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ABSTRACT

In the design of cryptographic algorithms, mathematical techniques,

particularly those based on number theory, abstract algebra, and lin-

ear algebra, have an inevitable place. Symmetric cryptographic algo-

rithms like block ciphers utilize finite field arithmetic and linear alge-

bra for their construction. The public key cryptographic algorithms

are sound with number-theoretical methods. Modern telecommuni-

cations technology is increasingly using advanced algebraic formula-

tions. As computational power keeps growing quickly, new ideas and

techniques for data encryption are being developed to safeguard infor-

mation as it is transmitted over open channels. So developing more

effective cryptographic primitives involving algebraic techniques is a

task strongly tied to further improving present cryptographic infor-

mation protection and communication systems.

The Boolean function is an important cryptographic primitive

with which most of the modern block ciphers are built. However,

the cryptanalytic methods are not constrained in the representation

of these block ciphers. The modern block ciphers can also be repre-

sented using primitives on non-binary logic(many-valued logic) also.

As a result, an attacker could employ many-valued logic based alge-

braic techniques to break the design. The employment of many-valued

logic based algorithms gives users considerably more freedom in the

selection of transformations than binary equivalents. Consequently,

it is a fascinating area of research to analyse the cryptographic char-

acteristics of the primitives based on many-valued logic in order to

build algorithms based on them.
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Through this thesis, the main focus is on the analysis of the cryp-

tographic properties of the cryptographic primitives based on many-

valued logic, the functions over the rings Zq, giving more emphasis on

functions over Z3 (ternary functions) and functions over Z4 (quater-

nary functions).

From here onwards, functions over the rings Zq, q-functions and

functions of q-valued logic are synonymous terms.

The chapters of the thesis are arranged as follows: The develop-

ment of cryptography from ancient times to the present day is dis-

cussed in Chapter 1. This chapter also covers basic definitions of

cryptography and the classification of cryptographic algorithms.

In Chapter 2, a detailed review of the cryptographic properties of

Boolean functions that lead to the study of cryptographic character-

istics of functions over Zq is covered. The preliminaries required for

the forthcoming chapters are also discussed in Chapter 2.

In Chapter 3, a method for spectral analysis of rotation symmet-

ric functions of q-valued logic, that significantly reduces the compu-

tational complexity, in its Vilenkin-Chrestenson domain is discussed,

and this method is utilised to synthesise the rotation symmetric ternary

bent functions in three variables.

Chapter 4 discusses the correlation immunity and resiliency of

functions over Zq and presents a mathematical expression that gener-

ates the complete class of quaternary resilient functions in two vari-

ables. Orthogonal characterization of the resiliency of quaternary

functions in terms of sub-functions is also presented. The construc-

tion of m-resilient functions of n+1 variables from that of n variables
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is discussed.

Chapter 5 describes the design of a cryptographic primitive, known

as substitution box (S-box), on ternary logic, and cryptographic prop-

erties such as nonlinearity, avalanche characteristics, and measures of

input-output correlation are analysed.

Chapter 6 presents the concluding remark of the thesis and chapter

7 discusses the proposal for future work.
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CHAPTER 1

General Introduction

1.1 The History of Cryptography

The human mind’s inclination for concealment has been one of the strongest

innate traits from the origin of mankind. Ever since humans emerged from

the caves, started to live in societies, and decided to give civilization some

real thought, we have felt the need to conceal our communications. The

idea that we have to work together emerged and blossomed as soon as there

were different tribes or groups, along with overt conflict, hiding, and crowd

control. While we were kids, many of us had magic decoder rings that

we used to communicate with friends using coded messages while may

be withholding information from our parents, siblings, or teachers. There

are numerous instances throughout history where people have attempted to

conceal information from adversaries. During wartime, various communi-

cation strategies were used by kings and generals to keep the enemy from

gathering vital military intelligence. The demand for increasingly advanced

data protection techniques has grown as society has developed. The need
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CHAPTER 1

for information transmission and electronic services is rising as the globe

gets more connected, and with that growth comes a greater reliance on

electronic systems. It is already a normal practice to communicate sensitive

information, such as credit card details, over the internet. Thus electronic

systems and data security are essential to our way of life. Man created

several strategies for the secure transmission of information, which later

became a science known as cryptography.

It is not surprising that the very first evidence of the use of cryptography

was found in the areas now occupied by Egypt, Greece, and Rome, the

cradle of civilization. The first instances of cryptography are found in

inscriptions in the main chamber of the tomb of the Egyptian aristocrat

Khnumhotep II. Egyptians used ‘hieroglyph’, a cryptographic technique

for communication. The scribe occasionally replaced uncommon hiero-

glyphic symbols throughout the message. The intention was not to hide

the information; instead, it was to convey it in a way that made it appear

more sophisticated than it actually was. The Greeks came up with an

encryption technique known as scytale cipher, composed of a cylinder with

a message written on a strip of parchment wrapped around it. The lettering

on the cylinder would be meaningless when it was unwound. Naturally,

the recipient of the message would have a cylinder of the same diameter

and utilise it for message decoding. The Caesar Shift Cipher is a Roman

cryptographic technique. Around 100 BC, it is known that Julius Caesar

used an encryption technique which is the first known form of the modern

cryptographic technique used to share secret information with his military

officials deployed at the war front. It made use of the concept of compos-

ing the message using a letter shifting by a predetermined number. The

most common number used was three. The intended recipient would then

counter-shift the letters by the same number to read the message.
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Section 1.1

In 1553, a cryptographer from Italy, Giovan Battista Bellaso, described

a text auto-key cipher that was thought to be unbreakable for four centuries.

He proposed a method in which the alphabet is identified using a consented

countersign or a keyword among the parties involved in communication.

Additionally, he demonstrated various techniques for combining cipher

alphabets to overcome the necessity for the correspondents to exchange

discs or predetermined tables.

During the 16th century, a method for encrypting alphabetic text was

developed by Vigenere and is known as Vigenere Cipher. It employs a

method of polyalphabetic substitution, a substitution-based encryption that

employs several substitutions of alphabets at a time.

In 1917, an American named Edward Hebern designed an electro-

mechanical device known as the Hebern rotor machine. It makes use of

a single rotor in which a rotating disc contains the hidden key. Each key

press on the keyboard generated cipher text since the key was encoding a

substitution table. The disc was likewise rotated by one notch, as a result, a

new table was then utilised for the subsequent character of plain text.

The Enigma machine was another encryption machine created in 1918

by German inventor Arthur Scherbius and used by the Germans to send

coded messages during World War II. Because there are countless ways to

code a message using an Enigma machine, it was extremely challenging

for other countries to decipher German codes during World War II. It

employs many rotors as opposed to Hebern’s device’s single rotor. By

taking advantage of a few flaws in the Enigma code’s implementation and

gaining access to German code books, Alan Turing and other academics

were able to create the Bombe machine, a device that assisted in cracking

even the most difficult Enigma codes.
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CHAPTER 1

American mathematician, electrical engineer, and cryptographer Claude

E. Shannon is considered as the ”father of information theory.” Shannon

described information and how it can be communicated in terms of mathe-

matics, in his classic work ”A Mathematical Theory of Communication,”

which was written at Bell Labs in 1945 and later published as a book

in 1949 under the title ”The Mathematical Theory of Communication”.

Secrecy and authenticity were outlined by Shannon as the two primary

objectives of cryptography. Shannon presented a study that demonstrated

the possibility of an unbreakable cryptographic scheme a year after he

introduced information theory.

The one-time pad or Vernam cipher is a cryptographic method, which

was created by Gilbert Vernam close to the end of World War I. The goal is

to make the message fully random by encoding it using a key made up of a

random string of digits.

Significant developments occurred in the 1970s. A research team

at IBM proposed and submitted the Data Encryption Standards (DES)[1]

cipher on March 17, 1975, in response to a request from the National Bureau

of Standards (NBS), now known as the National Institute of Standards and

Technology (NIST), in an effort to create secure electronic communication

tools for companies like banks and other large financial organizations. A

slightly modified version was chosen by the NBS in 1976 after consultation

with the National Security Agency (NSA), and it was made an official

Federal Information Processing Standard (FIPS) for the United States in

1977. DES was the first encryption Scheme approved by the NSA that the

public could access.

NIST announced a competition for the replacement of DES in January

1997. Following a five-year process of standardization, fifteen algorithms

were presented and evaluated. In October 2000, the Rijndael algorithm

4



Section 1.2

developed by Belgian cryptographers Joan Daemen and Vincent Rijmen

was declared by NIST as the winner. The Rijndael block cipher variant

named as the Advanced Encryption Standard (AES)[2] was declared the

U.S. federal government standard by NIST in 2001.

1.2 Cryptology

We are currently in a technological age, and as technology develops, new

approaches to solving problems related to secure communication are be-

coming more and more necessary. Cryptology is one of the oldest fields

that explore numerous methods for secure information transfer.

The word ‘cryptology ‘originates from the Greek words Kryptos, which

means concealed, and logos, which means speech. Cryptology comprises

two major fields cryptography and cryptanalysis. The art of writing codes

is known as cryptography, and the methods for cracking codes are known

as cryptanalysis. In response to the work by Shannon that was published in

1949 [3], it gained popularity and was turned into a science.

During communication, the message to be communicated is changed

into something that appears random and meaningless to shield it from

being read by unauthorized persons. The message that needs to be shared

is referred to as plaintext in the language of cryptography, and the encoded

message is referred to as ciphertext. Encryption is the process of changing

plaintext into ciphertext. The restoring process to retrieve the original

content from the coded message is known as decryption.

Secure data transmission is the goal of cryptographic algorithms that

meet the essential requirements of security protocols. Since the need for

secure information sharing arose in antiquity when communication routes

were still rudimentary and largely accessible to all opponents, cryptography

is arguably one of the oldest fields. Cryptography is the study of mathemat-
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ical methods related to information security aspects. The studies revolve

around the four pillars confidentiality, data integrity, entity authentication,

and non-repudiation. The service used to keep the content of the data safe

from unauthorized entities is termed confidentiality. Data manipulation is

one of the threats in the data transmission process. Data integrity guaran-

tees that no adversary may tamper with or change the data. Authentication

is the process of confirming the origin and integrity of the information.

Non-repudiation is a service that prevents an entity from denying a pre-

vious commitment or action. Cryptanalysis is the technique that exploits

Mathematical and technological advancements to break the algorithm. The

tremendous rise in technology makes the algorithms insecure because of

the various attacks by an adversary using modern techniques. Thus, there is

a requirement for more potential tools for data communication. So design

and analysis of cryptographic tools ( primitives) is a field of study that will

never end.

A few techniques that are adopted to achieve secrecy led to the devel-

opment of various cryptographic algorithms. Symmetric key, asymmetric

key, hash functions, and digital signatures could be considered as major

classifications.

The first two classifications depend on the secrecy of a string of charac-

ters, known as a key that is connected to the encryption process. Symmetric

key cryptosystems utilise a single key that is kept secret between communi-

cation entities and is used for both encryption and decryption. Asymmetric

cryptographic algorithms have a pair of keys consisting of a private key that

is kept secret and a public key that is known to everyone in the network.

The Mathematical apparatus, one-way functions are utilised to generate the

key pairs. Asymmetric cryptography is also known as public-key cryptog-

raphy. RSA, Diffie-Hellman, and Elliptic Curve Cryptography (ECC) are a

6



Section 1.3

few examples of asymmetric encryption techniques. These algorithms are

rich with methods in number theory.

The symmetric cryptosystem is further classified into block ciphers

and stream ciphers. Block ciphers encrypt an entire block of data, while

stream ciphers only transform one unit at a time. The widely used ciphers

like AES and DES are examples of block ciphers and examples of stream

ciphers include RC4, Salsa20, PANAMA, etc.

Hash functions are used for data integrity and authentication. A hash

function converts data of various lengths to fixed lengths known as a hash

value or message digest. A hash value is a miniature form of the data to

be communicated. The receiver can ensure the integrity of the data by

checking this hash value.

A digital signature is also a mathematical technique used to validate

the authenticity of the data. A digital signature is a method of linking a

person or entity to digital information. This agreement can be indepen-

dently confirmed by the receiver and any other party. Because they are

cryptographically linked to the signed document and are verifiable, digital

signatures are regarded as a more secure form of e-signature.

1.3 Cryptography and Finite Fields

Finite fields have a pivotal role in the construction of most of the pop-

ular cryptographic constructions[2, 4]. Since the data is represented as

a sequence of bits consisting of 0’s and 1’s, the finite field of order 2n

constructed over the base field F2 = {0, 1} has significant importance in

cryptography. These fields are also known as Galois Field denoted by

GF (2n). The invertibility property of the non-zero elements in the finite

field ensures the encryption-decryption processes, hence the representation

of the digital data in a cryptographic construction in terms of elements
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of a finite field is crucial. For example, in the block cipher AES, data

is represented as a block of 128 bits consisting of 16 bytes. The major

operations are performed over each byte. One may look at each byte as

an element of the Galois field GF (28) as well as a polynomial of degree

at most 7, of the quotient ring F2[x]/(p(x) for properly chosen irreducible

polynomial p(x) of degree 8[2, 4].

There are various cryptographic primitives based on non-binary logic

working on the principles of the Galois Field. For example, for analysing

the cryptographic characteristics of quaternary functions, it is required to

consider the algebraic operations over the Galois field GF (22) [5].

1.4 Boolean Functions

The Boolean functions (BF) are the fundamental component of many

cryptosystems, especially symmetric cryptographic systems. To design

an efficient cryptographic system, a detailed study of the properties of a

BF is essential. For example, the Substitution box, which is the major

nonlinear component of the block ciphers is extracted from BFs[2]. The

strength of such block ciphers depends on the strength S-box. So if the

component Boolean functions are not chosen properly, it will adversely

affect the security of the algorithm.

Thus, it is vital to construct BFs with significant cryptographic prop-

erties to design viable cryptographic algorithms using them as their com-

ponents. Strict Avalanche criterion (SAC), nonlinearity (NL), algebraic

immunity (AI), correlation immunity(CI), and Bit Independence Crite-

rion(BIC) are a few of the characteristics that a Boolean function possesses

for designing a secure cryptosystem.

8
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1.5 Cryptography and Functions over the rings Zq

Recently, studies on algorithms based on non-binary (many-valued) cryp-

tographic primitives are of research interest. One of the main benefits of

employing many-valued logic is the ability to optimize or minimize data

processing, so it is important to take full advantage of the potential of many-

valued logic. There are electronic devices in which models with more than

two states (fuzzy logic) are effectively implemented. Many-valued logic is

an alternating solution for many practical problems. It has applications in

cryptography, coding theory, signal processing, VLSI ICs, etc. The applica-

tion of functions of q-valued logic simplifies the design of position-based

cryptographic schemes [6]. In signal processing, many-valued logic is con-

venient in the storage and processing of a huge amount of data encoded in a

digital signal, and additionally, numerous strategies implemented in signal

processing are geared up sufficiently to remedy particular issues confronted

in the design of systems based on many-valued logic [7]. If the signals in

an integrated circuit permit to accept four states (quaternary values) instead

of only two states (binary values), the problem encountered in some VLSI

circuits due to the constraints in the number of connections that can be used

within the circuit and that connect the outer world can be solved effectively

[8]. Some VLSI ICs are available intended for commercial purpose that

has design principle based on quaternary logic.

There is potential for algorithms based on non-binary systems as quan-

tum computation develops. One of the fundamental components of many-

valued logic based cryptographic construction is functions over Zq.In order

to develop such an algorithm, it is necessary to analyse the cryptographic

features of functions over Zq that are analogous to BFs. Many-valued logic

based approaches allow much greater flexibility in the selection of trans-

formations than binary alternatives. Therefore, in the field of many-valued
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logic, active research and developments are undergoing [9].

The choice of mathematical tool that the cryptanalyst uses to represent

the cryptographic design is not restricted so that alternative representations

are feasible for subsequent attacks. The representation via q-functions like

4-function, as well as 16-functions, could be utilised for the representation

of existing modern ciphers, in addition to the Boolean functions employed

in the design of the cryptographic algorithm. The designers of crypto-

graphic algorithms typically do not consider these potential representations

or explore their cryptographic merits. This scenario makes it necessary to

construct, develop, and broaden the cryptographic quality standards and

the practical implications of the functions over the rings Zq [10].

1.6 Quantum computing and Post Quantum Cryptogra-

phy

“Quantum computing represents a fundamental shift because it harnesses

the properties of quantum mechanics and gives us the best chance of

understanding the natural world,” Mr. Pichai.

The notion of quantum computing was first put forth in the 1980s as

a way to advance computational techniques by integrating concepts from

quantum physics, classical information theory, and computer science, to

solve mathematical problems that are difficult for classical computers[11].

