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Chapter 0
Introduction

This thesis mainly deals with the study of Cayley fuzzy graphs and digraph

structures induced by some algebraic structures. This thesis mainly focus on

the study of Cayley fuzzy graphs, Cayley bipolar fuzzy graphs and Cayley in-

tuitionistic fuzzy graphs induced by loops. Moreover, we study Cayley fuzzy

digraph structure and Cayley bipolar fuzzy digraph structure induced by groups

and loops.

In our day to day life, we have to deal with many problems, of which most

of them are imprecise or vague concepts. If we represent such problems using

the idea of classical set theory, the solution obtained may be far away from the

reality. This reveals the importance of a set theory which can help fix this.

Zadeh, in 1965, introduced the concept of a fuzzy set [14]. In his paper, a fuzzy

set is defined as a class of objects with a continuium of grades of memberships.

To each object a grade of membership ranging between zero and one is assigned

by a membership function. Such set can completely be characterised by this

membership function. The membership function coincides with the characteristic

function in case of an ordinary set, where an object may belong to this set with

membership value one or may not belong to this set with membership value zero.

Hence we can view fuzzy sets as generalisation of ordinary sets.

vi
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As most of real life problems deals with vague or imprecise concepts, this

theory of fuzzy sets has a wider application. A few among the real world problems

where this theory has application are pattern recognition, information processing,

increasing the efficiency of a system and multivalued decision processing.

As we already mentioned, the fuzzy set is a generalisation of fundamental

mathematical concept of a set. Most of the mathematical theories can be ex-

tended using the concepts of a fuzzy set and fuzzy logic. Thus fuzzy mathematics

has wider application than that of classical theories.

Rosenfeld first introduced the fuzzy graph theory as a generalisation of Euler’s

graph theory [1]. The fuzzy relation between fuzzy sets were first considered by

him and also he developed the structure of fuzzy graphs obtaining analogs of

several graph theoretical concepts.

The concepts of Cayley fuzzy graphs were first introduced and studied by

Namboothiri et. al. [15]. A natural question is: Does weaker algebraic structure

induce fuzzy Cayley graphs?

This thesis comprises six chapters. The first chapter contains the prelimi-

nary definitions and results that were used in the remaining chapters. There

are five sections in this chapter. The first section contains the preliminaries of

graphs, second section includes that of fuzzy graphs, third of groups, fourth and

fifth comprises respectively the preliminaries of Cayley graphs and Cayley Fuzzy

graphs.

In second chapter, we introduced the concept of Cayley fuzzy graphs induced

by loops and studied graph theoretic properties in terms of algebraic properties.

In the first section of this chapter we defined Cayley fuzzy graphs induced by

loops and proved that they are vertex transitive and also in-regular and out-

regular. We also investigate the necessary and sufficient condition for Cayley

fuzzy graphs to be symmetric, reflexive, transitive, complete, linear order, a

Hasse diagram, etc.

vii



In second section we discussed different types of connectedness including

weakly connectedness, semi-connectedness etc., by investigating necessary and

sufficient condition for these connectedness.

In the next section we discussed strength of connectedness and necessary and

sufficient condition for different types of α- connectedness.

In the third chapter we introduced Cayley bipolar fuzzy graphs induced by

loops and studied many basic properties. In this chapter we extend the results

carried out in chapter 1. Here we have four sections, were we discussed ba-

sic results analogous to that of second chapter, connectedness and strength of

connectedness.

In fourth chapter Cayley intuitionistic fuzzy graph is defined. The four sec-

tions of this chapter deals with many of the basic properties and connectedness

of Cayley intuitionistic fuzzy graphs induced by loops.

In the next two chapters, fifth and sixth, we extend our studies to digraph

structures induced by groups and also to those induced by loops.

Cayley fuzzy digraph structure induced by groups and loops are defined in

the fifth chapter and its properties are studied in the two sections of this chapter.

In the sixth chapter we defined Cayley bipolar fuzzy digraph structure in-

duced by groups and loops and studied its properties and we obtained results

analogues to that in fifth chapter.
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Chapter 1
Preliminaries

In this chapter we list the basic definitions and results used in the upcoming

chapters. There are five sections in this chapter. Definitions of basic terminolo-

gies related to graph is included in section one. The second section deals with

fuzzy graphs. We follow [12] for standard terminology and notations in fuzzy

set theory. The third section is devoted to Cayley graphs. In the fourth section

we discuss Cayley fuzzy graphs. In the last section of this chapter group and its

weaker structure viz; loops are discussed.

1.1 Graphs

A graph G = (V (G), E(G)) is an ordered pair, where V (G) is a non-empty set

and E(G) is a binary relation on V (G). The elements of V (G) are called vertices

and elements of E(G) are called edges. If there is no ambiguity we simply write

G = (V,E) or just G instead of G = (V (G), E(G)) and if e = {u, v}, where e ∈ E

and u, v ∈ V , we simply write e = uv. An edge of the form (x, x) ∈ V (G)×V (G)

is called a loop.

If e = uv is an edge of G then the two vertices u and v are said to be adjacent

to each other and the edge e is said to incident with (incident to or incident at)

1
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1.2. Fuzzy Graphs

u and v [13]. The vertices u and v are called the end vertices of the edge e.

The indegree ind(u) of a vertex u in G is the number of arcs with head u;

the outdegree outd(u) of u is the number of arcs with tail u.

A walk in G is a finite non-null sequence W = voe1v1e2v2 . . . ekvk, whose

terms are alternately vertices and edges, such that, for 1 ≤ i ≤ k, the end of ei

are vi−1 and vi. We say that W is a walk from v0 to vk or a (v0, vk)−walk [11].

The vertices v0 and vk are called the origin and terminals ofW , respectively, and

v1, v2, . . . , vk−1, its internal vertices. The integer k is the length of W .

If the edges e1, e2, . . . , ek of a walk W are distinct, W is called a trail [11].

If, in addition, the vertices v0, v1, . . . , vk are distinct, W is called a path. A walk

is closed if it has positive length and its origin and terminals are the same. A

closed trail whose origin and internal vertices are distinct is a cycle.

A simple graph in which each pair of distinct vertices is joined by an edge is

called a complete graph [11]. Two vertices u and v of G are said to be connected

if there is a (u, v)− path in G. A graph G is said to be connected if two vertices

of G are linked by a path in G. Otherwise, it is a disconnected graph [28].

1.2 Fuzzy Graphs

A fuzzy subset A of any set X is a function A : X → [0, 1]. For a fuzzy subset

A of X and for α ∈ [0, 1], {x : A(x) ≥ α} is called α-cut of A and {x : A(x) > α}
is called the strong α-cut of A. They are, respectively, denoted by Aα and A+

α .

For a fuzzy subset A of X, the support of A is the set {x ∈ X : A(x) > 0} and is

denoted by supp(A). It can be noted that supp(A) = A+
◦ . Let S and T be two sets

and let µ and ν be fuzzy subsets of S and T , respectively. Then a fuzzy relation ρ

from µ to ν is a fuzzy subset of S×T such that ρ(x, y) ≤ µ(x)∧ν(y) for all x ∈ S

and y ∈ T . If S = T and µ(x) = ν(x) = 1 for all x ∈ X, then ρ is said to be a

fuzzy relation on S. Let ρ be a fuzzy relation from a fuzzy subset µ of S into a

2



1.2. Fuzzy Graphs

fuzzy subset ν of T . Then ρ2 is defined by ρ2(x, z) = ∨{ρ(x, y)∧ω(y, z) : y ∈ S}
for all x ∈ S.

Let ρ be a fuzzy relation on a fuzzy subset µ of S. Then ρ is said to be

reflexive if ρ(x, x) = µ(x) for all x ∈ S; symmetric if ρ(x, y) = ρ(y, x) for all

x, y ∈ S; antisymmetric if ρ(x, y) = ρ(y, x) if and only if x = y; transitive if

ρ2 ≤ ρ; fuzzy partial order if it is reflexive, antisymmetric and transitive; a fuzzy

equivalence relation if it is reflexive, symmetric and transitive; fuzzy linear order

if it is a partial order and (ρ ∨ ρ−1)(x, y) > 0 for all x, y ∈ S.

A fuzzy directed graph (fuzzy digraph) G is a triplet (V, µ, ρ), where V is a

non-empty set, µ is a fuzzy subset of V and ρ is a fuzzy relation on µ. In case

µ = χV , where χV is the characteristic function on V , then the fuzzy digraph

(V, µ, ρ) is simply denoted by G = (V, ρ). Furthermore, G is said to be a fuzzy

graph if the fuzzy relation is symmetric. In this paper, we consider fuzzy digraphs

of the form G = (V, ρ). Let G = (V, ρ) and G′ = (V ′, ρ′) be two fuzzy digraphs.

Then G is said to be isomorphic to G′ if there is a bijection f : V → V ′ such

that for all u, v ∈ V , ρ(u, v) = ρ′(f(u), f(v)). The function f is called an

isomorphism from G into G′. An isomorphism from a digraph G into itself is

called an automorphism. Observe that, if (V, ∗) is a group and ν is a fuzzy subset

of V , then R : V × V → [0, 1] defined by R(x, y) = ν(x−1y) for all x, y ∈ V is a

fuzzy relation on V .

Let G = (V, ρ) be a fuzzy digraph. If u ∈ V , then the in-degree of u, denoted by

ind(u), is defined by ind(u) =
∑
v∈V

ρ(v, u). Similarly, the out-degree of u, denoted

by outd(u), is defined by outd(u) =
∑
v∈V

ρ(u, v).

A fuzzy digraph in which each vertex has same out-degree r is called an out-

regular digraph with index of out-regularity r. In-regular digraphs are similarly

defined. LetG = (V,R) be a fuzzy digraph. Let k and k′ be two positive numbers.

Then G is said to be (k, k′)-regular if ind(u) = k and outd(u) = k′ for all u ∈ V .

A fuzzy digraph is said to be regular if it is (k, k)-regular for some positive

number k. Let G = (V,R) be a fuzzy digraph. Then a path (directed path) of

3



1.2. Fuzzy Graphs

length n in G from a vertex x to a vertex y is a sequence of distinct vertices

x = x◦, x1, . . . , xn = y such that R(xi−1, xi) > 0 for 1 ≤ i ≤ n. A fuzzy digraph

G = (V,R) is said to be: (i)connected (strongly connected) if for all x, y ∈ V,

there is a directed path from x to y, (ii)weakly connected if G′ = (V,R ∨R−1) is

connected, (iii)semi-connected if for all x, y ∈ V , there is a directed path from x

to y or a directed path from y to x in G, (iv)locally connected, if for any x, y ∈ V ,

there is a directed path from x to y whenever there is a directed path from y to

x in G, (v)quasi-connected (strongly quasi-connected ) if for every pair x, y ∈ V ,

there is some z ∈ V such that there is a directed path from z to x and there is

a directed path from z to y, (vi)Hasse diagram, if G is connected and for any

path x◦, x1, . . . , xn, n ≥ 2 from x◦ to xn in G, R(x◦, xn) = 0 and (vii)complete

if R(x, y) = 1 for all distinct x, y ∈ V . A vertex x in G is said to be a source in

G if there is a directed path from x to every other vertex in G. Let G = (V,R)

be a fuzzy graph. The distance between two points u and v in G, d(u, v), is the

length of the shortest path from u to v. If there is no path from u to v, then

we define d(u, v) = ∞. The diameter of a fuzzy graph G = (V,R), denoted by

diam(G), is defined as diam(G) = sup{d(u, v) : u, v ∈ V }. Observe that a finite

digraph has a source if and only if it is quasi-connected [13].

1.2.1 Bipolar fuzzy graphs

Let V be a nonempty set. A bipolar fuzzy set B in V is an object of the form B =

{(x, µPB(x), µNB (x)) : x ∈ V }, where µPB and µNB are respectively the functions,

µPB : V → [0, 1] and µNB : V → [−1, 0] [30]. A bipolar fuzzy relation R =

(µPR(x, y), µ
N
R (x, y)) in a universe X × Y is a bipolar fuzzy set of the form R =

{((x, y), µPR(x, y), µNR (x, y)) : (x, y) ∈ X×Y }, where µPR : X×Y → [0, 1] and µNR :

X×Y → [−1, 0] [30]. A bipolar fuzzy digraph of a digraph (V,E) is a pair (A,B)

where A = (µPA, µ
N
A ) is a bipolar fuzzy set in V and B = (µPB, µ

N
B ) is a bipolar

fuzzy relation on E ⊆ V ×V such that µPB(x, y) ≤ min(µPA(x), µ
P
A(y)), µ

N
B (x, y) ≥

max(µNA (x), µ
N
A (y)) for all x, y ∈ V [17].

4



1.3. Group

1.2.2 Intuitionistic fuzzy graphs

An intuitionistic fuzzy set (IFS, for short) on a universe X is an object of the

form A = {⟨x, µA(x), νA(x)⟩ : x ∈ V }, where µA(x) ∈ [0, 1] is called degree of

membership of x in A and νA(x) ∈ [0, 1] is called degree of nonmembership of x

in A, and µA, νA satisfies the following condition for all x ∈ X, µA(x)+νA(x) ≤
1 [19]. Let X be an intuitionistic fuzzy set. For any subset A and for any

α ∈ [0, 1], {µA(x) ≥ α, νA(x) ≤ α} is called α-cut of A. It is denoted by

Aα. And {µA(x) > α, νA < α} is called strong α-cut of A. It is denoted by

A+
α . An intuitionistic fuzzy relation R = (µR, νR) in X × X is an intuitionistic

fuzzy set of the form R(x, y) = {⟨(x, y), µR(x, y), νR(x, y)⟩ : (x, y) ∈ X}, where
µR : X × X → [0, 1] and νR : X × X → [0, 1] [19]. The intuitionistic fuzzy

relation R satisfies µR(x, y)+νR(x, y) ≤ 1 for all x, y ∈ X. An intuitionistic fuzzy

relation R on X is called an intuitionistic fuzzy equivalence relation on X if it is

(a) reflexive, i.e.,R(x, x) = (1, 0), (b) symmetric, i.e., R(x, y) = R(y, x), and (c)

transitive, i.e., R(x, y) ≥ ∨
z∈X

(R(x, z) ∧ R(z, y)), for all x, y ∈ X. R is called an

intuitionistic fuzzy partial order relation if it is (a) reflexive, (b) antisymmetric,

i.e., for all distinct x, y ∈ X R(x, y) ̸= R(y, x), and (c) transitive. R is called

an intuitionistic fuzzy linear order relation if it is an intuitionistic partial order

relation and for all x, y ∈ X, (R∨R−1)(x, y) > 0. An intuitionistic fuzzy digraph

of a digraph (V,E) is a pair G = (A,B), where A = ⟨V, µA, νA⟩ is an intuitionistic

fuzzy set in V and B = ⟨V × V, µB, νB⟩ is an intuitionistic fuzzy relation on

V such that µB(x, y) ≤ min(µA(x), µA(y)) and νB(x, y) ≤ max(νA(x), νA(y)),

0 ≤ µB(x, y) + νB(x, y) ≤ 1 for all x, y ∈ V [19].

1.3 Group

A groupoid V is called a quasigroup, if for every a, b ∈ V , the equations, ax = b

and ya = b are uniquely solvable in V [7]. This implies both left and right

cancelation laws. A quasigroup with an identity element is called a loop [7].

5



1.4. Cayley Graphs

Let G be a set together with a binary operation (usually called multiplication)

that assigns to each ordered pair (a, b) of elements of G an element in G denoted

by ab. We say G is a group under this operation if the following three properties

are satisfied [10].

1. The operation is associative; that is, (ab)c = a(bc) for all a, b, c ∈ G.

2. There is an element e (called the identity) in G such that ae = ea = a for

all a ∈ G.

3. For each element a ∈ G, there is an element b ∈ G (called an inverse of a)

such that ab = ba = e.

If a subset H of a group G is itself a group under the operation of G, we say

that H is a subgroup of G [10].

Example 1.3.1. Under ordinary addition, the set of integers, the set of rationals

and the set of real numbers are all groups.

Example 1.3.2. The set Zn = {0, 1, . . . , n − 1} for n ≥ 1 is a group under

addition modulo n.

1.4 Cayley Graphs

Let V be a group and A be any subset of V . The Cayley graph Cay(V,A) is the

digraph with vertex set V , and the vertex x is adjacent to the vertex y if and

only if x−1y ∈ A. Cayley graph Cay(V,A) has as its vertex-set and edge-set,

respectively, V and R = {(x, y) : x−1y ∈ A} [15].

Example 1.4.1. Let us consider the group Z5 and let A = {3, 4}. Then

R = {(0, 3), (0, 4), (1, 0), (1, 4), (2, 0), (2, 1), (3, 1), (3, 2), (4, 2), (4, 3)}.

A diagramatic representation of Cay(Z5, {3, 4}) is shown in Figure 1.1

6



1.5. Cayley Fuzzy Graphs

1

2

4

3

0

Figure 1.1: The Cayley graph Cay(Z5, {3, 4})

1.5 Cayley Fuzzy Graphs

Let V be a group and ν be a fuzzy subset of V . Then the fuzzy relation R defined

on V by R(x, y) = ν(x−1y) for all x, y ∈ V induces a fuzzy graph G = (V,R)

called the Cayley fuzzy graph induced by the pair (V, ν) [15].

Example 1.5.1. Let us consider the group Z3 = 0, 1, 2 and take V = Z3.

Define ν : V → [0, 1] by ν(0) = 1, ν(1) = 1
2
, ν(2) = 0. Then the Cayley fuzzy

graph (V,R) induced by (Z3, ν) is given by the following table and figure 1.5.1.

a 0 0 0 1 1 1 2 2 2

b 0 1 2 0 1 2 0 1 2

a−1b 0 1 2 2 0 1 1 2 0

ν(a−1b) 1 1
2

0 0 1 1
2

1
2

0 1

Let (V, ∗) be a group and let A = (µPA, µ
N
A ) be a bipolar fuzzy subset of V .

Then the bipolar fuzzy relation R on V defined by

R(x, y) =
{(
µPA(x

−1y), µNA (x
−1y)

)
∀ x, y ∈ V

}
induces a bipolar fuzzy digraph G = (V,R), called the Cayley bipolar fuzzy graph

induced by the triplet (V, ∗, A) [24].
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1.5. Cayley Fuzzy Graphs

1

2

0

0.5

0.5

0.5

1

1

1

Figure 1.2: Ex.1.5.1

The Cayley intuitionistic fuzzy graph G = (V,R) in [19] introduced by M.

Akram et al. is an intuitionistic fuzzy graph with the vertex set V and A =

(µA, νA) be an intuitionistic fuzzy subset of V . The intuitionistic fuzzy relation

on V is defined by

R(x, y) = {(µA(x−1y), νA(x
−1y)) : x, y ∈ V and x−1y ∈ S}.
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Chapter 2
Cayley Fuzzy Graphs Induced by

Loops

In this chapter we introduce Cayley fuzzy graphs induced by loops

and prove that all Cayley fuzzy graphs induced by loops are vertex-

transitive and hence regular. We prove that a bigger class of Cayley

fuzzy graphs could be induced by loops, a weaker algebraic structure

than a group. Contents of this chapter is published in Far East

Journal of Mathematical Sciences [20].

2.1 Cayley fuzzy graphs

Madhavan Namboothiri N.M. et al. [15] in 2013 introduced a class of Cayley

fuzzy graphs induced by groups and studied the properties of Cayley fuzzy graph

in terms of algebraic properties. We generalise the results of Madhavan Nam-

boothiri N.M. et al. to loops, a weaker algebraic structure than groups.

Definition 2.1.1. Let V be a loop and A be any subset of V . Then the Cayley

graph Cay(V,A) is the graph with vertex set V and edge set R = {(x, y) : y/x ∈
A}, where y/x denotes the solution of the equation y = xz.

Definition 2.1.2. Let V be a loop. A fuzzy subset ν on V is called a scaled fuzzy

9

Neethu K T. A study on cayley fuzzy graphs and cayley fuzzy graph structures. Thesis. Department of Mathematics,
University of Calicut, 2022.



2.1. Cayley fuzzy graphs

subset of V if ν(y/x) = ν(zy/zx), for all x, y, z ∈ V .

Definition 2.1.3. Let V be a loop, ν be a scaled fuzzy subset of V . Define a

fuzzy relation FR on V by FR(x, y) = ν(y/x). Then G = (V, FR) is a fuzzy

digraph called Cayley fuzzy graph induced by the loop V . This graph is denoted

by CayF (V, ν).

Definition 2.1.4. Let V be a loop and A be a subset of V . Then A is called a

right associative subset of V , if (xy)A = x(yA) for all x, y ∈ V . This means, if

x, y ∈ V and a ∈ A, then (xy)a = x(ya′) for some a′ ∈ A.

Lemma 2.1.5. Let ν be a scaled fuzzy subset of a loop V . Then supp(ν) = ν+◦

is a right associative subset of V .

Proof. Let x, y ∈ V , and z ∈ ν+◦ . We have (xy)z = x(yz′), for some z′ ∈ V.

