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Abstract of The Thesis

The thesis mainly focuses on the development of new lifetime distributions which

are parsimonious and explores their ageing properties based on failure rate. The

principle of parsimonious modeling of lifetimes has regained its importance re-

cently, and the value of stochastic modeling in dealing with the inevitable un-

certainty and risk is nowadays highly appreciated. In this thesis, we propose

a transformation called Kavya-Manoharan (KM) transformation for obtaining

a new class of parsimonious distributions and study its properties. Next, we

construct three new lifetime models using exponential, Weibull and Lomax as

the baseline distributions in the transformation, respectively known as KM-

Exponential, KM-Weibull and KM-Lomax distributions, and investigate their

ageing behaviour and other properties. The models introduced here have mono-

tone failure rate functions. Comparing the proposed models with other models

in the literature using a real-life data set, the newly introduced models show

better fit to the data sets. We generalize the transformation and develop a new

lifetime model using the exponential distribution as the baseline distribution,

and the new model is called Generalized KM Exponential (GKME) distribution.

The new model shows both monotone and non-monotone failure rate. With the

help of real-life data sets, we show that the proposed model is more suitable

compared to other distributions mentioned in this study. Estimation of stress-

strength reliability for the newly proposed model is an other major work of the

thesis, followed by a discussion on the asymptotic distribution of stress-strength

reliability, simulation study and application. The thesis concludes by emphasiz-

ing the importance of ageing concepts in reliability theory and outlining future

research directions.





 

 

സംഗ്രഹം 

 
ഈ ഗ്രബന്ധം ഗ്രധാനമായ ം രാര്സിമമാണിയസ് ആയ ര തിയ ലൈഫലടം 
ഡിസ്ഗ്ടിബയൂഷന കള് വികസപ്പിക്ക ന്നതില് ഗ്രദ്ധ മകഗ്രീകരിക്ക കയ ം 
രരാജയനിരക്കിന്റെ അടിസ്ഥാനത്തില്  അവയ ന്റട ഗ്രായമാകല് സവഭാവം 
രരിമരാധിക്ക കയ ം ന്റെയ്യുന്ന . ലൈഫലടം വിതരണങ്ങളുന്റട 
രാര്സിമമാണിയസ് മമാഡൈിംഗ് സമീരകാൈത്ത് കൂട തൈായി 
രമവഷകഗ്രദ്ധയാകര്ഷിച്ചുന്റകാണ്ടിരിക്ക ന്ന ഒര  മമഖൈയാണ്. ഈ 
ഗ്രബന്ധത്തില് ഞങ്ങള്, ഒര  കൂട്ടം രാര്സിമമാണിയസ് വിതരണങ്ങള് 
നിര്മിക്കാന തക ന്ന  ഒര  ര തിയ ഗ്ടാന്സസ്ഫര്മമഷന്സ മ മന്നാട്ടു വക്ക കയ ം, 
കാവയ–മമനാഹരന്സ (ന്റക–എം)  എന്ന് മരരിട്ടിരിക്ക ന്ന ഈ 
ഗ്ടാന്സസ്ഫര്മമഷന്റെ സവിമരഷതകള് െര്ച്ച ന്റെയ്യുകയ ം ന്റെയ്യുന്ന .   
അട ത്തതായി, എക്സ്മരാണന്സഷയല്,  ന്റവയ്ബ ള്,  മൈാമാക്സ് എന്നീ 
വിതരണങ്ങള് ഈ ര തിയ ഗ്ടാന്സസ്ഫര്മമഷനില് ഗ്രമയാരിക്ക ന്നതിൈൂന്റട 
മൂന്ന  ര തിയ ലൈഫ ലടം മമാഡൈ കള് ഞങ്ങള് നിര്മിക്ക ന്ന . ഇവന്റയ  
യഥാഗ്കമം ന്റക-എം എക്സ്മരാണന്സഷയല്, ന്റക-എം ന്റവയ്ബ ള്, ന്റക-എം  
മൈാമാക്സ് എന്നിങ്ങന്റന വിളിക്കാം. ഈ ര തിയ വിതരണങ്ങളുന്റട 
ഗ്രായമാകല് സവിമരഷതകളും മറ്റു സവഭാവങ്ങളും ഗ്രബന്ധത്തില് 
രരിമരാധിക്ക ന്ന . മറ്റു മമാഡൈ കളുമായി താരതമയന്റപ്പട ത്ത മപാള്  ഈ 
ര തിയ മമാഡൈ കള്ക്ക്, ൈഭയമായ മഡറ്റന്റസറ്റുകന്റള    ന്റമച്ചന്റപ്പട്ട രീതിയില് 
വിവരിക്കാന്സ സാധിക്ക ന്ന  എന്നാണ  കാണ ന്നത്. . ത ടര്ന്ന്,  ന്റക-എം 
ഗ്ടാന്സസ്ഫര്മമഷന്സ സാമാനയവല്ക്കരികക്ക കയ ം, അതില് അടിസ്ഥാന 
വിതരണമായി എക്സ്മരാണന്സഷയല് ഡിസ്ഗ്ടിബയൂഷന്സ 
ഉരമയാരിക്ക ന്നതിൈൂന്റട ജനറലൈസ്് ന്റക-എം വിതരണം (ജിന്റകഎംഇ) 
എന്ന മന്ററ്റാര  മമാഡല് കൂടി നിര്മിക്ക കയ ം ന്റെയ്യുന്ന . ജിന്റകഎംഇ 
വിതരണത്തിന്റെ സവഭാവസവിമരഷതകളും, മറ്റു മമാഡൈ കളുമായ ള്ള 
താരതമയവ ം ഈ ഗ്രബന്ധത്തില് െര്ച്ചാവിഷയമാക ന്ന ണ്ട്. റിൈയബിൈിറ്റി 
സിദ്ധാന്തത്തില്  ഗ്രായമാകല് രഠനങ്ങളുന്റട ഗ്രാധാനയം 
ഊന്നിപ്പറഞ്ഞ ന്റകാണ്ട ം ഭാവി രമവഷണദിരകള് സൂെിപ്പിച്ചുന്റകാണ്ട ം  
ഗ്രബന്ധം ഉരസംഹരിച്ചിരിക്ക ന്ന .   
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Chapter 1

Introduction

1.1 Reliability- The Basic Concepts

All of us quite often use the term “reliable” in various contexts such as a reliable

friend, a reliable equipment, a reliable service centre, reliable news etc. As an

abstract concept, it means something or someone we may depend upon. And

when we purchase a computer or television or a transport vehicle or even a simple

product such as an electric bulb or a battery we expect it to function properly

for a reasonable period of time. The reliability of a unit or a system is defined

as the probability that it will perform satisfactorily for a specified period of

time without a major breakdown. From the beginning of twentieth century, the

concept of reliability gets greater attention and many authors have studied and

worked on it. In statistics, reliability is defined by Barlow and Proschan [1] as

“reliability is the probability of a device performing its purpose adequately for the

period of time intended under the operating conditions encountered”. The time

period is generally [0, t]. The adequate performance at time ‘t’ can be considered

as the performance during [0, t] provided no repair or replacement occurs. In

engineering field reliability enjoys a special place because it is considered as one

of the important characteristics of any device or equipment.

1



A reliability distribution or failure distribution represents an attempt to de-

scribe probabilistically the length of life of a material, a biological unit, a struc-

ture or a device. On the basis of actual observations lifetimes or failure times

it is difficult to distinguish among the various nonsymmetric probability dis-

tributions. In order to discriminate among such probability distributions, it is

necessary to appeal to a concept that permit us to base the differentiation on

a physical consideration. Such a concept is based on the failure rate or hazard

rate which has useful probabilistic interpretation.

In reliability analysis one mainly focuses on estimating the lifetime of the

device, replacement policies, optimization of cost, time of destructive equipments

etc. The methods and theories of reliability analysis are applied into various fields

like small electronic devices to weapons, aerospace equipments, communication

systems, forecasting of natural calamities like earthquake and volcano and so on.

Lawless [2] shows the wide application of survival analysis in lifetime studies and

medical treatment of human and other biological species.

Reliability of a product is a factor of great concern for producers and cus-

tomers alike. Customers look for reliable products and the failure to guarantee

the same puts the producers’ business at risk. Reliability of equipments like

weapons and aerospace devices is a matter of serious concern for both govern-

ments and societies. There is always a probability of failure during the ensured

working period for any component. For example, lots of electronic manufactur-

ers guarantee a minimum working period for their products, and some products

breakdown before the guarantee period. The concept of failure facilitates the

calculation of the reliability of a device. The concept of failure is used in con-

nection to the situations where the functioning of a device is seriously affected

or totally stopped due to the partial or total deprivation or change in the effects

of the device.
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The term reliability generally indicates the ability of a system to continue

to perform its intended function. It is essentially the application of probability

theory to the modeling of failures and prediction of success probability. The vast

majority of the reliability analysis assumes that components and systems are in

either of two states; functioning or failed. The reliability of such system is the

probability that a specific function under given condition for a specific period of

time performs without failure. The reliability of a fresh unit corresponding to a

mission of duration t is, by definition,

F̄ (t) = P (T > t) = 1− F (t) (1.1)

where F (.) is the life distribution of the unit. The hazard or failure rate r(t) is

defined by

r(t) =
f(t)

F̄ (t)
(1.2)

when f(t) (probability density function) exists and F̄ (t) > 0. Different types of

lifetime distributions have been developed on the basis of failure patterns of the

devices, for details see Marshall and Olkin [3].

1.2 Modes of failure and causes

A failure is the total or partial loss or change in the properties of a device in such

a way that its functioning is seriously affected or totally stopped. The concept

of failures and their details help in the evaluation of quantitative reliability of a

device. In general, some components have well defined failures; others do not.

Initial failure or infant mortality is a term used in connection to the situations

where the item fails with high frequency in the beginning, when the component is

3



installed. Infant mortality or initial failure is generally caused by manufacturing

defects. Failures due to manufacturing defects are high at initial stages and

gradually decrease and stabilize over a longer period of time.

Stable or constant failures due to chance can be observed on an item for a

longer period. These types of failures are known as random failures and charac-

terized by constant number of failures per unit time. Due to wear and tear with

usage, the item gradually deteriorates and frequency of failures again increases.

These types of failures are called as wear-out failures. At this stage failure rate

seems to be very high due to deterioration, and the whole pattern of failures

could be depicted by a bathtub curve.

1.3 Binary state system

The binary state system provides a foundation for the Mathematical and Statis-

tical theory of reliability. The components in the system are assumed to be in

one of two states functioning or failed. To indicate the state of the ith component,

we assign a binary indicator variable xi to component i:

xi =


1 if component i is functioning

0 if component i is failed.

for i= 1,2,...,n where n is the number of components in the system. Similarly,

the binary variable Φ indicates the state of the system.

Φ =


1 if the system is functioning

0 if the system is failed.
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We assume that the state of the system is determined completely by the states

of the components, so that we may write Φ = Φ(x), where x=(x1, x2, ...., xn).

The function Φ(x) is called the structure function of the system. Clearly the

structure function relates the state of the system with the states of the compo-

nents.

A series structure functions if and only if each component functions. The

structure function is given by

Φ(x) =
n∏

i=1

xi = min(x1, x2, ..., xn)

A parallel structure function if and only if at least one component functions.

The structure function is given by

Φ(x) =
n∐

i=1

xi = max(x1, x2, ..., xn)

where
∐n

i=1 = 1−
∏n

i=1(1− xi). The consideration of the fact that each compo-

nent of a physical system serves some sort of useful function. In what way the

functioning or failure state of a component contributes to the state of the whole

system provides us the notion of component relevancy.

A system of components is coherent if its structure function Φ is increasing

and each component is relevant. The ith component is irrelevant to the structure

Φ of Φ is a constant in xi. Otherwise the ith component is relevant to the

structure.

A cut set K is a set of components that by failing causes the system to fail.

A cut set is minimal if it cannot be reduced without losing its status as a cut

set.

A path set S is a set of components that by functioning ensures that the

system is functioning. A path set is minimal if it cannot be reduced without
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losing its status as a path set.

The reliability of a system is given by

P (Φ(x) = 1) = h = EΦ(x)

Under the assumption of independent components, we may represent system

reliability as a function of component reliabilities. That is

h = h(p).

Accordingly the reliability function of series structure is h(p)=
∏n

i=1 pi and the

reliability function of parallel structure is given by h(p) = 1−
∏n

i=1(1− pi).

1.4 Mean residual life

Given that a unit is of age ‘t’, then the remaining life is random. The expected

value of this random residual life is called the mean residual life function (MRL).

The mean residual life (MRL) has been used as far back as the third century

A.D.(cf. Deevey [4] and Chiang [5]). The MRL has been studied by reliabilists,

statisticians, survival analysts and others. A number of handy results have been

derived in relation to it. The expected value of the random residual lifetime is

called the MRL or mean remaining life. The MRL is often an important criterion

for finding an optimal burn-in time for an item.

The MRL of a unit or a subject at age x is the average remaining life among

those population members who have survived until time x. Then the mean

residual life function is defined by

µ(t) = E(X − t|X > t) =

∫ t

0

F̄t(x)dx
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If F has a density f, we can then alternatively write

µ(t) =

∫∞
t

xf(x)dx

F̄ (t)

Like failure rate function, the MRL describes a conditional concept of ageing;

however, the MRL is more intuitive, especially in the health sciences.

In the context of industrial reliability studies of repair and replacement strate-

gies, the MRL functions are often more pertinent than the failure rate function.

In studies of human populations, demographers usually refers to the MRL by the

names of life expectancy or expectation of life. Clearly, the MRL is of utmost

importance to actuarial work associated with life insurance policies.

Note that there can be situations in which the MRL function exists and

the failure rate function does not exist and vice versa. In theory and practice,

however, we need both the MRL and the failure rate functions.

In cases where MRL and failure rate functions exist, they are related by,

µ′(t) = µ(t)r(t)− 1

for µ differentiable.

Knowledge of the MRL function completely determines the reliability func-

tion as follows

F̄ (t) =


µ(0)
µ(t)

exp (
∫ t

0
du
µ(u)

) for 0 < t < F−1(1)

0 for t ≥ F−1(1)

where F−1(1) =def sup (t|F (t) < 1).

Like the density function, the moment generating function or the character-

istic function, the MRL completely determines the distribution via an inverse

formula (e.g., see Cox [6], Kotz and Shanbhag [7] and Hall and Wellner [8]). The
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MRL is used for both parametric and non-parametric modeling. It has a wide

range of applications. In the biomedical setting researchers analyze survivorship

studies by MRL. Morrison [9] mentions that IMRL (increasing mean residual

life) distributions have been useful in modeling the social sciences for the life

lengths of wars and strikes. Bhattacharjee [10] observes that MRL functions

naturally come up in other areas such as optimal disposal of an asset, renewal

theory, dynamic programming and branching processes.

1.5 Lifetime distributions

A lifetime (failure) distribution represents the probabilistic distribution of the

length of life of a material, structure, device or an organism. On the basis of

actual observations of times to failure it is difficult to distinguish among various

non-symmetric probability functions. In such contexts, in order to discriminate

among probability functions, it is necessary to appeal to a concept that permit

us to base the differentiation on a physical considerations. Such a concept is

based on the failure rate or hazard rate. This function has a useful probabilistic

interpretation.

In reliability theory, we assume that the system and components are in either

of the two states: functioning or failed. We next consider the life lengths of the

system of components. In general, life lengths is random, and so we are led to

a study of life distributions. To understand better which life distributions are

important in reliability models, we consider first a notion of ageing. Ageing is

conveniently studied in terms of the failure rate function. The ageing properties

(increasing failure rate, decreasing failure rate, increasing failure rate average,

decreasing failure rate average, new better than used etc) are discussed by several

authors see Deshpande et al [11]. If we obtain a constant failure rate, then

exponential distribution serves as a very useful model for reliability computation.
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1.5.1 Notion of ageing

The notion of ageing plays an important role in reliability theory. Several classes

of life distributions based on the notion of ageing have been studied during the

past several years. The most well known classes are IFR (increasing failure rate),

IFRA (increasing failure rate average), NBU (new better than used), NBUE (new

better than used in expectation), DMRL (decreasing mean residual life) classes

with their duals. The discrete versions and continuous versions of these classes

have become common nature. These classes characterize either positive ageing

or negative ageing. Positive ageing means adverse effect of age on the random

residual life of the component or unit whereas negative ageing means beneficial

effect. Concepts of ageing describe how a component or system improves or

deteriorates with age.

Let X be a continuous non-negative random variable representing the lifetime

of a unit. This unit may be a living organism, a mechanical component, a system

of components etc. By lifetime we mean the period for which the unit is working

satisfactorily. Age of the working unit is the time for which it is already working

satisfactorily without failure.

Let F(x) be the cumulative distribution function of X, then the survival

function of a fresh unit is F̄ (x) = 1− F (x) = P (X > x). Let Xt be the random

variable representing the residual lifetime of a unit which has attained the age t.

Then the distribution function and survival function of Xt are respectively Ft(x)

and F̄t(x). It can be seen that

F̄t(x) =
F̄ (x+ t)

F̄ (t)
.

Note that this is the conditional probability that the unit survived upto time

’t’, will not fail before additional x unit of time. Further, F̄0(x) = F̄ (x) is the
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survival function of a new unit.

By ageing we mean the phenomenon whereby an older system has shorter

remaining lifetime in some statistical sense than a new or younger one. Obviously

any study of the phenomenon of ageing is to be based on F̄t(x) and functions

related to it.

The conditional failure rate or hazard rate rF (t) at time ’t’ is defined as

rF (t) = limx→0
F (t+ x)− F (t)

x F̄ (t)

so that

rF (t) =
f(t)

F̄ (t)

where f(t), the probability density function exists and F̄ (t) > 0.

We call rF (t) as the failure rate and write it simply as r(t). Some useful identities

are ∫ x

0

r(t) dt = −log F̄ (x)

and

F̄ (x) = exp (−R(x))

where R(x) =
∫ x

0
r(t) dt is referred to as the cumulative hazard function.

Expressed by F(t) f(t) F̄ (t) r(t)

F(t) -
∫ t

0
f(u)du 1− F̄ (t) 1− exp(−

∫ t

0
r(u)du

f(t) dF (t)
dt

- −dF̄ (t)
dt

r(t).exp(−
∫ t

0
r(u)du

F̄ (t) 1-F(t)
∫∞
t

f(u)du - exp(−
∫ t

0
r(u)du

r(t)
dF (t)
dt

1−F (t)
f(t)∫∞

t f(u)du
−dlnF̄ (t)

dt
-

Table 1.1: Relationship between the functions F(t), f(t), F̄ (t), and r(t) (Lai and Xie
[12])

Ageing is classified into three, No ageing, Positive ageing and Negative ageing.
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No ageing is equivalent to the phenomenon that age has no effect on the residual

survival time of a unit.

Now we consider a device which does not age stochastically, that is, proba-

bility distribution of the residual lifetime at age ‘t’ of a unit does not depend on

‘t’. Hence

F̄t(x) = F̄0(x) ∀ t, x > 0

This is equivalent to

F̄ (t+ x) = F̄ (t)F̄ (x) ∀ t, x > 0,

which is the Cauchy functional equation. It is well known as that among the

continuous survival functions only the exponential survival function

Ḡ(x) = e−λx, x > 0, λ > 0

satisfies the above equation. This property of exponential lifetime is known as

lack-of-memory property or no-ageing property in reliability theory.

Positive ageing describes the situation where the residual lifetime tends to

decrease, in some probabilistic sense, with increasing age of a component. This

situation is common in reliability engineering as components tends to become

worse with time due to increased wear and tear. On the other hand negative

ageing has an opposite effect on the residual lifetime. Negative ageing is also

known as beneficial ageing.

1.5.2 Basic reliability classes

Concept of ageing describes how a component or system improves or deterio-

rate with age. Many classes of life distributions are categorized or defined in
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the literature according to their ageing properties. An important aspect of such

classification is that the exponential distribution is nearly always a member of

each class. The notion of stochastic ageing plays an important role in any relia-

bility analysis and many test statistics have been developed in the literature for

testing exponentiality against different ageing alternatives.

The concept of increasing and decreasing failure rates for univariate distribu-

tions have been found very useful in reliability theory. The classes of distributions

having these ageing properties are designated as the IFR and DFR distributions.

Other classes such as IFRA, NBU, NBUE, and DMRL have also been of much

interest. The notion of harmonically new better than used in expectation (HN-

BUE) was introduced by Rolski [13] and studied by Klefsjo [(14), (15)].

We are now giving the formal definitions of basic reliability classes. Most

of the reliability classes are defined in terms of the failure rate r(t), conditional

survival function F̄ (x+t)

F̄ (t)
, or the mean residual life µ(t). All these three functions

provide probabilistic information on the residual lifetime and hence ageing classes

may be formed according to the behavior of the ageing effect on a component.

F is said to be IFR if F̄ (x+t)

F̄ (t)
is decreasing in 0 ≤ t < ∞ for each x ≥ 0. It is

decreasing failure rate(DFR) distribution if F̄ (x+t)

F̄ (t)
is increasing in t or F is IFR

(DFR) if and only if −logF̄ (t) is convex (concave) when the density exists, IFR

(DFR) is equivalent to r(t) = f(t)

F̄ (t)
being increasing (decreasing) in t ≥ 0. F is

said to be constant failure rate distribution if r(t) is constant or F is increasing

as well as decreasing.

Assuming a failure rate decreasing during infant mortality phase, next con-

stant during the so-called useful phase, and finally, increasing during the so-called

wearout phase. In reliability literature such failure rate functions are said to have

a bathtub shape. That is, F is said to be bathtub shaped failure rate distribution

if r(t) is decreasing for 0 < t < t0, constant for t0 < t < t1, and increasing for
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t1 < t < ∞. Then F is said to be an inverse bathtub shaped failure rate distri-

bution if r(t) is increasing in 0 < t < t0, constant for t0 < t < t1 and decreasing

in t1 < t < ∞.

There are many lifetime distributions that have been proposed in the litera-

ture, well studied by several researchers, and applied in a wide range of areas.

We shall review some of them with respect their ageing properties.

Exponential Distribution:-

The exponential distribution is applied in a wide variety of statistical procedures.

Currently among the most prominent applications are in the field of life testing.

The exponential life distribution provides a good description of the life length of

a unit which does not age with time. The density function is

f(t) = λe−λt, λ > 0, t ≥ 0

and

F̄ = e−λt, ∀ t ≥ 0

It has a constant failure rate, that is, r(t) = λ, ∀ t ≥ 0

A property of the exponential distribution which makes it especially impor-

tant in reliability theory and application is that the remaining life of a used

component is independent of its initial age (the memoryless property).

Gamma distribution:-

The density function of a standard two-parameter gamma distribution is

f(t) = (
λαtα−1

Γα
)e−λt, α, λ > 0
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The distribution function F(x) may be written as

F (t) = 1−
α−1∑
i=0

(
(λt)i

i!
)e−λt, for t ≥ 0

It can be shown, by a change of variable, that

[r(t)]−1 =

∫ ∞

0

(1 +
u

t
)α−1e−λudu

The distribution F(t) is DFR for 0 < α ≤ 1 and IFR for α ≥ 1. For α = 1,

F (x) = 1− e−λt, an exponential distribution which is both IFR and DFR.

Weibull distribution :-

The Weibull distribution is named after the Swedish Physicist Waloddi Weibull

who in 1939 used it to represent the distribution of the breaking strength of

material and in 1951 for variety of other applications. The survival function of

two-parameter Weibull is

F̄ (t) = 1− e(−λt)α , for t ≥ 0, α, λ > 0,

and the failure rate function, r(t) = λα(λt)α − 1, for t > 0.

Thus the Weibull distribution F is IFR for α ≥ 1 and DFR for 0 < α ≤ 1; for

α = 1, F (t) = 1− e−λt, the exponential distribution. Note that r(t) is increases

to ∞ for α > 1 and decreases to zero for α < 1 as t → ∞. The parameter

α is called shape parameter; as α increases, the failure rate function rises more

steeply and the probability density becomes more peaked.