This integration identifies the information as basic concepts in quantum

physics. This significance is solidified by the notion of quantum informa-

tion and computing, which has offered some significant and fascinating

insights into reality. The popularity of the field was amplified by the

introduction of Shores’s algorithm[12] proposed by an American Mathe-

matician, Peter Shor, that would speed up cryptanalysis and threaten some

cryptographic algorithms used if implemented on a quantum computer.
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Section 1.7

Zeros and ones are used in traditional computers to store information.

Quantum bits, also known as qubits, are the basic unit of information in a

quantum computer. Qubits represent and store information in a quantum

state that is a complex combination of zeros and ones. A single qubit isn’t

really useful. However, by putting the quantum data into a superposition

state, which encapsulates all qubit configurations that might be possible,

complex multidimensional computational spaces can be produced using

qubit groups and these spaces allow for the addressing of complex problems.

The spin orientation of the quantum particles like photons or electrons

determines the state of the qubit.

The security of contemporary cryptographic algorithms like RSA, El

Gamal, and Elliptic Curve Cryptography, which rely solely on the difficulty

of factoring large numbers and computing discrete logarithms that could

be effectively solved using Shore’s algorithm, is questioned by the develop-

ment of quantum computers[13]. So, developing methods for addressing

this issue is necessary. The research leads to post-quantum cryptography.

The aim of post-quantum cryptography, also known as quantum-resistant

cryptography, is to create cryptosystems that are robust to both classical and

quantum computers and can work with already-existing network topologies

and protocols[13].
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1.7 Objectives of the study

1. To review the cryptographic properties of Boolean functions.

2. To extend the properties analogous to Boolean functions to functions

over Zq.

3. To derive the methods for extracting and formulating function over

Zq with specific cryptographic properties.

4. To Design and analyse non-binary cryptographic primitives. .

1.8 Relevance of the study

New approaches to data protection are necessary as technology develops.

Thus, it is necessary that the current cryptographic primitives to be im-

proved at any cost. The development of quantum computation gives way to

cryptographic primitives based on non-binary (many-valued) logic. Also,

an adversary targeting a cryptosystem is not limited by the representation

of the scheme. The existing cryptographic schemes which is based on

binary system also be represented using non-binary primitives. Thus, there

is a scope for developing cryptanalytical methods based on non-binary

primitives. In order to achieve this aim, one may have a deep knowledge

of cryptographic primitives on non-binary logic. Functions over the rings

Zq are one of these primitives. Therefore, it is essential to analyse the

cryptographic characteristics of those functions to design cryptographic

schemes based on them.

12
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Review of Literature and Preliminaries

2.1 Review of Literature

Boolean functions are the building blocks of most of the well-known block

ciphers like AES, DES, etc. So Boolean functions have an important role

in the design of cryptographic algorithms based on binary logic. There are

several articles analysing the cryptographic characteristics of Boolean func-

tions. When it comes to ensuring the security of a cryptographic construc-

tion against various forms of cryptanalysis, Boolean functions employed in

cryptographic engineering should meet specific requirements. High alge-

braic degree, balancedness, correlation immunity, resiliency, nonlinearity,

and algebraic immunity are some of the cryptographic characteristics of the

Boolean functions. Analogous properties of functions over Zq (q-functions

are comparat) ively less studied.

It is noted that the synthesis of non-binary cryptographic constructions

is receiving more focus at the current stage in the development of cryp-

tographic algorithms[14]. The primary aim is to create new and enhance

13
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existing techniques for the synthesis of cryptographically stronger primi-

tives based on q-functions, which are subsequently utilised to build such

cryptographic algorithms. To develop such techniques, one must have deep

knowledge of the cryptographic characteristics of q- functions.

In the paper [15] the cryptographic properties such as propagation

criterion and Strict Avalanche Criterion(SAC) of Boolean function are

discussed. The concept of propagation criterion extended to functions of q-

valued logic. The definition of propagation criterion was extended to ternary

functions in [16]. In this paper, the authors synthesised the ternary functions

of length 9 of two variables that possess strict avalanche characteristics.

The author of the article [17] elaborates on the avalanche characteristics of

quaternary functions and synthesized 7680 balanced quaternary functions

with strict avalanche criteria. These functions offer better performance

if utilised for cryptographic construction based on quaternary logic. The

avalanche characteristics of S-boxes constructed based on Nyberg design

were studied in line with functions over Zq in [18]. These S-boxes can

be described by 4-functions and 16-functions as their components. A

detailed study on the avalanche characteristics of the S-boxes constructed

using various irreducible polynomials is carried out in terms of Boolean

functions, 4-functions, and 16-functions. It was pointed out that the S-

box constructed with the polynomial x8 + x7 + x6 + x5 + x2 + x + 1

possesses the smallest deviation from the expected value required to satisfy

strict avalanche criterion in binary component representation, whereas the

polynomials x8 + x7 + x6 + x + 1 and x8 + x5 + x4 + x3 + x2 + x + 1

give best result in terms of strict avalanche criterion when the S-box is

represented by component 4-functions and 16-functions respectively.

Nonlinearity is another important cryptographic characteristic. The

nonlinearity of a Boolean function can be computed on the basis of the

14
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Walsh transform[19] with the help of the Hadamard matrix. The nonlinear-

ity of q-functions can be computed with the help of Vilenkin-Chrestenson

transform[20]. The nonlinear properties of the quaternary functions of

lengths 4 and 16 were analyzed in [21] and classified the quaternary func-

tions into different spectral classes based on the nonlinearity values. The ar-

ticle [22] analyses the nonlinearity properties of the Rijindael like S –boxes

when representing the components using 4-functions and 16-functions with

various irreducible polynomials and found the optimal irreducible poly-

nomials on F2. It was found that the S-box constructed on the basis of

the polynomial x8 + x7 + x5 + x+ 1 has the highest nonlinearity values

when presented with the components as 4-functions and the polynomial

x8+x7+x3+x+1 gives the optimal nonlinearity in 16-valued component

representation. The nonlinearity of AES S-box is analyzed in terms of

4-functions and 16-functions in [23] and the study shows that the four com-

ponents 4-functions of the S-box have the nonlinearity 219.5034, 216.9412,

216.5538 and 219.284 and hence the S-box has the nonlinearity 216.9412

when presented as component 4-functions. When the S-box is presented

in terms of component 16-functions, there are two components and these

components possess nonlinearity values 213.8184 and 212.4385 and hence

the S-box has nonlinearity 212.4385.

Rothas [24] introduced bent functions, a class of functions with cryp-

tographic importance. A handful of research articles are available on

Boolean bent functions, their construction, and classifications.[25, 26].

Bent-sequences, which have uniform absolute values for spectral coeffi-

cients and the highest level of nonlinearity take a unique place among

the more advanced algebraic structures for modern science and technol-

ogy. Due to their constant spectral characteristics, bent functions are used

as C-codes in MC-CDMA (Multi Code Code Division Multiple Access)
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technologies to lower the PAPR (Peak-to-Average Power Ratio) of signals

[27], also in cryptography to produce extremely nonlinear S-boxes [28]

and for developing pseudo-random key sequence generators [29, 30]. The

use of many-valued logic concepts is another advancement in the field of

communications and information security that is becoming more common.

Technological advancement demands new methods for cryptographers, so

the algebraic constructions over ternary and quaternary logic emerge and

develop. The method for the generation of ternary pseudo-random key

sequence generation was discussed in [31]. The article [32] provides a

method for synthesising ternary bent sequences in two variables and lists

all 486 ternary bent sequences of length 9. The research on ternary bent se-

quences of three variables was conducted in [33]. An algorithm on the basis

of the Reed-Muller transformants domain that reduces the time complexity

by 6561 times less than exhaustive search was developed and showed that

the number of ternary bent sequences of length 27 is 12623364 and it is

classified into 6 classes according to their weight structures.

The correlation attack was coined by Siegethaler in [34] and the origi-

nal attack was given in[35]. The functions which have resistance against

correlation attacks are known as correlation immune functions. The Corre-

lation immunity of order m (m-CI) was studied in [34]. The cryptographic

characteristics such as correlation immunity and resiliency of functions

on binary logic were extensively studied in [34, 35]. The extension of the

concept to functions of q-valued logic, where q is a prime number was

introduced in[36] and presented three characterisations, Matrix, Fourier

transform, and orthogonal array characterisations of correlation immunity

of functions over the Galois field of prime characteristic. This is further

extended to rings over Zq in[37]. A detailed study of correlation immu-

nity of ternary functions and a method to synthesise the complete class of
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correlation immune ternary functions in two variables was given in[38]

and the complete class of correlation immune functions of length 9 were

synthesised and found the balanced correlation immune functions which

can be the basis for constructing quality S-boxes.

The article [39] discusses a method for the construction of S-boxes

with correlation immune characteristics both in a Boolean and quaternary

sense. Using the method they were able to synthesise 18304 S-boxes of

length 16 satisfying the criterion of correlation immunity in both, binary

and quaternary sense.

The correlation immunity of the functions over Zq is further investi-

gated in [40] and conducted an analysis of the correlation immunity of

the component functions of the S-boxes of the AES and Kalyna, a block

cipher developed by Ukraine. They analysed the correlation immunity of

the component functions of these S-boxes by expressing them in terms of

Boolean, quaternary, and 16- functions. They found that the components

of S-boxes of both block ciphers do not satisfy correlation immunity in

binary, quaternary, and 16-valued sense. To quantify if the S-box complies

with the correlation immunity requirement, they introduced maximum and

integral deviation of the component q- functions, and the S-box, from the

compliance with the criterion that the output be independent of its input

variables. These two indicators provide a method for a comparative study

of the correlation properties of the cryptographic constructions on many-

valued logic. The studies [40] show that the indicators of the S-box of both

the block cipher AES and Kalyna when expressed in terms of q-functions

have a tendency to grow up with the increase of the value of q.

To measure the input-output correlation of the component q-functions,

the input-output correlation coefficient and the correlation matrix consisting

of the absolute values of the correlation coefficient were introduced in[41]
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In 1999, Pieprzyk and Qu [42] proposed a sub-class of Boolean func-

tions named Rotation symmetric Boolean functions(RSBF). The article

appeared in 2002 [43] presents a formula to find the number of rotation

symmetric functions in n variables using Burnside’s lemma. They also

found the complete class of rotation symmetric bent functions of an even

number of variables up to 8 using a computer search. The paper published

in 2003 [44] discusses some significant findings of the homogeneous rota-

tion symmetric Boolean functions and on rotation symmetric cycles. The

formula to find the number of rotation symmetric non-binary functions over

the Galois field of characteristic p is presented in [45]. In the article pub-

lished in 2004 [46] the authors present an effective method for extraction

of rotation symmetric Boolean bent and correlation immune functions with

reduced computational complexity. The article[48] presents a theoretical

method for the construction of rotation symmetric Boolean functions with

maximum algebraic immunity and they found rotation symmetric functions

of 7,9 and 11 variables with maximum algebraic immunity and having

nonlinearities 56,240, and 984 respectively.

The extension of rotation symmetry to functions over Zq and the in-

triguing characteristics of such q-functions received much discussion from

authors in[49]. An article [50] enunciates the bentness of the ternary sym-

metric functions.

The fundamental element of symmetric key algorithms in cryptography

that executes substitution is called an S-box (substitution-box). They

usually serve to ensure Shannon’s property of confusion in block ciphers

by masking the connection between the key and the cipher text. The

construction of binary S- boxes over the Galois field are covered in several

articles [51, 52]. The design of S-boxes that satisfy specific cryptographic

properties was discussed in [53, 54]. The construction is extended to
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include non-binary cases and constructed S-boxes with zero input-output

correlation[54]. A block symmetric algorithm based on non-binary logic

is designed in[55]. The non-binary S-box was utilised in this algorithm

and this block symmetric algorithm was successfully applied to image

encryption. The authors in[56] constructed S-boxes over the Galois field of

characteristics 3 and 5 and its isomorphic forms and analysed its nonlinear

properties.

The block cipher AES is generalized to the Galois field of any charac-

teristic in the article[57]. They describe a generalisation of AES that uses

ternary logic, and the same algorithm used to encrypt digital images.

2.2 Preliminaries

2.2.1 Galois Field

A field is a commutative ring with unity and without zero divisors. Associ-

ated with each prime number p, there is a field of order p which is denoted

by Fp. The characteristic of a field is the least positive integer m such that

ma = 0 for every element a in the field and it must be a prime number[58].

A finite field is a field with a finite number of elements. The set of non-zero

elements in the field forms a cyclic group under multiplication, which is

denoted by Fp
∗.

If Fp is a finite field, then the set of all polynomials in the variable x

with coefficients from Fp forms the polynomial ring denoted by Fp[x]. Let

p(x) ∈ Fp[x] be a polynomial of degree n, then the equivalence class of

all polynomials congruent to p(x) forms a quotient ring denoted by Fp[x]
(p(x)) .

This quotient ring can be identified as a vector space of all the polynomials

with a degree less than n under the operations, usual polynomial addition

and multiplication modulo p(x).

The polynomial p(x) ∈ Fp[x] is said to be irreducible if it has no roots
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in Fp or in other words p(x) is irreducible if it cannot be factored into

polynomials in Fp[x] of degree less than p(x). Monic polynomials are

those with a leading coefficient 1. A polynomial that generates all the

members in an extension field from a base field is known as a primitive

polynomial. Moreover, primitive polynomials are irreducible polynomials.

The number of polynomials that are irreducible and the number of

primitive polynomials over Fp of degree n can be determined using the

equations provided in [59]. The formula to determine the number of

polynomials that are irreducible is as follows:

1

n

∑
d/n

µ(d)p
n
d (2.2.1)

Where µ(d) is the Mobius function. The formula to find the number of

primitive polynomials is;
1

n
ϕ(pn − 1) (2.2.2)

Where ϕ(d) is the Euler-Totient function.

If p(x) is a polynomial irreducible over Fp of degree n, the quotient

ring Fp[x]
⟨p(x)⟩ forms a field with pn elements known as Galois field denoted

by GF (pn). We call GF (pn) the extension field of Fp, a field containing

Fp. If p(x) is irreducible then kp(x) is also irreducible, where k is a scalar.

So it is enough to consider the monic irreducible polynomials for field

construction.

The method of construction and existenc of the Galois field for a given

prime number p and for any positive integer n is addressed in the theorem

given in[58].

Theorem 2.2.1. [58] For a prime p and monic irreducible polynomial p(x)

in Fp[x] of degree n, the ring Fp[x]/(p(x)) is a finite field of order pn.
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The Galois field GF (pn) can also be viewed as a vector space over Fp

with dimension n. Since GF (pn) contains polynomials of degree at most

n−1, the set {1, x, x2, ..., xn−1} forms a basis. Therefore, GF (pn)={an−1x
n−1+

an−2x
n−2+ ...+ a2x

2+ a1x+ a0, ai ∈ Fp, i = 0, 1, 2...n}. The members

of the field GF (pn) can also be written in short form as a string of elements

in Fp as GF (pn) = {an−1an−2...a2a1a0, ai ∈ Fp, i = 0, 1, 2...n− 1}.

For example, consider the field GF (32) constructed using the monic

irreducible and primitive polynomial f(x) = x2 + 2x+ 2 of degree 2 over

F2. Since f(x) is a primitive polynomial, all the elements of GF (32) can

written as the power of the root of f(x). Let β be a root of f(x). There

fore, f(β) = β2 + 2β + 2 = 0. Since addition is performed modulo 3,

it follows that β2 = −2β − 2 = β + 1, β3 = 2β + 1, β4 = 2, β5 = 2β,

β6 = 2β + 2, β7 = β + 2, β8 = 1. Thus, it follows that the Galois field,

GF (32) = {0, 1, β, β2, β3, β4, β5, β6, β7} = {0, 1, β, β+1, 2β+1, 2, 2β, 2β+

2, β + 2}. This can also be described by a set of strings of ternary numbers

(members of F3) as GF (32) = {00, 01, 10, 11, 21, 02, 20, 22, 12} .

Modern block ciphers make use of constructions based on the Galois

field for better performance. Additionally, constructions on many-valued

logic utilise the advantageous characteristics of the Galois field.

2.2.2 Cryptographic Properties of Boolean Functions

Let F2 = {0, 1} be a field with operations addition modulo 2 and multi-

plication modulo 2. F2
n, the n copies of F2 forms a vector space over the

base field F2.

Let x = (x1, x2, . . . , xn) ∈ F2
n , then x can be identified as an integer,

(
n∑
1

xn−i−12
i)mod2n (2.2.3)
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For example, the element (1, 0, 1, 1) ∈ F2
4 corresponds to the integer

11.

