

PATTERN PRIMITIVE BASED MALAYALAM

HANDWRITTEN CHARACTER RECOGNITION

STUDIES FOR REAL-TIME APPLICATIONS

A Thesis Submitted by

BAIJU K.B.

Under the Guidance of

Dr. LAJISH V.L.

In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER

SCIENCE

Under the Faculty of Science

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF CALICUT

KERALA, INDIA - 673635

JUNE 2023

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF CALICUT

Dr. Lajish V.L.

Associate Professor

Calicut University (P.O)

Kerala, India-673635

Certificate

This is to certify that the thesis entitled PATTERN PRIMITIVE

BASED MALAYALAM HANDWRITTEN CHARACTER

RECOGNITION STUDIES FOR REAL-TIME APPLICATIONS

is a report of the original work carried out by Mr. BAIJU K.B. under my

supervision and guidance in the Department of Computer Science,

University of Calicut, Kerala and that no part thereof has been presented

for the award of any other degree.

 Dr. Lajish V.L.

 (Research Supervisor)

Calicut University

June 2023

Declaration

I hereby declare that the work presented in this thesis is based on the

original work done by me under the supervision of Dr. Lajish V.L.,

Associate Professor, Department of Computer Science, University of

Calicut, Kerala and that no part thereof has been presented for the award

of any other degree.

Calicut University

June 2023

Baiju K.B.

Acknowledgements

Every thesis is an outcome of the contributions of numerous individuals

through their rigorous efforts to motivate a researcher in momentum.

First of all, I wish to express my sincere appreciation to my Research

Supervisor, Dr. Lajish V.L., Associate Professor, Department of

Computer Science, University of Calicut, who initiated the spark to do

research and convincingly guided me even when the road got tough.

Without his persistent help, the goal of this thesis would not have been

realized.

I express my gratitude to Ms. Manjula K.A., Associate Professor and

Head, Department of Computer Science, University of Calicut, for

providing me the facilities and support in the Department.

I extend my sincere gratitude to Dr. A.G. Ramakrishnan, Director,

MILE Labs, IISc, Bengaluru, for supporting me with the right motive to

progress through the studies in the meantime. I heartfully acknowledge

Dr. P. Nagabhushan, Vice Chancellor, Vignan’s Foundation for Science,

Technology and Research (deemed university), Andra Pradesh (Former

Director, IIIT Hyderabad) for mentoring me and showing me the right

direction during my studies.

I sincerely appreciate my colleagues, Dr. Vivek P., Dr. Benson C.C.,

Dr. Sandesh E.PA., Ms. Reshma P.K., Ms. Sabna T.S., Ms. Sabeerath

K., Ms. Habeebath K.P., Mr. Anoop K., and Ms. Manjary P. Ganagan

for their co-operation throughout the studies. I would like to

acknowledge the editing support provided by Mr. Manoj John, HSS

Teacher, GHSS Kolery at Wayanad. I want to pay my special regards to

the faculties of Department of Computer Science and principal at

NMSM Govt. College, Kalpetta for their extensive support. I also

acknowledge the support provided by the faculty members and office

staff of the Department of Computer Science, University of Calicut.

 My deep and sincere gratitude to my spouse, Dr. C. Namitha. my

children, Daksha Niyatha and Goutham Niyath, for their continuous and

unparalleled love. I am grateful to all the family members for their

valuable support throughout the research.

 Baiju K.B

Dedicated to my Late Grand Parents

Who Taught me the Value of Education

Sri. K.P. Kunhiraman

&

Smt. Radha K.P.

vii

ABSTRACT

The communication between people in society is partially replaced with

machines as one part of the process for a few decades. As technology

dwelt faster changes, more and more devices came out for simplifying

the task of human-machine interaction, majorly computers and mobile

devices. Nowadays, ways for human-machine coalescence are extensive

in speech and handwriting termed under Natural Language Processing.

For handwriting recognition, off-line and online are the two methods to

simplify the task of data input in various styles followed in different

scripts. Online Handwritten Character Recognition (OHCR) involves

the automatic conversion of handwriting consisting of temporal

information that are converted into letter codes usable in computers.

The thesis analyses existing techniques in Online Handwritten

Character Recognition (OHCR) and investigates the potential use of a

pattern primitive based scheme, for real-time applications in

Malayalam. The study starts with an analysis of Malayalam characters

and their linguistic formulations. The representation of the sounds of a

language by written symbols is also a part of the study. All the vowels,

consonants, and other units in the Malayalam language are detailed

with the various rules, concerning the formation of conjuncts within

the orthographical perspective. The study contributes a database of

online handwritten characters constructed using two devices. The first

device records handwritten strokes in a traditional way, where paper

and digital pen with a sensor is used for data acquisition. In the second

device, the touch screen capability of current technology is utilized in

acquiring data with a touch screen laptop. As a part of the study, a

viii

native database named Calicut University Online Handwriting Data

Base (CU-OHDB) is created containing 30800 samples of online

Malayalam handwritten characters written by twenty writers, where

13200 samples are obtained using a pen and paper method, and the other

17600 samples recorded using a touchscreen-enabled laptop. The

preprocessing of raw data is necessary due to the variations in writing

style and writing imperfection caused by the writer and also the device.

The methods involved in the preprocessing phases are detailed in the

thesis with the corresponding algorithms. For normalization, min-max

normalization is used. Smoothing is done using moving average filter

and resampling is carried out using equidistant resampling with spline

interpolation for missing points.

The thesis addresses handwriting recognition as a pattern

recognition problem. Since online handwritings are temporal sequences,

they are also considered as patterns. Studies tuned in such directions

reveal so many aspects of Malayalam characters. An extensive study is

conducted to identify the structural and directional properties of every

character. Segmentation (Lexical analysis) of Malayalam characters is

conducted to identify unique patterns in them. From the analysis, it is

found that, certain pattern segments, namely pattern primitives, are

frequent in Malayalam characters. It is also found that, there are 26

pattern primitives to represent all the 44 single stroke vowel and

consonant characters in Malayalam. These points are manually marked

on every character to form a character reference set. As a part of the

work, a label to every primitive is assigned, and every character is

arranged as a sequence of pattern primitive labels.

ix

The segmentation of character samples is performed in the work

using three algorithms, namely, Ramer Douglas Peucker (RDP)

algorithm, Eight Direction Freeman Code (EDFC) and, a combined

approach of these two algorithms. The Ramer Douglas Peucker (RDP)

algorithm, which is used for polygonal approximations of curves in

numerous pattern recognition problems to reduce a character pattern into

a finite number of points, is used for segmentation of the online

handwritten character samples. Even with the variability in the writing

style of the samples, the technique performed well with an average

segmentation rate of 75.07%.

The role of direction in the recognition process of a character is dealt

within the segmentation part of the thesis using the well-known Eight

Direction Freeman Code (EDFC). The segmentation scheme using Eight

Direction Freeman Code (EDFC) proposed in the study also reported an

accuracy of 74.68%. A combined approach of RDP and EDFC with

certain filtering over directions and redundant points achieved a

segmentation rate of 91.27% through visual comparisons. An automated

scheme for measuring segme/ntation accuracy is also implemented in

the study and obtained 79.13% accuracy for the combined approach. The

comparison of the three segmentation schemes suggested that the

combined approach is the best method, and the segmentation of pattern

primitives is performed using the combined approach. The pattern

primitives of the characters obtained from segmentation using the

combined approach are extensively studied in the remaining sections of

the thesis.

In the next phase, an in-depth study of various features of every

pattern primitive is deployed in visual and structural formulations. The

x

research focuses on features, mainly on the direction aspects and

morphology of the characters. Preprocessing of pattern primitives is also

described in the thesis for linear types. Pattern primitives with curvature

values near zero are redrawn as a smooth line using Bresenham’s line

drawing algorithm, and angle corrections are made by measuring slope

values. The study shows that the maximum number of pattern primitives

in the selected single stroke character set of Malayalam is eight and the

minimum number of pattern primitives is two. Recognition experiments

based on pattern primitives are conducted in a class-modular approach,

where clusters are formed based on the number of pattern primitives

present in the characters.

For every cluster, the discriminating features like cusps, linearity,

reduced direction code, pattern primitive length, the direction of a

pattern primitive, and intersections in various pattern primitives are

identified. An intra-class recognition using the extracted features

displayed higher accuracies in the classification experiments using

Support Vector Machine (SVM) classifier for the 44 single stroke online

handwritten samples of Malayalam characters. The accuracy thus

obtained ranges from 81.67% to 100% in various clusters that

emphasizes the suitability of pattern primitive approach for the

recognition of online handwritten Malayalam characters.