F is said to be IFRA if −(1
t
)logF̄ (t) is increasing in t ≥ 0. This is equiv-

alent to F̄ (αt) ≥ F̄α(t), 0 < α < 1, t ≥ 0. It is a decreasing failure

rate average (DFRA) distribution if −(1
t
)logF̄ (t) is decreasing in t ≥ 0 or

F̄ (αt) ≤ F̄α(t), ∀ 0 < α < 1.
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Certain class of distribution such as new better than used (NBU), new worse

than used (NWU), new better than used in expectation (NBUE) and new worse

than used in expectation (NWUE) arise naturally in considering replacement

policies.

F is said to be NBU if F̄t(x) ≤ F̄ (x), that is, F̄ (x + t) ≤ F̄ (x)F̄ (t) for

x, t ≥ 0. This means that a device of any particular age has a stochastically

smaller remaining lifetime than does a new device. F is said to be NWE if

F̄ (x+ t) ≥ F̄ (x)F̄ (t) for all x, t ≥ 0.

F is said to be NBUE if
∫∞
0

F̄t(x)dx ≤ µ for t ≥ 0. This means that a

device of any particular age has a smaller mean remaining lifetime than does a

new device. F is said to be NWUE if
∫∞
0

F̄t(x)dx ≥ µ for all t ≥ 0. This

class of life distribution plays an important role in maintenance and replacement

policies and in biostatistics applications.

F is said to be harmonically new better than used in expectation (HNBUE)

if
∫∞
t

F̄ (x)dx ≤ µ exp(− t
µ
) for t ≥ 0. Similarly, F is said to be harmonically

new worse than used in expectation (HNWUE) if
∫∞
t

F̄ (x)dx ≥ µ exp(− t
µ
) for

t ≥ 0.

F is said to be decreasing mean residual life (DMRL) if the mean remaining

life function µ(t) =
∫∞
0

F̄t(x)dx is decreasing in t, that is, µ(s) ≥ µ(t) for

0 ≤ s ≤ t. In other words, the older the device is, the smaller is its mean

residual life. Similarly, F is said to be increasing mean residual life (IMRL)

distribution if µ(s) ≤ µ(t) for 0 ≤ s ≤ t.

F is said to be Laplace class L -distribution if for every s ≥ 0,∫∞
0

e−stF̄ (t)dt ≥ µ
1+s

. The expression µ
1+s

can be written as for
∫∞
0

e−stḠ(x)dx,

where Ḡ(x) = e
−x
µ . This means that the inequality is one between Laplace trans-

forms of F̄ and of an exponential survival function with the same mean as F

(15).
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F is said to be new better than used in failure rate (NBUFR) if r(t) > r(0)

for t ≥ 0 (11). F is said to be new worse than used in failure rate(NWUFR) if

r(t) < r(0) for t ≥ 0.

F is said to be new better than used in failure rate average (NBAFR or

NBUFRA) if r(0) ≤ 1
t

∫ t

0
r(x)dx ∀ t ≥ 0. Note that this is equivalent to

r(0) ≤ −logF̄ (t)
t

, t ≥ 0. Similarly, F is said to be new worse than used in failure

rate average (NWUFRA) if r(0) ≥ −logF̄ (t)
t

, t ≥ 0.

F is said to be new better than used in convex ordering (NBUC) if∫∞
y

F̄ (t|x)dt ≤
∫∞
y

F̄ (t)dt ∀ x, y ≥ 0.

These notion should be applied to complex systems. If we consider the time

dynamics of such systems, we want to investigate how the reliability of the whole

system changes in time if the components have one of the above mentioned ageing

property.

1.5.3 Chain of implications of the ageing classes

The chain of possible implications of the ageing classes are given below.

IFR −→ IFRA −→ NBU −→ NBUFR −→ NBUFRA

↓ ↓

↓ NBUC

↓ ↓

DMRL −→ NBUE −→ HNBUE −→ L

If we reverse the inequalities and interchange increasing and decreasing, we

obtain the classes DFR, DFRA, NWU, IMRL, NWUE, HNWUE, L̄ , NWUFR,

NWUFRA and NWUC. They satisfies the same chain of implications. These are

sometimes referred to as the dual classes and their roles are to define negative

ageing effects to a device.
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Classes of life distributions having monotone residual variance are also stud-

ied in the literature. There are decreasing variance residual life (DVRL), net

decreasing variance residual (NDVRL) and corresponding dual classes. It is ob-

served that there is intimate connection between DVRL (IVRL) distributions.

It is seen that no implications hold between DVRL and NBUE classes. One can

present improved bounds on survival functions and moments of DVRL (IVRL)

and NDVRL (NIVRL) classes compared to the known bounds for DMRL (IMRL)

distributions. All these matters can be found in Launer [16] and Gupta et. al.

[17].

Amongst the partial orders introduced in the literature some are used for

directly comparing probability distributions with the exponential distribution to

describe classes of distribution having certain positive ageing properties. Besides

these direct comparisons, many partial orders are utilized for involving compar-

ison between probability distributions of residual life times at different ages in

order to describe positive ageing. Deshpande et. al. [18] distinguished between

two types of positive ageing viz. 1) Younger better than older (YBO) type ageing

wherein the effect of ageing is progressive and the unit deteriorates monotoni-

cally in some sense, with increasing age; and 2) New better than used (NBU)

type ageing wherein the comparison is only between a new unit and a used unit.

Deshpande et. al. [18] observed that the YBO and NBU comparisons in terms

of some specific partial orders lead to the same class of distributions.

Apart from the classes of life distributions based on notions of ageing which

are discussed in this work, the life distributions which are heuristic extension of

IFR (DFR) and NBU (NWU) classes to random intervals are available in litera-

ture (see Singh and Deshpande [19]). The extended distributions are stochastic

increasing failure rate (SIFR), and stochastic new better than used (SNBU).

It is established by these authors that the following chain of implications hold
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between these classes.

IFR −→ NBU

↓ ↓

SIFR −→ SNBU

The closure of these ageing properties under Poisson shock model is also estab-

lished.

1.5.4 Formal definitions of discrete life distribution

classes

Most lifetime distributions are continuous and hence many continuous distribu-

tions have been studied and presented in the literature. However, in realistic

situations it is possible to find discrete failure data, for example, a series of re-

ports collected weekly or monthly displaying the number of failures of a device,

with no specification for failure times. Another example which can be seen is

when a device operating on demand and the worker staff observe the number of

successful demands executed before failure.

We shall define the discrete version of the classes of continuous lifetime dis-

tributions. Following are the classes corresponding to positive ageing.

Let X be a discrete life length taking on integer values 0, 1, 2, ... . The

reliability function, denoted by P̄k, is defined as

P̄k = P (X > k), k = 0, 1, 2, ....

Assuming P̄0 = 1.

Definition 1: The survival probability P̄k is said to be discrete IFR if the

discrete conditional survival function P̄k+1

P̄k
is decreasing in k=0, 1, 2, ... or the

18



discrete failure rate function r(k), k=0, 1, 2, ... is increasing.

Definition 2: The survival probability P̄k is discrete IFRA if [P̄k]
1/k is decreasing

in k=0, 1, 2,....

Definition 3: The survival probability P̄k is said to be discrete NBU if P̄k+l ≤

P̄k P̄l for k, l=0, 1, 2, ... This means that a device of any particular age has a

stochastically smaller remaining lifetime than does a new device.

Definition 4: The survival probability P̄k is said to be discrete NBUE if P has

finite mean and P̄k

∑∞
j=0 P̄j ≥

∑∞
j=k P̄j for k=0, 1, 2, ...

Definition 5: The survival probability is said to be DMRL if P̄k has finite mean

and
∑∞

j=k P̄j

P̄k
is decreasing in k=0, 1, 2, ...

Definition 6: The survival probability P̄k is said to be discrete HNBUE if∑∞
j=k P̄j ≤ µ (1− (1/µ))k for k=0, 1, 2, ...

By reversing the inequalities and changing decreasing to increasing we get

the definitions corresponding to the dual classes. The implication between these

classes of discrete distribution are the same as in the continuous case.

1.6 Review of literature and objectives

Ageing or lifetime of a system has an important role in the area of engineering

and biology. Failure rate functions have served as the basis in the development

of many lifetime models. Distributions which exhibit constant hazard rates got

most of researchers’attention at early times. The exponential distribution is an

example for a constant hazard rate function. The concept of non constant haz-

ard rates has received increased attention with the realization that there existed

such cases. The concept of non constant hazard rates and related ideas have

been elaborated by Barlow and Proschan [20] and Shaked and Shanthikumar

[21]. Koutras [22] and Ross et al [23] gives the real life applications of increas-

ing failure rates. Barlow et al.[24], Barlow and Marshall [25], and Barlow and
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Marshall [26] studied the properties and bounds for the distributions which show

monotone hazard rate. The most popular distributions that have IFR are the

gamma and Weibull distributions (these distributions also exhibit decreasing and

constant failure rates). Gupta [27] and Gupta and Kundu [28] introduced the ex-

ponentiated exponential distribution and the weighted exponential distribution

as alternatives to the gamma and Weibull distributions, respectively. Cancho et

al. [29] introduced a new lifetime distribution with increasing failure rate, named

as the Poisson-exponential (PE) distribution.

Probabilistic models of decreasing failure rate processes have studied by Coz-

zolino [30]. Proschan [31] gave the theoretical explanation of observed decreasing

failure rate. Adamidis and Loukas [32] studied a decreasing failure rate distribu-

tion namely ‘the exponential geometric distribution’. Tahmasbi and Rezaei [33]

developed a DFR model by compounding exponential distribution with logarith-

mic series distribution and termed it as ‘the exponential logarithmic distribution’.

Chahkandi and Ganjali [34] introduced ‘the exponential binomial distribution’

as a decreasing failure rate family of distributions, which can be viewed as an

alternative to both exponential geometric distribution and exponential logarith-

mic distribution. Kus [35] considered another class of decreasing failure rate

distribution namely ‘the exponential Poisson distribution (EPD)’.

After many years, researchers find that there are lot of situations where the

hazard rate shows non-monotone failure patterns. The best example of such

situation is the human life. Then they search different models that show non-

monotone hazard rates and find that for different choices of parameters Weibull

and gamma distributions’ failure rate give non-monotone hazard rate. Many

authors studied and developed non-monotone hazard rates by modifying existing

models or generalizing the existing models. The non-monotone distributions

serve as adequate models for the survival time of many industrial products.
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Such failure rate curves are also known as the U-shaped or J-shaped curves.

Many parametric families of bathtub curve failure rate distributions have been

introduced in literature during past several years.

New bathtub curve fitting models were proposed one by one since the 1980s.

Glaser [36] and Lawless [2] have been given many examples of bathtub curve

failure rate life distributions. Hjorth [38] described bathtub curve failure rate

distributions by mixtures of a set of increasing failure rate distribution for com-

peting risk model. Lai et al. [37] discussed the bathtub curve failure rate distri-

butions. Xie et al. [48] studied modified Weibull extension models with bathtub

curve failure rate function useful in reliability related decision making and cost

analysis. Xie et al. [40] investigated some models extending the traditional

two-parameter Weibull distribution. Navarro and Hernandez [41] studied the

shape of reliability functions by using the s-equilibrium distribution of a renewal

process and also studied how to obtain distribution with bathtub curve failure

rate using mixture of two positive truncated Normal distributions. Kundu [42]

proposed two parameter exponentiated Exponential distribution and discussed

several properties and different estimation procedures. Wondmagegnehu et al.

[43] studied the failure rate of the mixture of an exponential distribution and a

Weibull distribution. Block et al. [44] discussed the continuous mixture of whole

families of distribution having a bathtub curve failure rate functions. Sarhan

and Kundu [45] derived the generalized linear failure rate distribution and its

properties. Extension of Weibull distributions to make it compatible with bath-

tub curve failure rate data are introduced by Mudholkar and Srivastava [46],

Xie and Lai [47], and Xie et al. [48]. Chen [49] also introduced a two parameter

bathtub curve failure rate model for survival data analysis. Wang [50] studied an

additive model based on the Burr XII distribution for lifetime data with bathtub

curve failure rate. Wang et al. [51] derived Weibull extension with bathtub curve
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failure rate function based on type-II censored samples.

Recently, Lemonte [53] proposed a new exponential type distribution with

constant failure rate, increasing, decreasing, inverse bathtub and bathtub failure

rate functions which can be used in modeling survival data in reliability problems

and fatigue life studies. Zhang et al. [54] investigated the parameter estimation

of 3-parameter Weibull related model with decreasing, increasing, bathtub and

upside-down bathtub shaped failure rates. Parsa et al. [55] investigated the dif-

ference between the change points of failure rate and mean residual life functions

of some generalized Gamma type distribution due to the capability of these dis-

tribution in modeling various bathtub curve failure rate functions. Wang et al.

[56] discussed new finite interval lifetime distribution model for fitting bathtub

curve failure rate curve. Shehla and Ali khan [57] studied reliability analysis us-

ing an exponential power model with bathtub curve failure rate function. Zeng

et al. [58] derived two lifetime distributions, one with 4 parameters and the

other with 5 parameters, for the modeling of bathtub curve failure rate data.

Cordeiro et al. [59] have recently introduced and studied new bathtub shaped

failure rate distributions like Beta extended Weibull family respectively. Mau-

rya et al. [60] introduced new distribution which shows increasing, decreasing

and bathtub curve failure rate functions. A new generalization of the Weibull-

geometric distribution with bathtub failure rate have proposed by Nekoukhou

and Bidram [61]. Recent books of Lai and Xie [12] and also Marshall and Olkin

[3] give extensive discussions concerning mixtures of survival functions and also

bathtub-shaped failure rates.

Shafiq and Viertl [62] proposed generalized estimators for the parameters

and failure rates of bathtub curve failure rate distributions used to model fuzzy

lifetime data. Cordeiro et al. [63] introduced new Lindley Weibull distribution

which accommodates unimodal and bathtub shaped failure rates. Dey et al. [64]
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introduced a new distribution alpha-power transformed Lomax distribution with

decreasing and inverse bathtub curve failure rate distribution. Al-abbasi et al.

[65] proposed a three parameter generalized Weibull uniform distribution that

extends the Weibull distribution to have bathtub curve failure rate or decreas-

ing failure rate property. Shoaee [66] investigated two bivariate models, viz.,

bivariate Chen distribution and bivariate Chen-Geometric distribution, that has

bathtub curve failure rate or increasing failure rate functions. Ahsan et al. [67]

studied the reliability analysis of gas-turbine engine with bathtub curve failure

rate distribution. Chen and Gui [68] discussed the estimation problem of two

parameters of a lifetime distributions with a bathtub curve failure rate functions

based on adaptive progressive type-II censored data.

Abd-Elrahman [69] derived a new distribution with Increasing, decreasing

and inverse bathtub curve failure rate functions. For the characterization of

bathtub and other failure rate functions, see Glaser [36]. Bourguignon et al. [70]

describe in detail the decreasing failure rate and inverse bathtub curve failure rate

functions. Dimitrakopoulou et al [71], Sharma et al [72], Alkarni [73], Maurya et

al [74], and Kavya and Manoharan [75] developed and studied inverse bathtub

shaped hazard rate distributions.

The following are the specific objectives of the thesis. Inspired by our ex-

tensive review of the literature, we try to develop a new transformation for

generating lifetime distributions. Our aim is to obtain a transformation such

that the generated distributions are convenient to use in terms of mathematical

calculation, simulation and data analysis. Next, we construct new lifetime mod-

els by applying existing distributions in the newly introduced transformation.

The study of statistical properties is an important part of our work. In order to

examine the flexibility and suitability of the proposed models, we compare the

new models with other major lifetime distributions. It is also our objective to
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generalize the newly developed transformation to construct other lifetime distri-

butions and examine their properties. Yet another objective is to estimate the

stress-strength reliability for the proposed model.

1.7 An overview of the thesis

The thesis mainly focusses on the development of new lifetime distributions which

are parsimonious. Chapter 1 reviews the existing literature and provides an

introduction to our work. In chapter 2 we develop a new transformation which

is parsimonious in parameters. We go on to discuss some of the properties

of the transformation in the same chapter. Construction of three new lifetime

distributions using the transformation and an examination of their properties are

carried out in Chapter 3. Chapter 3 also includes a discussion of its flexibility

and suitability. In Chapter 4, we generalize the transformation and develop new

lifetime model using the exponential distribution as the baseline distribution.

The chapter also includes the properties, simulation study and real life data

analysis. Estimation of stress-strength reliability for the newly proposed model

is the principal focus of Chapter 5, along with a discussion on the asymptotic

distribution of stress-strength reliability, simulation study and application. In

the final chapter we incorporate the conclusions and briefly outline potential lines

of research for the future.
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Chapter 2

Introduction of New

Transformation For Lifetime

Models

2.1 Introduction

The development of statistical distributions is an old but ever relevant topic in

statistics1. After the monumental work by Pearson [76] for generating statistical

distributions using the system of differential equation approach, several general

methods have been developed for generating family of distributions. Burr [77] a

method based on differential equation that can take on a wide variety of shapes

for continuous distributions. Johnson’s [78] translation method for generating

system of frequency curves and the quantile method to generate distributions

proposed by Hastings et al. [79] and Tukey [80] are other milestone set in this

direction.

For the past several years, many authors have studied and introduced different

methods to propose new distributions using the existing distributions as the

1This chapter is based on Kavya, P., Manoharan, M. (2021)
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baseline distribution. For example, if G(x) is some baseline distribution function,

then a new distribution function is obtained as

F (x) = (G(x))α,

where α > 0 is a shape parameter. This is the well-known Lehmann family found

useful in modeling failure time data as revealed in several research works, see,

e.g., Gupta et al. [81]. Several useful distributions have been proposed in the

literature using this idea see Nadarajah and Kotz [82] and Nadarajah [83].

Since 1980, methodologies of generating new distributions shifted to adding

parameters to an existing distribution or combining existing distributions (see

Lee et al. [84]). For instance, method of skew distributions by Azzalini ([85],

[86]). By compounding a continuous distribution with a classic discrete distri-

bution Adamidis and Loukas [32] have introduced exponential-geometric (EG),

and Kus [87] has proposed exponential-Poisson distribution. Both these distribu-

tions show a decreasing failure rate. Generalized exponential-power series class

of distributions given by Mahmoudi and Jafari [88] and Silva et al. [89] pro-

posed a compound class of extended Weibull-power series distributions. Method

of adding parameters to an existing distribution, the notable works were done

by Mudholkar and Srivastava [46] and Marshall and Olkin [90]. Cordeiro et al.

[91] proposed a new class of distributions by adding two new shape parameters.

In most of the methods, the authors add new parameters to the existing mod-

els. Even though it gives greater flexibility to the model, the estimation of the

parameters can become complicated.

Quadratic Rank Transmuted Map (QRTM) is a technique to generalize a

baseline distribution, which is introduced by Shaw and Buckly [92]. Various

generalizations have been introduced based on QRTM in the literature. Some

of such generalized distributions are, transmuted extreme value distribution pro-
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posed by Aryal and Tsokos [93], transmuted log-logistic distribution given by

Aryal [94], and transmuted inverse Weibull distribution introduced by Khan et

al. [95].

Other well-known methods like beta-generated method proposed by Eugene

et al [96], transformed-transformer method (T-X family) by Alzaatreh et al. [97],

composite method by Cooray and Ananda [98], and inverse probability integral

transformation method by Ferreira and Steel [99] are available in the literature.

Kumar et al. [100] introduced a method to get new lifetime distributions

called DUS (Dinesh-Umesh-Sanjay) transformation. They also proposed another

method by using the sine function (Kumar et al. [101]) to construct new life dis-

tributions. The main advantage of both of these methods is that the new distri-

butions preserve the property of being parsimonious in the parameter. Recently,

Maurya et al. [60] proposed a generalized DUS transformation for producing

some useful lifetime distributions.

The readers can consult the survey article by Kotz and Vicari [102] which

highlighted the milestone of the early development of statistical distributions.

Further, Alexander et al. [103] mentioned the new techniques for building mean-

ingful distributions are widely investigated, including the two-piece approach by

Hansen [104], the pertubation approach of Azzalini and Capitanio [105], and

compounding approach by Barreto-Souza et al. [106].

The principle of parsimonious modeling of lifetimes has regained its impor-

tance in recent times. The value of stochastic modeling in dealing with the

inevitable uncertainty and risk is nowadays highly appreciated. However, sev-

eral families of distributions/models used in stochastic modeling of lifetimes are

often non-parsimonious, unnatural, theoretically unjustified, and sometimes un-

necessary. In this chapter, we propose a transformation for obtaining a new

class of distributions. The distributions obtained from this transformation are
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parsimonious in parameter.

2.2 KM Transformation

Our motivation was to introduce a new transformation without additional pa-

rameters to generate probability distributions and which fit data reasonably well.

Based on our study of the relevant literature in the area, we were motivated to

try different transformations. The one we describe below have many properties

that make it suitable in a variety of situations. The success of the transformation,

however, has to be decided based on how well it can fit real life data in different

situations. The newly introduced transformation will now on be referred to as

the Kavya-Manoharan (KM) transformation.

Let X be a random variable with cumulative distribution function (cdf) G(x)

and probability density function (pdf) g(x) of some baseline distribution. Then

the cdf F (x) of new distribution is defined as,

F (x) =
e

e− 1
[1− e−G(x)]. (2.1)

The first derivative of F (x) gives the pdf f(x) of the new distribution. Then the

pdf is

f(x) =
e

e− 1
g(x)e−G(x), −∞ < x < ∞ (2.2)

The new distribution function and the pdf satisfies all properties of a cdf and a

pdf.
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The survival function of the model is obtained as

F (x) =1− F (x)

=
e1−G(x) − 1

e− 1
(2.3)

The main objective of our study is to introduce a transformation that yields

new lifetime models/distributions by using a given baseline distribution. We do

not add any additional parameters to keep the model adjusted to the existing

uncertainty and focus on modeling the lifetime with a procedure that supplies

correct parsimonious results. The procedure transforms the response variable

to achieve a model with interesting ageing properties as revealed through the

hazard rates.

2.3 Hazard rate function

The hazard rate measures the propensity of an item to fail or die depending on

the age it has reached. It is part of a wider branch of statistics called reliabil-

ity theory, which is a set of methods for predicting the amount of time until a

certain event occurs, such as the death or failure of an engineering system or

component. The concept is applied to other branches of research under slightly

different names, including duration analysis (economics), and event history anal-

ysis (sociology).

To find the hazard rate of the proposed model, substitute Equations (2.2)

and (2.3) in (1.2), then the hazard rate function is obtained as

h(x) =
g(x)e1−G(x)

e1−G(x) − 1
. (2.4)
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2.4 Shapes of density and hazard rate functions

Here the shapes of the density and hazard functions are explained analytically.

We first find the derivative of the density function with respect to x and equate

it to zero.

f ′(x) =
e(1−G(x))

e− 1
[g′(x)− (g(x))2] = 0 (2.5)

Here (2.5) may have more than one root. Suppose x = x0 is a root of

(2.5), then it corresponds to a local maximum if f ′′(x) < 0, a local minimum if

f ′′(x) > 0, and a point of inflection if f ′′(x) = 0.

In similar way, the critical points of h(x) are the roots of the equation

h′(x) =
g′(x)e1−G(x)

e1−G(x) − 1
− (g(x))2e1−G(x)

e1−G(x) − 1
+

(g(x))2e2(1−G(x))

(e1−G(x) − 1)2
= 0. (2.6)

Here (2.6) may have more than one root. Suppose x = x0 is a root of

(2.6), then it corresponds to a local maximum if h′′(x) < 0, a local minimum if

h′′(x) > 0, and a point of inflection if h′′(x) = 0.

2.5 The reversed hazard rate function

The concept of reversed hazard rate of a random life is defined as the ratio

between the life probability density to its distribution function. This concept

plays a role in analyzing censored data and is applicable in such areas as Forensic

Sciences. The reversed hazard rate of a random variable X is defined by

rh(x) =
f(x)

F (x)
, F (x) > 0 (2.7)
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The reversed hazard function of the new distribution is,

rh(x) =
g(x)e−G(x)

1− e−G(x)
(2.8)

2.6 Summary of the chapter

In this chapter, we have introduced a new transformation for lifetime models.