This representation gives an ordering of the elements in F2
n with respect

to the corresponding integer values, known as lexicographic ordering. The

elements are ordered in increasing order of the corresponding integer

values.

The weight of a binary vector is the number of 1’s in it. Associated

with each vector x, there is a set denoted by Sup(x) containing all non-zero

position values in x known as support of x. That is Sup(x) = {k : xk ̸= 0}.

Let x, y ∈ F2
n, then d(x,y) denote the distance between x and y, the number

of positions in which they differ.

A Boolean function in n variables is an arbitrary function whose domain

is F2
n and whose range is F2 and it is named in honor of the British

mathematician and philosopher George Boole (1815-1864). The cardinality

of the set of all Boolean functions is equal to 22
n

.

Let f : F2
n → F2 be a Boolean function in n variables, then it

can be described in various ways. The truth table (TT), which depicts

the function values for each of the possible values of its input variables,

is one mode of representation. In this mode, the function f can be de-

picted as f = [f(0, 0, 0, ..., 0), f(0, 0, 0, .., 1), ..., f(1, 1, 1, ..., 1)]T .The in-

teger expression of these input vectors according to 2.2.3 renders the

function expression f = [f(1), f(2), ..., f(2n − 1)]T . Corresponding to

each Boolean function, there is a function (−1)f = 1− 2f that assumes

values of the set {-1,1}. The vectorial representation of this function

is (−1)f = (−1)f(1), (−1)f(2), ..., (−1)f(2
n−1)]T and is known as Polarity

truth table (PTT). The transpose of the TT and PTT forms 2n × 1 matrices

denoted by [f ] and [(−1)f ] respectively.
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A Boolean function can also be represented as a polynomial in the

quotient ring F2[x1, x2, ..., xn−1]/(x
2
1 − 1, x22 − 1, ..., xn2 − 1) known as

algebraic normal form (ANF). Being a linear transformation, ANF has a

matrix representation.

Let Af denote 2n × 1 column matrix containing the coefficients of the

polynomial in the ANF of the Boolean function f , then

Af = An.f(mod2) (2.2.4)

Where An is the matrix produced by the recurrence relation;

An+1 =

[
An 0

An An

]
, where A0 = 1

It is to be noted thatAn
2 = I2n, identity matrix of order 2n and hence the

truth table of the function f can be obtained by the following expression;

f = An.Af (2.2.5)

The algebraic degree is the degree of the longest term whose coefficient

is non-zero.

Walsh transform can be utilised for the various analysis of a Boolean

function. Let f : F2
n → F2 be a Boolean function, the Walsh transform of

f at a vector u ∈ F2
n is uniquely defined as[19];

Wf(u) =
∑
x∈F2

n

(−1)f(x)+⟨x,u⟩ (2.2.6)

Where the addition is performed the modulo 2.

Walsh spectrum is also computed in terms of matrix multiplication. Let

Wf denote 2n×1 column matrix that represents the Walsh transform values

of the function f for all possible values of u ∈ F2
n arranged lexicographical
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order of u, we call it by Walsh spectrum. Then the Walsh spectrum of f is

obtained as;

Wf = Hn.[(−1)f ] (2.2.7)

Where the matrix Hn is known as the Hadamard matrix and is obtained

using the recursive relation;

Hn+1 =

[
Hn Hn

Hn −Hn

]
,H0 = 1.

Research regarding the construction of Boolean functions with strong

cryptographic properties is an unending area. In order to enhance the

cryptographic strength of the ciphers constructed on the basis of Boolean

functions, the component Boolean functions meet some desirable crypto-

graphic properties.

Nonlinearity is one among the desirable characteristics of a BF. For

the construction of secure systems, highly nonlinear Boolean functions are

preferred. Walsh spectrum can be utilized to measure nonlinearity, which

is the distance of the function from the set of all linear and affine functions.

That is the nonlinearity Nf of the Boolean function f is;

Nf = min{d(f, g) : g is an affine function} (2.2.8)

For a BF f , the nonlinearity Nf is measured from the Walsh spectrum

as follows.

Nf = 2n−1 − 1

2
Maxu∈F2

n|Wf(u)| (2.2.9)

The nonlinearity of a BF is upper bounded by 2n−1 − 2
n
2−1.

Bent functions are the functions that have the worst possible approxi-

mation by a linear or affine function. Stated otherwise, a function is bent

if it is a maximally nonlinear functions. Additionally, bent functions are
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described in terms of the Walsh transform. A Boolean function f is bent

if it has constant absolute spectral values. That is |Wf(u)| = 2
n
2 for every

values u in its domain, so that f attains the maximum nonlinearity.

The propagation criterion or avalanche criterion is another important

characteristic of the BFs that is directly connected with diffusion, intro-

duced by Shannon. The potential of a cryptographic design to transmit

minute changes in the input text or key element to the full ciphertext is

determined by the propagation criterion[60]. There are two different types

of error propagation: propagation in the direction of a specific vector u

and propagation criterion of a specific order k, which is measured along a

vector of weight k. Both the propagation criteria are interrelated to compute

the propagation characteristics of a cipher.

The strict avalanche criterion (SAC) is the propagation criterion in the

strict sense and it was introduced by Webster and Tavares[15]. The SAC is

the propagation criterion of order one. If a single bit change in the input

results in a 50 percent chance of changing the output bit, the Boolean

function is said to satisfy SAC.

The propagation criterion of Boolean functions is quantified by means

of the derivative as a mathematical tool[61]. The bias of the output prob-

ability distribution of the derivative in the direction of a vector of weight

k determines the avalanche criterion of order k. The SAC is the measure

of the bias of the derivatives of the Boolean function in the direction of

vectors of weight 1.

2.2.3 Functions over Rings Zq (Function of q-valued Logic)

Consider the ring Zq = {0, 1, 2. . . .., q−1} with operation addition modulo

q and multiplication modulo q. If q is a prime number, then Zq turns into a

field. Zq
n is the n copies of Zq, in this thesis, we denote it by V (n, q). Zq

n

can also be considered as a vector space of dimension n over Zq, and this
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vector space is used in the generation of functions of q-valued logic.

Definition 2.2.2. (Function over Zq). A function over Zq( q-function or

function of q-valued logic) in n variables is an arbitrary function whose

domain is V (n, q) and range is Zq.

The weight of a string of members of Zq is defined as the count of

non-zero elements in it. Thus, the weight of a q-function is the number of

non-zero elements in it.

2.2.4 Representation of Functions over Zq

Functional representation is an important aspect of analysing various char-

acteristics of that function. This section briefly discusses various means of

representations of functions of over Zq.

2.2.5 Truth table

Analogous to Boolean functions, there are various means to represent a

q-function. One way of representation is by employing truth tables. Truth

table representation tabulates all possible combinations of input values and

their respective outputs ordered lexicographically or simply represents the

output values as a string of members of the underlying set. Let f be a q-

function in n variables, then its truth table can be represented as a string of

length qn as f = [f(0, 0, . . . 0)f(0, 0, . . . , 1)...f(q−1, q−1, . . . .., q−1)]T .

The table 2.1 represents a function of 16 points in different domains of

variables. When expressed as a truth table, a function of length 16 can be

written as a function of 4 variables in the binary domain but a function of

only 2 variables in the quaternary domain. This is one benefit of q-valued

representations so that more data can be embedded with less storage. The

4-valued function in table 2.1 when represented as an array or string of

quaternary numbers looks like [0123210312033102]T .
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Table 2.1: Truth table of functions of length 16

x1x2x3x4 f(x1x2x3x4) y1y2 f(y1y2)
0000 f(0000) = 1 00 f(00) = 0
0001 f(0001) = 0 01 f(01) = 1
0010 f(0010) = 1 02 f(02) = 2
0011 f(0011) = 1 03 f(03) = 3
0100 f(0100) =0 10 f(10) = 2
0101 f(0101) = 1 11 f(11) = 1
0110 f(0110) = 0 12 f(12) = 0
0111 f(1000) = 1 13 f(13) = 3
1000 f(1000) = 1 20 f(20) = 1
1001 f(1001) = 1 21 f(21) = 2
1010 f(1010) = 1 22 f(22) = 0
1011 f(1011) = 0 23 f(23) = 3
1100 f(1101) = 1 30 f(30) = 3
1101 f(1101) = 1 31 f(31) = 1
1110 f(1110) = 1 32 f(32) = 0
1111 f(1111) = 1 33 f(33) = 2

2.2.6 Complex Exponent Form

Associated with each q-function f= [f0f1...fqn−1]T , there is a function

known as the complex exponent form, defined as F = [ωf0ωf1...ωfqn−1 ]T

where ω is the qth root of unity. This representation is also known as

the polarity truth table. The complex exponent form of the function is

extremely helpful in analysing the spectral properties of functions over Zq.

The complex exponent form of the 4- valued (quaternary) function in table

2.1 is F = [1, i, i2, i3, i2, i, 1, i3, i, i2, 1, i3, i3, i, 1, i2]T , where i is the fourth

root of unity.

2.2.7 Algebraic Normal Form

A multivariable polynomial can be used to describe a function over Zq in a

unique way. This representation of a function as a polynomial is known as

algebraic normal form.
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Definition 2.2.3 (Algebraic normal form (ANF)). [62] An algebraic normal

form of a q- function is a polynomial f over Zq of deg(f) ≤ q − 1 with

coefficients ai ∈ {0, 1, ..., q − 1}, containing the operations “Sum in the

Galois field GF (q)” and “Multiplication in the Galois field GF (q)”.

It is to be noted that if q is a prime number then the operations are

reduced to addition modulo q and multiplication modulo q. The ANF can

be computed in the Reed-Muller Transformants domain[5].

Let f : V (n, q) −→ Zq be a function of q-valued logic, the algebraic

normal form of the function f is given by;

f(x1, x2, . . . .., xn) =

qn−1∑
i=1

aix1
i1...xn

in. (2.2.10)

Where ai ∈ Zq, i = 1, 2, ..., qn − 1 are the ANF coefficients and

ij = 1, 2, ..., q − 1.

Let Af be the vector of ANF coefficients then this coefficient vector

can be computed using the equation 2.2.11 [5].

Af = f.Rqn (2.2.11)

Where Rn
q is the Reed-Muller transform matrix.

The inverse R−1
qn of the Reed-Muller transform matrix described by the

Kronecker product [5].

R−1
qn =

⊗
R−1

q (2.2.12)

Definition 2.2.4 (Algebraic degree ). The algebraic degree is the high-

est sum of degrees of the monomial in the algebraic normal form whose

coefficient is non-zero.
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A function is considered homogeneous if each monomial in the ANF is

of the same degree.

For ternary function(q =3), the Reed-Muller transform matrix can also

be specified by the following recurrence relation[5].

R−1
3n =


R3n−1 03n−1 03n−1

R3n−1 R3n−1 R3n−1

R3n−1 2R3n−1 R3n−1

, R−1
3 =


1 0 0

1 1 1

1 2 1


The matrix 03n−1 is the square matrix of order 3n−1 with all its entries 0.

The inverse of R−1
3n in the field GF (3) is the matrix of ANF transformation.

For a ternary function f in two variables x1 and x2 and with the vector of

ANF coefficients, Af = [a00 a01 a02 a10 a11 a12 a20 a21 a22].The general

structure of ANF of f is f(x1, x2) = a00 + a01x2 + a02x2
2 + a10x1 +

a11x1x2 + a12x1x2
2 + a20x1

2 + a21x1
2x2 + a22x1

2x2
2.

For example, consider a ternary function f in two variables whose

truth table representation is f = [0 0 0 1 0 2 2 0 1]T . The Reed-Muller

transform matrix of order 9x9 for computing the Reed-Muller transform

coefficients is

R9 =



1 0 0 0 0 0 0 0 0

0 2 1 0 0 0 0 0 0

2 2 2 0 0 0 0 0 0

0 0 0 2 0 0 1 0 0

0 0 0 0 1 2 0 2 1

0 0 0 1 1 1 2 2 2

2 0 0 2 0 0 2 0 0

0 1 2 0 1 2 0 1 2

1 1 1 1 1 1 1 1 1


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Then the vector of ANF Coefficients obtained by the multiplication of f

with R9 is Af = [0 0 0 1 2 0 0 0 0]. Thus, the algebraic normal form is

f(x1, x2) = x1 + 2x1x2 and, the algebraic degree of f is equal to 2.

Appendix A and Appendix B describe algorithms for finding the ANF

and algebraic degree of ternary functions of length 9 and 27 respectively,

which are used for computation in this thesis.

The algebraic normal form of a quaternary function is described over

the Galois field GF (4) constructed using the unique polynomial x2+x+1

irreducible over F2. This unique monic irreducible polynomial determines

the multiplication. Addition is performed bit-wise modulo 2. Addition and

multiplication in the field GF (4) are given in the table 2.2.

Table 2.2: Addition and Multiplication in GF(4)

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

. 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

When q = 4, the inverse of the Reed-Muller transform matrix is given

by the recurrence relation according to[5];

R−1
4n =


R4n−1 04n−1 04n−1 04n−1

R4n−1 R4n−1 R4n−1 R4n−1

R4n−1 2R4n−1 3R4n−1 R4n−1

R4n−1 3R4n−1 2R4n−1 R4n−1

, R−1
4 =


1 0 0 0

1 1 1 1

1 2 3 1

1 3 2 1


The general expression for the algebraic normal form of a quaternary

function in two variables is f(x1, x2) = a00 + a01x2 + a02x2
2 + a03x2

3 +

a10x1+ a11x1x2+ a12x1x2
2+ a13x1x2

3+ a20x1
2+ a21x1

2x2+ a22x1
2x2

2+

a22x1
2x2

3 + a30x1
3 + a31x1

3x2 + a32x1
3x2

2 + a33x1
3x2

3.
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For example, consider a quaternary function f in two variables whose

truth table representation is given by f = [0000013203210213]T . The

Reed-Muller transform matrix of order 16x16 to be used for the computa-

tion is given by;

R16 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 3 2 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 3 0 0 0 2 0 0 0

0 0 0 0 0 1 3 2 0 3 2 1 0 2 1 3

0 0 0 0 0 1 2 3 0 3 1 2 0 2 3 1

0 0 0 0 1 1 1 1 3 3 3 3 2 2 2 2

0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0

0 0 0 0 0 1 3 2 0 2 1 3 0 3 2 1

0 0 0 0 0 1 2 3 0 2 3 1 0 3 1 2

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


Then Af = [0, 0, 0, 0, 0, 1, 3, 0, 0, 3, 2, 0, 0, 0, 0, 2]. Thus its algebraic

normal form is f(x1, x2) = x1x2 + 3x1x2
2 + 3x1

2x2 + 2x1
2x2

2 + 2x1
3x2

3

and hence the algebraic degree of the function f is 6.

For the computation of ANF and the algebraic degree of the quaternary

functions, Appendix C provides an algorithm in the Python programming

language.
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2.2.8 Nonlinearity of Functions over Zq

The coefficient of Vilenkin -Chrestenson transform [20] can be used to

determine the nonlinearity of functions over Zq. The Vilenkin-Chrestenson

coefficients of a q- function f for u ∈ V (n, q) can be computed using

expression 2.2.13.

.Φf(u) =
∑

x∈V (n,q)

F (x)ω⟨u,x⟩ (2.2.13)

Where F (x) is the complex exponent form of the function f(x) and

w = e
2πi
q is the qth root of unity. We call the spectral coefficient as the spec-

tral value. The vector consists of all the spectral values of a q-function at

each value in its domain, which we call, the Vilenkin-Chrestenson spectrum

of the q-function. The Vilenkin -Chrestenson spectrum of a q- function can

be determined by employing the Vilenkin-Chrestenson transform matrix

of order qn. For q = 3, the following recurrence relation can be used to

generate this matrix [63].

V3k+1 =


V3k V3k V3k

V3k V3k + 1 V3k + 2

V3k V3k + 2 V3k + 1

, where V3=


0 0 0

0 1 2

0 2 1


Here k is the square matrix of order 3k with all entries equal to k and the

matrix addition is performed modulo 3.

For q = 4, the Vilenkin-Chrestenson transform Matrix is obtained from

the following recurrence relation[21].

V4k+1 =


V4k V4k V4k V4k

V4k V4k + 1 V4k + 2 V4k + 3

V4k V4k + 2 V4k V4k + 2

V4k V4k + 3 V4k + 2 V4k + 1

, where V4 =


0 0 0 0

0 1 2 3

0 2 0 2

0 3 2 1


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The spectral coefficients of a q- function in n variables are the values

obtained by multiplying the function with the conjugate of the Vilenkin-

Chrestenson matrix of order qn by expressing both in its complex exponent

form[?]. This conversion to complex exponent form can be done using the

transformation {0, 1, 2, ...., q − 1} → {e
2πi
q 0, e

2πi
q 1, e

2πi
q 2, ...., e

2πi
q (q−1)}.

