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Chapter 1
Introduction

1.1 Motivation and Survey of Literature

Noncommutative approximation and extremal theories initiated by Arveson [10] in the

context of operator systems in C∗-algebras have seen tremendous growth in the recent

past. The extremal theory concerning Choquet boundary of uniform algebras is a very

important tool in classical analysis. Let Ω be a compact Hausdorff space and U be

a uniform algebra in C(Ω). A point ω ∈ Ω is said to be a Choquet boundary point

of U if the evaluation function δω corresponding to ω has unique extension from U

to C(Ω). The Choquet boundary theory has a lot of applications to other areas of

mathematics such as approximation theory, measure theory, Markov process, several

variable complex analysis and etc.

Arveson [4] presented the non-commutative counterpart of Choquet boundary of
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1.1. MOTIVATION AND SURVEY OF LITERATURE

function systems for operator systems in C∗-algebras and called it as boundary rep-

resentations. Let M be a linear subspace of a C∗-algebra B and ρ : B → B(H) be

an irreducible representation. Then ρ is said to be a boundary representation for M

if the completely positive map ρ�M has exactly one completely positive extension to

B, namely ρ itself. Arveson introduced boundary representations to analyse a general

problem that to what extent does an algebra of operators on a Hilbert space determine

the structure of the C∗-algebra it generates. Arveson obtained a nice characterization

of boundary representations and showed that it has interesting applications to operator

theory [5]. Later, he found that boundary representations can be used to construct non

commutative Silov boundary. More precisely, the C∗-algebra generated by the direct

sum of images of boundary representations enjoys certain universal property and gives

a realization of the C∗-envelope(the non-commutative Silov boundary). Even so, the

existence of boundary representations was left open for many years.

Hamana [35,36] in 1979 proved the existence of C∗-envelope for operator systems

and existence of triple envelope for operator spaces. His proofs rely on the theory of in-

jective envelopes but not the notion of boundary representations. In 1998, an algebraic

characterization of boundary representations in terms of Hilbert modules was given

by Muhly and Solel [53]. They actually studied representations with unique extension

property by dropping the irreducibility condition from the definition of boundary rep-

resentations. Using Hamana’s technique, Muhly and Solel proved that representations

with unique extension property for operator algebras are presicely those completely

contractive representations that determine modules that are both orthogonally projec-

tive and orthogonally injective.
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1.1. MOTIVATION AND SURVEY OF LITERATURE

Inspired by the papers of Agler [1] on model theory, Dritschel and McCullough

[27] in 2005 come up with an important development in this direction by showing

that every UCP map of an operator system into the concrete C∗-algebra B(H) can be

dilated to a maximal UCP-map. This yeilds another proof of the realization of the C∗-

envelop without using the theory of injective envelops. But the existence of boundary

representations were not yet proved.

In the separable case, the existence of sufficiently many boundary representations

to completely norm the operator system was resolved by Arveson [8] in 2008. That is,

for operator system S in a C∗-algebra A and every [aij] ∈Mn(S) we have

‖[aij]‖ = sup
π
‖π([aij])‖ ∀ n ≥ 1,

where the supremum is taken all over the boundary representations π of C∗(S) for

S. Here the key ideas were the disintegration theory of C∗-algebras and the work of

Dritschel and McCullough mentioned above.

Kleski [45] in 2014 showed that in the above result the ’sup’ can be substituted by

’max’. This would imply that the non commutative Choquet boundary is a boundary

in the classical sense.

In 2015, Davidson and Kennedy [23] established the existence of boundary rep-

resentations. They proved that an operator system S that generates the C∗-algebra

C∗(S) has sufficiently many boundary representations to completely norm it. In fact

their results don’t assumes separability.

3



1.1. MOTIVATION AND SURVEY OF LITERATURE

In 2017, Magajna investigated boundary representations in the setting of Hilbert

C∗-modules over abelian von Neumann algebras and used it to examine C∗-extreme

points. In the same spirit of Davidson and Kennedy [23], Magajna proved that certain

pure maps will have appropriate dilation to boundary representations and hence estab-

lished the natural analogue of Arveson’s conjecture for certain operator systems in the

new context: let Z be an abelian von Neumann algebra and S be a central operator

system generating a C∗-algebra A, then the Z-boundary representations of A for S on

self dual C∗-modules over Z completely norm S.

Fuller, Hartz and Lupini [33] in 2018 initiate the study of non commutative Cho-

quet boundary in the setting of operator spaces. The operator space counterpart of

Arveson’s conjecture is then settled: any operator space is completely normed by its

boundary representations. Their result provides a clear-cut interpretation of the non

commutative Silov boundary of operator spaces in terms of non commutative choquet

boundary. They also introduced matrix convexity for operator spaces and proved the

following dilation theoretic result that connects extreme points with boundary repre-

sentations. The extreme points of the rectangular matrix convex set of all completely

contractive maps from an operator space X into B(H,K) can be dilated to boundary

representations of the operator space X .

In 2011, Arveson introduced non-commutative Korovkin sets and studied its con-

nections with boundary representations.

Korovkin theorem [47] concerns the convergence of positive linear maps on func-

tion algebras. The classical Korovkin theorem is as follows: for each n ∈ N, let

4
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Φn : C[0, 1] → C[0, 1] be a positive linear map. If lim
n→∞

||Φn(f) − f || = 0 for ev-

ery f ∈ {1, x, x2}, then lim
n→∞

||Φn(f) − f || = 0 for every f ∈ C[0, 1]. The set

G = {1, x, x2} is called Korovkin set in C[0, 1]. One may appreciate this theorem for

its potentiality and powerfulness as well as for the simplicity of its proof. The Korovkin

theorem impressed many mathematicians as the positive approximation has been in-

strumental in approximation theory, and it emerges naturally in various problems that

use an approximation of continuous functions.

During the last fifty years, several authors have studied Korovkin’s theorems in dif-

ferent settings. Concurrently, prolific and powerful relations of Korovkin’s theory have

been discovered with several fields of analysis, such as functional analysis, probability

theory, partial differential equations, etc.

An important development was the revelation of geometric theory of Korovkin’s

sets by Saskin [70] in 1966 and Wulbert [81] in 1968. The article [12] of Berens and

Lorentz sorted out the growth of the theory in detail. Also, some special topics of the

theory were elucidated in the papers [2, 3].

The investigation of non commutative Korovkin’s theorems for the setting of C∗-

algebras was started by Priestley [63] in 1976. He proved the following; for a unital

C∗-algebraA , if {ψm}m∈N is a sequence of positive linear maps fromA toA satisfying

ψm(1) ≤ 1 for allm, then

J = {x ∈ A : x = x∗, ψm(x)→ x, ψm(x2)→ x2}

is a J∗-algebra (Jordan ∗-algebra), where the convergence can be in operator norm

5
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topology(or in weak operator topology, or in strong operator topology). When A is

the C∗-algebra of trace class operators on B(H), the above theorem is also true for the

trace norm convergence.

Later, several other authors studied Korovkin’s theorem to different settings. The

articles [49, 57, 64, 78, 80] are also worth mentioning in this context.

Saskin [70] in 1966 studied the geometric theory of Korovkin sets in the classical

case. He established a very strong relation between Korovkin sets and the choquet

boundary of function systems as follows. Let C(Ω) be the algebra of all continuous

complex valued functions on a compact Hausdorff space Ω. Let 1 ∈ S ⊆ C(Ω) and

S separates Ω. Then S is a Korovkin set if and only if the choquet boundary of the

function system generated by S is whole of Ω.

Arveson [10] in 2011 introduced the non commutative counterpart of Korovkin set,

which he called a hyperrigid set. Let S be a finite or countably infinite andA = C∗(S).

Then S is called hyperrigid if for every faithful representation A ⊆ B(H) of A and

every sequence of UCP maps ψm : B(H)→ B(H),m = 1, 2 · · · ,

lim
m→∞

‖ψm(s)− s‖ = 0, ∀s ∈ S ⇒ lim
m→∞

‖ψm(x)− x‖ = 0, ∀x ∈ A.

A direct computation shows that a set S is hyperrigid if and only if the subspace

spanned by S ∪ S∗ is hyperrigid. In other words, the set S is hyperrigid if and only if

the operator system generated by S is hyperrigid. For this reason we consider operator

systems instead of arbitrary subsets of a C∗-algebra. Arveson [10] proved that if a sep-

arable operator system S is hyperrigid in C∗(S) then, every irreducible representation

6
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of C∗(S) is a boundary representation for S. Along the lines of Saskin’s theorem in

the classical setting, Arveson [10] formulated hyperrigidity conjecture as follows: if

every irreducible representation of C∗(S) is a boundary representation for S, then S

is hyperrigid. In the same paper, he established the conjecture in a particular case,

namely for C∗-algebras with countable spectrum.

Kleski [46] in 2014 explored the extent to which the noncommutative Choquet

boundary determines the hyperrigidity for Type I C∗-algebras. He discussedArveson’s

hyperrigidity conjecture and obtained structural information about Type I C∗-algebras

generated by operator systems when every irreducible representation is a boundary

representation for the operator system.

Kennedy and Shalit [44] in 2015 had shown that, in the appropriate context, Arve-

son’s hyperriridity conjecture is equivalent to the Arveson-Douglas essential normality

conjecture involving quotient modules of the Drury-Arveson space. This equivalence

also makes the hyperrigidity conjecture all the more enthralling.

Davidson and Kennedy [24] in 2016 established the hyperrigidity conjecture for

function systems in C(Ω).

Cloautre [18,19] in 2018 analysed states on C∗-algebra to investigate hyperrigidity

of operator systems. He [18] studied extension and restriction properties for states and

provided supporting evidence for Arveson’s hyperrigidity conjecture. Also, Clouatre

introduced, what are called unperforated pairs of subspaces inC∗-algebras and showed

that unperforated pairs of operator spaces constitute a tool that can be used to capture

the information about states, and hence to study hyperrigidity. In the succeeding paper

7
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[19] Cloautre investigated the concept of various peaking phenomena for states on a

C∗-algebra. The idea was to localize the C∗-algebra at a given state using a sequence

of elements of the C∗-algebra called the characteristic sequences and verified a local

version of Arveson’s Hyperrigidity conjecture using that localization procedure.

Salomon [68] in 2018 studied hyperrigidity in the frame of graph C∗-algebras.

For a row-finite directed graph
−→
G without isolated vertices, the set VE of isometries

assigned to the edge set is hyperrigid in the Cuntz-Krieger algebra associated with
−→
G .

Salomon introduced the property of rigidity at 0 and using this he is able to connect

hyperrigidity with unique extension property. He also showed that the C∗-envelope of

the operator algebra generated by VE can be identified with the Cuntz-Krieger algebra

associated with
−→
G .

Motivated by the example of operator system spanned by the unilateral right shift

operator on a separable Hilbert space, Shankar and et. al. [56] in 2018 introduced an

interesting weaker notion of boundary representations and hyperrigidity called weak

boundary representations and quasi hyperigidity, respectively. The Saskin’s theorem

in the new setting was proved for a particular class of C∗-algebras. Also, Shankar and

Vijayarajan [72] established the Hilbert module characterisation of hyperrigidity in a

special case using the techniques of Muhly and Solel [52]. Also, they tried to tackle

Arveson’s hyperrigidity conjecture in these weaker settings but not able to solve fully.

In literature, there were other weaker notions of hyperrigid sets. Limaye and Nam-

boodiri [51] in 1984 introduced weak Korovkin set in B(H) by replacing norm con-

vergence by weak operator topology convergence. Inspired by Arveson’s boundary

theorem, they proved that; an irreducible set of operators S in B(H) is a weak Ko-

8
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rovkin set if and only if identity is in the non commutative Choquet boundary of S.

Namboodiri [54] gave a short survey of the developments Korovkin-type theory in

the non-commutative setting. Namboodiri [55] in 2012, introduced weak hyperrigid

sets where the norm convergence is replaced by weak convergence, and established

certain relationship of weak hyperrigid operator systems with the non commutative

boundary.

However, the Arveson’s hyperrigidity conjecture is still not fully settled and is an

active research area. This motivate us to study boundary representations and hyper-

rigidity. Once a conjecture is not proved, one may introduce weaker notions of the

original notions and use it to analyse the conjecture. In this line of thoughts we study

weak boundary representations and quasi hyperrigidity. Another interesting line of

research is to study the conjecture in new settings of current interest. As the notion

of hyperrigidity is not previously explored in the non self adjoint setting of operator

spaces, we study boundary representations and hyperrigidity for operator spaces. Also

we explored boundary representations for the setting of spaces of unbounded opera-

tors, whereas due to the unavailability of BW-topology the notion of hyperrigidity in

this case calls for future study.

9



1.2. ORGANISATION OF THE THESIS

1.2 Organisation of the Thesis

Boundary representations and hyperrigidity introduced by Arveson [4, 10] are well

studied in the literature for the setting of operator systems in C∗-algebras. This thesis

studies a weaker notion of boundary representations and hyperrigidity for operator

systems, boundary representations and hyperrigidity for operator spaces, and boundary

representations for spaces of unbounded operators(that is, in the context of locally C∗-

algebras).

In Chapter 1, we indicate the motivation for the thesis problem and a brief survey

of the literature of the previous works on the topics of boundary representations and

hyperrigidity by various authors.

In Chapter 2, we recall the preliminaries from the theory of C∗-algebras and com-

pletely positive maps for our discussions on boundary representations and hyperrigid-

ity. In Section 2.1, we recall the definitions of the notions of C∗-algebras, operator

systems, operator spaces and the representations of C∗-algebras. In Section 2.2, we

introduce the notion of ternary ring of operators and their representations. In Sec-

tion 2.3, we explain the concept of completely positive maps on operator systems and

completely contractive maps on operator spaces. The well known theorems like Stine-

spring’s theorem and Arveson’s extension theorem for completely positive maps are

cited. In Section 2.4, we provide Paulsen’s construction of an operator system, called

Paulsen system associated to each operator space. In Section 2.5, we introduce the no-

tion of Choquet boundary in the classical setting and the notion of non-commutative

10
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Choquet boundary (boundary representations) for the non-commutative setting. We

cite the major developments in proving the existence of boundary representations. In

Section 2.6, we state the theorems of Korovkin and Saskin in the classical setting.

The concept of Korovkin sets and its non-commutative counter part, called hyperrigid

sets are explained. The Arveson’s hyperrigidity conjecture connecting boundary rep-

resentations and hyperrigidity are discussed. Also, we pointed out the various partial

answers to hyperrigidity conjecture existing in the literature.

In Chapter 3, we study the amplifications of a weaker notion of boundary repre-

sentations and hyperrigidity for operator systems in C∗-algebras. In Section 3.1, we

recall the tensor products of different notions such as C∗-algebras, operator systems,

CP-maps and representations. In Section 3.2, we describe the notions of weak unique

extension property and tensor products. In Section 3.3, we study amplifications of

weak boundary representations and quasi hyperrigidity [56] for operator systems in

C∗-algebras. It’s shown that an operator system is quasi hyperrigid if and only if all

of its amplifications are quasi hyperrigid. This actually gives a partial answer to the

following question: Two operator systems S1 and S2 are quasi hyperrigid in their gen-

erated C∗-algebras if and only if the tensor product S1 ⊗ S2 is quasi hyperrigid in its

generated C∗−algebra ?

In Chapter 4, we study the concept of boundary representations and hyperrigidity

for operator spaces. In Section 4.1, we handle boundary representation for operator

spaces and that of the Paulsen system. We deduce that boundary representations of

an operator space are in one to one correspondence with the boundary representations

of the associated Paulsen system. In Section 4.2, we introduce weak boundary rep-

11
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resentation for operator spaces and prove that a weak boundary representation for an

operator space induces a weak boundary representation for the corresponding Paulsen

system and vice versa. In section 4.3, finite representation for operator spaces and

separating operator spaces are introduced. We prove a characterisation theorem for

boundary representations; a map φ is a boundary representation for an operator space

X if and only if φ is a rectangular operator extreme point forX , φ is a finite represen-

tation for X and X separates φ. In section 4.4, we introduce the notion of rectangular

hyperrigidity for operator spaces in ternary ring of operators(TRO).We prove that if an

operator space is rectangular hyperrigid in the TRO generated by the operator space,

then every irreducible representation of the TRO is a boundary representation for the

operator space. A partial answer for the converse of the above result is also provided

which is a version of classical Saskin’s theorem in this setting. A relation between

rectangular hyperrigidity of an operator space and hyperrigidity of the corresponding

Paulsen system is also established.

In Chapter 5, we initiate a study of non-commutative choquet boundary in the

setting of spaces unbounded operators and in a more general setting of locally C∗-

algebras. Section 5.1 contains preliminary definitions and basic results on locally C∗-

algebras and local completely positive maps. In Section 5.2 we prove an analogue of

Arveson’s extension theorem for local contractive maps on unital linear subspaces of

locally C∗-algebras. The Section 5.3 describes the connections between purity of lo-

cal completely positive maps with irreducible representations. We prove that a local

completely positive map is pure if and only if its minimal Stinespring representation

is irreducible. In Section 5.4 we introduce unique extension property and boundary

12



1.2. ORGANISATION OF THE THESIS

representations for unital subspaces in locally C∗-algebras. Examples for the new no-

tions are provided. We have shown that local boundary representations are intrinsic

invariants for local operator systems. That is; let S1 and S2 be unital linear subspaces

of A1 and A2 respectively. Let φ : S1 → S2 be a unital surjective local completely

isometric linear map. Then for every local boundary representation π1 of A1, there

exists a local boundary representation π2 of A2 such that π2 ◦ φ(a) = π1(a) ∀ a ∈ S1.

Also, we characterise boundary representations in terms of purity and linear extreme

points of certain convex sets.

In Chapter 6, we consider some questions for further study. The questions are stated

concisely.

13



Chapter 2
Preliminaries

In this chapter, we introduce basic definitions and preliminary results required for the

entire discussions in the further chapters. Specifically, here we recall the notions of

C∗-algebras and completely positive maps, and standard theorems such as Arveson

extension theorem and Stinespring’s dilation theorem for CP maps. Also, the notion

of Choquet boundary and Korovkin theory in the classical setting as well as in the

setting of operator systems in C∗-algebras are explained.

2.1 C*-algebras

We shall always confine ourselves to vector spaces over the field of complex numbers

C. We begin with the definition of a Banach algebra.

A Banach algebraB is a complete normed linear spaceB with an additional struc-

14
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ture of well defined multiplication in B, denoted by (b1, b2) → b1b2, which satisfies

the following conditions, for all λ ∈ C, b1, b2, b3 ∈ A:

i. (b1b2)b3 = b1(b2b3);

ii. (λb1 + b2)b3 = λb1b3 + b2b3, b3(λb1 + b2) = λb3b1 + b3b2;

iv. ||b1b2|| ≤ ||b1||||b2|| ∀b1, b2 ∈ B.

A Banach ∗-algebra B is a Banach algebra B with an involution map b → b∗ that

satisfies the following conditions for all b1, b2 ∈ B, λ ∈ C:

i. (b∗1)∗ = b1 ;

ii. (b1 + b2)∗ = b∗1 + b∗1 ;

iii. (b1b2)∗ = b∗2b
∗
1 ;

iv. (λb1)∗ = λb∗1.

A Banach ∗-algebra B is called a C∗-algebra if it satisfies the C∗-identity:

||b∗b|| = ||b||2 ∀b ∈ B.

The following are examples of C∗-algebras.

Let C(Ω) be the algebra of all complex valued continuous functions on a compact

Hausdorff space Ω, with supremum norm. The map f → f is an involution on C(Ω).

Thus the algebra C(Ω) is a C∗-algebra. In fact C(Ω) is a commutative C∗-algebra.

15
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The space B(H) of all bounded operators on a complex Hilbert spaces H is a

C∗-algebra with involution : A→ A∗, where A∗ is the adjoint of the operator A.

A subset S0 of a C∗-algebra A is called self adjoint if a∗ ∈ S0 for each a ∈ S0.

A self adjoint unital linear subspace S of a C∗-algebra A is called an operator

system.

An operator system in B(H) is known as a concrete operator system. An abstract

definition of operator systems was designed by Choi Effros [22] in the setting of ∗-

vector spaces, and their representation theorem for abstract operator systems provides

a concrete realisation of abstract operator systems as operator systems in B(H).

A concrete operator space is a subspace of B(H). Ruan [66] proposed an ax-

iomatic definition for abstract characterisation of operator spaces. The representa-

tion theorem of Ruan [66] shows that each abstract operator space can be regarded

as a concrete operators space. In this thesis, we mostly consider operator spaces in

B(H,K) with the norm induced by the inclusion B(H,K) ↪−→ B(H ⊕K), where H

and K are Hilbert spaces.

