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ABSTRACT OF THE Ph.D THESIS

A Study On The Spectrum Of Zero Divisor Graph On The Ring Of
Integers Modulo n

Graph Theory is an important branch of Discrete Mathematics, which is a key
tool to model network systems involved in major domains of real life. Graph
Theory extends its countless applications to various walks of science like Net-
work Theory, Operational Research, Chemistry, Quantum Physics, Biology, Eco-
nomics, Artificial Intelligence, Sociology and so on. Exploring algebraic struc-
tures through graph theory has become a captivating research field over the past
three decades. Researchers have extensively studied graphs associated with al-
gebraic structures such as groups and rings, viz Cayley graphs, power graphs,
zero-divisor graphs and co-maximal graphs, etc. Such study provides intercon-
nections between Algebra and Graph Theory. The zero divisor graph Γ pRq of a
commutative ring R is the simple undirected graph with vertices non-zero zero-
divisors of R and two distinct vertices x, y are adjacent if xy � 0. This thesis
focuses on the study of different matrices associated with the zero divisor graph
on the ring of integers modulo n and explores its spectra.

Usually, the eigenvalues of a graph can be computed by finding the roots
of its characteristic polynomial. But there is no algebraic method to solve a
polynomial equation of degree greater than or equal to five. This makes the
computation of spectrum of graphs tedious. However, for a graph with large size
and complicated combinatorial structure, the determination of spectra is really
challenging. Sometimes, it becomes a convenient practice that the spectrum of
a fairly large graph can be described in terms of the spectra of smaller graphs
using some simple graph operations, like union, join, corona, edge corona etc.

The analysis of the adjacency matrix of the zero divisor graph on Zn, for
n � p2q2, p2q, pk, k ¡ 1, where p, q are distinct primes, leads to some intriguing
results about the graph parameters of these graphs as well as their characteristic
polynomials.

Analogous to the Laplacian and signless Laplacian matrix of a graph, the
definition of distance Laplacian and distance signless Laplacian matrix was in-
troduced and studied by M. Aouchiche and P. Hansen. In this thesis, the study
on the distance, distance Laplacian and distance signless Laplacian spectrum of
Γ pZnq has been initiated. The eigenvalues of the distance and distance Lapla-
cian matrix of Γ pZnq for some values of n, are found along with multiplicities,
by direct computation using matrix tools. The distance Laplacian eigenvalues of



Γ pZpkq, where p is any prime and k ¡ 1 is any positive integer, are completely
explored with multiplicities. Also, a general method is proposed for finding the
characteristic polynomial of the distance and distance Laplacian matrix of Γ pZnq
for any n.

H.S. Ramane et al defined Seidel Laplacian and Seidel signless Laplacian
matrix of graphs. In this thesis, Seidel, Seidel Laplacian and Seidel signless
Laplacian spectrum of the generalised union of regular graphs is investigated and
extended these results to the zero divisor graph on the ring of integers modulo
n.
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പഠനസംഗ്രഹം 

ഗണിതശാസ ്ത്തത്തിലെ സജീവവ ും രസകരവ് മായ ഒര്  

ഗവവഷണവമഖെയാണ  ത്ഗാഫ  തിയറി. ത്ഗാഫ  എന്നത  ഒര്  

ലെറ് ്വര്ക്കിെ ലറ ഗണിതശാസ ത്ത ത്രതിെിധാെമാണ . ഇെ റര്ലെറ്  

വരാലെയ് ള്ള സാവേതിക ഉരാധികള് ലെ ശ ുംഖെകലളയ ും 

സാമ ഹിക ശ ുംഖെകലളയ ും മറ്് ംും ത്രതിെിധീകരിക്ക വാന് 

ത്ഗാഫ് കള് വളലര വയാരകമായി ഉരവയാഗിച്ച് വര് ന്ന് . സേ്ീര്ണ്ണമായ 

ലെറ് ്വര്ക്ക കള ലെ ര്ൂരകല്രെക്ക് ംും വിശകെെത്തിെ് ംും വളലര 

സഹായകരമായ സാധയതകള് ത്ഗാഫ  തിയറിയിെ് ണ്ട . ലെറ് ്വര്ക്ക  

തിയറി, ഓപ്പവറഷണല് റിസര്ച്ച , ലകമിസ ്ത്െി, കവാണ്ടും ഫിസിക്സ , 

ബവയാളജി, ഇക്കവണാമിക്സ , ആര്ട്ടിഫിഷയല് ഇെ റെിജന്സ , 

വസാവഷയാളജി ത െങ്ങി വിവിധ വമഖെകളില് വളലര ഫെത്രദമായി 

ത്ഗാഫ  തിയറി ഉരവയാഗിച്ച്  വര് ന്ന് . 

ത്ഗ്പ്പ , റിങ്ങ  ത െങ്ങിയ ബീജഗണിതഘെെകലള, ത്ഗാഫ  തിയറിയ ലെ 

സഹായത്താല് വിശകെെും ലെയ്യ് ന്ന രീതി, കഴിഞ്ഞ മ്ന്ന  

രതിറ്ാണ്ട് കളായി ഉയര്ന്ന് വര് ന്ന ഗവവഷണസാധയയ് ള്ള ഒന്നാണ .  

അമ്ര്ത്ത ബീജഗണിതത്തില് ഇെത  അലെേ്ില് വെത  ര്ൂജയും 

വിഭജെമായ ഒര  മ്െകലത്ത "ര്ജയും വിഭജെും" അഥവാ സീവറാ 

ഡിവവസര് എന്ന  വിളിക്ക് ന്ന് .  ഒര്  കമയൂവട്ടറ്ീവ  റിങ്ങ   R ലെ 

ര്ൂജയമൊത്തത് ംും ര്ജയും വിഭജെമായത് മായ മ്െകങ്ങള് 

ശീര്ഷകങ്ങളായി വര്ികയ ും ഇത്തരും രണ്ട  മ്െകങ്ങള് ലെ 

ഗ് ണെഫെും ര്ൂജയമായി വന്നാല് അവ തമ്മില് 

ബന്ധിപ്പിച്ചിരിക്ക് ന്നത് മായ ത്ഗാഫിലെ  R െ ലറ സീവറാ ഡിവവസര് 

ത്ഗാഫ  എന്ന  വിളിക്ക് ന്ന്  . n എന്നത  ഒര  െിസര്ഗസുംഖയയായിരിലക്ക   

Zn   എന്ന റിങ്ങിെ ലറ സീവറാ ഡിവവസര് ത്ഗാഫ് മായി ബന്ധലപ്പട്ട 

െിെതരും മാത്െിക്സ് കള് ലെയ് ംും അവയ് ലെ സ ലരക ത്െലത്തയ ും 

ക് റിച്ച് ള്ള വിശകെെമാണ  ഈ ഗവവഷണ ത്രബന്ധത്തില് 

ഉള്ലപ്പെ് ത്തിയിരിക്ക് ന്നത  . 

"A study on the Spectrum of Zero Divisor Graph on the Ring of Integers Modulo n " എന്ന 

ഈ ത്രബന്ധത്തില് ഏഴ  അദ്ധ്യായങ്ങളാണ  ഉള്ലപ്പെ് ത്തിയിട്ട് ള്ളത  . 

ഈ ത്രബന്ധത്തിെ ലറ അവതാരികയ ും ഇതിവെക്ക  ആവശയമ് ള്ള 

അെിസ്ഥാെ െിര്വെെങ്ങള് ംും ആശയങ്ങള് മാണ  ആദയലത്ത രണ്ട  

അദ്ധ്യായങ്ങളില് ഉള്ളത  .   (Zn) എന്ന സീവറാ ഡിവവസര് 

ത്ഗാഫിെ ലറ അഡ്ജസന്സി മാത്െിക്സ  , ഡിസ്റ്റന്സ  

മാത്െിക്സ  , ഡിസ്റ്റന്സ  ൊവേഷയന് മാത്െിക്സ , ഡിസ്റ്റന്സ  വസന്ലെസ  

ൊവേഷയന് മാത്െിക്സ , സീഡല്  മാത്െിക്സ ,  സീഡല്  ൊവേഷയന് മാത്െിക്സ , 

സീഡല്  വസന്ലെസ  ൊവേഷയന് മാത്െിക്സ  എന്നിവലയക്ക് റിച്ച് ംും 

അവയ ലെ സ ലരക ത്െലത്തക്ക് റിച്ച് ംും ഈ ത്ഗാഫ് കള ലെ രെതരും 

സ്ഥിരരാശികലളക്ക് റിച്ച് മാണ  മ്ന്ന  മ് തല് ഏഴ  വലരയ് ള്ള 

Zn 

Zn 



അദ്ധ്യായങ്ങളില് ത്രതിരാദിച്ചിരിക്ക് ന്നത  . ഈ രഠെത്തില് െിന്ന് ള്ള 

െിഗമെങ്ങള ും ഭാവിയിവെക്ക് ള്ള സാധയതകള് മാണ  അവസാെലത്ത 

അദ്ധ്യായത്തില് ഉള്ലപ്പെ് ത്തിയിരിക്ക് ന്നത  . 

ഈ ത്രബന്ധത്തില് ത്രതിരാദിച്ചിരിക്ക് ന്ന വിവിധതരും മാത്െിക്സ് കള്, 

അവയ ലെ സ ലരക ത്െും, അവയ് ലെ അവവൊകെങ്ങള് എന്നിവ 

രെതരും സാവേതിക ത്രശ്നങ്ങള വെയ ും ശാസ ത്തത്രശ്നങ്ങള് വെയ ും 

രരിഹാരസാധയതകള്ക്ക  ഉതക് ലമന്ന  ത്രതീക്ഷിക്ക് ന്ന് . 
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Chapter 1

Introduction

Graph Theory is an important branch of Discrete Mathematics, which is a key

tool to model network systems involved in major domains of real life. Graph

Theory extends its countless applications to various walks of science like Net-

work Theory, Operational Research, Chemistry, Quantum Physics, Biology, Eco-

nomics, Artificial Intelligence, Sociology and so on. It marks its origin in 1735

with Leonard Euler’s solution [51] to the famous Konigsberg bridge problem and

now it has been evolved as a tool to analyse the structure of networks arising

from real world system and to study the impact of the structure on the dynamic

processes taking place in it.

Spectral Graph Theory, is an emerging and flourishing area in Graph Theory,

which studies the relation between graph properties and the spectrum of graph

theoretic matrices, like adjacency matrix and Laplacian matrix. The largest

(Perron Frobenius) eigenvalue of the network adjacency matrix has emerged as a

significant quantity for the analysis of various dynamical processes. The second

largest eigenvalue of a graph gives information regarding expansion and random-

1



ness properties. Moreover, many other spectral properties reflect the structural

properties of a graph.

It is a recent trend that graphs are crafted out of algebraic structures like

groups and rings. Cayley graphs, Annihilator graphs, Co-maximal graphs, An-

nihilating ideal graphs, Essential ideal graphs, Total graphs and Zero divisor

graphs, are good examples for graphs framed out from the algebraic properties

of a ring. In-depth research have been carried out in classifying the rings on the

structural properties of these algebraic graphs derived from these.

In this thesis, the focal objective is to investigate various spectra including

adjacency, distance, distance Laplacian, distance signless Laplacian, Seidel, Sei-

del Laplacian and Seidel signless Laplacian of the zero divisor graph on the ring

on integers modulo n.

The study of zero divisor graph on commutative rings has attracted the atten-

tion of many researchers since 1988. In [17], Ivan Beck introduced the concept of

zero divisor graph associated to a commutative ring R, in connection with some

colouring problems and was further studied by D.D. Anderson and M. Naseer in

[8]. In [7], D.F. Anderson and Livingston redefined this concept and the authors

studied the interplay between the ring-theoretic properties of a commutative ring

and the graph theoretic properties of its zero divisor graph, Γ pRq. This really

embarked on a new phase and attracted many ring theorists to graph theory

with a purpose of exploring the algebraic structure among the zero divisors of a

ring through the graph theoretic structure of its zero divisor graph. In [5], these

authors studied how the algebraic properties of a ring reflect on the size and

2



shape of its zero divisor graph and a complete characterization is established for

planar and toroidal zero divisor graphs.

The analysis of graph parameters associated with zero divisor graphs of com-

mutative rings can be found in [14, 54]. In [46], A. Haouaoui et al focus on the

properties of zero divisor graph of power series rings and in [13], M. Axtell et

al find the preservation of diameter and girth of the zero divisor graph under

extension to polynomial and power series rings. In [68], the authors study the

zero divisor graph for the ring of Gaussian integers modulo n. A wide and ex-

clusive survey on the study of distances in zero divisor graphs and total graphs

on commutative rings can be found in [81]. In [82], R.G. Tirop et. al analyse

the adjacency matrices of the zero-divisor graphs of Galois rings. We refer to

[69, 71, 1, 64] for a survey of results regarding the adjacency matrix of zero-divisor

graphs on various finite commutative rings. The main source of motivation for

this study, is the analysis of the adjacency matrix of zero divisor graph of the

ring of integers modulo n, initiated by M Young [85]. Pranjali et al [70] describe

results regarding the adjacency matrix of the zero-divisor graph over finite ring

of Gaussian integers. For more literature for the study of zero divisor graphs on

commutative rings, refer [78, 4, 3]. Later, zero divisor graphs were also defined

and investigated for non-commutative rings, near rings, modules, semi groups,

lattices, semi rings and posets. S. Chattopadhyay and P. Panigrahi [24] have

initiated the study of Laplacian spectrum of power graphs of finite cyclic and

dihedral groups and later Z. Mehranian et al [60] have continued the study of

spectra of power graphs of finite groups. Motivated by these works, we have ini-

tiated the investigation of spectra of the zero divisor graph on the ring of integers

modulo n.
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Usually, the eigenvalues of a graph can be computed by finding the roots of its

characteristic polynomial. But there is no algebraic method to solve a polynomial

equation of degree greater than or equal to five. This makes the computation of

spectrum of graphs tedious. However, some typical graphs like complete graphs,

complete bi-partite graphs, cycles, paths etc. have some kind of symmetry that

allows the eigenvalues to be evaluated in smarter and less computational ways.

Kindly refer [31, 66, 38, 9, 76] for the extensive study on the spectra of graphs.

The eigenvalues of a simple connected graph are either rational integers or alge-

braic irrationals. Hence, in order to find the eigenvalues of matrices associated

to a graph, it is not much appropriate to resort to computer algorithms by which

the irrational eigenvalues are roughly approximated to rationals.

However, for a graph with large size and complicated combinatorial struc-

ture, the determination of spectra is really challenging. Sometimes, it becomes a

convenient practice that the spectrum of a fairly large graph can be described in

terms of the spectra of smaller graphs using some simple graph operations, like

union, join, corona, edge corona etc. See [59, 27, 53] and the references therein for

the study on different types of spectra (Laplacian, signless Laplacian) of graphs

obtained by means of operations like disjoint union, corona, edge corona etc.

In this thesis, the tools of matrix have been used to explore different kinds of

spectrum of the zero divisor graph on the ring of integers modulo n, in terms

of its induced subgraphs. Besides the adjacency spectrum, the distance, dis-

tance Laplacian, distance signless Laplacian, Seidel, Seidel Laplacian and Seidel

signless Laplacian spectrum of this graph are also investigated in this thesis.

The notion of distance and transmission of vertices finds applications in dif-
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ferent domains including Design of Communication Networks and Graph Em-

bedding. The distance spectral radius has gained a keen focus by researchers in

Spectral Graph Theory. Though the distance matrix marks its origin in 1841 in

the very first paper of Cayley [23], extensive study was initiated in 1971, as Gra-

ham and Pollack [40] established a relationship between the number of negative

eigenvalues of the distance matrix and the addressing problem in data commu-

nication systems. They also established that the determinant of the distance

matrix of a tree is a function of the number of vertices only. Thereafter, many

researchers were interested in studying the spectral properties of the distance

matrix of a connected graph.

Some of the important domains of application of the distance matrix are the

Design of Communication Networks [34, 40], Network Flow Algorithms [30, 36],

Graph Embedding Theory [29, 33, 39] as well as Molecular Stability [47, 88].

Balaban, Ciubotariu and Medeleanu [15] proposed the use of the distance spec-

tral radius as a molecular descriptor. Gutman and Medeleanu [41] applied the

distance spectral radius to infer the extent of branching and model boiling points

of an alkane.

Analogous to the Laplacian and signless Laplacian matrix of a graph, the def-

inition of distance Laplacian and distance signless Laplacian matrix was intro-

duced and studied by M. Aouchiche and P. Hansen [11]. For more literature,

refer [12, 28] and the references therein. In this thesis, the study on the distance,

distance Laplacian and distance signless Laplacian spectrum of the zero divisor

graph on the ring Zn has been initiated.

Seidel matrices originally appeared in [84] in connection with equiangular

lines in Euclidean spaces and was further studied in [83, 50]. The study on the
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Seidel eigenvalues of graphs can be seen in [87, 52, 77]. The Seidel energy of

graphs was defined in [43] analogous to normal graph energy. H.S. Ramane et

al [72] defined Seidel Laplacian and Seidel signless Laplacian matrix of graphs.

The computation of the seidel Laplacian and Seidel signless Laplacian spectrum

of the disjoint union of regular graphs can be seen in [73]. In this thesis, these

spectrum of the generalised union of regular graphs and in particular, the zero

divisor graph on the ring of integers modulo n, has been studied.

In addition to the introductory chapter, the thesis is divided into seven other

chapters and chapters into sections.

Chapter 1 is the introduction.

Chapter 2 provides a brief description of the basic definitions of Graph

Theory and elementary tools of Matrix Theory and Linear Algebra to give a

better understanding of the upcoming chapters.

In Chapter 3, the straight forward computation of the characteristic poly-

nomial of ΓpZnq for some values of n is given. Section 1 contains some basic

definitions and preliminaries. In Section 2, the analysis of the adjacency matrix

of the zero divisor graph Γ pZnq for n � p2q2, where p   q are distinct primes

is done. Also, the girth, diameter, stability number and clique number of this

class of graphs are traced from the adjacency matrix. In Section 3, the char-

acteristic polynomial of this graph and the multiplicity of the two eigenvalues,

0 and 1, are found out by direct computation, using matrix tools. In Section

4, the adjacency matrix and eigenvalues of ΓpZp2qq for distinct primes p   q are

investigated.

In Chapter 4, the attention is restricted to the prime-power values of n.
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In Section 2 of this chapter, the characteristic polynomial and the spectrum

of ΓpZnq for n � p3, p4 where p is any prime are found. In Section 3, the

combinatorial structure of ΓpZnq as a generalised join of its induced subgraphs,

is described for any n. Section 4 focuses on the structure of the adjacency

matrix of ΓpZpkq for any k ¥ 3. The fascinating structure of the adjacency

matrix of this class of graphs; for both even and odd values of k, leads to the

determination of its graph parameters like, stability number, clique number and

girth. This analysis also helps to evaluate the multiplicity of the eigenvalues 0

and 1. In Section 5, a general method to compute the eigenvalues of ΓpZnq
for any n, is proposed, which involves the quotient matrix of equitable partition

of its vertex set and is illustrated with some examples. Also, as a special case,

the characteristic polynomial of ΓpZpkq for any k ¥ 3 is found out and the

multiplicities of its two eigenvalues 0 and 1 are also computed.

Chapter 5 contains the direct computation of distance, distance Laplacian

and distance signless Laplacian spectrum of ΓpZnq for some values of n. Section

1 of this chapter contains the definition of distance Laplacian and distance sign-

less Laplacian matrix of a connected matrix which is analogous to the Laplacian

and signless Laplacian matrix. In Section 2 , some tools of matrix theory are

applied to find the distance spectra of ΓpZnq for n � pq, p3, where p   q are dis-

tinct primes. Also, the distance spectral radius of the above mentioned graphs

are determined. In Section 3 , the distance Laplacian spectrum of ΓpZpqq and

ΓpZp3q are computed. In Section 4, the distance signless Laplacian spectra of

these graphs are found, using the same techniques. It is worth mentioning that

the matrix tools applied in this chapter seems inconvenient if n is the product of

powers of more primes.
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Chapter 6 is an attempt to generalise the results of Chapter 5 to any

value of n. Some tools of Linear Algebra are applied for the same. The Fiedler’s

Lemma and its generalization is highlighted in Section 2. Section 3 details

the role of Fiedler’s Lemma in the computation of the distance spectrum of the

generalized join of regular graphs. Also, the distance between any two vertices in

the proper divisor graph of n as well as the partitioned structure of the distance

matrix of ΓpZnq are found. The investigation of the distance spectrum of ΓpZnq
for any n and in particular for n � pk for any prime p and k ¥ 3, is described in

this section and illustrated with examples. Also, it is established that �1 and �2

are the distance eigenvalues of Γ pZnq, for n and their multiplicities are counted.

In the fourth section, the distance Laplacian eigenvalues of Γ pZnq, for any n, are

computed and described with examples. Also, the distance Laplacian spectrum

of Γ pZpkq, k ¥ 3 is completely determined.

Chapter 7 is about the computation of the Seidel related spectrum of the

zero divisor graph Γ pZnq. Section 1 outlines the definition of Seidel, Seidel

Laplacian and Seidel signless Laplacian matrix of a graph. The Section 2 is

begun with the computation of the Seidel spectrum of the join of two regular

graphs. The regularity allows the use of Coronal to make the method of finding

the Seidel characteristic polynomial of this graph, less computational. The result

is extended to the joined union of regular graphs, using Fiedler’s Lemma, as

described in the previous chapter and is illustrated with example. These results

are applied to compute the Seidel spectrum of Γ pZnq for any n. Also, the Seidel

spectrum of Γ pZnq is evaluated for n � pq, p3, p2q, where p   q are distinct

primes. The computation of the Seidel spectrum of Γ pZpkq is described for k ¥ 3.

In Section 3, the Seidel Laplacian spectrum of the join of two regular graphs
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is investigated and then extended to the generalised join of regular graphs. This

section focuses on the computation of Seidel Laplacian spectrum of Γ pZnq for

any n. It is also established that, 0 is a simple Seidel Laplacian eigenvalue of

Γ pZnq for any n. The Seidel Laplacian spectrum for particular values of n, say

n � pq, p3, p4 are found. Section 4 focuses on the computation of the Seidel

signless Laplacian spectrum of the generalised join of regular graphs and explores

these spectrum for Γ pZnq, for any n.

Chapter 8 provides conclusion and further scope of research.
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Chapter 2

Preliminaries

This chapter provides a brief account of the preliminary definitions from Graph

Theory which are very useful for the upcoming chapters.

2.1 Basic Definitions

Definition 2.1.1. [19] A graph G is an ordered triple G � pV pGq, EpGq, ψpGqq
consisting of a non-empty set V pGq of vertices, a set EpGq of edges and an inci-

dence function ψpGq which associates with each element of EpGq, an unordered

pair of vertices (not necessarily distinct) of G.

Definition 2.1.2. [19] Two vertices are said to be adjacent, if there is an edge

between them. Otherwise, they are non adjacent. If a vertex u is adjacent to a

vertex v in a graph G, we denote it as u � v. If two edges are incident with a

common vertex, then they are adjacent. Otherwise, non adjacent.

Definition 2.1.3. [19] An edge with identical end points is called a loop. Edges
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2.1. Basic Definitions

joining the same pair of vertices are called multiple edges.

Definition 2.1.4. [19] A graph G is finite if both the vertex set V pGq and the

edge set EpGq are finite. Otherwise, the graph G is said to be infinite.

Definition 2.1.5. [19] The number of vertices in a graph G is known as the

order of the graph and it is denoted by OpGq.

Definition 2.1.6. [19] A graph which has no loops and multiple edges is called

a simple graph. A graph is trivial if it has only one point.

Definition 2.1.7. [19] Two graphs G and H are said to be isomorphic if there

exists bijections θ : V pGq Ñ V pHq and φ : EpGq Ñ EpHq such that ψGpeq � uv

if and only if ψHpφpeqq � θpuqθpvq. If G and H are isomorphic, we write G u H.

Definition 2.1.8. [19] A graph G is complete if every pair of distinct vertices

are adjacent. A complete graph on n vertices is denoted by Kn.

Definition 2.1.9. [19] An empty graph (null graph) is a graph which has no

edges.

Definition 2.1.10. [19] A graph G is called bipartite if the vertex set V pGq can

be partitioned into two subsets X and Y such that each edge of G has one end

in X and the other end in Y . pX, Y q is called a partition of G.

Definition 2.1.11. [19] A graph G is said to be complete bipartite if G is simple,

bipartite with bipartition pX, Y q and each vertex of X is joined to every vertex

of Y . If | X |� m, | Y |� n, then G is denoted by Km,n.

Definition 2.1.12. [19] The complement of a simple graph G, denoted by G, is

a simple graph with vertex set V pGq and such that two vertices are adjacent in

G if and only if they are non adjacent in G.
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2.1. Basic Definitions

Definition 2.1.13. [19] A graph H is a subgraph of G, if V pHq � V pGq, EpHq �
EpGq and ψH is the restriction of ψG to EpHq.
If H is a subgraph of G, then it is denoted by H � G. G is the super graph

of H. If H is a subgraph of G and H � G, then H is a proper subgraph of G

pH � Gq. H is a spanning subgraph of G if H is a subgraph and V pHq � V pGq.
Let G be a graph. By deleting all loops and for every pair of adjacent vertices all

except one link joining them, we obtain a simple spanning subgraph of G called

the underlying simple graph of G.

Definition 2.1.14. [19] Let V 1 be a non-empty subset of the vertex set V of G.

