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Introduction

During the last few decades, graph theory experienced a tremendous develop-

ment being the most important and interesting area of mathematics. Many real

life situations can be explored by means of graph theory. Its results have wide

application in many areas of Physics, Chemistry, Genetics, Computer science,

Psychology etc.

We all know the unbroken loops which allow the flow of electrons called

electric circuits are the heart of any electronic device. Electric network topology

similar to mathematical topology is often used in analysis of electric circuits as an

application of graph theory. Here network nodes are represented by vertices and

branches are represented by edges of a graph. Graphs as abstract representation

of electric circuit was successfully formulated by Gustav Kirchhoff in 1847 in loop

analysis of resistive circuits at the moment of Kirchhoff’s law formulation [24].

Later different researchers extended the use of graph theory in various electrical

networks [34, 30, 28].

The goal of circuit analysis is to determine branch current and voltage in the

network. Voltage and current in a network are related by its transfer function.

Therefore solution of a network is obtained either in current or voltage. A general
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0.1. Outline of the Thesis

approach is solving loop current rather than branch current and deriving branch

current from loop current. In a closed circuit of an electrical network, there

exists a node which defines current at each branch of the closed circuit. This

motivated us to introduce the concept of cycle tracking set. A complex circuit

can be simplified by defining a cycle tracking set for each loop in a complex

circuit. Each cycle tracking set will exhibit a unique property defining the entire

loop.

0.1 Outline of the Thesis

Our work entitled “Cycle Tracking Set of a Graph” introduces the concept of

cycle tracking set and various graph parameters related to it and studies various

properties of it. In this thesis we consider only those graphs which are simple,

finite and undirected.

Apart from this introductory chapter we have described our work in ten

chapters.

In the first chapter, we gather the preliminary ideas that we need in our

study of cycle tracking set to make the thesis self contained. This chapter includes

necessary definitions and concepts in basic graph theory, measure theory and

topology.

In the second chapter, we introduce the concept of cycle tracking set of

a given graph G and studies its properties. In the first section a necessary and

sufficient condition for a cycle tracking set to be minimal is also obtained. Graphs

G with τc(G) = 1, n, n − 1, n − 2, n − 3 and n − 4 are characterized, where n

2



0.1. Outline of the Thesis

denotes the order of G.

In the second section another concept called transitively tracked graph is

introduced and characterized. Furthermore some behavioral aspects of cycle

tracking sets in a transitively tracked graph are studied.

In section 3, various bounds for the cycle tracking number τc(G) of a graph G

of order n in terms of a variety of other graph parameters are presented. For any

graph G of order n, 1 ≤ τc(G) ≤ n . Both of these bounds are sharp. The upper

bound is attained if and only if G is a forest and the lower bound is attained if

and only if G is either a track connected graph or a track connected floral graph.

In section 4, the cycle tracking number of some graphs are determined.

In the third chapter, we examined the effect on τc(G) when we add or

remove vertex or edge from the given graph G. In the first section of this chapter,

the effect on τc(G) on vertex removal is studied. It is proved that removal of a

vertex can increase the cycle tracking number by more than one, but can decrease

by at most one.

The second section of the chapter discusses the effect on τc(G) on edge re-

moval.

In the fourth chapter, we consider the minimum number of edges required

to be added to a graph to make it track connected. This problem is defined as

the problem of finding the cycle track completion number TC(G) of the given

graph G.

In the second section of this chapter, bounds for the cycle track completion

number TC(G) of a graph G of order n in terms of various parameters are

3



0.1. Outline of the Thesis

determined.

In the Fifth chapter, we introduce the concept of trace independence and

trace irredundance, and discuss the close relationships among cycle tracking sets,

trace independent sets and trace irredundance sets in a graph in two sections.

In the first section, necessary and sufficient condition for a trace independent

set to be maximal is obtained. Independent cycle tracking number τi(G) and

upper independent cycle tracking number Ti(G) are defined. And proved that

every maximal trace independent set in a graph G is a minimal cycle tracking

set of G.

In section 2, we introduce the trace irredundant set and derived the condition

for a vertex set to be a trace irredundant set. A necessary and sufficient condition

for a trace irredundant set to be maximal is determined. It is also proved that

a cycle tracking set S is a minimal cycle tracking set if and only if it is cycle

tracking and trace irredundant. Trace irredundant number τir(G) and upper

trace irredundant number Tir(G) are also defined.

In the Sixth chapter, we introduce a new type of graph polynomial based

on cycle tracking set, called cycle tracking polynomial T (G, x) and studied its

properties. The cycle tracking polynomial of Firefly graph Fs,t,n−2s−2t−1, Lol-

lipop graph Ln,m, Tadpole T(n,l), Helm graph Hn, Web graph WBn, Friendship

graph Fn and Armed crown Cn
⊙

Pm are derived. Also independent cycle track-

ing polynomial Ti(G, x) is introduced and some of its properties are studied in

this chapter. Further independent cycle tracking polynomial of some graphs are

derived.

In the Seventh chapter, we introduce cycle tracking matrix TM(G) associ-

4



0.1. Outline of the Thesis

ated with a graph. For a graph G of order n, TM(G) is a real symmetric matrix

with trace n. We characterize matrices which are cycle tracking matrix for some

graph and graphs with nonsingular cycle tracking matrices. Furthermore a study

on the spectral properties of TM(G) which are invariant under permutations of

its rows and columns is carried out. Also a discussion on graph automorphisms

and corresponding cycle tracking matrices is done here.

Eighth chapter introduces total cycle tracking set in graphs and establishes

its fundamental properties. General bounds relating the total cycle tracking

number to other parameters are presented in this chapter, and properties of

minimum total cycle tracking set are listed.

Nineth chapter introduces the concept of cycle tracking function and stud-

ies its properties. Moreover it is established that the computation of the cycle

tracking number τc(G) of a given graph G is a constrained optimization problem,

which is in fact an integer programming problem given below.

τc(G) = min
n∑
i=1

xi

subject to TM(G).X ≥ 1

with X ∈ {0, 1}n×1.

The linear programming version of cycle tracking problem motivated us to in-

troduce a new concept called a cycle tracking function which is in fact a gener-

alization of the existing concept of dominating function [20]. A necessary and

sufficient condition for a cycle tracking function to be minimal is also obtained.

Fractional cycle tracking number τf (G) and upper fractional cycle tracking num-

ber Tf (G) are defined and bounds for fractional cycle tracking number τf (G) are

derived.

5



0.1. Outline of the Thesis

By introducing the concept of trace sigma algebra TG of a graph G and

by studying and analyzing its properties we extend this notion to introduce

measurable cycle tracking function of finite graphs. A necessary and sufficient

condition for a measurable cycle tracking function to be minimal is also obtained.

For every pair of vertices u, v ∈ V , we say that u is related to v (u ∼ v)

if u ∈ TG(v). Then ′ ∼ ′ is a reflexive and symmetric relation. In the Tenth

chapter we define and investigate a new closure operator with respect to the

relation ′ ∼ ′ on the vertex set V of a graph G. The topology associated with

this closure operator is studied.

Some of the problems that were thought about and where further research is

possible are briefly mentioned in the epilogue.

6



Chapter 1

Preliminaries

1.1 Introduction

This chapter reviews the basic ideas, definitions and terminologies that we

need in the discussion of our study. It includes the basics of graph theory, the

concept of domination in graphs, measure theory and topology. For definitions,

notations and terminologies, we follow mainly [7], [4] and [20].

1.2 Basics of Graph Theory

This section focuses on the definitions and terminologies of Graph theory,

which are needed for the discussion of the topics in the forthcoming chapters.

A (undirected) graph [7] G is an ordered pair (V (G), E(G)) consisting of a

set V (G) of vertices and a set E(G), disjoint from V (G), of edges, together with

an incidence function ψG that associates with each edge of G an unordered pair

7



1.2. Basics of Graph Theory

of (not necessarily distinct) vertices of G. If e is an edge and u and v are vertices

such that ψG(e) = {u, v}, then e is said to join u and v, and the vertices u and

v are called the ends of e. In this case we also denote the edge by uv. In the

diagramatic representation of a graph each vertex is indicated by a point, and

each edge by a line segment joining the points representing its ends [7].

Throughout this thesis the letter G denotes the graph with vertex set V and

edge set E, unless otherwise specified.

The number of vertices of the graph G is called the order [4] of G, denoted

by n(G) and the number of edges is called the size [4] of G, denoted by m(G).

A finite graph[7] is one in which both vertex set and edge set are finite. A graph

having exactly one vertex and no edges is called a trivial graph[7] and all other

graphs are called nontrivial graphs or simply graphs.

If u and v are distinct vertices and if e = uv is an edge of the graph G, then

u and v are said to adjacent vertices, the edge e is said to incident with u and v

[15] and the vertices u and v are called the end vertices of the edge e [4]. Two

adjacent vertices are referred to as neighbors of each other. Two edges are said

to be adjacent if they have a common vertex[7]. In a graph G with vertex v, the

set of neighbors of v is called the open neighborhood [15] of v and it is denoted

by NG(v) or by N(v) if there is no confusion. The set NG(v)
⋃
{v} is called the

closed neighborhood [15] of v and it is denoted by NG[v] (or simply N [v] if there

is no confusion).

An edge with identical ends is called a loop[7]. Two or more edges with the

same pair of ends are said to be parallel edges or multiple edges and graph having

multiple edges is usually called a multigraph[7].

8



1.2. Basics of Graph Theory

A graph having no loops or multiple edges is called a simple graph[7].

The degree [7] of a vertex v in a graph G, denoted by dG(v) (or d(v)), is

the number of edges of G incident with v, each loop counting as two edges. In

particular, if G is a simple graph, d(v) is the number of neighbors of v in G. A

vertex of degree zero is called an isolated vertex [29] . A vertex of degree one

is called a pendant vertex or an end vertex[4] . A vertex adjacent to a pendant

vertex is called a support vertex[29]. A pendant edge [4] is the edge incident with

a pendant vertex. The minimum (respectively, maximum) of the degrees of the

vertices of a graph G is denoted by δ(G) (respectively, ∆(G)) [4].

Every graph mentioned in this thesis is simple, finite and undi-

rected.

The complement[7] of a simple graph G is the simple graph Ḡ whose vertex

set is V (G) and whose edges are the pairs of nonadjacent vertices of G.

Two graphs G and H are said to be disjoint[11] if they have no vertex in

common.

A subgraph[18] of a graph G is a graph having all of its vertices and edges are

in G. If G1 is a subgraph of G, then G is a supergraph [18] of G1. A spanning

subgraph[18] is a subgraph containing all vertices of G. For any set S of points

of G, the induced subgraph[18] 〈S〉 is the maximal subgraph of G with vertex

set S. A Hamiltonian graph [35] is a graph with a spanning cycle, also called a

Hamiltonian cycle.

A graph G is connected[7] if, for every partition of its vertex set into two

nonempty set X and Y, there is an edge with one end in X and the other end in

9



1.2. Basics of Graph Theory

Y; otherwise the graph is disconnected[7]. Components[4] of a graph G are the

maximal connected subgraphs of G.

A cut edge (or a cut vertex ) [35] of a graph is an edge or vertex whose deletion

increases the number of components. We write G−e (or G−M) for the subgraph

of G obtained by deleting an edge e (or a set M of edges). We write G − v (or

G−S) for the subgraph of G obtained by deleting a vertex v (or a set of vertices

S).

Two graphsG andH are isomorphic [7], writtenG ∼= H, if there are bijections

θ : V (G) −→ V (H) and φ : E(G) −→ E(H) such that ψG(e) = uv if and only if

ψH(φ(e)) = θ(u)θ(v); such a pair of mappings is called an isomorphism between

G and H. Here the bijection θ satisfies the condition that u and v are end vertices

of an edge e of G if and only if θ(u) and θ(v) are end vertices of the edge φ(e)

in H [4]. An isomorphism from a graph G to itself is called an automorphism of

G [10] and the class of all automorphism of G is usually denoted by Aut(G). If

g ∈ Aut(G) and Y is a subgraph of G, then we define Y g to be the graph with

V (Y g) = {g(u) : u ∈ V (Y )} and E(Y g) = {g(u)g(v) : uv ∈ E(Y )} [10]. A graph

G is vertex transitive[10] if its automorphism group acts transitively on V (G),

ie; for any two distinct vertices of G there is an automorphism mapping one to

the other.

A walk[4] in a graph G is an alternating sequence W : v0e1v1e2v2 . . . envn of

vertices and edges beginning and ending with vertices in which vi−1 and vi are

the ends of ei; v0 is the origin and vn is the terminus of W . The walk W is said

to join v0 and vn. A walk is called a trail[4] if all the edges appearing in the walk

are distinct. It is called a path[4] if all the vertices are distinct. Thus a path

10



1.3. Some Special Graphs

in G is automatically a trail in G. Two distinct paths are internally disjoint[7]

if they have no internal vertices in common. When writing a path, we usually

omit the edges. A cycle[4] is a closed trail in which the vertices are all distinct.

The number of edges in a walk is called its length[4]. In a graph G which has at

least one cycle, the length of a longest cycle is called its circumference [7] and

the length of a shortest cycle is its girth[7]. A cycle of length n is denoted by Cn

and Pn denotes a path on n vertices [4].

Theorem 1.2.1. [35] An edge is a cut edge if and only if it belongs to no cycle.

A vertex cut [35] of a graph G is a set S ⊂ V (G) such that G− S has more

than one component. The connectivity[35] of G, written κ(G), is the minimum

size of a vertex set S such that G− S is disconnected or has only one vertex. A

graph G is k-connected[35] if its connectivity is at least k.

An acyclic[7] graph is one that contains no cycle. A connected acyclic graph

is called a tree[7]. Acyclic graphs are called forests[7].

Given a vertex x and a set U of vertices, an x, U-fan is a set of paths from x

to U such that any two of them share only the vertex x.

Theorem 1.2.2. (Fan Lemma, Dirac)[35]. A graph is k-connected if and only

if it has at least k + 1 vertices and, for every choice of x, U with |U | ≥ k, it has

an x, U-fan of size k.

1.3 Some Special Graphs

There are several classes of graphs which are used in this thesis.

11



1.3. Some Special Graphs

A complete graph [11] is a simple graph in which each pair of distinct vertices

is joined by an edge. A complete graph on n vertices is denoted by Kn.

A graph is said to be bipartite[4] if its vertex set can be partitioned into two

nonempty subsets X and Y such that each edge of G has one end in X and

the other in Y . The pair (X, Y ) is called a bipartition[4] of the bipartite graph.

The bipartite graph with bipartition (X, Y ) is denoted by G(X, Y ). A simple

bipartite graph G(X, Y ) is complete[4] if each vertex of X is adjacent to all the

vertices of Y . A complete bipartite graph G(X, Y ) with |X| = r and |Y | = s, is

denoted by Kr,s.

A Firefly graph Fs,t,n−2s−2t−1 (s ≥ 0, t ≥ 0 and n − 2s − 2t − 1 ≥ 0)[25] is

a graph of order n that consists of s triangles, t pendant paths of length 2 and

n− 2s− 2t− 1 pendant edges sharing a common vertex.

A Lollipop graph Ln,m[13] is obtained by joining Kn to a path Pm of length

m with a bridge.

A Tadpole T(n,l)[32] is the graph obtained by attaching a path Pl to a cycle

Cn.

A graph with the vertex set V = {u0, u1, u2, ..., un} for n ≥ 3 and the edge

set E = {u0ui : 1 ≤ i ≤ n} ∪ {uiui+1 : 1 ≤ i ≤ n − 1} ∪ {unu1} is called Wheel

graph[26] of length n and is denoted by Wn. The vertex u0 is called the axial

vertex of the wheel graph. The Helm graph Hn[26] is obtained from the wheel

graph Wn by attaching a pendant edge at each vertex of the n-cycle of the wheel.

For a positive integer n > 3, a Web graph WBn[26] is obtained by joining the

pendant vertices of a helm Hn to form a cycle and then adding a single pendant

12



1.4. Domination in Graph Theory

edge to each vertex of this outer cycle. It has 3n+ 1 vertices and 5n edges.

The Friendship graph Fn[21] is a collection of n triangles with a common

vertex.

An Armed crown Cn
⊙

Pm[14] is a graph obtained by attaching paths Pm to

every vertex of the cycle Cn.

1.4 Domination in Graph Theory

The study of domination is the fastest growing area in graph theory. This

section discusses the concept of dominating set, dominating function and domi-

nation polynomial in a graph.

For a graph G a set S ⊆ V (G) is called a dominating set[20] of G if every

vertex u ∈ V (G) is either an element of S or is adjacent to an element of S. If

S is a dominating set of a graph, then every superset of S is also a dominating

set. On the other hand, not every subset of S is necessarily a dominating set. A

dominating set S of G is a minimal dominating set[20] if no proper subset of S

is a dominating set. The domination number[20] of a graph G, denoted by γ(G),

is the minimum cardinality of a dominating set of G and a γ-set is a dominating

set with cardinality γ(G).

A function f : V (G) → {0, 1} is called a dominating function[20] of G if∑
u∈N [v]

f(u) ≥ 1 for all v ∈ V (G).

A function f : V (G) −→ [0, 1] is called a fractional dominating function[20]

of G if
∑

u∈N [v]

f(u) ≥ 1 for all v ∈ V (G).
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The concept of domination polynomial of a graph was introduced by S.

Alikhani in 2009. For a graph G, let D(G, i) be the family of dominating sets

with cardinality i and let d(G, i) = |D(G, i)|[1]. The domination polynomial[1]

D(G, x) of G is defined as D(G, x) =

|V (G)|∑
i=γ(G)

d(G, i)xi.

1.5 Operations on Graphs

This section includes some graph operations used in this thesis.

The union[35] of two graphs G1 and G2, denoted by G1 ∪ G2, is the graph

with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2).

The corona[8] of two graphs G1 and G2, denoted by G1 ◦ G2, is the graph

formed from one copy of G1 and | V (G1) | copies of G2, such that the ith vertex

of the copy of G1 is adjacent to every vertex in the ith copy of G2 for i =

1, 2, ..., |V (G1)|.

The join[8] of two graphs G1 and G2, denoted by G1 ∨G2 is the graph with

vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2)∪{uv : u ∈ V (G1) and v ∈

V (G2)}.

Edge addition [18] is a local operation on a graph. Let G be a graph. If u

and v are nonadjacent vertices of G, then G+ e where e = uv denotes the graph

obtained from G by adding edge e. Let X ⊂ E(G), the set of edges which are

not in E(G), then G+X denote the graph obtained from G by adding all edges

in the set X.

Duplication[33] of a vertex vk by a new edge in a graph G produces a new
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graph G′ by adding an edge e′ = u′v′ to G such that N(v′) = {vk, u′} and

N(u′) = {vk, v′}.

Duplication[33] of an edge e = uv by a new vertex in a graph G produces a

new graph G′ by adding a vertex v′ to G such that N(v′) = {u, v}.

In a graph G, subdivision[35] of an edge uv is the operation of replacing uv

with a path u,w, v through a new vertex w. A subdivision[35] of H is a graph

obtained from the graph H by successive edge subdivisions.

The process of deletion of an edge e of a graph G and the amalgamation of

the ends of this edge to form a single vertex is called shorting an edge e[33].

Let G be a graph with n vertices. If there are two non-adjacent vertices u1

and v1 in G such that deg(u1) + deg(v1) ≥ n, join u1 and v1 by an edge to form

the super graph G1. Now, if there are two non-adjacent vertices u2 and v2 in G1

such that deg(u2) + deg(v2) ≥ n, join u2 and v2 by an edge to form the super

graph G2. Continue in this way, recursively joining pairs of non-adjacent vertices

whose degree sum is at least n until no such pair remains. The final super graph

thus obtained is called the closure [11] of G and is denoted by c(G) .

1.6 Matrices

This section focuses on some basic concepts related to matrices. For further

details refer [5].

A matrix[5] of order m × n, called an m × n matrix consists of mn real

numbers arranged in m rows and n columns. The entry in row i and column j
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of the matrix A is denoted by aij. An m× 1 matrix is called a column vector of

order m; similarly, a 1 × n matrix is a row vector of order n. An m × n matrix

is called a square matrix[5] if m = n.

A matrix A of order n×n is said to be nonsingular[5] if rank A = n; otherwise

the matrix is singular.

Let A be an n× n matrix. The determinant det(A− λI) is a polynomial in

the (complex) variable λ of degree n and is called the characteristic polynomial

[5] of A. The equation, det(A−λI) = 0 is called the characteristic equation[5] of

A. By the fundamental theorem of algebra the equation det(A− λI) = 0 has n

complex roots counting multiplicities and these roots are called the eigenvalues[5]

of A. A square matrix A is called symmetric[5] if A = A′, where A′ denotes the

transpose of A. The eigenvalues of a symmetric matrix are real.

Let G be a loop less graph with vertex set V (G) = {v1, ..., vn} and edge set

E(G) = {e1, ..., en}. The adjacency matrix [35] of G, written A(G), is the n× n

matrix in which entry aij is the number of edges in G with end points {vi, vj}.

The incident matrix [35] M(G) is the n×m matrix in which the entry mij is 1

if vi is an end point of ej and otherwise is 0.

1.7 Measure Theory and Topology

This section focuses on some basic concepts of measure theory and topology.

For further details refer [31] and [17].

A distinguished collection R of subsets of a set X is called an algebra [17] if

the following axioms are satisfied.
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(i) If E ∈ R and F ∈ R, then E
⋃
F ∈ R

(ii) If E ∈ R, then Ec ∈ R, where Ec := X \ E is the complement of E in X.

An algebra R, of subsets of a set X is called a sigma algebra [31] if
∞⋃
i=1

Ei ∈ R,

whenever E1, E2, . . .∈ R.

Proposition 1.7.1. [31] If F is any family of subsets of a set X, there exists a

smallest sigma algebra containing F , called the sigma-algebra generated by F .

A set X together with a sigma algebraR of subsets of X is called a measurable

space[31], and the members of R are called the measurable sets[31] in X.

Let (X,R) be a measurable space. A measure[31] is a function µ, defined on

the sigma algebra R, whose range is in [0,∞] and which is countably additive.

Another distinguished family of subsets f a set X is called a topology of X.

More specifically, a topology[27] on a set X is a collection τ of subsets of X having

the following properties:

(1) ∅ and X are in τ .

(2) The union of the elements of any subcollection of τ is in τ .

(3) The intersection of the elements of any finite subcollection of τ is in τ .

A set X for which a topology τ has been specified is called a topological space[27].

Properly speaking, a topological space is an ordered pair (X, τ) consisting

of a set X and a topology τ on X, but we often omit specific mention of τ if no

confusion will arise [27].
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If X is a topological space with topology τ , we say that a subset U of X is

an open set [27] of X if U belongs to the collection τ .

Let X be a measurable space and Y be a topological space [27]. A mapping

f from X into Y is said to be measurable[31] if f−1(S) is a measurable set in X

for every open set S in Y .
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Chapter 2

Cycle Tracking Sets of a Graph

In this chapter we introduce the concept of cycle tracking set and discuss

some basic results on cycle tracking sets. A necessary and sufficient condition

for a vertex set to be a minimal cycle tracking set of a graph is derived and

some bounds on cycle tracking number, τc(G) are determined. Also transitively

tracked graphs are introduced and characterized.

2.1 Cycle Tracking Sets of a Graph

An electrical circuit is a network consisting of a closed loop, giving a return

path for the current. When faced with a new circuit, the software first tries to

find a steady state solution, that is, one where all nodes conform to Kirchhoff’s

current law and the voltages across and through each element of the circuit

conform to the voltage/current equations governing that element[9].

Once the steady state solution is found, the operating points of each element in
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2.1. Cycle Tracking Sets of a Graph

the circuit are known, the circuit can be analyzed by employing graph theory.

In a closed circuit of an electrical network, there exists a vertex which defines

current at each edge of the closed circuit. The collection of all such vertices is

defined as the cycle tracking set. Therefore a complex circuit can be analyzed

through graph theory by considering nodes as the vertices and branches as the

edges in a graph and by defining a cycle tracking set for it.

This section introduces the concept of cycle tracking set and studies various

properties of it.

Definition 2.1.1. Let G be a graph. For v ∈ V (G), the cycle trace (simply

trace) of v is the set of all vertices u ∈ V such that u and v belong to same cycle

of G and is denoted by TG(v) .

ie; TG(v) = {u ∈ V : u and v belong to same cycle}.

Clearly v ∈ TG(v) for every vertex in a graph G.

Definition 2.1.2. Let G be a graph and let u, v ∈ V . Then v is said to be cycle

traced (traced) by u if v ∈ TG(u).

From the definition of TG(v) it is immediate that for every pair of vertices u

and v, u ∈ TG(v) if and only if v ∈ TG(u).

Definition 2.1.3. Let G be any graph, A ⊆ V (G). The cycle trace (simply trace),

TG(A) of A is the union of all subsets TG(v) of V (G), where v varies over A.

That is, TG(A) = ∪v∈ATG(v).

Definition 2.1.4. A vertex of the graph G is said to be trace free vertex if it

is not a vertex of any non trivial cycle in G.
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2.1. Cycle Tracking Sets of a Graph

Definition 2.1.5. A set S of vertices in a graph G is called a cycle tracking set

if for every vertex v ∈ V \ S, there exists a vertex u ∈ S such that v ∈ TG(u).

That is TG(v) ∩ S 6= ∅ for every v ∈ V \ S.

A straight forward consequence of the definition is that every superset of a

cycle tracking set of graph G is again a cycle tracking set.

Definition 2.1.6. A cycle tracking set is a minimal cycle tracking set if no

proper subset S ′ of S is a cycle tracking set.

Definition 2.1.7. The cycle tracking number τc(G) of a graph G is the mini-

mum cardinality of a minimal cycle tracking set of G.

Definition 2.1.8. The upper cycle tracking number Tc(G) of a graph G is the

maximum cardinality of a minimal cycle tracking set of G.

Definition 2.1.9. A cycle tracking set with minimum cardinality is called a

τc − set of G.

G

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v10

Figure 2.1: τc(G) = 2.

In figure 2.1 the sets {v1, v5, v8} and {v4, v8} are two cycle tracking sets of

the graph G and for this graph τc(G) = 2 and Tc(G) = 3. Moreover {v4, v8} is a

τc − set of G.
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2.1. Cycle Tracking Sets of a Graph

• The cycle tracking problem of a graph G is the problem of finding a minimal

cycle tracking set of G.

• If G is a graph of order n, then we have 1 ≤ τc(G) ≤ n.

Definition 2.1.10. A graph G is said to be track connected if for every pair of

vertices u, v in G there exists two internally disjoint paths connecting u and v.

Remark 2.1.11. 1. A trivial graph is trivially track connected.

2. There is no track connected graph with 2 vertices.

3. Every track connected non trivial graph is 2-connected . Hence such graphs

have no cut vertices or cut edges.

4. An induced subgraph of a graph G is said to be maximal track connected if

it is not a proper subgraph of any track connected subgraph of G. Clearly

each subgraph induced by any trace free vertex of a graph G is maximal

track connected. Also any maximal 2-connected subgraph of G is maximal

track connected.

Since a track connected graph having more than two vertices is 2-connected,

by Fan Lemma, Dirac[35], we have:

Theorem 2.1.12. Let G be a graph of order n ≥ 3. Then G is track connected

if and only if for every triple of vertices u,v and w there exists two internally

disjoint paths one from w to u and the other from w to v.

Theorem 2.1.13. Two maximal track connected subgraphs of a graph share at

most one vertex.
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2.1. Cycle Tracking Sets of a Graph

Proof. Let G be a graph and H1 and H2 be two maximal track connected sub-

graphs of G. If possible let v1 and v2 be two common vertices of H1 and H2. Let

x, y ∈ V (H1 ∪ H2). Since H1 is track connected by Theorem 2.1.12 there exist

two paths P1 from x to v1 and P2 from x to v2 such that P1 and P2 are internally

disjoint. Similarly since H2 is track connected again by Theorem 2.1.12 there

exist two paths P3 from v1 to y and P4 from v2 to y such that P3 and P4 are

internally disjoint. The paths P1, P2, P3, P4 altogether forms a cycle containing

x and y in H1 ∪ H2. Hence H1 ∪ H2 is track connected, a contradiction to the

maximality of H1 and H2.

Corollary 2.1.14. If two maximal track connected subgraphs of G share a vertex,

then it must be a cut vertex of G.

Corollary 2.1.15. Let G be a graph. Let u and v be two vertices in V such that

u /∈ TG(v). Then |TG(u) ∩ TG(v)| ≤ 1.

Proposition 2.1.16. Let G be a graph and v be a vertex of G. Then,

1. |TG(v)| = 1 if and only if v is trace free.

2. for any vertex v, |TG(v)| 6= 2.

3. |TG(v)| = 3 if and only if the subgraph induced by TG(v) is a triangle.

4. |TG(v)| = 4 if and only if the subgraph induced by TG(v) is C4, kite[18] or

K4.

5. |TG(v)| = 5 if and only if the subgraph induced by TG(v) is a track connected

subgraph with 5 vertices or a bowtie[18].
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2.1. Cycle Tracking Sets of a Graph

Definition 2.1.17. Let S be a set of vertices of a graph G, and let u ∈ S. A

vertex v of G is said to be a private trace of u with respect to S if TG(v)∩S = {u}.

The S − private trace, pt[u, S] of a vertex u ∈ S is the subset {v : TG(v) ∩ S =

{u}}.