Observe that

z ∈ ν+◦ ⇔ ν(z) > 0

⇔ ν((xy)z/xy) > 0

⇔ ν(x(yz′)/xy) > 0

⇔ ν(yz′/y) > 0

⇔ ν(z′) > 0

⇔ z′ ∈ ν+◦ .

Therefore, (xy)z = x(yz′) for some z′ ∈ ν+◦ . This implies that ν+◦ is right

associative.

Theorem 2.1.6. CayF (V, ν) is vertex transitive.

Proof. Let a, b ∈ V and b = z◦a, for some z◦ ∈ V . Define Ψ : V → V by

ψ(x) = z◦x. Clearly, ψ is one-to-one and onto. Also, ψ(a) = z◦a = b.

Furthermore, we have, for each x, y ∈ V , FR(ψ(x), ψ(y)) = FR(z◦x, z◦y) =

ν(z◦y/z◦x) = ν(y/x) = FR(x, y).

10



2.1. Cayley fuzzy graphs

This implies that for a, b ∈ V, ψ is an automorphism on G such that ψ(a) = b.

This implies that CayF (V, ν) is vertex-transitive.

Theorem 2.1.7. CayF (V, ν) is in-regular and out-regular.

Proof. Let u1, u2 ∈ V . Since CayF (V, ν) is vertex transitive, there exist an

automorphism ψ on V such that ψ(u1) = u2.

Then,

ind(u1) =
∑
v∈V

FR(v, u1)

=
∑
v∈V

FR(ψ(v), ψ(u1)) (since vertex transitive)

=
∑

ψ(v)∈V

FR(ψ(v), u2)

=
∑
u∈V

FR(u, u2)

= ind(u2).

Similar proof holds for out-regularity

Theorem 2.1.8. CayF (V, ν) is symmetric if and only if ν(x) = ν(1/x), for all

x ∈ V .

Proof. Suppose that FR is symmetric. Then, FR(x, y) = FR(y, x), for all x, y ∈
V . Therefore, ν(x) = FR(1, x) = FR(x, 1) = ν(1/x).

Conversely, suppose that ν(x) = ν(1/x) for all x ∈ V . Let x, y ∈ V and

y = xt◦, for some t◦ ∈ V . Then, FR(x, y) = ν(y/x) = ν(t◦) = ν(1/t◦) =

ν(x/xt◦) = ν(x/y) = FR(y, x).

This implies that FR is symmetric.

Theorem 2.1.9. CayF (V, ν) is reflexive if and only if ν(1) = 1.

11



2.1. Cayley fuzzy graphs

Proof. First suppose that FR is reflexive. Then FR(x, x) = µ(x) = 1, since

µ = χv. Also by definition, FR(x, x) = ν(x/x) = ν(1). Therefore, ν(1) = 1.

Now, let ν(1) = 1. Then, FR(x, x) = ν(x/x) = ν(1) = 1, for all x ∈ V .

Therefore, FR(x, x) = 1 = µ(x), since µ = χv. This implies that FR is reflexive.

Hence the proof.

Theorem 2.1.10. CayF (V, ν) is antisymmetric if and only if

{x : ν(x) = ν(1/x)} = {1}.

Proof. First suppose that FR is antisymmetric. Let x ∈ {x : ν(x) = ν(1/x)}.
Then ν(x) = ν(1/x), which implies FR(1, x) = FR(x, 1) and thus x = 1. Hence,

{x : ν(x) = ν(1/x)} = {1}. Conversely, suppose that {x : ν(x) = ν(1/x)} = {1}.
Then, for any x, y ∈ V ,

FR(x, y) = FR(y, x) ⇔ ν(y/x) = ν(x/y)

⇔ ν(xt◦/x) = ν(x/xt◦), where y = xt◦

⇔ ν(t◦) = ν(1/t◦)

⇔ t◦ = 1 (by assumption)

⇔ y = x.

Therefore, FR is antisymmetric. This completes the proof.

Definition 2.1.11. Let V be a loop. Let A be a fuzzy subset of V . Then A is

said to be a fuzzy sub quasigroup of V if, for all a, b ∈ V, A(ab) ≥ A(a) ∧ A(b).

Theorem 2.1.12. CayF (V, ν) is transitive if and only if ν is a fuzzy sub quasi-

group of V .

Proof. First assume that FR is transitive. We have,

ν(x) ∧ ν(y) ≤ ∨{ν(z) ∧ ν(xy/z) : z ∈ V }

12



2.1. Cayley fuzzy graphs

= ∨{FR(1, z) ∧ FR(z, xy) : z ∈ V }

= FR2(1, xy) ≤ FR(1, xy) = ν(xy).

Therefore, ν(x) ∧ ν(y) ≤ ν(xy), which implies that ν is a fuzzy sub quasigroup

of V .

Conversely, let ν(x) ∧ ν(y) ≤ ν(xy), for all x, y ∈ V . For any x, y ∈ V ,

choose an arbitrary z ∈ V . Then there exist unique t◦, t1, t ∈ V such that

z = xt◦, y = zt1, y = xt.

Then,

FR(x, y) = ν(y/x)

= ν((xt◦)t1/x)

= ν(x(t◦t
′
1)/x)for some t′1 ∈ V

= ν(t◦t
′
1)

≥ ν(t◦) ∧ ν(t′1)(by assumption)

= ν(z/x) ∧ ν(t◦t′1/t◦)

= ν(z/x) ∧ ν(x(t◦t′1)/xt◦)

= ν(z/x) ∧ ν((xt◦)t1/xt◦)

= ν(z/x) ∧ ν(y/z).

That is, FR(x, y) ≥ ν(z/x) ∧ ν(y/z) for any z ∈ V . Therefore, FR(x, y) ≥
∨{ν(z/x) ∧ ν(y/z) : z ∈ V }, which implies that FR(x, y) ≥ ∨{FR(x, z) ∧
FR(z, y) : z ∈ V } = FR2(x, y). Hence FR is transitive.

Theorem 2.1.13. The fuzzy relation FR is a partial order if and only if ν is a

fuzzy sub quasigroup of V satisfying :

(i) ν(1) = 1, and

(ii) {x : ν(x) = ν(1/x)} = {1}.

13



2.1. Cayley fuzzy graphs

Theorem 2.1.14. The fuzzy relation FR is a linear order if and only if ν is a

fuzzy sub quasigroup of V satisfying :

(i) ν(1) = 1,

(ii) {x : ν(x) = ν(1/x)} = {1}, and

(iii) {x : ν(x) ∨ ν(1/x) > 0} = V.

Proof. Suppose that FR is a linear order. Then by Theorem 2.1.13 (i) and (ii)

are satisfied. Also, (FR ∨ FR−1)(x, y) > 0 for x, y ∈ V . Then, for x ∈ V,

ν(x) ∨ ν(1/x) = FR(1, x) ∨ FR(x, 1)

= FR(1, x) ∨ FR−1(1, x)

= (FR ∨ FR−1)(1, x) > 0.

This implies that x ∈ {x : ν(x) ∨ ν(1/x) > 0}. Therefore, V ⊆ {x : ν(x) ∨
ν(1/x) > 0}. Also, we have {x : ν(x) ∨ ν(1/x) > 0} ⊆ V . Hence {x : ν(x) ∨
ν(1/x) > 0} = V .

Conversely, suppose that the conditions (i), (ii) and (iii) hold. Then, for x, y ∈ V ,

FR ∨ FR−1(x, y) = FR(x, y) ∨ FR−1(x, y)

= ν(y/x) ∨ ν(x/y)

= ν(xt/x) ∨ ν(x/xt),wheret = y/x

= ν(t) ∨ ν(1/t)

> 0, by assumption(iii).

That is, FR ∨ FR−1(x, y) > 0. Hence FR is a linear order.

Theorem 2.1.15. The fuzzy relation FR is an equivalence relation if and only

if ν is a fuzzy sub quasigroup of V satisfying :

(i) ν(1) = 1 and

14



2.1. Cayley fuzzy graphs

(ii) ν(x) = ν(1/x) for all x ∈ V.

Theorem 2.1.16. The Cayley fuzzy graph CayF(V, ν) is regular.

Proof. Observe that, for u ∈ V

ind(u) =
∑
v∈V

FR(v, u)

=
∑
v∈V

ν(u/v)

=
∑
zu∈V

ν(zu), where,zu = u/v

=
∑
z∈V

ν(z)

=
∑
zv∈V

ν(zv), wherezv = v/u

=
∑
v∈V

ν(v/u)

=
∑
v∈V

FR(u, v)

= outd(u).

This completes the proof, since CayF (V, ν) are in-regular and out-regular.

Theorem 2.1.17. CayF (V, ν) is complete if and only if ν ≥ χV−{1}, where

χV−{1} is the characteristic function of V − {1}.

Proof. Suppose CayF (V, ν) is complete. Then for any two distinct x, y ∈ V ,

FR(x, y) = 1. For any z ∈ V − {1}, there exist some x, y ∈ V such that y = xz.

Therefore, since FR(x, y) = 1, ν(z) = ν(y/x) = FR(x, y) = 1. That is, ν(z) = 1

for every z ∈ V − {1}, which implies that ν ≥ χV−{1}.

Conversely, suppose that ν ≥ χV−{1}. Then, ν(z) = 1 for every z ∈ V − {1}.
Also, for any two distinct x, y ∈ V there exist some t ∈ V − {1} such that

15



2.1. Cayley fuzzy graphs

y = xt. Therefore, FR(x, y) = ν(y/x) = ν(t) = 1, since ν ≥ χV−{1}. That is,

FR(x, y) = 1 for any two distinct x, y ∈ V . Hence CayF (V, ν) is complete.

Theorem 2.1.18. CayF (V, ν) is a Hasse diagram if and only if it is connected

and ν ((. . . ((x1x2)x3) . . .)xn) = 0 for any collection x1, x2, . . . , xn of vertices in

V with n ≥ 2 and ν(xi) > 0 for i = 1, 2, . . . , n.

Proof. Suppose CayF (V, ν) is a Hasse diagram and let x1, x2, . . . , xn be vertices

in V with n ≥ 2 and ν(xi) > 0 for i = 1, 2, . . . , n. Then, for i = 1, 2, . . . , n

FR ((. . . ((x1x2)x3) . . .)xi−1, (. . . ((x1x2)x3) . . .)xi) = ν(xi) > 0. Thus,

1, x1, x1x2, . . . , (. . . ((x1x2)x3) . . .)xn is a path from 1 to (. . . ((x1x2)x3) . . .)xn.

Since CayF (V, ν) is a Hasse diagram, FR (1, (. . . ((x1x2)x3) . . .)xn) = 0. This

implies that ν ((. . . ((x1x2)x3) . . .)xn) = 0. Also, since CayF (V, ν) is a Hasse

diagram, CayF (V, ν) is connected.

Conversely, let CayF (V, ν) is connected and for any collection x1, x2, .

.., xn of vertices in V with n ≥ 2 and ν(xi) > 0 for i = 1, 2, . . . , n, we have

ν ((. . . ((x1x2)x3) . . .)xn) = 0. Let x◦, x1, . . . , xn be a path in CayF (V, ν) from

x◦ to xn with n ≥ 2. Then, FR(xi−1, xi) > 0 for i = 1, 2, . . . , n. Therefore,

ν(xi/xi−1) > 0 for i = 1, 2, . . . , n. Let x1 = x◦t1, x2 = x1t2, . . . , xn = xn−1tn.

Then, ν(ti) = ν(xi/xi−1) > 0 for i = 1, 2, . . . , n. We have,

xn = xn−1tn = (xn−2tn−1)tn . . . = (. . . ((x◦t1)t2) . . .)tn = (. . . (x◦(t1t
′
2)) . . .)tn . . . =

x◦(. . . ((t1t
′
2)t

′
3) . . .)t

′
n). Therefore,

FR(x◦, xn) = ν(xn/x◦) = ν ((. . . ((t1t
′
2)t

′
3) . . .)t

′
n) . (2.1)

We have,

ν(t1) > 0 and ν(t′2) = ν(t1t
′
2/t1) = ν (x◦(t1t

′
2)/x◦t1) = ν((x◦t1)t2/x◦t1) = ν(t2) >

0 . . . . In general, ν(t′i) = ν(ti) > 0 for i = 2, 3, . . . , n. Therefore, since

t1, t
′
i ∈ V, i = 2, 3, . . . , n, n ≥ 2 and ν(t1) > 0, ν(t′i) > 0, for i = 2, 3, . . . , n, we

have, ν ((. . . ((t1t
′
2)t

′
3) . . .)t

′
n) = 0. Therefore, (2.1) implies that FR(x◦, xn) = 0.

Hence CayF (V, ν) is a Hasse diagram.
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2.1. Cayley fuzzy graphs

Theorem 2.1.19. Let CayF (V, ν) be finite and connected. Then diam(G) is

the least positive integer n such that for any x ∈ V , there exist x1, x2, . . . , xn ∈ V

with ν(xi) > 0 for i = 1, 2, ., n and

x = (. . . ((x1x2)x3) . . .)xn.

Proof. Suppose n be the least positive integer such that for any x ∈ V there

exist elements x1, x2, . . . , xn ∈ V with ν(xi) > 0 for i = 1, 2, . . . , n and x =

(. . . ((x1x2)x3) . . .)xn. Note that, for any x, y ∈ V , we have z ∈ V such that

y = xz. Then, by assumption there exist x1, x2, . . . , xn ∈ V with ν(xi) > 0 for i =

1, 2, . . . , n and z = (. . . ((x1x2)x3) . . .)xn. Therefore, y = x((. . . (x1x2) . . .)xn) =

(x . . . ((x1x2)x3) . . .)x
′
n = . . . = (. . . ((xx1)x

′
2) . . .)x

′
n.

Also,

ν(x2) = ν(x1x2/x1)

= ν(x(x1x2)/xx1)

= ν((xx1)x
′
2/xx1)

= ν(x′2).

Therefore, we have ν(x′2) > 0. And

ν(x3) = ν((x1x2)x3/x1x2)

= ν(x((x1x2)x3)/x(x1x2))

= ν((x(x1x2))x
′
3/(x(x1x2)))

= ν(x′3).

Therefore, ν(x′3) > 0. In general, ν(x′i) = ν(xi) > 0 for i = 2, 3, . . . , n. Also,

ν(x1) > 0. Therefore, we have, y = (. . . ((xx1)x
′
2) . . .)x

′
n and ν(x1) > 0, ν(xi) >
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0, i = 1, 2, . . . , n. Therefore,

FR((. . . ((xx1)x
′
2) . . .)x

′
i−1, (. . . ((xx1)x

′
2) . . .)x

′
i) = ν(x′i) > 0.

Hence, x, xx1, (xx1)x
′
2, . . . , (. . . ((xx1)x

′
2) . . .)x

′
n is a path from x to y of length n.

Since x and y are arbitrary,

diam(G) ≤ n. (2.2)

Since n is the least positive integer such that for any x ∈ V , ∃x1, x2, . . . , xn ∈ V

with ν(xi) > 0 for i = 1, 2, . . . , n and x = (. . . (x1x2)x3) . . .)xn. Thus, there exists

an x ∈ V such that for any collection of n− 1 elements, say x1, x2, . . . , xn−1 with

ν(xi) > 0 for i = 1, 2, . . . , n− 1, we have

x ̸= (. . . ((x1x2)x3) . . .)xn−1. (2.3)

Suppose that diam(G) ≤ n − 1. Then, there is a path 1, x1, x2, . . . , xm from

1 to x of length m, where m ≤ n − 1. Then, FR(xi−1, xi) > 0 for i =

1, 2, . . . ,m. Let x2 = x1t2, x3 = x2t3, . . . , xm = xm−1tm. Therefore, ν(ti) =

ν(xi/xi−1) = FR(xi−1, xi) > 0 and x = xm = xm−1tm = (xm−2tm−1)tm =

(. . . ((x1t2)t3) . . . tm−1)tm. Therefore,

x = (. . . (((x1t2)t3) . . .)tm)tm+1 . . .)tn−1, where tm+1 = tm+2 = . . . = tn−1 = 1,

which is a contradiction to (2.3). Thus,

diam(G) > n− 1. (2.4)

Hence (2.2) and (2.4) gives diam(G) = n.

Definition 2.1.20. Let V be a loop and let ν be a fuzzy subset of V . Then the

fuzzy sub quasigroup generated by ν is the smallest fuzzy sub quasigroup of V

which contains ν and is denoted by ⟨ν⟩.

Remark 2.1.21. Let V be a loop and let ν be a fuzzy subset of V . Then the

fuzzy sub quasigroup generated by ν is the meet of all fuzzy sub quasigroups of V
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which contains ν.

Theorem 2.1.22. Let V be a loop and ν be a fuzzy subset of V . Then the fuzzy

subset ⟨ν⟩ is precisely given by ⟨ν⟩(x) = ∨{ν(x1) ∧ ν(x2) ∧ . . . ∧ ν(xn) : x =

(. . . ((x1x2)x3) . . .)xn, xi ∈ ν+◦ , n ∈ N for i = 1, 2, . . . , n} for any x ∈ V .

Proof. Let ν ′ be the fuzzy subset of V defined by ν ′(x) = ∨{ν(x1 ∧ ν(x2)∧ . . .∧
ν(xn) : x = (. . . ((x1x2)x3) . . .)xn, xi ∈ ν+◦ , n ∈ N for i = 1, 2, . . . , n} for any

x ∈ V . If y ∈ V , by definition of ν ′, it is clear that ν ′(y) ≥ ν(y). Thus, we have

ν ≤ ν ′. Let x, y ∈ V. If ν(x) = 0 or ν(y) = 0, then ν(x) ∧ ν(y) = 0. Then,

ν ′(xy) ≥ ν(x) ∧ ν(y). Again, if ν(x) ̸= 0 and ν(y) ̸= 0, then by definition of ν ′,

we have ν ′(xy) ≥ ν(x)∧ν(y). Hence ν ′ is a fuzzy sub quasigroup of V containing

ν. Now let A be any fuzzy sub quasigroup of V containing ν. Then, for any

x ∈ V with x = (. . . ((x1x2)x3) . . .)xn, xi ∈ ν+◦ , n ∈ N for i = 1, 2, . . . , n, we have

A(x) ≥ A(x1) ∧A(x2) ∧ . . . ∧A(xn) ≥ ν(x1) ∧ ν(x2) ∧ . . . ∧ ν(xn), which implies

that A(x) ≥ ∨{ν(x1) ∧ ν(x2) ∧ . . . ∧ ν(xn) : x = (. . . ((x1x2)x3) . . .)xn, xi ∈
ν+◦ , n ∈ N for i = 1, 2, . . . , n} for any x ∈ V . Therefore, A(x) ≥ ν ′(x) for all

x ∈ V . Thus, ν ′ = ⟨ν⟩. That is, ⟨ν⟩(x) = ∨{ν(x1) ∧ ν(x2) ∧ . . . ∧ ν(xn) : x =

(. . . ((x1x2)x3) . . .)xn, xi ∈ ν+◦ , n ∈ N for i = 1, 2, . . . , n} for any x ∈ V .

Theorem 2.1.23. Let V be a loop and ν be a fuzzy subset of V . Then, for

any α ∈ [0, 1] , ⟨να⟩ = ⟨ν⟩α and ⟨ν+α ⟩ = ⟨ν⟩+α , where ⟨να⟩ denotes the fuzzy sub

quasigroup generated by να and ⟨ν⟩ denotes the fuzzy sub quasigroup generated

by ν.

Proof. Observe that

x ∈ ⟨να⟩ ⇔ ∃ x1, x2, . . . , xn ∈ να ϶ x = (. . . (x1x2) . . .)xn

⇔ ∃ x1, x2, . . . , xn ∈ V ϶ ν(xi) ≥ α, for all i=1,2, . . . ,n

and x = (. . . ((x1x2)x3) . . .)xn

⇔ ⟨ν⟩(x) ≥ α

⇔ x ∈ ⟨ν⟩α.
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2.2. Connectedness in Cayley fuzzy graphs induced by loops

Therefore, ⟨να⟩ = ⟨ν⟩α. Similarly, we can prove that ⟨ν+α ⟩ = ⟨ν⟩+α .

Remark 2.1.24. If α = 0, theorem 2.1.23 implies that ⟨ν+◦ ⟩ = ⟨ν⟩+◦ . That is,
⟨supp(ν)⟩ = supp(⟨ν⟩).

2.2 Connectedness in Cayley fuzzy graphs in-

duced by loops

Theorem 2.2.1. G = CayF (V, ν) is connected if and only if V −{1} ⊆ supp⟨ν⟩.

Proof. Suppose G is connected and let x ∈ V −{1}. Since G is connected, there

exist a path from 1 to x, say, 1, x1, x2, . . . , xn = x. This implies that, there exist

t1, t2, . . . , tn ∈ supp(ν) such that x = xn = xn−1tn, xn−1 = xn−2tn−1, . . . , x1 =

1t1. Therefore, x = xn = xn−1tn = (xn−2tn−1)tn = . . . = (. . . ((t1t2)t3) . . .)tn, ti ∈
supp(ν), i = 1, 2, . . . , n, which implies that x ∈ ⟨supp(ν)⟩. Therefore, V −{1} ⊆
⟨supp(ν)⟩ = supp⟨ν⟩.