The predictive model for real-time recognition of Malayalam

handwritten characters, based on pattern primitives, is presented in the

thesis with prime focus. Two approaches are proposed in the model. In

the first approach, Deterministic Finite Automata (DFA) based OHCR,

using pattern primitive string representation of characters, is described.

In this approach, the character will be recognized only after finishing the

xi

writing of the entire character. Even though the experiments showed an

average accuracy of 65.75%, the method uses a holistic approach, which

causes considerable delay in recognition. Hence an alternate approach

is also proposed. In this approach, a real-time prediction model for

OHCR is used. The transition sequences of pattern primitives that

constitute each character are analyzed in the predictive model. These

pattern primitive transition information, obtained from the characters,

are utilized for constructing a tree structure for the possible predictions

of every character in a real-time environment. The average Reduction in

Writing Time (RWT) is the significant advantage of the predictive

model to be incorporated in Malayalam OHCR. The study shows that

most of the Malayalam characters start writing in the upward direction.

It can also be seen that fifty percentage of the characters start with a

unique pattern primitive. The most frequent pattern primitive transition

is also identified in the study . Experiments are also conducted to verify

the effectiveness of the model using online handwritten character

samples taken from CU-OHDB dataset and obtained an average

prediction accuracy of 77.63%. The prediction part of the system is

quick and straightforward to redefine existing systems that recognize the

handwritten characters, only after completing the writing process. The

model is useful in building a fast handwritten character recognition

system to be realized in real-time environments.

A Keyword Spotting (KWS) technique is implemented as an

application of handwriting recognition in the final section of the thesis.

The well-known pattern matching technique, Dynamic Time Warping

(DTW) is used to compare the words in the experiments. An average

performance score of 78.31% over a regular DTW search obtained in

xii

the experiment suggests that, the method can effectively be used for

Keyword Spotting (KWS) for Malayalam online handwritten documents

in a real-time environment.

xiii

Contents

List of Figures xviii

List of Tables xxii

List of Abbreviations xxvi

1. Introduction 1-8

 1.1. Background 1

 1.2. Motivation 3

 1.3. Outline of the Thesis Organization 5

2. Review of Previous Works 9-38

 2.1. Introduction 9

 2.2. Review of various Segmentation Techniques used in Pattern

 Recognition applicable to Handwritten Characters

10

 2.3. Review of Online Handwritten Character Recognition Studies

 Focusing on Segmentation

21

 2.4. Review of the Studies related to Real-Time Recognition of

 Handwritten Characters

28

 2.5. Review of Keyword Spotting (KWS) in Handwritten Documents 32

 2.5.1. Review of Keyword Spotting in Handwritten Document Images 32

 2.5.2. Review of Keyword Spotting in Online Handwritten Documents 36

 2.6. Conclusion 37

3. Malayalam Online Handwritten Character Database Creation and

 their Pre-processing

39-57

 3.1. Introduction 39

 3.2. Orthography and Categorization of Malayalam Characters 40

 3.2.1. Vowels and Dependent Signs in Malayalam 40

 3.2.2. Special Symbols in Malayalam (Anusvaram, Visargam,

 Chandrakkala)