Let A be a C∗-algebra and π : A→ B(H) be a homomorphism of the algebra A.

Then π is called a representation of A if it preserves adjoint, that is π(a∗) = π(a)∗

for all a ∈ A. A representation π is called non-degenerate if [π(A)H] = H , where

[π(A)H] = span{π(a)ξ : a ∈ A, ξ ∈ H}. The representation π is called faithful if it

is injective.
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Let H0 be a subspace of H and a ∈ A. We say H0 is an invariant subspace

for π(a) if π(a)(H0) ⊆ H0. A subspace H0 is called reducing subspace for π(a) if

π(a)(H0) ⊆ H0 and π(a)(H⊥0 ) ⊆ H⊥0 . Also, if H0 is an invariant subspace for all

π(a), a ∈ A, then we say H0 is invariant subspace for π(A). Similarly we define

reducing subspaces for π(A). The representation π is called irreducible if π(A) has

no nontrivial proper closed invariant subspaces. In other words, the only invariant

closed subspaces of π(A) areH0 = 0 andH0 = H . The set of all unitary equivalence

classes of irreducible representations ofA on a Hilbert spaceH is called the spectrum

of A and we denote it by Â.

2.2 Ternary ring of operators

A ternary ring of operators (TRO) between Hilbert spaces H and K is a norm closed

subspace T of B(H,K) such that xy∗z ∈ T for all x, y, z ∈ T . A TRO T always

carries an operator space structure as a closed subspace of B(H,K). A triple mor-

phism between TRO’s T1 and T2 is a linear map φ : T1 → T2 such that φ(xy∗z) =

φ(x)φ(y)∗φ(z) for all x, y, z ∈ T1.

Let T be a TRO then TT ∗ := lin{xy∗ : x, y ∈ T} is called the left C∗-algebra

of T and similarly, T ∗T := lin{x∗y : x, y ∈ T} the called as right C∗-algebra of T .
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2.2. TERNARY RING OF OPERATORS

From [13, 8.1.17] the linking algebra L(T ) is defined to be the set of 2× 2 matrices:

L(T ) :=

TT ∗ T

T ∗ T ∗T

 .

Thus any TRO T can be seen as the 1-2 corner of its linking algebra L(T ). Note that

the linking algebra L(T ) is a C∗-algbara.

A triple morphism θ : T → B(H,K) induces a ∗-homomorphism ω : L(T ) →

B(K ⊕H) on the linking algebra [37, Proposition 2.1] such that

ω =

ω1 θ

θ∗ ω2



where, ω1 : TT ∗ → B(K) and ω2 : T ∗T → B(H) are ∗-representations satisfying

ω1(xy∗) = θ(x)θ(y)∗ and ω2(x∗y) = θ(x)∗θ(y) for all x, y ∈ T . Conversely [14,

Proposition 3.1.2], if ω : L(T ) → B(L) is a ∗-homomorphism of the C∗-algebra

L(T ), then there exists Hilbert spacesH,K such that L = K⊕H and there is a triple

morphism θ : T → B(H,K) with

ω =

ω1 θ

θ∗ ω2



where, ω1 : TT ∗ → B(K) and ω2 : T ∗T → B(H) are ∗-representations satisfying

18



2.2. TERNARY RING OF OPERATORS

ω1(xy∗) = θ(x)θ(y)∗ and ω2(x∗y) = θ(x)∗θ(y) for all x, y ∈ T . Therefore, there is a

1-1 correspondence between the representations of a TRO and the representations of

its linking algebra.

The notions of nondegenerate, irreducible and faithful representations of TRO’s

are natural generalizations from the C∗-algebras. A representation of a TRO T is

a triple morphism φ : T → B(H,K) for some Hilbert spaces H and K. A repre-

sentation φ : T → B(H,K) is nondegenerate if, whenever p, q are projections in

B(H) andB(K), respectively, such that qφ(x) = φ(x)p = 0 for every x ∈ T , one has

p = 0 and q = 0 (equivalently, if φ(T )H = K and φ(T )∗K = H). Let H1 ⊆ H and

K1 ⊆ K be closed subspaces, then (H1, K1) is said to be φ-invariant if φ(T )H1 ⊆ K1

and φ(T )∗K1 ⊆ H1. A representation φ : T → B(H,K) is irreducible if, when-

ever p, q are projections in B(H) and B(K), respectively, such that qφ(x) = φ(x)p

for every x ∈ T , one has p = 0 and q = 0, or p = 1 and q = 1 (equivalently, if

(0, 0) and (H,K) are the only φ-invariant pairs). Finally φ is called faithful if it is

injective or, equivalently, completely isometric. A TRO T ⊂ B(H,K) is said to act

nondegenerately or irreducibly if the corresponding inclusion representation is non-

degenerate or irreducible, respectively. A representation of a TRO is nondegenerate

(irreducible) if and only if the representation of its linking algebra is nondegenerate

(irreducible) [14, Lemma 3.1.4, Lemma 3.1.5]. Let φi : T → B(Hi, Ki), i = 1, 2,

be the representations. The representations φ1 and φ2 are said to be unitarily equiv-

alent if there exists unitary operators u1 : H1 → H2 and u2 : K1 → K2 such that

19



2.3. COMPLETELY POSITIVEMAPS AND COMPLETELY CONTRACTIVEMAPS

φ1(t) = u∗2φ2(t)u1 for all t ∈ T . We refer to [13,14] for a nice account on TRO’s and

the representation theory of TRO’s.

2.3 Completely positive maps and completely contrac-

tive maps

LetA be aC∗-algebra andMn(A) be the set of all n×nmatrices with matrix elements

from A. The space Mn(A) possess a canonical C∗-algebra structure in the follow-

ing way. By GNS representation theorem, the C∗-algebra A can be viewed as a C∗-

subalgebra of B(H) for some Hilbert space H . ThenMn(A) can be identified as a ∗-

subalgebra of theC∗-algebraMn(B(H)) ≡ B(H(n)), whereH(n) = H⊕H⊕· · ·⊕H

(n times). Direct computations shows that the copy ofMn(A) under this identification

is a C∗-algebra and henceMn(A) is a C∗-algebra.

Let S be an operator system in A. Naturally Mn(S) is an operator system in

Mn(A). An element a ∈ A is called self adjoint if a = a∗. A self adjoint element

a is called positive if the spectrum of a is contained in [0,∞). Equivalently, the ele-

ment a is positive if a = b∗b for some b ∈ A. Let S ⊆ A be an operator system in A.

An element a ∈ S is called positive if a is positive in A.

Let B be another C∗-algebra andM be a linear subspace of A. Let ψ : M → B

20



2.3. COMPLETELY POSITIVEMAPS AND COMPLETELY CONTRACTIVEMAPS

be a linear map. Then ψ induces a map ψn : Mn(M)→Mn(B) given by

ψn([xij]) = [ψ(xij)] for [xij] ∈Mn(M).

Themapψn is sometimes called then-amplification of the mapψ. In general the adverb

completely for some property of ψ means that all the maps {ψn} having that property.

Let ψ : S → B be a linear map. The map ψ is called positive if ψ(a) ≥ 0 in B

whenever a ≥ 0 in S. The map φ is called n-positive if φn is positive, and we call φ

completely positive(CP) if φ is n-positive for all n.

The following two theorems are the backbone of our work. The first one is the cele-

brated theorem of Stinespring that classifies completely positive maps on C∗-algebras

into the concrete C∗-algebra B(H).

Theorem 2.3.1. [58] (Stinespring’s dilation theorem) Let A be a unital C∗-algebra

and φ : A → B(H) be a completely positive map. Then there is a representation

π : A → B(K) for some Hilbert space K with H ⊆ K, and a bounded operator

V : H → K such that

φ(a) = V ∗π(a)V, a ∈ A.

Moreover, in this theorem if φ is unital, then V is an isometry.

Let K1 = [π(A)V H]. Then the restriction π1 of π to K1 is also a representation

satisfying condition φ(a) = V ∗π1(a)V, a ∈ A. The representation π1 is called a
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2.4. PAULSEN SYSTEM

minimal Stinespring’s dilation of φ. Without loss of generality we may assume that

[π(A)V H] = K.

Theorem 2.3.2. [4] (Arveson’s extension theorem) Let A be a C∗-algebra, and let

S be an operator system in A. For a completely positive map φ : S → B(H) there

exists a completely positive map φ̃ : A → B(H) such that φ̃|S = φ. That is, φ can be

extended to a completely positive map on A.

Let X and Y be operator spaces in the TROs T and T ′ respectively. A linear map

φ : X → Y is called contractive if ‖φ(x)‖ ≤ ‖x‖ ∀x ∈ X . We say the map φ is

completely contractive(CC) if the induced map φn is contractive, for all n ∈ N.

2.4 Paulsen System

Given an operator space X ⊂ B(H,K), we can assign an operator system S(X) ⊂

B(K ⊕H). This operator system is called the Paulsen system [58, Lemma 8.1] of X .

S(X) is defined to be the space of operators


λIK x

y∗ µIH

 : x, y ∈ X,λ, µ ∈ C


where IH and IK denote the identity operators on H and K respectively. Any com-

pletely contractive map φ : X → B(H̃, K̃) on the operator space X induces canoni-
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cally a unital completely positive map S(φ) : S(X)→ B(K̃ ⊕ H̃) defined by

S(φ)(

λIK x

y∗ µIH

) =

 λIK̃ φ(x)

φ(y)∗ µIH̃

 .

Let T be the TRO containingX as a generating subspace. SupposeA = C∗(S(X))

is the C∗-algebra generated by S(X), then

A =


 TT ∗ + λIK T

T ∗ T ∗T + µIH

 : λ, µ ∈ C

 .

Observe that, A is a unitalization of the linking algebra L(T ) of T . Thus, there is a

1-1 correspondence between the representations of TRO T and the ∗-representations

of the C∗-algebra A.

2.5 Boundary representations

The concept of boundary representation is the non commutative remodelling of the

classical notion of Choquet boundary of uniform algebras in C(Ω). Let us first recall

the classical notion.

Let S ⊂ C(Ω) be a unital separating subspace ofC(Ω). Let S∗ denote the set of all

complex valued bounded linear functionals on S. For x ∈ Ω, consider the evaluation
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linear functional δx : S → C defined by δx(f) = f(x), ∀f ∈ S. Clearly, δx ∈ S∗. In

fact ‖δx‖ = 1. Also, if f ≥ 0 in S, then δx(f) = f(x) ≥ 0. That is, δx is a positive

linear functional. As the definition of δx make sense in the whole of C(Ω), we may

view δx to be a positive linear functional on C(Ω).

Definition 2.5.1. Let S be a closed subspace of C(Ω) that separates Ω. The Choquet

boundary ∂c(S) of S is defined as

∂c(S) = {x ∈ Ω : δx|S has one and only one positive linear extension to C(Ω)}.

Let ∆ ⊂ Ω. Then ∆ is called a boundary for S if for each f ∈ S ∃ y ∈ ∆

such that |f(x)| = ‖f‖. Direct computations shows that ∂cS ⊂ Ω is a boundary for

S. The smallest closed boundary for S is called the Silov boundary. Interestingly,

Choquet boundary is dense in Silov boundary [60, Proposition 6.4]. This justifies the

terminology ’boundary’ for ∂S.

The non-commutative counter-part of Choquet boundary points is introduced by

Arveson [4] in the context of operator systems in C∗-algebras, and called it boundary

representations.

Let S be an operator system S in a C∗-algebra A. We use C∗(S) to denote the

C∗-algebra generated by S in A. If S generates A, then we write A = C∗(S).

Definition 2.5.2. [10] LetA = C∗(S) and let π : A→ B(H) be a representation ofA.
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The representation π possess unique extension property (UEP) for S if ψ : A→ B(H)

is any unital completely positive (UCP) map with the property that ψ(x) = π(x) for

each x ∈ S, then ψ(a) = π(a) for every a ∈ A.

Definition 2.5.3. [10] Let A = C∗(S) and let π : A → B(H) be an irreducible

representation of A. Then π is called a boundary representation for S if π has UEP

for S.

It is well-known that the irreducible representations of a commutative C∗-algebra

A = C(Ω) are all one one dimensional. More precisely, the irreducible representa-

tions of C(Ω) are all multiplicative linear functionals from C(Ω) into C. By Gelfand

theory of commutative C∗-algebra, the multiplicative linear functionals are precisely

evaluation maps δx, x ∈ Ω. Thus, boundary representations of S ⊆ C(Ω) are all eval-

uation maps with unique extension property. Hence the notion of boundary representa-

tion is a generalisation of the notion of Choquet boundary point in the classical setting.

And the set of all boundary representations of an operator system in C∗-algebras is a

non-commutative counter-part of Choquet boundary of function systems in C(Ω).

Let ∂c(S) = {πα : α ∈ I} be the collection of all boundary representations for S.

We say that the operator systems S has sufficiently many boundary representations if

‖[xij]‖ = sup
α∈I
‖π(n)

α ([xij])‖ ∀ [xij] ∈Mn(S), ∀ n ∈ N.

Definition 2.5.4. [27] The C∗-envelope C∗e (S) of an operator system S is the unique
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smallest C∗-algebra amongst those C∗-algebras B for which there is a completely iso-

metric homomorphism φ : C∗(S) → B. Similarly, one can define the C∗-envelope of

an operator algebra.

Arveson [4] suggested that there exists sufficiently many boundary representations

for an operator algebra A. In such a case, Arveson displayed that the C∗-algebra

generated by the direct sum of ranges of boundary representations has a useful uni-

versal property, and confers a visualization of the C∗-envelope of A. A central prob-

lem left open in Arveson’s work [4] is the existence of boundary representations in

general, although existence of boundary representations in several standard examples

were demonstrated. Hence, the proof for the existence of the C∗-envelope for general

operator algebras were unknown.

Hamana [36] proved the existence of the C∗-envelope of operator systems using

the theory of injectivity but not boundary representations. Using the theory of di-

lations, Dritschel and McCullough [27] demonstrated the existence of C∗-envelope

but existence of boundary representations were not shown. Arveson [8] re-examined

the query of the existence of boundary representations by utilizing the techniques of

Dritschel and McCullough and disintegration theory. In the separable case, Arveson

proved his conjecture.

Theorem 2.5.1. [8] Every separable operator system S ⊆ C∗(S) has sufficiently

many boundary representations.
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Later, Davidson andKennedy [23] completely settled Arveson’s conjecture by show-

ing that every operator system has sufficiently many boundary representations to gen-

erate its C∗-envelope.

2.6 Hyperrigidity

A powerful theorem in classical approximation theory is the famous Korovkin theorem

[48] which concerns convergence of positive linear maps on function algebras. The

theorem consolidate different approximation theorem of continuous functions such as

Bernstein approximation theorem and Weierstrass approximation theorem, etc..

Theorem 2.6.1. [12] (Korovkin’s Theorem) For each m ∈ N, let ψm : C[0, 1] →

C[0, 1] be a positive linear map. If lim
m→∞

||ψm(f) − f || = 0 for every f ∈ {1, x, x2},

then lim
m→∞

||ψm(f)− f || = 0 for every f ∈ C[0, 1].

Definition 2.6.1. A set S ⊆ C[a, b] is said to be a Korovkin set if for any sequence of

positive linear maps ψm : C[a, b] → C[a, b], lim
m→∞

||ψm(f) − f || = 0 ∀ f ∈ S =⇒

lim
m→∞

||ψm(f)− f || = 0 ∀ f ∈ C[0, 1].

Remark 2.6.1. By Korovkin theorem the set {1, x, x2} is a Korovkin set for C([0, 1]).

In 1966, Saskin [70] identified a strong relation between Korovkin sets in C[0, 1]

and their Choquet boundaries.
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Theorem 2.6.2. [12] (Saskin’s Theorem) Let 1 ∈ S0 ⊆ C(Ω) and S0 separates the

points of Ω. Then the following two statements are equivalent:

(i) S0 is a Korovkin set for C(Ω)

(ii) the Choquet boundary ∂c(S) = Ω, where S = linear span(S0).

In 2008, Arveson [10] proposed the concept of non-commutative analogue of Ko-

rovkin sets and that he named as hyperrigid sets.

Definition 2.6.2. [10] Let A be a C∗-algebra and S be a generating set for A. Then

S is said to be hyperrigid if for all faithful representation from A to B(H) and any

sequence of UCP maps ψm : B(H)→ B(H),m = 1, 2, ...,

lim
m→∞

||ψm(s)− s|| = 0,∀ s ∈ S ⇒ lim
m→∞

||ψm(a)− a|| = 0,∀ a ∈ A.

Direct computations show that a setS0 ⊆ A is hyperrigid if and only if the subspace

spanned byS0∪S∗0 is hyperrigid. Hence, hyperrigidity is treated as a notion of operator

systems in C∗-algebras.

The following characterization theorem was given by Arveson that connects the

notion of hyperrigidity with the notion of boundary representation.

Theorem 2.6.3. [10] Let S be an operator system and A = C∗(S). If S is separable,

then the assertions given below are identical to each other.
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(i) S is hyperrigid.

(ii) ∀ separable non-degenerate representation ρ : A→ B(H) and every sequence

ψm : A→ B(H) of UCP maps,

lim
m→∞

||ψm(x)− ρ(x)|| = 0,∀ x ∈ S ⇒ lim
m→∞

||ψm(a)− ρ(a)|| = 0,∀ a ∈ A.

(iii) ∀ separable non-degenerate representation ρ : A→ B(H), ρ|S has the UEP.

(iv) For anyC∗-algebraB with a unital homomorphism ω : A→ B and a UCP map

ψ : B → B

ψ(b) = b ∀ b ∈ ω(S)⇒ ψ(b) = b ∀ a ∈ ω(A).

Arveson [10], supplied lot of examples for hyperrigid operator systems using the

above characterisation theorem. For example; consider V to be the Volterra integral

operator acting on H = L2[0, 1], then the operator system generated by S = {V, V 2}

is hyperrigid [10, Theorem 1.7].

The following two theorems are applications of the Theorem 2.6.3. These theorems

also provides different classes of examples for hyperrigid operator systems.

Theorem 2.6.4. [10] For isometries W1,W2, ...,Wm in B(H) the operator system

spanned by {W1, ...,Wm,W1W
∗
1 , ...,WmW

∗
m} is hyperrigid in A = C∗(W1, · · ·Wm).
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Theorem 2.6.5. [10] Let a ∈ B(H) be such that a = a∗ and let A be the C∗-algebra

generated by 1 and a. Let So and S be the operator systems spanned by the sets {1, a}

and {1, a, a2}, respectively. If the spectrum of a has at least 3 points, then

(i) S is hyperrigid in A, while

(ii) S0 is not hyperrigid in A.

Along the lines of Saskin theorem 2.6.2, Arveson tried to find the possible relation-

ship between the notion of hyperrigidity and the notion of boundary representations.

Corollary 2.6.1. [10] Assume that S is separable and S is hyperrigid in A = C∗(S).

Then each irreducible representation of A is a boundary representation for S.

Proof of the Corollary 2.6.1 follows from the equivalent condition (i) and (iii) of

Theorem 2.6.3.

The converse of the Corollary 2.6.1 is called Arveson’s hyperrigidity conjecture.

Conjecture 2.6.1. [10] Let S be a separable operator system in A such that A =

C∗(S). If every irreducible representation of A is a boundary representation for S,

then S is hyperrigid.

In some special cases the Conjecture 2.6.1 is proved. Arveson [10] demonstrated

the conjecture forC∗-algebras with countable number of in-equivalent irreducible rep-

resentations. Davidson and Kennedy [24] demonstrated the Conjecture 2.6.1 for the

function systems.
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Arveson’s hyperrigidity conjecture is not fully settled till now and is an active re-

search topic.

31



Chapter 3
Amplifications of weak boundary

representations and quasi hyperrigidity

An interesting weaker notion of boundary representations and hyperrigidity called

weak boundary representations and quasi hyperrigidity is introduced in [56]. In this

chapter, we study the amplifications of a weak boundary representations and quasi hy-

perrigidity for operator systems in C∗-algebras. Let A be a unital C∗-algebra and S

be an operator system in A. It is shown that, an irreducible representation π of A is

a weak boundary representation for S if and only if its n-amplification π(n) is a weak

boundary representation for the operator systemMn(S) for any n ≥ 2. Also, we de-

duce that the operator system S is quasi hyperrigid in A if and only if the operator

systemMn(S) is quasi hyperrigid inMn(A) for any n ≥ 2.
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3.1 Tensor products

In this section, we recall the basic theory of tensor products of C∗-algebras, operator

systems and related notions useful to our discussions.