Conversely, let V − {1} ⊆ supp⟨ν⟩. Let x, y be two distinct elements in V .

Then, there exist z ̸= 1 ∈ V such that y = xz. Since z ̸= 1, z ∈ V − {1} ⊆
⟨supp(ν)⟩. Then, there exist z1, z2, . . . , zm ∈ supp(ν) such that z = z1z2 . . . zm.

Clearly, 1, z1, z1z2, . . . , (. . . ((z1z2)z3) . . .)zm = z is a path from 1 to z. Then

x, xz1, x(z1z2), x((z1z2)z3), . . . , x((. . . ((z1z2)z3) . . .)zm) = xz = y is a path from

x to y, since supp(ν) is right associative. Therefore, G is connected.

Theorem 2.2.2. G = CayF (V, ν) is weakly connected if and only if V − {1} ⊆
supp(⟨ν ∨ νℓ⟩) where νℓ(x) = ν(1/x).

Proof. Suppose that G is weakly connected. Then CayF (V, ν ∨ νℓ) is connected.
Thus by Theorem 2.2.1, we have V − {1} ⊆ supp(⟨ν ∨ νℓ⟩). This completes the

proof.
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Theorem 2.2.3. G = CayF (V, ν) is semi-connected if and only if

supp(⟨ν⟩ ∨ ⟨ν⟩ℓ) = V − {1}.

Proof. First assume that G is semi-connected. Let x ∈ V −{1}. Since G is semi-

connected, there exist a path from x to 1 or a path from 1 to x. Suppose there

exist a path 1, x1, x2, . . . , xn, x from 1 to x. Then, there exist t1, t2, . . . , tn+1 ∈
supp(ν) such that x1 = 1t1, x2 = x1t2, . . . , x = xntn+1. Then, x = xntn+1 =

(xn−1tn)tn+1 = . . . = (. . . ((t1t2)t3) . . .)tn+1, ti ∈ supp(ν), i = 1, 2, . . . , n + 1,

which implies that x ∈ ⟨supp(ν)⟩. Or suppose there exist a path x, y1, y2, . . . , ym, 1

from x to 1. Then, there exist ki ∈ supp(ν) for i = 0, 1, . . . ,m such that

y1 = xk◦, y2 = y1k1, . . . , 1 = ymkm.

Then,

1 = (. . . ((xk◦)k1) . . .)km

= (. . . (x(k◦k
′
1)) . . .)km

...

= x((. . . (k◦k
′
1) . . .)k

′
m).

Here, k′i ∈ supp(ν), for i = 0, 1, . . . ,m, since supp(ν) is right associative. This

implies 1 = xk, where k = (. . . ((k◦k
′
1)k

′
2) . . .)k

′
m ∈ ⟨supp(ν)⟩. Hence x ∈

⟨supp(ν)⟩ℓ. Therefore, G is semi-connected implies

⟨supp(ν)⟩ ∪ ⟨supp(ν)⟩ℓ = V − {1}.

Conversely, assume that ⟨supp(ν)⟩ ∪ ⟨supp(ν)⟩ℓ = V − {1}. Let x, y ∈ G.

Then y = xz for some z ∈ G. Then, z ∈ ⟨supp(ν)⟩ ∪ ⟨supp(ν)⟩ℓ.
If z ∈ ⟨supp(ν)⟩, ∃t1, t2, . . . , tn ∈ supp(ν) such that z = (. . . ((t1t2)t3) . . .)tn.

Clearly 1, t1, t1t2, . . . , (. . . ((t1t2)t3) . . .)tn = z is a path from 1 to z. Then,

x, xt1, . . . , x((. . . ((t1t2)t3) . . .)tn) is a path from x to y. If z ∈ ⟨supp(ν)⟩ℓ, 1 =
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zt for some t ∈ ⟨supp(ν)⟩, which implies there exist p1, p2, . . . , pm ∈ supp(ν)

such that t = (. . . (p1p2) . . .)pm. Then, 1 = zt = z((. . . ((p1p2)p3) . . .)pm) =

(z . . . ((p1p2)p3) . . .)p
′
m = . . . = (. . . ((zp1)p

′
2) . . .)p

′
m, pi ∈ supp(ν), since supp(ν)

is right associative and pi ∈ supp(ν). Let k1 = zp1. k2 = k1p
′
2, k3 = k2p

′
3, . . . , km =

km−1p
′
m. Then, km = km−1p

′
m = . . . = (. . . ((zp1)p

′
2) . . .)p

′
m = 1. Clearly,

z, k1, k2, . . . , km = 1 is a path from z to 1. Then, xz, xk1, xk2, . . . , xkm = x

is a path from y to x. Thus, for any x, y ∈ V there exist a path from x to y or

a path from y to x, which implies that G is semi-connected. This completes the

proof.

Theorem 2.2.4. G = CayF (V, ν) is locally connected if and only if supp⟨ν⟩ =
supp⟨ν⟩ℓ.

Proof. First suppose that G is locally connected. Let x ∈ ⟨supp(ν)⟩. Then, there
exist x1, x2, . . . , xn ∈ supp(ν) such that x = (. . . ((x1x2)x3) . . .)xn. Therefore

1, x1, x1x2, . . . , (. . . ((x1x2)x3) . . .)xn is a path from 1 to x. Then, sinceG is locally

connected, there exist a path from x to 1. Let x, z1, z2, . . . , zn−1 be a path from x

to 1 which implies there exist a1, a2, . . . , an ∈ supp(ν) such that z1 = xa1, z2 =

z1a2, . . . , zn−1 = zn−2an−1, 1 = zn−1an. Then, 1 = zn−1an = (zn−2an−1)an =

. . . = (. . . ((xa1)a2) . . .)an. Then, we have, 1 = (. . . (x(a1a
′
2)) . . .)an = . . . =

x(. . . ((a1a
′
2)a

′
3) . . .)a

′
n, a

′
i ∈ supp(ν). That is, 1 = xt, t ∈ ⟨supp(ν)⟩, implies

x ∈ ⟨supp(ν)⟩ℓ. Thus,
⟨supp(ν)⟩ ⊆ ⟨supp(ν)⟩ℓ. (2.5)

Let xℓ ∈ ⟨supp(ν)⟩ℓ, which implies there exist an x ∈ ⟨supp(ν)⟩ such that

1 = xℓx. Then, 1, x1, x1x2, . . . , (. . . ((x1x2)x3) . . .)xm is a path from 1 to x. Thus,

since G is locally connected, there exist a path from x to 1. We have,

1 = xℓx

= xℓ((. . . ((x1x2)x3) . . .)xm)

= xℓ((. . . (x1(x2x
′
3)) . . .)xm)
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...

= (. . . ((xℓx1)x
′
2) . . .)x−m′ x1 ∈ supp(ν),

and here x′i ∈ supp(ν), i = 1, 2, . . . ,m, since supp(ν) is right associative. Now,

let t1 = xℓx1, t2 = t1x
′
2, . . . , 1 = tm = tm−1x

′
m. Then, xℓ, t1, t2, . . . , tm−1, tm = 1

is a path from xℓ to 1. This implies that there exist a path from 1 to xℓ, since G

is locally connected. Let 1, k1, k2, . . . , kr = xℓ be a path from 1 to xℓ. Then, there

exist pi ∈ supp(ν), i = 1, 2, . . . , r such that k1 = 1.p1, k2 = k1p2, . . . , kr = kr−1pr.

Thus, xℓ = kr = kr−1pr = (kr−2pr−1)pr = . . . = (. . . ((p1p2)p3) . . .)pr, which

implies that xℓ ∈ ⟨supp(ν)⟩. Hence,

⟨supp(ν)⟩ℓ ⊆ ⟨supp(ν)⟩. (2.6)

Therefore, from equations (6) and (7) we get ⟨supp(ν)⟩ = ⟨supp(ν)⟩ℓ. That is

supp⟨ν⟩ = supp⟨ν⟩ℓ.

Conversely, suppose supp⟨ν⟩ = supp⟨ν⟩ℓ. Let x, y ∈ V and there exist a

path from x to y say x, x1, x2, . . . , xn−1, y. Then, there exist ai ∈ supp(ν) for

i = 1, 2, . . . , n such that x1 = xa1, x2 = x1a2, . . . , xn−1 = xn−2an−1, y = xn−1an.

Thus, y = xn−1an = (xn−2an−1an = . . . = (. . . ((xa1)a2) . . .)an. Therefore,

y = x((. . . ((a1a
′
2)a

′
3) . . .)a

′
n), where a

′
i ∈ supp(ν), since supp(ν) is right asso-

ciative, which implies y/x ∈ ⟨supp(ν)⟩. Then, x/y ∈ ⟨supp(ν)⟩ℓ. Now, since

k = x/y ∈ ⟨supp(ν)⟩ℓ and ⟨supp(ν)⟩ = ⟨supp(ν)⟩ℓ, k = x/y ∈ ⟨supp(ν)⟩.
Then, there exist k1, k2, . . . , kp ∈ supp(ν) such that k = (. . . ((k1k2)k3) . . .)kp.

Clearly, 1, k1, k1k2, . . . , (. . . ((k1k2)k3) . . .)kp = k is a path from 1 to k. Then,

y, yk1, y(k1k2), . . . , y((. . . ((k1k2)k3) . . .)kp) = yk = x is a path from y to x. Hence

G is locally connected. This completes the proof.

Theorem 2.2.5. Let V be a finite loop then, G = CayF (V, ν) is quasi-connected

if and only if it is connected.

Proof. Every connected graphs are quasi-connected. Therefore, if G is connected
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then G is quasi-connected. Now, suppose that G is quasi-connected. Note that G

is finite. Since we have a result stating a finite digraph has a source if and only if

it is quasi-connected, G has a source, say z. Then for any x ∈ V with x ̸= z, there

is a directed path from z to x. Let z, z1, z2, . . . , zn, x be a path from z to x. Then,

there exist ki ∈ supp(ν) for i = 0, 1, . . . n such that z1 = zk◦, z2 = z1k1, . . . , zn =

zn−1kn−1, x = znkn. Then, x = (. . . ((zk◦)k1) . . .)kn = (. . . (z(k◦k
′
1)) . . .)kn =

. . . = z((. . . (k◦k
′
1) . . .)k

′
n). Here, k′i ∈ supp(ν), for i = 0, 1, . . . , n, since supp(ν)

is right associative. Therefore, x/z = (. . . (k◦k
′
1) . . .)k

′
n) ∈ ⟨supp(ν)⟩. Thus it

is clear that x/z ∈ ⟨supp(ν)⟩ = supp⟨ν⟩ for every x ∈ V with x ̸= z. Hence

supp⟨ν⟩ ⊇ V − {1}. Hence, by Theorem 2.2.1, G is connected.

2.3 Strength of connectedness in Cayley fuzzy

graphs induced by loops

Definition 2.3.1. Let P = (x◦, x1, . . . , xn) be a path in a fuzzy graph G = (V, ρ).

Then the strength of the path P in CayF (V, ν), denoted strength(P ), is defined

as

strength(P ) = ∧n
i=1
ρ(xi−1, xi).

Definition 2.3.2. Let G = (V, ρ) be a fuzzy graph and let α ∈ (0, 1]. Then

CayF (V, ν) is said to be: (i) α-connected if for every pair of vertices x, y ∈ G,

there is a path P from x to y such that strength(P ) ≥ α, (ii) weakly α-connected

if the fuzzy graph (V, FR ∨ FR−1) is α-connected, (iii) semi α-connected if for

every x, y ∈ V , there is a path of strength greater than or equal to α from x

to y or from y to x in CayF (V, ν) (iv) locally α-connected if for every pair of

vertices x and y, there is a path P of strength greater than or equal to α from x

to y whenever there is a path P ′ of strength greater than or equal to α from y to

x, (v) quasi α-connected if for every pair x, y ∈ V , there is some z ∈ V such
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that there is a directed path from z to x of strength greater than or equal to α

and there is a directed path from z to y of strength greater than or equal to α.

Observe that if α, β ∈ (0, 1], α < β and CayF (V, ν) is β-connected, then

CayF (V, ν) is also α-connected. Thus, a finite graph CayF (V, ν) is connected

if it is α-connected for some α ∈ (0, 1]. But for infinite fuzzy graphs, this is

not true. For example, consider the graph G = (N, R), where R(m,n) = 1/n if

n−m = 1, R(m,n) = 1 if m = n and R(m,n) = 0 otherwise and N is the set of

all natural numbers. Then CayF (V, ν) is not α-connected for any α ∈ (0, 1] but

it is connected. A fuzzy graph G = (V,R) is said to be α-complete if R(x, y) ≥ α

for all x, y ∈ V . Observe that any complete fuzzy graph is α-complete for all

α ∈ [0, 1].

Definition 2.3.3. Let G = (V, ρ) be a fuzzy graph and let x, y ∈ V . Let PG(x, y)
denote the set of all paths in CayF (V, ν) from x to y. Then the strength of

connectedness between x and y, denoted CONNG(x, y), is defined as

CONNG(x, y) = ∨
P∈PG(x,y)

strength(P ).

We define the strength connectivity of CayF (V, ν) as

SC(G) = ∧
x,y∈V

CONNG(x, y).

2.3.1 Different types of α-connectedness in Cayley fuzzy

graphs

In this subsection, we prove the following theorems based on different types

of α-connectedness.

Theorem 2.3.4. CayF (V, ν) is α-connected if and only if ⟨ν⟩α ⊇ V − {1}.

Proof. Suppose G is α - connected and let x ∈ V − {1}. Since G is α -

connected, there exist a path P from 1 to x, say, 1, x1, x2, . . . , xn = x. with
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strength(P ) ≥ α . This implies that, there exist t1, t2, . . . , tn ∈ ⟨να⟩ such that

x = xn = xn−1tn, xn−1 = xn−2tn−1, . . . , x1 = 1t1. Therefore, x = xn = xn−1tn =

(xn−2tn−1)tn = . . . = (. . . ((t1t2)t3) . . .)tn, ti ∈ ⟨να⟩, i = 1, 2, . . . , n, which implies

that x ∈ ⟨να⟩. Therefore, V − {1} ⊆ ⟨να⟩ = ⟨ν⟩α.

Conversely, let V −{1} ⊆ ⟨ν⟩α. Let x, y be two distinct elements in V . Then,

there exist z ̸= 1 ∈ V such that y = xz. Since z ̸= 1, z ∈ V − {1} ⊆ ⟨ν⟩α =

⟨να⟩. Then, there exist z1, z2, . . . , zm ∈ ⟨να⟩ such that z = z1z2 . . . zm. Clearly,

1, z1, z1z2, . . . , (. . . ((z1z2)z3) . . .)zm = z is a path from 1 to z with strength greater

than α. Then x, xz1, x(z1z2), x((z1z2)z3), . . . , x((. . . ((z1z2)z3) . . .)zm) = xz =

y is a path from x to y, with strength greater than α. Therefore, G is α -

connected.

Theorem 2.3.5. CayF (V, ν) is weakly α-connected if and only if

⟨ν ∨ νℓ⟩α ⊇ V − {1}.

Proof. Suppose that CayF (V, ν) is weakly α- connected. Then the fuzzy graph

(V, FR∨FR−1) is α-connected. Hence by theorem 2.3.4, ⟨ν∨νℓ⟩α ⊇ V −{1}.

Theorem 2.3.6. CayF (V, ν) is semi α-connected if and only if

⟨ν⟩α ∪ ⟨ν⟩αℓ ⊇ V − {1}.

Proof. CayF (V, ν) is semi α-connected if for every x, y ∈ V , there is a path of

strength greater than or equal to α from x to y or from y to x in CayF (V, ν).

The definition of semi α - connectedness together with the theorem 2.3.4 makes

it clear that CayF (V, ν) is semi α-connected if and only if

⟨ν⟩α ∪ ⟨ν⟩αℓ ⊇ V − {1}.

Theorem 2.3.7. CayF (V, ν) is locally α-connected if and only if ⟨ν⟩α = ⟨ν⟩αℓ.
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Proof. CayF (V, ν) is locally α-connected if and only if (V, FRα) is locally con-

nected. That is if and only if ⟨να⟩ = ⟨ναℓ⟩, that is if and only if ⟨ν⟩α = ⟨ν⟩αℓ.

Theorem 2.3.8. If CayF (V, ν) is finite then it is quasi α-connected if and only

if it is α- connected.

Proof. The proof is similar to that of Theorem 2.3.7

Theorem 2.3.9. Let x and y be any two vertices of the Cayley fuzzy graph

CayF (V, ν). Then CONNG(x, y) = ⟨ν⟩(y/x).

Proof. Let α ∈ (0, 1]. Suppose that CONNG(x, y) = α. Then for any ϵ >

0, there exist a path, say P = (x, x1, x2, . . . , xn, y) from x to y such that

strength(P ) > α− ϵ. This implies that

FR(xi−1, xi) > α− ϵ for all i = 1, 2, . . . , n+ 1,

where x◦ = x, xn+1 = y. This implies that ν(xi/xi−1) > α − ϵ for all i =

1, 2, . . . , n + 1. Let xi = xi−1ti. Therefore, ν(xi/xi−1) = ν(ti) > α − ϵ. That is,

x1 = x◦t1, x2 = x1t2, . . . , xn = xn−1tn, xn+1 = xntn+1, which gives, y = xn+1 =

xntn+1 = (xn−1tn)tn+1 . . . = (. . . ((x◦t1)t2) . . .)tn+1 = (. . . (x◦(t1t
′
2)) . . .)tn . . . =

x◦(. . . ((t1t
′
2)t

′
3) . . .)t

′
n+1).

Thus, y/x = (. . . ((t1t
′
2)t

′
3) . . .)t

′
n+1. Since ν is a scaled fuzzy subset of V , ν(t′i) =

ν(ti). Therefore, ν(ti
′) > α − ϵ > 0, for i = 1, 2, . . . , n + 1. Thus, ⟨ν⟩(y/x) ≥

ν(t1) ∧ ν(t′2) ∧ . . . ∧ ν(t′n+1) > α− ϵ. Since ϵ is arbitrary,

⟨ν⟩(y/x) ≥ α = CONNG(x, y). (2.7)

Now, since y/x =∈ V , by Lemma 2.1.22, there exist z1, z2, . . . , zm ∈ V such

that y/x = (. . . (z1z2) . . .)zm and ⟨ν⟩(y/x) = ν(z1)∧ν(z2)∧ . . .∧ν(zm). Consider
the sequence, y◦ = x, y1 = xz1, y3 = (xz1)z2, . . . , ym = (. . . ((xz1)z2) . . .)zm.

Then, ∧m
i=1
FR(yi−1, yi) = ν(z1)∧ ν(z2)∧ . . .∧ ν(zm) = ⟨ν⟩(y/x) ̸= 0. This implies
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that P ′ = (y◦, y1, . . . , ym) is a path from x to y. Note that

CONNG(x, y) = ∨
P∈PG(x,y)

strength(P ) ≥ strength(P ′) = ⟨ν⟩(y/x). (2.8)

Therefore, (2.7) and (2.8) gives CONNG(x, y) = ⟨ν⟩(y/x).

Theorem 2.3.10. CayF (V, ν) is α-complete if and only if να ⊇ V − {1}.

Proof. Suppose that CayF (V, ν) is α-complete. Then, for every x, y ∈ V with

x ̸= y, FR(x, y) ≥ α. In particular, ν(x) = FR(1, x) ≥ α for all x ̸= 1. This

implies that x ∈ να for all x ̸= 1. Therefore, since x is arbitrary, να ⊇ V − {1}.

Conversely, suppose that να ⊇ V − {1}. Then, for each distinct x, y ∈
V, y/x ∈ V . This implies that y/x ∈ να for x ̸= y. That is, FR(x, y) =

ν(y/x) ≥ α for all x ̸= y. Hence, CayF (V, ν) is α-complete.

Theorem 2.3.11. If SC(G) = α, then ⟨ν⟩α ⊇ V − {1}, that is,

⟨ν⟩SC(G) ⊇ V − {1}.

Proof. Assume that α ̸= 0. From the definition of SC(G), it is obvious that

CONNG(x, y) ≥ α for all x, y ∈ V . In particular, CONNG(1, x) ≥ α for all

x ∈ V . This implies that there exists a path, say P from 1 to x such that

strength(P ) ≥ α. Then it can be easily verified that for x ̸= 1, ⟨ν⟩(x) ≥ α.

This implies that x ∈ ⟨ν⟩α for all but x = 1. Consequently, ⟨ν⟩α ⊇ V − {1}.

Theorem 2.3.12. For any Cayley fuzzy graph G(V,R) induced by loop,

SC(G) = ∧
α∈[0,1]

{α : ⟨ν⟩α ⊊ V }.