The subgraph of G whose vertex set is V 1 and whose edge set is the set of those

edges of G that have both ends in V 1 is called the subgraph of G induced by V 1

and is denoted by GrV 1s. We say GrV 1s is the induced subgraph of G.

Definition 2.1.15. [19] If u P V pGq, the open neighborhood of u; denoted by

NGpuq is the set of vertices adjacent to u in G.

Definition 2.1.16. [19] Let G be a graph and v be it’s vertex. Then, the degree

of v is the number of edges of G incident with v, counting each loop as two

edges. The degree of v is denoted as degpvq. For a simple graph, degpvq is the

cardinality of NGpvq. The vertex with zero degree is called an isolated vertex. A

vertex with degree one is called an end vertex or pendant vertex.

We denote by δpGq and ∆pGq, the minimum degree and the maximum degree of

vertices in G respectively.

Definition 2.1.17. [19] A graph G is k-regular if degpvq � k for all v P V . A

regular graph is a graph which is k-regular for some k ¥ 0.

12



2.1. Basic Definitions

Definition 2.1.18. [19] A walk in a graph is a finite, non-null or non-empty

sequence w � v0e1v1e2v2, . . . , ekvk whose terms are alternatively vertices and

edges so that for 1 ¤ i ¤ k, the ends of ei are vi�1 and vi. We say that w is a

walk from v0 to vk or w is a pv0, vkq walk. v0 is called the origin and vk is called

the terminus of w. v1, v2, . . . , vk�1 are called the internal vertices. The integer k

is called the length of w.

Definition 2.1.19. [19] A walk in which every edge is distinct is called a trail.

Definition 2.1.20. [19] A walk in which every vertex is distinct (hence edges

are distinct) is called a path.

Definition 2.1.21. [19] A cycle is a closed trail whose origin and internal vertices

are different. A cycle of length k is called a k-cycle and it is denoted by Ck.

Definition 2.1.22. [19] Two vertices u and v of G are said to be connected if

there is a pu, vq path between them.

Definition 2.1.23. [19] The distance between two vertices u and v, denoted by

dGpu, vq, is the length of a shortest path connecting them. Clearly dGpu, uq � 0

and dGpu, vq � 8, if there is no path connecting u and v.

Definition 2.1.24. [19] Diameter of a graph G is the maximum distance between

the vertices of G. That is, diampGq �Maxtdpx, yq: x and y are vertices of G}.

Definition 2.1.25. [19] In a connected graph G, the transmission degree of a

vertex v is defined as Trpvq � °
uPV pGq dGpu, vq.

Definition 2.1.26. [19] Clique of a graph is a set of mutually adjacent vertices.

The maximum size of a clique of a graph G, called the clique number of G, is

denoted by ωpGq.
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2.2. Matrix Theory

Definition 2.1.27. [19] For a graph G, a stable set is a set of vertices, no two

of which are adjacent. The maximum cardinality of a stable set in a graph G is

called the stability number, denoted by αpGq.

Definition 2.1.28. [19] The girth of G, denoted by grpGq, is the length of a

shortest cycle in G. (grpGq � 8 if G contains no cycles).

Definition 2.1.29. [75] A partition tV1, V2, ..., Vku of the vertex set of V pGq is

said to be an equitable partition, if for any two vertices in Vi have the same

number of neighbours in Vj for 1 ¤ i ¤ j ¤ k.

2.2 Matrix Theory

The study on graph spectra is impossible without a basic understanding of some

necessary facts in Matrix Theory. Refer [67, 37, 61, 16, 9] for basic definitions

and fundamental results in Matrix Theory.

Let A be an n � n matrix. The determinant detpA � λIq is a polynomial in

the (complex) variable λ of degree n and is called the characteristic polynomial

of A. The equation detpA � λIq � 0, is called the characteristic equation of A.

By the Fundamental Theorem of Algebra, the equation has n complex roots and

these roots are called the eigenvalues of A. The eigenvalues might not all be

distinct.

Definition 2.2.1. [16] The number of times an eigenvalue occurs as a root of

the characteristic equation is called the algebraic multiplicity of the eigenvalue.

Definition 2.2.2. [16] The spectrum of a square matrix A, denoted by σpAq,
is the multi set of all the eigenvalues of A. If λ1, λ2, ..., λr, are the distinct
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2.2. Matrix Theory

eigenvalues of A with respective algebraic multiplicities m1,m2, ...,mr, then we

shall denote the spectrum of A, by σpAq.

σpAq �

$'&
'%

λ1 λ2 � � � λr

m1 m2 � � � mr

,/.
/- .

Definition 2.2.3. [9] The spectral radius of a matrix is the maximum of the

absolute values of its eigenvalues.

Definition 2.2.4. [66] The geometric multiplicity of the eigenvalue λ of A is

defined to be the dimension of the null space of A�λI. The geometric multiplicity

of an eigenvalue does not exceed its algebraic multiplicity.

Definition 2.2.5. [66] An eigenvalue of a matrix is said to be simple, if its

algebraic multiplicity is 1.

If λ1, ..., λn are the eigenvalues of A, then detA � λ1 � � � λn, while traceA �
λ1 � ...� λn.

Definition 2.2.6. [67] Let A be a matrix with real entries. A is said to be

positive semidefinite if, for any vector x with real components, the dot product

of Ax and x is nonnegative. That is if, xAx, xy ¥ 0. Note that the eigenvalues of

a positive semi definite matrix are nonnegative.

Definition 2.2.7. [67] A principal sub matrix of a square matrix is a sub matrix

formed by a set of rows and the corresponding set of columns. A principal minor

of A is the determinant of a principal sub matrix. A leading principal minor is

a principal minor involving rows and columns 1, ..., k for some k.

Definition 2.2.8. [67] A matrix A PMn is said to be reducible or decomposable

if there is a permutation matrix P P Mn such that P TAP �

�
�� B C

On�r,r D

�
�� ,
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2.2. Matrix Theory

and 1 ¤ r ¤ n� 1.

A matrix is said to be irreducible if it is not reducible.

Definition 2.2.9. [9] (Equitable partitions)

Consider a real symmetric matrix

A �

�
��������

A11 A12 . . . A1m

A21 A22 . . . A23

...
...

. . .
...

Am1 . . . Amm

�
��������

whose rows and columns are indexed by X � t1, ..., nu and partitioned according

to a partition P � tX1, ..., Xmu of X. The characteristic matrix S is the n�m

matrix whose j�th column is the characteristic vector of Xj, pj � 1, ...,mq. Let

Q be the m � m matrix whose entries are the average row sums of the blocks

Aij of A. The partition P is called equitable if each block Aij of A has constant

row (and column) sum and in such case the matrix Q is called the equitable

quotient matrix. Generally, the eigenvalues of Q interlace the eigenvalues of A.

The following result is well-known and useful.

Lemma 2.2.10. [9] If, for an equitable partition, v is an eigenvector of Q for an

eigenvalue λ , then Sv is an eigenvector of A for the same eigenvalue λ. That is, if

the rows and columns of a real symmetric matrix A is partitioned according to an

equitable partition, then each eigenvalue of its quotient matrix, is an eigenvalue

of A.

Definition 2.2.11. [67] A matrix raijs is strictly diagonally dominant if for every

row of the matrix, the magnitude of the diagonal entry is strictly larger than the

sum of the magnitudes of all other non-diagonal entries in that row, that is if,

|aii| ¡
°
j�i |aij|, for all i.
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2.3. Some matrices associated with simple graphs

Theorem 2.2.12. [67] (Levy- Desplanques Theorem ) A strictly diagonally

dominant matrix is non-singular.

Theorem 2.2.13. [9] (Perron Frobenius Theorem) If A is a non-negative matrix

with eigenvalues λ1 ¥ λ2 ¥ ... ¥ λn, then |λ1| ¥ |λk|, for k � 1, 2, ..., n and the

eigenvalue λ1 has an eigenvector with all entries non-negative. If A is irreducible

(indecomposable), then the eigenvalue λ1 is simple and the eigenvector has all

entries positive.

2.3 Some matrices associated with simple graphs

Definition 2.3.1. [16] LetG be a simple graph with vertex set V pGq � tv1, v2, ..., vnu
and edge set EpGq � te1, e2, ..., emu. The adjacency matrix, ApGq of G is a 0� 1

matrix rai,js of order n�n with entries ai,j such that ai,j � 1 if vi � vj and ai,j � 0

if vi and vj are nonadjacent. The pi, iq-th entry of ApGq is 0 for i � 1, ..., n.

Definition 2.3.2. [16] For a graph G, the Laplacian matrix is defined as LpGq �
DegpGq � ApGq, and signless Laplacian matrix of G is defined as QpGq �
DegpGq�ApGq where DegpGq is the diagonal matrix of degree of vertices. Note

that LpGq and QpGq are positive semi definite matrices (Recall Definition 2.2.6).

Definition 2.3.3. [16] The distance matrix of a simple connected graph G of

order n is a symmetric matrix D � rdi,jsn�n, where di,j denotes the distance

between two distinct vertices vi and vj.

Definition 2.3.4. [11] Let TrpGq be the diagonal matrix of transmission degree

of vertices of a connected graph G (Recall Definition 2.1.25). Then, the distance
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2.4. Some graph operations

Laplacian matrix of G is defined as

DLpGq � TrpGq �DpGq,

where DpGq is the distance matrix. The distance signless Laplacian matrix of

any connected graph G is defined as

DQpGq � TrpGq �DpGq.

Definition 2.3.5. [84] The Seidel matrix of G is a (-1, 0, 1) adjacency matrix

given by, SpGq � rsi,js where si,j � �1 if the vertices vi and vj are adjacent and

si,j � 1 if the vertices vi and vj are non adjacent and si,j � 0 if i � j. That is,

SpGq � J � I� 2ApGq. Clearly, if G denotes the complement of a graph G, then

SpGq � �SpGq.

Definition 2.3.6. [72] Let DSpGq � diagpn�2d1�1, n�2d2�1, ..., n�2dn�1q
be the diagonal matrix with diagonal entries n � 2di � 1, where di denotes the

degree of the ith vertex. The Seidel Laplacian matrix of a graph G is defined as

SLpGq � DSpGq � SpGq

and the Seidel signless Laplacian matrix of a graph G is defined as

SQpGq � DSpGq � SpGq.

2.4 Some graph operations

Definition 2.4.1. [45] Let G1 � pV1, E1q and G2 � pV2, E2q be two simple

graphs. Then, the graph G � pV,Eq, where V � V1 Y V2 and E � E1 Y E2, is
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2.4. Some graph operations

called the union of graphs G1 and G2 and is denoted by G1 YG2. If V1 XV2 � φ,

then G1 Y G2 is usually denoted by G1 � G2, called the sum of the graphs G1

and G2.

Definition 2.4.2. [45] Let G1 � pV1, E1q and G2 � pV2, E2q be two simple graphs

with V1 X V2 � φ. Then the join, G1 5 G2, of G1 and G2 is the super graph of

G1 �G2 in which each vertex of G1 is adjacent to every vertex of G2.

Definition 2.4.3. [74] Let G be a finite graph with vertices labeled as 1, 2, 3, ..., n

and let H1, H2, ..., Hn be a family of vertex disjoint graphs. The generalized

join of H1, H2, ..., Hn denoted by G rH1, H2, ..., Hns is obtained by replacing each

vertex i of G by the graph Hi and inserting all or none of the possible edges

between Hi and Hj depending on whether or not i and j are adjacent in G. ie,

GrH1, H2, ..., Hns is obtained by taking the union of H1, H2, ..., Hn and joining

each vertex of Hi to all vertices of Hj if and only if ij P EpGq.

19



Chapter 3

Adjacency matrix and graph parameters of the

zero divisor graph

In this Chapter, the characteristic polynomial of Γ pZnq is found for

some values of n. The first Section contains some basic definitions

and preliminaries. In Section 2, the adjacency matrix of the zero

divisor graph Γ pZnq is explored for n � p2q2, where p   q are dis-

tinct primes. Also, the girth, diameter, stability number and clique

number of this graph are traced. In Section 3, the characteristic

polynomial of this graph along with the multiplicity of two eigenval-

ues is found by direct computation using matrix tools. In Section 4,

the adjacency matrix and eigenvalues of Γ pZp2qq for distinct primes

p   q are investigated.

1This chapter has been published in Journal of Mathematical and Computational Science,

Volume 10, Issue 4, 2020, Pages 1285-1297.
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3.1. Introduction

3.1 Introduction

Associating various graphs to an algebraic structure to understand its properties,

is an exciting recent trend in the research of Algebraic Graph Theory. Also

the interplay of various graph parameters and the algebraic properties of these

structures can be investigated and it leads to a better understanding of its theory.

One among these graphs which can be associated to a commutative ring, is zero

divisor graph.

Definition 3.1.1. [7] Let R be a commutative ring with unity and Z�pRq be the

set of non-zero zero divisors of R. The zero divisor graph of R, denoted by Γ pRq,
is a simple undirected graph with all non-zero zero divisors as vertices and two

distinct vertices x, y P Z�pRq are adjacent if and only if xy � 0. Thus Γ pRq is

the null graph if and only if R is an integral domain.

The characteristic polynomial of the adjacency matrix of a graph G, denoted

by ΦpG;λq, is often referred to as the characteristic polynomial of G and the

eigenvalues of G are the roots of ΦpG;λq. The spectrum of a finite graph G is by

definition the spectrum of the adjacency matrix ApGq , that is, its set of eigenval-

ues together with their multiplicities. Clearly, ApGq is a real symmetric matrix

and hence its eigenvalues are all real numbers and the algebraic multiplicity of

each eigenvalue is same as its geometric multiplicity [66].
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3.2. Adjacency Matrix of Γ pZp2q2q

3.2 Adjacency Matrix of Γ pZp2q2q

The zero-divisor graph of Zn, the ring of integers modulo n, is a simple and

undirected graph. ie. even though, for an idempotent element x, x �x � 0 , x is

not adjacent with itself in its zero divisor graph. Thus the adjacency matrix of

Γ pZnq is a symmetric matrix with entries 0 and 1, where all diagonal entries are

zeroes. In this section, the adjacency matrix of Γ pZnq for n � p2q2, where p and

q, are distinct prime numbers with p   q, is investigated with an objective of

computing its characteristic polynomial. While indexing the rows and columns

of the adjacency matrix of Γ pZnq, a special interest is taken on dividing its non-

zero zero divisors into an equitable partition and labeling accordingly, so that the

vertices of the least degree corresponds to the first row of blocks in its adjacency

matrix.

Recall that in any finite commutative ring, any non-zero element is either a

unit or a zero divisor. Using elementary number theory, it is easy to calculate

the order of ΓpZnq for any n.

Proposition 3.2.1. The number of nonzero zero divisors of Zn is n� φpnq � 1.

Proof. Let m be a positive integer. Then m P Z�pZnq if and only if m and n

have at least one common prime factor. The co-totient function, n�φpnq counts

the number of positive integers less than or equal to n which have at least one

prime factor in common with n. Hence the number of nonzero zero divisors of n

is n� φpnq � 1.

Theorem 3.2.2. The adjacency matrix of Γ pZnq for n � p2q2, where p and q

are distinct primes, p   q, is given by
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3.2. Adjacency Matrix of Γ pZp2q2q

ApΓ pZnqq =

A1 A2 A4 A5 A3 A6 A7�
�������������������

�
�������������������

A1 O O O O O O J

A2 O O O O O J O

A4 O O O J O O J

A5 O O J O O J O

A3 O O O O J � I J J

A6 O J O J J J � I J

A7 J O J O J J J � I

where J is a matrix of all ones and I is an identity matrix. The order of ApΓ pZnqq
is pqpp� q � 1q � 1.

Proof. Let n � p2q2, p   q. The divisors of n are p, q, pq, p2, q2, p2q, pq2. By

proposition 3.2.1, the number of non-zero zero divisors of Γ pZp2q2q is pqpp� q�
1q � 1. We partition the non-zero zero divisors of Γ pZp2q2q into seven classes as

multiples of the divisors of p2q2 as follows.

A1 � tk1p : k1 � 1, 2, ...pq2 � 1,where p - k1 and q - k1 }.

A2 � tk2q : k2 � 1, 2, ...p2q � 1,where p - k2 and q - k2 }.

A3 � tk3pq : k3 � 1, 2, ...pq � 1,where p - k3 and q - k3 }.

A4 � tk4p
2 : k4 � 1, 2, ...q2 � 1,where q - k4 }.

A5 � tk5q
2 : k5 � 1, 2, ...p2 � 1,where p - k5 }.

A6 � tk6p
2q : k6 � 1, 2, ...q � 1 }.

A7 � tk7pq
2 : k7 � 1, 2, ...p� 1 }.

Using elementary number theory, it can be easily seen that the cardinality of A1

is
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3.2. Adjacency Matrix of Γ pZp2q2q

|A1| � qpp� 1qpq � 1q. Similarly,

|A2| � ppp � 1qpq � 1q, |A3| � pp � 1qpq � 1q, |A4| � qpq � 1q, |A5| � ppp � 1q,
|A6| � pq � 1q, |A7| � pp� 1q. We also observe that,

1. xy � 0, @x P A1 and @y P A1 Y A2 Y A3 Y A4 Y A5 Y A6 and xy �
0, @x P A1 and @y P A7.

2. xy � 0, @x P A2 and @y P A1 Y A2 Y A3 Y A4 Y A5 Y A7 and xy �
0, @x P A2 and @y P A6.

3. xy � 0, @x P A3 and @y P A1 Y A2 Y A4 Y A5 and xy � 0, @x P A3

and @y P A3 Y A6 Y A7.

4. xy � 0, @x P A4 and @y P A1YA2YA3YA4YA6 and xy � 0, @x P A4

and @y P A5 Y A7.

5. xy � 0, @x P A5 and @y P A1YA2YA3YA5YA7 and xy � 0, @x P A5

and @y P A4 Y A6.

6. xy � 0, @x P A6 and @y P A1 Y A4 and

xy � 0, @x P A6 and @y P A2 Y A3 Y A5 Y A6 Y A7.

7. xy � 0, @x P A7 and @y P A2 Y A5 and

xy � 0, @x P A7 and @y P A1 Y A3 Y A4 Y A6 Y A7.

Also for any x, y P Ai, i � 1, 2, 4, 5, xy � 0.

These observations describe the adjacency of vertices in Γ pZp2q2q. For ex-

ample, no vertex in A1 is adjacent to vertices in A1, A2, A3, A4, A5, or A6 and
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3.2. Adjacency Matrix of Γ pZp2q2q

correspondingly, it gives blocks of zeros in the adjacency matrix of Γ pZp2q2q .

Also, all vertices of A1 are adjacent to every vertex of A7 and correspondingly,

it gives a block of all ones and so on. Recall that the zero divisor graph of a

commutative ring is a simple, undirected graph. Since xy � 0, @x, y P Ai, for

i � 3, 6, 7; A3 Y A6 Y A7 induces a complete subgraph , but self adjacency of

vertices are omitted. The non-zero zero divisors of Zn are rearranged, such that

the elements of A1 appear first and then A2, A4, A5, A3, A6, and A7. Thus the

adjacency matrix of Γ pZp2q2q is a 7 � 7 block matrix consisting of 49 blocks of

zeros and ones in the following form,

ApΓ pZnqq �

�
�������������������

O O O O O O J

O O O O O J O

O O O J O O J

O O J O O J O

O O O O J � I J J

O J O J J J � I J

J O J O J J J � I

�
�������������������

(3.1)

Thus the order of this matrix is Σ7
i�1|Ai| � pqpp� q � 1q � 1.

Theorem 3.2.3. Let G � Γ pZnq, for n � p2q2, where p and q are distinct

primes, p   q. The clique number ωpGq � pq � 1.

Proof. The principal sub matrix

�
�����
J � I J J

J J � I J

J J J � I

�
����� of ApΓ pZnqq corre-

sponds to a complete subgraph of maximum order, induced by the vertices in
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3.2. Adjacency Matrix of Γ pZp2q2q

A3 Y A6 Y A7. Hence the clique number of G is given by

ωpGq � |A3| � |A6| � |A7|

� pq � 1.

Theorem 3.2.4. Let G � Γ pZnq, for n � p2q2, where p and q are distinct

primes, p   q. The stability number αpGq � ppq � 1qpp� q � 1q.

Proof. Since, for any x, y P A1YA2YA4, xy � 0; no two vertices of A1YA2YA4,

are adjacent. Thus A1 Y A2 Y A4 is a maximum independent set. Hence the

stability number of G, αpGq � |A1| � |A2| � |A4| � ppq � 1qpp� q � 1q.

Theorem 3.2.5. Let G � Γ pZnq, for n � p2q2, where p and q are distinct

primes, p   q. The girth, grpGq � 3.

Proof. Since G has a clique of cardinality pq�1 ¡ 3, it contains a cycle of length

3. Hence gr(G)=3. .

It was shown in [81] that, for a commutative ring R, diamΓ pRq ¤ 3. In the

next theorem, it is seen that Γ pZp2q2q attains this upper bound.

Theorem 3.2.6. Let G � Γ pZnq, for n � p2q2, where p and q are distinct

primes, p   q. The diameter, diampGq � 3.

Proof. For x P A1, y P A2, any shortest (x,y)-path contains an intermediate

vertex from A7 and a vertex from A6. Thus diamG � 3.
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3.3. Eigenvalues of Γ pZp2q2q

3.3 Eigenvalues of Γ pZp2q2q

Among the zero divisor graphs belonging to this class, Γ pZ36q is of minimum

order, ie for p � 2, q � 3 and the order of Γ pZ36q is 23. As the order increases,

the difficulty level of extracting eigenvalues of the graph increases. In this section,

two eigenvalues of Γ pZp2q2q for any p   q, are found with multiplicities. Also,

the polynomial of degree seven which gives the remaining eigenvalues is explored

through a long computation. The diction is made as precise as possible.

The circulant matrix of the form Cpa,b,nq plays a vital role in the following

computations. The following Lemmas are used to find the determinant and the

inverse of Cpa,b,nq. Using the properties of determinant of a square matrix, the

following Propositions are proved.

Definition 3.3.1. Let MnpF q denote the vector space of all square matrices of

size n � n with entries from a field F. A circulant matrix of size n � n, with

entries a and b, a, b P R, denoted by Cpa,b,nq is of the form

Cpa,b,nq=

�
������������

a b . . . . . . b

b a b . . . b

b b a . . . b

...
...

...
. . .

...

b b b . . . a

�
������������
n�n

The complexity of computing the characteristic polynomial of a n� n block

matrix is often reduced to some extent by the application of the following Lem-

mas.
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3.3. Eigenvalues of Γ pZp2q2q

Proposition 3.3.2. Let Cpa,b,nq=

�
������������

a b . . . . . . b

b a b . . . b

b b a . . . b

...
...

...
. . .

...

b b b . . . a

�
������������
n�n

be a circulant ma-

trix of size n� n; with entries a and b.

Then, detCpa,b,nq; denoted by δ, is given by δ � pa� pn� 1qbq pa� bqn�1.

Proposition 3.3.3. If Cpa,b,nq is nonsingular, then its inverse is given by

C�1
pa,b,nq �

1

δ

�
��������

δn�1 ∆n�1 . . . ∆n�1

∆n�1 δn�1 . . . ∆n�1

...
. . .

...

∆n�1 . . . δn�1

�
��������

=
1

δ
Cpδn�1,∆n�1, nq,

where δn�1 � pa� pn� 2qbq pa� bqn�2 and ∆n�1 � �b � pa� bqn�2.

A matrix A P MnpF q, where F is a field of numbers(real or complex); of the

form

A=

�
��������

A11 O . . . O

O A22 . . . O

...
. . .

...

O . . . Ann

�
��������

in which Aii P MnipF q, i � 1, 2, ...k, Σk
i�1ni � n,

and all blocks above and below the block diagonal are the zero blocks, is called

a block diagonal matrix.

ThusA=A11`A22...`Akk �
Àk

i�1Aii , is the direct sum of matricesA11, A22, ...Akk.

Lemma 3.3.4. [67] detpÀk
i�1Aiiq �

±k
i�1 detpAiiq.

In particular, if A11 PMnpF q and A22 PMmpF q, then,
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3.3. Eigenvalues of Γ pZp2q2q

det

�
�� A11 O

O A22

�
�� � detpA11q � detpA22q.

Lemma 3.3.5. [67] If A11 PMnpF q and A22 PMmpF q are non singular,

then,

�
�� A11 O

O A22

�
��
�1

�

�
�� A�1

11 O

O A�1
22

�
��

Lemma 3.3.6. [31] Let M,N,P,Q be matrices and let M be invertible. Let

S �

�
�� M N

P Q

�
��,

then detS � detM. detpQ� PM�1Nq.
pQ� PM�1Nq is called the Schur complement of M in S.

Theorem 3.3.7. Let G � Γ pZp2q2q and let λ be an eigenvalue of G. Then 0 and

�1 are eigenvalues of G with multiplicities pqpp�q�2q�4 and pq�4 respectively.