Let A1 and A2 be unital C∗-algebras. Let A1 ⊗ A2 denotes the algebraic tensor

product ofA1 andA2. The spaceA1⊗A2 is a ∗-algebra with respect to the following

natural multiplication and involution

(a1 ⊗ a2)(b1 ⊗ b2) = a1b1 ⊗ a2b2

(a1 ⊗ a2)∗ = a∗1 ⊗ a∗2.

A norm ‖.‖γ on A1 ⊗A2 is called a C∗-cross norm if it satisfies the following for

all a1 ∈ A1, a2 ∈ A2 and ∀a, b ∈ A1 ⊗A2

‖a1 ⊗ a2‖γ = ‖a1‖‖a2‖

‖ab‖γ ≤ ‖a‖‖b‖

‖a∗a‖γ = ‖a‖2
γ = ‖a∗‖2

γ.

LetA1⊗γA2 denotes the closure ofA1⊗A2 when the later is provided with aC∗-cross

norm γ. In general, there are many possible C∗-cross norms on A1 ⊗ A2. For more
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details we refer [34, 79].

A C∗-algebra A1 is called nuclear if, for every C∗-algebra A2, there is a unique

C∗-cross norm on A1 ⊗ A2. Among the nuclear C∗-algebras are finite dimensional

C∗-algebras, commutative ones, GCR algebras and type IC∗-algebras. In this chapter,

our main interest is in the semi-classical case ofA⊗Mn(C) with the unique C∗-cross

norm induced from the C∗-norm of A.

There is a natural way to define tensor product of representations via the tensor

product of Hilbert spaces. Let H1 and H2 be Hilbert spaces. The tensor product

H1 ⊗ H2 of H1 and H2 is defined in the following way. The space H1 ⊗ H2 is the

completion of the inner product space H1 ⊗v H2 with respect to the inner product

〈∑
j

hj ⊗ gj,
∑
i

h′i ⊗ g′i

〉
=
∑
i,j

〈hj, h′i〉〈gj, g′i〉

where H1 ⊗v H2 is the algebraic tensor product of the vector spaces H1 and H2. Let

π1 : A1 → B(H1) and π2 : A2 → B(H2) be representations. Then π1 ⊗ π2 :

A1 ⊗γ A2 → B(H1 ⊗H2) given by

(π1 ⊗ π2)(a1 ⊗ a2) = π1(a1)⊗ π2(a2)

is a representation of A1 ⊗γ A1.

Similar to the case of tensor products of representations we can define tensor prod-
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uct of CP-maps. Let Si be an operator systems in Ai for i = 1, 2. Then the algebraic

tensor product S1 ⊗ S2 is an operator system in A1 ⊗ A2. Now, let φi : Si → Bi is

a CP-maps for i = 1, 2, where Bi, i = 1, 2 are C∗-algebras. Then the tensor product

φ1 ⊗ φ2 of φ1 and φ2 is a CP-map and is given by

(φ1 ⊗ φ2)(a1 ⊗ a2) = φ1(a1)⊗ φ2(a2).

Note that the n-amplification φ(n) of a CP-map φ is nothing but the tensor product

of the CP-maps φ and I(n), where I(n) is the identity map on the matrix algebraMn(C).

3.2 Weak unique extension property

While the unique extension property (UEP) of Arveson demands uniqueness among the

set of all unital completely positive extensions, demanding uniqueness only among the

smaller class of conjugates of the representation by isometries merits attention. Here

we recall the following definition.

Definition 3.2.1. [56] Let S be an operator system generating the C∗-algebra C∗(S)

and H be a Hilbert space. A representation π : C∗(S)→ B(H) is said to have weak

unique extension property (WUEP) for S if the only completely positive extension of

π|S of the form V ∗π(.)V is π itself, where V is an isometry on H .
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In the result below, we note that theWUEP property for representations is invariant

under unitary conjugation.

Proposition 3.2.1. LetA be a C∗-algebra and S be an operator system inA such that

A = C∗(S). Let π : A → B(H) be a representation with WUEP for S and U : K →

H be a unitary, for some Hilbert space K. Then the representation ρ(.) = U∗π(.)U

also has WUEP for S.

Proof. Let V be an isometry on K with the property that

V ∗ρ(a)V = ρ(a) ∀a ∈ S.

Then V ∗U∗π(a)UV = U∗π(a)U ∀a ∈ S will give

UV ∗U∗π(a)UV U∗ = π(a) ∀a ∈ S.

Since π has WUEP for S and UV ∗U∗ is an isometry on H ,

UV ∗U∗π(a)UV U∗ = π(a) ∀a ∈ A.

Hence V ∗ρ(a)V = ρ(a) ∀a ∈ A.

Remark 3.2.1. If the operator systems S1 and S2 generates the C∗-algebras A1 and

A2 respectively, then the operator system S1⊗S2 is a generating set for theC∗-algebra

36



3.2. WEAK UNIQUE EXTENSION PROPERTY

A1 ⊗γ A2, where A1 ⊗γ A2 is the closure of the algebraic tensor product A1 ⊗A2 in

any C∗-cross norm γ.

The following result examines the WUEP property for tensor product of represen-

tations. Let S1 and S2 be operator systems generates C∗-algebrasA1 and A2, respec-

tively. Let γ be a C∗-cross norm on A1 ⊗A2.

Proposition 3.2.2. Let πi : Ai → B(Hi) , i = 1, 2 be representations of the C∗-

algebra Ai = C∗(Si). If the representation π1 ⊗ π2 : A1 ⊗γ A2 → B(H1 ⊗H2) has

WUEP for S1 ⊗ S2, then π1 has WUEP for S1 and π2 has WUEP for S2.

Proof. Assume that π1 ⊗ π2 has WUEP for S1 ⊗ S2. If π1 does not have WUEP for

S1, then π1|S1 has a completely positive extension φ1 = V ∗π1V other than π1, where

V is an isometry on H1. Then φ = φ1 ⊗ π2 is a completely positive extension of

π1 ⊗ π2|S1⊗S2 and

φ = φ1 ⊗ π2 = V ∗π1V ⊗ π2 = (V ∗ ⊗ I)(π1 ⊗ π2)(V ⊗ I)

where V ⊗ I is an isometry onH1⊗H2. This is a contradiction to the assumption that

π1 ⊗ π2 has WUEP for S1 ⊗ S2. Hence π1 has WUEP for S1. Similarly π2 has WUEP

for S2.

Remark 3.2.2. It is not clear to us whether the converse of the Proposition 3.2.2 is

true or not.
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3.3 Amplifications of weak boundary representations

In this section we study amplifications of weak boundary representations and quasi

hyperrigidity. Let us recall the definition of weak boundary representation which is

introduced in [56].

Definition 3.3.1. [56] LetA be a unitalC∗-algebra and S be an operator system inA

such that A = C∗(S). An irreducible representation π : A → B(H) is called a weak

boundary representation for S of A if π|S has a unique completely positive extension

of the form V ∗πV , namely π itself, where V is an isometry on H.

Example 3.3.1. Let H be an infinite dimensional separable Hilbert space and S be

the operator system generated by V , where V is the unilateral right shift in B(H). Let

A = C∗(S) be the C∗-algebra generated by S. Consider the inclusion map π from A

to B(H), which is clearly a representation of A onH . Then the map φ(.) = V ∗π(.)V

from A to B(H) is a completely positive extension of π|S and it is different from π.

Thus, π is not a weak boundary representation for S.

Remark 3.3.1. By the same argument in Example 3.3.1, one can generalise that ex-

ample to any infinite dimensional Hilbert spaceH and any isometry onH which is not

a unitary.

Theorem 3.3.1. Let πi : Ai → B(Hi) , i = 1, 2 be irreducible representations of the

C∗-algebraAi = C∗(Si). If the representation π1⊗π2 : A1⊗γA2 → B(H1⊗H2) is a

38



3.3. AMPLIFICATIONS OF WEAK BOUNDARY REPRESENTATIONS

weak boundary representation for S1⊗S2, then π1 is a weak boundary representation

for S1 and π2 is a weak boundary representation for S2.

Proof. Follows directly from Proposition 3.2.2.

While the above result was easy to prove, the question of whether the tensor product

of weak boundary representations inherits the property from individual representations

is more involved which we examine in the particular case whenA2 = Mn(C). We use

the following lemma from [38] to prove the main theorem of this paper. The central

tool in the following lemma is the notion of n× n matrix units in a C∗-algebra [38].

Definition 3.3.2. [38] LetA be a C∗-algebra with identity e. A set of elements {Fij},

i, j = 1, 2, · · ·n, is a set of n × n matrix units if it satisfies the following three condi-

tions;

1. Fij = F ∗ji ∀ i, j

2. FijFkl = δjkFil ∀ i, j, k, l

3.
n∑
i=1

Fii = e.

Lemma 3.3.1. [38] Let H be a Hilbert space and A be a C∗-algebra. Let {Fij}

be a set of n × n matrix units in A, and M be a closed subspace of H with P the

orthogonal projection onM . For a representation π : A → B(H), if {Pπ(Fij)P} is

a set of matrix units (in theC∗-algebraC∗(Pπ(A)P ), with unit P ) thenM is invariant

under each π(Fij).
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Now, let us fix some notations which are used in the proof of the following theorem.

We denote n× n identity matrix inMn(C) by In and we use I(n) to denote the identity

representation of Mn(C). For a representation π : A → B(H), π(n) be the induced

representation π ⊗ I(n) of Mn(A). Further we make use of the set of matrix units

{Fij} = {e⊗Eij} = {Eij(e)} inA⊗Mn(C), where e is the identity ofA and the set

{Eij} is the standard matrix units ofMn(C).

Remark 3.3.2. It is clear that if S is an operator system in A, then Mn(S) is an

operator system inMn(A), thoughMn(A) contains more general operator systems. In

the following we identify A ⊗Mn(C) withMn(A). Starting from an operator system

Sn in Mn(A), it is clear that matrix entries of elements of Sn will form an operator

system in A.

Theorem 3.3.2. Let A be a C∗-algebra with unit e. Let Sn be an operator system in

A ⊗Mn(C) that contains the set of matrix units Eij(e), i, j = 1, 2, · · · , n. Let S be

the set of elements in A which appears as a matrix entry in some element of Sn. Then

an irreducible representation π of A on H is a weak boundary representation for S if

and only if π(n) is a weak boundary representation for Sn for any n ≥ 2.

Proof. We first show the trivial implication that if π(n) is a weak boundary represen-

tation for Sn then π is a weak boundary representation for S. Let v1 be an isometry on

H such that

v∗1πv1|S = π|S.
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Then v1 ⊗ In is an isometry on H ⊗ Cn, where In is the n× n identity matrix. Also,

(v∗1 ⊗ In)π(n)(v∗1 ⊗ In)|S = π
(n)
|S .

As π(n) is a weak boundary representation we have v1⊗In is a unitary and consequently

v1 is a unitary. Hence π is a weak boundary representation of A for S.

Conversely, assume that π is a weak boundary representation ofA for S. Let V be

an isometry on H(n) = H ⊕H ⊕ · · · ⊕H such that

V ∗π(n)V|Sn = π
(n)
|Sn
.

Denote Fij = Eij(e). Let P = V V ∗ andM be the range of P . We first claim thatM is

invariant under the operators π(n)(Fij), i, j = 1, 2, · · · , n. In view of the above lemma,

it suffices to show that {Pπ(n)(Fij)P} is a set of matrix units. Since π(n)(Fij) ∈ Sn,

we have

Pπ(n)(Fij)P = V V ∗π(n)(Fij)V V
∗

= V π(n)(Fij)V
∗.

Using the last expressions and the fact that V is a unitary from H(n) to M , we can

directly verify that {Pπ(n)(Fij)P} is a set of matrix units. Then by Lemma 3.3.1,M

is invariant under each π(n)(Fij). Equivalently V commutes with each π(n)(Fij).
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Now we claim that V can be factorised into vo ⊗ In where v0 is an isometry on H

and In is the n × n identity matrix. Since V commutes with π(n)(Fij) = Gij where

Gij is the matrix unit of B(H(n)), we have V Gij = GijV . This implies that

vij =


v11 if i = j

0 if i 6= j

.

Thus V = v0 ⊗ In, where v0 = v11.

Now, we show that v∗0πv0|S = π|S . For that, we use the following observation.

Consider E11, the first matrix unit ofMn(C). Then,

V ∗π(n)(a⊗ E11)V = π(n)(a⊗ E11)

(v∗0 ⊗ In)(π ⊗ I(n))(a⊗ E11)(v0 ⊗ I(n)) = π ⊗ I(n)(a⊗ E11)

(v∗0 ⊗ In)(π(a)⊗ E11)(v0 ⊗ I(n)) = π(a)⊗ E11

v∗0π(a)v0 ⊗ E11 = π(a)⊗ E11

v∗0π(a)v0 = π(a).

Thus to prove v∗0πv0|S = π|S for each a ∈ S, it is enough to prove that

V ∗π(n)(a⊗ E11)V = π(n)(a⊗ E11)

for each a ∈ S. To prove V ∗π(n)(a ⊗ E11)V = π(n)(a ⊗ E11), we use the fact that
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π(n)(Fij) commutes with V = v0 ⊗ In. Choose an element x ∈ S such that a is the

(i, j)th entry of x for some i and j. Direct multiplication shows that

E11(a) = F1ixFj1.

Hence π(n)(E11(a)) = π(n)(F1i)π
(n)(x)π(n)(Fj1). Then, using the fact that π(n)(Fij)

commutes with P , we have

Pπ(n)(E11(a))P = Pπ(n)(F1i)Pπ
(n)(x)Pπ(n)(Fj1)P.

Then using V ∗π(n)V|Sn = π
(n)
|Sn

, we obtain

V ∗π(n)V (a⊗ E11) = V ∗Pπ(n)PV (E11(a))

= V ∗Pπ(n)(E11(a))PV

= V ∗π(n)(F1i)V V
∗π(n)(x)V V ∗π(n)(Fj1)

= π(n)(F1i)π
(n)(x)π(n)(Fj1)

= π(n)(E11(a))

= π(n)(a⊗ E11).

As π is a weak boundary representation, we have v∗0π(b)v0 = π(b) for every b ∈ A.
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Then on A⊗Mn(C),

v∗0πv0 ⊗ I(n) = π ⊗ I(n)

v∗0πv0 ⊗ InI(n)In = π ⊗ I(n)

(v∗0 ⊗ In)(π ⊗ I(n))(v0 ⊗ In) = π ⊗ I(n)

V ∗π(n)V = π(n).

Thus π(n) is a weak boundary representation of A⊗Mn(C) for Sn.

Corollary 3.3.1. Let S be an operator system in aC∗-algebraA such thatA = C∗(S).

Let π : A → B(H) be a representation of A. Then π is a weak boundary represen-

tation of A for S if and only if π(n) is a weak boundary representation ofMn(A) for

Mn(S) for any n ≥ 2.

Proof. Immediately follows by taking Sn = Mn(S) in Theorem 3.3.2.

An operator system S in a C∗-algebra A is said to be quasi hyperrigid [56], if for

every unital representation π of A on a Hilbert space H and for any isometry V on

H the condition V ∗π(s)V = π(s) for all s ∈ S implies that V ∗π(a)V = π(a) for all

a ∈ A. Now, we establishes the relation between the quasi hyperrigidity of an operator

system Sn in A ⊗Mn(C) with the quasi hyperrigidity of the corresponding operator

system S(considered in Theorem 3.3.2) in A.
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Theorem 3.3.3. Let A be a C∗-algebra with unit e. Let S be an operator system in

A ⊗Mn(C) that contains the set of matrix units Eij(e), i, j = 1, 2, · · · , n. Let S be

the set of elements in A which appears as a matrix entry in some element of S. Then

S is quasi hyperrigid in A if and only if Sn is quasi hyperrigid in A⊗Mn(C) for any

n ≥ 2.

Proof. Proof follows from Theorem 3.3.2 and the fact that π is an irreducible repre-

sentation of A if and only if π(n) is an irreducible representation of A⊗Mn(C).

Corollary 3.3.2. Let S be an operator system in aC∗-algebraA such thatA = C∗(S).

Then the operator system S is quasi hyperrigid in A if and only if the operator system

Mn(S) is quasi hyperrigid inMn(A) for any n ≥ 2.

Proof. Follows from Theorem 3.3.3 by taking Sn = Mn(S).

Now, observe that if S ′ is an operator system inMn(C) that contains all the usual

matrix units ofMn(C), thenC∗(S ′) = Mn(C) and S ′ is quasi hyperrigidMn(C). Thus

an operator system S is quasi hyperrigid inA if and only if the operator system S⊗S ′

is quasi hyperrigid in A⊗Mn(C). This leads to the following natural question:

Problem 3.3.1. For operator systems S1 and S2 and the generated C∗-algebras Ai =

C∗(Si), i = 1, 2, is it true that S1 ⊗ S2 is quasi hyperrigid in A1 ⊗γ A2 if and only if

Si is quasi hyperrigid in Ai for each i = 1, 2 ?
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Example 3.3.2. Let V be the unilateral right shift operator on a separable Hilbert

space H and I be the identity operator on H . Let X be the linear subspace spanned

by {I, V } and S(X) be the Paulsen system associated with X . That is,

S(X) =


 a1I a2I + a3V

a4I + a5V
∗ a6I

 : ai ∈ C for i = 1, 2, · · · 6

 .

Note that the operator system S spanned by the entries of the elements of S(X) is

nothing but the operator system spanned by V , that is,

S = {b1I + b2V + b3V
∗ : b1, b2, b3 ∈ C}.

Let A1 = C∗(S), A2 = C∗(S(X)) and ψ be the identity representation of A1. The

restriction of identity representation ψ|S has more than one UCP extensions, namely,

ψ and V ∗ψ(.)V [56, Example 3.4]. Thus ψ is not a weak boundary representation

for S and hence S is not quasi hyperrigid in A1. Now, by Theorem 3.3.2 the identity

representation of A2 is not a weak boundary representation for the Paulsen system

S(X) and hence the Paulsen system S(X) is not quasi hyperrigid in the generated

C∗-algebra.

Example 3.3.3. Let V be the unilateral right shift operator on a separable Hilbert

space H and I be the identity operator on H . Let X be the linear subspace spanned
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by {I, V, V V ∗} and S(X) be the Paulsen system associated with X . That is,

S(X) =


 a1I a2I + a3V + a4V V

∗

a5I + a6V
∗ + a7V V

∗ a8I

 : ai ∈ C for i = 1, · · · 8

 .

Note that the operator system S spanned by the entries of the elements of S(X) is

nothing but the operator system spanned by V and V V ∗, that is,

S = {b1I + b2V + b3V
∗ + b4V V

∗ : bi ∈ C, i = 1, · · · , 4}.

Let A1 = C∗(S), A2 = C∗(S(X)). Then by [10, Theorem 3.3], S is hyperrigid in A1

and hence S is quasi hyperrigid in A1. By Theorem 3.3.3, the Paulsen system S(X)

is quasi hyperrigidA2. Thus all irreducible representations ofA2 are weak boundary

representations for the operator system S(X).

47



Chapter 4
Boundary representations and

hyperrigidity for operator spaces

In seeking to understand the structure of a concretely represented unital operator

system, operator spaces and operator algebras, a powerful tool is Arveson’s non-

commutative Choquet boundary. The building blocks for this non-commutative bound-

ary are certain special representations of C∗(S) called boundary representations. In

this chapter, we explore connections between boundary representations of operator

spaces and those of the associated Paulsen systems. Using the notions of finite rep-

resentation and separating property which we introduced, boundary representations

for operator spaces are characterized. This characterisation theorem would imply that

boundary representations are extreme points of certain convex sets and hence they are

actually on the "boundary" of some sets. We also introduce weak boundary for op-
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erator spaces. Rectangular hyperrigidity of operator spaces introduced here is used

to establish an analogue of Saskin’s theorem in the setting of operator spaces in finite

dimensions.

4.1 Boundary representations for operator spaces

In this section, we study noncommutative choquet boundary for operator spaces. Ide-

ally, all aspects of the non-commutative Choquet boundary of X could be understood

by applying Arveson’s usual machinery to S(X). For this to be fully realized however,

wewould need to know that the correspondence betweenX andS(X) preserves bound-

ary representations. One direction was established in the work of Fuller–Hartz–Lupini

[33], while the other is a main result of this section. First, let us recall the definitions

of the required ingredients from [33].

Let X be an operator space and T be a TRO containing X as a generating sub-

space.