Proof. Let α ∈ [0, 1]. If ⟨ν⟩α ⊋ V , then there exist x, y ∈ V such that every

path from x to y has strength less than α. This implies that CONNG(x, y) < α.
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Consequently, SC(G) < α. Hence

SC(G) ≤ ∧
α∈[0,1]

{α : ⟨ν⟩α ̸= V }.

Suppose that there is a β such that SC(G) < β < ∧
α∈[0,1]

{α : ⟨ν⟩α ̸= V }. This

implies that ⟨ν⟩β = V,

⟨ν⟩(x) ≥ β for all x ∈ V. (2.9)

Let x and y be two elements in V . Then, by equation (2.9), we have ⟨ν⟩(y/x) ≥ β.

This implies that there exists a path from x to y of strength greater than or equal

to β. That is, CONNG(x, y) ≥ β for all x, y ∈ V. In other words, SC(G) ≥ β.

This contradiction completes the proof.

Theorem 2.3.13. If ν is a sub-loop and α, β ∈ [0, 1] such that CayF (V, ν) is

α-complete and not β-complete, then either α < SC(G) ≤ β or α ≤ SC(G) < β.

Proof. Since CayF (V, ν) is α-complete and not β-complete, it is clear that α < β.

Now ν is a sub-loop implies that ν = ⟨ν⟩. Then, by Theorem 2.3.12,

SC(G) = ∧
γ∈[0,1]

{γ : ⟨ν⟩γ ⊊ V − {1}

= ∧
γ∈[0,1]

{γ : νγ ⊊ V − {1}

= ∧
γ∈[0,1]

{γ : G is not γ − complete}.

Thus, since CayF (V, ν) is not β-complete, we have SC(G) ≤ β. Also, note

that since CayF (V, ν) is α-complete, CONNG(x, y) ≥ α for all x, y ∈ V. Hence

SC(G) ≥ α.

From these arguments, it is clear that either α < SC(G) ≤ β or α ≤ SC(G) <

β. This completes the proof.
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Chapter 3
Cayley Bipolar Fuzzy Graphs

Induced by Loops

In this chapter, we define Cayley bipolar fuzzy graphs induced by loops and study

its properties in terms of algebraic properties. First section is about basic defi-

nitions and some basic results. The second and third sections discuss about the

connectedness in Cayley bipolar fuzzy graphs induced by loops Contents of this

chapter is published in Global Journal of Pure and Applied Mathematics [21].

3.1 Cayley bipolar fuzzy graphs

In [24] N. O. Alshehri and M. Akram introduced Cayley bipolar fuzzy graphs

induced by groups and discussed its properties in terms of algebraic properties.

In this section we introduce a class of Cayley Bipolar Fuzzy graphs induced

by Loops and discuss some of its basic properties.

Definition 3.1.1. Let (V, ∗) be a loop and let A = (µPA, µ
N
A ) be a bipolar fuzzy

subset of V satisfying the condition, µPA(y/x) = µPA(ay/ax) and µNA (y/x) =

µNA (ay/ax), for all a, x, y ∈ V , where y/x denote the solution of y = xt in
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3.1. Cayley bipolar fuzzy graphs

V . Then this bipolar fuzzy subset of V is called scaled bipolar fuzzy subset of the

loop (V, ∗).

Definition 3.1.2. Let (V, ∗) be a loop and let A = (µPA, µ
N
A ) be a scaled bipolar

fuzzy subset of V . Define a bipolar fuzzy relation R =
(
µPR, µ

N
R

)
by R(x, y) =

{
(
µPA(y/x), µ

N
A (y/x)

)
, ∀ x, y ∈ V }. That is, µPR(x, y) = µPA(y/x) and µ

N
R (x, y) =

µNA (y/x). Then G = (V,R) is called the Cayley bipolar fuzzy graph induced by

the loop (V, ∗) and is denoted by CayFB(V,A).

Definition 3.1.3. Let (V, ∗) be a loop and let α ∈ [0, 1]. For any bipolar fuzzy

subset A = (µPA, µ
N
A ) of V , {x : µPA(x) ≥ α, and µNA (x) ≤ α} is called α-cut of A

and {x : µPA(x) > α, and µNA (x) < α} is called strong α-cut of A and are denoted

respectively by Aα and A+
α .

Theorem 3.1.4. CayFB(V,A) is vertex transitive.

Proof. Let a, b ∈ V and b = z◦a, z◦ ∈ V . Define Ψ : V → V by Ψ(x) = z◦x.

Clearly, Ψ is a bijective map. For each x, y ∈ V ,

R(Ψ(x),Ψ(y)) =
(
µPR(Ψ(x),Ψ(y)), µNR (Ψ(x),Ψ(y))

)
=

(
µPR(z◦x, z◦y), µ

N
R (z◦x, z◦y)

)
=

(
µPA(z◦y/z◦x), µ

N
A (z◦y/z◦x)

)
=

(
µPA(y/x), µ

N
A (y/x)

)
= R(x, y).

Therefore, R(Ψ(x),Ψ(y)) = R(x, y). Hence Ψ is an automorphism on CayFB(V,A).

Also Ψ(a) = b. Hence CayFB(V,A) is vertex transitive.

Theorem 3.1.5. CayFB(V,A) is regular.

Proof. Every vertex transitive bipolar fuzzy graphs are regular and CayFB(V,A)

is vertex transitive. Hence CayFB(V,A) is regular.

31



3.1. Cayley bipolar fuzzy graphs

3.1.1 Basic Results

Theorem 3.1.6. CayFB(V,A) is reflexive if and only if

µPA(1) = 1 and µNA (1) = −1.

Proof. R is reflexive if and only if R(x, x) = (1,−1) for all x ∈ V . Now, R(x, x) =(
µPA(x/x), µ

N
A (x/x)

)
=

(
µPA(1), µ

N
A (1)

)
. Therefore, R is reflexive implies µPA(1) =

1 and µNA (1) = −1. Hence R is reflexive if and only if µPA(1) = 1 and µNA (1) =

−1.

Theorem 3.1.7. CayFB(V,A) is symmetric if and only if

(
µPA(x), µ

N
A (x)

)
=

(
µpA(1/x), µ

N
A (1/x)

)
, for all x ∈ V.

Proof. Suppose that CayFB(V,A) is symmetric. Then for any x ∈ V ,

(
µPA(x), µ

N
A (x)

)
=

(
µPA(x

2/x), µNA (x
2/x)

)
= R(x, x2)

= R(x2, x)

=
(
µPA(x/x

2), µNA (x/x
2)
)

= (µPA(1/x), µ
N
A (1/x)).

Conversely, suppose that
(
µPA(x), µ

N
A (x)

)
=

(
µPA(1/x), µ

N
A (1/x)

)
for all x ∈ V .

Then,

R(x, y) =
(
µPA(y/x), µ

N
A (y/x)

)
=

(
µPA(xt/x), µ

N
A (xt/x)

)
=

(
µPA(t), µ

N
A (t)

)
=

(
µPA(1/t), µ

N
A (1/t)

)
=

(
µPA(x/xt), µ

N
A (x/xt)

)
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3.1. Cayley bipolar fuzzy graphs

=
(
µPA(x/y), µ

N
A (x/y)

)
= R(y, x).

Hence CayFB(V,A) is symmetric.

Theorem 3.1.8. CayFB(V,A) is antisymmetric if and only if

{
x :

(
µPA(x), µ

N
A (x)

)
=

(
µPA(1/x), µ

N
A (1/x)

)}
= {1}.

Proof. First, assume that R is antisymmetric.

Let x ∈
{
x :

(
µPA(x), µ

N
A (x)

)
=

(
µPA(1/x), µ

N
A (1/x)

)}
. Then µPA(x) = µPA(1/x)

and µNA (x) = µNA (1/x). Therefore, R(1, x) = R(x, 1) which implies x = 1. Hence,

{x :
(
µPA(x), µ

N
A (x)

)
=

(
µPA(1/x), µ

N
A (1/x)

)
} = {1}.

Conversely, let
{
x :

(
µPA(x), µ

N
A (x)

)
=

(
µPA(1/x), µ

N
A (1/x)

)}
= {1}. Then,

R(x, y) = R(y, x) ⇔
(
µPA(y/x), µ

N
A (y/x)

)
=

(
µPA(x/y), µ

N
A (x/y)

)
⇔

(
µPA(xt/x), µ

N
A (xt/x)

)
=

(
µPA(x/xt), µ

N
A (x/xt)

)
, t = y/x

⇔
(
µPA(t), µ

N
A (t)

)
=

(
µPA(1/t), µ

N
A (1/t)

)
⇔ t = 1

⇔ y = x.

Therefore, R is antisymmetric. Hence the proof.

Definition 3.1.9. Let (V, ∗) be a loop. Let A = (µPA, µ
N
A ) be a bipolar fuzzy

subset of V . Then A is said to be a bipolar fuzzy sub quasigroup of V if for all

x, y ∈ V, µPA(xy) ≥ µPA(x) ∧ µPA(y) and µNA (xy) ≤ µNA (x) ∨ µNA (y).

Theorem 3.1.10. CayFB(V,A) is transitive if and only if A is a bipolar fuzzy

sub quasigroup of V .

Proof. Suppose R is transitive and let x, y ∈ V . Then R2 ≤ R. That is µPR2 ≤ µPR
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3.1. Cayley bipolar fuzzy graphs

and µNR2 ≥ µNR .

Now,

µPA(x) ∧ µPA(y) ≤ ∨{µPA(z) ∧ µPA(xy/z) : z ∈ V }

= ∨{µPR(1, z) ∧ µPR(z, xy) : z ∈ V }

= µPR2(1, xy)

≤ µPR(1, xy)

= µPA(xy)

and

µNA (x) ∨ µNA (y) ≥ ∧{µNA (z) ∨ µNA (xy/z) : z ∈ V }

= ∧{µNR (1, z) ∧ µNR (z, xy) : z ∈ V }

= µNR2(1, xy)

≥ µNR (1, xy)

= µNA (xy).

Therefore, µPA(xy) ≥ µPA(x) ∧ µPA(y) and µNA (xy) ≤ µNA (x) ∨ µNA (y). Hence A is a

bipolar fuzzy sub quasigroup of (V, ∗).

Conversely, suppose that A is a bipolar fuzzy sub quasigroup of (V, ∗). For

x, y ∈ V, choose an arbitrary z ∈ V . Then there exist some t, t◦, t1 ∈ V such

that y = xt, z = xt◦, y = zt1. Then,

µPR(x, y) = µPA(y/x)

= µPA((xt◦)t1/x)

= µPA(t◦t
′
1)

≥ µPA(t◦) ∧ µPA(t′1)

= µPA(z/x) ∧ µPA(t◦t′1/t◦)

= µPA(z/x) ∧ µPA((xt◦)t1/xt◦)
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3.1. Cayley bipolar fuzzy graphs

= µPA(z/x) ∧ µPA(y/z).

Therefore, µPR(x, y) ≥ µPA(z/x) ∧ µPA(y/z), for any z ∈ V . That is,

µPR(x, y) ≥ ∨{µPA(z/x) ∧ µPA(y/z) : z ∈ V }

= ∨{µPR(x.z) ∧ µPR(z, y) : z ∈ V }

= µPR2(x, y).

Therefore, µPR2(x, y) ≤ µPR(x, y). Similarly, µNR2(x, y) ≥ µNR (x, y). Hence R =

(µPR, µ
N
R ) is transitive.

Theorem 3.1.11. R is a partial order if and only if A = (µPA, µ
N
A ) is a bipolar

fuzzy sub quasigroup of (V, ∗) satisfying:

(i) µPA(1) = 1 and µNA (1) = −1,

(ii)
{
x :

(
µPA(x), µ

N
A (x)

)
=

(
µPA(1/x), µ

N
A (1/x)

)}
= {1}.

Theorem 3.1.12. R is a linear order if and only if (µPA, µ
N
A ) is a bipolar fuzzy

sub quasigroup of (V, ∗) satisfying:

(i) µPA(1) = 1 and µNA (1) = −1,

(ii)
{
x :

(
µPA(x), µ

N
A (x)

)
=

(
µPA(1/x), µ

N
A (1/x)

)}
= {1}, and

(iii) {x : µPA(x) ∨ µPA(1/x) > 0, µNA (x) ∧ µNA (1/x) < 0} = V.

Proof. First, suppose that R is a linear order. Then the conditions (i) and

(ii) are satisfied and (µNA , µ
N
A ) is a bipolar fuzzy sub quasigroup of (V, ∗). For

x ∈ V, (µPR∨µPR−1)(1, x) > 0 and (µNR ∧µNR−1)(1, x) < 0, which implies, µPR(1, x)∨
µPR(x, 1) > 0, and µNR (1, x) ∧ µNR (x, 1) < 0. Then µPA(x) ∨ µPA(1/x) > 0 and

µNA (x)∧µNA (1/x) < 0. That is x ∈ {x : µPA(x)∨µPA(1/x) > 0, µNA (x)∧µNA (1/x) <
0}. Hence, condition (iii) is satisfied.

Conversely, suppose that the conditions (i), (ii), (iii) hold and (µPA, µ
N
A ) is a
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3.1. Cayley bipolar fuzzy graphs

bipolar fuzzy sub quasigroup of (V, ∗). Then, (µPA, µ
N
A ) is a bipolar fuzzy sub

quasigroup and the conditions (i) and (ii) together implies that R is a partial

order. For x, y ∈ V, t = y/x ∈ V . Then by assumption (iii), µPA(t) ∨ µPA(1/t) >
0 and µNA (t) ∧ µNA (1/t) < 0. But we have, µPA(1/t) = µPA(x/xt) = µPA(x/y).

Therefore, µPA(y/x) = µPA(x/y) > 0 and µNA (y/x) ∧ µNA (x/y) < 0, which implies,

µPR(x, y)∨µPR(y, x) > 0 and µNR (x, y)∧µNR (y, x) < 0. That is, (µR∨µpR−1)(x, y) > 0

and (µNR ∧ µNR−1)(x, y) < 0. Thus, R is a linear order.

Hence the proof.

Theorem 3.1.13. R is an equivalence relation if and only if (µPA, µ
N
A ) is a bipolar

fuzzy sub quasigroup of (V, ∗) satisfying:

(i) µPA(1) = 1, µNA (1) = −1, and

(ii)
(
µPA(x), µ

N
A (x)

)
=

(
µPA(1/x), µ

N
A (1/x)

)
for all x ∈ V.

Theorem 3.1.14. CayFB(V,A) is a Hasse diagram if and only if it is connected

and for any collection x1, x2, . . . , xn of vertices in V with n ≥ 2 and µPA(xi) >

0, µNA (xi) < 0, for i = 1, 2, . . . , n we have, µPA ((· · · (x1x2) · · · )xn) = 0 and

µNA ((· · · (x1x2) · · · )xn) = 0.

Proof. Suppose CayFB(V,A) is a Hasse diagram and let x1, x2, . . . , xn be ver-

tices in V with n ≥ 2 and µPA(xi) > 0, µNA (xi) < 0, for i = 1, 2, . . . , n. Then

R ((· · · (x1x2) · · · )xi−1) =
(
µPA(xi), µ

N
A (xi)

)
, implies

1, x1, x1x2, . . . , (· · · (x1x2) · · · )xn

is a path from 1 to (· · · (x1x2) · · · )xn. Since CayFB(V,A) is a Hasse diagram,

we have, R (1, (· · · (x1x2) · · · )xn) = 0. Therefore, µPA ((· · · (x1x2) · · · )xn) = 0 and

µNA ((· · · (x1x2) · · · )xn) = 0.

Conversely, suppose that CayFB(V,A) is connected and for any collection

x1, x2, . . . , xn of vertices in V with n ≥ 2 and µPA(xi) > 0, µNA (xi) < 0, for i =
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3.1. Cayley bipolar fuzzy graphs

1, 2, . . . , n we have, µPA ((· · · (x1x2) · · · )xn) = 0 and µNA ((· · · (x1x2) · · · )xn) = 0.

Let (x◦, x1, . . . , xn) be a path in CayFB(V,A) from x◦ to xn with n ≥ 2. Then,

µPA(xi) > 0 and µNA (xi) < 0 for i = 1, 2, . . . , n. Let x1 = x◦t1, x2 = x1t2, . . . , xn =

xn−1tn. Then, µ
P
A(ti) = µPA(xi/xi−1) > 0 for i = 1, 2, . . . , n.

We have, xn = xn−1tn = . . . = (· · · ((x◦t1)t2) · · · )tn = (· · · (x◦(t1t′2) ) · · · )tn =

. . . = x◦(· · · ((t1t′2)t′3) · · · )t′n).
Therefore, µPR(x◦, xn) = µPA(xn/x◦) = µPA((· · · ((t1t′2)t′3) · · · )t′n).We have, µPA(t1) >

0 and µPA(t
′
2) = µPA(t1t

′
2/t1) = µPA(x◦(t1t

′
2)/x◦t1) = µPA((x◦t1)t2/x◦t1) = µPA(t2) >

0.

In general, µPA(t
′
i) = µPA(ti) > 0 for i = 2, 3, . . . , n. Therefore, since t1, t

′
i ∈

V, i = 2, 3, . . . , n, n ≥ 2 and µPA(t1) > 0, µPA(t
′
i) > 0, for i = 2, 3, . . . , n, we

have,µPR(x◦, xn) = µPA((· · · ((t1t′2)t′3) · · · )t′n) = 0. Similarly, we can prove that

µNR (x◦, xn) = µNA ((· · · ((t1t′2)t′3) · · · )t′n) = 0, both together gives R(x◦, xn) = 0.

Hence CayFB(V,A) is a Hasse diagram.

Definition 3.1.15. Let (V, ∗) be a loop and let A = (µPA, µ
N
A ) be a bipolar fuzzy

subset induced by V . Then the sub-loop generated by A is the meeting of all

bipolar fuzzy sub-loops of V which contains A. It is denoted by ⟨A⟩.

Theorem 3.1.16. Let (V, ∗) be a loop and A = (µPA, µ
N
A ) be a bipolar fuzzy subset

of V . Then the fuzzy subset ⟨A⟩ is precisely given by ⟨µPA⟩(x) = ∨{µPA(x1) ∧
µPA(x2) ∧ · · · ∧ µPA(xn) : x = (· · · ((x1x2)x3) · · · )xn with a finite positive integer

n, xi ∈ V and µPA(xi) > 0 for i = 1, 2, . . . , n}, ⟨µNA ⟩(x) = ∧{µNA (x1) ∨ µNA (x2) ∨
· · · ∨ µNA (xn) : x = (· · · ((x1x2)x3) · · · )xn with a finite positive integer n, xi ∈ V

and µNA (xi) > 0 for i = 1, 2, . . . , n} for any x ∈ V .

Proof. Let A′ = (µP
′

A , µ
N ′
A ) be the bipolar fuzzy subset of V defined by µP

′
A (x) =

∨{µPA(x1∧µPA(x2)∧· · ·∧µPA(xn) : x = (· · · ((x1x2)x3) · · · )xn with a finite positive

integer n, xi ∈ V and µPA(xi) > 0 for i = 1, 2, . . . , n}, µN ′
A (x) = ∧{µNA (x1) ∨

µNA (x2) ∨ · · · ∨ µNA (xn) : x = (· · · ((x1x2)x3) · · · )xn with a finite positive integer

n, xi ∈ V and µNA (xi) > 0 for i = 1, 2, . . . , n} for any x ∈ V . If y ∈ V , by

definition of µP
′

A and µN
′

A , it is clear that µP
′

A (y) ≥ µPA(y) and µN
′

A (y) ≤ µNA (y).

37



3.2. Connectedness in Cayley bipolar fuzzy graphs induced by loops

Thus, we have µPA ≤ µP
′

A and µNA ≥ µN
′

A . Let x, y ∈ V. If µPA(x) = 0 or µPA(y) = 0,

µPA(x) ∧ µPA(y) = 0 and if µNA (x) = 0 or µNA (y) = 0, µNA (x) ∨ µNA (y) = 0. Then,

µP
′

A (xy) ≥ µPA(x)∧µPA(y) and µN
′

A (xy) ≤ µNA (x)∧µNA (y). Again, if µPA(x) ̸= 0 and

µPA(y) ̸= 0, then by definition of µP
′

A , we have µP
′

A (xy) ≥ µPA(x) ∧ µPA(y) and if

µNA (x) ̸= 0 and µNA (y) ̸= 0, by definition of µN
′

A , we have µN
′

A (xy) ≤ µNA (x)∧µNA (y).
Hence A′ is a bipolar fuzzy sub-loop of V containing A.