If λ � 0, λ � �1, then λ satisfies λ7�b6λ
6�b5λ

5�b4λ
4�b3λ

3�b2λ
2�b1λ�b0 � 0,

where,

b6 � pq � 4

b5 � p2pq � 1q � qp2p� 1q � 6� pp� 1qpq � 1qp3pq � p� 1q,

b4 � pqpp� 1qpq � 1qp3pq � p� q � 8q � pq � 2,

b3 � pqpp� 1qpq � 1q �pqp3pq � 4p� 4q � 7q � p2 � q2 � 9
�
,

b2 � rpqpp� 1qpq � 1qs2 r3pq � 3p� 3q � 2s �

pqpp� 1qpq � 1q �pqp2p� 2q � 1q � 2pp� qq2 � 4
�
,

b1 � pqpp� 1q3pq � 1q4ppq � p� q � p2q�

rpqpp� 1qpq � 1qs2 �1� ppp� 1qpq � 1q2 � ppq � 1q��
pqpp� 1q2pq � 1q2 rpq � pp� qqs rppp� 2qpq � 1q � qpq � 2qs ,

b0 � p2q2pp� 1q4pq � 1q4 rpq � pp� qqs .
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3.3. Eigenvalues of Γ pZp2q2q

Proof. Let the adjacency matrix of G � Γ pZp2q2q; given by equation 3.1 be de-

noted by M . Then the eigenvalues of G are given by |M � λI| � 0. Now,

M � λI �

�
�������������������

Cp�λ,0q O O O O O J

O Cp�λ,0q O O O J O

O O Cp�λ,0q J O O J

O O J Cp�λ,0q O J O

O O O O Cp�λ,1q J J

O J O J J Cp�λ,1q J

J O J O J J Cp�λ,1q

�
�������������������

�

�
�� A B

C D

�
��

By Lemma 3.3.6, if λ � 0,

detpM � λIq � detA � detpD � CA�1Bq (3.2)

Since A �

�
�����
Cp�λ,0q O O

O Cp�λ,0q O

O O Cp�λ,0q

�
����� is a scalar matrix of size

ppq � 1qpp� q � 1q, using Lemma 3.3.4,

detA � p�λqppq�1qpp�q�1q

( Note that size of A is sum of cardinalities of A1, A2 and A4 which is equal to

ppq � 1qpp� q � 1q ). Thus, equation (3.2)becomes

detpM � λIq � p�λqppq�1qpp�q�1q � detpD � CA�1Bq (3.3)

Also A�1 � �1

λ
I, where I is the identity matrix of size ppq � 1qpp� q � 1q.
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3.3. Eigenvalues of Γ pZp2q2q

Let,

a � |A4| � qpq � 1q

b � |A2| � ppp� 1qpq � 1q

c � |A1| � qpp� 1qpq � 1q.

Then,

CA�1B � �1

λ
CB

� �1

λ

�
������������������������������������

a � � � a 0 � � � 0 0 � � � 0 a � � � a

...
...

...
...

...
...

...
...

a � � � a 0 � � � 0 0 � � � 0 a � � � a

0 � � � 0 0 � � � 0 0 � � � 0 0 � � � 0

...
...

...
...

...
...

...
...

0 � � � 0 0 � � � 0 0 � � � 0 0 � � � 0

0 � � � 0 0 � � � 0 b � � � b 0 � � � 0

...
...

...
...

...
...

...
...

0 � � � 0 0 � � � 0 b � � � b 0 � � � 0

a � � � a 0 � � � 0 0 � � � 0 a� c � � � a� c

...
...

...
...

...
...

...
...

a � � � a 0 � � � 0 0 � � � 0 a� c � � � a� c

�
������������������������������������
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Hence D � CA�1B=

�
������������������������������������������������������

a
λ
� λ a

λ
� � � a

λ
0 � � � � � � 0 1 � � � � � � 1 a

λ
� � � � � � a

λ

a
λ

a
λ
� λ � � � a

λ

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...

a
λ

� � � � � � a
λ
� λ 0 � � � � � � 0 1 � � � � � � 1 a

λ
� � � � � � a

λ

0 � � � � � � 0 �λ 1 � � � 1 1 � � � � � � 1 1 � � � � � � 1

...
... 1 �λ � � � 1

...
...

...
...

...
...

...
. . .

...
...

...
...

...

0 � � � � � � 0 1 � � � � � � �λ 1 � � � � � � 1 1 � � � � � � 1

1 � � � � � � 1 1 � � � � � � 1 b
λ
� λ b

λ
� 1 � � � b

λ
� 1 1 � � � � � � 1

...
...

...
... b

λ
� 1 b

λ
� λ

...
...

...

.

..
.
..

.

..
.
..

.

..
. . .

.

..
.
..

.

..

1 � � � � � � 1 1 � � � � � � 1 b
λ
� 1 � � � � � � b

λ
� λ 1 � � � � � � 1

a
λ

� � � � � � a
λ

1 � � � � � � 1 1 � � � � � � 1 a�c
λ

� λ a�c
λ

� 1 � � � a�c
λ

� 1

...
...

...
...

...
... a�c

λ
� 1 a�c

λ
� λ

...

...
...

...
...

...
...

...
. . .

...

a
λ

� � � � � � a
λ

1 � � � � � � 1 1 � � � � � � 1 a�c
λ

� 1 � � � � � � a�c
λ

� λ

�
������������������������������������������������������

Thus,

D�CA�1B �

�
���������

X1ppp�1q
Oppp�1q�pp�1qpq�1q Qppp�1q�pq�1q Yppp�1q�pp�1q

Opp�1qpq�1q�ppp�1q X2pp�1qpq�1q
Rpp�1qpq�1q�pq�1q Spp�1qpq�1q�pp�1q

QT
pq�1q�ppp�1q RT

pq�1q�pp�1qpq�1q X3pq�1q Upq�1q�pp�1q

Y T
pp�1q�ppp�1q STpp�1q�pp�1qpq�1q UT

pp�1q�pq�1q X4pp�1q

�
���������

whereX1 � Cp aλ�λ, a
λ
, ppp�1qq, X2 � Cp�λ, 1, pp�1qpq�1qq, X3 � Cp bλ�λ, b

λ
�1, q�1q,

X4 � Cpa�cλ �λ, a�c
λ
�1, p�1q, Y � a

λ
Jppp�1q�pp�1q, where J is a matrix of all ones

and Q, R, S, U are matrices of all ones.

Let n, m be the size of X1 and X2 respectively. Hence n � ppp� 1q and

m � pp � 1qpq � 1q. While doing tedious computations hereafter, the following
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3.3. Eigenvalues of Γ pZp2q2q

substitutions are made.

fpλq � na� λ2,

gpλq � m� 1� λ, and

hpλq � fpλqgpλq tppp� 1qpq � 1q2 � λpq � 2q � λ2u�pq�1qtnλ2gpλq�mλfpλqu.
Using Proposition 3.3.2 and Proposition 3.3.3, it can be seen that,

detX1 � p�1qn�1pλqn�2fpλq (3.4)

detX2 � p�1qm�1pλ� 1qm�1gpλq (3.5)

X�1
1 � �1

fpλq � Cp pn�1qa
λ

�λ, �a
λ
, nq , X�1

2 � �1
pλ�1qgpλq � Cpm�λ�2, �1, mq .

Using Lemma 3.3.4, Lemma 3.3.5 and Lemma 3.3.6, we see that

det
�
D � CA�1B

�
� detX1 � detX2�

det

�
��

�
��
X3 U

UT X4

�
���

�
��
QT RT

Y T ST

�
��

�
��
X�1

1 O

O X�1
2

�
��

�
��
Q Y

R S

�
��

�
� (3.6)

Applying Lemma 3.3.6 again,

det

�
��
�
�� X3 U

UT X4

�
���

�
�� QT RT

Y T ST

�
��
�
�� X�1

1 O

O X�1
2

�
��
�
�� Q Y

R S

�
��
�
�gets surprisingly

simplified to be the determinant of the circulant matrix Cpv�z, w�z, p�1q, where

z � tfpλqgpλq � pnagpλq �mfpλqqu2 λpq � 1q
fpλqgpλqhpλq and

v � fpλqgpλqpa� c� λ2q �mλfpλq � na2gpλq
λfpλqgpλq

Also, applying Proposition 3.3.2,

detCpv�z, w�z, p�1q � p�1qp�2pλ� 1qp�2 tpv � zqpp� 1q � pλ� 1qpp� 2qu

Simplifying equation (3.6), using equations (3.4), and (3.5), and substituting in

(3.3), the characteristic equation of ΓpZp2q2q is
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3.3. Eigenvalues of Γ pZp2q2q

ΦpG;λq � pλqpqpp�q�2q�4 � pλ� 1qpq�4 � φpλq � 0, where

φpλq � λ7 � b6λ
6 � b5λ

5 � b4λ
4 � b3λ

3 � b2λ
2 � b1λ� b0, (3.7)

where,

b6 � pq � 4

b5 � p2pq � 1q � qp2p� 1q � 6� pp� 1qpq � 1qp3pq � p� 1q,

b4 � pqpp� 1qpq � 1qp3pq � p� q � 8q � pq � 2,

b3 � pqpp� 1qpq � 1q �pqp3pq � 4p� 4q � 7q � p2 � q2 � 9
�
,

b2 � rpqpp� 1qpq � 1qs2 r3pq � 3p� 3q � 2s �

pqpp� 1qpq � 1q �pqp2p� 2q � 1q � 2pp� qq2 � 4
�
,

b1 � pqpp� 1q3pq � 1q4ppq � p� q � p2q�

rpqpp� 1qpq � 1qs2 �1� ppp� 1qpq � 1q2 � ppq � 1q��
pqpp� 1q2pq � 1q2 rpq � pp� qqs rppp� 2qpq � 1q � qpq � 2qs ,

b0 � p2q2pp� 1q4pq � 1q4 rpq � pp� qqs .

Clearly, if λ � 0,�1, then φpλq � 0.

Remark 3.3.8. Performing elementary row transformations, it can be seen that

the number of zero rows in any row echelon form ofM is |A1|�|A2|�|A4|�|A5|�4.

Hence the nullity of M is pqpp�q�2q�4 and thus λ � 0 is an eigenvalue of G with

the geometric multiplicity of λ � 0 is pqpp�q�2q�4 which is same as its algebraic

multiplicity. In a similar way, it can be seen that the algebraic multiplicity of

λ � �1 is the nullity of M � I, which is equal to |A3| � |A6| � |A7| � 3 � pq� 4.

Since φpλq is a polynomial of degree 7, the total number of eigenvalues is

rpqpp� q � 2q � 4s � ppq � 4q � 7, which is found to be the same as
°7
i�1 |Ai|.
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3.4. Adjacency Matrix and Eigenvalues of Γ pZp2qq

Remark 3.3.9. Since M is a symmetric matrix with all diagonal entries zero,

the sum of the eigenvalues is equal to the trace of M , which is zero . The non-zero

eigenvalues of M are precisely �1 and the zeros of φpλq. Also, from equation

(3.7), the sum of the roots of φpλq � 0; is pq� 4. Hence it is convinced that sum

of the eigenvalues of M is ppq � 4qp�1q � ppq � 4q � 0.

The above Theorem gives the characteristic polynomial of a class of graphs,

namely Γ pZp2q2q where p   q are distinct primes. For example, the characteristic

polynomial of Z36, Z100, Z225 can be obtained using the above Theorem.

3.4 Adjacency Matrix and Eigenvalues of Γ pZp2qq

Let n � p2q where p and q are prime integers with p   q and let G � Γ pZp2qq. By

proposition 3.2.1, n has ppp� q�1q�1 non-zero zero divisors. The computation

of the spectrum of this graph is not as much difficult as in the previous section,

since the equitable partition of the set of non-zero zero divisors of Zp2q contains

only four disjoint sets as given below.

E1 � tk1p : k1 � 1, 2, ...pq � 1,where p - k1 and q - k1 }.

E2 � tk2q : k2 � 1, 2, ...p2 � 1,where p - k2 }.

E3 � tk3pq : k3 � 1, 2, ...p� 1u.
E4 � tk4p

2 : k4 � 1, 2, ...q � 1u.
Clearly, |E1| � pp� 1qpq � 1q, |E2| � ppp� 1q, |E3| � pp� 1q, |E4| � pq � 1q.
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3.4. Adjacency Matrix and Eigenvalues of Γ pZp2qq

The adjacency matrix of G is given by ,

ApΓ pZp2qqq �

�
���������

Opp�1qpq�1q Opp�1qpq�1q�ppp�1q Jpp�1qpq�1q�pp�1q Opp�1qpq�1q�pq�1q

Oppp�1q�pp�1qpq�1q Oppp�1q Oppp�1q�pp�1q Jppp�1q�pq�1q

Jpp�1q�pp�1qpq�1q Opp�1q�ppp�1q J � Ipp�1q Jpp�1q�pq�1q

Opq�1q�pp�1qpq�1q Jpq�1q�ppp�1q Jpq�1q�pp�1q Opq�1q

�
���������

Remark 3.4.1. The stability number αpGq � |E1| � |E2| � pp� 1qpp� q � 1).

Remark 3.4.2. The clique number ωpGq � |E3| � p� 1.

Remark 3.4.3. Since E3 induces a complete subgraph of order p� 1, the girth

grpGq � 4 if p � 2 and grpGq � 3, if p ¥ 3.

Theorem 3.4.4. Let G � Γ pZp2qq and let λ be an eigenvalue of G. Then λ � 0

and λ � �1 are eigenvalues of G with multiplicities pp� 1qpp� q � 1q � pq � 4q
and p� 2 respectively. If λ � 0, λ � �1, then λ satisfies,

λ4�pp�2qλ3�2ppp�1qpq�1qλ2�ppp�1qpp�2qpq�1qλ�ppp�1q3pq�1q2 � 0.

Proof. Let M � ApΓ pZp2qqq. The eigenvalues of G are given by

detpM � λIq � 0

M � λI �

�
�� A B

BT C

�
��, where A �

�
��������

�λ 0 � � � 0

0 �λ 0

...
. . .

...

0 � � � � � � �λ

�
��������
pp�1qpp�q�1q
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3.4. Adjacency Matrix and Eigenvalues of Γ pZp2qq

B �

�
���������������

1 � � � � � � 1 0 � � � 0

...
...

...
...

1 � � � � � � 1 0 � � � 0

0 � � � � � � 0 1 � � � 1

...
...

...
...

0 � � � � � � 0 1 � � � 1

�
���������������
pp�1qpp�q�1q�pp�q�2q

and

C �

�
����������������������

�λ 1 � � � 1 1 � � � � � � 1

1 �λ 1
...

...

...
. . .

...
...

...

1 � � � � � � �λ 1 � � � � � � 1

1 � � � � � � 1 �λ 0 � � � 0

...
... 0 �λ � � � 0

...
...

...
. . .

...

1 � � � � � � 1 0 � � � � � � �λ

�
����������������������
p�q�2

If λ � 0, then A is invertible and by Proposition 3.3.2 and Proposition 3.3.3

detA � p�λqpp�1qpp�q�1q (3.8)

and A�1 � �1

λ
I.

Also BTA�1B � �1

λ

�
�� pp� 1qpq � 1qJp�1 Opp�1q�pq�1q

Opq�1q�pp�1q ppp� 1qJq�1

�
�� , where J denotes a

matrix of all ones.

Now, the Schur complement of A in C is given by

C �BTA�1B �

�
�� A11 A12

A21 A22

�
�� ,
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3.4. Adjacency Matrix and Eigenvalues of Γ pZp2qq

where A11 � Cp�λ� pp�1qpq�1q
λ

, 1� pp�1qpq�1q
λ

, p�1q ,

A12 � Jpp�1q�pq�1q ,

A21 � Jpq�1q�pp�1q and

A22 � Cp�λ� ppp�1q
λ

, ppp�1q
λ

, q�1q. Thus by Lemma 3.3.6 and equation (3.8),

detpM � λIq � detA. detpC �BTA�1Bq

� p�λqpp�1qpp�q�1q.detpC �BTA�1Bq
(3.9)

Applying Lemma 3.3.6 once again ,

detpC �BTA�1Bq � detA11. detpA22 � A21A
�1
11 A12q

By Proposition 3.3.2 it can be seen that,

detA11 � hpλq
λ

p�λ� 1qp�2

where hpλq � �λ2 � pp� 2qλ� pp� 1q2pq � 1q.
Also by Proposition 3.3.3,

A�1
11 � 1

hpλqpλ� 1qCpλ2�pp�3qλ�pp�1qpq�1qpp�2qq, λ�pp�1qpq�1q, p�1q

Also,

A22 � A21A
�1
11 A12 � Cp�λ� ppp�1q

λ
�λpp�1q

hpλq
, ppp�1q

λ
�λpp�1q

hpλq
q, q�1q

and

detpA22�A21A
�1
11 A12q � p�1qq�1λq�2λ

2hpλq � hpλqppp� 1qpq � 1q � λ2pp� 1qpq � 1q
λhpλq

Applying these in equations (3.8), and (3.9), the characteristic equation of Γ pZp2qq
is obtained as

ΦpG;λq � λpp�1qpp�q�1q�q�4pλ� 1qp�2φpλq � 0
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3.4. Adjacency Matrix and Eigenvalues of Γ pZp2qq

where φpλq � λ4 � pp � 2qλ3 � 2ppp � 1qpq � 1qλ2 � ppp � 1qpp � 2qpq � 1qλ �
ppp� 1q3pq � 1q2

Hence λ � 0 and λ � �1 are eigenvalues of G with multiplicities pp� 1qpp� q�
1q � pq � 4q and p� 2 respectively. Also if λ � 0, λ � �1, then λ satisfies,

φpλq � λ4�pp�2qλ3�2ppp�1qpq�1qλ2�ppp�1qpp�2qpq�1qλ�ppp�1q3pq�1q2 �
0
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Chapter 4

The adjacency matrix and eigenvalues of Γ pZpkq

The spectrum of Γ pZnq for n � p3, p4 where p is any prime, is

found in Section 2 of this Chapter. The adjacency matrix and the

characteristic polynomial of Γ pZpkq for any k ¥ 3, along with two

eigenvalues with their multiplicities, are explored in section 3. A

general method is proposed to compute the eigenvalues of Γ pZnq for

any n, using the quotient matrix of equitable partition of its vertex

set in Section 4.

4.1 Introduction

As it is seen in the previous Chapter, the difficulty level of finding the charac-

teristic polynomial of Γ pZnq increases as the number of classes in the equitable

partition of the zero divisors of Zn increases or in other words, if the number of

proper divisors of n increases. In this chapter, the study is focused to the class

1This chapter has been published in Journal of mathematical and computational science,

Volume 10, Issue 5, 2020, Pages 1643-1666.
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4.2. Adjacency matrix and the computation of the spectrum of Γ pZp3q and
Γ pZp4q

of zero divisor graphs of Zn where n is any finite power of an arbitrary prime p.

4.2 Adjacency matrix and the computation of

the spectrum of Γ pZp3q and Γ pZp4q

Recall that Zp is an integral domain and it does not contain any non-zero zero

divisors. Γ pZp2q is a complete graph and hence it is trivial to find its spectrum.

Hence, the attempt is initiated with Γ pZp3q and Γ pZp4q.

4.2.1 The adjacency matrix of Γ pZp3q

Theorem 4.2.1. The adjacency matrix of ΓpZnq for n � p3, where p is a prime

integer, is

ApΓ pZp3qq=

�
�� Opp2�pq Jpp2�pq�pp�1q

Jpp�1q�pp2�pq J � Ipp�1q

�
��

where J is a matrix of all ones and I is an identity matrix. The order of this

matrix is p2 � 1.

Proof. Let n � p3. By Proposition 3.2.1, the number of non-zero zero divisors of

Zp3 is p2 � 1. These p2 � 1 non-zero zero divisors are partitioned as follows.

P1 � tk1p : k1 � 1, 2, ...p2 � 1,where p - k1 }.

P2 � tk2p
2 : k2 � 1, 2, ...p� 1,where p - k2u.

Using elementary number theory, it can be easily seen that the cardinality of P1

is |P1| � p2 � p. Similarly,

|P2| � p� 1. It is also observed that,
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4.2. Adjacency matrix and the computation of the spectrum of Γ pZp3q and
Γ pZp4q

1. xy � 0, @x, y P P1.

2. xy � 0, @x P P1 and @y P P2.

3. xy � 0, @x, y P P2.

These simple observations give rise to the partitioned structure of the adjacency

matrix of ΓpZp3q. The non-zero zero divisors of n are rearranged such that the

elements of P1 appear first and then P2. Since no two vertices in P1 are adjacent,

it is an independent set in ΓpZp3q and hence it corresponds to a block of zeroes

in the adjacency matrix. Also since all vertices of P1 are adjacent to every vertex

of P2, it corresponds to a block of all ones and so on. Thus the adjacency of

vertices among P2 corresponds to the block J � I. Thus the adjacency matrix

of ΓpZp3q is a 2 � 2 block matrix consisting of blocks of zeros and ones in the

following form,

ApΓ pZp3qq �

�
�� Opp2�pq Jpp2�pq�pp�1q

Jpp�1q�pp2�pq J � Ipp�1q

�
�� (4.1)

The order of this matrix is |P1| � |P2| � p2 � 1.

4.2.2 Spectrum of Γ pZp3q

The order of the adjacency matrix of Γ pZp3q is p2 � 1. To reduce the complexity

in the direct computation of the characteristic polynomial, some tools of Matrix

Theory are adopted, among which Schur complement and coronal play vital role.

Definition 4.2.2. [59] Let 1n denote an all-one vector. The coronal of a matrix

A, denoted by ΓApxq, is defined as the sum of the entries of the matrix pxI�Aq�1.

That is, ΓApxq � p1nqT .pxI � Aq�1.1n
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4.2. Adjacency matrix and the computation of the spectrum of Γ pZp3q and
Γ pZp4q

Lemma 4.2.3. [27] Let G be a r-regular graph on n vertices, with adjacency

matrix A. Then, ΓApxq � n

x� r
.

Lemma 4.2.4. [53] Let A be an n�n matrix and Jn�n denote an all one matrix.

Then, detpxIn�A�αJn�nq � p1�αΓApxqq.detpxIn�Aq, where α is a real number.

Let G � Γ pZp3q and M � ApΓ pZp3qq. The vertex set of G is partitioned into

P1 and P2, where P1 induces the null subgraph Kp2�p and P2 induces a complete

subgraph Kp�1 both of which are regular of degree 0 and p� 2 respectively.

Theorem 4.2.5. Let G � ΓpZp3q and let λ be an eigenvalue of G. Then λ � 0

and λ � �1 are eigenvalues of G with multiplicities p2�p�1 and p�2 respectively.

If λ � 0, λ � �1, then λ satisfies λ2 � pp� 2qλ� ppp� 1q2 � 0.

Proof. Let the adjacency matrix of G � Γ pZp3q be denoted by M . From equation

(4.1),

M �

�
�� Opp2�pq Jpp2�pq�pp�1q

Jpp�1q�pp2�pq J � Ipp�1q

�
�� �

�
�� A1 A2

A3 A4

�
��.

Clearly A1 and A2 are the adjacency matrices of the induced subgraphs Kp2�p

and Kp�1 of G respectively. By Lemma 4.2.3, ΓA1pλq �
p2 � p

λ
and

ΓA4pλq �
p� 1

λ� p� 2
.

The eigenvalues of G are given by detpλI �Mq � 0.

By Lemma 3.3.6 ,

detpλI �Mq � detpλI � A1q.det
�pλI � A4q � A3

T .pλI � A1q�1.A2

�
, (4.2)

where detpλI � A1q � λp
2�p and detpλI � A4q � pλ� p� 2q.pλ� 1qp�2.
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4.2. Adjacency matrix and the computation of the spectrum of Γ pZp3q and
Γ pZp4q

Also, using Lemma 4.2.3 and Lemma 4.2.4 and equation (4.2),

det
�pλI � A4q � A3

T .pλI � A1q�1.A2

� � det rpλI � A4q � ΓA1pλq.Jp�1�p�1s

� det

�
pλI � A4q � pp

2 � p

λ
q.Jp�1�p�1

�

�
�

1� pp
2 � p

λ
qΓA4pλq



.detpλI � A4q

�
�

1� pp
2 � p

λ
qp p� 1

λ� p� 2
q



.pλ� p� 2q.pλ� 1qp�2.

Thus, the characteristic polynomial of G is given by,

ΦpG;λq � λp
2�p�1.pλ� 1qp�2.

�
λ2 � pp� 2qλ� ppp� 1q2�

Thus the spectrum of Γ pZp3q is

$'&
'%

0 �1
pp� 2q �

a
4p3 � 7p2 � 4

2

pp� 2q �
a

4p3 � 7p2 � 4

2

p2 � p� 1 p� 2 1 1

,/.
/-

4.2.3 Adjacency matrix and eigenvalues of Γ pZp4q

Partitioning the non-zero zero divisors of Zp4 into multiples of p, p2, p3 and

labeling the vertices of the zero-divisor graph Γ pZp4q properly, the adjacency

matrix of Γ pZp4q is obtained as,

ApΓ pZp4qq �

�
�����

Op2pp�1q Op2pp�1q�ppp�1q Jp2pp�1q�pp�1q

Oppp�1q�p2pp�1q J � Ippp�1q Jppp�1q�pp�1q

Jpp�1q�p2pp�1q Jpp�1q�ppp�1q J � Ipp�1q

�
�����

The characteristic polynomial can be computed as in Section 4.2.2.

Theorem 4.2.6. Let G � ΓpZp4q and let λ be an eigenvalue of G. Then λ � 0

and λ � �1 are eigenvalues of G with multiplicities p3 � p2 � 1 and p2 � 3
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4.3. The generalised join structure of Γ pZnq

respectively. If λ � 0, λ � �1, then λ satisfies φpλq � λ3 � pp2 � 3qλ2 � pp4 �
2p3 � 2p2 � 2qλ� p2pp� 1q2pp2 � p� 1q � 0.

