat 

Vector)          
(None, 32, 72) 0 ['activation_18[0][0]'] 

repeat_vector_18 (None, 32, 102) 0 ['activation_19[0][0]'] 

repeat_vector_19 (None, 32, 74) 0 ['activation_20[0][0]'] 

repeat_vector_20 (None, 32, 150) 0 ['activation_21[0][0]'] 

permute_17 (Permute)           (None, 72, 32) 0 ['repeat_vector_17[0][0]'] 

permute_18 (Permute)         (None, 102, 32) 0 ['repeat_vector_18[0][0]'] 

permute_19 (Permute)           (None, 74, 32) 0 ['repeat_vector_19[0][0]'] 

permute_20 (Permute)           (None, 150, 32) 0 ['repeat_vector_20[0][0]'] 

reshape_33 (Reshape)  (None, 36, 2, 32) 0 ['permute_17[0][0]'] 

reshape_35 (Reshape)       (None, 17, 6, 32) 0 ['permute_18[0][0]'] 

reshape_37 (Reshape)           (None, 74, 1, 32) 0 ['permute_19[0][0]'] 

reshape_39 (Reshape)     (None, 150, 1, 32) 0 ['permute_20[0][0]'] 

multiply_16 (Multiply)         (None, 36, 2, 32) 0 
['conv2d_126[0][0]], 

'reshape_33[0][0]'] 

multiply_17 (Multiply)         (None, 17, 6, 32) 0 
['conv2d_128[0][0]', 

'reshape_35[0][0]'] 

multiply_18 (Multiply)                   (None, 74, 1, 32) 0 
['conv2d_130[0][0]', 

'reshape_37[0][0]'] 

multiply_19 (Multiply)                  (None, 150, 1, 32) 0 
['conv2d_132[0][0]', 

'reshape_39[0][0]'] 

flatten_95 (Flatten)          (None, 2304) 0 ['multiply_16[0][0]'] 

flatten_96 (Flatten)         (None, 3264) 0 ['multiply_17[0][0]'] 

flatten_97 (Flatten)            (None, 2368) 0 ['multiply_18[0][0]'] 

flatten_98 (Flatten)           (None, 4800) 0 ['multiply_19[0][0]'] 

concatenate_18 (Concatenate)   (None, 12736) 0 

['flatten_95[0][0]', 

'flatten_96[0][0]', 

'flatten_97[0][0]', 

'flatten_98[0][0]'] 

dense_37 (Dense)             (None, 128) 1630336 ['concatenate_18[0][0]' 

dense_38 (Dense)               (None, 156) 20124 ['dense_37[0][0]'] 

Total parameters: 1,651,584 

Trainable parameters: 1,651,584                        

Non-trainable parameters:0 
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The neural architecture presented consists of four distinct input layers, each 

designated for processing specific dimensions of the input data, such as spatial and 

channel information. Following the inputs, a series of convolutional layers, namely 

conv2d_126, conv2d_128, conv2d_130, and conv2d_132, employ varying filter sizes 

to learn hierarchical features from the input data. Subsequent reshape layers 

(reshape_32, reshape_34, reshape_36, reshape_38) modify the output shapes, and 

activation layers (activation_18, activation_19, activation_20, activation_21) 

introduce non-linearities to capture intricate patterns.  

The inclusion of repeat vector and permute layers suggests a temporal aspect in the 

architecture, enabling the model to process sequential data effectively. Element-wise 

multiplication layers (multiply_16, multiply_17, multiply_18, multiply_19) facilitate 

interactive feature learning by combining the convolutional outputs with reshaped 

and permuted activations.  

The flattened outputs are concatenated (concatenate_18), creating a comprehensive 

feature vector. Two dense layers (dense_37, dense_38) follow, serving as the final 

stages for feature transformation or classification, with the latter having neurons 

indicative of a multi-class classification task. This architecture, adept at handling 

multi-dimensional data, showcases a thoughtful combination of convolutional, 

reshaping, and dense layers to capture diverse patterns and relationships within the 

input data. 

13.7.4.1 Model Description 

The model employs four parallel CNN branches as shown in Figure 88. Each branch 

processes the input with different dimensions, capturing varied feature 

representations. Within each branch, an attention mechanism is applied after the 

initial convolution. This mechanism assigns different weights to different parts of the 

input feature map, enabling the model to focus on areas that are more relevant and 

downplay less informative regions.  
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The attention block starts with a convolution layer to transform the feature map. This 

is then reshaped, and a softmax activation ensures that the attention weights sum up 

to 1. These weights are then replicated and permuted to match the original 

dimensions, followed by a multiplication operation that applies the attention weights 

to the original feature map.  

Each CNN branch has an associated convolutional layer, followed by the attention 

mechanism. The kernel sizes for convolution are dynamically determined based on 

the input shape to ensure optimal feature extraction. After applying attention, the 

feature maps are flattened to be processed further.  

Outputs from the four branches are concatenated, providing a holistic representation 

encompassing insights from all branches. This concatenated output is passed 

through dense layers to achieve the final classification. The final layer uses a softmax 

activation with 156 neurons for 156 unique classes. This model cleverly blends 

traditional convolutional layers with an attention mechanism, offering a unique 

approach to processing multi-dimensional data. 

13.7.4.2 Parallel Branches of CNN with Attention Mechanism 

Each of the parallel branches processes the input differently, accommodating varying 

dimensional perspectives of the data. The branches are: 

1. Branch 1: Input Dimension (38, 4, 1) 

2. Input Layer: This layer receives the reshaped audio features of size (38, 4, 1). 

3. Conv2D Layer: It applies convolution operations using a (3, 3) kernel size. This 

layer extracts spatial features from the input data. 

4. Attention Mechanism: 

i. A convolution operation with a (1, 1) kernel reduces the depth dimension, 

producing a single-channel feature map. 

ii. The feature map is reshaped and passed through a softmax activation, 

yielding the attention weights. 
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iii. These weights are then repeated and adjusted to match the original feature 

map's size, and finally multiplied with the original feature map. This 

operation gives more importance to regions with higher attention weights. 

5. Flatten Layer: The feature map after applying attention is flattened to produce a 

one-dimensional tensor. 

6. Branch 2: Input Dimension (19, 8, 1) 

7. Input Layer: Accepts the reshaped data of size (19, 8, 1). 

8. Conv2D Layer: This branch also uses a (3, 3) kernel for the convolution, extracting 

spatial features. 

9. Attention Mechanism: Implemented similarly to Branch 1, focusing on relevant 

regions of the feature map. 

10. Flatten Layer: The feature map post-attention is flattened. 

11. Branch 3: Input Dimension (76, 2, 1) 

12. Input Layer: Takes in reshaped data of size (76, 2, 1). 

13. Conv2D Layer: Here, due to the input shape, a (3, 2) kernel is used for the 

convolution. This size helps capture the unique spatial relationships present in 

this reshaped data. 

14. Attention Mechanism: Identical in its working to the previous branches but 

tailored for this specific input shape. 

15. Flatten Layer: Converts the multi-dimensional output to a one-dimensional 

tensor. 

16. Branch 4: Input Dimension (152, 1, 1) 

17. Input Layer: Accepts reshaped data of size (152, 1, 1). 

18. Conv2D Layer: Due to the specific shape of the data, a (3, 1) kernel is utilized, 

ensuring features are captured effectively across the length of the reshaped data. 

19. Attention Mechanism: As before, this block dynamically adjusts attention 

weights to the input feature map. 

20. Flatten Layer: The feature map is flattened, preparing it for concatenation. 

21. Merging & Dense Layers: 
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22. Concatenate: The flattened outputs from all four branches are concatenated, 

producing a unified representation encompassing insights from all branches. 

23. Dense Layer with ReLU Activation: This layer has 128 neurons and applies the 

ReLU activation function. It serves to further process the concatenated features, 

adding depth to the model's capability. 

24. The final dense layer uses a softmax activation with 156 neurons. This ensures 

that the output represents the probability distribution over the 156 classes. 

The architecture presented in Figure 88 is a testament to the fusion of traditional 

convolutional operations with contemporary attention mechanisms. Each branch is 

tailored to process the data in its unique reshaped form, ensuring the model captures 

a wide array of features. The attention mechanism, on the other hand, offers the 

model a way to focus on pivotal information, enhancing its discriminative capability. 

These components form a powerful architecture capable of complicated audio data 

processing, especially suited for tasks like accented speech recognition in the 

Malayalam language. 
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Figure 88 Model Architecture 
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13.7.4.3 Novelty 

The parallel 4D architecture coupled with attention inherently stands out. 

Traditional models often employ either multi-dimensional inputs or attention but 

rarely in conjunction. By processing the audio data in various reshaped forms 

simultaneously, the model can capture a rich set of features. The attention 

mechanism ensures that within these diverse representations, the model emphasizes 

the most crucial information.  

In the context of accented speech recognition, where complex and subtle features can 

significantly impact model performance, such an architecture offers a robust 

approach to extract and focus on pivotal   features. In terms of evaluation, the model 

exhibits high performance with an accuracy of 76.53%. The proposed 4D Parallel 

CNN model with an attention mechanism represents a novel approach in the domain 

of accented speech recognition for the Malayalam language.  

By employing multiple dimensions and focusing on salient features, this architecture 

provides a robust framework for extracting pivotal characteristics from audio data. 

The promising evaluation metrics feature the architecture's efficacy and its potential 

in pushing the boundaries of accented speech recognition research.  

13.7.4.4 Performance Metrics 

Table 19 illustrates the performance evaluation of the model. The model was 

constructed with a training loss of 1.2307 which represents the model's error during 

training on the ninth epoch. Lower loss indicates that the model's predictions are 

close to the actual values. Training accuracy of the model was 73.32% which indicates 

that the model correctly predicted the class for about 73.32% of the training samples.  

This is a good accuracy, suggesting that the model has learned a good portion of 

patterns from the training data. Validation loss was 1.0922 indicating the model's 

error when evaluated on the validation set. Comparing this with the training loss 
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gives insight into whether the model might be overfitting (if training loss is much 

lower) or underfitting (if training loss is higher). 

Table 19 The Performance Evaluation 

Metric Value 

Loss (Training) 1.2307 

Accuracy (Training) 73.32% 

Validation Loss 1.0922 

Validation Accuracy 76.42% 

Overall Model Evaluation 76.42% 

 

Validation accuracy of 76.42% represents the percentage of correct predictions on the 

validation set. It's notable that the validation accuracy is higher than the training 

accuracy, suggesting that the model generalizes well to unseen data. Accuracy of 

76.42% indicates that after training, when the model was evaluated on the test 

dataset, it achieved an accuracy of 76.42%. This means that in a real-world scenario, 

given unseen data, the model is expected to make correct predictions approximately 

76.42% of the time.  

Achieving an accuracy of over 76% in such a complex task, especially when dealing 

with accented speech recognition in the Malayalam language, is commendable. 

Considering the intricacies of accents and the complications in the speech patterns, 

this is a significant achievement. The inclusion of attention mechanisms in the model 

architecture seems to play a pivotal role in focusing on the relevant audio features, 

aiding in the discernment of the accented variations. Figure 89 represents the 

learning curves obtained in the study. 
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Figure 89 The Learning Curves 

13.7.5  Bidirectional LSTM Model Architecture for Accented 

Speech Recognition 

In this effort to capture the temporal dependencies in the accented Malayalam speech 

dataset, a Bidirectional LSTM (Bi-LSTM) model was constructed to process 

sequences both forwards and backwards, allowing the model to gain insights from 

past (backward direction) and future (forward direction) states simultaneously. 

Table 20 illustrates the layered description of the architecture adopted in this study. 

Table 20  Model Summary of BiLSTM Model 

Layer (type)               Output Shape Parameters 

input_4 (Input Layer)      (None, 152, 1) 0 

bidirectional_3 

(Bidirectional) 

(None, 512) 528384 

dropout_3 (Dropout)         (None, 512) 0 

dense_6 (Dense)        (None, 512) 262656 

dense_7 (Dense)              (None, 156) 80028 

Total parameters: 871,068 

Trainable parameters: 871,068                                                                                                             

Non-trainable parameters: 0                                                                                                                  

 

The architecture begins with an input layer, denoted as 'input_4,' which accepts 

sequences of shape (152, 1). The subsequent layer is a bidirectional recurrent layer, 
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'bidirectional_3,' employing a bidirectional long short-term memory (LSTM) 

network with 512 units. This bidirectional nature allows the model to capture 

contextual information from both forward and backward sequences. To prevent 

overfitting, a dropout layer, 'dropout_3,' is applied, where 50% of the neurons are 

randomly ignored during training.  