Definition 4.1.1. [33] Let ψ : X → B(H,K) be a nondegenerate linear map. Then

ψ is called a rectangular operator state if

‖ψ‖cb = 1.

Note that a rectangular operator state is a CC-map. Letφ be a rectangular operator
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state. Then ‖φ‖cb = 1, that is,

sup
n∈N
‖φ(n)‖ = 1.

Thus ‖φ(n)‖ ≤ 1 for every n. Therefore φ is a CC-map.

Definition 4.1.2. [33] Let φ : X → B(H,K) be rectangular operator state. A

dilation of φ be a rectangular operator state ψ : X → B(H̃, K̃) such that there exists

isometries u : H → H̃ and v : K → K̃ satisfying the condition

v∗ψ(a)u = φ(a) ∀a ∈ X.

Similar to Arveson’s extension theorem for CP-maps on operators systems with

codomain B(H), the CC-maps on operator spaces with codomain B(H,K) also ad-

mits an extension theorem, called Haagerup-Paulsen-Wittstock- extension theorem.

Theorem 4.1.1. [58, Theorem 8.2] Let X be an operator space in a C∗-algebra A

and ψ : X → B(H,K) is a CB-map. Then there exists a CB-map ψ̃ : A → B(H,K)

that extends ψ, with ‖ψ̃‖cb = ‖ψ‖cb.

In particular any CC-map on X with codomain B(H,K) can be extended to a

CC-map from T to B(H,K), in a cb-norm preserving manner. It follows that any

rectangular operator state on the operator space X can be extended to a rectangular

operator state on the TRO T . In general a rectangular operator state on the operator
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space X can be extended to a rectangular operator state on T in several ways. The

rectangular operator states with such an extension is unique is of our interest.

Definition 4.1.3. [33] A rectangular operator state ψ on X has the unique extension

property if ψ̃ is any rectangular operator state on T such that ψ̃|X = ψ, then ψ̃ is a

triple morphism of T .

Definition 4.1.4. [33] A rectangular operator state φ : X → B(H,K) is a boundary

representation forX if it has unique extension property and the unique extension of φ

to T is an irreducible representation of T .

In our context, we mostly begin with a representation of T , rather than a rectangu-

lar operator state on X . Thus, we modify the definition of boundary representations

to representations.

Definition 4.1.5. An irreducible representation π : T → B(H,K) of T called a

boundary representation for the operator space X if

(i) π|X is a rectangular operator state on X , and

(ii) π|X has unique extension property.

Remark 4.1.1. We note the close connections between the two Definitions 4.1.4 and

4.1.5. If φ : X → B(H,K) is a boundary representation in the sense of Definition

4.1.4, then φ extends to an irreducible representation of T , say φ̃. Direct verification

shows that the representation φ̃ is a boundary representation in the sense of Definition
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4.1.5. Conversely, if a representation π : T → B(H,K) is a boundary representation

forX in the sense of 4.1.5, then π|X is a rectangular operator state onX and π|X is a

boundary representation in the sense of Definition 4.1.4.

After introducing the Definition 4.1.4 of boundary representations for operator

spaces, Fuller-Hartz-Lupini [33, Theorem 1.9] established the natural analogue of

Arveson’s conjecture: any operator space is completely normed by its boundary rep-

resentations.

Theorem 4.1.2. [33, Theorem 1.9] An operator space is completely normed by its

boundary representations.

The Theorem 4.1.2 actually give rises to an explicit description of the triple enve-

lope of operator spaces, that is, the triple envelope is the direct sum of images boundary

representations.

The proof of the Theorem 4.1.2 essentially uses the following Proposition [33,

Proposition 1.8]. They proved that a boundary representation of the Paulsen system

induces a boundary representation of the operator space.

Proposition 4.1.1. [33, Proposition 1.8] Suppose θ : S(X) → B(L) is a boundary

representation for the Paulsen system S(X) associated with X . Then we can decom-

pose the Hilbert space L as an orthogonal direct sum H ⊕ K in such a way that

θ = S(ψ) for some rectangular operator state ψ : X → B(H,K) and ψ on X is a

boundary representations.

52



4.1. BOUNDARY REPRESENTATIONS FOR OPERATOR SPACES

Here, we establish the converse of the Proposition 4.1.1.

Theorem 4.1.3. If a rectangular operator state φ : X → B(H,K) is a boundary

representation for X , then S(φ) is a boundary representation for S(X).

Proof. Assume that the rectangular operator state φ : X → B(H,K) is a boundary

representation for X . Let θ : T → B(H,K) be the irreducible representation such

that θ|X = φ. Let A be the C∗-algebra generated by S(X) inside B(K ⊕H), then we

have

A =


 TT ∗ + λIK T

T ∗ T ∗T + µIH

 : λ, µ ∈ C


and

ω =

ω1 θ

θ∗ ω2


is a unital representation of A on K ⊕ H such that ω|S(X)

= S(φ), where ω1 and ω2

are the representations corresponding to θ of the respective C∗-algebras.

We claim that ω is irreducible. Let P be a non zero projection in B(K ⊕H) that

commutes with ω(A). In particular, P commutes with

ω


1 0

0 0


 =

IK 0

0 0

 and ω


0 0

0 1


 =

0 0

0 IH

 .
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Therefore, P = p⊕ q where p is a projection on K and q is a projection on H . Thus,

(p⊕ q)ω(x) = ω(x)(p⊕ q) for every x ∈ A

which implies that

pθ(a) = θ(a)q for every a ∈ T.

Since θ is an irreducible representation of T , it follows that p = IK and q = IH and

therefore P = IK⊕H . Hence ω is an irreducible representation.

Now, to prove S(φ) is a boundary representation for S(X), it is enough to prove

the following. If Φ : A → B(K ⊕H) is any unital completely positive map with the

property Φ|S(X)
= S(φ), then Φ = ω. Let Φ be a such a map. By Stinespring’s dilation

theorem

Φ(a) = V ∗ρ(a)V, a ∈ A

where ρ : A → B(L) is the minimal Stinespring representation and V : K ⊕H → L

is an isometry. Thus,

ω|S(X)
= Φ|S(X)

= V ∗ρ(·)V|S(X)
.

Since ρ is a unital representation on L, we can decompose L = Kρ ⊕ Hρ, where

Kρ is the range of the orthogonal projection ρ


1 0

0 0


 and Hρ is the range of the
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orthogonal projection ρ


0 0

0 1


. Then with respect to this decomposition one has

that

ρ =

σ1 η

η∗ σ2


where η : T → B(Hρ, Kρ) is a triple morphism and σ1, σ2 are unital representations

of the respective C∗-algebras.

We claim that V =

v1 0

0 v2

, for isometries v1 : K → Kρ and v2 : H → Hρ. We

have

V ∗

1 0

0 0

V =V ∗

σ1(1) 0

0 0

V = V ∗ρ


1 0

0 0


V

=Φ

1 0

0 0

 = S(φ)

1 0

0 0

 =

1 0

0 0

 .

Similarly,

V ∗

0 0

0 1

V =

0 0

0 1

 .

Since V is an isometry, we must have V =

v1 0

0 v2

 for isometries v1 and v2. Using
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S(θ)|S(X)
= S(φ) = Φ|X = V ∗ρV , we have

θ(x) = v∗1η(x)v2 ∀ x ∈ X.

Our assumption θ is a boundary representation for X implies that

θ(t) = v∗1η(t)v2 ∀ t ∈ T.

Using [33, Proposition 1.6], θ is maximal implies that η is a trivial dilation. We have

η(t) = qη(t)p+ (1− q)η(t)(1− p)

for every t ∈ T , where p = v2v
∗
2 and q = v1v

∗
1 . The above equation implies that

η(T )v2H ⊆ v1K and η(T )∗v1K ⊆ v2H . Using the minimality assumption [33, Page

142] of η, we haveKρ is the closed linear span of η(T )η(T )∗v1K ∪ η(T )v2H and Hρ

is the closed linear span of η(T )∗η(T )v2H ∪ η(T )∗v1K. Straightforward verification

shows that η(T )η(T )∗v1K∪η(T )v2H ⊆ v1K and η(T )∗η(T )v2H∪η(T )∗v1K ⊆ v2H ,

therefore Kρ = v1K and Hρ = v2H . Thus, v1 and v2 are onto. Since v1 and v2 are

isometries and onto implies that v1 and v2 are unitary, therefore V is unitary.

Now, we have ρ is a representation and V is unitary, thus the equation Φ(a) =

V ∗ρ(a)V, a ∈ A implies that Φ is a representation on A. Since ω and Φ are repre-

sentations on A = C∗(S(X)) and ω|S(X)
= Φ|S(X)

, we have Φ = ω.
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We give a couple of examples to illustrate the above theorem.

Example 4.1.1. Let X ⊂ B(H,K) be an operator space such that the TRO T gen-

erated by X acts irreducibly and such that T ∩ K(H,K) 6= {0}. Then the iden-

tity representation of T is a boundary representation for X if and only if the iden-

tity representation of C∗(S(X)) is a boundary representation for S(X). To see this,

first assume that the identity representation of T is a boundary representation for

X . Then by rectangular boundary theorem [33, Theorem 1.17] the quotient map

B(H,K) → B(H,K)/K(H,K) is not completely isometric on X . Using the same

line of argument in the proof of the converse part of [33, Theorem 1.17], we see that

the quotient map B(K ⊕ H) → B(K ⊕ H)/K(K ⊕ H) is not completely isome-

try on S(X). Then by Arveson’s boundary theorem [5, Theorem 2.1.1], the identity

representation of C∗(S(X)) is a boundary representation for S(X).

Conversely, if the identity representation of C∗(S(X)) is a boundary representa-

tion for S(X), then by [33, Proposition 1.8], identity representation of T is a boundary

representation for X .

Example 4.1.2. Let R be an operator system in B(H) and let A = C∗(R) be the

C∗-algebra generated by R. In particular, R is an operator space and A = C∗(R)

is itself a TRO generated by R. We have C∗(S(R)) = M2(A). Using Hopenwasser’s

result [38] , we can conclude that if π is a boundary representation of A for R then

S(π) is a boundary representation of C∗(S(R)) for S(R).
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Corollary 4.1.1. If a rectangular operator state φ : X → B(H,K) has the unique

extension property for X , then S(φ) has the unique extension property for S(X).

Proof. The proof follows from the same line argument in Theorem 4.1.3 without the

irreducibility assumption.

Proposition 4.1.2. Suppose θ : S(X) → B(L) has the unique extension property

on the Paulsen system S(X) associated with X . Then one can decompose L as an

orthogonal direct sum K ⊕ H in such a way that θ = S(ψ) for some rectangular

operator state ψ : X → B(H,K) and ψ on X has the unique extension property.

Proof. The proof follows as in [33, Proposition 1.8].

Theorem 4.1.4. Let θ : S(X)→ B(L) be a CP-map. Then θ is a boundary represen-

tation for the operator system S(X) if and only if there exists Hilbert spacesH ,K, and

a boundary representation ψ : X → B(H,K) such that θ = S(ψ) and L = K ⊕H .

Proof. Suppose that θ : S(X) → B(L) is a boundary representation for the operator

system S(X). Then by Proposition 4.1.1, we can decompose the Hilbert space L as

K⊕H and there is a boundary representation ψ : X → B(H,K) such that θ = S(ψ).

Conversely, assume that there exists Hilbert spaces H ,K, and a boundary repre-

sentation ψ : X → B(H,K) such that θ = S(ψ). Then by Theorem 4.1.3, θ is a

boundary representation for X .
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4.2 Weak boundary representations for operator spaces

Recently, Namboodiri, Pramod, Shankar, and Vijayarajan [56] introduced a notion of

weak boundary representation, which is a weaker notion than Arveson’s [4] boundary

representation for operator systems. They studied relations of weak boundary repre-

sentation with quasi hyperrigidity of operator systems in [56]. Here we introduce the

notion of weak boundary representations for operator spaces as follows:

Definition 4.2.1. LetX ⊂ B(H,K) be an operator space and T be a TRO containing

X as a generating subspace. An irreducible triple morphism ψ : T → B(H,K) is

called a weak boundary representation forX if ψ|X has a unique rectangular operator

state extension of the form v∗ψu , namely ψ itself, where v : H → H and u : K → K

are isometries.

Suppose X is operator system, H = K, v = u, then the above notion of weak

boundary representation recovers the weak boundary representation for operator sys-

tems. We can observe that all the boundary representations are weak boundary repre-

sentations for operator spaces.

Now, we investigate the relations between weak boundary representation of an op-

erator space and the weak boundary representation of it’s Paulsen system.

Proposition 4.2.1. Suppose ω : C∗(S(X)) → B(Lω) is a weak boundary represen-

tation for the Paulsen system S(X) associated with X . Then one can decompose Lω
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as an orthogonal direct sum Kω ⊕ Hω in such a way that ω = S(θ) for some weak

boundary representation θ : T → B(Hω, Kω) for X .

Proof. Sinceω is an irreducible representation ofC∗(S(X)) onLω, we can decompose

Lω = Kω ⊕Hω such that

ω =

ω1 θ

θ∗ ω2

 ,
where θ : T → B(Hω, Kω) is an irreducible representation.

Now, wewill prove that θ is weak boundary representation forX . Letu : Hω → Hω

and v : Kω → Kω be isometries such that v∗θ(a)u = θ(a) ∀ a ∈ X . For every

a, b ∈ X ,

v∗ 0

0 u∗

ω
λ1IK a

b∗ λ2IH


v 0

0 u

 =

v∗ 0

0 u∗


λ1IK θ(a)

θ(b)∗ λ2IH


v 0

0 u



=

 λ1IK v∗θ(a)u

(v∗θ(b)u)∗ λ2IH



=

λ1IK θ(a)

θ(b)∗ λ2IH

 .

Since

v 0

0 u

 is an isometry on Kω ⊕ Hω and ω is a weak boundary representation
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for S(X) implies that for all a ∈ T ,

v∗ 0

0 u∗

ω

0 a

0 0



v 0

0 u

 = ω


0 a

0 0




v∗ 0

0 u∗


0 θ(a)

0 0


v 0

0 u

 =

0 θ(a)

0 0


0 v∗θ(a)u

0 0

 =

0 θ(a)

0 0

 .

From the last equality v∗θ(a)u = θ(a), for every a ∈ T . Thus θ a is weak boundary

representation for X .

Proposition 4.2.2. If θ : T → B(H,K) is a weak boundary representation forX then,

the corresponding representation ω of C∗(S(X)) on B(K ⊕H) is a weak boundary

representation for the Paulsen system S(X).

Proof. Arguing as in the proof of Theorem 4.1.3, we have ω is irreducible representa-

tion. Let V be an isometry on K ⊕H such that V ∗ωV|S(X)
= ω|S(X)

. As

V ∗

1 0

0 0

V =

1 0

0 0
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and

V ∗

0 0

0 1

V =

0 0

0 1



we can factorize V =

v1 0

0 v2

, where v1 and v2 are isometries on K and H respec-

tively. Also we have v∗1θv2|X = θ|X . Our assumption, θ is a weak boundary representa-

tion for X implies that v∗1θ(t)v2 = θ(t) for all t ∈ T . Thus, we have qθ(t)p = θ(t) for

all t ∈ T , where q and p be the projections onto range of v1 and range of v2 respectively.

Now, for each t ∈ T ,

qθ(t) = q(qθ(t)p) = qθ(t)p = (qθ(t)p)p = θ(t)p.

Since θ is irreducible, we have p = IH and q = IK . Therefore v1 and v2 are unitaries.

Consequently, V is a unitary. Thus V ∗ωV is a representation of C∗(S(X)). Since

V ∗ωV = ω on S(X), we must have that V ∗ωV = ω on C∗(S(X)).

4.3 Characterisation of boundary representations for

operator spaces

In this section, we give a characterisation of boundary representations for operator

spaces in terms of extreme points of certain noncommutative convex sets and a couple
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of other notions.

Arveson [4] introduced the notion of finite representations in the setting of subal-

gebras of C∗-algebras. Namboodiri, Pramod, Shankar and Vijayarajan [56] explored

the relation between finite representations and weak boundary representations in the

context of operator systems. Here, we introduce the notion of finite representation in

the setting of operator spaces.

Definition 4.3.1. Let X be an operator space generating a TRO T . Let φ : T →

B(H,K) be a representation. We say that φ is a finite representation forX if for every

isometries u : H → H and v : K → K, the condition v∗φ(x)u = φ(x), for all x ∈ X

implies that u and v are unitaries.

It is clear that, when X is operator system, H = K, v = u, the above notion of

finite representation recovers the Arveson’s notion of finite representation.

Proposition 4.3.1. Let ω : C∗(S(X)) → B(L) be a finite representation for Paulsen

system S(X) associated with X . Then one can decompose L as an orthogonal direct

sum K ⊕ H in such a way that ω = S(φ) for some finite representation φ : T →

B(H,K) for X .

Proof. We can get triple morphism φ : T → B(H,K) as in the proof of [33, Proposi-

tion 1.8]. Now, we will prove that φ is a finite representation for X .

Let u : H → H and v : K → K are isometries such that v∗φ(x)u = φ(x) ∀ x ∈ X .
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Then for all x, y ∈ X

v∗ 0

0 u∗

ω

λIK x

y∗ µIH



v 0

0 u

 =

v∗ 0

0 u∗


 λIK φ(x)

φ(y)∗ µIH


v 0

0 u



=

 λIK v∗φ(x)u

u∗φ(y)∗v µIH



= S(φ)


λIK x

y∗ µIH


 .

Thus,

v∗ 0

0 u∗

ω
v 0

0 u


|S(X)

= ω|S(X)
. Since ω is a finite representation for S(X),

we have

v 0

0 u

 is a unitary and consequently u and v are unitaries. Hence φ is a finite

representation.

Proposition 4.3.2. If φ : T → B(H,K) is a finite representation for X then, ω =ω1 φ

φ∗ ω2

 : C∗(S(X))→ B(K ⊕H) is finite representation for S(X).

Proof. Arguing as the in the proof of Theorem 4.1.3, we have ω is a representation.

Let V : K⊕H → K⊕H be an isometry such that V ∗ω(a)V = ω(a) for all a ∈ S(X).
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Since

V ∗

1 0

0 0

V =

1 0

0 0

 and V ∗

0 0

0 1

V =

0 0

0 1

 ,

we can decompose V as

v 0

0 u

, where v : K → K and u : H → H are isometries.

For a ∈ S(X), we have

V ∗ω(a)V =

v∗ 0

0 u∗


ω1 φ

φ∗ ω2

 (a)

v 0

0 u

 =

ω1 φ

φ∗ ω2

 (a) = ω(a).

Therefore v∗φ(x)u = φ(x) for every x ∈ X . Since φ is a finite representation

for X implies that v and u are unitaries. Thus V is a unitary. Hence ω is a finite

representation for S(X).

The following theorem shows a relation between finite representations with weak

boundary representations.

Theorem 4.3.1. Let X be an operator space generating a TRO T. Let φ be an irre-

ducible representation of T . Then φ is a finite representation for X if and only if φ is

a weak boundary representation for X

Proof. Suppose φ : T → B(H,K) is an irreducible finite representation for X then
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by Proposition 4.3.2, we have ω : C∗(S(X)) → B(K ⊕ H) is an irreducible finite

representation for Paulsen system S(X). Using [56, Proposition 3.5], we get ω is a

weak boundary representation for S(X) of C∗(S(X)). Therefore, Proposition 4.2.1

implies that φ is a weak boundary representation for X .

Conversely, suppose φ : T → B(H,K) is a weak boundary representation forX of

T , then by Proposition 4.2.2, we have ω : C∗(S(X))→ B(K⊕H) is a weak boundary

representation for S(X). Using [56, Proposition 3.5], we get ω is an irreducible finite

representation for S(X). Therefore, Proposition 4.3.1 implies that φ is an irreducible

finite representation for X .

Arveson [4] introduced the notion of separating subalgbras to characterize bound-

ary representations in the context of subalgebras ofC∗-algebas. Pramod, Shankar and

Vijayarajan [62] studied the separating notion in the setting of operator systems and

explored the relation with boundary representations. Here, we introduce the notion of

separating operator space as follows:

Definition 4.3.2. Let X be an operator space generating a TRO T . Let φ : T →

B(H,K) be an irreducible representation. We say that X separates φ if for every

irreducible representation ψ : T → B(H̃, K̃) and isometries u : H → H̃ and v :

K → K̃ , v∗ψ(x)u = φ(x), for all x ∈ X implies that φ andψ are unitarily equivalent.