Theorem 2.1.18. A cycle tracking set S ⊂ V in a graph G is a minimal cycle

tracking set if and only if every vertex in S has at least one private trace, that is

pt[u, S] 6= ∅, for every u ∈ S.

Proof. Assume that S is a minimal cycle tracking set of G. Then every vertex in

V is traced by some vertex in S and for every vertex u ∈ S, S \{u} is not a cycle

tracking set. Fix u ∈ S. Then there exists a vertex v ∈ (V \ S) ∪ {u}, which is

not traced by any vertex in S \ {u}. Therefore TG(v) ∩ S = {u}.

Conversely suppose that S is a cycle tracking set and for each vertex u ∈ S,

pt[u, S] 6= ∅. We show that S is minimal cycle tracking set. Suppose that S is not

a minimal cycle tracking set. Then there exists a vertex u ∈ S such that S \ {u}

is a cycle tracking set. Hence every vertex in (V \ S) ∪ {u} is traced by at least

one vertex in S \ {u}, that is pt[u, S] = ∅, which contradicts the assumption.

Theorem 2.1.19. Let G be any graph. Then the following statements are equiv-

alent.

(i) A vertex v is in every cycle tracking set.

(ii) v ∈ S for all cycle tracking set S and pt[v, S] = {v}.

(iii) v is a trace free vertex.
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Proof. Let G be any graph. We first assume that v ∈ V (G) is in every cy-

cle tracking set. If possible let |pt[v, S]| ≥ 2 for some cycle tracking set

S = {v, u1, u2, ..., um}. Let pt[v, S] = {v1, v2, ..., vk}, k ≥ 2. Then

{v1, v2, ..., vk, u1, u2, ..., um} forms a cycle tracking set of G, a contradiction. So

pt[v, S] = {v} for all cycle tracking set. So (i) implies (ii).

Now we prove that (ii) implies (iii).

Suppose the condition (ii) holds. If possible let v is not a trace free vertex. Then

|TG(v)| ≥ 3. Then, S ∪ TG(v) \ {v} forms a cycle tracking set, a contradiction.

So v is a trace free vertex. Hence (ii) implies (iii).

The implication of (i) from (iii) follows directly from the definition of trace free

vertices.

Theorem 2.1.20. If G is a graph without trace free vertices, then the comple-

ment V \ S of every minimal cycle tracking set is a cycle tracking set.

Proof. Let S be a minimal cycle tracking set of G. Assume that the vertex u ∈ S

is not traced by any vertex in V \S. This is possible only if TG(u) ⊂ S. Which is

possible only if TG(u) = {u}. That is u is a trace free vertex of G, a contradiction.

Thus every vertex in S is traced by at least one vertex in V \ S and hence V \ S

is a cycle tracking set.

Theorem 2.1.21. Let G be a graph τc(G) = |V | if and only if G is a forest.

Proof. Let G be a forest. Since every cycle tracking set of G contains all trace

free vertices of G, τc(G) = |V |.

Conversely suppose that τc(G) = |V |. If G contains a non trivial cycle C. Let u

be a vertex in C. Then (V \ V (C))∪ {u} forms a cycle tracking set for G. Hence
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2.1. Cycle Tracking Sets of a Graph

τc(G) ≤ |V | − |V (C)|+ 1 < |V |, a contradiction. So G is a forest.

Definition 2.1.22. Let G be a graph with exactly one cut vertex. Let v be the

cut vertex of G and G1, G2, ..., Gk be the components of G − v. If the order of

Gi is greater than or equal to two and the graphs induced by V (Gi) ∪ {v}, i =

1, 2, ..., k are track connected then G is called a track connected floral graph.

For i = 1, 2, ..., k the graph induced by V (Gi) ∪ {v} is called a petal of G.

G

Figure 2.2: A track connected floral graph with four petals.

Theorem 2.1.23. For a graph G, τc(G) = 1 if and only if G is track connected

or G is a track connected floral graph.

Proof. For a track connected or track connected floral graph G, τc(G) is clearly

1.

To prove the converse let G be any graph with τc(G) = 1. Then there exists a

vertex v ∈ V (G) such that every vertex belongs to TG(v). Then G may be track

connected because for track connected graph τc(G) = 1.

Now suppose that G is not track connected. Then there exist two vertices x, y ∈

V (G) such that they are not connected by two internally disjoint paths. Since

τc(G) = 1 there is a path from x to y which passes through v. Clearly v is a cut

vertex. Hence G is a track connected floral graph.
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2.1. Cycle Tracking Sets of a Graph

Definition 2.1.24. The tracing number of a vertex v in a graph G is the cardi-

nality of TG(v).

Definition 2.1.25. A vertex v in a graph G is said to be a maximum tracing

vertex of G if |TG(v)| ≥ |TG(u)| for all u ∈ V . If v is a maximum tracing vertex

then |TG(v)| is called the maximum tracing number and it is denoted by T .

Definition 2.1.26. A vertex v in a graph G is said to be minimum tracing vertex

of G if |TG(v)| ≤ |TG(u)| for all u ∈ V . If v is a minimum tracing vertex then

|TG(v)| is called the minimum tracing number and it is denoted by t.

Theorem 2.1.27. Let G be a graph of order n. Then 1 ≤ t ≤ T ≤ n.

Proof. For every vertex v, v traces itself so |TG(v)| ≥ 1 and v can trace at most

n vertices so |TG(v)| ≤ n. Hence 1 ≤ t ≤ T ≤ n.

Proposition 2.1.28. For a graph G,

1. t = 1 if and only if G contains a trace free vertex.

2. t = n if and only if G is a track connected graph.

3. T = n if and only if G is a track connected graph or a track connected floral

graph.

4. T = 1 if and only if G a forest.

Theorem 2.1.29. Let G be a graph without trace free vertices. Then there exists

at least two vertices u, v ∈ V such that TG(u) = TG(v).

Proof. Let G be a graph without trace free vertices. Then there exist two vertices

vi and vj such that vi ∈ TG(vj). Without loss of generality assume that v1 ∈
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2.1. Cycle Tracking Sets of a Graph

TG(v2), v1 has minimum tracing number among all vertices of G and v2 has

minimum tracing number among all vertices in TG(v1)\{v1}. If TG(v1) 6= TG(v2),

then v2 is a cut vertex. Then there exist at least two vertices in TG(v2) which

are not in TG(v1). Let v3 have minimum tracing number among all such vertices

and let v4 be a vertex having minimum tracing number among all vertices in

TG(v2) ∩ TG(v3) \ {v2, v3}. If TG(v3) 6= TG(v4), then v4 is a cut vertex and we

can repeat the process again. As G is a finite graph this process cannot be

repeated indefinitely. The process will be terminated at, say kth stage only if

there exists one vertex v2k−1 with minimum tracing number among the vertices

TG(v2k−2) \ TG(v2k−3) and another vertex v2k with minimum tracing number

among all vertices in TG(v2k−2) ∩ TG(v2k−1) \ {v2k−2, v2k−1}, such that v2k−1 and

v2k have the same cycle tracking set. That is TG(v2k−1) = TG(v2k).

Theorem 2.1.30. For any graph G of order n, τc(G) 6= n− 1.

Proof. If G is a forest τc(G) = n. If G is not a forest, G contains at least one

cycle. That is there exist a vertex in G which traces at least three vertices of G

and hence τc(G) ≤ n− 2. Hence the result.

Theorem 2.1.31. Let G be a graph of order n ≥ 3. Then τc(G) = n− 2 if and

only if G is a unicyclic graph[18] and the cycle in G is a triangle.

Proof. Suppose τc(G) = n − 2. Then by Theorem 2.1.21 G is not a forest.

Therefore G contains at least one cycle. So there exists at least one vertex which

is not trace free. Since every non trace free vertex traces at least three vertices

and τc(G) = n− 2, every τc − set contains one vertex v with |TG(v)| = 3 and all

other n− 3 vertices are trace free vertices. That is G is a graph having exactly
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one cycle of length 3.

The converse of the theorem is obvious.

Theorem 2.1.32. Let G be a graph of order n ≥ 4. Then τc(G) = n − 3 if

and only if G is a graph having n − 4 trace free vertices and a track connected

subgraph of cardinality 4.

Proof. Suppose τc(G) = n − 3. Then by Theorem 2.1.21 there exist one vertex

in G, which is not trace free. We claim that there exists one vertex v in V with

|TG(v)| = 4 all other vertices in V \ TG(v) are trace free.

We prove this result in two steps.

Step I: If v ∈ V , then |TG(v)| ≤ 4.

If for some v ∈ V , |TG(v)| ≥ 5 then v traces 5 vertices including v. Then

(V \TG(v))∪{v} forms a cycle tracking set of cardinality n− 4, a contradiction.

Thus |TG(v)| ≤ 4.

Step II: If S is any τc-set of G, then for any v ∈ S, |TG(v)| is 1 or 4.

Let S be a τc − set of G. Then S contains a vertex which is not trace free. Let

v ∈ S be such that |TG(v)| is maximum among vertices in S. Then |TG(v)| is

either 3 or 4. First of all suppose that |TG(v)| = 3. Then the vertex v traces

only 3 vertices. Since τc(G) = n − 3 the n − 3 vertices of V \ TG(v) must be

traced by n − 4 vertices. Thus at least one vertex in S \ TG(v), say w must

have |TG(w)| = 3. Then we have TG({w, v}) = 4, 5 or 6. But |TG({v, w})| is 4

only if |TG(v)∩ TG(w)| = 2, which is not possible by Corollary 2.1.15. Therefore

|TG({v, w})| = 5 or 6. |TG({v, w})| = 5 only if TG(v) ∩ TG(w) is a singleton set.

Let x ∈ TG(v) ∩ TG(w). Then |TG(x)| = 5, a contradiction to step I.

If |TG({v, w})| = 6 then TG(v) ∩ TG(w) = ∅ and v and w together traces 6
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vertices of G. Therefore (V \TG({v, w}))∪{v, w} forms a cycle tracking set of G

of cardinality n− 4, a contradiction. Therefore |TG(v)| = 4. In this case v traces

4 vertices. As τc(G) = n−3 the vertices in V \TG(v) must be trace free vertices.

The converse part of the theorem is obvious.

Theorem 2.1.33. Let G be a graph of order n ≥ 5. Then τc(G) = n− 4 if and

only if G is one of the following graphs,

1. a graph having n−6 trace free vertices and two triangles having no common

vertices.

2. a graph having n − 5 trace free vertices and a track connected subgraph of

order 5.

3. a graph having n− 5 trace free vertices and a bow tie[18] graph.

Proof. Suppose τc(G) = n − 4. Let S be any τc-set. Then by Theorem 2.1.21

there exist a vertex in S which is not trace free. Let v ∈ S be such that |TG(v)|

is maximum among vertices in S. Since τc(G) = n− 4, 3 ≤ |TG(v)| ≤ 5.

Case(i) |TG(v)| = 3.

In this case v traces all vertices in TG(v). The n − 5 vertices of S \ {v} traces

all the vertices of V \ TG(v). Then there exists another vertex u ∈ S \ {v} of

V such that |TG(u)| = 3 and TG(u) ∩ TG(v) = ∅ ( If x ∈ TG(u) ∩ TG(v), then

the graph induced by TG(u) ∪ TG(v) is a bow tie graph with central vertex, say

x and x traces all vertices in TG({u, v}), so that |TG(v)| ≥ 4 which contradicts

the maximality of v.). Therefore TG({u, v}) = 6 and that implies G is a graph

having n− 6 trace free vertices and two triangles having no common vertices.

Case(ii) |TG(v)| = 4.
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In this case v traces all the vertices of TG(v). To trace the remaining n − 4

vertices there are only n−5 vertices in S. Thus there should exist another vertex

u ∈ S \ {v} such that 1 < |TG(u)| ≤ 4 and |TG({u, v})| = 6. Then TG(u) ∩

TG(v) 6= ∅. Otherwise |TG({u, v}| ≥ 7 which would lead to that τc(G) ≤ n− 6, a

contradiction. Let x ∈ TG(u)∩TG(v). Then the graph induced by TG(u)∪TG(v)

is a track connected floral graph with central vertex x and x traces all the vertices

in TG({u, v}). Then (V \ TG({u, v}))∪ {x} forms a cycle tracking set with n− 5

vertices, which is a contradiction. So |TG(v)| 6= 4 for any maximum tracing

vertex in S.

Case(iii) |TG(v)| = 5.

Here v traces 5 vertices of TG(v). The remaining n− 5 vertices in V \ TG(v) are

traced by the other n − 5 vertices in S. Since τc(G) = n − 4, all the vertices of

V \ TG(v) must be in S. By Theorem 2.1.19 this is true only if each vertex in

V \ TG(v) is trace free. Thus G is a graph having n-5 trace free vertices and

a track connected subgraph of order 5, or G is a graph having n − 5 trace free

vertices and a bow tie graph.

Removal of all cut edges will not make any difference of cycle tracking number.

Proposition 2.1.34. Let G′ be the graph formed by removing all cut edges of a

graph G. Then a subset S of V (G) is a cycle tracking set of G if and only if S is

a cycle tracking set of G′.

Theorem 2.1.35. Let G be a connected graph with at least one cut vertex. Then

for every cut vertex c of G one of the following statements holds.

1 TG(c) = {c}, ie; c is a trace free cut vertex.
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2 There exist u, v ∈ TG(c) such that u /∈ TG(v).

3 There exists a vertex u such that the edge cv is a cut edge of G.

Proof. Let G be a connected graph and c be a cut vertex, which is not trace free.

Then there exists a cycle C containing c in G. Since c is a cut vertex, G \ {c} is

disconnected. That is there exist two vertices u and v adjacent to c such that

every path from u to v contains c. If u, v ∈ TG(c) the second condition holds. If

one of them, say v /∈ TG(c), then there exists only one path connecting c and u.

Hence (3) holds.

Theorem 2.1.36. If a non trace free vertex v is in every τc−set then it is a cut

vertex.

Proof. If possible, let v be not a cut vertex. Then the graph induced by TG(v)

is track connected. Let u ∈ TG(v). Then TG(v) ⊂ TG(u). Let S be a τc−set of

G. Then (S \ {v}) ∪ {u} is a τc− set of G. Hence the theorem.

Theorem 2.1.37. Let G be a connected graph with at least one cut vertex and

C(G) be the set of all cut vertices of G. Then C(G) together with pendant vertices

form a cycle tracking set. Moreover τc(G) ≤ |C(G)| + PG where PG is the total

number of pendant vertices of G.

Proof. Let S be the set of all cut vertices and pendant vertices of G. Then S

contains all trace free vertices. Let v ∈ V such that v is neither a cut vertex nor

a pendant vertex. Then v is not a trace free vertex. So TG(v) contains at least

one cut vertex. Otherwise TG(v) = V (G). Hence G is track connected and has

no cut vertex, a contradiction.
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Corollary 2.1.38. Let G be a connected graph without trace free vertices then

τc(G) ≤ |C(G)|, where C(G) is the set of all cut vertices.

Theorem 2.1.39 follows from the fact that every hamiltonian graph is track

connected.

Theorem 2.1.39. Let G be a hamiltonian graph. Then τc(G)=1.

2.2 Transitively Tracked Graph

A graph G is track connected, then τc(G) = 1. A generalization of this result

is possible for a particular type of graphs called transitively tracked graphs. Such

graphs are introduced by introducing a relation ’∼’ on the vertex set V of a graph

G as follows: For every pair of vertices u, v ∈ V , we say that u is related to v

(u ∼ v) if u ∈ TG(v).

Definition 2.2.1. For every pair of vertices u, v ∈ V , we say that u is related

to v (u ∼ v) if u ∈ TG(v).

Then ’∼’ is a reflexive and symmetric relation.

Definition 2.2.2. A graph G is said to be transitively tracked graph if the

relation ’∼’ is transitive on V(G). ie; for every triple of vertices u, v, w ∈ V ,

w ∈ TG(u) and u ∈ TG(v) implies w ∈ TG(v).

Every track connected graph is transitively tracked.

Theorem 2.2.3. A graph G is a transitively tracked graph if only if V (G) can

be partitioned into V1, V2, ..., Vk such that the graph 〈Vi〉 induced by each Vi is a

maximal track connected subgraph of G.
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G H

Figure 2.3: G is a transitively tracked graph but H is not.

Proof. Let G be a transitively tracked graph. Then the relation ’∼’ defined on

the vertex set V of G by u ∼ v if v ∈ TG(u) is an equivalence relation. Hence there

exists a partition of V(G) into equivalence classes. We denote the equivalence

class containing v by [v].

Let v ∈ V . Suppose u ∈ [v]. Then u ∼ v and hence v ∈ TG(u). ie; u and v

belong to same cycle. That is there exist two internally disjoint paths from u to

v. Therefore the graph induced by [v] is track connected.

If the graph induced by [v] is not a maximal track connected subgraph. Then

there exists a vertex w /∈ [v] such that w and v belong to same cycle. Therefore

w ∈ TG(v). Hence w ∼ v, a contradiction. Therefore the graph induced by [v] is

a maximal track connected subgraph.

Conversely suppose that V (G) can be partitioned into V1, V2, ..., Vk such that

the graph induced by each Vi is a maximal track connected subgraph of G. Let

u, v, w ∈ V (G) such that u ∈ TG(v) and w ∈ TG(u). Then u, v ∈ Vi for some i

and u,w ∈ Vj for some j. Since Vi and Vj are disjoint if i 6= j, we conclude that

i = j. That is u, v, w belong to the same Vi and hence w ∈ TG(v). Therefore G

is a transitively tracked graph.

Proposition 2.2.4. Let G be a transitively tracked graph. Then the components
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of G obtained by deleting all cut edges of G are precisely the maximal track

connected subgraph of G.

Transitively tracked graphs can be characterized as follows.

Theorem 2.2.5. Let G be a graph. A necessary and sufficient condition for

G to be a transitively tracked graph is that for any two vertices u and v of G,

v ∈ TG(u) if and only if TG(v) = TG(u).

Proof. Suppose G is a transitively tracked graph and u, v ∈ V (G) such that

v ∈ TG(u). Let w ∈ TG(v). Then w ∈ TG(u), since v ∈ TG(u) and G is a

transitively tracked graph. Therefore TG(v) ⊆ TG(u).

On other hand, let x ∈ TG(u). Since v ∈ TG(u), we have u ∈ TG(v). Therefore

x ∈ TG(v). Therefore TG(u) ⊆ TG(v).

Thus TG(v) = TG(u).

Conversely suppose that v ∈ TG(u) if and only if TG(v) = TG(u) for all u, v ∈ G.

Let u, v, w ∈ V (G) such that u ∈ TG(v) and w ∈ TG(u). Then TG(v) = TG(u) =

TG(w). Hence w ∈ TG(v). Therefore G is a transitively tracked graph.

Corollary 2.2.6. Let S be a τc-set of a transitively tracked graph. Then∑
u∈S |TG(u)| = |V |.

Lemma 2.2.7. If the graph induced by TG(v) is track connected then it is max-

imally track connected.

Proof. Suppose the graph induced by TG(v) is track connected. If possible as-

sume that TG(v) is not maximally track connected. Then there exists a track

connected subgraph H of G such that TG(v) ⊂ V (H). Let u ∈ V (H) \ TG(v).
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Since H is track connected there exist two internally disjoint paths form u to v.

That is u ∈ TG(v), a contradiction.

Theorem 2.2.8. Let G be a transitively tracked graph. Then for every vertex v

in G, the graph induced by TG(v) is a maximal track connected subgraph of G.

Proof. Let G be a transitively tracked graph. Let v ∈ V (G). If possible assume

that TG(v) not track connected. Then there exist two vertices u,w ∈ TG(v) such

that u /∈ TG(w). Since G is transitively tracked, u ∈ TG(v) and v ∈ TG(w)

implies that u ∈ TG(w), a contradiction. Hence TG(v) is track connected. By

Lemma 2.2.7 the graph induced by TG(v) is a maximal track connected subgraph

of G.

Corollary 2.2.9. Let G be a transitively tracked graph and let H be a maximal

track connected subgraph of G. Then for every v ∈ V (H), TG(v) = V (H).

Proof. Let G be a transitively tracked graph. Let H be a maximal track con-

nected subgraph of G. Let v ∈ V (H). Since H is track connected, H is a

subgraph of the graph induced by TG(v). Since G is transitively tracked the

graph induced by TG(v) is a track connected subgraph of G. By maximality

of H, V (H) = TG(v). Since v is arbitrary TG(v) = V (H) for every vertex in

V (H).

Corollary 2.2.10. Let G be a transitively tracked graph. Then for every vertex

v in G there exists a cycle tracking set containing v.

Proof. Let G be a transitively tracked graph and let S be any cycle tracking

set of G. Let v be a vertex of G. Then there exists a vertex u in S such that
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v ∈ TG(u). Then by theorem 2.2.5 TG(v) = TG(u). Let w ∈ V .

case(i)w ∈ TG(u).

Then w ∈ TG(v).

case(ii) w /∈ TG(u).

Then there exists a vertex x ∈ S \ {u} such that w ∈ TG(x).

So S \ {u} ∪ {v} forms a cycle tracking set for G containing v.

Theorem 2.2.11. For a transitively tracked graph G, τc(G) is the number of

maximal track connected subgraph of G.

Proof. Let G be a transitively tracked graph. Then V (G) can be partitioned

into V1, V2, ..., Vk such that the graph 〈Vi〉 induced by each Vi is a maximal track

connected subgraph of G. Let S be any τc-set of G. Let vi ∈ Vi. Then there exist

a ui ∈ S such that ui ∈ TG(vi). Since G is transitively tracked TG(ui) = TG(vi) =

Vi. So for every i, 1 ≤ i ≤ k there exist ui ∈ S such that TG(ui) = Vi. So |S| ≥ k.

But since S∗ = {vi : vi ∈ Vi 1 ≤ i ≤ k} is a cycle tracking set of G and S being

a τc− set we have |S| ≤ k. Hence |S| = k. That is τc(G) = k.

Theorem 2.2.12. Let G be transitively traced and let V (G) be partitioned into

V1, V2, ..., Vk such that the graph 〈Vi〉 induced by each Vi is maximal track con-

nected subgraph of G. If V1, V2, ..., Vk have m1,m2, ...,mk vertices respectively,

then G has m1m2...mk different τc-sets.

Proof. Consider a set S of vertices which contains exactly one element from each

Vi. Then S forms a τc- set and it can be chosen in m1m2...mk ways.

Theorem 2.2.13. Let G be a transitively tracked graph. Then pt[v, S∗] = {v}
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for a cycle tracking set S∗ containing the vertex v of G if and only if v belongs

to every cycle tracking set S and pt[v, S] = {v}.

Proof. Let G be a transitively tracked graph and v ∈ V . Let S∗ be a cycle

tracking set containing v with pt[v, S∗] = {v}. Let S be any cycle tracking set.

Then there exists a vertex u ∈ S such that v ∈ TG(u). Since S∗ is a cycle tracking

set there exists a vertex w ∈ S∗ such that u ∈ TG(w). Since G is transitively

tracked v ∈ TG(w). This is possible if and only if w = u = v. Hence v ∈ S and

pt[v, S] = {v}.

If G is not transitively tracked then the conclusion of the theorem may not

hold. In figure 2.4, S = {v4, v5, v9, v14} is a cycle tracking set of G and pt[v5, S] =

v5. But S∗ = {v2, v4, v9, v14} is another cycle tracking sets of G not containing

v5.

G

v2

v7

v12

v5

v6

v4

v8

v9

v10

v11

v13

v14

v15

v16

v1

v3

Figure 2.4: Graph G.

By Theorem 2.1.19 and Theorem 2.2.13 we have the Corollary

Corollary 2.2.14. In a transitively tracked graph G , pt[v, S] = {v} for any

cycle tracking set S if and only if v is a trace free vertex.
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Theorem 2.2.15. Let G be a graph. If t = T then G is transitively tracked.

Proof. Let G be a graph. Suppose t = T . Let v1 ∈ TG(v2). We have |TG(v1)| =

|TG(v2)| = t. We claim that TG(v1) = TG(v2). If not, v2 is a cut vertex. Therefore

there exists a vertex v3 ∈ TG(v2) such that v3 /∈ TG(v1). But since |TG(v2)| =

|TG(v3)| and TG(v2) 6= TG(v3) there exist a vertex v4 ∈ TG(v3) such that v4 /∈

TG(v2). Then v4 /∈ TG(v1) (Otherwise there exist two internally disjoint paths

from v1 to v4. Since there is a path from v1 to v4 containing both v2 and v3,

and since v2 and v3 are cut vertices it is not possible.). Continuing in this

manner we get a sequence of vertices v1, v2, ..., vn, ... such that vn ∈ TG(vn−1),

vn /∈ TG(vi) for 1 ≤ i ≤ n − 2. But it is not possible as G is a finite graph. So

TG(v1) = TG(v2).

Theorem 2.2.16. Let G be a graph. Then t = T = n if and only if G is track

connected.

Proof. Let G be a graph. Suppose t = T = n. Then TG(v) = V for all v ∈ V .

That is for every u, v ∈ G, u and v belong to same cycle and hence there exist

two distinct paths from u to v. So G is track connected.

Conversely suppose that G is track connected. Then there exist two distinct

paths from any two vertices u to v. That is u and v belong to a common cycle

and hence TG(v) = V for all v ∈ V . Thus t = T = n.

Definition 2.2.17. A graph G is well tracked if τc(G) = Tc(G).

Theorem 2.2.18. Let G be a graph. If V can be partitioned into maximal track

connected subset of G, then G is well tracked.
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Proof. Let V1, V2, ..., Vk be a partition of V into maximal track connected sets.

Let vi ∈ Vi, i = 1, 2, ..., k. Since Vi is the only maximal track connected set

containing vi, vi can track all elements of Vi and no element of Vj for i 6= j. So

{v1, v2, ..., vk} forms a minimal cycle tracking set. In fact any such minimal cycle

tracking set is obtained like this. Hence τc(G) = Tc(G) and G is well tracked.

Corollary 2.2.19. If a graph G is transitively tracked then G is well tracked.

The converse of Corollary 2.2.19 need not be true as C5 ◦K2 is well tracked

but not transitively tracked.

2.3 Bounds for Cycle Tracking Sets

In this section we describe bounds for the cycle tracking number τc(G) of a

graph G of order n. For any graph G of order n, 1 ≤ τc(G) ≤n . Both of these

bounds are sharp. The upper bound is attained if and only if G is a forest and

the lower bound is attained if and only if G is either track connected graph or

track connected floral graph.

Theorem 2.3.1. If G is a graph without trace free vertices, then τc(G) ≤ n
2
.

Proof. Let G be a graph without trace free vertices. Then by Theorem 2.1.20

the complement V \ S of every minimal cycle tracking set S is a cycle tracking

set. So either |S| or |V \ S| is less than or equal to n
2
.

Conjecture 2.3.2. For a graph G without trace free vertices, τc(G) ≤ n
3
.

Theorem 2.3.3. Let G be a graph. Then n
T
≤ τc(G) ≤ n− T + 1.
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Proof. Let G be a graph. Let S be a τc− set of G. First we consider the lower

bound. Each vertex can trace at most T vertices. Hence τc(G) ≥ n
T

.

For the upper bound let v be a vertex of maximum trace T. Then v traces all

the vertices in TG(v). Hence (V \TG(v))∪{v} is a cycle tracing set of cardinality

n− T + 1. So τc(G) ≤ n− T + 1.

Theorem 2.3.4. For any connected graph G of order n, τc(G) = n−T +1 if and

only if G is obtained by attaching a tree to vertices of a track connected graph or

a track connected floral graph of order T .

Proof. Let G be a graph with τc(G) = n − T + 1. Let v be the vertex with

TG(v) = T . Then v traces T vertices and the graph induced by the vertices

in trace of v is track connected or track connected floral graph. Since τc(G) =

n − T + 1 the vertices which are not in TG(v) must be trace free. Hence G is

the graph obtained by attaching a tree to vertices of a track connected graph or

track connected floral graph.

Theorem 2.3.5. If G is a simple graph in which every vertex has degree at least

k, where k ≥ 2 (ie; δ(G) ≥ k), then τc(G) ≤ n− k.

Proof. Let G be a simple graph in which every vertex has degree at least k. Then

G contains a cycle C of length at least k+1[35]. A vertex in that cycle can trace

all vertices in C. So τc(G) ≤ n− k.

Theorem 2.3.6. For a graph G, τc(G) ≤ |V (G)| − c(G) + 1 where c(G) is the

circumference of G.

Proof. Let C be a cycle with c(G) vertices. Since every vertex v in C traces all
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vertices in C. Hence the vertex v together with all vertices in V \ V (C) form a

cycle tracking set. Thus τc(G) ≤ |V (G)| − c(G) + 1.

Theorem 2.3.7. For a graph G, τc(G) = |V (G)| − c(G) + 1 if and only if

G contains only one non trivial maximal track connected component which is

hamiltonian of order c(G).

Proof. Suppose τc(G) = |V (G)| − c(G) + 1. Since circumference of G is c(G)

there exist a cycle C of length c(G) in G. Then a vertex v in C traces all vertices

in C. To trace the remaining vertices in V \TG(v) we have |V (G)|−c(G) vertices.

It is possible only if |TG(v)| = |c(G)| and the remaining vertices are trace free

vertices. Therefore G contains only one non trivial maximal track connected

component. The converse is trivial.

It is obvious that the cycle tracking number τc(G) of a graph G is always

greater than or equal to the number of components of G.