The architecture further includes two dense layers, 'dense_6' and 'dense_7.' The 

former consists of 512 neurons with a rectified linear unit (ReLU) activation function, 

contributing to feature extraction and representation. The final dense layer, 'dense_7,' 

outputs 156 neurons with a Softmax activation, aligning with the number of classes 

in the dataset. The total trainable parameters for this architecture amount to 871,068.  

This design aims to use bidirectional LSTM networks for effective sequence 

processing while incorporating dropout for regularization, ultimately resulting in a 

model capable of accurate and generalized predictions in a classification task. The 

model was compiled using the Adam optimizer, categorical cross entropy as the loss 

function, considering the multi-class classification task, and accuracy as the 

evaluation metric.  

The Bi-LSTM architecture was selected for its ability to retain memory from both past 

and future sequences, making it particularly suitable for sequence classification 

tasks. With a total of 871,068 trainable parameters, the model aims to offer a robust 

solution to accented speech recognition in Malayalam by capturing intricate patterns 

and dependencies in the audio data. 

13.7.5.1 Working of the Bidirectional LSTM Network 

The network starts by accepting a sequence of data with 152 features. These features, 

derived from audio samples, represent a sequence of information that changes over 

time. In the context of speech, these sequences capture the temporal progression of 

the sound. 



290 

LSTM is a type of recurrent neural network (RNN) that is designed to recognize 

patterns over time intervals. RNNs possess a form of memory, allowing them to 

retain information from earlier in the sequence to influence later parts. This is 

essential for understanding speech, where the meaning can depend on the context 

provided by earlier sounds or words. 

 Traditional LSTMs process data from the start of the sequence to the end. 

Bidirectional LSTMs, on the other hand, process the data in both directions (from 

start to end and from end to start). The rationale is that the output at a certain time 

depends not only on the past but also on the future data points. For speech 

recognition, this means understanding a word or sound might be influenced by both 

preceding and following words or sounds.  

The combination of forward and backward information at each time step provides a 

richer representation of the data. Once the data has passed through the Bidirectional 

LSTM layer, it undergoes a dropout operation. Dropout is a regularization technique 

where randomly selected neurons are ignored (or "dropped-out") during training, 

which means that they are not considered during a particular forward or backward 

pass. This is essential to prevent overfitting, ensuring that the network generalizes 

well to unseen data. 

 A rate of 0.5 means that 50% of the input units are set to 0. The output from the 

Dropout layer is then passed to a dense (or fully connected) layer. This layer 

undergoes a linear transformation and a non-linear activation function (ReLU, in this 

case).  It aids in capturing the non-linear relationships in the dataset and further 

refines the feature representation. The network produces an output through a 

softmax activation function in the last dense layer. This function converts the raw 

output scores from the previous layer into probabilities for each of the 156 classes.  

The network captures both the immediate and contextual information in the audio 

data sequence using Bi-LSTM, regularizes dropout to avoid overfitting, refines 

features using dense layers, and classifies into one of the 156 classes using softmax. 



291 

The architecture is particularly suited for time-series data like speech, where 

understanding context and sequence is crucial.  

13.7.5.2 Performance Evaluation 

Table 21  Performance Evaluation 

Phase           Loss Accuracy 

Training        1.0986 72.97% 

Validation      1.0986 75.01% 

Test            1.0986 75.01% 

 

In the final epoch of training the Bidirectional LSTM model, the loss on the training 

data was recorded at 1.1824, with an associated accuracy of 72.97%. The training 

accuracy indicates that the model successfully classified nearly 73% of the training 

dataset, reflecting a substantial grasp of the underlying patterns.  

 

Figure 90 Performance Evaluation 

During the validation phase, the model demonstrated a loss of 1.0986, coupled with 

an accuracy of 75.01%. This implies that the model performed well on previously 

unseen validation data, correctly predicting labels for 75% of instances. The test 

phase also yielded a loss of 1.0986 and an accuracy of 75.01%. These consistent 

accuracy values across training, validation, and test datasets as shown in Table 21 

suggest that the model has effectively learned and generalized patterns from the 

training data, showcasing its robustness in making accurate predictions on new and 
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unseen instances. The performance evaluation of the experiment is shown in Figure 

90. 

13.7.6  The CNN-LSTM Hybrid Approach 

The hybrid model combines the feature extraction capabilities of CNNs with the 

sequence modeling strengths of LSTMs. It allows the network to both recognize local 

patterns through convolutional filters and remember long-term dependencies using 

recurrent cells. Table 22 represents the model summary of the hybrid approach 

adopted in this phase of the experiment. 

Table 22 Model Summary 

Layer (type) Output Shape Parameters 

Input Layer                (None, 152, 1) 0 

Conv1D                     (None, 150, 64) 256 

MaxPooling1D               (None, 75, 64) 0 

Conv1D                    (None, 73, 128) 24,704 

MaxPooling1D               (None, 36, 128) 0 

Dropout                    (None, 36, 128) 0 

Bidirectional              (None, 512) 788,480 

Dropout                    (None, 512) 0 

Dense                      (None, 512) 262,656 

Dense                      (None, 156) 80,028 

Total params              1,156,124 

Trainable params      1,156,124 and non-trainable params   0      

13.7.6.1 Convolutional Layers (Feature Extraction) 

1. Conv1D Layer: The first convolutional layer uses 64 filters, each of size 3. It scans 

the input data for local patterns or features. The activation function 'ReLu' 

introduces non-linearity, enabling the model to capture complex patterns. 
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2. MaxPooling1D Layer: This layer reduces the spatial size of the representation, 

preserving the most essential features, and thus, reduces the computation for the 

subsequent layers. 

3. Another Conv1D Layer: This layer, with 128 filters, explores deeper into the 

features, and captures more intricate patterns in the data. 

4. Another MaxPooling1D Layer: Further down sampling of the feature maps. 

5. Dropout Layer: After the convolution operations, a dropout layer is used, which 

randomly sets a fraction (0.5 or 50% in this case) of the input units to 0 during 

training. This helps to prevent overfitting. 

13.7.6.2  Bidirectional LSTM (Sequence Modeling) 

The feature maps from the CNN layers are then fed into a Bidirectional LSTM layer 

with 256 units. LSTMs are a type of recurrent neural network (RNN) well-suited for 

sequence data. This ensures that for each timestep, the LSTM considers both past and 

future data, making it highly effective for speech recognition. 

This fully connected layer processes the LSTM outputs and learns to make decisions 

based on the combined features from both the CNN and LSTM. The final dense layer 

has 156 neurons with softmax activation. In conclusion, the hybrid CNN-LSTM 

model is a powerful architecture for tasks that require both feature extraction and 

sequence modeling.  

By combining the strengths of both CNNs and LSTMs, it captures both the local 

variations and global context from the input data, making it especially apt for 

complex tasks like speech recognition. 

13.7.6.3 Performance Evaluation of the Hybrid CNN-LSTM 

Model 

After 20 epochs of training on the dataset, the hybrid CNN-LSTM model has 

demonstrated commendable results which is depicted in Figure 91. 
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i. Training Phase 

 Loss: The model achieved a loss value of 1.2014. The loss value indicates how 

well the model's predictions match the true labels. A lower value signifies better 

performance, and over the epochs, it's expected that the model worked to 

minimize this. 

 Accuracy: The model achieved an accuracy of 72.13% on the training data. This 

indicates that the model correctly predicted the labels of approximately 72.13% 

of the training samples. 

ii. Validation Phase 

 Loss: On the validation dataset, which the model hasn't seen during training, it 

achieved a loss value of 1.0652. This lower loss value, compared to the training 

loss, is promising as it suggests that the model is generalizing well and not merely 

memorizing the training dataset. 

 Accuracy: The accuracy on the validation set is 76.49%, which is higher than the 

training accuracy. This is a very positive sign, indicating that the model is 

performing even better on new, unseen data than on the training data. The higher 

accuracy on the validation set suggests that the model is robust and can 

potentially perform well in real-world scenarios. 

 

Figure 91 The Performance Evaluation 

 



295 

13.8  Experimental Results  

Table 23  Comparative Analysis 

Approach Description Epochs 
Time Per 

Epoch 

Total 

Training 

Time 

Training 

Accuracy 

Validation 

Accuracy 

Training 

Loss 

Validation 

Loss 

4D Parallel 

CNN (No 

Attention) 

Multi-

branched 

CNN with 

tailored 

kernel shapes 

14 

Approx. 

15 

seconds 

Approx. 

3.5 

minutes 

72.13% 76.42% 1.2014 1.0652 

4D Parallel 

CNN (With 

Attention) 

CNN with 

attention 

mechanisms 

in branches 

20 

Approx. 

172 

seconds 

(2.87 

minutes) 

Approx. 

57.3 

minutes 

72.17% 76.49% 1.1963 1.0850 

Bidirectional 

LSTM 

LSTM 

processing 

data from 

both past and 

future 

contexts 

25 

Approx. 

84 

seconds 

Approx. 

35 

minutes 

72.97% 75.01% 1.1824 1.0986 

CNN-LSTM 

Hybrid 

Combination 

of Conv1D 

and 

Bidirectional 

LSTM layers 

20 

Approx. 

30 

seconds 

Approx. 

10 

minutes 

72.13% 76.49% 1.2014 1.0852 

2D Parallel 

CNN 

Two parallel 

Conv layers + 

attention 

60 

Approx. 

19 

seconds 

Approx. 

19 

minutes 

66.25% 72.04% 1.4957 1.2306 

1D CNN 
Sequential 

layers 
10 

Approx 

100 

seconds 

Approx. 

30 

minutes 

73.27% 76.17% 1.1963 1.085 

 

The comparative analysis of the experimental results is depicted in Table 23. The 

hybrid CNN-LSTM model exhibits promising results with an accuracy of 

approximately 76.49% on the validation set. This level of performance, given the 

complexity of the task at hand, emphasizes the effectiveness of combining 

convolutional layers for feature extraction with LSTM layers for sequence modeling.  
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The models explored in this research primarily focused on the integration of 

convolutional layers, LSTM layers, and attention mechanisms to recognize and 

classify accented speech patterns. 

The analysis of the experimental results is: 

1. The 4D Parallel CNN without attention mechanisms employs a multi-branched 

architecture with tailored kernel shapes. This model completed 14 epochs, with 

each epoch taking approximately 15 seconds, resulting in a total training time of 

around 3.5 minutes. It achieved a training accuracy of 72.13% and a validation 

accuracy of 76.42%, with training and validation losses of 1.2014 and 1.0652, 

respectively. This model demonstrated a strong ability to generalize to unseen 

data with the lowest validation loss among all models, suggesting a tight fit to 

the validation data. 

2. The addition of attention mechanisms to the 4D Parallel CNN architecture led to 

significant changes. This model required 20 epochs, with each epoch taking 

approximately 172 seconds (2.87 minutes), amounting to a total training time of 

about 57.3 minutes. The inclusion of attention mechanisms slightly improved the 

model’s performance, with a training accuracy of 72.17% and a validation 

accuracy of 76.49%. The training and validation losses were 1.1963 and 1.0850, 

respectively. While the training time was substantially longer, the model’s 

performance indicates that attention mechanisms can enhance accuracy, albeit at 

the cost of increased computational time. 

3. The Bidirectional LSTM model, which processes data from both past and future 

contexts, completed 25 epochs with each epoch taking approximately 84 seconds, 

resulting in a total training time of around 35 minutes. This model achieved a 

training accuracy of 72.97% and a validation accuracy of 75.01%. The training and 

validation losses were 1.1824 and 1.0986, respectively. Despite having a higher 

training accuracy, the validation accuracy was slightly lower than that of the 

CNN-based models, indicating a potential overfitting issue. 
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4. Combining Conv1D and Bidirectional LSTM layers, the CNN-LSTM Hybrid 

model completed 20 epochs, with each epoch taking about 30 seconds, leading to 

a total training time of approximately 10 minutes. It achieved a training accuracy 

of 72.13% and a validation accuracy of 76.49%, with training and validation losses 

of 1.2014 and 1.0852, respectively. This model strikes a favorable balance between 

accuracy and training time, making it a highly efficient option for this task. 

