# NEIGHBOURHOOD AND STAR $V_{4}$-MAGIC LABELING OF GRAPHS 

Thesis submitted to the<br>University of Calicut<br>for the award of the degree of<br>\title{ DOCTOR OF PHILOSOPHY }<br>in Mathematics<br>under the Faculty of Science

by

VINEESH K. P.

Department of Mathematics, University of Calicut Kerala, India 673635.

# DEPARTMENT OF MATHEMATICS 

## UNIVERSITY OF CALICUT

Anil Kumar V.<br>Professor<br>University of Calicut<br>30 October 2019

## CERTIFICATE

I hereby certify that the thesis entitled "NEIGHBOURHOOD AND STAR $V_{4}$-MAGIC LABELING OF GRAPHS" is a bonafide work carried out by Sri. Vineesh K. P., under my guidance for the award of Degree of Ph.D. in Mathematics of the University of Calicut and that this work has not been included in any other thesis submitted previously for the award of any degree either to this University or to any other University or Institution.

Anil Kumar V.

## DECLARATION

I hereby declare that the thesis, entitled "NEIGHBOURHOOD AND STAR $V_{4}$-MAGIC LABELING OF GRAPHS" is based on the original work done by me under the supervision of Dr. Anil Kumar V., Professor, Department of Mathematics, University of Calicut and it has not been included in any other thesis submitted previously for the award of any degree either to this University or to any other University or Institution.

University of Calicut, 30 October 2019.

Vineesh K. P.

## ACKNOWLEDGEMENT

My words are of least potency to deliver my heartfelt gratitude, still; I thank Dr. Anil Kumar V., Professor, Department of Mathematics, University of Calicut who enlightened me throughout the period of my research. It is my fortune that I enjoyed the voyage towards a scholastic achievement without much stress and strain. Nothing else but his motivation, skillful guidance and easy access made me go on even in difficult situation.

I extend my gratitude to Dr. Preethi Kuttipulackal, Associate Professor and Head, Department of Mathematics, Dr. Raji Pilakkat, Associate Professor, Department of Mathematics and Dr. P. T. Ramachandran(Former Head, Department of Mathematics) for their kind advices, assistance and for providing me facilities in the department. Also, I acknowledge Dr. Sini P., Assistant Professor, Department of Mathematics, Dr. Sreekanth K. and Ms. Priya K. for their support and encouragement.

Gratitude to Dr. Latheesh Kumar A. R., Assistant Professor, St Mary's College, Sultan Bathery for giving me the interest of research and for all helps rendered for the preparation of this thesis and to Dr. Shyama M. P., Assistant Professor, Malabar Christian College, Calicut for her advice in modification of the thesis. Also thankful to Ms. Shikhi M., Mr. Libeeshkumar K. B. and Ms. Jalsiya M. P. for their support in the modification of my thesis.

Further, thanks to all the research fellows, M. Phil and M.Sc. students of the
department for their vibrant presence for making my life a memorable one in the department during these years.

I thankfully acknowledge the non teaching staff and Librarian of the department for their cordial support rendered to me during the entire course of my study here.

I express my sincere gratitude to my parents Mrs. Devi K. P. and the Late. Nanu K. for their blessings and care; Grateful regards to my betterhalf Soumya K. and my loving kids Nandika and Navatej for their prayer and support for the completion of this work. I also express my heartfelt gratitude to my father in law and mother in law Mr. Kumaran P. and Mrs. Vilasini N. M. for their constant encouragement and motivation. Words are insufficient to acknowledge the role of each and every members of my family for the successful completion of my thesis.

I also thank Principal and Staff of Sree Narayana Guru College, Chelannur, Kozhikode for their support and co-operation.

University of Calicut,

## Contents

List of Symbols ..... v
List of Figures ..... viii
Introduction ..... 1
1 Preliminaries ..... 7
1.1 Basic Definitions ..... 7
1.2 Subgraphs and Supergraphs ..... 9
1.3 Walks and Connectedness ..... 9
1.4 Operations on Graphs ..... 10
1.5 Groups ..... 11
2 Neighbourhood $V_{4}$-magic Labeling of Cycle Related Graphs ..... 13
2.1 Introduction ..... 13
2.2 Cycle related graphs ..... 16
3 Neighbourhood $V_{4}$-magic Labeling of Star and Path Related Graphs ..... 25
3.1 Introduction ..... 25
3.2 Star related graphs ..... 26
3.3 Path related graphs ..... 35
4 Neighbourhood $V_{4}$-magic Labeling of Some More Graphs ..... 39
4.1 Introduction ..... 39
4.2 Some more graphs ..... 40
5 Neighbourhood $V_{4}$-magic Labeling of Splitting, Shadow and Mid- dle of Graphs ..... 59
5.1 Introduction ..... 59
5.2 Splitting graphs ..... 60
5.3 Shadow graphs ..... 70
5.4 Middle graphs ..... 90
6 Neighbourhood Barycentric $V_{4}$-magic Graphs ..... 97
6.1 Introduction ..... 97
6.2 Neighbourhood barycentric $V_{4}$-magic graphs ..... 98
7 Star $V_{4}$-magic Labeling of Graphs ..... 109
7.1 Introduction ..... 109
7.2 Star $V_{4}$-magic labeling of graphs ..... 110
8 Star $V_{4}$-magic Labeling of Some Special Graphs ..... 121
8.1 Introduction ..... 121
8.2 Fan related graphs ..... 122
8.3 Some more graphs ..... 128
9 Conclusion and Further Scope of Research ..... 137
9.1 Summary of the thesis ..... 137
9.2 Further scope of research ..... 138
Appendix I ..... 143

## List of Symbols

| $G$ | Simple, connected and undirected graph |
| :--- | :--- |
| $V(G)$ | Vertex set of $G$ |
| $E(G)$ | Edge set of $G$ |
| $I_{G}$ | The incidence relation. |
| $d e g(v)$ | Degree of the vertex $v$ |
| $N(u)$ | Neighbour set of the vertex $u$ |
| $P_{n}$ | Path on $n$ vertices |
| $C_{n}$ | Cycle on $n$ vertices |
| $W_{n}$ | Wheel graph |
| $H_{n}$ | Helm graph |
| $K_{n}$ | Complete graph |
| $S^{\prime}(G)$ | Subdivision graph of $G$ |
| $K_{1, n}$ | Star graph or $n$-star |
| $K_{m, n}$ | Complete bipartite graph |
| $F_{m}\left(\right.$ or $\left.D_{3}^{m}\right)$ | Friendship graph or Dutch windmill graph |
| $S F_{n}$ | Sunflower graph |


| $B_{m, n}$ | Bistar |
| :--- | :--- |
| $B t(n, k)$ | The $(n, k)$-banana tree |
| $J(m, n)$ | Jelly fish graph |
| $L_{n}$ | Ladder graph |
| $C B_{n}$ | Comb graph |
| $Q S_{n}$ | Quadrilateral snake |
| $C_{n}^{*}$ | Crown graph |
| $B_{n}$ | Book graph |
| $B P(n)$ | Bipyramid graph |
| $G_{n}$ | Gear graph |
| $F l_{n}$ | Flower graph |
| $\mathbb{F}_{n}$ | Fan graph |
| $U_{n, m}$ | Umbrella graph |
| $U_{n, m, k}$ | Extended umbrella graph |
| $J_{n, m}$ | Jahangir graph |
| $W(2, n)$ | Web graph |
| $J_{n}$ | Jewel graph |
| $G_{1} \vee G_{2}$ | Soin of $G_{1}$ and $G_{2}$ |
| $G_{1} \odot G_{2}$ | Corona of $G_{1}$ and $G_{2}$ |
| $G_{1} \square G_{2}$ | Cartesian product of $G_{1}$ and $G_{2}$ |
| $G_{1} \times G_{2}$ | Cartesian product of $G_{1}$ and $G_{2}$ |
| $G_{1}\left[G_{2}\right]$ | Sidde graph of $G$ |
| $S(G)$ |  |
| $S h(G)$ |  |
| $M(G)$ |  |

## List of Figures

2.1 An $a$-neighbourhood $V_{4}$-magic labeling of a graph $G_{1}$ ..... 14
2.2 A 0-neighbourhood $V_{4}$-magic labeling of a graph $G_{2}$ ..... 14
2.3 Another 0-neighbourhood $V_{4}$-magic labeling of the graph $G_{2}$ ..... 15
2.4 An $a$-neighbourhood $V_{4}$-magic labeling of $C_{8}$ ..... 17
2.5 A 0 -neighbourhood $V_{4}$-magic labeling of $S F_{8}$ ..... 24
3.1 An $a$-neighbourhood $V_{4}$-magic labeling of the bistar $B_{7,5}$ ..... 29
3.2 Graph $K_{1,4}^{*}$ ..... 34
4.1 Graph $P_{2} \square C_{3}^{*}$ ..... 47
4.2 The Bipyramid $B P(6)$ ..... 52
4.3 The gear graph $G_{8}$ ..... 55
5.1 An $a$-neighbourhood $V_{4}$-magic labeling of $S\left(C_{8}\right)$. ..... 62
5.2 The shadow graph $\operatorname{Sh}\left(P_{6}\right)$ ..... 76
5.3 An $a$-neighbourhod $V_{4}$-magic labling of $S h\left(B_{2,2}\right)$ ..... 78
5.4 The middle graph $M\left(C_{n}\right)$ ..... 91
5.5 An $a$-neighbourhood $V_{4}$-magic labeling of $M\left(K_{1,5}\right)$ ..... 93
5.6 The middle graph $M\left(F_{m}\right)$ ..... 94
7.1 An $a$-star $V_{4}$-magic labeling of $P_{10}$ ..... 112
7.2 An $a$-star $V_{4}$-magic labeling of $J(5,3)$ ..... 117
8.1 Fan graph $\mathbb{F}_{7}$ ..... 122
8.2 An $a$-star $V_{4}$-magic labeling of $W(2,5)$ ..... 133
8.3 The Planar grid $P_{8} \square P_{5}$ ..... 136

## Introduction

Graph theory at the outset, an intellectual endeavor confined to the academists soon attained momentum and began to sprinkle its drops in vide vistas of both theoretical and practical aspects. Branches of Mathematics like Number theory, Algebra, Algebraic topology, Algebraic geometry, Numerical analysis, Matrix theory, Probability and Representation theory flourished in consonance with the advanced studies based on graph theory. The wide range of application of graph theory brought benefit to Chemistry, Electrical engineering, Geography, Sociology and Architecture. Genetics, the branch of life science also includes. Linguistics cannot be set apart. Revolution in the field of communication which is enjoyed by all stratas of society is much blessed by studies in graph theory.

Graph labeling has wide range of application in communication networks, addressing database management, circuit design, Astronomy, radar, X-ray crystallographic analysis, etc. Most graph labeling methods trace their origin to one introduced by Rosa in 1967 or one given by Graham and Sloane in 1980. A magic graph is a graph whose edges are labeled by positive integers, so that the sum over the edges incident with any vertex is the same, independent of the choice of
vertex; or it is a graph that has such a labeling. A graph is vertex-magic if its vertices can be labeled so that the sum on any edge is the same. Graph labeling such as graceful, harmonious, prime and magic has many applications.

## An overview of the thesis

The thesis introduces new types of labelings namely Neighbourhood $V_{4}$-magic labeling, Neighbourhood barycentric $V_{4}$-magic labeling and Star $V_{4}$-magic labeling in graphs. In this work we consider graphs that are connected, finite, simple and undirected. The Klein 4 -group, denoted by $V_{4}$ is an abelian group of order 4. It has elements $V_{4}=\{0, a, b, c\}$, where $a+a=b+b=c+c=0$ and $a+b=c, b+c=a, c+a=b$. For a graph $G=(V(G), E(G))$, a labeling $f: V(G) \rightarrow V_{4} \backslash\{0\}$ is said to be Neighbourhood $V_{4}$-magic if the induced mapping $N_{f}^{+}: V(G) \rightarrow V_{4}$ defined by $N_{f}^{+}(v)=\sum_{u \in N(v)} f(u)$ is constant. If such labeling $f$ exists, we say $G$ is a neighbourhood $V_{4}$-magic graph. A labeling $f: V(G) \rightarrow V_{4} \backslash\{0\}$ is said to be Neighbourhood barycentric $V_{4}$-magic if the induced mapping $N_{f}^{+}: V(G) \rightarrow V_{4}$ defined by $N_{f}^{+}(u)=\sum_{v \in N(u)} f(v)$ satisfies the following conditions:
(i) $N_{f}^{+}$is a constant map, and
(ii) For each $u \in V(G), N_{f}^{+}(u)=\operatorname{deg}(u) f\left(v_{u}\right)$ for some vertex $v_{u} \in N(u)$.

If such a labeling exists, we say $G$ is a Neighbourhood barycentric $V_{4}$-magic graph. A graph $G=(V(G), E(G))$, with vertex set $V(G)$ and edge set $E(G)$, is said to be star $V_{4}$-magic if there exists a labeling $f: V(G) \rightarrow V_{4} \backslash\{0\}$ such that
the induced mapping $V_{f}^{+}: V(G) \rightarrow V_{4}$ defined by $V_{f}^{+}(v)=\sum_{u \in N(v)} f^{*}(u v)$, where $f^{*}(u v)=f(u)+f(v)$ is a constant map.

Through out this thesis we will use the following notations:
(a) $\Omega_{a}:=$ the class of all $a$-neighbourhood $V_{4}$-magic graphs
(b) $\Omega_{0}:=$ the class of all 0 -neighbourhood $V_{4}$-magic graphs
(c) $\Omega_{a, 0}:=\Omega_{a} \cap \Omega_{0}$.
(d) $\Lambda_{a}:=$ the class of all $a$-neighbourhood barycentric $V_{4}$-magic graphs
(e) $\Lambda_{0}:=$ the class of all 0 -neighbourhood barycentric $V_{4}$-magic graphs
(f) $\Psi_{a}:=$ the class of all $a$-star $V_{4}$-magic graphs
(g) $\Psi_{0}:=$ the class of all 0 -star $V_{4}$-magic graphs
(h) $\Psi_{a, 0}:=\Psi_{a} \cap \Psi_{0}$.

The thesis comprises an introductory chapter and nine other chapters. In the introductory chapter, we deal with the motivation for the study of Neighbourhood $V_{4}$-magic labeling, Neighbourhood barycentric $V_{4}$-magic labeling and Star $V_{4}$-magic labeling of graphs and a literature survey on it.

In Chapter One, we include preliminary definitions and theorems from the areas of graph theory and group theory which are the pre-requisites of the forthcoming chapters in the thesis. Chapter Two introduces the concept of Neighbourhood $V_{4}$-magic labeling in graphs. The first section of the chapter gives the definition of Neighbourhood $V_{4}$-magic labeling in graphs and some definitions of cycle related graphs. The second section proves an important Lemma:

If $f: V\left(C_{n}\right) \rightarrow V_{4} \backslash\{0\}$ is any labeling of $C_{n}$, then $\sum_{v \in V} N_{f}^{+}(v)=0$. Then we proved necessary and sufficient conditions for the cycle $C_{n}$, the helm graph $H_{n}$ and the sunflower $S F_{n}$ belongs to the above said classes (a),(b) and (c). The chapter includes admissibility of neighbourhood $V_{4}$-magic labeling of some other graphs namely the friendship graph $F_{m}$, the corona $C_{n} \odot K_{2}$ and $C_{n} \odot \bar{K}_{m}$, the wheel graph $W_{n}$ and the flower graph $F l_{n}$.

Chapter Three investigates Neighbourhood $V_{4}$-magic labeling of star and path related graphs. The first section contains definitions of some star and path related graphs. Second section discusses the star graph $K_{1, n}$, bistar $B_{m, n}$, subdivision graph $S^{\prime}\left(K_{1, n}\right)$, banana tree $B t(n, k)$, jelly fish $J(m, n)$, the graph $K_{1, n}^{*}$ and the graph $<K_{1, n}: m>$ admits neighbourhood $V_{4}$-magic labeling or not. Third section of the chapter investigates the neighbourhood $V_{4}$-magic labeling of path related graphs like ladders $L_{n}, L_{n+2}$, the comb $C B_{n}$ and the quadrilateral snake $Q S_{n}$.

Chapter Four discusses the neighbourhood $V_{4}$-magic labeling of some special graphs like $K_{m, n}, P_{2} \square C_{n}$, the crown graph $C_{n}^{*}, P_{2} \square C_{n}^{*}$, the book graph $B_{n}$, the corona $C_{m} \odot C_{n}$, the n-gon book $B(n, k)$, the one point union of $k$ cycles $C_{n}(k)$, the bipyramid $B P(n)$, the gear graph $G_{n}$ and the carona on cycles $C_{m}\left(C_{n}\right)$. A necessary and sufficient condition for $a$-neighbourhood $V_{4}$-magic labeling of the complete graph $K_{n}$ is also discussed in the same chapter.

In Chapter Five, we provide the definitions of splitting graph of a graph, shadow and middle graph of a graph. Continuing section discusses neighbourhood $V_{4}$-magic labeling of splitting graphs like $S\left(C_{n}\right), S\left(P_{n}\right), S(B m, n), S\left(K_{1, n}\right)$, $S\left(K_{m, n}\right), S\left(F_{m}\right), S\left(Q S_{n}\right)$ an $S\left(B_{n}\right)$ respectively. Neighbourhood $V_{4}$-magic labeling of shadow graphs like $\operatorname{Sh}\left(C_{n}\right), \operatorname{Sh}\left(P_{n}\right), \operatorname{Sh}\left(K_{1, n}\right), \operatorname{Sh}\left(B_{m, n}\right), \operatorname{Sh}\left(W_{n}\right), \operatorname{Sh}\left(H_{n}\right)$,
$\operatorname{Sh}\left(S F_{n}\right), \operatorname{Sh}\left(C_{n} \odot K_{2}\right), \operatorname{Sh}\left(C_{n} \odot \bar{K}_{m}\right), \operatorname{Sh}(J(m, n)), \operatorname{Sh}\left(L_{n}\right), \operatorname{Sh}\left(L_{n+2}\right), \operatorname{Sh}\left(C B_{n}\right)$, $\operatorname{Sh}\left(K_{m, n}\right), \operatorname{Sh}\left(B_{n}\right), \operatorname{Sh}\left(G_{n}\right)$ and middle graphs like $M\left(C_{n}\right), M\left(P_{n}\right), M\left(K_{1, n}\right)$, $M\left(F_{m}\right), M\left(B_{m, n}\right)$ are discussed in the continuing sections.

Chapter Six introduces the concept of Neighbourhood barycentric $V_{4}{ }^{-}$ magic labeling of graphs. The first section of the chapter gives definition of the concept Neighbourhood barycentric $V_{4}$-magic labeling in graphs. Second section investigates neighbourhood barycentric $V_{4}$-magic labeling of some general graphs and some special graphs.

The first section of the Chapter Seven introduces the new concept, star $V_{4}$-magic labeling in graphs. Next section of the chapter discusses star $V_{4}$-magic labeling of the cycle $C_{n}$, the path $P_{n}$, the complete graph $K_{n}$, the star $K_{1, n}$, the complete graph $K_{m, n}$, the bistar $B_{m, n}$, the wheel graph $W_{n}$, the helm $H_{n}$, jelly fish $J(m, n)$, the crown $C_{n}^{*}$, the flower graph $F l_{n}$, the friendship graph $F_{m}$ and the book graph $B_{n}$.

Chapter Eight discusses star $V_{4}$-magic labeling of fan $\mathbb{F}_{n}$ and fan related graphs like the umbrellas $U_{n, m}$, extended umbrellas $U_{n, m, k}$, the jahangir graph $J_{n, m}$. It also discusses star $V_{4}$-magic labeling of graphs like $B t(n, k),\left\langle K_{1, n}: m\right\rangle$, the ladder $L_{n}$, the comb $C B_{n}$, the gear graph $G_{n}$, the web graph $W(2, n)$, the jewel graph $J_{n}$, the corona $C_{n} \odot K_{2}, P_{n} \odot \bar{K}_{2}$ and the planar $\operatorname{grid} P_{m} \square P_{n}$.

Chapter Nine gives a brief summary and further scope of the research.

## Chapter

## Preliminaries

This chapter gives a brief account of the preliminary definitions of graph theory and some group theory which are used in the forthcoming chapters. For the notations and terminologies not defined in this thesis we used to refer readers [2] and [6].

### 1.1 Basic Definitions

Definition 1.1.1. [2] Graph is an ordered triple $G=\left(V(G), E(G), I_{G}\right)$, where $V(G)$ is a nonempty set, $E(G)$ is a set disjoint from $V(G)$, and $I_{G}$ is an "incidence" relation that associates with each element of $E(G)$, an unordered pair of elements (same or distinct) of $V(G)$. Elements of $V(G)$ are called the vertices (or nodes or points) of $G$, and elements of $E(G)$ are called the edges (or lines) of $G$. If, for the edge $e$ of $G, I_{G}(e)=\{u, v\}$, we write $I_{G}(e)=u v$.

Definition 1.1.2. If in a graph, $I_{G}(e)=\{u, v\}$, then we say that the vertices $u$ and $v$ are adjacent or $e$ is incident to the vertices $u$ and $v$. Also $u$ and $v$ are called end vertices of $e$.

Definition 1.1.3. If two or more edges have same end points, then such edges are called parallel edges and an edge e with end vertices are same is called a loop.

Definition 1.1.4. A vertex $v$ is called a neighbour of a vertex $u$, if $v$ is adjacent to $u$. The set of all neighbours of a vertex $u$ is called neighbour set of $u$, denoted by $N(u)$. That is, $N(u)=\{v \in V(G): u v \in E(G)\}$.

Definition 1.1.5. [2] A graph $G$ is called a simple graph if it has no parallel edges or loop in it. Thus for a simple graph $G$, the incidence function $I_{G}$ is injection. Hence, an edge of a simple graph is identified with the pair of its ends. A simple graph therefore may be considered as an ordered pair $(V(G), E(G))$, where $V(G)$ is a non empty set and $E(G)$ is a set of unordered pairs of elements of $V(G)$.

Definition 1.1.6. In a graph $G$, the number of elements in $V(G)$ and $E(G)$ are finite, then $G$ is called a finite graph. A graph which is not finite is called an infinite graph.

Definition 1.1.7. In a simple graph, if every pair of vertices are adjacent, then such a graph is called a complete graph. A complete graph on $n$ vertices is usually denoted by $K_{n}$.

Definition 1.1.8. A graph with one vertex and no edges is called a trivial graph.
Definition 1.1.9. A graph $G$ is called bipartite if its vertex set can be partitioned into two sets $V_{1}$ and $V_{2}$ such that each edge in $G$ has one end in $V_{1}$ and other end in $V_{2}$.

Definition 1.1.10. A bipartite graph $G$ is called a complete bipartite graph if each vertex of $V_{1}$ is adjacent to all the vertices of $V_{2}$, where $V_{1}$ and $V_{2}$ are bipartition of $V$. If $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$, then $G$ is usually denoted by $K_{m, n}$.

### 1.2 Subgraphs and Supergraphs

Definition 1.2.1. [2] A graph $H$ is called a subgraph of a graph $G$ if $V(H) \subseteq$ $V(G), E(H) \subseteq E(G)$, and $I_{H}$ is the restriction of $I_{G}$ to $E(H)$. If $H$ is a subgraph of $G$, then $G$ is said to be a supergraph of $H$.

Definition 1.2.2. If $H$ is a subgraph of $G$ with $V(H) \neq V(G)$ or $E(H) \neq E(G)$, then $H$ is called a proper subgraph of $G$.

Definition 1.2.3. The degree of a vertex $v$ in a graph $G$ is the number of vertices adjacent to $v$ in $G$, it is usually denoted by $\operatorname{deg}(v)$ or $d(v)$ or $d_{G}(v)$.

Definition 1.2.4. A vertex $v$ in a graph $G$ is called an even vertex if $\operatorname{deg}(v)$ is even and is said to be odd if $\operatorname{deg}(v)$ is odd.

Definition 1.2.5. A vertex $v$ in a graph $G$ is called a pendant vertex if $\operatorname{deg}(v)=$ 1. The unique edge incident to such a vertex is called a pendant edge.

Definition 1.2.6. A graph $G$ is called a $k$-regular graph if $\operatorname{deg}(v)=k$ for all $v \in V(G)$. A graph is called regular if it is $k$-regular for some $k$.

Theorem 1.2.7. [2] The sum of the degrees of the vertices of a graph is equal to twice the number of its edges.

### 1.3 Walks and Connectedness

Definition 1.3.1. [6] A walk of a graph $G$ is finite sequence of vertices and edges $W:=v_{0} e_{1} v_{1} e_{2} v_{2} e_{3} \ldots e_{n} v_{n}$, beginning and ending with vertices, in which each edge is incident with two vertices immediately preceding and succeeding it. The walk $W:=v_{0} e_{1} v_{1} e_{2} v_{2} e_{3} \ldots e_{n} v_{n}$ is sometimes called $v_{0}-v_{n}$ walk.

Definition 1.3.2. A walk $v_{0}-v_{n}$ is called a closed walk if $v_{0}=v_{n}$. otherwise it is called an open walk.

Definition 1.3.3. [6] If every edges in a walk are distinct, then it is called a trail. Length of a walk is the number of edges involved in the walk.

Definition 1.3.4. [6] If every vertices in a walk are distinct, then it is called a path. A path on $n$ vertices is usually denoted by $P_{n}$.

Definition 1.3.5. [2] A cycle is a closed trail in which all the vertices are distinct. A cycle on $n$ vertices is usually denoted by $C_{n}$.

Definition 1.3.6. Two vertices $u$ and $v$ in a graph $G$ are connected if there is a $u-v$ path in $G$. A graph $G$ is called connected if every pair of vertices are connected.

Definition 1.3.7. A graph is called acyclic or forest if it has no cycle involved in it. A connected acyclic graph is called a tree.

### 1.4 Operations on Graphs

Definition 1.4.1. [2] Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs. Then the graph $G=(V, E)$, where $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$ is called the union of graphs $G_{1}$ and $G_{2}$ and is denoted by $G_{1} \cup G_{2}$. If $V_{1} \cap V_{2}=\phi$, then $G_{1} \cup G_{2}$ is usually denoted by $G_{1}+G_{2}$, called the sum of the graphs $G_{1}$ and $G_{2}$.

Definition 1.4.2. [2] Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs with $V_{1} \cap V_{2} \neq \phi$. Then the graph $G=(V, E)$, where $V=V_{1} \cap V_{2}$ and $E=E_{1} \cap E_{2}$ is called the intersection of graphs $G_{1}$ and $G_{2}$ and is denoted by $G_{1} \cap G_{2}$.

Definition 1.4.3. [2] Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs with $V_{1} \cap V_{2}=\phi$. Then the join, $G_{1} \vee G_{2}$, of $G_{1}$ and $G_{2}$ is the super graph of $G_{1}+G_{2}$ in which each vertex of $G_{1}$ is adjacent to every vertex of $G_{2}$.

Definition 1.4.4. [2] The Cartesian product of two simple graphs $G_{1}$ and $G_{2}$, commonly denoted by $G_{1} \square G_{2}$ or $G_{1} \times G_{2}$, has the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two distinct vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ of $G_{1} \square G_{2}$ are adjacent if either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E\left(G_{2}\right)$ or $v_{1}=v_{2}$ and $u_{1} u_{2} \in E\left(G_{1}\right)$.

Definition 1.4.5. [2] The Composition of lexicographic product of two simple graphs $G_{1}$ and $G_{2}$, commonly denoted by $G_{1}\left[G_{2}\right]$ has the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two distinct vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ of $G_{1}\left[G_{2}\right]$ are adjacent if either $u_{1}$ is adjacent to $u_{2}$ or $u_{1}=u_{2}$, and $v_{1}$ is adjacent to $v_{2}$.

Definition 1.4.6. The Corona $G_{1} \odot G_{2}$ of two graphs $G_{1}$ and $G_{2}$ is the graph obtained by taking one copy of $G_{1}$, which has $p_{1}$ vertices, and $p_{1}$ copies of $G_{2}$ and then joining the $i^{\text {th }}$ vertex of $G_{1}$ by an edge to every vertex in the $i^{\text {th }}$ copy of $G_{2}$.

### 1.5 Groups

Definition 1.5.1. Let $S$ be a nonempty set. Then, a binary operation $*$ on $S$ is a mapping from $S \times S$ into $S$.

Definition 1.5.2. A binary operation $*$ on a set $S$ is associative if $(x * y) * z=$ $x *(y * z)$ for all $x, y, z \in S$.

Definition 1.5.3. A binary operation $*$ on a set $S$ is commutative if $x * y=y * x$ for all $x, y \in S$.

Definition 1.5.4. A set $S$ together with a binary operation $*$ is called a binary algebraic structure or simply binary structure, denoted by $\langle S, *\rangle$.

Definition 1.5.5. A group $<G, *>$ is a binary structure satisfying the following conditions:
(i) The operation * is associative.
(ii) There exists an element $e \in G$ such that $e * g=g=g * e$ for all $g \in G$. (The element $e$ is called the identity element)
(iii) For each $g \in G$, there is an element $g^{-1} \in G$ such that $g * g^{-1}=e=g^{-1} * g$ for all $g \in G$. (Existence of the inverse element)

Definition 1.5.6. A group $<G, *>$ is called an abelian group or a commutative group if $g_{1} * g_{2}=g_{2} * g_{1}$ for all $g_{1}, g_{2} \in G$.

Definition 1.5.7. The Klein-4-group $V_{4}=\{0, a, b, c\}$ is an abelian group with identity 0 , where $a+a=b+b=c+c=0$ and $a+b=c, b+c=a, c+a=b$.

Remark 1.5.8. The Klein-4-group $V_{4}$ is not cyclic, since every element is of order two (except possibly the identity).

# Neighbourhood $V_{4}$-magic Labeling of Cycle Related Graphs 

The first section of this chapter introduces the concept of neighbourhood $V_{4}$-magic labeling in graphs, and then defines some cycle related graphs. The second section of this chapter discusses neighbourhood $V_{4}$-magic labeling of such cycle related graphs.

### 2.1 Introduction

Let $V_{4}=\{0, a, b, c\}$ be the Klein-4-group with identity element 0 . For any graph $G=(V(G), E(G))$, a mapping $f: V(G) \rightarrow V_{4} \backslash\{0\}$ is said to be Neighbourhood $V_{4}$-magic labeling if the induced mapping $N_{f}^{+}: V(G) \rightarrow V_{4}$ defined by

$$
N_{f}^{+}(v)=\sum_{u \in N(v)} f(u)
$$

is a constant map. If this constant is $p$, where $p$ is any non zero element in $V_{4}$,

[^0]
### 2.1. Introduction

we say that $f$ is a p-neighbourhood $V_{4}$-magic labeling of $G$ and $G$ is said to be a $p$-neighbourhood $V_{4}$-magic graph. If this constant is 0 , then we say that $f$ is a 0 -neighbourhood $V_{4}$-magic labeling of $G$ and $G$ is said to be a 0 -neighbourhood $V_{4}$-magic graph.


Figure 2.1: An $a$-neighbourhood $V_{4}$-magic labeling of a graph $G_{1}$


Figure 2.2: A 0 -neighbourhood $V_{4}$-magic labeling of a graph $G_{2}$

Note that the labeling function defined above is not unique. That is there may have more than one neighbourhood $V_{4}$-magic labeling for a graph $G$. Figure 2.3 shows another 0-neighbourhood $V_{4}$-magic labeling of the above graph $G_{2}$.


Figure 2.3: Another 0-neighbourhood $V_{4}$-magic labeling of the graph $G_{2}$

This chapter investigates the Neighbourhood $V_{4}$-magic labeling of some cycle related graphs that belongs to the following categories:
(i) $\Omega_{a}:=$ the class of all $a$-neighbourhood $V_{4}$-magic graphs,
(ii) $\Omega_{0}:=$ the class of all 0 -neighbourhood $V_{4}$-magic graphs, and
(iii) $\Omega_{a, 0}:=\Omega_{a} \cap \Omega_{0}$.

Definition 2.1.1. [27] The friendship graph or the Dutch windmill graph, denoted by $F_{m}\left(\right.$ or $\left.D_{3}^{(m)}\right)$ is the graph obtained by taking $m$ copies of $C_{3}$ with one vertex in common.

Definition 2.1.2. [2] The wheel graph $W_{n}$ is defined as $W_{n}=C_{n} \vee K_{1}$, where $C_{n}$ for $n \geq 3$ is a cycle of length $n$.