Also, the operator spaceX is called a separating operator space if it separates every
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irreducible representations of T .

It is clear that, when X is an operator system, H = K, v = u, the notion of

separating operator space recovers the notion of separating operator system.

Proposition 4.3.3. Suppose ω : C∗(S(X)) → B(L) is an irreducible representation

and S(X) separates ω. Then one can decomposeL as an orthogonal direct sumK⊕H

in such a way that ω = S(φ) for some irreducible representation φ : T → B(H,K)

and X separates φ.

Proof. Existence and irreduciblity of a triple morphism φ : T → B(H,K) follows

from the proof of [33, Proposition 1.8]. Now we will prove that X separates φ.

Let θ : T → B(Hθ, Kθ) be an irreducible representation of T such that v∗1θ(x)v2 =

φ(x) for all x ∈ X , where v1 : K → Kθ and v2 : H → Hθ are isometries. Let

ρ : C∗(S(X)) → B(Kθ ⊕ Hθ) be the irreducible representation of C∗(S(X)) cor-

responding to θ. Then for the isometry V =

v1 0

0 v2

 we have V ∗ρV|S(X)
= ω|S(X)

.

Since S(X) separates ω, there exists a unitary U : K ⊕ H → Kθ ⊕ Hθ such that

U∗ρ(a)U = ω(a) for all a ∈ C∗(S(X)). Using

U∗

1 0

0 0

U =

1 0

0 0

 and U∗

0 0

0 1

U =

0 0

0 1

 .
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we can factories U as

u1 0

0 u2

. Thus u∗1θ(t)u2 = φ(t) for every t ∈ T . Hence X

separates φ.

Proposition 4.3.4. If φ : T → B(H,K) is an irreducible representation such that X

separates φ, then the corresponding representation ω : C∗(S(X)) → B(K ⊕ H) is

an irreducible representation such that S(X) separates ω.

Proof. Let φ : T → B(H,K) be an irreducible representation. Then the correspond-

ing representation ω of the C∗-algebra C∗(S(X)) on B(K ⊕H) can be written as

ω =

ω1 φ

φ∗ ω2

 .

Using the same line of argument as in the proof of Theorem 4.1.3, we have ω is an

irreducible representation. We will prove that S(X) separates ω.

Let ρ : C∗(S(X))→ B(L) be an irreducible representation such that V ∗ρV|S(X)
=

ω|S(X)
for some isometry V : K ⊕H → L. Since ρ is an irreducible representation of

C∗(S(X)), we can decompose L = Kρ ⊕Hρ such that

ρ =

ρ1 θ

θ∗ ρ2

 ,
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where θ : T → B(Hρ, Kρ) is an irreducible representation of T . Also, we have

V =

v1 0

0 v2

 ,

where v1 : K → Kρ and v2 : H → Hρ are isometries. Substituting the expressions of

ρ and V in the equation V ∗ρ(·)V = ω(·), we obtain v∗1θ(x)v2 = φ(x) for all x ∈ X .

Our assumption that X separates φ implies that there exists unitaries u1 and u2 such

that u∗1θ(t)u2 = φ(t) for all t ∈ T . Thenwe have u∗2θ∗(t)u1 = φ∗(t) for all t ∈ T . Now,

for each x, y ∈ T , ω1(xy∗) = φ(x)φ(y)∗ = u∗1θ(x)u2u
∗
2θ
∗(t)u1 = u∗1θ(x)θ(y)∗u1 =

u∗1ρ1(xy∗)u1 and similarly ω2(xy∗) = u∗2ρ2(xy∗)u2. Therefore ωi and ρi are unitarily

equivalent via the unitary ui, i = 1, 2. Thus,

ω =

ω1 φ

φ∗ ω2

 =

u∗1ρ1u1 u∗1θu2

u∗2θ
∗u1 u∗2ρ2u2

 =

u∗1 0

0 u∗2


ρ1 θ

θ∗ ρ2


u1 0

0 u2

 .

Hence ρ is uniatrily equivalent to ω by the unitary U =

u1 0

0 u2

 .
Fuller, Hartz and Lupini [33] introduced the notion of rectangular extreme points.

Suppose that X is an operator space, and φ : X → B(H,K) is a completely con-

tractive linear map. A rectangular operator convex combination is an expression

φ = α∗1φ1β1 + α∗2φ2β2 + · · · + α∗nφnβn, where βi : H → Hi and αi : K → Ki
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are linear maps, and φi : X → B(Hi, Ki) are completely contractive linear maps

for i = 1, 2, · · · , n such that α∗1α1 + · · · + α∗nαn = 1, and β∗1β1 + · · · + β∗nβn = 1.

Such a rectangular convex combination is proper if αi, βi are surjective, and trivial if

α∗iαi = λiI , β∗i βi = λiI , and α∗iφiβi = λiφ for some λi ∈ [0, 1]. A completely con-

tractive linear map φ : X → B(H,K) is a rectanagular operator extreme point if any

proper rectangular convex combination is trivial. The set of all rectangular operator

states from X to B(H,K) is denoted by CB(X,B(H,K)).

We show that a boundary representations for an operator space is actually a rectan-

gular operator extreme points of the rectangular operator convex setsCB(X,B(H,K)).

For that, we recall the connections between rectangular operator extreme points onX

and pure CP-maps on S(X).

Proposition 4.3.5. [33, Proposition 1.12] Suppose that φ : X → B(H,K) is a

completely contarctive map and S(φ) : S(X) → B(K ⊕ H) is the associated unital

completely positive map defined on the Paulsen system. The following assertions are

equivalent:

1. S(φ) is a pure completely positive map

2. S(φ) is an operator extreme point

3. φ is a rectangular operator extreme point.

Definition 4.3.3. Let X be an operator space generating a TRO T . Let φ : T →

B(H,K) be a representation. We say that φ is a finite representation forX if for every
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isometries u : H → H and v : K → K, the condition v∗φ(x)u = φ(x), for all x ∈ X

implies that u and v are unitaries.

The following theorem characterize the boundary representations of TRO’s for op-

erator spaces.

Theorem 4.3.2. Let X be an operator space generating a TRO T . Let φ : T →

B(H,K) be an irreducible representation of T . Then φ is a boundary representation

for X if and only if the following conditions are satisfied:

(i) φ|X is a rectangular operator extreme point.

(ii) φ is a finite representation for X .

(iii) X separates φ.

Proof. Assume that φ : T → B(H,K) be a boundary representation for X . Let

ω : C∗(S(X))→ B(K⊕H) be a representation of S(X) such that ω|S(X)
= S(φ). By

Theorem 4.1.3, ω is a boundary representation for S(X). Using [4, Theorem 2.4.5],

we have S(φ) is a pure UCP map, ω is a finite representation for S(X) and S(X)

separates ω. Thus, Proposition 4.3.5 implies that φ|X is a rectangular operator extreme

point, Proposition 4.3.1 implies that φ is a finite representation for X and Proposition

4.3.3 implies that X separates φ.

Conversely, assume that all the three conditions are satisfied. Using, Proposition

4.3.5, Proposition 4.3.2 and Proposition 4.3.4 we have, S(φ) is a pure UCP map, ω
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is a finite representation for S(X) and S(X) separates ω. Thus [4, Theorem 2.4.5]

implies that ω is a boundary representation for S(X). By [33, Proposition 1.8], φ is a

boundary representation for X .

Remark 4.3.1. The statement (i) of Theorem 4.3.2 says that a boundary representation

for an operator space is an extreme point(rectangular operator extreme point) of the

convex set CB(X,B(H,K)). Thus the boundary representations are actually ’on the

boundary’ of the set CB(X,B(H,K)).

4.4 Rectangular hyperrigidity

In this section, we introduce the notion of rectangular hyperrigidity in the context of

operator spaces in TRO’s. Rectangular hyperrigidity is the generalization of Arveson’s

[10] notion of hyperrigidity in the context of operator systems in C∗-algebras. We

define rectangular hyperrigidity as follows:

Definition 4.4.1. A finite or countably infinite setG of generators of a TRO T is said to

be rectangular hyperrigid if for every faithful representation from T to B(H,K) and

every sequence of completely contractive (CC) maps φn : B(H,K)→ B(H,K) with

‖φn‖cb = 1, n = 1, 2 · · · ,

lim
n→∞

‖φn(g)− g‖ = 0, ∀ g ∈ G =⇒ lim
n→∞

‖φn(t)− t‖ = 0, ∀ t ∈ T. (4.1)
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As in Arveson’s [10] notion of hyperrigity, we have lightened the notion of rect-

angular hyperrigidity by identifying T with image π(T ), where π : T → B(H,K)

faithful nondegenerate representation. Significantly, rectangular hyperrigid set of op-

erators implies not only that equation 4.1 should hold for sequences of CC maps φn

with ‖φn‖cb = 1, but also that the property should persist for every other faithful rep-

resentation of T .

Proposition 4.4.1. Let T be a TRO andG a generating subset of T . ThenG is rectan-

gular hyperrigid if and only if linear span of G is rectangular hyperrigid.

Proof. The proof follows directly from the definition of rectangular hyperrigidity.

Proposition 4.4.2. Let A be a C∗-algebra and S be an operator system in A such that

A = C∗(S). If S is rectangular hyperrigid, then S is hyperrigid.

Proof. The proof follows from the fact that (see [58, Proposition 3.6]), every UCPmap

is completely bounded with CB norm 1.

In definition 4.4.1, suppose T is a C∗-algebra, H = K then by [58, Proposition

2.11] and [58, Proposition 3.6] the both notions rectangular hyperrigidity and hy-

perrigidity coincides. Thus, the rectangular hyperrigidity is a generalized notion of

hyperrigidity adapted in the context of TROs.

Now, we prove a characterization of rectangular hyperrigid operator spaces which

leads to study the operator space analogue of Saskin’s theorem ( [70], [12, Theorem
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4]) relating retangular hyperrigity and boundary representations for operator spaces.

Theorem 4.4.1. For every separable operator space X that generates a TRO T , the

following are equivalent:

(i) X is rectangular hyperrigid.

(ii) For every nondegenerate representation π : T → B(H1, K1) on seperable

Hilbert spaces and every sequence φn : T → B(H1, K1) of CC maps with

‖φn‖cb = 1, n = 1, 2, ...

lim
n→∞

‖φn(x)−π(x)‖ = 0, ∀ x ∈ X =⇒ lim
n→∞

‖φn(t)−π(t)‖ = 0, ∀ t ∈ T.

(iii) For every nondegenerate representation π : T → B(H1, K1) on seperable

Hilbert spaces, π|X has the unique extension property.

(iv) For every TRO T1, every triple morphism of TRO’s θ : T → T1 with ‖θ‖cb = 1

and every completely contractive map φ : T1 → T1 with ‖φ‖cb = 1,

φ(x) = x, ∀ x ∈ θ(X) =⇒ φ(t) = t, ∀ t ∈ θ(T ).

The spirit and the line of argument in the proof of the above the theorem are the

same as those by Arveson [10, Theorem 2.1], where we can replace operator systems,

UCPmaps and representations ofC∗-algebras by operator spaces, CCmaps and triple
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morphism of TROs. Further, we need to use Haagerup-Paulsen-Wittstock [58, Theorem

8.2] extension theorem in place of Arveson extension theorem [4, Theorem 1.2.3].

Example 4.4.1. LetH be an infinite dimensional Hilbert space and V be the unilateral

right shift operator on H . Then the operator space S = span{I, V, V ∗} is not rectan-

gular hyperrigid. To see this, take φn : B(H) → B(H) as φn = V ∗IS(·)V for each

n = 1, 2 · · · . Then φn is a completely contractive linear map with ‖φn‖cb = 1 and φn

is identity on S. Hence lim
n→∞

‖φn(s)− s‖ = 0 ∀s ∈ S but lim
n→∞

‖φn(V V ∗)− V V ∗‖ =

‖I − V V ∗‖ = 1. Note that the arguments in this example carries over to any isometry

V which is not a unitary.

We deduce the following necessary conditions for rectangular hyperrigidity:

Corollary 4.4.1. Let X be a separable operator space generating a TRO T . If X

is rectangular hyperrigid then every irreducible representation of T is a boundary

representation for X .

Proof. The assertion is an immediate consequence of condition (ii) of Theorem 4.4.1.

Problem 4.4.1. If every irreducible representation of TRO T is a boundary represen-

tation for a separable operator space X ⊆ T , then X is rectangular hyperrigid.

Proposition 4.4.3. Let X be an operator space generating TRO T . Let πi : T →

B(Hi, Ki) be a non-degenerate representation such that πi|X has the unique extension
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property for i = 1, 2, ..., n. Then the direct sum of rectangular operator states

⊕ni=1πi|X : X → B(⊕ni=1Hi,⊕ni=1Ki)

has the unique extension property.

Proof. Assume that πi|X : T → B(Hi, Ki) has unique extension property for X ,

i = 1, 2, · · ·n. By Corollary 4.1.1, we have S(πi|X ) : S(X)→ B(Ki⊕Hi) has unique

extension property for S(X). Using [10, Proposition 4.4], ⊕ni=1S(πi|X ) has unique

extension property for S(X). Note that ⊕ni=1S(πi|X ) = S(⊕ni=1πi|X ). Therefore, by

[33, Proposition 1.8] we have ⊕ni=1πi|X has unique extension property for X .

Here, we settle the Problem 4.4.1 when TRO is finite dimensional. Thus, we have

a finite dimensional version of the classical Saskin’s theorem.

Theorem 4.4.2. LetX be an operator space whose generating TRO T is finite dimen-

sional, such that every irreducible representation of T is a boundary representation

for X . Then X is rectangular hyperrigid.

Proof. Using item (iii) of Theorem 4.4.1, it is enough to prove that for every non-

degenerate representation π : T → B(H,K), the rectangular operator state π|X has

the unique extension property. Since T finite dimensional, [14, Theorem 3.1.7] im-
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plies that every nondegenerate representation of a finite dimensional TRO is the finite

direct sum of irreducible repersentations. By our assumption every irreducible rep-

resentation restricted to X has unique extension property. By Proposition 4.4.3 finite

direct sum of irreducible representation restricted toX has unique extension property.

Therefore every nondegenerate representation restricted toX has the unique extension

property.

Now, we explore relations between rectangular hyperrigity of an operator space

and hyperrigidity of the corresponding Paulsen system.

Theorem 4.4.3. Let X be a separable operator space generating a TRO T . Paulsen

system S(X) is hyperrigid in C∗-algebra C∗(S(X)) if and only if X is rectangular

hyperrigid in TRO T .

Proof. Assume that Paulsen system S(X) is hyperrigid in C∗-algebra.

Let φn : B(H,K)→ B(H,K) be CC maps with ‖φn‖cb = 1, n = 1, 2 · · · , such that

lim
n→∞

‖φn(x)− x‖ = 0 ,∀ x ∈ X.

Then the corresponding maps S(φn) : B(K ⊕ H) → B(K ⊕ H), n = 1, 2 · · · are
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UCP maps. For all x, y ∈ X and λ, µ ∈ C, we have

∥∥∥∥∥∥∥S(φn)(

λ x

y∗ µ

)−

λ x

y∗ µ


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
 λ φn(x)

φn(y)∗ µ

−
λ x

y∗ µ


∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥
 0 φn(x)− x

φn(y)∗ − y∗ 0


∥∥∥∥∥∥∥

≤ ‖φn(x)− x‖+ ‖φn(y)∗ − y∗‖.

Since S(X) is hyperrigid in C∗(S(X)), we conclude that for every t ∈ T

lim
n→∞

∥∥∥∥∥∥∥S(φn)(

0 t

0 0

)−

0 t

0 0


∥∥∥∥∥∥∥ = 0.

Thus,

lim
n→∞

‖φn(t)− t‖ = 0 ∀ t ∈ T.

Conversely, supposeX is rectangular hyperrigid. By item (iii) of Theorem 4.4.1 ev-

ery nondegenerate representation ofT restricted toX has the unique extension propery.

From [13, Proposition 3.1.2 and Equation 3.1], we have a one to one correspondence

between the representations of TRO T and its linking algebra. Using Corollary 4.1.1

we get, every nondegenerate representation of the C∗-algebra C∗(S(X)) restricted to

S(X) has the unique extension property. Thus, by [10, Theorem 2.1], S(X) is hyper-

rigid.
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The following remark gives some partial answers to the Problem 4.4.1 with extra

assumptions.

Remark 4.4.1. Suppose that T is a TRO in B(H,K) and every irreducible represen-

tation ψ : T → B(H,K) is a boundary representation for X . Then by Theorem

4.1.3, each S(ψ) is a boundary representation of C∗(S(X)) for S(X). Suppose ei-

ther C∗(S(X)) has countable spectrum [10, Theorem 5.1] or C∗(S(X)) is Type I

C∗-algebra with C∗(S(X))′′ is the codomain for UCP maps on C∗(S(X)) [46, Corol-

lary 3.3]. Then S(X) is hyperrigid. Therefore by Theorem 4.4.3, X is rectangular

hyperrigid in T .
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Chapter 5
Boundary representations for unbounded

operators

In this chapter, we initiate a study of non-commutative Choquet boundary for certain

spaces of unbounded operators. Like C∗-algebras in the case of bounded operators on

Hilbert spaces, the ∗-algebras associated with unbounded operators are called locally

C∗-algebras. The notion of locally C∗-algebras was introduced by Atushi Inoue [40].

In the literature, locally C∗-algebra have been studied by several authors under dif-

ferent names like pro-C∗-algebras, O∗-algebras, LCM∗-algebras, and multinormed

C∗-algebras.

Like the theory of non-commutative Choquet boundary for operator systems in C∗-

algebras, we develop the theory of non-commutative Choquet boundary for local oper-
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ator systems in locally C∗-algebras. We define a suitable notion of boundary represen-

tations for local operator systems in locally C∗-algebras and called as local boundary

representations. We prove that local boundary representations provide an intrinsic

invariant for a nice class of local operator systems. An appropriate analog of purity

of local CP-maps on local operator systems is used to characterize local boundary

representations for local operator systems in Frechet locally C∗-algebras.

5.1 Locally C*-algebras

Let A be a unital ∗-algebra with unit 1A. A seminorm p on A is said to be sub-

multiplicative, if p(1A) = 1 and p(ab) ≤ p(a)p(b) for every a, b ∈ A. A sub-

multiplicative seminorm p satisfies the condition p(a∗a) = p(a)2 for every a ∈ A,

is called a C∗-seminorm. Let (Λ,≤) be a directed poset. A family of seminorms

P = {pα : α ∈ Λ} on A is called an upward filtered family, if α ≤ β in Λ, then

pα(a) ≤ pβ(a) for every a ∈ A.

Definition 5.1.1. A locally C∗-algebra A is a ∗-algebra together with an upward fil-

tered family ofC∗-seminormsP onA such thatA is complete with respect to the locally

convex topology generated by the family P .

Example 5.1.1. LetA = C(Rn) be the set of all complex valued continuous functions

on Rn. Then A is a ∗-algebra with respect to point wise multiplication and involution

f → f . For each n ∈ N, letKn = {h ∈ Rn : ‖h‖ ≤ n} be the closed disk centered at
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origin and radius n in Rn. Define pn : A → R by

pn(f) = sup
h∈Kn

‖f(h)‖ ,∀ f ∈ A.

Then P = {pn : n ∈ N} is an upward filtered family of C∗-seminorms. It is easy

to see that A is complete with respect to the locally convex topology generated by the

family P . Let {fλ : λ ∈ Λ} be a net which is Cauchy in A. Then the restriction of

the net {fλ : λ ∈ Λ} to Kn is Cauchy with respect to the norm pn on C(Kn). As

Kn is compact, {fλ|Kn : λ ∈ Λ} converges to some function fn ∈ C(Kn). Since

Kn ⊆ Kn+1, fn(h) = fn+1(h) ∀h ∈ Kn, ∀n ∈ N. Thus, we can define a unique

continuous function f : Rn → C such that f |Kn = fn and the net {fλ} converges to

f . Hence A is a locally C∗-algebra with respect to P .

Remark 5.1.1. The Example 5.1.1 gives an example of a commutative locally C*-

algebra. A concrete non-commutative example of a locally C∗-algebra is given later,

in Example 5.1.4.

Throughout this chapter,A always denotes a locally C∗-algebra with a prescribed

family of C∗seminorms {pα : α ∈ Λ}.