4.3 The generalised join structure of Γ pZnq

It is observed that, for higher powers of p, the number of blocks in the adjacency

matrix of Γ pZpkq is not feasible for applying Lemma 4.2.3 and Lemma 4.2.4 to

extract the spectrum in full and this problem becomes severe when n has more

prime power factors. At this juncture, the structural properties of the graphs

Γ pZnq may be analyzed in terms of the induced subgraphs. S. Chattopadhyay et

al have thrown light into the generalised join structure of Γ pZnq by the subgraphs

induced by the vertices which forms an equitable partition of its vertex set.

By a proper divisor of n, we mean a positive divisor d such that d{n , 1   d  
n. Let ξpnq denote the number of proper divisors of n. Then, ξpnq � σ0pnq � 2,

where σkpnq is the sum of k powers of all divisors of n, including n and 1. It

is convenient to denote the proper divisors of n by d1, d2, ..., dξpnq. Consider

the canonical decomposition n � pn1
1 � pn2

2 � � � pnrr , where p1, p2, ..., pr are distinct

primes, and r, n1, n2, ..., nr are positive integers. Then,

ξpnq �
r¹
i�1

pni � 1q � 2

. Let Apdq � tk P Zn : gcdpk, nq � du. Then
 
Apd1q,Apd2q, ...,Apdξpnqq

(
is an

equitable partition for the vertex set of Γ pZnq such that ApdiqXApdjq � φ, i � j,

and any two vertices in Apdiq have the same number of neighbours in Apdjq for

all divisors di, dj of n. Refer [25] for the following Lemma.

Lemma 4.3.1. [25] |Apdiq| � φp n
di
q, for every i � 1, 2, ...ξpnq.
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4.3. The generalised join structure of Γ pZnq

Lemma 4.3.2. [25]

ΓpApdjqq �

$''&
''%
Kφp n

dj
q if n � d2

j

Kφp n
dj
q if n � d2

j

.

For example, in Γ pZp3q, Appq induces Kppp�1q and App2q induces Kp�1. In

Γ pZp2qq, Appq,Apqq,App2q induce Kpp�1qpq�1q, Kppp�1q, Kq�1 respectively while

Appqq induces Kp�1; which is visible from the diagonal blocks 0, J � I in the

adjacency matrices of respective graphs.

It is relevant to define the proper divisor graph of n which is closely associated

with Γ pZnq in describing its joined union structure.

Definition 4.3.3. [49] The proper divisor graph of n, denoted by Υn is a sim-

ple connected graph with vertices labeled as d1, d2, ..., dξpnq; in which two distinct

vertices di and dj are adjacent if and only if n{didj.

The following Lemma is very crucial in finding the spectrum of Γ pZnq for any

n; which states that the zero-divisor graph of Γ pZnq is a generalised join of its

subgraphs ΓpApdiqq, for i � 1, 2, ..., ξpnq.

Lemma 4.3.4. [25] Γ pZnq � Υn

�
ΓpApd1qq,ΓpApd2qq, ...,ΓpApdξpnqqq

�

For example, consider Γ pZ30q. The proper divisors of 30 are 2, 3, 5, 6, 10, 15.

The vertices of Γ pZ30q are partitioned into disjoint sets as follows.

Ap2q � t2, 4, 8, 14, 16, 22, 26, 28u, Ap3q � t3, 9, 21, 27u, Ap5q � t5, 25u,
Ap6q � t6, 12, 18, 24u, Ap10q � t10, 20u and Ap15q � t15u. The zero-divisor

graph Γ pZ30q and its proper divisor graph are given in Figure 4.1.
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1v1

2v2

3
v3

4
v4

5 v5

6 v6

7
v7

8
v8

9
v9

1v10 2 v11

1v12 2
v13

3
v14

4 v15

1 v16

2 v17

3 v18

4 v19

1
v20

2
v21

(a) Γ pZ30q

12 2
15

1
6

2 5

1
10

2
3

(b) Υ30

Figure 4.1: The zero divisor graph on Z30 and the proper divisor graph Υ30

Example 4.3.5. For example, consider Γ pZ36q. The number of proper divisors

of 36 is 7. They are precisely 2, 3, 4, 6, 9, 12, 18. The non-zero divisors of Γ pZ36q
is partitioned into 7 classes as follows. Ap2q � t2, 10, 14, 22, 26, 34u,
Ap3q � t3, 15, 21, 33u, Ap4q � t4, 8, 16, 20, 28, 32u, Ap6q � t6, 30u,
Ap9q � t9, 27u, Ap12q � t12, 24u, Ap18q � t18u.
The graphs Γ pZ36q and Υ36 are given in Figure 4.2 and Figure 4.3. Note that

ΓpAp6qq, ΓpAp12qq and ΓpAp18qqq are complete subgraphs, while the others are

null graphs.

4.4 Adjacency matrix of Γ pZpkq, k ¥ 3

In this section, the adjacency matrix of Γ pZpkq, k ¥ 3 is analysed. Also, we

note that the proper divisors of pk are p, p2, ..., pk�1 and the number of non-zero

zero-divisors of Zpk is pk�1 � 1, by Proposition 3.2.1.

The adjacency matrix of Γ pZp4q, Γ pZp5q, Γ pZp6q, Γ pZp7q, analysis of which led

to some interesting results, are given in Figure 4.4, Figure 4.5, Figure 4.6, and
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03

3

12

12

06

6

18

18
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2

09
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4

Figure 4.2: Υ36
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Figure 4.3: Γ pZ36q
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Figure 4.7

As illustrated in section 3.2, the adjacency matrix of Γ pZpkq contains blocks

A ppq A pp2q A pp3q�
�����

�
�����

A ppq O O J

A pp2q O J � I J

A pp3q J J J � I

Figure 4.4: ApΓ pZp4qq

A ppq A pp2q A pp3q A pp4q�
��������

�
��������

A ppq O O O J

A pp2q O O J J

A pp3q O J J � I J

A pp4q J J J J � I

Figure 4.5: ApΓ pZp5qq

A ppq A
�
p2
�

A
�
p3
�

A
�
p4
�

A
�
p5
�

�
�����������

�
�����������

A ppq O O O O J

A
�
p2
�

O O O J J

A
�
p3
�

O O J � I J J

A
�
p4
�

O J J J � I J

A
�
p5
�

J J J J J � I

Figure 4.6: ApΓ pZp6qq

A ppq A
�
p2
�
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Figure 4.7: ApΓ pZp7qq

of all zero matrices, all one matrices and identity matrices. If all vertices of

Appiq are adjacent to every vertex of Appjq, we write Appiq � Appjq. Clearly,

Appiq � Appjq iff i � j ¥ k. Also, Appiq � Appiq, indicates that every vertex

of Appiq is adjacent to every other vertex of Appiq and clearly the equivalent

condition of adjacency of vertices among Appiq is that; Appiq � Appiq iff i ¥ rk
2
s.

Thus, the adjacency matrix of Γ pZpkq is obtained as in Figure 4.8 and Figure

4.9.
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4.4. Adjacency matrix of Γ pZpkq, k ¥ 3

Appq App2q � � � Appr k
2
s�1q Appr k

2
sq � � � � � � Appk�1q�

�������������������������

�
�������������������������

Appq O � � � � � � O O � � � O J

App2q ...
. . .

...
... O J J

...
...

. . .
...

...
...

...

Appr k
2
s�1q O � � � � � � O O J � � � � � � J

Appr k
2
sq � � � � � � O J � I J � � � � � � J

...
... � � � O J J J � I J � � � J

...
...

...
. . .

...

... O J � � � J
...

. . . J

Appk�1q J J � � � J J J � � � � � � J � I

Figure 4.8: ApΓ pZpkqq; when k is even

4.4.1 Some graph parameters of Γ pZpkq

The above analysis of the structure of Γ pZpkq leads to some results regarding the

stability number, clique number and girth of Γ pZpkq. As the matrix narrates the

adjacency between Appiq and Appjq, for i, j � 1, 2, ..., k � 1 and the adjacency

among the vertices of each Appiq, i � 1, 2, ..., k� 1, it is clear that, any principal

sub matrix of zero blocks corresponds to an independent set in Γ pZpkq.

Theorem 4.4.1. Let G � Γ pZpkq, k ¥ 3. Then, αpGq � pk�1 � pt k
2
u

Proof. From the adjacency matrix of Γ pZpkq, it is clear that, the maximum size

of a principal sub matrix of zero blocks is |Appq| � |App2q| � ... � |Appr k
2
s�1q|.
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4.4. Adjacency matrix of Γ pZpkq, k ¥ 3

Appq App2q � � � Appr k
2
s�1q Appr k

2
sq � � � Appk�1q�

�������������������������

�
�������������������������

Appq O � � � � � � O O O � � � O J

App2q ...
. . .

... O
... � � � J J

...
...

. . .
...

... J � � � ...
...

Appr k
2
s�1q O � � � � � � O J J � � � � � � J

Appr k
2
sq O O � � � J J � I J � � � � � � J

... O � � � J J J J � I J � � � J

...
...

...
...

. . .
...

O J � � � J
...

. . .
...

Sppk�1q J J � � � J J J � � � � � � J � I

Figure 4.9: ApΓ pZpkqq; when k is odd

Thus, by Proposition 4.3.1,

αpGq � φpp
k

p
q � φpp

k

p2
q � ...� φp pk

pr k
2
s�1

q

� φppk�1q � φppk�2q � ...� φppk�r k
2
s�1q

� pk�1 � pt k
2
u.

Theorem 4.4.2. Let G � Γ pZpkq, k ¥ 3. Then,

ωpGq �

$''&
''%
p
k
2 � 1; if k is even,

pt k
2
u; k is odd.

Proof. A clique of a graph G is a subset of V pGq which induces a complete

subgraph in G. Thus, the maximum size of a clique in Γ pZpkq is |Appr k
2
sq| �

|Appr k
2
s�1q| � ... � |Appk�1q| ; if k is even and one more than this number if k is
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4.4. Adjacency matrix of Γ pZpkq, k ¥ 3

odd.

|Appr k
2
sq| � |Appr k

2
s�1q| � ...� |Appk�1q| � φp p

k

pr k
2
s
q � ...� φp p

k

pk�1
q

� φppq � ...� φppt k
2
uq

� pt k
2
u � 1.

Thus, ωpGq �

$''&
''%
p
k
2 � 1; if k is even,

pt k
2
u; if k is odd.

Theorem 4.4.3. Let G � Γ pZpkq, k ¥ 3 for any prime p. Then, grpGq � 3

except that grpΓ pZ8qq � 8

Proof. Consider k ¥ 3.

If k is even, from the above Theorem, we see that ωpGq ¥ 3, for any prime p.

If k is odd, ωpGq ¥ 3, for any prime p ¥ 3. Thus, the length of the shortest cycle

is 3 in these cases. Also for p � 2 and k � 3, we see that the zero divisor graph

Γ pZ8q is K1,2, which contains no cycle.

4.4.2 The eigenvalues λ � 0 and λ � �1 of Γ pZpkq

Matrix Theory is a mode of conveying very important information regarding both

structural and algebraic parameters of a graph. Here, from the point of view of

Linear Algebra, the multiplicities of the eigenvalues 0 and �1 are calculated.

Theorem 4.4.4. Let G � Γ pZpkq, k ¥ 3. Then λ � 0 and λ � �1 are eigenval-

ues of G with multiplicities pk�1 � pt k
2
u � rk

2
s� 1 and pt k

2
u � tk

2
u� 1 respectively.

Proof. The adjacency matrix of Γ pZpkq contains repeated rows. Hence the deter-

minant is zero. This indicates that λ � 0 is an eigenvalue. Since the adjacency
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4.5. Computation of eigenvalues of Γ pZnq

matrix of any simple graph is real and symmetric, it follows that the algebraic

multiplicity of λ � 0 is the nullity of the adjacency matrix, which is exactly the

number of dependent rows in the adjacency matrix of Γ pZpkq. If M � ApΓ pZpkqq,
then in each of the first rk

2
s � 1 blocks of M , all but one, are dependent rows.

Thus,

nullitypMq � |Appq| � |App2q| � ...� |Appr k
2
s�1q| � prk

2
s� 1q

� φpp
k

p
q � φpp

k

p2
q � ...� φp pk

pr k
2
s�1

q � prk
2
s� 1q

� pk�1 � pt k
2
u � r

k

2
s� 1.

Thus, multiplicity of λ � 0 is pk�1 � pt k
2
u � rk

2
s� 1.

Also, we can see that detpM � Iq � 0. Hence λ � �1 is an eigenvalue of M and

multiplicity of λ � �1 is the nullity of M � I. In each of the last tk
2
u blocks of

M � I, all but one, are dependent rows. Thus nullity of M � I is given by,

nullitypM � Iq � |Appr k
2
sq| � |Appr k

2
s�1q| � ...� |Appk�1q| � t

k

2
u

� pt k
2
u � t

k

2
u� 1.

Thus multiplicity of the eigenvalue λ � �1 is pt k
2
u � tk

2
u� 1.

The other eigenvalues of Γ pZpkq are computed in Section: 4.5.

4.5 Computation of eigenvalues of Γ pZnq

It is very exciting to observe that the induced subgraphs ΓpApdiqq; being com-

plete or null; are regular for i � 1, 2, 3, ..., ξpnq. The regularity of these induced

subgraphs of Γ pZnq and its joined union structure makes it easy to apply the

technique described by A.J. Schwenk [75] in finding the spectrum of Γ pZnq.
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4.5. Computation of eigenvalues of Γ pZnq

Definition 4.5.1. [75] Let V1, V2, ...Vm be an equitable partition of a graph G,

with |Npvq X Vj| � tij, 1 ¤ i, j ¤ m, for all v P Vi. Then, T � rtijs is called the

matrix associated with the partition.

Theorem 4.5.2. [75] Let G be a graph on p vertices. If Hi, 1 ¤ i ¤ p are all ri-

regular graphs, then V1YV2Y ...YVp is an equitable partition of GrH1, H2, ...Hps.
Let T denote the matrix associated with this partition. Then, the characteristic

polynomial of the generalised composition is

ΦpGrH1, H2, ...Hps;λq � ΦpT ;λq.
p¹
i�1

ΦpHi;λq
pλ� riq .

The above theorem leads to a very exciting way of computing the eigenvalues

of Γ pZnq.
First, we determine T , the matrix associated with the partition Apd1qYApd2qY
... YApdξpnqq. of the graph Γ pZnq. Let |Npvq XApdjq| � tij, 1 ¤ i, j ¤ ξpnq, for

all v P Apdiq. Note that Apdiq � Apdjq if and only if n{didj and Apdiq induces a

complete subgraph in G, if and only if n{d2
i and a null graph if and only if n - d2

i .

Thus, T � rtijsξpnq�ξpnq is defined as follows.

tij �

$''''''&
''''''%

φp n
dj
q; if n / didj; i � j

φp n
di
q � 1; if n / d2

i ; i � j

0; otherwise

(4.3)

This description completely determines T and subsequently ΦpT ;λq and makes

it possible to explore the characteristic polynomial of Γ pZnq in a very convenient

manner.

Theorem 4.5.3. Let G � Γ pZnq, n � p, p2, for any prime p. Then the charac-

teristic polynomial of G is ΦpG;λq � ΦpT ;λq.±n{d2i pλ�1qφp ndi q�1
.
±

n-d2i
λ
φp n
di
q�1

,
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4.5. Computation of eigenvalues of Γ pZnq

where T � rtijs,

tij �

$''''''&
''''''%

φp n
dj
q; if n / didj; i � j

φp n
di
q � 1; if n / d2

i ; i � j

0; otherwise

Proof. Let n � pn1
1 p

n2
2 ...p

nr
r , where p1, p2, ..., pr are distinct primes, r, n1, n2, ..., nr

are positive integers and assume that n is neither a prime nor the square of a

prime (to avoid triviality). Let d1, d2, ...dξpnq be the proper divisors of n. Let

mi denote the cardinality of Apdiq, i � 1, 2, ..., ξpnq. Thus, mi � φp n
di
q, i �

1, 2, ..., ξpnq. It is already seen that ΓpApdiqq; the subgraph induced by Apdiq is

either Kmi or Kmi which are regular of order mi�1 or 0 respectively; accordingly

as n divides d2
i or not.

Thus, ΦpΓpApdiqq;λq � ΦpKmi ;λq � pλ� 1qmi�1.pλ�mi � 1q; if n / d2
i and

ΦpΓpApdiqq;λq � ΦpKmi ;λq � λmi ; if n - d2
i .

Thus, the conclusion follows from Lemma 4.3.4 and Theorem 4.5.2 .

Example 4.5.4. Consider n � p2q, where p and q are distinct primes p   q.

The proper divisors of p2q are d1 � p, d2 � q, d3 � p2 and d4 � pq.

Apd1q � tk1p : k1 � 1, 2, ...pq � 1; p - k1, q - k1u.
Apd2q � tk2q : k2 � 1, 2, ...p2 � 1; p - k2u.
Apd3q � tk3p

2 : k3 � 1, 2, ...q � 1u.
Apd4q � tk4pq : k4 � 1, 2, ...p� 1u.
Clearly, |Apd1q| � pp � 1qpq � 1q, |Apd2q| � ppq � 1q, |Apd3q| � q � 1, and

|Apd4q| � p� 1.

These sets form an equitable partition for the vertex set of Γ pZnq, as seen in
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4.5. Computation of eigenvalues of Γ pZnq

Section 3.2.

Also, the matrix of partition,

T �

�
��������

0 0 0 p� 1

0 0 q � 1 0

0 ppp� 1q 0 p� 1

pp� 1qpq � 1q 0 q � 1 p� 2

�
��������
.

The characteristic polynomial of this matrix is given by, ΦpT ;λq � detpT � λIq.
Thus,

ΦpT ;λq � λ4�pp�2qλ3�2ppp�1qpq�1qλ2�ppp�1qpp�2qpq�1qλ�ppp�1q3pq�1q2.
Let Gi � ΓpApdiqq, i � 1, 2, 3, 4.. Note that G1, G2, G3 are null graphs of order

pp�1qpq�1q, ppp�1q and q�1 respectively and G4 is a complete graph of order

p� 1 which is regular of degree p� 2. Thus,

ΦpG1;λq � λpp�1qpq�1q

ΦpG2;λq � λppp�1q

ΦpG3;λq � λq�1

ΦpG4;λq � pλ� 1qp�2pλ� p� 2q.
Hence the characteristic polynomial of Γ pZp2qq is,

ΦpΓ pZp2q;λqq � pλ� 1qp�2.λpp�1qpp�q�1q�pq�4q.ΦpT ;λq;

where ΦpT ;λq � λ4 � pp� 2qλ3 � 2ppp� 1qpq � 1qλ2 � ppp� 1qpp� 2qpq � 1qλ�
ppp� 1q3pq � 1q2.

Remark 4.5.5. In the above example, the order of the zero divisor graph Γ pZp2qq
is p2� pq� p� 1, by Proposition 3.2.1. Theorem 4.5.3 reduces the inconvenience

of handling a huge matrix of order p2 � pq � p� 1 in finding the eigenvalues, by
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4.5. Computation of eigenvalues of Γ pZnq

means of a 4� 4 matrix of partition and thereby serves the purpose of bypassing

the tedious traffic of direct computation using matrix operations.

Corollary 4.5.6. The characteristic polynomial of Γ pZpkq, k ¥ 2 is given by

ΦpΓ pZpkq;λq � ΦpT ;λq.
¹
i r k

2
s

λpp�1qppk�i�1q

.
¹
i¥r k

2
s

pλ� 1qpp�1qppk�i�1q

,

where T � rtijspk�1q�pk�1q ,

tij �

$''''''&
''''''%

pp� 1qpk�j�1; if i� j ¥ k; i � j

pp� 1qpk�j�1 � 1; if i� j ¥ k; i � j

0; otherwise

Proof. Apdiq induces a complete subgraph in Γ pZnq if and only if n{d2
i ; and a

null graph otherwise. hence if n � pk; k ¥ 2, Appiq induces a complete subgraph

of order pk�i�1pp� 1q if i ¥ rk
2
s or a null graph otherwise.

Example 4.5.7. For G � Γ pZp4q, it can be seen from section 3.1 that the matrix

of partition of the vertex set of G is given by,

T �

�
�����

0 0 p� 1

0 ppp� 1q � 1 p� 1

p2pp� 1q ppp� 1q p� 2

�
����� .

Thus ΦpT ;λq is obtained as,

ΦpT ;λq � λ3�pp2�3qλ2�pp4�2p3�2p2�2qλ�p2pp�1q2pp2�p�1q. Applying

Corollary 4.5.6, we see that the characteristic polynomial of Γ pZp4q is,

ΦpΓ pZp4q;λq � pλ� 1qp2�3.λp
3�p2�1.ΦpT ;λq,

where ΦpT ;λq � λ3 � pp2 � 3qλ2 � pp4 � 2p3 � 2p2 � 2qλ� p2pp� 1q2pp2 � p� 1q
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Thus Theorem 4.5.3 and Corollary 4.5.6 are the generalisation of results in

Section 4.2.2 and Section 4.2.3.
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Chapter 5

Direct computation of distance related

spectrum of Γ pZnq for some values of n

In this Chapter, the distance matrix, distance Laplacian matrix and

distance signless Laplacian matrix and the spectra of these matrices

for the graphs Γ pZpqq and Γ pZp3q, for p   q, are found.

5.1 Introduction

The notion of distance and transmission of vertices in graph theory finds wide

applications in different realms of the physical world including the design of com-

munication networks, graph embedding and molecular stability. This Chapter is

devoted to the determination of distance, distance Laplacian and distance sign-

less Laplacian eigenvalues of Γ pZnq for some values of n. Recall Definition 2.3.3

and Definition 2.3.4 of distance, distance Laplacian and distance signless Lapla-

cian matrix of a connected graph G.

1This chapter has been published in Journal of Mathematical and Computational Science,

Volume 11, Issue 1, 2021, Pages 365-379.
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5.2. Distance spectrum of Γ pZpqq and Γ pZp3q where p and q are distinct
primes, p   q

Since the distance matrix of a connected graph is symmetric, its eigenvalues are

real and can be ordered as B1 ¥ B2 ¥ ... ¥ Bn. Let ΦDpG;λq denote the charac-

teristic polynomial of the distance matrix of G and SpecDpGq denote its distance

spectrum. The largest distance eigenvalue of G is referred to as the distance

spectral radius. The distance energy of G is given by, EDpGq � Σn
i�1|Bi|. [48]

SpecDLpGq and SpecDQpGq denote the spectrum of G related to the distance

Laplacian and the distance signless Laplacian matrix of G respectively. Let us

denote detpλI �DLpGqq and detpλI �DQpGqq by ΦDLpG;λq and ΦDQpG;λq re-

spectively. For a connected graph G on n vertices, BL1 ¥ BL2 ¥ ... ¥ BLn denote

the distance Laplacian eigenvalues and BQ1 ¥ BQ2 ¥ ... ¥ BQn denote the distance

signless Laplacian eigenvalues.

5.2 Distance spectrum of Γ pZpqq and Γ pZp3q where

p and q are distinct primes, p   q

This Section, illustrates the direct computation of the distance spectrum of

Γ pZnq, where n � p3, pq, where p and q are distinct primes, p   q. Recall

that Γ pZnq is a complete graph if and only if n is the square of a prime and a

complete bipartite graph if and only if n is the product of two distinct primes or

n � 8.

Theorem 5.2.1. For any two distinct primes p and q, the distance spectrum of

Γ pZpqq is given by,

SpecDpΓ pZpqqq =

$'&
'%

�2 p� q � 4�
a
p2 � q2 � pq � pp� qq � 1 p� q � 4�

a
p2 � q2 � pq � pp� qq � 1

p� q � 4 1 1

,/.
/-
.
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5.2. Distance spectrum of Γ pZpqq and Γ pZp3q where p and q are distinct
primes, p   q

Proof. Let G � Γ pZpqq. The only proper divisors of pq are p and q and the

number of non-zero zero-divisors of Zpq is p � q � 2. Labeling these p � q � 2

vertices of G properly, it can be seen that,

Appq � tk1p : k1 � 1, 2, ..., q � 1u,

Apqq � tk2q : k � 2 � 1, 2, ..., p� 1u.

And these two subsets of vertices of G, from an equitable partition of V pGq.
Then, clearly |Appq| � q � 1 and |Apqq| � p� 1. While labeling the vertices, let

those from Appq be arranged first and then Apqq. Also, Appq and Apqq induce

null graphs of order q � 1 and p � 1 respectively. Thus, G � Γ pZpqq is the K2-

join of Kq�1 and Kp�1.

That is,

Γ pZpqq � Kq�1 _Kp�1.

Clearly, the distance between any two vertices of Apqq as well as Appq in G, is

2. Also, the distance between a vertex in Apqq and a vertex in Appq is 1 in G.

Thus, if J denotes an all-one matrix, the distance matrix of G is given by,

DpGq �

�
�� 2pJ � Iqpq�1q�pq�1q Jpq�1q�pp�1q

Jpp�1q�pq�1q 2pJ � Iqpp�1q�pp�1q

�
��

�

�
�� A J

JT B

�
��

where A � 2pJ � Iqpq�1q�pq�1q, B � 2pJ � Iqpp�1q�pp�1q.

Using Lemma 3.3.6, it can be easily seen that,

ΦDpG;λq � detpλI � Aq.det �pλI �Bq � JT pλI � Aq�1J
�
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5.2. Distance spectrum of Γ pZpqq and Γ pZp3q where p and q are distinct
primes, p   q

Using Lemma: 4.2.4,

ΦDpG;λq � detpλI � Aq � detpλI �Bq � p1� ΓApλq.ΓBpλqq (5.1)

Since A and B are symmetric matrices with constant row sums 2pq � 2q and

2pp� 2q respectively, it follows from Lemma 4.2.3 that,

ΓApλq � q � 1

λ� 2pp� 2q

and

ΓBpλq � p� 1

λ� 2pq � 2q .