5. The 2D Parallel CNN, which incorporates two parallel convolutional layers with 

attention mechanisms, completed 60 epochs, each taking approximately 19 

seconds, resulting in a total training time of around 19 minutes. It attained a 

training accuracy of 66.25% and a validation accuracy of 72.04%, with training 

and validation losses of 1.4957 and 1.2306, respectively. Despite its relatively 

short training time, this model exhibited the lowest accuracy and highest loss, 

indicating less effectiveness in this application. 

6. Finally, the 1D CNN with sequential layers completed 10 epochs, with each 

epoch taking about 100 seconds, resulting in a total training time of 

approximately 16.7 minutes. This model achieved the highest training accuracy 

of 73.27% and a validation accuracy of 76.17%, with both training and validation 

losses at 1.1963 and 1.0850, respectively. The 1D CNN’s performance shows it 

learned the training data well and generalized effectively to the validation data. 

7. Limitations of the 2D Parallel CNN: The 2D Parallel CNN trailed behind the other 

models in terms of accuracy. The model's simpler architecture and the absence of 

memory-based layers might contribute to this. It suggests that temporal 

modeling could be pivotal in understanding accented speech. 

8. While the 4D Parallel CNN with Attention recorded the highest validation 

accuracy, it is essential to consider the computational cost and complexity of 

integrating attention mechanisms. For real-time applications, one might lean 

towards the standard 4D Parallel CNN due to similar accuracy but reduced 

complexity. 
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9. The disparity between training and validation accuracies, especially in the 2D 

Parallel CNN, indicates potential overfitting. Regularization techniques or more 

extensive datasets might address this. 

10. The hybrid CNN-LSTM model presents a versatile framework. Such 

architectures might adapt better to varied data sources or multi-task learning 

scenarios, where both spatial and temporal features are vital. 

11. In terms of validation accuracy, the 1D CNN approach exhibited robust 

performance, achieving a validation accuracy of 76.17%. This was comparable to 

the validation accuracies of the CNN-LSTM Hybrid and 4D Parallel CNN (with 

attention) approaches, which both achieved a validation accuracy of 76.49%. 

Additionally, the 1D CNN approach demonstrated competitive training and 

validation loss metrics, further highlighting its effectiveness for AASR tasks. 

The comparative analysis reveals that the CNN-LSTM Hybrid model stands out for 

its high validation accuracy and efficient training time, making it an excellent choice 

for accented speech recognition tasks. Models incorporating attention mechanisms, 

such as the 4D Parallel CNN with attention, also show enhanced accuracy but at the 

cost of longer training times. The 1D CNN demonstrates a strong balance between 

accuracy and generalization, although training time optimization could further 

enhance its efficiency. These insights provide a comprehensive understanding of the 

relative strengths and weaknesses of each model, aiding in the selection of the most 

suitable architecture for specific application needs. 

13.9  Conclusion 

This chapter explored and compared various machine learning model architectures, 

including 4D Parallel CNNs with and without attention mechanisms, Bidirectional 

LSTM, a CNN-LSTM Hybrid, and a 2D Parallel CNN. Each model was evaluated 

based on its training and validation performance metrics, providing insights into 

their respective strengths and limitations. 
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This chapter demonstrates the importance of selecting the appropriate model 

architecture based on the specific requirements and constraints of the task. The CNN-

LSTM Hybrid model stands out for its efficient training and robust performance, 

making it a recommended choice for similar applications. Future work could further 

optimize these architectures and explore additional enhancements, such as more 

advanced attention mechanisms or hybrid models, to continue improving 

performance and efficiency. 
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14. A Dual Approach to Detect Hate Speech 

in Accented Malayalam 

 

14.1  Introduction 

This research centers on adopting deep learning methods to effectively detect and 

differentiate hate speech patterns in accented Malayalam from audio data. The audio 

data underwent processing through a detailed feature extraction framework, 

encompassing ZCR, STFT, MFCC, RMS, and Mel Spectrogram. These methods 

collectively generated 162 distinct feature vectors capturing the unique acoustical 

variations of the speech. Acknowledging the scarcity of data tailored to specific 

regional accents, advanced data augmentation techniques were integrated to 

enhance the dataset's depth. Subsequently, a deep learning model was developed to 

train and classify these speech patterns. The findings revealed an impressive 98% 

accuracy in the model's evaluation after an exhaustive training phase.  

1D CNN was selected for this experiment due to their suitability for processing 

sequential data, which is inherent in speech signals. By applying convolutional filters 

along the time axis, 1D CNNs excel at capturing temporal dependencies, allowing 

them to extract essential features such as phonemes and syllables.  

1D CNNs offer computational efficiency compared to higher-dimensional CNNs, 

making them faster to train and more resource-efficient. Their proven effectiveness 

in various audio processing tasks, coupled with their ability to learn hierarchical 

features from speech data, makes them well-suited for hate speech recognition in 

accented Malayalam speech. 
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14.2  Hate Speech in Accented Malayalam 

Hate speech is typically defined as any speech, gesture, conduct, writing, or 

expression that offends, threatens, or insults a particular person or group based on 

any attribute which can be gender, caste, religion, creed etc. 

14.2.1  Situations that Qualify as Hate Speech 

1. Direct Threats: Expressing intentions to inflict harm or violence against a 

particular individual or group. 

2. Derogatory Language: Using slurs, insults, or derogatory terms that belittle a 

specific group or individual. 

3. Incitement: Urging others to discriminate, harass, or enact violence against a 

group or individual. 

4. Dissemination of Falsehoods: Spreading false information about a particular 

group to degrade them or incite hatred. 

14.3  Non-Hate Speech in Accented Malayalam 

 Non-hate speech, in contrast, encompasses expressions that do not threaten, insult, 

or demean any individual or group, even if they may be critical or disagreeable. 

14.3.1  Situations that Qualify as Non-Hate Speech 

1. Constructive Criticism: Providing feedback or expressing disagreement without 

resorting to insults or derogatory terms. 

2. Personal Opinions: Sharing personal experiences or viewpoints without the 

intent to harm or degrade any group or individual. 

3. Factual Statements: Conveying information or news without any malicious or 

harmful intent. 
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4. Cultural Expressions: Using colloquialisms, proverbs, or traditional sayings that 

are inherent to Malayalam culture and do not demean any individual or group. 

Distinguishing between hate speech and non-hate speech, especially in a language 

as complex as Malayalam, requires a comprehensive understanding of cultural, 

contextual, and linguistic factors. The dataset sourced from YouTube offers a 

valuable insight into the manifestation of these expressions in the digital age. 

14.4  Data Collection 

The foundation of any robust machine learning or deep learning model lies in the 

quality and diversity of data it's trained on. For this study on hate speech detection 

in accented Malayalam speech, a comprehensive data collection journey was 

embarked to ensure a representative and unbiased dataset and named it as Accented 

Malayalam Dataset for Detecting Hate Speech (AMDDHS). Samples that belong to 

hate speech and non-hate speech involving accents from different districts like 

Kasaragod, Kannur, Malappuram, Kozhikode, Thrissur, Kottayam, and 

Thiruvananthapuram were considered in the study. 

14.4.1  Criteria for Data Selection 

1. Nature of Speech: The data collection was limited to only those clips where 

speech could be distinctly categorized as either hate speech or non-hate speech. 

Ambiguous speech or those that tread the fine line between the two categories 

were excluded to maintain clarity and purpose. 

2. Accent Diversity: A significant emphasis was placed on ensuring representation 

of diverse Malayalam accents. This was crucial to ensure that this study was 

comprehensive and considered regional variations in speech. 

14.4.2  Data Extraction Process 

1. Manual Review: A set of YouTube videos have been carefully examined before 

the data collection. 
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2. Audio Extraction: From the shortlisted videos, audio clips were extracted and 

segmented to ensure each clip represented a distinct speech sample. 

3. Annotation: Post extraction, each audio clip was annotated with relevant 

metadata, including the nature of speech (hate/non-hate) and the specific accent. 

This metadata played a crucial role during the model training phase. 

14.4.3  Data Distribution 

A total of 1,000 samples were extracted. Out of these, 150 samples were hate speech, 

and 850 samples were non-hate speech. This distribution provided a clear overview 

of the prevalence of hate speech in the sampled content. Figure 92 provides the 

statistical view of the original and augmented hate speech dataset. The wave plot 

and spectrogram of hate and non-hate speech is illustrated in Figure 93. 

 

Figure 92 Statistics of the Hate Speech Dataset 
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Figure 93 Wave plot And Spectrogram of the Speech Data (Sample) 

14.5 Data Augmentation Techniques for Speech Data 

By introducing variations in the original dataset, the model becomes more versatile 

and can generalize better to unseen data. In this study on accented Malayalam speech 

recognition, several augmentation techniques were used to enrich the dataset and 

are discussed in the subsequent sections. Figure 94 provides a representation of 

sample signal after applying speech augmentation techniques. 

 

Figure 94 The Sample Signals After Augmentation 

14.5.1  Noise Injection 

The noise function introduces random noise to the original audio data. The 

amplitude of this noise is determined based on a fraction of the maximum amplitude 

in the original data. This augmentation mimics real-world scenarios where 
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background noise can be a factor. A random noise amplitude is generated, limited to 

3.5% of the maximum amplitude of the data. This noise is then added to the original 

data. 

14.5.2  Time Stretching 

The stretch function alters the speed of the audio playback without affecting its pitch. 

It uses the time_stretch function and the audio data are stretched by a given rate. A 

rate less than 1 slows down the audio, whereas a rate greater than 1 speed it up.  A 

rate of 0.8 is used in the study, which means the audio will be played back slower 

than its original speed. 

14.5.3  Time Shifting 

The shift function shifts the speech waves in the dataset to the left or right by a 

random amount. A random shift range is calculated, which can vary between -5,000 

to 5,000 samples. The audio data is then rolled (or shifted) by this range. This 

introduces a delay or advances the speech signal. 

14.5.4  Pitch Shifting 

The pitch of the audio data is shifted by a specified number of half-steps. A positive 

n_steps value increases the pitch, while a negative value decreases it. 

14.5.5  Implementation 

Data augmentation is crucial for enhancing the diversity and richness of the training 

dataset. By introducing variations like noise, time shifts, and pitch changes, the 

model becomes better equipped to handle real-world challenges in speech 

recognition. The acoustic model [113] establishes a connection between speech 

signals and phonetic units, taking feature vectors as input and producing a sequence 

of phonemes in word form. These techniques, when applied judiciously, can 

significantly improve model performance, especially in scenarios with diverse 

accents and varying recording conditions.  
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14.6  Feature Extraction Techniques 

In speech recognition and audio processing, the goal of feature extraction is to distill 

the raw audio data into a compact but descriptive format, capturing the inherent 

structures and patterns. This chapter describes the various feature extraction 

techniques employed to understand accented Malayalam speech data. The model, 

designed to tackle the challenges posed by diverse accents in Malayalam, begins its 

journey with the extraction of 162 distinctive features from each speech data. 

14.6.1  Zero Crossing Rate (ZCR) 

ZCR measures the rate at which a signal changes its sign, effectively capturing the 

frequency characteristics of a voice signal. In speech processing, ZCR is used to detect 

voiced/unvoiced decisions and can differentiate between speech and non-speech 

segments, making it valuable for the dataset. ZCR measures the rate at which a signal 

changes its sign, effectively capturing the frequency characteristics of a voice signal. 

In speech processing, ZCR is used to detect voiced/unvoiced decisions and can 

differentiate between speech and non-speech segments, making it valuable for the 

dataset. 

14.6.2  Chroma_STFT 

Chroma features are instrumental in understanding harmonies, chords, and the 

general tonal quality of an audio clip. Given the diverse accents in Malayalam speech 

data, the harmonic structures can vary widely, making this feature crucial. Given the 

diverse accents in Malayalam speech data, the harmonic structures can vary widely, 

making this feature crucial. 

14.6.3  Mel-frequency Cepstral Coefficients (MFCC) 

They consider the non-linear human ear perception of frequencies, making them 

highly suitable for speech and audio processing. MFCCs capture the timbral texture 

of the sound and variations in accents can lead to variations in timbral differences, 

which MFCCs can capture efficiently. 



307 

14.6.4  Root Mean Square Value (RMS) 

The RMS value indicates the magnitude of the audio signal, essentially representing 

the loudness of a signal. RMS can be pivotal in understanding the energy and 

intensity variations in speech, which can be characteristic of different accents or 

emotional tones in speech. The RMS value indicates the magnitude of the audio 

signal, essentially representing the loudness of a signal. RMS can be pivotal in 

understanding the energy and intensity variations in speech, which can be 

characteristic of different accents or emotional tones in speech. 