If G is a graph with exactly p cut edges then the graph G∗ obtained by

removing these p cut edges from G has exactly p components. Thus τc(G) =

τc(G
∗) ≥ p+ 1. We can summarize these results as follows.

Theorem 2.3.8. For a graph G with p cut edges τc(G) ≥ p+ 1.

2.4 Cycle Tracking Number of Some Graphs

In this section we derive cycle tracking number of some graphs. Cycle tracking

number of some more graphs are derived in section 6.2.
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Theorem 2.4.1. For a bipartite graph Km,n, τc(Km,n) = 1 if and only if m > 1

and n > 1.

Proof. Let Km,n be any complete bipartite graph. Then τc(Km,n) = 1 if and only

if Km,n is track connected. That is if and only if m > 1 and n > 1.

Theorem 2.4.2. If H is a connected graph of order n ≥ 2 then τc(G ◦ H) =

|V (G)|.

Proof. Let H be a connected graph and G be any graph. Then G ◦H is a graph

formed from one copy of G and |V (G)| copies of H, where ith vertex vi of G

is joined to every vertex in the ith copy of H. We claim that the subgraph (say

H∗i )induced by the ith vertex (say vi) of G together with the ith copy of H is track

connected. Let x, y ∈ H∗i . Since H is connected there exist a path P from x to

y. Then P together with the edges yvi and vix in G ◦H form a cycle containing

both x and y. Therefore we have H∗i , i = 1, 2, ..., n are track connected. Hence a

vertex vi ∈ Hi traces all vertices of Hi. So τc(G ◦H) ≤ |V (G)|. Since for i 6= j,

the ith vertex of G cannot trace the vertices of jth copy of H, τc(G◦H) ≥ |V (G)|.

Thus τc(G ◦H) = |V (G)|.

Corollary 2.4.3. If Gm denotes a connected graph with m(m > 1) vertices.

Then τc(K1 ◦Gm) = 1.

Theorem 2.4.4. If G and H are connected graphs, then τc(G×H) = 1.

Proof. Let G and H are connected graphs. Then G×H is track connected and

hence τc(G×H) = 1.
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Theorem 2.4.5. Let G1, G2 be two graphs with |V (G1)| ≥ 2 and |V (G2)| ≥ 2

then τc(G1 ∨G2) = 1.

Proof. To prove the theorem we show that V (G1 ∨ G2) is track connected. Let

x, y ∈ V (G1 ∨G2).

Case 1: x, y ∈ V (G1) or x, y ∈ V (G2).

First of all suppose that x, y ∈ V (G1). Let u, v ∈ V (G2). Then there exist two

internally disjoint paths xuy and xvy from x to y.

Case 2: x ∈ V (G1) and y ∈ V (G2).

Let u(6= x) be a vertex of G1 and v( 6= y) be a vertex in G2. Then there exist

two internally disjoint paths namely xy and xvuy from x to y.

So G1 ∨G2 is track connected and hence τc(G1 ∨G2) = 1.
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Chapter 3

Changing and Unchanging Cycle

Tracking

It is often of interest to know whether the value of cycle tracking number of

a graph is effected when a change is made in a graph, for example vertex or edge

removal, edge addition, edge subdivision, edge contraction, etc. This chapter

includes some results in this direction.

3.1 Changing and Unchanging Cycle Tracking

on Vertex Removal

Removing a vertex from a graph can cause its cycle tracking number to

increase, to decrease, or to remain the same. This section examines the effect on
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3.1. Changing and Unchanging Cycle Tracking on Vertex Removal

τc(G) when G is modified by deleting a vertex .

The vertices of G can be partitioned into three sets,

V 0
τc , V

−
τc and V +

τc , where

V 0
τc = {v ∈ V : τc(G− v) = τc(G)},

V −τc = {v ∈ V : τc(G− v) < τc(G)} and

V +
τc = {v ∈ V : τc(G− v) > τc(G)}.

v1

v2
v4v3

v5

v6v7v8

v9

v10

v12

v11

Figure 3.1: Graph G.

Definition 3.1.1. A graph G is τc− changing if τc(G−v) 6= τc(G) for any vertex

v ∈ V (G), while a graph G is τc− stable if τc(G − v) = τc(G) for every vertex

v ∈ V (G).

Thus a graph G is τc-changing if the removal of any vertex from G either

increases or decreases the cycle tracking number, that is, V (G) = V −τc ∪ V
+
τc . A

graph G is τc-stable if V (G) = V 0
τc .

For the graph G in figure 3.1

• V 0
τc = {v9},

• V −τc = {v10, v11, v12} and
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• V +
τc = {v1, v2, v3, v4, v5, v6, v7, v8}.

If a vertex v of a graph G belongs to V −τc then no τc−set S∗ of G− v contain

a vertex of TG(v). Otherwise S∗ forms a cycle tracking set of G. Thus, pt[v, S] =

{v}. On the other hand if pt[v, S] = {v} then v necessarily belongs to V −τc . We

summarize these results as follows.

Theorem 3.1.2. Let G be a graph. A vertex v ∈ V −τc if and only if pt[v, S] = {v}

for some τc− set S of G containing v.

Proposition 3.1.3. Removal of a vertex from any graph G can

1. decrease the cycle tracking number by at most one and

2. increase the cycle tracking number by more than one.

Proof. Let G be a graph. Let v ∈ V . If possible assume that τc(G − v) ≤

τc(G) − 2. Let S = {v1, v2, ..., vτc(G)−2} be a τc− set of G − v. Then S∗ =

{v1, v2, ..., vτc(G)−2, v} form a cycle tracking set for G of cardinality τc(G) − 1, a

contradiction. So τc(G− v) ≥ τc(G)− 1.

For the graph G in figure 3.1 τc(G) = 4 and τc(G− v3) = 7.

Corollary 3.1.4. For v ∈ V −τc , τc(G− v) = τc(G)− 1.

Since for every trace free vertex v and cycle tracking set S pt[v, S] = {v}, we

have:

Corollary 3.1.5. Every trace free vertex of a graph belongs to V −τc .

Corollary 3.1.6. Every vertex of a forest belongs to V −τc .
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Corollary 3.1.7. Removal of a trace free vertex in a graph G will decrease cycle

tracking number by 1.

G

v2

v7

v12

v5

v6

v4

v8

v9

v10

v11

v13

v14

v15

v16

v1

v3

Figure 3.2: Graph G.

Remark 3.1.8. Removal of a non trace free vertex in a graph G may or may

not decrease cycle tracking number.

For the graph G in figure 3.1, τc(G − v9) = τc(G) = 4, and for the graph G in

figure 3.2, τc(G) = 4 and τc(G− v5) = 3.

Theorem 3.1.9. For a transitively tracked graph G, a vertex v belongs to V −τc if

and only if v is trace free vertex.

Proof. Let G be a transitively tracked graph. suppose v ∈ V −τc . Then by Theorem

3.1.2, pt[v, S] = {v} for some τc−set S containing v. By Theorem 2.2.13 and

Corollary 2.2.14 v is a trace free vertex.

Converse follows from Corollary 3.1.4 and 3.1.5.

Corollary 3.1.10. Every vertex of a transitively tracked graph G is in V −τc if and

only if it is a forest.
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Corollary 3.1.11. Let G be a transitively tracked graph without trace free ver-

tices. Then for every vertex v in G, τc(G− v) ≥ τc(G).

Theorems 3.1.12 and 3.1.13 follow from the definitions of V +
τc and V 0

τc respec-

tively.

Theorem 3.1.12. A vertex v ∈ V +
τc if and only if no vertex u in TG(v)\{v} can

trace the graph induced by TG(v) \ {v}.

Theorem 3.1.13. Let G be a graph and v ∈ V . If the graph induced by TG(v) \

{v} is track connected or track connected floral graph then v ∈ V 0
τc.

The converse of Theorem 3.1.13 is not true. For example, τc(G) = τc(G−v) =

2 for the graph G in figure 3.3. Here v ∈ V 0
τc but the graph induced by TG(v)\{v}

is neither a track connected graph nor a track connected floral graph.

G

v

Figure 3.3: graph G.

Theorem 3.1.14. Let G be a transitively tracked graph and let H be the maximal

track connected subgraph of G containing v then τc(G−v) = τc(G)−1+τc(H \v).

Proof. Let G be a transitively tracked graph. Then V(G) can be partitioned

into V1, V2, ..., Vk such that each 〈Vi〉 is maximal track connected subgraph of G.

Then H = 〈Vi〉 for some i. Let v ∈ Vi . Then every τc−set of G − v contains
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exactly one vertex from each Vj, j 6= i and τc(H \ {v}) vertices from Vi \ {v}. So

τc(G− v) = τc(G)− 1 + τc(Vi \ v).

Theorem 3.1.15. Let G be a transitively tracked graph and let v be a non trace

free vertex of G. Let D be maximal track connected component of G containing

v. Then v ∈ V 0 if and only if D − v is track connected or track connected floral

graph.

Proof. Suppose v ∈ V 0
τc . Since G is transitively tracked each τc-set of G has

exactly one vertex from each maximal track connected component of G. So each

τc-set of G− v has exactly one vertex from each maximal track connected com-

ponent of G except from D. Since τc(G) = τc(G− v) there must exist a vertex w

in any τc-set of G− v such that TG(w) = D− v. Which is possible if and only if

D − v is track connected or track connected floral graph. The converse follows

from Theorem 3.1.13.

By Theorems 3.1.9 and 3.1.15 it is clear that a non trace free vertex v of

a transitively tracked graph G is in V +
τc if and only if D − v is neither a track

connected graph nor a track connected floral graph, where D is the maximal

track connected component of G.

Remark 3.1.16. For any graph G, 0 ≤ |V ∗τc| ≤ n, where ∗ = 0 or − or +.

There are graphs for which |V ∗τc| = 0 and |V ∗τc | = n. For example; for any cycle

Cn with n ≥ 3, |V 0
τc | = 0, and |V +

τc | = n. For complete graph Kn with n ≥ 4,

|V 0
τc| = n, |V −τc | = 0 and |V +

τc | = 0. For path Pn with n ≥ 2, |V −τc | = n.

Theorem 3.1.17. For a graph G, V = V −τc if and only if G is a forest.
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3.2. Changing and Unchanging Cycle Tracking on Edge Removal

Proof. Let G be a graph. Suppose V −τc = V . Let v ∈ V . Then v ∈ V −τc . Then by

Theorem 3.1.2 there exists a τc− set Sv containing v such that pt[v, Sv] = {v}.

Let S∗v be a τc− set of G−v. Then S = S∗v ∪{v} is a τc−set of G. If S∗v contains a

vertex of TG(v), then S∗v is a cycle tracking set of G, contradicting the assumption

that v ∈ V −τc . So S∗v does not contain any vertex of TG(v). So for every vertex

u ∈ TG(v) there exists a vertex wu ∈ S∗v such that u ∈ TG(wu) and v /∈ TG(wu).

Hence every vertex u in TG(v) \ {v} is cut vertex of G and TG(u) is not track

connected. Since v is arbitrary, for every vertex v in G, u ∈ TG(v) \ {v} implies

u is a cut vertex of G and TG(u) is not track connected.

If TG(v) = {v}. Then v is a trace free vertex. So suppose that TG(v) contains

another vertex u1. Then u1 is cut vertex of G and TG(u1) is not track connected.

Therefore there exists a vertex u2 ∈ TG(u1) such that u2 /∈ TG(v). Then u2 is cut

vertex of G and TG(u2) is not track connected. Therefore there exists a vertex

u3 ∈ TG(u2) such that u3 /∈ TG(u1). Then u3 /∈ TG(v). Continuing in this manner

we get a sequence of vertices v = u0, u1, u2, ..., un, ... such that un ∈ TG(un−1)

and un /∈ TG(ui) for 0 ≤ i ≤ n− 2. Which is absurd as G is a finite graph.

So every vertex in G is a trace free. Hence G is a forest.

The converse follows from Corollary 3.1.6.

3.2 Changing and Unchanging Cycle Tracking

on Edge Removal

As in the case of vertex removal from a graph G edge removal also effect the

cycle tracking number of G. This section deals with the effect on τc(G) when G
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is modified by deleting an edge.

Theorem 3.2.1. For a graph G and an edge e in G, τc(G) ≤ τc(G− e).

Proof. The number of cycles in G is always less than or equal to the number of

cycles in G− e. So more vertices are needed to trace V (G− e).

Definition 3.2.2. An edge e is said to be a weak edge if τc(G − e) = τc(G).

Otherwise it is called a strong edge.

Every edge in any cycle graph Cn, n ≥ 3 is a strong edge. Every cut edge

is a weak edge, but a weak edge need not be a cut edge, for complete graph Kn

with n ≥ 4 every edge is a weak edge.

Though the process of shorting of an edge in a triangle free graph decreases

the number of vertices it will not affect the number of its cycles. Therefore we

have:

Theorem 3.2.3. If G∗ is a graph obtained by shorting of an edge of G, then

τc(G
∗) = τc(G), provided G is triangle free.

A similar result, we get in the case of subdivision of edges.

Theorem 3.2.4. Let G be a graph with no cut edge and G′ be a subdivision of

G. Then τc(G) = τc(G
′).

Proof. Let G′ be the graph obtained by replacing the edge ei = aibi of G by the

path (ai, xi1, ..., xik, bi) where xi1, ..., xik are new vertices. Suppose S be a τc−

set of G′. Then for every vertex v ∈ V (G′) there exists a vertex u ∈ S such

that v ∈ TG′(u). Clearly S contains at most one xij. Let S∗ be S if no xij ∈ S,
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(S \{xij})∪{ai} otherwise. Since G has no cut edge, TG(xij) = TG(ai) and hence

S∗ forms a cycle tracking set of G. Therefore τc(G) ≤ τc(G
′).

The reverse inequality, τc(G
′) ≤ τc(G) is obvious because no edge of G is a cut

edge. Hence the theorem.
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Chapter 4

Cycle Track Completion Number

This chapter considers the problem of determining two distinct paths between

every pair of vertices u, v of a graph G. Recall that a graph G is track connected

if every pair of its vertices is connected by two paths. When no such paths can

be found for a pair u, v of vertices in G, it may be appropriate to consider the

introduction of new edges to enable the construction of such paths. Each new

edge added will have a cost overhead so that the number of new edges should

kept to be minimum. In this chapter, we consider the minimum number of edges

required to be added to a graph to make it track connected. This problem is the

problem of finding the cycle track completion number TC(G) of the given graph.

4.1 Cycle Track Completion Number

Definition 4.1.1. The cycle track completion number of a graph G, denoted by

TC(G), is the minimum number of edges that need to be added to G to make it
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4.1. Cycle Track Completion Number

track connected.

If G is a graph with two vertices then TC(G) does not exist. So graphs which

are distinct from K2 and K2 are only considered in this chapter.

The cycle track completion problem consists of determining TC(G) of a given

graph G and explicitly constructing a track connected graph through the addition

of TC(G) new edges. A graph G itself is track connected if and only if TC(G) =

0.

Theorem 4.1.2. For a graph G of order n(n > 2), TC(G) = n if and only if G

is totally disconnected.

Proof. Let G be a graph of order n(n > 2). If G is not totally disconnected then

there exists an edge uv ∈ E(G). Then uv together with a suitable choice of n−1

edges form a cycle in G. It follows that TC(G) ≤ n− 1.

Conversely if G is totally disconnected then at least n edges to be added to

G to make it into a track connected graph. That is TC(G) = n if and only if

|E(G)| = 0.

Theorem 4.1.3. Let G1 and G2 be two disjoint subgraphs of a graph G such

that G = G1 ∪G2. Then TC(G) ≤ TC(G1) + TC(G2) + 2, provided |V (G1)| or

|V (G2)| is greater than or equal to two.

Proof. Let G be a graph and G1, G2 be two disjoint subgraphs of G such that

G = G1 ∪ G2 and |V (G1)| ≥ 2 or |V (G2)| ≥ 2. Then addition of TC(G1) edges

makes G1 track connected and TC(G2) edges makes G2 track connected. So

addition of TC(G1) edges to G1, TC(G2) edges to G2 and two more distinct
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4.1. Cycle Track Completion Number

edges which join vertices of G1 and G2 in a suitable way to graph G will make

the graph into a track connected graph. So TC(G) ≤ TC(G1)+TC(G2)+2.

The inequality is sharp if G1 and G2 are track connected. Strict inequality

holds for union of paths Pn ∪ Pm, where n,m ≥ 2.

Lemma 4.1.4. Let G be a graph. Let u, v be non adjacent vertices in G such

that deg(u) + deg(v) ≥ n. Then u ∈ TG(v).

Proof. Let G be a graph. Let u, v be non adjacent vertices in G such that

deg(u) + deg(v) ≥ n. That is |NG(u)| + |NG(v)| ≥ n, where NG(u) and NG(v)

denote the set of all neighbors of u and v in G respectively. As NG(u)∪NG(v) ⊂

V \ {u, v}, the vertices u and v have at least two common neighbors say p and

q. Thus upv and uqv form two distinct u− v paths in G. Hence u ∈ TG(v).

Theorem 4.1.5. A graph G is track connected if and only if its closure c(G) is

track connected.

Proof. Let G be a graph. It is enough to prove the sufficient part. For, assume

that c(G) is track connected. If possible, let G be not track connected. Choose a

pair of non adjacent vertices u, v ∈ V with deg(u) + deg(v) ≥ n. Let us suppose

that the addition of the new edge uv to G will result in the track connected graph

G1 ⊂ c(G). So there exist vertices w1, w2 in G such that every cycle containing

w1 and w2 contains the new edge uv in G1. Let C : ux1x2...xkvu be a cycle

containing w1 and w2 in G1. As in Lemma 4.1.4 there exist two vertices u1 and

u2 in V such that both of them are adjacent to both u and v in G.

Case(i) Either u1 or u2 not belong to C.

First of all suppose that u1 /∈ V (C) . Then C ′ = ux1x2...xkvv1u is a cycle in G
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w1

u2

c

u1
w2

u

v

containing both w1 and w2, a contradiction. A similar contradiction arises when

u2 /∈ V (C).

Case(ii) u1, u2 ∈ V (C).

Let u1 = xi, u2 = xj, w1 = xm, w2 = xn. Without loss of generality assume

that i < j and m < n. If i < m then C ′ = vxixi+1...xkv is a cycle in G

containing both w1 and w2, a contradiction. If n < j then C ′′ = ux1x2...xju

is a cycle in G containing both w1 and w2, a contradiction. If m < i < j < n

then C ′ = ux1x2...xivxkxk−1...xju is a cycle in G containing both w1 and w2, a

contradiction. Hence the theorem.

Corollary 4.1.6. Let G be a graph with n ≥ 3 vertices. If c(G) is complete,

then G is track connected.
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4.2 Bounds for Cycle Track Completion Num-

ber of a Graph

For a graph G on n vertices, the addition of n edges which together form a

cycle on n vertices will make G into a track connected graph. So for any graph G

of order n, 0 ≤ TC(G) ≤ n. Both of these bounds are sharp. The upper bound

is attained if and only if G is a track connected graph and the lower bound is

attained if and only if G is totally disconnected. In this section we derive some

bounds for cycle track completion number of a graph in terms of various graph

parameters.

Proposition 4.2.1. If G is a graph with n vertices then 0 ≤ TC(G) ≤
(
n
2

)
−

|E(G)|.

Proposition 4.2.2. A track connected graph of order n has at least n edges.

Theorem 4.2.3. Let G be a graph of order n ≥ 3. Then TC(G) = n− 1 if and

only if |E(G)| = 1.

Proof. Let G be any graph with vertex set V = {v1, v2, ..., vn}. Suppose

|E(G)| = 1. Without loss of generality assume that v1v2 is the only edge in

G. Then the addition of n − 1 edges, v2v3, v3v4, ..., vn−1vn, vnv1 makes G track

connected. As the minimum number of edges in any track connected graph is n,

TC(G) = n− 1.

For the converse, suppose that |E(G)| 6= 1.

If |E(G)| = 0, then TC(G) = n by Theorem 4.1.2.

If |E(G)| > 1 then there exist two distinct edges say e1 and e2 in G.
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First of all assume that e1 and e2 are adjacent. By renaming the vertices, if

necessary, we can suppose that e1 = v1v2 and e2 = v2v3. Then the addition of

n− 2 edges v3v4, v4v5, ..., vn−1vn, vnv1 makes G track connected.

Now suppose that e1 and e2 are not adjacent. By renaming the vertices, if

necessary, we can suppose that e1 = v1v2 and e2 = v3v4. Then the addition of

n− 2 edges v2v3, v4v5, v5v6, ..., vn−1vn, vnv1 makes G track connected.

Hence TC(G) ≤ n− 2.

In the proof of Theorem 4.2.3 we have shown that TC(G) ≤ n−2 if |E(G)| ≥

2. As the minimum number of edges in a track connected graph is n, we have in

fact shown that TC(G) is n− 2 if |E(G)| = 2.

Theorem 4.2.4. Let G be a graph of order n ≥ 3. If |E(G)| = 2 then, TC(G) =

n− 2.

The converse of Theorem 4.2.4 is not true.

G

Figure 4.1: In Graph G, |E(G)| = 6 and TC(G) = 4.

Corollary 4.2.5. For a graph G of order n ≥ 3, TC(G) ≤ n− 2 if and only if

|E(G)| ≥ 2.
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Lemma 4.2.6. Let T be a tree. Then for every pair of distinct vertices w1, w2

in T there exists a pendant vertex v ∈ V (T ) such that the path from w2 to v

contains w1.

Proof. We prove the result by induction on the order of T. If the order of T is

1 or 2, then there is nothing to prove. Let us suppose that the result is true

for any tree of order k − 1, where k ≥ 3. Let T be a tree of order k. Let w1

and w2 be two distinct vertices of T. If w1 or w2 is a pendant vertex then there

is nothing to prove. So suppose that w1 is not a pendant vertex of T. Let v

be a pendant vertex of T. Such a vertex exists as every tree contains at least

two pendant vertices. Consider T − v, which is a tree of order k − 1. Now by

induction hypothesis there exists a pendant vertex v′ in T −v such that the path

P from w2 to v′ contains w1. If v′ is also a pendant vertex of T then there is

nothing to prove. Otherwise v′ is a support vertex of v and P + v′v is a path in

T from w2 to v which contains the vertex w1. Hence the lemma.

Lemma 4.2.7. Let T be a tree. Then for every pair of vertices w1, w2 in T there

exists two pendant vertices v1, v2 ∈ V (T ) such that the path from v1 to v2 contain

both w1 and w2.

Proof. Let T be a tree and w1, w2 ∈ V (T ). By Lemma 4.2.6 there exist a pendant

vertex v1 ∈ V (T ) such that the path P1 from w2 to v1 contains w1 and a pendant

vertex v2 ∈ V (T ) such that the path P2 from w1 to v2 contains w2. Thus both

P1 and P2 contain subpaths joining w1 and w2. As any two vertices of a tree are

connected by exactly one path, the subpath of P1 joining w1 to w2 is the same

as the subpath of P2 joining w1 and w2. Hence P1 ∪ P2 is a path from v1 to v2

containing both w1 and w2.
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Theorem 4.2.8. Let T be a tree with p pendant vertices. Then dp
2
e ≤ TC(T ) ≤

p− 1.

Proof. Let T be a tree with p pendant vertices. Let V ′ = {v1, v2, ..., vp} be the

set of all pendant vertices of T. Let G = T + {v1v2, v2v3, ..., vp−1vp}. We claim

that G is a track connected graph.

Let w1, w2 ∈ V (G).

Case(i) w1, w2 ∈ V ′.

Let w1 = vi and w2 = vj with i < j. Then there exist two distinct paths, one from

vi to vj in T (since T is connected) and another one is the path vivi+1vi+2...vj−1vj

in G.

Case(ii) w1 /∈ V ′ and w2 ∈ V ′.

Let w2 = vi. Since T is a tree, by Lemma 4.2.6 there exists a pendant vertex

vj ∈ V ′ such that the path P1 from w2 to vj contains the vertex w1. Let P ′

be the path joining w1 to vj and let P2 = vivi+1vi+2...vj−1vj in G. By renaming

the vertices, if necessary, we can suppose that i < j. So there exist two distinct

paths, one from w1 to w2 in T and another path from w1 to w2 formed by joining

P ′ and P2.

Case(iii) w1, w2 /∈ V ′.

Then, by Lemma 4.1.4 there exist two vertices vi, vj ∈ V ′, i < j such that the

path in T from vi to vj contain both w1 and w2. Without loss of generality assume

that d(vi, w1) < d(vi, w2) in T. Let P1 be the path joining w1 to vi in T and P2

be the path joining vj to w2 in T. Also let P3 be the path vivi+1vi+2...vj−1vj in

G. So there exist two distinct paths, one from w1 to w2 in T and another path

from w1 to w2 formed by joining the three paths P1, P3 and P2. So G is track
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connected. Hence TC(T ) ≤ p− 1.

If a graph G is track connected then, the degree of each vertex is at least

two. So to make degree of each pendant vertex to be two we have to add at

leastdp
2
e edges between pendant vertices, since there are p pendant vertices. So

dp
2
e ≤ TC(T ).

Remark 4.2.9. The inequalities in Theorem 4.2.8 may or may not be sharp.

For example,

1. the right hand side inequality is sharp for Pn, n > 2 and K1,t, t > 1.

2. the left hand side inequality is sharp for the graph G in figure 4.2. Here,

addition of the four edges v1v6, v4v8, v8v12, v10v14 makes G track connected.

So TC(G) = 4.

G

v2 v3 v5 v7 v9 v11 v13

v4 v8 v12

vv10v6v1

Figure 4.2: TC(G) = 4.

3. the inequalities are strict for the graph H in figure 4.3. Here addition of the

seven edges v1v8, v7v11, v8v9, v9v6, v6v5, v5v4, v4v10 makes H track connected.

So TC(H) = 7.

Theorem 4.2.10. For a tree T, TC(T ) ≤ n−L(P )+1 where L(P ) is the length

of a longest path in T.
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Hv1

v2

v7

v3

v9

v10

v5

v6

v4
v11

v8

Figure 4.3: TC(H) = 7.

Proof. Let P be one of the longest paths in T. Then we can construct a cycle

containing P and the other n − L(P ) vertices which are not in P choosing n −

L(P ) + 1 edges in a suitable way. Therefore TC(T ) ≤ n− L(P ) + 1.

Theorem 4.2.11. Let G be a graph with a pendant vertex u. If its support vertex

v has degree 2 then TC(G) = TC(G− u).

Proof. Let G be a graph with a pendant vertex u. Let its support vertex v has

degree 2. Suppose TC(G) = p. Let A = {e1, e2, ..., ep} be a set of edges in G

such that G′ = G+ A is track connected. Let B = {e′1, e′2, ..., e′p}, where

e′i =

 ei if ei not incident with u,

wiv if ei = wiu for some wi ∈ V.

Since u is a pendant vertex in G, B is nonempty. Let G′′ = G − u + B and

let v1, v2 ∈ V (G′′). Then v1, v2 ∈ V (G′). Hence there exist a cycle C containing

both v1 and v2 ∈ G′.

Case(i) u /∈ V (C).

Then C lies in G′′.

Case(ii) u ∈ V (C).

Let C = uu1u2...uku. If neither u1 nor uk is v, then C ′ = vu1u2...ukv is a cycle
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containing both v1 and v2 in G′′. If u1 = v then C ′ = vu2u3...ukv is a cycle

containing both v1 and v2 in G′′. If uk = v then C ′ = vu1u2...uk−1v is a cycle

containing both v1 and v2 in G′′. Therefore G′′ is track connected. Thus an

addition of p edges makes G− u track connected. So TC(G− u) ≤ TC(G).

For the reverse inequality suppose TC(G − u) = q. Let D = {e1, e2, ..., eq}

be a set of q edges in G− u such that H ′ = G− u + D is track connected. Let

E ′ = {e′1, e′2, ..., e′q}, where

e′i =

 ei if ei not incident with v,

wiu if ei = wiv for some wi ∈ V.

Since v is a pendant vertex in G− u, E ′ is nonempty. Let H ′′ = G+ E ′ and let

v1, v2 ∈ V (G).

Case(i) Either v1 = u or v2 = u.

Let v1 = u. Since H ′ is track connected there exists a cycle C = vu1u2...ukv

containing both v and v2 in H ′. Since v is a pendant vertex in G − u either

vu1 or ukv belongs to D. If both vu1 and ukv are in D then the cycle C ′ =

uu1u2...uku is in H ′′ and contains both v1 and v2. If vu1 /∈ D and vuk ∈ D then

C ′ = vu1u2...ukuv is a cycle in H ′′ which contain both v1 and v2. If vuk /∈ D and

vu1 ∈ D then C ′ = vuu1u2...ukv is a cycle in H ′′ which contain both v1 and v2.

Case(ii) Neither v1 = u nor v2 = u.

Then v1, v2 ∈ V (H ′). Hence there exist a cycle C in H ′ which contain both

v1 and v2.

If v /∈ V (C), then C lies in H ′′. Suppose v ∈ V (C). Let C = vu1u2...ukv. If,

neither vu1 nor ukv is in E(G), then C ′ = uu1u2...uku is a cycle containing both

v1 and v2 in H ′′. If vu1 ∈ E(G) then ukv /∈ E(G) as v is a pendant vertex

64



4.2. Bounds for Cycle Track Completion Number of a Graph

in G − u. Then C ′ = uvu1u2u3...uku is a cycle containing both v1 and v2 in

H ′′. If ukv ∈ E(G) then vu1 /∈ E(G) as v is a pendant vertex in G − u. Then

C ′ = uu1u2u3...ukvu is a cycle containing both v1 and v2 in H ′′. Therefore H ′′

is track connected. Thus an addition of q edges makes G track connected. So

TC(G) ≤ TC(G− u). Hence the theorem.