Since A � 2pJ � Iq, where J and I are all-one matrix of size q � 1 and identity

matrix of size q � 1 respectively, again by Lemma 4.2.4,

detpλI � Aq � detpλI � 2J � 2Iq � pλ� 2qq�2. pλ� 2pq � 2qq .

Similarly, since B � 2pJ � Iq is of size p� 1,

detpλI �Bq � detpλI � 2J � 2Iq � pλ� 2qp�2. pλ� 2pp� 2qq .

Thus, from equation (5.1), it follows that, ΦDpG;λq � pλ�2qq�2 �pλ�2qp�2.Qpλq,
where Qpλq � λ2 � 2λpp� q � 4q � 3pq � 7pp� qq � 15. Thus,

SpecDpΓ pZpqqq �
$'&
'%

�2 p� q � 4�
a
p2 � q2 � pq � pp� qq � 1 p� q � 4�

a
p2 � q2 � pq � pp� qq � 1

p� q � 4 1 1

,/.
/-

Since the distance matrix of a connected graph is irreducile, non-negative and

symmetric, it follows from Perron Frobenius Theorem that, its largest eigenvalue

is simple . It is obvious that the number of distinct distance eigenvalues of Γ pZpqq
is 3 and thus immediately the next Corollary follows.
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5.2. Distance spectrum of Γ pZpqq and Γ pZp3q where p and q are distinct
primes, p   q

Corollary 5.2.2. The distance spectral radius of Γ pZpqq, when p and q are

distinct primes , p   q, is p� q � 4�a
p2 � q2 � pq � pp� qq � 1.

The following Corollary gives a lower bound for the distance energy of Γ pZpqq.

Corollary 5.2.3. For any two distinct prime p, q, EDpΓ pZpqqq ¥ 2pp� q � 4q.

Theorem 5.2.4. For any prime p � 2, the distance spectrum of Γ pZp3q is given

by,

SpecDpΓ pZp3qq �
#

�2 �1
2p2�p�4�

?
4p4�8p3�p2�4p
2

2p2�p�4�
?

4p4�8p3�p2�4p
2

p2 � p� 1 p� 2 1 1

+
.

Proof. Let G � Γ pZp3q. As described in Theorem 4.2.1, it can be seen that the

number of non-zero zero divisors of Zp3 is p2 � 1. These p2 � 1 vertices of G are

partitioned (equitable partition) as follows.

Appq � tk1p : k1 � 1, 2, ...p2 � 1,where p - k1 }.

App2q � tk2p
2 : k2 � 1, 2, ...p� 1,where p - k2u.

Clearly, Appq induces a null graph of order ppp�1q and App2q induces a complete

graph on p � 1 vertices, as described in Section:4.2. Thus, Γ pZp3q � Kppp�1q _
Kp�1. Recall that the distance matrix of a complete graph is the same as its

adjacency matrix. Thus, the distance matrix of G is given as follows.

DpGq �

�
�� 2pJ � Iqppp�1q�ppp�1q Jppp�1q�pp�1q

Jpp�1q�ppp�1q pJ � Iqpp�1q�pp�1q

�
��

�

�
�� A J

JT B

�
��

where A � 2pJ � Iqppp�1q�ppp�1q, B � pJ � Iqpp�1q�pp�1q,

Proceeding as in the previous theorem, we get,

SpecDpΓ pZp3qq �
#

�2 �1
2p2�p�4�

?
4p4�8p3�p2�4p
2

2p2�p�4�
?

4p4�8p3�p2�4p
2

p2 � p� 1 p� 2 1 1

+
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distinct primes, p   q.

Corollary 5.2.5. The distance spectral radius of Γ pZp3q, is,
2p2�p�4�

?
4p4�8p3�p2�4p

2
.

Corollary 5.2.6. For any prime p, EDpΓ pZp3qq ¥ 3pp2 � p� 6q.

5.3 Distance Laplacian spectrum for Γ pZpqq, and

Γ pZp3q, where p and q are distinct primes,

p   q.

In this Section, the Laplacian spectra of Γ pZpqq, and Γ pZp3q are computed, where

p and q are distinct primes, p   q. Each row sum of DLpGq is zero and for a

connected graph G of order n, and 0 is a simple eigenvalue of DLpGq with 1n as

the corresponding eigen vector [11].

Theorem 5.3.1. For any two distinct primes p and q, the distance Laplacian

spectrum of Γ pZpqq is given by,

SpecDLpΓ pZpqqq �

$'&
'%

0 p� q � 2 p� 2q � 3 2p� q � 3

1 1 q � 2 p� 2

,/.
/-

Proof. Let G � Γ pZpqq. Then G � Kq�1 _ Kp�1. Also, Appq � tk1p : k1 �
1, 2, ..., q � 1u and Apqq � tk2q : k � 2 � 1, 2, ..., p � 1u form an equitable
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partition of V pGq. Thus, for any vertex v P Appq,

Trpvq �
¸

uPV pGq
dGpu, vq

�
¸

uPAppq
dGpu, vq �

¸
uPApqq

dGpu, vq

� 2pq � 2q � pp� 1q � p� 2q � 5.

Similarly, for any vertex w P Apqq,

Trpwq �
¸

uPV pGq
dGpu,wq

�
¸

uPAppq
dGpu,wq �

¸
uPApqq

dGpu,wq

� pq � 1q � 2pp� 2q � 2p� q � 5.

Thus, the transmission matrix TrpGq is given by

TrpGq �

�
�� pp� 2q � 5qIpq�1q�pq�1q Opq�1q�pp�1q

Opp�1q�pq�1q p2p� q � 5qIpp�1q�pp�1q

�
��

And the distance matrix of G is given by,

DpGq �

�
�� 2pJ � Iqpq�1q�pq�1q Jpq�1q�pp�1q

Jpp�1q�pq�1q 2pJ � Iqpp�1q�pp�1q

�
��

Thus, the distance Laplacian matrix of G is given by

DLpGq �

�
�� pp� 2q � 5qI � 2pJ � Iqpq�1q�pq�1q �Jpq�1q�pp�1q

�Jpp�1q�pq�1q p2p� q � 5qI � 2pJ � Iqpp�1q�pp�1q

�
��

�

�
�� A �J
�JT B

�
��

where A � pp� 2q � 3qI � 2Jpq�1q�pq�1q, B � p2p� q � 3qI � 2Jpp�1q�pp�1q,

Proceeding as in the previous Section,
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SpecDLpΓ pZpqqq �

$'&
'%

0 p� q � 2 p� 2q � 3 2p� q � 3

1 1 q � 2 p� 2

,/.
/-

Theorem 5.3.2. For any prime p � 2, the distance Laplacian spectrum of

Γ pZp3q is given by

SpecDLpΓ pZp3qq =

$'&
'%

0 p2 � 1 2p2 � p� 1

1 p� 1 p2 � p� 1

,/.
/- .

Proof. Let G � Γ pZp3q. Appq � tk1p : k1 � 1, 2, ...p2 � 1,where p - k1 },

App2q � tk2p
2 : k2 � 1, 2, ...p � 1,where p - k2u form an equitable partition for

the vertex set V pGq. Also, Γ pZp3q � Kppp�1q_Kp�1. The transmission degree of

any vertex in Appq in G, is 2p2�p�3 and of any vertex in App2q is p2�2. Thus,

the transmission matrix and the distance matrix and of G are given as follows.

TrpGq �

�
�� p2p2 � p� 3qIppp�1q�ppp�1q Oppp�1q�pp�1q

Opp�1q�ppp�1q pp2 � 2qIpp�1q�pp�1q

�
�� .

DpGq �

�
�� 2pJ � Iqppp�1q�ppp�1q Jppp�1q�pp�1q

Jpp�1q�ppp�1q pJ � Iqpp�1q�pp�1q

�
�� .

Thus, it can be easily seen, that the distance Laplacian matrix of G is

DLpGq �

�
�� p2p2 � p� 1qI � 2Jppp�1q�ppp�1q �Jppp�1q�pp�1q

�Jpp�1q�ppp�1q pp2 � 1qI � Jpp�1q�pp�1q

�
�� .

A similar computation shows that,

ΦDLpG;λq � �
λ� p2p2 � p� 1q�p2�p�1

.
�
λ� pp2 � 1q�p�2

.Qpλq,
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where Qpλq � λ pλ� pp2 � 1qq. Thus,

SpecDLpΓ pZp3qq �

$'&
'%

0 p2 � 1 2p2 � p� 1

1 p� 1 p2 � p� 1

,/.
/- .

5.4 Distance signless Laplacian spectrum for Γ pZpqq,

and Γ pZp3q, where p and q are distinct primes,

p   q.

In this Section, the distance signless Laplacian spectra of Γ pZpqq and Γ pZp3q,
where p and q are distinct primes, p   q are computed. Note that, if G is a con-

nected graph, DQpGq is a real, symmetric, nonnegative, irreducible and positive

semi definite matrix. Thus, all eigenvalues of DQpGq are real and nonnegative

and also by the Perron Frobenius Theorem, the largest eigenvalue of DQpGq,
called the distance signless Laplacian spectral radius of G, denoted by BQpGq, is

positive and simple.

Theorem 5.4.1. For any two distinct primes p and q, the distance signless

Laplacian eigenvalues of Γ pZpqq are
5pp� qq � 18�a

9pp� qq2 � 4pp� 1qpq � 1q
2

,

5pp� qq � 18�a
9pp� qq2 � 4pp� 1qpq � 1q

2
, p � 2q � 7 and 2p � q � 7 with

multiplicities 1, 1, q � 2 and p� 2 respectively.

Proof. let G � Γ pZpqq. Then, as in the previous Section, counting the transmis-

67



5.4. Distance signless Laplacian spectrum for Γ pZpqq, and Γ pZp3q, where p and
q are distinct primes, p   q.

sion degree of each vertex v P V pGq it can be seen that,

TrpGq �

�
�� pp� 2q � 5qIpq�1q�pq�1q Opq�1q�pp�1q

Opp�1q�pq�1q p2p� q � 5qIpp�1q�pp�1q

�
�� .

And the distance matrix of G is given by,

DpGq �

�
�� 2pJ � Iqpq�1q�pq�1q Jpq�1q�pp�1q

Jpp�1q�pq�1q 2pJ � Iqpp�1q�pp�1q

�
�� .

Thus, the distance signless Laplacian matrix of G is given by

DQpGq �

�
�� pp� 2q � 5qI � 2pJ � Iqpq�1q�pq�1q Jpq�1q�pp�1q

Jpp�1q�pq�1q p2p� q � 5qI � 2pJ � Iqpp�1q�pp�1q

�
��

�

�
�� A J

JT B

�
��

where A � pp� 2q � 7qI � 2Jpq�1q�pq�1q, B � p2p� q � 7qI � 2Jpp�1q�pp�1q.

Thus, computing the characteristic polynomial of DQpGq,

ΦDQpG;λq � pλ� pp� 2q � 7qqq�2 . pλ� p2p� q � 7qqp�2 .Qpλq,

where,

Qpλq � λ2�p5p�5q�18qλ�4 rpp� 1qpp� 2q � pq � 1qpq � 2q � 4pp� 2qpq � 2qs ,

which is a quadratic polynomial with zeroes
5pp� qq � 18�a

9pp� qq2 � 4pp� 1qpq � 1q
2

and
5pp� qq � 18�a

9pp� qq2 � 4pp� 1qpq � 1q
2

. Thus, the distance signless

Laplacian eigenvalues of Γ pZpqq are
5pp� qq � 18�a

9pp� qq2 � 4pp� 1qpq � 1q
2

,

5pp� qq � 18�a
9pp� qq2 � 4pp� 1qpq � 1q

2
, p � 2q � 7 and 2p � q � 7 with

multiplicities 1, 1, q � 2 and p� 2 respectively.
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Corollary 5.4.2. Let G � Γ pZpqq. Then, the distance signless Laplacian spectral

radius, BQpGq � 5pp� qq � 18�a
9pp� qq2 � 4pp� 1qpq � 1q

2
.

Theorem 5.4.3. For any prime p � 2, the distance signless Laplacian spectrum

of Γ pZp3q is given by

SpecDQpΓ pZp3qq �
$'&
'%

2p2 � p� 5 p2 � 3
5p2 � 2p� 9�

a
9p4 � 20p3 � 2p2 � 12p� 1

2

5p2 � 2p� 9�
a

9p4 � 20p3 � 2p2 � 12p� 1

2

p2 � p� 1 p� 2 1 1

,/.
/-

Proof. Let G � Γ pZp3q. Γ pZp3q � Kppp�1q _Kp�1. The transmission degree of

any vertex in Sppq in G, is 2p2 � p � 3 and of any vertex in Spp2q is p2 � 2.

The transmission matrix and the distance matrix and of G are described in the

previous Section. Thus, it can be easily seen that the distance signless Laplacian

matrix of G is

DQpGq �

�
�� p2p2 � p� 5qI � 2Jppp�1q�ppp�1q Jppp�1q�pp�1q

Jpp�1q�ppp�1q pp2 � 3qI � Jpp�1q�pp�1q

�
��

A similar computation shows that,

ΦDQpG;λq � �
λ� p2p2 � p� 5q�p2�p�1

.
�
λ� pp2 � 3q�p�2

.Qpλq,

where Qpλq � λ2 � p5p2 � 2p� 9qλ� p4p4 � 22p2 � 6p� 20q. Thus,

SpecDQpΓ pZp3qq =

$'&
'%

2p2 � p� 5 p2 � 3
5p2 � 2p� 9�

a
9p4 � 20p3 � 2p2 � 12p� 1

2

5p2 � 2p� 9�
a

9p4 � 20p3 � 2p2 � 12p� 1

2

p2 � p� 1 p� 2 1 1

,/.
/-

Corollary 5.4.4. Let G � Γ pZp3q. Then, the distance signless Laplacian spectral

radius, BQpGq � 5p2 � 2p� 9�
a

9p4 � 20p3 � 2p2 � 12p� 1

2
.
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Chapter 6

Computation of distance, distance Laplacian

spectrum of Γ pZnq for any n

The role of Fiedler’s Lemma and its generalization, to the com-

putation of the distance spectrum of the generalized join of regular

graphs, is described in the Section 2. The investigation of the dis-

tance spectrum of Γ pZnq for any n and in particular for n � pk for

any prime p and k ¥ 3, using Fiedler’s Lemma, is described in the

Section 3. Also, it is shown that, �1 and �2 are the distance eigen-

values of Γ pZnq, for n and their multiplicities are counted. In the

Section 4, the computation of the distance Laplacian eigenvalues of

Γ pZnq, for any n is described and the distance Laplacian spectrum

of Γ pZpkq, k ¥ 3 is completely determined.

1This chapter has been published in Advances Mathematics: Scientific Journal, Volume 9,

Issue 12, 2020, Pages 10591-10612.
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6.1. Introduction

6.1 Introduction

The method proposed by A.J. Schwenk which is described in Section: 4.5, is con-

fined to the adjacency spectrum. The distance matrix of Γ pZnq, contains blocks

of entries other than 0 and 1. Also, the effort for the computation of distance

related spectrum described in the previous Chapter is seamless, especially when

n has more prime power factors. So some tools of Linear Algebra are used to ex-

plore the spectrum of such complicated structures. The combinatorial structure

of Γ pZnq as the Υn-join of the induced subgraphs, where Υn is the proper divisor

graph of n, is well utilized while applying Fiedler’s Lemma and its generalisation

towards this end.

6.2 Fiedler’s Lemma and its its generalisa-

tion

Lemma 6.2.1. [35] Let A and B be symmetric matrices of orders m and n,

respectively, with corresponding eigen pairs pαi,uiq, i � 1, 2, ...,m and pβi, viq,
i � 1, 2, ..., n, respectively. Suppose that }u1} = 1 = }v1}. Then, for each arbi-

trary constant ρ, the matrix

C =

�
�� A ρu1v

T
1

ρv1u
T
1 B

�
�� has eigenvalues α2, ..., αm, β2, ..., βn, γ1, γ2, where γ1, γ2,

are the eigenvalues of the matrix Ĉ =

�
�� α1 ρ

ρ β1

�
�� .

The above Lemma, popularly known as Fiedler’s Lemma, has been extended
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6.2. Fiedler’s Lemma and its its generalisation

by D.M. Cardoso et.al in [20, 21], to larger block diagonal symmetric matrices

and it was applied to the exploration of spectra of the generalised join of regular

graphs.

6.2.1 Generalization of Fiedler’s Lemma

For j P t1, 2, ..., ku, let Mj be a mj �mj symmetric matrix, with corresponding

eigenpairs pαrj,urjq, 1 ¤ r ¤ mj. Moreover, for q P t1, 2, ..., k � 1u and

l P tq � 1, ..., ku, let ρq,l be arbitrary constants. Let α̂ be the k� tuple

α̂ � pαi1,1, ..., αik,kq (6.1)

where each αij ,j is chosen from the elements of tα1,j, ..., αmj ,ju with j P t1, 2, ..., ku.
Then, considering an arbitrary kpk�1q

2
- tuple of reals

ρ̂ � pρ1,2, ρ1,3, ..., ρ1,k, ρ2,3, ..., ρ2,k, ..., ρk�1,kq, (6.2)

consider the symmetric matrices

Cα̂pρ̂q ��
���������������

M1 ρ1,2ui1,1u
T
i2,2

ρ1,3ui1,1u
T
i3,3

. . . ρ1,kui1,1u
T
ik,k

ρ1,2ui2,2u
T
i1,1

M2 ρ2,3ui2,2u
T
i3,3

. . . ρ2,kui2,2u
T
ik,k

ρ1,3ui3,3u
T
i1,1

ρ2,3ui3,3u
T
i2,2

M3 . . . ρ3,kui3,3u
T
ik,k

...
...

. . .
...

ρ1,k�1uik�1,k�1u
T
i1,1

ρ2,k�1uik�1,k�1u
T
i2,2

. . . Mk�1 ρk�1,kuik�1,k�1u
T
ik,k

ρ1,kuik,ku
T
i1,1

ρ2,kuik,ku
T
i2,2

. . . . . . Mk

�
���������������

(6.3)
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C̃α̂pρ̂q �

�
������������

αi1,1 ρ1,2 . . . ρ1,k�1 ρ1,k

ρ1,2 αi2,2 . . . ρ2,k�1 ρ2,k

...
...

. . .
...

...

ρ1,k�1 ρ2,k�1 . . . αik�1,k�1 ρk�1,k

ρ1,k ρ2,k . . . ρk�1,k αik,k

�
������������
k�k

. (6.4)

Theorem 6.2.2. [12] For j P t1, 2, ..., ku, let Mj be an mj � mj symmetric

matrix, with eigen pairs pαrj,urjq, @r P Ij � t1, 2, ...,mju and suppose that for

each j, the system of eigenvectors turj, r P Iju is orthonormal. Consider a kpk�1q
2

-

tuple of scalars,

ρ̂ � pρ1,2, ρ1,3, ..., ρ1,k, ρ2,3, ..., ρ2,k, ..., ρk�1,kq and the k- tuple α̂ = pαi1,1, ..., αik,kq
as defined in equation (6.1) and equation (6.2). Then, the matrix Cα̂pρ̂q in

equation (6.3) has the multi set of eigenvalues��k
j�1tα1,j, ..., αmj ,juztαij ,ju

	
Ytγ1, ..., γku, where γ1, γ2, ..., γk are eigenvalues of

the matrix C̃α̂pρ̂q in equation (6.4).

6.3 Computation of the distance spectrum of

Γ pZnq for any n

Consider G rH1, H2, ..., Hks where G is a connected graph with vertices labeled

as 1, 2, ..., k and Hj is rj- regular and |V pHjq| � nj, for every j � 1, 2, ..., k . Let

ApHjq denote the adjacency matrix of Hj.

Take Mj � 2pJ � Iqnj �ApHjq. Then, clearly αij ,j � 2pnj � 1q� rj is the Perron

eigenvalue for Mj for every j � 1, 2, ..., k with corresponding Perron eigenvector,

1nj . ( Note that since Hj is rj- regular, rj is the Perron eigenvalue of Hj with 1nj
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as the corresponding eigenvector, for j � 1, 2, ..., k ). Thus, since G is connected

and Hj is regular, Mj, j � 1, 2, ..., k correspond to the diagonal blocks in the

distance matrix of G rH1, H2, ..., Hks .

As in equation (6.3), taking

Mj � 2pJ � Iqnj � ApHjq, pαij ,j,uij ,jq �
�

2pnj � 1q � rj ,
1?
nj

1nj




and the real numbers ρl,q � dl,q � ?nlnq, for l P t1, 2, ..., k � 1u,
q P tl � 1, ..., ku, where dl,q � dq,l � dGpl, qq, is the distance between the vertices

l and q in the connected graph G, it can be seen that the distance matrix of

G rH1, H2, ..., Hks is obtained as in the following Theorem,

Theorem 6.3.1. [22] Consider G rH1, H2, ..., Hks, where G is a connected graph

with vertices labeled as 1, 2, ..., k and Hj is rj- regular and |V pHjq| � nj, for

every j � 1, 2, ..., k, and let dlq denote the distance between the distinct vertices

l snd q in G for l P t1, 2, ..., k � 1u, q P tl � 1, ..., ku. Let ApHjq denote the

adjacency matrix of Hj and Mj � 2pJ�Iqnj �ApHjq. Then, the distance matrix

of the generalized G-join of the graphs H1, H2, ..., Hk is given by,

DpG rH1, H2, ..., Hksq=�
���������������

M1 d1,2Jn1�n2 d1,3Jn1�n3 . . . d1,kJn1�nk

d1,2J
T
n1�n2

M2 d2,3Jn2�n3 . . . d2,kJn2�nk

d1,3J
T
n1�n3

d2,3J
T
n2�n3

M3 . . . d3,kJn3�nk
...

...
. . .

...

d1,k�1J
T
n1�nk�1

d2,k�1J
T
n2�nk�1

. . . Mk�1 dk�1,kJnk�1�nk

d1,kJ
T
n1�nk d2,kJ

T
n2�nk . . . . . . Mk

�
���������������

.

(6.5)

Also, applying Theorem 6.2.2, the distance spectrum of DpG rH1, H2, ..., Hksq
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is given by the following theorem,

Theorem 6.3.2. [22] Consider G rH1, H2, ..., Hks, where G is a connected graph

with vertices labeled as 1, 2, ..., k and Hj is rj- regular and |V pHjq| � nj, for

every j � 1, 2, ..., k. Let ApHjq denote the adjacency matrix of Hj and

Mj � 2pJ � Iqnj � ApHjq. Then, the distance spectrum of G rH1, H2, ..., Hks is

given by,

SpecDpG rH1, H2, ..., Hksq �
�

k¤
j�1

SpecpMjqzt 2pnj � 1q � rju
�
Y SpecpC̃q.

(6.6)

where

C̃ �

�
��������

2pn1 � 1q � r1 d1,2
?
n1n2 . . . d1,k

?
n1nk

d1,2
?
n1n2 2pn2 � 1q � r2 . . . d2,k

?
n2nk

...
...

. . .
...

d1,k
?
n1nk d2,k

?
n2nk . . . 2pnk � 1q � rk

�
��������
. (6.7)

When Mjs belong to a class of graphs with known spectrum, the only re-

maining task is to find the spectrum of the matrix C̃ as evident from equation

(6.6). But the non-diagonal entries of C̃ in equation (6.7) are not so appealing

to the computation of spectrum. Hence, a matrix similar to it is defined in the

following way.

Consider the graph G as a vertex weighted graph by assigning the weight

nj � |V pHjq| to the vertex j of G for j � 1, 2, ..., k and consider the diagonal
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6.3. Computation of the distance spectrum of Γ pZnq for any n

matrix of vertex weights,

W �

�
��������

n1 0 . . . 0

0 n2 . . . 0

...
. . .

...

0 . . . . . . nk

�
��������
.

A combinatorial Laplacian matrix with vertex weights was defined by F.R.K

Chung et al in [26] as follows, to generalize the Matrix-Tree Theorem for count-

ing the number of rooted directed spanning trees. Let the vertex v has a weight

αv. Consider the matrix with rows and columns labeled by vertices,

Lpu, vq �

$''''''&
''''''%

Σz�uαz if u � v

�αv if u � v

0 otherwise.

Analogous to this, a combinatorial vertex weighted distance matrix of G, denoted

by TDpGq, can be defined as,

TDpGq �

�
��������

2pn1 � 1q � r1 d1,2n2 . . . d1,knk

d1,2n1 2pn2 � 1q � r2 . . . d2,knk
...

...
. . .

...

d1,kn1 d2,kn2 . . . 2pnk � 1q � rk

�
��������

Note that the (i,j)-th entry of TDpGq is di,j times the vertex weight nj and the

(i,i)th entry is the sum of all other entries of the i-th row.

Remark 6.3.3. It is easy to show that, TDpGq � W� 1
2 C̃W

1
2 . Hence, it follows

that C̃ and TDpGq are similar. Thus σpC̃q � σpTDpGqq. Thus, the distance

spectrum of G rH1, H2, ..., Hks is completely determined by the matrices Mj for

j � 1, 2, ..., k and the combinatorial distance matrix TDpGq associated to G.
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6.3. Computation of the distance spectrum of Γ pZnq for any n

Thus, the next Corollary follows.

Corollary 6.3.4. For the graphs G, TDpGq and Hjs as defined above,

SpecDpG rH1, H2, ..., Hksq �
�

k¤
j�1

SpecpMjqzt 2pnj � 1q � rju
�
Y SpecpTDpGqq.