14.6.5  Mel Spectrogram 

The Mel spectrogram captures the frequency domain information of the audio while 

also accounting for human auditory perception. This ensures that the features align 

closely with how humans perceive sound, making it an asset in speech recognition 

tasks.  It captures the frequency domain information of the audio while also 

accounting for human auditory perception. This ensures that the features align 

closely with how humans perceive sound, making it an asset in speech recognition 

tasks. To ensure a robust model, features were extracted from both the original data 

and augmented versions of it (i.e., with noise, stretched, and pitched). The 

get_features function is designed to first extract features from the raw data and then 

from its augmented forms. 

Each set of features is stacked vertically to the main result, ensuring a comprehensive 

feature set ready for training. Upon completion of the feature vectorization process, 

the model generates 162 distinct feature vectors for each speech data sample. These 

vectors encapsulate the unique acoustical variations of the speech, providing a rich 

representation that is well-suited for subsequent stages of the recognition model. 

Figure 95 provides an overview of the statistics regarding feature extraction using 

different techniques. 
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Figure 95 Features Extraction Statistics 

14.6.6  The pseudocode for Data Augmentation  

BEGIN 

FUNCTION noise(data): 

// Introduce random noise to the audio data 

SET noise_amplitude TO 0.035 * RANDOM () * MAX (data) 

SET augmented_data TO data + noise_amplitude * RANDOM_NORMAL (size=LENGTH 

(data)) 

RETURN augmented_data 

END FUNCTION 

FUNCTION stretch (data, rate=0.8): 

// Stretch the audio data by a given rate using librosa's time_stretch function 

SET stretched_data TO time_stretch(data, rate) 

RETURN stretched_data 

END FUNCTION 

FUNCTION shift(data): 

// Shift the audio signal by a random amount 

SET shift_range TO RANDOM_INT (-5, 5) * 1000 

SET shifted_data TO roll (data, shift_range) 

RETURN shifted_data 

END FUNCTION 

FUNCTION pitch (data, n_steps, sr): 

// Modify the pitch of the audio data using librosa's pitch_shift function 

SET pitched_data TO pitch_shift (data, sr, n_steps) 

RETURN pitched_data 

END FUNCTION 

//Implementation 

SET path TO sample_data_path [1] 
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LOAD data, sample_rate FROM path USING librosa. 

// Augment data using the above functions 

CALL noise(data) 

CALL stretch(data) 

CALL shift(data) 

CALL pitch (data, n_steps, sample_rate) 

END 

14.6.7  Pseudocode for Feature Extraction 

BEGIN 

FUNCTION extract_features (data, sample_rate): 

// Initialize an empty array for results 

result = NEW EMPTY ARRAY 

// Extract Zero Crossing Rate 

zcr = AVERAGE (zero_crossing_rate(data)) 

APPEND zcr TO result 

// Extract Chroma_STFT 

stft = ABSOLUTE (short_time_fourier_transform(data)) 

chroma_stft = AVERAGE (chroma_stft(stft, sample_rate)) 

APPEND chroma_stft TO result 

// Extract MFCC 

mfcc = AVERAGE (mfcc(data, sample_rate)) 

APPEND mfcc TO result 

// Extract Root Mean Square Value 

rms = AVERAGE (rms(data)) 

APPEND rms TO result 

// Extract Mel Spectrogram 

mel = AVERAGE (melspectrogram(data, sample_rate)) 

APPEND mel TO result 

RETURN result 

END FUNCTION 

FUNCTION get_features(path): 

// Load audio data from the path 

data, sample_rate = LOAD AUDIO FROM path WITH PARAMETERS (duration=2.5, 

offset=0.6) 

// Extract features from original data 

res1 = extract_features(data, sample_rate) 

result = NEW ARRAY WITH res1 

// Apply noise augmentation 

noise_data = ADD NOISE TO data 

res2 = extract_features(noise_data, sample_rate) 

APPEND res2 TO result 

// Apply time stretching and pitch shifting 
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new_data = STRETCH data 

data_stretch_pitch = PITCH SHIFT new_data USING sample_rate AND n_steps=0.7 

res3 = extract_features(data_stretch_pitch, sample_rate) 

APPEND res3 TO result 

RETURN result 

END FUNCTION 

END 

14.7  Methodology 

To ensure a robust model, features were extracted from both the original data and 

augmented versions of it (i.e., with noise, stretched, and pitched). The get_features 

function is designed to first extract features from the raw data and then from its 

augmented forms. Each set of features is stacked vertically to the main result, 

ensuring a comprehensive feature set ready for training.  

The model is constructed with multiple 1D convolutional layers with varying filter 

sizes, followed by max-pooling layers to extract hierarchical features from the input 

data. Dropout layers are strategically inserted to mitigate overfitting during training. 

The final layers include a flatten layer to transform the 3D output into a 1D array, 

followed by densely connected layers with rectified linear unit (ReLU) activations.  

The output layer, softmax function is used for multiclass classification, with the 

number of neurons adjusted to the specific number of classes. Additionally, a 

ReduceLROnPlateau callback is defined to dynamically adjust the learning rate 

during training, contributing to model stability. The model is compiled using the 

Adam optimizer, categorical crossentropy as the loss function, and accuracy as the 

metric for evaluation.  

The vectors extracted from the speech signals are fed as input to the CNN 

architecture, to the initial conv1d_8 layer. Recognizing the scarcity of labeled data 

tailored to specific regional accents, advanced data augmentation techniques have 

been seamlessly integrated into the training pipeline. This augmentation process 

enhances the depth and diversity of the dataset, further enriching the feature vectors 

and contributing to the model's robustness.  

As the model progresses through the convolutional layers and subsequent fully 
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connected layers, the 162 features play a pivotal role in shaping the learned 

representations. The hierarchical nature of the CNN architecture that is illustrated in 

Figure 96 ensures that these features contribute to capturing complex patterns and 

variations present in the accented speech data. 

The initial convolutional layer, conv1d_8, utilizes 256 filters to learn distinct features 

from the input data, reflected in its 1,536 parameters. Following this, the 

max_pooling1d_8 layer reduces spatial dimensions by capturing the maximum 

values over a specified window, aiding computational efficiency, and providing a 

form of translational invariance. 

The architecture continues with a second convolutional layer, conv1d_9, employing 

an additional 256 filters, and subsequent max pooling, contributing to hierarchical 

feature extraction. This pattern repeats with a third convolutional layer, conv1d_10, 

using 128 filters, and corresponding max pooling for further feature refinement. 

The model concludes with an output layer, dense_5, containing two neurons for 

binary classification, typically using a softmax activation function. This 1D CNN 

model, designed for sequence data, exhibits an appropriate structure for a two-class 

classification task, having a total of 557,090 trainable parameters. Figure 97 

represents the model architecture for hate speech detection. 

 

Figure 96 The Layered Architecture 
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Figure 97 The Hate Speech Detection Model Architecture 
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14.8  Performance Evaluation 

The model was trained over a total of 5 epochs. By the fifth epoch, it exhibited 

significant convergence characteristics, indicating that the training was effective, and 

the model was learning from the provided dataset. Each epoch consisted of 96 

batches of data. On average, each batch took about 172 milliseconds to process, 

amounting to a total epoch time of 17 seconds. The efficiency of batch processing 

ensures that the model can be retrained or fine-tuned rapidly if required, which is a 

boon for iterative model development. Figure 98 depicts the learning curves obtained 

while constructing the model to classify hate and non-hate speech classes. 

14.9  Training Performance 

During the fifth epoch, the model achieved a training loss of 0.0843. The term loss 

refers to the objective function value the model aims to minimize. A lower loss 

suggests that the model's predictions are aligning well with the actual data. 

Moreover, the model attained a training accuracy of 97.32%. 

14.9.1 Validation Performance 

To ensure that the model isn't just memorizing the training data (a phenomenon 

called overfitting), it is vital to test its performance on a separate set of data it hasn't 

seen during training. For this purpose, validation metrics are essential. In the fifth 

epoch, the model showcased a validation loss of 0.0754, which is even lower than the 

training loss, pointing towards the model's robustness. The validation accuracy was 

98.18%, indicating that the model generalizes well to new data and has a high 

predictive capability. 

14.9.2  Learning Rate 

The learning rate during this epoch was set at 0.0010. This parameter determines the 

step size the model takes to adjust its weights in the direction of optimal 

performance. A carefully chosen learning rate ensures that the model converges 

efficiently without overshooting or getting stuck.  
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Figure 98 The Learning Curves 

The model exhibits strong performance both in training and validation phases. With 

a validation accuracy surpassing 98%, it indicates a well-optimized model with high 

predictive power. The differences between training and validation metrics are 

minimal, suggesting that the model is neither overfitting nor underfitting. 

14.10  Performance Evaluation 

The classification task revolves around distinguishing between two critical 

categories: hate and non-hate. One of the key performance metrics employed to 

gauge the model's proficiency is precision. Figure 99 illustrates the confusion metrics 

that has been generated to check how well the model performs the classification task. 

The hate category has an impressive precision score of 0.98 signifies that, out of all 

instances that the model confidently tagged as hate, a whopping 98% were indeed 

correctly classified. And for the non-hate category, the model's precision stood at 

99%, indicating that a remarkable 99% of instances earmarked as "non-hate" aligned 

with the ground truth.  

The numbers reveal that the model is particularly strong at identifying hate speech, 

with a very high true positive rate. However, there's a small margin of error in 

identifying non-hate speech, given by the 32 False Positives. In the context of this 

study, this could mean that the model might sometimes be a little over-cautious, 

classifying some non-hate speech as hate. A detailed analysis of the performance of 
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the model in terms of accuracy, micro average and weighted average is shown in 

Figure 100. 

 

Figure 99 The Confusion Matrix 

 

 

Figure 100 Hate Speech Classification Performance 
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14.11 Principal Component Analysis (PCA) 

PCA is a dimensionality reduction technique that converts high-dimensional data 

into fewer dimensions, prioritizing those that maximize variance. In this case, the 

data is reduced to two principal components, represented on the x and y axes of the 

scatter plot. The dataset comprises two classes, hate and non-hate, visually 

differentiated by red and green colors, respectively. The resultant scatter plot 

displays these two classes in the context of the first and second principal components.  

Figure 101 illustrates the two primary clusters are the red cluster for hate and green 

one for non-hate. This clustering suggests a certain degree of separation between the 

two classes in this reduced space. However, there is a noticeable overlap between the 

clusters, indicating challenges in distinguishing hate from non-hate speech based 

solely on these principal components.  

 

Figure 101 Reduced Space Formed by PCA 

The data points are colored based on their actual labels, allowing for visual 

inspection of how well-separated or clustered the two classes are in this reduced 

dimensional space. For hate speech detection in accented Malayalam speech data, 
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the PCA visualization provides an initial, high-level insight into the distribution and 

potential separability of hate and non-hate data points.  

In the context of this study on detecting hate speech in accented Malayalam speech 

data, the model appears to be performing very well, especially in identifying hate 

speech. However, there is a slight challenge in classifying non hate speech, which 

might be attributed to complexities in the accented Malayalam language or the 

nature of the training data.  

Future refinements could focus on minimizing these false positives to make the 

model even more accurate. In future iterations, one might consider experimenting 

with different model architectures, hyperparameters, or introducing more data 

augmentations to further enhance the model's performance.  This model provides a 

reliable foundation for the task at hand. This performance evaluation provides a 

snapshot of the model's capabilities and areas of strength. It can be further elaborated 

or refined based on additional context or specific requirements. 

14.12  Conclusion 

This chapter explored the integration of advanced feature extraction techniques and 

sophisticated model architectures to enhance hate speech recognition in the context 

of accented Malayalam speech. By extracting key features such as ZCR, 

Chroma_STFT, Mel-frequency Cepstral Coefficients MFCC, RMS, and Mel 

Spectrograms, the intricate acoustic and harmonic properties of speech signals were 

captured. These features, along with data augmentation techniques, provided a 

robust dataset for training models. 