Theorem 4.2.12. Let G be a connected graph of order n > 3 and u be an isolated

vertex of G. Then

TC(G) =

 TC(G− u) + 1 if G− u is not track connected,

TC(G− u) + 2 if G− u is track connected.

Proof. Let G be a graph of order n > 3 with an isolated vertex u.

Case(i) G− u is track connected.

Since u is isolated at least two edges are required to make G track connected.

Let v1, v2 be two distinct vertices of G − u. Since G − u is track connected

(G− u) + uv1 + uv2 is track connected. So TC(G) = 2 = TC(G− u) + 2.

Case(ii) G− u is not track connected.

Let TC(G − u) = p, where p ≥ 1. Let A = {e1, e2, ..., ep} be a collection of

edges in G− u such that G− u+A is track connected. Let e1 = w1w2. Let B =

{w1u, uw2, e2, ..., ep}. Then G+B is track connected. So TC(G) ≤ TC(G−u)+1.

For the reverse inequality, let TC(G) = q, where q ≥ 2. Let C = {e1, e2, ..., eq}

be a collection of edges in G such that G′ = G + C is track connected. Since u

is an isolated vertex there exist two edges in C which are incident with u. Let

ei = wiu and ej = wju. Let D = C \ {ei, ej} ∪ {wiwj}. Let G′′ = G− u+D and

let v1, v2 ∈ V (G′′). Then v1, v2 ∈ V (G′). Hence there exist a cycle containing

both v1 and v2 in G′.
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If u /∈ V (C), then C lies in G′′.

If u ∈ V (C), let C = uwiu1u2...ukwju. Then C ′ = wiu1u2...ukwjwi is a cycle

containing both v1 and v2 in G′′. Therefore G′′ is track connected. Thus addition

of q− 1 edges makes G−u track connected. So TC(G−u) ≤ TC(G)− 1. Hence

the theorem.

A similar result holds for isolated edges also.

Theorem 4.2.13. If G has an isolated edge uv then

TC(G) =

 TC(G− uv) + 1 if G− uv is not track connected,

TC(G− uv) + 2 if G− uv is track connected.

Theorem 4.2.14. Let G be a connected graph with a cut edge e and G1, G2 be

two components of G− e. Then TC(G) ≤ TC(G1) + TC(G2) + 1.

Proof. Let G be a connected graph with cut edge e andG1, G2 be two components

of G−e. Then, addition of TC(G1) edges makes G1 track connected and TC(G2)

edges makes G2 track connected. So addition of an edge joining G1 and G2

distinct form e together with the above TC(G1) + TC(G2) edges make G track

connected. So TC(G) ≤ TC(G1) + TC(G2) + 1.

The inequality in Theorem 4.2.14 is sharp if and only if G1 and G2 are track

connected.

Theorem 4.2.15. Let G be a connected graph with cut vertex u and let G1, G2, ..., Gr

be the connected components of G−u. Then TC(G) ≤ TC(G1∪{u})+TC(G2∪

{u}) + ...+ TC(Gr ∪ {u}) + r − 1.
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Proof. Let G be a connected graph with cut vertex u and G1, G2, ..., Gr be the

connected components of G−u. Then the addition of TC(Gi∪{u}) edges makes

Gi ∪ {u} track connected for all i = 1, 2, ..., r. So the addition of r− 1 edges say

e1, e2, ..., er−1 such that ei joins Gi∪{u} and Gi+1∪{u}, makes G track connected.

So TC(G) ≤ TC(G1 ∪ {u}) + TC(G2 ∪ {u}) + ...+ TC(Gr ∪ {u}) + r − 1.

Theorem 4.2.16. For transitively tracked graph G with r maximal track con-

nected components, TC(G) ≤ r.

Proof. Let G be transitively tracked and let V (G) be partitioned into V1, V2, ..., Vr

such that the graph 〈Vi〉 induced by each Vi is a maximal track connected sub-

graph of G.

Let v1i, v2i ∈ Vi, i = 1, 2, ..., r and A = {v21v12, v22v13, v23v14, ..., v2(r−1)v1r, v2rv11}.

Let G′ = G+ A and let u1, u2 ∈ V (G′).

Case(i) u1, u2 ∈ Vi.

Then there is a cycle containing both u1 and u2 in Vi.

Case(ii) u1 ∈ Vi and u2 ∈ Vj, i 6= j.

Since each Vp, p = 1, 2, ..., r is track connected there exists a path Pi form v1i to

v2i containing u1, a path Pj from v1j to v2j containing u2 and a path Pp from

v1p to v2p for each p 6= i, j. Let C be the cycle formed by joining the paths Pis

i = 1, 2, ..., r with the edges v2iv1(i+1) i = 1, 2, ..., r − 1 and v2rv11. Then C is a

cycle containing both u1 and u2. Since u1 and u2 are arbitrary, G′ is track con-

nected. Thus addition of r edges makes G track connected. So TC(G) ≤ r.

For a transitively tracked graph G, the inequality in Theorem 4.2.16 is sharp

if and only if G has no cut edge.
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Theorem 4.2.17. Let G be a graph with a cut vertex v. If b is the number of

components of G− v then TC(G) ≥ b− 1.

Proof. Let G be a graph with a cut vertex v. Let b =number of components of

G − v. If possible let E = {e1, e2, ..., eb−2} ⊂ E(G) be such that G′ = G + E is

track connected. Then G′ − v is connected and (G′ − E)− v has b components.

But the removal of the edges in E split G′ − v into at most b− 1 components, a

contradiction.

Theorem 4.2.18 follows from Theorems 4.2.15 and 4.2.17.

Theorem 4.2.18. For a track connected floral graph G with k petals TC(G) =

k − 1.
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Chapter 5

Independent and Irredundant

Cycle Tracking Sets in a Graph

This chapter introduces independent and irredundant cycle tracking sets in

a graph. Some basic results on trace independent sets and trace irredundant

sets of a graph, bounds on τi(G), its exact values for some standard graphs

are also included and it discusses the relation between cycle tracking set, trace

independent set and trace irredundance set.

5.1 Independent Cycle Tracking Sets

In [20] Teresa W. Haynes, Stephen Hedetniemi and Peter Slater had defined

Independent dominating set. This concept can be extended in the case of cycle

tracking sets.
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Definition 5.1.1. Two vertices u, v of a graph G are said to be trace independent

if u /∈ TG(v).

Alternatively two vertices u, v of a graph G are said to be trace independent

if u and v are not vertices of same cycles of G.

Definition 5.1.2. A set S of vertices in a graph G is called a trace independent

set if any two vertices of S are trace independent in G.

Definition 5.1.3. A trace independent set is a maximal trace independent set

if no proper superset S ′ of S is a trace independent set.

G G

Figure 5.1: Two different maximal trace independent sets of the graph G.

Theorem 5.1.4. A trace independent set S is maximal trace independent if and

only if it is trace independent and cycle tracking.

Proof. Suppose S is a maximal trace independent set. Then S is trace indepen-

dent.

Let u ∈ V \ S. Then the set S ∪ {u} is not trace independent. Therefore there

exists a v ∈ S such that u ∈ TG(v). Hence S is a cycle tracking set.

Conversely suppose that S is trace independent and cycle tracking. Suppose that

S is not maximal trace independent. Then there exists a vertex u ∈ V \ S for
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which S ∪ {u} is trace independent. Thus u /∈ TG(v) for every v ∈ S. This

implies that S is not a cycle tracking set, a contradiction.

Corollary 5.1.5. A trace independent set S is maximal trace independent if and

only if for every vertex v ∈ V \ S, there is a vertex u ∈ S such that v ∈ TG(u)

and for every pair of vertices u, v ∈ S, u /∈ TG(v).

Remark 5.1.6. Every maximal trace independent set is a cycle tracking set.

Definition 5.1.7. If a cycle tracking set S is trace independent then S is called

independent cycle tracking set.

Definition 5.1.8. The minimum cardinality of an independent cycle tracking

set of G is the independent cycle tracking number and it is denoted by τi(G).

Definition 5.1.9. The maximum cardinality of independent cycle tracking set

of G is called the upper independent cycle tracking number and is denoted by

Ti(G).

Theorem 5.1.10. Every maximal trace independent set in a graph G is a min-

imal cycle tracking set of G.

Proof. Let S be a maximal trace independent set in a graph G. Then S is a cycle

tracking set. Suppose S is not a minimal cycle tracking set of G. Then there

exists a vertex v ∈ S for which S \ {v} is a cycle tracking set. But if S \ {v} is

a cycle tracking set then, there exists a vertex u ∈ S \ {v} such that v ∈ TG(u),

a contradiction. Thus S must be a minimal cycle tracking set.

The converse of Theorem 5.1.10 is not true in general. In figure 5.1 Two

minimal cycle tracking sets of a graph are indicated in figure by darkened vertices.

The first one is a maximal trace independent set of G but the second is not.
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5.1. Independent Cycle Tracking Sets

G G

Figure 5.2: A graph G and its two minimal cycle tracking set.

Corollary 5.1.11. For any graph G, τc(G) ≤ τi(G) ≤ Ti(G) ≤ Tc(G).

Theorem 5.1.12. A set S of vertices in a graph is an independent cycle tracking

set if and only if S is a maximal trace independent set.

Proof. We have already seen that every maximal trace independent set of ver-

tices is a cycle tracking set. Conversely, suppose that S is an independent cycle

tracking set. Then S is trace independent and every vertex not in S is traced

by a vertex of S. Therefore by Theorem 5.1.4 S is maximal trace independent

set.

Theorem 5.1.13. Let G be a graph. Then τi(G) = 1 if and only if G is a track

connected graph or a track connected floral graph.

Proof. If G is a track connected graph or a track connected floral graph then,

τi(G) = 1.

Let G be any graph with τi(G) = 1. Then there exists a vertex v ∈ V (G) such

that every vertex of G belongs to TG(v). ie; TG(v) = V (G).

If G is not track connected, there exist a pair of vertices x, y ∈ V (G) such

that they are not connected by two internally disjoint x − y path. But as G is
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5.1. Independent Cycle Tracking Sets

connected there is a x − y path in G. Since TG(v) = V (G), there exist a cycle

C1 containing x and v and another cycle C2 containing y and v in G such that

these two cycles have only v as the common vertex and no other vertices of C1 is

connected to a vertex in C2 by a path in G. Which implies that v is a cut vertex

of G. If G1, G2, ..., Gk are the components of G \ {v} then the graph induced by

V (Gi) ∪ {v}, i = 1, 2, ..., k are track connected. Hence G is a track connected

floral graph.

Theorem 5.1.14. A graph G is track connected if and only if Ti(G) = 1.

Proof. Let G be any graph with Ti(G) = 1. Then τi(G) = 1 and by Theorem

5.1.13 G is a track connected graph or a track connected floral graph.

If G is a track connected floral graph then G has at least two petals. In this

case the set S consisting of exactly one vertex from every petal will form a trace

independent cycle tracking set. Hence Ti(G) ≥ 2, a contradiction. So G must be

track connected.

Remark 5.1.15. Let G be a track connected floral graph with k petals. Then the

cardinality of every maximal trace independent set is either 1 or k.

Theorem 5.1.16. Let G be a graph of order n. Then τi(G) = n if and only if G

is a forest.

Proof. Let G be a forest. Since every trace independent cycle tracking set of G

contains all trace free vertices of G, τi(G) = n.

Conversely suppose that τi(G) = n. If G contains a non trivial cycle C, then the

vertices in C are not trace independent and hence τi(G) < n. So G must be a

forest.
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Definition 5.1.17. A graph G is said to be well track covered if every maximal

trace independent set of G is a maximum trace independent set.

All trees and forests are well track covered.

Theorem 5.1.18. Every well tracked graph is well track covered. Moreover

τc(G) = τi(G).

Proof. If a graph G is well tracked then every minimal cycle tracking set has the

same cardinality. By Theorem 5.1.10 every maximal track independent set is a

minimal cycle tracking set. Therefore every maximal track independent set has

the same cardinality. Thus G is well track covered and τc(G) = τi(G).

Definition 5.1.19. A graph G is said to be track perfect if τi(G) = τc(G).

Remark 5.1.20. Theorem 5.1.18 shows that every well tracked graph is track

perfect.

Theorem 5.1.21. Every transitively tracked graph is track perfect.

Proof. For a transitively tracked graph all minimal cycle tracking sets S are

formed by choosing exactly one vertex from each equivalence class. But then

S is trace independent. For any transitively tracked graph τc(G) = Tc(G). By

Corollary 5.1.11 τc(G) ≤ τi(G) ≤ Tc(G). Therefore τc(G) = τi(G) for transitively

tracked graphs.

Theorem 5.1.22 follows from Corollaries 5.1.11 and 2.2.19.

Theorem 5.1.22. For a transitively tracked graph G, τc(G) = τi(G) = Ti(G) =

Tc(G).
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The following theorem is a consequence of the fact that addition of a cut edge

will not increase the independent tracking number of a graph .

Theorem 5.1.23. If G is a graph obtained by attaching a graph H to one of the

vertices of another graph k using a bridge. Then τi(G) = τi(H) + τi(K).

Proposition 5.1.24. If T ′ is the tree obtained by duplicating each edge of a tree

T by a new vertex, then τc(T
′) = τi(T

′) = |V (G)|+ |E(G)|.

Theorem 5.1.25. Let G be a graph. If G′ is the graph obtained by the duplication

of each vertex of G by a new edge, then τc(G
′) = τi(G

′) = |V (G)|.

Proof. Let G be any graph with |V (G)| = n and |E(G)| = m and let each vertex

of the graph G be duplicated by a new edge. Then the resultant graph G′ will

have 3n vertices, 3n + m edges and n vertex disjoint cycles of length three. To

trace these n disjoint cycles, at least n distinct vertices of G′, one from each cycle,

are required. These n vertices in fact traces all vertices of G′. Hence, τc(G
′) = n.

Consider the set S∗ ⊂ V (G′) consists of exactly one end vertex u′k or v′k of

each new edge u′kv
′
k corresponding to the vertex vk of G. Then S∗ is a minimal

cycle tracking set of G and is track independent. Therefore τi(G
′) = n. Thus,

τc(G
′) = τi(G

′) = n.

Theorem 5.1.26. Let G′ be the graph obtained by the duplication of each edge

of a graph G by a new vertex and let p be the number of cut edges of G, then

τi(G
′) ≥ τi(G) + p.

Proof. Let uv be an edge in G. Consider the duplication of uv by a vertex, say u′.

If uv is a cut edge then u′ is a trace free vertex and belong to all cycle tracking

sets. So τi(G
′) ≥ τi(G) + p.

75



5.2. Trace Irreduntance

This inequality is strict for the graph G in figure 5.3

G G′

Figure 5.3: τi(G
′) = 4 and τi(G) = 3.

5.2 Trace Irreduntance

Let G be a graph, S ⊂ V and u ∈ S. Recall that a vertex v is a private

trace of u with respect to S if TG(v) ∩ S = {u} and pt[u, S] is the set of all such

vertices.

In this section we introduce the concept of trace irredudance and examine the

relation between cycle tracking set, trace independent set and trace irredundant

set.

Definition 5.2.1. Let S ⊂ V . The subset consisting of all vertices of S having

at least one private trace is called a private trace set of S and it will be denoted

by pt(S). ie; pt(S) = {u ∈ S : pt[u, S] 6= ∅}.

The cardinality ptc(S) of pt(S) is called the private trace count of S.

Remark 5.2.2. The vertex u may or may not be in pt[u, S]. In figure 5.4, let
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u v

w

G

Figure 5.4: Graph G.

S = {u, v, w}. Then u /∈ pt[u, S] but w ∈ pt[w, S].

Definition 5.2.3. A set S of vertices of a graph G is trace irredundant if for

every vertex v ∈ S, pt[v, S] 6= ∅.

Remark 5.2.4. 1. If a set S of vertices of a graph G is trace irredundant

then, every vertex v ∈ S has at least one private trace. That is pt(S) = S

and ptc(S) = |S|.

2. The property of being trace irredundant is hereditary.

Theorem 5.2.5. A set S of vertices in a graph G is trace irredundant if and

only if every vertex v in S satisfies at least one of the following two properties:

1. There exists a vertex w in V (G) \ S such that TG(w) ∩ S = {v}.

2. TG(v) ∩ (S \ {v}) = ∅.

Proof. First, let S be a set of vertices of G such that for every vertex v ∈ S, at

least one of the above properties is satisfied. If first holds, then w ∈ pt[v, S]. If

the second holds then v ∈ pt[v, S]. So S is trace irredundant.

Conversely, let S be a trace irredundant set of vertices in G, and let v ∈ S. Since

S is trace irredundant, there exists a vertex w ∈ pt[v, S]. If w 6= v then the first

property is satisfied, and if w = v then the second.
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Theorem 5.2.6. A cycle tracking set S of a graph G is a minimal cycle tracking

set if and only if it is cycle tracking and trace irredundant.

Proof. Suppose S is a minimal cycle tracking set then every vertex in S has at

least one private trace. That is for every u ∈ S, pt[u, S] 6= ∅. That is S is a trace

irredundant set.

Conversely suppose that S is a cycle tracking and trace irredundant. We have

to show that it is a minimal cycle tracking set. Suppose that S is not a minimal

cycle tracking set. Then there exists a vertex, say v ∈ S such that S \ {v} is a

cycle tracking set. But since S is trace irredundant, pt[v, S] 6= ∅. Let w ∈ pt[v, S].

Then w is not traced by any vertex in S \ {v}, that is, S \ {v} is not a cycle

tracking set, which is a contradiction.

Definition 5.2.7. A trace irredundant set S of a graph G is maximal trace

irredundant set if no proper superset S ′ of S is a trace irredundant set.

Theorem 5.2.8. A trace irredundant set S of a graph G is maximal trace irre-

dundant if and only if for every vertex u ∈ V \S, there exists a vertex v ∈ S∪{u}

for which pt[v, S ∪ {u}] = ∅.

Proof. Assume that S is a maximal trace irredundant set of G. Then for every

vertex u ∈ V \ S, S ∪ {u} is not a trace irredundant set. This means that there

exist at least one vertex v ∈ S ∪ {u} which does not have a private trace. That

is pt[v, S ∪ {u}] = ∅.

Conversely suppose that S is a trace irredundant set and for each vertex u ∈ V \S,

there exists a vertex v ∈ S ∪ {u} for which pt[v, S ∪ {u}] = ∅. We will show

that S is maximal trace irredundant set. Suppose that S is not a maximal trace
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irredundant set then there exist a vertex u ∈ V such that S ∪ {u} is a trace

irredundant set. Hence for every vertex v ∈ S ∪ {u} we have pt[v, S ∪ {u}] 6= ∅,

which contradicts our assumption.

Theorem 5.2.9. A trace irredundant set S of a graph G is a maximal trace

irredundant if and only if for every vertex u ∈ V \ S, ptc(S ∪ {u}) ≤ ptc(S).

Proof. Assume that S is a maximal trace irredundant set of G. Then for every

vertex u ∈ V \ S, S ∪ {u} is not a trace irredundant set. This means that there

exists at least one vertex v ∈ S ∪ {u} which does not have a private trace. So

ptc(S ∪ {u}) ≤ |S| = ptc(S).

Conversely suppose that for every vertex u ∈ V \ S, ptc(S ∪ {u}) ≤ ptc(S). We

show that S is maximal trace irredundant set. Suppose that S is not a maximal

trace irredundant set, that is, there exist a vertex v ∈ V such that S ∪ {v} is

a trace irredundant set. Then ptc(S ∪ {v}) = |S| + 1 > |S| = ptc(S), which

contradicts our assumption.

Definition 5.2.10. The minimum of cardinalities of maximal trace irreduntant

sets of a graph G is called the trace irredundance number of G, and it is denoted

by τir(G).

Definition 5.2.11. The maximum of cardinalities of trace irredundant sets of a

graph G is called the upper trace irredundance number of G, and it is denoted

by Tir(G).

Theorem 5.2.12. Every minimal cycle tracking set in a graph G is a maximal

trace irredundant set of G.
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Proof. Theorem 5.2.6 shows that every minimal cycle tracking set S is trace

irredundant. Suppose S is not maximal trace irredundant. Then there exists a

vertex u ∈ V such that S∪{u} is a trace irredundant set. Hence for every vertex

v ∈ S ∪ {u}, pt[v, S ∪ {u}] 6= ∅. In particular pt[u, S ∪ {u}] 6= ∅, that is, there

exist at least one vertex w which is a private trace of u with respect to S ∪ {u}.

This means that no vertex in S traces w. That is, S is not a cycle tracking set.

This contradicts our assumption that S is a cycle tracking set.

The converse of Theorem 5.2.12 is not true. In figure 5.5 the darkened vertices

form a maximal trace irredundant set of the graph G but it is not a cycle tracking

set.

G

Figure 5.5: A graph G and a maximal trace irredundant set.

Theorem 5.1.10 implies that every maximal trace independent set in a graph G is

a minimal cycle tracking set of G. Therefore by Theorem 5.2.12, every maximal

trace independent set is a maximal trace irredundant set of G. Thus the preceding

arguments may be summarized as follows.

Theorem 5.2.13. Every maximal trace independent set in a graph G is a max-

imal trace irredundant set of G.
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Theorem 5.2.14. For any graph G, τir(G) ≤ τc(G) ≤ τi(G) ≤ Tc(G) ≤ Tir(G).

Proof. Since every minimal cycle tracking set in a graph G is a maximal trace

irredundant set of G τir(G) ≤ τc(G) ≤ Tc(G) ≤ Tir(G). By Corollary 5.1.11

τc(G) ≤ τi(G) ≤ Tc(G). Hence τir(G) ≤ τc(G) ≤ τi(G) ≤ Tc(G) ≤ Tir(G).

Definition 5.2.15. A maximal trace irredundant set with minimum cardinality

is called a τir − set of G.

Theorem 5.2.16. For any graph G, τc(G)/2 < τir(G) ≤ τc(G) ≤ 2τir(G)− 1.

Proof. Let τir(G) = m and let S = {v1, v2, ..., vm} be a τir − set of G. Since S

is trace irredundant, pt[vi, S] 6= ∅, 1 ≤ i ≤ m. Let S∗ = {u1, u2, ..., um}, where

ui ∈ pt[vi, S], 1 ≤ i ≤ m. Then |S ∪ S∗| ≤ 2m = 2τir(G).

We claim that the set S∗∗ = S∪S∗ is a cycle tracking set. If not there must exist

at least one vertex w ∈ V \ S∗∗ which is not traced by any vertex in S∗∗. That

is w /∈ TG(v) for any vertex v ∈ S∗∗. Therefore w ∈ pt[w, S ∪ {w}] and hence

pt[w, S ∪ {w}] 6= ∅. Since ui /∈ TG(w) for any vertex ui ∈ S∗, pt[vi, S ∪ {w}] 6= ∅.

Thus, S ∪ {w} is an irredundant set, which contradicts the maximality of S.

Therefore S∗∗ is a cycle tracking set. But by Theorem 5.2.12, S∗∗ is not minimal.

Hence τc(G) < 2m. Therefore τc(G)
2

< m and τc(G) ≤ 2m− 1. And by Theorem

5.2.14, τir(G) ≤ τc(G). Thus τc(G)/2 < τir(G) ≤ τc(G) ≤ 2τir(G)− 1.

Theorem 5.2.17. Suppose that S is a maximal trace irredundant set of a graph

G. If a vertex u of G is not traced by S then TG(u) ⊇ pt[x, S] for some x ∈ S.

Proof. By maximality of S, S ∪ {u} is not trace irredundant in G. So pt[x, S ∪

{u}] = ∅ for some x ∈ S ∪ {u}. Since u is not traced by S, u ∈ pt[u, S ∪ {u}].
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Therefore x 6= u. Further, since pt[x, S ∪ {u}] = TG(x) \ TG(S ∪ {u} \ {x}) =

[TG(x) \ TG(S \ {x})] \ TG(u) = pt[x, S] \ TG(u). Since pt[x, S ∪ {u}] = ∅,

TG(u) ⊇ pt[x, S].
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Chapter 6

Cycle Tracking polynomial

The concept of cycle tracking polynomial and independent cycle tracking

polynomial in graphs is introduced and discussed in this chapter. Such polyno-

mials of certain graphs are also determined.

6.1 Cycle tracking Polynomial

Definition 6.1.1. Let G be a graph of order n. Let T (G, i) be the family of all

cycle tracking sets of a graph G with cardinality i and let t(G, i) = |T (G, i)|.

Then the cycle tracking polynomial T (G, x) of G is defined as

T (G, x) =
n∑

i=τc(G)

t(G, i)xi

where τc(G) is the cycle tracking number of G.

The path P3 on three vertices has only one cycle tracking set with cardinality

3 (τc(G) = 3), so its tracking polynomial is T (P3, x) = x3. In the case of the
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cycle Cn on n vertices,

T (Cn, x) =

(
n

1

)
x1 +

(
n

2

)
x2 +

(
n

3

)
x3 + ...+

(
n

n

)
xn = (1 + x)n − 1.

Theorem 6.1.2. If a graph G has m components G1, G2, ..., Gm then T (G, x) =

T (G1, x)T (G2, x)...T (Gm, x).

Proof. It is enough to prove the theorem for n=2.

For k ≥ τc(G), a cycle tracking set of k vertices in G arises by choosing a cycle

tracking set of j vertices in G1 for some j such that τc(G) ≤ j ≤ |V (G)| and a

cycle tracking set of k− j vertices in G2. The number of ways of doing this over

all j = τc(G1), ..., |V (G1)| is exactly the coefficient of xk in T (G1, x)T (G2, x). So

T (G, x) = T (G1, x)T (G2, x).

Theorem 6.1.3. Let G be a graph of order n. Then

1. t(G, n) = 1.

2. t(G, i) = 0 if and only if i < τc(G) or i > n.

3. T (G, x) has no constant term.

4. T (G, x) is a strictly increasing function on (0,∞).

5. for any subgraph H of G, deg(T (G, x)) ≥ deg(T (H, x)).

6. zero is a root of T (G, x) with multiplicity τc(G).

7. τc(G) = n if and only if T (G, x) = xn.

Theorem 6.1.4. Let G be a graph of order n. Then T (G, x) = xn if and only if

G is a forest.
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Proof. T (G, x) = xn if and only if V (G) is the only cycle tracking set for G.

That is if and only if τc(G) = n. That is if and only if G is a forest (by Theorem

2.1.21).

Theorem 6.1.5. Let G be a graph of order n. Then T (G, x) = (1 + x)n − 1 if

and only if G is track connected.

Proof. If G is track connected then τc(G) = 1 and every vertex traces all vertices

of G. So coefficient of x is n and t(G, p) =
(
n
p

)
. So T (Cn, x) =

(
n
1

)
x1 +

(
n
2

)
x2 +(

n
3

)
x3 + ...+

(
n
n

)
xn = (1 + x)n − 1.

Conversely if T (G, x) = (1 + x)n − 1, the coefficient of x is n. That is, every

vertex traces all vertices of G. Hence G is track connected.

Theorem 6.1.6. Let G be a track connected floral graph with k petals. If the

petals respectively having m1,m2, ...,mk vertices then

t(G, p) =

(
m1 +m2 + ...+mk

p− 1

)
+

p−k+1∑
i1=1

(
m1

i1

)p−k−i1+2∑
i2=1

(
m2

i2

)... p−k−i1−i2−...+j∑
ij=1(

mj

ij

) ...
p−k−i1−i2−...−ik−1+k−1∑

ik−1=1

(
mk−1

ik−1

)(
mk

p− i1 − i2 − ...− ik−1

) ...
, when

k ≤ p ≤ n. And

T (G, x) =
k−1∑
p=1

(
m1 +m2 + ...+mk

p− 1

)
xp +

n∑
p=k

[(
m1 +m2 + ...+mk

p− 1

)
+

p−k+1∑
i1=1

(
m1

i1

)p−k−i1+2∑
i2=1

(
m2

i2

)... p−k−i1−i2−...+j∑
ij=1

(
mj

ij

)
...

p−k−i1−i2−...−ik−1+k−1∑
ik−1=1

(
mk−1

ik−1

)(
mk

p− i1 − i2 − ...− ik−1

) ...
 ...

xp.
Proof. Case(1) 1 ≤ p ≤ k − 1.

Then any cycle tracking set S contains the central vertex. So the central vertex
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6.1. Cycle tracking Polynomial

together with p−1 vertices constitute a cycle tracking set S and it can be chosen

in
(
m1+m2+...+mk

p−1

)
ways.

Case(2) k ≤ p ≤ n.

Here the central vertex together with p − 1 vertices constitute a cycle tracking

set S and a set of vertices S of cardinality p having at least one element from each

petal is also form a cycle tracking set and it can be chosen in

(
m1 +m2 + ...+mk

p− 1

)
+

p−k+1∑
i1=1

(
m1

i1

)p−k−i1+2∑
i2=1

(
m2

i2

)... p−k−i1−i2−...+j∑
ij=1

(
mj

ij

)
...

p−k−i1−i2−...−ik−1+k−1∑
ik−1=1

(
mk−1

ik−1

)(
mk

p− i1 − i2 − ...− ik−1

) ...
 ways.