42

 3.2.3. Diphthongs in Malayalam 42

 3.2.4. Malayalam Consonant Classes 43

 3.2.5. Malayalam Chillu / Chillaksharam 44

xiv

 3.2.6. Formation of Various Conjunct Classes in Malayalam 45

 3.3. Database Creation for Online Handwritten Characters in Malayalam 47

 3.3.1. Devices used for Data Acquisition 48

 3.3.2. Setting up of Data Capturing Environment 49

 3.3.3. Labeling of Samples 51

 3.3.4. Number of Samples in the Database 51

 3.4. Preprocessing Techniques applied to the Online Handwritten

 Character Samples

52

 3.4.1. Min-max Normalization 53

 3.4.2. Smoothing 54

 3.4.3. Resampling 55

 3.5. Conclusion 57

4. Analysis of Pattern Primitives and Segmentation of Online

 Malayalam Handwritten Characters using Ramer Douglas Peucker

 Algorithm and Eight Direction Freeman Code

59-113

 4.1. Introduction 59

 4.2. Pattern Primitives in Malayalam Characters 61

 4.3. Pattern Primitives, Labeling of Characters and Creation of Reference

 Character Set
63

 4.3.1. Representation of Malayalam Vowel Characters using Pattern

 Primitives

67

 4.3.2. Representation of Malayalam Consonant Characters using

 Pattern Primitives

69

 4.3.3. Creation of Reference Set of Malayalam Characters based on

 Pattern Primitives

74

 4.4. Frequency of Occurrence of Pattern Primitives in Malayalam

 Characters

79

 4.4.1. Frequency of Occurrence of Pattern Primitives 79

 4.5. Pattern Primitive based Character Segmentation Algorithms 90

 4.5.1. Character Segmentation based on Ramer Douglas Peucker

 Algorithm

91

 4.5.2. Character Segmentation based on Eight Direction Freeman

 Code Algorithm

95

xv

 4.5.3. A Combined Approach of RDP and EDFC Algorithm for

 Segmentation

103

 4.5.4. Automated Method for Determining Segmentation

 Accuracies

107

 4.6. Conclusion 112

5. Recognition of Malayalam Online Handwritten Characters based on

 Pattern Primitives: A Class Modular Approach

114-161

 5.1. Introduction 111

 5.2. Preprocessing of Pattern Primitives 116

 5.2.1. Categorization of Pattern Primitives into Straight-line and Arc

 Segments using Curvature Values

116

 5.2.2. Smoothing of Straight-line Pattern Primitives using

 Bresenham’s Line Drawing Algorithm

119

 5.2.3. Skew Correction of Horizontal and Vertical Straight-line

 Pattern Primitives

120

 5.3. Feature Extraction from Pattern Primitives 123

 5.3.1. Minimized Chain Code (Reduced Direction Code) Features 124

 5.3.2. Cusp Identification in Pattern Primitives 126

 5.3.3. Length of the Pattern Primitives 128

 5.3.4. Direction Category Code Features (DCCF) of Pattern

 Primitives

129

 5.3.5. Intersection (Crossing) of Pattern Primitives 131

 5.4. Grouping of Malayalam Handwritten Characters based on the

 Features of Pattern Primitives

133

 5.4.1. Pattern Primitive Features of Characters in Cluster A 135

 5.4.2. Pattern Primitive Features of Characters in Cluster B 136

 5.4.3. Pattern Primitive Features of Characters in Cluster C 138

 5.4.4. Pattern Primitive Features of Characters in Cluster D 140

 5.4.5. Pattern Primitive Features of Characters in Cluster E 142

 5.4.6. Pattern Primitive Features of Characters in Cluster F 143

 5.4.7. Pattern Primitive Features of Characters in Cluster G 145

 5.5. Experimental Setup 145

xvi

 5.6. Analysis of the OHCR Results 148

 5.7. Conclusion 160

6. A Predictive Model for Real-Time Recognition of Malayalam

 Handwritten Characters based on Pattern Primitives

162-213

 6.1. Introduction 162

 6.2. Pattern Primitive String (PPS) Representation of Malayalam Online

 Handwritten Characters

165

 6.3. Pattern Primitive based OHCR using DFA 167

 6.3.1. Design of the Deterministic Finite Automata based on Pattern

 Primitives Present in the Characters

169

 6.3.2. Implementation of the DFA based OHCR 170

 6.4. The Predictive Model for Real-Time Recognition of Malayalam

 Handwritten Characters based on Pattern Primitives

177

 6.4.1. Pattern Primitive Transition Sequences in the Malayalam

 Online Handwritten Characters

177

 6.5. Tree Representation of the Predictive Model for Real-Time OHCR

 Implementation

188

 6.5.1. Tree Representation of the Predictive Model based on the First

 Pattern Primitive b as Root Node

188

 6.5.2. Tree Representation of the Predictive Model based on the First

 Pattern Primitive p as Root Node

190

 6.5.3. Tree Representation of the Predictive Model based on the First

 Pattern Primitive c as Root Node

191

 6.5.4. Tree Representation of the Predictive Model based on the First

 Pattern Primitive y as Root Node

192

 6.5.5. Tree Representation of the Predictive Model based on the First

 Pattern Primitive g as Root Node

193

 6.5.6. Tree Representation of the Predictive Model based on the First

 Pattern Primitive h as Root Node

194

 6.5.7. Tree Representation of the Predictive Model based on the First

 Pattern Primitive a as Root Node

195

 6.6. Reduction in Writing Time (RWT) for the Malayalam Online

 Handwritten Characters

199

 6.6.1. Reduction in the Number of Classes in Character Prediction 199

 6.6.2. Reduction in Writing Time (RWT) 202

xvii

 6.6.3. Implementation of the Character Prediction Model for Real-

 Time OHCR

205

 6.7. Conclusion 211

7. Keyword Spotting in Online Handwritten Malayalam Documents

 using Dynamic Time Warping

214-230

 7.1. Introduction 214

 7.2. Creation of Keyword Dataset and Preprocessing 217

 7.2.1. Malayalam Online Handwritten Keyword Dataset Creation 217

 7.2.2. Preprocessing Methods Applied 220

 7.3. Feature Extraction 224

 7.4. Experimental Setup 227

 7.5. Result Analysis 229

 7.6. Conclusion 229

8. Conclusions and Recommendations 231-238

 8.1. Conclusions 231

 8.2. Contributions of the Thesis 236

 8.3. Recommendations 237

xviii

List of Figures

Figure No Title Page No

1.1 Thesis organization 8

3.1 E-writemate pen and memory unit 48

3.2
User interface for touchscreen-enabled data

acquisition
49

3.3
A sample page used for single stroke data

acquisition of handwritten characters
50

3.4 (a) Character അ <a> in raw form 54

3.4 (b) Character അ <a> in normalized form 54

3.5

Shape variation of Malayalam character അ <a>

after applying moving average filter of various

filter lengths

55

3.6
Original, re-sampled, and interpolated points in a

Malayalam character sample റ <ra>
56

3.7 (a)-(b)
Original and re-sampled set of Malayalam

characters അ <a>, ഇ <i>, and ഉ <u>
 57

4.1 Common pattern segments in Malayalam 60

4.2 (a)-(g) Segments of the Malayalam character അ <a> 61

4.3
Unique segments of the Malayalam character

അ <a>
62

4.4 Segments of the Malayalam character ഘ <gha> 62

4.5
Unique segments of the Malayalam character

ഘ <gha>
62

4.6
Frequency of occurrence of pattern primitives in

the Malayalam handwritten characters
90

4.7
The output obtained after applying RDP algorithm

on the character അ <a> for various ε values
93

4.8
Directions and codes in Eight Direction Freeman

Code algorithm
96

4.9

Plot of direction codes and segmentation points

marked by the EDFC segmentation algorithm for

the Malayalam character യ <ya>

101

xix

4.10

Segmentation points obtained for the Malayalam

characters അ <a>, ഗ <ga>, യ <ya>, ര <ra>, ല

<la>, and ഹ <ha> using the combined approach

for segmentation

105

5.1
Block diagram of the proposed pattern primitive

based OHCR system
115

5.2
Average curvature and angle of contingence of an

arc
117

5.3 (a) Slope values 121

5.3 (b) Slope values and directions 122

5.4
Direction Code of the first pattern primitive of the

Malayalam character അ <a>
124

5.5

Cusp in a pattern primitive present in the

Malayalam characters അ <a>, ആ <a:>, ദ <da>, ഏ
<e:> and ഒ<o>

127

5.6

Length of pattern primitives (blue dots),

segmentation points (red dots) for the Malayalam

handwritten character samples of അ <a>, സ

<sa>, ഹ <ha>

128

5.7
Intersection points obtained for the Malayalam

characters അ <a>, ത <ta>, and എ <e>
133

5.8 (a)-(c)

Direction code features of second pattern primitive

for the Malayalam characters റ <ṟa>, ഭ <bha> and

ദ <da> respectively

136

5.8 (d)
Cusp features of second pattern primitive for the

Malayalam characters ദ <da>
133

5.9 Normalized confusion matrix for cluster A 149

5.10 Normalized confusion matrix for cluster B 150

5.11 Normalized confusion matrix for cluster C(Up) 151

5.12 Normalized confusion matrix for cluster C(Down) 152

5.13 Normalized confusion matrix for cluster D(Up) 153

5.14 Normalized confusion matrix for cluster D(Down) 154

5.15 Normalized confusion matrix for cluster E 155

5.16 Normalized confusion matrix for cluster F(L) 156

5.17 Normalized confusion matrix for cluster F(NL) 157

5.18 Normalized confusion matrix for cluster G 158

xx

5.19 Average recognition accuracies for each cluster 160

6.1

Proposed model for real-time recognition of

Malayalam handwritten characters based on

pattern primitives

164

6.2 DFA which accepts all strings starting with ‘ab’ 169

6.3

DFA of the pattern primitive string ‘abab’