Now let L be any fuzzy sub-loop of V containing A. Then, for any x ∈ V with

x = (· · · ((x1x2)x3) · · · )xn with a finite positive integer n, xi ∈ V and µPA(xi) >

0, µNA (xi) < 0 for i = 1, 2, . . . , n, we have µPL(x) ≥ µPL(x1)∧µPL(x2)∧· · ·∧µPL(xn) ≥
µPA(x1) ∧ µPA(x2) ∧ · · · ∧ µPA(xn) and µNL (x) ≤ µNL (x1) ∨ µNL (x2) ∨ · · · ∨ µNL (xn) ≤
µNA (x1)∨µNA (x2)∨· · ·∨µNA (xn) , which implies that µPL(x) ≥ ∨{µPA(x1)∧µPA(x2)∧
· · ·∧µPA(xn) : x = (· · · ((x1x2)x3) · · · )xnwith a finite positive integer n, xi ∈ V and

µPA(xi) > 0 for i = 1, 2, . . . , n} and µNA (x) ≤ ∧{µNA (x1) ∨ µNA (x2) ∨ · · · ∨ µNA (xn) :
x = (· · · ((x1x2)x3) · · · )xn with a finite positive integer n, xi ∈ V and µNA (xi) > 0

for i = 1, 2, . . . , n} for any x ∈ V . Therefore, µPL(x) ≥ µP
′

A (x) and µNL (x) ≤ µN
′

A

for all x ∈ V . That is, ⟨µPA⟩(x) = ∨{µPA(x1) ∧ µPA(x2) ∧ · · · ∧ µPA(xn) : x =

(· · · ((x1x2)x3) · · · )xn with a finite positive integer n, xi ∈ V and µPA(xi) > 0

for i = 1, 2, . . . , n} and ⟨µNA ⟩(x) = ∧{µNA (x1) ∨ µNA (x2) ∨ · · · ∨ µNA (xn) : x =

(· · · ((x1x2)x3) · · · )xn with a finite positive integer n, xi ∈ V and µNA (xi) > 0 for

i = 1, 2, . . . , n} for any x ∈ V . Thus, A′ = (µP
′

A , µ
N ′
A ) = ⟨(µPA, µNA )⟩ = ⟨A⟩. Hence

the proof.

3.2 Connectedness in Cayley bipolar fuzzy graphs

induced by loops

Theorem 3.2.1. Let (V, ∗) be a loop and A = (µPA, µ
N
A ) be a bipolar fuzzy subset

of V . Then, for any α ∈ [−1, 1],

(⟨µPAα⟩, ⟨µNAα⟩) = (⟨µPA⟩α, ⟨µNA ⟩α) and (⟨µPA
+

α ⟩, ⟨µNA
+

α ⟩) = (⟨µPA⟩+α , ⟨µNA ⟩+α ), where
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Chapter 4
Cayley Intuitionistic Fuzzy

Graphs Induced by Loops

In this chapter we introduce Cayley intuitionistic fuzzy graphs induced by

loops and study some of its properties in terms of algebraic properties. We also

discuss connectedness and α-connectedness in these graphs. These graphs can be

considered as generalisation of those in [19].Contents of this chapter is published

in Far East Journal of Mathematical Sciences [22].

4.1 Cayley Intuitionistic Fuzzy Graphs Induced

by Loops

Definition 4.1.1. Let (V, ∗) be a loop and let A = (µA, νA) be an intuitionistic

fuzzy subset of V satisfying the condition, µA(y/x) = µA(ay/ax) and νA(y/x) =

νA(ay/ax), for all x, y, a ∈ V , where y/x denote the solution of y = xt. Then

this intuitionistic fuzzy subset of V is called scaled intuitionistic fuzzy subset of

the loop (V, ∗).
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4.1. Cayley Intuitionistic Fuzzy Graphs Induced by Loops

Definition 4.1.2. Let (V, ∗) be a loop and let A = (µA, νA) be a scaled intuition-

istic fuzzy subset of V . Let the intuitionistic fuzzy relation R = (µR, νR) on V

be defined by R(x, y) = (µA(y/x), νA(y/x)). Then the intuitionistic fuzzy graph

G = (V,R) induced by the triplet (V, ∗, A) is called the Cayley intuitionistic fuzzy

graph induced by the loop V and is denoted as CayFI(V,A).

Let (V, ∗) be a loop. Let A = (µA, νA) be an intuitionistic fuzzy subset of

V . Then A is said to be an intuitionistic fuzzy sub quasigroup of V if for all

x, y ∈ V µA(xy) ≥ min(µA(x), µA(y)) and νA(xy) ≤ max(νA(x), νA(y)).

4.1.1 Basic Results

Theorem 4.1.3. CayFI(V,A) is vertex transitive.

Proof. Let a, b ∈ V and b = z◦a, z◦ ∈ V . Define Ψ : V → V by Ψ(x) = z◦x.

Clearly, Ψ is a bijective map and it can be easily varified that R(Ψ(x),Ψ(y)) =

R(x, y). Hence Ψ is an automorphism on CayFI(V,A). Also Ψ(a) = b. Hence G

is vertex transitive.

Theorem 4.1.4. [19] Every vertex transitive intuitionistic fuzzy graphs are

regular.

Remark 4.1.5.

(a) By Theorems 4.1.3, 4.1.4, we have, CayFI(V,A) is in-regular and out-regular.

(b) Also it can be easily seen that CayFI(V,A) is regular.

Theorem 4.1.6. The intuitionistic fuzzy relation R defined above is :

(i) reflexive if and only if R(1, 1) = (1, 0),

(ii) symmetric if and only if A(x) = (µA(x), ν(x)) = (µA(1/x), νA(1/x) = A(1/x),
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(iii) antisymmetric if and only if

{x : (µA(x), νA(x)) = (µA(1/x), νA(1/x))} = 1,

(iv) transitive if and only if A = (µA, νA) is an intuitionistic fuzzy subloop of

(V, ∗).

Theorem 4.1.7. R is a partial order if and only if A = (µA, νA) is an intuition-

istic fuzzy subloop of (V, ∗) satisfying

(i) µA(1) = 1 and νA(1) = 0,

(ii) {x : (µA(x), νA(x)) = (µA(1/x), νA(1/x))} = {1}.

Theorem 4.1.8. R is a linear order if and only if A = (µA, νA) is an intuition-

istic fuzzy subloop of (V, ∗) satisfying

(i) µA(1) = 1 and νA(1) = 0,

(ii) {x : (µA(x), νA(x)) = (µA(1/x), νA(1/x))} = {1},

(iii) R2 ≤ R, that is, µR(x, y) ≥ µR2(x, y) and νR(x, y) ≤ νR2(x, y), for all

x, y ∈ V ,

(iv) {x : µA(x) ∨ µA(1/x) > 0, νA(x) ∧ νA(1/x) < 0} = V .

Theorem 4.1.9. R is an equivalence relation if and only if A = (µA, νA) is an

intuitionistic fuzzy subloop of (V, ∗) satisfying

(i) µA(1) = 1 and νA(1) = 0,

(ii) (µA(x), νA(x)) = (µA(1/x), νA(1/x)) for all x ∈ V .

Definition 4.1.10. Let (V, ∗) be a loop and let A = (µA, νA) be an intuitionistic

fuzzy subset induced by V . Then the sub-loop generated by A is the meeting of

all intuitionistic fuzzy subloops of V which contains A. It is denoted by ⟨A⟩.
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Theorem 4.1.11. Let (V, ∗) be a loop and A = (µA, νA) be a intuitionistic

fuzzy subset of V . Then the fuzzy subset ⟨A⟩ is precisely given by ⟨µA⟩(x) =

∨{µA(x1)∧µA(x2)∧ . . .∧µA(xn) : x = (. . . ((x1x2) x3) . . .)xn with a finite positive

integer n, xi ∈ V and µA(xi) > 0 for i = 1, 2, . . . , n}, ⟨νA⟩(x) = ∧{νA(x1) ∨
νA(x2) ∨ . . . ∨ νA(xn) : x = (. . . ((x1x2)x3) . . .)xn with a finite positive integer

n, xi ∈ V and νA(xi) > 0 for i = 1, 2, . . . , n} for any x ∈ V .

Proof. Let A′ = (µ′
A, ν

′
A) be the intuitionistic fuzzy subset of V defined by

µ′
A(x) = ∨{µA(x1 ∧ µA(x2) ∧ . . . ∧ µA(xn) : x = (. . . ((x1x2)x3) . . .)xn with a

finite positive integer n, xi ∈ V and µA(xi) > 0 for i = 1, 2, . . . , n}, ν ′A(x) =

∧{νA(x1) ∨ νA(x2) ∨ . . . ∨ νA(xn) : x = (. . . ((x1x2)x3) . . .)xn with a finite pos-

itive integer n, xi ∈ V and νA(xi) > 0 for i = 1, 2, . . . , n} for any x ∈ V .

If y ∈ V , by definition of µ′
A and ν ′A, it is clear that µ′

A(y) ≥ µA(y) and

ν ′A(y) ≤ νA(y). Thus, we have µA ≤ µ′
A and νA ≥ ν ′A. Let x, y ∈ V. If

µA(x) = 0 or µA(y) = 0, µA(x) ∧ µA(y) = 0 and if νA(x) = 0 or νA(y) = 0,

νA(x) ∨ νA(y) = 0. Then, µ′
A(xy) ≥ µA(x) ∧ µA(y) and ν ′A(xy) ≤ νA(x) ∧ νA(y).

Again, if µA(x) ̸= 0 and µA(y) ̸= 0, then by definition of µ′
A, we have µ′

A(xy) ≥
µA(x) ∧ µA(y) and if νA(x) ̸= 0 and νA(y) ̸= 0, by definition of ν ′A, we have

ν ′A(xy) ≤ νA(x) ∧ νA(y). Hence A
′ is a intuitionistic fuzzy sub-loop of V con-

taining A. Now let L be any intuitionistic fuzzy sub-loop of V containing A.

Then, for any x ∈ V with x = (. . . ((x1x2)x3) . . .)xn with a finite positive in-

teger n, xi ∈ V and µA(xi) > 0, νA(xi) < 0 for i = 1, 2, . . . , n, we have

µL(x) ≥ µL(x1)∧µL(x2)∧. . .∧µL(xn) ≥ µA(x1)∧µA(x2)∧. . .∧µA(xn) and νL(x) ≤
νL(x1) ∨ νL(x2) ∨ . . . ∨ νL(xn) ≤ νA(x1) ∨ νA(x2) ∨ . . . ∨ νA(xn) , which implies

that µL(x) ≥ ∨{µA(x1) ∧ µA(x2) ∧ . . . ∧ µA(xn) : x = (. . . ((x1x2)x3) . . .)xnwith

a finite positive integer n, xi ∈ V and µA(xi) > 0 for i = 1, 2, . . . , n} and

νA(x) ≤ ∧{νA(x1) ∨ νA(x2) ∨ . . . ∨ νA(xn) : x = (. . . ((x1x2)x3) . . .)xn with a

finite positive integer n, xi ∈ V and νA(xi) > 0 for i = 1, 2, . . . , n} for any

x ∈ V . Therefore, µL(x) ≥ µ′
A(x) and νL(x) ≤ ν ′A for all x ∈ V . That is,

⟨µA⟩(x) = ∨{µA(x1) ∧ µA(x2) ∧ . . . ∧ µA(xn) : x = (. . . ((x1x2)x3) . . .)xn with
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a finite positive integer n, xi ∈ V and µA(xi) > 0 for i = 1, 2, . . . , n} and

⟨νA⟩(x) = ∧{νA(x1) ∨ νA(x2) ∨ . . . ∨ νA(xn) : x = (. . . ((x1x2)x3) . . .)xn with a

finite positive integer n, xi ∈ V and νA(xi) > 0 for i = 1, 2, . . . , n} for any x ∈ V .

Thus, A′ = (µ′
A, ν

′
A) = ⟨(µA, νA)⟩ = ⟨A⟩. Hence the proof.

4.2 Connectedness in Cayley Intuitionistic Fuzzy

Graphs Induced by Loops

Theorem 4.2.1. Let (V, ∗) be a loop and A = (µA, νA) be an intuitionistic fuzzy

subset of V . Then, for any α ∈ [0, 1],

(⟨µAα⟩, ⟨νAα⟩) = (⟨µA⟩α, ⟨νA⟩α) and (⟨µA+
α ⟩, ⟨νA+

α ⟩) = (⟨µA⟩+α , ⟨νA⟩+α ), where

(⟨µAα⟩, ⟨νAα⟩) and (⟨µA⟩, ⟨νA⟩) denotes respectively the intuitionistic fuzzy sub-

loop generated by (µAα, νAα) and (µA, νA).

Proof. Observe that

x ∈ (⟨µAα⟩, ⟨νAα⟩) ⇔ ∃x1, x2, . . . , xn in Aα ϶ x = (. . . (x1x2) . . .)xn

⇔ ∃1, x2, . . . , xn in V ϶ µA(xi) ≥ α, νA(xi)

≤ α∀i = 1, 2, . . . , n and x = (. . . (x1x2) . . .)xn

⇔ ⟨µA(x)⟩ ≥ α, ⟨νA(x)⟩ ≤ α

⇔ x ∈ ⟨µA⟩α, x ∈ ⟨νA⟩α.

Therefore, (⟨µAα⟩, ⟨νAα⟩) = (⟨µA⟩α, ⟨νA⟩α).
Similarly, we can prove that (⟨µA+

α ⟩, ⟨νA+
α ⟩) = (⟨µA⟩+α , ⟨νA⟩+α ).

Remark 4.2.2. Let (V, ∗) be a loop and A = (µPA, µ
N
A ) be an intuitionistic fuzzy

subset of V . Then by Theorem 4.2.1, we have ⟨supp(A)⟩ = supp(⟨A⟩).

Theorem 4.2.3. CayFI(V,A) is connected if and only if supp⟨A⟩ ⊇ V − {1}.

Proof. Suppose CayFI(V,A) is connected. Let x ∈ V−{1}. Since CayFI(V,A) is
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connected, there exist a path from 1 to x, say, 1, x1, x2, . . . , xn = x. This implies

that, there exist t1, t2, . . . , tn ∈ supp(A) such that x = xn = xn−1tn, xn−1 =

xn−2tn−1, . . . , x2 = x1t2, x1 = 1.t1. Therefore, x = xn = xn−1tn = (xn−2tn−1)tn =

. . . = (. . . ((t1t2)t3) . . .)tn, ti ∈ supp(A), i = 1, 2, . . . , n, which implies that

x ∈ ⟨supp(A)⟩. Therefore, V − {1} ⊆ ⟨supp(A)⟩ = supp⟨A⟩.

Conversely, let V − {1} ⊆ supp⟨A⟩. Let x, y be two distinct elements in V .

Then, there exist z ̸= 1 ∈ V such that y = xz. Since z ̸= 1, z ∈ V − {1} ⊆
⟨supp(A)⟩. Then, there exist z1, z2, . . . , zm ∈ supp(A) such that z = z1z2 . . . zm.

Clearly, 1, z1, z1z2, . . . , (. . . ((z1z2)z3) . . .)zm = z is a path from 1 to z. Then

x, xz1, x(z1z2), x((z1z2)z3), . . . , x((. . . ((z1z2)z3) . . .) zm) = xz = y is a path from

x to y. Therefore, CayFI(V,A) is connected.

Theorem 4.2.4. CayFI(V,A) is weakly connected if and only if supp(⟨A∨Aℓ⟩) ⊇
V − {1} where Aℓ(xℓ) = A(x), 1 = xℓx.

Proof. Suppose that CayFI(V,A) is weakly connected.

Then CayFI(V,A∨Aℓ) is connected. Thus by Theorem 4.2.3, we have V −{1} ⊆
supp(⟨A ∨ Aℓ⟩). This completes the proof.

Theorem 4.2.5. CayFI(V,A) is semi-connected if and only if

⟨supp(A)⟩ ∪ ⟨supp(A)⟩ℓ ⊇ V − {1}.

Proof. First assume that CayFI(V,A) is semi-connected. Let x ∈ V − {1}.
Since CayFI(V,A) is semi-connected, there exist a path from x to 1 or a path

from 1 to x. Suppose there exist a path 1, x1, x2, . . . , xn, x from 1 to x. Then,

there exist t1, t2, . . . , tn+1 ∈ supp(A) such that x1 = 1t1, x2 = x1t2, . . . , x =

xntn+1. Then, x = xntn+1 = (xn−1tn)tn+1 = . . . = (. . . ((t1t2)t3) . . .)tn+1, ti ∈
supp(A), i = 1, 2, . . . , n + 1, which implies that x ∈ ⟨supp(A)⟩. Or suppose

there exist a path x, y1, y2, . . . , ym, 1 from x to 1. Then, there exist ki ∈ supp(A)

for i = 0, 1, . . . ,m such that y1 = xk◦, y2 = y1k1, . . . , 1 = ymkm. Then, 1 =

(. . . ((xk◦)k1) . . .)km = (. . . (x(k◦k
′
1)) . . .)km = . . . = x((. . . (k◦k

′
1) . . .)k

′
m). Here,
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k′i ∈ supp(A), for i = 0, 1, . . . ,m, since supp(A) is right associative. This implies

1 = xk, where k = (. . . ((k◦k
′
1)k

′
2) . . .)k

′
m ∈ ⟨supp(A)⟩. Hence x ∈ ⟨supp(A)⟩ℓ.

Therefore, CayFI(V,A) is semi-connected implies ⟨supp(A)⟩ ∪⟨supp(A)⟩ℓ ⊇ V −
{1}.

Conversely, assume that ⟨supp(A)⟩ ∪ ⟨supp(A)⟩ℓ ⊇ V − {1}. Let x, y ∈
CayFI(V,A) be two distinct elements. Then y = xz for some z ∈ CayFI(V,A).

Then, z ∈ ⟨supp(A)⟩ ∪ ⟨supp(A)⟩ℓ.

If z ∈ ⟨supp(A)⟩, then there exist t1, t2, . . . , tn ∈ supp(A) such that z =

(. . . ((t1t2)t3) . . .)tn. Clearly 1, t1, t1t2, . . . , (. . . ((t1t2)t3) . . .)tn = z is a path from

1 to z. Then, x, xt1, . . . , x((. . . ((t1t2)t3) . . .)tn) is a path from x to y. Or else,

if z ∈ ⟨supp(A)⟩ℓ, 1 = zt for some t ∈ ⟨supp(A)⟩, which implies there exist

p1, p2, . . . , pm ∈ supp(A) such that t = p1p2 . . . pm.

Then,

1 = zt

= z((. . . ((p1p2)p3) . . .)pm)

= (z . . . ((p1p2)p3) . . .)p
′
m

...

= (. . . ((zp1)p
′
2) . . .)p

′
m, pi

∈ supp(A), since supp(A) is right associative and pi ∈ supp(A).

Let k1 = zp1, k2 = k1p
′
2, k3 = k2p

′
3, . . . , km = km−1p

′
m. Then, km = km−1p

′
m =

. . . = (. . . ((zp1)p
′
2) . . .)p

′
m = 1. Clearly, z, k1, k2, . . . , km = 1 is a path from z

to 1. Then, xz, xk1, xk2, . . . , xkm = x is a path from y to x. Thus, for any

x, y ∈ V there exist a path from x to y or a path from y to x, which implies that

CayFI(V,A) is semi-connected.

This completes the proof.
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Theorem 4.2.6. CayFI(V,A) is locally connected if and only if

supp⟨A⟩ = supp⟨A⟩ℓ.

Proof. First suppose that CayFI(V,A) is locally connected. Let x ∈ ⟨supp(A)⟩.
Then, there exist x1, x2, . . . , xn ∈ supp(A) such that x = (. . . ((x1x2)x3) . . .)xn.

Therefore 1, x1, x1x2, . . . , (. . . ((x1x2)x3) . . .)xn is a path from 1 to x. Then, since

G is locally connected, there exist a path from x to 1. Let x, z1, z2, . . . , zn−1 be

a path from x to 1 which implies there exist a1, a2, . . . , an ∈ supp(A) such that

z1 = xa1, z2 = z1a2, . . . , zn−1 = zn−2an−1, 1 = zn−1an.

Then, 1 = zn−1an = (zn−2an−1)an = . . . = (. . . ((xa1)a2) . . .)an. Then, we have,

1 = (. . . (x(a1a
′
2)) . . .)an = . . . = x(. . . ((a1a

′
2)a

′
3) . . .)a

′
n, a

′
i ∈ supp(A). That is,

1 = xt, t ∈ ⟨supp(A)⟩, implies x ∈ ⟨supp(A)⟩ℓ. Thus,

⟨supp(A)⟩ ⊆ ⟨supp(A)⟩ℓ. (4.1)

Let xℓ ∈ ⟨supp(A)⟩ℓ, which implies there exist an x ∈ ⟨supp(A)⟩ such that

1 = xℓx. Then, 1, x1, x1x2, . . . , (. . . ((x1x2)x3) . . .)xm is a path from 1 to x.