Let G be a transitively tracked graph then its vertex set can be partitioned

into V1, V2, ..., Vk of cardinality m1,m2, ...,mk respectively such that the graph

〈Vi〉 induced by each Vi is maximal track connected subgraph of G. Then a

set S of vertices which contains at least one element from each Vi form a cycle

tracking set. So a cycle tracking set of G with cardinality p can be chosen in
p−k+1∑
i1=1

(
m1

i1

)p−k−i1+2∑
i2=1

(
m2

i2

)... p−k−i1−i2−...+j∑
ij=1

(
mj

ij

)
[
...

[
p−k−i1−i2−...−ik−1+k−1∑

ik−1=1

(
mk−1

ik−1

)(
mk

p−i1−i2−...−ik−1

)]]]
...

]
ways.

So t(G, p) =

p−k+1∑
i1=1

(
m1

i1

)p−k−i1+2∑
i2=1

(
m2

i2

)... p−k−i1−i2−...+j∑
ij=1

(
mj

ij

)
...

p−k−i1−i2−...−ik−1+k−1∑
ik−1=1

(
mk−1

ik−1

)(
mk

p− i1 − i2 − ...− ik−1

) ...
,k ≤ p ≤ n.

The above discussion may be summarized as follows.

Theorem 6.1.7. Let G be a transitively tracked graph. Let V1, V2, ..., Vk be the

partition of V(G) such that each 〈Vi〉 induced by each Vi is a maximal track
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6.1. Cycle tracking Polynomial

connected component of G with |Vi| = mi. Then,

T (G, x) =
n∑
p=k

p−k+1∑
i1=1

(
m1

i1

)p−k−i1+2∑
i2=1

(
m2

i2

)... p−k−i1−i2−...+j∑
ij=1

(
mj

ij

)
...

p−k−i1−i2−...−ik−1+k−1∑
ik−1=1

(
mk−1

ik−1

)(
mk

p− i1 − i2 − ...− ik−1

) ...
xp.

Theorem 6.1.8. Let G be transitively tracked graph and let its vertex set V (G)

be partitioned into V1, V2, ..., Vk such that the graph 〈Vi〉 induced by each Vi is

a maximal track connected subgraph of G. Then,

T (G, x) = T (〈V1〉, x)T (〈V2〉, x)...T (〈Vm〉, x).

Proof. Let G be transitively tracked and let V (G) be partitioned into V1, V2, ..., Vk

such that the graph 〈Vi〉 induced by each Vi is maximal track connected subgraph

of G. Let G′ be the graph formed by removing all cut edges of G. Then by

Proposition 2.1.34 T (G, x) = T (G′, x) and by Proposition 2.2.4 and Theorem

6.1.2 T (G, x) = T (〈V1〉, x)T (〈V2〉, x)...T (〈Vm〉, x).

Corollary 6.1.9. Let G be transitively tracked graph. If its vertex set V (G)

can be partitioned into V1, V2, ..., Vk of cardinality m1,m2, ...,mk respectively such

that the graph 〈Vi〉 induced by each Vi is maximal track connected subgraph of G.

Then

T (G, x) = ((x+ 1)m1 − 1)((x+ 1)m2 − 1)...((x+ 1)mk − 1).

Theorem 6.1.10. For a graph G, t(G, 1) = 1 if and only if G is a track connected

floral graph.

Proof. Let G be any graph with t(G, 1) = 1. Then there exists one and only one

cycle tracking set S with |S| = 1. That is there exist a vertex v ∈ V such that
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TG(v) = V and no other vertex can trace G. And since τc(G) = 1, G must be a

track connected floral graph.

Remark 6.1.11. For any graph G,

t(G, 1) =


1 if G is track connected floral graph,

|V | if G is track connected,

0 otherwise.

Theorem 6.1.12. Let G be a graph of order n with r trace free vertices. If

T (G, x) =
n∑

i=τc(G)

t(G, i)xi is its cycle tracking polynomial, then r = n−t(G, n−1).

Proof. Suppose that A ⊂ V (G) is the set of all trace free vertices. Then by

hypothesis, |A| = r. For a vertex v ∈ V (G), the set V (G)\{v} is a cycle tracking

set of G if and only if v ∈ V (G) \A. Therefore t(G, n− 1) = |V (G \A)| = n− r.

Hence the theorem.

Theorem 6.1.13. Let G be a graph of order n. Then,

t(G, 1) = |{v ∈ V (G) : TG(v) = V (G)}|.

Proof. For every v ∈ V (G), {v} is a cycle tracking set if and only if v traces all

vertices. ie; TG(v) = V (G).

6.2 Cycle Tracking Polynomial for Some Graphs

In this section we determine the cycle tracking number and cycle tracking

polynomial for some graphs.

Theorem 6.2.1. For Firefly graph Fs,t,n−2s−2t−1, τc(Fs,t,n−2s−2t−1) = n− 2s.
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Proof. The graph Fs,t,n−2s−2t−1 has n−2s−1 trace free vertices and the common

vertex traces all s triangles. So the n − 2s − 1 trace free vertices together with

the common vertex form a τ -set. Hence τc(Fs,t,n−2s−2t−1) = n− 2s.

Theorem 6.2.2. t(Fs,t,n−2s−2t−1, p) =

(
2s

p− n+ 2s

)
if n − 2s ≤ p ≤ n − s − 2

and t(Fs,t,n−2s−2t−1, p) =

(
2s

p− n+ 2s

)
+

p−n+s+2∑
i1=1

(
2

i1

)[p−n+s−i1+3∑
i2=1

(
2

i2

)
... p−n+s−i1−i2−...+j+1∑

ij=1

(
2

ij

) ...
p−n+s−i1−i2−...−is−1+s∑

is−1=1

(
2

is−1

)
(

2

p− n+ 2s+ 1− i1 − i2 − ...− is−1

)]
...

]
...

]]
if n− s− 1 ≤ p ≤ n.

Proof. By Theorem 6.2.1, τc(Fs,t,n−2s−2t−1, x) = n− 2s.

case(1) n− 2s ≤ p ≤ n− s− 2.

Then any cycle tracking set S contains the common vertex. So the central vertex

together with n−2s−1 trace free vertices and p−n+2s other vertices constitute

a cycle tracking set S and it can be chosen in
(

2s
p−n+2s

)
ways.

case(2) n− s− 1 ≤ p ≤ n.

Here the central vertex together with n−2s−1 trace free vertices and p−n+2s

other constitute a cycle tracking set S and a set of vertices S of cardinality p

having at least one element from each triangle is also form a cycle tracking set

and it can be chosen in(
2s

p− n+ 2s

)
+

p−n+s+2∑
i1=1

(
2

i1

)p−n+s−i1+3∑
i2=1

(
2

i2

)... p−n+s−i1−i2−...+j+1∑
ij=1

(
2

ij

)
...

p−n+s−i1−i2−...−is−1+s∑
is−1=1

(
2

is−1

)(
2

p− n+ 2s+ 1− i1 − i2 − ...− is−1

) ...


ways.

Theorem 6.2.3. T (Fs,t,n−2s−2t−1, x) =
n−s−2∑
p=n−2s

(
2s

p− n+ 2s

)
+

n∑
p=n−s−2

[(
2s

p− n+ 2s

)
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+

p−n+s+2∑
i1=1

(
2

i1

)p−n+s−i1+3∑
i2=1

(
2

i2

)... p−n+s−i1−i2−...+j+1∑
ij=1

(
2

ij

)
...

p−n+s−i1−i2−...−is−1+s∑
is−1=1

(
2

is−1

)(
2

p− n+ 2s+ 1− i1 − i2 − ...− is−1

) ...
.

Theorem 6.2.4. For a Lollipop graph Ln,m, τc(Ln,m) = m+ 1 and T (Ln,m, x) =

((1 + x)n − 1)xm.

Proof. Since a vertex in Kn can trace all vertices in it and all vertices of Pm

are trace free vertices we need at least m + 1 vertices to trace Ln,m. Hence

τc(Ln,m) = m+ 1 and T (Ln,m, x) = ((1 + x)n − 1)xm.

Theorem 6.2.5. For a Tadpole T(n,l), τc(T(n,l)) = l + 1 and T (T(n,l), x) = ((1 +

x)n − 1)xl.

Proof. Since a vertex in Cn can trace all vertices in it and all vertices of Pl

are trace free vertices we need at least m + 1 vertices to trace T(n,l). Hence

τc(T(n,l)) = l + 1 and T (T(n,l), x) = ((1 + x)n − 1)xl.

Theorem 6.2.6. For a helm graph Hn, τc(Hn) = n and T (Hn, x) = ((1 + x)n −

1)xn−1.

Proof. Since Hn contains n − 1 pendant vertices, all these vertices belong to

every cycle tracking set. Since Wn is track connected, a vertex of Wn together

with the pendant vertices form a minimal cycle tracking set. So τc(Hn) = n and

T (Hn, x) = ((1 + x)n − 1)xn−1.

Theorem 6.2.7. For a web graph WBn, n > 3, τc(WBn) = n and T (WBn, x) =

((1 + x)2n−1 − 1)xn−1.
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Since Fn is a track connected floral graph with n petals each having 3 vertices

we have:

Theorem 6.2.8. For a friendship graph Fn, τc(Fn) = 1.

Using Theorem 6.1.6 we have;

Theorem 6.2.9. t(Fn, i) =


(
2n
i−1

)
1 ≤ i ≤ n− 1,(

2n
i−1

)
+
(
n
i−n

)
22n−i n ≤ i ≤ 2n.

and T (Fn, x) = x+ 2nx2 + ...+

(
2n

i− 1

)
xi + ...+

(
2n

n− 2

)
xn−1

+

[(
2n

n− 1

)
+ 2n

]
xn + ...+

[(
2n

j − 1

)
+

(
n

j − n

)
22n−j

]
xj + ...+ x2n+1.

Theorem 6.2.10. For an Armed crown Cn
⊙

Pm, τc(Cn
⊙

Pm) = mn + 1 and

T (Cn � Pm, x) = ((1 + x)n)xmn.

Proof. Since a vertex in Cn can trace all vertices in it and the remaining mn

vertices are trace free vertices. So we need at least mn + 1 vertices to trace

Cn
⊙

Pm. Hence τc(Cn
⊙

Pm) = mn+1 and T (Cn�Pm, x) = ((1+x)n)xmn.

Theorem 6.2.11. For any graph G of order n, τc(G ◦ K1) = n + τc(G) and

T (G ◦K1, x) = T (G, x)xn.

Theorem 6.2.12. Let G be any graph of order n and H be a connected graph of

order m. Then τc(G ◦H) = n.

In particular if G = K1, then τc(K1 ◦H) = 1.

Corollary 6.2.13. For a connected graph H of order m, T (K1 ◦ H, x) = (1 +

x)m+1 − 1.
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Proof. Since K1◦H is a track connected graph with m+1 vertices, T (K1◦H, x) =

(1 + x)m+1 − 1.

Theorem 6.2.14. Let G be any graph of order n and H be a connected graph of

order m. Then T (G ◦H, x) = [(1 + x)m+1 − 1]n.

Proof. We prove the theorem for n = 2. General case will follow from it.

For k ≥ τc(G ◦ H) = 2, a cycle tracking set of k vertices in G ◦ H is chosen

by selecting j (1 ≤ j ≤ k − 1) vertices from first copy of K1 ◦ Hm and k − j

vertices from second copy of K1 ◦ Hm. The number of way of doing this over

all k = 2, 3, ...,mn is exactly the coefficient of xk in [(1 + x)m+1 − 1]2. So

T ((G ◦H, x) = [(1 + x)m+1 − 1]2.

6.3 Independent Cycle Tracking Polynomial

In this section we introduce a new type of graph polynomial called indepen-

dent cycle tracking polynomial Ti(G, x) and studies some of its properties.

Definition 6.3.1. Let Ti(G, j) be the family of independent cycle tracking sets of

a graph G with cardinality j and let ti(G, j) = |Ti(G, j)|. Then the independent

tracking polynomial Ti(G, x) of G is defined as

Ti(G, x) =

|V (G)|∑
j=τi(G)

ti(G, j)x
j

where τi(G) is the independent cycle tracking number of G. The roots of the

polynomial Ti(G, x) are called the independent tracking roots of G.
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Remark 6.3.2. As ti(G, j) = 0 for j > Ti(G), the independent tracking polyno-

mial Ti(G, x) of G, in fact is,

Ti(G;x) =

Ti(G)∑
j=τi(G)

ti(G, j)x
j

where Ti(G) is the independent cycle tracking number of G as ti(G, j) = 0 for

j > Ti(G).

The path P3 on three vertices has only one independent cycle tracking set with

cardinality 3 (τi(G) = 3) its independent tracking polynomial is then Ti(P3, x) =

x3. Similarly every independent cycle tracking set of Cn contains one and only

one vertex and for every vertex v ∈ V , {v} forms an independent cycle tracking

set. So Ti(Cn, x) = nx.

Theorem 6.3.3. Let the graph G = G1 ∪ G2 be the union of two graphs with

disjoint vertex set. Then Ti(G, x) = Ti(G1, x)Ti(G2, x).

Proof. For k ≥ τi(G), an independent cycle tracking set of k vertices in G arises

by choosing an independent cycle tracking set of p vertices in G1 (for some p such

that τi(G1) ≤ p ≤ |V (G1)| and an independent cycle tracking set of k−j vertices

in G2. The number of ways of doing this over all j = τi(G1), ..., |V (G1)| is exactly

the coefficient of xk in Ti(G1, x)Ti(G2, x). So Ti(G, x) = Ti(G1, x)Ti(G2, x).

Corollary 6.3.4. If a graph G has m components G1, G2, ..., Gm then Ti(G, x) =

Ti(G1, x)Ti(G2, x)...Ti(Gm, x).

Proof. We prove this result by mathematical induction on m. For m = 1 the

result is trivial. The case m = 2 holds by theorem 6.3.3. Suppose that the
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result is true for m = k. Now we have to prove that the result is true for

m = k + 1. So let G consist of k + 1 components G1, G2, ..., Gk+1. Then

Ti(G, x) = Ti(G1 ∪ G2 ∪ ... ∪ Gk, x)Ti(Gk+1, x) by theorem 6.3.3. Is equal to

Ti(G1, x)Ti(G2, x)...Ti(Gk+1, x), by induction hypothesis.

Theorem 6.3.5. Let G be a graph of order n. Then

1. ti(G, i) = 0 for i < τi(G) or i > Ti(G).

2. Ti(G, x) has no constant term.

3. Ti(G, x) is a strictly increasing function on (0,∞).

4. zero is a root of Ti(G, x) with multiplicity τi(G).

Theorem 6.3.6. Let G be a graph of order n. Then Ti(G, x) = xn if and only if

G is a forest.

Proof. The independent cycle tracking polynomial of G is xn if and only if V (G)

is the only cycle tracking set for G. That is if and only if τi(G) = n. That is if

and only if G is a forest (by Theorem 2.1.21).

Theorem 6.3.7. For a graph G of order n, Ti(G, x) = nx if and only if G is

track connected.

Proof. Suppose Ti(G, x) = nx. Then every independent cycle tracking set con-

tains only one vertex. That is every vertex in G traces all other vertices and

hence the graph is track connected.

Conversely suppose that G is track connected. Then Ti(G) = 1 and every vertex

trace all other vertices. So Ti(G, x) = nx.
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Theorem 6.3.8. Let G be a track connected floral graph with k petals having

m1,m2, ...,mk vertices respectively then Ti(G, x) = x+m1m2...mn x
n.

Proof. Let G be a track connected floral graph with k petals with each petal hav-

ing m1,m2, ...,mk vertices respectively. Then every maximal trace independent

set contains exactly 1 or n vertices. Here the central vertex is the only vertex

that can trace all other vertices, and a set with one vertex from each petal form

an independent cycle tracking set. So there are m1m2...mk trace independent

sets which contain n vertices. Therefore Ti(G, x) = x+m1m2...mn x
n.

Theorem 6.3.9. Let G be a transitively tracked and let V (G) be partitioned into

V1, V2, ..., Vk of cardinality m1,m2, ...,mk respectively such that the graph 〈Vi〉

induced by Vi is maximal track connected subgraph of G for i = 1, 2, ..., k. Then

Ti(G, x) = m1m2...mk x
k.

Proof. G be a transitively tracked graph then its vertex set can be partitioned

into V1, V2, ..., Vk of cardinality, say m1,m2, ...,mk respectively such that the

graph 〈Vi〉 induced by each Vi is maximal track connected subgraph of G. Then

the independent cycle tracking set of G are precisely the sets of vertices which

contains exactly one element from each Vi. So an independent cycle track-

ing set of G with cardinality k can be chosen in m1m2...mk ways. Therefore

Ti(G, x) = m1m2...mk x
k.

Theorem 6.3.10. For a graph G, ti(G, 1) = 1 if and only if G is a track con-

nected floral graph.

Proof. Let G be any graph with ti(G, 1) = 1. Then there exists one and only one

independent cycle tracking set S with |S| = 1. That is there exist a vertex v ∈ V
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such that TG(v) = V and no other vertex can trace G. And since τi(G) = 1, G

must be a track connected floral graph.

6.4 Independent Cycle Tracking Polynomial of

Some Graphs

In this section independent cycle tracking polynomial Ti(G, x) of some graphs

are derived.

Theorem 6.4.1. For Firefly graph Fs,t,n−2s−2t−1, τi(Fs,t,n−2s−2t−1) = n− 2s.

Proof. The graph Fs,t,n−2s−2t−1 has n−2s−1 trace free vertices and the common

vertex traces all s triangles. So the n − 2s − 1 trace free vertices together with

the common vertex form a τi−set. Hence τi(Fs,t,n−2s−2t−1) = n− 2s.

Theorem 6.4.2. For Firefly graph Fs,t,n−2s−2t−1,

ti(Fs,t,n−2s−2t−1, p) =


1 if p = n− 2s,

2s if p = n− s− 1,

0 otherwise.

and Ti(Fs,t,n−2s−2t−1, x) = xn−2s + 2sxn−s−1.

Proof. Let S be an independent cycle tracking set of Fs,t,n−2s−2t−1. Then S

contain all the n − 2s − 1 trace free vertices. Suppose v be the common vertex

shared by the triangles, the pendant paths of length 2 and the pendant edges.

Case(i) v ∈ S.

Then the other vertices in the s triangles does not belong to S. So |S| = n− 2s

and S has only one choice.
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Case(ii) v /∈ S.

Then S contains exactly one vertex from each triangle other than v. So |S| =

n− s− 1 and there are 2s choices for S

Hence ti(Fs,t,n−2s−2t−1, p) =


1 if p = n− 2s,

2s if p = n− s− 1,

0 otherwise.

Hence Ti(Fs,t,n−2s−2t−1, x) = xn−2s + 2sxn−s−1.

Theorem 6.4.3. For a Lollipop graph Ln,m, τi(Ln,m) = m+ 1.

Proof. Since a vertex in Kn can trace all vertices in it and all vertices of Pm

are trace free vertices we need at least m + 1 vertices to trace Ln,m and hence

τi(Ln,m) = m+ 1.

Theorem 6.4.4. For a Lollipop graph Ln,m, Ti(Ln,m, x) = nxm+1.

Proof. Let S be an independent cycle tracking set of Ln,m. Then S contain all

the m trace free vertices and exactly one vertex from Kn. So |S| = m+ 1 and S

can be chosen in n ways. So t(Ln,m, p) =

 n if p = m+ 1,

0 otherwise.

Hence Ti(Ln,m, x) = nxm+1.

Theorem 6.4.5. For a Tadpole T(n,l), τi(T(n,l)) = l + 1.

Proof. Since a vertex in Cn can trace all vertices in it and all vertices of Pl are

trace free vertices we need at least m+ 1 vertices to trace T(n,l) and these m+ 1

vertices are independent. Hence τi(T(n,l)) = l + 1.

Theorem 6.4.6. For a Tadpole T(n,l), Ti(T (n, l), x) = nxl+1.
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Proof. Let S be an independent cycle tracking set of T(n,l). Then S contain all

the l trace free vertices and exactly one vertex from Cn. So |S| = l + 1 and S

can be chosen in n distinct ways. So,

ti(T(n,l), p) =

 n if p = l + 1,

0 otherwise.

Hence Ti(T(n,l), x) = nxl+1.

Theorem 6.4.7. For a Helm graph Hn, τi(Hn) = n.

Proof. Since Hn contains n − 1 pendant vertices, all these vertices belong to

every independent cycle tracking set. Since Wn is track connected, a vertex of

Wn together with the pendant vertices form an independent cycle tracking set.

So τc(Hn) = n.

Theorem 6.4.8. For a Helm graph Hn, Ti(Hn, x) = nxn.

Proof. Let S be an independent cycle tracking set of Hn. Then S contain all the

n− 1 trace free vertices and exactly one vertex from Wn. So |S| = n and S can

be chosen in n distinct ways. So, ti(Hn, p) =

 n if p = n,

0 otherwise.

Hence Ti(Hn, x) = nxn.

Theorem 6.4.9. For a Web graph WBn, τi(WBn, x) = n and Ti(WBn, x) =

(2n− 1)xn.

Since a Friendship graph Fn is a track connected floral graph with n petals

each having 3 vertices, we have:

Theorem 6.4.10. τi(Fn) = 1 and Ti(Fn, x) = x+ 2nxn.
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Theorem 6.4.11. For an Armed crown Cn
⊙

Pm, τi(Cn
⊙

Pm) = mn + 1 and

Ti(Cn
⊙

Pm, x) = nxmn+1.

Proof. Since a vertex in Cn can trace all vertices in it and the remaining mn

vertices are trace free vertices. So we need at least mn+ 1 independent vertices

to trace Cn
⊙

Pm and hence τc(Cn
⊙

Pm) = mn+ 1.

By Theorem 6.3.3, we have :

Theorem 6.4.12. For any graph G of order n, τi(G ◦ K1) = n + τc(G) and

Ti(G ◦K1, x) = Ti(G, x)xn.

More generally we have;

Theorem 6.4.13. τi(Gn ◦ Hm) = n, where Gn denote a graph with n vertices

and Hm denote a connected graph with m(m > 1) vertices.

Corollary 6.4.14. If G denote a connected graph of order m. Then τi(K1◦G) =

1 and Ti(K1 ◦G, x) = (m+ 1)x.

Proof. Since K1◦G is a track connected graph with m+1 vertices, Ti(K1◦G, x) =

(m+ 1)x.
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Chapter 7

Cycle Tracking Matrix of a

Graph

A graph G can be represented by various binary matrices such as adjacency

matrix, incidence matrix, cut matrix, circuit matrix etc. The concept of cycle

tracking sets introduces a new type of matrix called cycle tracking matrix. This

is the matter of study of this chapter.

7.1 Cycle Tracking Matrices

A graph G is said to be an ordered graph if its vertex set is a finite sequence.

In the case of an ordered graph G we denote the vertex set V (G) with elements

v1, v2, ..., vn as (v1, v2, ..., vn) in order to indicate v1 as the first vertex, v2 as the

second vertex,..., vn as the nth vertex.
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Only ordered graphs are considered throughout this chapter.

Definition 7.1.1. Let G be an ordered graph with V (G) = (v1, v2, ..., vn) as its

vertex set. The cycle tracking matrix of G, denoted by TM(G), is the n × n

binary matrix defined as follows. The rows and columns of TM(G) are indexed

by the ordered set (v1, v2, ..., vn). The (i, j)th entry of TM(G) is 1 if and only if

vi ∈ TG(vj).

Example 7.1.2. The cycle tracking matrix TM(G) of the graph G in figure 7.1 is

TM(G) =



1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 1 0 1 1 1 1



.

Proposition 7.1.3. Let G be a graph with V (G) = (v1, v2, ..., vn). Then,

1. TM(G) is a symmetric matrix with 1 on the diagonal.

2. the number of ones in the ith row or ith column of TM(G) is equal to

|TG(vi)|.
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G

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v10

Figure 7.1: Graph G.

3. the row or column corresponding to each trace free vertex vi has 1 at ith

position and 0 else where.

4. there is no row or column having exactly 2 ones.

Theorem 7.1.4 follows directly from the definition of cycle tracking matrix.

Theorem 7.1.4. The cycle tracking matrix of a track connected graph is an n×n

matrix with all entries 1.

Theorem 7.1.5. Let G be a graph with V (G) = (v1, v2, ..., vn). If the (i, j)th

entry of TM(G) is zero then TM(G)ik = TM(G)jk = 1 for at most one k.

Proof. Let G be a graph with V (G) = (v1, v2, ..., vn). Suppose TM(G)ij = 0.

Then vi and vj lie in different maximal track connected components of G. By

Theorem 2.1.13 two different maximal track connected components share at most

one vertex in G. Therefore there is at most one vertex, say vk ∈ TG(vi)∩ TG(vj).

That is TM(G)ik = TM(G)jk = 1 for at most one k.

Theorem 7.1.6. Let G be a graph with V (G) = (v1, v2, ..., vn). If TM(G)ij = 1

for some i 6= j then there exists a k 6= i, j such that TM(G)ik = TM(G)jk = 1.
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Proof. Let G be a graph with V (G) = (v1, v2, ..., vn). Suppose TM(G)ij = 1

for some i 6= j. Then vi ∈ TG(vj). Therefore there exists a cycle C which

contains both vi and vj. Since each cycle contains at least 3 vertices, |V (C)| is

greater than or equal to 3. Let vk a vertex of C distinct from vi and vj. So

TM(G)ik = TM(G)jk = 1.

Theorem 7.1.7. Let G be a graph with V (G) = (v1, v2, ..., vn). Let B be any

k × k submatrix of TM(G) of the form

B =



1 1 b13 b14 . . . b1(k−1) 1

1 1 1 b24 . . . b2(k−1) b2k

b31 1 1 1 . . . b3(k−1) b3k

b41 b42 1 1 . . . b3(k−1) b3k
...

...
...

...
...

b(n−1)1 b(n−1)2 b(n−1)3 b(n−1)4 . . . 1 1

1 bn2 bn3 bn4 . . . 1 1



(7.1)

where B((i−1)(modk))i = Bii = B((i+1)(modk))i = 1. Then Bij = 1 for every i, j =

1, 2, ..., k.

Proof. Let G be a graph with V (G) = (v1, v2, ..., vn). Let B be the given k × k

submatrix of TM(G) of the form in (7.1). Without loss of generality assume that

B is formed by the subset (v1, v2, ..., vk) of V (G).

Consider the graph H induced by (TG(v1) ∩ TG(v2)) ∪ (TG(v2) ∩ TG(v3)) ∪ ... ∪

(TG(vk−1) ∩ TG(vk)) ∪ (TG(vk) ∩ TG(v1)). We claim that H is track connected so

that every entry of B is 1.

If H is not track connected then there exists a cut vertex v in H. Let D1, D2, ..., Dq
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be the components of H − v. Then V (Di) ∩ {v1, v2, ..., vk} 6= ∅ as H is formed

by union of intersection of traces of vertices. Since the induced graph formed

by non empty intersection of traces of vertices is track connected (provided the

intersection is non empty), there exist vertices vi and vi+1(where 1 ≤ i ≤ k, with

vk+1 = v1) which lie in two different components of H − v. Since there is only

one path in H from each vertex in Dj to any vertex in Dk(k 6= j), there exists

only one path from vi to vi + 1, a contradiction. So H is track connected. Hence

Bij = 1 for every i, j = 1, 2, ..., k.

Theorem 7.1.8. Let A be a square, symmetric, binary matrix of order n satis-

fying the following conditions

1. All diagonal entries are 1.

2. If Aij = 1 for some i 6= j then Aik = Ajk = 1 for some k 6= i, j.

3. If ijth element of A is zero then Aik = Ajk = 1 for at most one k.

4. If B is any k × k submatrix of A of the form

B =



1 1 b13 b14 . . . b1(k−1) 1

1 1 1 b24 . . . b2(k−1) b2k

b31 1 1 1 . . . b3(k−1) b3k

b41 b42 1 1 . . . b3(k−1) b3k
...

...
...

...
...

b(n−1)1 b(n−1)2 b(n−1)3 b(n−1)4 . . . 1 1

1 bn2 bn3 bn4 . . . 1 1
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where B((i−1)(modk))i = Bii = B((i+1)(modk))i = 1, then Bij = 1 for every

i, j = 1, 2, ..., n.

Then there exists a graph G of order n whose cycle tracking matrix is A.

Proof. We need only to prove the necessary part. Let A be a square, symmetric,

binary matrix of order n satisfying all the hypothesis of the theorem.

Let G be a graph with V (G) = (v1, v2, ..., vn) whose adjacency matrix is A− In,

where In is the identity matrix of order n. Then every vertex in V is either

isolated or a vertex of a triangle. And for every non adjacent vertices vi, vj ∈ V

there exists at most one vertex vk adjacent to both vi and vj.

We claim that TM(G) = A. That is for i 6= j Aij = 1 if and only if vi ∈ TG(vj).

Case(i) Aij = 1.

Then vi adjacent to vj. Then by condition 2 there exists a vertex vk such that

Aik = Ajk = 1. So vivjvk is a triangle in G. Thus there exist two distinct paths

from vi to vj. Hence vi ∈ TG(vj).

Case(ii)Aij = 0.

Then vi is not adjacent to vj. If possible let there be two distinct paths from vi

to vj. These two paths together form the cycle vi, u1, u2, ..., ur, vj, ur+1, ..., us, vi.

Then the submatrix of A corresponding to these vertices is of the form described

in condition 4. Then by condition 4, Aij = 1 for every i, j, a contradiction.