representing the Malayalam online handwritten

character ന <na>

170

6.4
A sample DFA representing the Malayalam online

handwritten character ഛ <cha>
172

6.5

The possible transitions from first to second

pattern primitives in Malayalam handwritten

characters

184

6.6

Heat map showing the frequency of pattern

primitive transitions obtained for the Malayalam

online handwritten characters

187

6.7
Tree representation of the predictive model based

on the first pattern primitive b as root node
189

6.8
Tree representation of the predictive model based

on the first pattern primitive p as root node
190

6.9
Tree representation of the predictive model based

on the first pattern primitive c as root node
191

6.10
Tree representation of the predictive model based

on the first pattern primitive y as root node

192

6.11
Tree representation of the predictive model based

on the first pattern primitive g as root node

193

6.12
Tree representation of the predictive model based

on the first pattern primitive h as root node
194

6.13
Tree representation of the predictive model based

on the first pattern primitive a as root node
196

6.13(a)
Tree representation of the predictive model based

on the first pattern primitive a as root node
197

6.13(b)
Tree representation of the predictive model based

on the first pattern primitive a as root node
198

7.1 Block diagram of the KWS system 216

7.2
A sample Malayalam online handwritten

document written using E-writemate device
218

xxi

7.3 Samples from the word dataset 220

7.4 Stages of preprocessing 221

7.5(a)
Malayalam online handwritten word അജണ്ട

/ajaṇṭa/ before pre-processing
223

7.5(b)
Malayalam online handwritten word അജണ്ട

/ajaṇṭa/ after preprocessing
223

7.6(a)
Direction of a stroke point in the Malayalam

character ത <ta>
225

7.6(b)
Height of a stroke point in the Malayalam

character ത <ta>
225

7.6(c)
Curvature of a stroke point in the Malayalam

character ത <ta>
226

7.7
Precision and Recall values obtained in the

Keyword Spotting experiments

229

xxii

List of Tables

Table

No
Title

Page

No

2.1
Summary of the studies related to segmentation of two

dimensional curves
15

2.2
Summary of studies related to segmentation of online

handwritten characters in various scripts
20

2.3 Summary of OHCR studies specific to segmentation 27

2.4
Summary of major studies in real-time recognition of

online handwritten characters
30

3.1 Vowels and Dependent signs in Malayalam 41

3.2
Usage and sign of Anusvaram, Visargam and

Chandrakkala
42

3.3 Malayalam Diphthongs 43

3.4 Malayalam Consonant Varga Classification 43

3.5 Malayalam Consonants other than Varga 44

3.6 Malayalam Chillu Consonants 45

3.7 Rules for the formation of compound letters in Malayalam 46

3.8 Number of samples from various methods and devices 52

4.1 Patterns primitives present in the Malayalam characters 63

4.2
Representation of Malayalam vowel characters using

pattern primitives
68

4.3
Representation of Malayalam consonant characters using

pattern primitives
69

4.4
Reference set of Malayalam characters marked based on

pattern primitives
75

4.5
Frequency of occurrence of pattern primitives in

Malayalam characters
81

4.6
Pattern primitives in the descending order of frequency of

occurrence
89

4.7 Segmentation accuracy of the RDP algorithm 94

xxiii

4.8 Conditions and corresponding directions in EDFC 96

4.9
Shapes in Malayalam characters and corresponding

direction codes
99

4.10
Segmentation accuracy of Eight Direction Freeman Code

based segmentation algorithm
101

4.11
Segmentation accuracy of the combined approach for

segmentation
106

4.12
Direction category code string representation of the

Malayalam vowel characters
108

4.13
Segmentation accuracy of the combined approach for

segmentation through the automated method
111

4.14 Average segmentation rate of the Combined approach 112

5.1
Average pattern primitive lengths of the character samples

അ <a> ,സ <sa> ,ഹ <ha>
129

5.2
Direction Category Code Features (DCCF) of pattern

primitives
130

5.3
Character clusters based on the number of pattern

primitives
134

5.4 Pattern primitive features of the characters in cluster A 136

5.5 Pattern primitive features of the characters in cluster B 137

5.6 Pattern primitive features of the characters in cluster C(Up) 139

5.7
Pattern primitive features of the characters in cluster

C(Down)
140

5.8(a) Pattern primitive features of the characters i4 cluster D(Up) 141

5.8(b)
Pattern primitive features of the characters in cluster

D(Down)
141

5.9 Pattern primitive features of the characters in cluster E 142

5.10 Pattern primitive features of the characters in cluster F(L) 144

5.11 Pattern primitive features of the characters in cluster F(NL) 144

5.12 Pattern primitive features of the characters in cluster G 145

5.13 Number of features in various clusters 147

xxiv

5.14 Performance scores for cluster A 149

5.15 Performance scores for cluster B 150

5.16 Performance scores for cluster C(Up) 151

5.17 Performance scores for cluster C(Down) 152

5.18 Performance scores for cluster D(Up) 153

5.19 Performance scores for cluster D(Down) 154

5.20 Performance scores for cluster E 155

5.21 Performance scores for cluster F(L) 156

5.22 Performance scores for cluster F(NL) 157

5.23 Performance scores for cluster G 154

5.24 Average recognition accuracies for each cluster 159

6.1 Modified labels of pattern primitives 165

6.2
Pattern Primitive String (PPS) representation of Malayalam

handwritten characters 166

6.3
Features of the pattern primitives present in the Malayalam

vowel characters 173

6.4

Recognition accuracies obtained for the OHCR

experiments using Malayalam vowel characters based on

DFA

176

6.5
Occurrence of a pattern primitive after a selected pattern

primitive obtained for the Malayalam characters 179

6.6
Transition of first to second pattern primitives and the

corresponding characters 185

6.7 Reduction in the number of classes in character prediction 200

6.8
Reduction in Writing Time (RWT) for the Malayalam

characters 203

6.9
Features of the nine pattern primitives constituting the

Malayalam vowel characters 205

xxv

6.10
Prediction accuracies obtained for the Malayalam vowel

characters 211

7.1
Details of the Malayalam online handwritten keyword

dataset 220

7.2
List of features identified for the Malayalam online

handwritten words for KWS experiments 224

xxvi

List of Abbreviations

ADP : Accurate Dominant Points

BDLSTM : Bi-Directional Long-Short Term Memory

CUOHDB : Calicut University Online Handwriting Data Base

CV : Consonant-Vowel

DFA : Deterministic Finite Automata

DTW : Dynamic Time Warping

DWT : Daubechies Wavelet Transform

ED : Euclidian Distance

EDFC : Eight Direction Freeman Code

HCI : Human Computer Interaction

HMM : Hidden Markov Model

KNN : K-Nearest Neighbor

KWS : Key Word Spotting

LPF : Low Pass Filter

NLP : Natural Language Processing

NN : Neural Networks

OCR : Offline Character Recognition

OHCR : Online Handwritten Character Recognition

RDP : Ramer Douglas Peucker

SLP : Single Layer Perceptron

SPR : Syntactic Pattern Recognition

SVM : Support Vector Machine

1 | P a g e

Chapter 1

Introduction

1.1. Background

Communication is an innate part of existence and the core of the human social

system. For the human being, it is not just for meeting basic needs; instead, a

social and cognitive manifestation of human psychology. The current era is

endowed with advanced technologies that have fastened the growth of

communication in every field. A remarkable contribution in this field is

Human-Computer Interactions (HCI) that simulates machines as humanoids

in all aspects. Speech and handwriting have been the major players in HCI

for years, as they are the ineluctable part of Natural Language Processing

(NLP). Due to the variance and disparities in languages over continents

challenged the growth of HCI in speech and handwriting. The tremendous

technological growth paved the way for sophisticated devices and techniques

to overcome the dilemma in HCI.

 Handwriting recognition has been a potential research area in human-

machine communication for decades. Compared to other communication

modes, handwriting recognition is computationally less expensive and

potentially more accurate; especially in ambient noises. In Handwritten

Character Recognition (HCR), the handwritten data is converted into

machine-readable text, using specialized hardware and software. The two

approaches in HCR, offline and online, are also embarked as a result of

technological progress. In offline HCR, the handwritten images are scanned

and recognized using suitable pattern recognition techniques. With the

2 | P a g e

advancement of technology, there introduced a way for acquiring

handwriting, using digitizers and storing them as stroke series. These spatio-

temporal handwriting sequences, also called digital ink, considerably reduce

storage. In online HCR (OHCR), recognition is performed on these digital

inks.

Over the past few decades, the research in OHCR has been tremendous,

and it achieved promising results globally. The ease of access in touch screen

displays diversified the studies in OHCR to realize faster recognition.

Systems with real-time recognition capabilities are also evolved from

extensive research to cope up with rapidly changing technology. But in India,

text input in local Indic languages is a complex problem. On the other hand,

the use of handwriting is widely entrenched in the domestic environment,

government, and business ecosystems and forms the basis for recordkeeping

and communication. In this context, technology for OHCR in Indic languages

and scripts can play a significant role in promoting IT in these languages,

especially in Malayalam.

Among the 22 official languages and ten scripts in India, Malayalam is

primarily used in Kerala and the union territories of Lakshadweep and Mahe.

Malayalam consists of 11 vowels, 36 consonants, 5 chillus, 2 diphthongs, and

15 modifier symbols. It is considered as the complex one to be entered into a

computer, as it involves multiple keystrokes per character. The large alphabet

size of the Malayalam script, two-dimensional structure of the characters,

inter-class similarity among some letters, writing style issues, language,

regional specific usages, etc., are significant obstacles in recognizing

Malayalam characters. The potential use of online handwriting recognition in

3 | P a g e

Malayalam scripts is a well-studied problem. However, studies on recognition

schemes based on structural features suitable for real-time applications are

comparatively lesser in Malayalam. Hence, an in-depth study is to be initiated

for developing OHCR systems in Malayalam catering to the essentials of real-

time applications.

1.2. Motivation

Research in OHCR for Indic scripts has been gaining momentum for the last

few years. There is a higher demand for simplifying the communication

between computing devices and scripts used by various linguistic

communities in India. But, the structure of the scripts and various writing

styles pose challenges in materializing this aim. To fulfill hassle-free

communication between computing devices and scripts, we require

customized techniques for OHCR.

The prime motive of this study is to address Malayalam online

handwritten character recognition as a Syntactic Pattern Recognition (SPR)

problem, by considering their structural and directional properties. Since a

standard database is necessary to conduct various experiments involving data,

this study proposes a Malayalam online handwritten character database to

accommodate different writing styles. Moreover, familiarizing the major

preprocessing techniques for these characters is also a part of the proposed

study.

The direction and structure of Malayalam online handwritten characters

have a decisive role in recognizing them, as in the case of other Indic scripts.

The visual similarity of various Malayalam characters is also highly relevant

4 | P a g e

in identifying them. Studies that describe the structural and directional

features of character segments are comparatively lesser in Malayalam OHCR.

An extensive analysis of these properties and understanding the smallest

identifiable units, termed pattern primitives in Malayalam online handwritten

characters, are also a part of the study. The analysis of pattern primitives and

representation of characters using these pattern primitives are proposed in the

study with the prime focus. A study of the frequency of occurrence of pattern

primitives in every character is also proposed in the work.

Segmentation of pattern primitives from Malayalam characters using

various algorithms is proposed in the study. The performance of pattern

primitives in recognizing Malayalam characters is to be analyzed with

existing methods. The study suggests a class-modular approach in character

recognition to effectively address the advantage of pattern primitives by

clustering the characters based on the number of pattern primitives present in

each character.

Faster recognition has been an indispensable demand for computing

devices over the years, which is further exacerbated with the onset of

touchscreen interfaces. A predictive model for the real-time recognition of

Malayalam handwritten characters is proposed in the study. The pattern

primitives extracted from the characters and their transition sequences are the

major components of the proposed model. The study also focusses on the

most frequent first pattern primitive, its writing direction, and most frequent

pattern primitive transition present in various Malayalam online handwritten

characters. A Deterministic Finite Automata (DFA) based recognition

scheme, using Pattern Primitive String (PPS) representation of the Malayalam

5 | P a g e

handwritten characters, is also proposed as a part of the work. In the real-time

prediction model, the pattern primitive transition sequences are to be analyzed

in detail and based on this, tree representations for the real-time predictions

of the characters are also proposed. Finally, as a real-time application, a

Keyword Spotting (KWS) system, that can be effectively used to retrieve

online handwritten Malayalam documents, is also proposed.

1.3. Outline of the Thesis Organization

The outline of the thesis and the organization of various chapters are

described as follows. The necessary information, concerning the previous

studies in online recognition of handwritten characters, is described in chapter

2. Various segmentation techniques, recognition schemes using pattern

primitives, and real-time recognition of online handwritten characters are also

reviewed in this chapter. A review of keyword spotting in handwritten

documents is also given in this chapter.