Let Iα = {a ∈ A : pα(a) = 0} and Aα be the quotient C∗-algebra A/Iα with the

C∗-norm induced by pα. Denote the cannonical quotient ∗-homomorphism from A to
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Aα by πα. Note that, for α ≤ β in Λ, there is a cannonical ∗-homomorphism

παβ : Aβ → Aα ,where παβ(a+ Iβ) = a+ Iα

and that satisfies παβπβ = πα. Then we can identify A as the the inverse limit of the

projective system {Aα, πα,β : α, β ∈ Λ} of C∗-algebras [61].

5.1.1 The space C∗E(D)

Let H be a complex Hilbert space and D be a dense subspace of H .

Definition 5.1.2. A quantized domain in H is a triple {H, E ,D}, where E = {Hl :

l ∈ Ω} is an upward filtered family of closed subspaces ofH such that the union space

D =
⋃
l∈Ω

Hl is dense in H .

In short, we say E is a quantized domain inH with its union spaceD. A quantized

doamin E is called a quantized Frechet domain if E is a countable family.

Example 5.1.2. Let H be a separable infinite dimensional Hilbert space with an or-

thonormal basis {e1, e2 · · · }. Let Hn = span{e1, e2, · · · en} and D =
∞⋃
n=1

Hn. Then

E = {Hn : n ∈ N} is a quantized domain in H with its union space D.

Example 5.1.3. Consider the complex Hilbert space H = L2(R). Let D be the dense

subspace of H ,

D = {f ∈ L2(R) : supp(f) is compact }.
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Define Hn = {f ∈ L2(R) : supp(f) ⊆ [−n, n]}. Then each Hn is a closed linear

subspace ofH and D =
∞⋃
n=1

Hn. Thus E = {Hn : n ∈ N} is a quantized domain inH

with its union space D.

Corresponding to a quantized domain E = {Hl : l ∈ Ω} we can associate an

upward filtered family P = {Pl : l ∈ Ω} of projections in B(H) where Pl is the

orthogonal projection of H onto the closed subspace Hl.

Let us denote L(D) by the set of all linear operators on the linear subspaceD. The

set of all noncommutative continuous functions on a quantized domain E is defined as

CD(E) = {T ∈ L(D) : TPl = PlTPl ∈ B(H), for all l ∈ Ω}.

Note that CD(E) is an algebra and if T ∈ L(D), then

T ∈ CD(E) if and only if T (Hl) ⊆ Hl and T |Hl ∈ B(Hl) for all l ∈ Ω.

The ∗-algebra of all noncommutative continuous functions on a quantized domain E is

defined as

C∗E(D) = {T ∈ CD(E) : PlT ⊆ TPl, for all l ∈ Ω}.

Note that C∗E(D) is a unital subalgebra of CD(E). The details of the adjoint of operators

in C∗E(D) is given in [26, Proposition 3.1]. For T ∈ L(D), it is easy to see that T ∈
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C∗E(D) if and only if for all l ∈ Ω

T (Hl) ⊆ Hl, T |Hl ∈ B(Hl) and T (H⊥l ∩ D) ⊆ H⊥l ∩ D.

Example 5.1.4. Let C∗E(D) as above. Define ql : C∗E(D)→ R by

ql(T ) = ‖T |Hl‖ for all T ∈ C∗E(D).

Then Q = {ql : l ∈ Ω} is an upward filtered family of C∗-seminorms on C∗E(D). Also,

C∗E(D) is complete with respect to the locally convex topology generated by the family

Q. Hence C∗E(D) is a locally C∗-algebra.

5.1.2 Local CP-maps and Local CC-maps

Anar Dosiev [26] introduced the notions of local hermitian and local positivity in lo-

cally C∗-algebras.

Definition 5.1.3. An element a ∈ A is called local hermitian if a = a∗ + x for some

x ∈ A such that pα(x) = 0 for some α ∈ Λ and an element a ∈ A is called local

positive if a = b∗b+ x for some b, x ∈ A such that pα(x) = 0 for some α ∈ Λ. In this

case, we call a is α-hermition (and α-positive, respectively).

We use a ≥α 0 to denote a is α-positive. A direct computation shows that a ≥α 0

in A if and only if the πα(a) ≥ 0 in the C∗-algebra Aα.
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Let A be a locally C∗-algebra. For a linear subspace S of A denote S∗ = {x∗ :

x ∈ S}. We say S is self adjoint if S = S∗.

Definition 5.1.4. A local operator system in A is a unital self adjoint linear subspace

of A.

Every operator system in a C∗-algebra is a local operator system.

Example 5.1.5. We give some examples for local operator systems:

(i) Consider the locally C∗-algebra C∗E(D) and let T ∈ C∗E(D). Then

S = {λ1I + λ2T + λ3T
∗ : λ1, λ2, λ3 ∈ C}

is a local operator system and it is called the local operator system generated by

the element T .

(ii) Consider the locally C∗-algebra C(R) of all complex valued continuous func-

tions on the real line R. Then S = {f ∈ C(R) : f is real valued } is a local

operator system in C(R) with unit constant function 1.

(iii) Let H be a separable infinite dimensional Hilbert space with O.N.B. {en : n ∈

N} and consider the quantized domain E as in Example 5.1.2. An element T of

C∗E(D) can be represented as infinite matrix T = [tij] with respect to the basis
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{en : n ∈ N}. Then the set

S = span{Eij : |i− j| ≤ 1}

is a local operator system in C∗E(D). Note that the elements of S are tridiagonal

matrices.

An element a in a local operator system S is local positive if a is local positive in

A. Consider another locally C∗-algebra B with the associated family of seminorms

{ql : l ∈ Ω}. Let S1 and S2 be local operator systems in A and B respectively.

Definition 5.1.5. Let φ : S1 → S2 be a linear map. Then φ is said to be

1. local positive if for each l ∈ Ω there corresponds α ∈ Λ such that φ(a) ≥l 0

whenever a ≥α 0 in S1.

2. local bounded if for each l ∈ Ω there exists an α ∈ Λ and Clα > 0 such that

ql(φ(a)) ≤ Clαpα(a) for all a ∈ S1.

3. local contractive if it’s local bounded and Clα can be chosen to be 1 in the defi-

nition of local bounded.

It’s important to note that a local positive map is a positive map.

Proposition 5.1.1. [41] Let A and B be locally C∗-algebras and let φ : A → B be a

linear map. If φ is local positive, then φ is positive.
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For n ∈ N, let Mn(A) denotes the set of all n × n matrices over A. Naturally

Mn(A) is a locally C∗-algebra with the defining family of seminorms {pnα : α ∈ Λ},

where pnα([aij]) = ‖π(n)
α ([aij])‖α for [aij] in Mn(A). We use φ(n) to denote the n-

amplification of the map φ, that is,

φ(n) : Mn(S1)→Mn(S2) defined by φ(n)([aij]) = [φ(aij)]

for [aij] inMn(S1).

Definition 5.1.6. (Local CP-map). Let φ : S1 → S2 be a linear map. Then φ is said

to be local completely positive if for each l ∈ Ω, there exists α ∈ Λ such that

φ(n)([aij]) ≥l 0 inMn(S2) whenever [aij] ≥α 0 inMn(S1).

Definition 5.1.7. Let φ : S1 → S2 be a linear map. Then φ is said to be

1. local completely bounded(local CB-map) if for each l ∈ Ω, there exists α ∈ Λ

and Clα > 0 such that

qnl ([φ(aij)]) ≤ Clαp
n
l ([aij]), for every n ∈ N.

2. local completely contractive(local CC-map) if it’s local CB-map and Clα can be

chosen to be 1 in the definition of local CB-map.
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We use CPCCloc(S, C∗E(D)) to denotes the class of all local completely positive and

local completely contractive maps(local CPCC-map) from a local operator system S

to C∗E(D).

Example 5.1.6. Let a ∈ A be a fixed element of the locally C∗-algebra A. Then the

map φa : A → A defined by φa(x) = a∗xa is a local CP-map. To see this, let α ∈ Λ.

Consider x ≥α 0 in A. Then x = y∗y + b, where pα(b) = 0. Note that

φa(x) = φa(y
∗y + b) = φa(y

∗y) + φa(b)

= a∗(y∗y)a+ φa(b) = (ya)∗ya+ φa(b)

where pα(φa(b)) = 0 as pα(φa(b)) = pα(a∗ba) ≤ pα(a∗)pα(b)pα(a) = 0. That is

φa(x) ≥α 0. Hence φa is local positive. Now, let A be the diagonal matrix with all of

its diagonal entries are a and X = [xij] ≥α 0 inMn(A). Then X = Y ∗Y + B with

p
(n)
α (B) = 0.

φ(n)
a ([xij]) = [φa(xij)]

= [a∗xija]

=



a∗x11a · · · a∗x1na

a∗x21a · · · a∗x2na

... . . . ...

a∗xn1a · · · a∗xnna
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=



a∗ 0 · · · 0

0 a∗ · · · 0

... ... . . . ...

0 0 · · · a∗





x11 · · · x1n

x21 · · · x2n

... . . . ...

xn1 · · · xnn





a 0 · · · 0

0 a · · · 0

... ... . . . ...

0 0 · · · a


= A∗XA

= A∗(Y ∗Y +B)A

= (Y A)∗Y A+ A∗BA

where pnα(A∗BA) = 0 as pnα(A∗BA) ≤ pnα(A∗)pnα(B)pnα(A) = 0. Since α is indepen-

dent of n, φa is a local CP-map.

Example 5.1.7. [11] LetH be a separable infinite dimensional Hilbert space with an

orthonormal basis {en : n ∈ N}. For n ∈ N, let Hn = span{e1, e2, · · · , en}. Then

Hn is a closed subspace of H and D =
∞⋃
n=1

Hn is dense in H . Consider the operators

on H as infinite matrices with respect to the basis {en : n ∈ N}. Then the elements of

C∗E(D) are ’block diagonal’ operators which are possibly unbounded. Let A ∈ B(H)

such that

0 ≤ A ≤ I.

Write A = [aij]. Define φA : B(H)→ B(H) by

φA(T ) = [aijtij] for T = [tij] ∈ B(H).
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This φA is called the Schur product map. It is well known that the map φA can be

written as

φA(T ) = V ∗(A⊗ T )V

where V is the isometry V : H → H ⊗ H given by V (en) = en ⊗ en, ∀n ∈ N with

adjoint V ∗(h1 ⊗ h2) =
∞∑
i=1

〈ei ⊗ ei, h1 ⊗ h2〉ei for all h1, h2 ∈ H . Note that φA is the

composition of the two CPCC-maps, namely T → A⊗T and T → V ∗TV . Thus φA is

also a CPCC-map. then extend the definition of φA to the whole of C∗E(D) as follows.

Define ψA : C∗E(D)→ C∗E(D) by

ψA(T )|Hn = φA(PnT |Hn) for all T ∈ C∗E(D), n ∈ N

wherePn is the projection corresponding toHn. AsψA is the composition of the CPCC-

map φA and the local CPCC-map T → PnT |Hn , it’s also a local CPCC-map.

A local CPCC-map satisfies Kadison-Schwarz inequality.

Lemma 5.1.1. [26] Let φ : A → C∗E(D) be a local CC-map. If φ is a local CP-

map then φ(a)∗φ(a) ≤ φ(a∗a) on D for all a ∈ A. If φ(a)∗φ(a) = φ(a∗a) then

φ(ba) = φ(b)φ(a) for all b ∈ A.
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5.1.3 Representations

By a representation of a locally C∗-algebra we mean a unital local contractive ∗-

homomorphism π : A → C∗E(D) for some quantized domain E .

A locally convex version of Gelfand-Naimark-Segal theoremwas proved by A.Dosiev

[26].

Theorem 5.1.1. [26, Theorem 7.2] For a locally C∗-algebra A, there exist a Hilbert

space H , a quantized domain {H; E ;D} and a local isometrical ∗-homomorphism

π : A → C∗E(D).

Remark 5.1.2. The Theorem 5.1.1 tell us that the elements of a locallyC∗-algebra can

be treated as an unbounded operator on a suitable quantized domain.

A locally convex version and an unbounded version of the celebrated Stinespring’s

dilation theorem is also appeared in the work of A. Dosiev [26].

Theorem 5.1.2. [26, Theorem 5.1] Let φ ∈ CPCCloc(A, C∗E(D)). Then there ex-

ists a Hilbert space Hφ and a quantized domain Eφ = {Hφ
α : α ∈ Λ} in Hφ with

its union space Dφ, a contraction Vφ : H → Hφ, and a unital local contractive ∗-

homomorphism πφ : A → C∗Eφ(Dφ) such that

φ(a) ⊆ V ∗φ πφ(a)Vφ and Vφ(Hα) ⊆ Hφ
α

92



5.1. LOCALLY C*-ALGEBRAS

for every a ∈ A and l ∈ Λ. Moreover, if φ(1A) = 1D, then Vφ is an isometry.

Remark 5.1.3. If π : A → C∗E(D) be a local contractive ∗- homomorphism, then π

is a local CP-map. Also, any map of the form φ(a) ⊆ V ∗π(a)V is a local CP-map

on A, where V is an isometry on H such that V (Hl) ⊆ Hl for every l ∈ Λ. Hence

the Theorem 5.1.2 characterizes local CP-maps from locally C∗-algebras into C∗E(D)

in terms of local contractive ∗-homomorphisms.

Any triple (πφ, Vφ, {Hφ; Eφ;Dφ}) that satisfies the conditions of the Theorem 5.1.2

is called a Stinespring representation for φ.

The minimality of the Stinespring representation was introduced and studied re-

cently by Bhat and et al in [11].

Definition 5.1.8. [11] A Stinespring representation (πφ, Vφ, {Hφ; Eφ;Dφ}) of φ is

said to be minimal, if Hφ
l = [πφVφHl], for every l ∈ Λ.

Given any Stinespring represesentation of a map φ ∈ CPCCloc(A, C∗E(D)), one

can reduce it to minimal Stinespring representation.

An important property of minimal Stinespring representation for a map

φ ∈ CPCCloc(A, C∗E(D)) is the following;

Lemma 5.1.2. [11] Let (πφ, Vφ, {Hφ; Eφ;Dφ}) be a minimal Stinespring representa-
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tion for a map φ ∈ CPCCloc(A, C∗E(D)). Then

[πφ(A)Vφ(H⊥α ∩ D)] = (Hφ
α)⊥, for every α ∈ Λ

Any two minimal Stinespring representations are unitarily equivalent in the follow-

ing sense.

Theorem 5.1.3. [11] Let ({H1; E1;D1}, π1, V1) and ({H2; E2;D2}, π2, V2) be two

minimal Stinespring representations of the map φ ∈ CPCCloc(A, C∗E(D)). Then there

exists a unitary U : H1 → H2 such that

UV1 = V2 and Uπ1(a) = π2(a)U for all a ∈ A.

5.2 Local positive linear maps

In this section, we prove an analog of the Arveson extension theorem for local CC-

maps on linear subspaces of C∗E(D) for a quantized Frechet domain E . This result is

crucial in establishing an important theorem in this chapter.

Let S be a local operator system in the locally C∗-algebra A. A linear functional

f : S → C is an α-contractive linear functional if |f(a)| ≤ pα(a) for all a ∈ S.

Note that, by Hahn-Banach extension theorem, there is an α-contractive linear map

f̃ : A → C such that f̃ |S = f and |f̃(a)| ≤ pα(a) for all a ∈ A.
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For a ∈ A we define the α-spectrum of a to be the spectrum of πα(a) in the C∗-

algebra Aα. We use σα(a) to denote the α-spectrum of a.

Lemma 5.2.1. Let S be a local operator system in a locally C∗-algebra A and let f :

S → C be a unital α-contractive linear functional. Let f̃ be a Hahn-Banach extension

of f to A. If a = x∗x + b ∈ S is an α-positive element of A, then 0 ≤ f̃(x∗x) ≤ rα,

where rα is the spectral radius of πα(a).

Proof. Assume that f̃(x∗x) /∈ [0, rα]. Since a closed interval in the real line is the

intersection of all closed disks containing it in the complex plane, there exists a closed

disk Dr(µ) centered at µ ∈ C and radius r such that |f̃(x∗x) − µ| > r and [0, rα] ⊆

Dr(µ). Then σα(x∗x−µ1) ⊆ Dr(0) as σα(x∗x) ⊆ [0, rα] ⊆ Dr(µ). Since πα(x∗x) is

a positive element ofAα, πα(x∗x−µ1) is a normal element ofAα. The spectral radius

and norm are same for normal elements of aC∗-algebra gives us ‖πα(x∗x−µ1)‖α ≤ r.

Now using the fact f̃ is a unital α-contraction, we have

|f̃(x∗x)− µ| = |f̃(x∗x− µ1)| ≤ pα(x∗x− µ1)

= ‖πα(x∗x− µ1)‖α ≤ r.

This is a contradiction. Hence f̃(x∗x) ∈ [0, rα].

Theorem 5.2.1. Let S be a local operator system in a locally C∗-algebra A and let E

be a quantized domain with its union space D. Let φ : S → C∗E(D) be a unital local
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contractive map. Then φ is a local positive map.

Proof. Fix l ∈ Ω. Since φ is local contractive, there exists α ∈ Λ such that ‖φ(a)‖l ≤

pα(a) for every a ∈ S. Let a ∈ S and a = x∗x + b where x, b ∈ A and pα(b) = 0 for

some α ∈ Λ.

We will show that φ(a)|Hl is a positive operator on Hl. Let h ∈ Hl with ‖h‖ = 1.

Define fh : S → C by fh(y) = 〈φ(y)|Hlh, h〉. Then fh(1) = 1 and

|fh(y)| ≤ ‖φ(y)‖l ≤ pα(y).

Therefore, the linear functional fh is a unital α-contraction. Let f̃h : A → C be an

α-contractive Hahn-Banach extension of fh. Then

〈φ(a)|Hlh, h〉 = fh(a) = f̃h(a) = f̃h(x
∗x) + f̃h(b).

Note that, f̃h(b) = 0 as f̃h is an α-contraction and pα(b) = 0. Using Lemma 5.2.1 we

conclude that f̃h(x∗x) = 〈φ(a)|Hlh, h〉 is positive. Therefore, φ(a) is local positive

and that completes the proof.

Corollary 5.2.1. Let S be a local operator system in a locally C∗-algebraA and let E

be a quantized domain with its union space D. Let φ : S → C∗E(D) be a unital local

CC-map. Then φ is a local CP-map.
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Proof. Let φ be a local CC-map. Then for each n ∈ N, the amplification φ(n) is a local

contractive map. By Theorem 5.2.1, φ(n) is a local positive map for each n ∈ N. Thus,

φ is a local CP-map.

We can use Theorem 5.2.1 to establish the following result.

Theorem 5.2.2. Let S be a local operator system in a locally C∗-algebra A and let E

be a quantized domain with its union space D. Let φ : S → C∗E(D) be a unital linear

map. Then φ is a local CC-map if and only if φ is a local CP-map.

Proof. Letφ be a local CC-map. Fix l ∈ Ω. There exists aα ∈ Λ such that ‖φ(n)([aij])‖l ≤

p
(n)
α ([aij]) for all [aij] ∈ Mn(S),n ∈ N. From the proof of Theorem 5.2.1 we have

φ(n)([aij]) ≥l 0 whenver [aij] ≥α 0. Thus φ is a local CP-map.

Conversely, assume that φ is a local CP-map. Fix l ∈ Ω. There exists a α ∈ Λ such

that φ(n)(A) ≥l 0 whenever A ≥α 0 in A ∈ Mn(S) and n ∈ N. Let A ∈ Mn(S) such

that p(n)
α (A) ≤ 1. Then 1n A

A∗ 1n

 ≥α 0 inM2n(S).

Applying the map φ(2n), we have

 In φ(n)(A)

φ(n)(A∗) In

 ≥l 0 inM2n(C∗E(D)).

97



5.2. LOCAL POSITIVE LINEAR MAPS

Thus  In φ(n)(A)

φ(n)(A∗) In

∣∣∣∣
Hn
l
⊕Hn

l

≥ 0 in B(Hn
l ⊕Hn

l ).

Equivalently ‖φn(A)|Hn
l
‖ ≤ 1. Hence ‖φn(A)‖l ≤ p

(n)
α (A) for every A ∈ Mn(S).

That is, φ is a local CC-map.

The following lemma tells us that local positive mappings are self adjoint.

Lemma 5.2.2. [26] Let S1 and S2 be local operator systems and let φ : S1 → S2

be a local positive mapping. Then φ(x∗) = φ(x)∗ for every x ∈ S1. In particular,

φ(n)(x∗) = φ(n)(x)∗ for every x ∈Mn(S1), whenever φ is a local CP-map.