The main advantage of the KM transformation is that there is no added parame-

ters required. So, mathematical calculations, estimation of parameters, and sim-

ulation study of new lifetime models become convenient. The general equations

for pdf, cdf, survival function, hazard rate and reversed hazard rate functions for

the lifetime models are discussed. In the following chapters we gauge the suc-

cess of the newly introduced transformation by applying it to different existing

lifetime models and comparing the resultant models to real data.
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Chapter 3

Development of New Lifetime

Models Using KM

Transformation

3.1 Introduction

Exponential, Weibull, and Lomax distributions have wide applications in reliabil-

ity and survival analysis1. Using these distributions as the baseline models, many

authors developed new distributions. Many types of generalized exponential dis-

tributions obtained by Khan and Jain [107]. Gupta and Kundu [108] introduced

the three-parameter generalized exponential distribution and the monotonicity

of the failure rates were studied. Gupta and Kundu [109] studied some properties

of a new family of distributions, namely exponentiated exponential distribution,

discussed in Gupta et al. [81]. Khan et al. [95] proposed the transmuted gener-

alized exponential distribution using the QRTM method. Adamidis and Loukas

[32] constructed a two parameter lifetime distribution by compounding the ex-

1This chapter is based on Kavya, P, Manoharan, M. (2021), and Manoharan, M., Kavya,
P. (2022)
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ponential distribution with the geometric distribution, called the exponential

geometric (EG) distribution. Kus [87] obtained a compound of the exponen-

tial distribution with that of Poisson and it was named the exponential Poisson

(EP) distribution. Tahmasbi and Rezaei [33] obtained the exponential logarith-

mic (EL) distribution by using the same compounding mechanism. The extended

EG distribution was considered by Adamidis et al. [110].

Oguntunde et al. [111] studied the Weibull-exponential distribution, its prop-

erties and applications. Ahmad et al. [112] developed a new Weibull-X fam-

ily of distributions along with its properties, characterizations and applications.

Kharazmi [113] generalize the Weibull distribution to a new class referred to as

the generalized weighted Weibull (GWW) distribution with one scale parameter

and two shape parameters. It is investigated that the new model has increasing,

decreasing and upside-down bathtub shaped hazard. Elbatal et al. [114], Kavya

and Manoharan [75], and Ishaq and Abiodun [115] proposed new lifetime models

using Weibull distribution.

The Lomax distribution has wide applications in many fields like economics,

actuarial science, and so on. The Lomax distribution is also called Pareto Type II

distribution. The distribution was introduced by Lomax [116] and it is a heavy-

tailed distribution. It has also been useful in reliability and life testing problems

in engineering and survival analysis as an alternative distribution [117, 118]. The

Lomax distribution shows decreasing failure rate. Modified and extended ver-

sions of the Lomax distribution have been studied; examples include the weighted

Lomax distribution [118], exponential Lomax distribution [119], exponentiated

Lomax distribution [72], gamma Lomax distribution [121], transmuted Lomax

distribution [97], Poisson Lomax distribution [123], McDonald Lomax distribu-

tion [53], Weibull Lomax distribution [124], power Lomax distribution [125],

Kumaraswamy-Generalized Lomax distribution [126], Gompertz-Lomax distri-
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bution [127], and DUS-Lomax distribution [128]. Besides, estimation of the

parameters of Lomax distribution under general progressive censoring has been

considered by Al-Zahrani and Al-Sobhi [129].

The main objective of this chapter is to introduce three new lifetime mod-

els using KM transformation and study the analytical characteristics and the

applicability of these models in reliability and survival analysis.

3.2 KM-Exponential model

The exponential distribution has been widely used in reliability and survival

analysis because of its simplicity and analytical tractability. The exponential

distribution’s hazard function is a constant, but this need not be the case in

real-life situations. So we try to obtain a new distribution with a non-constant

hazard function by using the exponential distribution as the baseline distribution

in our newly proposed transformation. Exponential distribution has pdf g(x) =

λe−λx, x > 0, λ > 0. Now employing the KM transformation and using this

in Equation (2.2), we get a new distribution. We call this the KM-Exponential

(KME) distribution.

The pdf and cdf of the KME distribution are respectively,

f(x) =
λe−λxee

−λx

e− 1
, x > 0, λ > 0, (3.1)

F (x) =
e

e− 1
[1− e−(1−e−λx)], x > 0, λ > 0,

(3.2)

and the hazard rate function is,

h(x) =
λe−λxee

−λx

ee−λx − 1
, x > 0, λ > 0. (3.3)

The graphical representation gives a better understanding of the shapes of the
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Figure 3.1: The cumulative distribution function plot of KME distribution

cdf, pdf and hazard rate. The graph is given in Fig. 3.1 and 3.2. Throughout

this thesis, we use the software MATHEMATICA [130] for plotting the graphs.

By examining the plots, we conclude that the hazard rate function of KME

distribution exhibits decreasing failure rate property.
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(a) Plot of pdf of the distribution
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(b) Hazard rate plot of the distribution

Figure 3.2: The pdf and hazard rate plot of KME distribution for different values
of parameters.
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3.2.1 Moments of KME distribution

The moments are a set of statistical parameters to measure a distribution. The

rth raw moment of the proposed distribution is

E(Xr) =
λ

e− 1

∫ ∞

0

xre−λxee
−λx

dx.

Expanding exponential term, we get,

E(Xr) =
λ

e− 1

∫ ∞

0

xre−λx

∞∑
m=0

(e−λx)m

m!
dx,

=
λ

e− 1

∞∑
m=0

1

m!

∫ ∞

0

xre−(λ+λm)xdx,

which reduces to,

E(Xr) =
1

λr(e− 1)

∞∑
m=0

1

m!

r!

(m+ 1)r+1
. (3.4)

Variance and other higher order central moments can be obtained from this

expression. Put r = 1 in Equation (3.4), then the mean of the KME distribution

is obtained as

E(X) =
1

λ(e− 1)

∞∑
m=0

1

m!

1

(m+ 1)2
.

The variance of the distribution is defined as

V (X) = E(X2)− (E(X))2

The variance of the proposed model is

V (X) =
1

λ2(e− 1)

∞∑
m=0

1

m!

2

(m+ 1)3
− 1

λ2(e− 1)2

[ ∞∑
m=0

1

m!

1

(m+ 1)2

]2
.
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3.2.2 Moment generating function

Let X be a random variable, then the moment generating function (mgf) is

defined as,

MX(t) = E(etX).

MX(t) =
λ

e− 1

∫ ∞

0

etxe−λxee
−λx

dx

=
λ

e− 1

∞∑
m=0

1

m!

∫ ∞

0

e−(λ+λm−t)xdx

=
λ

e− 1

∞∑
m=0

1

m!

1

(λ+ λm− t)
for t < λ.

We can also obtain the rth raw moment from mgf by the equation

µ
′

r =
drMX(t)

dtr
|t=0.

3.2.3 Characteristic function

Here we have derived the characteristic function of the proposed model.

ΦX(t) =
λ

e− 1

∞∑
m=0

1

m!

1

(λ+ λm− it)
,

where i =
√
−1.

3.2.4 Median

If M is the median of the distribution, then
∫M

−∞ f(x)dx = 1/2. Median of the

new distribution is obtained as,

M =
−1

λ
log

[
1 + log

(
e+ 1

2e

)]
(3.5)
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3.2.5 Mode

The mode is the value which occurs most frequently in a data set. The mode is

only of interest for large data sets, as in small samples the mode strongly depends

on random variations of the data. The relative position of the mode, the median,

and the mean provides an indication of the skewness of a distribution. The pdf

of the KME model is,

f(x) =
λ

e− 1
e−λxee

−λx

The mode of the KME (λ) can be obtained as a solution of the following nonlinear

equation

d

dx
f(x) = 0

Therefore,

f ′(x) =
−λ2

e− 1
e−λxee

−λx

[1 + e−λx] = 0

It is not possible to obtain the explicit solution in the general case. It has to be

obtained numerically.

3.2.6 Mean deviation

The mean deviation about mean is defined as

δ1(x) =

∫ ∞

0

|x− µ|f(x)dx

=

∫ µ

0

(µ− x)f(x)dx+

∫ ∞

µ

(x− µ)f(x)dx,
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where µ is the mean. After simplification, we get,

δ1(x) = 2µF (µ)− 2µ+ 2

∫ ∞

µ

xf(x)dx,

where F (.) is the proposed cdf, and

∫ ∞

µ

xf(x)dx =
λ

e− 1

∫ ∞

µ

xe−λxee
−λx

dx,

=
λ

e− 1

∞∑
m=0

1

m!

∫ ∞

µ

xe−(λ+λm)xdx.

The complementary incomplete gamma function is defined as Γ(n, x) =∫∞
x

tn−1e−tdt, which can also be written as (n − 1)!e−x
∑n−1

k=0
xk

k!
. Applying this

result in the above expression, we get,

δ1(x) = 2µF (µ)− 2µ+
2λ

e− 1

∞∑
m=0

e−(λ+λm)µ(1 + (λ+ λm)µ)

m!(λ+ λm)2
.

Mean deviation about median is defined as

δ2(x) =

∫ ∞

0

|x−M |f(x)dx,

=

∫ M

0

(M − x)f(x)dx+

∫ ∞

M

(x−M)f(x)dx,

where M denotes median. After simplification, we get

δ2(x) = −µ+ 2

∫ ∞

M

xf(x)dx.

Using complementary incomplete gamma function, we can write

∫ ∞

M

xf(x)dx =
λ

e− 1

∞∑
m=0

e−(λ+λm)M(1 + (λ+ λm)M)

m!(λ+ λm)2
.

Therefore, mean deviation about median is
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δ2(x) = −µ+
2λ

e− 1

∞∑
m=0

e−(λ+λm)M(1 + (λ+ λm)M)

m!(λ+ λm)2
.

3.2.7 Quantile function

The quantile function is useful when generating random observations from a

distribution. It can also be utilized in estimating measures of shapes (skewness

and kurtosis) when the moments of the random variable do not exist. The pth

quantile function Q(p) of a distribution is defined as

F (Q(p)) = p.

Here,

e

e− 1
[1− e−(1−e−λQ(p))] =p

e−λQ(p) =1 + log

(
1− p(e− 1)

e

)

The pth quantile function of the KME distribution is obtained as,

Q(p) =
−1

λ
log

[
1 + log

(
1− p(e− 1)

e

)]
. (3.6)

3.2.8 Order statistic

Let X1, X2, · · · , Xn be a random sample of size n from the proposed distribution

and X(1), X(2), · · · , X(n) denote the corresponding order statistics. The pdf and

cdf of the rth order statistics fr(x) and Fr(x) are given by

fr(x) =
n!

(r − 1)!(n− r)!
F r−1(x)[1− F (x)]n−rf(x)
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and

Fr(x) =
n∑

j=r

(
n

j

)
F j(x)[1− F (x)]n−j.

The pdf fr(x) and cdf Fr(x) of r
th order statistic of our proposed distributions

are obtained by using the pdf and cdf of respective distributions.

fr(x) =
n!

(r − 1)!(n− r)!

λe−(λx−r+1)ee
−λx

(e− 1)n

(
1− e−(1−e−λx)

)r−1 (
ee

−λx − 1
)n−r

(3.7)

and

Fr(x) =
n∑

j=r

(
n

j

)
ej

(e− 1)n

(
1− e−(1−e−λx)

)j (
ee

−λx − 1
)n−j

. (3.8)

The pdf of the smallest and the largest order statistics X(1) and X(n) are obtained

by putting r = 1 and r = n respectively in Equation (3.7). The cdf of X(1) and

X(n) are obtained by putting r = 1 and r = n respectively in Equation (3.8).

3.2.9 Entropy

Entropy is interpreted as the degree of disorder or randomness in the system.

The concept of entropy was proposed by Shannon ([131], [132]) in his paper

‘A Mathematical Theory of Communication’ and is also referred to as Shannon

entropy. Entropy has relevance to other areas of mathematics such as combina-

torics and machine learning. The definition can be derived from a set of axioms

establishing that entropy should be a measure of how ‘surprising’ the average

outcome of a variable is. For a continuous random variable, differential entropy

is analogous to entropy. In this section we have obtain three types of entropies.
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Reńyi entropy

Reńyi entropy (Reńyi [133]) is one of the well known entropy measures. If

random variable X has the pdf f(x), then the Reńyi entropy is defined as,

JR(γ) =
1

1− γ
log

[∫
fγ(x)dx

]
, (3.9)

where γ > 0 and γ ̸= 1. From Equation (4.5), we get,

∫ ∞

0

fγ(x)dx =
λγ

(e− 1)γ

∫ ∞

0

(e−λx)γ(ee
−λx

)γ

=
λγ

(e− 1)γ

∞∑
m=0

γm

m!(γ +m)λ
. (3.10)

Using above result, Equation (3.9) becomes,

JR(γ) =
γ

1− γ
log

(
λ

e− 1

)
+

1

1− γ
log

(
∞∑

m=0

γm

m!(γ +m)λ

)
. (3.11)

Tsallis entropy

The Tsallis entropy measure (Tsallis [134]) is defined by,

Tγ(x) =
1

γ − 1

[
1−

∫ ∞

0

fγ(x)dx

]
, γ ̸= 0, γ > 0. (3.12)

After calculation,

Tγ(x) =
1

γ − 1

[
1− λγ

(e− 1)γ

∞∑
m=0

γm

m!(γ +m)λ

]
.
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Havrda and Charvat entropy

The Havrda and Charvat entropy measure (Havrda and Charvat [135]) is defined

by:

HCγ(x) =
1

21−γ − 1

[(∫ ∞

0

fγ(x)dx

) 1
γ

− 1

]
, γ ̸= 0, γ > 0. (3.13)

The Havrda and Charvat entropy measure of the proposed model is obtained as,

HCγ(x) =
1

21−γ − 1

[
λ

e− 1

( ∞∑
m=0

γm

m!(γ +m)λ

) 1
γ

− 1

]
.

3.2.10 Extropy

An alternative measure of uncertainty, called extropy was introduced by Lad et

al. [136]. Suppose an absolutely continuous non-negative random variable X has

pdf f and cdf F , then the extropy is defined as

I(x) =
−1

2

[∫ ∞

0

(f(x))2dx

]
. (3.14)

Put γ = 2 in Equation (3.10), we get

I(x) =
−1

2

[
λ

e− 1

( ∞∑
m=0

2m

m!(m+ 2)λ

)]
.

3.2.11 Ordering

By the ageing of a mathematical unit, component or some other physical or bio-

logical system, we mean the phenomenon by which an older system has a shorter

remaining lifetime, in some stochastic sense, than a newer or younger one. Many

criteria of ageing have been developed in the literature. The stochastic compari-

son of distributions has been an important area of research in many diverse areas

44



of statistics and probability. We are comparing two lifetime variables X and Y

in terms of their failure rates hF (t) and hG(t), density functions f(t) and g(t),

survival functions F (t) and G(t), mean residual lives µF (t) and µG(t) or other

ageing characteristics. Ageing classes can often be characterized by some partial

ordering. For example, in Barlow and Proschan [137], IFR and IFRA classes are

characterized by convex ordering and star-shaped ordering respectively. Many

different types of stochastic orders have been studied in the literature; for exam-

ple Deshpande et al [11] and a comprehensive discussion of ordering is available

in Shaked et al [138]. It is often easy to make value judgements when such order-

ing exist. Stochastic ordering between two probability distributions, if it holds, is

more informative than simply comparing their means or medians only. Similarly,

if one wishes to compare the dispersion or spread between two distributions, the

simplest way would to be to compare their standard deviations or some such

other measures of dispersion.

Stochastic ordering of positive continuous random variables is an important

tool for judging the comparative behavior. There are different types of stochas-

tic orderings that are useful in ordering random variables in terms of different

properties. Here we consider four different stochastic orders, namely, the usual,

the hazard rate, the mean residual life, and likelihood ratio order for proposed

distributions. If X and Y are two random variables with cumulative distribution

functions FX and FY , respectively, then X is said to be smaller than Y in the

� stochastic order (X ≤st Y ) if FX(x) ≥ FY (x) for all x

� hazard rate order (X ≤hr Y ) if hX(x) ≥ hY (x) for all x

� mean residual life order (X ≤mrl Y ) if mX(x) ≥ mY (x) for all x

� likelihood ratio order (X ≤lr Y ) if fX(x)
fY (x)

decreases in x

The implication between the ordering is X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤mrl Y ⇒
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X ≤st Y . The KM family distributions proposed here are ordered with respect

to the strongest ”likelihood ratio” ordering as shown in the following theorem.

It shows the flexibility of the proposed distribution.

Theorem 1. Let X ∼ KME(λ1) and Y ∼ KME(λ2) if λ1 ≥ λ2, then X ≤lr

Y, X ≤hr Y, X ≤mrl Y and X ≤st Y .

Proof. The likelihood ratio is

fX(x)

fY (x)
=

λ1 e−λ1x ee
−λ1x

λ2 e−λ2x ee
−λ2x

(3.15)

and

log
fX(x)

fY (x)
= log λ1 − λ1x+ e−λ1x − log λ2 + λ2x− e−λ2x

thus,

d

dx
log

fX(x)

fY (x)
= −λ1 − λ1e

−λ1x + λ2 + λ2e
−λ2x (3.16)

If λ1 ≥ λ2

d
dx

log fX(x)
fY (x)

≤ 0 ⇒ X ≤lr Y hence X ≤hr Y, X ≤mrl Y and X ≤st Y .

3.2.12 Estimation

The maximum likelihood estimation method is one of the most common meth-

ods for finding the estimates involved in the distribution. In this method, we

maximize the logarithm of the likelihood function for finding the estimates. By

this method, we obtain the maximum likelihood estimate of the parameter λ of
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the KME distribution. The likelihood function is defined as,

L(x;λ) =
n∏

i=1

f(xi, λ)

In our distribution,

L(x;λ) =

(
1

e− 1

)n

λne−λ
∑

xie
∑

e−λxi .

The log-likelihood function of the distribution is given by,

log L(x;λ) = −n log(e− 1) + n log(λ)− λ
n∑

i=1

xi +
n∑

i=1

e−λxi .

Partial derivative of the log-likelihood function with respect to the parameter λ

is

∂ log L

∂λ
=

n

λ
−

n∑
i=1

xi −
n∑

i=1

xie
−λxi .

Equating this partial derivative to zero yields a non - linear equation, and

the solution provides the maximum likelihood estimate of the parameter λ. The

Newton-Raphson method can be used to solve this equation with the help of the

available statistical packages. In this work, we use R [139] language for finding

the numerical solution of the non-linear system of equations.

3.2.13 Simulation study

In this section, we use the Monte Carlo simulation method to study the estima-

tors’ performance of the parameters involved in the newly proposed distribution.

In each experiment, for different values of the population parameters and sam-

ple sizes, 1000 pseudo-random samples have been generated according to Equa-
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tion (3.6) as follows: xi =
−1
λ
log
[
1 + log

(
1− ui(e−1)

e

)]
for i = 1, 2, ..., n. Here

u1, u2, ..., un are independent random observations from the standard uniform

distribution. We calculate the estimator of the parameter for different values of

n and different population parameters for the proposed distribution. Twenty five

combinations of the parameter were considered in the KME distribution: n = 25,

50, 100, 500, 1000, λ = 0.5, 1, 1.5, 2 and 2.5. For 1000 repetitions, the standard

error (SE) of the estimated parameters is computed as the square root of the

average of their corresponding variance. We use R [139] language for simulation

studies in this paper. The simulation study result for the distribution is shown

in Table 3.1.

From Table 3.1, it is clear that the estimates are quite stable and are close to

the true value of the parameter for the given sample sizes. Also, as sample size

increases, the standard error of the maximum likelihood estimates decreases as

expected.

3.2.14 Real data applications

In this section, we examine how the proposed distribution work in real-life data.

For checking their flexibility, we compare the KME distribution with other well-

known distributions available in the literature. Here R [139] language is used

for all the computation. We consider a set of real data of Wheaton River ob-

tained from Choulakian and Stephens [140] for our proposed KME distribution.

Akinsete et al. [141], Lemonte [53], Cordeiro et al. [91], Bourguignon et al. [70],

and Nekoukhou and Bidram [61] have also used this data for their comparison

purpose. The data represents the exceedances of flood peaks (in m3/s) of the

Wheaton River near Carcross in Yukon Territory, Canada. This data provides

72 exceedances from the years 1958 to 1984, presented in Table 3.2.

Here we use AIC (Akaike Information Criterion), BIC (Bayesian Information
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n λ̂ SE(λ̂)

λ = 0.5

25 0.5267 0.1091
50 0.5195 0.0779
100 0.5057 0.0555
500 0.5004 0.0179
1000 0.5002 0.0176

λ = 1

25 1.0440 0.2183
50 1.0289 0.1570
100 1.0148 0.1113
500 1.0023 0.0499
1000 1.0015 0.0353

λ = 1.5

25 1.5597 0.3245
50 1.5269 0.2325
100 1.5116 0.1659
500 1.5023 0.0748
1000 1.5017 0.0530

λ = 2

25 2.0991 0.4361
50 2.0503 0.3121
100 2.0281 0.2227
500 2.0064 0.0999
1000 2.0002 0.0706

λ = 2.5

25 2.6035 0.5380
50 2.5717 0.3920
100 2.5429 0.2789
500 2.5076 0.1249
1000 2.4995 0.0882

Table 3.1: The result of simulation study of KME distribution

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0
12.0 9.3 1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1
2.5 14.4 1.7 37.6 0.6 2.2 39.0 0.3 15.0 11.0
7.3 22.9 1.7 0.1 1.1 0.6 9.0 1.7 7.0 20.1
0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6 5.6 30.8
13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0
1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5
2.5 27.0

Table 3.2: Wheaton River Data.

Criterion), K-S (Kolmogorov-Smirnov) test value, and log-likelihood value for

the comparison. The distribution which shows minimum AIC, BIC and K-S test

values and maximum log-likelihood value is the sign of a better fit for the data
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set. The AIC and BIC are defined as

AIC = −2 log(L̂) + 2k,

and

BIC = −2 log(L̂) + k log(n),

where n is the sample size, k is the number of parameters, and L̂ is the maximum

value of the likelihood function for the considered distribution. The distributions

used for the comparison study are given below:

1. DUS-Exponential(θ) (DUSE(θ)) distribution Kumar et al. [100] with cdf,

F (x) =
1

(e− 1)

[
e(1−e−θx) − 1

]
, x > 0, θ > 0

2. SS-Exponential(θ) (SSE(θ)) distribution Kumar et al. [101] with cdf,

F (x) = cos(
π

2
e−θx), x > 0, θ > 0

3. Generalized DUS Exponential (GDUSE) distribution Maurya et al. [60]

with cdf,

F (x) =
1

e− 1
[e(1−e−λx)α − 1], x > 0, α, λ > 0

4. Exponentiated Generalized Gumbel (EGGu) distribution Cordeiro et al.

[91] with cdf,

F (x) =

[
1−

(
1− e−e−(

x−µ
σ )

)α]β
, x, µ ∈ R, σ, α, β > 0
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The comparison of our proposed distribution with these distributions are given

in Table 3.3.

Model ML estimates LL AIC BIC K-S test value

KME λ̂ = 0.0632 -252.0125 506.025 508.3017 0.110

DUSE θ̂ = 0.09996 -254.4682 510.9364 513.213 0.186

SSE θ̂ = 0.04504 -252.9794 507.9587 510.2354 0.161

GDUSE α̂ = 0.6803, λ̂ = 0.0812 -251.6235 507.247 511.8003 0.113

EGGu α̂ = 0.0988, β̂ = 0.4769, µ̂ = 2.6317, σ̂ = 1.6639 -256.8889 521.8001 530.8845 0.108

Table 3.3: Maximum likelihood (ML) estimates, log-likelihood (LL), AIC, BIC and
K-S test value of the fitted models.

From Table 3.3, we can see that our proposed distribution shows the lowest

AIC and BIC values and the largest log-likelihood value among all the distribu-

tions considered here. The K-S test value for our distribution is slightly higher

than that for the EGGu distribution. Taking everything into account, we con-

clude that the KME distribution provides a better fit for the data set compared

to the other distributions given above. The plot of empirical cdf along with other

cdf of the distributions for the first data set is given in Fig. 3.3. for a better un-

derstanding of the result. In the comparison plots, we denote DUS-Exponential

and SS-Exponential distributions as DUS-Exp and SS-Exp respectively.