Thus, since CayFI(V,A) is locally connected, there exist a path from x to 1. We

have, 1 = xℓx = xℓ((. . . ((x1x2)x3) . . .)xm) = xℓ((. . . (x1(x2x
′
3)) . . .)xm) = . . . =

(. . . ((xℓx1)x
′
2) . . .)x−m′ x1 ∈ supp(A), and here x′i ∈ supp(A), i = 1, 2, . . . ,m,

since supp(A) is right associative. Now, let t1 = xℓx1, t2 = t1x
′
2, . . . , 1 = tm =

tm−1x
′
m. Then, xℓ, t1, t2, . . . , tm−1, tm = 1 is a path from xℓ to 1. This implies

that there exist a path from 1 to xℓ, since CayFI(V,A) is locally connected. Let

1, k1, k2, . . . , kr = xℓ be a path from 1 to xℓ. Then, there exist pi ∈ supp(A), i =

1, 2, . . . , r such that k1 = 1.p1, k2 = k1p2, . . . , kr = kr−1pr. Thus, xℓ = kr =

kr−1pr = (kr−2pr−1)pr = . . . = (. . . ((p1p2)p3) . . .)pr, which implies that xℓ ∈
⟨supp(A)⟩. Hence,

⟨supp(A)⟩ℓ ⊆ ⟨supp(A)⟩. (4.2)

Therefore, from equations (4.1) and (4.2) we get ⟨supp(A)⟩ = ⟨supp(A)⟩ℓ.

52



4.2. Connectedness in Cayley Intuitionistic Fuzzy Graphs Induced by Loops

Conversely, suppose ⟨supp(A)⟩ = ⟨supp(A)⟩ℓ. Let x, y ∈ V and there exist

a path from x to y say x, x1, x2, . . . , xn−1, y. Then, there exist ai ∈ supp(A) for

i = 1, 2, . . . , n such that x1 = xa1, x2 = x1a2, . . . , xn−1 = xn−2an−1, y = xn−1an.

Thus, y = xn−1an = (xn−2an−1an = . . . = (. . . ((xa1)a2) . . .)an. Therefore,

y = x((. . . ((a1a
′
2)a

′
3) . . .)a

′
n), where a

′
i ∈ supp(A), since supp(A) is right asso-

ciative, which implies y/x ∈ ⟨supp(A)⟩. Then, x/y ∈ ⟨supp(A)⟩ℓ. Now, since

k = x/y ∈ ⟨supp(A)⟩ℓ and ⟨supp(A)⟩ = ⟨supp(A)⟩ℓ, k = x/y ∈ ⟨supp(A)⟩.
Then, there exist k1, k2, . . . , kp ∈ supp(A) such that k = (. . . ((k1k2)k3) . . .)kp.

Clearly, 1, k1, k1k2, . . . , (. . . ((k1k2)k3) . . .)kp = k is a path from 1 to k. Then,

y, yk1, y(k1k2), . . . , y((. . . ((k1k2)k3) . . .)kp) = yk = x is a path from y to x. Hence

G′ is locally connected.

Theorem 4.2.7. A finite Cayley intuitionistic fuzzy graph CayFI(V,A), where

(V, ∗) is a finite loop, is quasi-connected if and only if it is connected.

Proof. Every connected graphs are quasi-connected.

Therefore, if CayFI(V,A) is connected then CayFI(V,A) is quasi-connected.

Now, suppose that CayFI(V,A) is quasi-connected. Note that CayFI(V,A) is

finite. Thus, CayFI(V,A) has a source, say z. Then for any x ∈ V with x ̸= z,

there is a directed path from z to x. Let z, z1, z2, . . . , zn, x be a path from

z to x. Then, there exist ki ∈ supp(A) for i = 1, 2, . . . , n + 1 such that z1 =

zk1, z2 = z1k2, . . . , zn = zn−1kn, x = znkn+1. Then, x = (. . . ((zk1)k2) . . .)kn+1 =

(. . . (z(k1k
′
2)) . . .)kn+1 = . . . = z((. . . (k1k

′
2) . . .)k

′
n+1). Here, k′i ∈ supp(A), for

i = 1, 2, . . . , n+ 1, since supp(A) is right associative.

Therefore, x/z = (. . . (k1k
′
2) . . .)k

′
n+1) ∈ ⟨supp(A)⟩. Thus it is clear that x/z ∈

⟨supp(A)⟩ for every x ∈ V with x ̸= z. Hence ⟨supp(A)⟩ ⊇ V − {1}. Hence, by
Theorem 4.2.3, CayFI(V,A) is connected.
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4.3 Strength of Connectedness in Cayley Intu-

itionistic Fuzzy Graphs Induced by Loops

In this subsection, we prove the following theorems based on different types of

α-connectedness. For any α ∈ [−1, 1], let Aα be the α-cut of A. Then

Rα = (µRα , νRα) = (µAα , νAα) = {(x, y) ∈ V × V : y/x ∈ Aα}.

Definition 4.3.1. The µR-strength of a path x◦, x1, . . . , xn in CayFI(V,A) is

defined as min(µR(xi−1, xi)) for i = 1, 2, . . . , n and is denoted as S(µR). The

νR-strength of this path is defined as max(νR(xi−1, xi)) for i = 1, 2, . . . , n and is

denoted as S(νR).

Definition 4.3.2. Strength of a path P ′ in CayFI(V,A), denoted by strength(P
′)

is defined to be strength(P ′) = (S(µR), S(νR)) and is said to be greater than or

equal to α if S(µR) ≥ α and S(νR) ≤ α.

Definition 4.3.3. Let G = (V, ρ) be an intuitionistic fuzzy graph. Then G is

said to be: (i) α-connected if for every pair of vertices x, y ∈ G, there is a path

P from x to y such that strength(P ) ≥ α, (ii) weakly α-connected if the fuzzy

graph (V,R ∨ R−1) is α-connected, (iii) semi α-connected if for every x, y ∈ V ,

there is a path of strength greater than or equal to α from x to y or from y to x

in G and (iv) locally α-connected if for every pair of vertices x and y, there is

a path P of strength greater than or equal to α from x to y whenever there is a

path P ′ of strength greater than or equal to α from y to x. (v) quasi α-connected

if for every pair x, y ∈ V , there is some z ∈ V such that there is a directed path

from z to x of strength greater than or equal to α and there is a directed path

from z to y of strength greater than or equal to α. (vi) α-complete if R(x, y) ≥ α

for all x, y ∈ V .

Theorem 4.3.4. G = CayFI(V,A) is

(i) α-connected if and only if ⟨A⟩α ⊇ V − {1}, where ⟨A⟩α = (⟨µA⟩α), ⟨νA⟩α).

54



4.3. Strength of Connectedness in Cayley Intuitionistic Fuzzy Graphs Induced
by Loops

(ii) weakly α-connected if and only if ⟨A ∪ Aℓ⟩α ⊇ V − {1}.

(iii) semi α-connected if and only if ⟨A⟩α ∪ ⟨A⟩αℓ ⊇ V − {1}.

(iv) locally α-connected if and only if ⟨A⟩α = ⟨A⟩αℓ.

(v) is α-complete if and only if Aα ⊇ V − {1}.

Theorem 4.3.5. If CayFI(V,A) is finite then it is quasi α-connected if and only

if it is α-connected.
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Chapter 5
Cayley Fuzzy Digraph Structure

Induced by Groups and Loops

In the first section of this chapter we introduced Cayley Fuzzy Digraph Struc-

ture induced by groups and studied the properties of Cayley fuzzy digraph structure

in terms of algebraic properties. Contents of this section is published in Math-

ematical Combinatorics [23]. In second section we introduce a class of Cayley

fuzzy digraph structure induced by loops and we generalise the results and prove

that a bigger class of Cayley fuzzy digraph structure could be induced by loops, a

weaker algebraic structure than a group.

5.1 Basic definitions

Definition 5.1.1. Let V be a non-empty set and S1, S2, . . . , Sk are relations

on V which are mutually disjoint, then G′ = (V, S1, S2, . . . , Sn) is a digraph

structure. In addition, if S1, S2, . . . , Sk are symmetric and irreflexive, then G′ =

(V, S1, S2, . . . , Sk) is a graph structure [6].
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5.1. Basic definitions

Let G be a group and S1, S2, . . . , Sn be mutually disjoint subsets of G. Then

the Cayley digraph structure of G with respect to S1, S2, . . . , Sn is defined as the

graph structure X = (G;E1, E2, . . . , En), where Ei = {(x, y) : x−1y ∈ Si} [4].

In case, a digraph structure with only one connection set is the usual Cayley

digraph. So a Cayley digraph structure is a generalization of the Cayley digraph.

Definition 5.1.2. Let G′ = (V, S1, S2, . . . , Sk) be a graph (digraph) structure

and µ, ρ1, ρ2, . . . , ρk be fuzzy subsets of V, S1, S2, . . . , Sk respectively such that

ρi(x, y) ≤ µ(x) ∧ µ(y), for all x, y ∈ V and i = 1, 2, . . . , k.

Then G = (µ, ρ1, ρ2, . . . , ρk) is a fuzzy graph (digraph) structure of G′ [29].

Let V be a non-empty set, µ be fuzzy subset of V and R1, R2, . . . , Rn be

mutually disjoint fuzzy relations on µ. Then G = (µ,R1, R2, . . . , Rn) is a fuzzy

digraph structure on V . In case µ = χV , where χV is the characteristic function

on V , then the fuzzy digraph structure (µ,R1, R2, . . . , Rn) is simply denoted by

G = (V ;R1, R2, . . . , Rn).

A fuzzy digraph structure G = (V ;R1, R2, ..., Rn) is called (i) trivial if Ri ≡ 0

for all i, (ii) reflexive if for all x ∈ V,Ri(x, x) = 1 for some i, (iii) symmetric

if Ri = R−1
i for all i, (iv) transitive if for every i and j, Ri ∧ Rj ≤ Rk for

some k, (v) a hasse diagram if for every positive integer m ≥ 2 and for every

x1, x2, . . . , xm of V with Ri(xj, xj+1) > 0 for all j = 0, 1, 2, ...,m − 1, implies

Ri(x0, xm) = 0 for all i, and (vi) complete if for any x, y ∈ V,Ri(x, y) > 0, for

some i = 1, 2, . . . , n. A walk of length k in a digraph structure is an alternating

sequence W = x0, e0, x1, . . . , ek−1, xk, where ej = (xj, xj+1) and Ri(ej) > 0 for

some i. A walk W is called a path if all the vertices are distinct. We use

notation x0, x1, x2, . . . , xk for the walk W . A walk is called a circuit if its first

and last vertices are the same, but no other vertex is repeated. A weak path is a

sequence x1, x2, . . . , xm of distinct vertices of V such that for j = 1, 2, . . . ,m− 1,

Ri ∨ R−1
i (xj, xj+1) > 0 for some i = 1, 2, . . . , n. Distance between to vertices

x and y in G is the length of the shortest path from x to y and is denoted by

d(x, y). Diameter of the fuzzy digraph structure G, denoted by d(G), is defined

57



5.2. Cayley fuzzy digraph structure

by d(G) = maxx,y∈Gd(x, y). A fuzzy digraph structure G = (V ;R1, R2, ..., Rn) is

called (i) connected (strongly connected ) if y is connected to x for all x, y ∈ V ,

and (ii) weakly connected if any two vertices can be joined by a weak path, that

is, the fuzzy digraph structure G′ = (V ;R1 ∨ R−1
1 , R2 ∨ R−1

2 , . . . , Rn ∨ R−1
n ) is

connected. A weakly connected fuzzy digraph structure G = (V ;R1, R2, ..., Rn)

with out any circuits is called a tree.

The present work is a generalisation of the work in [15] in which Madhavan

Namboothiri N.M. et al. introduced a class of Cayley fuzzy graphs induced by

groups.

5.2 Cayley fuzzy digraph structure

Definition 5.2.1. Let V be a group and ν1, ν2, . . . , νn be mutually disjoint fuzzy

subsets of V . Then Cayley Fuzzy Digraph Structure with respect to ν1, ν2, . . . , νn

of V is defined as (V ;R1, R2, . . . , Rn) where Ri(x, y) = νi(x
−1y) and is denoted by

CayFD(V ; ν1, ν2, . . . , νn). The subsets ν1, ν2, . . . , νn are called connection fuzzy

subsets of CayFD(V ; ν1 , ν2, . . . , νn). In case, a Cayley fuzzy digraph structure

with only one connection set is usual Cayley fuzzy graph.

Theorem 5.2.2. G = CayFD(V ; ν1, ν2, . . . , νn) is vertex-transitive.

Proof. Let a and b be any two arbitrary elements in G.

Define ψ : V → V by ψ(x) = ba−1x for all x ∈ V . Clearly, ψ is a bijection onto

itself.

Furthermore, we have, for each x, y ∈ V,

Ri(ψ(x), ψ(y)) = Ri(ba
−1x, ba−1y)

= νi((ba
−1x)−1(ba−1y))

= νi(x
−1y)
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5.2. Cayley fuzzy digraph structure

= Ri(x, y).

Hence the proof.

Theorem 5.2.3. Cayley fuzzy digraph structures are regular

Proof. Let G = CayFD(V ; ν1, ν2, . . . , νn) be a Cayley fuzzy digraph structure.

Let u, v ∈ V . Since Cayley fuzzy digraph structures are vertex transitive, there

exist an automorphism say, f on G such that, f(u) = v and Ri(f(x), f(y)) =

Ri(x, y) for any x, y ∈ V and i = 1, 2, . . . , n.

Then the in-degree of u, ind(u) =
∑
x∈V

n∑
i=1

Ri(x, u) =
∑
x∈V

n∑
i=1

Ri(f(x), f(u)) =

∑
x∈V

n∑
i=1

Ri(f(x), v) =
∑

f(x)∈V

n∑
i=1

Ri(f(x), v) =
∑
y∈V

n∑
i=1

Ri(y, v) = ind(v). Similarly,

we can prove that outd(u) = outd(v). Therefore, G is in-regular and out-regular.

Now to prove that G is regular we just need to show that ind(1) = outd(1). We

have, ind(1) =
∑
x∈V

n∑
i=1

Ri(x, 1) =
∑
x∈V

n∑
i=1

νi(x
−1) =

∑
x∈V

n∑
i=1

νi(x) =
∑
x∈V

n∑
i=1

Ri(1, x) =

outd(1). Therefore, G is regular.

Theorem 5.2.4. G = CayFD(V ; ν1, ν2, . . . , νn) is a trivial graph if and only if

νi ≡ 0 for all i.

Proof. By definition, G is trivial if and only if Ri ≡ 0 for all i. This implies that

νi ≡ 0 for all i.

Theorem 5.2.5. G = CayFD(V ; ν1, ν2, . . . , νn) is reflexive if and only if νi(1) =

1 for some i.

Proof. Assume that G = CayFD(V ; ν1, ν2, . . . , νn) is reflexive. Then for every

x ∈ V, Ri(x, x) = 1 for some i. This implies that νi(x
−1x) = νi(1) = 1 for some

i.

Conversely, let νi(1) = 1 for some i, say i = k. This implies that for each

x ∈ V, Rk(x, x) = νk(x
−1x) = νk(1) = 1. That is G is reflexive.
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5.2. Cayley fuzzy digraph structure

Theorem 5.2.6. G = CayFD(V ; ν1, ν2, . . . , νn) is symmetric if and only if

νi(x) = νi(x
−1) for all x ∈ V, i = 1, 2, . . . , n.

Proof. Suppose that G is symmetric. Then for any x ∈ V ,

νi(x) = ν(x−1x2) = Ri(x, x
2) = Ri

−1(x, x2) = Ri(x
2, x) = νi(x

−1x−1x) =

νi(x
−1). Therefore, νi(x) = νi(x

−1).

Conversely, suppose that νi(x) = νi(x
−1) for all x ∈ V . Then for any x, y ∈ V ,

Ri(x, y) = νi(x
−1y) = νi((x

−1y)−1) = νi(y
−1x) = Ri(y, x). This implies that, R

is symmetric. Hence the proof.

Theorem 5.2.7. G = CayFD(V ; ν1, ν2, . . . , νn) is transitive if and only if for

every i, j and for any x, y ∈ V, νi(x) ∧ νj(y) ≤ νk(xy) for some k.

Proof. First assume that G is transitive. That is, for every i, j, Ri ◦Rj ≤ Rk for

some k. For x, y ∈ V,

νi(x) ∧ νj(y) ≤ ∨{νi(z) ∧ νj(z−1(xy)) : z ∈ V }

= ∨{Ri(1, z) ∧Rj(z, xy) : z ∈ V }

= Ri ◦Rj(1, xy)

≤ Rk(1, xy)

= νk(xy).

That is, νi(x) ∧ νj(y) ≤ νk(xy) for some k.

Now let for any x, y ∈ V and i, j, νi(x) ∧ νj(y) ≤ νk(xy) for some k. Then,

(Ri ◦Rj)(x, y) = ∨{Ri(x, z) ∧Rj(z, y) : z ∈ V }

= ∨{νi(x−1z) ∧ νj(z−1y) : z ∈ V }

≤ ∨{νk((x−1z)(z−1y)) : z ∈ V }

= νk(x
−1y) = Rk(x, y).
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5.2. Cayley fuzzy digraph structure

Thus, Ri ◦Rj ≤ Rk for some k. This completes the proof.

Theorem 5.2.8. G = CayFD(V ; ν1, ν2, . . . , νn) is complete if and only if ∪νi◦+ =

V .

Proof. First assume that G is complete. That is ∪Ri
+
◦ = V × V . Clearly,

∪νi+◦ ⊆ V . Now let x ∈ V . Then (1, x) ∈ Ri◦
+ for some i. That is, Ri(1, x) ≥ 0,

which implies, νi(x) ≥ 0. Thus, x ∈ ∪νi◦+. Therefore, V ⊆ ∪νi◦+. That is,

∪νi◦+ = V .

Conversely, assume ∪νi◦+ = V . Let (x, y) ∈ V ×V . Then x, y ∈ V ⇒ x−1y ∈
V ⇒ x−1y ∈ ∪νi◦+ ⇒ x−1y ∈ νi◦

+ for some i. Then, νi(x
−1y) ≥ 0. That is,

Ri(x, y) ≥ 0 which implies (x, y) ∈ Ri◦
+. Hence, V × V ⊆ ∪Ri◦

+. Therefore,

∪Ri◦
+ = V × V . This completes the proof.

Let Ak be the set of all elements x ∈ V of the form x = x1x2 . . . xk, where

xj ∈ νi
+
0 for some i = 1, 2, . . . , n. Then [ϑ] is defined as [ϑ] = ∪nk=1Ak.

Let Bk be the set of all elements y ∈ V of the form y = y1y2 . . . yk, where

yj ∈ (νi ∧ ν−1
i )+0 for some i = 1, 2, . . . , n. Then [[ϑ]] is defined as [[ϑ]] = ∪nk=1Bk.

Theorem 5.2.9. G = CayFD(V ; ν1, ν2, . . . , νn) is connected if and only if V =

[ϑ].

Proof. First assume that G = CayFD(V ; ν1, ν2, . . . , νn) is connected.

Clearly, [ϑ] ⊆ V . Now let x ∈ V . Then there exists a path from 1 to x

say, (1, y1, y2, . . . , yk = x). Then, for some i, Ri1(1, y1) > 0, that is, y1 ∈ ν+i10.

Also, y−1
j−1yj ∈ ν+ij0,for j = 2, 3, . . . , k. This implies that x ∈ Ak, since, x =

(1.y1)(y
−1
1 y2)(y

−1
2 y3) . . . (y

−1
k−1yk). Therefore, x ∈

n⋃
k=1

Ak = [ϑ]. Hence, V = [ϑ].

Conversely, assume that V = [ϑ].

Let x, y ∈ V . Then z = x−1y ∈ V , implies, z ∈ [ϑ] =
n⋃
k=1

Ak. Then z =

z1z2 . . . zk. Then 1, z1, z1z2, . . . , z1z2 . . . zk = z is a path from 1 to z. Then
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5.2. Cayley fuzzy digraph structure

x, xz1, xz1z2, . . . , xz1z2 . . . zk = xz = y is a path from x to y, implies G is con-

nected. This completes the proof.

Theorem 5.2.10. G = CayFD(V ; ν1, ν2, . . . , νn) is weakly connected if and only

if V = [[ϑ]].

Proof. Assume G be weakly connected. Clearly, [[ϑ]] ⊆ V . Let x ∈ V . Then

there exist a weak path say, 1, x1, x2, . . . , xk = x from 1 to x. Then, 1x1 ∈
(νi1 ∨ ν−1

i1
)+0 , x−1

1 x2 ∈ (νi2 ∨ ν−1
i2

)+0 , . . . , x
−1
k−1xk ∈ (νik ∨ νik)

+
0 , which clearly

implies that x ∈
⋃
k

Bk = [[ϑ]]. Hence, V ∈ [[ϑ]].

Conversely, assume that V = [[ϑ]]. Let x, y ∈ V , implies z = x−1y ∈ V .

Therefore, z ∈ [[ϑ]]. Then there exist elements zj ∈ (νij ∨ ν−1
ij

)+0 , j = 1, 2, . . . , k,

such that z = z1z2 . . . zk, for some k ∈ {1, 2, . . . , n}.
Then 1, z1, z1z2, . . . , z1z2 . . . zk = z is a weak path from 1 to z and hence

x, xz1, xz1z2, . . . , xz1z2 . . . zk = xz = y is a weak path from x to y. Therefore, G

is weakly connected. This completes the proof.

Theorem 5.2.11. G = CayFD(V ; ν1, ν2, . . . , νn) is partially ordered if and only

if

(i) νi(1) = 1 for some i.