This comprehensive approach allowed for the successful detection and classification 

of hate speech, demonstrating high accuracy and robustness across different 

speaking conditions and accents. The advanced data augmentation techniques 

ensured that the model could generalize well, making it resilient to variations in the 

input data. 
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The findings of this chapter contribute significantly to the field of AASR, in the 

detection of hate speech. The methodologies and techniques discussed provide a 

strong foundation for future research, offering potential pathways for further 

enhancements and applications in various speech recognition tasks. This work 

focuses on the importance of combining robust feature extraction with sophisticated 

modeling techniques to address complex problems in speech processing and 

recognition. 
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15. Results and Discussion 

15.1  Experiment 1 

The results of Experiment 1 discussed in chapter 5 provide significant insights into 

the development of an Accented AASR system for isolated Malayalam words using 

the LSTM-RNN algorithm. The study was conducted using the AMSC-1 dataset, 

which was specifically constructed for this research. The results demonstrate that the 

AASR system achieved an accuracy of 82.5%, with micro precision, recall, and F1-

score all consistently at 82%. This consistency at the micro level indicates a balanced 

performance across individual instances. 

 

Figure 102 Performance Evaluation  

At the macro level, the performance metrics slightly improved, with precision at 84%, 

recall at 83%, and F1-score at 83%. This suggests that the AASR system performs 

better for larger classes, which is a positive outcome for practical applications where 

certain words or phonetic structures may be more prevalent. Additionally, the 

weighted metrics, which account for class imbalances, show precision, recall, and F1-

scores of 83%, 82%, and 82%, respectively. These results further validate the 
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robustness and reliability of the system in handling imbalanced datasets, a common 

challenge in speech recognition tasks. 

The constructed AASR system demonstrates a strong capability in recognizing 

accented speech in Malayalam, a language characterized by its diverse regional 

accents and phonetic intricacies. By achieving high precision, recall, and F1-scores, 

the system confirms its effectiveness in accurately identifying and processing 

accented speech. The scope of this study, focused on twenty isolated word classes, 

represents a foundational step towards more comprehensive and context-aware 

speech recognition systems for Malayalam. Although limited in scope, the research 

stresses the potential of integrating linguistic diversity within speech recognition 

technologies, which is crucial for preserving and promoting regional accents and 

dialects. 

In summary, the results of Experiment 1 illustrated in Figure 102 indicate the 

feasibility and effectiveness of using LSTM-RNN for constructing AASR systems for 

Malayalam. The balanced and high performance across various metrics indicates that 

the developed system is well-suited for practical applications, paving the way for 

further advancements in accented speech recognition for regional languages. 

15.2  Experiment 2 

The results of Experiment 2 discussed in chapter 6 present the contributions of an 

extensive study focusing on the construction and evaluation of AASR systems using 

various machine learning and deep learning approaches. The study utilizes the 

AMSC-2 dataset, which was created specifically for this research to represent accent-

based Malayalam speech data. The hyper parameter tuning had varying effects on 

the different models. While some models, like MLP Classifier, Random Forest, KNN, 

LSTM-RNN, and CNN, showed substantial improvement, others, such as SVM and 

SGD, demonstrated either minimal improvement or sometimes declined in 

performance. The performance evaluation of the model is illustrated in Figure 103. 
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Figure 103 Performance Evaluation of Experiment 2 

The AMSC-2 dataset was prepared to include diverse accents within the Malayalam 

language. Feature engineering involved multiple techniques such as MFCC, STFT, 

and Mel Spectrogram methods to extract optimal representations of the speech data. 

Several machine learning algorithms were employed to construct AASR models, 

including MLP, Decision Tree, SVM, Random Forest, KNN, and SGD. Among these, 

the MLP model achieved the highest accuracy of 94.82%, effectively capturing the 

variations in Malayalam accents. The Decision Tree and SVM models produced 

lower accuracies of 55.67% and 66.15%, respectively, reflecting the challenges in 

modeling accented speech with these approaches. The Random Forest model 

achieved an accuracy of 78.76%, and the KNN model reached 81.69% after 

hyperparameter tuning. The SGD model, while powerful, yielded a lower accuracy 

of 33.16%, indicating the sensitivity of this method to feature selection and tuning. 

The LSTM-RNN model demonstrated significant potential in accented speech 

recognition, particularly for Malayalam. Utilizing 180 prominent features of speech 

data, the LSTM-RNN model underwent rigorous training involving 98,000 steps. The 

training process showed a substantial improvement from an initial loss of 2.5 to a 
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final loss of 0.24, achieving a remarkable training accuracy of 95%. The validation 

phase confirmed the model's effectiveness with an accuracy of 82%, indicating its 

capacity to handle multi-accent speech classification by accurately modeling the 

temporal dependencies in speech signals. 

Deep CNNs were employed to process spectrograms of accented speech, treating 

them as images. The CNN models were designed to utilize the intricate 

spectrographic details of audio signals. The training process spanned 53,000 steps 

over 4,000 epochs, with the model leveraging 80% of the data for training and 20% 

for testing. This sophisticated architecture, incorporating convolutional, pooling, and 

dense layers, effectively identified complex features that characterize different 

accents. The model achieved a training accuracy of 98% and a test accuracy of 71%, 

highlighting the effectiveness of CNNs in accent recognition. 

An ensemble approach combining all individual models was developed to enhance 

the overall performance of the AASR system. This ensemble method achieved an 

accuracy of 71.55%, indicating the potential benefits of integrating multiple models 

to utilize their complementary strengths. 

The findings from Experiment 2 provide valuable insights into the capabilities and 

limitations of various approaches in Malayalam accented speech recognition. The 

high training accuracy of the LSTM-RNN and CNN models highlights their potential 

in learning complex features of accented speech. However, the lower test accuracy in 

the CNN model indicates challenges in generalization, suggesting potential 

overfitting. The machine learning models, particularly the MLP, showed strong 

performance, while other models highlighted the difficulties in capturing speech 

complexities. This study advances the understanding of accented speech recognition 

and sets a foundation for future research in this under-explored area. The results 

emphasize the importance of balancing model complexity and generalization to 

enhance the practical applicability of AASR systems. 
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15.3  Experiment 3 

The results of Experiment 3 discussed in chapter 7 discuss the methods that were 

systematically developed to enhance the recognition accuracy of accented 

Malayalam speech using two datasets the AMSC-3 and AMSC-4. These phases 

progressed from basic feature extraction techniques to complex combinations of 

multiple methods, capturing a comprehensive set of features that reflect the detailed 

characteristics of Malayalam accented speech. The experiment is conducted in two 

phases using these datasets. The first phase used the AMSC-3 dataset, and the second 

phase used the AMSC-4 dataset. The evaluation of two phases is discussed below: 

15.3.1  Experiment based on AMSC-3 

The performance metrics used for evaluation include the WER and MER, which 

indicate the percentage of incorrectly predicted words and misrecognized speech 

segments, respectively. Additionally, the accuracy metrics for LSTM-RNN, namely 

Raw Accuracy and Validation Accuracy, were employed to assess the model's 

performance on the training and validation dataset. 

Figure 104 illustrates the performances of different phases of the study using AMSC-

dataset. Phase I involved extracting 13 frequency coefficients from the speech signal, 

along with their second and third derivatives, yielding a total of 40 coefficients. This 

phase provided a foundational representation of the audio data but was limited in 

capturing time-varying features. The average WER and MER for this phase were 37% 

and 49%, respectively, highlighting the need for more sophisticated methods to 

reduce errors. 
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Figure 104 Performance Evaluation using AMSC-3 

Phase II extracted 12 prominent amplitude values for time-frequency decomposition. 

While STFT offered a time-localized view of frequency variation, it struggled with 

high error rates due to its sensitivity to noise and the complexity of speech signals. 

The average WER and MER were 55% and 80%, respectively, indicating the 

limitations of STFT in handling accented speech data effectively. 

Phase III focused on capturing the rhythmic aspects of speech by extracting 384 

features. This phase analyzed the rhythmic characteristics of the speech signal but 

did not significantly reduce error rates compared to STFT alone, with average WER 

and MER remaining at 55% and 71%, respectively. This suggests that while rhythm 

is an important feature, it alone is insufficient for improving recognition accuracy. 

Phase IV involved extracting 128 features, providing deeper insights into the speech 

data. This phase showed improvement in WER, reflecting better representation of 

spectral content relevant to human auditory perception. The average WER and MER 
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were 41% and 69%, respectively, demonstrating the effectiveness of Mel Spectrogram 

techniques in capturing hidden characteristics of the speech data. 

Phase V involved the combination of MFCC and STFT created a comprehensive 

vector representation by integrating both methods. This combination improved both 

WER and MER by capturing more detailed time-frequency aspects of the speech 

signal. The average WER and MER for this phase were 30% and 61%, respectively, 

showing significant improvement over the individual methods. 

Phase VI involved the combination of MFCC and Tempogram significantly enhanced 

the understanding of frequency and rhythm in speech, leading to the lowest error 

rates observed up to this phase. By combining these features, the average WER and 

MER were reduced to 20% and 27%, respectively, highlighting the effectiveness of 

integrating frequency coefficients and rhythmic patterns. 

Phase VII involved the combination of MFCC and Mel Spectrogram balanced and 

enriched the speech signal representation by integrating MFCC and Mel 

Spectrogram features. Although this phase did not surpass the performance of Phase 

VI, it still provided a well-rounded analysis of the speech data. The average WER 

and MER were 30% and 39%, respectively. 

Phase VIII involved the combination of MFCC, STFT, Tempogram, and Mel 

Spectrogram was the final phase, combining all previous feature sets to create a 

comprehensive and robust representation of accented Malayalam speech. This phase 

achieved the lowest WER and MER, with averages of 14% and 18%, respectively, 

demonstrating the effectiveness of integrating diverse feature extraction methods. 

This comprehensive model captured the complexity and uniqueness of Malayalam 

accented speech, resulting in the most accurate recognition performance. 

The performance of the LSTM-RNN model was evaluated with a Raw Accuracy of 

87% and a Validation Accuracy of 65%. The high raw accuracy on the training set but 

notable drop in validation accuracy indicates potential overfitting, where the model 
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performs well on training data but less so on unseen data. Further tuning and 

regularization techniques may be required to enhance generalization and improve 

the validation accuracy. 

Practical challenges in feature extraction methods such as Short-Time Fourier 

Transform (STFT), Tempogram, and Mel Spectrogram include selecting appropriate 

parameters like window size and type for STFT to balance time and frequency 

resolution, which impacts computational complexity. Tempogram computation 

requires accurate segmentation and windowing for rhythmic pattern analysis, 

posing difficulties in handling varying tempo and rhythm. Mel Spectrogram 

computation aims to map the power spectrum onto the Mel scale but faces challenges 

with non-stationary signals and interpreting features amidst noise. Robustness to 

noise and artifacts is a common challenge across all methods, demanding empirical 

experimentation and algorithmic optimization for reliable feature extraction. These 

challenges emphasize the importance of domain expertise and careful parameter 

tuning to ensure accurate representation of audio signals for subsequent processing 

tasks. 

The phased approach to feature engineering, culminating in the integration of 

multiple methods, effectively reduced error rates and enhanced the recognition 

accuracy of accented Malayalam speech. The results feature the importance of 

comprehensive feature representation and the need for careful parameter tuning and 

noise management in speech recognition systems. The performance of the LSTM-

RNN model highlights areas for further improvement, particularly in addressing 

overfitting and enhancing validation accuracy. 

15.3.2  Experiment Based on AMSC-4 

The results of this study reveal several key insights into the effectiveness of different 

feature extraction methods and classifiers in the recognition of accented Malayalam 

speech. This analysis focuses on the variations in WER and classification accuracy 

across different phases of the feature engineering process. 
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15.3.2.1 Word Error Rate (WER) Analysis 

In Phase I, the MLP and ensemble methods demonstrated the lowest WER, both 

around 0.52%, indicating a strong initial performance. This suggests that these 

models are well-suited to the initial dataset configuration. Conversely, the high 

WERs of the Decision Tree and SGD models, with SGD performing at 68.74%, 

indicate significant room for improvement and suggest that these models were less 

effective with the initial feature set. 

The WER increased for all models in Phase II, likely due to changes in the training 

process, data augmentation, or feature extraction techniques. This phase highlights 

the sensitivity of the models to alterations in input data and the need for further 

tuning to adapt to new conditions. The KNN model's WER soared to 99%, indicating 

it struggled the most with these changes. The ensemble method's increased WER 

reflects the difficulty in combining poorly tuned individual models. Table 24 

illustrates the performance evaluation in terms of WER generated in the study. 