Further, we observe that our proposed distribution fits better than the other

distributions mentioned in references Akinsete et al. [141], Cordeiro et al. [91],

Bourguignon et al. [70], and Nekoukhou and Bidram [61]. The distribution

Nadarajah-Haghighi Lindley (NHL) introduced by Pena-Ramirez et al. [142]

behaves slightly better than our proposed distribution. It may be noted that the

NHL distribution involves more parameters than the KME distribution, making

the NHL model’s parameter estimation more complicated.
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Figure 3.3: The empirical cdf and the cdf plots of the fitted distributions for the
Wheaton river data.

3.3 KM-Weibull model

Weibull distribution has wide application in lifetime data analysis. So in this

section, we introduce a new distribution called KM-Weibull (KMW) distribution.

This is done by using Weibull distribution with cdf G(x) = 1 − e−(βx)α , x >
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0, α, β > 0 as the baseline distribution in the KM transformation given in

Equation (2.1). The cdf, pdf, and hazard rate of the KMW distribution are

obtained respectively as

F (x) =
e

e− 1
[1− e−(1−e−(xβ)α )], x > 0, α, β > 0 (3.17)

f(x) =
αβα

e− 1
xα−1e−(xβ)αee

−(xβ)α

, x > 0, α, β > 0 (3.18)

The shape of the pdf is given in 3.4.

Α = 2.0, Β = 3.0

Α = 1.5, Β = 1.5

Α = 3.0, Β = 0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

fH
xL

(a) pdf plot of the KMW distribution

Figure 3.4: The pdf plot of KMW distribution for different values of parameters.

The hazard rate function of the model is

h(x) =
αβα

ee−(xβ)α − 1
xα−1e−(xβ)αee

−(xβ)α

x > 0, α, β > 0. (3.19)

The graphical representation of the hazard rate function of KMW distribution

for different choices of parameters are given in 3.5.
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(b) Increasing hazard rate plot of the KMW distri-
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Figure 3.5: The hazard rate plot of KMW distribution for different values of pa-
rameters.

3.3.1 Moments of KMW distribution

The rth raw moment of the distribution is obtained as

E(Xr) =

∫ ∞

0

xr αβ
α

e− 1
xα−1e−(xβ)αee

−(xβ)α

=
1

β(e− 1)

∞∑
m=0

1

(m+ 1)!

Γ( r
α
− 1)

(m+ 1)
1
α

.

The mean and variance of the proposed model are respectively

E(X) =
1

β(e− 1)

∞∑
m=0

1

(m+ 1)!

Γ( 1
α
− 1)

(m+ 1)
1
α

.

and

V (X) =
1

β(e− 1)

∞∑
m=0

1

(m+ 1)!

Γ( 2
α
− 1)

(m+ 1)
1
α

− 1

β2(e− 1)2

[ ∞∑
m=0

1

(m+ 1)!

Γ( 1
α
− 1)

(m+ 1)
1
α

]2
.
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3.3.2 Moment generating function of the KMW model

The mgf of KMW model is

MX(t) =
αβα

e− 1

∫ ∞

0

etxxα−1e−(xβ)αee
−(xβ)α

=
1

e− 1

∞∑
n=0

∞∑
m=0

(−1)ntn

(m+ 1)!n!βn(m+ 1)nα
Γ(

n

α
+ 1)

3.3.3 Characteristic function of the KMW model

The characteristic function of the KMW model is obtained as,

ϕX(t) =
αβα

e− 1

∫ ∞

0

eitxxα−1e−(xβ)αee
−(xβ)α

=
1

e− 1

∞∑
n=0

∞∑
m=0

(−1)n(it)n

(m+ 1)!n!βn(m+ 1)nα
Γ(

n

α
+ 1)

where i =
√
−1.

3.3.4 Median of KMW model

The median of the KMW distribution is

M =
1

β

[
− log

(
1 + log

(
1− (e− 1)

2e

))] 1
α

3.3.5 Mode of KMW model

We know that the solution of the following nonlinear equation d
dx
f(x) = 0 provide

the mode of the distribution. Here

f ′(x) =
α(α− 1)βα

e− 1
xα−2e−(xβ)αee

−(xβ)α − α2β2α

e− 1
x2(α−1)e−(xβ)αee

−(xβ)α

(e−(xβ)α + 1)
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We cannot get the explicit solution in the general case. It has to be obtained

numerically.

3.3.6 Mean deviation- KMW model

The mean deviation about mean of the KMW model is

δ1(x) =2µF (µ)− 2µ+
2

β(e− 1)

∞∑
m=0

1

(m+ 1)!(m+ 1)
1
α

(
1

α

)
!e

− u1/α

β(m+1)1/α

1/α∑
h=0

uh/α

βh(m+ 1)h/αh!
.

The mean deviation about median of the KMW model is

δ2(x) =− µ+
2

β(e− 1)

∞∑
m=0

1

(m+ 1)!(m+ 1)
1
α(

1

α

)
!e

− u1/α

β(m+1)1/α

1/α∑
k=0

uk/α

βk(m+ 1)k/αk!
.

3.3.7 Quantile function- KMW model

Let X be a random variable with pdf in Equation (3.18), then the quantile

function Q(p) is

e

e− 1
[1− e−(1−e−(Q(p)β)α )] =p

(Q(p)β)α =− log

(
1 + log

(
1− p(e− 1)

e

))
.

We get

Q(p) =
1

β

[
− log

(
1 + log

(
1− p(e− 1)

e

))] 1
α

. (3.20)
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3.3.8 Order statistic- KMW model

The pdf of the rth order statistic of KMW distribution is obtained as,

fr(x) =
n!

(r − 1)!(n− r)!

er−1αβα

(e− 1)n
xα−1e−(xβ)αee

−(xβ)α

[
1− e−(1−e−(xβ)α )

]r−1[
ee

−(1−e−(xβ)α ) − 1

]n−r

(3.21)

The KMW pdf of first order and nth order statistic is obtained by putting r = 1

and r = n in Equation (3.21) respectively. Then

f1(x) =
n!

(n− 1)!

αβα

(e− 1)n
xα−1e−(xβ)αee

−(xβ)α

[
ee

−(1−e−(xβ)α ) − 1

]n−1

,

and

fn(x) =
n!

(n− 1)!

en−1αβα

(e− 1)n
xα−1e−(xβ)αee

−(xβ)α

[
1− e−(1−e−(xβ)α )

]n−1

.

The cdf of the rth order statistic of KMW distribution is obtained as,

Fr(x) =
n∑

j=r

(
n

j

)
ej

(e− 1)n

[
1− e−(1−e−(xβ)α )

]j[
ee

−(1−e−(xβ)α ) − 1

]n−j

. (3.22)

We can easily find the cdf of the first order and nth order statistic of KMW model

by putting r = 1 and r = n in Equation (3.22) respectively.

3.3.9 Ordering- KMW model

In this section, we repeat the procedure given in Section 3.2.11.

Theorem 2. Let X ∼ KMW(α1, β1) and Y ∼ KMW(α2, β2) if α1 = α2 = α and
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β1 ≥ β2 and if β1 = β2 = β and α1 ≥ α2, then X ≤lr Y, X ≤hr Y, X ≤mrl Y

and X ≤st Y .

Proof. The likelihood ratio is

fX(x)

fY (x)
=

α1β1x
α1−1e−(xβ1)α1ee

−(xβ1)
α1

α2β2xα2−1e−(xβ2)α2ee
−(xβ2)

α2
(3.23)

and

log
fX(x)

fY (x)
= logα1 − α1 log β1 + (α1 − 1) log x− (xβ1)

α1 + e−(xβ1)α1

− logα2 − α2 log β2 − (α2 − 1) log x+ (xβ2)
α2 − e−(xβ2)α2

thus,

d

dx
log

fX(x)

fY (x)
=
α1 − 1

x
− α1β1(xβ1)

α1−1 − α1β1(xβ1)
α1−1e−(xβ1)α1

α2 − 1

x
+ α2β2(xβ2)

α2−1 + α2β2(xβ2)
α2−1e−(xβ2)α2 (3.24)

1. Case I: α1 = α2 = α, β1 ≥ β2

d
dx

log fX(x)
fY (x)

≤ 0 ⇒ X ≤lr Y hence X ≤hr Y, X ≤mrl Y and X ≤st Y .

2. Case II: β1 = β2 = β, α1 ≥ α2

d
dx

log fX(x)
fY (x)

≤ 0 ⇒ X ≤lr Y hence X ≤hr Y, X ≤mrl Y and X ≤st Y .
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3.3.10 Maximum likelihood estimation of KMW distri-

bution

We use maximum likelihood method to estimate the parameters of the KMW

distribution α and β. The likelihood function of the distribution is given by

L(x;α, β) =

(
1

e− 1

)n

αnβnα(
n∏

i=1

xα−1
i )e−βα

∑
xα
i e

∑
e−(βxi)

α

.

The log-likelihood function of the distribution is given by,

log L(x;α, β) =− n log(e− 1) + n log(α) + nα log(β) + (α− 1)
n∑

i=1

log(xi)

− βα

n∑
i=1

(xi)
α +

n∑
i=1

e−(βxi)
α

.

Partial derivatives of the log-likelihood function with respect to the parameter

α and β are,

∂ log L

∂α
=
n

α
+ n log(β) +

n∑
i=1

log(xi)−
n∑

i=1

(βxi)
α log(βxi)

(
1 + e−(βxi)

α)
,

(3.25)

and

∂ log L

∂β
=
nα

β
− αβα−1

n∑
i=1

(xi)
α−1
(
xi + e−(xiβ)

α)
. (3.26)

The maximum likelihood estimates of α and β are obtained by solving the non-

linear system of equations ∂ log L
∂α

= 0 and ∂ log L
∂β

= 0. The solution can be found

numerically by using the R [139] language.

Here we are deriving the existence and uniqueness theorem of maximum

likelihood estimates when the other parameter is given.
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Theorem 3. Consider the right hand side of the Equation (3.25) and denoted

it as g1(α; β, x), where β is the true value of the parameter. Then there exists at

least one root for g1(α; β, x) = 0 for αϵ(0,∞) and the solution is unique.

Proof. We have

g1(α; β, x) =
n

α
+ n log(β) +

n∑
i=1

log(xi)−
n∑

i=1

(βxi)
α log(βxi)

(
1 + e−(βxi)

α)
.

We get

lim
α→0

g1(α; β, x) = ∞+ n log(β) +
n∑

i=1

log(xi)− log(βxi)
(
1 + e−1

)
= ∞,

and

lim
α→∞

g1(α; β, x) = 0 + n log(β) +
n∑

i=1

log(xi)−∞ = −∞

Hence there exists at least one root say, α̂ϵ(0,∞), such that g1(α; β, x) = 0. The

root is unique when g′1(α; β, x) < 0 (ie, first derivative of g1(α; β, x)), where

g′1(α; β, x) =
−n

α2
−

n∑
i=1

(βxi)
α(1 + e−(xiβ)

α

) log(βxi)[log(1 + e−(xiβ)) + log(βxi)]

Theorem 4. Consider the right hand side of the Equation (3.26) and denoted

it as g2(β;α, x), where α is the true value of the parameter. Then there exists

at least one root for g2(β;α, x) = 0 for βϵ(0,∞) and the solution is unique when

nα
β2 > α

∑n
i=1 x

α−1
i

[
αxαβ2(α−1) + (α− 1)βα−2(xi + e−(xiβ)

α
)

]
Proof. We have

g2(β;α, x) =
nα

β
− αβα−1

n∑
i=1

(xi)
α−1
(
xi + e−(xiβ)

α)
.

60



We get

lim
β→0

g2(β;α, x) = ∞− 0 = ∞,

and

lim
β→∞

g2(β;α, x) = 0−∞ = −∞

Hence there exists at least one root say, β̂ϵ(0,∞), such that g2(β;α, x) = 0. The

root is unique when g′2(β;α, x) < 0 (ie, first derivative of g2(β;α, x)), where

g′2(β;α, x) =
−nα

β2
+ α

n∑
i=1

xα−1
i

[
αxαβ2(α−1) + (α− 1)βα−2(xi + e−(xiβ)

α

)

]

3.3.11 Simulation study

Here we repeat the procedures performed in Section 2.3. 1000 pseudo–random

samples have been generated for different values of parameters and sample sizes

from the Equation (3.20) as follows: xj =
1
β

[
− log

(
1 + log

(
1− uj(e−1)

e

))] 1
α
for

j = 1, 2, ..., n. We considered Sixteen combinations of the parameters for the

KMW distribution: n = 50, 100, 500, 1000, α = 1.5, 2, 3, β = 0.5, 1, 1.5 and 2.

The result of the simulation study is given in Tables 3.4, 3.5, and 3.6.

Tables 3.4, 3.5, and 3.6 reveal that all the estimators have the consistency

property i.e., standard error decreases as sample size n increases.

3.3.12 Real data application

In this section, we consider a real-life data set of remission times (in months) of a

random sample of 128 bladder cancer patients to show the KMW distribution’s
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α = 1.5 n α̂ β̂ SE(α̂) SE(β̂)

β = 0.5

50 1.5511 0.5097 0.1635 0.0507
100 1.5197 0.5034 0.1142 0.0366
500 1.5032 0.5006 0.0507 0.0166
1000 1.5024 0.5006 0.03587 0.0118

β = 1

50 1.5410 1.0133 0.1626 0.1017
100 1.5244 1.0083 0.1144 0.0731
500 1.5065 1.0025 0.0508 0.0332
1000 1.5012 1.0003 0.0358 0.0235

β = 1.5

50 1.5353 1.5162 0.1619 0.1528
100 1.5231 1.5081 0.1144 0.1096
500 1.5045 1.5006 0.0508 0.0498
1000 1.5013 1.5021 0.0358 0.0354

β = 2

50 1.5440 2.0345 0.1625 0.2033
100 1.5224 2.0105 0.1143 0.1460
500 1.5043 2.0019 0.0508 0.0664
1000 1.5001 2.0001 0.0358 0.0471

Table 3.4: The result of simulation study of KMW distribution

α = 2 n α̂ β̂ SE(α̂) SE(β̂)

β = 0.5

50 2.0572 0.5045 0.2165 0.0382
100 2.0275 0.5034 0.1523 0.0276
500 2.0089 0.5004 0.0678 0.0124
1000 1.9999 0.5008 0.0478 0.0089

β = 1

50 2.0646 1.0109 0.2173 0.0762
100 2.0260 1.0042 0.1522 0.0550
500 2.0030 1.0025 0.0676 0.0250
1000 2.0042 1.0010 0.0478 0.0177

β = 1.5

50 2.0553 1.5168 0.2164 0.1150
100 2.0285 1.5096 0.1524 0.0826
500 2.0016 1.5018 0.0675 0.0375
1000 2.0011 1.5018 0.0478 0.0265

β = 2

50 2.0500 2.0217 0.2165 0.1537
100 2.0382 2.0071 0.1531 0.1093
500 2.0039 2.0020 0.0676 0.0499
1000 2.0020 2.0024 0.0478 0.0354

Table 3.5: The result of simulation study of KMW distribution

suitability. This data set is extracted from Lee and Wang [143]. Using this

data, Khan et al. [95] studied the applicability of transmuted inverse Weibull
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α = 3 n α̂ β̂ SE(α̂) SE(β̂)

β = 0.5

50 3.0716 0.5030 0.3238 0.0257
100 3.0349 0.5014 0.2280 0.0184
500 3.0099 0.5003 0.1016 0.0083
1000 3.0028 0.5003 0.0717 0.0053

β = 1

50 3.0984 1.0085 0.3262 0.0509
100 3.0358 1.0031 0.2279 0.0368
500 3.0117 1.0011 0.1016 0.0166
1000 3.0063 1.0001 0.0718 0.0118

β = 1.5

50 3.0705 1.5105 0.3240 0.0771
100 3.0306 1.5069 0.2275 0.0554
500 3.0076 1.5011 0.1015 0.0249
1000 3.0034 1.5007 0.0717 0.0177

β = 2

50 3.0949 2.0137 0.3267 0.1019
100 3.0616 2.0099 0.2295 0.0731
500 3.0023 2.0019 0.1013 0.0333
1000 3.0034 2.0009 0.0717 0.023

Table 3.6: The result of simulation study of KMW distribution

distribution (TIWD). Kumar et al ([100], [101]) used this data for the comparison

purpose in their two papers. The data set is given in Table 3.7.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98 6.97 9.02 13.29
0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24
25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81 2.62 3.82 5.32 7.32 10.06
14.77 32.15 2.64 3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66
15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63
17.12 46.12 1.26 2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64
17.36 1.40 3.02 4.34 5.71 7.93 1.46 18.10 11.79 4.40 5.85 8.26 11.98 19.13 1.76
3.25 4.50 6.25 8.37 12.02 2.02 13.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 12.07
6.76 21.73 2.07 3.36 6.93 8.65 12.63 22.69

Table 3.7: Bladder Cancer Patients Data.

We consider four distributions for comparison purpose. The distributions

are DUSE(θ), SSE(θ), GDUSE, and Weibull distribution and their distribution

functions are mentioned earlier.

We have used AIC, CAIC (Consistent AIC), K-S test value, and log-likelihood

function for the comparison purpose. A smaller value of CAIC for a distribution
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indicate a better fit for the data. The CAIC is defined as

CAIC = AIC +
2k(k + 1)

n− k − 1

where n is the sample size, and k is the number of parameters.

Model ML estimates LL AIC CAIC K-S test value

KMW α̂ = 1.1585, β̂ = 0.0785 -413.8836 831.7673 831.8633 0.0604

DUSE θ̂ = 0.1342 -416.022 834.044 834.0757 0.0813

SSE θ̂ = 0.0592 -415.3 832.6 832.6318 0.0675

GDUSE α̂ = 0.9942, λ̂ = 0.1338 -416.0211 836.0422 836.1382 0.1128

Weibull α̂ = 1.0528, β̂ = 0.1035 -415.0984 834.1968 834.2928 0.0663

Table 3.8: ML estimates, LL, AIC, CAIC and K-S test values of the fitted models.

Table 3.8 shows that the proposed distribution gives the lowest AIC, CAIC,

K-S test values, and the largest log-likelihood value. So we can conclude that

our proposed distribution provides a better fit for the data set than the other

distributions given in Table 3.8. The plot of Empirical cdf and fitted cdf of the

above distributions for the second data set is given in Fig. 3.6.

We compare our result with those in references Khan et al. [95], and Kumar

et al. ([100], [101]). We observe that our proposed distribution fits better than

the other distributions mentioned in the above papers. The Transmuted DUS-

Exponential (θ) (TDE(θ)) distribution proposed by Yadav et al. [144] shows

better result than our KMW distribution. But the transmutation makes the

calculation of simulation study and parameter estimation a more difficult task.

Hence the analytical tractability in the case of KMW distribution is compara-

tively better.

64



0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
c
d
f

(a)

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
c
d
f

(b)

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
c
d
f

(c)

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
c
d
f

(d)

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
c
d
f

(e)

Figure 3.6: The empirical cdf and the cdf plots of the fitted distributions for the
bladder cancer patient data.

3.4 KM-Lomax model

Here we have modified the Lomax distribution with cumulative distribution func-

tion (cdf)

G(x) = 1− (1 + βx)−α, x > 0, α, β > 0, (3.27)
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Figure 3.7: Probability density plot of KML distribution

using KM transformation. Here we introduce a new distribution by substitut-

ing the cdf of Lomax distribution (3.27) in (2.1). The cdf and pdf of the new

distribution are respectively obtained as

F (x) =
e

e− 1
[1− e−(1−(1+βx)−α)], x > 0, α, β > 0, (3.28)

f(x) =
αβ(1 + βx)−(α+1)e(1+βx)−α

e− 1
, x > 0, α, β > 0, (3.29)

The graphical representation of pdf is given in Fig. 3.7 for different values of

parameters.

Using (2.4), the hazard function of the proposed model is obtained as

h(x) =
αβ(1 + βx)−(α+1)e(1+βx)−α

e(1+βx)−α − 1
(3.30)

The shape of the hazard rate function is given in Fig. 3.8.
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Figure 3.8: Hazard rate plot of KML distribution

3.4.1 Moments of KML distribution

The moments of a random variable, if they exist, are useful for estimating mea-

sures of central tendency, dispersion, and shapes. The rth raw moments of the

proposed distribution is

E(Xr) =
αβ

e− 1

∫ ∞

0

xr(1 + βx)−(α+1)e(1+βx)−α

dx.

After transformation, we get,

E(Xr) =
1

βr(e− 1)

∫ 1

0

(1− u
1
α )ru− r

α eudu,

applying binomial expansion, then

E(Xr) =
1

βr(e− 1)

∞∑
i=0

(−1)i
(
r

i

)∫ 1

0

u
1
α
(i−r)eudu.

Expanding exponential term, and we get the rth raw moment as

E(Xr) =
1

βr(e− 1)

∞∑
i=0

(−1)i

j!

(
r

i

)
α

αj + α− r + i
.
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3.4.2 Moment generating function of the KML model

The moment generating function of the proposed distribution is

MX(t) =

∫ ∞

0

etx
αβ(1 + βx)−(α+1)e(1+βx)−α

e− 1

=
α tm

βm(e− 1)

∞∑
m=0

∞∑
n=0

1

m! n!

(nα + α− 2)!

(n+ α)!

3.4.3 Characteristic function of the KML model

The characteristic function of the proposed distribution is obtained as

ϕX(t) =

∫ ∞

0

eitx
αβ(1 + βx)−(α+1)e(1+βx)−α

e− 1

=
α

(e− 1)

∞∑
m=0

∞∑
n=0

(it)m

m! n! βm

(nα + α− 2)!

(n+ α)!

where i =
√
−1.

3.4.4 Median of KML model

The median of the KML distribution is obtained as

Q(p) =
1

β

[(
1 + log(1− (e− 1)

2e
)

) 1
α

− 1

]

3.4.5 Mode of KML model

To find the mode of the KML distribution, we have to solve the equation

f ′(x) =
−αβ2

e− 1

[
α(1 + βx)−2(α+1) + (α + 1)(1 + βx)−(α+2)

]
= 0.

We can only be solve this nonlinear equation numerically.
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3.4.6 Quantile function- KML model

The pth quantile function of the proposed distribution is obtained as

e

e− 1
[1− e−(1−(1+βQ(p))−α)] =p

(1 + βQ(p))−α =

(
1 + log(1− p(e− 1)

e
)

) 1
α

.

Then,

Q(p) =
1

β

[(
1 + log(1− p(e− 1)

e
)

) 1
α

− 1

]
(3.31)

3.4.7 Order statistic- KML model

The pdf of the rth order statistic of the KML model is,

fr(x) =
n!

(r − 1)!(n− r)!

er−1αβ

(e− 1)n
(1 + βx)−(α+1)e(1+βx)−α

[
1− e−(1−(1+βx)−α)

]r−1[
ee

−(1−(1+βx)−α) − 1

]n−r

The cdf of the rth order statistic of the KML model is,

Fr(x) =
n∑

j=r

(
n

j

)
ej

(e− 1)n

[
1− e−(1−(1+βx)−α)

]j[
ee

−(1−(1+βx)−α) − 1

]n−j

.

Putting r = 1 and r = n in the above equations, we have obtain the first order

and nth order pdfs and cdfs of the KML distribution.

3.4.8 Ordering- KML model

The KML model satisfies the ordering of random variables as X ≤lr Y, X ≤hr

Y, X ≤mrl Y and X ≤st Y .

Theorem 5. Let X ∼ KML(α1, β1) and Y ∼ KML(α2, β2) if α1 = α2 = α and
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β1 ≥ β2 and if β1 = β2 = β and α1 ≥ α2, then X ≤lr Y, X ≤hr Y, X ≤mrl Y

and X ≤st Y .

Proof. The likelihood ratio is

fX(x)

fY (x)
=

α1β1(1 + β1x)
−(α1+1)e(1+β1x)−α1

α2β2(1 + β2x)−(α2+1)e(1+β2x)−α2
(3.32)

and

log
fX(x)

fY (x)
= logα1 + log β1 − (α1 + 1) log(1 + β1x) + (1 + β1x)

−α1

− logα2 − log β2 + (α2 + 1) log(1 + β2x)− (1 + β2x)
−α2

thus,

d

dx
log

fX(x)

fY (x)
=− (α1 + 1)

β1

1 + β1x
− α1β1(1 + β1x)

−(α1+1) (3.33)

+ (α2 + 1)
β2

1 + β2x
+ α2β2(1 + β2x)

−(α2+1)

1. Case I: α1 = α2 = α, β1 ≥ β2

d
dx

log fX(x)
fY (x)

≤ 0 ⇒ X ≤lr Y hence X ≤hr Y, X ≤mrl Y and X ≤st Y .