(ii) for every i, j and for any x, y ∈ V, νi(x) ∧ νj(y) ≤ νk(xy) for some k.

(iii) {x : ν(x) = ν(x−1)} = {1} for all i = 1, 2, . . . , n.

Theorem 5.2.12. G = CayFD(V ; ν1, ν2, . . . , νn) is quasi-ordered if and only if

(i) νi(1) = 1 for some i.

(ii) for every i, j and for any x, y ∈ V, νi(x) ∧ νj(y) ≤ νk(xy) for some k.

Theorem 5.2.13. G = CayFD(V ; ν1, ν2, . . . , νn) is a hasse diagram if and only

if G is connected and νk(x1x2 . . . xm) = 0, k = 1, 2, . . . , n, for any collection

x1, x2, . . . , xm of vertices in V with m ≥ 2 and νij(xj) > 0 for j = 1, 2, . . . ,m.
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Proof. Suppose G is a hasse diagram. Since νij(xj) > 0, for j = 1, 2, . . . ,m,

(1, x1, x1x2, . . . , x1x2 . . . xm) is a path from 1 to x1x2 . . . xm. Now since G is a

hasse diagram, Rk(1, x1x2 . . . xm) = 0 for all k. Therefore νk(x1x2 . . . xm) = 0 for

all k = 1, 2, . . . , n.

Conversely suppose, G is connected and νk(x1x2 . . . xm) = 0, k = 1, 2, . . . , n,

for any collection x1, x2, . . . , xm of vertices in V with m ≥ 2 and νij(xj) > 0

for j = 1, 2, . . . ,m. Let (x0, x1, . . . , xm) be a path in G from x1 to xm, m ≥ 2.

Then Ri1(x0, x1) > 0, Ri2(x1, x2) > 0, . . . , Rim(xm−1, xm) > 0 which implies,

νi1(x
−1
0 x1) > 0, νi2(x

−1
1 x2) > 0, . . . , νim(x

−1
m−1xm) > 0. Thus, by assumption,

νk(x
−1
0 x1x

−1
1 x2 . . . x

−1
m−1 xm) = νk(x

−1
0 xm) = 0. Therefore, Rk(x0, xm) = 0 for all

k = 1, 2, . . . , n. Hence, G is a hasse diagram. This completes the proof.

Theorem 5.2.14. For k = 1, 2, . . . , n,let Ak be the set of all products of the

form νi1νi2 . . . νik = {x1x2 . . . xk : xj ∈ νij
+
0
, j = 1, 2, . . . , k}. If Cayley Fuzzy

Digraph Structure of V , G = CayFD(V ; ν1, ν2, . . . , νn) has finite diameter, then

the diameter of G is the least positive integer m such that

G =
⋃

A∈Am

A.

Proof. Let m be the least integer such that G =
⋃

A∈Am

A.

For any x, y ∈ G, y = xz, for some z ∈ G. Since z ∈ G, z ∈ A for some A ∈ Am.

Then there exist z1, z2, . . . , zm such that νij
+
0
(zj) > 0 for j = 1, 2, . . . ,m and

z = z1z2 . . . zm. Then x, xz1, xz1z2, . . . , xz1z2 . . . zm = y is a path of length m

from x to y.Then we have d(G) ≤ m.

If possible, let d(G) = d < m. Since d < m, there exist an x in G such that

for any x1, x2, . . . , xd with νij
+
0
(xj) > 0 for j = 1, 2, . . . , d, x ̸= x1x2 . . . xd. But

since d(G) = d, there exist a path 1, x1, x2, . . . , xd = x from 1 to x. Then

y1 = x1, y2 = x−1
1 x2, y3 = x−1

2 x3, . . . , yd = x−1
d−1xd are such that x = y1y2y3 . . . yd

and νij
+
0
(yj) > 0 for j = 1, 2, . . . , d. This is a contradiction. Hence d(G) = m.

Definition 5.2.15. Let (S, ∗) be a semigroup. Let A be a fuzzy subset of S. Then
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5.2. Cayley fuzzy digraph structure

A is said to be fuzzy sub-semigroup of S if for all a, b ∈ S, A(ab) ≥ A(a) ∧ A(b)
[15].

Definition 5.2.16. Let (S, ∗) be a semigroup and let ν1, ν2, . . . , νn be mutually

disjoint fuzzy subsets of S. The fuzzy sub-semigroup generated by ν1, ν2, . . . , νn is

the smallest fuzzy sub-semigroup of S which contains ν1, ν2, . . . , νn. Let us denote

it by ⟨ν(123...n)⟩.

Lemma 5.2.17. Let (S, ∗) be a semigroup and let ν1, ν2, . . . , νn be mutually dis-

joint fuzzy subsets of S. Then the fuzzy subset ⟨ν(123...n)⟩ is precisely given by

⟨ν(123...n)⟩(x) = ∨{νj1(x1) ∧ νj2(x2) ∧ . . . νjk(xk) : x = x1x2 . . . xk

with a finite positive integer k, xi ∈ S and

νji(xi) > 0 for some ji = 1, 2, . . . , n} for any x ∈ S.

Proof. Let ν ′ be the fuzzy subset of V defined by

ν ′(x) = ∨{νj1(x1) ∧ νj2(x2) ∧ . . . ∧ νjm(xm) : x = x1x2x3 . . . xm, xji ∈ ν+ji◦ ,

m ∈ {1, 2, 3, . . . , n}}, for any x ∈ V.

If y ∈ V , by definition of ν ′, it is clear that ν ′(y) ≥ νjk(y) where jk ∈ {1, 2, . . . , n}
and νjk(y) ≥ 0. Thus, we have νjk ≤ ν ′ for all ji. This implies that ν ′ contains

ν1, ν2, . . . , νn. Let x, y ∈ V. If νji(x) = 0 or νji(y) = 0, then νji(x) ∧ νji(y) =

0. Then, ν ′(xy) ≥ νji(x) ∧ νji(y). Again, if νji(x) ̸= 0 and νji(y) ̸= 0, then

by definition of ν ′, we have ν ′(xy) ≥ νji(x) ∧ νji(y). Hence ν ′ is a fuzzy sub

semigroup of V containing νi, i ∈ {1, 2, . . . , n}. Now let A be any fuzzy sub

semigroup of V containing νi, i ∈ {1, 2, . . . , n}. Then, for any x ∈ V with

x = x1x2x3 . . . xm, xi ∈ ν+ji◦ , for i = 1, 2, . . . , n,m ∈ {1, 2, 3, . . . , n} we have

A(x) ≥ A(x1)∧A(x2)∧. . .∧A(xm) ≥ νj1(x1)∧νj2(x2)∧. . .∧νjm(xm), which implies

that A(x) ≥ ∨{νj1(x1)∧νj2(x2)∧. . .∧νjm(xm) : x = x1x2x3 . . . xm, xji ∈ ν+ji◦ ,m ∈
{1, 2, 3, . . . , n} for ji ∈ {1, 2, . . . , n} for any x ∈ V . Therefore, A(x) ≥ ν ′(x) for

64
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all x ∈ V . Thus, ν ′ = ⟨ν(123...n)⟩. That is,

⟨ν(123...n)⟩(x) = ∨{νj1(x1) ∧ νj2(x2) ∧ . . . ∧ νjm(xm) : x = x1x2x3 . . . xm,

xji ∈ ν+ji◦ ,m ∈ {1, 2, 3, . . . , n}} for any x ∈ V.

5.3 Cayley Fuzzy Digraph Structure Induced

by Loops

In this section we introduce Cayley fuzzy digraph structure induced by loops

and prove that these graphs are vertex-transitive and hence regular.

Definition 5.3.1. Let V be a loop. A fuzzy subset ν on V is called a scaled fuzzy

subset of V if ν(y/x) = ν(zy/zx), where y/x denotes the solution of the equation

y = xz, for all x, y, z ∈ V [23].

Definition 5.3.2. Let V be a loop and ν1, ν2, . . . , νn be mutually disjoint scaled

fuzzy subsets of V . Then Cayley Fuzzy Digraph Structure of V with respect to

ν1, ν2, . . . , νn is defined as (V ;R1, R2, . . . , Rn) where Ri(x, y) = νi(y/x) and is

denoted by CayFDL
(V ; ν1, ν2, . . . , νn). The subsets ν1, ν2, . . . , νn are called con-

nection fuzzy subsets of CayFDL
(V ; ν1 , ν2, . . . , νn). In case, a Cayley fuzzy di-

graph structure induced by loops with only one connection set is usual Cayley

fuzzy graph induced by loops.

Theorem 5.3.3. G = CayFDL
(V ; ν1, ν2, . . . , νn) is vertex-transitive.

Proof. Let a, b ∈ V and b = z◦a, z◦ ∈ V . Define Ψ : V → V by ψ(x) = z◦x.

Clearly, ψ is one-to-one and onto. Also, ψ(a) = z◦a = b.

Furthermore, we have, for each x, y ∈ V,

Ri(ψ(x), ψ(y)) = Ri(z◦x, z◦y)
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= ν(z◦y/z◦x)

= ν(y/x)

= νi(y/x)

= Ri(x, y).

Hence the proof.

Theorem 5.3.4. G = CayFDL
(V ; ν1, ν2, . . . , νn) is regular

Proof. Let u, v ∈ V . Since G = CayFDL
(V ; ν1, ν2, . . . , νn) are vertex tran-

sitive, there exist an automorphism say, f on G such that, f(u) = v and

Ri(f(x), f(y)) = Ri(x, y) for any x, y ∈ V and i = 1, 2, . . . , n.Then the in-degree

of u, ind(u) =
∑
x∈V

n∑
i=1

Ri(x, u) =
∑
x∈V

n∑
i=1

R(f(x), f(u)) =
∑
x∈V

n∑
i=1

Ri(f(x), v) =

∑
f(x)∈V

n∑
i=1

Ri(f(x), v) =
∑
y∈V

n∑
i=1

Ri(y, v) = ind(v). Similarly, we can prove that

outd(u) = outd(v). Therefore, G is in-regular and out-regular. Now to prove

that G is regular we just need to show that ind(1) = outd(1). We have,

ind(1) =
∑
x∈V

n∑
i=1

Ri(x, 1) =
∑
x∈V

n∑
i=1

νi(1/x) =
∑
y∈V

n∑
i=1

νi(y) =
∑
y∈V

n∑
i=1

Ri(1, y) =

outd(1). Therefore, G is regular.

Theorem 5.3.5. G = CayFDL
(V ; ν1, ν2, . . . , νn) is a trivial graph if and only if

νi ≡ 0 for all i.

Proof. By definition, G is trivial if and only if Ri ≡ 0 for all i. This implies that

νi ≡ 0 for all i.

Theorem 5.3.6. G = CayFDL
(V ; ν1, ν2, . . . , νn) is reflexive if and only if νi(1) =

1 for some i.

Proof. Assume that G = CayFDL
(V ; ν1, ν2, . . . , νn) is reflexive. Then for every

x ∈ V, Ri(x, x) = 1 for some i. This implies that νi(x/x) = νi(1) = 1 for some i.
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Conversely, let νi(1) = 1 for some i, say i = k. This implies that for each

x ∈ V, Rk(x, x) = νk(x/x) = νk(1) = 1. That is G is reflexive.

Theorem 5.3.7. G = CayFDL
(V ; ν1, ν2, . . . , νn) is symmetric if and only if

νi(x) = νi(1/x) for all x ∈ V, i = 1, 2, . . . , n.

Proof. Suppose that G is symmetric. Then for any x ∈ V , νi(x) = Ri(1, x) =

Ri(x, 1) = νi(1/x). Therefore, νi(x) = νi(1/x).

Conversely, suppose that νi(x) = νi(1/x) for all x ∈ V . Then for any x, y ∈ V ,

y = xt for some t ∈ V . Then Ri(x, y) = νi(y/x) = νi(t) = νi(1/t) = νi(x/xt) =

νi(x/y) = Ri(y, x). This implies that, R is symmetric. Hence the proof.

Theorem 5.3.8. G = CayFDL
(V ; ν1, ν2, . . . , νn) is transitive if and only if for

every i, j and for any x, y ∈ V, νi(x) ∧ νj(y) ≤ νk(xy) for some k.

Proof. First assume that G is transitive. That is, for every i, j, Ri ◦Rj ≤ Rk for

some k. For x, y ∈ V,

νi(x) ∧ νj(y) ≤ ∨{νi(z) ∧ νj((xy)/z) : z ∈ V }

= ∨{Ri(1, z) ∧Rj(z, xy) : z ∈ V }

= Ri ◦Rj(1, xy)

≤ Rk(1, xy)

= νk(xy).

That is, νi(x) ∧ νj(y) ≤ νk(xy) for some k.

Now let for any x, y ∈ V and i, j, νi(x) ∧ νj(y) ≤ νk(xy) for some k. Then,

(Ri ◦Rj)(x, y) = ∨{Ri(x, z) ∧Rj(z, y) : z ∈ V }

= ∨{νi(z/x) ∧ νj(y/z) : z ∈ V }

≤ ∨{νk((z/x)(y/z)) : z ∈ V }

= νk(y/x) = Rk(x, y).
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Thus, Ri ◦Rj ≤ Rk for some k. This completes the proof.

Theorem 5.3.9. G = CayFDL
(V ; ν1, ν2, . . . , νn) is complete

if and only if

∪νi◦+ = V.

Proof. First assume that G is complete. That is ∪Ri
+
◦ = V × V . Clearly,

∪νi+◦ ⊆ V . Now let x ∈ V . Then (1, x) ∈ Ri◦
+ for some i. That is, Ri(1, x) ≥ 0,

which implies, νi(x) ≥ 0. Thus, x ∈ ∪νi◦+. Therefore, V ⊆ ∪νi◦+. That is,

∪νi◦+ = V .

Conversely, assume ∪νi◦+ = V . Let (x, y) ∈ V × V . Then x, y ∈ V ⇒
x−1y ∈ V ⇒ y/x ∈ ∪νi◦+ ⇒ y/x ∈ νi◦

+ for some i. Then, νi(y/x) ≥ 0. That

is, Ri(x, y) ≥ 0 which implies (x, y) ∈ Ri◦
+. Hence, V × V ⊆ ∪Ri◦

+. Therefore,

∪Ri◦
+ = V × V . This completes the proof.

Let Ak be the set of all elements x ∈ V of the form x = x1x2 . . . xk, where

xj ∈ νi
+
0 for some i = 1, 2, . . . , n. Then [ϑ] is defined as [ϑ] =

n⋃
k=1

Ak.

Let Bk be the set of all elements y ∈ V of the form y = y1y2 . . . yk, where

yj ∈ (νi ∧ ν−1
i )+0 for some i = 1, 2, . . . , n, ν−1

i (x) = νi(1/x). Then [[ϑ]] is defined

as [[ϑ]] =
n⋃
k=1

Bk.

Theorem 5.3.10. G = CayFDL
(V ; ν1, ν2, . . . , νn) is connected if and only if

V = [ϑ].

Proof. First assume that G is connected.

Clearly, [ϑ] ⊆ V . Now let x ∈ V . Then there exists a path from 1 to x

say, (1, y1, y2, . . . , yk = x). Then, for some i1 ∈ {1, 2, . . . , n}, Ri1(1, y1) > 0,

that is, y1 ∈ ν+i10. Also, there exist tj ∈ V such that yj/yj−1 = tj ∈ ν+ij0,for

j = 2, 3, . . . , k, ij ∈ {1, 2, . . . , n}. This implies that x ∈ Ak, since, x = yk =

yk−1tk = yk−2tk−1tk = . . . = y1t2t3 . . . tk. Therefore, x ∈
n⋃
k=1

Ak = [ϑ]. Hence,
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V = [ϑ].

Conversely, assume that V = [ϑ].

Let x, y ∈ V . Then z = y/x ∈ V , implies, z ∈ [ϑ] =
n⋃
k=1

Ak. Then z =

z1z2 . . . zk. Then 1, z1, z1z2, . . . , z1z2 . . . zk = z is a path from 1 to z. Then

x, xz1, xz1z2, . . . , xz1z2 . . . zk = xz = y is a path from x to y, implies G is con-

nected. This completes the proof.

Theorem 5.3.11. G = CayFDL
(V ; ν1, ν2, . . . , νn) is weakly connected if and only

if V = [[ϑ]].

Proof. Assume G be weakly connected. Clearly, [[ϑ]] ⊆ V . Let x ∈ V . Then

there exist a weak path say, 1, x1, x2, . . . , xk = x from 1 to x. Then, 1x1 ∈
(νi1 ∨ ν−1

i1
)+0 , x2/x1 ∈ (νi2 ∨ ν−1

i2
)+0 , . . . , xk/xk−1 ∈ (νik ∨ ν−1

ik
)+0 , which clearly

implies that x ∈
⋃
k

Bk = [[ϑ]]. Hence, V ∈ [[ϑ]].

Conversely, assume that V = [[ϑ]]. Let x, y ∈ V , implies z = y/x ∈ V . There-

fore, z ∈ [[ϑ]]. Then there exist elements zj ∈ (νij ∨ ν−1
ij

)+0 , j = 1, 2, . . . , k, such

that z = z1z2 . . . zk, for some k ∈ {1, 2, . . . , n}. Then 1, z1, z1z2, . . . , z1z2 . . . zk = z

is a weak path from 1 to z and hence x, xz1, xz1z2, . . . , xz1z2 . . . zk = xz = y is a

weak path from x to y. Therefore, G is weakly connected. This completes the

proof.

Theorem 5.3.12. G = CayFDL
(V ; ν1, ν2, . . . , νn) is partially ordered if and only

if

(i) νi(1) = 1 for some i.

(ii) for every i, j and for any x, y ∈ V, νi(x) ∧ νj(y) ≤ νk(xy) for some k.

(iii) {x : ν(x) = ν(1/x)} = {1} for all i = 1, 2, . . . , n.

Theorem 5.3.13. G = CayFDL
(V ; ν1, ν2, . . . , νn) is quasi-ordered if and only if

(i) νi(1) = 1 for some i.
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(ii) for every i, j and for any x, y ∈ V, νi(x) ∧ νj(y) ≤ νk(xy) for some k.

Theorem 5.3.14. G = CayFDL
(V ; ν1, ν2, . . . , νn) is a hasse diagram if and only

if G is connected and νk(x1x2 . . . xm) = 0, k = 1, 2, . . . , n, for any collection

x1, x2, . . . , xm of vertices in V with m ≥ 2 and νij(xj) > 0 for j = 1, 2, . . . ,m.

Proof. Suppose G is a hasse diagram. Since νij(xj) > 0, for j = 1, 2, . . . ,m,

(1, x1, x1x2, . . . , x1x2 . . . xm) is a path from 1 to x1x2 . . . xm. Now since G is a

hasse diagram, Rk(1, x1x2 . . . xm) = 0 for all k. Therefore νk(x1x2 . . . xm) = 0 for

all k = 1, 2, . . . , n.

Conversely suppose, G is connected and νk(x1x2 . . . xm) = 0, k = 1, 2, . . . , n,

for any collection x1, x2, . . . , xm of vertices in V with m ≥ 2 and νij(xj) > 0

for j = 1, 2, . . . ,m. Let (x0, x1, . . . , xm) be a path in G from x1 to xm, m ≥ 2.

Then Ri1(x0, x1) > 0, Ri2(x1, x2) > 0, . . . , Rim(xm−1, xm) > 0 which implies,

νi1(x1/x0) > 0, νi2(x2/x1) > 0, . . . , νim(xm/xm−1) > 0. Let x1 = x◦t1, x2 =

x1t2, . . . , xm = xm−1tm. Then, νij(tj) = νij(xj/xj−1) > 0 for j = 1, 2, . . . ,m. We

have, xm = xm−1tm = (xm−2tm−1)tm . . . = (. . . ((x◦t1)t2) . . .)tm = (. . . (x◦(t1t
′
2))

. . .)tm . . . = x◦(. . . ((t1t
′
2)t

′
3) . . .)t

′
m). Therefore, for k ∈ {1, 2, . . . , n},

Rk(x◦, xm) = νk(xm/x◦) = νk ((. . . ((t1t
′
2)t

′
3) . . .)t

′
m) . (5.1)

We have, νi1(t1) > 0 and

νi2(t
′
2) = νi2(t1t

′
2/t1)

= νi2 (x◦(t1t
′
2)/x◦t1)

= νi2((x◦t1)t2/x◦t1)

= νi2(t2) > 0.

In general, νij(t
′
j) = νij(tj) > 0 for j = 2, 3, . . . ,m.

Therefore, since t1, t
′
j ∈ V, j = 2, 3, . . . ,m,m ≥ 2 and νi1(t1) > 0, νij(t

′
j) >

0, for j = 2, 3, . . . ,m, we have, νk ((. . . ((t1t
′
2)t

′
3) . . .)t

′
m) = 0. Therefore, (5.1)
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implies that Rk(x◦, xm) = 0. Hence, G is a hasse diagram. This completes the

proof.