Hence vi /∈ TG(vj).

The Lemma 7.1.9 follows from the fact, whether vi ∈ TG(vj) or not.

Lemma 7.1.9. Let G be a graph with vertex set (v1, v2, ..., vn). Then the 2 × 2

principal submatrix of TM(G) formed by the rows and columns corresponding to
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vi, vj 1 ≤ i 6= j ≤ n, is either an identity matrix or a matrix with all entries one.

Theorem 7.1.10. Let G be a graph. Then the 2 × 2 principal submatrix of

TM(G) formed by the rows and columns corresponding to vi, vj 1 ≤ i 6= j ≤ n,

is non singular if and only if vi /∈ TG(vj).

Proof. Let G be a graph with V (G) = (v1, v2, ..., vn). Let B be the 2×2 principal

submatrix of TM(G) formed by the rows and columns corresponding to vi, vj

1 ≤ i 6= j ≤ n. Then B is either the 2× 2 identity matrix I2 or 2× 2 matrix with

all entries 1. Thus B is non singular if and only if B = I2. That is if and only if

vi /∈ TG(vj).

Theorem 7.1.11. Let G be a graph with V (G) = (v1, v2, ..., vn). Let Bij be the

2×2 principal submatrix of TM(G) formed by the rows and columns corresponding

to vi, vj. For a fixed j,
∑

i 6=j detB
ij = |V (G)| − |TG(vj)|.

Proof. Let G be a graph with V (G) = (v1, v2, ..., vn) . Let B be the 2×2 principal

submatrix of TM(G) formed by the rows and columns corresponding to vi, vj.

For a fixed j, consider the vertex vi, i = 1, 2, ..., n. If vi /∈ TG(vj), then Bij is the

2× 2 identity matrix I2. Hence det(Bij) = 1.

If vi ∈ TG(vj), then Bij is the 2×2 matrix with all entries 1. Hence det(Bij) = 0.

Therefore
∑

i 6=j det(B
ij) =

∑
vi /∈TG(vj)

det(Bij)+
∑

vi∈TG(vj)
det(Bij) = n−|TG(vj)|.

Theorem 7.1.12. Let G be a graph with V (G) = (v1, v2, ..., vn). The 3 × 3

principal submatrix of TM(G) formed by the rows and columns corresponding

to the distinct vertices vi, vj, vk is singular if and only if one of the following

conditions holds
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1. vi, vj ∈ TG(vk) and vi ∈ TG(vj) (ie; vi, vj and vk belong to a subgraph of G

which is track connected ),

2. vi ∈ TG(vj) and vk /∈ TG({vi, vj}).

Proof. Let G be a graph with V (G) = (v1, v2, ..., vn). Let Bijk be the 3 × 3

principal submatrix of TM(G) formed by the rows and columns corresponding

to vi, vj, vk.

Case (i) vi, vj ∈ TG(vk) and vi ∈ TG(vj).

Then Bijk is a 3× 3 matrix with all entries 1. Therefore det(Bijk) = 0.

Case (ii) vi ∈ TG(vj) and vk /∈ TG(vi, vj).

Then,

Bijk =


1 1 0

1 1 0

0 0 1

.

Therefore det(Bijk) = 0.

Case (iii) vi, vj ∈ TG(vk) and vi /∈ TG(vj).

Then,

Bijk =


1 0 1

0 1 1

1 1 1

.

Therefore det(Bijk) = −1 6= 0.

case (iv)vi /∈ TG(vj), vj /∈ TG(vk) and vk /∈ TG(vi).

Then,

Bijk =


1 0 0

0 1 0

0 0 1

.
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Therefore det(Bijk) = 1 6= 0.

Hence the theorem.

In any graph G, a vertex in a component of G cannot be traced by a vertex

in another component of G. Hence we have the following theorem;

Theorem 7.1.13. A graph G is the disjoint union of 2 maximal track connected

components G1 and G2 if and only if the matrix TM(G) is partitioned as

TM(G) =


TM(G1)

... 0

. . . . . . . . .

0
... TM(G2)


where TM(G1) and TM(G2)are the cycle tracking matrix of G1 and G2 respec-

tively.

Corollary 7.1.14. Let G be a transitively tracked graph with maximal track

connected component 〈V1〉, 〈V2〉, ..., 〈Vk〉 induced by vertex subsets V1, V2, ..., Vk

with cardinality m1,m2, ...,mk respectively. Then TM(G) takes the block form

Jm1 0 0 . . . 0

0 Jm2 0 . . . 0

0 0 Jm3 . . . 0

...
...

...
...

...

0 0 0 . . . Jmk


,

where Jp, p = m1,m2, ...,mk are p× p matrices with all entries 1.

Corollary 7.1.15. For transitively tracked graph G, τc(G) = rank of TM(G).

Theorem 7.1.16. Let G be a graph with V (G) = (v1, v2, ..., vn). Then TM(G)2ij,

the (i, j)th entry of TM(G)2 is equal to |TG(vi) ∩ TG(vj)|.
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Proof. Let G be the graph with V (G) = (v1, v2, ..., vn). Suppose

TM(G) =



a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
...

...
...

...
...

an1 an2 an3 . . . ann


.

Then aij = aji and (TM(G))2ij = ai1a1j + ai2a2j + ... + ainanj. And for

k = 1, 2, ..., n, aikakj = 1 if and only if aik = 1 and akj = 1. That is if and

only if vk ∈ TG(vi) and vk ∈ TG(vj). That is if and only if vk ∈ TG(vi) ∩ TG(vj).

Therefore |TG(vi) ∩ TG(vj)| = ai1a1j + ai2a2j + ...+ ainanj = (TM(G)2)ij.

Corollary 7.1.17. Let G be a graph with V (G) = (v1, v2, ..., vn). Then |TG(vi)| =

(TM(G)2)ii.

For almost all graph G, TM(G) is singular, the only exception is forest.

Theorem 7.1.18. For a graph G, determinant of TM(G) is non zero if and

only if G is a forest. Moreover determinant of TM(G) = 1 for any forest G.

Proof. Let G be a graph. Suppose G is not a forest. In this case there exist

two vertices vi and vj such that TG(vi) = TG(vj). Without loss of generality

assume that v1 ∈ TG(v2), v1 has minimum tracing number among all vertices of

G and v2 has minimum tracing number among all vertices in TG(v1) \ {v1}. If

TG(v1) 6= TG(v2), then v2 is a cut vertex. Then there exist at least two vertices in

TG(v2) which are not in TG(v1). Let v3 have minimum tracing number among all

such vertices and let v4 be a vertex having minimum tracing number among all

vertices in TG(v2) ∩ TG(v3) \ {v2, v3}. If TG(v3) 6= TG(v4), then v4 is a cut vertex

and we can repeat the process again. As G is a finite graph this process cannot
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be repeated indefinitely. The process will be terminated at, say kth stage only if

there exists one vertex v2k−1 with minimum tracing number among the vertices

TG(v2k−2) \ TG(v2k−3) and another vertex v2k with minimum tracing number

among all vertices in TG(v2k−2) ∩ TG(v2k−1) \ {v2k−2, v2k−1}, such that v2k−1 and

v2k have the same cycle tracking set.

Thus if G is not a forest there exist at least two vertices v2k−1 and v2k such that

TG(v2k−1) = TG(v2k). Hence the rows in TM(G) corresponding to v2k−1 and v2k

are identical. Therefore det(TM(G)) = 0.

Conversely for a forest G, TM(G) is the n× n identity matrix. Hence

det(TM(G)) = 1.

For a graph G of order n with vertex set (v1, v2, ..., vn), TM(G) is an n × n

matrix over R. Any such matrix define a linear transformation from Rn → Rn

which carries ei to (a1, a2, ..., an) for i = 1, 2, ..., n where {e1, e2, ..., en} is the

standard ordered basis for Rn and aj =

 1 if vi ∈ TG(vj)

0 otherwise
.

Let us denote this transformation again by TM(G). Then TM(G)ei = (a1, a2, ..., an).

Definition 7.1.19. Let G be a graph with V (G) = (v1, v2, ..., vn). Let S be any

subset of V (G). The characteristic function of S χS : V → {0, 1} defined by

χS(vi) =

 1 if vi ∈ S

0 otherwise
. The vector (χS(v1), χS(v2), ..., χS(vn)) is called the

trace vector corresponding to S.

Theorem 7.1.20. Let G be a graph with V (G) = (v1, v2, ..., vn). Let S be

any subset of G and t be the trace vector corresponding to S. Then ith entry

of TM(G)t = |TG(vi) ∩ S|.
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Proof. Let S be any subset of G. Let t be the trace vector corresponding to S.

Then TM(G)t = χS(v1)TM(G)e1 + χS(v2)TM(G)e2 + ...+ χS(vn)TM(G)en.

The ith entry of TM(G)ej = 1 if and only if vi ∈ TG(vj), and χS(vj) = 1 if and

only if vj ∈ S. So the ith entry of χS(vj)TM(G)ej = 1 if and only if vi ∈ TG(vj)

and vj ∈ S. That is if and only if vj ∈ TG(vi) and vj ∈ S. That is if and only if

vj ∈ TG(vi) ∩ S. That is χS(vj)TM(G)ej = 1 if and only if vj ∈ TG(vi) ∩ S. So

ith entry of TM(G)t = |TG(vi) ∩ S|.

Theorem 7.1.21. Let G be a graph with V (G) = (v1, v2, ..., vn). Let S be a cycle

tracking set of G and t be the trace vector corresponding to S. Then TM(G)t ≥ 1.

That is all the entries of TM(G)t are greater than or equal to 1.

Proof. Let S be a cycle tracking set of G. Let t be a trace vector corresponding

to S. For any vertex vi in V there exist a vertex vj ∈ S such that vj ∈ TG(vi).

So ith entry of TM(G)t = |TG(vi) ∩ S| ≥ 1.

Corollary 7.1.22. Let G be a graph with V (G) = (v1, v2, ..., vn). Let S be any

cycle tracking set of G and t be the trace vector corresponding to S. Then the ith

entry of TM(G)t is 1 if and only if vi is in private trace of some vertex in S.

The following theorem gives the necessary and sufficient condition for a subset

S of τc(G) vertices in a graph G to be a τc − set of G.

Theorem 7.1.23. Let G be a graph with V (G) = (v1, v2, ..., vn). Let τc(G) = k

and let S be a subset of V with k vertices. Let t = (t1, t2, ..., tn) be the trace vector

corresponding to S. Then TM(G)t ≥ 1 if and only if S is a τc− set.

Proof. Suppose TM(G)t ≥ 1. Then each entry of TM(G)t ≥ 1. That is

TM(G)i1t1+TM(G)i2t2+...+TM(G)intn ≥ 1 for every i. Therefore TM(G)iktk =
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1 for every i and for some k . That is TM(G)ik = 1 and tk = 1 for every i and

for some k. This is possible only if vi ∈ TG(vk) and vk ∈ S for every i and for

some k. Which implies that S is a cycle tracking set. Since τc(G) = k, S is a

τc− set.

The converse follows from Theorem 7.1.21.

7.2 τc -Spectrum of a Graph

For a graph G of order n, TM(G) is a real symmetric matrix of order n, with

trace n. Since the rows and columns of TM(G) correspond to the labeling of the

vertices of G, we are interested in those properties of TM(G) which are invariant

under permutations of rows and columns of TM(G). One such a property is the

spectral property of TM(G).

Since TM(G) is a real symmetric matrix, TM(G) has real eigenvalues and

eigenvectors corresponding to distinct eigenvalues are orthonormal[5]. Every

eigenvalue λ of TM(G) is a root of the polynomial det(λI−TM(G)). In fact the

multiplicity of λ as a root of the polynomial det(λI − TM(G)) is the dimension

of the space of eigenvectors corresponding to λ.

Definition 7.2.1. The spectrum of the cycle tracking matrix TM(G) of the

graph G is called the τc − spectrum of G. If the distinct eigenvalues of TM(G)

are λ1 > λ2 > ... > λp with multiplicities m(λ1),m(λ2), ...,m(λp) respectively,

then we write
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τc − Spec(G) =

 λ1 λ2
... λp

m(λ1) m(λ2)
... m(λp)

 .

For example, for the complete graph Kn, TM(Kn) is the n× n matrix with

all entries 1 and τc − Spec(Kn) =

 n 0

1 n− 1

.

The eigenvalues of TM(G) are called τc−eigen values of G and the character-

istic polynomial det(λI−TM(G)) = 0 is called the τc−charecteristic polynomial

of G and is denoted by χτc(G, λ).

Theorem 7.2.2. Let G be a graph of order n. If the τc− characteristic polynomial

χτc(G, λ) of G is,

χτc(G, λ) = λn + a1λ
n−1 + a2λ

n−2 + ...+ an−1λ+ an

then the coefficient of τc−charecteristic polynomial satisfies the following prop-

erties,

1. a1 = trace of TM(G) = n.

2. a2 = |A|, where A = {{u, v} ⊂ V : u /∈ TG(v)}.

3. a3 = |D|−|C|, where C = {{u, v, w} ⊂ V :no two of them lie on a common

cycle} and D = {{u, v, w} ⊂ V : u,w ∈ TG(v) but w /∈ TG(u)}.

Proof. Let G be a graph of order n. Let χτc(G, λ) = λn + a1λ
n−1 + a2λ

n−2 + ...+

an−1λ+ an.

For each i, i = 1, 2, ..., n, the number (−1)iai is the sum of those principal minors
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of TM(G) which have i rows and columns. Thus we have the following results.

1) Since diagonal elements of TM(G) are all one, a1 = n.

2) A principal minor with two rows and columns, must be of the form

∣∣∣∣∣∣∣
1 1

1 1

∣∣∣∣∣∣∣
or

∣∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣∣. The determinant is non zero only if it is of the form

∣∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣∣. There

is one such minor for each pair of vertices u, v of G such that u /∈ TG(v), and

each has determinant 1. Hence a2 = |A|, where A = {{u, v} : u /∈ TG(v)}.

3) There are four possibilities for 3 × 3 principal minors. They are

∣∣∣∣∣∣∣∣∣∣
1 1 1

1 1 1

1 1 1

∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣
1 1 0

1 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣
1 1 0

1 1 1

0 1 1

∣∣∣∣∣∣∣∣∣∣
and

∣∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
. Of these the last two have non zero

determinant -1 and 1 respectively. The principal minor

∣∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
corresponds

to three mutually non tracing vertices in G and the principal minor

∣∣∣∣∣∣∣∣∣∣
1 1 0

1 1 1

0 1 1

∣∣∣∣∣∣∣∣∣∣
corresponds to the triple of vertices u, v, w such that u,w ∈ TG(v) and u /∈ TG(w).

Thus (−1)3a3 = |C|−|D|, where C = {{u, v, w} :no two of them lie on a common

cycle} and D = {{u, v, w} : u,w ∈ TG(v) but w /∈ TG(u)}.

Corollary 7.2.3. Let G be a graph of order n and let the n eigenvalues of

TM(G), counting multiplicities be λ1, λ2, ..., λn. Then
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1. λ1 + λ2 + ...+ λn = n and

2. λ1λ2...λn = det(TM(G)).

Proposition 7.2.4. Let G be a graph. Zero is an eigenvalue of TM(G) if and

only if G is not a forest.

Theorem 7.2.5. Let G be a graph with V (G) = (v1, v2, ..., vn). If G has a trace

free vertex then 1 is an eigenvalue of TM(G).

Proof. Let G be a graph with V (G) = (v1, v2, ..., vn) and let v1 be a trace free

vertex of G. Then

TM(G) =

 1 0

0 A

 ,
where A = TM(G−v1). Let u = [1, 0, ..., 0]T , the transpose of [1, 0, ..., 0]T . Then

TM(G)u = u. Hence 1 is an eigenvalue of TM(G).

Theorem 7.2.6. Let G be a graph with V (G) = (v1, v2, ..., vn). If G is a track

connected graph of order n, then the eigenvalues of TM(G) are n and 0 with

respective multiplicities 1 and n− 1.

Proof. If G is a track connected graph of order n, then the cycle tracking matrix

of G is the n × n matrix with all entries 1. It is a symmetric matrix of rank

1. Hence it has only one non zero eigenvalue, which is the trace of TM(G).

Thus the eigenvalues of TM(G) aren and 0 with respective multiplicities 1 and

n− 1.

Theorem 7.2.7. Let G be a transitively tracked graph with maximal track con-

nected components G1, G2, ..., Gk with their respective vertex set V1, V2, ..., Vk of
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cardinality m1,m2, ...,mk. Then m1,m2, ...,mk are the non zero eigenvalues of

G.

Proof. Let G be a graph which satisfies the hypothesis of the theorem. Let

ui = [0, ..., 0, 1, 1, ..., 1, 0, ..., 0]T , where

the jth entry ui(j) of ui is,

ui(j) =

 1 for m1 +m2 + ...+mi−1 < j ≤ m1 +m2 + ...+mi

0 otherwise.

By Corollory 7.1.14

TM(G) =



Jm1 0 0 . . . 0

0 Jm2 0 . . . 0

0 0 Jm3 . . . 0

...
...

...
...

...

0 0 0 . . . Jmk


,

where Jp(p = m1,m2, ...,mk) is a p× p matrix with all entries 1.

Then TM(G)ui = miui, so that mi is an eigenvalue of TM(G). Thus

m1,m2, ...,mk are eigenvalues of TM(G).

Corollary 7.2.8. Let G be a transitively tracked graph with maximal track con-

nected components G1, G2, ..., Gk with their respective vertex set V1, V2, ..., Vk of

cardinality m1,m2, ...,mk. Then the eigenvalues are precisely m1,m2, ...,mk each

with multiplicity 1 and 0 with multiplicity n− k.

Proof. Let G be a graph as stated in the corollary. By Theorem 7.2.7, m1,m2, ...,mk

are eigenvalues of TM(G). Since rank of TM(G) = k, there are only k non zero
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eigenvalues for TM(G). Therefore the eigenvalue are precisely m1,m2, ...,mk

with multiplicity 1 and 0 with multiplicity n− k.

Theorem 7.2.9. For any eigenvalue λ of TM(G) we have |λ| ≤ T , the maximal

tracing number.

Proof. Suppose that TM(G)u = λu, u 6= 0 and let uj denote an entry of u which

is largest in absolute value. Note that λuj = (TM(G)u)j =
∑′ ui, where the

summation is over those i for which vi ∈ TG(vj). Therefore |λ||uj| = |
∑′ ui| ≤

|TG(vj)||uj|. Hence |λ| ≤ |TG(uj)| ≤ T .

Theorem 7.2.10. Let G be a graph with V (G) = (v1, v2, ..., vn). Let λ be an

eigenvalue of TM(G) and x = (x1, x2, ..., xn)T , the transpose of (x1, x2, ..., xn)

be an eigenvector corresponding to it. Then λxi =
∑

vj∈TG(vi)

xj, for every i =

1, 2, ..., n.

7.3 Automorphism and Cycle Tracking Matrix

of a Graph

Theorem 7.3.1. If v is a vertex of the graph G and g an automorphism of G

then |TG(g(v))| = |TG(v)|.

Proof. Let T (v) denote the subgraph of G induced by TG(v) in G. Then g(T (v))

is isomorphic to T (v), the maximal track connected subgraph of G containing v.

Hence g(T (v)) is the maximal track connected subgraph of G containing g(v).

So |TG(v)| = |TG(g(v))|.
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7.3. Automorphism and Cycle Tracking Matrix of a Graph

This shows that the automorphism group of a graph permutes the vertices of

equal tracking number among themselves.

The converse of Theorem 7.3.1 is not true.

G

v1

v2

v4

v3

v5

v6

v8

v7

Figure 7.2: Graph G.

In the graph G, in figure 7.3 consider the mapping g : V −→ V defined by

g(v1) = v8, g(v2) = v6, g(v3) = v7, g(v4) = v5, g(v5) = v4, g(v6) = v2,

g(v7) = v3, g(v8) = v1.

Then |TG(g(v))| = |TG(v)| for every v ∈ V , but g is not an automorphism.

Corollary 7.3.2. If G is a connected transitive graph, then |TG(v)| = |TG(u)|

for every pair of vertices u, v ∈ V (G).

Lemma 7.3.3 follows from the fact that, an automorphism of a graph is a

permutation of the vertex set that preserves the graph structure.

Lemma 7.3.3. Let G be a graph and let u, v ∈ V (G). Then u ∈ TG(v) if and

only if g(u) ∈ TG(g(v)) for any g ∈ Aut(G), where Aut(G) denotes the class of

all automorphism of G.
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Theorem 7.3.4. Cycle tracking sets of a graph G are preserved under automor-

phisms. ie; If {v1, v2, ..., vk} is a cycle tracking set of G and g an automorphism

of G then {g(v1), g(v2), ..., g(vk)} is a cycle tracking set of G.

Proof. Let G be any graph. Let S = {v1, v2, ..., vk} be a cycle tracking set of G

and g an automorphism of G. Let S∗ = {g(v1), g(v2), ..., g(vk)}.

Let u ∈ G. Then there exists a v ∈ V (G) such that u = g(v). Since S is a cycle

tracking set of G, there exist vi ∈ S such that v ∈ TG(vi). By Lemma 7.3.3,

u ∈ TG(g(vi)). That is for every u ∈ V (G) there exists a vertex g(vi) ∈ S∗ such

that u ∈ TG(g(vi)). Therefore {g(v1), g(v2), ..., g(vk)} is a cycle tracking set of

G.

Let G be an ordered graph with V (G) = (v1, v2, ..., vn) and let g be an au-

tomorphism of G. Then the permutation matrix P representing g is defined by,

P = (pij), where pij =

 1 if vi = g(vj)

0 otherwise.

Theorem 7.3.5. Let TM(G) be the cycle tracking matrix of a graph G and let

g be an automorphism of G. Then P (TM(G)) = (TM(G))P , where P is the

permutation matrix representing g.

Proof. Let TM(G) = (aij) and let vh = g(vi) and vk = g(vj). Then

(P (TM(G)))hj =
∑
l

phlalj = aij

and (TM(G)P )hj =
∑
l

ahlplj = ahk.

So (P (TM(G)))hj = ((TM(G))P )hj if and only if aij = ahk. That is if and

only if vi ∈ TG(vj)⇐⇒ vh ∈ TG(vk). Which is true by Theorem 7.3.3.

Since h and j are arbitrary P (TM(G)) = (TM(G))P .
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Corollary 7.3.6. If G1 and G2 are isomorphic graphs then there exists a permu-

tation matrix P such that TM(G1) = P T (TM(G2))P , where P T is the transpose

of P.

Theorem 7.3.7. Let λ be a simple eigenvalue of TM(G), and let x be an eigen-

vector corresponding to it. Let g be an automorphism of G and P be the permu-

tation matrix representing g. Then Px = ±x.

Proof. Let λ be a simple eigenvalue of TM(G), and let x be a corresponding

eigenvector. Since TM(G) is real and symmetric λ is real and x has real co-

ordinates. Let g is an automorphism of G and P be the permutation matrix

representing g. Then (TM(G))Px = P (TM(G))x = Pλx = λPx. Hence Px

is an eigenvector of TM(G) corresponding to λ. Since λ is a simple eigenvalue

of TM(G), x and Px are linearly dependent. Therefore Px = αx for some real

number α. The theorem now follows from the fact that P s = 1 for some positive

integer s.
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Chapter 8

Total Cycle Tracking Sets of a

Graph

This chapter introduces total cycle tracking sets of a graph, which has many

applications. For example, distribution of service centers in a locality can be

analyzed through graph theory by considering the service centers as the vertices,

reachability between them as the edges, and by defining a cycle tracking set

for it. A τc− set of vertices can reach all other vertices in the locality in two

distinct ways. Therefore selection of a cycle tracking set increases the efficiency

of a service providing network. And in the case of total cycle tracking set every

service center is reachable from at least one service center different from it in two

distinct ways. So to increase the efficiency the concept of total cycle tracking set

is more relevant.
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8.1 Total Cycle Tracking Set

Definition 8.1.1. A set S ⊂ V is a total cycle tracking set if every vertex v in

V is traced by some vertex of S \{v}. In this case we say that S totally tracks V.

Definition 8.1.2. A total cycle tracking set is a minimal total cycle tracking set

if no proper subset S ′ of S is a total cycle tracking set.

Definition 8.1.3. The total cycle tracking number τt(G) of a graph G is the

minimum cardinality of a minimal total cycle tracking set of G.

Definition 8.1.4. The upper total cycle tracking number Tt(G) of a graph G is

the maximum cardinality of a minimal total cycle tracking set of G.

Definition 8.1.5. A total cycle tracking set with minimum cardinality is called

a τt − set of G.

G

v1

v2

v3

v4

v5

v6

v7

v8

v9

v11

v10

Figure 8.1: τt(G) = 2.

The sets {v1, v3, v5, v7, v8, v9} and {v4, v6} are two minimal total cycle tracking

sets of the graph G in figure 8.1 and for this graph τt(G) = 2 and Tt(G) = 6.

Moreover {v4, v6} is a τt − set of G.

Note that these parameters are defined only for graphs without trace free
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vertices. So throughout this chapter, by a graph G, we mean the graph without

trace free vertices.

Let S ⊂ V and let v be a vertex in S. The S-private trace of v denoted by

pt[v, S] is defined by pt[v, S] = {w ∈ V : TG(w) ∩ S = {v}}(Definition 2.1.17),

while its open S-private trace is defined as pt(v, S) = {w ∈ V : (TG(w) ∩ S) \

{w}) = {v}}. The sets pt[v, S] \ S and pt(v, S) \ S are one and the same. The

S-external private trace ept[v, S] of v is defined by ept[v, S] = pt[v, S] \ S. It is

also denoted by ept(v, S). The S-internal private trace ipt[v, S] of v is defined by

ipt[v, S] = pt[v, S]∩S and its open S-internal private trace ipt(v, S) is defined by

ipt(v, S) = pt(v, S)∩S. We define an S-external private trace of v to be a vertex

in ept(v, S) and an S-internal private trace of v to be a vertex in ipt(v, S).

In figure 8.1, consider the subset S = {v4, v6} of V. Then pt[v4, S] = {v1, v2, v3},

pt(v4, S) = {v1, v2, v3, v6}, ept[v4, S] = {v1, v2, v3}, ipt[v4, S] = ∅ and ipt(v4, S) =

{v6}.

Theorem 8.1.6. A total cycle tracking set S ⊂ V of vertices in a graph G is a

minimal total cycle tracking set if and only if every vertex v in S has at least one

element in S-private trace (that is for every v ∈ S, pt[v, S] 6= ∅) or there exists

a vertex u ∈ S such that u ∈ pt[v, S \ {u}].

Proof. Assume that S is a minimal total cycle tracking set of G. Then for every

vertex u ∈ S, S \ {u} is not a total cycle tracking set. This means that some

vertex v ∈ V \ {u} is not traced by any vertex in S \ {u, v}. If v is not traced by

S \ {u, v} but traced by S \ {v}, then the vertex v is traced only by u in S \ {v}.

That is TG(v) ∩ S \ {v} = {u}.

Conversely suppose that S is a total cycle tracking set and for each vertex u ∈ S,
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pt[u, S] 6= ∅. We show that S is minimal total cycle tracking set. Suppose that

S is not a minimal total cycle tracking set. Then there exists a vertex u ∈ S

such that S \ {u} is a total cycle tracking set. Then every vertex in V \ S ∪ {u}

is traced by at least one vertex in S \ {u}, that is pt[u, S] = ∅, which contradicts

the assumption.

Theorem 8.1.7. Let S be a total cycle tracking set in a graph G. Then, S is a

minimal total cycle tracking set in G if and only if |ept(v, S)| ≥ 1 or |ipn(v, S)| ≥

1 for each v ∈ S.

Proof. Let S be a minimal total cycle tracking set in G and let v ∈ S. If

|ept(v, S)| = |ipt(v, S)| = 0, then every vertex x ∈ V (G) must be traced by a

vertex in S \ {v}, that is TG(x) ∩ (S \ {v}) 6= ∅. Hence, S \ {v} is a total cycle

tracking set of G, contradicting the minimality of S. Therefore, |epn(v, S)| ≥ 1

or |ipn(v, S)| ≥ 1 for each v ∈ S. Conversely, if |epn(v, S)| ≥ 1 or |ipn(v, S)| ≥ 1

for each v ∈ S, then S \ {v} could not be a total cycle tracking set.

Definition 8.1.8. For a subset S of vertices in a graph G, the open trace bound-

ary OTB(S) of S is defined as OTB(S) = {v ∈ V : |(TG(v) ∩ S) \ {v}| = 1};

that is, OTB(S) is the set of vertices traced by exactly one vertex in S other than

itself.

Theorem 8.1.9. A total cycle tracking set S in a graph G is a minimal total

cycle tracking set if and only if for every v ∈ S there exists a vertex u ∈ OTB(S)

such that v ∈ TG(u) \ {u}.

Proof. Suppose first that for every v ∈ S there exists a vertex u ∈ OTB(S) such

that v ∈ TG(u) \ {u}. Then, TG(u)∩S \ {u} = {v}. If u /∈ S, then u ∈ ept(v, S).
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If u ∈ S, then u ∈ ipt(v, S). Hence, ept(v, S) 6= ∅ or ipt(v, S) 6= ∅ for every

vertex v ∈ S. Thus, by Theorem 8.1.7, S is a minimal total cycle tracking set.

To prove the necessary part, suppose that S is a minimal total cycle tracking set.