Definition 2.1.3. [22] The helm $H_{n}$ is the graph obtained from the wheel graph $W_{n}$ by attaching a pendant edge at each vertex of the cycle $C_{n}$.

Definition 2.1.4. [26] The flower graph $F l_{n}$ is the graph obtained from a helm $H_{n}$ by joining each pendant vertex to the central vertex of the helm.

Definition 2.1.5. [16] The Sunflower $S F_{n}$ is obtained from a wheel $W_{n}$ with the central vertex $w_{0}$ and cycle $C_{n}=w_{1} w_{2} w_{3} \cdots w_{n} w_{1}$ and additional vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ where $v_{i}$ is joined by edges to $w_{i}$ and $w_{i+1}$ where $i+1$ is taken over modulo $n$.

### 2.2 Cycle related graphs

Lemma 2.2.1. If $f: V\left(C_{n}\right) \rightarrow V_{4} \backslash\{0\}$ is any labeling of $C_{n}$, then $\sum_{v \in V} N_{f}^{+}(v)=0$.

Proof. Let $C_{n}$ be the cycle with vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and let $f$ be any neighbourhood $V_{4}$-magic labeling on it. Then we have

$$
\begin{aligned}
& N_{f}^{+}\left(v_{i}\right)=f\left(v_{i-1}\right)+f\left(v_{i+1}\right) \text { for } 1<i<n, \\
& N_{f}^{+}\left(v_{1}\right)=f\left(v_{2}\right)+f\left(v_{n}\right), N_{f}^{+}\left(v_{n}\right)=f\left(v_{1}\right)+f\left(v_{n-1}\right) .
\end{aligned}
$$

Therefore,

$$
\sum_{v \in V} N_{f}^{+}(v)=2 \sum f\left(v_{i}\right)=0 .
$$

This completes the proof.

Theorem 2.2.2. $C_{n} \in \Omega_{0}$ for all $n \geq 3$.

Proof. If we label all the vertices of $C_{n}$ by $a$, we obtain $N_{f}^{+}\left(v_{i}\right)=0$ for $1 \leq i \leq n$. This completes the proof.

Theorem 2.2.3. $C_{n} \in \Omega_{a}$ if and only if $n \equiv 0(\bmod 4)$.

Proof. Suppose that $C_{n} \in \Omega_{a}$ with a labeling $f$. Then by Lemma 2.2.1, we have
$n a=0$. Therefore $n \equiv 0(\bmod 2)$. Then either $n \equiv 0(\bmod 4)$ or $n \equiv 2(\bmod 4)$. We prove that the case $n \equiv 2(\bmod 4)$ is impossible. For if $n \equiv 2(\bmod 4)$, then $n=4 k+2$ for some integer $k$ and let $v_{1}, v_{2}, v_{3}, \ldots, v_{4 k}, v_{4 k+1}, v_{4 k+2}$ be the vertices of $C_{n}$ in order. Since $C_{n} \in \Omega_{a}$, we should have $f\left(v_{1}\right)$ is either $b$ or $c$. Without loss of generality, we assume that $f\left(v_{1}\right)=b$ (The case $f\left(v_{1}\right)=c$ can be treated similar way). If $f\left(v_{1}\right)=b$, then $f\left(v_{3}\right)=c, f\left(v_{5}\right)=b, f\left(v_{7}\right)=c, f\left(v_{9}\right)=b$. Proceeding like this we will get $f\left(v_{4 k+1}\right)=b$. Then, $N_{f}^{+}\left(v_{4 k+2}\right)=b+b=0$, a contradiction. Therefore the case where $n \equiv 2(\bmod 4)$ is impossible. Hence $n \equiv$ $0(\bmod 4)$. Conversely, assume that $C_{n}$ be the cycle with vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ with $n \equiv 0(\bmod 4)$. Define $f: V\left(C_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right.
$$

Then obviously $N_{f}^{+}\left(v_{i}\right)=a$ for $1 \leq i \leq n$.


Figure 2.4: An $a$-neighbourhood $V_{4}$-magic labeling of $C_{8}$

Corollary 2.2.4. $C_{n} \in \Omega_{a, 0}$ if and only if $n \equiv 0(\bmod 4)$.

Proof. Proof follows from Theorem 2.2.2 and Theorem 2.2.3.

Theorem 2.2.5. The friendship graph $F_{m} \notin \Omega_{a}$ for any $m$.

Proof. Note that $F_{m}$ is the one-point union of $m$ copies of a rooted triangle. Let the vertices of $i^{\text {th }}$ copy of $C_{3}$ in $F_{m}$ be $w, u_{i}$ and $v_{i}$ where $w$ is the common vertex of the triangles. Suppose that $F_{m} \in \Omega_{a}$ with a labeling $f$. Then $N_{f}^{+}\left(u_{i}\right)=$ $N_{f}^{+}\left(v_{i}\right)=a$, implies that $f\left(u_{i}\right)=f\left(v_{i}\right)=b$ for $1 \leq i \leq n$ and $f(w)=c$ or $f\left(u_{i}\right)=f\left(v_{i}\right)=c \quad$ for $1 \leq i \leq n$ and $f(w)=b$. In either case $N_{f}^{+}(w)=0$. This is a contradiction.

Theorem 2.2.6. The friendship graph $F_{m} \in \Omega_{0}$ for all $m$.

Proof. By Labeling all the vertices by $a$, we get $F_{m} \in \Omega_{0}$.

Corollary 2.2.7. The friendship graph $F_{m} \notin \Omega_{a, 0}$ for any $m$.

Proof. Proof directly follows from Theorem 2.2.5.

Theorem 2.2.8. $C_{n} \odot K_{2} \in \Omega_{a}$ for $n \equiv 0(\bmod 4)$.

Proof. Let $C_{n}$ be the cycle with vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ and let $v_{k}$ and $w_{k}$ be the vertices of $k^{\text {th }}$ copy of $K_{2}$. Then $\left|V\left(C_{n} \odot K_{2}\right)\right|=3 n$. Define $f: V\left(C_{n} \odot K_{2}\right) \rightarrow$ $V_{4} \backslash\{0\}$ as :

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right.
$$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i \equiv 1,2(\bmod 4) \\
b & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right. \\
& f\left(w_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i \equiv 1,2(\bmod 4) \\
b & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Then $f$ gives an $a$-neighbourhood $V_{4}$-magic labeling of $C_{n} \odot K_{2}$.
Theorem 2.2.9. $C_{n} \odot K_{2} \in \Omega_{0}$ for all $n \geq 3$.

Proof. Proof follows if we label all the vertices by $a$.
Corollary 2.2.10. $C_{n} \odot K_{2} \in \Omega_{a, 0}$ for $n \equiv 0(\bmod 4)$.

Proof. Proof follows from Theorem 2.2.8 and Theorem 2.2.9.
Theorem 2.2.11. $C_{n} \odot \bar{K}_{m} \in \Omega_{a}$ for all $n \geq 3$ and $m \in \mathbb{N}$.

Proof. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the rim vertices and let $\left\{u_{i 1}, u_{i 2}, u_{i 3}, \ldots, u_{i m}\right\}$ be the set of pendant vertices adjacent to $u_{i}$ for $1 \leq i \leq n$. Here we consider the following two cases:

Case 1: $m$ is even.

Define $f: V\left(C_{n} \odot \bar{K}_{m}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=a \quad \text { for } \quad 1 \leq i \leq n
$$

$$
f\left(u_{i j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
& & \\
a & \text { if } & j>2
\end{array}\right.
$$

Case 2: $m$ is odd.

Define $f: V\left(C_{n} \odot \bar{K}_{m}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=f\left(u_{i j}\right)=a \text { for } 1 \leq i \leq n \text { and } 1 \leq j \leq m
$$

In either case, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $C_{n} \odot \bar{K}_{m}$.

Theorem 2.2.12. $C_{n} \odot \bar{K}_{m} \notin \Omega_{0}$ for any $n \geq 3$ and $m \in \mathbb{N}$.

Proof. It is obvious due to the presence of pendant vertices in $C_{n} \odot \bar{K}_{m}$.

Corollary 2.2.13. $C_{n} \odot \bar{K}_{m} \notin \Omega_{a, 0}$ for any $n \geq 3$ and $m \in \mathbb{N}$.

Proof. Proof directly follows from Theorem 2.2.12.

Theorem 2.2.14. $W_{n} \in \Omega_{0}$ for $n \equiv 0(\bmod 4)$.

Proof. Consider the wheel $W_{n}$ with vertex set $V=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ where $u$ be the central vertex and let $n \equiv 0(\bmod 4)$. We define $f: V\left(W_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as :

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right. \\
& f(u)=a .
\end{aligned}
$$

Then $N_{f}^{+}(u)=N_{f}^{+}\left(u_{i}\right)=0$ for $1 \leq i \leq n$. Hence the theorem is proved.

Theorem 2.2.15. $W_{n} \in \Omega_{a}$ for $n \equiv 1(\bmod 2)$.

Proof. Consider the wheel $W_{n}$ with vertex set $V=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ where $u$ be the central vertex and let $n \equiv 1(\bmod 2)$. Then $d(u)=n$ and $d\left(u_{i}\right)=3$ for
$1 \leq i \leq n$. If we label all the vertices by $a$, we will get $N_{f}^{+}(u)=N_{f}^{+}\left(u_{i}\right)=a$ for $1 \leq i \leq n$. This completes the proof of the theorem.

Theorem 2.2.16. $W_{n} \in \Omega_{a}$ for $n \equiv 2(\bmod 4)$.

Proof. Consider the wheel $W_{n}$ with vertex set $V=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ where $u$ be the central vertex and let $n \equiv 2(\bmod 4)$. We define $f: V\left(W_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as :

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,3(\bmod 4) \\
c & \text { if } & i \equiv 0,2(\bmod 4)
\end{array}\right. \\
& f(u)=a .
\end{aligned}
$$

Then $N_{f}^{+}(u)=N_{f}^{+}\left(u_{i}\right)=a \quad$ for $1 \leq i \leq n$. Hence $W_{n} \in \Omega_{a}$.

Theorem 2.2.17. $H_{n} \in \Omega_{a}$ if and only if $n$ is odd.

Proof. Suppose that $H_{n} \in \Omega_{a}$. Let $v$ be central vertex, $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the rim vertices and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the pendant vertices adjacent to $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ respectively in $H_{n}$. Then $N\left(u_{i}\right)=\left\{v_{i}\right\}$ for $1 \leq i \leq n$ and $N(v)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$. Since $N_{f}^{+}\left(u_{i}\right)=a$ for $1 \leq i \leq n$, we should have $f\left(v_{i}\right)=a$ for $1 \leq i \leq n$. Therefore, $N_{f}^{+}(v)=a$ implying that $n a=a$ and hence $n$ is odd. Conversely, suppose that $n$ is odd. We define $f: V\left(H_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as :

$$
f(w)=\left\{\begin{array}{lll}
b & \text { if } & w=v \\
a & \text { if } & w=v_{1}, v_{2}, v_{3}, \ldots, v_{n} \\
c & \text { if } & w=u_{1}, u_{2}, u_{3}, \ldots, u_{n}
\end{array}\right.
$$

Then $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $H_{n}$. Hence the theorem.

Theorem 2.2.18. $H_{n} \notin \Omega_{0}$ for any $n$.

Proof. Proof is obvious, since $H_{n}$ has pendant vertices.

Corollary 2.2.19. $H_{n} \notin \Omega_{a, 0}$ for any $n$.

Proof. It directly follows from Theorem 2.2.18.

Theorem 2.2.20. The flower graph $F l_{n} \in \Omega_{0}$ for all $n$.

Proof. Proof is obvious by labeling all the vertices by $a$.

Theorem 2.2.21. $F l_{n} \notin \Omega_{a}$ for any $n$.

Proof. Suppose that $F l_{n} \in \Omega_{a}$ for some $n$ with a labeling $f$. Then $\sum_{i=1}^{n} N_{f}^{+}\left(u_{i}\right)+$ $\sum_{i=1}^{n} N_{f}^{+}\left(v_{i}\right)+N_{f}^{+}(v)=0$. This implies that $(2 n+1) a=0$. Thus $a=0$, a contradiction. Hence $F l_{n} \notin \Omega_{a}$ for any $n$.

Corollary 2.2.22. $F l_{n} \notin \Omega_{a, 0}$ for any $n$.

Proof. Proof obviously follows from Theorem 2.2.21.

Theorem 2.2.23. The sunflower $S F_{n} \in \Omega_{a}$ if and only if $n \equiv 2(\bmod 4)$.

Proof. Consider the sunflower $S F_{n}$ with vertex set $V=\left\{w_{0}, w_{i}, v_{i}: 1 \leq i \leq n\right\}$ where $w_{0}$ is the central vertex, $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ are vertices of the cycle and $v_{i}$ is the vertex joined by edges to $w_{i}$ and $w_{i+1}$ where $i+1$ is taken over modulo $n$. Assume that $S F_{n} \in \Omega_{a}$ for some $n$ with a labeling $f$. Since $N_{f}^{+}\left(v_{1}\right)=a$, we have $f\left(w_{1}\right)=b$ or $c$. Suppose $f\left(w_{1}\right)=b$ (The case where $f\left(w_{1}\right)=c$ can be treated similarly), then $f\left(w_{3}\right)=f\left(w_{5}\right)=f\left(w_{7}\right)=\cdots=b$ and $f\left(w_{2}\right)=f\left(w_{4}\right)=$
$f\left(w_{6}\right)=\cdots=c$. Since $N_{f}^{+}\left(v_{n}\right)=a, f\left(w_{n}\right)=c$, therefore $n \equiv 0(\bmod 2)$, implies that either $n \equiv 0(\bmod 4)$ or $n \equiv 2(\bmod 4)$. If $n \equiv 0(\bmod 4)$, then $n=4 k$ some $k \in \mathbb{N}$. Let $w_{1}, w_{2}, w_{3}, \ldots, w_{4 k}$ be the vertices of on $C_{n}$. Therefore $N_{f}^{+}\left(w_{0}\right)=a$ implying that $2 k(b+c)=a$ and hence $a=0$, a contradiction. Thus the case $n \equiv 0(\bmod 4)$ is not possible. Hence $n \equiv 2(\bmod 4)$. Conversely, assume that $n \equiv 2(\bmod 4)$. We define $f: V\left(S F_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as :

$$
\begin{aligned}
& f\left(w_{0}\right)=f\left(v_{i}\right)=a \quad \text { for } 1 \leq i \leq n, \\
& f\left(w_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,3(\bmod 4) \\
c & \text { if } & i \equiv 0,2(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Clearly $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $S F_{n}$. This completes the proof of the theorem.

Theorem 2.2.24. $S F_{n} \in \Omega_{0}$ if and only if $n \equiv 0(\bmod 2)$.

Proof. Assume that $S F_{n} \in \Omega_{0}$ for some $n$. Then $f\left(w_{i}\right)=a$ (or $b$ or $c$ ) for $1 \leq i \leq n$. Since $N_{f}^{+}\left(w_{0}\right)=0$, we have $n a=0$, implying that $n \equiv 0(\bmod 2)$. Conversely, assume that $n \equiv 0(\bmod 2)$. Now define $f: V\left(S F_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as :

$$
\begin{aligned}
& f\left(w_{0}\right)=f\left(w_{i}\right)=a \quad \text { for } 1 \leq i \leq n \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,3(\bmod 4) \\
c & \text { if } & i \equiv 0,2(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Then $N_{f}^{+}(u)=0$ for all $u \in V\left(S F_{n}\right)$. This completes the proof of the theorem.


Figure 2.5: A 0-neighbourhood $V_{4}$-magic labeling of $S F_{8}$

Corollary 2.2.25. $S F_{n} \in \Omega_{a, 0}$ if and only if $n \equiv 2(\bmod 4)$.

Proof. Proof directly follows from Theorem 2.2.23 and Theorem 2.2.24.

## Neighbourhood $V_{4}$-magic Labeling of Star and Path Related Graphs

> The first section of this chapter provides definitions of some star and path related graphs. Second section of this chapter discusses neighbourhood $V_{4}$-magic labeling of star related graphs and the final section investigates the neighbourhood $V_{4}$ magic labeling of some path related graphs.

### 3.1 Introduction

Here we consider the following definitions.

Definition 3.1.1. [2] A complete bipartite graph of the form $K_{1, n}$ is called a star graph. A star graph $K_{1, n}$ is sometimes called an $n$-star.

Definition 3.1.2. [10] The Bistar $B_{m, n}$ is the graph obtained by joining the

[^1]central vertex of $K_{1, m}$ and $K_{1, n}$ by an edge.
Definition 3.1.3. The graph $S^{\prime}(G)$ obtained by subdividing each edge of $G$ by a vertex is called the subdivision graph of $G$.

Definition 3.1.4. [10] The $(n, k)$-Banana tree $\operatorname{Bt}(n, k)$ is the graph obtained by starting with $n$ number of $k$-stars and connecting one end vertex from each to a new vertex.

Definition 3.1.5. [10] Jelly fish graph $J(m, n)$ is obtained from a 4-cycle $w_{1} w_{2} w_{3} w_{4} w_{1}$ by joining $w_{1}$ and $w_{3}$ with an edge and appending the central vertex of $K_{1, m}$ to $w_{2}$ and appending the central vertex of $K_{1, n}$ to $w_{4}$.

Definition 3.1.6. [10] Let $\left\langle K_{1, n}: m\right\rangle$ denote the graph obtained by taking $m$ disjoint copies of $K_{1, n}$, and joining a new vertex to the centers of the $m$ copies of $K_{1, n}$.

Definition 3.1.7. The graph $P_{2} \square P_{n}$ is called a Ladder. It is denoted by $L_{n}$.
Definition 3.1.8. The graph with vertex set $\left\{u_{i}, v_{i}: 0 \leq i \leq n+1\right\}$ and edge set $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 0 \leq i \leq n\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$ is called the ladder $L_{n+2}$.

Definition 3.1.9. The Corona $P_{n} \odot K_{1}$ is called the comb graph $C B_{n}$.
Definition 3.1.10. [19] A quadrilateral snake $Q S_{n}$ is the graph obtained from a path $v_{1} v_{2} v_{3} \ldots v_{n}$ by joining each pair $v_{i}, v_{i+1}$ to the new vertices $u_{i}, w_{i}$ respectively and then joining $u_{i}$ and $w_{i}$ by an edge.

### 3.2 Star related graphs

Theorem 3.2.1. The star $K_{1, n} \in \Omega_{a}$ for all $n \in \mathbb{N}$.

Proof. Consider the star graph with vertex set $V=\left\{v, v_{i}: 1 \leq i \leq n\right\}$ where $v$ be the central vertex of $K_{1, n}$. Here we consider the following cases.

Case 1: $n$ is even.
Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
f(v)=a \quad \text { and } \quad f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right.
$$

Case 2: $n$ is odd.
Define $f: V \rightarrow V_{4} \backslash\{0\}$ as: $f(v)=f\left(v_{i}\right)=a \quad$ for $1 \leq i \leq n$.

In either case, $f$ gives an $a$-neighbourhood $V_{4}$-magic labeling of $K_{1, n}$.

Theorem 3.2.2. $K_{1, n} \notin \Omega_{0}$ for any $n \in \mathbb{N}$.

Proof. Proof is obvious, since $K_{1, n}$ has pendant vertices.

Corollary 3.2.3. $K_{1, n} \notin \Omega_{a, 0}$ for all $n \in \mathbb{N}$.

Proof. It directly follows from Theorem 3.2.2.

Theorem 3.2.4. $B_{m, n} \in \Omega_{a}$ for all $m>1$ and $n>1$.

Proof. Consider the bistar $B_{m, n}$ with vertex set $V=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq\right.$ $m$ and $1 \leq j \leq n\}$ where $u_{i}(1 \leq i \leq m)$ and $v_{j}(1 \leq j \leq n)$ are pendant vertices adjacent to $u$ and $v$ respectively. Here we consider the following cases.

Case 1: Both $m$ and $n$ are even.
Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
f(u)=f(v)=f\left(u_{i}\right)=f\left(v_{j}\right)=a \text { for } 1 \leq i \leq m \text { and } 1 \leq j \leq n .
$$

Case 2: $m$ is even and $n$ is odd.
Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right. \\
& f(u)=f(v)=f\left(u_{i}\right)=a \quad \text { for } 1 \leq i \leq m
\end{aligned}
$$

Case 3: $m$ is odd and $n$ is even.
Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right. \\
& f(u)=f(v)=f\left(v_{j}\right)=a \quad \text { for } 1 \leq j \leq n .
\end{aligned}
$$

Case 4: Both $m$ and $n$ are odd.

Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right. \\
& f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right. \\
& f(u)=f(v)=a .
\end{aligned}
$$

In all the above cases, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $B_{m, n}$.


Figure 3.1: An $a$-neighbourhood $V_{4}$-magic labeling of the bistar $B_{7,5}$

Remark 3.2.5. $B_{m, n} \notin \Omega_{a}$ for $m=1$ or $n=1$. Because if $m=1$ ( other case is similar), since $f(u)=f(v)=a, N_{f}^{+}(u)=a$, implying that $f\left(u_{1}\right)=0$.

Theorem 3.2.6. $B_{m, n} \notin \Omega_{0}$ for any $m, n \in \mathbb{N}$.

Proof. The proof is obvious due to presence of pendant vertices in $B_{m, n}$.

Corollary 3.2.7. $B_{m, n} \notin \Omega_{a, 0}$ for any $n \in \mathbb{N}$.

Proof. It directly follows from Theorem 3.2.6.

Theorem 3.2.8. $S^{\prime}\left(K_{1, n}\right) \in \Omega_{a}$ if and only if $n$ is odd.

Proof. Let $V=\left\{v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ be the vertex set of $S^{\prime}\left(K_{1, n}\right)$ with central vertex $u$ and $v_{i}(1 \leq i \leq n)$ be the pendant vertices which are adjacent to $u_{i}(1 \leq i \leq n)$ respectively. Suppose that $S^{\prime}\left(K_{1, n}\right) \in \Omega_{a}$ with the labeling $f$. Since $N\left(v_{i}\right)=\left\{u_{i}\right\}$ for $1 \leq i \leq n$, we should have $f\left(u_{i}\right)=a$ for $1 \leq i \leq n$. Now $N_{f}^{+}(v)=a$ implies that $n a=a$, hence $n$ is odd. Conversely, suppose that $n$ is odd. We define $f: V \rightarrow V_{4} \backslash\{0\}$ as: $f(v)=b, f\left(u_{i}\right)=a, f\left(v_{i}\right)=c$ for $1 \leq i \leq n$. Then $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $S^{\prime}\left(K_{1, n}\right)$.

Theorem 3.2.9. $S^{\prime}\left(K_{1, n}\right) \notin \Omega_{0}$ for any $n \in \mathbb{N}$.

Proof. Proof is obvious due to the presence of pendant vertices in $S^{\prime}\left(K_{1, n}\right)$.

Corollary 3.2.10. $S^{\prime}\left(K_{1, n}\right) \notin \Omega_{a, 0}$ for any $n \in \mathbb{N}$.

Proof. It follows from Theorem 3.2.9.

Theorem 3.2.11. The $(n, k)$-banana tree $B t(n, k) \notin \Omega_{a}$ for any $n$ and $k$.

Proof. Assume that $B t(n, k) \in \Omega_{a}$ for some $n$ and $k$. Let $V(B t(n, k))=\left\{u, u_{i}, u_{i j}\right.$ : $1 \leq i \leq n, 1 \leq j \leq k\}$ and $E(B t(n, k))=\left\{u u_{i}, u_{i} u_{i 1}, u_{i 1} u_{i j}: 1 \leq i \leq n, 2 \leq\right.$ $j \leq k\}$. Then $|V(B t(n, k))|=n(k+1)+1$ and $|E(B t(n, k))|=n(k+1)$. Since $N_{f}^{+}\left(u_{12}\right)=a$, we should have $f\left(u_{11}\right)=a$. Now $N_{f}^{+}\left(u_{1}\right)=a$, implies
that $f(u)=0$, which is a contradiction. Therefore $\operatorname{Bt}(n, k) \notin \Omega_{a}$ for any $n$ and $k$. This completes the proof.

Theorem 3.2.12. $B t(n, k) \notin \Omega_{0}$ for any $n$ and $k$.

Proof. Proof is obvious, since $B t(n, k)$ has pendant vertices.

Corollary 3.2.13. $\operatorname{Bt}(n, k) \notin \Omega_{a, 0}$ for all $n$ and $k$.

Proof. Proof directly follows from Theorem 3.2.12.

Theorem 3.2.14. The Jelly fish $J(m, n) \in \Omega_{a}$ for all $m$ and $n$.

Proof. Let $G$ be the jelly fish $J(m, n)$. Then $G$ has $(m+n+4)$ vertices and $(m+n+$ 5) edges. Let $V(G)=V_{1} \cup V_{2}$ where $V_{1}=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}, V_{2}=\left\{u_{i}, v_{j}: 1 \leq i \leq\right.$ $m, 1 \leq j \leq n\}$ and $E(G)=E_{1} \cup E_{2}$, where $E_{1}=\left\{w_{1} w_{2}, w_{2} w_{3}, w_{3} w_{4}, w_{4} w_{1}, w_{1} w_{3}\right\}$, $E_{2}=\left\{w_{2} u_{i}, w_{4} v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$. Here we consider the following cases:

Case 1: Both $m$ and $n$ are even.
Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(w_{i}\right)=a \text { for } 1 \leq i \leq 4 \\
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array} \quad f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right.\right.
\end{aligned}
$$

Case 2: $m$ is even and $n$ is odd.

Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right. \\
& f\left(w_{i}\right)=f\left(v_{j}\right)=a \text { for } 1 \leq i \leq 4, \quad 1 \leq j \leq n .
\end{aligned}
$$

Case 3: $m$ is odd and $n$ is even.
Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(w_{i}\right)=f\left(u_{j}\right)=a \quad \text { for } 1 \leq i \leq 4,1 \leq j \leq m . \\
& f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right.
\end{aligned}
$$

Case 4: Both $m$ and $n$ are odd.
Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(w_{i}\right)=f\left(u_{j}\right)=f\left(v_{k}\right)=a \quad \text { for } \quad 1 \leq i \leq 4,1 \leq j \leq m, 1 \leq k \leq n
$$

In all the above cases, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $J(m, n)$.

Theorem 3.2.15. $J(m, n) \notin \Omega_{0}$ for any $m$ and $n$.

Proof. Proof is obvious due to the presence of pendant vertices in $J(m, n)$.

Corollary 3.2.16. $J(m, n) \notin \Omega_{a, 0}$ for any $m$ and $n$.

Proof. Proof directly follows from Theorem 3.2.15.

Theorem 3.2.17. The graph $<K_{1, n}: m>\in \Omega_{a}$ if and only if $m$ is odd.

Proof. Let $G$ be the graph $<K_{1, n}: m>$ and let $V_{i}=\left\{u_{i}, u_{i j}: 1 \leq j \leq n\right\}$ be the vertex set of $i^{\text {th }}$ copy of $K_{1, n}$ with apex $u_{i}$ and let $u$ be the unique vertex adjacent to the central vertices $u_{i}(1 \leq i \leq m)$ in $G$. Then $V(G)=V_{1} \cup V_{2} \cup \ldots \cup V_{m} \cup\{u\}$. Suppose that $G \in \Omega_{a}$ with a labeling $f$. Then $N_{f}^{+}\left(u_{i j}\right)=a$ implies that $f\left(u_{i}\right)=a$ for $1 \leq i \leq m$. Also $N_{f}^{+}(u)=a$ implies that $m a=a$. Hence $m$ is odd. Conversely, suppose that $m$ is odd. Here we consider the following cases:

Case 1: $n=1$.
In this case $G$ is $S^{\prime}\left(K_{1, m}\right)$, which is in $\Omega_{a}$ when $m$ is odd.

Case 2: $n \geq 2$ and $n$ is odd.
Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right. \\
& f(u)=f\left(u_{i}\right)=a \text { for } 1 \leq i \leq m
\end{aligned}
$$

Case 3: $n \geq 2$ and $n$ is even.
Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:
$f(u)=f\left(u_{i}\right)=f\left(u_{i j}\right)=a$ for $1 \leq i \leq m$ and $1 \leq j \leq n$.

In all the above cases, $f$ gives an $a$-neighbourhood $V_{4}$-magic labeling of $G$.

Theorem 3.2.18. $<K_{1, n}: m>\notin \Omega_{0}$ for any $m$ and $n$.

Proof. It is obvious, since $<K_{1, n}: m>$ has pendant vertices in it.

Corollary 3.2.19. $<K_{1, n}: m>\notin \Omega_{a, 0}$ for any $m$ and $n$.

Proof. Proof directly follows from Theorem 3.2.18.

Definition 3.2.20. The graph obtained by attaching central vertices (or apex) of $n$-copies of $K_{1, n}$ by a unique vertex $u$ by $n$ distinct edges is denoted by $K_{1, n}^{*}$.


Figure 3.2: Graph $K_{1,4}^{*}$

Theorem 3.2.21. The graph $K_{1, n}^{*} \in \Omega_{a}$ if and only if $n$ is odd.

Proof. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the central vertices of each of the $n$-copies of $K_{1, n}$, let $\left\{v_{i j}: 1 \leq j \leq n\right\}$ be the set of pendant vertices adjacent to the vertex $v_{i}$ for $1 \leq i \leq n$. Also let $v$ be the unique vertex connecting each $v_{i}$ for $1 \leq i \leq n$ by an edge. Assume that $K_{1, n}^{*} \in \Omega_{a}$ with the labeling $f$. Since $N\left(v_{i, j}\right)=\left\{v_{i}\right\}$
for all $1 \leq i, j \leq n$, we should have $f\left(v_{i}\right)=a$ for $1 \leq i \leq n$. Now $N_{f}^{+}(v)=a$ implies that $n a=a$, hence $n$ is odd. Conversely, assume that $n$ is odd. For $i=1,2,3, \ldots, n$, we define $f: V\left(K_{1, n}^{*}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(v_{i j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right.
$$

and $f(v)=f\left(v_{i}\right)=a$ for $1 \leq i \leq n$. Obviously $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $K_{1, n}^{*}$. This completes the proof of the theorem.

Theorem 3.2.22. $K_{1, n}^{*} \notin \Omega_{0}$ for any $n \in \mathbb{N}$.

Proof. Proof is obvious due to the presence of pendant vertices in $K_{1, n}^{*}$.

Corollary 3.2.23. $K_{1, n}^{*} \notin \Omega_{a, 0}$ for any $n \in \mathbb{N}$.

Proof. It follows from Theorem 3.2.22.

### 3.3 Path related graphs

Theorem 3.3.1. The Ladder $L_{n} \notin \Omega_{a}$ for all $n \geq 3$.

Proof. Consider $L_{n}$ with vertex set $V=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and edge set $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$. Assume that $L_{n} \in \Omega_{a}$ for some $n \geq 3$ with a labeling $f$. Then $N_{f}^{+}\left(u_{1}\right)=f\left(u_{2}\right)+f\left(v_{1}\right)=a$. Therefore, $N_{f}^{+}\left(v_{2}\right)=a$ implies that $f\left(v_{3}\right)=0$, a contradiction.

Theorem 3.3.2. $L_{n} \notin \Omega_{0}$ for any $n \geq 3$.

Proof. Consider $L_{n}$ with vertex set $V=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and edge set $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$. Suppose that $L_{n} \in \Omega_{0}$ for some $n \geq 3$ with a labeling $f$. Then $N_{f}^{+}\left(u_{1}\right)=f\left(u_{2}\right)+f\left(v_{1}\right)=0$. Also $N_{f}^{+}\left(v_{2}\right)=0$ implies that $f\left(v_{3}\right)=0$, a contradiction.

Corollary 3.3.3. $L_{n} \notin \Omega_{a, 0}$ for any $n \geq 3$.

Proof. Proof directly follows from Theorem 3.3.1.

Theorem 3.3.4. The Ladder $L_{2}=P_{2} \square P_{2} \in \Omega_{a}$.

Proof. Consider $L_{2}$ with vertex set $V=\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ and edge set $E=\left\{u_{1} u_{2}\right.$, $\left.u_{2} v_{2}, v_{1} v_{2}, u_{1} v_{1}\right\}$. Define $f: V\left(L_{2}\right) \rightarrow V_{4} \backslash\{0\}$ as: $f\left(u_{1}\right)=f\left(u_{2}\right)=b, f\left(v_{1}\right)=$ $f\left(v_{2}\right)=c$. Then $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $L_{2}$.