Φf(u) = f.Vqn (2.2.14)

Where x represents the complex conjugate of x. The nonlinearity of a

q-function is [63];

Nf =

q
n−1 − 1

2Maxu∈V (n,q)|Wf(u)| if q = 2

qn −Maxu∈V (n,q)|Φf(u)| if q ≥ 3
(2.2.15)

For the computation of the nonlinearity of the ternary function of length

9, one may require the matrix of the Vilenkin-Chrestenson transform of

order 9. This matrix after performing the unique complex exponential

transformation {0, 1, 2} → {1, e2π
3 i, e

4π
3 i}is;

V9 =



1 1 1 1 1 1 1 1 1

1 e
2π
3 i e

4π
3 i 1 e

2π
3 i e

4π
3 i 1 e

2π
3 i e

4π
3 i

1 e
4π
3 i e

2π
3 i 1 e

4π
3 i e

2π
3 i 1 e

4π
3 i e

2π
3 i

1 1 1 e
2π
3 i e

2π
3 i e

2π
3 i e

4π
3 i e

4π
3 i e

4π
3 i

1 e
2π
3 i e

4π
3 i e

2π
3 i e

4π
3 i 1 e

4π
3 i 1 e

2π
3 i

1 e
4π
3 i e

2π
3 i e

2π
3 i 1 e

4π
3 i e

4π
3 i e

2π
3 i 1

1 1 1 e
4π
3 i e

4π
3 i e

4π
3 i e

2π
3 i e

2π
3 i e

2π
3 i

1 e
2π
3 i e

4π
3 i e

4π
3 i 1 e

2π
3 i e

2π
3 i e

4π
3 i 1

1 e
4π
3 i e

2π
3 i e

2π
3 i 1 e

4π
3 i e

4π
3 i e

2π
3 i 1



33



CHAPTER 2

For example, consider a ternary function f in two variables whose truth

table is f = [012221011]T . Then its complex exponent form by applying

the transformation is F = [1 e
2π
3 i e

4π
3 i e

4π
3 i e

4π
3 i e

2π
3 i 1 e

2π
3 i e

2π
3 i]T . Then

the vector of the Vilenkin-Chrestenson spectrum is Φf = [e
4π
3 i + 2e

2π
3 i 4 +

2e
4π
3 i 4+2e

4π
3 i 2e

2π
3 i+e

4π
3 i 5+4e

2π
3 i e

4π
3 i+2e

4π
3 i 4+2e

4π
3 i 4+2

4π
3 i e

4π
3 i+

2e
4π
3 i].

The maximum modulus of the spectral values is equal to 4.5826; hence,

the nonlinearity is equal to 32 − 4.5826 = 4.4174.

Appendix D and Appendix E provide algorithms that compute the

nonlinearity value of the ternary and quaternary functions respectively, for

a given number of variables.

A q-function is a bent function if the spectral values are flat and have

the highest possible nonlinearity. In other words, it has a uniform absolute

value for every Vilenkin-Chrestenson spectral coefficient for all potential

values in its domain. This happens if the modulus of each of the spectral

coefficients is equal to q
n
2 . A bent q-function in n variables attain the

maximum nonlinearity qn − q
n
2 .

For example, Consider a ternary function f in 2 variables whose truth

table is f = [000012021]T . The vector of Vilenkin-Chrestenson spectral

coefficients is [3 3 3 3 3 e
4π
3 i 3e

2π
3 i 3e

2π
3 i 3e

2π
3 i 3e

4π
3 i]. The absolute value

of the spectral coefficients is uniform and the nonlinearity NL =6, the

highest possible nonlinearity of a function of this kind. Therefore f is a

bent function.

Now consider a quaternary function f whose truth table is f = [03311323

33230113]T and the polarity truth table is F= [1 -i -i -i i i -i -1 -i -i

-i -1 -i 1 i i -i].
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The matrix of the Vilenkin-Chrestenson transformation of order 16 is

16 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 i −1 −i 1 i −1 −i 1 i −1 −i 1 i −1 −i
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 1 1 1 i i i i −1 −1 −1 −1 −i −i −i −i
1 i −1 −i i −1 −i 1 −1 −i 1 i −i 1 i −1

1 −1 1 −1 i −i i −i −1 1 −1 1 −i i −i i

1 −1 1 −1 i −1 −i 1 −1 i 1 −i −i −1 i 1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

1 i −1 −i 1 −1 −i 1 1 i −1 −i 1 −1 −i 1

1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 1 1 −1 1

1 −1 1 −1 1 −1 i 1 1 −1 1 −1 1 −1 i 1

1 1 1 1 −i −i −i −i −1 −1 −1 −1 i i i i

1 i −1 −i −i 1 i −1 −1 −i 1 i i −1 −i 1

1 −1 1 −1 −i i −i i −1 1 −1 1 i −i i −i
1 −1 1 −1 −i −1 i 1 −1 i 1 −i i −1 −i 1



Then Φf = [−4i, 4, 4i, 4, 4i, 4i, 4, 4,−4i,−4,−4i, 4, 4,−4,−4i, 4i].

Since the absolute value of the spectral coefficients is uniform and is

equal to 4
2
2 = 4, it is obvious that f is a quaternary bent function. The

nonlinearity of f is equal to 12, which is the highest achievable nonlinearity

for a quaternary function with two variables.

35





CHAPTER 3

Spectral Analysis of Rotation Symmetric

Functions over Zq and Extraction Of Rotation

Symmetric Ternary Bent Functions With Reduced

Computational Complexity

3.1 Introduction

In 1999, Pieprzyk and Qu [42] proposed a sub-class of Boolean functions

named Rotation Symmetric Boolean Functions (RSBF). Cryptosystems

avail the advantages of RSBF because of their desirable cryptographic

properties. There are numerous applications for RSBF in cryptography.

They are used in the design of fast hashing algorithms[42]. The extension of

rotation symmetry to many-valued logic and the intriguing characteristics

of these functions have received much discussion from authors in [49, 50].

The symmetricity of the rotation symmetric functions throughout its cyclic

permutation allows representing these functions in their compact form

so that the analysis becomes easy as it reduces the count of functions to
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be examined. The compact structure of the rotation symmetric functions

brings down the risk of spectral analysis and develops various methods to

synthesise these functions [49]. An article [50] enunciates the bentness of

the symmetric functions.

The number of q-functions in n variables becomes very large (O(qq
n

))

for higher values of n and q and hence the exhaustive search for finding the

rotation symmetric function out of it is impractical. A formula for finding

the count of RSBFs was given in[43]. The formula to find the count of

rotation symmetric q-functions with the help of Burnside’s lemma was

provided in [45]. A mechanism for spectral analysis of rotation symmetric

Boolean functions in its Walsh spectral domain [46] opens doors to an

analogous method for functions of q-valued logic. This chapter is primarily

concerned with presenting a mechanism for spectral analysis of rotation

symmetric q-functions in its Vilenkin-Chrestenson transformants domain

and, also to extract the complete class of rotation symmetric ternary bent

functions in three variables by utilising this mechanism.

3.1.1 Rotation Symmetric Functions

Let us define a set of functions {σn,i, i = 1, 2...n} on the set {x1, x2, ...xn}
as follows,

σn,i (xk) = xi+k(modn) (3.1.1)

Where modn is modulo n addition. Now, define a set of permutations on n

symbols {x1, x2, ..., xn} by extending the function defined in 3.1.1,

σn,i (x1, x2, ..., xn) = (σn,i(x1), σn,i(x2)..., σn,i(xn)) (3.1.2)

The permutation thus defined is a left circular shift of the vector (x1, x2, ...xn)

through a position i.
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Definition 3.1.1. A function f : V (n, q) → Zq is rotation symmetric if for

any vector (x1, x2, .., xn)∈ V (n, q) and i = 1, 2..., n, f(σn,i (x1, x2, ..., xn) =

f (x1, x2, ..., xn). In other words, if the function f is invariant for all cyclic

permutations of its arguments, it is rotation symmetric.

A rotation-symmetric ternary function (RSTF) in two variables has the

following general structure:

x1x2 00 01 02 10 11 12 20 21 22

f(x1x2) a b c b d e c e g

where a, b, c, d, e, g ∈ Z3. Note that, f(01) = f(10), f(02) = f(20) and

f(12) = f(21), symmetric over all the cyclic rotations of (x1, x2).

Definition 3.1.2. The orbit of an element x ∈ V (n, q), denoted by Ox, is

defined as the set of all cyclic rotations of x. That is, for x ∈ V (n, q), the

orbit is, Ox = {σn,i (x) , i = 1, 2, ...n}.

Remark 3.1.1. The orbits form a partition of the set V (n, q).

For a two-variable ternary function, the orbits of its domain are,

O00 = {00}, O01 = {01, 10}, O02 = {02, 20}, O11 = {11}, O12 = {12, 21}
and O22 = {22}.

The first element in orbit is known as the representative element when

arranged lexicographically [46].

Now consider a ternary function in three variables whose truth table is,

f = [2 1 2 1 1 1 2 1 0 1 1 1 1 2 0 2 1 0 1 0 2 0 2 1]T .

The orbits of the domain, V(3,3) are,O000 = {000},O001 = {001, 010, 100},

O002 = {002, 020, 200}, O011 = {011, 101, 110}, O012 = {012, 120, 201}
, O021 = {021, 102, 210}, O022 = {022, 202, 220}, O111 = {111}, O112 =

{112, 121, 211}, O122 = {122, 212, 221} and, O222 = {222}.
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We can see that the output of the function f at each element in an

orbit has the same value and hence f is invariant under cyclic rotations.

Therefore, f is rotation symmetric.

The count of the rotation symmetric functions is directly connected

with the count of orbits of V(n, q). A formula to find the number of orbits

of V(n, q) was given in [45];

oqn =
1

n

∑
d/n

ϕ(d)q
n
d (3.1.3)

Where ϕ(d) is the Euler-Totient function.

A rotation-symmetric function can be expressed in compressed form,

which is made up of the function values of the representative elements.

Since there are oqn representative elements, it is immediate that the count of

n variable q- functions which are rotation symmetric is equal to qo
q
n.

The table 3.1 compares the number of RSBFs and RSTF for various

values of n.

Table 3.1: Comparison of no.of RSBF and RSTF

n 1 2 3 4 5 6 7

No.ofRSBFs 2 23 24 26 28 214 220

No.ofRSTFs 3 36 311 324 351 3130 3315

3.2 Spectral Analysis of Rotation Symmetric Functions

over Zq
The rotation symmetric functions are easier to analyse when they are repre-

sented in their compressed form. Let us designate Ri as the representative

element of ith orbit. Therefore, R1, R2, ...Roqn are the representative ele-
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ments for a rotation symmetric function in n variables. It can be seen

that the spectral coefficient of each element in an orbit is the same. A

result concerning RSBF is provided in[46]. This result is modified [46]

for Fourier transform of rotation symmetric functions over GF (p) in [45].

Similar to [45] and also as the conclusion of the theorem 2 in[47], we have

Lemma 3.2.1. Let f : V (n, q) → Zq be a rotation symmetric q-function

in n variables. Then every element in an orbit has the same Vilenkin-

Chrestenson spectral coefficient. That is, Φf(u) = Φf(v) if u, v ∈ ORi
,

1 ≤ i ≤ oqn.

For example, consider a rotation symmetric ternary function in three

variables whose truth table representation is f = [10201020201010202120

2021212]T . Because of the spatial constraint, we present the vector of the

absolute value of Vilenkin-Chrestenson spectral coefficients computed in

accordance with expression in 2.2.13.

Φf = [3.00 3.00 5.19 3.00 5.19 3.00 5.19 3.00 3.00 3.00 5.19 3.00 5.19

15.87 7.90 5 7.90 0 5.19 3.00 3.00 3.00 7.90 0 3.00 0 3.00].

It is clear that,

|ϕf(001)| = |ϕf(010)| = |ϕf(100)| = 3.00

|ϕf(002)| = |ϕf(020)| = |ϕf(200)| = 5.19

|ϕf(011)| = |ϕf(101)| = |ϕf(110)| = 5.19

|ϕf(012)| = |ϕf(120)| = |ϕf(201)| = 3.00

|ϕf(021)| = |ϕf(102)| = |ϕf(210)| = 3.00

|ϕf(022)| = |ϕf(202)| = |ϕf(220)| = 3.00

|ϕf(112)| = |ϕf(121)| = |ϕf(211)| = 7.90

|ϕf(122)| = |ϕf(212)| = |ϕf(221)| = 0.

According to lemma 3.2.1 the spectral values of rotation symmetric func-

tions are completely described by its representative elements.
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Therefore, the Vilenkin-Chrestenson spectrum of such a function f is

Φf = {Φf(R1),Φf(R2), ...,Φf(ROn)}.

Motivated from[46], let us construct a matrix H = [hij]oqnq
n
, where

hij =
∑

x∈Vn
ω⟨x,Ri⟩.This matrix significantly reduces the amount of com-

putation required for various analysis of rotation symmetric functions. The

spectral values of a rotation symmetric q-function at each representative

element can be determined using the following theorem.

Theorem 3.2.2. Let H = [hij]oqn×oqn with hij =
∑

x∈ORi
ω⟨x,Rj⟩.Then the

spectral value of a representative element Rj is, Φf(Rj) =
∑oqn

i=1 F (Ri)hij .

Where hij is the complex conjugate of hij.

Proof.

Φf(Rj) =
∑

x∈V (n,q)

F (Ri)ω⟨x,Ri⟩

=

oqn∑
i=1

∑
x∈ORi

F (Ri)ω⟨x,Ri⟩

=

oqn∑
i=1

F (Ri)
∑
x∈ORi

ω⟨x,Ri⟩

=

oqn∑
i=1

F (Ri)hij

By utilising the matrix H , one can determine the spectrum of f as

follows.

Φf = f ∗.H

Where f ∗ is the compressed form of the function f of length oqn that displays

the function value at each of the representative elements.
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It has been determined that for ternary functions with three variables,

there are 11 orbits, 11 representative elements, and 11 components in the

compressed form of an RSTF. In this instance, the matrix H is an 11× 11.

The computation of this matrix is performed using Python programming

language. The complexity of the computation is reduced by approximately

one-fifth when the matrix H is used to compute the spectrum of a ternary

function in three variables.

H =



1 1 1 1 1 1 1 1 1 1 1

3 2 + e
2π
3 i 2 + e

4π
3 i 1 + 2e

2π
3 i 0 0 1 + 2e
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3.3 Observations on Rotation Symmetric Ternary Func-

tions in Two Variables

There are 729 rotation symmetric ternary functions in 2 variables. We con-

verted these functions to their Reed-Muller form using the expressions in

2.2.10 and 2.2.11 to determine the algebraic degree and to analyse the nature

of these functions. There are two homogeneous functions with algebraic

degree 4, two with algebraic degree 3, eight with degree 2, and two with

degree 1. Following [43], let us denote (n,m, k, l) be the functions with

n variable, m-correlation immune, algebraic degree k and non-linearity l.

The symbol ” * ” in a position denotes the property is not specified at the

position. The computation enabled the collection of some cryptographically

dominant functions which is depicted in table 3.2.
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Table 3.2: Cryptographic Characteristics of two Variable Rotation Sym-
metric Ternary Functions

Nature of function (n,m, k, l) Number of Functions Remark

Homogeneous

(2,*,2,6) 4 Bent functions
(2,1,2,3.8 ) 2
(2,1,1,0) 2 Resilient functions

Non-Homogeneous

(2,*,2,6) 32 Bent functions
(2,1,2,3.8) 6
(2,1,1,0) 6 Resilient functions

It is observed that each of the 1-resilient RSTF in two variables is of

the degree 1 and it has the structure;

a0 + a1x1 + a2x2

where ai ∈ {0, 1, 2}, i = 0, 1, 2 with a1 = a2 ̸= 0.

3.4 Method to Synthesise Rotation Symmetric Ternary

Bent Functions

The extraction of rotation symmetric ternary bent functions (RSTBF) in

three variables is the focus of this section. The challenge of handling a

large number of functions for higher values of q is what drives the focus

on the ternary function. Bent functions have special importance in cryp-

tography. Studies on the symmetric Boolean bent function is carried out

in[46] and that of ternary bent functions in two variables and partially on

three variables have been conducted in[50]. A function is bent if each of

its spectral values is a constant. Since a rotation symmetric function can be

expressed by means of its representative elements, it is bent if the represen-

tative element in each orbit has uniform absolute spectral values. A ternary

function in three variables is bent if the absolute values of the spectral

coefficients satisfy, |Φf(Ri)| = 3
n
2 , i = 1, 2..., o3n

(√
27, if n = 3

)
.
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There are 486 bent functions when n = 2 [32] and the count is very

large for ternary functions in three or more variables. In[33], a method to

synthesise 3-variable ternary bent functions was discussed. An attempt was

made to find the rotation symmetric bent functions in [50]. The authors

found all 36 symmetric ternary bent functions in two variables and using

the tensor sum method a lower bound for the rotation symmetric ternary

bent functions in 3 variables was mentioned.