Theorem 5.3.15. For k = 1, 2, . . . , n,let Ak be the set of all products of the

form νi1νi2 . . . νik = {x1x2 . . . xk : xj ∈ νij
+
0
, j = 1, 2, . . . , k}. If the Cayley fuzzy

digraph structure induced by the loop V , G = CayFDL
(V ; ν1, ν2, . . . , νn) has finite

diameter, then the diameter of G is the least positive integer m such that

G =
⋃

A∈Am

A.

Proof. The proof of this theorem is analogous to that of theorem 5.2.14
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Chapter 6
Cayley Bipolar Fuzzy Digraph

Structure Induced by Groups

and Loops

This chapter comprises of two main sections. In the first section we introduced

Cayley bipolar fuzzy digraph structure induced by groups and a study in terms

of algebraic properties is carried out. In the second section we introduced and

studied Cayley bipolar fuzzy digraph structure induced by loops. This can be

considered as a generalisation of the work done in chapter three and in [24], by

N. O. Alshehri and M. Akram.

6.1 Definitions

Definition 6.1.1. Let V be a non-empty set and S1, S2, . . . , Sk are relations

on V which are mutually disjoint, then G′ = (V, S1, S2, . . . , Sn) is a digraph

structure. In addition, if S1, S2, . . . , Sk are symmetric and irreflexive, then G′ =

(V, S1, S2, . . . , Sk) is a graph structure [6].

Definition 6.1.2. Let G′ = (V, S1, S2, . . . , Sk) be a graph (digraph) structure
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6.2. Cayley Bipolar Fuzzy Digraph Structure

and µ, ρ1, ρ2, . . . , ρk be fuzzy subsets of V, S1, S2, . . . , Sk respectively such that

ρi(x, y) ≤ µ(x) ∧ µ(y), for all x, y ∈ V and i = 1, 2, . . . , k.

Then G = (µ, ρ1, ρ2, . . . , ρk) is a fuzzy graph (digraph) structure of G′ [29].

Definition 6.1.3. FBD = (M,R1, R2, . . . , Rn) is called a bipolar fuzzy graph

structure of a graph structure G′ = (V, S1, S2, . . . , Sn) if M = (µPM , µ
N
M) is a

bipolar fuzzy set on V and for each i = 1, 2, . . . , n, Ri = (µPRi
, µNRi

) is a bipolar

fuzzy set on Si such that µPRi
(x, y) ≤ µPM(x)∧µPM(y), µNRi

(x, y) ≥ µNM(x)∨µNM(y).

While V and Si, (i = 1, 2, . . . , n) are called underlying vertex set and underlying

i-edge sets of FBD, respectively [25].

In case M = (χV ,−χV ), where χV is the characteristic function on V , then

the bipolar fuzzy digraph structure (M,R1, R2, . . . , Rn) is simply denoted by

FBD = (V ;R1, R2, . . . , Rn).

6.2 Cayley Bipolar Fuzzy Digraph Structure

Definition 6.2.1. Let V be a group and A1, A2, . . . , An be bipolar fuzzy sets

on V . Then the bipolar fuzzy digraph structure (V ;R1, R2, . . . , Rn) defined by

Ri(x, y) = (µPRi
(x, y), µNRi

(x, y)) =
(
(µPAi

(x−1y), µNAi
(x−1y)

)
for all x, y ∈ V , i =

1, 2, . . . , n is called the Cayley Bipolar Fuzzy Digraph Structure and is denoted

by CayFBD(V ;A1, A2, . . . , An).

Theorem 6.2.2. CayFBD(V ;A1, A2, . . . , An) is vertex transitive.

Proof. Let a and b be any two arbitrary elements in V . Define ψ : V → V by

ψ(x) = ba−1x for all x ∈ V . Clearly, ψ is a bijection onto itself and ψ(a) = b.

Furthermore, we have, for each x, y ∈ V, i = 1, 2, . . . , n,

Ri(ψ(x), ψ(y)) = Ri(ba
−1x, ba−1y)

=
(
µPRi

(ba−1x, ba−1y), µNRi
(ba−1x, ba−1y)

)
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=
(
µPAi

((ba−1x)−1(ba−1y)), µNAi
((ba−1x)−1(ba−1y))

)
=

(
µPAi

(x−1y), µNAi
(x−1y)

)
= Ri(x, y).

Hence the proof.

Theorem 6.2.3. Every vertex transitive bipolar fuzzy digraph structure is in-

regular and out-regular.

Proof. Let G = (V ;Ri, Ri, . . . , Rn) be a vertex transitive bipolar fuzzy digraph

structure. Let u, v ∈ V and i ∈ I = {1, 2, . . . , n}. Then there is an automorphism

f on G such that f(u) = v. Then,

ind(u) =
∑
i∈I

∑
x∈V

Ri(x, u)

=
∑
i∈I

∑
x∈V

(
µPRi

(x, u), µNRi
(x, u)

)
=

∑
i∈I

∑
x∈V

(
µPRi

(f(x), f(u)), µNRi
(f(x), f(u))

)
=

∑
i∈I

∑
f(x)∈V

(
µPRi

(f(x), v), µNRi
(f(x), v)

)
=

∑
i∈I

∑
y∈V

(
µPRi

(y, v), µNRi
(y, v)

)
=

∑
i∈I

∑
y∈V

Ri(y, v)

= ind(v)

Hence G is in-regular.

Similarly it can be proved that G is out-regular.

Theorem 6.2.4. G = CayFBD(V ;A1, A2, . . . , An) is regular.

Proof. From theorems (6.2.2) and (6.2.3) it can easily be seen that G is regular.
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Theorem 6.2.5. G = CayFBD(V ;A1, A2, . . . , An) is reflexive if and only if

Ai(1) = (1,−1) for some i = 1, 2, . . . , n.

Proof. G is reflexive if and only if for every x ∈ V Ri(x, x) = (1,−1) for some i

say, k. Then

Ak(1) =
(
µPAk

(1), µNAk
(1)

)
=

(
µPAk

(x−1x), µNAk
(x−1x)

)
=

(
µPRk

(x, x), µNRk
(x, x)

)
= Rk(x, x)

= (1,−1).

Hence Ai(1) = (1,−1) for some i = 1, 2, . . . , n.

Conversely let Ai(1) = (1,−1) for some i, say i = k.

Then for any x ∈ V ,

Rk(x, x) =
(
µPRi

(x, x), µNRi
(x, x)

)
=

(
µPAi

(x−1x), µNAi
(x−1x)

)
=

(
µPAi

(1), µNAi
(1)

)
= Ai(1) = (1,−1).

That is, for every x ∈ V , Ri(x, x) = (1,−1) for some i = 1, 2, . . . , n.

Hence the proof.

Theorem 6.2.6. G = CayFBD(V ;A1, A2, . . . , An) is symmetric if and only if

Ai(x) = Ai(x
−1).

Proof. G is symmetric if and only if for every x ∈ V Ri(x, y) = Ri(y, x). Then

Ai(x) = Ai(x
−1xx)

= Ai(x
−1x2)
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=
(
µPAi

(x−1x2), µNAi
(x−1x2)

)
=

(
µPRi

(x, x2), µNRi
(x, x2)

)
= Ri(x, x

2)

= Ri(x
2, x), (since symmetric)

=
(
µPAi

((x2)
−1
x), µNAi

((x2)
−1
x)
)

=
(
µAi

(x−1), µNAi
(x−1)

)
= Ai(x

−1).

Conversely let Ai(x) = Ai(x
−1). Then,

Ri(x, y) =
(
µPRi

(x, y), µNRi
(x, y)

)
=

(
µPAi

(x−1y), µNAi
(x−1y)

)
= Ai(x

−1y)

= Ai
(
(x−1y)−1

)
=

(
µPAi

(y−1x), µNAi
(y−1x)

)
=

(
µPRi

(y, x), µNRi
(y, x)

)
= Ri(y, x).

Hence the proof.

Theorem 6.2.7. G = CayFBD(V ;A1, A2, . . . , An) is antisymmetric if and only

if {x : Ai(x) = Ai(x
−1)} = {1}.

Proof. First assume that G is antisymmetric. Then,

Ai(x) = A(x
−1) ⇔

(
µPAi

(x), µNAi
(x)

)
=

(
µPAi

(x−1), µNAi
(x−1)

)
⇔

(
µPRi

(1, x), µNRi
(1, x)

)
=

(
µPRi

(x, 1), µNRi
(x, 1)

)
⇔ Ri(1, x) = Ri(x, 1)

⇔ x = 1. (Since antisymmetric)
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Therefore, {x : Ai(x) = Ai(x
−1)} = {1}.

Conversely let {x : Ai(x) = Ai(x
−1)} = {1}. Then,

Ri(x, y) = Ri(y, x) ⇔
(
µPRi

(x, y), µNRi
(x, y)

)
=

(
µPRi

(y, x), µNRi
(y, x)

)
⇔

(
µPAi

(x−1y), µNAi
(x−1y)

)
=

(
µPAi

(y−1x), µNAi
(y−1x)

)
⇔ Ai(x

−1y) = A(y
−1x)

⇔ Ai(x
−1y) = Ai((x

−1y)
−1
)

⇔ x−1y = 1

⇔ x = y.

Hence the proof.

Theorem 6.2.8. G = CayFBD(V ;A1, A2, . . . , An) is transitive if and only if for

any i, j ∈ I = {1, 2, . . . , n} and for any x, y ∈ V , µPAi
(x)∧µPAj

(y) ≤ µPAk
(xy) and

µNAi
(x) ∨ µNAj

(y) ≥ µNAk
(xy) for some k ∈ I.

Proof. Assume that G is transitive. Then for any i, j ∈ I = {1, 2, . . . , n} and for

any x, y ∈ V , Ri ◦Rj(x, y) ≤ Rk for some k ∈ I. Then,

µPAi
(x) ∧ µPAj

(y) ≤ ∨
{
µPAi

(z) ∧ µPAj
(z−1(xy)) : z ∈ V

}
≤ ∨

{
µPRi

(1, z) ∧ µPRj
(z, xy) : z ∈ V

}
≤ µPRi

◦ µPRj
(1, xy)

≤ µPRk
(1, xy)

≤ µPAk
(xy).

Similarly we obtain µNAi
(x) ∨ µNAj

(y) ≥ µNAk
(xy).

Conversely let for any i, j ∈ I = {1, 2, . . . , n} and for any x, y ∈ V , µPAi
(x) ∧

µPAj
(y) ≤ µPAk

(xy) and µNAi
(x) ∨ µNAj

(y) ≥ µNAk
(xy) for some k ∈ I. Then,

(
µPRi

◦ µPRj

)
(x, y) = ∨

{
µPRi

(x, z) ∧ µPRj
(z, y) : z ∈ V

}
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= ∨
{
µPAi

(x−1z) ∧ µPAj
(z−1y) : z ∈ V

}
≤ µAk

(x−1y)

≤ µPRk
(x, y).

In a similar way we can obtain the inequality related to the negative membership

degree.

Hence the proof.

6.3 Cayley Bipolar Fuzzy Digraph Structure In-

duced by Loops

Definition 6.3.1. Let V be a group and A1, A2, . . . , An be scaled bipolar fuzzy

sets on V . Then the bipolar fuzzy digraph structure (V ;R1, R2, . . . , Rn) defined

by Ri(x, y) = (µPRi
(x, y), µNRi

(x, y)) =
(
(µPAi

(y/x), µNAi
(y/x)

)
for all x, y ∈ V , i =

1, 2, . . . , n is called the Cayley Bipolar Fuzzy Digraph Structure induced by loops

and is denoted by CayFBDL
(V ;A1, A2, . . . , An).

Theorem 6.3.2. CayFBDL
(V ;A1, A2, . . . , An) is vertex transitive.

Proof. Let a and b be any two arbitrary elements in V and b = zoa, zo ∈ V .

Define ψ : V → V by ψ(x) = zox for all x ∈ V . Clearly, ψ is a bijection onto

itself and ψ(a) = b.

Furthermore, we have, for each x, y ∈ V, i = 1, 2, . . . , n,

Ri(ψ(x), ψ(y)) = Ri(zox, zoy)

=
(
µPRi

(zox, zoy), µ
N
Ri
(zox, zoy)

)
=

(
µPAi

(zoy/zox), µ
N
Ai
(zoy/zox)

)
=

(
µPAi

(y/x), µNAi
(y/x)

)
= Ri(x, y).
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Hence the proof.

Theorem 6.3.3. Every vertex transitive bipolar fuzzy digraph structure is in-

regular and out-regular.

Proof. Let G = (V ;Ri, Ri, . . . , Rn) be a vertex transitive bipolar fuzzy digraph

structure. Let u, v ∈ V and i ∈ I = {1, 2, . . . , n}. Then there is an automorphism

f on G such that f(u) = v. Then,

ind(u) =
∑
i∈I

∑
x∈V

Ri(x, u)

=
∑
i∈I

∑
x∈V

(
µPRi

(x, u), µNRi
(x, u)

)
=

∑
i∈I

∑
x∈V

(
µPRi

(f(x), f(u)), µNRi
(f(x), f(u))

)
=

∑
i∈I

∑
f(x)∈V

(
µPRi

(f(x), v), µNRi
(f(x), v)

)
=

∑
i∈I

∑
y∈V

(
µPRi

(y, v), µNRi
(y, v)

)
=

∑
i∈I

∑
y∈V

Ri(y, v)

= ind(v)

Hence G is in-regular.

Similarly it can be proved that G is out-regular.

Theorem 6.3.4. G = CayFBDL
(V ;A1, A2, . . . , An) is regular.

Proof. From theorems (6.3.2) and (6.3.3) it can easily be seen that G is regular.

Theorem 6.3.5. G = CayFBDL
(V ;A1, A2, . . . , An) is reflexive if and only if

Ai(1) = (1,−1) for some i = 1, 2, . . . , n.
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Proof. G is reflexive if and only if for every x ∈ V Ri(x, x) = (1,−1) for some i

say, k. Then

Ak(1) =
(
µPAk

(1), µNAk
(1)

)
=

(
µPAk

(x/x), µNAk
(x/x)

)
=

(
µPRk

(x, x), µNRk
(x, x)

)
= Rk(x, x)

= (1,−1).

Hence Ai(1) = (1,−1) for some i = 1, 2, . . . , n.

Conversely let Ai(1) = (1,−1) for some i, say i = k.

Then for any x ∈ V ,

Rk(x, x) =
(
µPRi

(x, x), µNRi
(x, x)

)
=

(
µPAi

(x/x), µNAi
(x/x)

)
=

(
µPAi

(1), µNAi
(1)

)
= Ai(1) = (1,−1).

That is, for every x ∈ V , Ri(x, x) = (1,−1) for some i = 1, 2, . . . , n.

Hence the proof.

Theorem 6.3.6. G = CayFBDL
(V ;A1, A2, . . . , An) is symmetric if and only if

Ai(x) = Ai(1/x).

Proof. G is symmetric if and only if for every x ∈ V Ri(x, y) = Ri(y, x). Then

Ai(x) = Ai((
x

x
)x)

= Ai(x
2/x)

=
(
µPAi

(x2/x), µNAi
(x2/x)

)
=

(
µPRi

(x, x2), µNRi
(x, x2)

)
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= Ri(x, x
2)

= Ri(x
2, x), (since symmetric)

=
(
µPAi

(x/x2), µNAi
(x/x2)

)
=

(
µAi

(1/x), µNAi
(1/x)

)
= Ai(1/x).

Conversely let Ai(x) = Ai(1/x). Then,

Ri(x, y) =
(
µPRi

(x, y), µNRi
(x, y)

)
=

(
µPAi

(y/x), µNAi
(y/x)

)
= Ai(y/x)

= Ai (1/(y/x))

=
(
µPAi

(x/y), µNAi
(x/y)

)
=

(
µPRi

(y, x), µNRi
(y, x)

)
= Ri(y, x).

Hence the proof.

Theorem 6.3.7. G = CayFBDL
(V ;A1, A2, . . . , An) is antisymmetric if and only

if {x : Ai(x) = Ai(1/x)} = {1}.

Proof. First assume that G is antisymmetric. Then,

Ai(x) = Ai(1/x) ⇔
(
µPAi

(x), µNAi
(x)

)
=

(
µPAi

(1/x), µNAi
(1/x)

)
⇔

(
µPRi

(1, x), µNRi
(1, x)

)
=

(
µPRi

(x, 1), µNRi
(x, 1)

)
⇔ Ri(1, x) = Ri(x, 1)

⇔ x = 1. (Since antisymmetric)

Therefore, {x : Ai(x) = Ai(1/x)} = {1}.
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Conversely let {x : Ai(x) = Ai(1/x)} = {1}. Then,

Ri(x, y) = Ri(y, x) ⇔
(
µPRi

(x, y), µNRi
(x, y)

)
=

(
µPRi

(y, x), µNRi
(y, x)

)
⇔

(
µPAi

(y/x), µNAi
(y/x)

)
=

(
µPAi

(x/y), µNAi
(x/y)

)
⇔ Ai(y/x) = Ai(x/y)

⇔ Ai(y/x) = Ai(1/(y/x))

⇔ y/x = 1

⇔ x = y.

Hence the proof.

Theorem 6.3.8. G = CayFBDL
(V ;A1, A2, . . . , An) is transitive if and only if

for any i, j ∈ I = {1, 2, . . . , n} and for any x, y ∈ V , µPAi
(x) ∧ µPAj

(y) ≤ µPAk
(xy)

and µNAi
(x) ∨ µNAj

(y) ≥ µNAk
(xy) for some k ∈ I.

Proof. Assume that G is transitive. Then for any i, j ∈ I = {1, 2, . . . , n} and for

any x, y ∈ V , Ri ◦Rj(x, y) ≤ Rk for some k ∈ I. Then,

µPAi
(x) ∧ µPAj

(y) ≤ ∨
{
µPAi

(z) ∧ µPAj
((xy)/z) : z ∈ V

}
≤ ∨

{
µPRi

(1, z) ∧ µPRj
(z, xy) : z ∈ V

}
≤ µPRi

◦ µPRj
(1, xy)

≤ µPRk
(1, xy)

≤ µPAk
(xy).

Similarly we obtain µNAi
(x) ∨ µNAj

(y) ≥ µNAk
(xy).

Conversely let for any i, j ∈ I = {1, 2, . . . , n} and for any x, y ∈ V , µPAi
(x) ∧

µPAj
(y) ≤ µPAk

(xy) and µNAi
(x) ∨ µNAj

(y) ≥ µNAk
(xy) for some k ∈ I. Then,

(
µPRi

◦ µPRj

)
(x, y) = ∨

{
µPRi

(x, z) ∧ µPRj
(z, y) : z ∈ V

}
= ∨

{
µPAi

(z/x) ∧ µPAj
(y/z) : z ∈ V

}
82



6.3. Cayley Bipolar Fuzzy Digraph Structure Induced by Loops

≤ µAk
(y/x)

≤ µPRk
(x, y).

In a similar way we can obtain the inequality related to the negative membership

degree.

Hence the proof.
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Chapter 7
Conclusion and Further Scope of

Research

7.1 Summary of the Thesis

In 2013, Madhavan Namboothiri N.M. et al.introduced a class of Cayley fuzzy

graphs induced by groups and studied the properties of the Cayley fuzzy graphs

in terms of algebraic properties. In the second chapter, We generalise the results

of Madhavan Namboothiri N.M. et al. and prove that a bigger class of Fuzzy

Cayley graphs could be induced by loops, weaker algebraic structure than groups.

Moreover, we studied various graph properties in terms of algebraic properties.

Noura O. Alshehri and Muhammad Akram generalised the results of Mad-

havan Namboothiri N.M. et al. and introduced bipolar fuzzy Cayley graphs and

derived graph properties in terms of algebraic properties. They also discussed

connectedness in Cayley bipolar fuzzy graph. In the third chapter, we general-

ized the results of Noura O. Alshehri1and Muhammad Akram and investigated

bipolar Cayley Fuzzy graphs induced by loops and analogous results are derived.

In the fourth chapter, we introduced the concept of Cayley Intuitionistic
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7.2. Further Scope of Research

Fuzzy Graphs induced by loops and derived many results.

A graph structure is a powerful tool for solving combinatorial problems in

different areas of computer science and computational intelligence systems. In

2012, Anil Kumar V and Parameswarn Ashok Nair introduced the concept of

Cayley digraph structures induced by groups and derived many interesting re-

sults. In chapter 5, we introduced the concept Cayley Fuzzy Digraph structure

induced by groups and loops and also investigated several results in terms of

algebraic properties. These results can be considered as a generalisation of those

obtained in [15] and [20]. The last chapter is the generalisation of the work car-

ried out in chapter 3 and the results obtained in “Cayley bipolar fuzzy graphs”,

the Scientific World Journal (2013).

7.2 Further Scope of Research

(i) We will study Cayley fuzzy graphs induced by a more weaker structure,

called quasigroups in terms of algebraic properties.

(ii) Study Cayley bipolar fuzzy graphs induced by quasigroups.

(iii) Study Cayley intuitionistic fuzzy graphs induced by quasigroups.
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