2. Case II: β1 = β2 = β, α1 ≥ α2

d
dx

log fX(x)
fY (x)

≤ 0 ⇒ X ≤lr Y hence X ≤hr Y, X ≤mrl Y and X ≤st Y .

3.4.9 Maximum likelihood estimation of KML distribu-

tion

In this section we estimate the parameters involved in the distribution using

maximum likelihood estimation method. This is one of the most popular methods
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used for estimation. The likelihood function is defined as,

L(x;λ) =
n∏

i=1

f(xi, λ)

In our distribution,

L(x;α, β) =

(
αβ

e− 1

)n n∏
i=0

(1 + βxi)
−(α+1)e

∑n
i=0(1+βxi)

−α

.

The log-likelihood function of the distribution is given by,

log L(x;α, β) =− n log(e− 1) + n logα + n log β

− (α + 1)
n∑

i=1

log(1 + βxi) +
n∑

i=1

(1 + βxi)
−α.

We proceed as follows. First we find partial derivatives of the log-likelihood

function with respect to the parameters α and β. The partial derivatives are

∂ log L

∂α
=

n

α
−

n∑
i=1

log(1 + βxi) +
n∑

i=1

log(1 + βxi)
−α log(1 + βxi),

and

∂ log L

∂β
=

n

β
− (α + 1)

n∑
i=1

xi

1 + βxi

− α
n∑

i=1

xi(1 + βxi)
−(α+1).

Two non-linear equations can be obtained by equating these partial deriva-

tives to zero, the solutions for which provide the maximum likelihood estimates

of the parameters. The Newton-Raphson method can be used to solve this equa-

tion with the help of the available statistical packages. We use R [139] language

for finding the numerical solution of the non-linear system of equations.
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3.4.10 Application

In this section we are showing the flexibility of the proposed distribution using

two real-life data sets. The first data set is the uncensored data set corresponding

to intervals in days between 109 successive coal-mining disasters in Great Britain,

for the period 1875-1951, published by Maguire et al. [145] and the data set is

given in Table 3.9. The second data set is of Wheaton River obtained from

Choulakian and Stephens [140] and presented in Table 3.10.

1 4 4 7 11 13 15 15 17 18 19 19
20 20 22 23 28 29 31 32 36 37 47 48
49 50 54 54 55 59 59 61 61 66 72 72
75 78 78 81 93 96 99 108 113 114 120 120
120 123 124 129 131 137 145 151 156 171 176 182
188 189 195 203 208 215 217 217 217 224 228 233
255 271 275 275 275 286 291 312 312 312 315 326
326 329 330 336 338 345 348 354 361 364 369 378
390 457 467 498 517 566 644 745 871 1312 1357 1613
1630

Table 3.9: Flood Level Data.

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0
12.0 9.3 1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1
2.5 14.4 1.7 37.6 0.6 2.2 39.0 0.3 15.0 11.0
7.3 22.9 1.7 0.1 1.1 0.6 9.0 1.7 7.0 20.1
0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6 5.6 30.8
13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0
1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5
2.5 27.0

Table 3.10: Wheaton River Data.

We use AIC (Akaike Information Criterion), BIC (Bayesian Information Cri-

terion), HQC (Hannan-Quinn Information Criterion) and K-S (Kolmogorov-

Smirnov) test value for the comparison. The distribution which shows minimum

AIC, BIC, HQC and K-S test value is the sign of a better fit for the data set.

The HQC is defined as
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HQC = −2 log(L̂) + 2m log(log(n)),

where n is the sample size, m is the number of parameters, and L̂ is the maximum

value of the likelihood function for the considered distribution. Here R [139]

language is used for all the computation. We compare the proposed distribution

with the following distributions,

1. DUS-Lomax distribution Deepthi and Chacko [128] with cdf,

F (x) =
1

(e− 1)

[
e(1−(1+θx)−α) − 1

]
, x > 0, α, θ > 0

2. Lomax distribution Lomax [116] with cdf,

F (x) = 1− (1 + θx)−α, x > 0, α, θ > 0

3. KM-Exponential (KME) distribution with cdf,

F (x) =
e

e− 1
[1− e−(1−e−λx)], x > 0, λ > 0

4. KM-Weibul (KMW) distribution with cdf,

F (x) =
e

e− 1
[1− e−(1−e−(xβ)α )], x > 0, α, β > 0

5. Weibull distribution Weibull [146] with cdf,

F (x) = 1− e−(βx)α , x > 0, α, β > 0
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The values of AIC, BIC, HQC and K-S test for distributions based on the

first data set are given in Table 3.

Model ML estimates K-S value AIC BIC HQC

KM-Lomax α̂ = 9.4097, β̂ = 0.0004 0.0720 1040.647 1046.03 1042.83

DUS-Lomax α̂ = 9.4008, θ̂ = 0.0004 0.2703 1187.936 1193.319 1190.119

Lomax α̂ = 4.9251, θ̂ = 0.0011 0.0642 1405.426 1410.809 1407.609

KME λ̂ = 0.0033 0.0761 1404.864 1407.555 1405.955

KMW α̂ = 0.9685, β̂ = 0.0033 0.0772 1406.654 1412.037 1408.837

Weibull α̂ = 0.8848, β̂ = 0.0046 0.0784 1407.545 1412.927 1409.728

Table 3.11: Maximum likelihood (ML) estimates, K-S test value, AIC, BIC, and
HQC of the fitted models.

From Table 3.11, we can see that the new model shows the lowest AIC,

BIC and HQC values among all the distributions considered here. The K-S test

value of Lomax distribution is smaller than KM-Lomax distribution. In general

we can say that our proposed model shows better fit to the data compared to

other distributions given in this study. The plot of empirical cdf along with

other cdf of the distributions for the first data set is given in Fig. 3.9. for a

better understanding of the result. Compared to the distributions mentioned

in Mahdavi [147] for this particular data set, the proposed model gives better

result.

The comparison table of the considered models for the second data set is

given in Table 3.12.

Based on the AIC, BIC and HQC values, we can conclude that the proposed

model gives the best fit to the data set compared to other Lomax, KM family

and Weibull distributions considered here. The K-S test value of the KMW

distribution is slightly lower than the KM-Lomax distribution. The empirical

and fitted cdf plot of distributions considered for the comparison for the second

data set is given in Fig. 3.10.

74



Empirical

KM - Lomax

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(a)

Empirical

Lomax

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(b)

Empirical

DUS-Lomax

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(c)

Empirical

KME

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(d)

Empirical

KMW

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(e)

Empirical

Weibull

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

x

F
it
te
d
cd
f

(f)

Figure 3.9: Comparison plot for the first data set.

3.5 Summary of the chapter

In this chapter we have developed three new lifetime distributions using the cdfs

of exponential, Weibull, and Lomax distributions in KM transformation. The

main analytical properties of these newly proposed models like moments, moment
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Model ML estimates K-S value AIC BIC HQC

KM-Lomax α̂ = 243.7254, β̂ = 0.000258 0.11 286.6547 291.2081 288.4674

DUS-Lomax α̂ = 251.4388, θ̂ = 0.00025 0.24 364.0633 368.6166 365.876

Lomax α̂ = 80.7719, θ̂ = 0.00102 0.14 508.2621 512.8155 510.0748

KME λ̂ = 0.0632 0.11 506.025 508.3017 506.9313

KMW α̂ = 0.9722, β̂ = 0.0633 0.10 507.9317 512.4851 509.7444

Weibull α̂ = 0.9012, β̂ = 0.08597 0.11 506.9973 511.5506 508.81

Table 3.12: Maximum likelihood (ML) estimates, K-S test value, AIC, BIC, and
HQC of the fitted models.

generating function, characteristic function, quantile function, order statistics etc

are derived. Stochastic ordering is used for judging the comparative behavior

of the random variables proposed here. Parameters involved in newly proposed

models are estimated using maximum likelihood estimation method. We checked

the performance of the estimated parameters of KME and KMW distributions

by simulation technique. Real data applications are included in this chapter to

show the flexibility and suitability of the proposed models. The models proposed

in this chapter are very promising models in reliability and survival areas.
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Figure 3.10: Comparison plot for the second data set.
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Chapter 4

Generalization of KM

Transformation For Lifetime

Models

4.1 Introduction

The study of the duration of life of organisms, systems or devices, materials, etc.,

is of major importance in the biological and engineering sciences1. A significant

part of such a study is devoted to the mathematical description of the duration

of life by a failure distribution. True physical considerations of the failure mech-

anism often may lead to a specific distribution but sometimes, the choice is made

on the basis of how well the actual failure time data appear to be fitted by the

distribution. In lifetime studies a search for possible candidates among various

distributions is carried out by examining the shape and monotonicity of the fail-

ure rate function since they reflect some of the characteristics of the mechanism

leading to the conclusion of life. Models with non-monotone failure rate function

are useful in reliability analysis, and particularly in reliability-related decision

1This chapter is based on Kavya, P., Manoharan, M. (2023)
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making and cost analysis. Notable works include those by Mudholkar et al [46],

Gupta et al [81] and Gupta and Kundu [109]. In this chapter, a new model,

which is useful for modeling this type of failure rate function, is presented.

The inverse bathtub shaped hazard rates are common in biological and relia-

bility studies. For example, the hazard rate curve can be seen in the course of a

disease whose mortality reaches a peak after some finite period and then declines

gradually. The lifetime models that exhibit inverse bathtub-shaped hazard rates

find their application in survival analysis. A study of head and neck cancer data,

see Effron [148], and the data of 3878 cases of breast carcinoma seen in Edin-

burgh from 1954 to 1964, see Langlands et al [149] showed inverse bathtub hazard

rates. In reliability theory, the examples of inverse bathtub shaped models can

be found in accelerated life testing and repair time situations whenever early

failures or occurrences dominate the lifetime distribution. Inverse Weibull, log-

logistic, Burr Type III, inverse gamma, and log-normal are some of the statistical

distributions that show inverse bathtub hazard rates. For more details, readers

may refer to Kotz and Nadarajah [150]. Recently Dimitrakopoulou et al [71],

Sharma et al [72], Alkarni [73], Maurya et al [74], and Kavya and Manoharan

[75] have developed and studied inverse bathtub shaped hazard rate distribu-

tions. The main motivation of our work is to introduce a new lifetime model

having non-monotone hazard rate function for different values of parameter and

can fit a large variety of failure time data. We also aim for a model with min-

imum number of parameters so that one can use the model conveniently. For

this purpose we generalize the KM (Kavya- Manoharan) transformation which

is proposed in Chapter 2. The distributions introduced using the KM transfor-

mation are parsimonious in parameter and show monotone hazard rates. In this

paper we generalize the above transformation with the aim of developing new

lifetime models.
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4.2 Development of the new model

In this section we develop a new lifetime model by generalizing KM transfor-

mation and use the exponential distribution as the baseline distribution in the

transformation.

4.2.1 Generalization of KM transformation

The KM transformation is defined as

F (x) =
e

e− 1
[1− e−G(x)], (4.1)

where G(x) is the cumulative distribution function (cdf) of some baseline dis-

tribution. The above transformation is generalized using a new parameter α,

provided α is always greater than zero. Hereafter we shall refer to the new trans-

formation as the Generalized KM (GKM) transformation. If G(x) is the cdf of

some baseline distribution, then the Generalized KM transformation is defined

as

F (x) =
e

e− 1
[1− e−Gα(x)], (4.2)

which is the cdf of the new distribution. The probability density function (pdf)

and the hazard rate function are respectively obtained as

f(x) =
αe

e− 1
g(x)Gα−1(x)e−Gα(x), (4.3)

and

h(x) =
αeg(x)Gα−1(x)e−Gα(x)

e1−Gα(x) − 1
. (4.4)
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The distribution obtained using GKM transformation is shown to possess both

monotone and non-monotone hazard rates depending on different values of pa-

rameters in the next section.

4.2.2 GKM-Exponential model

Here we introduce a new distribution using exponential distribution as the base-

line distribution in the GKM transformation. The reason for choosing exponen-

tial distribution is that it has wide application in reliability theory and survival

analysis. Substitute the cdf of exponential distribution G(x) = 1 − e−θx, x >

0, θ > 0 in Equation (4.2) to get the new distribution called Generalized KM

Exponential (GKME) distribution. The pdf and cdf of the new distribution are

obtained as,

f(x) =
eαθ

e− 1
e−θx

(
1− e−θx

)α−1
e−(1−e−θx)α , x > 0, α, θ > 0, (4.5)

where α is the shape parameter.

F (x) =
e

e− 1
[1− e−(1−e−θx)α ], x > 0, α, θ > 0. (4.6)

The survival function of the model is

S(x) =
e1−(1−e−θx)α − 1

e− 1
, x > 0, α, θ > 0. (4.7)

The plot of the pdf and survival function for different values of parameters

is given in Fig. 4.1.
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Figure 4.1: The probability density and survival function plot.

4.3 Hazard rate function

The hazard rate function of a distribution is defined as

h(x) =
f(x)

1− F (x)
. (4.8)

Here we study the hazard rate function of GKME distribution. Substituting

Equations (4.5) and (4.7) in Equation (4.8) we get the hazard rate function of

the GKME distribution as,

h(x) =
eαθ

(e1−(1−e−θx)α − 1)
e−θx

(
1− e−θx

)α−1
e−(1−e−θx)α , x > 0, α, θ > 0. (4.9)

Various shapes for hazard rate function of the proposed distribution for different

values of parameters are shown in Fig. 4.2.

From Fig. 4.2 we can see that the hazard rate function has two shapes,

� Hazard rate function is decreasing when α ≤ 1.

� Hazard rate function has inverse bathtub shape when α > 1.

We use the method proposed by Glaser [36] for the theoretical study of the

shapes of the hazard rate. We first calculate ϑ(x). If f(x) is the density function
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Figure 4.2: The hazard rate plot of GKME distribution for different values of pa-
rameters.

and f ′(x) is the first derivative of the density function then ϑ(x) is defined as

ϑ(x) =
−f ′(x)

f(x)
.

For the GKME distribution,

ϑ(x) = θ − θ(α− 1)e−θx(1− e−θx)−1 + αθe−θx(1− e−θx)α−1

and

ϑ′(x) = θ2e−θx(1−e−θx)−1
[
(1−e−θx)α−1e−θx(α2−1)+(α−1)−α(1−e−θx)α

]
.

(4.10)

Following Glaser [36] we obtain two results from Equation (4.10):

1. ϑ′(x) < 0 for all x > 0 when α ≤ 1. Then the distribution has decreasing

failure rate (DFR).

2. When α > 0, there exists a x∗ such that ϑ′(x) > 0 for 0 < x < x∗ and

ϑ′(x) < 0 for x > x∗ where x∗ depends on the values of α and θ, but the

84



exact functional form of x∗ in terms of α and θ could not be obtained.

We can easily verify that limx→0 f(x) = 0, therefore the distribution has

inverse bathtub hazard rate.

4.4 Moments and generating function

We now study the rth raw moment, conditional moment and moment generating

function of the proposed model.

4.4.1 rth moment

The importance and necessity of the moments in any statistical analysis, mainly

in applied work, cannot be over emphasized. We can study some of the most

important features and characteristics of a distribution through moments like

tendency, dispersion, skewness, and kurtosis. So here we derive the rth raw

moment of the GKME distribution.

E(Xr) =
eαθ

e− 1

∫ ∞

0

xre−θx(1− e−θx)α−1e−(1−e−θx)αdx, r ≥ 1

Expanding exponential term, we get,

E(Xr) =
eαθ

e− 1

∫ ∞

0

xre−θx(1− e−θx)α−1

∞∑
m=0

(−1)m(1− e−θx)αm

m!
dx

=
eαθ

e− 1

∞∑
m=0

(−1)m

m!

∫ ∞

0

xre−θx(1− e−θx)αm+α−1dx,

applying binomial expansion in the above expression and after some calculations,

we get,
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E(Xr) =
eαθ

e− 1

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)∫ ∞

0

xre−θxe−θjxdx

=
eαθ

e− 1

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)∫ ∞

0

xre−θx(j+1)dx

=
eα

θr(e− 1)

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
Γr + 1

(j + 1)r+1
.

4.4.2 Conditional moment

The conditional moment of a lifetime model is an interesting property. We denote

it as δk(x) and

δk(x) = E(Xk|X > x) =
1

S(x)

∫ ∞

x

xk f(x) dx,

The conditional moment of the GKME distribution is,

δk(x) =
eαθ

e1−(1−e−θx)α

∫ ∞

0

xke−θx(1− e−θx)α−1e−(1−e−θx)αdx

=
eαθ

e1−(1−e−θx)α

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)∫ ∞

0

xre−θx(j+1)dx.

Applying complementary incomplete gamma function,

δk(x) =
αeθ

e1−(1−e−θx)α

∞∑
m=0

∞∑
j=0

k−1∑
n=0

(−1)m+j

m!

(
αm+ α− 1

j

)
(k − 1)!e−θx(j+1)x

n

n!
.

Using this expression, we can easily obtain the mean residual life function.
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4.4.3 Moment generating function

The moment generating function (mgf) is one of the key properties of a distri-

bution. The mgf of the new distribution is

MX(t) =
eα

θr(e− 1)

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
1

θ(j + 1)− t
, for t < θ.

4.5 Mean residual and mean past lifetime func-

tion

The mean residual life and mean past lifetime functions are discussed in this

section.

4.5.1 Mean residual life function

The expected remaining life (T − t), given that the item has survived up to time

t is the mean residual life (MRL). For the proposed model,

ν(t) =E(T − t|T > t)

=

∫∞
t

x f(x) dx

1− F (t)
− t

=αeθ

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
e−θ(j+1)t(1 + θ(j + 1)t)

− t(j + 1)θ[e1−(1−e−θ t)α − 1]

[
(j + 1)θ[e1−(1−e−θ t)α)− 1]

]−1

.

4.5.2 Mean past lifetime

Systems are often not monitored continuously in real life situations. When we

are interested in the history of the system, (for instance, in situations where the

individual components fail) the mean past lifetime (MPL) of a component is a
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quantity of importance. Let us suppose a component with lifetime T has failed

at a time t (t ≥ 0), or before that. The random variable t− T |T ≤ t is the time

elapsed from the failure of the component, given that its lifetime is less than or

equal to t. The MPL of the component can now be defined as,

ω(t) =E(t− T |T ≤ t)

= t−
∫ t

0
x f(x) dx

F (t)
.

The MPL of the proposed model is obtained as

ω(t) =t(1− e−(1−e−θt)α)− αθ
∞∑

m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
1

θ(j + 1)

[
1

θ(j + 1)
− e−θt(j+1)

(
t+

1

θ(j + 1)

)](
1− e−(1−e−θt)α

)−1

4.6 Mean deviation

Here we derive the expressions of mean deviation about mean and median of the

proposed model.

4.6.1 Mean deviation about mean

The mean deviation about mean is defined as

ζ1(x) =

∫ ∞

0

|x− µ|f(x)dx

=

∫ µ

0

(µ− x)f(x)dx+

∫ ∞

µ

(x− µ)f(x)dx,
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where µ is the mean. After simplification, we get

ζ1(x) = 2µF (µ)− 2µ+ 2

∫ ∞

µ

xf(x)dx,

where F (.) is the proposed cdf.

∫ ∞

µ

xf(x)dx =
eαθ

e− 1

∫ ∞

µ

xe−θx
(
1− e−θx

)α−1
e−(1−e−θx)αdx,

=
eαθ

e− 1

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
e−θ(j+1)µ(1 + θ(j + 1)µ)

(j + 1)θ
.

Therefore,

ζ1(x) = 2µF (µ)− 2µ+
2eαθ

e− 1

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
e−θ(j+1)µ(1 + θ(j + 1)µ)

(j + 1)θ
.

4.6.2 Mean deviation about median

Mean deviation about median is defined as

ζ2(x) =

∫ ∞

0

|x−M |f(x)dx,

=

∫ M

0

(M − x)f(x)dx+

∫ ∞

M

(x−M)f(x)dx.

where M denotes median. After simplification, we get

ζ2(x) = −µ+ 2

∫ ∞

M

xf(x)dx.

The mean deviation about median is obtained as

ζ2(x) = −µ+
2eαθ

e− 1

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
e−θ(j+1)M(1 + θ(j + 1)M)

(j + 1)θ
.
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4.7 Quantile function of the model

The pth quantile function Q(p) is obtained by the equation F (Q(p)) = p. The

pth quantile function of the GKME distribution is,

Q(p) =
−1

θ
log

[
1−

(
− log

(
1− p(e− 1)

e

)) 1
α

]
(4.11)

After substituting p = 1
4
, 1

2
, and 3

4
in Equation (4.11), we get the first, second

and third quartile functions respectively.

A random sample X with GKME(α, θ) distribution can be simulated using

X =
−1

θ
log

[
1−

(
− log

(
1− ui(e− 1)

e

)) 1
α

]
, (4.12)

where u1, u2, ..., un are independent random observations from the standard uni-

form distribution.

4.8 Reńyi entropy

Entropy quantifies the amount of information contained in a random observation

pertaining to its parent distribution (population). A large entropy corresponds

to greater uncertainty in the data. The concept of entropy finds its applica-

tion in areas such as probability and statistics, communication theory, physics,

and economics. Different measures of entropy have been developed and studied

extensively. Here we derive the Reńyi entropy (Reńyi [133]) of the GKME dis-

tribution. If a random variable X has the pdf f(x), then the Reńyi entropy is

defined as,

JR(γ) =
1

1− γ
log

[∫
fγ(x)dx

]
, (4.13)
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where γ > 0 and γ ̸= 1. From Equation (4.5), we get,

∫ ∞

0

fγ(x)dx =

(
eαθ

e− 1

)γ ∫ ∞

0

(e−θx)γ(1− e−θx)γ(α−1)e−γ(1−eθx)

=

(
eαθ

e− 1

)γ ∞∑
m=0

∞∑
j=0

(−1)m+jγm

m!

(
γα + αm− γ

j

)
1

θ(j + γ)
.

Using above result, Equation (4.13) becomes,

JR(γ) =
γ

1− γ
log

(
eαθ

e− 1

)
+

1

1− γ
log

(
∞∑

m=0

∞∑
j=0

(−1)m+jγm

m!

(
γα + αm− γ

j

)
1

θ(j + γ)

)
.

(4.14)

4.9 Estimation of parameters

In this section we discuss some estimation methods for estimating the parameters

in the model. We provide the theory of maximum likelihood, moment estimation,

and least square methods.

4.9.1 Maximum likelihood estimation

Maximum likelihood estimation method is the most popular method to find the

estimates of the parameters in a distribution. Here we maximize the logarithm

of likelihood function to find the estimates. In this section we use this method

to obtain the maximum likelihood estimates of the GKME distribution’s param-

eters. The likelihood function is defined as,

L(x;α, θ) =
n∏

i=1

f(xi, α, θ).
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In our model,

L(x;α, θ) =

(
eθα

e− 1

)n

e−θ
∑n

i=1 xi

n∏
i=1

(1− e−θxi)α−1e−
∑n

i=1(1−e−θxi )α .

The log-likelihood function of the distribution is given by,

log L(x;α, θ) =n

(
log(

e

e− 1
)

)
+ n logα + n log θ − θ

n∑
i=1

xi+

(α− 1)
n∑

i=1

log(1− e−θxi)−
n∑

i=1

(1− e−θxi)α. (4.15)

Partial derivative of the log-likelihood function with respect to the parameters

α and θ are

∂ log L

∂α
=

n

α
+

n∑
i=1

log(1− e−θxi)−
n∑

i=1

log(1− e−θxi)(1− e−θxi)α, (4.16)

and

∂ log L

∂θ
=

n

θ
−

n∑
i=1

xi −
n∑

i=1

xie
−θxi

α− 1

(1− e−θxi)
+ α

n∑
i=1

xie
−θxi(1− e−θxi)α−1.

(4.17)

Equating Equations (4.16) and (4.17) to zero yields two non - linear equations.

The maximum likelihood estimate of the parameter α and θ are obtained as the

solution of these equations. Newton-Raphson method can be used to solve these

equations with the help of the R [139] language.

Here we study the existence and uniqueness of the maximum likelihood

estimates when other parameters are known.