Theorem 3.3.5. $L_{2}=P_{2} \square P_{2} \in \Omega_{0}$.

Proof. If we label all the vertices by $a$, we get $L_{2} \in \Omega_{0}$.

Corollary 3.3.6. $L_{2}=P_{2} \square P_{2} \in \Omega_{a, 0}$.

Proof. Proof follows from Theorem 3.3.4 and Theorem 3.3.5.

Theorem 3.3.7. The Ladder $L_{n+2} \in \Omega_{a}$ for all $n \in \mathbb{N}$.

Proof. Consider the Ladder $L_{n+2}$ with vertex set $\left\{u_{i}, v_{i}: 0 \leq i \leq n+1\right\}$ and edge set $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 0 \leq i \leq n\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$. Then degree of each vertex is either 1 or 3 . By labeling all the vertices by $a$, we get $L_{n+2} \in \Omega_{a}$.

Theorem 3.3.8. $L_{n+2} \notin \Omega_{0}$ for any $n \in \mathbb{N}$.

Proof. Proof is obvious due to the presence of pendant vertices in $L_{n+2}$.

Corollary 3.3.9. $L_{n+2} \notin \Omega_{a, 0}$ for any $n \in \mathbb{N}$.

Proof. Proof directly follows from Theorem 3.3.8.

Theorem 3.3.10. The Comb graph $C B_{n} \notin \Omega_{a}$ for any $n \geq 2$.

Proof. Let $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ be the vertex set of $C B_{n}$ where $v_{i}(1 \leq i \leq n)$ are the pendant vertices adjacent to $u_{i}(1 \leq i \leq n)$. Then $N\left(v_{i}\right)=\left\{u_{i}\right\}$ for $1 \leq i \leq n$. Suppose that $C B_{n} \in \Omega_{a}$ for some $n \geq 2$ with a labeling $f$. Then $f\left(u_{i}\right)=a$ for $1 \leq i \leq n$. Also $N_{f}^{+}\left(u_{1}\right)=a$ implies that $f\left(v_{1}\right)+f\left(u_{2}\right)=a$, hence $f\left(v_{1}\right)=0$, a contradiction. Hence $C B_{n} \notin \Omega_{a}$ for all $n \geq 2$.

Theorem 3.3.11. $C B_{n} \notin \Omega_{0}$ for any $n \in \mathbb{N}$.

Proof. It is obvious, since $C B_{n}$ has pendant vertices.

Corollary 3.3.12. $C B_{n} \notin \Omega_{a, 0}$ for any $n \in \mathbb{N}$.

Proof. Proof follows from Theorem 3.3.11.

Theorem 3.3.13. The quadrilateral snake $Q S_{n} \notin \Omega_{a}$ for any $n>2$.

Proof. Let $Q S_{n}$ be the quadrilateral snake obtained from the path $v_{1} v_{2} v_{3} \ldots v_{n}$ by joining each pair $v_{i}, v_{i+1}$ to the new vertices $u_{i}, w_{i}$ respectively and then joining $u_{i}$ and $w_{i}$ by an edge. Suppose that $Q S_{n} \in \Omega_{a}$ for some $n>2$ with labeling $f$. Then, $N_{f}^{+}\left(u_{1}\right)=f\left(v_{1}\right)+f\left(w_{1}\right)=a$ and $N_{f}^{+}\left(w_{2}\right)=f\left(u_{2}\right)+f\left(v_{3}\right)=a$. Therefore
$N_{f}^{+}\left(v_{2}\right)=f\left(v_{1}\right)+f\left(w_{1}\right)+f\left(u_{2}\right)+f\left(v_{3}\right)=a+a=0$, a contradiction. This completes the proof of the theorem.

Theorem 3.3.14. $Q S_{n} \in \Omega_{0}$ for all $n \in \mathbb{N}$.

Proof. The degree of each vertex in $Q S_{n}$ is either 2 or 4 . If we label all the vertices by $a$, we get $Q S_{n} \in \Omega_{0}$.

Corollary 3.3.15. $Q S_{n} \notin \Omega_{a, 0}$ for any $n>2$.

Proof. Proof follows from Theorem 3.3.13.

# Neighbourhood $V_{4}$-magic Labeling of <br> <br> Some More Graphs 

 <br> <br> Some More Graphs}

The first section of this chapter provides definitions of some special graphs like Crown graph, Book graph, $n$-gon book of $k$ pages and Gear graph. The next section discusses neighbourhood $V_{4}$-magic labeling of such graphs and some other special graphs.

### 4.1 Introduction

Definition 4.1.1. [30] A Crown graph $C_{n}^{*}$ is obtained from $C_{n}$ by attaching a pendant edge at each vertex of the cycle $C_{n}$.

Definition 4.1.2. [25] The Book graph $B_{n}$ is the graph $S_{n} \square P_{2}$, where $S_{n}$ is the star with $n+1$ vertices and $P_{2}$ is the path on 2 vertices.

Definition 4.1.3. [14] When $k$ copies of $C_{n}$ share a common edge it will form

[^2]the $n$-gon book of $k$ pages and is denoted by $B(n, k)$.

Definition 4.1.4. [29] A Gear graph $G_{n}$ is obtained from the wheel graph $W_{n}$ by adding a vertex between every pair of adjacent vertices of the cycle. $G_{n}$ has $2 n+1$ vertices and $3 n$ edges.

### 4.2 Some more graphs

Lemma 4.2.1. Let $G$ be a graph such that all of its vertices are of even degree, then $G$ is 0 -neighbourhood $V_{4}$-magic graph.

Proof. If we label all the vertices by $a$, we get $N_{f}^{+}(u)=0$. Thus $G$ is a 0 neighbourhood $V_{4}$-magic graph.

Lemma 4.2.2. Let $G$ be a graph such that all of its vertices are of odd degree, then $G$ is a-neighbourhood $V_{4}$-magic graph.

Proof. If we label all the vertices by $a$, we get $N_{f}^{+}(u)=a$. Thus $G$ is an $a$ neighbourhood $V_{4}$-magic graph.

Theorem 4.2.3. The complete bipartite graph $K_{m, n} \in \Omega_{a}$ for all $m, n$.

Proof. Let $X=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the bipartition of $K_{m, n}$. We consider the following cases:

Case 1: Both $m$ and $n$ are even.

Define $f: V\left(K_{m, n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array} \quad f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right.\right.
$$

Case 2: $m$ is even and $n$ is odd.
Define $f: V\left(K_{m, n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array} \quad f\left(v_{j}\right)=a \text { for } 1 \leq j \leq n .\right.
$$

Case 3: $m$ is odd and $n$ is even.
Define $f: V\left(K_{m, n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array} \quad f\left(u_{i}\right)=a \text { for } 1 \leq i \leq m\right.
$$

Case 4: Both $m$ and $n$ are odd.
Define $f: V\left(K_{m, n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=f\left(v_{j}\right)=a \text { for } 1 \leq i \leq m \text { and } 1 \leq j \leq n .
$$

In each case, $f$ gives an $a$-neighbourhood $V_{4}$-magic labeling of $K_{m, n}$.

Theorem 4.2.4. $K_{m, n} \in \Omega_{0}$ for $m>1$ and $n>1$.

Proof. Let $X=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the bipartition of $K_{m, n}$. We consider the following cases:

Case 1: Both $m$ and $n$ are even.
Define $f: V\left(K_{m, n}\right) \rightarrow V_{4} \backslash\{0\}$ as:
$f\left(u_{i}\right)=f\left(v_{j}\right)=a$ for $1 \leq i \leq m$ and $1 \leq j \leq n$.

Case 2: $m$ is even and $n$ is odd.
Define $f: V\left(K_{m, n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array} \quad f\left(u_{i}\right)=a \text { for } 1 \leq i \leq m\right.
$$

Case 3: $m$ is odd and $n$ is even.
Define $f: V\left(K_{m, n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array} \quad f\left(v_{j}\right)=a \text { for } 1 \leq j \leq n\right.
$$

Case 4: Both $m$ and $n$ are odd.

Define $f: V\left(K_{m, n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array} \quad f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right.\right.
$$

In all the above cases, $f$ gives 0-neighbourhood $V_{4}$-magic labeling of $K_{m, n}$.

Corollary 4.2.5. $K_{m, n} \in \Omega_{a, 0}$ for $m>1$ and $n>1$.

Proof. Proof follows from Theorem 4.2.3 and Theorem 4.2.4.

Theorem 4.2.6. The graph $P_{2} \square C_{n} \in \Omega_{a}$ for all $n \geq 3$.

Proof. Consider $P_{2} \square C_{n}$ with vertex set $V=\left\{\left(u_{i}, v_{j}\right): 1 \leq i \leq 2,1 \leq j \leq n\right\}$. Then degree of each vertex is 3 . Label all the vertices by $a$, then $N_{f}^{+}\left(u_{i}, v_{j}\right)=a$ for all $1 \leq i \leq 2$ and $1 \leq j \leq n$. This completes the proof of the theorem.

Theorem 4.2.7. $P_{2} \square C_{n} \in \Omega_{0}$ if and only if $n \equiv 0(\bmod 3)$.

Proof. Consider $P_{2} \square C_{n}$ with vertex set $V=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and edge set $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{1} u_{n}, v_{1} v_{n}\right\}$. If $n \equiv 0(\bmod 3)$, we define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=f\left(v_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i \equiv 0(\bmod 3) \\
b & \text { if } & i \equiv 1(\bmod 3) \\
a & \text { if } & i \equiv 2(\bmod 3)
\end{array}\right.
$$

Then $N_{f}^{+}\left(u_{i}\right)=N_{f}^{+}\left(v_{i}\right)=0$ for all $1 \leq i \leq n$. Conversely, if $n \not \equiv 0(\bmod 3)$, then $n \equiv 1(\bmod 6)$ or $n \equiv 2(\bmod 6)$ or $n \equiv 4(\bmod 6)$ or $n \equiv 5(\bmod 6)$.

Case 1: $n \equiv 1(\bmod 6)$
In this case $n=6 k+1$ for some $k \in \mathbb{N}$. If $P_{2} \square C_{n} \in \Omega_{0}$, then $N_{f}^{+}\left(u_{1}\right)=0$, consequently $f\left(v_{1}\right), f\left(u_{2}\right)$ and $f\left(u_{6 k+1}\right)$ are distinct non-zero elements in $V_{4}$. Without loss of generality we assume that $f\left(v_{1}\right)=a, f\left(u_{2}\right)=b$ and $f\left(u_{6 k+1}\right)=c$. Then $f\left(v_{3}\right)=c, f\left(u_{4}\right)=a, f\left(v_{5}\right)=b, f\left(u_{6}\right)=c, f\left(v_{7}\right)=$ $a, \ldots, f\left(v_{6 k+1}\right)=a$. Now $N_{f}^{+}\left(u_{6 k+1}\right)=0$ implies that $f\left(u_{1}\right)=b, f\left(v_{2}\right)=$ $c, f\left(u_{3}\right)=a, f\left(v_{4}\right)=b, \ldots, f\left(v_{6 k}\right)=a$. Therefore, $N_{f}^{+}\left(u_{6 k}\right)=f\left(u_{6 k+1}\right)+$ $f\left(u_{6 k-1}\right)+f\left(v_{6 k}\right)=c+c+a=a$, which is a contradiction. Hence $P_{2} \square C_{n} \notin$ $\Omega_{0}$.

Case 2: $n \equiv 2(\bmod 6)$
In this case $n=6 k+2$ for some $k \in \mathbb{N}$. If $P_{2} \square C_{n} \in \Omega_{0}$, then $N_{f}^{+}\left(u_{1}\right)=0$, consequently $f\left(v_{1}\right), f\left(u_{2}\right)$ and $f\left(u_{6 k+2}\right)$ are distinct non-zero elements in $V_{4}$. Without loss of generality we assume that $f\left(v_{1}\right)=a, f\left(u_{2}\right)=b$ and $f\left(u_{6 k+2}\right)=c$. Then $f\left(v_{3}\right)=c, f\left(u_{4}\right)=a, f\left(v_{5}\right)=b, f\left(u_{6}\right)=c, f\left(v_{7}\right)=$ $a, \ldots, f\left(u_{6 k}\right)=c$. Now $N_{f}^{+}\left(u_{6 k+1}\right)=0$ implies that $f\left(v_{6 k+1}\right)=0$, which is a contradiction. Hence $P_{2} \square C_{n} \notin \Omega_{0}$.

Case 3: $n \equiv 4(\bmod 6)$
In this case $n=6 k+4$ for some $k \in \mathbb{N}$. If $P_{2} \square C_{n} \in \Omega_{0}$, then $N_{f}^{+}\left(u_{1}\right)=0$, consequently $f\left(v_{1}\right), f\left(u_{2}\right)$ and $f\left(u_{6 k+4}\right)$ are distinct non-zero elements in $V_{4}$. Without loss of generality we assume that $f\left(v_{1}\right)=a, f\left(u_{2}\right)=b$ and $f\left(u_{6 k+4}\right)=c$.Then $f\left(v_{3}\right)=c, f\left(u_{4}\right)=a, f\left(v_{5}\right)=b, f\left(u_{6}\right)=c, f\left(v_{7}\right)=$
$a, f\left(u_{8}\right)=b, f\left(v_{9}\right)=c \ldots, f\left(v_{6 k+3}\right)=c$.Now $N_{f}^{+}\left(v_{6 k+4}\right)=0$ implies that $f\left(v_{1}\right)=0$, which is a contradiction. Hence $P_{2} \square C_{n} \notin \Omega_{0}$.

Case 4: $n \equiv 5(\bmod 6)$
In this case $n=6 k+5$ for some $k \in \mathbb{N}$. If $P_{2} \square C_{n} \in \Omega_{0}$, then $N_{f}^{+}\left(u_{1}\right)=0$, consequently $f\left(v_{1}\right), f\left(u_{2}\right)$ and $f\left(u_{6 k+5}\right)$ are distinct non-zero elements in $V_{4}$. Without loss of generality we assume that $f\left(v_{1}\right)=a, f\left(u_{2}\right)=b$ and $f\left(u_{6 k+5}\right)=c$. Then $f\left(v_{3}\right)=c, f\left(u_{4}\right)=a, f\left(v_{5}\right)=b, f\left(u_{6}\right)=c, f\left(v_{7}\right)=$ $a, f\left(u_{8}\right)=b, f\left(v_{9}\right)=c, f\left(u_{10}\right)=a, \ldots, f\left(v_{6 k+5}\right)=b$. Now $N_{f}^{+}\left(v_{6 k+5}\right)=0$ implies that $f\left(v_{6 k+4}\right)=b$, which again implies that $f\left(u_{4 k+3}\right)=a, f\left(v_{6 k+2}\right)=$ $c, f\left(u_{6 k+1}\right)=b, f\left(v_{6 k}\right)=a, \ldots, f\left(v_{2}\right)=c$. Therefore, $N_{f}^{+}\left(v_{1}\right)=c$, a contradiction. Hence $P_{2} \square C_{n} \notin \Omega_{0}$.

Thus in each of the above cases, we have $P_{2} \square C_{n} \notin \Omega_{0}$. Completes the proof.

Corollary 4.2.8. $P_{2} \square C_{n} \in \Omega_{a, 0}$ if and only if $n \equiv 0(\bmod 3)$.

Proof. Proof follows from Theorem 4.2.6 and Theorem 4.2.7.

Theorem 4.2.9. The crown graph $C_{n}^{*} \in \Omega_{a}$ for all $n \geqslant 3$.

Proof. The degree of vertices of a crown graph is either 1 or 3 .
Define $f: V\left(C_{n}^{*}\right) \rightarrow V_{4} \backslash\{0\}$ as :
$f(v)=a \quad$ for each $v \in V\left(C_{n}^{*}\right)$
Clearly $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $C_{n}^{*}$.

Theorem 4.2.10. $C_{n}^{*} \notin \Omega_{0}$ for any $n$.

Proof. Proof is obvious due to the presence of pendant vertices in $C_{n}^{*}$.

Theorem 4.2.11. $C_{n}^{*} \notin \Omega_{a, 0}$ for any $n$.

Proof. Proof directly follows from Theorem 4.2.10.

Theorem 4.2.12. The graph obtained by duplicating all pendant vertices in a Crown graph $C_{n}^{*}$ is a-neighbourhood $V_{4}$-magic graph.

Proof. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the rim vertices and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the pendant vertices in $C_{n}^{*}$. Let $G$ be the graph obtained by duplicating all the pendant vertices in $C_{n}^{*}$. Suppose $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ be the new vertices in $G$ by duplicating the vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. Then $V(G)=\left\{u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}$. We define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as :

$$
f(u)=\left\{\begin{array}{lll}
a & \text { if } & u=u_{1}, u_{2}, u_{3}, \ldots, u_{n} \\
b & \text { if } & u=v_{1}, v_{2}, v_{3}, \ldots, v_{n} \\
c & \text { if } & u=w_{1}, w_{2}, w_{3}, \ldots, w_{n}
\end{array}\right.
$$

Clearly $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $G$.
Theorem 4.2.13. The graph $G$ obtained by duplicating all the pendant vertices in a Crown $C_{n}^{*}$ is not 0-neighbourhood $V_{4}$-magic.

Proof. Proof is obvious, since $G$ has pendant vertices.

Theorem 4.2.14. The graph $G$ obtained by duplicating all the pendant vertices in a Crown $C_{n}^{*}$ is not in $\Omega_{a, 0}$.

Proof. Proof follows from Theorem 4.2.12 and Theorem 4.2.13.

Theorem 4.2.15. The graph $P_{2} \square C_{n}^{*} \in \Omega_{a}$ for all $n \geqslant 3$.

Proof. Let $V_{1}=\left\{u_{1}, u_{2}\right\}$ and $V_{2}=\left\{v_{i}, w_{i}: 1 \leq i \leq n\right\}$ be the vertex sets of $P_{2}$ and $C_{n}^{*}$ respectively, where $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the rim variables and $w_{i}^{\prime} s$ are pendant vertices adjacent to $v_{i}$ for $1 \leq i \leq n$ in $C_{n}^{*}$. Define $f: V\left(P_{2} \square C_{n}^{*}\right) \rightarrow$ $V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}, v_{j}\right)=\left\{\begin{array}{lll}
c & \text { if } & i=1 \text { and } 1 \leq j \leq n \\
b & \text { if } & i=2 \text { and } 1 \leq j \leq n
\end{array}\right. \\
& f\left(u_{i}, w_{j}\right)=\left\{\begin{array}{lll}
c & \text { if } & i=1 \text { and } 1 \leq j \leq n \\
b & \text { if } & i=2 \text { and } 1 \leq j \leq n
\end{array}\right.
\end{aligned}
$$

Then $N_{f}^{+}\left(u_{i}, v_{j}\right)=N_{f}^{+}\left(u_{i}, w_{j}\right)=a$ for $1 \leq i \leq 2$ and $1 \leq j \leq n$. Thus $f$ is an $a$-neighbourhood $V_{4}$-magic labeling for $P_{2} \square C_{n}^{*}$. Completing the proof.


Figure 4.1: Graph $P_{2} \square C_{3}^{*}$

Theorem 4.2.16. $P_{2} \square C_{n}^{*} \in \Omega_{0}$ for all $n \geqslant 3$.

Proof. In $P_{2} \square C_{n}^{*}$, the degree of each vertex is either 2 or 4. Labeling all the vertices by $a$, we get $N_{f}^{+}(u)=0$ for all $u \in V\left(P_{2} \square C_{n}^{*}\right)$.

Corollary 4.2.17. $P_{2} \square C_{n}^{*} \in \Omega_{a, 0}$ for all $n \geqslant 3$.

Proof. It directly follows from Theorems 4.2.15 and 4.2.16.

Theorem 4.2.18. The book graph $B_{n} \in \Omega_{a}$ if and only if $n$ is odd.

Proof. Let $V_{1}=\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}\right\}$ be the vertex sets of $S_{n}$ and $P_{2}$ respectively, where $u$ be the central vertex and $u_{i}^{\prime} s$ are pendant vertices in $S_{n}$. Then $V\left(B_{n}\right)=\left\{\left(u, v_{j}\right),\left(u_{i}, v_{j}\right): 1 \leq i \leq n, 1 \leq j \leq 2\right\}$. Assume that $B_{n} \in \Omega_{a}$ for some $n$ with a labeling $f$. Since $N_{f}^{+}\left(u_{1}, v_{1}\right)=a$, we should have either $f\left(u, v_{1}\right)=b$ or $f\left(u, v_{1}\right)=c$. If $f\left(u, v_{1}\right)=b$, then $f\left(u_{1}, v_{2}\right)=f\left(u_{2}, v_{2}\right)=$ $f\left(u_{3}, v_{2}\right)=\cdots=f\left(u_{n}, v_{2}\right)=c$. Then $N_{f}^{+}\left(u, v_{2}\right)=a$ implies that $b+n c=a$, hence $n$ is odd. If $f\left(u, v_{1}\right)=c$, then $f\left(u_{1}, v_{2}\right)=f\left(u_{2}, v_{2}\right)=f\left(u_{3}, v_{2}\right)=\cdots=$ $f\left(u_{n}, v_{2}\right)=b$. Then $N_{f}^{+}\left(u, v_{2}\right)=a$ implies that $c+n b=a$, hence $n$ is odd. Thus, in either case, $n$ is an odd number. Conversely, assume that $n$ is an odd number. We define $f: V\left(B_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as:
$f\left(u, v_{j}\right)=\left\{\begin{array}{lll}b & \text { if } & j=1 \\ c & \text { if } & j=2\end{array} \quad\right.$ and $\quad f\left(u_{i}, v_{j}\right)=\left\{\begin{array}{lll}b & \text { if } & j=1 \text { and } 1 \leq i \leq n \\ c & \text { if } & j=2 \text { and } 1 \leq i \leq n\end{array}\right.$
Obviously, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $B_{n}$. This completes the proof of the theorem.

Theorem 4.2.19. $B_{n} \in \Omega_{0}$ if and only if $n$ is odd.

Proof. Let $V_{1}=\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}\right\}$ be the vertex sets of $S_{n}$ and $P_{2}$ respectively, where $u$ be the central vertex and $u_{i}^{\prime} s$ are pendant vertices in $S_{n}$. Then $V\left(B_{n}\right)=\left\{\left(u, v_{j}\right),\left(u_{i}, v_{j}\right): 1 \leq i \leq n, 1 \leq j \leq 2\right\}$. Assume that $B_{n} \in \Omega_{0}$ for some $n$ with a labeling $f$. Since $N_{f}^{+}\left(u_{1}, v_{1}\right)=0$, we should have either $f\left(u, v_{1}\right)=f\left(u_{1}, v_{2}\right)=a$ or $f\left(u, v_{1}\right)=f\left(u_{1}, v_{2}\right)=b$ or $f\left(u, v_{1}\right)=f\left(u_{1}, v_{2}\right)=c$.

Case 1: $f\left(u, v_{1}\right)=f\left(u_{1}, v_{2}\right)=a$.

Since $B_{n} \in \Omega_{0}$ and $f\left(u, v_{1}\right)=a$ implies that $f\left(u_{i}, v_{2}\right)=a$ for $1 \leq i \leq n$. Therefore, $N_{f}^{+}\left(u, v_{2}\right)=0$ implies that $(n+1) a=0$. Hence $n$ is odd.

Case 2: $f\left(u, v_{1}\right)=f\left(u_{1}, v_{2}\right)=b$.
Since $B_{n} \in \Omega_{0}$ and $f\left(u, v_{1}\right)=b$ implies that $f\left(u_{i}, v_{2}\right)=b$ for $1 \leq i \leq n$. Therefore, $N_{f}^{+}\left(u, v_{2}\right)=0$ implies that $(n+1) b=0$. Hence $n$ is odd.

Case 3: $f\left(u, v_{1}\right)=f\left(u_{1}, v_{2}\right)=c$.
Since $B_{n} \in \Omega_{0}$ and $f\left(u, v_{1}\right)=c$ implies that $f\left(u_{i}, v_{2}\right)=c$ for $1 \leq i \leq n$. Therefore, $N_{f}^{+}\left(u, v_{2}\right)=0$ implies that $(n+1) c=0$. Hence $n$ is odd.

Conversely, assume that $n$ is odd. Then $\operatorname{deg}\left(u, v_{1}\right)=\operatorname{deg}\left(u, v_{2}\right)=n+1$ and $\operatorname{deg}\left(u_{i}, v_{1}\right)=\operatorname{deg}\left(u_{i}, v_{2}\right)=2$ for $1 \leq i \leq n$. If we label all the vertices by $a$, we will get $B_{n} \in \Omega_{0}$. This completes the proof of the theorem.

Corollary 4.2.20. $B_{n} \in \Omega_{a, 0}$ if and only if $n$ is odd.

Proof. Proof follows from Theorem 4.2.18 and Theorem 4.2.19.

Theorem 4.2.21. $C_{m} \odot C_{n} \in \Omega_{a}$ for $n \equiv 1(\bmod 2)$.

Proof. Consider $C_{m} \odot C_{n}$ with $n \equiv 1(\bmod 2)$. Then degree of each vertex in $C_{m} \odot C_{n}$ is either $n+2$ or 3 . In either case vertices are odd. If we label all the vertices by $a$, we get $C_{m} \odot C_{n} \in \Omega_{a}$.

Theorem 4.2.22. $C_{m} \odot C_{n} \in \Omega_{a}$ for $m, n \equiv 0(\bmod 4)$.

Proof. Let the vertex set of $C_{m}$ be $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and vertex set of $k^{\text {th }}$ copy of $C_{n}$ is $\left\{v_{k 1}, v_{k 2}, v_{k 3}, \ldots, v_{k n}\right\}$ in order. Define $f: V\left(C_{m} \odot C_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{gathered}
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right. \\
f\left(v_{i j}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 1,2(\bmod 4) \text { and } j \equiv 1,2(\bmod 4) \\
b & \text { if } & i \equiv 1,2(\bmod 4) \text { and } j \equiv 0,3(\bmod 4) \\
a & \text { if } & i \equiv 0,3(\bmod 4) \text { and } j \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4) \text { and } j \equiv 0,3(\bmod 4)
\end{array}\right.
\end{gathered}
$$

Then, $f$ gives an $a$-neighbourhood $V_{4}$-magic labeling of $C_{m} \odot C_{n}$. Hence the theorem is proved.

Theorem 4.2.23. $C_{m} \odot C_{n} \in \Omega_{0}$ for $n \equiv 0(\bmod 4)$.

Proof. Let the vertex set of $C_{m}$ be $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and vertex set of $k^{\text {th }}$ copy of $C_{n}$ is $\left\{v_{k 1}, v_{k 2}, v_{k 3}, \ldots, v_{k n}\right\}$ in order. Define $f: V\left(C_{m} \odot C_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=c \text { for } 1 \leq i \leq m \\
& f\left(v_{i j}\right)=\left\{\begin{array}{lll}
a & \text { if } & 1 \leq i \leq m \text { and } j \equiv 1,2(\bmod 4) \\
b & \text { if } & 1 \leq i \leq m \text { and } j \equiv 0,3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Clearly $f$ is a 0-neighbourhood $V_{4}$-magic labeling of $C_{m} \odot C_{n}$.

Theorem 4.2.24. $C_{m} \odot C_{n} \in \Omega_{a, 0}$ for $m, n \equiv 0(\bmod 4)$.

Proof. Proof directly follows from Theorems 4.2.22 and 4.2.23.

Theorem 4.2.25. $B(n, k) \in \Omega_{a}$ for $n \equiv 0(\bmod 4)$ and $k \equiv 1(\bmod 2)$.

Proof. Consider the $n$-gon book $B(n, k)$ with $n \equiv 0(\bmod 4)$ and $k \equiv 1(\bmod 2)$. Let $\left\{u_{i 1}, u_{i 2}, u_{i 3}, \ldots, u_{i n}\right\}$ be the vertex set of $i^{\text {th }}$ copy of $C_{n}$ and $u_{i 1} u_{i n}(1 \leq i \leq k)$ are the common edges in $B(n, k)$. We define $f: V(B(n, k)) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i j}\right)=\left\{\begin{array}{lll}
b & \text { if } & 1 \leq i \leq k \text { and } j \equiv 1,2(\bmod 4) \\
c & \text { if } & 1 \leq i \leq k \text { and } j \equiv 0,3(\bmod 4)
\end{array}\right.
$$

Obviously, $N_{f}^{+}\left(u_{i j}\right)=a$ for $1 \leq i \leq k$ and $1 \leq j \leq n$. Completes the proof.
Theorem 4.2.26. $B(n, k) \in \Omega_{0}$ for all $n \geq 3$ and $k \equiv 1(\bmod 2)$.

Proof. Proof is obvious if we label all the vertices by $a$.

Corollary 4.2.27. $B(n, k) \in \Omega_{a, 0}$ for $n \equiv 0(\bmod 4)$ and $k \equiv 1(\bmod 2)$.

Proof. Proof follows from Theorem 4.2.25 and Theorem 4.2.26.

Definition 4.2.28. [25] One point union of $k$ cycles each of length $n$ is denoted by $C_{n}(k)$.

Theorem 4.2.29. $C_{n}(k) \in \Omega_{a}$ for all $n \equiv 0(\bmod 4)$ and $k \equiv 1(\bmod 2)$.

Proof. Let $\left\{u_{i 1}, u_{i 2}, u_{i 3}, \ldots, u_{i n}\right\}$ be the vertex set of $i^{\text {th }}$ copy of the cycle in $C_{n}(k)$ for $n \equiv 0(\bmod 4)$ and $k \equiv 1(\bmod 2)$, where $u_{11}=u_{21}=u_{31}=\cdots=u_{k 1}$. Define $f: V\left(C_{n}(k)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i j}\right)=\left\{\begin{array}{lll}
b & \text { if } & 1 \leq i \leq k \text { and } j \equiv 1,2(\bmod 4) \\
c & \text { if } & 1 \leq i \leq k \text { and } j \equiv 0,3(\bmod 4)
\end{array}\right.
$$

Then, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $C_{n}(k)$.

Theorem 4.2.30. $C_{n}(k) \in \Omega_{0}$ for all $n$ and $k$.

Proof. Labeling all the vertices by $a$, we get $C_{n}(k) \in \Omega_{0}$.

Corollary 4.2.31. $C_{n}(k) \in \Omega_{a, 0}$ for all $n \equiv 0(\bmod 4)$ and $k \equiv 1(\bmod 2)$.

Proof. Proof follows from Theorem 4.2.29 and Theorem 4.2.30.

Definition 4.2.32. Let $N_{2}=\left\{v_{1}, v_{2}\right\}$ be the disconnected graph of order two. Then for any graph $G$, the graph $B P(G)=G \vee N_{2}$ is called the bipyramid based on $G$. The graph $C_{n} \vee N_{2}$ is called the bipyramid based on $C_{n}$ and is denoted by $B P(n)$.


Figure 4.2: The Bipyramid $B P(6)$

Theorem 4.2.33. $B P(n) \in \Omega_{a}$ for $n \equiv 1(\bmod 2)$.

Proof. Consider $B P(n)$ with vertex set $V=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}, v_{1}, v_{2}\right\}$ where $u_{i}^{\prime} s$ are vertices on $C_{n}$. We define $f: V \rightarrow V_{4} \backslash\{0\}$ as: $f\left(v_{1}\right)=b, f\left(v_{2}\right)=c$ and $f\left(u_{i}\right)=a$ for $1 \leq i \leq n$. Then $f$ gives an $a$-neighbourhood $V_{4}$-magic labeling of $B P(n)$. This completes the proof of the theorem.

Theorem 4.2.34. $B P(n) \in \Omega_{a}$ for $n \equiv 2(\bmod 4)$.

Proof. Consider $B P(n)$ with vertex set $V=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}, v_{1}, v_{2}\right\}$ where $u_{i}^{\prime} s$ are vertices on $C_{n}$. We define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(v_{1}\right)=b, f\left(v_{2}\right)=c \text { and } \\
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,3(\bmod 4) \\
c & \text { if } & i \equiv 0,2(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Then, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $B P(n)$.

Theorem 4.2.35. $B P(n) \in \Omega_{0}$ for $n \equiv 0(\bmod 2)$.

Proof. Proof is obvious if we label all the vertices by $a$.

Corollary 4.2.36. $B P(n) \in \Omega_{a, 0}$ for $n \equiv 2(\bmod 4)$.

Proof. Proof follows from Theorem 4.2.34 and Theorem 4.2.35.