(6.8)

6.3.1 Distance matrix of Γ pZnq

As seen in Section 4.3, the zero divisor graph on the ring of integers modulo n

can be constructed as

Γ pZnq � ΥnrΓpApd1qq,AΓppd2qq, ...,ΓpApdξpnqqqs (6.9)

where d1, d2, ..., dξpnq are the proper divisors of n. To facilitate the study of spec-

trum of Γ pZnq, the proper divisor graph of n is to be understood and analysed

in a better way. Throughout this Chapter, di,j denotes the distance between the

vertices di and dj in Υn. That is, di,j � dΥnpdi, djq. The following Lemmas are

used in the main Theorem of this Section.

Lemma 6.3.5. For any two distinct vertices di and dj in the proper divisor graph

Υn ,

di,j �

$''''''&
''''''%

1 if n{didj

2 if n � didj, gcdpdi, djq � 1.

3 otherwise.

Proof. n � pn1
1 �pn2

2 � � � pnrr , where p1, p2, ..., pr are distinct primes, and r, n1, n2, ..., nr

are positive integers. Let d1, d2, ..., dξpnq be the proper divisors of n.

Case(i) n{didj is trivial.
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6.3. Computation of the distance spectrum of Γ pZnq for any n

Case(ii) Let n � didj, and let gcdpdi, djq � g ¡ 1. Clearly, n{pn
g
qdi and

n{pn
g
qdj. Thus, n

g
� di and n

g
� dj. Hence, n

g
is a common neighbour of di and

dj in Υn.

Conversely, let n � didj and di and dj have a common neighbour in Υn. Let

dk be the common neighbour of di and dj. Then, n{didk and n{djdk . Thus it

is obvious that p n
dk
q{di and p n

dk
q{dj. Hence, n

dk
is a common divisor of di and dj.

Thus, the gcdpdi, djq ¥ n
dk
¡ 1.

Thus, n � didj, di and dj have a common neighbour in Υn, iff gcdpdi, djq ¡ 1.

case(iii) Let n � didj, and gcdpdi, djq � 1. Then, as proved in the above case,

di and dj do not have a common neighbour. Now

di � n

di
, dj � n

dj

Since n divides n
di
. n
dj

, it follows that n
di
� n

dj
. Thus, di � n

di
� n

dj
� dj is a shortest

path between di and dj. Thus dΥnpdi, djq � 3, in this case. Thus, the result

immediately follows since for any finite commutative ring R, diampΓ pRqq ¤ 3

[81].

Lemma 6.3.6. Let n � pn1
1 � pn2

2 � � � pnrr , where p1, p2, ..., pr are distinct primes,

and r, n1, n2, ..., nr are positive integers. Then, the number of proper divisors d

of n such that n � d2 is
±r

i�1

�
rni

2
s� 1

� � 2

Proof. The number of proper divisor of n is given by

ξpnq �
r¹
i�1

pni � 1q � 2.

The number of proper divisors d of n such that n � d2 is exactly the number of

proper divisors of p
r
n1
2

s

1 � pr
n2
2

s

2 � � � prnr
2

s
r which is

±r
i�1

�
rni

2
s� 1

� � 2
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The following Lemma is the immediate consequence of Lemma 6.3.6

Lemma 6.3.7. The number of proper divisors d of n such that n divides d2, is±r
i�1pni � 1q � ±r

i�1

�
rni

2
s� 1

�

The next Theorem describes the distance matrix of Γ pZnq for any n.

Theorem 6.3.8. Let d1, d2, ..., dξpnq be the proper divisors of n. Then, the dis-

tance matrix of Γ pZnq is given by

DpΓ pZnqq �

�
���������

M1 d1,2Jφp n
d1
q�φp n

d2
q . . . d1,ξpnqJφp n

d1
q�φp n

dξpnq
q

d1,2J
T
φp n
d1
q�φp n

d2
q M2 . . . d2,ξpnqJφp n

d2
q�φp n

dξpnq
q

...
...

. . .
...

d1,ξpnqJTφp n
d1
q�φp n

dξpnq
q d2,ξpnqJTφp n

d2
q�φp n

dξpnq
q . . . Mξpnq

�
���������

where,

Mj �

$''&
''%

2pJ � Iqφp n
dj
q if n � d2

j

pJ � Iqφp n
dj
q if n{d2

j

and for l P t1, 2, ..., ξpnq � 1u and q P tl � 1, ..., ξpnqu, l � q,

dl,q �

$''''''&
''''''%

1 if n{dldq

2 if n � dldq, gcdpdl, dqq � 1

3 otherwise.

Proof. Recall from equation (6.9) that, Γ pZnq is the Υn - join of ΓpApd1qq,ΓpApd2qq, ...,
ΓpApdξpnqqq. Also, the adjacency matrix of ΓpApdjqq is given by,

ApΓpApdjqqq �

$''&
''%
Oφp n

dj
q if n � d2

j

pJ � Iqφp n
dj
q if n{d2

j .
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6.3. Computation of the distance spectrum of Γ pZnq for any n

Thus, taking G � Υn, and Hj � ΓpApdjqq and Mj � 2pJ�Iqφp n
dj
q�ApΓpApdjqqq,

the conclusion is an immediate consequence of Theorem 6.3.1 and Lemma 6.3.5.

6.3.2 Distance eigenvalues of Γ pZnq

Consider the proper divisors d1, ...., dξpnq, and the matrices,

Mj �

$''&
''%

2pJ � Iqφp n
dj
q if n � d2

j

pJ � Iqφp n
dj
q if n{d2

j .

The distance spectrum of Γ pZnq is completely determined by the matrices Mj,

for j � 1, 2, ..., ξpnq and the matrix TDpΥnq, as in equation (6.8). The spectrum

of Mj as described above are, if n � d2
j ,

SpecpMjq �

$'&
'%

�2 2pφp n
dj
q � 1q

φp n
dj
q � 1 1

,/.
/- (6.10)

and if n{d2
j ,

SpecpMjq �

$'&
'%

�1 φp n
dj
q � 1

φp n
dj
q � 1 1

,/.
/- . (6.11)

Also, note that the subgraphs ΓpApdjqq, for j � 1, 2, ...ξpnq are rj- regular, where

rj �

$''&
''%
φp n

dj
q � 1 if n{d2

j

0 if n � d2
j .

While taking the union of all eigenvalues of Mj as described above in (6.10) and

(6.11), the multiplicity of �2 as the distance eigenvalues of Γ pZnq is°
d{n,n�d2pφpnd q�1q, where the Σ runs over all divisors d of n such that d{n and
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6.3. Computation of the distance spectrum of Γ pZnq for any n

n � d2 . By Lemma 6.3.6, this count amounts to
°
d{n,n�d2 φpnd q�

±r
i�1

�
rni

2
s� 1

� �
2. Similarly, while taking the union of all eigen values of Mj, the multiplicity of

�1 as the distance eigenvalues of Γ pZnq is
°
d{n,n{d2pφpnd q � 1q, which counts to°

d{n,n{d2 φpnd q�
±r

i�1pni�1q� ±r
i�1

�
rni

2
s� 1

�
, by Lemma 6.3.7. Thus, applying

Theorem 6.3.4, the next Theorem follows.

Theorem 6.3.9. For any n, the zero-divisor graph Γ pZnq has distance eigenval-

ues �2 and �1 with multiplicities
°
d{n,n�d2 φpnd q �

±r
i�1

�
rni

2
s� 1

� � 2 and°
d{n,n{d2 φpnd q �

±r
i�1pni � 1q � ±r

i�1

�
rni

2
s� 1

�
respectively and the remaining

distance eigenvalues are the eigenvalues of the vertex weighted distance matrix of

Υn, as follows

TDpΥnq �

�
��������

t1 d1,2φp nd2 q . . . d1,ξpnqφp n
dξpnq

q
d1,2φp nd1 q t2 . . . d2,ξpnqφp n

dξpnq
q

...
...

. . .
...

d1,ξpnqφp nd1 q d2,ξpnqφp nd2 q . . . tξpnq

�
��������

where,

tj �

$''&
''%

2pφp n
dj
q � 1q if n � d2

j

φp n
dj
q � 1 if n{d2

j ,

and for i P t1, 2, ..., ξpnq � 1u, j P ti� 1, ..., ξpnqu, i � j,

di,j �

$''''''&
''''''%

1 if n{didj

2 if n � didj, gcdpdi, djq � 1.

3 otherwise.

Hence, the distance eigenvalues of Γ pZnq are completely determined by the

vertex weighted distance matrix TDpΥnq. Thus, the next Corollary follows.
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Corollary 6.3.10. Γ pZnq is distance integral if and only if TDpΥnq is integral.

Example 6.3.11. Consider Γ pZpqq, where p   q are distinct primes. Counting

the number of non-zero zero divisors of Zpq, it can be easily seen that the zero-

divisor graph Γ pZpqq, has p�q�2 vertices. The proper divisors of pq are p and q

and the proper divisor graph Υpq � K2, with vertices labeled as p and q. Clearly

Γ pZpqq � K2rΓpAppqq,ΓpApqqqs, where ΓpAppqq � Kq�1 and ΓpApqqq � Kp�1 .

Using Theorem 6.3.8, the distance matrix of Γ pZpqq is given by

DpΓ pZpqqq �

�
�� 2pJ � Iqpq�1q�pq�1q Jpq�1q�pp�1q

Jpp�1q�pq�1q 2pJ � Iqpp�1q�pp�1q

�
��

Note that n � pq has no proper divisor d such that n{d2. Also it is obvious that

a square matrix M has eigenvalue �1 if and only if the matrix M � I has nullity

at least one. Thus �1 is not an eigenvalue of Γ pZpqq fro any primes p   q. Thus

using Theorem 6.3.9, we see that �2 is an eigenvalue of Γ pZpqq with multiplicity

p � q � 4 and the other distance eigenvalues of Γ pZpqq are determined by its

vertex weighted distance matrix,

TDpΥpqq �

�
�� 2pq � 2q p� 1

q � 1 2pp� 2q

�
��

Thus, the remaining two distance eigenvalues of this graph are determined by

the polynomial, Qpλq � λ2 � 2λpp� q � 4q � 3pq � 7pp� qq � 15. Thus,

SpecDpΓ pZpqqq �
$'&
'%

�2 p� q � 4�
a
p2 � q2 � pq � pp� qq � 1 p� q � 4�

a
p2 � q2 � pq � pp� qq � 1

p� q � 4 1 1

,/.
/-

Remark 6.3.12. Note that for n � 8, pq, where p   q are distinct primes, �1

is not a distance-eigenvalue of Γ pZnq. Also, for n � p2, �2 is not a distance
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eigenvalue of Γ pZnq. For all other values of n, both �1 and �2 are distance

eigenvalues of Γ pZnq.

6.3.3 Distance spectrum of Γ pZpkq, k ¥ 3

The proper divisors of pk are p, p2, ..., pk�1 and tAppq,App2q, ...,Appk�1qu forms

an equitable partition for V pΓ pZpkqq. The order of the graph Γ pZpkq is pk�1 � 1.

ΓpAppjqq �

$''&
''%
Kφppk�jq if j   rk

2
s

Kφppk�jq if j ¥ rk
2
s

where Kφppk�jq is a null graph which is 0- regular and Kφppk�jq is a complete

graph which is φppk�jq � 1 - regular. In the proper divisor graph Υpk , pi � pj

for distinct i and j, if and only if i � j ¥ k. Also, the vertex pk�1 is adjacent

to every other vertices of Υpk . Thus, Υpk is a connected graph with diameter 2

[49]. Also, for i P t1, 2, ..., k � 1u, j P ti� 1, ..., ku, i � j,

di,j �

$''&
''%

1 if i� j ¥ k

2 otherwise.

The zero-divisor graph,

Γ pZpkq � ΥpkrΓpAppqq,ΓpApp2qq, ...,ΓpAppk�1qqs.

For j � 1, 2, ...k � 1, as in Theorem 6.3.1, let

Mj �

$''&
''%

2pJ � Iqφppk�jq if j   rk
2
s

pJ � Iqφppk�jq if j ¥ rk
2
s

. (6.12)
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Then, it is obvious that, if j   rk
2
s

SpecpMjq �

$'&
'%

�2 2
�pφppk�jq � 1

�
φppk�jq � 1 1

,/.
/- (6.13)

and if j ¥ rk
2
s,

SpecpMjq �

$'&
'%

�1 φppk�jq � 1

φppk�jq � 1 1

,/.
/- . (6.14)

Taking the union of the eigenvalues of Mj, j � 1, 2, ...k�1, from equations (6.12)

and (6.13), the number of times, �2 is counted as an eigenvalue, is

Σj r k
2
s

�
φppk�jq � 1

� � Σ
t k
2
u

j�1

�
φppk�jq � 1

� � pk�1 � pt k
2
u � r

k

2
s.

similarly from equations (6.12) and (6.14), the eigenvalue �1 is counted pt k
2
u �

tk
2
u � 1 times while taking the union of Mj, j � 1, 2, ...k � 1. Thus, applying

Theorem 6.3.2, the next Theorem follows.

Theorem 6.3.13. For k ¥ 3, the zero-divisor graph Γ pZpkq has distance eigen-

value �2 and �1 with multiplicities pk�1 � pt k
2
u � rk

2
s and pt k

2
u � tk

2
u� 1 and the

remaining distance eigenvalues are the eigenvalues of the vertex weighted distance

matrix,

TDpΥpkq �

�
��������

t1 d1,2φppk�2q . . . d1,k�1φppq
d1,2φppk�1q t2 . . . d2,k�1φppq

...
...

. . .
...

d1,k�1φppk�1q d2,k�2φppk�2q . . . tk�1

�
��������
,

where, di,j �

$''&
''%

1 if i� j ¥ k

2 otherwise

and tj �

$''&
''%

2
�pφppk�jq � 1

�
if j   rk

2
s

φppk�jq � 1 j ¥ rk
2
s
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Example 6.3.14. The number of non-zero zero divisors of Zp3 is p2 � 1. The

proper divisors of p3 are p and p2 and the compressed zero-divisor graph Υp3 is

isomorphic to K2. The distance matrix of Γ pZp3q, for p � 2 is given by,

DpΓ pZp3qq �

�
�� 2pJ � Iqppp�1q�ppp�1q Jppp�1q�pp�1q

Jpp�1q�ppp�1q pJ � Iqpp�1q�pp�1q

�
�� .

The distance eigenvalues of DpΓ pZp3qq are �2 and �1 with multiplicities

p2 � p� 1 and p� 2 respectively and the remaining two distance eigenvalues are

the eigenvalues of the vertex weighted distance matrix TDpΥp3q given by ,

TDpΥp3q �

�
�� 2 pp2 � p� 1q p� 1

p2 � p p� 2

�
��

Thus the distance spectrum of Γ pZp3q is given by,

SpecDpΓ pZp3qq �
#

�2 �1
2p2�p�4�

?
4p4�8p3�p2�4p
2

2p2�p�4�
?

4p4�8p3�p2�4p
2

p2 � p� 1 p� 2 1 1

+
.

6.4 Distance Laplacian spectrum of Γ pZnq

Let G � Γ pZnq. Let d1, d2, ..., dk be the proper divisors of n such that ΓpApd1qq,
ΓpApd2qq, ...,ΓpApdkqq are null graphs and let ΓpApdk�1qq, ...,ΓpApdξpnqqq be com-

plete subgraphs of Γ pZnq. Then, since Γ pZnq is a generalised join of its induced

subgraphs which are either null (corresponding to the divisors d1, d2, ..., dk) or

complete (corresponding to the divisors dk�1, ..., dξpnq); the distance between

any two distinct vertices of Apdjq for fixed j P t1, 2, ..., ku is 2 and the distance

between any two distinct vertices of ApdJq, for fixed j P tk � 1, ..., ξpnqu is 1.

Let Mj be the matrix as described in Section 6.3. Since Mj is non-negative,
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6.4. Distance Laplacian spectrum of Γ pZnq

symmetric and irreducible, it has a Perron eigenvalue and let it be denoted by

λ1pMjq, for j � 1, 2, ..., ξpnq. It is easy to see that,

λ1pMjq �

$''&
''%

2pφp n
dj
q � 1q if j ¤ k

φp n
dj
q � 1 j ¥ k � 1

Then, for any vertex vd1 P Apd1q, the transmission degree of vd1 is given by

Trpvd1q � ΣuPV pGqdGpu, vd1q � 2pφp n
d1

q�1q�d1,2φp n
d2

q�d1,3φp n
d3

q�....d1,ξpnqφp n

dξpnq
q

� λ1pM1q � Σj�1d1,jφp n
dj
q.

Similar results hold for Trpvd2q, ..., T rpvdkq and for any vertex vi P Apdiq,

Trpvdiq � λ1pMiq � Σj�idi,jφp n
dj
q, i � 1, 2, ...k.

Since, Apdk�1q, ...,Apdξpnqq induce complete subgraphs, the transmission degree

of any vertex vdi P Apdiq, i � k � 1, ..., ξpnq is given by

Trpvdiq � φp n
di
q � 1�Σj�idi,jφp n

dj
q � λ1pMiq �Σj�idi,jφp n

dj
q, i � k� 1, ..., ξpnq.

Thus, the diagonal matrix of vertex transmission of G is given by,

TrpΓ pZnqq �

�
��������

T1 O . . . O

O T2 . . . O

...
...

. . .
...

O O . . . Tξpnq

�
��������

where the diagonal blocks Ti are given by

Ti � pλ1pMiq � τiq Iφp n
di
q

where τi � Σj�idi,jφp ndj q, i � 1, 2, ..., ξpnq.
Clearly, λ1pMiq � τi is the Perron eigenvalue of Ti such that

Ti1φp n
di
q � pλ1pMiq � τiq1φp n

di
q. (6.15)
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Since the distance Laplacian matrix of any connected graph G is TrpGq�DpGq,
it follows that,

DLpΓ pZnqq �

�
���������

L1 �d1,2Jφp n
d1
q�φp n

d2
q . . . �d1,ξpnqJφp n

d1
q�φp n

dξpnq
q

�d1,2J
T
φp n
d1
q�φp n

d2
q L2 . . . �d2,ξpnqJφp n

d2
q�φp n

dξpnq
q

...
...

. . .
...

�d1,ξpnqJTφp n
d1
q�φp n

dξpnq
q �d2,ξpnqJTφp n

d2
q�φp n

dξpnq
q . . . Lξpnq

�
���������

where the diagonal blocks Lis are given by,

Li � Ti �Mi � pλ1pMiq � τiq Iφp n
di
q �Mi, i � 1, 2, ..., ξpnq. (6.16)

Since Ti and Mi commute each other, for i � 1, 2, ..., ξpnq, it can be easily seen

from equation (6.16) that, each eigenvalue λpLiq is given by

λpLiq � λpTiq � λpMiq, i � 1, 2, ..., ξpnq.

Thus, from (6.15), τi is an eigenvalue of Li for i � 1, 2, ...ξpnq, such that

Li1φp n
di
q � τi1φp n

di
q.

Thus applying Corollary 6.3.4, the next Theorem follows.

Theorem 6.4.1. The distance Laplacian spectrum of G � Γ pZnq is given by

SpecDLpGq �
ξpnq¤
i�1

tSpecpLiqzτiu Y SpecpB̃q

where B̃ is the vertex weighted distance Laplacian matrix of the proper divisor

graph Υn, given by

B̃ �

�
��������

τ1 �d1,2φp nd2 q . . . �d1,ξpnqφp n
dξpnq

q
�d1,2φp nd1 q τ2 . . . �d2,ξpnqφp n

dξpnq
q

...
...

. . .
...

�d1,ξpnqφp nd1 q �d2,ξpnqφp nd2 q . . . τξpnq

�
��������
.
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For example, Γ pZpqq � ΥpqrΓpAppqq,ΓpApqqqs, where Υpq � K2. In this case,

T1 � pp� 2q� 5qIq�1,M1 � 2pJ � Iqq�1, T2 � p2p� q� 5qIp�1,M2 � 2pJ � Iqp�1

and thus, the distance Laplacian matrix of Γ pZpqq is given by

DLpΓ pZpqqq �

�
�� pp� 2q � 5qI � 2pJ � Iqpq�1q�pq�1q �Jpq�1q�pp�1q

�Jpp�1q�pq�1q p2p� q � 5qI � 2pJ � Iqpp�1q�pp�1q

�
�� .

Here

L1 � pp� 2q � 3qIq�i � 2Jq�1

L2 � p2p� q � 3qIp�i � 2Jp�1

Clearly, τ1 � λ1pL1q � p� 1 and τ2 � λ1pL2q � q � 1.

SpecpL1q �

$'&
'%

p� 1 p� 2q � 3

1 q � 2

,/.
/- and SpecpL2q �

$'&
'%

q � 1 2p� q � 3

1 p� 2

,/.
/-

Thus, it can be seen that p�2q�3 and 2p�q�3 are distance Laplacian eigenval-

ues of Γ pZpqq with multiplicities q � 2 and p� 2 respectively and the remaining

distance Laplacian eigenvalues are the eigenvalues of the vertex weighted matrix

of Υpq given by

TLDpΥpqq �

�
�� p� 1 �pp� 1q
�pq � 1q q � 1

�
�� .

The characteristic polynomial of the above matrix is λ2 � pp � q � 2qλ and has

eigenvalues 0 and p� q�2. Thus, the distance Laplacian spectrum of this graph

is obtained as

SpecDLpΓ pZpqqq �

$'&
'%

0 p� q � 2 p� 2q � 3 2p� q � 3

1 1 q � 2 p� 2

,/.
/- .
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6.4.1 Distance Laplacian spectrum of Γ pZpkq, k ¥ 3

For any connected graph G with n vertices, the distance Laplacian matrix DLpGq
is positive semi definite and the least distance Laplacain eigenvalue is 0 with

multiplicity 1. ie BL1 ¥ BL2 ¥ ... ¡ BLn � 0 [12]. The distance Laplacian eigenvalues

of a graph of diameter at most 2 can be expressed in terms of its Laplacian

eigenvalues as in the following Theorem.

Theorem 6.4.2. [28] Let G be a connected graph on n vertices with diameter

d ¤ 2. Let µ1pGq ¥ µ2pGq ¥ ... ¥ µnpGq � 0, be the Laplacian eigenvalues of G.

Then, the distance Laplacian eigenvalues of G are

2n� µn�1pGq ¥ 2n� µn�2pGq ¥ ... ¥ 2n� µ1pGq ¡ BLn � 0

The next Theorem explores the Laplacian spectrum of Γ pZpkq, k ¥ 3

Theorem 6.4.3. [25] Consider Γ pZpkq, k ¥ 3. Then the following hold

(i) If k � 2m for some m ¥ 2, then the Laplacian spectrum of Γ pZpkq is

given by$'&
'%

p2m�1 � 1 p2m�2 � 1 � � � pm�1 � 1 pm � 1 pm�1 � 1 � � � p� 1 0

φppq φpp2q � � � φppm�1q φppmq � 1 φppm�1q � � � φpp2m�1q 1

,/.
/-

(ii) If k � 2m � 1 for some m ¥ 1, then the Laplacian spectrum of Γ pZpkq
is given by$'&
'%

p2m � 1 p2m�1 � 1 � � � pm�1 � 1 pm � 1 pm�1 � 1 � � � p� 1 0

φppq φpp2q � � � φppmq φppm�1q � 1 φppm�2q � � � φpp2mq 1

,/.
/-

Thus, the following Theorem can be easily proved.
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6.4. Distance Laplacian spectrum of Γ pZnq

Theorem 6.4.4. Let k ¥ 3.

(i) If k � 2m for some m ¥ 2, then the distance Laplacian eigenvalues of

Γ pZpkq are 2p2m�1� p� 1, 2p2m�1� p2� 1, � � � , 2p2m�1� pm�1� 1, 2p2m�1�
pm � 1, 2p2m�1 � pm�1 � 1, � � � , p2m�1 � 1, and 0, with multiplicities

φpp2m�1q, φpp2m�2q, � � � ,
φppm�1q, φppmq � 1, φppm�1q, � � � , φppq, and 1 respectively.

(ii) If k � 2m � 1 for some m ¥ 1, then the distance Laplacian eigenval-

ues of Γ pZpkq are 2p2m�p�1, 2p2m�p2�1, � � � , 2p2m�pm�1�1, 2p2m�pm�
1, 2p2m�pm�1�1, � � � , p2m�1, and 0, with multiplicities φpp2mq, φpp2m�1q, � � � ,
φppm�2q, φppm�1q � 1, φppmq, � � � , φppq, and 1 respectively.

Proof. The compressed zero divisor graph Υpk is a connected graph of diameter

2 for k ¥ 4, since pk�1 � pj, @j � 1, 2, ...k � 2. And for k � 3, Υpk � K2 and

hence it is of diameter 1. As described in Section 6.3, it follows that Γ pZpkq is

of diameter at most 2 for k ¥ 3. The number of vertices in Γ pZpkq is pk�1 � 1.

Thus, the conclusion follows from the above two Theorems.
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Chapter 7

Seidel spectrum of the zero divisor graph

In the Section 2 of this Chapter, the Seidel spectrum of the gen-

eralized join of regular graphs is investigated. The Seidel spectrum

of the zero-divisor graph of Zn, is thereby computed in terms of the

spectrum of the vertex weighted combinatorial matrix of the proper

divisor graph of n. In the third and fourth Sections, this investiga-

tion is repeated for Seidel Laplacian and Seidel signless Laplacian

spectrum respectively.