Bent q-functions possess some structural Characteristics[33]. This

structural characteristic can be explained in terms of structural weight.

Definition 3.4.1. Structural weight (sw) of a string with entries in Zq is the

n-tuple [< n0, n1, ..., nq−1 >], where ni, i = 0, 1, ...q − 1 is the number of

i′s in its truth table representation.

The research in[33] tells us that the structural weights of ternary bent

sequences when n = 3 are [< 12, 9, 6 >] , [< 9, 6, 12 >] , [< 6, 12, 9 >] ,

[< 9, 12, 6 >] , [< 12, 6, 9 >] and [< 6, 9, 12 >]. This structural character-

istic is used to find the rotation-symmetric ternary bent functions in three

variables. We made a computer search using Python programming language

to extract the bent functions utilising the matrix H. A comprehensive search

is performed for the rotation symmetric functions satisfying the sw criterion

for bentness as given in [33], in its uncompressed form. First, we examined

the functions with sw, [< 12, 9, 6 >]. The search carried over all functions

with the given structure and calculated
∑Oq

n

i=1 ω
f(Ri)hij, 0 ≤ j ≤ oqn and

check the absolute value is 3n/2. If the value is not 3n/2 for some j, we

discard the function and the search continues. It is found that the com-

pressed form of the rotation symmetric ternary bent functions falls into

two groups with sw [< 6, 3, 2 >] and [< 4, 5, 2 >]. Further examination

reveals that the other bent functions belong to the set of functions with sw,

the permutations of these two structures, and can be generated by a set of
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seed functions.

There are 36 seed functions with sw [< 6, 3, 2 >].

[00010110220]T [00011010220]T [[00020120110]T [00021020110]T

[00100120120]T [00101020120]T [00120110200]T [00121010200]T

[00200110210]T [00201010210]T [00210120100]T [00211020100]T

[01010120020]T [01011020020]T [01020100210]T [01021000210]T

[01100100220]T [01101000220]T 01120120000]T [01121020000]T

[01200120010]T [01201020010]T [01210100200]T [01211000200]T

[02010100120]T [02011000120]T [02020110010]T [02021010010]T

[02100110020]T [02101010020]T [02120100100]T [02121000100]T

[02200100110]T [02201000110]T [02210110000]T [02211010000]T

The other seed functions belong to the set of functions with cardinality

18 and sw [< 5, 2, 4 >], which are;

[00012210220]T [00022220110]T [00102220120]T [00122210200]T

[00202210210]T [00212220100]T [01012220020]T [01022200210]T

[01102200220]T [01122220000]T [01202220010]T [01212200200]T

[02012200120]T [02022210010]T [02102210020]T [02122200100]T

[02202200110]T [02212210000]T //

Lemma 3.4.2. [50] Let f : V (n, q) → Zq be a rotation symmetric bent

function, then af + bI , where a < q and I is a row vector with all its

component 1 and b ∈ {0, 1, ..., q−1}, are rotation symmetric bent functions.

The addition is component-wise addition modulo q.

Remark:- If q is a power of a prime number then Lemma3.4.2 holds

for those values of a with a < q such that gcd(a, q) = 1.
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Using Lemma 3.4.2 we have f, f + I, f + 2I, 2f, 2f + I and 2f + 2I

are rotation symmetric ternary bent functions provided f is a rotation sym-

metric ternary bent functions and that each of the seed function generates

5 other rotation symmetric ternary bent functions. Thus we found 324

rotation symmetric ternary bent functions in 3 variables. The conversion to

its original form can be obtained by reassigning the function value at each

representative element to all elements in the respective orbits.

An algorithm for extracting the RSTBFs with the help of the matrix H

is provided in Appendix F.

Rotation symmetric ternary bent functions follow 12 structural weight.

Table3.3 gives the sw and the number of RSTBFs in a given structure.

Table 3.3: Structural Characteristics of Rotation Symmetric Ternary
Bent functions

SW No.of Functions SW No.of Functions
[<6, 3, 2 >] 36 [<5, 2, 4 >] 18
[<6, 2, 3 >] 36 [<5, 4, 2 >] 18
[<3, 6, 2 >] 36 [<4, 2, 5 >] 18
[<3, 2, 6 >] 36 [<4, 5, 2 >] 18
[<2, 3, 6 >] 36 [<2, 4, 5 >] 18
[<2, 6, 3 >] 36 [<2, 5, 4 >] 18
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Correlation Immunity of Quaternary Functions

4.1 Introduction

Boolean functions(BF) play a vital role in designing block ciphers and

stream ciphers [64]. There are stream ciphers where the output from

several linear feedback shift registers (LFSRs) is combined using a Boolean

function to provide the keystream. The nonlinear BF for which, the inputs

are predetermined stages of an LFSR generates the keystream as its output.

Such stream ciphers are vulnerable to correlation attack[34]. Siegenthaler

presented a correlation attack against stream ciphers in 1985[34]. Using

the information of some keystream bits, the attacker tries to reconstruct

the initial state of each individual LFSR independently. If the Boolean

function is not properly chosen, it renders the cipher weak resistance to

various attacks. There are many criteria to measure the quality of Boolean

functions, among which nonlinearity and resistance against correlation

attacks are predominant. The functions which have resistance against

correlation attacks are known as correlation immune functions.
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Various applications of the primitives based on many-valued logic

confirm the need for further research in this direction. A great number

of researches are devoted to developing cryptographic characteristics of

non-binary functions and cryptographic constructions built upon them. The

article [38] discusses the correlation immunity of ternary functions and

the authors synthesised the complete class of correlation immune ternary

functions in two variables. This chapter extends the correlation immunity

to quaternary functions and presents a mathematical expression for the

construction of quaternary resilient functions.

4.2 Correlation Immunity of Boolean Functions

Definition 4.2.1. [65] Let f be a function in n independent and uniformly

distributed random variables x1, x2, . . . .xn, the function f (x1, x2, . . . .xn)

is of mth order, (0 ≤ m ≤ n) correlation immunity if f (x1, x2, . . . .xn) is

independent of any set of m of its input variables, x1, x2,. . . ,xn.

In other words, f is of mth order correlation immunity if its proba-

bility distribution is unaffected by any set of m input variables. That is,

Pr (f(x1, x2, ...., xn)/xik = sk, 1 ≤ k ≤ m) = Pr (f(x1, x2, ...., xn)).

Definition 4.2.2. A balanced correlation immune function is known as

resilient.

To define correlation immunity in terms of their sub-functions [65], let

us recap the definition of the sub-function.

Definition 4.2.3. [65] A sub-function of a Boolean function f is the function

f I derived from f by inserting constant values 0 or 1 for some of its

variables.

For an n variable function, if we substitute m of its variables by con-

stants, the obtained sub-function is a function of n−m variables.
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Definition 4.2.4. [65] A Boolean function on V (n, q) is of mth order,

(0 ≤ m ≤ n) correlation immunity if each of its sub-function of n −m

variable is of weight equal to wt(f)/2m. That is, wt(f I) = wt(f)/2m.

The correlation immunity of a Boolean function can also be charac-

terised using Walsh transform as given by the following theorem.

Theorem 4.2.5. [66] A Boolean function has correlation immunity of order

m if and only if its Walsh transform is zero for all inputs with weight less

than or equal to m. ie Wf(u) = 0 , for 0 ≤ wt(u) ≤ m.

4.3 Correlation Immunity of Functions over Zq

To define the correlation immunity of functions over Zq, it is required to

generalize the concept of sub-function. The sub-function of a q-function is

defined as follows.

Definition 4.3.1. [38] A sub-function of a q- function f is a function f I

derived from f by inserting constant values of the setZq = {0, 1, . . . ..q−1}
for some of its variables.

The correlation immunity of the ternary function was defined in terms

of the imbalance of the function[67]. The imbalance can be generalized for

functions of q- valued logic as,

Definition 4.3.2. The imbalance of the q- function is the absolute value

of the first coefficient of the Vilenkin-Chrestenson transform. That is the

absolute value of the sum of the component-wise product of the function by

the sequence [ei0, ei0, . . . . . . . . . , ei0].
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One can compute the imbalance of a q- function from its truth table

representation.

let, nk, k=0, 1, 2,...,q − 1 are the number of ks in the q-function f .

Then the imbalance of f is

∆f = |
q−1∑
k=0

nke
2πi
q k| (4.3.1)

Definition 4.3.3. Let f be a q- function in n variables, f has correlation

immunity of order m, 0 ≤ m ≤ n if the imbalance of any of its sub-

functions f I obtained by substituting m of its variable with constants from

Zq is, ∆f I = ∆f/q
m.

A q- function is m-resilient if it is correlation-immune and its truth

table is uniformly distributed.

In line with the formal definition of the correlation immunity, the

resiliency can be defined as follows,

Definition 4.3.4. Let f be a q-function in n independent and uniformly dis-

tributed random variables x1, x2, . . . .xn , the function f (x1, x2, . . . .xn) is

m-resilient, (0 ≤ m ≤ n) if Pr (f(x1, x2, ...., xn)/xik = sk, 1 ≤ k ≤ m) =

Pr (f(x1, x2, ...., xn)) =
1
q .

4.4 Resilient Quaternary Functions

In order to analyse the resiliency, we make use imbalance of the functions.

The imbalance of the quaternary function f(x) can be computed using the

following equation.

∆f = |n0.1 + n1.i+ n2.− 1 + n3.− i| (4.4.1)

Where n0, n1, n2 and n3 are respectively the count of 0s, 1s, 2s and 3s in f

when represented as a string of quaternary numbers.
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Definition 4.4.1. Let f is a 4- function in n variables, f is said to have

mth order correlation immunity, 0 ≤ m ≤ n if the imbalance of each of its

sub-functions f I of n−m variables is, ∆f I = ∆f/4
m.

To illustrate the resiliency, let f be a quaternary function in two vari-

ables x1 and x2, whose truth table is given by

x1x2 00 01 02 03 10 11 12 13 20 21 22 23 30

f(x1, x2) 0 1 2 3 1 2 3 0 2 3 0 1 3

x1x2 31 32 33

f(x1, x2) 0 1 2

Simply, this function can be expressed as f =[0123123023013012]T . Clearly,

the imbalance of f is equal to zero. Now let us examine the nature of the

sub-functions of f obtained by fixing one of its variables;

f(0, x2) = {f(0, 0)f(0, 1)f(0, 2)f(0, 3)} = {0123}
f(1, x2) = {f(1, 0)f(1, 1)f(1, 2)f(1, 1)} = {1230}
f(2, x2) = {f(2, 0)f(2, 1)f(2, 2)f(2, 3)} = {2301}
f(3, x2) = {f(3, 0)f(3, 1)f(3, 2)f(3, 3)} = {3012}
f(x1, 0) = {f(0, 0)f(1, 0)f(2, 0)f(3, 0)} = {0123}
f(x1, 1) = {f(0, 1)f(1, 1)f(2, 1)f(3, 1)} = {1230}
f(x1, 2) = {f(0, 2)f(1, 2)f(2, 2)f(3, 2)} = {2301}
f(x1, 3) = {f(0, 3)f(1, 3)f(2, 3)f(3, 3)} = {3012}

Clearly, each of the sub-functions of one variable has zero imbalance and

∆f I = 0 =
∆f

4m . Thus, f(x1, x2) is a 1-resilient function.
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4.5 Method to Synthesise Resilient Quaternary Functions

in Two Variables

The cardinality of the set of all quaternary functions in two variables

is 416 = 4294967296. The extraction of resilient function out of this

is infeasible from this large sample space by trial and error method. A

subclass of quaternary resilient functions in two variables is synthesized in

[68] and the extension to get the complete class of two variable quaternary

1-resilient functions is carried out by further research.

In this section, we present the formulation of a mathematical expression

for the construction of two variable 1-resilient quaternary functions by

employing permutation group action on a set consisting of four elements

each of which is a string of length four whose arguments assume value

from the set Z4 = {0, 1, 2, 3}.

Definition 4.5.1. Let G be a group and X be a set. Group action is a

mapping from G×X to X that assigns each pair of elements g ∈ X and

x ∈ X by a rule denoted by g.x satisfying the following axioms,

1. For every g ∈ X and x ∈ X, g.x ∈ X

2. If I ∈ G is the identity,then for every x ∈ X, I.x =x

3. For every g, h ∈ Gandx ∈ X, (g.h).x = g.(h.x)

Resilient functions are balanced, so we considered those functions

and made a computer search on the reduced space for those that satisfy

the condition for resiliency using Python programming language. This

program could find all quaternary 1-resilient functions in two variables.

The purpose of the research is to find a Mathematical expression for this

class of functions. Detailed analysis of the output of the computer program
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is performed and a unique mathematical expression for generating the

quaternary resilient functions in two variables is obtained.

Consider the set S = {µ0, µ1, µ2, µ3}, where µ0 = (0123), µ1 = µ0+I,

µ2 = µ0 + 2I, µ3 = µ0 + 3I , where I is a string of length 4 with all its

components equal to 1. The addition is performed component-wise modulo

4. Now, let us recall the symmetric group S4 = {γi, i = 1, 2. . . ...4! : γi, is

a permutation on 4 symbols}. Using the group action of the symmetric

group S4 on the set S and then by the concatenation of these group actions,

one can generate a class of 144 1- resilient quaternary functions in two

variables of length 16. It is now possible to generate the other 1-resilient

functions using this class of 144 functions as the generating functions. The

algebraic expression is as follows.

Consider the group action,

ψ : S4 × S → S

(4.5.1)

ψ(γi, µj) = γi(µj), i = 1, 2, ..., 24, , j = 0, 1, 2, 3.

Let j, k, l,m ∈ {0, 1, 2, 3}. Then for a fixed j such that j ̸= k ̸= l ̸= m,

the concatenation,

γi(µj)||γi(µk)γi(µl)||γi(µm), i = 1, 2, ..., 24, (4.5.2)

produces the truth table of the 144 1- resilient quaternary functions in two

variables. Each of the resilient functions produces another three 1-resilient

quaternary functions of length 16, by applying a transformation g from the
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set of quaternary sequences of length 16 to itself, defined as;

g(x1x2....x16) = (y1y2....y16), where yi =


k if xi = l

l if xi = k

xi otherwise

(4.5.3)

By replacing particular values for k and l we get the other quaternary

resilient functions. The pair of values (k, l) that produce the required

functions are (0,1),(0,3), and (2,3). We verified the resiliency of these

functions using a Python programming language. Thus, from the method

above we could form the complete class of 576 1- resilient quaternary

functions of length 16 in two variables.

For example, consider the permutation γi = (3241) and µj = (2301),

µk = (1230), µl = (0123) and µm = (3012). Then the proposed expres-

sion constructs the function f = [1320021331022031]T . Clearly ∆f = 0.

Now consider its sub-functions obtained after fixing one of its variables by

the elements of the set {0123}, which are {1320}, {0213}, {3102}, {2031},
{1032}, {3210}, {2103} and {0321}. It is to be noted that the imbalance

of each of the sub-functions is equal to zero and hence the constructed

function is 1-resilient.

The nonlinearity of the resilient functions obtained are computed using

2.2.15 and conversion of these functions to algebraic normal form could

enable to find the algebraic degree with the help of Python programming

language. Let k denote the algebraic degree and l denote nonlinearity.

Then the table 4.1 depicts the number of functions with specific algebraic

degree and nonlinearity. The resilient functions with l = 9.67 and l = 8

are of special importance and they can be used as primitives for various

cryptographic applications to attain optimal results.
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Table 4.1: Algebraic Degree and Nonlinearity of the 1-resilient Func-
tions in Two Variables

No.of functions k = 4 k = 3
l = 9.67 112 16
l = 8.00 184 120
l = 4.68 80 48
l = 0.0 8 8

Based on the result of the obtained two variable 1-resilient functions,

a method for construction of quaternary 1-resilient functions in three vari-

ables was presented through a conjecture in[68]. Here, this conjecture is

generalised to a theorem for m-resilient quaternary functions, a particular

case of such construction in [37]

Theorem 4.5.2. Let f0, f1, f2, f3 : V (n, 4) → Z4 are m- resilient 4- func-

tions in n variables, then for x ∈ V (n, 4), the n + 1 variable 4-valued

function f : V (n+ 1, 4) → Z4 defined as

f(x, xn+1) =



f0(x) if xn+1 = 0

f1(x) if xn+1 = 1

f2(x) if xn+1 = 2

f3(x) if xn+1 = 3

is also an m-resilient quaternary function.