Theorem 4.2.37. The complete graph $K_{n} \in \Omega_{a}$ if and only if $n \equiv 0(\bmod 2)$.

Proof. If $n \equiv 0(\bmod 2)$, then degree of each vertex in $K_{n}$ is odd. By labeling all the vertices by $a$, we get $K_{n} \in \Omega_{a}$. If $n \not \equiv 0(\bmod 2)$, then $n \equiv 1(\bmod 2)$. If possible $K_{n} \in \Omega_{a}$, then $N_{f}^{+}(u)=a$ for all $u \in V\left(K_{n}\right)$. Then $\sum_{u \in V} N_{f}^{+}(u)=n a$, implies that $0=n a$, implying that $a=0$, a contradiction. Therefore, $K_{n} \notin \Omega_{a}$. Hence the theorem is proved.

Theorem 4.2.38. $K_{n} \in \Omega_{0}$ for $n \equiv 1(\bmod 2)$.

Proof. If we label all the vertices by $a$, we get $N_{f}^{+}(u)=0$ for all $u \in V\left(K_{n}\right)$.

Theorem 4.2.39. Let $G$ be a $k$-regular graph. Then $G$ admits a-neighbourhood $V_{4}$-magic labeling for $k \equiv 1(\bmod 2)$.

Proof. Proof is obvious if we label all the vertices by $a$.
Theorem 4.2.40. Let $G$ be a $k$-regular graph. Then $G$ admits 0 -neighbourhood $V_{4}$-magic labeling for $k \equiv 0(\bmod 2)$.

Proof. Proof is obvious if we label all the vertices by $a$.

Theorem 4.2.41. $G_{n} \in \Omega_{0}$ for $n \equiv 0(\bmod 2)$.

Proof. Consider the gear graph with vertex set $V\left(G_{n}\right)=\left\{u, u_{i}: 1 \leq i \leq 2 n\right\}$ and edge set $E\left(G_{n}\right)=\left\{u u_{2 i-1}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq 2 n-1\right\} \cup\left\{u_{2 n} u_{1}\right\}$. Define $f: V\left(G_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{gathered}
f(u)=a \text { and } \\
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 0(\bmod 4) \\
a & \text { if } & i \equiv 1(\bmod 4) \\
c & \text { if } & i \equiv 2(\bmod 4) \\
a & \text { if } & i \equiv 3(\bmod 4)
\end{array}\right.
\end{gathered}
$$

Then, $f$ gives a 0-neighbourhood $V_{4}$-magic labeling of $G_{n}$. This completes the proof of the theorem.

Theorem 4.2.42. $G_{n} \in \Omega_{a}$ for $n \equiv 2(\bmod 4)$.

Proof. Consider the gear graph with vertex set $V\left(G_{n}\right)=\left\{u, u_{i}: 1 \leq i \leq 2 n\right\}$ and edge set $E\left(G_{n}\right)=\left\{u u_{2 i-1}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq 2 n-1\right\} \cup\left\{u_{2 n} u_{1}\right\}$.

Define $f: V\left(G_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f(u)=a \quad \text { and } \\
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 0(\bmod 4) \\
b & \text { if } & i \equiv 1(\bmod 4) \\
a & \text { if } & i \equiv 2(\bmod 4) \\
c & \text { if } & i \equiv 3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Then $f$ gives an $a$-neighbourhood $V_{4}$-magic labeling of $G_{n}$. This completes the proof of the theorem.


Figure 4.3: The gear graph $G_{8}$

Corollary 4.2.43. $G_{n} \in \Omega_{a, 0}$ for $n \equiv 2(\bmod 4)$.

Proof. Proof follows from Theorem 4.2.41 and Theorem 4.2.42.

Definition 4.2.44. [12] Consider a cycle $C_{n}$ on $n$ vertices, call it the prime cycle and attach $n$ cycles, each of length $m$, called the auxiliary cycles, at each
vertex of the prime cycle. This new graph is called Carona on cycle, denoted by $C_{m}\left(C_{n}\right)$ (read as $C_{m}$ on $C_{n}$ ).

Theorem 4.2.45. $C_{m}\left(C_{n}\right) \in \Omega_{a}$ for all $m \geq 3$ and $n \geq 3$.

Proof. If we label all the vertices by $a$, we get $C_{m}\left(C_{n}\right) \in \Omega_{a}$.

Theorem 4.2.46. If $C_{m}\left(C_{n}\right)$ admits a-neighbourhood $V_{4}$-magic labeling. Then either $n \equiv 0(\bmod 2)$ or $m \equiv 0(\bmod 2)$ or both.

Proof. Assume that $C_{m}\left(C_{n}\right)$ admits $a$-neighbourhood $V_{4}$-magic labeling. Since $\left|V\left(C_{m}\left(C_{n}\right)\right)\right|=n m$, we should have $n m \cdot a=0$ implies that $n m \equiv 0(\bmod 2)$. Hence $n \equiv 0(\bmod 2)$ or $m \equiv 0(\bmod 2)$ or both.

Theorem 4.2.47. $C_{m}\left(C_{n}\right)$ admits a-neighbourhood $V_{4}$-magic labeling for $m \equiv$ $1(\bmod 4)$ and $n \equiv 0(\bmod 4)$.

Proof. Consider $C_{m}\left(C_{n}\right)$ with vertex set $V=\left\{u_{i j}: 1 \leq i \leq n, 1 \leq j \leq\right.$ $m\}$ where $\left\{u_{11}, u_{21}, u_{31}, \ldots, u_{n 1}\right\}$ be the vertex set of the prime cycle $C_{n}$ and $\left\{u_{k 1}, u_{k 2}, u_{k 3}, \ldots, u_{k m}\right\}$ be the vertex set of $k^{t h}$ copy of the auxiliary cycle $C_{m}$ in order. Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i j}\right)=\left\{\begin{array}{lcc}
b & \text { if } & i \equiv 1,2(\bmod 4) \text { and } j \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 1,2(\bmod 4) \text { and } j \equiv 0,3(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4) \text { and } j \equiv 1,2(\bmod 4) \\
b & \text { if } & i \equiv 0,3(\bmod 4) \text { and } j \equiv 0,3(\bmod 4)
\end{array}\right.
$$

Then, $N_{f}^{+}\left(u_{i j}\right)=a$ for all $1 \leq i \leq n$ and $1 \leq j \leq m$. Hence the theorem.

Theorem 4.2.48. $C_{m}\left(C_{n}\right)$ admits a-neighbourhood $V_{4}$-magic labeling for $m \equiv$ $3(\bmod 4)$ and $n \equiv 0(\bmod 4)$.

Proof. Consider $C_{m}\left(C_{n}\right)$ with vertex set $V=\left\{u_{i j}: 1 \leq i \leq n, 1 \leq j \leq\right.$ $m\}$, where $\left\{u_{11}, u_{21}, u_{31}, \ldots, u_{n 1}\right\}$ be the vertex set of the prime cycle $C_{n}$ and $\left\{u_{k 1}, u_{k 2}, u_{k 3}, \ldots, u_{k m}\right\}$ be the vertex set of $k^{t h}$ copy of the auxiliary cycle $C_{m}$ in order. Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i j}\right)=\left\{\begin{array}{lcc}
b & \text { if } & i \equiv 1,2(\bmod 4) \text { and } j \equiv 0,1(\bmod 4) \\
c & \text { if } & i \equiv 1,2(\bmod 4) \text { and } j \equiv 2,3(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4) \text { and } j \equiv 0,1(\bmod 4) \\
b & \text { if } & i \equiv 0,3(\bmod 4) \text { and } j \equiv 2,3(\bmod 4)
\end{array}\right.
$$

Clearly, $N_{f}^{+}\left(u_{i j}\right)=a$ for all $1 \leq i \leq n$ and $1 \leq j \leq m$. Hence $C_{m}\left(C_{n}\right) \in \Omega_{a}$.

## ${ }^{6}$ come 5

## Neighbourhood $V_{4}$-magic Labeling of <br> Splitting, Shadow and Middle of Graphs

This chapter studies neighbourhood $V_{4}$-magic labeling of splitting, shadow and middle of some graphs. The first section gives an introduction to the above said graphs. The Second section investigates neighbourhood $V_{4}$-magic labeling of splitting graph of some graphs. Third section studies neighbourhood $V_{4}$-magic labeling in shadow graph of some graphs and the final section discusses neighbourhood $V_{4}$-magic labeling of some middle graphs.

### 5.1 Introduction

The Splitting graph $S(G)$ of a connected graph $G$ is obtained by adding to each vertex $u$ in $G$, a new vertex $u^{\prime}$ such that $u^{\prime}$ is adjacent to the neighbours of $u$

[^3]in $G$ [21]. The shadow graph $\operatorname{Sh}(G)$ of a connected graph $G$ is constructed by taking two copies of $G$ say $G_{1}$ and $G_{2}$, join each vertex $u$ in $G_{1}$; to the neighbours of the corresponding vertex $v$ in $G_{2}$. The middle graph of a graph $G$, denoted by $M(G)$, is the graph obtained from $G$ by inserting a new vertex into every edge of $G$ and by joining those pairs of these new vertices with edges which lie on adjacent edges of $G$ [1].

### 5.2 Splitting graphs

Theorem 5.2.1. The graph $S\left(C_{n}\right) \in \Omega_{a}$ if and only if $n \equiv 0(\bmod 4)$.

Proof. Consider the splitting graph $S\left(C_{n}\right)$, let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of $C_{n}$ and let $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \ldots, u_{n}^{\prime}$ be the new vertices in $S\left(C_{n}\right)$. Assume that $n \not \equiv$ $0(\bmod 4)$. Then either $n \equiv 1(\bmod 4)$ or $n \equiv 2(\bmod 4)$ or $n \equiv 3(\bmod 4)$. We show that in each of these cases $S\left(C_{n}\right) \notin \Omega_{a}$.

Case 1: $n \equiv 1(\bmod 4)$
In this case $n=4 k+1$ for some $k \in \mathbb{N}$. Then $V\left(S\left(C_{n}\right)\right)=\left\{u_{i}, u_{i}^{\prime}: 1 \leq i \leq\right.$ $4 k+1\}$. If possible let $S\left(C_{n}\right) \in \Omega_{a}$ with a labeling $f$. Then $N_{f}^{+}\left(u_{2}^{\prime}\right)=a$ implies that $f\left(u_{1}\right)+f\left(u_{3}\right)=a$, which implies that either $f\left(u_{1}\right)=b$ or $f\left(u_{1}\right)=c$. Without loss of generality assume that $f\left(u_{1}\right)=b$. Then $f\left(u_{3}\right)=$ $c, f\left(u_{5}\right)=b, f\left(u_{7}\right)=c, f\left(u_{9}\right)=b, f\left(u_{11}\right)=c, f\left(u_{13}\right)=b$. Proceeding like this, we get $f\left(u_{4 k+1}\right)=b$. Also $N_{f}^{+}\left(u_{1}^{\prime}\right)=a$ and $f\left(u_{4 k+1}\right)=b$ implies that $f\left(u_{2}\right)=c, f\left(u_{4}\right)=b, f\left(u_{6}\right)=c, f\left(u_{8}\right)=b, f\left(u_{10}\right)=c, f\left(u_{12}\right)=b$. Proceeding like this we get $f\left(u_{4 k}\right)=b$. Therefore, $N_{f}^{+}\left(u_{4 k+1}^{\prime}\right)=b+b=0$,
a contradiction. Thus if $n \equiv 1(\bmod 4)$, we have $S\left(C_{n}\right) \notin \Omega_{a}$.

Case 2: $n \equiv 2(\bmod 4)$
In this case $n=4 k+2$ for some $k \in \mathbb{N}$. Then $V\left(S\left(C_{n}\right)\right)=\left\{u_{i}, u_{i}^{\prime}: 1 \leq i \leq\right.$ $4 k+2\}$. If possible let $S\left(C_{n}\right) \in \Omega_{a}$ with a labeling $f$. Then $N_{f}^{+}\left(u_{2}^{\prime}\right)=a$ implies that $f\left(u_{1}\right)+f\left(u_{3}\right)=a$, which implies that either $f\left(u_{1}\right)=b$ or $f\left(u_{1}\right)=c$. Without loss of generality assume that $f\left(u_{1}\right)=b$. Then $f\left(u_{3}\right)=$ $c, f\left(u_{5}\right)=b, f\left(u_{7}\right)=c, f\left(u_{9}\right)=b, f\left(u_{11}\right)=c, f\left(u_{13}\right)=b$. Proceeding like this, we get $f\left(u_{4 k+1}\right)=b$. Now $N_{f}^{+}\left(u_{4 k+2}^{\prime}\right)=f\left(u_{1}\right)+f\left(u_{4 k+1}\right)=b+b=0$, a contradiction. Thus if $n \equiv 2(\bmod 4)$, we have $S\left(C_{n}\right) \notin \Omega_{a}$.

Case 3: $n \equiv 3(\bmod 4)$
In this case $n=4 k+3$ for some $k \in \mathbb{N}$. Then $V\left(S\left(C_{n}\right)\right)=\left\{u_{i}, u_{i}^{\prime}: 1 \leq i \leq\right.$ $4 k+3\}$. If possible let $S\left(C_{n}\right) \in \Omega_{a}$ with a labeling $f$. Then $N_{f}^{+}\left(u_{2}^{\prime}\right)=a$ implies that $f\left(u_{1}\right)+f\left(u_{3}\right)=a$, which implies that either $f\left(u_{1}\right)=b$ or $f\left(u_{1}\right)=c$. Without loss of generality assume that $f\left(u_{1}\right)=b$. Then $f\left(u_{3}\right)=$ $c, f\left(u_{5}\right)=b, f\left(u_{7}\right)=c, f\left(u_{9}\right)=b, f\left(u_{11}\right)=c, f\left(u_{13}\right)=b$. Proceeding like this, we get $f\left(u_{4 k+3}\right)=c$. Now $N_{f}^{+}\left(u_{1}^{\prime}\right)=a$ implies that $f\left(u_{2}\right)=b, f\left(u_{4}\right)=$ $c, f\left(u_{6}\right)=b, f\left(u_{8}\right)=c, f\left(u_{10}\right)=b, f\left(u_{12}\right)=c$. Proceeding like this, we get $f\left(u_{4 k+2}\right)=b$. Therefore $N_{f}^{+}\left(u_{4 k+3}^{\prime}\right)=f\left(u_{1}\right)+f\left(u_{4 k+2}\right)=b+b=0$, a contradiction. Thus if $n \equiv 3(\bmod 4)$, we also have $S\left(C_{n}\right) \notin \Omega_{a}$.

Hence if $n \not \equiv 0(\bmod 4), S\left(C_{n}\right) \notin \Omega_{a}$. Conversely assume that $n \equiv 0(\bmod 4)$.

Define $f: V\left(S\left(C_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array} \quad f\left(u_{i}^{\prime}\right)=a \quad \text { for } \quad 1 \leq i \leq n .\right.
$$

Then $f$ is an $a$-neighbourhood $V_{4}$ - magic labeling for $S\left(C_{n}\right)$. This completes the proof of the theorem.

Theorem 5.2.2. $S\left(C_{n}\right) \in \Omega_{0}$ for all $n \geq 3$.

Proof. The degree of each vertex in $S\left(C_{n}\right)$ is either 2 or 4 . By labeling all the vertices by $a$, we get $N_{f}^{+}(u)=0$ for all $u \in V\left(S\left(C_{n}\right)\right)$.


Figure 5.1: An $a$-neighbourhood $V_{4}$-magic labeling of $S\left(C_{8}\right)$.

Corollary 5.2.3. $S\left(C_{n}\right) \in \Omega_{a, 0}$ if and only if $n \equiv 0(\bmod 4)$.

Proof. It obviously follows from Theorem 5.2.1 and Theorem 5.2.2.

Theorem 5.2.4. The graph $S\left(P_{n}\right) \notin \Omega_{0}$ for any $n \geq 2$.

Proof. Proof is obvious due to the presence of pendant vertices in $S\left(P_{n}\right)$.

Theorem 5.2.5. $S\left(P_{n}\right) \notin \Omega_{a}$ for any $n \geq 2$.

Proof. Consider the splitting graph $S\left(P_{n}\right)$, let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of $P_{n}$ and let $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \ldots, u_{n}^{\prime}$ be the new vertices in $S\left(P_{n}\right)$. Suppose that $S\left(P_{n}\right) \in$ $\Omega_{a}$ for some $n \geq 2$ with a labeling $f$. Then $N_{f}^{+}\left(u_{1}^{\prime}\right)=a$ implies that $f\left(u_{2}\right)=a$. Also $N_{f}^{+}\left(u_{1}^{\prime}\right)=a$ gives $f\left(u_{2}\right)+f\left(u_{2}^{\prime}\right)=a$, which implies that $f\left(u_{2}^{\prime}\right)=0$, a contradiction. This completes the proof of the theorem.

Corollary 5.2.6. $S\left(P_{n}\right) \notin \Omega_{a, 0}$ for $n \geq 2$.

Proof. Proof directly follows from Theorems 5.2.4 and 5.2.5.

Theorem 5.2.7. $S\left(B_{m, n}\right) \notin \Omega_{a}$ for any $m>1$ and $n>1$.

Proof. Consider the bistar $B_{m, n}$ with vertex set $V=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq\right.$ $m, 1 \leq j \leq n\}$ where $u_{i}(1 \leq i \leq m)$ and $v_{j}(1 \leq j \leq n)$ are pendant vertices adjacent to $u$ and $v$ respectively. Let $V^{\prime}=\left\{u^{\prime}, v^{\prime}, u_{i}^{\prime}, v_{j}^{\prime}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the corresponding set of new vertices in $S\left(B_{m, n}\right)$. Then $V\left(S\left(B_{m, n}\right)\right)=V \cup V^{\prime}$. Suppose that $S\left(B_{m, n}\right) \in \Omega_{a}$ for some $m>1$ and $n>1$ with a labeling $f$. Then $N_{f}^{+}\left(v_{1}^{\prime}\right)=a$ implies that $f(v)=a$. Now $N_{f}^{+}\left(v_{1}\right)=a$ gives $f(v)+f\left(v^{\prime}\right)=a$, which implies that $f\left(v^{\prime}\right)=0$, a contradiction. This completes the proof of the theorem.

Theorem 5.2.8. $S\left(B_{m, n}\right) \notin \Omega_{0}$ for any $m>1$ and $n>1$.

Proof. Proof is obvious, since $S\left(B_{m, n}\right)$ has pendant vertices.

Corollary 5.2.9. $S\left(B_{m, n}\right) \notin \Omega_{a, 0}$ for any $m>1$ and $n>1$.

Proof. Proof directly follows from Theorem 5.2.7.

Theorem 5.2.10. $S\left(K_{1, n}\right) \notin \Omega_{a}$ for any $n \in \mathbb{N}$.

Proof. Consider $K_{1, n}$ with vertex set $V=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and let $V^{\prime}=$ $\left\{u^{\prime}, u_{i}^{\prime}: 1 \leq i \leq n\right\}$ be the corresponding set of new vertices in $S\left(K_{1, n}\right)$. Assume that $S\left(K_{1, n}\right) \in \Omega_{a}$ for some $n \in \mathbb{N}$ with a labeling $f$. Now $N_{f}^{+}\left(u_{1}^{\prime}\right)=a$ gives $f(u)=a$. Also $N_{f}^{+}\left(u_{1}\right)=a$ implies that $f(u)+f\left(u^{\prime}\right)=a$, which implies that $f\left(u^{\prime}\right)=0$, a contradiction. Hence the theorem is proved.

Theorem 5.2.11. $S\left(K_{1, n}\right) \notin \Omega_{0}$ for any $n \in \mathbb{N}$.

Proof. Proof is obvious due to the presence of pendant vertices in $S\left(K_{1, n}\right)$.

Corollary 5.2.12. $S\left(K_{1, n}\right) \notin \Omega_{a, 0}$ for any $n \in \mathbb{N}$.

Proof. It follows from Theorem 5.2.10.

Theorem 5.2.13. $S\left(K_{m, n}\right) \in \Omega_{a}$ for all $m>1$ and $n>1$.

Proof. Consider $K_{m, n}$ with $m>1$ and $n>1$. Let $X=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the bipartition of $K_{m, n}$. Also let $X^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \ldots, u_{m}^{\prime}\right\}$ and $Y^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ be the corresponding sets of new vertices in $S\left(K_{m, n}\right)$. Then $V\left(S\left(K_{m, n}\right)\right)=X \cup Y \cup X^{\prime} \cup Y^{\prime}$. We consider the following cases:

Case 1: Both $m$ and $n$ are even.

Define $f: V\left(S\left(K_{m, n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{array}{ll}
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right. & f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right. \\
f\left(u_{i}^{\prime}\right)=a \text { for } 1 \leq i \leq m & f\left(v_{j}^{\prime}\right)=a \text { for } 1 \leq j \leq n .
\end{array}
$$

Case 2: $m$ is even and $n$ is odd.

$$
\begin{array}{ll}
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right. & f\left(v_{j}^{\prime}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right. \\
f\left(u_{i}^{\prime}\right)=a \text { for } 1 \leq i \leq m & f\left(v_{j}\right)=a \text { for } 1 \leq j \leq n .
\end{array}
$$

Case 3: $m$ is odd and $n$ is even.

$$
\begin{array}{ll}
f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right. & f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right. \\
f\left(u_{i}\right)=a \text { for } 1 \leq i \leq m & f\left(v_{j}^{\prime}\right)=a \text { for } 1 \leq j \leq n .
\end{array}
$$

Case 4: Both $m$ and $n$ are odd.

$$
\begin{array}{ll}
f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right. & f\left(v_{j}^{\prime}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right. \\
f\left(u_{i}\right)=a \text { for } 1 \leq i \leq m & f\left(v_{j}\right)=a \text { for } 1 \leq j \leq n .
\end{array}
$$

In each of the above cases, $f$ gives $a$-neighbourhood $V_{4}$-magic labeling of $S\left(K_{m, n}\right)$. This completes the proof of the theorem.

Theorem 5.2.14. $S\left(K_{m, n}\right) \in \Omega_{0}$ for all $m>1$ and $n>1$.

Proof. Consider $K_{m, n}$ with $m>1$ and $n>1$. Let $X=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the bipartition of $K_{m, n}$. Also let $X^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \ldots, u_{m}^{\prime}\right\}$ and $Y^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ be the corresponding sets of new vertices in $S\left(K_{m, n}\right)$. Then $V\left(S\left(K_{m, n}\right)\right)=X \cup Y \cup X^{\prime} \cup Y^{\prime}$. We consider the following cases:

Case 1: Both $m$ and $n$ are even.
Define $f: V\left(S\left(K_{m, n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=f\left(u_{i}^{\prime}\right)=a \quad \text { if } \quad i=1,2,3, \ldots, m \\
& f\left(v_{j}\right)=f\left(v_{j}^{\prime}\right)=a \quad \text { if } \quad j=1,2,3, \ldots, n
\end{aligned}
$$

Case 2: $m$ is even and $n$ is odd.

$$
\begin{array}{ll}
f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right. & f\left(v_{j}^{\prime}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right. \\
f\left(u_{i}\right)=a \text { for } 1 \leq i \leq m & f\left(u_{i}^{\prime}\right)=a \text { for } 1 \leq i \leq m .
\end{array}
$$

Case 3: $m$ is odd and $n$ is even.

$$
\begin{array}{ll}
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right. & f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right. \\
f\left(v_{j}\right)=a \text { for } 1 \leq j \leq n & f\left(v_{j}^{\prime}\right)=a \text { for } 1 \leq j \leq n .
\end{array}
$$

Case 4: Both $m$ and $n$ are odd.

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right. \\
& f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & & \left(u_{i}^{\prime}\right)= \\
a & \text { if } & i>2
\end{array}\right. \\
& c
\end{aligned} \begin{array}{llll}
b & \text { if } & j=1 \\
a & \text { if } & j>2
\end{array} \quad f\left(v_{j}^{\prime}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right\}
$$

In each of the above cases, $f$ gives 0-neighbourhood $V_{4}$-magic labeling of $S\left(K_{m, n}\right)$.
This completes the proof of the theorem.

Corollary 5.2.15. $S\left(K_{m, n}\right) \in \Omega_{a, 0}$ for all $m>1$ and $n>1$.

Proof. Proof directly follows from Theorems 5.2.13 and 5.2.14.

Theorem 5.2.16. $S\left(F_{m}\right) \in \Omega_{0}$ for all $m \in \mathbb{N}$.

Proof. If we label all the vertices of $S\left(F_{m}\right)$ by $a$, we get $S\left(F_{m}\right) \in \Omega_{0}$.

Theorem 5.2.17. $S\left(F_{m}\right) \notin \Omega_{a}$ for any $m \in \mathbb{N}$.

Proof. Consider the friendship graph $F_{m}$. Let the vertices of $i^{\text {th }}$ copy of $C_{3}$ in $F_{m}$ be $w, u_{i}$ and $v_{i}$ where $w$ is the common vertex of the triangles and let $\left\{w^{\prime}, u_{i}^{\prime}, v_{i}^{\prime}: 1 \leq i \leq m\right\}$ be the corresponding set of vertices in $S\left(F_{m}\right)$. Assume that $S\left(F_{m}\right) \in \Omega_{a}$ for some $m \in \mathbb{N}$ with a labeling $f$. Since $N_{f}^{+}\left(u_{1}^{\prime}\right)=a$, either $f(w)=b$ or $f(w)=c$. Without loss of generality assume that $f(w)=b$. If $f(w)=b, f\left(u_{i}\right)=f\left(v_{i}\right)=c$ for all $1 \leq i \leq m$. Therefore, $N_{f}^{+}\left(w^{\prime}\right)=2 m c=0, \mathrm{a}$ contradiction. Hence $S\left(F_{m}\right) \notin \Omega_{a}$ for all $m \in \mathbb{N}$.

Corollary 5.2.18. $S\left(F_{m}\right) \notin \Omega_{a, 0}$ for any $m \in \mathbb{N}$.

Proof. Proof directly follows from Theorem 5.2.16.

Theorem 5.2.19. $S\left(Q S_{n}\right) \in \Omega_{0}$ for all $n \in \mathbb{N}$.

Proof. By labeling all the vertices of $S\left(Q S_{n}\right)$ by $a$, we get $S\left(Q S_{n}\right) \in \Omega_{0}$.

Theorem 5.2.20. $S\left(Q S_{n}\right) \notin \Omega_{a}$ for any $n>2$.

Proof. Let $Q S_{n}$ be the quadrilateral snake obtained from the path $v_{1} v_{2} v_{3} \ldots v_{n}$ by joining each pair $v_{i}, v_{i+1}$ to the new vertices $u_{i}, w_{i}$ respectively and then joining
$u_{i}$ and $w_{i}$ by an edge. Now consider $S\left(Q S_{n}\right)$. Let $v_{i}^{\prime}, u_{i}^{\prime}, w_{i}^{\prime}$ be the new vertices corresponding to $v_{i}, u_{i}, w_{i}$. Suppose $S\left(Q S_{n}\right) \in \Omega_{a}$ for some $n>2$ with a labeling $f$. Then, $N_{f}^{+}\left(u_{1}^{\prime}\right)=a$ gives $f\left(v_{1}\right)+f\left(w_{1}\right)=a$. Also $N_{f}^{+}\left(w_{2}^{\prime}\right)=a$ implies that $f\left(u_{2}\right)+f\left(v_{3}\right)=a$, Therefore, $N_{f}^{+}\left(v_{2}^{\prime}\right)=f\left(v_{1}\right)+f\left(w_{1}\right)+f\left(u_{2}\right)+f\left(v_{3}\right)=0$, a contradiction. Hence, $S\left(Q S_{n}\right) \notin \Omega_{a}$ for all $n>2$.

Corollary 5.2.21. $S\left(Q S_{n}\right) \notin \Omega_{a, 0}$ for all $n>2$.

Proof. Proof directly follows from Theorem 5.2.20.

Theorem 5.2.22. $S\left(B_{n}\right) \in \Omega_{a}$ if and only if $n$ is odd.

Proof. Consider $B_{n}$ with vertex set $\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and edge set $\left\{u v, u u_{i}, v v_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\}$. Let $\left\{u^{\prime}, v^{\prime}, u_{i}^{\prime}, v_{i}^{\prime}: 1 \leq i \leq n\right\}$ be the set of new vertices in $S\left(B_{n}\right)$. Assume that $S\left(B_{n}\right) \in \Omega_{a}$ for some $n \in \mathbb{N}$ with a labeling $f$. Since $N_{f}^{+}\left(u_{1}^{\prime}\right)=a$, we have $f(u)=b$ or $f(u)=c$. Without loss of generality we assume that $f(u)=b$. Then $f\left(v_{i}\right)=c$ for all $i=1,2,3, \ldots, n$. Now $N_{f}^{+}\left(v^{\prime}\right)=a$ implies that $f(u)+\sum_{i=1}^{n} f\left(v_{i}\right)=b+n c=a$. Hence $n$ is odd. Conversely, assume that $n$ is odd. Define a label $f: V\left(S\left(B_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f(u)=f\left(u_{i}\right)=b \quad \text { if } \quad i=1,2,3, \ldots, n \\
& f(v)=f\left(v_{i}\right)=c \quad \text { if } \quad i=1,2,3, \ldots, n \\
& \left.f\left(u^{\prime}\right)=f u_{i}^{\prime}\right)=a \quad \text { if } \quad i=1,2,3, \ldots, n \\
& f(v)=f\left(v_{i}^{\prime}\right)=a \quad \text { if } \quad i=1,2,3, \ldots, n
\end{aligned}
$$

Then, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $S\left(B_{n}\right)$. This completes the
proof of the theorem.

Theorem 5.2.23. $S\left(B_{n}\right) \in \Omega_{0}$ if and only if $n$ is odd.

Proof. Consider $B_{n}$ with vertex set $\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and edge set $\left\{u v, u u_{i}, v v_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\}$. Let $\left\{u^{\prime}, v^{\prime}, u_{i}^{\prime}, v_{i}^{\prime}: 1 \leq i \leq n\right\}$ be the set of new vertices in $S\left(B_{n}\right)$. Assume that $S\left(B_{n}\right) \in \Omega_{0}$ for some $n \in \mathbb{N}$ with a labeling $f$. Since $N_{f}^{+}\left(u_{1}^{\prime}\right)=0$, we should have $f(u)=f\left(v_{1}\right)=a$ or $f(u)=$ $f\left(v_{1}\right)=b$ or $f(u)=f\left(v_{1}\right)=c$. Without loss of generality we assume that $f(u)=f\left(v_{1}\right)=a$. Then $f\left(v_{i}\right)=a$ for all $i=1,2,3, \ldots, n$. Now $N_{f}^{+}\left(v^{\prime}\right)=0$ implies that $f(u)+\sum_{i=1}^{n} f\left(v_{i}\right)=a+n a=0$. Hence $n$ is odd. Conversely, assume that $n$ is odd. We define $f: V\left(S\left(B_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as: $f(w)=a$ for all $w \in V\left(S\left(B_{n}\right)\right)$. Then, $f$ is a 0 -neighbourhood $V_{4}$-magic labeling of $S\left(B_{n}\right)$.

Corollary 5.2.24. $S\left(B_{n}\right) \in \Omega_{a, 0}$ if and only if $n$ is odd.

Proof. It directly follows from Theorems 5.2.22 and 5.2.23.

### 5.3 Shadow graphs

Theorem 5.3.1. The graph $S h\left(C_{n}\right) \in \Omega_{a}$ if and only if $n \equiv 0(\bmod 4)$.

Proof. Consider the shadow graph $\operatorname{Sh}\left(C_{n}\right)$, let $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ be the vertex set of first copy of $C_{n}$ and let $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the corresponding vertex set of second copy of $C_{n}$ in order. Assume that $n \not \equiv 0(\bmod 4)$. Then either $n \equiv 1(\bmod 4)$ or $n \equiv 2(\bmod 4)$ or $n \equiv 3(\bmod 4)$. We show that in each of these cases $\operatorname{Sh}\left(C_{n}\right) \notin \Omega_{a}$.