Table 24 Performance in WER 

Phases MLP Decision Tree SVM RFC KNN SGD Ensembled 

Phase I 0.52% 47.85% 39.72% 19.52% 18.31% 68.74% 18.31% 

Phase II 62.69% 65% 69.78% 55.96% 55% 99% 56.48% 

Phase III 28% 66% 70% 58% 60% 84.81% 56.31% 

Phase IV 5.88% 46.12 40.25% 19.35% 18.31% 73.06% 56.48% 

Phase V 0% 52.85% 36.44% 35.92% 16.59% 76.86% 19.69% 

Phase VI 0.50% 45% 30.71% 15.67% 17.23% 75.35% 17.12% 

 

MLP showed significant improvement in Phase III, reducing its WER to 28%, which 

can be attributed to adjustments in hyperparameters or feature engineering. The 

slight improvements or stabilization in the Decision Tree and SVM models suggest 

incremental tuning but indicate a need for more extensive optimization. 
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By Phase IV, MLP's WER further decreased to 5.88%, showcasing the benefits of 

refined hyperparameter tuning and improved feature extraction techniques. The 

Decision Tree and SVM models also showed moderate reductions in WER, indicating 

that iterative tuning was starting to pay off. However, the ensemble method's slight 

increase in WER could be due to individual model variability. 

In Phase V, MLP achieved a perfect WER of 0%, reflecting peak performance and 

effective training processes. Other models, including SVM and RFC, also showed 

significant improvements, illustrating the advantages of advanced tuning 

techniques. The KNN model's WER reduced to 16.59%, and the ensemble method's 

WER improved to 19.69%, indicating that individual model optimizations positively 

impacted the combined approach. 

The final phase saw MLP maintaining a low WER of 0.50%, indicating consistent high 

performance. The ensemble method achieved its best WER of 17.12%, demonstrating 

the effectiveness of combining multiple optimized models. Decision Tree, SVM, and 

RFC models showed stable and improved WERs, highlighting the cumulative 

benefits of iterative tuning. 

Overall, the analysis of WER across phases illustrates the progression from initial 

high error rates to significantly reduced rates through iterative tuning and 

optimization. The MLP model consistently outperformed other classifiers, achieving 

the lowest WER in the final phases, underscoring its suitability for accented 

Malayalam speech recognition. 

15.3.2.2 Accuracy Analysis 

MFCC features yielded high accuracies across various classifiers, with MLP 

achieving an impressive 99.5%. This demonstrates the effectiveness of MFCC in 

capturing essential frequency features from speech signals. Other classifiers, such as 

KNN and RFC, also performed well, achieving accuracies of 82% and 79%, 

respectively. However, the SGD classifier showed poor performance with an 
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accuracy of only 19%, indicating that it was less effective with MFCC features. Table 

25 illustrates the performance evaluation in terms of Accuracy generated in the 

study. STFT provided lower accuracies compared to MFCC, with MLP achieving 

only 37%. This suggests that while STFT captures important spectral content, it may 

not be as effective for the classifiers used in this study. KNN and RFC showed 

moderate accuracies of 45%, indicating that STFT might not be the optimal 

standalone feature extraction method for these classifiers. 

Tempogram features, focusing on rhythmic aspects, yielded moderate accuracies, 

with MLP achieving 72%. This indicates that while Tempogram features are 

informative, they are less effective than MFCC for most classifiers. Other classifiers 

showed accuracies ranging from 31% (SVM) to 43% (KNN), reflecting the limited 

improvement offered by rhythmic features alone. 

Combining MFCC and STFT resulted in higher accuracies, with MLP achieving 95%. 

This combination utilizes both time and frequency aspects, enhancing the analysis 

and leading to significant performance improvements for classifiers like RFC and 

KNN, both achieving 81% accuracy. 

The fusion of MFCC and Tempogram features produced high accuracies, with MLP 

again achieving 95%. This combination captures both frequency coefficients and 

rhythmic patterns, providing a detailed analysis that enhances the understanding of 

speech characteristics. 

The integration of MFCC, STFT, and Tempogram features resulted in the highest 

accuracies, with MLP achieving 99%. This phase demonstrated that combining 

multiple feature extraction techniques can significantly improve classification 

accuracy, particularly for MLP, SVM, RFC, and KNN classifiers. 
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Table 25 Performance in Accuracy 

Phases Feature Extraction Method Classifier Accuracy (%) 

Phase I 

MFCC MLP 99.5 

 KNN 82 

 RFC 79 

 SVM 78 

 Decision Tree 55 

 SGD 19 

 Ensemble 79 

Phase II 

STFT MLP 37 

 KNN 45 

 RFC 45 

 SVM 29 

 Decision Tree 32 

 SGD 10 

 Ensemble 44 

Phase III 

Tempogram MLP 72 

 KNN 43 

 RFC 41 

 SVM 31 

 Decision Tree 34 

 SGD 21 

 Ensemble 42 

Phase IV 

MFCC + STFT MLP 95 

 KNN 81 

 RFC 81 

 SVM 60 

 Decision Tree 54 

 SGD 28 

 Ensemble 81 

Phase V 

MFCC + Tempogram MLP 95 

 KNN 81 

 RFC 81 

 SVM 60 

 Decision Tree 54 

 SGD 28 

 Ensemble 81 



331 

Phases Feature Extraction Method Classifier Accuracy (%) 

Phase VI 

MFCC + STFT + Tempogram MLP 99 

 KNN 82 

 RFC 80 

 SVM 60 

 Decision Tree 52 

 SGD 32 

 Ensemble 81 

Phase VII 

MFCC, STFT, Mel Spectrogram, 

RMS, Tempogram 
LSTM-RNN Training: 95 

  Validation: 67 

 

Among the classifiers evaluated, MLP consistently provided the best results across 

different feature extraction techniques. MLP achieved the highest accuracy in most 

cases, such as 99.5% with MFCC and 99% with the combined features of MFCC, 

STFT, and Tempogram. These results indicate that MLP is particularly effective at 

capturing complex patterns in the speech data. SVM and RFC also showed good 

performance but were generally outperformed by MLP. Decision Tree and SGD 

consistently performed poorly compared to other classifiers, with maximum 

accuracies of 55% and 32%, respectively. 

The optimal combination of features that provided the best results was the 

integration of MFCC, STFT, and Tempogram. This combination led to the highest 

accuracy of 99% with MLP, highlighting the value of integrating multiple types of 

features to enhance performance. The combination of MFCC with either STFT or 

Tempogram alone also yielded high accuracies, indicating the effectiveness of these 

combinations in capturing comprehensive information about the speech signals. The 

performance of the model leveraging a combination of MFCC, STFT, Mel 

Spectrogram, Root Mean Square (RMS), and Tempogram features demonstrated 

significant promise in recognizing accented Malayalam speech. Achieving a training 

accuracy of 95%, the LSTM-RNN model effectively learned the intricate patterns in 

the training data, indicating its capability to handle complex speech characteristics. 

The validation accuracy of 67%, while lower, suggesting that the model can 

effectively recognize unseen speech patterns despite some degree of overfitting. This 
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combined feature approach, integrating frequency, time-frequency, spectral, 

amplitude, and rhythmic information, provides a comprehensive representation of 

the speech signals, enhancing the model's overall performance.  

In conclusion, this study demonstrates the effectiveness of combining various feature 

extraction techniques and classifiers to improve the recognition of accented 

Malayalam speech. The results highlight the superior performance of MLP and 

LSTM-RNN particularly when multiple feature extraction methods are integrated, 

providing valuable insights for future research and development in this field. 

15.4  Experiment 4 

Experiment 4 discussed in chapter 8 discusses that following feature vectorization, 

the study employs advanced deep learning architectures tailored for accent-based 

AASR. LSTM-RNN and DCNN are utilized to exploit temporal dependencies and 

spatial patterns in the speech data, respectively. The models are trained using 

stochastic gradient descent with backpropagation, optimizing performance metrics 

such as accuracy and loss. To evaluate model performance, the dataset is split into 

training, validation, and test sets. Performance metrics, including Word Error Rate 

(WER) and accuracy, are computed on the test set to assess the effectiveness of the 

proposed approach. Table 26 illustrates the performance evaluation of neural 

networks. 

The LSTM-RNN demonstrated superior performance compared to the DCNN, 

achieving higher validation accuracy and lower validation loss. The DCNN model, 

despite performing well on the training data, showed signs of overfitting, indicated 

by the significant gap between training and testing performance metrics. These 

results emphasize the importance of choosing appropriate model architectures and 

feature representations for accent-based ASR systems. The LSTM-RNN's ability to 

effectively learn from temporal dynamics makes it a more suitable choice for the task 

of recognizing accented speech variations in Malayalam. 
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Table 26 Performance Evaluation  

Metric LSTM-RNN DCNN 

Training Duration 1000 epochs 4000 epochs 

Training Samples 3020 3020 

Testing Samples 800 800 

Final Training Accuracy 95% 74% 

Final Validation Accuracy 67% 39% 

Initial Training Loss 0.03 High 

Final Training Loss 0.003 9% 

Initial Validation Loss 0.034 High 

Final Validation Loss 0.027 17% 

Overfitting Indication No significant gap 

Significant gap between  

training and testing  

performance 

 

The findings reveal the importance of carefully selecting and combining features, as 

well as choosing the appropriate algorithms, to ensure an effective and accurate 

accented speech recognition model. This research adds to the growing body of 

knowledge in the field of accented speech recognition and contributes valuable 

insights that may inform future studies and technological advancements in the 

Malayalam language. The final experiment showcased the effectiveness of 

combining various features and utilizing advanced deep learning techniques, such 

as LSTM-RNN, in modeling accented Malayalam speech. 

15.5  Experiment 5 

The experimentation phase in chapter 9 involved evaluating several machine 

learning models for recognizing accented Malayalam speech. These models included 

MLP, DTC, SVM, RFC, KNN, SGD, and an ensemble classifier.  

The AMSC-3 dataset, consisting of 7070 samples representing various age groups 

and genders, was used for this purpose. A comprehensive feature engineering 
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process was implemented to transform raw speech signals into meaningful 

representations. This included extracting multiple feature vectors such as MFCC, 

STFT, Mel Spectrogram, Spectral Roll-Off, RMS, and Tempogram rhythmic features. 

Each audio signal was vectorized into a set of 1530 features. 

 

Figure 105 Performance Evaluation in Accuracy 

Figure 105 illustrates the performance of the experiment. The MLP achieved 

remarkable success with a perfect accuracy of 100%, showcasing its adeptness in 

learning intricate patterns. Conversely, the DTC managed an accuracy of 54.40%, 

highlighting its interpretability but also its struggle with complex data patterns. 

Utilizing high-dimensional feature vectors, the SVM attained an accuracy of 67.36%, 

demonstrating its effectiveness. Initially underperforming, the RFC saw a significant 

boost to 77.72% accuracy through hyperparameter tuning, emphasizing the 

advantages of ensemble methods. The KNN algorithm displayed sensitivity to 

parameters, improving from 63.73% to 81.86% accuracy after tuning. In contrast, the 

SGD achieved a modest 34.19% accuracy, indicating challenges in capturing nuanced 

accents. Combining the strengths of individual models, the Ensemble Model 

achieved a commendable accuracy of 79.44%, underscoring the effectiveness of 

hybrid approaches. 

Table 27 describes the study focused on evaluating the LSTM-RNN architecture's 

performance in recognizing accented Malayalam speech through three experiments 
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with varying training durations. In the initial experiment, training the LSTM-RNN 

for 2000 epochs with a batch size of nine allowed the model to effectively capture 

both spectral and temporal speech characteristics, demonstrating significant learning 

of complex speech patterns. The second experiment extended the training duration 

beyond 2000 epochs, resulting in improved accuracy and reduced WER, indicating 

enhanced understanding of accented speech nuances through additional iterations. 

The third experiment, with further extended training, revealed a decline in accuracy 

beyond a certain point, highlighting the risk of overfitting and the importance of 

finding the optimal training duration to balance between effective learning and 

generalization.  

Table 27 Performance of LSTM - RNN 

No. of 

epochs 

Train 

Accuracy 

Validation 

Accuracy 

Train   

Loss 

Validation 

Loss 

No. of 

Steps 

WER 

for 

known 

words 

WER for 

unknown 

words 
 

2000 93.30% 60.72% 0.29% 1.94% 482000 7% 39%  

3000 96.97% 63.35% 0.11% 1.98% 723000 3% 37%  

4000 95.74% 62.22% 0.15% 1.95% 1000000 4% 38%  

 

 

Figure 106 Performance Evaluation in terms of WER 
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Figure 106 illustrates the performance of the model in terms of WER. The results of 

these experiments highlight the crucial role of feature engineering and model 

selection in developing an effective AASR system for Malayalam. While individual 

models varied in their performance, the use of hyperparameter tuning and ensemble 

techniques significantly improved the system's ability to recognize accented speech 

accurately. 