Theorem 5.2.3. Let A be a unital locally C∗-algebra and letM be a unital subspace

of A. If φ : M → C∗E(D) is a unital local contraction, then there is a local positive

extension φ̃ of φ toM + M∗ given by φ̃(x + y∗) = φ(x) + φ(y)∗. Moreover, φ̃ is the

only local positive extension of φ toM +M∗.

Proof. First, we will show that the map φ̃ is well-defined. Let

M∗ = {a ∈M : a∗ ∈M}.

Clearly,M∗ is a local operator system inA. Also, the map φ is a unital local contractive

map on M∗. Using Theorem 5.2.1 we have φ is a local positive map. Then φ is self
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adjoint onM∗, thanks to Lemma 5.2.2. To see φ̃ is well defined, consider a1, a2, b1, b2 ∈

M with a1 + b∗1 = a2 + b∗2. Equivalently, a1 − a2 = (b2 − b1)∗. Thus b2 − b1 ∈ M∗.

Then using the fact that φ is self adjoint onM∗, we have

φ(a1 − a2) = φ((b2 − b1)∗)

= [φ(b2 − b1)]∗

= φ(b2)∗ − φ(b1)∗

φ(a1) + φ(b1)∗ = φ(a2) + φ(b2)∗.

Hence φ̃(a1 + b∗1) = φ̃(a2 + b∗2). That is, φ̃ is well-defined.

To see φ̃ is local positive; fix l ∈ Ω. By local contractivity of φ, there exists an

α ∈ Λ such that ‖φ(a)‖l ≤ pα(a) for all a ∈ A. Let a+b∗ ∈M+M∗ be an α-positive

element. We will show that φ̃(a + b∗) is local positive by showing that φ̃(a + b∗)|Hl

is a positive operator on Hl. Let h ∈ Hl with ‖h‖ = 1. Define f : M → C by

f(y) = 〈φ(y)h, h〉. Then |f(y)| ≤ ‖φ(y)‖l ≤ pα(y) for every y ∈ M . Using Hahn-

Banach extension theorem, f extends to f1 : M + M∗ → C with |f1(y)| ≤ pα(y) for

every y ∈ M + M∗. By Theorem 5.2.1 we have that f1 is local positive. Also, 0 ≤

f1(a+b∗) = f1(a)+f1(b) = f(a)+f(b) = 〈φ(a)h, h〉+〈φ(b)h, h〉 = 〈φ̃(a+b∗)h, h〉.

Hence φ̃ is local positive.

To show φ̃ is unique; let ψ : M +M∗ → C∗E(D) be a local positive extension of φ.
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The map ψ is self adjoint by Lemma 5.2.2. Then the following computation

ψ(a+ b∗) = ψ(a) + ψ(b∗) = ψ(a) + ψ(b)∗

= φ(a) + φ(b)∗ = φ̃(a+ b∗)

shows that ψ = φ̃.

Let F be a quantized Frechet domain with its union spaceO. A. Dosiev proved the

analog of Arveson’s extension theorem for unital local CP-maps from local operator

systems into C∗F(O).

Theorem 5.2.4. [26] LetF be a quantized Frechet domain with its union spaceO and

let S be a local operator system in the locally C∗-algebra C∗F(O). Then the following

are equivalent:

(i) S is an injective local operator system;

(ii) there is a morphism-projection C∗F(O)→ C∗F(O) onto S.

In particular, C∗F(O) is an injective local operator system.

Using Theorem 5.2.3, we deduce an analog of Arvesion extension theorem for lo-

cal CC-maps on subspaces of locally C∗-algebras. A locally C∗-algebra A is called

Frechet locallyC∗-algebra if there is a local isometrical ∗-homomorphismA → C∗E(D)

for some quantized Frechet domain E with its union space D.
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Theorem 5.2.5. Let F be a quantized Frechet domain and let A be a Frechet locally

C∗-algebra. LetM be a unital linear subspace of A and φ : M → C∗F(O) be a unital

local CC-map. Then φ has a local CP-extension to A.

Proof. Note thatMn(M+M∗) = Mn(M)+Mn(M∗) for all n. Since φ is a local CC-

map, by repeated application of Theorem 5.2.3 there is a local CP-map φ̃ : M+M∗ →

C∗F(O). Then by Arveson-Dosiev extension theorem 5.2.4 φ̃ extended to a local CP-

map on A.

5.3 Irreducible representations and pure local CP-maps

By a representation of a locally C∗-algebra A we always mean a local contractive

∗-homomorphism from A into C∗E(D) for some quantized domain E .

Definition 5.3.1. Let π : A → C∗E(D) be a representation. The commutant of π(A) is

denoted by π(A)′ and is defined as

π(A)′ = {T ∈ B(H) : Tπ(a) ⊆ π(a)T, for all a ∈ A}

Definition 5.3.2. A representation π : A → C∗E(D) is said to be irreducible if

π(A)′ ∩ C∗E(D) = CID
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The following result is crucial in our discussions.

Theorem 5.3.1. Let E be a quantized Frechet domain. Let φ ∈ CPCCloc(A, C∗E(D))

and (π, V, {H ′; E ′;D′}) be a Stinespring representation of the map φ. If π is irre-

ducible, then (π, V, {H ′; E ′;D′}) is a minimal Stinespring representation for the map

φ.

Proof. If possible assume that there exists an l1 ∈ N such that [π(A)V Hl1 ] 6= H ′l1 .

Since V (Hl) ⊆ H ′l and H ′l is invariant for π(a), for every a ∈ A, we must have

[π(A)V Hl1 ] ( H ′l1 .

Let l0 = min{l ∈ N : π(A)V Hl] 6= H ′l}. Take P to be the orthognal projection of H ′

onto the closed subspace [π(A)V Hl0 ]. We claim that P ∈ π(A)′ ∩ C∗E ′(D′). First, we

prove that P ∈ C∗E ′(D′).

To see P (H ′l) ⊆ H ′l ; let l ∈ N. If l ≥ l0, then as E ′ is an upward filtered family

and P is a projection we must have P (H ′l) ⊆ [π(A)V Hl0 ] ( H ′l0 ⊆ H ′l . If l < l0,

then the choice of l0 gives us H ′l = [π(A)V Hl]. Then, to show P (H ′l) ⊆ H ′l it is

enough to show that P (π(A)V Hl) ⊆ H ′l . Since l < l0 and P is a projection with

range [π(A)V Hl0 ], we have Hl ⊆ Hl0 . Thus,

π(A)V Hl ⊆ π(A)V Hl0
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=⇒ P (π(A)V Hl) = π(A)V Hl ⊆ H ′l .

Hence P (H ′l) ⊆ H ′l for every l ∈ N.

Note that, as P (H ′l) ⊆ H ′l and P is a projection we have P |H′l ∈ B(H ′l).

Now, we show that P (H ′⊥l ∩ D′) ⊆ H ′⊥l ∩ D′. For x ∈ H ′⊥l ∩ D′ and y ∈ H ′l

we need to show that 〈Px, y〉 = 0. If l < l0, then we have H ′l = [π(A)V Hl]. Since

H ′l = [π(A)V Hl] ⊆ [π(A)V Hl0 ], we have Py = y for every y ∈ H ′l . Then it follows

that

〈Px, y〉 = 〈x, Py〉 = 〈x, y〉 = 0.

If l ≥ l0, then [π(A)V Hl0 ] ( H ′l . Thus H ′⊥l ∩ D′ ⊆ [π(A)V Hl0 ]
⊥. It follows

that Px = 0 for all x ∈ H ′⊥l ∩ D′. Therefore 〈Px, y〉 = 0 for all y ∈ H ′l . Hence

P ∈ C∗E ′(D′).

To see P ∈ π(A)′, let a ∈ A. First, we observe that Pπ(a)h′ = π(a)h′ whenever

h′ ∈ [π(A)V Hl0 ]. As the restriction of π(a) to H ′l0 is a bounded operator on H ′l0 , it is

enough to consider h′ in the dense subspace span(π(A)V Hl0). Let h′ =
n∑
i=1

π(ai)V hi

for some ai ∈ A, hi ∈ Hl0 and n ∈ N, i = 1, 2, · · ·n. Then,

π(a)h′ = π(a)(
n∑
i=1

π(ai)V hi)

=
n∑
i=1

π(aai)V hi ∈ [π(A)V Hl0 ].
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It follows that Pπ(a)h′ = π(a)h′ whenever h′ ∈ [π(A)V Hl0 ].

Now, consider h′ ∈ D′. Write h′ = h′1 + h′2 where h′1 ∈ [π(A)V Hl0 ] and h′2 ∈

[π(A)V Hl0 ]
⊥ ∩ D′. It follows that P (h′2) = 0 and Pπ(a)h′1 = π(a)h′1. Then

‖Pπ(a)h′ − π(a)Ph′‖2 = ‖Pπ(a)(h′1 + h′2)− π(a)P (h′1 + h′2)‖2

= ‖Pπ(a)h′1 + Pπ(a)h′2 − π(a)Ph′1 + π(a)Ph′2‖2

= ‖Pπ(a)h′2‖2

= 〈Pπ(a)h′2, Pπ(a)h′2〉

= 〈π(a∗)Pπ(a)h′2, h
′
2〉.

Let h′3 = Pπ(a)h′2 ∈ [π(A)V Hl0 ]. Then

π(a∗)h′3 = π(a∗)(
n∑
i=1

π(ai)V hi) =
n∑
i=1

π(a∗ai)V hi ∈ [π(A)V Hl0 ].

But h′2 ∈ [π(A)V Hl0 ]
⊥ will imply that 〈π(a∗)h′3, h

′
2〉 = 0. Hence Pπ(a)h′ = π(a)Ph′

for every a ∈ A and h′ ∈ D′. Hence P ∈ π(A)′ ∩ C∗E ′(D′).

But P ∈ π(A)′ ∩ C∗E ′(D′) is a contradiction as π is irreducible, and P 6= 0 and

P 6= IH . Hence π is a minimal Stinespring representation for φ.

Remark 5.3.1. It is well known that a representation θ of aC∗-algebra C is irreducible

if and only if the commutant of θ(C) is trivial. If we take A to be a C∗-algebra and

E = {H} in Definition 5.3.2, then Definition 5.3.2 coincides with the usual definition
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of irreducible representations of C∗-algebra. Also, our definition of irreducibility is

motivated by the commutant considered to establish a Radon-Nikodym type theorem

for local CP-maps in [11].

5.3.1 Pure maps on local operator systems

We introduce the notion of pure local CP-maps on local operator system and study its

connection with boundary representations for local operator systems. For this, we use

the convexity structure of the set CPCCloc(S, C∗E(D)).

Proposition 5.3.1. For a local operator system S, the set CPCCloc(S, C∗E(D)) is a

linear convex set.

Proof. Let φ1, φ2 ∈ CPCCloc(S, C∗E(D)) and 0 < t < 1. Fix l ∈ Ω. There exist

αr, βr ∈ Λ, r = 1, 2, such that

φ(n)
r ([aij]) ≥l 0 whenever [aij] ≥αr 0 and

‖φ(n)
r ([aij])‖l ≤ pnβr([aij]) for every n ∈ N.

Replace φ1 and φ2 by tφ1 and (1− t)φ2 respectively. Then, for α = max{α1, α2}, we

have

tφ
(n)
1 ([aij]) + (1− t)φ(n)

2 ([aij]) ≥l 0 whenever [aij] ≥α 0.
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Thus, tφ1 + (1− t)φ2 is a local CP-map. To see its local CC, take β = max{β1, β2}.

Then for every [aij] ∈Mn(S),

‖tφ(n)
1 ([aij]) + (1− t)‖φ(n)

2 ([aij])‖l ≤ ‖tφ(n)
1 ([aij])‖l + ‖(1− t)‖φ(n)

2 ([aij])‖l

≤ tpnβ1([aij]) + (1− t)pnβ2([aij])

≤ pnβ([aij]).

.

Definition 5.3.3. A map φ ∈ CPCCloc(S, C∗E(D)) is called pure if for any map ψ ∈

CPCCloc(S, C∗E(D)) such that φ − ψ ∈ CPCCloc(S, C∗E(D)), then there is a scalar

t ∈ [0, 1] such that ψ = tφ.

Remark 5.3.2. A recent pre-print [42] also defines the notion of purity along similar

lines.

Now, we establish the connection between pure maps and irreducible representa-

tions in the unbounded setting. First, let us recall a couple of results which are crucial

in the proof of main theorem the of this section.

The following is a Radon-Nikodym type theorem in the unbounded setting.

Theorem 5.3.2. [11] Let φ, ψ ∈ CPCCloc(A, C∗E(D)). Then ψ ≤ φ if and only if there
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exists a unique T ∈ πφ(A)′ ∩ C∗Eφ(Dφ) such that 0 ≤ T ≤ I and

ψ(a) ⊆ V ∗φ Tπφ(a)Vφ for all a ∈ A,

where ({Hφ; Eφ;Dφ}, πφ, Vφ) is the Stinespring representation for the map φ.

Corollary 5.3.1. [11] Let φ ∈ CPCCloc(A, C∗E(D)). There is a bijective corre-

spondence between the sets {T ∈ πφ(A)′ ∩ C∗Eφ(Dφ) : 0 ≤ T ≤ I} and {ψ ∈

CPCCloc(A, C∗E(D)) : 0 ≤ ψ ≤ φ} given by T → φT , where φT (a) = V ∗φ Tπφ(a)Vφ

for every a ∈ A.

Theorem 5.3.3. A map φ ∈ CPCCloc(A, C∗E(D)) is pure if and only if φ is of the form

φ(a) ⊆ V ∗π(a)V for all a ∈ A, where π is an irreducible representation of A on

some quantized domain E ′ with its union space D′ and V ∈ L(D,D′), V 6= 0 and

V (Hl) ⊆ H ′l for all l ∈ Ω.

Proof. Let φ ∈ CPCCloc(A, C∗E(D)) be pure. Using Theorem 5.1.2 we have a unital

representation π : A → C∗E ′(D′) for some quantized domain E ′ with its union space

D′ such that φ(a) ⊆ V ∗π(a)V where V ∈ L(D,D′) and V (Hl) ⊆ H ′l for all l ∈ Ω.

Clearly V 6= 0. Now, let T ∈ π(A)′ ∩ C∗E(D) with 0 ≤ T ≤ I. Taking ψ(.) =

V ∗Tπ(.)V |D in Theorem 5.3.2 we have ψ ≤ φ. As φ is pure it follows that ψ = tφ.

Applying Corollary 5.3.1, T = tI . Hence π is irreducible.

Conversely, let π be an irreducible representation of A on some quantized do-
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main E ′ with its union space D′ and V be a non zero operator in L(D,D′) such that

V (Hl) ⊆ H ′l for all l ∈ Ω. To show that φ(.) ⊆ V ∗π(.)V is pure, consider ψ ∈

CPCCloc(A, C∗E(D))withψ ≤ φ. As π is irreducible by Theorem 5.3.1 (π, V, {H ′, E ′,D′})

is a minimal Stinespring representation for φ.Now, applying Corollary 5.3.1, there ex-

ists a unique T ∈ π(A)′ ∩ C∗E(D) such that 0 ≤ T ≤ I and ψ(a) ⊆ V ∗Tπ(a)V for all

a ∈ A. Since π is irreducible, T = tI . It follows that ψ = tφ and hence φ is pure.

Proposition 5.3.2. Let S1 and S2 be local operator systems in a locally C∗-algebraA

such that S1 ⊆ S2. Let φ : S2 → C∗E(D) be a unital local CP-map such that its a linear

extreme point of CPCCloc(S2, C∗E(D)). If φ|S1 is pure, then φ is a pure.

Proof. Let φ1, φ2 ∈ CPCCloc(S2, C∗E(D)) such that φ = φ1 + φ2. Since φ|S1 is pure,

there exists t ∈ (0, 1) such that φ1|S1 = tφ|S1 and φ2|S1 = (1− t)φ|S1 . The maps 1
t
φ1

and 1
1−tφ2 are unital local CP-map on S2. By Theorem 5.2.2 both the maps are local

CC-maps. It follows that 1
t
φ1,

1
1−tφ2 ∈ CPCCloc(S2, C∗E(D)). Then the expression

φ = t1
t
φ1 + (1 − t) 1

1−tφ2 and the assumption φ is linear extreme implies that φ is

pure.

5.4 Local Boundary representations

In this section, we introduce the notion of local boundary representations for locally

C∗-algebras and establish its connection with pure local CP-maps.
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Definition 5.4.1. Let S be a linear subspace of a locally C∗-algebra A such that S

generates A. A representation π : A → C∗E(D) is said to have local unique extension

property for S if π|S has a unique local completely positive extension to A, namely π

itself.

Remark 5.4.1. Let π : A → C∗E(D) be a representation of A. Then π|S has just one

multiplicative local CP-extension toA, namely π itself, but in general, there may exist

other local CP-extensions of π|S .

Example 5.4.1. For a self adjoint operator T ∈ C∗E(D), let S = span{I, T, T 2} and

B be the locally C∗-algebra generated by S in C∗E(D). We show that the identity repre-

sentation IB of B has local unique extension property. Let φ : B → C∗E(D) be a local

completely positive map such that φ(x) = x for all x ∈ S. Consider a minimal Stine-

spring representation (π, V, {H ′; E ′;D′}) of φ. To prove φ = IB on B it is enough to

show that V is a unitary. Note that V is an isometry as φ is unital. We claim that V (D)

is invariant for π(B). Then by minimality H ′ = [π(B)V (D)] ⊆ [V (D)] ⊆ H ′ will im-

ply V is a unitary. Now, to see the claim let us first show that π(T )V (D) ⊆ V (D).

For that, we show that π(T )V (Hl) ⊆ V (Hl) for every l ∈ Ω. Let l ∈ Ω and g ∈ H ′l ,

‖(I − V V ∗)π(T )V V ∗g‖2 = 〈(I − V V ∗)π(T )V V ∗g, (I − V V ∗)π(T )V V ∗g〉

= 〈V V ∗π(T )(I − V V ∗)π(T )V V ∗g, g〉

= 〈V V ∗π(T )π(T )V V ∗g − V V ∗π(T )V V ∗π(T )V V ∗g, g〉

= 〈V φ(T 2)V ∗g − V φ(T )φ(T )V ∗g, g〉
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5.4. LOCAL BOUNDARY REPRESENTATIONS

= 〈V T 2V ∗g − V T 2V ∗g, g〉

= 0.

Thus (I−V V ∗)π(T )V V ∗ = 0 onH ′l . Since T is self adjoint, V V ∗π(T )(I−V V ∗) = 0

on H ′l . These two observations and the facts π(T )|H′
l

∈ B(H ′l), V|Hl is an isometry

and π(T )V (Hl) ⊆ H ′l will give π(T )V (Hl) ⊆ V (Hl). As l is arbitrary, it follows

that π(T )V (D) ⊆ V (D). To show π(B)V (D) ⊆ V (D), let T0 ∈ B and BT =

span{I, T, T 2, T 3, · · · }. Then T0 = limTλ, where Tλ ∈ BT . For h ∈ Hl,

‖π(Tλ)V h− π(T0)V h‖H′l = ‖π(Tλ − T0)V h‖H′l

≤ pα(Tλ − T0)‖h‖Hl ,

where α corresponds to l in the local contractivity of π. As {Tλ} converges to T0, we

have pα(Tλ−T0)→ 0 and hence {π(Tλ)V h} converges to π(T0)V h inH ′l . Therefore,

π(T0)V h ∈ [π(Tλ)V h].

As π(T ) leaves V (Hl) invariant, so is every element of BT . Then using the fact that

V Hl is a closed subspace (as V is an isometry and Hl is a closed subspace),

π(T0)V h ∈ [π(Tλ)V h] ⊆ [π(Tλ)V (Hl)] ⊆ [V (Hl)] = V (Hl).
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Therefore π(B)V (Hl) ⊆ V (Hl) for every l and hence π(B)V (D) ⊆ V (D).

Example 5.4.2. LetK be an infinite dimensional separable complexHilbert space with

a complete orthonormal basis {en : n ∈ N}. ConsiderKn = span{e1, e2, · · · en} and

Hn = K ⊕Kn. Then E = {Hn : n ∈ N} is a quantized domain in the Hilbert space

H = K ⊕ K with union space D = ∪{Hn : n ∈ N}. Define V : H → H to be

the map V0 ⊕ 1K where V0 : K → K be the unilateral right shift operator and 1K

be the identity operator on K. Note that V is an isometry but not a unitary. Also,

V (K ⊕Kn) ⊆ K ⊕Kn and

V ((K ⊕Kn)⊥) = V (0⊕K⊥n ) = 0⊕K⊥n = (K ⊕Kn)⊥.

Therefore V |D ∈ C∗E(D).