Case 1: $n \equiv 1(\bmod 4)$
In this case $n=4 k+1$ for some $k \in \mathbb{N}$. Then $V\left(S h\left(C_{n}\right)\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq\right.$ $4 k+1\}$. If possible let $S h\left(C_{n}\right) \in \Omega_{a}$ with a labeling $f$. Then $N_{f}^{+}\left(u_{2}\right)=a$ implies that $f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(u_{3}\right)+f\left(v_{3}\right)=a, N_{f}^{+}\left(u_{4}\right)=a$ implies that $f\left(u_{3}\right)+f\left(v_{3}\right)+f\left(u_{5}\right)+f\left(v_{5}\right)=a$, proceeding like this, $N_{f}^{+}\left(u_{4 k}\right)=a$ implies that $f\left(u_{4 k-1}\right)+f\left(v_{4 k-1}\right)+f\left(u_{4 k+1}\right)+f\left(v_{4 k+1}\right)=a$. Now consider $f\left(u_{1}\right)+f\left(v_{1}\right)$, then either $f\left(u_{1}\right)+f\left(v_{1}\right)=0$ or $f\left(u_{1}\right)+f\left(v_{1}\right)=a$ or $f\left(u_{1}\right)+f\left(v_{1}\right)=b$ or $f\left(u_{1}\right)+f\left(v_{1}\right)=c$.

Subcase 1: $f\left(u_{1}\right)+f\left(v_{1}\right)=0$
If $f\left(u_{1}\right)+f\left(v_{1}\right)=0$, then $f\left(u_{3}\right)+f\left(v_{3}\right)=a, f\left(u_{5}\right)+f\left(v_{5}\right)=0, f\left(u_{7}\right)+$ $f\left(v_{7}\right)=a$, implies that $f\left(u_{4 k+1}\right)+f\left(v_{4 k+1}\right)=0$. Now $N_{f}^{+}\left(u_{1}\right)=a$ implies that $f\left(u_{2}\right)+f\left(v_{2}\right)=a, f\left(u_{4}\right)+f\left(v_{4}\right)=0, f\left(u_{6}\right)+f\left(v_{6}\right)=a$, proceeding like this we get $f\left(u_{4 k}\right)+f\left(v_{4 k}\right)=0$. Therefore $N_{f}^{+}\left(u_{4 k+1}\right)=$ $f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(u_{4 k}\right)+f\left(v_{4 k}\right)=0+0=0$, a contradiction.

Subcase 2: $f\left(u_{1}\right)+f\left(v_{1}\right)=a$

If $f\left(u_{1}\right)+f\left(v_{1}\right)=a$, then proceeding as in Subcase 1, we get $N_{f}^{+}\left(u_{4 k+1}\right)=$ $f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(u_{4 k}\right)+f\left(v_{4 k}\right)=a+a=0$, a contradiction.

Subcase 3: $f\left(u_{1}\right)+f\left(v_{1}\right)=b$
If $f\left(u_{1}\right)+f\left(v_{1}\right)=b$, then $f\left(u_{3}\right)+f\left(v_{3}\right)=c, f\left(u_{5}\right)+f\left(v_{5}\right)=b, f\left(u_{7}\right)+$ $f\left(v_{7}\right)=c$, implies that $f\left(u_{4 k+1}\right)+f\left(v_{4 k+1}\right)=b$. Now $N_{f}^{+}\left(u_{1}\right)=a$ gives $f\left(u_{2}\right)+f\left(v_{2}\right)=c, f\left(u_{4}\right)+f\left(v_{4}\right)=b, f\left(u_{4 k}\right)+f\left(v_{4 k}\right)=b$. Therefore $N_{f}^{+}\left(u_{4 k+1}\right)=f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(u_{4 k}\right)+f\left(v_{4 k}\right)=b+b=0$, which is a contradiction.

Subcase 4: $f\left(u_{1}\right)+f\left(v_{1}\right)=c$
If $f\left(u_{1}\right)+f\left(v_{1}\right)=c$, then proceeding as in Subcase 3, we get $N_{f}^{+}\left(u_{4 k+1}\right)=$ $f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(u_{4 k}\right)+f\left(v_{4 k}\right)=c+c=0$, a contradiction.

Thus if $n \equiv 1(\bmod 4)$, we have $S h\left(C_{n}\right) \notin \Omega_{a}$.

Case 2: $n \equiv 2(\bmod 4)$
In this case $n=4 k+2$ for some $k \in \mathbb{N}$. Then $V\left(S h\left(C_{n}\right)\right)=\left\{u_{i}, v_{i}\right.$ : $1 \leq i \leq 4 k+2\}$. If possible let $S h\left(C_{n}\right) \in \Omega_{a}$ with a labeling $f$. Consider $f\left(u_{1}\right)+f\left(v_{1}\right)$, then either $f\left(u_{1}\right)+f\left(v_{1}\right)=0$ or $f\left(u_{1}\right)+f\left(v_{1}\right)=a$ or $f\left(u_{1}\right)+f\left(v_{1}\right)=b$ or $f\left(u_{1}\right)+f\left(v_{1}\right)=c$.

Subcase 1: $f\left(u_{1}\right)+f\left(v_{1}\right)=0$ If $f\left(u_{1}\right)+f\left(v_{1}\right)=0$, then $N_{f}^{+}\left(u_{2}\right)=a, f\left(u_{3}\right)+f\left(v_{3}\right)=a, f\left(u_{5}\right)+$ $f\left(v_{5}\right)=0$, which implies that $f\left(u_{4 k+1}\right)+f\left(v_{4 k+1}\right)=0$ Therefore, $N_{f}^{+}\left(u_{4 k+2}\right)=f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(u_{4 k+1}\right)+f\left(v_{4 k+1}\right)=0+0=0, \mathrm{a}$ contradiction.

Subcase 2: $f\left(u_{1}\right)+f\left(v_{1}\right)=a$ If $f\left(u_{1}\right)+f\left(v_{1}\right)=a$, then proceeding as in Subcase 1, we get $N_{f}^{+}\left(u_{4 k+2}\right)=$ $f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(u_{4 k+1}\right)+f\left(v_{4 k+1}\right)=a+a=0$, which is a contradiction.

Subcase 3: $f\left(u_{1}\right)+f\left(v_{1}\right)=b$
If $f\left(u_{1}\right)+f\left(v_{1}\right)=b$, then $N_{f}^{+}\left(u_{2}\right)=a$ implies that $f\left(u_{3}\right)+f\left(v_{3}\right)=$ $c, f\left(u_{5}\right)+f\left(v_{5}\right)=b$, implies that $f\left(u_{4 k+1}\right)+f\left(v_{4 k+1}\right)=b$. Therefore, $N_{f}^{+}\left(u_{4 k+2}\right)=f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(u_{4 k+1}\right)+f\left(v_{4 k+1}\right)=b+b=0$, which is a contradiction.

Subcase 4: $f\left(u_{1}\right)+f\left(v_{1}\right)=c$
If $f\left(u_{1}\right)+f\left(v_{1}\right)=c$, then proceeding as in Subcase 3, we get $N_{f}^{+}\left(u_{4 k+2}\right)=$ $f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(u_{4 k+1}\right)+f\left(v_{4 k+1}\right)=c+c=0$, a contradiction.

Thus if $n \equiv 2(\bmod 4), \operatorname{Sh}\left(C_{n}\right) \notin \Omega_{a}$.

Case 3: $n \equiv 3(\bmod 4)$
In this case $n=4 k+3$ for some $k \in \mathbb{N}$. Then $V\left(S h\left(C_{n}\right)\right)=\left\{u_{i}, v_{i}\right.$ : $1 \leq i \leq 4 k+3\}$. If possible let $S h\left(C_{n}\right) \in \Omega_{a}$ with a labeling $f$. Consider $f\left(u_{1}\right)+f\left(v_{1}\right)$, then either $f\left(u_{1}\right)+f\left(v_{1}\right)=0$ or $f\left(u_{1}\right)+f\left(v_{1}\right)=a$ or $f\left(u_{1}\right)+f\left(v_{1}\right)=b$ or $f\left(u_{1}\right)+f\left(v_{1}\right)=c$.

Subcase 1: $f\left(u_{1}\right)+f\left(v_{1}\right)=0$
If $f\left(u_{1}\right)+f\left(v_{1}\right)=0$, then $N_{f}^{+}\left(u_{2}\right)=a$ gives $f\left(u_{3}\right)+f\left(v_{3}\right)=a$, $f\left(u_{5}\right)+f\left(v_{5}\right)=0, f\left(u_{4 k+1}\right)+f\left(v_{4 k+1}\right)=0, f\left(u_{4 k+3}\right)+f\left(v_{4 k+3}\right)=a$. Now, $N_{f}^{+}\left(u_{1}\right)=a$ implies that $f\left(u_{2}\right)+f\left(v_{2}\right)=0, f\left(u_{4}\right)+f\left(v_{4}\right)=a$, $f\left(u_{4 k+2}\right)+f\left(v_{4 k+2}\right)=0$. Therefore $N_{f}^{+}\left(u_{4 k+3}\right)=f\left(u_{1}\right)+f\left(v_{1}\right)+$ $f\left(u_{4 k+2}\right)+f\left(v_{4 k+2}\right)=0+0=0$, which is a contradiction.

Subcase 2: $f\left(u_{1}\right)+f\left(v_{1}\right)=a$
If $f\left(u_{1}\right)+f\left(v_{1}\right)=a$, then proceeding as in Subcase 1, we get $N_{f}^{+}\left(u_{4 k+3}\right)=$ $f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(u_{4 k+2}\right)+f\left(v_{4 k+2}\right)=a+a=0$, a contradiction.

Subcase 3: $f\left(u_{1}\right)+f\left(v_{1}\right)=b$ If $f\left(u_{1}\right)+f\left(v_{1}\right)=b$, then $N_{f}^{+}\left(u_{2}\right)=a$ implies that $f\left(u_{3}\right)+f\left(v_{3}\right)=$ $c, f\left(u_{5}\right)+f\left(v_{5}\right)=b, f\left(u_{4 k+1}\right)+f\left(v_{4 k+1}\right)=b, f\left(u_{4 k+3}\right)+f\left(v_{4 k+3}\right)=c$. Now, $N_{f}^{+}\left(u_{1}\right)=a$ implies that $f\left(u_{2}\right)+f\left(v_{2}\right)=b, f\left(u_{4}\right)+f\left(v_{4}\right)=$

$$
\begin{aligned}
& c, f\left(u_{4 k+2}\right)+f\left(v_{4 k+2}\right)=b . \text { Therefore, } N_{f}^{+}\left(u_{4 k+3}\right)=f\left(u_{1}\right)+f\left(v_{1}\right)+ \\
& f\left(u_{4 k+2}\right)+f\left(v_{4 k+2}\right)=b+b=0, \text { which is a contradiction. }
\end{aligned}
$$

Subcase 4: $f\left(u_{1}\right)+f\left(v_{1}\right)=c$
If $f\left(u_{1}\right)+f\left(v_{1}\right)=c$, then proceeding as in Subcase 3, we get $N_{f}^{+}\left(u_{4 k+3}\right)=$ $f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(u_{4 k+2}\right)+f\left(v_{4 k+2}\right)=c+c=0$, a contradiction.

Thus if $n \equiv 3(\bmod 4)$, we also have $\operatorname{Sh}\left(C_{n}\right) \notin \Omega_{a}$.

Therefore, $n \not \equiv 0(\bmod 4)$ implies that $S h\left(C_{n}\right) \notin \Omega_{a}$. Conversely, if $n \equiv 0(\bmod$ 4),

We define $f: V\left(S h\left(C_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array} \quad f\left(v_{i}\right)=a \quad \text { for } \quad 1 \leq i \leq n\right.
$$

Then, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling for $S h\left(C_{n}\right)$. This completes the proof of the theorem.

Theorem 5.3.2. $\operatorname{Sh}\left(C_{n}\right) \in \Omega_{0}$ for all $n \geq 3$.

Proof. The degree of each vertex in $\operatorname{Sh}\left(C_{n}\right)$ is 4 . By labeling all the vertices by $a$, we get $N_{f}^{+}(u)=0$ for all $u \in V\left(S h\left(C_{n}\right)\right)$.

Corollary 5.3.3. $\operatorname{Sh}\left(C_{n}\right) \in \Omega_{a, 0}$ if and only if $n \equiv 0(\bmod 4)$.

Proof. Proof is obviously follows from Theorem 5.3.1 and Theorem 5.3.2.

Theorem 5.3.4. The graph $\operatorname{Sh}\left(P_{n}\right) \in \Omega_{0}$ for all $n \geq 2$.

Proof. If we label all the vertices by $a$, we get $G \in \Omega_{0}$.

Theorem 5.3.5. $\operatorname{Sh}\left(P_{n}\right) \in \Omega_{a}$ for $n \equiv 0,2,3(\bmod 4)$.

Proof. Let $G$ be the shadow graph $\operatorname{Sh}\left(P_{n}\right)$, and let $\left\{u_{i}: 1 \leq i \leq n\right\}$ and $\left\{v_{i}: 1 \leq\right.$ $i \leq n\}$ be the vertex sets of first and second copy of $P_{n}$ respectively.

Case 1: $n \equiv 0(\bmod 4)$

Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 0,1(\bmod 4) \\
b & \text { if } & i \equiv 2,3(\bmod 4)
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 0,1(\bmod 4) \\
c & \text { if } & i \equiv 2,3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Case 2: $n \equiv 2(\bmod 4)$

Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 0,3(\bmod 4) \\
b & \text { if } & i \equiv 1,2(\bmod 4)
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 0,3(\bmod 4) \\
c & \text { if } & i \equiv 1,2(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Case 3: $n \equiv 3(\bmod 4)$

Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
a & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i \equiv 1,2(\bmod 4) \\
a & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

In all the above cases, we have $N_{f}^{+}\left(u_{i}\right)=N_{f}^{+}\left(v_{i}\right)=a$ for $1 \leq i \leq n$. Therefore, $\operatorname{Sh}\left(P_{n}\right) \in \Omega_{a}$ for $n \equiv 0,2,3(\bmod 4)$.


Figure 5.2: The shadow graph $\operatorname{Sh}\left(P_{6}\right)$

Theorem 5.3.6. $\operatorname{Sh}\left(P_{n}\right) \notin \Omega_{a}$ for $n \equiv 1(\bmod 4)$.

Proof. Consider the shadow graph $\operatorname{Sh}\left(P_{n}\right)$ with $n \equiv 1(\bmod 4)$. Let $\left\{u_{i}: 1 \leq i \leq\right.$ $4 k+1\}$ and $\left\{v_{i}: 1 \leq i \leq 4 k+1\right\}$ be the vertex sets of first and second copy of $P_{n}$ respectively. Assume that $S h\left(P_{n}\right) \in \Omega_{a}$ with a labeling $f$. Since $N_{f}^{+}\left(u_{1}\right)=a$, we have either $f\left(u_{2}\right)=b$ and $f\left(v_{2}\right)=c$ or $f\left(u_{2}\right)=c$ and $f\left(v_{2}\right)=b$. Without loss of generality assume that $f\left(u_{2}\right)=b$ and $f\left(v_{2}\right)=c$. Then $f\left(u_{4 k}\right)=f\left(v_{4 k}\right)$, implies that $N_{f}^{+}\left(u_{4 k+1}\right)=0$, a contradiction. Therefore, $\operatorname{Sh}\left(P_{n}\right) \notin \Omega_{a}$.

Corollary 5.3.7. $\operatorname{Sh}\left(P_{n}\right) \in \Omega_{a, 0}$ for $n \equiv 0,2,3(\bmod 4)$.

Proof. Proof directly follows from Theorems 5.3.4 and 5.3.5.

Theorem 5.3.8. $\operatorname{Sh}\left(K_{1, n}\right) \in \Omega_{a}$ for all $n \in \mathbb{N}$.

Proof. Let $V=\left\{u_{i}, v_{i}: 0 \leq i \leq n\right\}$ be the vertex set of $\operatorname{Sh}\left(K_{1, n}\right)$ where $\left\{u_{i}\right.$ : $0 \leq i \leq n\}$ and $\left\{v_{i}: 0 \leq i \leq n\right\}$ are the vertex sets of first and second copy of $K_{1, n}$ with apex $u_{0}, v_{0}$ respectively. Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0,1 \\
a & \text { if } & i=2,3, \ldots, n
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i=0,1 \\
a & \text { if } & i=2,3, \ldots, n
\end{array}\right.
\end{aligned}
$$

Then, $N_{f}^{+}\left(u_{i}\right)=N_{f}^{+}\left(v_{i}\right)=a$ for all $0 \leq i \leq n$. This completes the proof.

Theorem 5.3.9. $\operatorname{Sh}\left(K_{1, n}\right) \in \Omega_{0}$ for all $n \in \mathbb{N}$.

Proof. If we label all the vertices by $a$, we get $S h\left(K_{1, n}\right) \in \Omega_{0}$.

Corollary 5.3.10. $\operatorname{Sh}\left(K_{1, n}\right) \in \Omega_{a, 0}$ for all $n \in \mathbb{N}$.

Proof. Proof obviously follows from Theorems 5.3.8 and 5.3.9.

Theorem 5.3.11. $\operatorname{Sh}\left(B_{m, n}\right) \in \Omega_{0}$ for all $m$ and $n$.

Proof. Labeling all the vertices by $a$, we get $\operatorname{Sh}\left(B_{m, n}\right) \in \Omega_{0}$ for all $m$ and $n$.

Theorem 5.3.12. $\operatorname{Sh}\left(B_{m, n}\right) \in \Omega_{a}$ for all $m>1$ and $n>1$.

Proof. Let $V_{1}=\left\{u, v, u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the vertex set of first copy of $B_{m, n}$ and $V_{2}=\left\{u^{\prime}, v^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{m}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ be the corresponding vertex set of second copy of $B_{m, n}$, where $u_{i}, v_{i}$ are pendant vertices adjacent to $u, v$ respectively. Then $V\left(S h\left(B_{m, n}\right)\right)=V_{1} \cup V_{2}$.

Define $f: V\left(S h\left(B_{m, n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f(u)=f(v)=b \\
& f\left(u^{\prime}\right)=f\left(v^{\prime}\right)=c \\
& f\left(u_{i}\right)=f\left(u_{i}^{\prime}\right)=a \text { for } 1 \leq i \leq m \\
& f\left(v_{i}\right)=f\left(v_{i}^{\prime}\right)=a \text { for } 1 \leq i \leq n
\end{aligned}
$$

Then, $f$ is an $a$-neighbourhood labeling of $S h\left(B_{m, n}\right)$. Completes the proof.


Figure 5.3: An $a$-neighbourhod $V_{4}$-magic labling of $\operatorname{Sh}\left(B_{2,2}\right)$

Corollary 5.3.13. $\operatorname{Sh}\left(B_{m, n}\right) \in \Omega_{a, 0}$ for all $m>1$ and $n>1$.

Proof. Proof follows from Theorems 5.3.11 and 5.3.12.

Theorem 5.3.14. $\operatorname{Sh}\left(W_{n}\right) \in \Omega_{0}$ for all $n \geq 3$.

Proof. Degree of vertex in $S h\left(W_{n}\right)$ is either 6 or $2 n$. If we label all the vertices by $a$, we get $N_{f}^{+}(u)=0$ for all $u \in V\left(S h\left(W_{n}\right)\right)$.

Theorem 5.3.15. $\operatorname{Sh}\left(W_{n}\right) \in \Omega_{a}$ for all $n \equiv 1(\bmod 2)$.

Proof. Consider $\operatorname{Sh}\left(W_{n}\right)$ with $n \equiv 1(\bmod 2)$. Let $V_{1}=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertex set of first copy of $W_{n}$ with central vertex $u_{0}$ and let $V_{2}=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the corresponding vertex set of second copy of $W_{n}$ with central vertex $v_{0}$. Then, $V=V\left(S h\left(W_{n}\right)\right)=V_{1} \cup V_{2}$.

Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=b \quad \text { if } \quad i=0,1,2,3, \ldots, n \\
& f\left(v_{i}\right)=c \quad \text { if } \quad i=0,1,2,3, \ldots, n
\end{aligned}
$$

Then, $N_{f}^{+}\left(u_{i}\right)=N_{f}^{+}\left(v_{i}\right)=a$ for all $i=0,1,2, \ldots, n$.

Corollary 5.3.16. $S h\left(W_{n}\right) \in \Omega_{a, 0}$ for all $n \equiv 1(\bmod 2)$.

Proof. Proof directly follows from Theorems 5.3.14 and 5.3.15.

Theorem 5.3.17. $\operatorname{Sh}\left(W_{n}\right) \in \Omega_{a}$ for all $n \equiv 2(\bmod 4)$.

Proof. Let $V_{1}=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertex set of first copy of $W_{n}$ with central vertex $u_{0}$ and let $V_{2}=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of second copy with central vertex $v_{0}$. Then $V\left(S h\left(W_{n}\right)\right)=V_{1} \cup V_{2}$. Define $f: V\left(S h\left(W_{n}\right)\right) \rightarrow$
$V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 1,3(\bmod 4) \\
c & \text { if } & i \equiv 0,2(\bmod 4)
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 1,3(\bmod 4) \\
b & \text { if } & i \equiv 0,2(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Clearly, $N_{f}^{+}\left(u_{i}\right)=N_{f}^{+}\left(v_{i}\right)=a$ for all $i=0,1,2, \ldots, n$. Hence $\operatorname{Sh}\left(W_{n}\right) \in \Omega_{a}$.

Corollary 5.3.18. $\operatorname{Sh}\left(W_{n}\right) \in \Omega_{a, 0}$ for all $n \equiv 2(\bmod 4)$.

Proof. Proof directly follows from Theorems 5.3.14 and 5.3.17.

Theorem 5.3.19. $\operatorname{Sh}\left(H_{n}\right) \in \Omega_{0}$ for all $n \geq 3$.

Proof. In $S h\left(H_{n}\right)$, degree of vertices are either 2 or 8 or $2 n$. If we label all the vertices by $a$, we get $N_{f}^{+}(u)=0$ for all $u \in V\left(S h\left(H_{n}\right)\right)$.

Theorem 5.3.20. $S h\left(H_{n}\right)$ admits a-neighbourhood $V_{4}$-magic labeling for all $n \equiv$ $1(\bmod 2)$.

Proof. Consider the shadow graph $\operatorname{Sh}\left(H_{n}\right)$ with $n \equiv 1(\bmod 2)$. Let $v$ be central vertex, $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the rim vertices and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the pendant vertices adjacent to $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ in the first copy of $H_{n}$ and let $v^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{n}^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \ldots, u_{n}^{\prime}$ be the corresponding vertices in the second copy of $H_{n}$. Then $V\left(S h\left(H_{n}\right)\right)=\left\{v, v^{\prime}, v_{i}, v_{i}^{\prime}, u_{i}, u_{i}^{\prime}: 1 \leq i \leq n\right\}$. We define $f: V\left(S h\left(H_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f(v)=a \quad \text { and } \quad f\left(v_{i}\right)=f\left(u_{i}\right)=b \quad \text { for } \quad i=1,2,3, \ldots, n
$$

$$
f\left(v^{\prime}\right)=a \quad \text { and } \quad f\left(v_{i}^{\prime}\right)=f\left(u_{i}^{\prime}\right)=c \quad \text { for } \quad i=1,2,3, \ldots, n
$$

Obviously, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $S h\left(H_{n}\right)$.

Corollary 5.3.21. $\operatorname{Sh}\left(H_{n}\right) \in \Omega_{a, 0}$ for all $n \equiv 1(\bmod 2)$.

Proof. Proof directly follows from Theorems 5.3.19 and 5.3.20.

Theorem 5.3.22. $S h\left(S F_{n}\right)$ admits a-neighbourhood $V_{4}$-magic labeling for all $n \equiv 2(\bmod 4)$.

Proof. Consider $S h\left(S F_{n}\right)$, let the vertex set of first copy of $S F_{n}$ be $V_{1}=\left\{w, w_{i}, v_{i}\right.$ : $1 \leq i \leq n\}$ where $w$ is the central vertex, $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ are vertices of the cycle and $v_{i}$ is the vertex joined by edges to $w_{i}$ and $w_{i+1}$ where $i+1$ is taken over modulo $n$. Let $V_{2}=\left\{w^{\prime}, w_{i}^{\prime}, v_{i}^{\prime}: 1 \leq i \leq n\right\}$ be the corresponding vertex set of second copy of $S F_{n}$. Then $V\left(S h\left(S F_{n}\right)\right)=V_{1} \cup V_{2}$. Define $f: V\left(S h\left(S F_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(w_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1(\bmod 2) \\
c & \text { if } & i \equiv 0(\bmod 2)
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1(\bmod 2) \\
c & \text { if } & i \equiv 0(\bmod 2)
\end{array}\right.
\end{aligned}
$$

$f(w)=f\left(w^{\prime}\right)=f\left(w_{i}^{\prime}\right)=f\left(v_{i}^{\prime}\right)=a$ for $i=1,2,3, \ldots, n$. Then $f$ is an $a-$ neighbourhood $V_{4}$-magic labeling of $S h\left(S F_{n}\right)$.

Theorem 5.3.23. $\operatorname{Sh}\left(S F_{n}\right)$ admits 0 -neighbourhood $V_{4}$-magic labeling for all $n$.

Proof. Labeling all the vertices of $\operatorname{Sh}\left(S F_{n}\right)$ by $a$, we get $N_{f}^{+}(u)=0$ for all $u \in V\left(S h\left(S F_{n}\right)\right)$.

Theorem 5.3.24. $\operatorname{Sh}\left(S F_{n}\right) \in \Omega_{a, 0}$ for all $n \equiv 2(\bmod 4)$.

Proof. Proof directly follows from Theorems 5.3.22 and 5.3.23.

Theorem 5.3.25. $\operatorname{Sh}\left(C_{n} \odot K_{2}\right) \in \Omega_{a}$ for all $n \equiv 0(\bmod 4)$.

Proof. Let $G$ bet the shadow graph $\operatorname{Sh}\left(C_{n} \odot K_{2}\right)$ with $n \equiv 0(\bmod 4)$. Let $V_{1}=$ $\left\{u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ be the vertex set of first copy of $C_{n} \odot K_{2}$, where $u_{i}^{\prime} s$ are vertices of $C_{n}$ and $v_{j}, w_{j}$ are the vertices of $j^{t h}$ copy of $K_{2}$ and let $V_{2}=\left\{u_{i}^{\prime}, v_{i}^{\prime}, w_{i}^{\prime}\right.$ : $1 \leq i \leq n\}$ be the corresponding vertex set of second copy of $C_{n} \odot K_{2}$. Then $V(G)=V_{1} \cup V_{2}$. Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i \equiv 1,2(\bmod 4) \\
b & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right. \\
& f\left(w_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i \equiv 1,2(\bmod 4) \\
b & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

$f\left(u_{i}^{\prime}\right)=f\left(v_{i}^{\prime}\right)=f\left(w_{i}^{\prime}\right)=a$ for $i=1,2,3, \ldots, n$. Then $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $\operatorname{Sh}\left(C_{n} \odot K_{2}\right)$.

Theorem 5.3.26. $\operatorname{Sh}\left(C_{n} \odot K_{2}\right) \in \Omega_{0}$ for all $n$.

Proof. By labeling all the vertices of $\operatorname{Sh}\left(C_{n} \odot K_{2}\right)$ by $a$, we get $N_{f}^{+}(u)=0$.

Corollary 5.3.27. $\operatorname{Sh}\left(C_{n} \odot K_{2}\right) \in \Omega_{a, 0}$ for all $n \equiv 0(\bmod 4)$.

Proof. Proof directly follows from Theorem 5.3.25 and Theorem 5.3.26.

Theorem 5.3.28. $\operatorname{Sh}\left(C_{n} \odot \bar{K}_{m}\right) \in \Omega_{a}$ for all $m$ and $n \geq 3$.

Proof. Let $G$ be the shadow graph $\operatorname{Sh}\left(C_{n} \odot \bar{K}_{m}\right)$. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the rim vertices of first copy of $C_{n} \odot \bar{K}_{m}$ and $\left\{u_{i 1}, u_{i 2}, u_{i 3}, \ldots, u_{i m}\right\}$ be the set of pendant vertices adjacent to $u_{i}$ for $1 \leq i \leq n$ in $C_{n} \odot \bar{K}_{m}$ and let $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \ldots, u_{n}^{\prime}$ be the rim vertices of second copy of $C_{n} \odot \bar{K}_{m}$ and $\left\{u_{i 1}^{\prime}, u_{i 2}^{\prime}, u_{i 3}^{\prime}, \ldots, u_{i m}^{\prime}\right\}$ be the set of pendant vertices adjacent to $u_{i}^{\prime}$ for $1 \leq i \leq n$ in second copy of $C_{n} \odot \bar{K}_{m}$. Here we consider two cases.

Case 1: $m=1$

Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=f\left(u_{i, 1}\right)=b \quad \text { for } \quad i=1,2,3, \ldots, n \\
& f\left(u_{i}^{\prime}\right)=f\left(u_{i, 1}^{\prime}\right)=c \quad \text { for } \quad i=1,2,3, \ldots, n
\end{aligned}
$$

Case 2: $m \geq 2$
Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=b \quad \text { for } \quad i=1,2,3, \ldots, n \\
& f\left(u_{i}^{\prime}\right)=c \quad \text { for } \quad i=1,2,3, \ldots, n
\end{aligned}
$$

$$
\begin{aligned}
& f\left(u_{i j}^{\prime}\right)=a \quad \text { for } \quad i=1,2,3, \ldots, n . \\
& f\left(u_{i j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right.
\end{aligned}
$$

Obviously, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $S h\left(C_{n} \odot \bar{K}_{m}\right)$.

Theorem 5.3.29. $\operatorname{Sh}\left(C_{n} \odot \bar{K}_{m}\right) \in \Omega_{0}$ for all $m$ and $n \geq 3$.

Proof. Labeling all the vertices by $a$, we get $\operatorname{Sh}\left(C_{n} \odot \bar{K}_{m}\right) \in \Omega_{0}$.

Corollary 5.3.30. $\operatorname{Sh}\left(C_{n} \odot \bar{K}_{m}\right) \in \Omega_{a, 0}$ for all $m$ and $n \geq 3$.

Proof. Proof directly follows from Theorems 5.3.28 and 5.3.29.

Theorem 5.3.31. $S h(J(m, n)) \in \Omega_{0}$ for all $m$ and $n$.

Proof. Labeling all the vertices by $a$, we get $S h(J(m, n)) \in \Omega_{0}$.

Theorem 5.3.32. $\operatorname{Sh}(J(m, n)) \in \Omega_{a}$ for all $m$ and $n$.

Proof. Let $G$ be the graph $\operatorname{Sh}(J(m, n))$. Let $V_{1}=\left\{w_{i}, u_{j}, v_{k}: 1 \leq i \leq 4,1 \leq\right.$ $j \leq m, 1 \leq k \leq n\}$ and $E_{1}=\left\{w_{1} w_{2}, w_{2} w_{3}, w_{3} w_{4}, w_{4} w_{1}, w_{1} w_{3}\right\} \cup\left\{w_{2} u_{j}: 1 \leq j \leq\right.$ $m\} \cup\left\{w_{4} v_{j}: 1 \leq j \leq n\right\}$ be the vertex and edge set of first copy of $J(m, n)$. Let $V_{2}=\left\{w_{i}^{\prime}, u_{j}^{\prime}, v_{k}^{\prime}: 1 \leq i \leq 4,1 \leq j \leq m, 1 \leq k \leq n\right\}$ be the corresponding vertex set of second copy of $J(m, n)$. Then $V(G)=V_{1} \cup V_{2}$. Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(w_{i}\right)=b \quad \text { for } \quad i=1,2,3,4
$$

$$
\begin{aligned}
& f\left(w_{i}^{\prime}\right)=c \\
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
\text { for } & i=1,2,3,4 \\
b & \text { if } & i=1 \\
a & \text { if } & i \geq 2
\end{array} \quad f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{lll}
c & \text { if } & i=1 \\
a & \text { if } & i \geq 2
\end{array}\right.\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
a & \text { if } & i \geq 2
\end{array} \quad f\left(v_{i}^{\prime}\right)=\left\{\begin{array}{lll}
c & \text { if } & i=1 \\
a & \text { if } & i \geq 2
\end{array}\right.\right.
\end{aligned}
$$

Then, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $\operatorname{Sh}(J(m, n))$.
Corollary 5.3.33. $\operatorname{Sh}(J(m, n)) \in \Omega_{a, 0}$ for all $m$ and $n$.

Proof. Proof directly follows from Theorems 5.3.31 and 5.3.32.
Theorem 5.3.34. $\operatorname{Sh}\left(L_{n}\right) \in \Omega_{0}$ for all $n$.

Proof. By labeling all the vertices by $a$, we get $\operatorname{Sh}\left(L_{n}\right) \in \Omega_{0}$ for all $n$.