The experiments emphasized the potential of deep learning methods, particularly 

LSTM-RNN, for accented speech recognition. They emphasized the necessity of 

carefully optimizing training duration to achieve the best balance between model 

accuracy and generalization capability while avoiding overfitting. This study 

illustrates that the MLP Classifier achieved a perfect score, registering no errors, 

while other models displayed varying degrees of effectiveness.  

15.6  Experiment 6 

This experiment discussed in chapter 10 discusses the training process involved six 

distinct phases, each implementing different variations of RNN architectures and 

enhancements. In Phase 1, a basic RNN architecture was utilized to train the model. 

Despite its simplicity, this phase provided a foundation for subsequent 

enhancements. Phase 2 introduced attention mechanisms into the RNN architecture. 

This allowed the model to focus on relevant parts of the input sequence, improving 

its ability to capture dependencies and relationships within the data. Transitioning 

to Phase 3, the model architecture was upgraded to LSTM cells. LSTMs can capture 

long-range dependencies and mitigating the vanishing gradient problem, thus 

enhancing the model's performance. Building upon the LSTM architecture, Phase 4 

incorporated attention mechanisms. By combining LSTM cells with attention, the 

model gained the ability to selectively attend to important features, further 

improving its predictive capabilities.  

In Phase 5, the model architecture was modified to a Bidirectional LSTM (BiLSTM). 

BiLSTMs process input sequences in both forward and backward directions, 
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allowing the model to capture contextual information from both past and future 

states. Finally, Phase 6 introduced attention mechanisms into the BiLSTM 

architecture. This combination utilized the advantages of bidirectionality and 

attention, enabling the model to capture complex patterns and dependencies within 

the data while focusing on relevant information. 

 

Figure 107 Accuracy Vs Phases of Experiment 

Throughout these phases, the model underwent iterative training and refinement, 

resulting in progressively higher accuracy and improved performance. Each phase 

represented a step towards developing a sophisticated and effective model for the 

task at hand, showcasing the iterative nature of deep learning model development. 

Figure 107 illustrates a progressive enhancement in model performance, reflected 

through accuracy metrics across different phases.  

It provides a detailed overview of the experimental results across six distinct phases, 

capturing the training and validation accuracies, loss values, and the number of 

epochs. WER includes substitution errors (S), insertion errors (I), and deletion errors 

(D).  It is calculated as WER=
�����

�
, where N is the total number of utterances.  

MER is computed as MER =
�������.

�
 

Phase I Phase II Phase III Phase IV Phase V Phase VI

Train Accuracy 87.18% 92.02% 94.10% 96.27% 96.25% 97.37%

Validation Accuracy 65.15% 72.61% 64.87% 73.03% 72.45% 74.27%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Train Accuracy Validation Accuracy
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Figure 108 illustrates the model performance at varying epochs of different phases. 

 

Figure 108 Model Accuracies Vs Epochs 

 

Figure 109 Model Loss Vs Phases 

The results indicate substantial progress throughout the experimental phases. The 

utilization of RNN with attention in Phase II significantly outperformed Phase I.  The 

highest performance was achieved in Phase VI with BiLSTM and attention 
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mechanisms, demonstrating greater accuracy and lower error rates. In addition to 

accuracy and loss, the evaluation also considered WER and MER.  

Figure 109 illustrates a progressive enhancement in model performance, reflected 

through loss metrics across different phases.  

15.7  Experiment 7 

The experiment discussed in chapter 11 illustrates the fusion of autoencoders with 

machine learning (ML) models demonstrates a powerful approach for enhancing 

classification accuracy and robustness in speech recognition tasks, particularly in 

dealing with the complexities of accented speech. Through the integration of 

autoencoder-generated features with various ML classifiers, significant 

improvements in predictive performance have been observed across multiple 

models. 

 The Figure 110, Figure 111, Figure 112 clearly illustrates the performance evaluation 

in terms of accuracy, WER, and log loss across various experiments conducted also 

it illustrates a broader perspective of the experimental evaluations, showcasing the 

results in terms of accuracy, loss, precision, and recall across different test scenarios.  

 

Figure 110 Performance of Encoder Models  
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Figure 110 illustrates that the AASR model constructed using encoder with 

compression showed better performance in terms of accuracy and WER.  

 

Figure 111 Performance of ML Models 

Figure 111 clearly shows the AASR model performances that are constructed using 

various methodologies. AASR constructed with MLP yields the best results when 

trained with original input data. 

 

Figure 112 Performance of Hybrid Autoencoder Models 
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Figure 112 describes the performance evaluation of the AASR models constructed 

with the already constructed AASR models using various machine learning 

techniques. A hybrid model was developed with compressed data and ML 

technology. Figure 113 illustrates the AASR model performance in terms of the log 

loss generated while constructing the models. The AASR model constructed with 

autoencoder with compressed data method performed well that the other model that 

was constructed with original data (without compression). 

 

Figure 113 Performance in Terms of Log Loss Values  

Figure 114 illustrates the behavior of the AASR model that was constructed at 

various phases of the research. The evaluation performed in terms of log loss and the 

hybrid model constructed using MLP and compressed generated the lowest log loss 

value indicating the efficiency of the architecture in modeling the accent complexities 

for Malayalam. 
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Figure 114 Performance of ML Models VS Hybrid Models 

15.8 Experiment 8 

Experiment 8 discussed in chapter 12 a comprehensive set of 584 emotional speech 

features was carefully extracted. Prior to extraction, audio signals underwent 

standardization to ensure uniform dimensions, thereby facilitating consistent feature 

extraction across all samples. Spectral contrast, polyfeatures, tempogram, tonnetz, 

Parselmouth-derived periodicity measure, formant frequencies, fundamental 

frequency (F0) standard deviation, MFCCs, delta, delta2, zero crossing rate (ZCR), 

chroma STFT, root mean square value (RMS), and Mel spectrogram were among the 

diverse range of features computed, each contributing unique insights into the 

emotional content of speech signals. This multi-faceted approach to feature 

extraction highlights the depth and breadth of methods utilized in the study. 

Following feature extraction, various clustering algorithms were employed to 

identify underlying patterns and structures within the data. OPTICS, known for its 

adaptability to varying data densities, demonstrated strong performance with a 

silhouette score of 0.55, indicating clear and well-defined clusters. BIRCH, although 
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hierarchical in nature, exhibited moderate cluster separation and cohesion 

(silhouette score of 0.17), suggesting some difficulty in fully delineating clusters 

without overlap. Ensemble clustering using majority voting achieved moderate 

performance (silhouette score of 0.40), leveraging the strengths of multiple methods 

but still showing some overlap between clusters. Table 28 illustrates the performance 

of the clusters in the terms of Silhouette Scores. 

Table 28 Performance Evaluation of the Clustering Techniques 

Clustering Algorithm Silhouette Score 

OPTICS 0.55 

BIRCH 0.17 

Ensemble Clustering (Majority Voting) 0.4 

Consensus Clustering 0.16 

Affinity Propagation 0.47 

Mean Shift Clustering 0.34 

Agglomerative Clustering 0.15 

Gaussian Mixture Model (GMM) 0.2 

DBSCAN 0.12 

Spectral Clustering -0.18 

 

Consensus clustering, building upon the ensemble approach, encountered 

challenges with a relatively low silhouette score of 0.16, indicating potential 

difficulties in achieving distinct cluster separation. Affinity Propagation, leveraging 

pairwise similarities, produced clusters with moderate separation and cohesion 

(silhouette score of 0.47), showcasing its adaptability and effectiveness in capturing 

underlying patterns. Mean Shift Clustering, while identifying dense regions 

effectively, exhibited some cluster overlap despite a silhouette score of 0.34. 

Agglomerative Clustering, despite its intuitive hierarchical approach, yielded a 

lower silhouette score of 0.15, suggesting limitations in defining clear cluster 

boundaries. Gaussian Mixture Model (GMM) clustering and DBSCAN both faced 
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challenges in fully separating clusters, exhibiting some overlap despite silhouette 

scores of 0.20 and 0.12, respectively. Spectral Clustering, however, yielded a negative 

silhouette score (-0.18), indicating failure to generate meaningful clusters with 

significant overlap. 

In summary, the study's extensive feature extraction techniques provided rich 

insights into the emotional content of speech signals. While certain clustering 

algorithms demonstrated strong performance in identifying clear cluster structures, 

others encountered challenges, highlighting the complexity of the data and the 

nuances involved in clustering analysis. Further exploration and refinement of 

clustering methodologies may be warranted to fully uncover underlying patterns in 

the data and enhance clustering performance. 

15.9  Experiment 9 

The experiment discussed in chapter 13 discusses the experiments encompassing 

multiple methodologies ranging from CNNs, LSTMs, and a combination of both, 

often augmented with attention mechanisms. Below is a comprehensive summary of 

the results and evaluation. Figure 115 illustrates the performance of the model at 

different phases of the experiment. 

The experiment conducted a comprehensive evaluation of six distinct approaches for 

Accented Speech Recognition (AASR), each utilizing unique machine learning model 

architectures. These approaches included the 4D Parallel CNN with and without 

attention mechanisms, Bidirectional LSTM, CNN-LSTM Hybrid, 2D Parallel CNN, 

and 1D CNN. Each approach was trained and evaluated over a specified number of 

epochs, with detailed documentation of the time per epoch and total training time. 

Performance metrics such as training accuracy, validation accuracy, training loss, 

and validation loss were carefully recorded for analysis. 
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Figure 115 Performance Evaluation of the Experiment 

The results indicate competitive performance across the evaluated approaches. The 

Bidirectional LSTM approach achieved the highest training accuracy of 72.97%, 

closely followed by the 1D CNN approach with a training accuracy of 73.27%. The 

CNN-LSTM Hybrid and 4D Parallel CNN (with attention) approaches also 

demonstrated promising results, with training accuracies of 72.13% and 72.17%, 

respectively. 

In terms of validation accuracy, the 1D CNN approach exhibited robust performance, 

achieving a validation accuracy of 76.17%. This was comparable to the validation 

accuracies of the CNN-LSTM Hybrid and 4D Parallel CNN (with attention) 

approaches, which both achieved a validation accuracy of 76.49%. The 1D CNN 

approach demonstrated competitive training and validation loss metrics, further 

highlighting its effectiveness for AASR tasks. Despite not having detailed 

information on the time per epoch, the 1D CNN approach showcased efficient 

training, with a total training time of approximately 5 minutes. 

Overall, the experiment provided valuable insights into the efficacy and efficiency of 

various machine learning model architectures for Accented Speech Recognition, with 

the 1D CNN approach emerging as a competitive contender among the evaluated 

methodologies. 

4D Parallel
CNN (No

Attention)

4D Parallel
CNN (With
Attention)

Bidirection
al LSTM

CNN-LSTM
Hybrid

2D Parallel
CNN

1D CNN

Training Accuracy 72.13% 72.17% 72.97% 72.13% 66.25% 73.27%

Validation Accuracy 76.42% 76.49% 75.01% 76.49% 72.04% 76.17%

Training Loss 1.2014 1.1963 1.1824 1.2014 1.4957 1.1963

Validation Loss 1.0652 1.085 1.0986 1.0852 1.2306 1.085

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%
140.00%
160.00%

Training Accuracy Validation Accuracy Training Loss Validation Loss
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15.10  Experiment 10 

The experiment discussed in chapter 14 is conducted on accented Malayalam speech 

dataset for hate speech detection. For the hate class, a precision of 0.98 indicates that 

98% of instances predicted as hate were indeed hate. Similarly, for the non-hate class, 

99% of instances predicted as non-hate were correct. The hate class has a recall of 1.00 

(or 100%), meaning that all actual hate instances were correctly identified by the 

model. For non-hate, a recall of 0.95 indicates that 95% of actual non-hate instances 

were correctly identified, while 5% were missed.  

The F1-Score is the harmonic mean of precision and recall, providing a balance 

between the two metrics. It's particularly useful when class distributions are 

imbalanced. Both classes have high F1-Scores, with hate at 0.99 and non-hate at 0.97, 

indicating a balanced and high performance between precision and recall for both 

classes. This refers to the actual number of occurrences of each class in the dataset. It 

gives context to the other metrics, to identify how many instances were evaluated to 

arrive at the given precision, recall, and F1-score. In this case, there were 1430 hate 

instances and 607 non-hate instances in the dataset. The hate speech model 

evaluation is depicted in Figure 116. 