Proof. Let fi, i = 0, 1, 2, 3 are m-resilient quaternary functions in n vari-

ables x1, x2, ..., xn, where xi ∈ {0, 1, 2, 3}. Let x = (x1, x2, ..., xn). Then

we have for k ∈ {0, 1, 2, 3} , 1 ≤ ij ≤ n and, j = 1, 2, ...,m

P{fi (x1, x2, ..., xn) = k/ (xi1 = y1, xi2 = y2, ..., xim = ym)}

= P{fi (x1, x2, ..., xn) = k} =
1

4
. (4.5.4)
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Let xn+1 be as in the definition of f . Since fi, i = 0, 1, 2, 3 are inde-

pendent of the variable xn+1, we have,

P{fi(x1, x2, ..., xn) = k/ (xi1 = y1, xi2 = y2, ..., xim = ym, xn+1 = yn+1)}

= P{fi (x1, x2, . . . .xn) = k}/(xi1 = y1, xi2 = y2, ..., xim = ym)}
(4.5.5)

Also for l ∈ {0, 1, 2, 3}

P{fi (x1, x2, . . . .xn, xn+1) = k}/ (xi1 = y1, xi2 = y2, ..., xim = ym, xn+1 = l)}

= P{fl (x1, x2, . . . .xn) = k/ (xi1 = y1, xi2 = y2, ..., xim = ym)} =
1

4
(4.5.6)

Now, 4.5.4 and 4.5.6 imply that,

P{f (x1, x2, . . . .xn, xn+1) = k}/ (xi1 = y1, xi2 = y2, ..., xim = ym, xn+1 = yn+1)}

= P{f (x1, x2, . . . .xn, xn+1) = k} =
1

4
(4.5.7)

Equation 4.5.7 is true for any of the m variables of x1, x2, ...xn, xn+1 and

hence we have,

P{f (x1, x2, . . . .xn, xn+1) = k}/ (xi1 = y1, xi2 = y2, ..., xim = ym)}

= P{f (x1, x2, . . . .xn, xn+1) = k} =
1

4
(4.5.8)

Thus f is m-resilient.
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For example, consider four 1-resilient quaternary functions in two

variables x1 and x2 constructed by the method in section 4.5,

f0 = [0312213010233201]T , f1 = [1230310220130321]T

f2 = [1320021320313102]T , f3 = [2013132031020231]T

The truth table of the quaternary function f in 3-variables x1, x2 and

x3 as per the theorem 4.5.2 is

f = [01123230132120032301112330120230122300012130331230302312

02031121]T

Now the sub-functions are;

f(0, x2, x3) = {0112323013212003}, f(1, x2, x3) = {2301112330120230}
f(2, x2, x3) = {1223000121303312}, f(3, x2, x3) = {3030231202031121}
f(x1, 0, x3) = {0112230112233030}, f(x1, 1, x3) = {3230112300012312}
f(x1, 2, x3) = {1321301221300203}, f(x1, 3, x3) = {2003023033121121}
f(x1, x2, 0) = {0312213010233201}, f(x1, x2, 1) = {1230310220130321}
f(x1, x2, 2) = {1320021320313102}, f(x1, x2, 3) = {2013132031020231}

Clearly f is balanced and hence ∆f = 0. Each of the sub-functions is

also uniformly distributed and hence ∆I
f = 0. Therefore the function f

satisfies the conditions for resiliency.

If f is a q-valued resilient function, it is balanced. Since a circular shift

or scaling by an element co-prime to q does not affect the balancedness of

the function f and its sub-functions.This fact substantiates the following

proposition.

Proposition 4.5.3. Let f : V (n, q) → Zq be a resilient function. Then

{af + bI, a < q, gcd(a, q) = 1, b ∈ Zq, where I is a string of length qn

with all its entries 1, are resilient functions.

The operations specified in proposition 4.5.3 are spectral invariant [69].
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4.6 Method for Analysis of Resilient Functions Based on

Orthogonal Matrix

A method for analysing the correlation immunity of functions over Zq on

the basis of an orthogonal matrix is conducted in [37]. This section is

devoted to presenting similar arguments for the analysis of the relation

between orthogonal matrix and correlation immunity of q-functions in

terms of sub-functions.

Definition 4.6.1. [37] An L × n matrix over Zq is called an (L, n, q,m)

orthogonal matrix if for any fixed m columns, each row vector y ∈ V (m, q)

appears exactly L/qm times in the matrix consists of these m columns.

Let f : V (n, q) → Zq be an n variable q-function. For each j, 0≤j≤q−1,

consider the matrix Bj with rows, the members of the set defined by

Wj = {x ∈ V (n, q)} : f(x) = j}. The cardinality of this set is nj, the

number of j’s in the truth table of f(x). ThenBj is a matrix of order nj×n.

We have, f(x) ism-correlation immune if the number of j’s, 0 ≤ j ≤ q−1,

in each of the sub-functions of n−m variables is equal to nj

qm . Since in that

case, the imbalance of the sub-function f I is;

∆f I =

∣∣∣∣∣
q−1∑
k=0

nk
qm
e

2πi
q k

∣∣∣∣∣ = 1

qm
∆f

The sub-function is obtained as a result of fixing m input variables

and Bj consists of nj rows, it is true that if we fix m columns of Bj, each

vector of V (m, q) appears exactly nj

qm times. Also, for a balanced function

nj = qn−1. From these arguments, if an n-variable q-valued function

has resiliency of order m then Bj is a (qn−1, n, q,m) orthogonal matrix,

0 ≤ j ≤ q − 1 , the conclusion as in[37]
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Thus, for a resilient function, the matrices Bj ,0 ≤ j ≤ q− 1 contain an

equal number of rows, and if we fix m columns, every vector of V (m, q)

appears qn−m−1 times.

To illustrate the above discussion of the relation between resiliency

of a quaternary function with the help of orthogonal matrices, consider a

2-resilient quaternary function in three variables whose truth table with

input values is

x1x2x3 000 001 002 003 010 011 012 013 020 021 022

f(x1, x2, x3) 0 1 2 3 1 2 3 0 2 3 0

x1x2x3 023 030 031 032 033 100 101 102 103 110 111

f(x1, x2, x3) 1 3 0 1 2 1 2 3 0 2 3

x1x2x3 112 113 120 121 122 123 130 131 132 133 200

f(x1, x2, x3) 0 1 3 0 1 2 0 1 2 3 2

x1x2x3 201 202 203 210 211 212 213 220 221 222 223

f(x1, x2, x3) 3 0 1 3 0 1 2 0 1 2 3

x1x2x3 230 231 232 233 300 301 302 303 310 311 312

f(x1, x2, x3) 1 2 3 0 3 0 1 2 0 1 2

x1x2x3 313 320 321 322 323 330 331 332 333

f(x1, x2, x3) 3 1 2 3 0 2 3 0 1

The matrices B0, B1, B2 and B3 as per the above discussion are,
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B0=



0 0 0

0 1 3

0 2 2

0 3 1

1 0 3

1 1 2

1 2 1

1 3 0

2 0 2

2 1 1

2 2 0

2 3 3

3 0 1

3 1 0

3 2 3

3 3 2



, B1=



0 0 1

0 1 0

0 2 3

0 3 2

1 0 0

1 1 3

1 2 2

1 3 1

2 0 3

2 1 2

2 2 1

2 3 0

3 0 2

3 1 1

3 2 0

3 3 3



, B2=



0 0 2

0 1 1

0 2 0

0 3 3

1 0 1

1 1 0

1 2 3

1 3 2

2 0 0

2 1 3

2 2 2

2 3 1

3 0 3

3 1 2

3 2 1

3 3 0



, B3=



0 0 3

0 1 2

0 2 1

0 3 0

1 0 2

1 1 1

1 2 0

1 3 3

2 0 1

2 1 0

2 2 3

2 3 2

3 0 0

3 1 3

3 2 2

3 3 1


From the matrices, it is clear that n0 = n1 = n2 = n3 = 16 and if we fix

any two rows of each of the matrices, every vector α ∈ V (2, 4) appears

exactly nj/42 (= 43−2−1) times, 0 ≤ j ≤ 3. Thus, Bj, j = 0, 1, 2, 3 are

orthogonal matrices.
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New Design of S-box based on Galois Field of Odd

Characteristic and Analysis of its Cryptographic

Properties

5.1 Introduction

The construction of conventional cryptographic schemes solely believes in

the two basic properties: confusion and diffusion introduced by Shannon[3].

Confusion makes the relation between the input and output as complex

as possible by hiding the algebraic structure in the design. The primary

objective of confusion is to make it difficult to identify the key, even if one

has a sufficient collection of plaintext-ciphertext pairs generated with the

same key. Accordingly, each bit of the ciphertext should be based on the

entire key and in multiple ways on a number of bits of the key; changing

one bit of the key must result in a complete change to the ciphertext. In

ciphers, it is accomplished by substitution operation, especially by the

application of S-boxes. Diffusion spreads out the minor change in the input
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all over the output. The unique feature of diffusion is the dissipation of

repetition in the plaintext statistics in the ciphertext statistics. In diffusion,

the output bits should depend on the input bits in a challenging way, so

that if the plaintext is altered by only one bit, the ciphertext should totally

change in an unpredictable or pseudorandom way. Diffusion is achieved by

performing the permutation transformations.

S-boxes are the core of the symmetric block algorithms that carry out

the substitution. They are the nonlinear components of block ciphers that

employ substitution permutation networks (SPNs), such as AES and DES.

Over many years, their study received a great deal of interest. Substitutions

must be carefully performed, as evidenced by the evolution of various

security threats. Numerous strategies are suggested to make the S-box

stronger and more difficult to attack.

The emergence of cryptographic algorithms for data security has been

facilitated by the development of the theory of many-valued logic [55]. The

block symmetric algorithm on ternary logic designed by Artem Sokolov et

al effectively performs substitution operations by means of S-boxes [55].

So in order to build algorithms based on many-valued logic, there is room

for building cryptographically robust S-boxes.

The cryptographic primitive in our construction is based on ternary

logic. It makes use of operations on the extension field GF (3n) of F3. The

Galois Field GF (3n) is constructed by choosing a primitive irreducible

polynomial over F3. The elements in GF (3n) can be expressed as a poly-

nomial with coefficients 0,1, or 2 and also as a string of ternary numbers.

5.1.1 Cryptographic properties of S-box

An S-box is the only nonlinear component in most of the well-known

block ciphers. Therefore, the primary purpose of an S-box in an encryption

scheme is to improve the nonlinear characteristics. The Nonlinearity of
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an S-box can be computed from that of its component functions with

which it is constructed. The nonlinearity of component q- function can

be computed from its Vilenkin-Chrestenson transform coefficient using

the expression given in equation 2.2.15. The nonlinearity of the worst

component q-function determines the nonlinearity of the S-box[22]. That

is, The nonlinearity NLS of the S-box is

NLS = min{NLf , f is a component q − function} (5.1.1)

In order to analyse the propagation characteristics of the S-box con-

structed on non-binary logic one may need an understanding of the deriva-

tive of the q-valued function.

Definition 5.1.1. [17]The derivative Du(f(x)) of a q-valued function f(x)

in the direction of a vector u is the q-valued function

Du(f(x)) = f(x⊕q u)− f(x)(modq) (5.1.2)

Where ⊕q is the modulo q addition.

Definition 5.1.2. [17] Let f(x) be a q- function, f(x) is said to satisfy

the propagation criterion with respect to a vector u if the derivative in the

direction of u is a balanced function. That is, if n0 = n1 = ..., nq−1, where

ni is the number of i in its derivative. In other words, Prob{Du(f(x)) =

i} = 1
q , for i = 0, 1, 2, ..., q − 1.

If the function f(x) satisfies the propagation criterion with respect to

all vectors u with 0 ≤ wt(u) ≤ m, then it is said to have the propagation

criterion of order m.

Definition 5.1.3. [17] A function f(x) of q-valued logic satisfies SAC if it

satisfies propagation characteristics of order 1.
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In the design of the S-box, the input-output correlation minimization

must receive the proper attention. The degree of statistical dependency of

the S-box output on its input determines its input-output correlation. As the

measure of the input-output correlation of the component q- functions, the

input-output correlation coefficient ρxy, x, y=0, 1...q−1 and the correlation

matrix Pxy consisting of the absolute values of the correlation coefficient

was introduced in [41].

ρxy =

∑n
i=1 xiyi −

∑n
i=1 xi

∑n
i=1 yi√

1
n

∑n
i=1 xi

2 −
(∑n

i=1 xi

n

)2
√

1
n

∑n
i=1 yi

2 −
(∑n

i=1 yi
n

)2

(5.1.3)

5.2 Design principle of S-boxes

An S-box with a Galois field based design can be identified as a permutation

of the elements in the Galois field that is used for its construction. Thus, one

may view the mechanism to construct an S-box as finding a permutation

that satisfies almost all characteristics that are expected for an ideal S-

box. The design of the proposed S-box is adapted from AES S-box [2, 4]

which follows Nyberg design [70] combined with an affine map of the

form S(x) = Ax−1 + B, A is an invertible 8 × 8 matrix and B is 8 ×

1 matrix over F2. In our construction, we used the algebraic structure

S(x) = Ax7+B, where A is an invertible matrix and B is a column matrix

over F3 with suitable order. The matrices are chosen in such a way that they

minimise the computation. The shift matrix B assures there are no fixed

points. The power mapping x7 modulo the irreducible polynomial gives a

bijective map over all finite field domains that we used for construction. We

constructed four bijective S-boxes of sizes 9, 27, 81, and 243 and analysed

their cryptographic characteristics such as the avalanche effect, nonlinearity,

imbalance, and input-output correlation.
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5.3 S-box of length 9

The constructed S-box of size 9 is a permutation of elements in the Galois

field GF (32). The field is constructed by choosing a primitive irreducible

polynomial p(x) = x2 + x+ 2 over F2 of order two. So the elements are

polynomials of degree 1 with coefficients in F3 which in turn can be de-

scribed as a string of ternary numbers as f1f2 consisting of the coefficients

of these polynomials. In our construction, we used the non-degenerate

matrix A and the shift matrix B as follows.

A =

[
0 1

2 1

]
and B =

[
1

2

]

The resulting S-box has two ternary components as given in the table

5.1.

Table 5.1: S-box of length 9

(x1x0) 00 01 02 10 11 12 20 21 22
S=f1(x1, x0)f2(x1, x0) 12 10 11 22 21 01 02 20 00

This S-box can also be depicted as a set of ternary strings of length two

as, S9 = {12 10 11 22 21 01 02 20 00}.

In order to analyse the avalanche characteristics of the proposed S-box,

the derivatives of each of the component ternary functions in the direction

of the vectors 01,10,20, and 02 of weight 1 are calculated and it is depicted

in table 5.2

The table 5.3 is the measure of the probability of the number of 0’s, 1’s,

and 2’s in the derivatives of the component 3-functions. A ternary S-box

of length 3n satisfies the strict avalanche criterion if this probability value

is equal to 0.33. In order to quantify the measure of SAC, the standard

deviation of these probability values from the expected value was computed.
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Table 5.2: Derivatives of Component Functions

D01
f1 0 0 0 0 1 2 2 1 0
f2 1 1 1 2 0 1 1 0 2

D10
f 1 1 2 1 0 0 1 2 1
f2 0 1 0 0 2 2 0 0 1

D02
f1 0 0 0 1 0 2 0 1 2
f2 2 2 2 2 1 0 1 2 0

D20
f1 2 1 2 2 2 1 2 0 0
f2 0 0 2 0 2 0 0 1 1

Table 5.3: Measures Propagation Characteristics of S-box 9

u 01 10 02 20
Components f1 f2 f1 f2 f1 f2 f1 f2
Pr(0’s) 0.56 0.22 0.22 0.56 0.56 0.22 0.22 0.56
Pr(1’s) 0.22 0.56 0.56 0.22 0.22 0.22 0.22 0.22
Pr(2’s) 0.22 0.22 0.22 0.22 0.22 0.56 0.56 0.22

The values deviate from the expected value with a standard deviation of

0.16.

The correlation of output to the input of the S-box must be the minimum

for optimal results. As the measure of input-output correlation, the matrix

of input-output correlation coefficients is calculated using the expression

5.1.1. The matrix for the S-box of size 9 is,

P1 =

[
0.2 0.2

0.3 0.7

]

The nonlinearity (NL) of the constructed S-box is computed using the

expression 2.2.15 and it found that the nonlinearity NL= 3.