Theorem 5.3.35. $\operatorname{Sh}\left(L_{n}\right) \in \Omega_{a}$ for all $n \equiv 2(\bmod 3)$.

Proof. Consider $\operatorname{Sh}\left(L_{n}\right)$ with $n \equiv 2(\bmod 3)$. Let $V_{1}=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ be the vertex set of first copy of $L_{n}$ with edge set $E_{1}=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{j} v_{j}: 1 \leq\right.$ $i \leq n-1,1 \leq j \leq n\}$. Also let $V_{2}=\left\{u_{i}^{\prime}, v_{i}^{\prime}: 1 \leq i \leq n\right\}$ be the corresponding set of vertices in second copy of $L_{n}$. Then $V=V\left(S h\left(L_{n}\right)\right)=V_{1} \cup V_{2}$. Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 6) \\
c & \text { if } & i \equiv 4,5(\bmod 6) \\
a & \text { if } & i \equiv 0,3(\bmod 6)
\end{array}\right.
$$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i \equiv 1,2(\bmod 6) \\
b & \text { if } & i \equiv 4,5(\bmod 6) \\
a & \text { if } & i \equiv 0,3(\bmod 6)
\end{array}\right. \\
& f\left(u_{i}^{\prime}\right)=a \quad \text { for } \quad i=1,2,3, \ldots, n \\
& f\left(v_{i}^{\prime}\right)=a \quad \text { for } \quad i=1,2,3, \ldots, n
\end{aligned}
$$

Then $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $\operatorname{Sh}\left(L_{n}\right)$.

Corollary 5.3.36. $\operatorname{Sh}\left(L_{n}\right) \in \Omega_{a, 0}$ for all $n \equiv 2(\bmod 3)$.

Proof. Proof directly follows from Theorem 5.3.34 and Theorem 5.3.35.

Theorem 5.3.37. $\operatorname{Sh}\left(L_{n+2}\right) \in \Omega_{0}$ for all $n \in \mathbb{N}$.

Proof. By labeling all the vertices by $a$, we get $\operatorname{Sh}\left(L_{n+2}\right) \in \Omega_{0}$ for all $n$.

Theorem 5.3.38. $\operatorname{Sh}\left(L_{n+2}\right) \in \Omega_{a}$ for all $n \in \mathbb{N}$.

Proof. Let $G$ be the shadow graph $\operatorname{Sh}\left(L_{n+2}\right)$. Let $V_{1}=\left\{u_{i}, v_{i}: 0 \leq i \leq n+1\right\}$ and $E_{1}=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 0 \leq i \leq n\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$ be the vertex and edge set of first copy of $L_{n+2}$ and let $V_{2}=\left\{u_{i}^{\prime}, v_{i}^{\prime}: 0 \leq i \leq n+1\right\}$ be the corresponding set of vertices in second copy of $L_{n+2}$. Define $f: V\left(S h\left(L_{n+2}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=f\left(v_{i}\right)=b \quad \text { for } \quad i=0,1,2,3, \ldots, n+1 \\
& f\left(u_{i}^{\prime}\right)=f\left(v_{i}^{\prime}\right)=c \quad \text { for } \quad i=0,1,2,3, \ldots, n+1
\end{aligned}
$$

Then, $N_{f}^{+}(u)=a$ for all vertices $u$ in $\operatorname{Sh}\left(L_{n+2}\right)$.

Corollary 5.3.39. $\operatorname{Sh}\left(L_{n+2}\right) \in \Omega_{a, 0}$ for all $n \in \mathbb{N}$.

Proof. Proof directly follows from Theorem 5.3.37 and Theorem 5.3.38.

Theorem 5.3.40. $\operatorname{Sh}\left(C B_{n}\right) \in \Omega_{a}$ for all $n>1$.

Proof. Let $\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ be the vertex set of first copy of $C B_{n}$ where $v_{i}(1 \leq i \leq n)$ are the pendant vertices adjacent to $u_{i}(1 \leq i \leq n)$. Let $\left\{u_{i}^{\prime}, v_{i}^{\prime}: 1 \leq i \leq n\right\}$ be the corresponding set of vertices in second copy of $C B_{n}$.

Define $f: V\left(S h\left(C B_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{array}{ll}
f\left(u_{i}\right)=b & \text { if } \\
1 \leq i \leq n & f\left(u_{i}^{\prime}\right)=c
\end{array} \text { if } \quad 1 \leq i \leq n, ~ f\left(v_{i}^{\prime}\right)=\left\{\begin{array}{lll}
a & \text { if } & i=1 \& n \\
a & \text { if } & i=1 \& n \\
c & \text { if } & 1<i<n
\end{array}\right] .
$$

Then $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $C B_{n}$.

Theorem 5.3.41. $\operatorname{Sh}\left(C B_{n}\right) \in \Omega_{0}$ for all $n \in \mathbb{N}$.

Proof. By labeling all the vertices by $a$, we get $S h\left(C B_{n}\right) \in \Omega_{0}$.

Corollary 5.3.42. $\operatorname{Sh}\left(C B_{n}\right) \in \Omega_{a, 0}$ for all $n>1$.

Proof. Proof directly follows from Theorems 5.3.40 and 5.3.41.

Theorem 5.3.43. $\operatorname{Sh}\left(K_{m, n}\right) \in \Omega_{a}$ for all $m>1$ and $n>1$.

Proof. Let $G$ be the shadow graph $\operatorname{Sh}\left(K_{m, n}\right)$. Let $X=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the bipartition of the first copy of $K_{m, n}$ and let $X^{\prime}=$ $\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \ldots, u_{m}^{\prime}\right\}$ and $Y^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ be the corresponding bipartition second copy of $K_{m, n}$.

Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{array}{ll}
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i=2 \\
a & \text { if } & i>2
\end{array}\right. & f\left(v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=1 \\
c & \text { if } & j=2 \\
a & \text { if } & j>2
\end{array}\right. \\
f\left(u_{i}^{\prime}\right)=a \text { for } 1 \leq i \leq m & f\left(v_{j}^{\prime}\right)=a \text { for } 1 \leq j \leq n
\end{array}
$$

Then $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $S h\left(K_{m, n}\right)$. This completes the proof of the theorem.

Theorem 5.3.44. $S h\left(K_{m, n}\right) \in \Omega_{0}$ for all $m, n \in \mathbb{N}$.

Proof. Labeling all the vertices by $a$, we get $S h\left(K_{m, n}\right) \in \Omega_{0}$.

Corollary 5.3.45. $S h\left(K_{m, n}\right) \in \Omega_{a, 0}$ for all $m>1$ and $n>1$.

Proof. Proof directly follows from Theorems 5.3.43 and 5.3.44.

Theorem 5.3.46. $\operatorname{Sh}\left(B_{n}\right) \in \Omega_{a}$ for all $n \equiv 1(\bmod 2)$.

Proof. Let $G$ be the shadow graph $\operatorname{Sh}\left(B_{n}\right)$ with $n \equiv 1(\bmod 2)$. Let vertex set of first copy of $B_{n}$ be $V_{1}=\left\{\left(u, v_{j}\right),\left(u_{i}, v_{j}\right): 1 \leq i \leq n, 1 \leq j \leq 2\right\}$, where $\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, v_{2}\right\}$ be the vertex sets of $S_{n}$ and $P_{2}$ respectively, and $u$ be the central vertex, $u_{i}^{\prime} s$ are pendant vertices in $S_{n}$. Also let
$V_{2}=\left\{\left(u^{\prime}, v_{j}^{\prime}\right),\left(u_{i}^{\prime}, v_{j}^{\prime}\right): 1 \leq i \leq n, 1 \leq j \leq 2\right\}$ be the corresponding vertex set of second copy of $B_{n}$. Then $V(G)=V_{1} \cup V_{2}$.

Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:
$f\left(u, v_{j}\right)=\left\{\begin{array}{lll}b & \text { if } & j=1 \\ c & \text { if } & j=2\end{array} \quad\right.$ and $\quad f\left(u_{i}, v_{j}\right)=\left\{\begin{array}{lll}b & \text { if } & j=1 \text { and } 1 \leq i \leq n \\ c & \text { if } & j=2 \text { and } 1 \leq i \leq n\end{array}\right.$
$f\left(u^{\prime}, v_{j}^{\prime}\right)=a$ for $1 \leq j \leq 2 \quad$ and $\quad f\left(u_{i}^{\prime}, v_{j}^{\prime}\right)=a$ for $1 \leq i \leq n, 1 \leq j \leq 2$

Clearly, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $\operatorname{Sh}\left(B_{n}\right)$.

Theorem 5.3.47. $\operatorname{Sh}\left(B_{n}\right) \in \Omega_{0}$ for all $n \in \mathbb{N}$.

Proof. By labeling all the vertices by $a$, we get $S h\left(B_{n}\right) \in \Omega_{0}$.
Corollary 5.3.48. $\operatorname{Sh}\left(B_{n}\right) \in \Omega_{a, 0}$ for all $n \equiv 1(\bmod 2)$.

Proof. Proof follows from Theorems 5.3.46 and 5.3.47.

Theorem 5.3.49. $\operatorname{Sh}\left(G_{n}\right) \in \Omega_{0}$ for all $n$.

Proof. Degree of vertices in $\operatorname{Sh}\left(G_{n}\right)$ is either 4 or 6 or $2 n$. If we label all the vertices by $a$, we get $N_{f}^{+}(u)=0$ for all $u \in V\left(S h\left(G_{n}\right)\right)$.

Theorem 5.3.50. $\operatorname{Sh}\left(G_{n}\right) \in \Omega_{a}$ for all $n \equiv 2(\bmod 4)$.

Proof. Let $G$ be the shadow graph $\operatorname{Sh}\left(G_{n}\right)$ with $n \equiv 2(\bmod 4)$. Let $V_{1}=\left\{u, u_{i}\right.$ : $1 \leq i \leq 2 n\}$ and $E_{1}=\left\{u u_{2 i-1}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq 2 n-1\right\} \cup\left\{u_{2 n} u_{1}\right\}$ be the vertex and edge set of first copy of $G_{n}$. Let $V_{2}=\left\{u^{\prime}, u_{i}^{\prime}: 1 \leq i \leq 2 n\right\}$ be
the corresponding vertex set of second copy of $G_{n}$. Then $V(G)=V_{1} \cup V_{2}$.

Define $f: V(G) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f(u)=b \\
& f\left(u^{\prime}\right)=c \\
& f\left(u_{i}\right)=a \quad \text { for } \quad 1 \leq i \leq 2 n \\
& f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{lll}
a & \text { if } & i \equiv 0(\bmod 4) \\
b & \text { if } & i \equiv 1(\bmod 4) \\
a & \text { if } & i \equiv 2(\bmod 4) \\
c & \text { if } & i \equiv 3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Then $f$ is an $a$-neighbourhood $V_{4}$-magic labeling for $\operatorname{Sh}\left(G_{n}\right)$.

Corollary 5.3.51. $\operatorname{Sh}\left(G_{n}\right) \in \Omega_{a, 0}$ for all $n \equiv 2(\bmod 4)$.

Proof. Proof directly follows from Theorem 5.3.49 and Theorem 5.3.50.

### 5.4 Middle graphs

Theorem 5.4.1. $M\left(C_{n}\right) \in \Omega_{a}$ if and only if $n \equiv 0(\bmod 2)$.

Proof. Consider $M\left(C_{n}\right)$ with vertex set $V=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ labeled as in figure 5.4. Suppose that $M\left(C_{n}\right) \in \Omega_{a}$ with a labeling $f$. Then $N_{f}^{+}\left(u_{2}\right)=a$ implies that $f\left(v_{1}\right)+f\left(v_{2}\right)=a$, which implies that either $f\left(v_{1}\right)=b$ or $f\left(v_{1}\right)=c$. Without loss of generality we can assume that $f\left(v_{1}\right)=b$. Then $f\left(v_{2}\right)=c, f\left(v_{3}\right)=b$,
$f\left(v_{4}\right)=c$, etc. and so on. Now $N_{f}^{+}\left(u_{1}\right)=a$ implies that $f\left(v_{1}\right)+f\left(v_{n}\right)=a$, which again implies that $f\left(v_{n}\right)=c$. Hence $n \equiv 0(\bmod 2)$. Conversely, assume that $n \equiv 0(\bmod 2)$. Then define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 0(\bmod 2) \\
c & \text { if } & i \equiv 1(\bmod 2)
\end{array}\right.
$$

Obviously, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $M\left(C_{n}\right)$. This completes the proof of the theorem.


Figure 5.4: The middle graph $M\left(C_{n}\right)$

Theorem 5.4.2. $M\left(C_{n}\right) \in \Omega_{0}$ for all $n \geq 3$.

Proof. By labeling all the vertices by $a$, we get $M\left(C_{n}\right) \in \Omega_{0}$.

Corollary 5.4.3. $M\left(C_{n}\right) \in \Omega_{a, 0}$ if and only if $n \equiv 0(\bmod 2)$.

Proof. Proof directly follows from Theorem 5.4.1 and Theorem 5.4.2.

Theorem 5.4.4. $M\left(P_{n}\right) \notin \Omega_{a}$ for any $n$.

Proof. Consider $M\left(P_{n}\right)$ with vertex set $V=\left\{u_{i}, v_{j}: 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$ and edge set $E=\left\{u_{i} v_{i}: 1 \leq i \leq n-1\right\} \cup\left\{v_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1}\right.$ : $1 \leq i \leq n-2\}$. Assume that $M\left(P_{n}\right) \in \Omega_{a}$ for some $n$ with a labeling $f$. Then $N_{f}^{+}\left(u_{1}\right)=a$ implies that $f\left(v_{1}\right)=a$. Now $N_{f}^{+}\left(u_{2}\right)=a$ implies that $f\left(v_{1}\right)+f\left(v_{2}\right)=$ $a$. Hence $f\left(v_{2}\right)=0$, a contradiction. Hence the theorem is proved.

Theorem 5.4.5. $M\left(P_{n}\right) \notin \Omega_{0}$ for any $n$.

Proof. Proof is obvious, since $M\left(P_{n}\right)$ has pendant vertex in it.

Corollary 5.4.6. $M\left(P_{n}\right) \notin \Omega_{a, 0}$ for any $n$.

Proof. It directly follows from Theorem 5.4.4.

Theorem 5.4.7. $M\left(K_{1, n}\right) \in \Omega_{a}$ if and only if $n \equiv 1(\bmod 2)$.

Proof. Consider $M\left(K_{1, n}\right)$ with vertex set $V=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and edge set $E=\left\{u v_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{j}: 1 \leq i, j \leq n, i \neq j\right\}$. Assume that $M\left(K_{1, n}\right) \in \Omega_{a}$ with a labeling $f$. Then, $N_{f}^{+}\left(u_{i}\right)=a$ implies that $f\left(v_{i}\right)=a$ for all $1 \leq i \leq n$. Consequently, $N_{f}^{+}(u)=a$ gives $n a=a$, which implies that $n \equiv 1(\bmod 2)$. Conversely, assume that $n \equiv 1(\bmod 2)$. Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=b \quad \text { if } \quad i=1,2,3, \ldots, n \\
& f\left(v_{i}\right)=a \quad \text { if } \quad i=1,2,3, \ldots, n \\
& f(u)=c
\end{aligned}
$$

Then $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $M\left(K_{1, n}\right)$.

Theorem 5.4.8. $M\left(K_{1, n}\right) \notin \Omega_{0}$ for any $n$.

Proof. Proof is obvious due to the presence of pendant vertex in $M\left(K_{1, n}\right)$.

Corollary 5.4.9. $M\left(K_{1, n}\right) \notin \Omega_{a, 0}$ for any $n$.

Proof. It directly follows from Theorem 5.4.8.


Figure 5.5: An $a$-neighbourhood $V_{4}$-magic labeling of $M\left(K_{1,5}\right)$

Theorem 5.4.10. $M\left(F_{m}\right) \in \Omega_{0}$ for all $m$.

Proof. Note that degree of each vertex in $M\left(F_{m}\right)$ is even. By labeling all the vertices by $a$, we get $M\left(F_{m}\right) \in \Omega_{0}$ for all $m$.

Theorem 5.4.11. $M\left(F_{m}\right) \notin \Omega_{a}$ for any $m$.

Proof. Consider $M\left(F_{m}\right)$ with vertex set $V=\left\{w, u_{i}, v_{i}, w_{i}^{\prime}, u_{i}^{\prime}, v_{i}^{\prime}: 1 \leq i \leq m\right\}$ labeled as in figure 5.6. Suppose that $M\left(F_{m}\right) \in \Omega_{a}$ with a labeling $f$. Then for each $1 \leq i \leq m, N_{f}^{+}\left(u_{i}\right)=a=N_{f}^{+}\left(v_{i}\right)$ implies that $f\left(u_{i}^{\prime}\right)=\left(v_{i}^{\prime}\right)$. Hence $N_{f}^{+}(w)=\sum f\left(u_{i}^{\prime}\right)+\sum f\left(v_{i}^{\prime}\right)=0$, which is a contradiction. Hence the theorem is proved.


Figure 5.6: The middle graph $M\left(F_{m}\right)$

Corollary 5.4.12. $M\left(F_{m}\right) \notin \Omega_{a, 0}$ for any $m$.

Proof. It directly follows from Theorem 5.4.11.
Theorem 5.4.13. $M\left(B_{m, n}\right) \notin \Omega_{0}$ for any $m$ and $n$.

Proof. Proof is obvious, since $M\left(B_{m, n}\right)$ has pendant vertex in it.
Theorem 5.4.14. $M\left(B_{m, n}\right) \in \Omega_{a}$ if and only if $m$ and $n$ are both even.

Proof. Consider $M\left(B_{m, n}\right)$ with vertex set $V=\left\{u, v, w, u_{i}, v_{j}, u_{i}^{\prime}, v_{j}^{\prime}: 1 \leq i \leq\right.$ $m, 1 \leq j \leq n\}$ and edge set $E=\left\{u_{i} u_{i}^{\prime}: 1 \leq i \leq m\right\} \cup\left\{v_{j} v_{j}^{\prime}: 1 \leq j \leq n\right\} \cup\left\{u_{i}^{\prime} u_{j}^{\prime}:\right.$ $1 \leq i, j \leq m, i \neq j\} \cup\left\{v_{i}^{\prime} v_{j}^{\prime}: 1 \leq i, j \leq n, i \neq j\right\} \cup\left\{u u_{i}^{\prime}: 1 \leq i \leq m\right\} \cup\left\{v v_{j}^{\prime}:\right.$ $1 \leq j \leq n\} \cup\left\{w u_{i}^{\prime}: 1 \leq i \leq m\right\} \cup\left\{w v_{j}^{\prime}: 1 \leq j \leq n\right\} \cup\{w u, w v\}$. Assume that $m$ and $n$ are both even. Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=c \quad \text { if } i=1,2,3, \ldots, m \\
& f\left(u_{i}^{\prime}\right)=a \quad \text { if } i=1,2,3, \ldots, m \\
& f\left(v_{j}\right)=b \quad \text { if } j=1,2,3, \ldots, n \\
& f\left(v_{j}^{\prime}\right)=a \quad \text { if } j=1,2,3, \ldots, n \\
& f(u)=b \\
& f(v)=c \\
& f(w)=a
\end{aligned}
$$

Then, $f$ is an $a$-neighbourhood $V_{4}$-magic labeling of $M\left(B_{m, n}\right)$. Conversely, assume that $m$ and $n$ are not both even. Without loss of generality assume that $m$ is
odd. If $M\left(B_{m, n}\right) \in \Omega_{a}$, then we have $f\left(u_{i}^{\prime}\right)=a$ for $i=1,2,3, \ldots, m$. Now $N_{f}^{+}(u)=\sum f\left(u_{i}\right)+f(w)=a$ implies that $n a+f(w)=a$, which again implies that $f(w)=0$, a contradiction. Therefore, $M\left(B_{m, n}\right) \notin \Omega_{a}$.

Corollary 5.4.15. $M\left(B_{m, n}\right) \notin \Omega_{a, 0}$ for any $n$.

Proof. It directly follows from Theorem 5.4.13.

# Neighbourhood Barycentric $V_{4}$-magic <br> <br> Graphs 

 <br> <br> Graphs}

This chapter introduces the concept of Neighbourhood barycentric $V_{4}$-magic labeling in Graphs. The first section gives the definition of neighbourhood barycentric $V_{4}$-magic labeling in graphs and the second section investigates graphs which are a-neighbourhood barycentric $V_{4}$-magic or 0-neighbourhood barycentric $V_{4}$-magic.

### 6.1 Introduction

Let $V_{4}=\{0, a, b, c\}$ be the Klein-4-group with identity element 0 . For any graph $G=(V(G), E(G))$, a mapping $f: V(G) \rightarrow V_{4} \backslash\{0\}$ is said to be Neighbourhood barycentric $V_{4}$-magic labeling if the induced mapping $N_{f}^{+}: V(G) \rightarrow V_{4}$ defined by $N_{f}^{+}(u)=\sum_{v \in N(u)} f(v)$ satisfies the following conditions:

[^4](a) $N_{f}^{+}$is a constant map, and
(b) For each $u \in V(G), N_{f}^{+}(u)=\operatorname{deg}(u) f\left(v_{u}\right)$ for some vertex $v_{u} \in N(u)$

If this constant is $p$, where $p$ is any non zero element in $V_{4}$, we say that $f$ is a $p$-neighbourhood barycentric $V_{4}$-magic labeling of $G$, and $G$ is said to be a $p$-neighbourhood barycentric $V_{4}$-magic graph. If this constant is 0 , we say that $f$ is a 0-neighbourhood barycentric $V_{4}$-magic labeling of $G$, and $G$ a 0 neighbourhood barycentric $V_{4}$-magic graph. Through out this chapter we use the following notations.
(i) $\Lambda_{a}:=$ the class of all $a$-neighbourhood barycentric $V_{4}$-magic graphs, and
(ii) $\Lambda_{0}:=$ the class of all 0-neighbourhood barycentric $V_{4}$-magic graphs.

### 6.2 Neighbourhood barycentric $V_{4}$-magic graphs

Theorem 6.2.1. The cycle $C_{n} \in \Lambda_{0}$ for all $n \geq 3$.

Proof. By labeling all the vertices of $C_{n}$ by $a$, we get $C_{n} \in \Lambda_{0}$.

Theorem 6.2.2. $C_{n} \notin \Lambda_{a}$ for any $n \geq 3$.

Proof. Consider $C_{n}$ with vertex set $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$. Now for any $v_{i} \in V$ and any $u \in N\left(v_{i}\right)$, we have $\operatorname{deg}\left(v_{i}\right) f(u)=0$. Thus condition(ii) of the definition violates. Hence $C_{n} \notin \Lambda_{a}$.

Theorem 6.2.3. The path $P_{n} \notin \Lambda_{0}$ for any $n>1$.

Proof. Let $P_{n}$ be any path with vertex set $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$. Suppose that $P_{n} \in \Lambda_{0}$ for some $n>1$ with a labeling $f$. Then $N_{f}^{+}\left(v_{1}\right)=0$ implies that $f\left(v_{2}\right)=0$, which is a contradiction. Hence $P_{n} \notin \Lambda_{0}$ for all $n>1$.

Theorem 6.2.4. $P_{n} \notin \Lambda_{a}$ for any $n>1$.

Proof. Proof is obvious, since $P_{n}$ has vertex of degree 2.

Theorem 6.2.5. The complete graph $K_{n} \in \Lambda_{a}$ if and only if $n$ is even.

Proof. Suppose that $K_{n} \in \Lambda_{a}$. Then there exists a vertex labeling $f$ such that for any vertex $u \in V\left(K_{n}\right), N_{f}^{+}(u)=a=\operatorname{deg}(u) f\left(v_{u}\right)$ for some $v_{u} \in N(u)$. Therefore $a=(n-1) f\left(v_{u}\right)$, implying that $n$ is even. Conversely, suppose that $n$ is even. By labeling all the vertices by $a$, we get $K_{n} \in \Lambda_{a}$.

Theorem 6.2.6. $K_{n} \in \Lambda_{0}$ if and only if $n$ is odd.

Proof. Suppose that $K_{n} \in \Lambda_{0}$. Then there exists a vertex labeling $f$ such that for any vertex $u \in V\left(K_{n}\right), N_{f}^{+}(u)=0=\operatorname{deg}(u) f\left(v_{u}\right)$ for some $v_{u} \in N(u)$. Therefore $0=(n-1) f\left(v_{u}\right)$. Hence $n$ is odd. Conversely, suppose that $n$ is odd. By labeling all the vertices by $a$, we get $K_{n} \in \Lambda_{0}$. This completes the proof of the theorem.

Theorem 6.2.7. The graph $K_{m, n} \in \Lambda_{a}$ if and only if both $m$ and $n$ are odd.

Proof. Let $X=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the bipartition of $K_{m, n}$. Assume that $K_{m, n} \in \Lambda_{a}$ with a labeling $f$. Then for each $1 \leq i \leq m$, $N_{f}^{+}\left(u_{i}\right)=a=\operatorname{deg}\left(u_{i}\right) f\left(v_{j}\right)$ for some $1 \leq j \leq n$. Then $n f\left(v_{j}\right)=a$, which implies that $n$ is odd. Similarly for each $1 \leq j \leq n, N_{f}^{+}\left(v_{j}\right)=a=\operatorname{deg}\left(v_{j}\right) f\left(u_{k}\right)$ for some
$1 \leq k \leq m$, implies that $m$ is odd. Conversely, assume that both $m$ and $n$ are odd. Labeling all the vertices by $a$, we get $K_{m, n} \in \Lambda_{a}$.

Theorem 6.2.8. $K_{m, n} \in \Lambda_{0}$ if and only if both $m$ and $n$ are even.

Proof. Let $X=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the bipartition of $K_{m, n}$. Assume that $K_{m, n} \in \Lambda_{0}$ with a labeling $f$. Then for each $1 \leq i \leq m$, $N_{f}^{+}\left(u_{i}\right)=0=\operatorname{deg}\left(u_{i}\right) f\left(v_{j}\right)$ for some $1 \leq j \leq n$. Therefore, $n f\left(v_{j}\right)=0$, hence $n$ is even. Similarly for each $1 \leq j \leq n, N_{f}^{+}\left(v_{j}\right)=0=\operatorname{deg}\left(v_{j}\right) f\left(u_{k}\right)$ for some $1 \leq k \leq m$, implies that $m$ is even. Conversely, assume that both $m$ and $n$ are even. Labeling all the vertices by $a$, we get $K_{m, n} \in \Lambda_{0}$.

Theorem 6.2.9. The star graph $K_{1, n} \in \Lambda_{a}$ if and only if $n$ is odd.

Proof. It directly follows from Theorem 6.2.7.

Theorem 6.2.10. $K_{1, n} \notin \Lambda_{0}$ for any $n \in \mathbb{N}$.

Proof. It is obvious from Theorem 6.2.8.

Theorem 6.2.11. The bistar $B_{m, n} \in \Lambda_{a}$ if and only if both $m$ and $n$ are even.

Proof. Consider bistar $B_{m, n}$ with vertex set $V=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq m\right.$ and $1 \leq$ $j \leq n\}$ where $u_{i}(1 \leq i \leq m)$ and $v_{j}(1 \leq j \leq n)$ are pendant vertices adjacent to $u$ and $v$ respectively. Assume that $B_{m, n} \in \Lambda_{a}$ with a labeling $f$. Then $N_{f}^{+}(u)=$ $a=\operatorname{deg}(u) f\left(w_{u}\right)$ for some $w_{u} \in N(u)$. Therefore, $(m+1) f\left(w_{u}\right)=a$, implies that $m$ is even. Similarly, $N_{f}^{+}(v)=a=\operatorname{deg}(v) f\left(w_{v}\right)$ for some $w_{v} \in N(v)$. Therefore, $(n+1) f\left(w_{v}\right)=a$, implies that $n$ is even. Conversely, assume that both $m$ and $n$ are even. If we label all the vertices by $a$, we get $B_{m, n} \in \Lambda_{a}$.

Theorem 6.2.12. $B_{m, n} \notin \Lambda_{0}$ for any $m$ and $n$.

Proof. Proof is obvious due to the presence of pendant vertices in $B_{m, n}$.

Theorem 6.2.13. The friendship graph $F_{m} \in \Lambda_{0}$ for all $m \in \mathbb{N}$.

Proof. If we label all the vertices of $F_{m}$ by $a$, we will get $F_{m} \in \Lambda_{0}$.

Theorem 6.2.14. $F_{m} \notin \Lambda_{a}$ for any $m \in \mathbb{N}$.

Proof. Proof is obvious due to the presence of even vertices in $F_{m}$.

Theorem 6.2.15. $C_{n} \odot K_{2} \in \Lambda_{0}$ for any $n \geq 3$.

Proof. Degree of vertices in $C_{n} \odot K_{2}$ are either 2 or 4 . By labeling all the vertices by $a$, we get $C_{n} \odot K_{2} \in \Lambda_{0}$.

Theorem 6.2.16. $C_{n} \odot K_{2} \notin \Lambda_{a}$ for any $n \geq 3$.

Proof. Proof is obvious due to the presence of even vertices in $C_{n} \odot K_{2}$.

Theorem 6.2.17. $C_{n} \odot \bar{K}_{m} \in \Lambda_{a}$ if and only if $m$ is odd.

Proof. Suppose that $C_{n} \odot \bar{K}_{m} \in \Lambda_{a}$. Then there exists a labeling $f$ such that, for each $u \in V\left(C_{n} \odot \bar{K}_{m}\right)$, we have $N_{f}^{+}(u)=a=\operatorname{deg}(u) f\left(v_{u}\right)$ for some vertex $v_{u} \in$ $N(u)$. Let $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ be the vertices of $C_{n}$ and $\left\{u_{k_{1}}, u_{k_{2}}, u_{k_{3}}, \ldots, u_{k_{n}}\right\}$ be the vertex set of $k^{t h}$ copy of $\bar{K}_{m}$. Then $N_{f}^{+}\left(u_{1}\right)=a=\operatorname{deg}\left(u_{1}\right) f(v)$ for some vertex $v \in N\left(u_{1}\right)$ implies that $a=(m+2) f(v)$, hence $m$ is odd. Conversely, suppose that $m$ is odd. Labeling all the vertices by $a$, we get $C_{n} \odot \bar{K}_{m} \in \Lambda_{a}$.

Theorem 6.2.18. $C_{n} \odot \bar{K}_{m} \notin \Lambda_{0}$ for any $m$ and $n$.

Proof. Proof is obvious due to the presence of pendant vertices in $C_{n} \odot \bar{K}_{m}$.

Theorem 6.2.19. The wheel $W_{n} \in \Lambda_{a}$ if and only if $n$ is odd.

Proof. Consider the wheel graph $W_{n}$ with vertex set $V=\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ where $u$ be the central vertex. Assume that $W_{n} \in \Lambda_{a}$ for some $n$ with a labeling $f$. Therefore, $N_{f}^{+}(u)=a=\operatorname{deg}(u) f\left(u_{k}\right)$ for some $1 \leq k \leq n$. Implies that $n f\left(u_{k}\right)=a$, hence $n$ is odd. Conversely, assume that $n$ is odd. Then labeling all the vertices by $a$, we get $W_{n} \in \Lambda_{a}$. This completes the proof of the theorem.

Theorem 6.2.20. $W_{n} \notin \Lambda_{0}$ for any $n$.

Proof. Let $V=\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ be the vertex set of $W_{n}$ with central vertex $u$. Assume that $W_{n} \in \Lambda_{a}$ with a labeling $f$. Then $N_{f}^{+}\left(u_{1}\right)=0=\operatorname{deg}\left(u_{1}\right) f(v)$ for some $v \in N\left(u_{1}\right)$. Therefore $f(v)=0$, a contradiction. Hence the proof.

Theorem 6.2.21. The helm graph $H_{n} \notin \Lambda_{0}$ for any $n$.

Proof. Proof is obvious due the presence pendant vertices in $H_{n}$.

Theorem 6.2.22. $H_{n} \notin \Lambda_{a}$ for any $n$.

Proof. Proof is obvious due the presence even degree vertices in $H_{n}$.

Theorem 6.2.23. The flower graph $F l_{n} \in \Lambda_{0}$ for all $n$.

Proof. In the flower graph $F l_{n}$, the degree of vertices are either 2 or 4 or $2 n$. By labeling all the vertices $F l_{n}$ by $a$, we get $F l_{n} \in \Lambda_{0}$.