7.1 Introduction

Van Lint and Seidel [84] introduced the Seidel matrix of G, defined as SpGq �
rsi,js where si,j � �1 if the vertices vi and vj are adjacent and si,j � 1 if the

vertices vi and vj are not adjacent and si,j � 0 if i � j. Thus, SpGq is a p�1, 0, 1q
1The second section of this chapter has been published in Advances and Applications in

Discrete Mathematics, Volume 28, Issue 1, 2021, Pages 145-167. The third and fourth sections

of this chapter has been published in Mathematics and Statistics, Volume 9, Issue 6, 2021,

Pages 917-926.
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7.2. Seidel spectrum of join of regular graphs

adjacency matrix of a graph G and SpGq � J � I � 2ApGq. Clearly, if G denotes

the complement of a graph G, then SpGq � �SpGq. The collection of Seidel

eigenvalues of G, together with their multiplicities, is known as Seidel spectrum

of G, denoted by SpecSpGq. In [43], Haemers has defined the Seidel energy of G

as ESpGqq �
°n
i�1 |θi|, where θ1, θ2, ..., θn are the Seidel eigenvalues of G. This

parameter finds various chemical applications.

For a complete graph Kn,

SpecSpKnq �

$'&
'%

1� n 1

1 n� 1

,/.
/- .

For a null graph on n vertices, Kn,

SpecSpKnq �

$'&
'%

n� 1 �1

1 n� 1

,/.
/- .

Recall Definition 2.3.6 for the Seidel Laplacian matrix and Seidel signless Lapla-

cian matrix of a graph G. The Seidel Laplacian eigenvalues of a graph G of order

n sre denoted and θL1 , θ
L
2 , ..., θ

L
n and the Seidel signless Laplacian eigenvalues by

θQ1 , θ
Q
2 , ..., θ

Q
n .

For a complete graph Kn, SLpKnq � Jn � nIn and SQpKnq � p2 � nqIn � Jn.

For a null graph on n vertices, Kn, (the complement of a complete graph),

SLpKnq � nIn � Jn and SQpKnq � pn� 2qIn � Jn.

7.2 Seidel spectrum of join of regular graphs

The following result can also be seen in [44], which demands lengthy computation

using the method of equitable partitions is used.
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7.2. Seidel spectrum of join of regular graphs

Theorem 7.2.1. Let Gi be ri- regular of order ni, for i � 1, 2. Then each of the

Seidel eigenvalues of G1 and G2 other than n1 � 2r1 � 1, n2 � 2r2 � 1 is a Seidel

eigenvalue of G1 5G2 and the remaining Seidel eigenvalues of G1 5G2 are the

zeroes of the polynomial λ2 � rn1 � n2 � 2r1 � 2r2 � 2sλ � rpn1 � 2r1 � 1qpn2 �
2r2 � 1q � n1n2s.

Proof. Let S1 and S2 denote the Seidel matrices of G1 and G2 respectively. Since

G1 and G2 are regular, it can be seen that, the row sums of S1 and S2 are the

constants n1 � 2r1 � 1 and n2 � 2r2 � 1 respectively and in fact, these two values

are the Seidel eigenvalues of G1 and G2 with corresponding eigenvectors 1n1 and

1n2 respectively. Also, the Seidel matrix of the join of the graphs G1 and G2 is

given by

SpG1 5G2q �

�
�� S1 �Jn1�n2

�JTn1�n2
S2

�
�� .

Applying Lemma 4.2.4, and Lemma 3.3.6, it can be seen that

detpλI � SpG1 5G2qq � detpλI � S1q � detpλI � S2q � p1� ΓS1pλqΓS2pλqq. (7.1)

where ΓS1pλq �
n1

λ� pn1 � 2r1 � 1q and ΓS2pλq �
n2

λ� pn2 � 2r2 � 1q .
Simplifying equation (7.1),

detpλI � SpG1 5G2qq � detpλI � S1q
pλ� pn1 � 2r1 � 1qq �

detpλI � S2q
pλ� pn2 � 2r2 � 1qqΦpλq,

where Φpλq � λ2�rn1�n2�2r1�2r2�2sλ�rpn1�2r1�1qpn2�2r2�1q�n1n2s.

Example 7.2.2. Consider G � K5 5C4. The Seidel spectrum of K5 and C4 are

given as follows. SpecSpK5q �

$'&
'%

�4 1

1 4

,/.
/- and SpecSpC4q �

$'&
'%

�1 3

3 1

,/.
/- .
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7.2. Seidel spectrum of join of regular graphs

Thus, the Seidel eigenvalues of G are �1, 1, 3 with multiplicities 2, 4 and 1 re-

spectively together with the zeroes of the polynomial λ2 � 5λ� 16. Thus

Seidel spectrum of K5 5 C4 is

$'&
'%

�1 1 3
�5�?

89

2

�5�?
89

2

2 4 1 1 1

,/.
/- .

Since the Seidel matrix loses non negativity, the Perron- Frobeniuos Theorem

may not hold good for such matrices. However, it is of great relevance that, for

a r-regular connected graph on n vertices, n� 2r � 1 is a Seidel eigenvalue with

1n as the associated Seidel eigenvector. In the following section, Theorem 7.2.1

is extended to the genrealised join of regular graphs using Fiedler’s Lemma and

the Seidel spectrum of G rH1, H2, ..., Hks is explored, where Gi is ri-regular for

i � 1, 2, ..., k, using the adjacency spectrum of H1, H2, ..., Hk and a combinatorial

vertex weighted Seidel matrix of G.

7.2.1 Seidel spectrum of the joined union of regular graphs

Consider G rH1, H2, ..., Hks, where G is a simple connected graph with vertices

labeled as 1, 2, ..., k with the Seidel matrix SpGq � rsi,js where si,j � �1 if the

vertices i and j are adjacent and si,j � 1 if the vertices i and j are not adjacent

and si,j � 0 for the diagonal entries. Let Hj be rj-regular and |V pHjq| � nj, for

every j � 1, 2, ..., k. Let Sj denote the Seidel matrix of Hj, j � 1, 2, ..., k.

It can be easily seen that, the Seidel matrix of the G- union of H1, H2, ..., Hk is

given by
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7.2. Seidel spectrum of join of regular graphs

SpG rH1, H2, ..., Hksq=�
���������������

S1 s1,2Jn1�n2 s1,3Jn1�n3 . . . s1,kJn1�nk

s1,2J
T
n1�n2

S2 s2,3Jn2�n3 . . . s2,kJn2�nk

s1,3J
T
n1�n3

s2,3J
T
n2�n3

S3 . . . s3,kJn3�nk
...

...
. . .

...

s1,k�1J
T
n1�nk�1

s2,k�1J
T
n2�nk�1

. . . Sk�1 sk�1,kJnk�1�nk

s1,kJ
T
n1�nk s2,kJ

T
n2�nk . . . . . . Sk

�
���������������

.

(7.2)

Since the each row of Sj sums to the constant nj � 2rj � 1, for j � 1, 2, ..., k,

one of the Seidel eigenvalues of Sj is nj � 2rj � 1 with the associated Seidel

eigenvector 1nj , for j � 1, 2, ..., k.

Thus, as in equation (6.3), taking

Mj � Sj, pαij ,j,uij ,jq �
�
nj � 2rj � 1 ,

1?
nj

1nj




and the real numbers

ρl,q � sl,q
?
nlnq

for l P t1, 2, ..., k � 1u, q P tl � 1, ..., ku, and applying Theorem 6.2.2, the

Theorem follows.

Theorem 7.2.3. Consider G rH1, H2, ..., Hks, where G is a simple connected

graph with vertices labeled as 1, 2, ..., k and Hj is rj- regular and |V pHjq| � nj,

for every j � 1, 2, ..., k. Let Sj denote the Seidel adjacency matrix of Hj. Then

the Seidel spectrum of the G-join of the graphs H1, H2, ..., Hk is given by,

SpecSpG rH1, H2, ..., Hksq �
�

k¤
j�1

SpecpSjqztnj � 2rj � 1u
�
Y SpecpS̃q,
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7.2. Seidel spectrum of join of regular graphs

where

S̃ �

�
��������

n1 � 2r1 � 1 ρ1,2 . . . ρ1,k

ρ1,2 n2 � 2r2 � 1 . . . ρ2,k

...
...

. . .
...

ρ1,k ρ2,k . . . nk � 2rk � 1

�
��������
.

and

ρl,q � sl,q
?
nlnq �

$''&
''%
�?nlnq if lq PE(G)

?
nlnq if lq R E(G)

for l P t1, 2, ..., k � 1u, q P tl � 1, ..., ku.

Let TSpGq be the combinatorial vertex weighted Seidel matrix of G, given by

TSpGq �

�
��������

n1 � 2r1 � 1 s1,2n2 . . . s1,knk

s1,2n1 n2 � 2r2 � 1 . . . s2,knk
...

...
. . .

...

s1,kn1 s2,kn2 . . . nk � 2rk � 1

�
��������
.

It is easy to verify that TSpGq � W� 1
2 S̃W

1
2 , where W is a diagonal matrix of

vertex weights as defined in Section 6.3. Thus S̃ and TSpGq are similar and hence

SpecpS̃q � SpecpTSpGqq.

Lemma 7.2.4. [9] Let G be k-regular graph of order n. If k, λ2, ..., λn are the

adjacency eigenvalues and θ1, θ2, ..., θn are the Seidel eigenvalues of G, then

θ1 � n� 2k � 1, θ2 � �1� 2λ2, θ3 � �1� 2λ3, ..., θn � �1� 2λn.

As an immediate consequence of Theorem 7.2.3 and Lemma 7.2.4, the Seidel

spectrum of G rH1, H2, ..., Hks is found in terms of the adjacency spectrum of

H1, H2, ..., Hk.

96



7.2. Seidel spectrum of join of regular graphs

Corollary 7.2.5. If λ1j � rj, λ2j, ..., λnjj are the adjacency eigenvalues of Hj

for j � 1, 2, ..., k, then

SpecSpG rH1, H2, ..., Hksq �
�

k¤
j�1

nj¤
i�2

t�1� 2λiju
�
Y SpecpTSpGqq,

where

TSpGq �

�
��������

n1 � 2r1 � 1 s1,2n2 . . . s1,knk

s1,2n1 n2 � 2r2 � 1 . . . s2,knk
...

...
. . .

...

s1,kn1 s2,kn2 . . . nk � 2rk � 1

�
��������
.

v1v1

v2

v2

v3
v3

v4
v4

v5

v5

v6
v6

v7

v7

v8 v8

v9
v9

Figure 7.1: P3rK3, K2, C4s

Example 7.2.6. Consider the graph G � P3rK3, K2, C4s, the P3-union of the

complete graphs K3, K2 and the cycle C4. Note that G � P3, H1 � K3,

H2 � K2, H3 � C4 and n1 � 3, n2 � 2, n3 � 4 and r1 � 2, r2 � 1, r3 � 2. The

adjacency spectrum and the Seidel spectrum of the graphs K3, K2 and C4 are

given below.

SpecpK3q �

$'&
'%

2 �1

1 2

,/.
/- , SpecpK2q �

$'&
'%

1 �1

1 1

,/.
/- , SpecpC4q �

$'&
'%

2 0 �2

1 2 1

,/.
/- .
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7.2. Seidel spectrum of join of regular graphs

SpecSpK3q �

$'&
'%

�2 1

1 2

,/.
/- , SpecSpK2q �

$'&
'%

�1 1

1 1

,/.
/- , SpecSpC4q �

$'&
'%

�1 3

3 1

,/.
/- .

Also, the Seidel matrix of the joining graph P3 and the combinatorial vertex

weighted Seidel matrix of G are given by

SpP3q �

�
�����

0 �1 1

�1 0 �1

1 �1 0

�
����� , TSpGq �

�
�����
�2 �2 4

�3 �1 �4

3 �2 �1

�
����� .

Using Corollary 7.2.5, the Seidel spectrum P3rK3, K2, C4s is

$'&
'%

3 1 �1

1 3 2

,/.
/- , to-

gether with the spectrum of TSpP3q �

�
�����
�2 �2 4

�3 �1 �4

3 �2 �1

�
����� , which is found to be

t�5, 1�?65
2

u. Thus, the Seidel spectrum of this graph is obtained as below.

SpecSpP3rK3, K2, C4sq �

$'&
'%

3 1 �1 �5
1�?

65

2

1�?
65

2

1 3 2 1 1 1

,/.
/- .

7.2.2 Seidel matrix and Seidel spectrum of Γ pZnq

The following Theorem completely determines the Seidel spectrum of Γ pZnq in

terms of the Seidel eigenvalues of its induced subgraphs and the proper divisor

graph of n.

Theorem 7.2.7. If d1, d2, ..., dξpnq are the proper divisors of n, then the Seidel

matrix of Γ pZnq is given by

98



7.2. Seidel spectrum of join of regular graphs

SpΓ pZnqq �

�
���������

S1 s1,2Jφp n
d1
q�φp n

d2
q . . . s1,ξpnqJφp n

d1
q�φp n

dξpnq
q

s1,2J
T
φp n
d1
q�φp n

d2
q S2 . . . s2,ξpnqJφp n

d2
q�φp n

dξpnq
q

...
...

. . .
...

s1,ξpnqJTφp n
d1
q�φp n

dξpnq
q s2,ξpnqJTφp n

d2
q�φp n

dξpnq
q . . . Sξpnq

�
���������
,

where,

Sj �

$''&
''%
pJ � Iqφp n

dj
q if n � d2

j

pI � Jqφp n
dj
q if n � d2

j

and for i P t1., 2, ..., ξpnq � 1u and j P ti� 1, ..., ξpnqu, i � j,

si,j �

$''&
''%
�1 if n � didj

1 if n � didj
.

Proof. Γ pZnq is the Υn - join of ΓpApd1qq,ΓpApd2qq, ...,Apdξpnqqq. The induced

subgraphs ΓpApdjqq are either a complete graph or the complement of a complete

graph, by Lemma 4.3.2.

Hence, the Seidel matrix of the induced subgraphs ΓpApdjqq, denoted by Sj are

given by,

Sj �

$''&
''%
pJ � Iqφp n

dj
q if n � d2

j

pI � Jqφp n
dj
q if n � d2

j

,

and the spectrum of Sj is known in each case. Also, any two vertices di and dj

in the joining graph Υn are adjacent if and only if n � didj and accordingly the

ij-th entry in the Seidel matrix of Υn is �1 if n � didj and 1 if n � didj, and 0

on the diagonal. Thus the Theorem follows, taking G � Υn and Hj � ΓpApdjqq,
as in equation (7.2).
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7.2. Seidel spectrum of join of regular graphs

Theorem 7.2.8. Let d1, d2, ..., dξpnq be the proper divisors of any positive integer

n. Then, the zero-divisor graph Γ pZnq has Seidel eigenvalues �1 and 1 with

multiplicities
°
d�n,n�d2pφpnd q � 1q and

°
d�n,n�d2pφpnd q � 1q respectively and

the remaining Seidel eigenvalues are the eigenvalues of the vertex weighted Seidel

matrix of Υn, given below.

TSpΥnq �

�
��������

t1 s1,2φp nd2 q . . . s1,ξpnqφp n
dξpnq

q
s1,2φp nd1 q t2 . . . s2,ξpnqφp n

dξpnq
q

...
...

. . .
...

s1,ξpnqφp nd1 q s2,ξpnqφp nd2 q . . . tξpnq

�
��������
,

where,

tj �

$''&
''%
φp n

dj
q � 1 if n � d2

j

1� φp n
dj
q if n � d2

j

and for i P t1, 2, ..., ξpnq�1u, j P ti�1, ..., ξpnqu, i � j, si,j �

$''&
''%
�1 if n � didj

1 if n � didj
.

Corollary 7.2.9. Γ pZnq is Seidel integral if and only if TSpΥnq is integral.

Corollary 7.2.10. For distinct primes p and q, p   q, Γ pZpqq has only two

distinct Seidel eigenvalues �1 and p� q � 3.

Proof. Consider Γ pZpqq, where p   q are distinct primes. It can be easily seen

that the zero-divisor graph Γ pZpqq, is the K2 join of ΓpAppqq and ΓpApqqq, where

ΓpAppqq � Kq�1 and ΓpApqqq � Kp�1. Note that the proper divisor graph of pq

is Υpq � K2.

That is Γ pZpqq � K2rKq�1, Kp�1s. Using Theorem 7.2.7, the Seidel matrix of
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7.2. Seidel spectrum of join of regular graphs

Γ pZpqq is given by

SpΓ pZpqqq �

�
�� pJ � Iqpq�1q�pq�1q p�1qJpq�1q�pp�1q

p�1qJpp�1q�pq�1q pJ � Iqpp�1q�pp�1q

�
�� .

And by Theorem 7.2.8, since both ΓpAppqq and ΓpApqqq are null graphs, �1 is a

Seidel eigenvalue of Γ pZpqq with multiplicity p� q � 4 and the other two Seidel

eigenvalues are the eigenvalues of its vertex weighted Seidel matrix,

TSpΥpqq �

�
�� q � 2 �pp� 1q
�pq � 1q p� 2

�
�� .

Thus, the remaining two Seidel eigenvalues of this graph are �1 and p � q � 3.

Thus

SpecSpΓ pZpqqq �

$'&
'%

�1 p� q � 3

p� q � 3 1

,/.
/- .

Corollary 7.2.11. For any prime p, �1 and 1 are the Seidel eigenvalues of

Γ pZp3q with multiplicities p2 � p � 1 and p � 2 respectively and the remaining

Seidel eigenvalues are
pp� 1q2 �

a
p4 � 4p3 � 14p2 � 4p� 9

2
.

Proof. The proper divisors of p3 are p and p2 and the proper divisor graph of p3

is Υp3 � K2. Also, Γ pZp3q � K2rKppp�1q, Kp�1s. Thus, applying Theorem 7.2.8,

�1 and 1 are the Seidel eigenvalues of Γ pZp3q with multiplicities p2 � p� 1 and

p � 2 respectively and the remaining two Seidel eigenvalues are the eigenvalues

of the vertex weighted Seidel matrix,

TSpΥp3q �

�
�� p2 � p� 1 �pp� 1q

�pp2 � pq 2� p

�
�� .
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7.2. Seidel spectrum of join of regular graphs

Corollary 7.2.12. For distinct primes p   q, �1 and 1 are the Seidel eigenval-

ues of Γ pZp2qq with multiplicities p2 � pq � 2p� 3 and p� 2 respectively and the

remaining Seidel eigenvalues are the zeroes of the polynomial

λ4 � λ3p1 � p2 � 3p � pqq � λ2p5p2 � 2p3 � 2p2q � p � pq � 3q � λp4p4q � 4p4 �
12p3�4p3q2�20p3q�7p2�8p2q2�24p2q�p�4pq2�7pq�5q�p8p4q2�12p4q�
4p4 � 28p3q2 � 44p3q � 18p3 � 32p2q2 � 54p2q � 27p2 � 12pq2 � 23pq � 13p� 2q.

Proof. The proper divisors of p2q are p, q, p2, pq. and the proper divisor graph

of p2q is the path P4, where p � pq � p2 � q. Hence, it can be seen that, the

zero-divisor graph

Γ pZp2qq � P4rKpp�1qpq�1q, Kppp�1q, Kpq�1q, Kp�1s.

Applying Theorem 7.2.8, �1 and 1 are the Seidel eigenvalues of Γ pZp2qq with

multiplicities p2 � pq � 2p � 3 and p � 2 respectively and the remaining four

Seidel eigenvalues are the eigenvalues of the vertex weighted Seidel matrix,

TSpΥp2qq �

�
��������

pp� 1qpq � 1q � 1 p2 � p q � 1 �pp� 1q
pp� 1qpq � 1q p2 � p� 1 �pq � 1q p� 1

pp� 1qpq � 1q p� p2 q � 2 �pp� 1q
�pp� 1qpq � 1q p2 � p �pq � 1q 2� p

�
��������
.

7.2.3 Seidel spectrum of Γ pZpkq, k ¥ 3

The proper divisors of pk are p, p2, ..., pk�1 and tAppq,App2q, ...,Appk�1qu forms

an equitable partition for V pΓ pZpkqq. The proper divisor graph Υpk is a simple
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7.2. Seidel spectrum of join of regular graphs

connected graph of diameter 2 in which the vertices are labeled as p, p2, .....pk�1

and for distinct i and j, pi � pj if and only if i� j ¥ k. Also,

Γ pZpkq � ΥpkrKφppk�1q, Kφppk�2q, ..., Kφppt k2 u�1q, Kφppt k2 uq, ..., Kφppqs.

Using the properties of the Euler-totient function φ, it can be seen that

Σj r k
2
s

�
φppk�jq � 1

� � Σ
r k
2
s�1

j�1

�
φppk�jq � 1

�
� pk�1 � pt k

2
u � r

k

2
s� 1,

and

Σj¥r k
2
s

�
φppk�jq � 1

� � pt k
2
u � t

k

2
u� 1.

Thus, on account of Theorem 7.2.8, the next Theorem follows.

Theorem 7.2.13. For k ¥ 3, the zero-divisor graph Γ pZpkq has Seidel eigenvalue

�1 and 1 with multiplicities pk�1�pt k
2
u�rk

2
s�1 and pt k

2
u�tk

2
u�1 and the remaining

Seidel eigenvalues are the eigenvalues of the vertex weighted Seidel matrix,

TSpΥpkq �

�
��������

ζ1 s1,2φppk�2q . . . s1,k�1φppq
s1,2φppk�1q ζ2 . . . s2,k�1φppq

...
...

. . .
...

s1,k�1φppk�1q s2,k�1φppk�2q . . . ζk�1

�
��������
,

where, si,j �

$''&
''%
�1 if i� j ¥ k

1 otherwise

and ζj �

$''&
''%
φppk�jq � 1 if j   rk

2
s

1� φppk�jq j ¥ rk
2
s

.

Corollary 7.2.14. For any prime p, the zero-divisor graph Γ pZp4q has Seidel

eigenvalue �1 and 1 with multiplicities p3 � p2 � 1 and p2 � 3 respectively and

the remaining Seidel eigenvalues of Γ pZp4q are the zeroes of the polynomial

λ3�λ2pp3�2p2�2q�λp2p5�2p4�4p3�4p2�1q�p4p6�14p5�14p4�p3�2p2�2q.
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7.3. Seidel Laplacian spectrum of the join of regular graphs

Proof. The divisors of p4 are p, p2, p3 and the proper divisor graph of p4 is the

path P3, where p � p3 � p2. It can be seen that

Γ pZp4q � P3rKp2pp�1q, Kppp�1q, Kp�1s.

Again using Theorem 7.2.8, it is found that �1 and 1 are the Seidel eigenvalues of

Γ pZp4q with multiplicities p3 � p2 � 1 and p2 � 3 respectively and the remaining

Seidel eigenvalues of Γ pZp4q are the eigenvalues of the vertex weighted Seidel

matrix,

TSpΥp4q �

�
�����
p3 � p2 � 1 p2 � p �pp� 1q
p3 � p2 p� p2 � 1 �pp� 1q
�pp3 � p2q p� p2 2� p

�
����� .

7.3 Seidel Laplacian spectrum of the join of reg-

ular graphs

In [73], H.S.Ramane et.al express the Seidel Laplacian polynomial of the join of

two regular graphs. In this Section, the same is found in a fairly shorter method,

by applying the well known Fiedler’s Lemma and the result is extended to the

join of more than two regular graphs.

Theorem 7.3.1. Let Gi be ri regular of order ni, for i � 1, 2. Then the Seidel

Laplacian polynomial of G1 5G2 is given by

ΦSLpG1 5G2;λq � λpλ� n1 � n2q
pλ� n1qpλ� n2q � ΦSLpG1;λ� n2q � ΦSLpG2;λ� n1q.
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7.3. Seidel Laplacian spectrum of the join of regular graphs

Proof. Let SpG1q and SpG2q denote the Seidel adjacency matrices of G1 and

G2 respectively. Then, the Seidel Laplacian matrices of G1 and G2 are given as

follows.

SLpG1q � pn1 � 2r1 � 1qIn1 � SpG1q,

SLpG2q � pn2 � 2r2 � 1qIn2 � SpG2q.

Since G1 is regular, by Lemma 7.2.4, n1 � 2r1 � 1 is an eigenvalue of SpG1q with

corresponding eigenvector 1n1 . Also, 1 is an eigenvalue of In1 with eigenvector

1n1 . Thus it can be seen that, 0 is an eigenvalue of SLpG1q with correspond-

ing eigenvector 1n1 . Similarly, 0 is an eigenvalue of SLpG2q with corresponding

eigenvector 1n2 . Clearly, SLpG1 5G2q

�

�
�� pn1 � n2 � 2pr1 � n2q � 1qIn1 � S1 Jn1�n2

JTn1�n2
pn1 � n2 � 2pr2 � n1q � 1qIn2 � S2

�
��

�

�
�� SLpG1q � n2In1 Jn1�n2

JTn1�n2
SLpG2q � n1In2

�
�� .

Taking A � SLpG1q � n2In1 , B � SLpG2q � n1In2 α1 � �n2, β1 � �n1,

u1 � 1?
n1

1n1 , u2 � 1?
n2

1n2 , ρ �
?
n1n2 and applying Fiedler’s Lemma, it can be

seen that SpecSLpG1 5G2q
� Spec

�
SLpG1q � n2In1

� zt�n2u
�
Spec

�
SLpG2q � n1In2

� zt�n1u
�
SpecF̂ , where

the matrix F̂ �

�
�� �n2

?
n1n2

?
n1n2 �n1

�
�� . Clearly, SpecpF̂ q �

$'&
'%

0 �n1 � n2

1 1

,/.
/- .