5.4 S-box of length 27

The construction of the S-box of order 27 utilise the Galois field constructed

using the primitive irreducible polynomial p(x) = x3 + 2x2 + 1 of order 3

over F3. The elements in the field are polynomials of degree at most three.
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consequently, the ternary representation has three components f1f2f3. The

decimal representation of these field elements contains numbers from 0 to

26. In this construction, we used the invertible matrix A and shift vector C

as follows.

A =


1 2 1

1 0 2

0 2 0

and C =


1

2

0


The constructed S-box in its ternary representation is depicted as the set

S27. One can perform substitution transformation by mapping the ternary

blocks from 000 to 222 (0 to 26) respectively by the 27 ternary blocks in

S27 in the given order.

S27 = {120 210 000 020 222 212 220 001 021 221 122 201 110

011 211 111 112 200 022 012 121 102 010 101 100 002 202}.

The propagation Characteristics (avalanche effect) of the component

3-functions of the S-box are computed using their derivatives at each vector

of weight 1, the probability of 0’s, 1’s and 2’s in its derivatives of each of

the component functions is given in the table 5.4. These values come close

to the expected value of 0.33 for an ideal S-box. The standard deviation of

the values from the expected value is 0.09. The nonlinearity of the S-box

is NL=18.031, higher than the NL=11.412, of the S-box constructed by

Kim’s Scheme[16]. The input-output correlation matrix is,

P1 =


0.17 0 0.33

0 0.33 0

0.17 0.33 0.17


It is observed that there are three 0’s and all other values are below 0.5

with a maximum of 0.33. Each component 3-function is balanced.
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Table 5.4: Measures of Avalanche Characteristics of S-box 27

u Components 0’s 1’s 2’s

001
f1 0.2222 0.3333 0.4444
f2 0.4444 0.2222 0.3333
f3 0.3333 0.4444 0.2222

010
f1 0.4444 0.2222 0.3333
f2 0.3333 0.4444 0.2222
f3 0.3333 0.2222 0.4444

100
f1 0.2222 0.3333 0.4444
f2 0.3333 0.2222 0.4444
f3 0.2222 0.3333 0.4444

002
f1 0.2222 0.4444 0.3333
f2 0.4444 0.3333 0.2222
f3 0.3333 0.2222 0.4444

020
f1 0.4444 0.3333 0.2222
f2 0.3333 0.2222 0.4444
f3 0.3333 0.4444 0.2222

200
f1 0.2222 0.4444 0.3333
f2 0.3333 0.4444 0.2222
f3 0.2222 0.4444 0.3333

5.5 S-box of length 81

The construction of the S-box of order 81 utilises algebraic manipulations

over the Galois field GF (34) to produce a permutation of the elements in

the field. The field GF (34) is constructed as an extension field of F3 by

choosing an irreducible polynomial p(x) = x4+x3+2 of degree 4 over F3.

So the elements are polynomials of degree at most 3. The 4× 4 invertible

matrix A and the shift matrix C used for the construction is

A =


0 1 2 0

2 0 0 1

0 0 1 2

1 2 0 1

 and C =


1

0

2

1


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Since the elements of GF (34) are polynomials of degree at most three,

the four coefficients of these polynomials derive the S-box, and hence

each block in the S-box has four components. The S-box length 81 thus

constructed is

S81 = {1021 1121 1200 2010 0202 2012 0002 0000 2110 0021

0200 1022 2212 0221 0001 1222 1012 1121 2021 1020 2112 1120

1221 1000 0100 2011 2121 2000 1111 0210 1011 0122 1112 0120

0212 2101 1110 1122 2002 2221 2202 1002 2222 1210 2211 0011

0220 2210 2201 2111 2020 1100 2022 1101 0012 2102 1201 2222

0211 2100 1001 2200 2220 2001 0102 2122 1212 1211 0020 0111

0022 0201 1202 0010 1220 2120 0101 1102 0121 1010 0110}

As the measure of the avalanche effect, the probability of 0’s, 1’s, and

2’ of each of the four components is computed in the table 5.5. The values

get sharpened to the expected value of 0. 33. The values deviate from

the expected value with a standard deviation of 0.0663. The input-output

correlation matrix P3, of the S-box gives a positive sign as the maximum

value of the correlation coefficient is 0.2. The nonlinearity of the S- box is

NL = 54.012, much bigger than the NL = 34.235 of the s box of size 81

in [16]. Each of the components of the S-box is balanced also.

P3 =


0.1 0.2 0.1 0

0 0.1 0.2 0.2

0.1 0.1 0 0.1

0.1 0.1 0.1 0.1


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Table 5.5: Avalanche Characteristics of S-box 81

u Components Prob(0’s) Prob(1’s) Prob(2’s)

0001

f1 0.407407 0.296296 0.296296
f2 0.296296 0.407407 0.296296
f3 0.234568 0.45679 0.308642
f4 0.259259 0.308642 0.432099

0100

f1 0.234568 0.419753 0.345679
f2 0.407407 0.296296 0.296296
f3 0.271605 0.382716 0.345679
f4 0.395062 0.320988 0.283951

0010

f1 0.209877 0.358025 0.432099
f2 0.259259 0.37037 0.37037
f3 0.222222 0.444444 0.333333
f4 0.234568 0.45679 0.308642

1000

f1 0.296296 0.407407 0.296296
f2 0.555556 0.222222 0.222222
f3 0.209877 0.308642 0.481481
f 0.345679 0.382716 0.271605

0002

f1 0.407407 0.296296 0.296296
f2 0.296296 0.296296 0.407407
f3 0.234568 0.308642 0.45679
f4 0.246914 0.432099 0.320988

0020

f1 0.209877 0.407407 0.382716
f2 0.259259 0.358025 0.382716
f3 0.234568 0.320988 0.444444
f4 0.234568 0.308642 0.45679

0200

f1 0.234568 0.345679 0.419753
f2 0.407407 0.296296 0.296296
f3 0.271605 0.37037 0.358025
f4 0.395062 0.283951 0.320988

2000

f1 0.296296 0.296296 0.407407
f2 0.555556 0.222222 0.222222
f3 0.209877 0.469136 0.320988
f4 0.345679 0.283951 0.37037
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5.6 S-box of length 243

S-box of length 243 utilises Galois field GF (35) for its construction. The

application of the transformation S(x) to the elements of the field GF (35)

produces a permutation of the members of the same field. The irreducible

polynomial p(x) = x5 + x3 + 2x2 + 1 over F3 is used for field formation.

Thus, the members of the field GF (35) are polynomials of degree at most

4. These polynomials when represented as a string of ternary numbers

have five components. Consequently, each block of the S-box also has

five components. The non-degenerate matrix and the shift matrix used for

construction is

A =


1 0 2 0 1

0 1 0 2 1

1 0 1 0 2

2 1 0 1 0

 and C =



1

0

2

0

1


The ternary representation of the S-box is depicted as the set S243.

Cryptographic characteristics of the S-box are measured and it is found

that the avalanche effect of the components is very close to that expected

for an ideal S-box. The deviation of the estimated values from the expected

value was reduced to 0.034. The input-output correlation measure of the

components shows that the input-output correlation is reduced compared

to other S-boxes. The values are very close to zero, so the output of the

S-box is almost uncorrelated with the input. The nonlinearity of the S-box

is computed according to formulae 2.2.15 and 5.1.1 and it is found that the

nonlinearity of the S-box of size 243 is NL= 204.0. The components of the

S-box of length 243 are balanced.
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S243 = {10201 11102 02000 12002 20020 20010 11100 20122

00112 01000 10100 01011 12201 01111 21101 02012 12210 22220

12102 22121 10002 21120 11212 11222 11201 22001 22021 21021

20220 21110 22011 01210 11120 10102 10200 10011 20110 10112

01201 01222 02202 11001 21000 02202 12222 00020 21100 22111

00202 11010 21021 01020 00010 20202 02120 22022 00212 00000

00121 10202 01121 12012 02222 20112 01021 02002 22112 00200

22112 00200 00122 20200 00022 22201 10020 02102 11210 21200

22210 12101 22200 22000 22100 20120 21111 01100 11011 10220

01012 01022 12021 11012 20001 21010 00210 11110 02210 12200

10222 22211 00110 10121 10101 21202 10111 02112 11020 00011

20102 12001 21102 02100 21122 22012 21221 11211 02101 02001

10010 00002 12220 10012 22110 21112 20222 12010 12211 22020

00220 02011 02220 02222 10021 01221 01220 00100 01112 21002

00001 21001 20211 00111 02010 11121 22102 12110 10110 21202

11220 11200 02122 20000 20201 20221 12221 11021 10211 02212

20012 01200 01110 12121 01102 00012 01002 10212 02110 22120

02021 02121 22002 11221 10011 20022 21020 20121 12112 10001

00021 02200 11111 00101 12120 21222 10210 12112 22122 12022

00222 20002 12100 12020 20021 12011 01122 20101 00221 22101

00211 12111 21211 12202 21011 02022 10221 00120 21220 11000

10022 11022 01010 00201 00102 02201 22202 12212 10000 12000

11101 02211 01001 02221 11002 01120 22010 01221 20212 11112

20111 22212 22221 21121 21210 21212 01101 20100 10122 02020

11122 20210 01212 21022 10120}
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Table 5.6: Measure of Propagation Characteristics of S-box 243

u Components Pr(0’s) Pr(1’s) Pr(2’s)

00001

f1 0.292181 0.353909 0.353909
f2 0.37037 0.259259 0.37037
f3 0.37037 0.296296 0.333333
f4 0.333333 0.296296 0.37037
f5 0.37037 0.333333 0.296296

00010

f1 0.358025 0.296296 0.345679
f2 0.296296 0.296296 0.407407
f3 0.296296 0.407407 0.296296
f4 0.259259 0.37037 0.37037
f5 0.37037 0.333333 0.296296

00100

f1 0.304527 0.341564 0.353909
f2 0.37037 0.259259 0.37037
f3 0.296296 0.333333 0.37037
f4 0.259259 0.37037 0.37037
f5 0.296296 0.37037 0.333333

01000

f1 0.337449 0.349794 0.312757
f2 0.329218 0.378601 0.292181
f3 0.337449 0.27572 0.386831
f4 0.382716 0.349794 0.26749
f5 0.308642 0.366255 0.325103

10000

f1 0.341564 0.378601 0.279835
f2 0.222222 0.444444 0.333333
f3 0.37037 0.333333 0.296296
f4 0.259259 0.37037 0.37037
f5 0.296296 0.296296 0.407407

00002

f1 0.292181 0.353909 0.353909
f2 0.37037 0.37037 0.259259
f3 0.37037 0.333333 0.296296
f4 0.333333 0.37037 0.296296
f5 0.37037 0.296296 0.333333

00020

f1 0.345679 0.345679 0.308642
f2 0.304527 0.395062 0.300412
f3 0.283951 0.308642 0.407407
f4 0.26749 0.374486 0.358025
f5 0.36214 0.308642 0.329218
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u Components Pr(0’s) Pr(1’s) Pr(2’s)

00200

f1 0.329218 0.353909 0.316872
f2 0.345679 0.378601 0.27572
f3 0.279835 0.382716 0.337449
f4 0.251029 0.366255 0.382716
f5 0.300412 0.304527 0.395062

02000

f1 0.353909 0.341564 0.304527
f2 0.37037 0.296296 0.333333
f3 0.296296 0.37037 0.333333
f4 0.37037 0.296296 0.333333
f5 0.296296 0.37037 0.333333

20000

f1 0.341564 0.279835 0.378601
f2 0.222222 0.333333 0.444444
f3 0.37037 0.296296 0.333333
f4 0.259259 0.37037 0.37037
f5 0.296296 0.407407 0.296296

The nonlinearity values and avalanche characteristics of the S-boxes

are depicted in the graphs 5.1 and 5.2 respectively. The graph 5.1 clearly

shows that as the size of the S-box increases, the nonlinear properties of

the created S-boxes increase drastically. The graph 5.2 demonstrates that

as the size of the S-box increases, the tendency for the S-boxes to satisfy

the propagation criterion increases.

The table 5.7 depicts the cryptographic characteristics of the constructed

S-boxes.

Designing an S-box that satisfies all the cryptographic characteristics at

the high end is impractical. Here we concentrated more on the nonlinearity.

The Contstucted S-boxes show a high level of nonlinearity so that these

S-boxes may be useful for various cryptographic construction on ternary

logic.
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Figure 5.1: Nonlinearity behavior of the proposed S-boxes

Figure 5.2: Propagation Characteristics of the proposed S-boxes

77



CHAPTER 5

Table 5.7: Comparison of Cryptographic Characteristics of Proposed
S-boxes

Size of
S-box

9 27 81 243
Proposed In[16] Proposed In [16] Proposed In [16]

Bijective Yes Yes Yes Yes Yes Yes Yes
Fixed points No Yes No Yes No Yes No
Imbalance 0 0 0 0 0 0 0
Avalanche effect
(Deviation from
expected value)

0.16 0 0.09 0 0.07 0 0.03

Nonlinearity
Distance (NL)

3 3 18.031 11.412 54.012 34.235 204

Input-output
correlation

Min 0.2 0 0 0 0 0 0
Max 0.7 0.5 0.33 0.5 0.2 0.5 0.2
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Conclusion

Cryptography has various applications. The construction, synthesis, and

analysis of cryptographic primitives is an unending area of research. The

need for secure cryptographic constructions is increasing with the develop-

ment of technology. In this thesis, we focused on cryptographic primitives,

functions over Zq emphasising both ternary (3-functions) and quaternary

(4-functions). The cryptographic properties, correlation immunity, re-

siliency, and Vilenkin-Chrestenson spectra of the functions of ternary and

quaternary logic are extensively studied. A noval method for spectral anal-

ysis of Rotation symmetric q-functions is discussed and that could help to

synthesise the rotation symmetric ternary bent functions in three variables

with reduced computational complexity. The complexity could be reduced

by one-fifth for the computation of the spectrum of rotation symmetric

ternary functions in three variables. An indigenous method for synthesizing

the resilient functions on quaternary logic is presented. The mathematical

expression for the same is discussed. The relation between resiliency of
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q-functions and orthogonal matrix in line with sub-functions is established

. With the help of the Galois field of characteristic three, substitution boxes

are constructed and analysed its cryptographic properties. These S-boxes

possess a high level of nonlinearity and hence these S-boxes can be used in

cryptographic algorithms based on ternary logic. The Python programming

language is used for computation throughout the thesis.
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Recommendations and Future Directions

1. The computational efficiency is a constraint to move forward to

the analysis of q-functions for the higher value of q and with more

number of variables. So there is a scope to find theoretical methods

to study the cryptographic properties of those functions.

2. Most of the images are represented in three components. The pro-

posed S-boxes also contain three arguments 0, 1, and 2. So there is a

scope to develop an iterative algorithm for image encryption utilising

the constructed S-boxes.

3. Effective coding is the method for the transformation of binary code

to some other domain in such a way that it would provide us with no

unused combinations. Such a coding method could be constructed

with the help of an arithmetic encoding algorithm. Such codes

accelerate the applications of primitives on non-binary logic. So one

can try to find codes transforming binary to q-valued logic, which

can be utilized to develop primitives based on many-valued logic.