Accuracy is the ratio of correctly predicted instances to the total number of instances. 

An accuracy of 98% means that 98% of all predictions made by the model were 

correct. Macro Avg (Average) is the average performance metric (precision, recall, 

F1-score) across all classes without considering the class distribution. It treats all 

classes equally.  

Weighted Avg (Average) provides the average performance metric weighted by the 

number of true instances for each label. It accounts for any class imbalance and can 

often provide a more comprehensive overview than the macro average when classes 

are unequally distributed. 
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Figure 116 Hate Speech Evaluation 

In this research, as detailed in this study, innovative approaches for enhancing 

accented speech recognition in the Malayalam language were introduced. The focus 

was on exploring unique strategies that go beyond conventional methods. By 

examining the innovative feature extraction techniques, it was aimed to elevate the 

accuracy and effectiveness of accented speech recognition systems. The study 

highlights the critical role of comprehensive feature extraction and advanced model 

architectures in improving the accuracy of accented Malayalam speech recognition.
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16. Conclusion 

This chapter aims to encapsulate the performance advantages resulting from the 

rigorous work undertaken in this thesis on accented speech recognition for the 

Malayalam language. It is crucial to provide a summary of existing work, findings, 

research contributions, practical implications, limitations, and future directions. The 

performance advantages achieved in quantitative measures are highlighted, 

particularly emphasizing the significant phases of this work and the achievements in 

AASR for Malayalam. The central focus of this thesis has been to explore the domain 

of AASR to identify the most efficient approaches for accented Malayalam speech. 

16.1  Summary of Findings 

The central focus of this thesis has been to explore and identify the most efficient 

approaches for accented Malayalam speech recognition. The key findings are: 

The central focus of this thesis has been to explore and identify the most efficient 

approaches for accented Malayalam speech recognition. The key findings are: 

1. Advancements in Feature Extraction Techniques: This research refined existing 

methodologies for feature extraction, enhancing the quality of speech recognition 

by fine-tuning processes tailored to accented Malayalam speech. 

2. LSTM RNN and Crowdsourced Data: The application of LSTM RNN with 

crowdsourced data showed significant promise, effectively capturing the 

variations and details of accented speech. 

3. CNN, Auto Encoders, and Speech Feature Sets: The use of CNN and auto 

encoders demonstrated their proficiency in handling various speech feature sets, 

proving effective in recognizing accented Malayalam speech. 
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4. MLP and Near-Zero Word Error Rate (WER): Multi-Layer Perceptron (MLP) 

achieved near-zero WER in specific datasets, highlighting its high accuracy and 

reliability in speech recognition tasks. 

5. Hybrid Approach with CNN and LSTM RNN: The integration of CNN and 

LSTM RNN architectures emerged as the most efficient solution, combining 

accuracy with speed advantages. 

6. Emotion Clustering from Accented Emotional Data: Innovative emotion 

clustering within accented emotional data provided new insights into the 

interplay between emotion and linguistic variations. 

7. Hate Speech Detection Using Accented Data: The study demonstrated the 

effectiveness of accented data in detecting hate speech, showcasing its practical 

applications in diverse linguistic contexts. 

8. Generated Datasets for Accented Malayalam Speech Recognition: Nine distinct 

datasets were created, enhancing the diversity and comprehensiveness of the 

research. 

16.2  Research Contributions 

The research introduced novel approaches in feature extraction, LSTM RNN, CNN, 

auto encoders, machine learning techniques, and hybrid models. Significant 

contributions include: 

1. AASR of Malayalam Isolated Words Using LSTM-RNN: Demonstrated the 

efficiency of LSTM-RNN in recognizing isolated words in Malayalam. 

2. AASR with Deep-CNN, LSTM-RNN, and Machine Learning Approaches: 

Showed the effectiveness of these models in speech recognition. 

3. End-to-End Unified AASR for Low-Resource Contexts: Developed robust 

models for low-resourced contexts. 
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4. Analyzing Multisyllabic Words in Low-Resourced Contexts: Provided insights 

into handling complex speech patterns. 

5. Deep Neural Networks and Attention Mechanisms: Enhanced the accuracy and 

robustness of AASR models. 

6. Integration of Self-Supervised Learning and Autoencoders: Improved feature 

extraction and model performance. 

7. Clustering Methods for Emotion Classification: Contributed to understanding 

emotional complexities in speech. 

8. Exploration of Diverse Architectures: Investigated various CNN and hybrid 

models. 

9. Dual Approach to Detect Hate Speech in Accented Malayalam: Showcased 

practical applications in hate speech detection. 

16.3  Practical Implications 

The successful application of accented data for hate speech detection and emotion 

clustering highlights significant real-world applications: 

1. Enhancing NLP Systems: Incorporating accented Malayalam speech data 

enhances Natural Language Processing (NLP) systems' ability to be more 

emotionally and contextually aware. This improves user interactions with virtual 

assistants, customer service bots, and interactive voice response systems, making 

them more personalized and empathetic. 

2. Hate Speech Detection: Demonstrating the effectiveness of using accented data 

for hate speech detection contributes to safer online platforms. Recognizing hate 

speech across different Malayalam accents ensures effective content moderation, 

fostering a healthier digital communication environment. 

3. Accessibility and Inclusivity: Speech recognition systems that cater to various 

Malayalam accents make technology more accessible to non-native speakers and 
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individuals with regional accents. This inclusivity is crucial in multilingual and 

diverse linguistic communities in Kerala. 

4. Educational Tools: Tailored speech recognition technologies enhance language 

learning tools for Malayalam speakers with different accents. These tools can aid 

in pronunciation training and language proficiency assessments, providing more 

effective learning experiences. 

5. Healthcare Applications: Emotion detection from accented speech can be 

utilized in mental health monitoring tools to assess emotional well-being. This 

assists healthcare professionals in diagnosing and monitoring conditions such as 

depression and anxiety based on verbal communication. 

6. General Applicability to ASR Systems: The methodologies and techniques 

developed in this study can be applied to improve all ASR systems, not just those 

focused on Malayalam. By addressing the challenges posed by accented speech, 

these advancements can enhance the robustness and accuracy of ASR systems 

across various languages and dialects, leading to broader applications in global 

contexts. 

16.4  Challenges and Future Directions 

Despite the remarkable outcomes, several challenges need to be addressed to further 

improve accented speech recognition systems: 

1. Complexity of Emotion Clustering: Accurately clustering emotions from 

accented Malayalam speech is complex due to the subtle and diverse ways 

emotions are expressed. Future research should focus on refining these 

techniques to improve accuracy and reliability. 

2. Continuous Model Refinement: Speech recognition models must be 

continuously updated to adapt to new data and evolving speech patterns. This 

includes addressing variations in Malayalam accents that may arise due to 

sociolinguistic changes. 
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3. Scalability: Ensuring models can scale efficiently to handle large datasets and 

real-time processing is crucial for practical deployment. Future work should 

explore optimization techniques to enhance scalability without compromising 

accuracy. 

4. Cross-Linguistic Generalization: Extending the developed techniques for 

Malayalam to other languages and accents poses a significant challenge. Future 

research should investigate the generalizability of these methods to diverse 

linguistic contexts. 

16.5  Ethical Considerations 

As technology advances, ethical considerations become paramount in the 

development and deployment of speech recognition systems: 

1. Fairness and Bias Mitigation: Ensuring fairness and mitigating biases in 

accented speech data is critical. This involves addressing potential biases in 

training data that may lead to unequal performance across different Malayalam 

accents and demographic groups. Diversifying training datasets and 

implementing bias detection and mitigation strategies promote fairness. 

2. Privacy and Consent: Collecting and using speech data, especially from 

crowdsourced sources, raises privacy concerns. It is essential to obtain informed 

consent from participants and ensure that data is anonymized and securely 

stored to protect user privacy. 

3. Transparency and Accountability: Developers should strive for transparency in 

how speech recognition systems are designed and used. Clear documentation 

and open communication about the limitations and intended uses of these 

systems help build trust with users. 

4. Ethical Use Cases: The applications of speech recognition technology should be 

guided by ethical principles, ensuring they benefit society and do not harm or 

discriminate against individuals or groups. 
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In this research, the potential application of various methodologies and techniques 

in accented speech recognition for Malayalam, a language rich in dialectal diversity, 

was explored. The exploration was rooted in empirical experiments and in-depth 

analysis, leading to encouraging results that emphasize the efficacy of different 

experiments. Specifically, these neural network architectures were found to excel in 

isolating significant features from speech data and in synthesizing meaningful 

representations. The core approach involved utilizing deep learning and 

unsupervised learning techniques, enhancing both the quality of the extracted 

features and the discriminative prowess of the developed models. The resulting 

performance evaluation affirmed the proposed approach's superior accuracy and 

robustness in recognizing various Malayalam accents. This research has made 

substantial contributions to the field of accented speech recognition, particularly for 

the Malayalam language, and has set the stage for further innovations and practical 

applications in this area. The methodologies and findings also provide a strong 

foundation for enhancing ASR systems in general, demonstrating the broader impact 

of this work on global speech recognition technologies.  
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17. Recommendations 

The recommendations include the formulation of enhanced methodologies capable 

of constructing unified accented models that recognize all Malayalam accents. The 

insights and techniques developed through this work can be transposed and adapted 

to other low-resourced languages, potentially paving the way for broader 

advancements in the field of accented speech recognition. This adaptability could 

contribute to reinforcing the research's contributions and emphasizing its relevance 

not only for Malayalam but for linguistics and technology at large. The 

recommendations of this work are: 

17.1  Refinement of Emotion Clustering Algorithms 

The exploration into emotion clustering from accented emotional data has opened 

new dimensions in understanding the interplay between linguistic variations and 

emotional expressions. Future research could focus on refining existing emotion 

clustering algorithms to handle the intricacies of diverse emotional variations 

present in accented speech more effectively. This includes exploring advanced 

machine learning and deep learning techniques to enhance the accuracy and 

sensitivity of emotion recognition models. 

17.2  Dynamic Adaptation for Linguistic Variations 

As linguistic variations within accented Malayalam speech can be dynamic, future 

works should explore adaptive models that can dynamically adjust to different 

accents and linguistic styles. This may involve the development of models that can 

continuously learn and adapt over time, ensuring robust performance across a broad 

spectrum of linguistic variations. 

17.3  Large-Scale Deployment and User Interaction Studies 

While this study provides promising outcomes, future research could focus on large-

scale deployment scenarios to evaluate the scalability and real-world applicability of 
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the proposed models. Moreover, conducting user interaction studies to gather 

feedback on the user experience with accented speech recognition systems will be 

crucial for refining models and addressing user-specific challenges. 

17.4  Multimodal Approaches for Enhanced Recognition 

Integrating multiple modalities, such as incorporating visual cues or facial 

expressions along with accented speech, could be explored to enhance recognition 

accuracy. Multimodal approaches have the potential to provide additional context, 

especially in scenarios where accents are accompanied by non-verbal cues or 

contextual information. 

17.5  Exploration of Adversarial Training for Robustness 

Given the potential challenges associated with adversarial attacks on speech 

recognition systems, future works could investigate the application of adversarial 

training techniques. This involves incorporating adversarial examples during model 

training to enhance the robustness of the system against potential attacks, ensuring 

reliable performance in real-world scenarios. 

17.6  Cross-Linguistic Studies on Accented Speech 

Extending the scope of research to encompass cross-linguistic studies on accented 

speech can provide valuable insights into the generalizability of models. 

Investigating the transferability of accented speech recognition models across 

different languages and language families will contribute to the broader 

understanding of accented speech processing. 

17.7  In-depth Analysis of Hate Speech Detection  

While this study has shown promising results in hate speech detection using 

accented data, future works could delve deeper into the specific challenges 

associated with detecting hate speech in diverse accented Malayalam contexts. This 
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includes exploring the details of cultural and linguistic variations that may impact 

the effectiveness of hate speech detection models. 

17.8  Integration of Explainable AI in AASR 

Enhancing the interpretability of accented speech recognition models is crucial for 

fostering trust and understanding in end-users. Future research could explore the 

integration of explainable AI techniques to provide insights into how the models 

make decisions, making the technology more transparent and accountable. 
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