Thus,

ΦSLpG1 5G2;λq � λpλ� n1 � n2q
pλ� n1qpλ� n2q � ΦSLpG1;λ� n2q � ΦSLpG2;λ� n1q.
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7.3. Seidel Laplacian spectrum of the join of regular graphs

7.3.1 Seidel Laplacian spectrum of the joined union of

regular graphs

Consider G rH1, H2, ..., Hks, where G is a simple connected graph with vertices

labeled as 1, 2, ..., k with the Seidel matrix SpGq � rsi,js where si,j � �1 if the

vertices i and j are adjacent and si,j � 1 if the vertices i and j are not adjacent

and si,j � 0 for the diagonal entries. Let Hj be rj- regular and |V pHjq| � nj,

for every j � 1, 2, ..., k. Let Sj and SLpHjq denote the Seidel matrix and Seidel

Laplacian matrix of Hj, j � 1, 2, ..., k. The degree of each vertex of Hj, in the

joined graph G rH1, H2, ..., Hks is rj �
°
i�j ni. Hence, if SLj denotes the jth

diagonal block in the Seidel Laplacian matrix of G rH1, H2, ..., Hks, then,

SLj �
�

ķ

i�1

ni � 2prj �
¸
j�i

niq � 1

�
Inj � Sj

� pnj � 2rj � 1qInj � Sj �
�¸
j�i
ni �

¸
j�i

ni

�
Inj

� SLpHjq �
�

ķ

i�1

sijni

�
Inj

� SLpHjq � τjInj .

where τj �
°k
i�1 si,jni. Thus, it can be easily seen that, the Seidel Laplacian

matrix of the G- union of H1, H2, ..., Hk is given by
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7.3. Seidel Laplacian spectrum of the join of regular graphs

SLpG rH1, H2, ..., Hksq �

�
��������

SLpH1q � τ1In1 �s1,2Jn1�n2 . . . �s1,kJn1�nk

�s1,2J
T
n1�n2

SLpH2q � τ2In2 . . . �s2,kJn2�nk
...

. . .
...

�s1,kJ
T
n1�nk �s2,kJ

T
n2�nk . . . SLpHkq � τkInk

�
��������

(7.3)

where τj �
°k
i�1 si,jni.

Remark 7.3.2. Let G be a k-regular graph of order n. Since, SLpGq � pn �
2k � 1qIn � SpGq, from Lemma 7.2.4 it follows that, SLpGq has an eigenvalue

0 with multiplicity at least 1. For example, the Seidel Laplacian spectrum of the

cycle C4, which is 2-regular is specSLpC4q �

$'&
'%

0 �4

3 1

,/.
/- . However, the Seidel

Laplacian matrix of complete graphs and null graphs (complement of complete

graphs) has an eigenvalue 0 with multiplicity 1.

Theorem 7.3.3. Consider G rH1, H2, ..., Hks, where G is a simple connected

graph with vertices labeled as 1, 2, ..., k and and S � rsi,jsk�k is the Seidel matrix

of G and Hj is rj- regular and |V pHjq| � nj, for every j � 1, 2, ..., k. Let

tθLj1 � 0, θLj2, ..., θ
L
jnj
u be the Seidel Laplacian eigenvalues of Hj, for j � 1, 2, ..., k.

Then, the Seidel Laplacian spectrum of the G-join of the graphs H1, H2, ..., Hk is

given by,

SpecSLpG rH1, H2, ..., Hksq �
�

k¤
j�1

nj¤
i�2

pθLji � τjq
�
Y SpecpTSLpGqq,
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where τj �
°k
i�1 si,jni and

TSLpGq �

�
��������

τ1 �s1,2n2 . . . �s1,knk

�s1,2n1 τ2 . . . �s2,knk
...

...
. . .

...

�s1,kn1 �s2,kn2 . . . τk

�
��������
.

Proof. Since Hj is regular, 0 is a Seidel Laplacian eigenvalue of Hj with corre-

sponding eigenvector 1nj , for every j. Thus from equation (7.3), it is evident

that each of the diagonal blocks SLpHjq� τjInj is a symmetric matrix which has

τj as an eigenvalue with corresponding eigenvector 1nj , for j � 1, 2, ..., k. Thus,

as in (6.3), taking

Mj � SLpHjq � τjInj , pαij ,j,uij ,jq �
�
τj ,

1?
nj

1nj




and the real numbers

ρl,q � �sl,q?nlnq

for l P t1, 2, ..., k � 1u, q P tl � 1, ..., ku, and applying Theorem 6.2.2, the

Seidel Laplacian spectrum of G rH1, H2, ..., Hks is obtained as,

SpecSLpG rH1, H2, ..., Hksq �
�

k¤
j�1

Spec
�
SLpHjq � τjInj

� ztτju
�
Y SpecppL̃qq,

(7.4)

where τj �
°k
i�1 si,jni and L̃ �

�
��������

τ1 ρ1,2 . . . ρ1,k

ρ1,2 τ2 . . . ρ2,k

...
...

. . .
...

ρ1,k ρ2,k . . . τk

�
��������
.

Obviously, ρl,q � �sl,q?nlnq �

$''&
''%
?
nlnq if lq PE(G)

�?nlnq if lq R E(G)

for l P t1, 2, ..., k �
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1u, q P tl � 1, ..., ku. Let TSLpGq be the combinatorial vertex weighted Seidel

Laplacian matrix of G, given by

TSLpGq �

�
��������

τ1 �s1,2n2 . . . �s1,knk

�s1,2n1 τ2 . . . �s2,knk
...

...
. . .

...

�s1,kn1 �s2,kn2 . . . τk

�
��������
.

It is easy to verify that, TSLpGq � W� 1
2 L̃W

1
2 , where W is given as in Section:6.3.

Thus, L̃ and TSLpGq are similar and hence SpecpL̃q � SpecpTSLpGqq. Hence, from

equation(7.4),

SpecSLpG rH1, H2, ..., Hksq �
�

k¤
j�1

nj¤
i�2

pθLji � τjq
�
Y SpecpTSLpGqq. (7.5)

7.3.2 Seidel Laplacian spectrum of Γ pZnq

Theorem 7.3.4. If d1, d2, ..., dξpnq are the proper divisors of n, then the Seidel

Laplacian matrix of Γ pZnq is given by,

SLpΓ pZnqq

�

�
���������

SL1 �s1,2Jφp n
d1
q�φp n

d2
q . . . �s1,ξpnqJφp n

d1
q�φp n

dξpnq
q

�s1,2J
T
φp n
d1
q�φp n

d2
q SL2 . . . �s2,ξpnqJφp n

d2
q�φp n

dξpnq
q

...
...

. . .
...

�s1,ξpnqJTφp n
d1
q�φp n

dξpnq
q �s2,ξpnqJTφp n

d2
q�φp n

dξpnq
q . . . SLξpnq

�
���������

where,

SLj �

$''&
''%
�
φp n

dj
q �°ξpnq

i�1 sijφp ndi q
	
Iφp n

dj
q � Jφp n

dj
q if n � d2

j

Jφp n
dj
q �

�°ξpnq
i�1 sijφp ndi q � φp n

dj
q
	
Iφp n

dj
q if n � d2

j
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and

si,j �

$''&
''%
�1 if n � didj

1 if n � didj
.

Proof. In the proper divisor graph Υn, two vertices di and dj are adjacent if and

only if n � didj. Thus if S � rsi,jsξpnq�ξpnq denotes the Seidel adjacency matrix of

Υn, then

si,j �

$''&
''%
�1 if n � didj

1 if n � didj
.

By Lemma 4.3.4, Γ pZnq is the Υn - join of ΓpApd1qq,ΓpApd2qq, ...,ΓpApdξpnqqq,
where the induced subgraphs ΓpApdjqq are given by

ΓpApdjqq �

$''&
''%
Kφp n

dj
q if n � d2

j

Kφp n
dj
q if n � d2

j

,

by Lemma 4.3.2. Also, the Seidel Laplacian matrix of Kn and Kn are given by

SLpKnq � Jn � nIn,

SLpKnq � nIn � Jn.

Thus, if SLj denotes the jth diagonal block in the Seidel Laplacian matrix of

Γ pZnq, which corresponds to the vertices of ΓpApdjqq, then, SLj � SLpΓpApdjqqq�
τjIφp n

dj
q where, τj �

°ξpnq
i�1 si,jφp ndi q. Hence,

SLj �

$''&
''%
φp n

dj
qIφp n

dj
q � Jφp n

dj
q � τjIφp n

dj
q if n � d2

j

Jφp n
dj
q � φp n

dj
qIφp n

dj
q � τjIφp n

dj
q if n{d2

j

.

Thus the result follows equation (7.3), taking G � Υn and Hj � ΓpApdjqq.
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Applying Theorem 7.3.3 and Theorem 7.3.4, the Seidel Laplacian spectrum

of Γ pZnq is determined in the following Corollary.

Corollary 7.3.5. Let d1, d2, ..., dξpnq be the proper divisors of n. Then, Γ pZnq
has Seidel Laplacian eigenvalues φp n

dj
q�°ξpnq

i�1 si,jφp ndi q with multiplicity φp n
dj
q�1

corresponding to the divisors dj such that n � d2
j and

°ξpnq
i�1 si,jφp ndi q � φp n

dj
q with

multiplicity φp n
dj
q � 1 corresponding to the divisors dj such that n � d2

j and the

remaining Seidel Laplacian eigenvalues are the eigenvalues of

TSLpGq �

�
��������

η1 �s1,2φp nd2 q . . . �s1,ξpnqφp n
dξpnq

q
�s1,2φp nd1 q η2 . . . �s2,ξpnqφp n

dξpnq
q

...
...

. . .
...

�s1,ξpnqφp nd1 q �s2,kφp nd2 q . . . ηξpnq

�
��������

(7.6)

where ηj �
°ξpnq
i�1 si,jφp ndi q, j � 1, 2, ..., ξpnq.

Theorem 7.3.6. 0 ia a simple Seidel Laplacian eigenvalue of Γ pZnq, for any n.

Proof. It is first shown that 0 is an eigenvalue of the matrix TSLpGq of multiplicity

1. Arrange the proper divisors of n in the ascending order, d1   d2   ...   dξpnq.

It is obvious that φp n
d1
q ¡ φp n

di
q, i � 2, 3, ..., ξpnq. Note that, TSLpGq is a square

matrix of size ξpnq. Since, ηj �
°ξpnq
i�1 si,jφp ndi q,

ηj �
¸
i�j

�si,jφp n
di
q � 0.

Hence it follows from equation (7.6) that, the sum of each row of TSLpGq is zero.

The first column of TSLpGq can be transformed to the zero column on adding

2nd, 3rd, ..., ξpnqth columns to it. Hence, TSLpGq is singular which implies that 0

is an eigenvalue of TSLpGq. To prove that the multiplicity is 1, it suffices to prove
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that the rank of TSLpGq is ξpnq � 1. For this, consider the matrix T obtained

from TSLpGq by deleting the first row and first column of TSLpGq. Since

si,j � �1, φp n
d1

q ¡ φp n
di
q, i � 2, 3, ..., ξpnq ñ |ηj| ¡

¸
i�j,i�1

|si,jφp n
di
q|.

Thus, T is strictly diagonally dominant. For example, consider the first row of

T , say

rη2,�s2,3φp nd3 q,�s2,4φp nd4 q, ...,�s2,ξpnqφp n
dξpnq

qs. Since, η2 � s1,2φp nd1 q�s2,3φp nd3 q�
....� s2,ξpnqφp n

dξpnq
q, it follows that |η2| ¡ |s2,3φp nd3 q| � ...� |s2,ξpnqφp n

dξpnq
q|.

Hence by Levy- Desplanques Theorem, T is non-singular, and hence the rank of

TSLpGq is ξpnq � 1.

By Corollary 7.3.5, the remaining Seidel eigenvalues of Γ pZnq are φp n
dj
q �°ξpnq

i�1 si,jφp ndi q and
°ξpnq
i�1 si,jφp ndi q � φp n

dj
q, neither of which is zero. This proves

the Theorem.

Theorem 7.3.7. For distinct primes p and q, p   q, the Seidel Laplacian spec-

trum of Γ pZpqq is given by

SpecSLpΓ pZpqqq �

$'&
'%

0 �pp� q � 2q p� q q � p

1 1 p� 2 q � 2

,/.
/- .

Proof. The proper divisors of pq are p and q. By Lemma 4.3.2 and Lemma

4.3.4, the zero-divisor graph Γ pZpqq is the join of ΓpAppqq and ΓpApqqq, where

ΓpAppqq � Kq�1 and ΓpApqqq � Kp�1. That is

Γ pZpqq � Kq�1 5Kp�1.

Clearly SpecSLpKq�1q �

$'&
'%

0 q � 1

1 q � 2

,/.
/- and SpecSLpKp�1q �

$'&
'%

0 p� 1

1 p� 2

,/.
/- .

And the result follows from Theorem 7.3.1.
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Theorem 7.3.8. For any prime p, the Seidel Laplacian spectrum of Γ pZp3q is

SpecSLpΓ pZp3qq �

$'&
'%

0 1 � p2 p2 � 2p� 1

1 p� 1 p2 � p� 1

,/.
/- .

Proof. The proper divisors of p3 are p and p2. By lemma 4.3.2 it can be seen

that, the subgraphs of Γ pZp3q, induced by Appq and App2q are Kppp�1q and Kp�1

respectively. Also by Lemma 4.3.4,

Γ pZp3q � Kppp�1q 5Kp�1.

SpecSLpKppp�1qq �

$'&
'%

0 ppp� 1q
1 p2 � p� 1

,/.
/- ,

SpecSLpKp�1q �

$'&
'%

0 1 � p

1 p� 2

,/.
/- .

Hence the result follows from Theorem 7.3.1.

Theorem 7.3.9. For any prime p, the Seidel Laplacian spectrum of the zero-

divisor graph Γ pZp4q is

SpecSLpΓ pZp4qq �

$'&
'%

0 1 � p3 p3 � 2p2 � 1 p3 � 2p� 1

1 p� 1 p2 � p� 1 p3 � p2

,/.
/- .

Proof. The divisors of p4 are p, p2, p3. The proper divisor graph of p4 is the path

P3, in which p � p3 � p2. The subgraph induced by Appq is the null graph

Kp2pp�1q, whereas the subgraphs induced by App2q and App3q are the complete

graphs Kppp�1q and Kp�1 respectively. It can be seen that,

Γ pZp4q � P3rKp2pp�1q, Kppp�1q, Kp�1s.

113



7.4. Seidel signless Laplacian spectrum of the join of regular graphs

Applying Corollary 7.3.5, p3 � 2p � 1, p3 � 2p2 � 1, 1 � p3 are Seidel Laplacian

eigenvalues of Γ pZp4q with multiplicities p3�p2�1, p2�p�1 and p�2 respectively.

And the remaining Seidel Laplacian eigenvalues of Γ pZp4q are the eigenvalues of

the matrix,

TSLpΥp4q �

�
�����
p2 � 2p� 1 p� p2 p� 1

p2 � p3 p3 � p2 � p� 1 p� 1

p3 � p2 p2 � p p� p3

�
����� .

It can be seen that the above matrix has three eigen values, λ1 � 0, λ2 � 1 �
p3, λ3 � p3 � 2p� 1.

7.4 Seidel signless Laplacian spectrum of the

join of regular graphs

Note that, each diagonal block in the Seidel signless Laplacian matrix of the join

of two regular graphs is a symmetric matrix which bears an eigenvalue with all-

one vector as the corresponding eigenvector, which facilitates the use of Fiedler’s

Lemma in the investigation of its spectrum. Since the main theorems of this

section are in the same frame work of Fiedlers Lemma, repetition of proofs is

avoided, except in Theorem 7.4.1, where the concepts of Coronal of a square

matrix and the Schur complement are incorporated.

Theorem 7.4.1. Let Gi be ri-regular graph of order ni, for i � 1, 2. The Seidel

signless Laplacian polynomial of G1 5G2 is

ΦSQpG1 5G2;λq � pλ� κ1qpλ� κ2q � n1n2

pλ� κ1qpλ� κ2q � ΦSQpG1;λ� n2q � ΦSQpG2;λ� n1q
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where, κ1 � 2n1 � n2 � 4r1 � 2 and κ2 � 2n2 � n1 � 4r2 � 2.

Proof. Let SQpG1q and SQpG2q denote the Seidel signless Laplacian matrices of

G1 and G2 respectively. Both SQpG1q and SQpG2q are symmetric and it can be

seen that, their row sums are the constants 2pn1 � 2r1 � 1q and 2pn2 � 2r2 � 1q
respectively. Also,

SQpG1 5G2q �

�
�� SQpG1q � n2In1 �Jn1�n2

�JTn1�n2
SQpG2q � n1In2

�
��

�

�
�� SQ1 �Jn1�n2

�JTn1�n2
SQ2

�
�� ,

where SQ1 � SQpG1q � n2In1 and SQ2 � SQpG2q � n1In2 . Both SQ1 and SQ2

are symmetric and it can be easily seen that their row sums are the constants

κ1 � 2pn1 � 2r1 � 1q � n2 and κ2 � 2pn2 � 2r2 � 1q � n1 respectively. Thus, the

coronal of SQ1 and SQ2 are found to be ΓSQ1
pλq � n1

λ� κ1

and ΓSQ2
pλq � n2

λ� κ2

respectively. Applying Lemma 4.2.4, and Lemma 3.3.6, it can be seen that

detpλI�SQpG15G2qq � detpλI�SQ1 q�detpλI�SQ2 q�
�

1� ΓSQ1
pλqΓSQ2 pλq

	
. (7.7)

where ΓSQ1
pλq � n1

λ� pκ1q and ΓSQ2
pλq � n2

λ� pκ2q .
Simplifying equation (7.7), the result is obtained.

Generalizing the above theorem to the join of regular graphs, G rH1, H2, ..., Hks,
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the next Theorem follows.

SQpG rH1, H2, ..., Hksq �

�
��������

SQpH1q � ν1In1 s1,2Jn1�n2 . . . s1,kJn1�nk

s1,2J
T
n1�n2

SQpH2q � ν2In2 . . . s2,kJn2�nk
...

. . .
...

s1,kJ
T
n1�nk s2,kJ

T
n2�nk . . . SQpHkq � νkInk

�
��������

(7.8)

where νj �
°k
i�1 si,jni.

Theorem 7.4.2. Consider G rH1, H2, ..., Hks, where G is a simple connected

graph with vertices labeled as 1, 2, ..., k and S � rsi,jsk�k is the Seidel matrix of

G and Hj is rj- regular and |V pHjq| � nj, for every j � 1, 2, ..., k. Let tθQj1 �
2pnj � 2rj � 1q, θQj2, ..., θQjnju be the Seidel signless Laplacian eigenvalues of Hj,

for j � 1, 2, ..., k. Then, the Seidel signless Laplacian spectrum of the G-join of

the graphs H1, H2, ..., Hk is given by,

SpecSQpG rH1, H2, ..., Hksq �
�

k¤
j�1

nj¤
i�2

pθQji � νjq
�
Y SpecpTSQpGqq

where νj �
°k
i�1 si,jni and

TSQpGq �

�
��������

2pn1 � 2r1 � 1q � ν1 s1,2n2 . . . s1,knk

s1,2n1 2pn2 � 2r2 � 1q � ν2 . . . s2,knk
...

...
. . .

...

s1,kn1 s2,kn2 . . . 2pnk � 2rk � 1q � νk

�
��������

Proof. Since Hj is rj-regular, SQpHjq � pnj�2rj�1qInj�pSpHjqq, where SpHjq
is the Seidel matrix of Hj. By lemma 7.2.4, nj � 2rj � 1 is a Seidel eigenvalue

of Hj with corresponding eigenvector 1nj . Thus, SQpHjq has eigenvalue 2pnj �
2rj � 1q with corresponding eigenvector 1nj , for every j � 1, 2, ..., k. Hence, as
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evident from equation (7.8), the jth diagonal block of the Seidel signless Laplacian

matrix of G rH1, H2, ..., Hks is the symmetric matrix SQpHjq � νjInj which has

an eigenvalue 2pnj � 2rj � 1q � νj with eigenvector 1nj , for j � 1, 2, ..., k. Thus,

taking

Mj � SQpHjq � νjInj , pαij ,j,uij ,jq �
�

2pnj � 2rj � 1q � νj ,
1?
nj

1nj




and the real numbers

ρl,q � sl,q
?
nlnq

for l P t1, 2, ..., k � 1u, q P tl � 1, ..., ku, the result follows from Theorem

6.2.2.

Example 7.4.3. Consider the zero-divisor graph Γ pZp2qq, where p   q are dis-

tinct primes. The proper divisors of p2q are d1 � p, d2 � q, d3 � p2, d4 � pq.

The proper divisor graph of p2q is the path P4, where p � pq � p2 � q. The sub-

graphs induced by Appq,Apqq,App2q,Appqq are Kpp�1qpq�1q, Kppp�1q, Kpq�1q and

Kp�1 respectively. Hence,

Γ pZp2qq � P4rKpp�1qpq�1q, Kppp�1q, Kpq�1q, Kp�1s.

Applying Theorem 7.4.2, the Seidel signless Laplacian spectrum of Γ pZp2qq is the

multi set$'&
'%

p2 � pq � 3p� 1 p2 � pq � p� 2q � 1 pq � p2 � p� 1 p2 � pq � p� 3

pq � p� q p2 � p� 1 q � 2 3 � p

,/.
/-

together with the spectrum of the matrix,
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TSQpΥp2qq=

�
��������

p2 � 2pq � 4p� q p2 � p q � 1 1� p

pp� 1qpq � 1q 2p2 � pq � 2p� 2q � 1 1 � q p� 1

pp� 1qpq � 1q p� p2 pq � p2 � p� q � 2 1 � p

�pp� 1qpq � 1q p2 � p 1� q p2 � pq � 2p� 4

�
��������
.
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Chapter 8

Conclusion And Further Scope Of Research

8.1 Summary of the Thesis

The first Chapter is the introductory Chapter which includes the review of lit-

erature of recent works on this area.

In the second Chapter, the preliminaries from Graph Theory and Matrix Theory

are provided with due focus given to Spectral Graph Theory.

In the third Chapter, the characteristic polynomial of the zero divisor graph

Γ pZnq is found for n � p2q, p2q2, where p and q are distinct primes. In the

second Section, the adjacency matrix of Γ pZp2q2q is explored. Also, the girth,

diameter, stability number and clique number of this graph are traced. In Sec-

tion 3, the characteristic polynomial of this graph along with the multiplicities

of the eigenvalues 0 and �1 are found by direct computation using matrix tools.

In Section 4, the adjacency matrix and eigenvalues of Γ pZp2qq are investigated.

Chapter 4 focuses on the generalisation of the results in Chapter 3. The spec-

trum of Γ pZnq for n � p3, p4 where p is any prime, is found in the second Section
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8.1. Summary of the Thesis

of this Chapter. The third Section contains the analysis of the adjacency matrix

of Γ pZpkq for any k ¥ 3 and the investigation of some graph parameters of this

graph. Also, the characteristic polynomial and two eigenvalues of the adjacency

matrix of this graph, namely 0 and �1 are explored with multiplicities. In Sec-

tion 4, a general method is proposed to compute the eigenvalues of Γ pZnq for

any n, using the quotient matrix of equitable partition of its vertex set.

In Chapter 5, the distance matrix, distance Laplacian matrix and distance sign-

less Laplacian matrix of the zero divisor graphs Γ pZpqq and Γ pZp3q, for p   q, are

found. Also the spectra of these matrices are found using the direct computation

method. Some results from Linear Algebra and Matrix Theory are made use for

this purpose.

Chapter 6 is the generalisation of the results of Chapter 5 from particular val-

ues of n to general. The role of Fiedler’s Lemma and its generalization, to the

computation of the distance spectrum of the generalized join of regular graphs

is described in the second Section. The third Section contains the investigation

of the distance spectrum of Γ pZnq for any n and in particular for n � pk for any

prime p and k ¥ 3 using Fiedler’s Lemma. Also, the distance eigenvalues �1 and

�2 are explored with multiplicities for the zero divisor graphs Γ pZnq, for sny n.

In Section 4, the computation of the distance Laplacian eigenvalues of Γ pZnq,
for any n is described and the distance Laplacian spectrum of Γ pZpkq, k ¥ 3 is

completely determined.

Chapter 7 contains the computation of the Seidel spectrum of the zero divisor

graph Γ pZnq for any n. In Section 2, the Seidel spectrum of the generalized join

of regular graphs is investigated. The Seidel spectrum of the zero-divisor graph

Γ pZnq, is thereby computed in terms of the spectrum of the vertex weighted
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8.2. Further Scope of Research

combinatorial matrix of the proper divisor graph of n. Sections 3 and 4 focuses

on the investigation of Seidel Laplacian and Seidel signless Laplacian spectrum

of Γ pZnq respectively.

8.2 Further Scope of Research

The following are listed as the topics for further research.

1. Study the connection between the spectral properties and the graph pa-

rameters of the zero divisor graph Γ pZnq for any n.

2. Explore the spectral radius and spectral gap of the zero divisor graph Γ pZnq
for any n.

3. Investigate the bound for the largest and smallest eigenvalues of the zero

divisor graph Γ pZnq.

4. Study the relation between the spectra of Γ pZnq and the spectra of its

proper divisor graph for any n.

5. Investigate the spectrum of the zero divisor graph on other commutative

rings.

6. Extend the study of spectrum of zero divisor graph to non commutative

rings.

7. Characterise rings on the spectral properties of the zero divisor graph.
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