Theorem 6. Consider the right hand side of the Equation (4.16) and is denote

as k1(α; θ, x), where θ is the true value of the parameter. Then there exists at
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least one root for k1(α; θ, x) = 0 for α ∈ (0,∞) and the solution is unique.

Proof. We have

k1(α; θ, x) =
n

α
+

n∑
i=1

log(1− e−θxi)−
n∑

i=1

log(1− e−θxi)(1− e−θxi)α.

We get

lim
α→0

k1(α; θ, x) = ∞

and

lim
α→∞

k1(α; θ, x) = −∞ < 0

Hence, there exists at least one root say, α̂ ∈ (0,∞), such that k1(α̂; θ, x) = 0.

The root is unique when the first derivative of k1(α̂; θ, x), ie, k
′
1(α̂; θ, x) < 0,

where

k
′

1(α̂; θ, x) =
−n

α2
−
[∑

log(1− e−θxi)

]2
(1− e−θxi)α

Theorem 7. Consider the right hand side of the Equation (4.17) and is denote

as k2(θ;α, x), where α is the true value of the parameter. Then there exists at

least one root for k2(θ;α, x) = 0 for θ ∈ (0,∞) and the solution is unique.

Proof. We have

k2(θ;α, x) =
n

θ
−

n∑
i=1

xi −
n∑

i=1

xie
−θxi

α− 1

(1− e−θxi)
+ α

n∑
i=1

xie
−θxi(1− e−θxi)α−1.
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We get

lim
θ→0

k2(θ;α, x) = ∞

and

lim
θ→∞

k1(α; θ, x) = −
∑

xi < 0

Hence, there exists at leasts one root say, θ̂ ∈ (0,∞), such that k2(θ̂;α, x) = 0.

The root is unique when the first derivative of k2(θ̂;α, x), ie, k
′
2(θ̂;α, x) < 0,

where

k
′

2(θ̂;α, x) =
−n

θ2
+

∑
x2
i (α− 1)e−θxi

(1− e−θxi)2
−

α
∑

(x2
i )e

−θxi

[
(1− e−θxi)α−1 − (α− 1)e−θxi(1− e−θxi)α−2

]

The joint likelihood for both location and scale parameters has exactly one

point of maximum and atmost one stationary point then the maximum likelihood

function is unimodal. Here we show the likelihood surface of the proposed model

is unimodal using a 3D-plot.

Figure 4.3: The likelihood function plot

From the Fig. 4.3, the likelihood function has exactly one point of maximum.
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Asymptotic Confidence bounds

In this subsection, we compute the observed Fisher information for the MLE.

Here we derive the asymptotic confidence intervals of the parameters involved in

the proposed distribution when α > 0 and θ > 0, by using variance covariance

matrix. We now derive the observed Fisher information for the likelihood using

(4.16) and (4.17). We have

I =

 −∂2 log L
∂α2

−∂2 log L
∂αθ

−∂2 log L
∂θα

−∂2 log L
∂θ2


where

∂2 log L

∂α2
=

−n

α2
−
∑

log(1− e−θxi)2(1− e−θxi)α,

∂2 log L

∂αθ
=

xie
−θxi∑

(1− e−θxi)

[
1− (1− e−θxi)

]
−

αxie
−θxi(1− e−θxi)α−1

∑
log(1− e−θxi),

and

∂2 log L

∂θ2
=
−n

θ2
+ (α− 1)

∑
xi

[
xie

−θxi(1− e−θxi) + xie
−2θxi

(1− e−θxi)2

]
+

α
∑

Xi

[
(α− 1)xie

−2θxi(1− e−θxi)α−2 − xie
−θxi(1− e−θxi)α−1

]
.

We can derive the (1 − γ)100% confidence intervals of the parameters α and θ

by using variance matrix as in the form

α̂± Z γ
2

√
V ar(α̂), (4.18)
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and

θ̂ ± Z γ
2

√
V ar(θ̂) (4.19)

where Z γ
2
is the upper (γ

2
)th percentile of the standard normal distribution.

4.9.2 Method of moment estimation

The rth moment of the proposed model is

E(Xr) = µ′
r =

eα

θr(e− 1)

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
Γr + 1

(j + 1)r+1
.

Taking r = 1, 2 in the above equation, we get the first and second raw moments

as

µ′
1 =

αe

θ(e− 1)

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
1

(j + 1)2
, (4.20)

and

µ′
2 =

αe

θ2(e− 1)

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
2

(j + 1)3
. (4.21)

The variance and coefficient of variation (CV) of the proposed model are

V(X) =
αe

θ2(e− 1)

[
∞∑

m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
2

(j + 1)3
−

αe

e− 1

(
∞∑

m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
1

(j + 1)2

)2 ]
,
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and

CV =
1

θ

[
∞∑

m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
2

(j + 1)3
−

αe

e− 1

(
∞∑

m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
1

(j + 1)2

)2 ]
[

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
αm+ α− 1

j

)
1

(j + 1)2

]−1

The MMEs of the proposed model are obtained by equating Equations (4.20)

and (4.21) with the sample moments respectively.

1

n

n∑
i=1

xi =
α̂e

θ̂(e− 1)

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
α̂m+ α̂− 1

j

)
1

(j + 1)2
,

and

1

n

n∑
i=1

x2
i =

α̂e

θ̂2(e− 1)

∞∑
m=0

∞∑
j=0

(−1)m+j

m!

(
α̂m+ α̂− 1

j

)
2

(j + 1)3
.

4.9.3 Method of least square estimation

Swain et al [151] proposed the method of least square estimation for estimating

the parameters of Beta distribution. Here we use the same technique for the

proposed distribution to estimate the unknown parameters involved in the model.

To find the least square estimate of the unknown parameters, we need to minimize

the following function

n∑
i=1

[
F (X(i))−

i

n+ 1

]2
.
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Let X(1) < X(2) < ... < X(n) be the ordered random variables of a set of random

variables {X1, X2, ..., Xn} of size n. F (X(i)) is the distribution function of the

ith order statistic. The least square estimates of the parameters α and θ are

obtained by minimizing

n∑
i=1

[
e

e− 1

(
1− e

−
(
1−e

−θx(i)
)α
)
− i

n+ 1

]2
(4.22)

with respect to α and θ.

4.10 Simulation study

In this section we conduct a simulation study using Monte Carlo simulation

method. Here we evaluate the performance of the maximum likelihood estimators

of the parameters involved in the proposed distribution. In each experiment,

using Equation (4.12), thousand pseudo-random samples have been generated

for different values of population parameters (α = 0.6, 1.5, 2, 2.5, and θ =

0.5, 1, 1.5, 2, 2.5) and sample sizes (n= 50, 100, 500, 1000). For 1000 repetitions,

the standard error (SE) of the estimated parameters are computed as the square

root of the average of their corresponding variance. The results are obtained

using R [139] language and presented in Tables 4.1, 4.2, 4.3 and 4.4.

From Tables 4.1, 4.2, 4.3 and 4.4 we can conclude that all the estimators

show the property of consistency as a matter of fact that, the standard error

decreases as sample size increases.

Next we compute the 95% confidence interval for the parameters using (4.18)

and (4.19), and also calculate the coverage percentage. The confidence interval

and coverage percentage for the parameters in the proposed model are shown in

Tables 4.5, 4.6 and 4.7.

When observing Tables 4.5, 4.6 and 4.7, we can see that the sample size
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n α̂ θ̂ SE(α̂) SE(θ̂)

θ = 0.5

50 0.6252 0.5473 0.0902 0.1238
100 0.6114 0.5144 0.0639 0.0871
500 0.6031 0.5052 0.0288 0.0398
1000 0.6015 0.5021 0.0203 0.0281

θ = 1

50 0.6235 1.0837 0.0897 0.2438
100 0.6121 1.0402 0.0640 0.1751
500 0.6031 1.0132 0.0288 0.0797
1000 0.6010 1.0024 0.0203 0.0561

θ = 1.5

50 0.6221 1.6094 0.0898 0.3656
100 0.6091 1.5408 0.0638 0.2619
500 0.6013 1.5109 0.0287 0.1191
1000 0.6006 1.5008 0.0203 0.0841

θ = 2

50 0.6278 2.1581 0.0904 0.4892
100 0.6111 2.0764 0.0639 0.3511
500 0.6017 2.0089 0.0287 0.1583
1000 0.6007 2.0064 0.0203 0.1124

θ = 2.5

50 0.6239 2.7107 0.0901 0.6138
100 0.6122 2.6252 0.0640 0.4433
500 0.6015 2.5220 0.0287 0.1987
1000 0.6011 2.5163 0.02032 0.1410

Table 4.1: The result of simulation study of GKME distribution when α = 0.6

increases the length of the confidence interval decreases and the coverage per-

centage increases.

4.11 Real data applications

In this section, we compare our proposed distribution with some of the well-

known distributions in the literature to prove the suitability of the GKME dis-

tribution. The distributions which used for comparison are Generalized DUS

Exponential (GDUSE) proposed by Maurya et al. [60], KM-Exponential (KME)

and KM-Weibull (KMW) introduced in Chapter 3, inverse Weibull (IW), expo-

nential, and Weibull. Additionally we compare the proposed model with Alpha-

power transformed Lomax (APTL) by Dey et al [64] and a new lifetime model

introduced by Dimitrakopoulou et al [71] for the first data set, Transmuted burr
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n α̂ θ̂ SE(α̂) SE(θ̂)

θ = 0.5

50 1.5793 0.5219 0.2658 0.0913
100 1.5232 0.5063 0.1870 0.0650
500 1.5064 0.5023 0.0854 0.0296
1000 1.5049 0.5017038 0.0605 0.0210

θ = 1

50 1.5720 1.0395 0.2629 0.1819
100 1.5390 1.0284 0.1895 0.1314
500 1.5050 1.0021 0.0853 0.0591
1000 1.5041 1.0026 0.0605 0.0419

θ = 1.5

50 1.6062 1.5832 0.2706 0.2757
100 1.5488 1.5449 0.1905 0.1971
500 1.5102 1.5085 0.0857 0.0890
1000 1.5056 1.5052 0.0606 0.0630

θ = 2

50 1.5944 2.1148 0.2666 0.3675
100 1.5333 2.0410 0.1887 0.2613
500 1.5059 2.0066 0.0854 0.1183
1000 1.5022 2.0000 0.0604 0.0837

θ = 2.5

50 1.5884 2.6256 0.2690 0.4585
100 1.5520 2.5647 0.1920 0.3277
500 1.5063 2.5130 0.0854 0.1482
1000 1.5047 2.5063 0.0605 0.1048

Table 4.2: The result of simulation study of GKME distribution when α = 1.5

type III (for convenience we use TB Type III in the comparison plot) proposed

by Abul-Moniem [155] and a new model by Dimitrakopoulou et al [71] for the

second data set and APTL for the third data set. For this purpose we use AIC,

BIC, HQC, LL value, p-value and K-S test value for the comparison of the data

sets. The distribution which gets minimum AIC, BIC, HQC and K-S test values

and maximum LL and p-value is more suitable to the data set. In this section

we analyzed the introduced model using R [139] language.

4.11.1 Data set I

Here we consider a real data set which represents the maximum flood levels

(in millions cubic of feet per second) of the Susquehanna River at Harrisburg,

Pennsylvania, observed over a 20-year period (Dumonceaux and Antle [152]),
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n α̂ θ̂ SE(α̂) SE(θ̂)

θ = 0.5

50 2.1326 0.5213 0.3775 0.0845
100 2.0562 0.5091 0.2682 0.0605
500 2.0178 0.5027 0.1222 0.0275
1000 2.0061 0.5012 0.0861 0.0195

θ = 1

50 2.1321 1.0473 0.3775 0.1698
100 2.0648 1.0208 0.2696 0.1212
500 2.0198 1.0055 0.1224 0.0551
1000 2.0084 1.0023 0.0863 0.0390

θ = 1.5

50 2.1186 1.5633 0.3762 0.2539
100 2.0549 1.5362 0.2685 0.1830
500 2.0137 1.5074 0.1218 0.0826
1000 2.0034 1.5034 0.0860 0.0585

θ = 2

50 2.1285 2.0902 0.3749 0.3386
100 2.0658 2.0548 0.2706 0.2444
500 2.0040 2.0024 0.1211 0.1099
1000 2.0037 2.0007 0.0861 0.0779

θ = 2.5

50 2.1281 2.5990 0.3763 0.4218
100 2.0716 2.5662 0.2711 0.3049
500 2.0018 2.5074 0.1211 0.1377
1000 2.0034 2.5023 0.0860 0.0974

Table 4.3: The result of simulation study of GKME distribution when α = 2

presented in Table 4.8. Using this data set, Maurya et al. [60] and Kavya and

Manoharan [75] studied the suitability of their proposed models.

The comparison table of the proposed model with other six models are given

in Table 4.9.

From Table 4.9, we can see that our proposed distribution has lowest AIC,

BIC, HQC and K-S test values and largest LL and p-value compared to other

given distributions except IW. When compared to IW, the AIC, BIC, and HQC

values are slightly lower and LL value is larger than the proposed model. Our

model has the lowest K-S test value and the largest p-value compared to IW

distribution. The comparison plot is given in Fig. 4.4.
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Figure 4.4: The empirical cdf and the cdf plots of the fitted distributions for the
first data set.
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n α̂ θ̂ SE(α̂) SE(θ̂)

θ = 0.5

50 2.6552 0.5221 0.4906 0.0805
100 2.5572 0.5079 0.3494 0.0575
500 2.5248 0.5033 0.1611 0.0262
1000 2.5101 0.5014 0.1137 0.0186

θ = 1

50 2.6808 1.0417 0.4946 0.1601
100 2.6106 1.0278 0.3569 0.1158
500 2.5211 1.0043 0.1607 0.0523
1000 2.5020 1.0011 0.1132 0.0371

θ = 1.5

50 2.6697 1.5496 0.4979 0.2397
100 2.5910 1.5342 0.3548 0.1730
500 2.5177 1.5081 0.1606 0.0787
1000 2.5120 1.5058 0.1138 0.0557

θ = 2

50 2.6653 2.0782 0.4869 0.3185
100 2.6024 2.0610 0.3572 0.2324
500 2.5207 2.0113 0.1607 0.1048
1000 2.5059 2.0017 0.1134 0.0741

θ = 2.5

50 2.6652 2.6003 0.4924 0.4011
100 2.5990 2.5579 0.3557 0.2883
500 2.5173 2.5106 0.1606 0.1310
1000 2.5111 2.5086 0.1137 0.0928

Table 4.4: The result of simulation study of GKME distribution when α = 2.5

4.11.2 Data set II

The second data set gives the remission times (in months) of a random sample

of 128 bladder cancer patients (Lee and Wang [143]), given in Table 6. Khan

et al. [95], and Kumar et al ([100] studied the applicability of their proposed

models using this data. Table 7 shows how well the proposed model fits the data

compared to other six models.

Our proposed model shows minimum AIC, BIC, HQC and K-S test value

and maximum LL and p-value. So we can say that GKME distribution provides

better fit for the data set compared to other distributions mentioned in this

study. The plot of empirical cdf and fitted cdf of the distributions for the second

data set is given in Fig. 4.5
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Figure 4.5: The empirical cdf and the cdf plots of the fitted distributions for the
second data set.
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n CI (α̂) CI (θ̂) CP (α̂) CP (θ̂)

θ = 0.5

50 (0.2937,0.6478) (0.2683, 0.7459) 92.9 92.8
100 (0.6349, 0.8858) (0.5308, 0.8753) 94.4 94.3
500 (0.4944, 0.6072) (0.3993, 0.5550) 94.6 94.9
1000 (0.5819, 0.6614) (0.4392, 0.5495) 94.8 96.2

θ = 1

50 (0.4759, 0.8258) (0.6512, 1.6121) 93.0 92.6
100 (0.5422, 0.7933) (0.5109, 1.2003) 93.7 95.0
500 (0.5222, 0.6348) (0.8755, 1.1870) 94.3 95.1
1000 (0.5710, 0.6506) (0.9593, 1.1797) 95.7 95.2

θ = 1.5

50 (0.4450, 0.7973) (1.2457, 2.6887) 92.8 93.9
100 (0.6347, 0.8856) (1.5926, 2.6262) 94.4 94.2
500 (0.4946, 0.6074) (1.1981, 1.6651) 94.6 94.9
1000 (0.5818, 0.6613) (1.3170, 1.6479) 94.8 96.2

θ = 2

50 (0.4759, 0.8258) (1.3014, 3.2232) 93.0 92.6
100 (0.5424, 0.7935) (1.0221, 2.4009) 93.7 94.9
500 (0.5222, 0.6348) (1.7509, 2.3738) 94.3 95.1
1000 (0.5690, 0.6485) (1.8330, 2.2738) 95.7 95.1

Table 4.5: The result of 95% confidence interval (CI) and coverage percentage (CP)
for the parameters when α = 0.6

n CI (α̂) CI (θ̂) CP (α̂) CP (θ̂)

θ = 0.5

50 (0.8086, 1.8512) (0.2865, 0.6461) 91.2 92.3
100 (0.8963, 1.6387) (0.2761, 0.5327) 94.0 93.8
500 (1.3081, 1.6439) (0.4491, 0.5653) 94.4 94.8
1000 (1.3340, 1.5713) (0.4466, 0.5288) 94.9 95.3

θ = 1

50 (1.1862, 2.2409) (0.8667, 1.5862) 90.6 92.7
100 (1.0251, 1.7743) (0.6364, 1.1512) 93.5 93.4
500 (1.3061, 1.6399) (0.8438, 1.0755) 95.5 95.2
1000 (1.4588, 1.6962) (0.9679, 1.1325) 96.3 95.9

θ = 1.5

50 (0.7027, 1.7547) (0.5160, 1.6021) 92.4 93.7
100 (1.0600, 1.8017) (1.0236, 1.7932) 94.2 94.8
500 (1.2418, 1.5770) (1.2331, 1.5822) 95.3 95.2
1000 (1.4119, 1.6486) (1.3990, 1.6454) 95.3 95.4

θ = 2

50 (0.7467, 1.7955) (0.9234, 2.3649) 93.3 94.0
100 (1.1979, 1.9450) (1.6764, 2.7054) 94.2 94.2
500 (1.4864, 1.8213) (1.7814, 2.2467) 94.5 94.5
1000 (1.3990, 1.6364) (1.7546, 2.0836) 94.6 95.5

Table 4.6: The result of 95% confidence interval (CI) and coverage percentage (CP)
for the parameters when α = 1.5
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n CI (α̂) CI (θ̂) CP (α̂) CP (θ̂)

θ = 0.5

50 (2.0682, 3.5502) (0.6053, 0.9364) 93.4 93.1
100 (1.5519, 2.6080) (0.4847, 0.7223) 93.8 94.3
500 (1.8436, 2.3190) (0.4542, 0.5621) 93.9 94.4
1000 (1.8515, 2.1900) (0.4631, 0.5395) 94.0 94.7

θ = 1

50 (1.3893, 2.8389) (0.6921, 1.3472) 91.2 93.2
100 (1.4746, 2.5313) (0.7224, 1.1991) 93.6 93.8
500 (1.9302, 2.4074) (0.8095, 1.2254) 94.0 93.9
1000 (1.6945, 2.0314) (0.8594, 1.0122) 95.2 95.2

θ = 1.5

50 (2.3483, 3.8177) (1.3207, 2.3184) 92.0 94.2
100 (1.6874, 2.7464) (0.9651, 1.6810) 95.0 94.8
500 (1.7350, 2.21186) (1.3893, 1.7129) 95.3 95.3
1000 (1.8887, 2.2268) (1.4064, 1.6358) 95.4 95.4

θ = 2

50 (1.4252, 2.8890) (1.9073, 3.2213) 92.5 92.4
100 (1.4454, 2.4958) (1.4704, 2.4252) 93.8 94.3
500 (1.8178, 2.2960) (1.8457, 2.2776) 93.9 94.9
1000 (1.7974, 2.1356) (1.8533, 2.1591) 94.2 95.8

Table 4.7: The result of 95% confidence interval (CI) and coverage percentage (CP)
for the parameters when α = 2

0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423 0.379 0.324
0.296 0.740 0.418 0.412 0.494 0.416 0.338 0.392 0.484 0.265

Table 4.8: Flood Level Data.

Model ML estimates K-S test value p-value LL AIC BIC HQC

GKME α̂ = 55.65603, θ̂ = 10.13937 0.1132 0.9599 16.7992 -29.598 -27.607 -28.848

GDUSED α̂ = 72.8797, β̂ = 12.3894 0.1342 0.8635 16.4813 -28.963 -26.971 -28.574

KME λ̂ = 1.5747 0.4573 0.0005 -4.6911 11.3822 12.378 11.5766

KMW α̂ = 3.9833, λ̂ = 1.9669 0.1982 0.4121 14.0157 -24.0314 -22.04 -23.6427

IW α̂ = 4.529, β̂ = 0.3617 0.1452 0.7928 16.8281 -29.6563 -27.6648 -29.2675

Exponential λ̂ = 2.3557 0.4643 0.0004 -2.8631 7.7263 8.722 7.9206

Weibull â = 3.5634, b̂ = 2.1278 0.203 0.382 13.4538 -22.9076 -20.9161 -22.5188

Dimitrakopoulou et al [71] α̂ = 0.2429, β̂ = 7.9232, λ̂ = 8642.9526 0.1635 0.6591 16.2675 -26.5351 -23.5479 -25.9520

APTL α̂ = 1.44034e−06, β̂ = 2.455945e+03, λ̂ = 1.317631e+04 0.4770 0.0002 -3.6030 13.2059 16.1931 13.7891

Table 4.9: ML estimates, K-S test Value, p-value, LL, AIC, BIC, and HQC of the
fitted models for first data set.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98 6.97 9.02 13.29
0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24
25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81 2.62 3.82 5.32 7.32 10.06
14.77 32.15 2.64 3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66
15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63
17.12 46.12 1.26 2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64
17.36 1.40 3.02 4.34 5.71 7.93 1.46 18.10 11.79 4.40 5.85 8.26 11.98 19.13 1.76
3.25 4.50 6.25 8.37 12.02 2.02 13.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 12.07
6.76 21.73 2.07 3.36 6.93 8.65 12.63 22.69

Table 4.10: Bladder Cancer Patients Data.
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Model ML estimates K-S test value p-value LL AIC BIC HQC

GKME α̂ = 1.3738, θ̂ = 0.1022 0.0519 0.8806 -412.4914 828.9827 834.6868 831.3003

GDUSED α̂ = 0.9942, β̂ = 0.1338 0.1128 0.3725 -416.0211 836.0422 841.7462 838.3597

KME λ̂ = 0.079 0.1075 0.1039 -416.3697 834.7393 837.5914 835.8981

KMW α̂ = 1.1585, λ̂ = 0.0785 0.0604 0.7382 -413.8836 831.7673 837.4713 834.0848

IW α̂ = 0.7496, β̂ = 3.2884 0.1429 0.0108 -445.7943 895.5886 901.2927 897.9062

Exponential λ̂ = 0.1059 0.0832 0.3384 -415.4052 832.8104 835.6624 833.9682

Weibull â = 1.0528, b̂ = 0.1035 0.0663 0.6272 -415.0984 834.1968 839.9009 836.5144

Transmuted Burr-Type-III k̂ = 2.9358, ĉ = 1.1224, λ̂ = −0.76498 0.0861 0.2993 -423.5252 1217.472 1226.028 1220.948

Dimitrakopoulou et al [71] α̂ = 0.4359, β̂ = 1.5335, λ̂ = 0.1366 0.03723 0.9943 -411.6133 829.2266 837.7827 832.703

Table 4.11: ML estimates, K-S test Value, p-value, LL, AIC, BIC, and HQC of the
fitted models for second data set.

4.11.3 Data set III

The data set consists of survival times (in days) of guinea pigs injected with dif-

ferent doses of tubercle bacilli (Bjerkedal [153]), presented in Table 4.12. Kundu

and Howlader [154] and Abd-Elrahman [69] used this data set in their papers for

comparison purpose.

12 15 22 24 24 32 32 33 34 38
38 43 44 48 52 53 54 54 55 56
57 58 58 59 60 60 60 60 61 62
63 65 65 67 68 70 70 72 73 75
76 76 81 83 84 85 87 91 95 96
98 99 109 110 121 127 129 131 143 146
146 175 175 211 233 258 258 263 297 341
341 376

Table 4.12: The survival times (in days) of guinea pigs injected with different doses
of tubercle bacilli.