Chapter 3 describes the orthographical categorization of the Malayalam

script, within the constraints for the formation rules of vowels and

consonants, in detail. The orthography of various writing units specific to

Vowels, Anusvaram, Visargam, Chandrakkala, Diphthongs, Chillu, and

Consonants is also detailed. An online handwritten character database for

Malayalam from various handwritings is also created as part of the study in

this chapter. The database named, CU-OHDB (Calicut University Online

Handwriting Data Base) consists of 30800 samples of 44 single stroke

Malayalam online handwritten characters (8 vowels and 36 consonants) that

are properly labeled and categorized. Various preprocessing techniques

applied to the dataset are also described in this chapter.

6 | P a g e

In chapter 4, a detailed study is conducted to identify the unique segments

present in the 44 selected characters, and a set of such segments, known as

pattern primitives, is obtained. There are 26 pattern primitives for these 44

Malayalam characters. Every pattern primitive is assigned a unique label for

identification purposes, and every character is represented using these labels.

The frequency of occurrence of various pattern primitives present in these

characters, is also analyzed in detail. A reference set for the 44 Malayalam

characters, corresponding to the pattern primitives, is also procured. The

segmentation scheme for partitioning the characters into pattern primitives is

proposed in this chapter. In the first method, the well-known Ramer Douglas

Peucker (RDP) algorithm to approximate planar curves, is used for extracting

segmentation points in a character. The second method explains segmentation

using the directional properties of the character. For this purpose, the Eight

Direction Freeman Code (EDFC) algorithm is used. As a better method for

getting more précised segmentation points, a segmentation scheme by

combining RDP and EDFC algorithms is implemented. The combined

approach using RDP and EDFC algorithms to segment pattern primitives is

novel and unique for OHCR, with a profound understanding of the

Malayalam language and its writing units. The accuracy of the segmentation

schemes are obtained through visual comparisons with the reference character

set. An automated method for obtaining the accuracy of segmentation points

is also implemented and compared with the visual comparison method.

In chapter 5, a handwritten character recognition method, incorporating

pattern primitives is described. A class-modular approach is proposed, in

which the characters are clustered and features are extracted to differentiate

the characters inside these clusters. The projected classification technique is

7 | P a g e

Support Vector Machine (SVM), and it is implemented inside every cluster.

The recognition accuracy of the class-modular approach proves that the

pattern primitives are suitable candidates for Malayalam OHCR systems.

The predictive model for real-time recognition of Malayalam handwritten

characters, based on pattern primitives, is presented in chapter 6. Two

approaches are proposed in the model. In the first approach, Deterministic

Finite Automata (DFA) based OHCR, using Pattern Primitive String (PPS)

representation of characters, is described. In the next approach, a real-time

prediction model for OHCR is described. The transition sequences of pattern

primitives that constitute each character are analyzed in the predictive model.

These pattern primitive transition information, obtained from the characters,

are utilized for constructing a tree structure for the possible predictions of

every character in a real-time environment. The average Reduction in Writing

Time (RWT) is the significant advantage of the predictive model to be

incorporated in Malayalam OHCR. Experiments are also conducted to verify

the effectiveness of the model using online handwritten character samples

taken from CU-OHDB dataset. The prediction part of the system is quick and

straightforward to redefine existing systems that recognize the handwritten

characters, only after completing the writing process. The model is useful in

building a fast handwritten character recognition system to be realized in real-

time environments.

In chapter 7, a Keyword Spotting (KWS) system for online handwritten

Malayalam documents is implemented. This study is the first of its kind in

Keyword Spotting (KWS) for Malayalam online handwritten documents to

8 | P a g e

the best of our knowledge. The method is adaptable in realizing a Keyword

Spotting (KWS) system for online handwritten Malayalam documents.

The findings and contributions of the thesis, followed by future research

directions, are summarized in chapter 8. The figure 1.1 shows the entire

outline of the chapter organization in the thesis.

Fig 1.1 Thesis organization

9 | P a g e

CHAPTER 2

Review of Previous Works

2.1. Introduction

Pattern recognition studies address the machine understanding of various

patterns and how they are differentiated from one another. Despite years of

research, a general-purpose recognizer for patterns remains an elusive goal.

Handwritten Character Recognition (HCR), one of the most studied and

demanded pattern recognition problems, is diverse in all its aspects, and that

includes OCR (Offline Handwriting Character Recognition) and OHCR

(Online Handwriting Character Recognition).

Reviewing past studies is essential in developing more diversified

approaches in any research. In this chapter, a review of various literature on

pattern recognition studies of online handwritten character recognition is

conducted. The study primarily focuses on the segmentation of online

handwritten characters and their recognition. Various segmentation

techniques applied to two dimensional patterns and their applicability in

online handwritten characters are also reviewed in this chapter. Studies that

focus on segmentation based approaches and recognition of online

handwritten characters based on pattern primitives (unique sub-character

units) are also explored from previous studies. Studies on real-time

recognition of handwritten characters are also reviewed to adopt suitable

techniques for online handwritten character recognition. Existing studies on

Keyword Spotting (KWS) techniques applied to handwritten document

images and online handwritten documents are also reviewed in this chapter.

10 | P a g e

The remaining part of the chapter is organized as follows. Section 2.2

reviews the studies on various segmentation techniques used in pattern

recognition, majorly focusing on handwritten characters. Section 2.3 of the

chapter reviews various studies with a prime focus on syntactic pattern

recognition approaches. A review of real-time studies in handwriting

recognition specific to OHCR is given in section 2.4. In section 2.5, various

studies on Keyword Spotting (KWS) in handwritten documents are reviewed.

The review is concluded in section 2.6.

2.2. Review of various Segmentation Techniques used in Pattern

Recognition Applicable to Handwritten Characters

A means for converting handwriting to machine-readable text has gained

great research attention from past centuries. With the invention of the digital

computer and modern technologies, scientific studies in this area became

more exigent. A milestone on the move was the invention of a handwritten

digit recognizer by IBM in 1966 [1].

 Charles. C. Tappert et al. describe the distinction between online and

offline recognition in a vivid manner in an intensive study [2]. Moreover, their

analysis of various studies shows that online recognition takes advantage of

offline recognition, mainly due to the difference in data acquisition. They

further explore that online devices capture the dynamic and temporal

information of the writing, like the number of strokes in writing, the writing

order of the strokes, the direction of each stroke, and the speed at which the

data is recording. The major challenges in recognizing online handwriting

listed in the study are the similarity of variable stroke classes, cursive writing

styles, and the speed at which writing occurs.

11 | P a g e

Due to the difficulty in analyzing patterns like handwriting, there is a

strong requirement for reducing complex patterns into apparently simpler

ones without losing their essence. There are many investigations done in this

direction to address the pattern reduction problems, especially for

handwriting, where a lot of ambiguity exists. One of the early attempts of

Eden et al. demonstrated that a set of primitives with a set of rules could

produce handwritings that are indistinguishable from humane [3][4]. Their

studies had essential implications in handwriting recognition. A method to

describe complicated two dimensional patterns into one dimensional patterns

is evolved, and also a way to distill the essential information from intricate

patterns in a more straight forward way. As a result, segmentation techniques

were extensively used in handwriting recognition. Segmentation of the

strokes is considered as a preprocessing technique in the studies by Charles.

C. Tappert et al., and it is also differentiated into internal segmentation and

external segmentation [2]. Segmentation inside the stroke is called internal

segmentation, and the isolation of various writing units into words and

characters before recognition is termed external segmentation. They enlighten

the fact that internal segmentation also requires certain recognition.

Most of the works reported in early literature extensively give

comprehensive coverage on image segmentation techniques, and these

methods also need to be reviewed. Nikhil R Pal and Shankar K Pal reviewed

the methods used in image segmentation in greater depth [5]. Their study

observes that not a single method exists, which is performing better for all

images. One of the works studied by them gives a clear division between

clustering and segmentation, as clustering is a grouping done in measurement

space. In contrast, segmentation is done in the spatial domain. Standard

12 | P a g e

segmentation methods structured under their study are thresholding,

relaxation, Markov Random Fields, surface-based segmentation, and edge

detection. In edge detection, the edges of the image are identified, and the

image is segmented. Edge detection has a crucial role in pattern recognition,

especially in handwriting recognition.

In the work of Herbert Freeman, arbitrary geometrical configurations are

encoded using direction code in a simple way [6]. The study explores the

fundamental aspects of chain coding using various minimal waveforms. The

rotation, curve length, inverse, path reversal, closure, loops, intersections, and

area are found simply using operations on chain code sequences of the curve.