Let v ∈ S. By Theorem 8.1.7, ept(v, S) 6= ∅ or ipt(v, S) 6= ∅. If ept(v, S) 6= ∅,

then there exists a vertex u ∈ V \ S such that TG(u) ∩ S = {v}. Therefore

u ∈ OTB(S). On the other hand, if ipt(v, S) 6= ∅, then there exists a vertex

u ∈ S \{v} such that (TG(u)∩S)\{u} = {v}, and so u ∈ OTB(S). So for every

v ∈ S there exists a vertex u ∈ OTB(S) such that v ∈ TG(u) \ {u}.

Theorem 8.1.10. Let S be a τt−set of a graph G. Then there exist at most two

vertices u, v in S with TG(v) = TG(u).

Proof. Let S be a τt− set of the graph G. If possible let u, v, w ∈ S be such that

TG(u) = TG(v) = TG(w). If that is the case then S \ {u} is a total cycle tracking

set. It will lead to a contradiction.

Let y ∈ V . Since S is a τt− set, there exists a vertex x ∈ S \ {y} such that

y ∈ TG(x).

Case(1): x = u and y 6= v.

In this case y ∈ TG(u) = TG(v). That is there exists a vertex named by v such

that v ∈ (S \ {u}) \ {y} such that y ∈ TG(v).

Case(2): x = u and y = v.

Then y ∈ TG(x) = TG(u) = TG(w). That is there exists a vertex, namely

w ∈ (S \ {u}) \ {y} such that y ∈ TG(w).

Case(3): x 6= u.

Then x serves the purpose, because y ∈ S

Hence in all the cases the vertex y ∈ V is traced by some vertex of (S\{u})\{y}.
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As y is arbitrary, every vertex y in V is traced by (S \ {u}) \ {y}.

Theorem 8.1.11. Let G be a transitively tracked graph and S be any minimal

total cycle tracking set of G. Then for every vertex v ∈ S there exists a unique

vertex u ∈ S \ {v} such that u ∈ TG(v).

Proof. Let G be a transitively tracked graph and S be any minimal total cycle

tracking set of G. Let v ∈ S. Since S is a total cycle tracking set there exists a

vertex u ∈ S \ {v} such that v ∈ TG(u).

To prove the uniqueness, assume that there exist two vertices u,w ∈ S \{v} such

that u,w ∈ TG(v). Since G is transitively tracked TG(v) = TG(u) = TG(w), a

contradiction to Theorem 8.1.10.

Theorem 8.1.12. Let G be a transitively tracked graph and S be any minimal

total cycle tracking set of G. Then OTB(S) = S.

Proof. Let G be a transitively tracked graph and S be any minimal total cycle

tracking set of G. Let v ∈ S. Then by Theorem 8.1.11 there exists a unique

vertex u ∈ S \ {v} such that u ∈ TG(v). That is |(TG(v) ∩ S) \ {v}| = 1. So

v ∈ OTB(S). Therefore S ⊂ OTB(S).

Let w ∈ V \ S. Since S is a total cycle tracking set there exists a vertex v ∈ S

such that w ∈ TG(v) and a vertex u ∈ S \ {v} such that v ∈ TG(u). Since

G is transitively tracked w ∈ TG(u). So |(TG(w) ∩ S) \ {w}| ≥ 2. Therefore

w /∈ OTB(S). That is V \ S ∩OTB(S) = ∅. Thus OTB(S) = S.
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8.2 Bounds for Total Cycle Tracking Number

of a Graph

In this section we examine the bounds for total cycle tracking number τt(G)

of a graph G of order n. For any graph G, every total cycle tracking set is a cycle

tracking set. Therefore τc(G) ≤ τt(G).

Theorem 8.2.1. Let G be a graph of order n. Then τt(G) ≤ 2n
3

.

Proof. Let G be a graph . For every vertex v in G there exists a non trivial cycle

containing v . So |TG(v)| ≥ 3 for every v ∈ V and we need only at most 2 vertices

to form a total cycle tracking set of G from each cycle. Hence τt(G) ≤ 2n
3

.

If G is C3, τt(G) = 2n
3

. So the bound in Theorem 8.2.1 is sharp.

If G is a graph with a cycle C of length 4 and if u, v are two vertices in C, by

theorem 8.2.1 τt(〈V \TG(u, v〉) ≤ 2(n−4)
3

. Then a minimal total cycle tracking set

of TG(V \TG(u, v)) together with the vertices u and v form a total cycle tracking

set of G, τt(G) ≤ 2(n−4)
3

+ 2 < 2n
3

. Therefore if τt(G) takes the value 2n
3

then

n ≡ 0(mod3) and every cycle in G is a triangle. These triangles may or may not

be connected by cut edges.

We can summarize this result as follows;

Theorem 8.2.2. Let G be a graph of order n. Then τt(G) = 2n
3

if and only if G

is a graph having n/3 disjoint triangles and the edges other than the edges of the

triangles are all cut edges.

Theorem 8.2.3. For any graph G, τt(G) ≤ 2τc(G).
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G

Figure 8.2: graph G.

Proof. Let G be any graph and S = {u1, u2, ..., um} be a τ -set of G. Choose vi

such that vi ∈ TG(ui) for 1 ≤ i ≤ m. Then S∗ = {u1, u2, ..., um, v1, v2, ..., vn}

forms a total cycle tracking set of G. Hence τt(G) ≤ 2τc(G).

Thus we come across the conclusion: for any graph G, τc(G) ≤ τt(G) ≤

2τc(G). Both of these bounds are sharp. The upper bound is attained if G is

either track connected graph or track connected floral graph and the lower bound

is attained for the graph G in figure 8.2.

Proposition 8.2.4. If G is any graph with τc(G) = 1 then τt(G) = 2 so that

τt(G) = 2τc(G).

This result can be generalized as follows.

Theorem 8.2.5. If G is a transitively tracked graph then τt(G) = 2τc(G).

Proof. Let G be a transitively tracked graph. Then V (G) can be partitioned

into V1, V2, ..., Vk such that for each i the graph induced by Vi is a maximal track

connected subgraph of G and τc(G) = k. Let if possible τt(G) < 2k. Let S be a

τt − set. Then there exist vertices u, v, w ∈ S such that u, v ∈ TG(w). Therefore
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TG(v) = TG(u) = TG(w) (since G is transitively tracked), a contradiction to the

theorem 8.1.10.

The converse of Theorem 8.2.5 need not be true. Though floral graphs are

not transitively tracked, τt(G) = 2 = 2τc(G).

Theorem 8.2.6. For a graph G of order n, d n
T
e ≤ τt(G) ≤ n− T + 2.

Proof. Let S be a τt− set of G. As each vertex can trace at most T vertices,

τc(G) ≥ d n
T
e.

For the upper bound let v be a vertex of maximum trace T. Then v traces TG(v)

and each vertex in V \ TG(v) traces itself and at least two other vertices. By

Theorem 2.1.13 two maximal track connected subgraphs of a graph share at most

one vertex. So each vertex in V \ TG(v) traces at least one vertex in V \ TG(v)

other than itself. Let u ∈ TG(v) \ {v}. Then V \ TG(v) ∪ {u, v} is a total cycle

tracking set of cardinality n− T + 2. So τt(G) ≤ n− T + 2.

The left inequality is sharp for C5 ◦K2 and the right inequality is sharp for

all track connected graph.

Theorem 8.2.7. Let G be a graph of order n. If T < n, then τt(G) ≤ n−T + 1.

Proof. Let G be a graph of order n. Let v be a vertex of G of maximum trace

T . Suppose T < n. Then there exists a vertex u ∈ V \ TG(v). Since G is trace

free, there exist vertices x1, x2 ∈ V such that u, x1 and x2 belong to same cycle.

Case(i) x1 ∈ TG(v).

Since two maximal track connected subgraphs of a graph share at most one

vertex, x2 /∈ TG(v). So V \ (TG(v)∪ {u})∪ {v, x1} forms a a total cycle tracking
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set of cardinality n− T + 1.

Case(ii) x2 ∈ TG(v).

As in case(i) V \ (TG(v) ∪ {u}) ∪ {v, x2} forms a a total cycle tracking set of

cardinality n− T + 1.

Case(iii) x1, x2 /∈ TG(v).

Let w ∈ TG(v). Then V \ (TG(v)∪{x1, x2})∪{v, w} forms a total cycle tracking

set of cardinality n− T .

Corollary 8.2.8. Let G be a graph of order n. Then τt(G) = n − T + 2 if and

only if G is track connected or track connected floral graph.

Proof. From Theorem 8.2.7, τt(G) = n − T + 2 implies T = n. That is there is

a vertex v ∈ V such that TG(v) = V . Therefore G is track connected or track

connected floral graph.

Conversely suppose that G is track connected or track connected floral graph. If

G is track connected then T = n and any subset of V consisting of two vertices

form a total cycle tracking set and τt(G) = 2 = n − T + 2. If G is a track

connected floral graph, then the central vertex v together with any other vertex

form a minimal total cycle tracking set and the result follows.
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Chapter 9

Cycle Tracking Function of a

Graph

For a subset S of V (G) = (v1, v2, ..., vn) the characteristic function χS :

V (G) → {0, 1} defines a unique n × 1 column vector XS = [xi], where xi =

χS(vi) for 1 ≤ i ≤ n. A subset S of V (G) is a cycle tracking set if and only if

|TG(vi) ∩ S| ≥ 1 for 1 ≤ i ≤ n or TM(G).XS ≥ 1.

Note that the computation of the cycle tracking number τc(G) of a graph

is a constrained optimization problem, which is in fact an integer programming

problem given below.

τc(G) = min
n∑
i=1

xi

subject to TM(G).X ≥ 1

with X ∈ {0, 1}n×1.

The linear programming version of cycle tracking problem, motivated us to in-

troduce a new concept called a cycle tracking function which is in fact a gener-
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alization of the existing concept of dominating function [20].

9.1 Cycle Tracking Function of a Graph

Definition 9.1.1. For a graph G = (V,E) and for a real-valued function f :

V → R, the weight w(f) of f is defined as w(f) =
∑
v∈V

f(v), and for S ⊂ V we

define f(S) =
∑
v∈S

f(v).

Remark 9.1.2. Note that w(f) = f(V ).

To define a cycle tracking function we must require, for any vertex v ∈ V (G),

the sum over the trace of v of the values of f in TG(v) must be at least one.

Definition 9.1.3. Let G be a graph and f : V → [0, 1] be a function which

assigns to each vertex of G a value in the interval [0, 1]. Then f is said to be a

cycle tracking function of G if for every v ∈ V , f(TG(v)) ≥ 1.

Definition 9.1.4. A cycle tracking function f of a graph G is said to be a

minimal cycle tracking function if there does not exist a cycle tracking function

g : V → [0, 1] such that f 6= g and for which g(v) ≤ f(v) for every v ∈ V .

Example 9.1.5. For any v ∈ V (G) of the graph G, define a function g : V (G)→

[0, 1] by g(v) = 1
t
, where t is the minimum tracing number of G. Then g(TG(v)) =

|TG(v)|1
t
≥ t

t
≥ 1. So g(TG(v)) ≥ 1 for all v ∈ V (G) and g is a cycle tracking

function.

Proposition 9.1.6. Let S be a cycle tracking set of a graph G. Then the char-

acteristic function χS is a cycle tracking function.
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Proof. Let S be a cycle tracking set of a graph G. Then the characteristic function

χS is a function from V (G) to [0, 1]. Let v ∈ V (G). Then there exist at least

one vertex u ∈ S such that u ∈ TG(v). Therefore

χS(TG(v)) =
∑

u∈TG(v)

χS(u) =
∑

u∈TG(v)∩S

χS(u) ≥ 1.

Hence χS is a cycle tracking function.

Theorem 9.1.7. Let f and g be two cycle tracking functions of a graph G. Then

all convex linear combinations of f and g are cycle tracking functions of G.

Proof. Let α ∈ R be such that 0 ≤ α ≤ 1 and let h = αf + (1 − α)g. Then for

v ∈ V (G),

∑
u∈TG(v)

h(u) =
∑

u∈TG(v)

[αf + (1− α)g](u)

= α
∑

u∈TG(v)

f(u) + (1− α)
∑

u∈TG(v)

g(u)

≥ α + (1− α)

= 1

Therefore, h is a cycle tracking function of G. Hence the theorem.

Theorem 9.1.8. Let S be a minimal cycle tracking set of a graph G. Then the

characteristic function χS of S is a minimal cycle tracking function.

Proof. Let S be a minimal cycle tracking set of G. Then by Proposition 9.1.6

χS is a cycle tracking function. Suppose χS is not minimal. Then there exists

a cycle tracking function f : V (G) → [0, 1] such that f(v) < χS(v) for every

v ∈ V . Therefore f(v) = 0 for every v /∈ S and there exist a u ∈ S such that

f(u) < 1. Since S is a minimal cycle tracking set of G by theorem 2.1.18, u has
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at least one private trace. Let w ∈ V (G) be a private trace of u with respect to

S. Therefore TG(w) ∩ S = {u}. Hence

f(TG(w)) =
∑

x∈TG(w)

f(x) =
∑

x∈TG(w)∩S

f(x) = f(u) < 1,

a contradiction.

Theorem 9.1.9. A cycle tracking function f is minimal if and only if for every

vertex v such that f(v) > 0, there exists a vertex u ∈ TG(v) for which f(TG(u)) =

1.

Proof. Let G be a graph and let f be a cycle tracking function. Suppose that f

is a minimal cycle tracking function in G. If possible let there be a vertex v ∈ V

such that f(v) > 0 and for every vertex u in the trace of v, f(TG(u)) > 1. Let

s = min{f(TG(u)) : u ∈ TG(v)} and let

g(u) =


f(u) if u 6= v

1 + f(v)− s if u = v and 1 + f(v)− s ≥ 0

0 if u = v and 1 + f(v)− s < 0

.

Then g : V (G)→ [0, 1] and g(v) < f(v). Let w ∈ V (G).

g(TG(w)) =


f(TG(w)) if v /∈ TG(w)

f(TG(w)) + 1− s if v ∈ TG(w) and 1 + f(v)− s ≥ 0

f(TG(w))− f(v) if v ∈ TG(w) and 1 + f(v)− s < 0

.

Since f(TG(w)) ≥ s for every w ∈ TG(v), g(TG(w)) ≥ 1. Since w is arbitrary

g(TG(w)) ≥ 1 for every w ∈ V (G). Hence g is a cycle tracking function. So f is

not a minimal cycle tracking function, a contradiction.

Conversely suppose that for every vertex v such that f(v) > 0, there exists a
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vertex u ∈ TG(v) for which f(TG(u)) = 1. If possible, suppose that there is a

cycle tracking function g : V → [0, 1], f 6= g, such that g(v) ≤ f(v) for every

v ∈ V . Then there exists a vertex w ∈ V (G) such that g(w) < f(w). By our

hypothesis there exists a vertex x ∈ TG(w) for which f(TG(x)) = 1. Since g is a

cycle tracking function

1 ≤ g(TG(x)) =
∑

y∈TG(x)

g(y) ≤
∑

y∈TG(x)

f(y) = f(TG(x)) = 1.

So f(y) = g(y) for every vertex y ∈ TG(x). In particular g(w) = f(w), a

contradiction.

Theorem 9.1.10. Let G be a graph. Then

(i) the cycle tracking number τc(G) ≥ min{w(f) : f : V (G) → [0, 1] is a

minimal cycle tracking function on G}.

(ii) the upper cycle tracking number T (G) ≤ max{w(f) : f : V (G) → [0, 1] is

a minimal cycle tracking function on G}.

Proof. (i) As the characteristic function χS of a τc−set of a graph G is a minimal

cycle tracking function, we have τc(G) = w(χS) ≥ min{w(f) : f is a minimal

cycle tracking function on G}.

(ii) Let M = max{w(f) : f is a minimal tracking function on G}. Let

G be a graph and let S be a minimal cycle tracking set of G with cardinality

Tc(G). Then the characteristic function χS is a minimal cycle tracking function

by Theorem 9.1.8 and w(χS) = Tc(G). Therefore Tc(G) ≤M .

If we restrict the co-domain of cycle tracking function to the set {0,1} then

we have:
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Theorem 9.1.11. Let G be a graph.Then

(i) the cycle tracking number τc(G) of a graph G is equal to min{w(f) : f :

V (G)→ {0, 1} is a minimal cycle tracking function on G}.

(ii) the upper cycle tracking number Tc(G) of a graph G is given by, T (G) =

max{w(f) : f : V (G)→ {0, 1} is a minimal dominating function on G}.

Proof. (i) Let m = min{w(f) :f : V (G)→ {0, 1} is a minimal tracking function

on G}. Let G be a graph and let S be a τc− set of G. Then by Theorem 9.1.8

the characteristic function χS is a minimal cycle tracking function from V (G) to

{0, 1} and w(χS) = τc(G). Therefore τc(G) ≥ m.

If possible let g : V (G)→ {0, 1} be a cycle tracking function such that τc(G) >

w(g). Let S = {v ∈ V : g(v) = 1}. Then |S| = w(g) < τc(G).

Since g is a cycle tracking function for every vertex u ∈ V , g(TG(u)) ≥ 1. That

is
∑

w∈TG(u)

g(w) ≥ 1. That is g(w) = 1 for at least one vertex w ∈ TG(u). That is

S is a cycle tracking set of G of cardinality less than τc(G), a contradiction.

(ii) Let M = max{w(f) : f : V (G)→ {0, 1} is a minimal tracking function

on G}. Let G be a graph and let S be a minimal cycle tracking set of G with

cardinality Tc(G). Then the characteristic function is a minimal cycle tracking

function from V (G) to {0, 1} by Theorem 9.1.8 and w(χS) = Tc(G). Therefore

Tc(G) ≤M . To prove the reverse inequality if possible let h : V (G)→ {0, 1} be

a cycle tracking function such that Tc(G) < w(h). Let S = {v ∈ V : h(v) = 1}.

Since h is a cycle tracking function for every vertex u ∈ V , h(TG(u)) ≥ 1. That

is
∑

w∈TG(u)

g(w) ≥ 1. That is g(w) = 1 for at least one vertex w ∈ TG(u). That

is S is a cycle tracking set of G. Since Tc(G) < w(h), S is not a minimal cycle
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tracking set. So there exist a cycle tracking set S∗ ⊂ S. Then the characteristic

function χS∗ is a cycle tracking function from V (G) to {0, 1} and χS∗(v) ≤ h(v)

for every v ∈ V , a contradiction to the minimality of h.

Hence the theorem.

Theorem 9.1.12. Let G be a graph with V (G) = (v1, v2, ..., vn) and

let f : V (G) → [0, 1]. Let X = [f(v1), f(v2), ..., f(vn)]T , the transpose

of [f(v1), f(v2), ..., f(vn)]. Then f is a cycle tracking function if and only if

TM(G).X ≥ 1 for the tracking matrix TM(G) of G.

Proof. Let G be a graph with V (G) = (v1, v2, ..., vn) and let f : V (G) → [0, 1]

be a function. Let X = [f(v1), f(v2), ..., f(vn)]T .

Suppose TM(G).X ≥ 1. Then the ith entry of TM(G).X ≥ 1, for every i. That

is TM(G)i1f(v1)+TM(G)i2f(v2)+ ...+TM(G)inf(vn) ≥ 1 for for every i. That

is
∑

y∈TG(vi)

f(TG(vi)) ≥ 1 for every i. That is f is a cycle tracking function.

Conversely, suppose that f is a cycle tracking function of G. Then∑
y∈TG(vi)

f(TG(vi)) ≥ 1 for every i. Therefore 1 ≤
∑

y∈TG(vi)

f(TG(vi)) ≤ TM(G)i1f(v1)+

TM(G)i2f(v2) + ... + TM(G)inf(vn) = TM(G).X for every i. That is ith entry

of TM(G).X ≥ 1 for every i. Hence TM(G).X ≥ 1.

Corollary 9.1.13. Let G be a graph . Then τc(G) = min{w(f) : f : V (G) →

{0, 1} and TM(G).[f(v1), f(v2), ..., f(vn)]T ≥ 1}.

Definition 9.1.14. The fractional cycle tracking number of a graph G, τf (G) is

defined by τf (G) = min{w(g) : g is a minimal cycle tracking function of G}.

Definition 9.1.15. The upper fractional cycle tracking number of a graph G,

Tf (G) is defined by Tf (G) = max{w(g) : g is a minimal cycle tracking function
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of G}.

Definition 9.1.16. A cycle tracking function f : V (G) → [0, 1] is called a τf

function if w(f) = τf (G).

Remark 9.1.17. As every minimal cycle tracking set induces a minimal cycle

tracking function, τf (G) ≤ τc(G) ≤ Tc(G) ≤ Tf (G).

Proposition 9.1.18. For any graph G, 1 ≤ τf (G) ≤ n.

The left inequality is sharp for track connected graphs and track connected

floral graphs, and the right inequality is sharp for forests.

Theorem 9.1.19. For a graph G, τf (G) = 1 if and only if G is a track connected

graph or a track connected floral graph.

Proof. Let v be any vertex in G. Let τf (G) = 1 and g be a τf function. Let

Q = {v ∈ V (G) : g(v) > 0}. Then w(g) =
∑
u∈Q

g(u) =
∑

u∈V (G)

g(u) = 1. Since

g(TG(v)) ≥ 1 for all v ∈ V (G), Q ⊂ TG(v) for all v ∈ V (G). Hence, if u ∈ Q,

then u ∈ TG(v) for all v ∈ V (G). That is TG(u) = n. Therefore G is a track

connected graph or a track connected floral graph.

Converse follow from Theorem 2.1.23 and from Remark 9.1.17.

Corollary 9.1.20. Let G be a track connected graph or a track connected floral

graph and v ∈ V (G). Then g(v) = 0 for any τf function g for which |TG(v)| < n.

Theorem 9.1.21. For a graph G of order n, τf (G) ≤ n
t
.

Proof. Let G be a graph. Define a function g′ : V (G) → [0, 1] by g′(v) = 1
t

for

every v ∈ V (G), where t is the minimum tracing number of G. For v ∈ V . Then
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g′(TG(v)) =
∑

u∈TG(v)

g(u) =
∑

u∈TG(v)

1
t
≥ t1

t
= 1. So g′ is a cycle tracking function

and w(g) = n
t
. Therefore τf (G) ≤ n

t
.

Theorem 9.1.22. For a positive integer k, let fi : V (G) → [0, 1] be a cycle

tracking function of G, where 1 ≤ i ≤ k. Then the function f : V (G) → [0, 1]

defined by f(v) =
1

k

k∑
i=1

fi(v) for any v ∈ V is also a cycle tracking function of

G.

Proof. For v ∈ V (G), f(TG(v)) =
∑

u∈TG(v)

f(u) =
∑

u∈TG(v)

1
k

k∑
i=1

fi(u)

= 1
k

k∑
i=1

∑
u∈TG(v)

fi(u) ≥ 1
k

k∑
i=1

1 = 1. Therefore f is a cycle tracking function of

G.

Theorem 9.1.23. For a transitively tracked graph G, τc(G) = τf (G).

Proof. Let G be a transitively tracked graph. Then its vertex set can be parti-

tioned into V1, V2, ..., Vk of cardinality m1,m2, ...,mk respectively such that the

graph 〈Vi〉 induced by each Vi is maximal track connected subgraph of G and

τc(G) = k. Moreover for every vertex v ∈ Vi, TG(v) = Vi . So for every cycle

tracking function f , f(Vi) ≥ 1 for every i = 1, 2, ..., k and w(f) =
k∑
i=1

f(Vi) ≥ k.

Hence τf (G) ≥ k = τc(G). By Remark 9.1.17 τc(G) ≥ τf (G). Hence τc(G) =

τf (G).

9.2 Trace Sigma Algebra

Let G be a graph with vertex set V and edge set E. The vertex set V(G) can

be made into a measure space by taking power set as sigma algebra and counting
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measure as the measure. As the sigma algebra is the power set of V(G), every

function f : V (G) → [0, 1] is measurable and as µ is the counting measure,∫
TG(v)

f dµ =
∑

u∈TG(v)

f(u) = f(TG(v)). So cycle tracking function can be redefined

as the function f : V (G)→ [0, 1] such that
∫

TG(v)

f dµ ≥ 1 for all v ∈ V (G).

But this case is a least interesting one because in this case each subset of

same cardinality has same weight. This will not be the case in general. In the

general case different subsets may have different weight though they are of the

same cardinality and some subsets may be neglected. Which sets are included,

which are excluded, etc will depend on the choice of the sigma algebra under

consideration. As the integrals over TG(v), for each v ∈ V are to be evaluated,

all TG(v) should be in that sigma algebra. So the most appropriate sigma algebra

is the sigma algebra generated by TG(v)s.

Definition 9.2.1. Let G = (V (G), E(G)) be a graph. The sigma algebra gener-

ated by G = {TG(v) : v ∈ V (G)} on V (G) is called the trace sigma algebra of G

and it is denoted by TG (or simply T if there is no confusion) and G is called the

generating set of T .

Throughout this section, by a graph G, we mean the graph with its trace

sigma algebra T on the vertex set V (G) and a subset of V (G) is measurable

means it is measurable with respect to the trace sigma algebra.

Definition 9.2.2. Let G be a graph. For v ∈ V (G), we define MG
v (or simply Mv

if there is no confusion) to be the intersection of all measurable sets containing

v. Hence it is the smallest measurable set containing v.

Example 9.2.3. For the graph G, in Figure 9.1 the trace sigma algebra T is
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G

v1

v2

v4

v5

v6v3

Figure 9.1: Graph G.

given by {∅, {v1, v2, v3, v4}, {v4, v5, v6}, {v5, v6}, {v1, v2, v3}, {v1, v2, v3, v5, v6},

{v4}, V }. Mv1 = Mv2 = Mv3 = {v1, v2, v3},Mv4 = {v4} and Mv5 = Mv6 =

{v5, v6}.

Since Mv is the smallest measurable set containing v, we have the following

results.

Proposition 9.2.4. Let G be a graph and u, v ∈ V (G). Then

1. u ∈Mv if and only if v ∈Mu.

2. u ∈Mv implies Mu = Mv.

3. Mu

⋂
Mv 6= ∅ implies Mu = Mv.

4. {Mu : u ∈ V (G)} forms a partition of V (G) and each measurable set can

be written as a disjoint union of M ′
vs.

Proposition 9.2.5. Let G be a graph with vertex set V(G) and let v ∈ V (G) be

such that it is either a trace free vertex or the graph induced by TG(v) is a track

connected floral graph. Then Mv = {v}.
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Proof. If v be a trace free vertex of G, then TG(v) = {v}. Hence Mu = {u}.

If the graph induced by TG(v) is a track connected floral graph. Then TG(v)

contains at least two vertices u and w such that TG(u) 6= TG(w) and TG(u) ∩

TG(w) = {v}. Hence Mv = {v}.

The converse of Proposition is not true. That is Mv = {v} does not imply, v

is a trace free vertex or the graph induced by TG(v) is a track connected floral

graph.

G

v

Figure 9.2: Graph G.

Consider the graph G in Figure 9.2. For the vertex v, Mv = {v}. But v is

neither a trace free vertex nor the graph induced by TG(v) is a track connected

floral graph.

For a track connected graph G, TG(v) = V (G) for every vertex v ∈ V (G) and

vice versa. Therefore;

Proposition 9.2.6. A graph G is track connected if and only if Mv = V (G), for

all v ∈ V (G).

Proposition 9.2.7. Let G be a graph with trace sigma algebra T . Then every

member of T can be expressed as the union of sets, each of which can be expressed

142



9.2. Trace Sigma Algebra

as the intersection of members of H, where H = {TG(v) : v ∈ V (G)}
⋃
{TG(v)c :

v ∈ V (G)}.

Proof. Let J consists of all subsets of V (G) which can be expressed as unions

of members of G, where G is the family of all intersections of members of H.

Then J contains {TG(v) : v ∈ V (G)} and it is contained in T . Also J itself is

a sigma algebra. As T is generated by {TG(v) : v ∈ V (G)}, J = T . Hence the

proposition.

Theorem 9.2.8. Let G be a graph. Then for v1, v2 ∈ V (G), Mv1 = Mv2 if and

only if TG(v1) = TG(v2).

Proof. Assume that Mv1 = Mv2 for some v1, v2 ∈ V (G). Suppose TG(v1) 6=

TG(v2). Without loss of generality, assume that there exists u ∈ V (G) such

that u ∈ TG(v1) but u /∈ TG(v2). Therefore, TG(u)
⋂
TG(v1) is a measurable set

containing v1 but not v2. This implies that v2 /∈Mv1 .

Conversely, assume that TG(v1) = TG(v2). Then for any v ∈ V (G) either

v1, v2 ∈ TG(v) or v1, v2 ∈ TG(v)c. Therefore, by Proposition 9.2.7, for every

measurable set B, either v1, v2 ∈ B or v1, v2 ∈ Bc. Therefore Mv1 = Mv2 .

If u and v are two vertices of a graph G then u ∈Mv if and only if Mu = Mv.

That is if and only if TG(u) = TG(v). Thus we have:

Corollary 9.2.9. Let G be a graph and v ∈ V (G). Then Mv = {u ∈ V (G) :

TG(u) = TG(v)}.

Corollary 9.2.10. Let G be a graph of order n and v ∈ V (G) be such that

|TG(v)| = n. Then Mv = {v} or Mv = V (G).
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Proof. Let G be a graph of order n and v ∈ V (G) be such that |TG(v)| = n.