Consider the local operator system S = span{1D, V |D, V ∗|D} in C∗E(D) and let

B the locally C∗-algebra generated by S in C∗E(D). We claim that the inclusion map

from S to C∗E(D) have two distinct local CP-extension to B. Obviously the inclusion

representation IB : B → C∗E(D) is a local CP-extension of the inclusion map on S.

Define ψ : B → C∗E(D) by ψ(a) = V ∗IB(a)V |D for all a ∈ B. Clearly ψ is a unital

local CP-map on B. For all scalars c1, c2 and c3 we have

ψ(c11 + c2V + c3V
∗|D) = V ∗(c11 + c2V + c3V

∗)V |D

= c11 + c2V + c3V
∗|D.
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5.4. LOCAL BOUNDARY REPRESENTATIONS

Therefore ψ|S = IB|S . Now the element V V ∗|D ∈ B. But

ψ(V V ∗|D) = V ∗(V V ∗|D)V |D = ID 6= V V ∗|D.

That is ψ 6= IB on B. Therefore, the irreducible representation IB doesn’t have local

unique extension property for S.

Definition 5.4.2. Let S be a linear subspace of a local C∗-algebra A such that S

generatesA. An irreducible representation π : A → C∗E(D) is called a local boundary

representation for S if π has local unique extension property for S.

Remark 5.4.2. The Definition 5.4.1 and Definition 5.4.2 are meaningful for local op-

erator systems in arbitrary locally C∗-algebras. But the Arveson’s extension theorem

in the context of locally C∗-algebras is available only for C∗E(D) for quantized Frechet

domain E and thus we restrict our studies to the context of Frechet locally C∗-algebras.

Now, we show that the local boundary representations are intrinsic invariants for

local operator systems. Let A1 be a locally C∗-algebra and A2 = C∗E2(D2) be the lo-

callyC∗-algebras of all non-commutative continuous functions on a quantized Frechet

domain E2 with its union space D2.

Theorem 5.4.1. Let S1 and S2 be unital linear subspaces of A1 and A2 respectively.

Let φ : S1 → S2 be a unital surjective local completely isometric linear map. Then for

every local boundary representation π1 of A1 there exists a local boundary represen-

tation π2 of A2 such that π2 ◦ φ(a) = π1(a) ∀ a ∈ S1.
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Proof. By Theorem 5.2.5 we can extend φ to a local CP-map φ̃ : A1 → A2. Consider

the map ψ : S2 → C∗E(D) given by (ψ ◦ φ)(a) = π1(a). Clearly ψ is a unital local CC-

map. Again by Theorem 5.2.5 there exists a local CP-extension of ψ, say π2, where

π2 : A2 → C∗E(D) such that (π2 ◦ φ)(a) = π1(a) for every a ∈ S1. Since π1 is a

boundary representation, (π2 ◦ φ)(a) = π1(a) for every a ∈ A1. Note that the locally

C∗-algebra generated by φ̃(A1) is equal to A2 and π2 is continuous for the respective

topologies. Thus, to prove π2 is an algebra homomorphism it’s enough to prove that

π2(xy) = π2(x)π2(y) for every x ∈ φ̃(A1) and for all y ∈ A2. But in view of Lemma

5.1.1, it’s enough to prove that

π2(x)∗π2(x) = π2(x∗x) ∀x ∈ φ̃(A1).

Let a ∈ A1. Then using the fact that a local positive map is positive (Proposition 5.1.1)

and Lemma 5.1.1 we have, on D,

π2(φ̃(a))∗π2(φ̃(a)) ≤ π2(φ̃(a)∗φ̃(a)) = π2(φ̃(a∗)φ̃(a))

≤ π2(φ̃(a∗a))

= π1(a∗a)

= π1(a∗)π1(a)

= π2(φ̃(a))∗π2(φ̃(a)).
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Therefore π2(φ̃(a)∗φ̃(a)) = π2(φ̃(a))∗π2(φ̃(a)) on D. Thus π2 is a representation of

A2. In fact we proved that any local CP-extension of ψ = π2|S2 toA2 is multiplicative

on A2. Equivalently, π2 has local unique extension property for S2.

Now, note that π1(A1) ⊆ (π2 ◦ φ̃)(A1) ⊆ π2(A2). Thus, for commutants we have

π2(A2)′ ⊆ π1(A1)′. Then the irreducibility of π2 follows from the irreducibility of π1.

This completes the proof.

Corollary 5.4.1. Let S1 and S2 be local operator systems of A1 and A2 respectively.

Let φ : S1 → S2 be a unital invertible local CP-map such that φ−1 is also a local

CP-map. Then for every local boundary representation π1 of A1 there exists a local

boundary representation π2 of A2 such that π2 ◦ φ(a) = π1(a) ∀ a ∈ S1.

Remark 5.4.3. We expect the above theorem and consequently the corollary to be true

for any Frechet locally C∗-algebras in place of A2 = C∗E2(D2).

5.4.1 Characterisation of boundary representations

The following theorem shows that the restriction of a local boundary representation to

the local operator system is a pure map.

Theorem 5.4.2. Let S be a local operator system in a Frechet localC∗-algebraA such

that S generates A. Let E be a quantized Frechet domain with its union space D, and

π : A → C∗E(D) be a boundary representation for S. Then π|S is a pure map on S.
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Proof. Let π1, π2 ∈ CPCCloc(S, C∗E(D)) such that π|S = π1 + π2. Then by Arveson-

Dosiev extension theorem (Theorem 5.2.4), each πi extends to a local CPCC map on

A, call it π̃i, i = 1, 2. We will show that π̃1 + π̃2 ∈ CPCCloc(A, C∗E(D)). For that, fix

l ∈ N. Then there exists αi and βi such that π̃i(a) ≥l 0 whenever a ≥αi 0 in A and

‖π̃i(b)‖l ≤ pβi(b) for every b ∈ A. Take α = max{α1, α2} and β = max{β1, β2}.

Using the fact that the family of semi-norms {pn}n∈N is an upward filtered family,

we have π̃i(a) ≥l 0 whenever a ≥α 0 in A and ‖π̃i(b)‖l ≤ pβ(b) for every b ∈ A.

Therefore, π̃1 + π̃2 ∈ CPCCloc(A, C∗E(D)).

Now, since π̃1 + π̃2|S = π1 + π2 = π|S and π is a boundary representation for S,

we must have π(a) = π̃1(a) + π̃2(a) for every a ∈ A. The irreducibility of π and the

Theorem 5.3.3 implies that π is a pure map. Thus, for each i, there exist ti ∈ [0, 1]

such that π̃i(a) = tiπ(a) for every a ∈ A. It follows that πi = tiπ|S . Hence π|S is a

pure map on S.

Now, we show that certain irreducible representations of A that are pure CPCC-

maps on S are local boundary representations. For this, we need to introduce a couple

of new notions. Let S be a local operator system in a local C∗-algebra A such that A

is generated by S, and let π : A → C∗E(D) be a representation ofA. We say that π is a

finite representation for S if for every isometry V ∈ B(H) with V (Hl) ⊆ Hl for every

l ∈ Λ, the condition π(x) ⊆ V ∗π(x)V for every x ∈ S implies V is a unitary. We say

that the local operator system S separates the irreducible representation π if for any
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irreducible representation ρ of A on some quantized domain E ′ with its union space

D′ =
⋃
l∈Λ

H ′l and an isometry V inB(H,H ′) that satisfies V (Hl) ⊆ H′l for every l ∈ Λ

such that π(x) ⊆ V ∗ρ(x)V for all x ∈ S implies that π and ρ are unitarily equivalent

representations of A.

Theorem 5.4.3. Let S be a local operator system in a local C∗-algebra A such that

A is generated by S. Then an irreducible representation π : A → C∗E(D) is a local

boundary representations for S if and only if the following conditions hold;

(i) π|S is a pure map on S

(ii) Every local CP-extension of π|S to A is a linear extreme point of

CPCCloc(A, C∗E(D))

(iii) π is a finite representation for S

(iv) S separates π.

Proof. Let π be an irreducible representation ofA. Assume that π is a local boundary

representation for S. Then the statement (i) follows by Theorem 5.4.2.

(ii): Sinceπ is a local boundary representation, there is only one local CP-extension

of π|S toA, namely π itself. Let φ1, φ2 ∈ CPCCloc(A, C∗E(D)) such that π = φ1 + φ2.

Then π|S = φ1|S + φ2|S . But π|S is pure by statement (i). Thus φ1|S = tπ|S and

φ2|S = (1 − t)π|S for some t ∈ [0, 1]. If 0 < t < 1, then π|S = 1
t
φ1|S and

π|S = 1
1−tφ2|S . Now the maps 1

t
φ1 and 1

1−tφ2 on A are unital local CP-extensions
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of π|S . But π is a boundary representation for S would imply that π = 1
t
φ1 and

π = 1
1−tφ2 on A. That is, π is a linear extreme point of CPCCloc(A, C∗E(D)).

(iii): Consider an isometry V on H such that π(x) ⊆ V ∗π(x)V for every x ∈ S

and V (Hl) ⊆ Hl for every l ∈ Λ. Then φ(a) := V ∗π(a)V |D for all a ∈ A is a

unital local CP-extension of π|S . As π is a local boundary representation we must have

π(a) = V ∗π(a)V |D for all a ∈ A. We claim that V ∈ π(A)′ ∩ C∗E(D). Clearly V is

bounded and V (Hl) ⊆ Hl ∀ l. Let x ∈ H⊥l ∩ D. Since π is irreducible, by Theorem

5.3.1 (π, V, {H, E ,D}) is a minimal Stinespring for π. Then by Lemma 5.1.2, V x =

π(1)V x ∈ H⊥l . It follows that V x ∈ H⊥l ∩ D as V (Hl) ⊆ Hl. Thus V (H⊥l ∩ D) ⊆

H⊥l ∩ D and hence V ∈ C∗E(D). To see V ∈ π(A)′; first note that dom(V π(a)) =

D ⊆ dom(π(a)V ) for all a ∈ A. Let h ∈ D and a ∈ A.

‖V π(a)h− π(a)V h‖2

=〈V π(a)h− π(a)V h, V π(a)h− π(a)V h〉

=‖V π(a)h‖2 − 〈π(a)V h, V π(a)h〉 − 〈V π(a)h, π(a)V h〉+ ‖π(a)V h‖2

=‖π(a)h‖2 − 〈V ∗π(a)V h, π(a)h〉 − 〈π(a)h, V ∗π(a)V h〉+ ‖π(a)V h‖2

=‖π(a)h‖2 − 〈π(a)h, π(a)h〉 − 〈π(a)h, π(a)h〉+ ‖π(a)V h‖2

=‖π(a)V h‖2 − ‖π(a)h‖2 = 〈π(a)V h, π(a)V h〉 − 〈π(a)h, π(a)h〉

=〈V ∗π(a∗)π(a)V h, h〉 − 〈π(a)∗π(a)h, h〉

=〈π(a∗a)h, h〉 − 〈π(a∗a)h, h〉 = 0.
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Therefore V π(a) ⊆ π(a)V for every a ∈ A and hence V ∈ π(A)′ ∩ C∗E(D). By the

irreducibility of π implies V = λIH , λ ∈ C. Thus, the isometry V is a unitary. Hence

π is a finite representation for S.

(iv): Assume that ρ is an irreducible representation ofA on some quantized domain

E ′ with its union space D′ =
⋃
l∈Λ

H ′l and an isometry V in B(H,H ′) that satisfies

V (Hl) ⊆ H′l for every l ∈ Λ such that π(x) ⊆ V ∗ρ(x)V for all x ∈ S. As π is a

local boundary representation for S, it follows that π(a) ⊆ V ∗ρ(a)V for all a ∈ A .

Here π and ρ are irreducible representations of A. By Theorem 5.3.1 the Stinespring

representations (π, IH , {H, E ,D}) and (ρ, V, {H ′, E ′,D′}) are minimal for π. Then

Theorem 5.1.3 will imply that π and ρ are unitarily equivalent. Hence S separate π.

Conversely assume that the irreducible representation π satisfies all the four condi-

tions. Let φ : A → C∗E(D) be a local CP-map such that φ(a) = π(a) for every a ∈ S.

By condition (ii), φ is a linear extreme point of CPCCloc(A, C∗E(D)). Then statement

(i) and Proposition 5.3.2 will imply that φ is a pure map in CPCCloc(A, C∗E(D)). If

{ω;V ; {K,F ,O}} is a minimal Stinespring representation for φ, then by Theorem

5.3.3 ω is irreducible. Also,

π(a) = φ(a) = V ∗ω(a)V |D for all a ∈ S.

As π separates S, π and ω are unitarily equivalent. Let U : K → H be a unitary such

118



5.4. LOCAL BOUNDARY REPRESENTATIONS

that U(O) ⊆ D and

ω(a) = U∗π(a)U |D for all a ∈ S.

Then

π(a) = V ∗U∗π(a)UV |D for all a ∈ S.

Since π is a finite representation and UV is an isometry on H , we have UV is a uni-

tary. Thus V = U∗(UV ) is also a unitary. Therefore φ(a) = V ∗π(a)V |D on A is a

representation ofAwhich coincides with π on S. Therefore φ(a) = π(a) for all a ∈ A

and hence π is a local boundary representation for S.
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Chapter 6
Conclusions and Recommendations

In this thesis, we studied the notions of boundary representations and hyperrigidity for

operator spaces, a weaker notion of boundary representations and hyperrigidity for

operator systems, and boundary representations for spaces of unbounded operators.

We study the amplifications of a weaker notion of boundary representations and

hyperrigidity for operator systems in C∗-algebras called the weak boundary represen-

tations. We proved that a representation π of the C∗-algebra A = C∗(S) is a weak

boundary representations for operator system S if and only if all of its the amplifica-

tions π(n) are weak boundary representations for the operator systems Mn(S). Also,

we deduced that an operator system S is quasi hyperrigid in the generated C∗-algebra

C∗(S) if and only if the tensor product operator systemMn(C)⊗S is quasi hyperrigid

in the tensor product C∗-algebraMn(C) ⊗ C∗(S), for all n ≥ 2. This actually gives

120



a partial answer to the following question. Two operator systems S1 and S2 are quasi

hyperrigid in their generated C∗-algebras if and only if the tensor product S1 ⊗ S2 is

quasi hyperrigid in its generated C∗−algebra ?. Our result shows that the answer to

the preceding question is affirmative if theC∗-algebra generated by one of the operator

system isMn(C). The general case is still unknown.

We studied the concept of boundary representations for operator spaces. We de-

duced that boundary representations of operator spaces are in one to one correspon-

dence with the boundary representations of the associated Paulsen system. We in-

troduced weak boundary representation for operator spaces and proved that a weak

boundary representation for an operator space induces a weak boundary representa-

tion for the corresponding Paulsen system and vice versa. We established a character-

isation theorem for boundary representations; a map φ is a boundary representation

for an operator space X if and only if φ is a rectangular operator extreme point for

X , φ is a finite representation for X and X separates φ. This result justifies the ter-

minology ’boundary’ in the sense that boundary representations are extreme points

of certain convex sets. Also, we initiated and studied the concept of hyperrigidity for

operator spaces. We prove that if an operator space is rectangular hyperrigid in the

TRO generated by the operator space, then every irreducible representation of the TRO

is a boundary representation for the operator space. In the case of operator systems

in C∗-algebras, the converse of the preceding statement, that is; if every irreducible

representation is a boundary representation, then the operator system is hyperrigid; is
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called the Arveson’s hyperrigidity conjecture. Along the same line we posed the rect-

angular hyperrigidity conjecture and we established that the conjecture true in the the

finite dimensional setting of Mnm(C). The rectangular hyperrigidity conjecture can

also be seen as a non commutative counter part of the classical Saskin’s theorem to the

setting of operator spaces and TROs. Validity of the conjecture in the general case of

infinite dimensional setting is still unknown. An equivalence between rectangular hy-

perrigidity of an operator space and hyperrigidity of the corresponding Paulsen system

is also established and hence the hyperrigidity conjecture is equivalent to rectangular

hyperrigidity conjecture.

We initiated a study of non-commutative Choquet boundary in the setting of spaces

unbounded operators and in amore general setting of locally convex topological spaces.

We used the notion of locallyC∗-algebra to study non-commutative Choquet boundary

to these new settings. An analogue of Arveson’s extension theorem is proved for local

CC-maps on unital subspaces of locally C∗-algebras. The notion of irreducible repre-

sentations for locally C∗-algebras is introduced and it’s used to establish a character-

isation of purity of local completely positive maps. We proved that a local completely

positive map is pure if and only if its minimal Stinespring representation is irreducible.

Several examples for the new notions are provided. The relevance of local boundary

representations are shown. The local boundary representations are intrinsic in vari-

ants for local operator systems. That is; let S1 and S2 be unital linear subspaces ofA1

andA2 respectively. Let φ : S1 → S2 be a unital surjective local completely isometric
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linear map. Then for every local boundary representation π1 ofA1 there exists a local

boundary representation π2 of A2 such that π2 ◦ φ(a) = π1(a) ∀ a ∈ S1. Also, we

characterised boundary representations in terms of purity and linear extreme points

of certain convex sets.

Here we will indicate a few problems for future research.

Arveson’s hyperrigidity conjecture [10] says that, if every irreducible representa-

tion of C∗-algebra A = C∗(S) is a boundary representation for a separable operator

system S, then S is hyperrigid. The hyperrigidity conjecture is shown to be true only

for certain C∗-algebras. Proving this conjecture for the genera C∗-algebra is an im-

portant problem.

In Corollary 3.3.1, we proved that all the amplification of a weak boundary repre-

sentation for an operator system are all weak boundary representations for the corre-

sponding amplified operator systems. From this result, it’s immediate that the tensor

product of weak boundary representation with the identity representation of Mn(C)

is also weak boundary representation. This inspires to pose a problem; Is the tensor

product of weak boundary representations for operator systems is a weak boundary

representation for the tensor product of operator systems ?. As the only irreducible

representation ofMn(C) is the identity representation(upto unitarily equivalence), the

only weak boundary representation of Mn(C) is the identity. Then Corollary 3.3.1

answers the problem mentioned above in the particular case where A2 = Mn(C).
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The general case has to be studied for tensor products of C∗-algebras, where one can

consider different tensor product such as spatial, minimal or maximal tensor products.

The Problem 3.3.1 says that, for operator systems S1 and S2 and the generated C∗-

algebrasAi = C∗(Si), i = 1, 2 is it true that S1⊗ S2 is quasi hyperrigid inA1⊗γ A2

if and only if Si is quasi hyperrigid in Ai for each i = 1, 2 ? We are able to solve this

problem for the case A2 = Mn(C), and the general case needs to be investigated.

In Theorem 4.3.2, we characterised boundary representations for operator spaces

using rectangular operator extreme(which is an analogue of C∗-extreme points). It is

interesting to checkwhether there exists any relation between boundary representations

of operator spaces with the extreme points of suitable rectangular matrix convex sets.

We solved the Problem 4.4.1 for the finite dimensional case in Theorem 4.4.2. Also,

we mentioned in Remark 4.4.1 that the conjecture is true with an additional assumption

on the C∗-algebra generated by the Paulsen system associated to an operator space.

The Problem 4.4.1 is still open for the general case.

In Theorem 5.2.5 we proved that a unital local CC-map on a unital subspace M

of a Frechet locally C∗-algebra has local CP-extension to the local operator system

M +M∗. This is analogue of Arveson’ extension theorem for local CC-maps on local

operator spaces in Frechet locally C∗-algebras. It will be interesting to investigate the

case where the assumption that the locally C∗-algebra is Frechet is not assumed.

Davidson and Kennedy [24] proved the existence of boundary representations in
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the case C∗-algebras. The existence of local boundary representations in the case of

locally C∗-algebras is yet to be studied.

In Theorem 5.4.1, we showed that local boundary representations are intrinsic in-

variants for local operator systems that generates Frechet locally C∗-algebras. We

expect that this result is true for general local operator systems..

A possible version of hyperrigidity to the setting of spaces of unbounded operators

is yet to be studied by introducing a suitable topology for the space of local CP-maps.

Investigating the connections between local boundary representations and hyperrigid-

ity, and establishing a possible analogue of Saskin’s theorem is an important future

work.

In Proposition 5.3.1 we showed that, for a local operator system S, the set

CPCCloc(S, C∗E(D)) of all local CPCC-maps from S to C∗E(D) is a linear convex set.

Exploring the non commutative convexity structure, specifically the C∗-convexity of

the set CPCCloc(S, C∗E(D)) is an interesting topic of further research.
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