The study reveals that the freeman chain coding is not only a simple encoding

scheme to be employed for arbitrary geometrical configurations but also a

better tool to perform various transformations on them. Moreover, the insights

into the segmentation scheme give many ideas regarding the division of a

curve. Consequently, the large size of segments leads to a minimum number

of segments. Still, it increases complexity to represent them using various

mathematical functions, whereas the lesser sized segments create more of

such in number, and a straight line approximation may suffice. For this

reason, equal segmentation of the curve is employed as a simple mean but not

efficient. Another approach illustrated is the segmentation based on the

properties of a curve, which is relatively efficient.

In another work by Herbert Freeman and Geremy M Glass, a quantization

scheme for the curve is implemented using linear segments and direction code

[7]. The method illustrated in the work is grid-intersect quantization, where a

grid mesh is superimposed with the curve. The points on the mesh where the

13 | P a g e

curve intersects are marked, and the nodes close to these points are marked

as curve points. Therefore, each curve point has eight neighbor points in the

grid, and the next curve point in the sequence must meet any of these

neighboring points. After all, these points are coded using direction code, and

the work illustrates a procedure to reconstruct the curve from the direction

code thus obtained. The study gives insights into the importance of chain

codes in the quantization process of curves.

In a work, URS Ramer implemented an iterative procedure for the

polygonal approximation of planar curves [8]. The procedure is to divide a

subset into two subsets. Here, the division is based on the criteria of maximum

distance and approximated straight line. Experiments in this work integrate

the fact that the division of point of maximum distance from the

approximating straight - line results in a low number of vertices and very little

extra computation. For closed curves, the starting and ending points in the

approximated polygon are the same as that of the original curve. Further, the

work compared chain code and found that the performance is comparable in

polygon approximations, but the processing time is considerably shorter than

chain coding.

A study on the number of points required to represent a curve without

losing the essential properties is conducted by David H Douglas and Thomas

K Peucker on digitized lines and caricatures referred to as the Ramer Douglas

Peucker algorithm [9]. The work demonstrates a method where the first point

is marked as an anchor, and the last point as a floatingpoint, and these two

points define a straight line segment. The intervening points along the curved

line are examined to find the greatest perpendicular distance between it and

14 | P a g e

the straight line defined by the anchor and floater. The point is retained in the

work by measuring the tolerance distance measure. Various measures of

tolerance and a corresponding number of points are also listed in the work.

The study forwards an idea about reducing the number of issues with various

tolerances and is crucial in the segmentation of open curves.

In another work by Herbert Freeman, a detailed study of computer

processing of line-drawing images is conducted [10]. The work emphasizes

chain coding aspects of the images and explains how these codes can

effectively extract features. Further, the study describes detailed procedures

for rotating, expanding, and smoothing line structures, and a correlation

technique for establishing the degree of similarity is also detailed. It is also

observed that the chain coding scheme is established from the grid intersect

quantization technique popular in that period. A method for detecting sharp

corners in a chain coded plane curve is described by Herbert Freeman and

Larry S Davis [11]. A chain code is scanned by moving the variable line

segment, and the angular differences between successive segment positions

are used to measure local curvature along the chain. It follows that a

distinction can be made between a straight-line segment and curvature after

the linear scanning. The study infers those three incremental curvature

regions characterize a corner in a chain coded curve, and a possible measure

for the prominence of a corner is the product of the lengths of the uniform

chain sections and the angle of discontinuity.

The shape is described using critical points in another work of Herbert

Freeman [12]. The work extracts the boundary line of the object, and shape

descriptors are found from the boundary line. The corners are described as

15 | P a g e

points of discontinuity as one shape descriptor followed by inflection points,

curvature maxima, intersections, and points of tangency. In this study, curves

are divided into segments and use relatively simple features to characterize

them. This study also transforms the shape into chain codes, and a line

segment scan is used for detecting discontinuity points. The methods

illustrated in the work are useful for both closed and open curves.

Li De Wu extended his studies by analyzing various studies of Herbert

Freeman and describes a procedure to identify lines from chain codes by

pointing out the three criteria to be met by chain coded lines [13].

Accordingly, they are 1) The presence of two basic directions, which can

differ by modulo eight or unity 2) One of these values occur singly. 3)

Successive occurrences of the principal directions occurring alone are to be

uniformly spaced. A mathematical analysis of the chain code of a line is

performed to satisfy the above criterion simply throughout the study. A

summary of the studies related to the segmentation of two-dimensional curves

is shown in table 2.1.

Table 2.1 Summary of the studies related to segmentation of two dimensional

curves

Sl.No Authors Year Work Method

1 Herbert Freeman [6] 1961

Operation on

arbitrary geometrical

shapes

Eight Direction

Freeman Code

2
Herbert Freeman and

Geremy M Glass [7]
1969

Quantization of 2-d

curves

Linear segments

and Eight Direction

Freeman Code

3 URS Ramer [8] 1971
Approximation of 2-

d curves

Ramer Douglas

Peucker Algorithm

16 | P a g e

Table 2.1 Summary of the studies related to segmentation of two dimensional

curves (cont.)

Sl.No Authors Year Work Method

4

David H Douglas and

Thomas K Peucker

[9]

1973

Approximation of 2-

d curves with the

number of points

Ramer Douglas

Peucker Algorithm

5 Herbert Freeman [10] 1974 Operation on lines
Eight Direction

Freeman Code

6
Herbert Freeman and

Larry S Davis [11]
1976

Sharp corners in 2-d

curves

Eight Direction

Freeman Code

7 Herbert Freeman [12] 1978 Critical points
Eight Direction

Freeman Code

8 Li De Wu [13] 1982 Line encoding
Eight Direction

Freeman Code

In the work of Samir Al Emami and Mike Usher, online recognition of

handwritten Arabic characters is performed using segmentation based on the

length and slope [14]. The approach followed here is considering three

neighboring points as a single unit and finding the length and slope angle of

the two sides of the middle point followed by a threshold value matching to

keep the midpoint as a segment point. The method uses direction code after

segmentation as a feature of the segment even though the slope angle is

similar to a direction change. Richard G Casey and Eric Lecolinet conducted

a survey on various techniques that pertain to the segmentation of characters

in the offline domain [15]. Holistic and character based approaches for word

segmentation and character segmentation are listed. Hidden Markov Models

(HMM) are described with numerous examples and address the advantage of

HMM due to the property of state-to-state transition within a character and

letter-to-letter transition in a word. They are used for both character and word

level recognition. Claudio D Steffano et al. presented a segmentation scheme

for online handwriting, using Daubechies Wavelet Transform (DWT) and

17 | P a g e

curvature maximum [16]. Accordingly, they suggest a method using

histogram projection and finding the most salient curvature maxima among

the candidates to obtain the segmentation points. The experiments in the study

achieved a segmentation rate of 65.68% for an in-house data set comprising

2000 words with an average segmentation time of 600 milliseconds. In the

work of Jianying Hu et al., a detailed study on handwritten online Arabic

characters is performed [17] Their research addresses character recognition

at the stroke level, with each character concatenating several stroke models.

This, in turn, is referred to as segments analogous to other works. The system

learns the strokes through rigorous training, and no segmentation scheme

about them is addressed. Even though the work is based on HMMs and a little

information on segments is given about the state of the character in HMMs.

A survey on various segmentation techniques in character level and word

level segmentation for online Arabic text is reported by Musthafa Ali

Abuzaraida et al. [18]. Their study reveals that direction codes, the Douglas

Peucker algorithm, slope values of the strokes, and pen movements are

extensively used for Arabic character recognition. It is also reported that a

maximum rate of 92% has been obtained in the works with the Douglas

Peucker algorithm for both dependent and independent recognition. Houcine

Boubaker et al. presented a scheme for the segmentation of Arabic characters

based on two methods, namely crisp segmentation and fuzzy segmentation

[19]. The methods illustrated as crisp segmentation are based on particular

points obtained by tangent detection for valleys and extreme points for

angular points. Consequently, the disadvantage of crisp segmentation is listed

as local segmentation and introduced a new scheme fuzzy segmentation based

on a confidence score on a particular point illustrated in their work.

18 | P a g e

Detection of character boundaries and segmenting the character into

segments based on directional features are presented in their work by

Mohamed Elhafiz Mustafa and Hozeifa Adam Abd Alshafy for Arabic

character segmentation [20]. They listed directional features as a combination

of cosine and sine values for each x and y value of the online stroke sequence.

They concluded their work by stating the importance of segmentation in

simplifying the recognition of online handwriting. Mustafa Ali Abuzaraida

and Salem Meftah Jebriel identified suitable reduction values for the online

handwritten digits for the Douglas Peucker algorithm [21]. As the reduction

value increases, the distortion in shape occurs considerably. They

demonstrated that a 100% reduction factor for the handwritten digits would

be dissipated as only a few points could not be identified as a digit. Their

study also shows that a reduction in the number of points fastens the

processing of the entire system.