The ML estimates, AIC, BIC, HQC, LL, K-S test values and p-values of the

distributions for the third data set are given in Table 4.13.

Model ML estimates K-S test value p-value LL AIC BIC HQC

GKME α̂ = 2.7193, θ̂ = 0.015 0.1163 0.2842 -391.4704 786.9408 791.4941 788.7535

GDUSED α̂ = 2.0251, β̂ = 0.0184 0.1429 0.1058 -394.9731 793.9462 798.4995 795.7589

KME λ̂ = 0.0072 0.23 0.001 -406.3072 814.6144 816.891 815.5207

KMW α̂ = 1.5531, λ̂ = 0.0074 0.139 0.1237 -395.4254 794.8509 799.4042 796.6636

IW α̂ = 1.4148, β̂ = 54.1888 0.152 0.0718 -395.6491 795.2982 799.8515 797.1109

Exponential λ̂ = 0.01 0.2116 0.0032 -403.4421 808.8843 811.1609 809.7906

Weibull â = 1.3932, b̂ = 0.009 0.1465 0.0909 -397.1477 798.2953 802.84879 800.108

APTL α̂ = 9099.1457, β̂ = 3.0499, λ̂ = 56.6277 0.0919 0.5768 -389.852 785.704 792.534 788.423

Table 4.13: ML estimates, K-S test Value, p-value, LL, AIC, BIC, and HQC of the
fitted models for third data set.

Based on AIC, BIC, HQC, K-S test value, p-value and LL, we can conclude
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that the proposed model is more suitable for the data set compared to other

models except APTL distribution. The AIC, BIC, and HQC of APTL model is

slightly lower and P-value is higher thant the GKME model. Note that the

number of parameters in the APTL distribution is greater than the GKME

model. The plot of Empirical cdf and fitted cdf of the above distributions for

the third data set is given in Fig. 4.6.

4.11.4 Other applications

Apart from the failure rate data sets studied above, we compare the proposed

distribution with other distributions given in Abdul-Moniem [155]. So we con-

sider the data set of the life of fatigue fracture of Kevlar 373/epoxy that are

subject to constant pressure at the 90% stress level until all had failed, so we

have complete data with the exact times of failure. The ML estimates of the

GKME distribution (α, θ) for the given data set are (1.863406, 0.589529) and

the corresponding -LL, K-S value, AIC, AICC (Corrected AIC), and BIC values

are 122.532, 0.0888, 249.0641, 248.0641, and 253.7255 respectively. Here our

proposed model gives better fit to the data set compared to the distributions

given in Abdul-Moniem [155]. Next we consider the data set of the exceedances

of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Terri-

tory, Canada (Choulakian and Stephens [140]). ML estimates, -LL, K-S value,

p-value and AIC of the GKME distribution for this data set are respectively

α = 0.92555, θ = 0.05918, 251.8458, 0.09241, 0.5701, and 507.6916. Therefore

we can say that the GKME distribution works better than the distributions given

in references Akinsete et al. [141], Cordeiro et al. [91], Bourguignon et al. [70],

Lemonte [53], and Nekoukhou and Bidram [61].
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Figure 4.6: The empirical cdf and the cdf plots of the fitted distributions for the
third data set.
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4.12 Summary of the chapter

In this chapter, we develop a new lifetime model with decreasing and inverse

bathtub shaped hazard rate function. The distribution is obtained by general-

izing the KM transformation. The basic properties of the new distribution like

moments, moment generating function, conditional moments, quantile function,

mean deviation and entropy are derived. The consistency of the maximum like-

lihood estimators of the parameters involved in the distribution is demonstrated

through simulation studies. With the help of three real data sets, we study

and illustrate the flexibility of the new distribution. Our studies show that the

GKME distribution is a promising model for a large variety of lifetime data in

medical and reliability areas.
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Chapter 5

Estimation of Stress-Strength

Reliability Based on KME Model

5.1 Introduction

In reliability theory the estimation of stress-strength reliability is an important

problem. It has many applications in engineering and physics areas. In many

practical situations, the assumption of identical strength distributions may not

be quite realistic because components of a system are of different structure.

The term stress is defined as a failure inducing variable. That means the

stress (load) which tends to produce a failure of a component or of a device

of a material. For example, environment, pressure, load, velocity, resistance,

temperature, humidity, vibrations, and voltage etc. The term strength is defined

as it is failure resisting variable. The ability of component, device or a material

to accomplish its required function (mission) satisfactorily without failure when

subjected to the external loading and environment.

The stress-strength reliability model depicts the life of a component or item

with a random strength X and is subjected to a random stress Y . If the stress on

the component surpasses the strength, it fails instantaneously. Whenever Y < X
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the item functions satisfactorily. The component reliability is defined as

R = P (Y < X) =

∫ ∞

−∞

∫ x

−∞
f(x, y) dy dx,

where f(x, y) is the joint pdf of X and Y . Suppose the random variable X and

Y are independent, then R can be written as

R =

∫ ∞

−∞

∫ x

−∞
f(x) g(y) dy dx,

where f(x) and g(y) are the marginal pdfs of X and Y . This is also can be

written as

R =

∫ ∞

−∞
f(x) Gy(x) dx.

where Gy(x) is the cdf of g(y).

The germ of this idea was proposed by Birnbaum [156] and was developed by

Birnbaum and McCarty [157]. The formal term “stress–strength” firstly appears

in the title of Church and Harris [158]. Based on certain parametric assumptions

regarding X and Y , the first attempt to study R was undertaken by Owen et

al. [159]. They also calculated the confidence interval for R when X and Y are

independent or dependent normally distributed random variables. The estima-

tion of R for major distributions like normal (Church and Harris [158], Downton

[160];, Woodward and Kelley [161]), exponential (Kelly et al [162], Tong [163]),

Pareto (Beg and Singh [164]), and exponential families (Tong [165]) was derived

by the end of seventies. Enis and Geisser [166] contribute the Bayes estimation

of R for exponentially or normally distributed X and Y . The other major works

of the seventies include the introduction of a non-parametric empirical Bayes es-

timation of R by Ferguson [167] and Hollander and Korwar [168], and the study
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of system reliability (Bhattacharya and Johnson [169]).

Both stress and strength depend on some known covariates, Guttman et al.

[170] and Weerahandi and Johnson [171] discussed the estimation and associated

confidence interval of R. Using Bayesian approach Sun et al. [172] estimated the

stress-strength reliability. Raqab and Kundu [173] carried out the estimation of

stress-strength reliability, when Y and X two independent scaled Burr type X

distribution. A comprehensive treatment of the different stress-strength models

till 2001 can be found in the excellent monograph by Kotz et al. [174]. Some of

the work on the estimation of stress-strength reliability can be obtained in Kundu

and Gupta ([175], [176]), Kundu and Raqab [177], Krishnamoorthy et al. [178],

Raqab et al. [179], Rezaei et al. [180], and Baklizi [181]. Baklizi and Eidous [182]

introduced an estimator of stress-strength reliability based on kernel estimators.

Estimation of stress-strength reliability using empirical likelihood method was

studied by Jing et al. [183].

Basirat et al. [184] studied the estimation of stress-strength parameter using

record values from proportional hazard model. Estimation of stress-strength

reliability based on the generalized exponential distribution was developed by

Asgharzadeh et al.[185]. Bai et al. [186] considered reliability inference of stress-

strength model under progressively Type-II censored samples when stress and

strength have truncated proportional hazard rate distributions. Bi and Gui [187]

derived Bayesian estimation of R using inverse Weibull distribution. Ghitany et

al. [188] discussed inference on stress-strength reliability based on power Lindley

distribution. Sharma [189] proposed an upside-down bathtub shape distribution

and estimate of stress-strength reliability of inverse Lindley distribution.

In recent times the study of the stress-strength reliability estimation of single

and multi-component systems using various generalizations of half logistic dis-

tribution was done by Jose et al. [190] and Xavier and Jose [191]. Domma et
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al. [192] developed the stress-strength reliability based on the m-generalized or-

der statistics and the corresponding concomitant. Estimation of R using inverse

Weibull distribution based on progressive first failure censoring was proposed by

Krishna et al. [193]. Inference on R in bivariate Lomax model introduced by

Musleh et al. [194]. Kohansal and Nadarajah [195] considered estimation of R

using Kumaraswamy distribution based on Type-II hybrid progressive censored

samples. Estimation of stress-strength reliability of single and multi-component

systems based on discrete phase type distribution was studied by Joby et al.

[196].

In reliability analysis the multi-component stress-strength (MSS) reliability

modeling gets greater attention because in many real life situations the system

consist of two or more components. Bhattacharyya and Johnson [197] noticed

the performance of a system depends on more than one component and these

components have their own strength. Mokhlis and Khames [198] derived the reli-

ability of some parallel and series MSS model using multivariate Marshall-Olkin

Exponential distribution. The MSS reliability based on generalized exponential

distribution was introduced by Rao [199]. Recently many authors studied MSS

reliability, the main works include Rao et al. [200], Dey et al. [201], Khalil [202],

Kohansal [203], Abouelmagd et al. [204], Hassan and Alohal [205], Fatma [206],

Jamal et al. [207], Jha et al. [208], and Hassan et al. [209].

In this chapter we study the estimation of stress-strength reliability for KME

distribution. Here we consider the case that the strength variables X and stress

variable Y are independent. The maximum likelihood estimation and asymptotic

distribution of R are derived. The simulation study is carried out and using

simulated data set we perform the analysis.
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5.2 Preliminaries of KME model

We obtain the KME model using the cdf of exponential distribution in KM

transformation given in Equation (2.1). Recall the pdf and cdf of the KME

distribution from Chapter 3. The pdf and cdf are

f(x) =
λe−λxee

−λx

e− 1
, x > 0, λ > 0,

F (x) =
e

e− 1
[1− e−(1−e−λx)], x > 0, λ > 0,

5.3 Stress-strength reliability based on the

model

The stress-strength reliability model depicts the life of a component or item

with a random strength X and is subjected to a random stress Y . If the stress

on the component surpasses the strength, it fails instantaneously. Whenever

Y < X the item functions satisfactorily. The component reliability is defined

as R = P (Y < X). It has applications in engineering fields such as failure

of aircraft structures, deterioration of rocket motors, and the aging of concrete

pressure vessels.

Suppose X and Y are two independent random variables. If X ∼ KME(λ1)

and Y ∼ KME(λ2), then the stress-strength reliability is obtained as

R = P (Y < X) =

∫ ∞

0

λ1e
−λ1xee

−λ1x

e− 1

[
e

e− 1

(
1− e−(1−e−λ2x)

)]
dx

=
λ1e

(e− 1)2

∞∑
m=0

1

m!

[
I1 + I2

]
(5.1)

where I1 =
∫∞
0

e−λ1x(m+1)dx and I2 =
∫∞
0

e−λ1x(m+1)e−(1−e−λ2x)dx. After integra-

115



tion, we get the values of I1 =
1

λ1(m+1)
and I2 =

∑∞
n=0

∑∞
i=0

(−1)n+i

n!

(
n
i

)
1

λ1(m+1)+λ2i
.

Substituting these values in (5.1), the stress-strength reliability based on the

KME model is obtained as

R = P (Y < X)

=
λ1e

(e− 1)2

∞∑
m=0

1

m!

[
1

λ1(m+ 1)
−

∞∑
n=0

∞∑
i=0

(−1)n+i

n!

(
n

i

)
1

λ1(m+ 1) + λ2i

]
.

(5.2)

5.4 Estimation of R

Suppose we drawn a random sample x1, x2, ..., xp of size p from KME(λ1) and

y1, y2, ..., yq of size q from KME(λ2). The likelihood function is obtained as

L =

(
1

e− 1

)p

λp
1e

−λ1
∑p

i=1 xie
∑p

i=1 e
−λ1xi

(
1

e− 1

)q

λq
2e

−λ2
∑q

j=1 yje
∑q

j=1 e
−λ2yj

(5.3)

The log likelihood function is

log L =p log(
1

e− 1
) + p log(λ1)− λ1

p∑
i=1

xi +

p∑
i=1

e−λ1xi

q log(
1

e− 1
) + q log(λ2)− λ2

q∑
j=1

yj +

q∑
j=1

e−λ2yj (5.4)

The partial derivatives of the log likelihood function with respect to λ1 and λ2

are

∂ log L

∂λ1

=
p

λ1

−
p∑

i=1

xi

(
1 + e−λ1xi

)
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and

∂ log L

∂λ2

=
q

λ2

−
q∑

j=1

yj

(
1 + e−λ2yj

)

The maximum likelihood estimates of the parameters are obtained as the solution

of the above non-linear equations.

The second partial derivatives of the log likelihood function with respect to

λ1 and λ2 are

∂2 log L

∂λ2
1

=
−p

λ2
1

+

p∑
i=1

x2
i e

−λ1xi

and

∂2 log L

∂λ2
2

=
−q

λ2
2

+

q∑
j=1

y2j e
−λ2yj

The maximum likelihood estimate of Stress-Strength reliability R is

R̂ML =
λ̂1e

(e− 1)2

∞∑
m=0

1

m!

[
1

λ̂1(m+ 1)
−

∞∑
n=0

∞∑
i=0

(−1)n+i

n!

(
n

i

)
1

λ̂1(m+ 1) + λ̂2i

]
(5.5)

We obtain the expression of the maximum likelihood estimate of Stress-Strength

reliability R by substituting the estimated parameters in the Equation (5.2).

5.5 Asymptotic distribution and confidence in-

terval

In this section we focused on the asymptotic distribution and confidence interval

of the maximum likelihood estimate of R. To obtain the asymptotic variance
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of the maximum likelihood estimate of R, we consider the Fisher information

matrix of λ and is denoted as I.

I = −

 E(∂
2 log L
∂λ2

1
) E(∂

2 log L
∂λ1∂λ2

)

E(∂
2 log L
∂λ2∂λ1

) E(∂
2 log L
∂λ2

2
)


Using the standard method of asymptotic properties of maximum likelihood

estimate, we derive the asymptotic normality of R as

d(λ) =

(
∂R

∂λ1

,
∂R

∂λ2

)′

= (d1, d2)
′

Here

∂R

∂λ1

= − e

e− 1

∞∑
m=0

1

m!

∞∑
n=0

∞∑
i=0

(−1)n+i

n!

(
n

i

)
λ̂2i

(λ̂1(m+ 1) + λ̂2i)2

and

∂R

∂λ2

= − λ̂1e

(e− 1)2

∞∑
m=0

1

m!

∞∑
n=0

∞∑
i=0

(−1)n+i

n!

(
n

i

)
i

(λ̂1(m+ 1) + λ̂2i)2

Now we obtain the asymptotic distribution of R̂ML as

√
p+ q(R̂ML −R) →d N(0, d′(λ)I−1d(λ)).

The asymptotic variance of the R̂ML is

AV (R̂ML) =
1

p+ q
0, d′(λ)I−1d(λ)

=V (λ̂1)d
2
1 + V (λ̂2)d

2
2 + 2d1d2Cov(λ̂1, λ̂2).
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Hence an asymptotic 100(1− ξ)% confidence interval for R can be obtained as

R̂ML ± Z ξ
2

√
AV (R̂ML),

where Z ξ
2
is the upper ξ

2
quantile function of the standard normal distribution.

5.6 Simulation study

In this section we check the performance of estimators in R using simulation

technique. For this purpose we generate 1000 pseudo random samples using

Newton-Raphson method. The random samples are generated for different pop-

ulation parameters of (λ1, λ2) as (0.5,1), (0.9,0.5), and (1.0,0.9) and sample sizes

(p, q) as (10,10),(15,25),(20,20),(30,30),(40,40), and (50,50). The maximum like-

lihood estimates, their mean square error (MSE) and 95% confidence interval

(CI) are calculated and the results are given in the following tables.

(p, q) ML estimates MSEs CI

(10,10)
λ1 =0.57077 0.24634 (0.08795, 1.05359)
λ2 =1.14347 0.06295 (0.80201, 1.26686)

(15,25)
λ1 =0.53939 0.20729 (0.13312, 0.94566)
λ2 =1.03657 0.12229 (0.80124, 1.06082)

(20,20)
λ1 =0.53241 0.32406 (-0.10276, 1.16757)
λ2 =1.05715 0.04907 (0.96097, 1.15333)

(30,30)
λ1 =0.52109 0.13712 (0.25233, 0.78985)
λ2 =1.04110 0.01237 (0.80140, 1.28079)

(40,40)
λ1 =0.51019 0.22229 (0.07450, 0.94588)
λ2 =1.02810 0.02570 (0.97773, 1.07847)

(50,50)
λ1 =0.51125 0.19753 (0.12409, 0.89841)
λ2 =1.02751 0.02640 (0.97577, 1.07925)

Table 5.1: The ML estimates, MSEs and confidence interval of different estimators
of R when λ1 = 0.5 and λ2 = 1.0

Results from the simulation study reveals that sample sizes p and q increase,

the estimated parameter values tends to population parameter values. Also the
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(p, q) ML estimates MSEs CI

(10,10)
λ1 =1.00947 0.29601 (0.42928, 1.58966)
λ2 =0.55836 0.10123 (0.35994, 0.75677)

(15,25)
λ1 =0.96646 0.12012 (0.73102, 1.2019)
λ2 =0.52620 0.01846 (0.35258, 0.52656)

(20,20)
λ1 =0.95902 0.08818 (0.78620, 1.13185)
λ2 =0.53293 0.01209 (0.43045, 0.53541)

(30,30)
λ1 =0.94372 0.06563 (0.81508, 1.07237)
λ2 =0.51937 0.00126 (0.49567, 0.54307)

(40,40)
λ1 =0.92773 0.00185 (0.82411, 0.93135)
λ2 =0.51179 0.00033 (0.41115, 0.51243)

(50,50)
λ1 =0.91653 0.00167 (0.89133, 0.91980)
λ2 =0.51249 0.00017 (0.45121, 0.51283)

Table 5.2: The ML estimates, MSEs and confidence interval of different estimators
of R when λ1 = 0.9 and λ2 = 0.5

(p, q) ML estimates MSEs CI

(10,10)
λ1 =1.70398 0.11763 (1.06944, 1.73853)
λ2 =1.01417 0.04031 (0.13567, 1.01478)

(15,25)
λ1 =1.62178 0.09751 (1.10266, 1.64089)
λ2 =0.93769 0.03302 (0.27297, 1.00240)

(20,20)
λ1 =1.59399 0.08241 (1.23654, 1.65144)
λ2 =0.95547 0.00594 (0.43819, 0.96712)

(30,30)
λ1 =1.56481 0.08071 (1.39415, 1.54773)
λ2 =0.93981 0.00556 (0.63479, 0.98262)

(40,40)
λ1 =1.55355 0.05150 (1.39382, 1.71329)
λ2 =0.92423 0.00625 (0.71198, 0.93647)

(50,50)
λ1 =1.53238 0.00228 (1.32790, 1.53686)
λ2 =0.92832 0.00279 (0.81279, 0.94385)

Table 5.3: The ML estimates, MSEs and confidence interval of different estimators
of R when λ1 = 1.5 and λ2 = 0.9

MSEs are decreasing with increase in sample sizes (p, q).

5.7 Application

In this section we have generated two data sets (p = q = 20) using KME model

with parameter values λ1 = 1 and λ2 = 0.5. Therefore the value of R is obtained

as 0.17633. The data points are adjusted in two decimal points and the data sets
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are presented in the following tables.

4.02 0.44 1.43 0.09 0.49 0.27 0.54 0.02 0.48 1.77
3.04 4.30 0.94 3.08 1.42 0.09 3.05 2.17 0.21 0.64

Table 5.4: Data set I

0.09 0.26 0.20 0.11 2.08 1.48 0.85 2.57 1.04 0.26
0.01 0.40 1.37 0.71 0.29 1.10 0.81 0.13 1.73 2.25

Table 5.5: Data set II

In this case the maximum likelihood estimates of λ1 and λ2 are obtained

respectively as 0.854 and 0.542. Here the estimated value of R, R̂ML is obtained

as 0.21336. The corresponding 95% confidence interval based on asymptotic

distribution is (0.19153, 0.23519).

5.8 Summary of the chapter

In this chapter we consider the estimation of the stress-strength reliability for

the KME model for independent stress and strength random variables when

the parameters are unknown. The maximum likelihood estimators of the un-

known parameters are calculated. Then provide the asymptotic distributions

of the maximum likelihood estimators, which have been used to construct the

asymptotic confidence intervals. Simulation study is carried out to examine the

performance of the estimators. The study reveals that MSEs are decreasing with

increase in sample sizes. Using a simulated data set, we find the estimates of the

parameters, R̂ML value and 95% confidence interval.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions and future works

The theory of reliability is a well established scientific discipline with its own

principles and methods of problem solving. Probability theory and mathematical

statistics play an important role in most problems in reliability theory. The

study of life length of human beings, structures, organisms, materials, etc., is of

great importance in the biological, actuarial, engineering and medical sciences.

Therefore, statisticians and reliability analysts have shown a growing interest in

modeling survival data using classifications of life distributions based on some

aspects of ageing. So it is clear that research on ageing properties (univariate,

bivariate, and multivariate) is currently being vigorously pursued. Many of the

univariate definitions do have physical interpretations such as arising from shock

models. The simple ageing classes, that is, IFR, IFRA, NBU, NBUE, DMRL etc

have been shown to be very useful in reliability related decision making, such as

replacement and maintenance studies.

While positive ageing concepts are well understood, negative ageing con-

cepts (life improved by age) are less intuitive. Nevertheless, negative ageing

phenomenon does occur quite frequently. There have been cases reported by
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several authors where the failure rate functions decrease with time. A popula-

tion is expected to exhibit decreasing failure rate (DFR) when its behaviors over

time is characterized by ‘work hardening’ (in engineering terms), or ‘immunity’

(in biological terms). Modern phenomenon of DFR includes reliability growth

(in software reliability). Non-monotonic ageing concepts have been found useful

in many reliability and survival analysis such as burn-in time decision.

In Chapter 1, the basic concepts of the reliability theory and review of the

lifetime distributions are given. The relevance and scope of the study is also

discussed in this chapter.

In chapter 2, a new transformation for lifetime models has been proposed and

the transformation is called Kavya- Manoharan (KM) transformation. Shapes of

the pdf and the hazard rate function are discussed in this chapter. New lifetime

distributions can be developed using this transformation. The main advantage

of the newly proposed models is that they do not introduce any additional pa-

rameters. In other words, the distributions are parsimonious in parameters.

Consequently, the newly introduced models using KM transformation allow for

simple mathematical computations and parametric estimation.

In Chapter 3, Three new distributions are proposed using the newly de-

veloped transformation. Exponential, Weibull, and Lomax distributions are

used as the baseline distribution in the transformation and the new distribu-

tions are called respectively KM-Exponential (KME), KM-Weibull (KMW) and

KM-Lomax (KML) distributions. KME and KML distributions show decreas-

ing hazard rate function and the KMW distribution shows both increasing and

decreasing hazard rate function. The analytical characteristics of these newly

proposed models are explained. The suitability of these distributions are illus-

trated using real data sets which are available in the literature. The proposed

lifetime models give better fit to the data sets compared to some of the other
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well known distributions given in this study.

In chapter 4, we have generalized the KM transformation using a new pa-

rameter. A new lifetime model is developed by substituting the exponential

distribution in the generalized KM transformation and is called Generalized KM

Exponential (GKME) distribution. The new lifetime model shows decreasing

and inverse bathtub failure rate function. Many statistical characteristics of the

new lifetime model have been derived. Three real data sets are used to show the

flexibility of the proposed model. The new lifetime model shows better result

than other distributions given in this study.

In chapter 5, we have derived the stress-strength reliability of the KMEmodel.

The stress-strength reliability R plays an important role in many practical fields

including medicine, quality control and engineering. It measures the probability

that the random strength X exceeds the stress Y of a component. So we car-

ried out the estimation of stress-strength parameter using maximum likelihood

method and also establish the asymptotic distribution and confidence interval

for R. To check the performance of the maximum likelihood estimators, simu-

lation study is carried out. With the help of simulated data sets, the maximum

likelihood estimates and the estimate of R are calculated.