81



4. Most of the modern cryptographic algorithms can be represented

in terms of 4-functions and 16-functions. So theoretical methods

for cryptanalysis of those algorithms can be developed using many-

valued logic.
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Appendices

Appendix A: Algorithm for Converting Truth Table
to ANF and Computing the Algebraic Degree(n=2)

import numpy as np

import math

# create the matrix of degree we want

def create_matrix(R3):

n = 2

for i in range(1,n):

array_n=np.full((3**(i), 3**(i)), 3)

array_0=np.full((3**(i), 3**(i)), 0)

row1 = np.hstack((R3, array_0, array_0))

row2 = np.hstack((array_0, np.mod(2*R3,

array_n np.mod(R3,array_n)))

row3 = np.hstack((np.mod(2*R3,array_n),

np.mod(2*R3,array_n),

np.mod(2*R3,array_n)))

R3 = np.vstack((row1, row2, row3))

return R3

def f_mul(f):

R3=np.array([[1, 0, 0],

[0, 2, 1],

[2, 2, 2]])

v=create_matrix(R3)

if len(f)!=len(v):

print(’wrong dimensions for
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matrix or f’)

return

script = ’¹²³’

pol = [’xx’, ’xx¹’, ’xx²’, ’x¹x’, ’x¹x¹’, ’x¹x²’,

’x²x’, ’x²x¹’, ’x²x²’]

res = v@f

res = np.array([i%3 for i in res])

pol_final = ’’

for i in range(len(res)):

pol_final+=(str(res[i])+pol[i])+’ + ’

print(’resultant matrix f*R9’)

print(res)

print(’polinomal: ’)

print(pol_final[:-2])

return res

def result(v):

n = int(math.sqrt(len(v)))

v = np.reshape(v,(n,n))

degree = 0

d={str(i):0 for i in range(len(v)+1,-1,-1)}

for i in range(len(v)):

for j in range(len(v)):

if v[i][j]!=0:

d[str(i+j)]=1

for i in d:

if d[i]!=0:

degree = int(i)

break

if degree == 1 and d[’0’]==1:

degree=’affine’

print(’degree’,degree)

# input ternary function of legth 9.

f=[ ]

# multipy f with R9

v=f_mul(f)

#get degree from the resultant matrix

v=result(v)
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Appendix B: Algorithm for Converting Truth Table
to ANF and Computing the Algebraic Degree(n=3)

# general functions

import numpy as np

import math

# create the matrix of degree we want

def create_matrix(R3):

n = 3

for i in range(1,n):

array_n=np.full((3**(i), 3**(i)), 3)

array_0=np.full((3**(i), 3**(i)), 0)

row1 = np.hstack((R3, array_0, array_0))

row2 = np.hstack((array_0, np.mod(2*R3,array_n),

np.mod(R3,array_n)))

row3 = np.hstack((np.mod(2*R3,array_n),

np.mod(2*R3,array_n), np.mod(2*R3,array_n)))

R3 = np.vstack((row1, row2, row3))

#print(len(R3))

return R3

def f_mul(f):

# initial matrix

R3=np.array([[1, 0, 0],

[0, 2, 1],

[2, 2, 2]])

v=create_matrix(R3)

if len(f)!=len(v):

print(’wrong dimensions for matrix or f’)

return

script = ’¹²³’

pol = [’xxx’, ’xxx¹’, ’xxx²’, ’xx¹x’,

’xx¹x¹’, ’xx¹x²’, ’xx²x’, ’xx²x¹’, ’xx²x²’,

’x¹xx’, ’x¹xx¹’, ’x¹xx²’, ’x¹x¹x’, ’x¹x¹x¹’,

’x¹x¹x²’, ’x¹x²x’, ’x¹x²x¹’, ’x¹x²x²’, ’x²xx’,

’x²xx¹’, ’x²xx²’, ’x²x¹x’, ’x²x¹x¹’, ’x²x¹x²’,

’x²x²x’, ’x²x²x¹’, ’x²x²x²’]

res = v@f

res = np.array([i%3 for i in res])

pol_final = ’’

for i in range(len(res)):

pol_final+=(str(res[i])+pol[i])+’ + ’

print(’resultant matrix f*R27’)

print(res)
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print(’polinomal: ’)

print(pol_final[:-2])

return res

def result(v):

v = np.reshape(v,(3,3,3))

degree = 0

d={str(i):0 for i in range(6,-1,-1)}

for i in range(len(v)):

for j in range(len(v)):

for k in range(len(v)):

if v[i][j][k]!=0:

d[str(i+j+k)]=1

for i in d:

if d[i]!=0:

degree = int(i)

break

if degree == 1 and d[’0’]==1:

degree=’affine’

print(’degree’,degree)

#Input ternary function of length 27

f=[ ]

# multipy f with R27

v=f_mul(f)

#get degree from the resultant matrix

v=result(v)
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Appendix C: Algorithm for Converting Quaternary
Functions to ANF and Computing Algebraic Degree
(n=2)
import numpy as np

import math

# initial array

v4=np.array([[1, 0, 0, 0],

[0, 1, 3, 2],

[0, 1, 2, 3],

[1, 1, 1, 1]])

# create the matrix of degree we want

def create_matrix(v4):

n = 2

mult_dict={(0,0):0,(0,1):0,(0,2):0,

(0,3):0,(1,1):1,(1,2):2,(1,3):3,(2,2):3,(2,3):1,(3,3):2}

v4_3=v4.copy()

v4_2=v4.copy()

for i in range(len(v4)):

for j in range(len(v4)):

v4_3[i][j]=mult_dict[(v4[i][j],3)]

for i in range(len(v4)):

for j in range(len(v4)):

try:

v4_2[i][j]=mult_dict[(v4[i][j],2)]

except:

v4_2[i][j]=mult_dict[2,(v4[i][j])]

for i in range(1,n):

array_n=np.full((4**(i), 4**(i)), 4)

array_0=np.full((4**(i), 4**(i)), 0)

row1 = np.hstack((v4, array_0, array_0, array_0))

row2 = np.hstack((array_0, v4, v4_3, v4_2))

row3 = np.hstack((array_0, v4, v4_2, v4_3))

row4 = np.hstack((v4, v4, v4, v4))

v4 = np.vstack((row1, row2, row3, row4))

return v4

def f_mul(f):

v4=np.array([[1, 0, 0, 0],

[0, 1, 3, 2],

[0, 1, 2, 3],

[1, 1, 1, 1]])

v=create_matrix(v4)

if len(f)!=len(v):

87



print(’wrong dimensions for matrix or f’)

return

#script = ’¹²³’

#pol = [’xx’, ’xx¹’, ’xx²’, ’x¹x’, ’x¹x¹’, ’x¹x²’,

’x²x’, ’x²x¹’, ’x²x²’]

res = v@f

res = np.array([i%4 for i in res])

#pol_final = ’’

#for i in range(len(res)):

# pol_final+=(str(res[i])+pol[i])+’ + ’

# print(’resultant matrix f*v9’)

# print(res)

# print(’polinomal: ’)

# print(pol_final[:-2])

return res

def result(f):

v=f_mul(f)

n = int(math.sqrt(len(v)))

v = np.reshape(v,(n,n))

# print(v)

degree = 0

d={str(i):0 for i in range(6,-1,-1)}

for i in range(len(v)):

for j in range(len(v)):

if v[i][j]!=0:

d[str(i+j)]=1

for i in d:

if d[i]!=0:

degree = int(i)

break

if degree == 1 and d[’0’]==1:

degree=’affine’

return degree

88



Appendix D: Algorithm for Computation of Nonlin-
earity of Functions of Ternary Logic

# general functions

import numpy as np

import math

# initial array

v3=np.array([[0, 0, 0],

[0, 1, 2],

[0, 2, 1]])

# enter the power of n we want to multiply with,

n=k

# create the matrix of degree we want

def create_matrix(n,v3):

n = int(math.log(n,3))

array_n=np.full((3**(n-1), 3**(n-1)), 3)

for i in range(1,n):

array_n=np.full((3**(i), 3**(i)), 3)

row1 = np.hstack((v3, v3, v3))

row2 = np.hstack((v3, np.mod(v3+1,array_n),

np.mod(v3+2,array_n)))

row3 = np.hstack((v3, np.mod(v3+2,array_n),

np.mod(v3+1,array_n)))

v3 = np.vstack((row1, row2, row3))

return v3

# to transform matrix v to v_dash

def transform_matrix(v):

n=len(v)

for i in range(n):

for j in range(n):

if v[i][j]==1:

v[i][j]=2

elif v[i][j]==2:

v[i][j]=1

return v

import math

r3 = math.sqrt(3)

# to transform matrix v_dash to complex form

def transform_matrix_2(v):

v_=v.copy()

v_=v.astype(complex)

n=len(v)

for i in range(n):
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for j in range(n):

if v_[i][j]==0:

v_[i][j]=1

elif v_[i][j]==1:

v_[i][j]=(-1+r3*1j)/2

elif v_[i][j]==2:

v_[i][j]=(-1-r3*1j)/2

return v_

# f input

f=[]

# length of should be 3ˆn

def transform_f(f):

for i in range(len(f)):

if f[i]==0:

f[i]=1

elif f[i]==1:

f[i]=(-1+r3*1j)/2

elif f[i]==2:

f[i]=(-1-r3*1j)/2

print(’this is f transformed: ’)

print(f)

return f

def find_nf(f,v):

if len(f)!=len(v):

print(’wrong dimension for matrix v and array f’)

return

ln=len(f)

res=f@v

print(f’this is product of v{ln} and f’)

print([format(i, ’.3f’) for i in res])

res=[abs(j) for j in res]

print(’this is modulus of f*v’)

print(res)

res=max(res)

nf=ln - res

return nf
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Appendix E: Algorithm for Computation of Nonlin-
earity of Functions of Quaternary Logic

import numpy as np

import math

# initial array

# enter the power of n

n=k

# create the matrix of degree we want

def create_matrix(n,v4):

n = int(math.log(n,4))

array_n=np.full((4**(n-1), 4**(n-1)), 4)

for i in range(1,n):

array_n=np.full((4**(i), 4**(i)), 4)

row1 = np.hstack((v4, v4, v4, v4))

row2 = np.hstack((v4, np.mod(v4+1,array_n),

np.mod(v4+2,array_n), np.mod(v4+3,array_n)))

row3 = np.hstack((v4, np.mod(v4+2,array_n), v4,

np.mod(v4+2,array_n)))

row4 = np.hstack((v4, np.mod(v4+3,array_n),

np.mod(v4+2,array_n), np.mod(v4+1,array_n)))

v4 = np.vstack((row1, row2, row3, row4))

return v4

# to transform matrix v to v_dash

def transform_matrix(v):

n=len(v)

for i in range(n):

for j in range(n):

if v[i][j]==1:

v[i][j]=3

elif v[i][j]==3:

v[i][j]=1

return v

import math

r3 = math.sqrt(3)

# don’t need this here

# to transform matrix v_dash to complex form

def transform_matrix_2(v):

v_=v.copy()

v_=v.astype(complex)

n=len(v)

for j in range(n):

if v_[i][j]==0:
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v_[i][j]=1

elif v_[i][j]==1:

v_[i][j]=1j

elif v_[i][j]==2:

v_[i][j]=-1

elif v_[i][j]==3:

v_[i][j]=-1j

return v_

# F input

f=[]

# length of should be 3ˆn

def transform_f(f):

for i in range(len(f)):

if f[i]==0:

f[i]=1

elif f[i]==1:

f[i]=1j

elif f[i]==2:

f[i]=-1

elif f[i]==3:

f[i]=-1j

print(’this is f transformed: ’)

print(f)

return f

def find_nf(f,v):

if len(f)!=len(v):

print(’wrong dimention for matrix v and array f’)

return

ln=len(f)

res=f@v

print(f’this is product of f and v{ln}’)

print([format(i, ’.3f’) for i in res])

res=[abs(j) for j in res]

print(’this is modulus of f*v’)

print(res)

res=max(res)

nf=ln - res

return nf
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def matrix_manipulation(f):

n=16

v4=np.array([[0, 0, 0, 0],

[0, 1, 2, 3],

[0, 2, 0, 2],

[0, 3, 2, 1]])

vn=create_matrix_2(n,v4)

vn=transform_matrix(vn)

vn=transform_matrix_2(vn)

f=transform_f(f)

nf = find_nf(f,vn)

return round(nf,4)

f=[0, 1, 2, 2, 1, 0, 3, 1, 2, 3, 0, 1, 0, 2, 1, 0]

print(’nf: ’, matrix_manipulation(f))
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Appendix F: Algorithm for Extraction of Rotation
Symmetric Ternary Bent Functions

from iter tools import product

import numpy as np

# Check that the reduced array is equivalent to array containing

# 12 zero, 9 one, 6 two

def check_array_11(a):

c={0:0,1:0,2:0}

for i in a[:-3]:

c[i]+=3

for i in a[-3:]:

c[i]+=1

if c[0]!=12 or c[1]!=9 or c[2]!=6:

return False

return True

# Define the elements whose combination needed

elements = [0, 1, 2]

# Generate all combinations of elements 0,1 and 2 length 11

combinations = list(product(elements, repeat=11))

arr=[]

# extract all arrays(reduced) with 12 zero, 9 one, 6 two

for combo in combinations:

if check_array_11(list(combo)):

a=list(combo).copy()

b=a.copy()

#arranging based on index in 11 element array

b=[b[-3]]+b[0:6]+[b[-2]]+b[6:8]+[b[-1]]

c=b.copy()

arr.append(c)

# print(’total possible elements that has twelve 0s, nine 1s,

six 2s ’, len(arr))

# creating matrix H

H=np.zeros((11,11),dtype = ’complex_’)

rotations={1:[[0,0,0]],

2:[[0,0,1],[0,1,0],[1,0,0]],

3:[[0,0,2],[0,2,0],[2,0,0]],

4:[[0,1,1],[1,0,1],[1,1,0]],

5:[[0,1,2],[1,2,0],[2,0,1]],

6:[[0,2,1],[1,0,2],[2,1,0]],

7:[[0,2,2],[2,0,2],[2,2,0]],

8:[[1,1,1]],

9:[[1,1,2],[1,2,1],[2,1,1]],
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10:[[1,2,2],[2,1,2],[2,2,1]],

11:[[2,2,2]]}

# value of w = (1 + i x root(3))/2

w=(-1+1.7320508075688772j)/2

for i in range(len(H)):

for j in range(len(H)):

r=rotations[j+1][0]

cell=0

for k in range(len(rotations[i+1])):

Or=rotations[i+1][k]

dot=sum(l[0] * l[1] for l in zip(r, Or))%3

cell+=w**dot

H[i][j] = cell

# final array

f=[]

# Extract elements whose modulus of product with matrix H is root 27

for i in arr:

b=i.copy()

d=[w**j for j in b]

e=[round(abs(i),3) for i in d@H]

if False not in [i==5.196 for i in e]:

f.append(b)

print(’no of arrays whos product gives root 27: ’,end=’’)

print(len(f))

print(’sample elements from array: ’)

print(f[10:20])

# creating list of array f+1, f+2, 2f, 2f+1, 2f+2

f_plus_1=[]

f_plus_2=[]

twof=[]

twof_plus_1=[]

twof_plus_2=[]

for i in f:

j=i.copy()

j1=[(k+1)%3 for k in j]

f_plus_1.append(j1)

j2=[(k+2)%3 for k in j]

f_plus_2.append(j2)

j3=[(2*k)%3 for k in j]

twof.append(j3)

j4=[(2*k+1)%3 for k in j]

twof_plus_1.append(j4)

j5=[(2*k+2)%3 for k in j] twof_plus_2.append(j5)
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Appendix G: Algorithm computation of Nonlin-
earity of Ternary S-boxes of length 3n

import numpy as np

import math

# create the matrix of degree wanted

def create_matrix(n,v3):

n = int(math.log(n,3))

array_n=np.full((3**(n-1), 3**(n-1)), 3)

for i in range(1,n):

array_n=np.full((3**(i), 3**(i)), 3)

row1 = np.hstack((v3, v3, v3))

row2 = np.hstack((v3, np.mod(v3+1,array_n), np.mod(v3+2,array_n)))

row3 = np.hstack((v3, np.mod(v3+2,array_n), np.mod(v3+1,array_n)))

v3 = np.vstack((row1, row2, row3))

return v3

# to transform matrix v to v_dash

def transform_matrix(v):

n=len(v)

for i in range(n):

for j in range(n):

if v[i][j]==1:

v[i][j]=2

elif v[i][j]==2:

v[i][j]=1

return v

r3 = math.sqrt(3)

# to transform matrix v_dash to complex form

def transform_matrix_2(v):

v_=v.copy()

v_=v.astype(complex)

n=len(v)

for i in range(n):

for j in range(n):

if v_[i][j]==0:

v_[i][j]=1

elif v_[i][j]==1:

v_[i][j]=(-1+r3*1j)/2

elif v_[i][j]==2:

v_[i][j]=(-1-r3*1j)/2

return v_

def transform_f(f):

for i in range(len(f)):
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if f[i]==0:

f[i]=1

elif f[i]==1:

f[i]=(-1+r3*1j)/2

elif f[i]==2:

f[i]=(-1-r3*1j)/2

return f

def find_nf(f,v):

if len(f)!=len(v):

print(’wrong dimention for matrix v and array f’)

return

ln=len(f)

res=f@v

res=[abs(j) for j in res]

res=max(res)

nf=ln - res

return nf

def f_to_fs(f):

n=int(math.log(len(f),3))

fs=[]

f=[(n-len(str(i)))*’0’+str(i) for i in f]

for i in range(n):

temp=[]

for j in range(len(f)):

temp.append(int(f[j][i]))

fs.append(temp.copy())

return fs

def nf_(f):

ans=[]

n=len(f)

f_s=f_to_fs(f)

v3=np.array([[0, 0, 0],

[0, 1, 2],

[0, 2, 1]])

vn=create_matrix(n,v3)

vn=transform_matrix(vn)

vn=transform_matrix_2(vn)

for matrix in f_s:

matrix_transformed=transform_f(matrix)

nf = find_nf(matrix_transformed,vn)

ans.append(nf)

print(ans)

print("\nThis is the minimum nf: ",round(min(ans),3))
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# give s_box

# for number starting with 0. ignore the starting zeros.

# for 010 give 10. for 000 give 0. for 001 give 1

f=[]

nf_(f)
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