Theorem 6.2.24. $F l_{n} \notin \Lambda_{a}$ for any $n$.

Proof. Proof is obvious due the presence even degree vertices in $F l_{n}$.

Theorem 6.2.25. The sunflower graph $S F_{n} \notin \Lambda_{0}$ for any $n$.

Proof. Since $S F_{n}$ has odd vertices, $S F_{n} \notin \Lambda_{0}$ for all $n$.

Theorem 6.2.26. $S F_{n} \notin \Lambda_{a}$ for any $n$.

Proof. Proof is obvious due the presence even degree vertices in $S F_{n}$.

Theorem 6.2.27. Let $G$ be a $k$-regular graph, then $G \in \Lambda_{a}$ if and only if $k$ is odd.

Proof. Let $G$ be any $k$-regular graph. Suppose that $G \in \Lambda_{a}$. Then there exists a vertex labeling $f$ such that each vertex $u \in V(G), N_{f}^{+}(u)=a=\operatorname{deg}(u) f\left(v_{u}\right)$ for some $v_{u} \in N(u)$. Therefore $k f\left(v_{u}\right)=a$, implies that $k$ is odd. Conversely, suppose that $k$ is odd. By labeling all the vertices by $a$, we get $G \in \Lambda_{a}$.

Theorem 6.2.28. Let $G$ be a $k$-regular graph, then $G \in \Lambda_{0}$ if and only if $k$ is even.

Proof. Let $G$ be any $k$-regular graph. Suppose that $G \in \Lambda_{0}$. Then there exists a vertex labeling $f$ such that each vertex $u \in V(G), N_{f}^{+}(u)=0=\operatorname{deg}(u) f\left(v_{u}\right)$ for some $v_{u} \in N(u)$. Therefore $k f\left(v_{u}\right)=0$, implies that $k$ is even. Conversely, suppose that $k$ is even. By labeling all the vertices by $a$, we get $G \in \Lambda_{0}$. Completes the proof of the theorem.

Theorem 6.2.29. The graph $J(m, n) \in \Lambda_{a}$ if and only if both $m$ and $n$ are odd.

Proof. Let $G$ be the graph $J(m, n)$. Then $G$ has $(m+n+4)$ vertices and $(m+n+5)$ edges. Also let $V(G)=V_{1} \cup V_{2}$ where $V_{1}=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}, V_{2}=\left\{u_{i}, v_{j}: 1 \leq i \leq\right.$ $m, 1 \leq j \leq n\}$ and $E(G)=E_{1} \cup E_{2}$ where $E_{1}=\left\{w_{1} w_{2}, w_{2} w_{3}, w_{3} w_{4}, w_{4} w_{1}, w_{1} w_{3}\right\}$, $E_{2}=\left\{w_{2} u_{i}, w_{4} v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$. Assume that $J(m, n) \in \Lambda_{a}$ with a labeling $f$. Then $N_{f}^{+}\left(w_{2}\right)=a=\operatorname{deg}\left(w_{2}\right) f(w)$ for some vertex $w \in N\left(w_{2}\right)$. Which implies that $(m+2) f(w)=a$, hence $m$ is odd. Also $N_{f}^{+}\left(w_{4}\right)=a=\operatorname{deg}\left(w_{4}\right) f(w)$ for some vertex $w \in N\left(w_{4}\right)$. Which implies that $(n+2) f(w)=a$, hence $n$ is odd. Conversely, assume that both $m$ and $n$ are odd. Labeling all the vertices by $a$, we get $J(m, n) \in \Lambda_{a}$.

Theorem 6.2.30. $J(m, n) \notin \Lambda_{0}$ for any $m$ and $n$.

Proof. Proof is obvious, since $J(m, n)$ has pendant vertices in it.

Theorem 6.2.31. $<K_{1, n}: m>\in \Lambda_{a}$ if and only if $m$ is odd and $n$ is even.

Proof. Let $G$ be the graph $<K_{1, n}: m>$, let $V_{i}=\left\{u_{i}, u_{i j}: 1 \leq j \leq n\right\}$ be the vertex set of $i^{\text {th }}$ copy of $K_{1, n}$ with apex $u_{i}$ and let $u$ be the unique vertex adjacent to the central vertices $u_{i}(1 \leq i \leq m)$. Then $V(G)=V_{1} \cup$ $V_{2} \cup \ldots \cup V_{m} \cup\{u\}$. Suppose that $<K_{1, n}: m>\in \Lambda_{a}$ with a labeling $f$. Then $N_{f}^{+}(u)=a=\operatorname{deg}(u) f\left(u_{k}\right)$ for some $1 \leq k \leq m$. Therefore $m f\left(u_{k}\right)=a$, implies that $m$ is odd. Similarly $N_{f}^{+}\left(u_{i}\right)=a=\operatorname{deg}\left(u_{i}\right) f(v)$ for some $v \in N\left(u_{i}\right)$, implies that $(n+1) f(v)=a$ and hence $n$ is even. Conversely, assume that $m$ is odd and $n$ is even. Labeling all the vertices by $a$, we get $<K_{1, n}: m>\in \Lambda_{a}$.

Theorem 6.2.32. $<K_{1, n}: m>\notin \Lambda_{0}$ for all $m$ and $n$.

Proof. It is obvious due to the presence of pendant vertex in $\left\langle K_{1, n}: m\right\rangle$.

Theorem 6.2.33. The Ladder $L_{n}$ is neither a-neighbourhood barycentric $V_{4}$ magic nor 0-neighbourhood barycentric $V_{4}$-magic for any $n$.

Proof. Proof is obvious since $L_{n}$ has vertices of degree 2 and 3 .

Theorem 6.2.34. The Ladder $L_{n+2} \in \Lambda_{a}$ for all $n$.

Proof. If we label all the vertices of $L_{n+2}$ by $a$, we get $L_{n+2} \in \Lambda_{a}$.

Theorem 6.2.35. $L_{n+2} \notin \Lambda_{0}$ for any $n$.

Proof. Proof is obvious due to the presence of pendant vertices in $L_{n+2}$.

Theorem 6.2.36. The quadrilateral snake $Q S_{n} \in \Lambda_{0}$ for all $n$.

Proof. Note that in $Q S_{n}$, degree of each vertex is either 2 or 4 . By labeling all the vertices of $Q S_{n}$ by $a$, we get $Q S_{n} \in \Lambda_{0}$ for all $n$.

Theorem 6.2.37. $Q S_{n} \notin \Lambda_{a}$ for any $n$.

Proof. Proof is obvious due to the presence of even vertices in $Q S_{n}$.

Theorem 6.2.38. The graph $P_{2} \square C_{n} \in \Lambda_{a}$ for all $n \geq 3$.

Proof. Consider $P_{2} \square C_{n}$ with vertex set $V=\left\{\left(u_{i}, v_{j}\right): 1 \leq i \leq 2,1 \leq j \leq n\right\}$. Then degree of each vertex is 3 . Labeling all the vertices by $a$, we get $P_{2} \square C_{n} \in \Lambda_{a}$ for all $n \geq 3$.

Theorem 6.2.39. $P_{2} \square C_{n} \notin \Lambda_{0}$ for any $n \geq 3$.

Proof. Proof is obvious, since $P_{2} \square C_{n}$ has odd vertices.

Theorem 6.2.40. The crown graph $C_{n}^{*} \in \Lambda_{a}$ for all $n \geqslant 3$.

Proof. The degree of vertices of a crown graph are either 1 or 3 . By labeling all the vertices by $a$, we get $C_{n}^{*} \in \Lambda_{a}$.

Theorem 6.2.41. $C_{n}^{*} \notin \Lambda_{0}$ for any $n \geq 3$.

Proof. Proof is obvious due to the presence of pendant vertices in $C_{n}^{*}$.

Theorem 6.2.42. $P_{2} \square C_{n}^{*} \in \Lambda_{0}$ for all $n \geq 3$.

Proof. Consider the graph $P_{2} \square C_{n}^{*}$. Then degree of each vertex is either 2 or 4 . Labeling all the vertices by $a$, we get $P_{2} \square C_{n}^{*} \in \Lambda_{0}$.

Theorem 6.2.43. $P_{2} \square C_{n}^{*} \notin \Lambda_{a}$ for any $n \geq 3$.

Proof. Proof directly follows since $P_{2} \square C_{n}^{*}$ has even vertices.

Theorem 6.2.44. $B_{n}=S_{n} \square P_{2} \in \Lambda_{0}$ if and only if $n$ is odd.

Proof. Let $V_{1}=\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}\right\}$ be the vertex sets of $S_{n}$ and $P_{2}$ respectively, where $u$ be the central vertex and $u_{i}^{\prime} s$ are pendant vertices in $S_{n}$. Then $V\left(B_{n}\right)=\left\{\left(u, v_{j}\right),\left(u_{i}, v_{j}\right): 1 \leq i \leq n, 1 \leq j \leq 2\right\}$. Assume that $B_{n} \in \Lambda_{a}$ with a labeling $f$. Then $N_{f}^{+}\left[\left(u, v_{1}\right)\right]=0=\operatorname{deg}\left[\left(u, v_{1}\right)\right] f(w)$ for some $w \in N\left[\left(u, v_{1}\right)\right]$. Therefore $(n+1) f(w)=0$, implies that $n$ is odd. Conversely, assume that $n$ is odd. By labeling all the vertices by $a$, we get $B_{n} \in \Lambda_{a}$.

Theorem 6.2.45. $B_{n} \notin \Lambda_{a}$ for any $n$.

Proof. Proof is obvious, since $B_{n}$ has even vertices.

Theorem 6.2.46. $A$ tree $T \in \Lambda_{a}$ if and only if all the vertices of $T$ are odd.

Proof. Let $T$ be any $(p, q)$ tree with vertex set $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}$ where $\operatorname{deg}\left(v_{i}\right)=k_{i}$ for $i=1,2,3, \ldots, p$. Assume that $T \in \Lambda_{a}$ with a labeling $f$. Then for each $1 \leq i \leq p, N_{f}^{+}\left(v_{i}\right)=a=\operatorname{deg}\left(v_{i}\right) f\left(v_{j}\right)$ for some $v_{j} \in N\left(v_{i}\right)$, which implies that $k_{i} f\left(v_{j}\right)=a$. Hence $k_{i}$ is odd. Conversely, assume that for each $1 \leq i \leq p$, $k_{i}$ is odd. By labeling all the vertices of $T$ by $a$, we get $T \in \Lambda_{a}$.

Theorem 6.2.47. Let $T$ be any $(p, q)$ tree, then $T \notin \Lambda_{0}$.

Proof. Proof is obvious due to the presence of pendant vertices in $T$.

We now describe an important property of $a$-neighbourhood and 0 -neighbourhood barycentric $V_{4}$-magic graphs. That is, there is no graph which belong to both $\Lambda_{a}$ and $\Lambda_{0}$.

Theorem 6.2.48. The class $\Lambda_{a}$ and $\Lambda_{0}$ are disjoint. ie, $\Lambda_{a} \cap \Lambda_{0}=\Phi$.

Proof. Suppose that there is a graph $G$ such that $G \in \Lambda_{a} \cap \Lambda_{0}$. Since $G \in \Lambda_{a}$, there exists a vertex labeling $f$ such that for any $u \in V(G), N_{f}^{+}(u)=a=\operatorname{deg}(u) f\left(v_{u}\right)$ for some vertex $v_{u} \in N(u)$. Again since $G \in \Lambda_{0}$, there exists a vertex labeling $g$ such that for the same $u \in V(G), N_{g}^{+}(u)=0=\operatorname{deg}(u) g\left(w_{u}\right)$ for some vertex $w_{u} \in N(u)$. Now we consider the following cases:

Case 1: $\operatorname{deg}(u)$ is even.
Then, $N_{f}^{+}(u)=a=\operatorname{deg}(u) f\left(v_{u}\right)$ implies that $a=0$, which is a contradiction.

Case 2: $\operatorname{deg}(u)$ is odd.
$N_{g}^{+}(u)=0=\operatorname{deg}(u) g\left(w_{u}\right)$ implies that $g\left(w_{u}\right)=0$, which is also a contradiction.

Therefore, $\Lambda_{a} \cap \Lambda_{0}=\Phi$.

## Chapter <br> 7

## Star $V_{4}$-magic Labeling of Graphs

This chapter introduces a new type of labeling called star $V_{4}$ magic labeling of graphs. The first section of this chapter gives the definition of star $V_{4}$-magic labeling in graphs. The second section investigates class of graphs which are a-star $V_{4}$-magic or 0-star $V_{4}$-magic and both a-star and 0 -star $V_{4}$-magic.

### 7.1 Introduction

Let $V_{4}=\{0, a, b, c\}$ be the Klein-4-group with identity element 0 . We say that, a graph $G=(V(G), E(G))$, star $V_{4}$-magic if there exists a labeling $f: V(G) \rightarrow$ $V_{4} \backslash\{0\}$ such that the induced mapping $V_{f}^{+}: V(G) \rightarrow V_{4}$ defined by

$$
V_{f}^{+}(v)=\sum_{u \in N(v)} f^{*}(u v), \text { where } f^{*}(u v)=f(u)+f(v)
$$

is a constant map. If this constant is $p$, where $p$ is any non zero element in $V_{4}$, then we say that $f$ is a $p$-star $V_{4}$-magic labeling of $G$ and $G$ is said to be a $p$-star

[^5]$V_{4}$-magic graph. If this constant is 0 , then we say that $f$ is a 0 -star $V_{4}$-magic labeling of $G$ and $G$ is said to be a 0 -star $V_{4}$-magic graph. Through out this chapter we use the following notations:
(i) $\Psi_{a}:=$ the class of all $a$-star $V_{4}$-magic graphs,
(ii) $\Psi_{0}:=$ the class of all 0 -star $V_{4}$-magic graphs, and
(iii) $\Psi_{a, 0}:=\Psi_{a} \cap \Psi_{0}$.

### 7.2 Star $V_{4}$-magic labeling of graphs

Lemma 7.2.1. Let $G$ be any graph and $f: V(G) \rightarrow V_{4} \backslash\{0\}$ is any labeling of $G$, then $\sum_{v \in V} V_{f}^{+}(v)=0$.

Proof. Let $G$ be the graph with vertex set $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and let $f$ : $V(G) \rightarrow V_{4} \backslash\{0\}$ is any labeling of $G$. Then,

$$
\sum_{i=1}^{n} V_{f}^{+}\left(v_{i}\right)=2 \sum \operatorname{deg}\left(v_{i}\right) f\left(v_{i}\right)=0 .
$$

This completes the proof.

Lemma 7.2.2. Let $G$ be any $(p, q)$ graph, then $G \in \Psi_{0}$.

Proof. Let $G$ be the graph with vertex set $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{p}\right\}$. Labeling all the vertices $v_{i}$ by $a$, we get $f^{*} \equiv 0$. Then $V_{f}^{+}\left(v_{i}\right)=0$ for all $v_{i} \in V$. This completes the proof of the Lemma.

Theorem 7.2.3. $C_{n} \in \Psi_{a}$ if and only if $n \equiv 0(\bmod 4)$.

Proof. Assume that $C_{n} \in \Psi_{a}$ with a labeling $f$. Then by Lemma 7.2.1, we have $n a=0$. Therefore $n \equiv 0(\bmod 2)$. Then either $n \equiv 0(\bmod 4)$ or $n \equiv 2(\bmod 4)$. We prove that the case where $n \equiv 2(\bmod 4)$ is impossible. For if $n \equiv 2(\bmod 4)$, then $n=4 k+2$ for some positive integer $k$. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{4 k}, v_{4 k+1}, v_{4 k+2}$ be the vertices of $C_{n}$ in order. Now $V_{f}^{+}\left(v_{2}\right)=a$ implies that $f\left(v_{1}\right)+f\left(v_{3}\right)=a$, which implies that $f\left(v_{1}\right)$ is either $b$ or $c$. Without loss of generality, we assume that $f\left(v_{1}\right)=b$. If $f\left(v_{1}\right)=b$, then $f\left(v_{3}\right)=c, f\left(v_{5}\right)=b, f\left(v_{7}\right)=c, f\left(v_{9}\right)=b$, $f\left(v_{11}\right)=c$. Proceeding like this we get $f\left(v_{4 k+1}\right)=b$. Then, $V_{f}^{+}\left(v_{4 k+2}\right)=f\left(v_{1}\right)+$ $f\left(v_{4 k+1}\right)=b+b=0$, a contradiction. Therefore, $n \equiv 2(\bmod 4)$ is impossible. Hence $n \equiv 0(\bmod 4)$. Conversely, assume that $n \equiv 0(\bmod 4)$. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the vertices of $C_{n}$ in order. Define $f: V\left(C_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as :

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 0,3(\bmod 4) \\
c & \text { if } & i \equiv 1,2(\bmod 4)
\end{array}\right.
$$

Then, $V_{f}^{+}\left(v_{i}\right)=a$ for $1 \leq i \leq n$. This completes the proof of the theorem.

Corollary 7.2.4. $C_{n} \in \Psi_{a, 0}$ if and only if $n \equiv 0(\bmod 4)$.

Proof. Proof follows from Lemma 7.2.2 and Theorem 7.2.3.

Theorem 7.2.5. $P_{n} \in \Psi_{a}$ if and only if $n \equiv 0(\bmod 2)$.

Proof. Let $P_{n}$ be a path with vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ in order. Assume that $P_{n} \in$ $\Psi_{a}$ with a labeling $f$. Then by Lemma 7.2.1, we have $\sum_{i=1}^{n} V_{f}^{+}\left(v_{i}\right)=0$, implies that $n a=0$. Hence $n \equiv 0(\bmod 2)$. Conversely, assume that $n \equiv 0(\bmod 2)$. We
define $f: V\left(P_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 0,1(\bmod 4) \\
c & \text { if } & i \equiv 2,3(\bmod 4)
\end{array}\right.
$$

Then, $V_{f}^{+}\left(v_{i}\right)=a$ for all $v_{i} \in V\left(P_{n}\right)$. Hence the result.


Figure 7.1: An $a$-star $V_{4}$-magic labeling of $P_{10}$

Corollary 7.2.6. $P_{n} \in \Psi_{a, 0}$ if and only if $n \equiv 0(\bmod 2)$.

Proof. Proof directly follows from Lemma 7.2.2 and Theorem 7.2.5.

Theorem 7.2.7. The complete graph $K_{n} \in \Psi_{a}$ if and only if $n \equiv 0(\bmod 2)$.

Proof. Suppose that $K_{n} \in \Psi_{a}$. Then by Lemma 7.2.1 we have $n a=0$, therefore $n \equiv 0(\bmod 2)$. Conversely, suppose that $n \equiv 0(\bmod 2)$. Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the vertex set of $K_{n}$. Define $f: V \rightarrow V_{4} \backslash\{0\}$ as :

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i>1
\end{array}\right.
$$

Then,

$$
V_{f}^{+}\left(v_{i}\right)=\left\{\begin{array}{l}
(n-1) \cdot a=a \quad \text { for } \quad i=1 \\
a+(n-2) \cdot 0=a \quad \text { for } \quad i>1
\end{array}\right.
$$

Hence the proof is complete.

Corollary 7.2.8. $K_{n} \in \Psi_{a, 0}$ if and only if $n \equiv 0(\bmod 2)$.

Proof. Proof follows from Lemma 7.2.2 and Theorem 7.2.7.

Theorem 7.2.9. $K_{1, n} \in \Psi_{a}$ if and only if $n$ is odd.

Proof. Consider $K_{1, n}$ with vertex set $V=\left\{v_{i}: 0 \leq i \leq n\right\}$ where $v_{0}$ is the apex.
Suppose that $K_{1, n} \in \Psi_{a}$ with a labeling $f$. Then by Lemma 7.2.1, we have

$$
\sum_{i=0}^{n} V_{f}^{+}\left(v_{i}\right)=0
$$

Implying that $(n+1) a=0$, hence $n$ is odd. Conversely, suppose that $n$ is odd.
We define $f: V \rightarrow V_{4} \backslash\{0\}$ as :

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right.
$$

Then $f$ is an $a$-star $V_{4}$-magic labeling of $K_{1, n}$.

Corollary 7.2.10. $K_{1, n} \in \Psi_{a, 0}$ if and only if $n$ is odd.

Proof. Proof follows from Lemma 7.2.2 and Theorem 7.2.9.

Theorem 7.2.11. $K_{m, n} \in \Psi_{a}$ if and only if $m+n \equiv 0(\bmod 2)$.

Proof. Consider $K_{m, n}$ with bipartition $X=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and $Y=\left\{v_{1}, v_{2}\right.$, $\left.v_{3}, v_{4}, \ldots, v_{n}\right\}$. Assume that $K_{m, n} \in \Psi_{a}$, then by Lemma 7.2.1 we have $(m+n) a=$ 0 , implies that $m+n \equiv 0(\bmod 2)$. Conversely, assume that $m+n \equiv 0(\bmod 2)$. Then both $m$ and $n$ are odd or $m$ and $n$ are even.

Case 1: $m$ and $n$ are odd.

Define $f: V\left(K_{m, n}\right) \rightarrow V_{4} \backslash\{0\}$ as :

$$
\begin{aligned}
& f\left(u_{i}\right)=b \text { for } i=1,2,3, \ldots, m \\
& f\left(v_{i}\right)=c \text { for } i=1,2,3, \ldots, n
\end{aligned}
$$

Case 2: $m$ and $n$ are even.

Define $f: V\left(K_{m, n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i \geq 2
\end{array} \quad f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i \geq 2
\end{array}\right.\right.
$$

In either case, $f$ is an $a$-star $V_{4}$-magic labeling of $K_{m, n}$.

Corollary 7.2.12. $K_{m, n} \in \Psi_{a, 0}$ if and only if $m+n \equiv 0(\bmod 2)$.

Proof. Proof follows from Lemma 7.2.2 and Theorem 7.2.11.

Theorem 7.2.13. The bistar $B_{m, n} \in \Psi_{a}$ if and only if $m+n \equiv 0(\bmod 2)$.

Proof. Consider the bistar $B_{m, n}$ with vertex set $V=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq\right.$ $m$ and $1 \leq j \leq n\}$, where $u_{i}(1 \leq i \leq m)$ and $v_{j}(1 \leq j \leq n)$ are pendant vertices adjacent to $u$ and $v$ respectively. Assume that $B_{m, n} \in \Psi_{a}$ with
a labeling $f$. Therefore, $V_{f}^{+}(u)=a$ for all $u \in V$. Then by Lemma 7.2.1, we have $\sum_{u \in V} V_{f}^{+}(u)=0$. Implies that $(m+n+2) a=0$, which again implies that $m+n \equiv 0(\bmod 2)$. Conversely, assume that $m+n \equiv 0(\bmod 2)$. Then we have both $m$ and $n$ are even or $m$ and $n$ are odd.

Case 1: $m$ and $n$ are even

Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f(v)=f\left(u_{i}\right)=b \quad \text { for } i=1,2,3, \ldots, m \\
& f(u)=f\left(v_{i}\right)=c \quad \text { for } \quad i=1,2,3, \ldots, n
\end{aligned}
$$

Case 2: $m$ and $n$ are odd

Define $f: V \rightarrow V_{4} \backslash\{0\}$ as :

$$
\begin{aligned}
& f(u)=f(v)=b \\
& f\left(u_{i}\right)=f\left(v_{j}\right)=c \text { for } i=1,2,3, \ldots, m \text { and } j=1,2,3, \ldots, n
\end{aligned}
$$

In either case, $f$ is an $a$-star $V_{4}$-magic labeling of $B_{m, n}$. Hence the theorem is proved.

Corollary 7.2.14. $B_{m, n} \in \Psi_{a, 0}$ if and only if $m+n \equiv 0(\bmod 2)$.

Proof. Proof directly follows from Lemma 7.2.2 and Theorem 7.2.13.
Theorem 7.2.15. The wheel graph $W_{n} \in \Psi_{a}$ if and only if $n$ is odd.

Proof. Assume that $W_{n} \in \Psi_{a}$. Then by Lemma 7.2.1, we have $(n+1) a=0$. Hence $n$ is odd. Conversely, assume that $n$ is odd. Let $V=\left\{u_{i}: 0 \leq i \leq n\right\}$ be the vertex set of $W_{n}$, where $u_{0}$ be the central vertex. Define $f: V \rightarrow V_{4} \backslash\{0\}$ as :

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right.
$$

Then, $V_{f}^{+}\left(u_{i}\right)=0$ for all $i$. This completes the proof.

Corollary 7.2.16. $W_{n} \in \Psi_{a, 0}$ if and only if $n$ is odd.

Proof. Proof directly follows from Lemma 7.2.2 and Theorem 7.2.15.

Theorem 7.2.17. $H_{n} \notin \Psi_{a}$ for all $n$.

Proof. Suppose that $H_{n} \in \Psi_{a}$ for some $n$. Then by Lemma 7.2.1, we have ( $2 n+$ 1). $a=0$, implies that $a=0$, a contradiction. Hence $H_{n} \notin \Psi_{a}$ for all $n$.

Corollary 7.2.18. $H_{n} \notin \Psi_{a, 0}$ for all $n$.

Proof. It follows from Theorem 7.2.17.

Theorem 7.2.19. The Jelly fish $J(m, n) \in \Psi_{a}$ if and only if $m+n \equiv 0(\bmod 2)$.

Proof. Assume that $J(m, n) \in \Psi_{a}$. Then by Lemma 7.2.1, we have $(m+n+4) a=$ 0 . Hence $m+n \equiv 0(\bmod 2)$. Conversely, assume that $m+n \equiv 0(\bmod 2)$. Then either $m$ and $n$ are even or $m$ and $n$ are odd. Let $V(J(m, n))=V_{1} \cup V_{2}$ where $V_{1}=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}, V_{2}=\left\{u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E(G)=E_{1} \cup E_{2}$, where $E_{1}=\left\{w_{1} w_{2}, w_{2} w_{3}, w_{3} w_{4}, w_{4} w_{1}, w_{1} w_{3}\right\}, E_{2}=\left\{w_{2} u_{i}, w_{4} v_{j}: 1 \leq i \leq m, 1 \leq\right.$ $j \leq n\}$.

Case 1: Both $m$ and $n$ are even.

Define $f: V(J(m, n)) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(w_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i \geq 2
\end{array}\right. \\
& f\left(u_{i}\right)=b \text { for } 1 \leq i \leq m \\
& f\left(v_{j}\right)=b \text { for } 1 \leq j \leq n
\end{aligned}
$$

Case 2: Both $m$ and $n$ are odd
Define $f: V(J(m, n)) \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(w_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i=1,2,3 \\
b & \text { if } & i=4
\end{array}\right. \\
& f\left(u_{i}\right)=b \text { for } 1 \leq i \leq m \\
& f\left(v_{j}\right)=c \text { for } 1 \leq j \leq n
\end{aligned}
$$

In either case, $f$ is an $a$-star $V_{4}$-magic labeling of $J(m, n)$.


Figure 7.2: An $a$-star $V_{4}$-magic labeling of $J(5,3)$

Theorem 7.2.20. $J(m, n) \in \Psi_{a, 0}$ if and only if $m+n \equiv 0(\bmod 2)$.

Proof. Proof is obvious from Lemma 7.2.2 and Theorem 7.2.19.

Theorem 7.2.21. The crown $C_{n}^{*} \in \Psi_{a}$ for all $n \geq 3$.

Proof. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the rim vertices and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the pendant vertices adjacent to $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ respectively in $C_{n}^{*}$. We define $f$ : $V\left(C_{n}^{*}\right) \rightarrow V_{4} \backslash\{0\}$ as :

$$
\begin{aligned}
& f\left(u_{i}\right)=b \quad \text { for } \quad i=1,2,3, \ldots, n \\
& f\left(v_{i}\right)=c \quad \text { for } \quad i=1,2,3, \ldots, n
\end{aligned}
$$

Then, $V_{f}^{+}\left(u_{i}\right)=V_{f}^{+}\left(v_{i}\right)=a$ for $i=1,2,3, \ldots, n$. This completes the proof.

Corollary 7.2.22. $C_{n}^{*} \in \Psi_{a, 0}$ for all $n \geq 3$.

Proof. Proof obviously follows from Lemma 7.2 .2 and Theorem 7.2.21.

Theorem 7.2.23. The flower graph $F l_{n} \notin \Psi_{a}$ for all $n$.

Proof. Suppose that $F l_{n} \in \Psi_{a}$. Then by Lemma 7.2.1, we have $(2 n+1) a=0$. Implies that $a=0$, a contradiction. Hence $F l_{n} \notin \Psi_{a}$ for all $n$.

Corollary 7.2.24. $F l_{n} \notin \Psi_{a, 0}$ for all $n$.

Proof. Proof is obvious from Theorem 7.2.23.

Theorem 7.2.25. The friendship graph $F_{m} \notin \Psi_{a}$ for all $m$.

Proof. Suppose that $F_{m} \in \Psi_{a}$. Then by Lemma 7.2.1, we have $(2 m+1) a=0$. Implies that $a=0$, a contradiction. Hence $F_{m} \notin \Psi_{a}$ for all $m$.

Corollary 7.2.26. $F_{m} \notin \Psi_{a, 0}$ for all $m$.

Proof. Proof follows from Theorem 7.2.25.

Theorem 7.2.27. The book graph $B_{n} \in \Psi_{a}$ for all $n$.

Proof. Let $V_{1}=\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}\right\}$ be the vertex sets of $S_{n}$ and $P_{2}$ respectively, where $u$ be the central vertex and $u_{i}^{\prime} s$ are pendant vertices in $S_{n}$. Then $V\left(B_{n}\right)=\left\{\left(u, v_{j}\right),\left(u_{i}, v_{j}\right): 1 \leq i \leq n, 1 \leq j \leq 2\right\}$. We define $f: V\left(B_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as :

$$
\begin{aligned}
& f\left(u, v_{j}\right)=f\left(u_{i}, v_{j}\right)=b \quad \text { for } \quad 1 \leq i \leq n \text { and } j=1 \\
& f\left(u, v_{j}\right)=f\left(u_{i}, v_{j}\right)=c \quad \text { for } \quad 1 \leq i \leq n \text { and } j=2
\end{aligned}
$$

Then, $V_{f}^{+} \equiv a$. Hence the proof.

Corollary 7.2.28. $B_{n} \in \Psi_{a, 0}$ for all $n$.

Proof. Proof follows from Lemma 7.2.2 and Theorem 7.2.27.

# Star $V_{4}$-magic Labeling of Some Special Graphs 

This chapter investigates star $V_{4}$-magic labeling of fan related graphs and some more graphs. The first section provides definitions of fan, fan related graphs and some other graphs. Second section discusses star $V_{4}$-magic labeling of fan and fan related graphs. The last section of the chapter investigates star $V_{4}$-magic labeling of few more graphs.

### 8.1 Introduction

The graph $\mathbb{F}_{n}=P_{n} \vee K_{1}$ is called a fan where $P_{n}: u_{1} u_{2} \ldots u_{n}$ be a path and $V\left(K_{1}\right)=u$. The Umbrella $U_{n, m}(m>1)$ is obtained from a fan $\mathbb{F}_{n}$ by appending a path $P_{m}: v_{1} v_{2} \ldots v_{m}$ to the central vertex of the fan $\mathbb{F}_{n}[17]$. An extended umbrella graph $U_{n, m, k}$ is a graph obtained by identifying the pendant vertex of the umbrella $U_{n, m}$ with the apex of the star $K_{1, k}$. The Jahangir graph $J_{n, m}$ for
$m \geq 3$ is a graph consisting of a cycle $C_{n m}$ with one additional vertex called the central vertex which is adjacent to $m$ vertices of $C_{n m}$ at distance $n$ to each other on $C_{n m}$ [15]. The web graph $W(2, n)$ is the graph obtained by joining the pendant vertices of a helm $H_{n}$ to form a cycle and then adding a single pendant edge to each vertex of the outer cycle [8]. The Jewel Graph $J_{n}$ is a graph with vertex set $V\left(J_{n}\right)=\left\{u, x, v, y, v_{i}: 1 \leq i \leq n\right\}$ and the edge set $E\left(J_{n}\right)=\left\{u x, v x, u y, v y, x y, u v_{i}, v v_{i}: 1 \leq i \leq n\right\}[20]$.


Figure 8.1: Fan graph $\mathbb{F}_{7}$

### 8.2 Fan related graphs

Theorem 8.2.1. The fan $\mathbb{F}_{n} \in \Psi_{a}$ if and only if $n \equiv 1(\bmod 2)$.