Paul L Rosin assessed the behavior of various polygonal approximation

algorithms based on the breakpoint stability index, monotonicity index, and

consistency index [22]. It is evident from the work that Ramer and Douglas

Peucker algorithms are excellent in attaining all the standard indexes

specified. Dileep K Prasad et al. explores the idea of three dominant point

extraction methods, namely Ramer-Douglas-Peucker, Masood, and Carmona,

and illustrates a nonparametric method for the techniques [23]. A modified

approach for all the algorithms is presented in the work without comparing

the performance. A system with a segmentation approach is mentioned by

Hesham M. Eraqi and Sherif Abdel Azeem for online Arabic handwriting

recognition [24]. The segmentation in the work is based on the horizontal

angle and segmentation junctions.

19 | P a g e

Consequently, the characters are built from different segments based on

construction rules. The importance of direction in recognition is coined by A.

Alper Atici and Fatos T. Yarman-Vural using a heuristic algorithm [25].

Contours in both directions were plotted, and segmentation is again ruled out

in the work based on local minima and local maxima. Segmentation using the

RDP algorithm is demonstrated in the work by Hesham M Eraqi and Sherif

Abdelazeem for Arabic scripts [26]. Critical points are extracted from the

total segmentation points obtained from RDP based on a set of rules

pertaining to Arabic script. The method efficiently addressed the

segmentation using the above method and attained a segmentation accuracy

of 91.27% compared to the other methods.

Stroke segmentation using predefined rules and reference sets is described

by Nilanjana B Bhattacharya and Umapada Pal for Indian script Bengla [27].

They developed a ground truth set for a segmentation set of possible points

as ground truth and achieved a segmentation rate of 97.89 % compared to the

reference set. A rule set based approach for Indian script segmentation similar

to phoneme segmentation does odd thinking for the researchers to equalize

handwriting recognition similar to speech recognition. The work also makes

a remarkable impression that directional features are essential for obtaining

expected accuracies, as they obtained a recognition accuracy of 97.68% using

directional features. A method to segment handwritten Malayalam characters

is presented as a combination of curvature weighted sampling and equidistant

sampling in the work of Prabhu Teja S and Anoop M Namboodiri [28]. A

recent work by Sukhdeep Sing et al. extracts dominant points in the

handwritten characters using the RDP algorithm [29]. Further, the method

reduces the number of points determined by the RDP algorithm for angular

20 | P a g e

and direction changes. Based on the above modifications in the feature

extraction phase, the work attained a remarkable recognition rate in their

work. The importance of direction in extracting the dominant points has been

addressed in detail throughout the work. It is clear from the literature on the

segmentation of online handwriting, direction and point reduction play a

crucial role in segmenting the series into fragments. The study also observed

that the segmentation of a character stroke series makes it easy for the

recognition systems to classify them in a divide and conquer way. Most of the

studies in segmentation used either Freeman Direction Code or the Ramer

Douglas Peucker algorithm. This observation directly associates a close

connection between segmentation and the techniques of Ramer Douglas

Peucker and the Eight Direction Freeman Code. A summary of the major

works related to the segmentation of online handwritten characters and their

recognition rate is given in table 2.2.

Table 2.2 Summary of studies related to segmentation of online handwritten

characters in various scripts

Sl.No Authors Year Work Method
Accuracy

(%)

1

Samir Al

Emami and

Mike Usher

[14]

1990

Segmentation of Online

Arabic Handwritten

Characters

Eight

Direction

Freeman

Code

-

2

Claudio D

Steffano et al.

[16]

2007

Segmentation of Online

English Handwritten

Characters

Daubechies

Wavelet

Transform

65.68

4

Musthafa Ali

Abuzaraida

and Ahmad

M Zeiki [18]

2010

Segmentation of Online

Arabic Handwritten

Characters

Ramer

Douglas

Peucker

Algorithm

92%

21 | P a g e

Table 2.2 Summary of studies related to segmentation of online handwritten

characters in various scripts (cont.)

2.3. Review of Online Handwritten Character Recognition Studies

Focusing on Segmentation

OHCR, being a pattern recognition problem, has so many approaches in

previous studies. In this section, a review of past studies pertaining to

segmentation approaches in OHCR is conducted. One of the earlier works by

K S Fu and P H Swain reports the concept of describing patterns in terms of

primitive elements, sub-elements, and their relationships [30]. It is also

evident from their studies that a syntactic model of pattern analysis is initiated

Sl.No Authors Year Work Method
Accuracy

(%)

5

Hesham M.

Eraqi and

SherifAbdela

zeem [26]

2011

Segmentation of Online

Arabic Handwritten

Characters

Ramer

Douglas

Peucker

Algorithm

91.27

6

Nilanjana B

Bhattacharya

and Umapada

Pal [27]

2012

Segmentation of Online

Bengla Handwritten

Characters

Rule Set 97.89

7

Prabhu Teja

S and Anoop

M

Namboodiri

[28]

2013

Recognition of Online

Malayalam Handwritten

Characters with

Segmentation

Dynamic

Time

Warping for

recognition

94.55

8

Mustafa Ali

Abuzaraida

and Salem

Meftah

Jebriel [21]

2015
Segmentation of Online

Handwritten Digits

Ramer

Douglas

Peucker

Algorithm

100

9

Sukhdeep

Sing et al.

[29]

2017

Recognition of Online

Gurumukhi Handwritten

Characters with

Segmentation

Hidden

Markov

Model for

recognition

98.27

22 | P a g e

by determining the set of primitives in terms of the data of interest. Some

methods for determining the primitive elements are illustrated as the system

itself learns the primitive elements from training samples based on a sample

point and a threshold value.

In another work by Herbert Freeman, the description of shape is

mentioned as the key element in pattern recognition [12]. Freeman explains

that the shape of a two-dimensional object is conveyed by the curving of the

boundary line, and the curving may be regarded as a concatenation of arcs

with varying instantaneous radii of curvature. The work facilitates shape

description by segmenting the boundary at critical points, namely corners,

points of inflection, and curvature maxima.

The method of subdividing a trajectory into metastrokes and recognition

using dynamic information for online handwriting is described in the work of

Shelya A Guberman and V V Rozentsveig [31]. Bellegarda et al. identify five

categories of online handwriting recognition techniques: (i) primitive

decomposition, (ii) motor models, (iii) elastic matching, (iv) stochastic

models, and (v) neural networks where primitive decomposition identifies

sub-strokes that form common building blocks for characters such as loops,

dots, crossovers, arcs, ascenders, and descenders and also need segmentation

of strokes [32]. An intermediate cursive words description language

constructed of elements in the form of metastrokes wherein each of the

metastrokes is a member of a metric space, the metric space being expressible

as a matrix of the likelihood of matching input metastrokes and predefined

metastrokes forming a vocabulary is explained by S.A. Guberman et al. [33].

Yoshiyuki Yamashatha et al. extracted sub-patterns from Kanji characters

23 | P a g e

using directional features [34]. The characters are matched for similarity

using structured segment matching, and they observed a higher recognition

rate using this.

Curve matching using freeman code is demonstrated by Bo Yu et al. with

corner detection and curve direction as major characteristics [35]. The work

implicates the importance of chain code in the structural matching of curves,

which are analogous to pattern sequences of online characters.

The issues in Online Handwriting Recognition are deployed by Vikas

Kumar with techniques available for the representation of handwriting and its

recognition [36]. In this work, online patterns are represented structurally,

statistically or statistical-structural methods and classified using coarse or fine

classification. The author describes pattern primitives as the representation of

the patterns in a structural way. Mohammad Badiul Islam et al. proposed a

method for recognizing handwritten Bengali characters using pattern

primitives and string comparison with matching scores [37]. Numerical stroke

codes represent curves and line slopes in the work followed by a matching

matrix for every segment and reference segment. A matching score of 100 is

treated as a similar segment, and a maximum score near 100 is treated as the

most similar segment from the reference set for an input segment.

Experiments conducted by Samir Al-Emami and Mike Usher to recognize

online Arabic characters identified four groups of shapes in the characters,

namely beginning shapes, central shapes, termination shapes, and stand-alone

shapes [14]. They achieved higher recognition accuracy for the 390 Arabic

online handwritten characters using decision trees. Xiaolin Li and Dit Yan

Yeung performed the recognition experiments using dominant points and

24 | P a g e

directions and achieved an accuracy of 91% [38]. Eight direction features are

used to extract direction information in a segment, and the dominant points

are identified using local extrema of curvature. Template matching using a

decision tree was proposed by Scott D. Connell and Anil K. Jain for English

alphabets and numerals and achieved an accuracy of 86.9% [39]. A sub-stroke

based recognition for online handwriting recognition is proposed by Karteek

Alahariet al. using Fischer Discriminant Analysis for English alphabets and

digits [40]. The system used the alignment of strokes, modeling of strokes,

and discriminating potential of strokes in sequence and achieved promising

results for recognizing the character using HMM classifier.