In this thesis we focused to enhance the literature of ageing of life distribu-

tions using newly proposed models which are more suitable to the real lifetime

data sets. Many authors incorporated more parameters to enhance the exist-

ing lifetime models so the mathematical calculations, estimation of parameters,

analysis of the real life data sets become more complicated. In this scenario, our

work gets more attention because of its simplicity. Without any hectic exercise

we can simply calculate the analytical characteristics of the models, estimation

of parameters and analysis.

Many works are open for the interested scholars in this area. Our main
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interests is to study the general properties of the KM family of distributions,

which is the work we are now focused on. Along with this, we are going to perform

different estimation methods to estimate the parameters of the introduced models

and show the consistency of parameters using simulation study. Researchers can

introduce new lifetime models using existing distributions as baseline distribution

in the KM transformation. To study the change point of failure rate and mean

residual functions of the proposed model (GKME) is also a possible future work.

The GKME distribution has a compact distribution function so we can use in a

convenient manner for censored data. Therefore, we plan to explore it as one of

our future work. Burn-in process and maintenance policy are often used in real

life situations. So we currently work on the computation of optimal burn-in time

and optimal age under age replacement policy for KM-Kumaraswamy model,

which shows bathtub shaped failure rate model. In addition, we aim to find the

appropriate testing parameters to minimize the total of testing, manufacturing,

quality and reliability costs and also to study about the application of the new

model in decision making.

126



List of Published Works

1. Kavya, P., Manoharan, M. (2020). On a generalized lifetime model using

DUS transformation. In: Joshua V., Varadhan S., Vishnevsky V. (eds)

Applied Probability and Stochastic Processes, Infosys Science Foundation

Series. Springer Nature, Singapore, pp. 281-291. DOI: 10.1007/978-981-

15-5951-8 17.

2. Kavya, P., Manoharan, M. (2021). Some parsimonious mod-

els for lifetimes and applications. Journal of Statistical Compu-

tation and Simulation, vol. 91, no. 18, pp. 3693-3708.

https://doi.org/10.1080/00949655.2021.1946064.

3. Manoharan, M., Kavya, P. (2022). A new reliability model and ap-

plications. Reliability:Theory and Applications, Vol. 17, pp. 65-75.

https://doi.org/10.24412/1932-2321-2022-167-65-75.

4. Kavya, P., Manoharan, M. (2023). A new lifetime model for non-monotone

failure rate data. Journal of the Indian Society for Probability and Statis-

tics. https://doi.org/10.1007/s41096-023-00152-x.

5. Gauthami P., Mariyamma K. D., Kavya P. (2023). A modified inverse

Weibull distribution using KM transformation. Reliability:Theory and Ap-

plications, Vol. 18, No. 1(72), pp. 35-42. https://doi.org/10.24412/1932-

2321-2023-172-35-42.

6. Kavya, P., Manoharan, M. (2023). Estimation of stress-strength reliability

based on KME model. Accepted in Reliability:Theory and Applications.

127



Presentations in Conference/Seminars

1. ‘On a Generalized Lifetime Model Using DUS Transformation’, Interna-

tional Conference on Advances in Applied Probability and Stochastic Pro-

cesses organized by Centre for Research in Mathematics, Department of

Mathematics, CMS College Kottayam during 7-10 January 2019.

2. ‘On A New Parsimonious Lifetime Distribution’, National Seminar on Re-

cent Trends in Statistical Theory and Applications-2020 (NSSTA-2020)

Webinar organized by Indian Society for Probability and Statistics (ISPS),

Kerala Statistical Association (KSA) and the Department of Statistics,

University of Kerala, Trivandrum during June 29-July 01, 2020.

3. ‘A new lifetime model for non-monotone failure rate’, International Con-

ference (virtual mode) on Emerging Trends in Statistics and Data Sci-

ence in Conjunction with 40th Annual Convention of Indian Society for

Probability and Statistics (ISPS) jointly organized by the Departments of

Statistics of CUSAT, Cochin, M.D. University, Rohtak, University of Ker-

ala, Trivandrum, Bharathiar University, Coimbatore, The Madura College

(Autonomous), Madurai during 7-10 September, 2021.

128



Bibliography

[1] Barlow, P. E., Proschan, F. (1965). Mathematical Theory of Reliability. John

Wiley and Sons, Hoboken.

[2] Lawless, J. (1982). Statistical Models and Methods for Lifetime Data. John

Wiley and Sons, New York.

[3] Marshall, A. W., Olkin, I. (2007). Life Distributions. Structure of Nonpara-

metric Semiparametric and Parametric Families. Springer, New York.

[4] Deevey, E. S. (1947). Life Tables for Natural Populations of Animals. Quar-

terly Review of Biology, Vol.22, pp. 283-314.

[5] Chiang, C. L. (1968). Introduction to Stochastic Processes in Biostatistics.

Wiley, New York.

[6] Cox, D. R. (1962). Renewal Theory. Methuen, London.

[7] Kotz, S., Shanbhag, D. N. (1980). Some New Approaches to Probability

Distributions. Journal of Applied Probability, Vol. 12, pp. 903-921.

[8] Hall, W. J., Wellner, J. A. (1981). Mean Residual Life. Statistics and Related

Topics. North-Holland, Amsterdam, pp. 169-184.

[9] Morrison, D. G. (1978). On Linearly Increasing Mean Residual Lifetimes.

Journal of Applied Probability, Vol. 15 (3).

129



[10] Bhattacharjee, M. C. (1982). The Class of Mean Residual Lives and Some

Consequences. SIAM Journal on Matrix Analysis and Applications, Vol. 3

(1), DOI:10.1137/0603006.

[11] Deshpande, J. V., Kochar, S. C., Singh, H. (1986). Aspects of Positive

Ageing. Journal of Applied Probability, 23, pp. 748-758.

[12] Lai, C. D., Xie, M. (2006). Stochastic ageing and dependence for reliability.

Springer.

[13] Rolski, T. (1975). Mean Residual Life. Bulletin International Statistical In-

stitute, Vol. 46, pp. 266-270.

[14] Klefsjo, B. (1981). HNBUE Survival Under Some Shock Models. Scandina-

vian Journal of Statistics, Vol. 8, No. 1, pp. 39-47.

[15] Klefsjo, B. (1983). A Useful Ageing Property Based on The Laplace Trans-

form. Journal of Applied Probability, Vol. 20, No. 3, pp. 615-626.

[16] Launer, R. L. (1984). Inequalities for NBUE and NWUE Life Distributions.

Operations Research, Vol. 32(3), pp. 660-667.

[17] Gupta, R. C., Kirmani, S. N. U. A., Launer, R. L. (1987). On Life Distri-

butions Having Monotone Residual Variance. Probability in the Engineering

and Informational Sciences, Vol. 1 (3), pp. 299-307.

[18] Deshpande, J. V., Singh, H., Bagai, I., Jain, K. (1990). Some Partial Orders

Describing Positive Ageing. Communication in Statistics- Stochastic Model,

Vol. 6, pp. 471-481.

[19] Singh, H., Deshpande, J. V. (1985). On Some New Ageing Properties. Scan-

dinavian Journal of Statistics, Vol. 12 (3), pp. 213-220.

130



[20] Barlow, R. E., Proschan, F. (1975). Statistical theory of Reliability and Life

testing: Probability models. Holt, Rinehart and Winston, INC.

[21] Shaked, M.,, Shanthikumar, J. G. (2007). Stochastic orders. Springer, New

York.

[22] Koutras, V. P. (2011). Two-level software rejuvenation model with increas-

ing failure rate degradation. In: Zamojski W., Kacprzyk J., Mazurkiewicz

J., Sugier J., Walkowiak T. (eds) Dependable Computer Systems. Advances

in Intelligent and Soft Computing, Springer, Berlin, Heidelberg, vol 97, pp.

n101-115. 39:35–42.

[23] Ross, S. M., Shanthikumar, G. J., Zhu, Z. (2005). On incresing-failure-rate

random variables. Jornal of Applied Probability, Vol 42, pp. 797-809.

[24] Barlow, R. E., Marshall, A. W., Proschan, F. (1963). Properties of probabil-

ity distributions with monotone hazard rate. Annals of Mathematical Statis-

tics, Vol 34, pp. 375-389.

[25] Barlow, R. E., Marshall, A. W. (1964). Bounds for distributions with mono-

tone hazard rate I and II. Annals of Mathematical Statistics, Vol 35, pp.

1234-1274.

[26] Barlow, R. E., Marshall, A. W. (1965). Tables of bounds for distributions

with monotone hazard rate. Journal of Amererican Statistical Association,

Vol 60, pp. 872-890.

[27] Gupta, R. D. (2001). Exponentiated exponential family: an alternative to

gamma and Weibull distributions. Biometrica Journal, Vol 43, pp. 117-130.

[28] Gupta, R. D., Kundu, D. (2009). A new class of weighted exponential dis-

tributions. Statistics, Vol 43, pp. 621-634.

131



[29] Cancho, V. G., Louzada-Neto, F., Barriga, G. D. C. (2011). The Poisson-

exponential lifetime distribution. Computational Statistics and Data Analy-

sis, Vol 55, pp. 677-686.

[30] Cozzolino, J.M. (1968). Probabilistic models of decreasing failure rate pro-

cesses. Naval Research Logistics Quarterly, Vol 15, pp. 361-74.

[31] Proschan, F.(1963). Theoretical explanation of observed decreasing failure

rate. Technometrics, Vol 5, pp. 375-383.

[32] Adamidis, K., Loukas,S. (1998). A lifetime distribution with decreasing fail-

ure rate.Statistics and Probability Letters, Vol 39 (1), pp. 35-42.

[33] Tahmasbi, R., Rezaei, S. (2008). A two-parameter lifetime distribution with

decreasing failure rate. Computational Statistics and Data Analysis, Vol 52

(8), pp. 3889-901.

[34] Chahkandi, M., Ganjali, M. (2009). On some lifetime distributions with

decreasing failure rate. Computational Statistics and Data Analysis, Vol 53

(12), pp. 4433-40.

[35] Kus, C. (2007). A new lifetime distribution. Computational Statistics and

Data Analysis, Vol 51 (9), pp. 4497-509.

[36] Glaser, R. E. (1980). Bathtub and related failure rate characterizations.

Journal of American Stattistical Association, Vol 75, 667-672.

[37] Lai, C. D., Xie, M. and Murthy, D. N. P. (2001). Bathtub shaped failure

rate life distributions. Balakrishnan, N. and Rao, C.R. (Editors), Elsevier

Science, Amsterdam. Handbook of Statistics: Advances in Reliability, Vol 20,

pp. 69-104.

132



[38] Hjorth, U. (1980). A reliability distribution with increasing, decreasing, con-

stant and Bathtub shaped failure rate. Technometrics, Vol 22, pp. 99-107.

[39] Xie, M., Tang, Y. and Goh, T.N. (2002). A modified Weibull extension

with Bathtub shaped failure rate function. Reliability Engineering and System

Safety, Vol 76(3), pp. 279-285.

[40] Xie, M., Lai, C.D. and Murthy, D.N.P. (2003). Weibull-related distribu-

tions for modelling of Bathtub shaped failure rate functions. Mathematical

and Statistical Methods in Reliability, Lindqvist, B.H. and Doksum, K.A.

(Eds), World Scientific, Singapore, pp. 283-297.

[41] Navarro, J. and Hernandez, P.J. (2004). How to obtain Bathtub shaped

failure rate models from normal mixtures. Probability in the Engineering and

Informational Sciences, Vol 18, pp. 511-531.

[42] Kundu, D. (2004). Exponentiated Exponential distribution. Encyclopedia

of Statistical Sciences, 2nd edition, Wiley, New York.

[43] Wondmagegnehu, E.T., Navarro, J., and Hernandez, P.J. (2005). Bathtub

shaped failure rates from mixtures: a practical point of view. IEEE Transac-

tions on Reliability, Vol. 54 (2), pp. 270-275.

[44] Block, H. W., Li, Y., Savits, T. H. andWang, J. (2008). Continuous mixtures

with Bathtub shaped failure rates. Journal of Applied Probability, Vol. 45(1),

pp. 260-270.

[45] Sarhan, A. and Kundu, D. (2009). Generalized linear failure rate distribu-

tion. Communications in Statistics - Theory and Methods, Vol. 38(5), pp.

642-660.

133



[46] Mudholkar, G. S. and Srivastava, D. K. (1993). ExponentiatedWeibull fam-

ily for analyzing Bathtub failure rate data. IEEE Transactions on Reliability,

Vol. 42(2), pp. 299-302.

[47] Xie, M. and Lai, C. D. (1995). Reliability analysis using an additive Weibull

model with bathtub-shaped failure rate function. Reliability Engineering and

System Safety, Vol. 52, pp. 87-93.

[48] Xie, M., Tang, Y. and Goh, T. N. (2002). A modified Weibull extension

with bathtub shaped failure rate function. Reliability Engineering and System

Safety, Vol. 76(3), pp. 279-285.

[49] Chen, Z. (2000). A new two-parameter lifetime distribution with bathtub

shape or increasing failure rate function. Statistics and Probability Letters,

Vol. 49(2), pp. 155-161.

[50] Wang, F.K. (2000). A new model with Bathtub shaped failure rate using

an additive Burr XII distribution. Reliability Engineering and System Safety,

Vol. 70, pp. 305-312.

[51] Wang, R., Sha, N., Gu, B. and Xu, X. (2014). Statistical analysis of a

Weibull extension with bathtub shaped failure rate function. Advances in

Statistics, Vol. 2014, Article ID 304724.

[52] Lemonte, A. J., Cordeiro, G. M. (2013). An extended Lomax distribution

A Journal of Theoretical and Applied Statistics, vol. 47(4), pp. 800-816.

[53] Lemonte, A.J. (2013). A new exponential-type distribution with constant,

decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate

function. Computational Statistics and Data Analysis, 62:149-170.

[54] Zhang, T., Dwight, R. and El-Akruti, K. (2013). On aWeibull related distri-

bution model with decreasing, increasing and upside-down Bathtub shaped

134



failure rate. Proceedings Annual Reliability and Maintainability Symposium

(RAMS), Orlando, pp. 1-6.

[55] Parsa, M., Motashami Borzadaran, G.R. and Rezaei Roknabadi, A.H.

(2014). On the change points of mean residual life and failure rate func-

tions for some generalized Gamma type distributions. International Journal

of Metrology and Quality Engineering, 5(1), DOI: 10.1051/ijmqe/2014002.

[56] Wang, X., Yu, C. and Li, Y. (2015). A new finite interval lifetime distribution

model for fitting Bathtub shaped failure rate curve. Mathematical Problems

in Engineering, pp. 1-6. DOI:10.1155/2015/954327.

[57] Shehla, R. and Ali-Khan, A. (2016). Reliability analysis using an exponential

power model with Bathtub shaped failure rate function: A Bayes study.

Springer plus, 5(1), DOI: 10.1186/s40064-016-2722-3.

[58] Zeng, H., Lan, T. and Chen, Q. (2016). Five and four-parameter lifetime

distributions for Bathtub shaped failure rate using Perks mortality equation.

Reliability Engineering and System Safety, Vol. 152, pp. 307-315.

[59] Cordeiro, G. M., Silva, G. O.,and Ortega, E. M. M. (2010).The Beta ex-

tended Weibull family. Life time data analysis, 16, 409-430.

[60] Maurya, S.K., Kaushik, A., Singh, R.K., Singh, S.K., and Singh, U. (2017).

A new class of distribution having decreasing, increasing, and bathtub-shaped

failure rate. Communications in Statistics - Theory and Methods, Vol. 46(20),

pp. 10359-10372.

[61] Nekoukhou, V., and Bidram, H. (2017). A new generalization of the weibull-

geometric distribution with bathtub failure rate. Communications in Statis-

tics - Theory and Methods, Vol. 46(9), pp. 4296-4310.

135



[62] Shafiq, M. and Viertl, R. (2017). Bathtub hazard rate distributions and

fuzzy life times. Iranian Journal of Fuzzy Systems, Vol. 14(5), pp. 31-41.

[63] Cordeiro, G. M., Afify, A. Z., Yousof, H. M., Cakmakyapan, S.,

and Ozel, G. (2018). The Lindley Weibull distribution: properties

and applications. Anais da Academia Brasileira de Ciências, Vol. 90(3).

https://doi.org/10.1590/0001-3765201820170635.

[64] Dey, S., Nassar, M., Kumar, D., Alzaatreh, A. and Tahir, M.H. (2019). A

new lifetime distribution with decreasing and upside-down Bathtub shaped

hazard rate function. Statistica, Vol. 79(4), pp. 399-426.

[65] Al abbasi, J. N., Khaleel, M. A., Abdal-hammed, M. Kh., Loh, Y.F. and

Ozel, G. (2019). A new uniform distribution with bathtub shaped failure

rate with simulation and application. Mathematical Sciences, Vol. 13(2), pp.

105-114.

[66] Shoaee, S. (2019). Statistical analysis of bivariate failure time data based

on Bathtub shaped failure rate model. Journal of Iranian Statistical Society,

Vol. 18(1), pp. 53-87.

[67] Ahsan, S., Lemma, T. A. and Gebremariam, M. A. (2019). Reliability analy-

sis of gas turbine engine by means of Bathtub shaped failure rate distribution.

Process safety progress, Vol. 39, DOI: 10.1002/prs.12115.

[68] Chen, S. and Gui, W. (2020). Statistical analysis of a lifetime distribution

with a bathtub shaped failure rate function under adaptive progressive type-

II censoring. Mathematics, Vol. 8(5), pp. 670-691.

[69] Abd-Elrahman, A. M. (2017). A new two-parameter lifetime distribution

with decreasing, increasing or upside-down bathtub-shaped failure rate. Com-

136



munications in Statistics - Theory and Methods, Vol. 46(18), pp. 8865-8880.

[70] Bourguignon, M., Silva, R.B., Zea, L.M., and Cordeiro, G.M. (2013). The

Kumaraswamy Pareto distribution. Journal of Statistical Theory and Appli-

cations, Vol. 12(2), pp. 129-144.

[71] Dimitrakopoulou, T., Adamidis, K., and Loukas, S. (2007). A lifetime distri-

bution with an upside-Down bathtub-shaped hazard function. IEEE Trans-

actions On Reliability, Vol.56(2), pp. 308-311.

[72] Sharma, V. K., Singh, S. K, and Singh, U. (2014). A new upside-down bath-

tub shaped hazard rate model for survival data analysis. Applied Mathematics

and Computation, Vol. 239, pp. 242-253.

[73] Alkarni, S. H. (2015). Extended inverse lindley distribution: properties and

application. SpringerPlus, Vol. 4.

[74] Maurya, S.K., Singh, S.K., and Singh, U. (2020). A new right-skewed upside

down bathtub shaped heavytailed distribution and its applications. Journal

of Modern Applied Statistical Methods, Vol. 19(1), eP2888.

[75] Kavya, P., and Manoharan, M. (2020). On a generalized lifetime model using

DUS transformation. In: Joshua V., Varadhan S., Vishnevsky V. (eds) Ap-

plied Probability and Stochastic Processes, Infosys Science Foundation Series.

Springer Nature, Singapore.

[76] Pearson, K. (1895). Notes on regression and inheritance in the case of two

parents. Proceedings of the Royal Society of London, Vol. 58, pp. 240-242.

https://doi.org/10.1098/rspl.1895.0041.

137



[77] Burr, I. W. (1942). Cumulative frequency functions. The

Annals of Mathematical Statistics, Vol. 13, pp. 215-232.

http://dx.doi.org/10.1214/aoms/1177731607.

[78] Johnson, N. L. (1949). Systems of frequency curves generated

by methods of translation. Biometrika, Vol. 36(1-2), pp. 149-176.

https://doi.org/10.1093/biomet/36.1-2.149.

[79] Hastings, J. C., Mosteller,F., Tukey, J. W., and Windsor, C. (1947).

Low Moments for Small Samples: A Comparative Study of Order

Statistics. The Annals of Mathematical Statistics, Vol. 18, pp. 413-426.

doi:10.1214/aoms/1177730388.

[80] Tukey, J. W. (1960). A survey of sampling from contaminated distributions.

In: Oklin, I., Ed., Contributions to Probability and Statistics, Stanford Uni-

versity Press, Redwood City, CA.

[81] Gupta, R.C., Gupta,R.D., and Gupta, P.L. (1998). Modeling failure time

data by lehman alternatives. Communication in Statistics- Theory and Meth-

ods, Vol. 27, pp. 887-904.

[82] Nadarajah, S., and Kotz, S. (2006). The exponentiated type distributions.

Acta Applicandae Mathematicae, Vol. 92(2), pp. 97-111

[83] Nadarajah, S. (2006). The exponentiated gumbel distribution with climate

application. Environmetrics, Vol. 17(1), pp. 13-23.

[84] Lee, C., Famoye, F., and Alzaatreh, A. (2013). Methods for generating fam-

ilies of continuous distribution in the recent decades. Wiley Interdisciplinary

Reviews: Computational Statistics , Vol. 5(3), pp. 219-238.

[85] Azzalini, A. (1985). A class of distributions which includes the normal ones.

Scandinavian Journal of Statistics, Vol. 12(2), pp. 171-178.

138



[86] Azzalini, A. (1986). Further results on the class of distributions which in-

cludes the normal ones. Statistica, Vol. 46, pp. 199-208.

[87] Kus, C. (2007). A new lifetime distribution. Computational Statistics and

Data Analysis, Vol. 51(9), pp. 4497-4509.

[88] Mahmoudi, E., and Jafari, A.A. (2012). Generalized exponential-power se-

ries distributions. Computational Statistics and Data Analysis, Vol. 56(12),

pp. 4047-4066.

[89] Silva, R.B., Bourguignon, M., Dias, C.R.B., and Cordeiro, G.M. (2013). The

compound class of extended weibull power series distributions. Computational

Statistics and Data Analysis, Vol. 58, pp. 352-67.

[90] Marshall, A. W., and Olkin, I. (1997). A new method for adding a parameter

to a family of distributions with application to the exponential and weibull

families. Biometrika, Vol. 84(3), pp. 641-652.

[91] Cordeiro, G.M., Ortega, E.M.M., and da Cunha, D.C.C. (2013). The expo-

nentiated generalized class of distributions. Journal of Data Science, Vol. 11,

pp. 1-27.

[92] Shaw, W.T., and Buckley, I.R. (2007). The alchemy of probability dis-

tribution: Beyond Gram-Charlier Cornish–Fisher expansions, and skew-

normaland kurtotic-normal distribution. Research Report, 1-8.

[93] Aryal, G.R., and Tsokos, C.P. (2009). On the transmuted extreme value

distribution with application. Nonlinear Analalysis: Theory Method and Ap-

plications, Vol. 71, pp. 1401-1407.

[94] Aryal, G.R. (2013). Transmuted log-logistic distribution. Journal of Statis-

tics Applications and Probability, Vol. 2(1), pp. 11-20.

139



[95] Khan, M.S., King, R., and Hudson, I.L. (2014). Characterisations of

the transmuted inverse Weibull distribution. ANZIAM Journal 55 (EMAC-

2013), pp. C197-C217.

[96] Eugene, N., Lee, C. and Famoye, F. (2002). Beta-Normal Distribution and

Its Applications. Communications in Statistics—Theory and Methods, Vol.

31, pp. 497-512. https://doi.org/10.1081/STA-120003130.

[97] Alzaatreh, A., Lee, C. and Famoye, F. (2013). A new method for generating

families of continuous distributions.Metron, Vol. 71(1). DOI: 10.1007/s40300-

013-0007-y.

[98] Cooray, K. and Ananda, M.M.A. (2005). Modeling actuarial data with com-

posite lognormal-pareto model. Scandinavian Actuarial Journal, pp. 321-334.

https://doi.org/10.1080/03461230510009763.

[99] Ferreira, J. T. A. S., and Steel, M. (2006). A constructive representation of

univariate skewed distributions. Journal of the American Statistical Associ-

ation, vol. 101, pp. 823-829.

[100] Kumar, D., Singh, U., and Singh, S.K. (2015a). A method of proposing

new distribution and its application to bladder cancer patient data. Journal

of Statistics and Probability letters, Vol. 2, pp. 235-245.

[101] Kumar, D., Singh, U., and Singh, S.K. (2015b). A new distribution using

Sine function- Its application to bladder cancer patients data. Journal of

Statistics and Probability letters, Vol. 4(3), pp. 417-427.

[102] Kotz, S., and Vicari, D., (2005). Survey of developments in the theory of

continuous skewed distributions. Metron - International Journal of Statistics,
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