Proof. Assume that $\mathbb{F}_{n} \in \Psi_{a}$ with a labeling $f$. Then by Lemma 7.2.1, we have $(n+1) \cdot a=0$, which implies that $n \equiv 1(\bmod 2)$. Conversely, assume that $n \equiv 1(\bmod 2)$. Let $\mathbb{F}_{n}$ be the fan with apex $u_{0}$ and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of the path $P_{n}$ in order. Define $f: V\left(\mathbb{F}_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j=0 \\
c & \text { if } & j \geq 1
\end{array}\right.
$$

Then, $V_{f}^{+}\left(u_{j}\right)=a$ for all $j$. This completes the proof of the theorem.
Corollary 8.2.2. $\mathbb{F}_{n} \in \Psi_{a, 0}$ if and only if $n \equiv 1(\bmod 2)$.

Proof. Proof follows from Lemma 7.2.2 and Theorem 8.2.1

Theorem 8.2.3. The umbrella $U_{n, m} \in \Psi_{a}$ if and only if $(n+m) \equiv 0(\bmod 2)$.

Proof. Suppose that $U_{n, m} \in \Psi_{a}$ with a labeling $f$. Then by Lemma 7.2.1, we have $(n+m) \cdot a=0$. Hence $(n+m) \equiv 0(\bmod 2)$. Conversely, suppose that $(n+m) \equiv 0(\bmod 2)$. Let the vertex set of $U_{n, m}$ be $V=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}, u_{0}=\right.$ $\left.v_{1}, v_{2}, v_{3}, \ldots, v_{m}\right\}$ and edge set $E=\left\{u_{0} u_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq m-1\right\}$. We consider the following cases:

Case 1: $\quad n \equiv 0(\bmod 2)$ and $m \equiv 0(\bmod 2)$.

Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 0,1(\bmod 4) \\
c & \text { if } & i \equiv 2,3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Case 2: $n \equiv 1(\bmod 2)$ and $m \equiv 1(\bmod 2)$.

Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

In either case, we have $V_{f}^{+} \equiv a$, completes the proof.
Corollary 8.2.4. $U_{n, m} \in \Psi_{a, 0}$ if and only if $(n+m) \equiv 0(\bmod 2)$.

Proof. Proof is obvious from Lemma 7.2.2 and Theorem 8.2.3.

Theorem 8.2.5. The graph $U_{n, m, k} \in \Psi_{a}$ if and only if $(n+m+k) \equiv 0(\bmod 2)$.

Proof. Let the vertex set of $U_{m, n, k}$ be $V=\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{0}=v_{1}, v_{2}, \ldots, v_{m}, w_{1}\right.$, $\left.w_{2}, \ldots, w_{k}\right\}$ and edge set be $E=\left\{u_{0} u_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq m-1\right\} \cup\left\{v_{m} w_{i}: 1 \leq i \leq k\right\}$. Assume that $U_{n, m, k} \in \Psi_{a}$ with a labeling $f$. Then by Lemma 7.2.1, we have $(n+m+k) \cdot a=0$, which implies that $(n+m+k) \equiv 0(\bmod 2)$. Conversely, assume that $(n+m+k) \equiv 0(\bmod 2)$. We consider the following cases:

Case 1: $\quad n \equiv 0(\bmod 2), m \equiv 0(\bmod 2)$ and $k \equiv 0(\bmod 2)$.

Subcase 1: $\quad n \equiv 0(\bmod 2), m \equiv 0(\bmod 4)$ and $k \equiv 0(\bmod 2)$.

Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 0,1(\bmod 4) \\
c & \text { if } & i \equiv 2,3(\bmod 4)
\end{array}\right. \\
& f\left(w_{i}\right)=c \quad \text { for all } 1 \leq i \leq k
\end{aligned}
$$

Subcase 2: $\quad n \equiv 0(\bmod 2), m \equiv 2(\bmod 4)$ and $k \equiv 0(\bmod 2)$.
Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 0,1(\bmod 4) \\
c & \text { if } & i \equiv 2,3(\bmod 4)
\end{array}\right. \\
& f\left(w_{i}\right)=b \quad \text { for all } 1 \leq i \leq k
\end{aligned}
$$

Case 2: $\quad n \equiv 1(\bmod 2), m \equiv 1(\bmod 2)$ and $k \equiv 0(\bmod 2)$.

Subcase 1: $\quad n \equiv 1(\bmod 2), m \equiv 1(\bmod 4)$ and $k \equiv 0(\bmod 2)$.
Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right.
$$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right. \\
& f\left(w_{i}\right)=c \quad \text { for all } 1 \leq i \leq k
\end{aligned}
$$

Subcase 2: $\quad n \equiv 1(\bmod 2), m \equiv 3(\bmod 4)$ and $k \equiv 0(\bmod 2)$.
Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right. \\
& f\left(w_{i}\right)=b \quad \text { for all } 1 \leq i \leq k
\end{aligned}
$$

Case 3: $n \equiv 1(\bmod 2), m \equiv 0(\bmod 2)$ and $k \equiv 1(\bmod 2)$.

Subcase 1: $\quad n \equiv 1(\bmod 2), m \equiv 0(\bmod 4)$ and $k \equiv 1(\bmod 2)$.
Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

$$
f\left(w_{i}\right)=b \quad \text { for all } \quad 1 \leq i \leq k .
$$

Subcase 2: $\quad n \equiv 1(\bmod 2), m \equiv 2(\bmod 4)$ and $k \equiv 1(\bmod 2)$.

Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right. \\
& f\left(w_{i}\right)=c \quad \text { for all } \quad 1 \leq i \leq k
\end{aligned}
$$

Case 4: $\quad n \equiv 0(\bmod 2), m \equiv 1(\bmod 2)$ and $k \equiv 1(\bmod 2)$.

Subcase 1: $\quad n \equiv 0(\bmod 2), m \equiv 1(\bmod 4)$ and $k \equiv 1(\bmod 2)$.

Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 0,1(\bmod 4) \\
c & \text { if } & i \equiv 2,3(\bmod 4)
\end{array}\right. \\
& f\left(w_{i}\right)=c \quad \text { for all } 1 \leq i \leq k
\end{aligned}
$$

Subcase 2: $\quad n \equiv 0(\bmod 2), m \equiv 3(\bmod 4)$ and $k \equiv 1(\bmod 2)$.

Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=0 \\
c & \text { if } & i \geq 1
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 0,1(\bmod 4) \\
c & \text { if } & i \equiv 2,3(\bmod 4)
\end{array}\right. \\
& f\left(w_{i}\right)=b \quad \text { for all } 1 \leq i \leq k
\end{aligned}
$$

In each of the above cases, $f$ gives $a$-star $V_{4}$-magic labeling of $U_{m, n, k}$.
Corollary 8.2.6. The graph $U_{n, m, k} \in \Psi_{a, 0}$ if and only if $(n+m+k) \equiv 0(\bmod 2)$.

Proof. Proof directly follows from Lemma 7.2.2 and Theorem 8.2.5.

### 8.3 Some more graphs

Theorem 8.3.1. The Jahangir graph $J_{n, m} \in \Psi_{a}$ if and only if $n \equiv 1(\bmod 2)$ and $m \equiv 1(\bmod 2)$.

Proof. Consider the Jahangir graph $J_{n, m}$ with vertex set $V=\left\{w, w_{i}, w_{i, j}: 1 \leq\right.$ $i \leq m, 1 \leq j \leq n-1\}$ and edge set $E=\left\{w w_{i}: 1 \leq i \leq m\right\} \cup\left\{w_{i, j} w_{i, j+1}:\right.$ $1 \leq i \leq m, 1 \leq j \leq n-2\} \cup\left\{w_{i} w_{i, 1}: 1 \leq i \leq m\right\} \cup\left\{w_{i, n-1} w_{i+1}: 1 \leq i \leq\right.$ $m-1\} \cup\left\{w_{m, n-1} w_{1}\right\}$. Assume that $J_{n, m} \in \Psi_{a}$. Then by Lemma 7.2.1, we have $(n m+1) \cdot a=0$, implies that $n m \equiv 1(\bmod 2)$, which again implies that $n \equiv$ $1(\bmod 2)$ and $m \equiv 1(\bmod 2)$. Conversely, assume that $n \equiv 1(\bmod 2)$ and $m \equiv$ $1(\bmod 2)$. Here we consider the following two cases:

Case 1: $n \equiv 1(\bmod 4)$ and $m \equiv 1(\bmod 2)$
Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f(w)=b \\
& f\left(w_{i}\right)=c \quad \text { for } \quad i=1,2,3, \ldots, m \\
& f\left(w_{i, j}\right)=\left\{\begin{array}{lll}
c & \text { if } & j \equiv 0,1(\bmod 4) \\
b & \text { if } & j \equiv 2,3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Case 2: $n \equiv 3(\bmod 4)$ and $m \equiv 1(\bmod 2)$
Define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f(w)=b \\
& f\left(w_{i}\right)=c \quad \text { for } \quad i=1,2,3, \ldots, m \\
& f\left(w_{i, j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j \equiv 1,2(\bmod 4) \\
c & \text { if } & j \equiv 0,3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

In either case, $f$ gives an $a$-star $V_{4}$-magic labeling of $J_{n, m}$.

Corollary 8.3.2. $J_{n, m} \in \Psi_{a, 0}$ if and only if $n \equiv 1(\bmod 2)$ and $m \equiv 1(\bmod 2)$.

Proof. Proof directly follows from Lemma 7.2.2 and Theorem 8.3.1.

Theorem 8.3.3. The graph $B t(n, k) \in \Psi_{a}$ if and only if $n \equiv 1(\bmod 2)$ and $k \equiv 0(\bmod 2)$.

Proof. Assume that $B t(n, k) \in \Psi_{a}$. Then by Lemma 7.2.1, we have $(n k+n+$ 1). $a=0$, implies that $n(k+1)$ is odd, which again implies that $n \equiv 1(\bmod 2)$ and $k \equiv 0(\bmod 2)$. Conversely, assume that $n \equiv 1(\bmod 2)$ and $k \equiv 0(\bmod 2)$. Let $V=\left\{u, u_{i}, u_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$ be the vertex set and $E=$ $\left\{u u_{i}, u_{i} u_{i 1}, u_{i 1} u_{i j}: 1 \leq i \leq n, 2 \leq j \leq k\right\}$ edge set of $\operatorname{Bt}(n, k)$. We define $f: V \rightarrow V_{4} \backslash\{0\}$ as:

$$
\begin{aligned}
& f(u)=b \\
& f\left(u_{i}\right)=c \text { for } i=1,2,3, \ldots, n \\
& f\left(u_{i j}\right)= \begin{cases}c & \text { if } j=1 \text { and } 1 \leq i \leq n \\
b & \text { otherwise }\end{cases}
\end{aligned}
$$

Clearly, $f$ is an $a$-star $V_{4}$-magic labeling of $\operatorname{Bt}(n, k)$. Completes the proof.
Corollary 8.3.4. The graph $B t(n, k) \in \Psi_{a, 0}$ if and only if $n \equiv 1(\bmod 2)$ and $k \equiv 0(\bmod 2)$.

Proof. It directly follows from Lemma 7.2.2 and Theorem 8.3.3.
Theorem 8.3.5. The graph $<K_{1, n}: m>\in \Psi_{a}$ if and only if $n \equiv 0(\bmod 2)$ and $m \equiv 1(\bmod 2)$.

Proof. Let $G$ be the graph $<K_{1, n}: m>$ and let $V_{i}=\left\{u_{i}, u_{i j}: 1 \leq j \leq n\right\}$ be the vertex set of $i^{\text {th }}$ copy of $K_{1, n}$ with apex $u_{i}$ and let $u$ be the unique vertex adjacent to the central vertices $u_{i}(1 \leq i \leq m)$ in $G$. Then $V(G)=V_{1} \cup V_{2} \cup \ldots \cup V_{m} \cup\{u\}$. Assume that $G \in \Psi_{a}$. Then by Lemma 7.2.1, we have $(m n+m+1) \cdot a=0$. Hence $n \equiv 0(\bmod 2)$ and $m \equiv 1(\bmod 2)$. Conversely, assume that $n \equiv 0(\bmod 2)$ and
$m \equiv 1(\bmod 2)$. Then $f: V(G) \rightarrow V_{4} \backslash\{0\}$ defined by:

$$
\begin{aligned}
& f\left(u_{i}\right)=c \quad \text { for } \quad i=1,2,3, \ldots, m \\
& f(u)=f\left(u_{i, j}\right)=b \quad \text { for } i=1,2,3, \ldots, m \quad \text { and } \quad j=1,2,3, \ldots, n
\end{aligned}
$$

gives an $a$-star $V_{4}$-magic labeling of $G$. Hence the theorem is proved.

Corollary 8.3.6. The graph $<K_{1, n}: m>\in \Psi_{a, 0}$ if and only if $n \equiv 0(\bmod 2)$ and $m \equiv 1(\bmod 2)$.

Proof. Proof is obvious from Lemma 7.2.2 and Theorem 8.3.5.

Theorem 8.3.7. The ladder $L_{n} \in \Psi_{a}$ for all $n$.

Proof. Consider the ladder $L_{n}$ with vertex set $V=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and edge set $E=\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. For each $i=1,2,3, \ldots, n$, defining $f\left(u_{i}\right)=b$ and $f\left(v_{i}\right)=c$, we get $L_{n} \in \Psi_{a}$.

Corollary 8.3.8. $L_{n} \in \Psi_{a, 0}$ for all $n$.

Proof. Proof directly follows from Lemma 7.2.2 and Theorem 8.3.7.

Theorem 8.3.9. The comb $C B_{n} \in \Psi_{a}$ for all $n$.

Proof. Consider the comb $C B_{n}$ with vertex set $V=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and edge set $E=\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$. For each $i=1,2,3, \ldots, n$, defining $f\left(u_{i}\right)=b$ and $f\left(v_{i}\right)=c$, we get $C B_{n} \in \Psi_{a}$.

Corollary 8.3.10. $C B_{n} \in \Psi_{a, 0}$ for all $n$.

Proof. Proof directly follows from Lemma 7.2.2 and Theorem 8.3.9.

Theorem 8.3.11. The gear graph $G_{n} \notin \Psi_{a}$ for any $n$.

Proof. Suppose that $G_{n} \in \Psi_{a}$. Then by Lemma 7.2.1, we have $(2 n+1) a=0$, which implies that $a=0$, a contradiction.

Corollary 8.3.12. $G_{n} \notin \Psi_{a, 0}$ for any $n$.

Theorem 8.3.13. The web graph $W(2, n) \in \Psi_{a}$ if and only if $n \equiv 1(\bmod 2)$.

Proof. Assume that $W(2, n) \in \Psi_{a}$. Then by Lemma 7.2.1, we have $(3 n+1) a=0$, implies that $n \equiv 1(\bmod 2)$. Conversely, assume that $n \equiv 1(\bmod 2)$. Let $u$ be the central vertex, let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be vertices of inner circle, $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the vertices of outer circle and $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ be the pendant vertices adjacent to $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ respectively in $W(2, n)$. We define $f: V(W(2, n)) \rightarrow$ $V_{4} \backslash\{0\}$ by:

$$
\begin{aligned}
& f(u)=b \\
& f\left(u_{i}\right)=c \quad \text { for } \quad i=1,2,3, \ldots, n \\
& f\left(v_{i}\right)=c \quad \text { for } \quad i=1,2,3, \ldots, n \\
& f\left(w_{i}\right)=b \quad \text { for } \quad i=1,2,3, \ldots, n
\end{aligned}
$$

Clearly, $f$ is an $a$-star $V_{4}$-magic labeling of $W(2, n)$. Hence the theorem is proved.


Figure 8.2: An $a$-star $V_{4}$-magic labeling of $W(2,5)$

Corollary 8.3.14. $W(2, n) \in \Psi_{a, 0}$ if and only if $n \equiv 1(\bmod 2)$.

Theorem 8.3.15. The Jewel graph $J_{n} \in \Psi_{a}$ if and only if $n \equiv 0(\bmod 2)$.

Proof. Consider the jewel graph $J_{n}$ with vertex $V\left(J_{n}\right)=\left\{u, x, v, y, v_{i}: 1 \leq i \leq\right.$ $n\}$ and the edge set $E\left(J_{n}\right)=\left\{u x, v x, u y, v y, x y, u v_{i}, v v_{i}: 1 \leq i \leq n\right\}$. Suppose that $J_{n} \in \Psi_{a}$. Then by Lemma 7.2.1, we have $(n+4) a=0$, hence $n \equiv 0(\bmod 2)$. Conversely, suppose that $n \equiv 0(\bmod 2)$. Define $\left.f: V\left(J_{n}\right)\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f(v)=c
$$

$$
\begin{aligned}
& f(u)=f(x)=f(y)=b \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i=1 \\
c & \text { if } & i>1
\end{array}\right.
\end{aligned}
$$

Obviously, $f$ is an $a$-star $V_{4}$-magic labeling of $J_{n}$.

Corollary 8.3.16. $J_{n} \in \Psi_{a, 0}$ if and only if $n \equiv 0(\bmod 2)$.
Theorem 8.3.17. $C_{n} \odot K_{2}$ admits a-star $V_{4}$-magic labeling for $n \equiv 0(\bmod 4)$.

Proof. Let $C_{n}$ be the cycle with vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ and let $v_{k}$ and $w_{k}$ be the vertices of $k^{\text {th }}$ copy of $K_{2}$. Define $f: V\left(C_{n} \odot K_{2}\right) \rightarrow V_{4} \backslash\{0\}$ as :

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 1,2(\bmod 4) \\
c & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i \equiv 1,2(\bmod 4) \\
b & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right. \\
& f\left(w_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i \equiv 1,2(\bmod 4) \\
b & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Then, $V_{f}^{+}\left(u_{i}\right)=V_{f}^{+}\left(v_{i}\right)=V_{f}^{+}\left(w_{i}\right)=a$. This completes the proof.
Corollary 8.3.18. $C_{n} \odot K_{2} \in \Psi_{a, 0}$ for $n \equiv 0(\bmod 4)$.
Theorem 8.3.19. $P_{n} \odot \bar{K}_{2} \in \Psi_{a}$ if and only if $n \equiv 0(\bmod 2)$.

Proof. Let $P_{n}$ be the cycle with vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ and let $v_{k}$ and $w_{k}$ be the vertices of $k^{\text {th }}$ copy of $\bar{K}_{2}$. Assume that $P_{n} \odot \bar{K}_{2} \in \Psi_{a}$. Then by Lemma 7.2.2, we have $3 n a=0$, hence $n \equiv 0(\bmod 2)$. Conversely, assume that $n \equiv 0(\bmod 2)$. We define $f: V\left(C_{n} \odot K_{2}\right) \rightarrow V_{4} \backslash\{0\}$ as :

$$
f\left(u_{i}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 2,3(\bmod 4) \\
c & \text { if } & i \equiv 0,1(\bmod 4)
\end{array}\right.
$$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i \equiv 2,3(\bmod 4) \\
b & \text { if } & i \equiv 0,1(\bmod 4)
\end{array}\right. \\
& f\left(w_{i}\right)=\left\{\begin{array}{lll}
c & \text { if } & i \equiv 2,3(\bmod 4) \\
b & \text { if } & i \equiv 0,1(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Clearly, $f$ is an $a$-star $V_{4}$-magic labeling of $P_{n} \odot \bar{K}_{2}$.

Corollary 8.3.20. $P_{n} \odot \bar{K}_{2} \in \Psi_{a, 0}$ if an only if $n \equiv 0(\bmod 2)$.

Theorem 8.3.21. The planar grid $P_{m} \square P_{n} \in \Psi_{a}$ if and only if $m n \equiv 0(\bmod 2)$.

Proof. Let $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the vertex sets of $P_{m}$ and $P_{n}$ respectively. Assume that $P_{m} \square P_{n} \in \Psi_{a}$. Then by Lemma 7.2.1, we have $m n a=0$, which implies that $m n \equiv 0(\bmod 2)$. Conversely, assume that $m n \equiv 0(\bmod 2)$. We consider the following cases:

Case 1: $m \equiv 0(\bmod 2)$ and $n \equiv 0(\bmod 2)$
Define $f: V\left(P_{m} \square P_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}, v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j \equiv 0,1(\bmod 4) \\
c & \text { if } & j \equiv 2,3(\bmod 4)
\end{array}\right.
$$

Case 2: $m \equiv 0(\bmod 2)$ and $n \equiv 1(\bmod 2)$

Define $f: V\left(P_{m} \square P_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}, v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & i \equiv 0,1(\bmod 4) \\
c & \text { if } & i \equiv 2,3(\bmod 4)
\end{array}\right.
$$

Case 3: $m \equiv 1(\bmod 2)$ and $n \equiv 0(\bmod 2)$
Define $f: V\left(P_{m} \square P_{n}\right) \rightarrow V_{4} \backslash\{0\}$ as:

$$
f\left(u_{i}, v_{j}\right)=\left\{\begin{array}{lll}
b & \text { if } & j \equiv 0,1(\bmod 4) \\
c & \text { if } & j \equiv 2,3(\bmod 4)
\end{array}\right.
$$

In each of the above cases $f$ is an $a$-star $V_{4}$-magic labeling of $P_{m} \square P_{n}$.


Figure 8.3: The Planar grid $P_{8} \square P_{5}$

Corollary 8.3.22. $P_{m} \square P_{n} \in \Psi_{a, 0}$ if and only if $m n \equiv 0(\bmod 2)$.

## Conclusion and Further Scope of

## Research

This chapter includes a summary of the thesis and some directions in which one can go for further research in this area.

### 9.1 Summary of the thesis

In this thesis, new types of labelings such as Neighbourhood $V_{4}$-magic labeling, Neighbourhood barycentric $V_{4}$-magic labeling and Star $V_{4}$-magic labeling were introduced. As a first stage, we studied Neighbourhood $V_{4}$-magic labeling of cycle, star and path related graphs. Further, Neighbourhood $V_{4}$-magic labeling of complete bipartite graphs and regular graphs are discussed, followed by Neighbourhood $V_{4}$-magic labeling of splitting, shadow and middle of some special graphs are discussed. The thesis introduced Neighbourhood barycentric $V_{4}$-magic labeling of some special graphs like cycle, path, the complete graph $K_{n}$, the complete bipartite graph $K_{m, n}$, wheel graph, book graph, trees and
some more graphs.

The Star $V_{4}$-magic labeling of graphs such as cycle, path, complete bipartite graph, wheel graph, jellyfish graph are studied. Star $V_{4}$-magic labeling of special graph like fan graph, umbrella graph and Jewel graph are discussed.

### 9.2 Further scope of research

(i) Examine Necessary and Sufficient conditions of Neighbourhood $V_{4}$-magic labeling of some more graphs.
(ii) Examine Necessary and Sufficient conditions of Neighbourhood $V_{4}$-magic labeling of Cartesian product and Lexico graphical product of graphs.
(iii) Investigate Neighbourhood $V_{4}$-magic labeling of middle graph of some more graphs.
(iv) Identify Neighbourhood barycentric $V_{4}$-magic labeling of some more graphs.
(v) Examine Necessary and Sufficient conditions of Star $V_{4}$-magic labeling of some more graphs.
(vi) Find Necessary and Sufficient conditions of Star $V_{4}$-magic labeling of Cartesian product and Lexico graphical product of graphs.

## Bibliography

[1] Akiyama J., Hamada T. and Yoshimura Y., Miscellaneous properties of middle graphs, TRU Math. 10, 41-53(1974).
[2] Balakrishnan R. and Ranganathan K., A text book of graph theory, SpringerVerlag, NewYork(2012).
[3] Baskar Babujee J. and Vishnupriya V., Permutation labelings for some trees, Internat.J. Math. Comput. Sci., 3, 31-38(2008).
[4] Chartrand G. and Zhang P., Introduction to graph theory, McGraw-Hill, Boston(2005).
[5] Deb P. and Limaye N. B., On harmonius labelings of some cycle related graphs, Ars Combin., 65, 177-197(2002).
[6] Frank Harary, Graph theory, Addison-Wesley Publishing Company, Reading, MA, 1972.
[7] Hafiz Muhammad, Afzal Siddiqui and Muhammad Imran, Computing the metric dimension of wheel related graphs, Applied Mathematics and Computation, 242, 624-632(2014).
[8] Hedge S. M. and Sudhakar Shetty, On arithmetic graphs, Indian Journal of pure applied mathematics, 33(8), 1275-1283(2002).
[9] John Clark and Derek Allan Holtan, A first look at graph theory, Allied publishers limited,1995.
[10] Joseph A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17(2014).
[11] Joseph A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, Twenty-first edition, December 21(2018).
[12] Koilraj S. and Ayyaswamy S. K., Labeling of graphs, Ph.D thesis submitted to Bharatidasan university, Tiruchirappalli.
[13] Lee S. M. and Nien-Tsu Lee A., On super edge-magic graphs with many odd cycles,Congressus Numerantium, 163, 65-80(2003).
[14] Lee S. M., Saba F., Salehi E. and Sun H., On the $V_{4}$-magic Graphs, Congressus Numerantium, 156, 59-67(2002).
[15] Mojdeh D. A. and Ghameshlou A. N., Domination in Jahangir graph $J_{2, m}$, Int.J.Contemp.Math.Sciences, Vol.2, No.24, 1193-1199(2007).
[16] Ponraj R. et.al, Radio mean labeling of a graph, AKCE International Journal of Graphs and Combinatorics, 12, 224-228(2015).
[17] Ponraj R., Narayanan S. S. and Ramasamy A. M. S., Total mean cordiality of umbrella, butterfly and dumb bell graphs, Jordan Journal of Mathematics and Statistics, 8(1) 59-77(2015).
[18] Rajesh Kanna M. R., Pradeep Kumar R. and Jagadeesh R., Computation of topological indices of Dutchwindmill graph, Open journal of Discrete Mathematics, 674-81(2016).
[19] Rathod N.B. and Kanani K. K., $V_{4}$-Cordial labeling of quadrilateral snakes, International Journal of Emerging Technologies and Applications in Engineering, Technology and Sciences,Jan 2016.
[20] Rathod N. B. and Kanani K. K., $k$-cordial labeling of triangular book, traingular book with book mark and jewel graph, Global Journal of Pure and Applied Mathematics, No.10(2017).
[21] Sampathkumar E. and Walikar H. B., On splitting graph of a graph, Karnataka University Journal-Vol.XXV, pages 13-16( 1980).
[22] Seoud M. A. and Youssef M. Z., Harmonious labellings of helms and related graphs, unpublished.
[23] Sinha D. and Kaur J., Full friendly index set-I, Discrete Applied Mathematics, 161, 1262-1274(2013).
[24] Sinha D. and Kaur J., Full friendly index set-II, J.Combin. Math. Combin. Comput., 79, 65-75(2011).
[25] Swaminathan V. and Jeyanthi P., Super edge-magic strength of re crackers, banana trees and unicyclic graphs, Discrete Math., 306, 1624-1636(2006).
[26] Vandana P. T. and Anil Kumar V., V4-magic labelings of wheel related graphs, British journal of Mathematics and Computer science, 8(3), 189219(2015).
[27] Vandana P. T. and Anil Kumar V., V4-magic labelings of some graphs, British journal of Mathematics and Computer science, 11(5), 1-20(2015).
[28] Vaidya S. K. and Shah N. H., Graceful and odd graceful labeling of some graphs, Internat. J. of Math. Soft Computing(2013).
[29] Vaithilingam K., Difference labeling of some graphs families, International Journal of Mathematics and Sattistics Invention (IJMSI), Vol.2, Issue 6, 37-43, June(2014).
[30] Vaithilingam K. and Meena S., Prime labeling for some crown related graphs, International Journal of Scientific and Technology Research, Vol.2, March(2013).

## APPENDIX I

## List of publications

1. K. P. Vineesh and V. Anil Kumar, Neighbourhood $V_{4}$-magic labeling of some cycle related graphs, Far East Journal of Mathematical Sciences (FJMS), Volume 111, Number 2, 2019, Pages 263-272.
2. K. P. Vineesh and V. Anil Kumar, Neighbourhood $V_{4}$-magic labeling of star and path related graphs, Journal of Discrete Mathematical Sciences \& Cryptography, Volume 22 (2019), Number 6, Pages 1067-1076.
3. K. P. Vineesh and V. Anil Kumar, Neighbourhood $V_{4}$-magic labeling of some graphs, Far East Journal of Mathematical Sciences (FJMS), Volume 113, Number 1, 2019, Pages 47-64.
4. K. P. Vineesh and V. Anil Kumar, Neighbourhood $V_{4}$-magic labeling of some splitting graphs, International Journal research in Advent technology, Volume 7, Number 1, January 2019, Pages 530-535.
5. K. P. Vineesh and V. Anil Kumar, Neighbourhood barycentric $V_{4}$-magic labelings of some graphs, International Journal of Research and Analytical Reviews, Volume 6, Issue 1, February 2019, Pages 1350-1360.
6. K. P. Vineesh and V. Anil Kumar, Star magic labeling of some graphs, Far East Journal of Mathematical Sciences (FJMS), Volume 113, Number 2, 2019, Pages 209-219.
7. K. P. Vineesh and V. Anil Kumar, Neighbourhood $V_{4}$-magic labeling of some shadow graphs, International Journal of Mathematical Combinatorics, Volume 2 (2019), Pages 86-98.
8. K. P. Vineesh and V. Anil Kumar, Neighbourhood $V_{4}$-magic labeling of some middle graphs, Malaya Journal of Matematik, Volume 8, Number 2 (2020), Pages 499-501.
9. K. P. Vineesh and V. Anil Kumar, Star magic labeling of some special graphs, Communicated to Journal of Discrete Mathematical Sciences \& Cryptography, June 2019.

## Index

Adjacent, 7

Binary operation, 11
associative, 11
commutative, 11
Binary structure, 12
Bipartite graph, 8
Bipyramid, 52
Book graph, 39

Cartesian product, 11
Comb graph, 26
Composition, 11
Corona, 11
Crown graph, 39
Cycle, 10

Degree, 9

Fan graph, 121
Forest, 10

Gear graph, 40
Graph, 7
$k$-regular, 9
$n$-gon book, 40
n-star, 25
acyclic, 10
bipartite, 8
bistar, 25
complete, 8
complete bipartite, 8
connected, 10
dutch windmill, 15
finite, 8
flower, 15
friendship, 15
gear, 40
helm, 15
infinite, 8
jahangir, 121
jelly fish, 26
Ladder, 26
ladder $L_{n+2}, 26$
regular, 9
simple, 8
star, 25
subdivision, 26
sunflower, 16
trivial, 8
umbrella, 121
wheel, 15
Group, 12
abelian, 12
commutative, 12
Klein-4, 12

Intersection of graphs, 10

Jahangir graph, 121
Jewel Graph, 122
Join of graphs, 11

Ladder, 26
Length of a walk, 10
Lexico graphical product, 11
Loop, 8

Middle graph, 60

Neighbour, 8
Neighbour set, 8

Parallel edges, 8
Path, 10
Pendant vertex, 9

Quadrilateral snake, 26

Shadow graph, 60
Splitting graph, 60
Subgraph, 9
proper, 9
Sunflower, 16
Supergraph, 9

Trail, 10
Tree, 10
( $n, k$ )-banana, 26

Umbrella, 121
extended, 121
Union of graphs, 10

Walk, 9
closed, 10
length of, 10
open, 10
Web graph, 122


[^0]:    ${ }^{1}$ This chapter has been published in Far East Journal of Mathematical Sciences(FJMS), Volume 111, Number 2, 2019, Pages 263-272.

[^1]:    ${ }^{1}$ This chapter has been published in Journal of Discrete Mathematical Sciences \& Cryptography, Volume 22, Number 6, 2019, Pages 1067-1076.

[^2]:    ${ }^{1}$ This chapter has been published in Far East Journal of Mathematical Sciences(FJMS), Volume 113, Number 1, 2019, Pages 47-64.

[^3]:    ${ }^{1}$ The second section of this chapter has been published in International Journal of Research in Advent Technology, Volume 7, Number 1, January 2019, Pages 530-535.
    ${ }^{2}$ The third section of this chapter has been published in International Journal of Mathematical Combinatorics, Volume 2, 2019, Pages 86-98.

[^4]:    ${ }^{1}$ This chapter has been published in International Journal of Research and Analytical Reviews(IJRAR), February 2019, Volume 6, Issue 1, Pages 1350-1360.

[^5]:    ${ }^{1}$ This chapter has been published in Far East Journal of Mathematical Sciences(FJMS), Volume 113, Number 2, 2019, Pages 209-219.