That is if and only if G is a track connected graph or a track connected floral

graph. If G is a track connected graph, then TG(u) = V (G) for every u ∈ V . So

Mv = {u ∈ V (G) : TG(u) = TG(v)} = V (G).

If G is a track connected floral graph there exists one and only one vertex v with

tracing number n. So Mv = {u ∈ V (G) : TG(u) = TG(v)} = {v}.

Theorem 9.2.11. Let G be a graph with vertex set V (G). For each k ∈ N with

1 ≤ k ≤ T , the collection Sk := {v ∈ V (G) : |TG(v)| = k} is a measurable set.

Proof. LetG be a graph with vertex set V (G). Let k ∈ N be such that 1 ≤ k ≤ T .

If Sk = ∅, then it is measurable. So suppose that Sk 6= ∅. Let v ∈ Sk. Since

Mv = {u ∈ V (G) : TG(u) = TG(v)}, |TG(u)| = |TG(v)| for all u ∈ Mv. This

implies that Mv ⊆ Sk for all v ∈ Sk. Hence Sk =
⋃
v∈Sk

Mv. Therefore Sk is

measurable.

Corollary 9.2.12 follows from Theorem 9.2.11 and from the fact that the

complement of a measurable set is measurable.

Corollary 9.2.12. Let G be a graph with vertex set V (G). For each k ∈ N with

1 ≤ k ≤ T , the collection {v ∈ V (G) : |TG(v)| 6= k} is measurable.

Here after a function defined on the vertex set of the given graph is measurable

means which is measurable with respect to the trace sigma algebra of that graph.

Theorem 9.2.13. Let G be a graph and f : V (G) −→ [0, 1] be a function. Then

f is measurable if and only if f is constant on Mv for all v ∈ V (G).
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Proof. Let v ∈ V (G) and f(v) = c. Suppose f(u) = d for some u ∈Mv. Without

loss of generality assume that c < d. Then f−1(−∞, d) is measurable and v ∈

f−1(−∞, d). Therefore v belongs to the measurable set f−1(−∞, d)
⋂
Mv, which

is a proper subset of Mv. This contradicts the fact that Mv is the smallest

measurable set containing v.

Conversely assume that f is constant on Mv for all v ∈ V (G). Let U be

an open subset of [0,1]. Suppose that f(V (G))
⋂
U = {k1, k2, ..., km}. Then

f−1(U) = f−1({k1})
⋃
f−1({k2})

⋃
...
⋃
f−1({km}). Let 1 ≤ i ≤ m. As f is

constant on each Mv, f
−1({ki}) =

⋃
f(vj)=ki

Mvj . Hence f−1(ki) is measurable for

all 1 ≤ i ≤ m. Therefore f−1(U) is measurable. Hence f is measurable.

As a consequence of Corollary 9.2.9 and Theorem 9.2.13, we have:

Corollary 9.2.14. Let G be a graph with u1, u2 ∈ V (G). If f : V (G) −→ [0, 1]

is measurable and TG(u1) = TG(u2) then f(u1) = f(u2).

9.3 Measurable Cycle Tracking Function of a

Graph

Once we have a sigma algebra, next best thing that we can think of is that of

measurable functions related to this sigma algebra. We call measurable functions

related to the trace sigma algebra satisfying a particular condition as measurable

cycle tracking function.

Definition 9.3.1. Let G be a graph with vertex set V (G) and let µ be a measure

on G. A function f : V (G)→ [0, 1] is called a measurable cycle tracking function
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of G if the following conditions hold:

(i) f is measurable

(ii)

∫
TG(v)

f dµ ≥ 1 for all v ∈ V (G).

Remark 9.3.2. Let f be a measurable cycle tracking function of a graph G. Then

for all v ∈ V (G), f(TG(v)) > 0 and µ(TG(v)) > 0, where f(TG(v)) =
∑

u∈TG(v)

f(u).

Theorem 9.3.3. Let f and g be two measurable cycle tracking functions of a

graph G. Then all convex linear combinations of f and g are measurable cycle

tracking functions of G.

Proof. Let α ∈ R be such that 0 ≤ α ≤ 1 and let h = αf + (1 − α)g. Since f

and g are measurable functions, h is also measurable. Then for v ∈ V (G),

∫
TG(v)

h dµ =

∫
TG(v)

[αf + (1− α)g] dµ

=

∫
TG(v)

αf dµ+

∫
TG(v)

(1− α)g dµ

= α

∫
TG(v)

f dµ+ (1− α)

∫
TG(v)

g dµ

≥ α + (1− α)

= 1

Therefore, h is a measurable cycle tracking function ofG. Hence the theorem.

Definition 9.3.4. Let G be a graph with vertex set V (G). A measurable cycle

tracking function f of G is said to be minimal if there does not exist a measurable

cycle tracking function g of G such that g ≤ f a.e and g < f on some set of

positive measure.
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9.3. Measurable Cycle Tracking Function of a Graph

Theorem 9.3.5 establishes a necessary and sufficient condition for a measur-

able cycle tracking function to be minimal.

Theorem 9.3.5. Let G be a graph with vertex set V (G). A measurable cycle

tracking function f of G is minimal if and only if for every vertex v ∈ V (G) with

µ(Mv) > 0 and f > 0 on Mv there exists a vertex u ∈ TG(v) with

∫
TG(u)

f dµ = 1.

Proof. Let f be a minimal measurable cycle tracking function of G. Suppose

there exists a vertex v ∈ V (G) with µ(Mv) > 0 and f > 0 on Mv such that∫
TG(u)

f dµ > 1 for all u ∈ TG(v).

Let m = min {
∫

TG(u)\Mv

f dµ : u ∈ TG(v)}.

We consider the cases m ≥ 1 and m < 1 separately.

Case 1. m ≥ 1.

Let g = f − fχMv , where χMv denotes the characteristic function of Mv. That

is for w ∈ V (G), g(w) =

 0 if w ∈Mv

f(w) if w /∈Mv

. Since the product and difference

of measurable functions are measurable, the function g is measurable. Also

g(w) ≤ f(w) for every w ∈ V (G) and g < f on Mv.

For u ∈ V (G) with u ∈ TG(v),∫
TG(u)

g dµ =

∫
Mv

g dµ+

∫
TG(u)\Mv

g dµ

=

∫
TG(u)\Mv

g dµ

=

∫
TG(u)\Mv

f dµ

≥ m

≥ 1.
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Also, for u ∈ V (G) with u /∈ TG(v),∫
TG(u)

g dµ =

∫
TG(u)

f dµ

≥ 1.

Therefore, g is also a measurable cycle tracking function, a contradiction.

Case 2. m < 1.

For u ∈ TG(v),

∫
TG(u)

f dµ > 1 by the assumption.

Suppose f = c on Mv. Then,∫
TG(u)

f dµ =

∫
Mv

f dµ+

∫
TG(u)\Mv

f dµ

= cµ(Mv) +

∫
TG(u)\Mv

f dµ.

Since m < 1, for at least one vertex u ∈ TG(v),

∫
TG(u)\Mv

f dµ < 1.

For such a u,

cµ(Mv) > 1−
∫

TG(u)\Mv

f dµ

> 0.

This implies,

c >

1−
∫

TG(u)\Mv

f dµ

µ(Mv)
= Ru, say.

Let U = {u ∈ TG(v) :
∫

TG(u)\Mv

f dµ < 1}. Since V (G) is finite, U is also finite.

Now choose d so that c > d > Ru for all u ∈ U .

Let h = f − (f − d)χMv .
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That is for w ∈ V (G),

h(w) =

 d if w ∈Mv

f(w) if w /∈Mv.

The function h is measurable, since it is the difference of the measurable

functions f and (f − d)χMv . Also h(w) ≤ f(w) for every w ∈ V (G) and h < f

on Mv.

Let u ∈ U , ∫
TG(u)

h dµ =

∫
TG(u)\Mv

h dµ+

∫
Mv

h dµ

=

∫
TG(u)\Mv

f dµ+ dµ(Mv)

>

∫
TG(u)\Mv

fdµ+Ruµ(Mv)

=

∫
TG(u)\Mv

f dµ +

1−
∫

TG(u)\Mv

f dµ


= 1.

Let u /∈ U .

If u /∈ TG(v),

∫
TG(u)

h dµ =

∫
TG(u)

f dµ

≥ 1.

If u ∈ TG(v),

∫
TG(u)\Mv

f dµ ≥ 1.
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Therefore, ∫
TG(u)

h dµ =

∫
TG(u)\Mv

h dµ+

∫
Mv

h dµ

=

∫
TG(u)\Mv

f dµ+ dµ(Mv)

> 1.

Therefore, h is a measurable cycle tracking function with h(w) ≤ f(w) for every

w ∈ V (G) and h < f on Mv, a contradiction.

Conversely, let f be a measurable cycle tracking function of G such that

for every vertex v with µ(Mv) > 0 and f > 0 on Mv, there exists a vertex

u ∈ TG(v) such that

∫
TG(u)

f dµ = 1. Suppose f is not minimal. Then there exists

a measurable cycle tracking function l such that l ≤ f a.e and l < f on a set

of positive measure. So there exists a v ∈ V (G) with µ(Mv) > 0 and l < f on

Mv. This implies f(v) > 0. Now by assumption, there exists a u ∈ V (G) with

u ∈ TG(v) and

∫
TG(u)

f dµ = 1.

Therefore,

1 ≤
∫
TG(u)

l dµ

=

∫
TG(u)\Mv

l dµ+

∫
Mv

l dµ

<

∫
TG(u)\Mv

f dµ+

∫
Mv

f dµ

= 1, a contradiction.

Therefore, f is a minimal measurable cycle tracking function. Hence the theorem.
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Chapter 10

Track Closure Space Generated

by a Graph

Topological structures are generalized methods for measuring similarity and

dissimilarity between objects in the universe. Given a graph G with vertex set

V, an easy way to associate a topology with due consideration to adjacency of

vertices in G is to generate a topology with the doubletons formed by adjacent

pairs of vertices as subbasis. Another way to generate a topology is by taking

open neighborhoods of the vertices as subbasis. We can also generate a topology

by taking closed neighborhoods of vertices as subbasis. Yet another way is to

consider subsets A of V(G) satisfying the property that x, y ∈ A if and only if

x ∈ TG(y) and generate a topology with these subsets as subbasis.

Recall the relation ’∼’ on the vertex set V of a graph G defined in section

2.2 : For every pair of vertices u, v ∈ V , we say that u is related to v (u ∼ v)

if u ∈ TG(v). Then ’∼’ is a reflexive and symmetric relation. We define and
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investigate a new closure operator with respect to the relation ’∼’ on the vertex

set V of the graph G. In doing so, the idempotent condition, is achieved. The

topology associated with this closure operator is studied in this chapter. Minimal

neighborhood and accumulation points are also defined. We also investigate some

properties of this topology.

10.1 Track Closure Space

Definition 10.1.1. Let G be a graph and let v ∈ V . A subset 〈v〉 is the inter-

section of all TG(x) containing v.

i.e; 〈v〉 =
⋂

x∈TG(v)

TG(x).

So we have,

x ∈ 〈u〉 ⇐⇒ x ∈
⋂

y∈TG(u)

TG(y)

⇐⇒ x ∈ TG(y) for every y ∈ TG(u).

Since v ∈ TG(x) for every x ∈ TG(v), v ∈ 〈v〉 for every vertex v in G.

Definition 10.1.2. Let G be a graph and let A be a subset of V and the mapping

tc : P (V ) −→ P (V ) defined by tc(A) = {v ∈ V : 〈v〉 ∩ A 6= ∅}.

For the graph G in figure 10.1 〈v1〉 = 〈v2〉 = 〈v4〉 = {v1, v2, v3, v4},

〈v5〉 = 〈v6〉 = {v3, v5, v6},

〈v3〉 = {v3},

〈v7〉 = {v7},

tc({v1}) = tc({v2}) = tc({v4}) = {v1, v2, v4},
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G

v1

v2

v3

v4 v5

v6
v7

Figure 10.1: Graph G.

tc({v5}) = tc({v6}) = {v5, v6},

tc({v3}) = {v1, v2, v3, v4, v5, v6},

tc({v7}) = {v7}.

Theorem 10.1.3. Let G be a graph. Then (V, tc) is a closure space.

Proof. Let G be a graph and tc is the mapping as defined in definition 10.1.2.

Then,

1. tc(∅) = ∅.

2. Let v ∈ V and A ⊆ V . Then,

v ∈ A =⇒ v ∈ 〈v〉 ∩ A, since v ∈ 〈v〉

=⇒ v ∈ tc(A).

ie; A ⊂ tc(A).

3. Let v ∈ V and A,B ⊆ V . Then,

v ∈ A ∪B ⇐⇒ (〈v〉 ∩ A) ∪ (〈v〉 ∩B) 6= ∅

⇐⇒ (〈v〉 ∩ A) 6= ∅ or (〈v〉 ∩B) 6= ∅

⇐⇒ v ∈ tc(A) or v ∈ tc(B)

⇐⇒ v ∈ tc(A) ∪ tc(B).
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ie; tc(A ∪B) = tc(A) ∪ tc(B).

We call the operator, tc : P (V ) −→ P (V ) the track closure operator asso-

ciated with G. That is, track closure operator of a graph G is a mapping from

P (V ) to P (V ) which associates with each subset A of V a subset tc(A) = {v ∈

V : 〈v〉 ∩ A 6= ∅} of V.

Definition 10.1.4. The closure space (V (G), tc) is called the track closure space

associated with the graph G.

The closed sets [3] of the graph G in figure 10.1 are ∅, {v1, v2, v4}, {v5, v6},

{v1, v2, v3, v4, v5, v6}, {v1, v2, v4, v7}, {v1, v2, v4, v5, v6}, {v5, v6, v7},

{v7}, {v1, v2, v4, v5, v6, v7}, and {v1, v2, v3, v4, v5, v6, v7}.

Lemma 10.1.5. Let G be a graph and let u, v ∈ V (G). If u ∈ 〈v〉 then 〈u〉 ⊂ 〈v〉.

Proof. Let G be a graph and let u, v ∈ V (G). Suppose u ∈ 〈v〉. Then u ∈ TG(y)

for every y ∈ TG(v). Let x ∈ 〈u〉. Then x ∈ TG(z) for every z ∈ TG(u). Hence

x ∈ TG(y) for every y ∈ TG(v). Therefore x ∈ 〈v〉.

Proposition 10.1.6. For A ⊂ B, tc(A) ⊆ tc(B).

Proof.

v ∈ tc(A) =⇒ 〈v〉 ∩ A 6= ∅

=⇒ 〈v〉 ∩B 6= ∅

=⇒ v ∈ tc(B).

ie; tc(A) ⊆ tc(B).

154



10.1. Track Closure Space

Theorem 10.1.7. For any graph G, (V (G), tc) is idempotent, ie; tc(tc(A)) =

tc(A) for all A ⊂ V .

Proof. It is enough to show that tc(tc(A) ⊆ tc(A) for all A ⊂ V .

Let u ∈ tc(tc(A)). Then since tc(tc(A) = {v ∈ V : 〈v〉 ∩ tc(A) 6= ∅}, 〈u〉 ∩

tc(A) 6= ∅. Then there exists a vertex x such that x ∈ 〈u〉 ∩ tc(A). That is

x ∈ 〈u〉and x ∈ tc(A). That is x ∈ 〈u〉 and 〈x〉 ∩ A 6= ∅.

Since x ∈ 〈u〉, 〈x〉 ⊆ 〈u〉(by Lemma 10.1.5) and hence 〈u〉∩A 6= ∅. So u ∈ tc(A).

Therefore tc(tc(A) ⊆ tc(A).

Theorem 10.1.8 follows from the fact that a closure space (X, cl) is a topo-

logical space iff cl(cl(A)) = cl(A) for all A ⊆ X[3].

Theorem 10.1.8. Every track closure space (V (G), tc) is topological space.

If T is the topology on X and the class T c = {Ac : A ∈ T }. is also the

topology on X, then T c is the dual of T [3].

Definition 10.1.9. The dual T Gt of the topology of the topological space (V (G), tc)

is called track topology of G.

The track topology of the graph G in figure 10.1 is T Gt = {∅, {v1, v2, v3, v4},

{v3, v5, v6}, {v1, v2, v3, v4, v5, v6}, {v7}, {v1, v2, v3, v4, v7},

{v3, v5, v6, v7}, {v3}}, {v3, v7}, {v1, v2, v3, v4, v5, v6, v7}}.

As track topology of G is a topology on V, we can talk about interiors and

closures of subsets of V with respect to this topology. We call them respectively

by track interior and track closure.
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Proposition 10.1.10. Let G be a graph and T Gt its track topology. If A ⊂ V

then int(A) = {v ∈ V : 〈v〉 ⊆ A}.

Proof. Since in any topological space X and for any subset A of X, int(A) =

(cl(Ac))c,

int(A) = (tc(Ac))c

= ({v ∈ V : 〈v〉 ∩ Ac 6= ∅})c

= {v ∈ V : 〈v〉 ⊆ A}.

Definition 10.1.11. If G and A are as in the Proposition 10.1.10 then, a point

v ∈ A is an interior point of A if 〈v〉 ⊆ A.

Remark 10.1.12. From definition 10.1.11 it follows that 〈v〉 is the minimal

neighborhood of v for all v ∈ V .

So for a graph G, {〈v〉 : v ∈ V } forms a basis for T Gt . Since |V (G)| is finite,

T Gt is Alexandroff [3].

Proposition 10.1.13. For each subset A of a track closure space (V (G), tc),

tc(A) =
⋃
x∈A

tc(x).

Proposition 10.1.14. If 〈v〉 = {v}, then {v} is open.

Theorem 10.1.15 and 10.1.16 follows from Theorem 2.2.5 and 2.2.8

Theorem 10.1.15. Let G be a transitively tracked graph. Then 〈v〉 = TG(v),

the maximal track connected component of G containing v.

Theorem 10.1.16. Let G be a transitively tracked graph with the track topology

T Gt . Then the maximal track connected components of G forms a basis for T Gt .
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Corollary 10.1.17. Let G be a transitively tracked graph. Then every cycle

tracking set is dense in track topological space T Gt .

Theorem 10.1.18. The track topology T Gt of the graph G is T◦ [3] if and only

if G is a tree.

Proof. If G is a tree then T Gt is the discrete topology on V(G), which is clearly

T◦.

If G is not a tree then there exists two vertices u, v ∈ V such that TG(v) = TG(u).

Hence 〈v〉 = 〈u〉. Since 〈v〉 is a minimal neighborhood of v for all v ∈ V , the

topological space T Gt is not T◦.

Remark 10.1.19. For any tree T, (V (T ), T Tt ) is a metrizable space[3].

A topological space is R0 [3] if, for every two distinct points x and y of the

space, either cl(x) = cl(y) or cl(x) ∩ cl(y) = ∅.

Theorem 10.1.20. The topological space (V, T Gt ) of a graph G is R0 if and only

if G is transitively tracked.

Proof. Let G be a transitively tracked graph. Then tc(v) = TG(v), the maximal

track connected component of G containing v. Since TG(v) = TG(u) or TG(v) ∩

TG(u) = ∅ for every pair of vertices u, v ∈ V , T Gt is R0.

If G is not transitively tracked, then there exists a vertex v ∈ V such that the

graph induced by TG(v) is a track connected floral graph. Hence there exist

vertices u,w ∈ TG(v) such that TG(v) ∩ TG(w) = {v}. Hence T Gt is not R0.

Definition 10.1.21. A point v ∈ V is called an accumulation point of a subset

A of the vertex set V of the graph G iff (〈v〉 − {v}) ∩ A 6= ∅. The set of all
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accumulation points of A is denoted by A′,

i.e; A′ = {v ∈ V : (〈v〉 − {v}) ∩ A 6= ∅}.

Proposition 10.1.22. tc(A) = A ∪ A′.

Proof. Let v ∈ tc(A). Then 〈v〉 ∩ A 6= ∅.

If v ∈ A then v ∈ A ∪ A′.

If v /∈ A then 〈v〉 − {v} ∩ A 6= ∅. That is v ∈ A′. Hence tc(A) ⊆ A ∪ A′.

Conversely, assume that v ∈ A∪A′ . We have either v ∈ A or v ∈ A′ \A. In the

first case v ∈ tc(A) and in the latter case (〈v〉 − {v}) ∩A 6= ∅, thus 〈v〉 ∩A 6= ∅,

hence v ∈ tc(A). Hence A ∪ A′ ⊆ tc(A).

Theorem 10.1.23. Let G be a transitively tracked graph. Then TG(v) ∈ T Gt .

Proof. It is enough to show that tc(TG(v)c) = TG(v)c. And

u ∈ TG(v)c =⇒ u /∈ TG(v)

=⇒ TG(u) ∩ TG(v) = ∅

=⇒ TG(u) ⊂ TG(v)c

=⇒ 〈u〉 ⊂ TG(v)c

=⇒ 〈u〉 ∩ TG(v)c 6= ∅

=⇒ u ∈ tc(TG(v)c).

The reverse inclusion is trivial.

Corollary 10.1.24. Let G be a transitively tracked graph and A ⊂ V . Then

A ∈ T Gt if and only if A =
⋃
v∈A

TG(v).

Corollary 10.1.25. If G is transitively tracked, then T Gt is the dual of itself.
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Some of the open problems that were thought about and where further re-

search may be possible to enrich the theory of cycle tracking sets are discussed

below;

1. Designing of an algorithm for finding τc − set of a given graph.

2. Determination of the family of all τc − set of a given graph G.

3. Determination of the family of all minimal cycle tracking set of a graph G.

4. Determination of the family of all τc− set of a graph G containing a vertex

v.

5. Characterization of the graphs having unique τc− set.

6. Characterization of the vertices of a graph G which belongs to some τc−set

of G.

7. Characterization of the vertices of a graph G which belongs to no τc − set

of G.

8. Characterization of the cycle tracking sets S of a graph G, which has the

property |TG(v) ∩ S| = 1 for every v ∈ V .
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9. Given a psitive integer k ≥ 3, characterize graphs G for which |TG(v)| ≥ k,

for every v ∈ V (G).

10. Determination of the energy of cycle tracking matrix of a graph.

11. Determination of the the maximum integer k such that vertex set of a

graph can be partitioned into k pairwise disjoint cycle tracking sets.

12. Determination of the the maximum number of edges that can be removed

from the given graph G without changing cycle tracking number.
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the London Mathematical Society, 32 : 277-308. Available on-line at: Mo-

cavo.com

[31] Rudin W., Real and Complex analysis, Mc. Graw Hill, NewYork, 1966.

[32] Sankari1 G., Lavanya S., Odd-even gracefull labelling of Umbrella and Tad-

pole graphsInternational Journal of Pure and Applied Mathematics, Volume

114 No. 6 2017, 139 - 143.

[33] Vaidya S.K. and Lekha Bijukumar, Some New Families of Mean Graphs,

Journal of Mathematics Research, 2(3),(2010), 169-176.

[34] Wataru Mayeda and Sundaram Seshu (November 1957), Topological For-

mulas for Network Functions, University of Illinois Engineering Experiment

Station Bulletin, no. 446, p. 5.

[35] West D.B., Introduction to Graph Theory, 2nd ed. Pearson Education.

[36] Xueliang Li, Yongtang Shi and Ivan Gutman, Graph Energy, Springer Sci-

ence and Business Media, LLC 2012.

164



List of Publications

Papers Published/Accepted

1. Jalsiya M.P. and Raji Pilakkat, “Mixed Circuit Domination Number” ,

International Journal of Research in Advent Technology, Vol.6, No.10, Oc-

tober 2018.

2. Jalsiya M.P. and Raji Pilakkat, “Independent and Irredundant Cycle Track-

ing Sets of a Graph : An efficient approach to electrical circuit analysis” ,

Far East Journal of Mathematical Sciences (FJMS),Volume 111, Number

2, 2019, Pages 225-238.

3. Jalsiya M.P., Raji Pilakkat, “Track closure space generated by a graph” ,

International Journal of Research and Analytical Reviews (IJRAR), E-

ISSN 2348-1269, P- ISSN 2349-5138, Volume.6, Issue 1, Page No pp.522-

527, March 2019, Available at : http://www.ijrar.org/IJRAR19J2973.pdf.

4. Jalsiya M.P. and Raji Pilakkat, “Transitively tracked graphs” , Malaya

Journal of Mathematik, Vol. S, No. 1, Pages 457-461, 2019.

165



List of Publications

5. Jalsiya M.P. and Raji Pilakkat, “Independent tracking polynomial of a

graph” , Malaya Journal of Matematik, Vol. S, No. 1, Pages 462-465,

2019.

6. Jalsiya M.P. and Raji Pilakkat, “Cycle tracking polynomial of a graph” ,

Journal of Applied Science and Computations, June 2019, Volume IV, Issue

IV, Pages 774-783.

7. Jalsiya M.P. and Raji Pilakkat, “Total Cycle Tracking Sets ” , to appear,

Far East Journal of Mathematical Sciences (FJMS).

Papers Presented

1. Presented a paper on “An efficient approach to circuit analysis through

introduction of cycle tracking sets in a graph” in the International Con-

ference on Discrete Mathematics and its Applications to Network Science

organized by department of mathematics, Birla Institute of Technology and

Science, Pilani, Goa on 7,8,9 and 10 July 2018.

2. Presented a paper on “Bounds on Total Cycle Tracking Set of a Graph” in

the International Conference on Graph Theory and its Applications - ICGTA19

organized by department of mathematics, Amrita Vishwa Vidyapeetham,

Coimbatore on 4,5 and 6 January 2019.

3. Presented a paper on “Independent cycle tracking polynomial of a graph” in

the MESMAC international conference organized by MES Mambad college

on 15,16 and 17 January 2019.

166



Index

τc−changing, 46

τc−charecteristic polynomial, 113

τc−eigen values , 113

τc−set, 21

τc−spectrum, 112

τc−stable, 46

τt−set, 122

τir− set, 81

acyclic graph, 11

adjacency matrix, 16

adjacent

vertices, 8

edges, 8

algebra, 16

armed crown, 13

automorphism, 10, 117

bipartite graph, 12

characteristic equation, 16

characteristic polynomial, 16

circumference, 11

closed neighborhood, 8

closure, 15

closure space, 155

complement of a graph, 9

complete bipartite graph, 12

complete graph, 12

components of a graph, 10

connected graph, 9

connectivity, 11

corona, 14

cut edge, 10

cut vertex, 10

cycle, 11

cycle tracking polynomial, 83

cycle trace, 20

cycle track completion number, 55

cycle tracking matrix, 101

cycle tracking function, 132

cycle tracking number, 21

cycle tracking set, 21

167



Index

degree of a vertex, 9

disconnected graph, 10

disjoint graphs, 9

dominating function, 13

dominating set, 13

domination number, 13

domination polynomial, 14

duplication, 14

edge addition, 14

edge of a graph, 7

eigenvalues, 16

end vertex, 9

finite graph, 8

firefly graph, 12

forest, 11

fractional cycle tracking number, 137

fractional dominating function, 13

friendship graph, 13

girth, 11

graph, 7

Hamiltonian graph , 9

helm graph, 12

incidence function, 7

incident matrix, 16

independent cycle tracking set , 71

independent cycletracking number, 71

independent tracking polynomial, 92

induced subgraph , 9

internally disjoint path, 11

isolated vertex, 9

isomorphic graphs, 10

join of two graphs, 14

k-connected graph, 11

length of a walk, 11

Lollipop graph, 12

loop, 8

matrix, 15

maximum tracing number, 27

maximum tracing vertex, 27

measurable cycle tracking function, 146

measurable function, 18

measurable set, 17

measurable space, 17

measure, 17

minimal cycle tracking function, 132

minimal cycle tracking set, 21

minimal dominating set, 13

168



Index

minimal measurable cycle tracking func-

tion, 147

minimal total cycle tracking set, 122

minimum tracing number, 27

minimum tracing vertex, 27

multiple edges, 8

nonsingular, 16

open neighborhood, 8

open S-internal private trace, 123

open S-private trace, 123

order of a graph, 8

parallel edges, 8

path, 10

pendant edge, 9

pendant vertex, 9

private trace, 24

private trace count, 76

private trace set, 76

S-external private trace, 123

S-external private trace , 123

S-internal private trace, 123

S-private trace , 123

shorting an edge, 15

sigma algebra, 17

simple graph, 9

singular, 16

size of a graph, 8

spanning subgraph, 9

square matrix, 16

strong edge, 52

subdivision of a graph, 15

subdivision of an edge, 15

subgraph, 9

supergaph, 9

support vertex, 9

symmetric, 16

tadpole graph, 12

total cycle tracking set, 122

total cycle tracking number, 122

trace free vertex, 20

trace independent, 70

trace independent set

maximal, 70

trace independent set , 70

trace irredundance number, 79

trace irredundant, 77

maximal , 78

trace sigma algebra, 140

trace vector, 110

169



Index

tracing number, 27

track closure operator, 155

track connected , 22

track connected floral graph, 26

track perfect, 74

track topology, 156

trail, 10

transitively tracked graph, 33

tree, 11

trivial graph, 8, 22

union of two graphs, 14

upper total cycle tracking number, 122

upper cycle tracking number, 21

upper fractional cycle tracking number,

138

upper independent cycle tracking num-

ber, 71

upper trace irredundance number, 79

vertex cut, 11

vertex of a graph, 7

vertex transitive, 10

walk, 10

weak edge, 52

web graph, 12

well track covered, 74

well tracked, 39

wheel graph, 12

170