Ahmad T and Al Taani reported a method using primary and secondary

primitives for the recognition of digits [41]. The key idea in the work is to

form digit patterns by naming primitives excavated from the samples and

combining them in various sequences incomparable with existing samples.

The above work achieved greater recognition accuracy with lesser

computation involving grammar identification, and it was independent of

upward and downward drawings. FadiBiadsyet al. applied HMM for online

Arabic handwritten characters and achieved better results for writer

dependent and writer independent experiments [42]. The features were local

angle features, super segment features, and loop features, and modeled the

system using discrete HMM and word-part dictionary. Aleksei Ustimov et al.

describe a less complex approach by converting characters into graphs of

segmented points [43]. The graph is converted into codes with an automaton

of 36 states with 36 X 36 transitions and achieved a recognition rate of

71.94% in lesser time. Houcine Boubaker et al. segmented Arabic characters

into sub-components and represented every segment using Fourier

25 | P a g e

descriptors and geometrical features [44]. The method suggested a way to

reproduce handwritten characters by decomposing them as segments and

extracting features.

A primitive based approach for handwritten Bengali alpha-numeric

characters is presented by Abhijith Dutta and Santanu Chaudhury [45]. They

identified the junctions where primitives meet using local minima and local

maxima. The features are extracted using the Gaussian kernel for various

parameter values. They achieved an average recognition accuracy of 70% for

handwritten characters using the above method. Priyanka Das et al. excavated

pattern primitives from Bengali handwritings in a faster and simple way [46].

Straight lines and other curved primitives are detected from the character, and

a matching score is obtained by comparing it with existing reference shapes;

an optimal score is obtained to identify the existence of a particular shape,

and finally, the primitives are converted to Freeman code.

A naive approach has been implemented in the work of Ujjwal

Bhattacharya et al. for Bengali online handwritten characters [47]. Freeman

direction code and center of gravity are used as the features, and the system

achieved an average recognition rate of 83.61%. It is also evident from the

work that directional information is crucial in classifying Bangla Characters.

A novel online recognition system for Devanagari script with primitives

and fuzzy directional features is detailed by Lajish VL and Sunil Kopparappu

[48]. They referred to a primitive set of 14 for the Devanagari script and

compared it with the test data, and achieved better results than directional

features. The method used second-order statistics for representing primitives

as features, and it is pointed out that the comparison is computationally

26 | P a g e

effective. An accuracy of 82.75% is achieved by the method using fuzzy

directional features. A segmentation-based approach for online Bengali

handwriting is described in the work of Niranjana Bhattacharya and Umapada

Pal [27]. Segmentation is performed by identifying busy zones, and accuracy

is obtained by testing against a ground truth set with ideal segmentation

points. The work reported an accuracy of 97.89% for segmentation and

97.68% for recognizing the strokes using directional features and Support

Vector Machine (SVM). A rule-based segmentation is also described in the

work by converting online sequences to offline images for experimenting on

pixel levels. Directional string formation and recognition using the

Levenshtein distance matrix are depicted in S Dutta Chowdhury et al. for

online Bangala handwriting [49]. In their work, direction strings are reduced

to a single occurrence from repeated similar codes. The edit distance between

the unknown samples and known samples results in a metric through the

Levenshtein distance method. The metric upon analysis displays the most

similar character with minimum edit distance. The exploited method is

simple, and the redundant samples are also eliminated from the known group

for faster recognition. Recent work by Sukhdeep Singh et al. demonstrated

recognition of online handwritten samples from the UNIPEN dataset using

dominant points [29]. These dominant points are extracted using the Ramer

Douglas Peucker algorithm with various distance measures and prepare the

feature vector based on key points and curve directions between key points

of the stroke.

A summary of the major studies reported in this section which includes the

Syntactic Pattern Recognition approach in OHCR, is shown in table 2.3.

27 | P a g e

Table 2.3 Summary of OHCR studies specific to segmentation

Sl.No Authors Year Language Features Classifier
Sample

Size

Accuracy

(%)

1

Samir Al-

emami

and Mike

Usher

[50]

1990 Arabic

Structure

analysis

with

direction

Decision

Trees
390 100

2

Dit-Yan

Yeung

and

Xiaolin

Li [38]

1996 English
Dominant

points

Dynamic

Programmi

ng with

Elastic

Matching

1860 91

3

Anil K

jain and

Scott D

Connel

[39]

2001 English
Template

based

Decision

Trees
17928 86.9

4

KarteekA

lahari et

al. [40]

2005 English

Fischer

Discrimin

ant

Analysis

HMM 1200 96

5

Ahmad T

and Al-

Taani

[41]

2005
Arabic

digits

Feature

strings

Finite

Automata
10000 95

6

Fadi

Biadsy et

al. [42]

2006 Arabic

Letter

shape

models

HMM

6220 94.40

7

Ujjwal

Bhattacha

rya et al.

[47]

2007 Bangla
Direcion

code
MLP 7043 83.61

8

Aleksei

Ustimove

t al. [43]

2010 Turkish

Constructi

ve

learning

Automata 12000 71.94

28 | P a g e

Table 2.3 Summary of OHCR studies specific to segmentation (cont.)

Sl.No Authors Year Language Features Classifier
Sample

Size

Accuracy

(%)

9

Lajish

VL and

Sunil

Kopparap

pu [48]

2010 Devanagari

Fuzzy

directional

features

Viterbi 545 82.75

10

Niranjana

Bhattacha

rya and

Umapada

Pal [27]

2012 Bangla Rule set SVM 5448 97.68

11

S Dutta

Chowdhu

ry et

al.[49]

2013 Telugu
Feature

strings

Levenshtein

distance
45217 87.10

12

Sukhdeep

Singh et

al. [29]

2017 Gurumukhi

Dominant

points

using

Ramer

Douglas

Peucker

algorithm

SVM 39200 97.29

2.4. Review of the Studies related to Real-Time Recognition of

Handwritten Characters

There is a strong demand for recognizing handwritings in a simple way with

the fast development of computer systems. Online handwriting recognition is

a superior choice coined by most researchers but brought in a time element

between writing and recognition. Many studies addressed the solution to

eliminating this gap with a novice term inculcated as real-time recognition.

Charles C Tappert et al. says that online handwriting is also known as real-

time or dynamic recognition [2]. But the delay caused by the devices made a

difference between online and real-time recognition. The need for a real-time

29 | P a g e

recognition system became an essential component with the technological

advancement in touch input devices. A means to transform the data faster is

possible through real-time recognition. Hence, real-time recognition research

has a few decades of experiments apart from online handwriting recognition,

which was initiated in the 1960s.

T. S. El-Sheikh and S. G. El-Taweel demonstrated a real-time recognition

system for Arabic characters in one of their earlier works [51]. They describe

the shape of the Arabic character, which depends on the position in the word,

and divide them into four disjoint sets with various features like aspect ratio,

number of minima and maxima, and the relative distance between the first

and last points. They achieved a recognition rate of 98% with a recognition

time of 0.3 seconds. Statistical methods are detailed in the work of Krishna S

Nathan et al. for unconstrained handwriting [52]. They used HMM in

modeling characters and words with fast and detailed match recognition. The

system reported better accuracies in unconstrained and writer-independent

modes with quicker recognition time ranging from 0.4 to 0.48 seconds. The

requirements of a real-time handwriting recognition system are reported in

the work by Bartosz Paszkowski et al. [53]. They identified a higher accuracy

rate as the essential requirement for such a system with invariance on

geometric transformations. The system must work on low computing

machines and receive data from pointing devices or finger touch. They must

immediately display the recognized unit on the screen for the fixed set of

classes. Experiments conducted in the work used Single Layer Perceptron

(SLP) as a classifier with a recognition rate above 97% with an average

recognition time of 8 milliseconds, which is fair for real-time recognition

systems.

https://www.sciencedirect.com/science/article/abs/pii/003132039090078Y#!
https://www.sciencedirect.com/science/article/abs/pii/003132039090078Y#!

30 | P a g e

Alberto Beltran and Sonia Mendoza described a real-time handwriting

recognizer for mobile devices [54]. The work details the importance of

directional features in the recognition of handwritten characters. They

implemented the system with a computationally less expensive procedure for

English alphabets and achieved higher recognition accuracies acceptable to

real-time environments.

Da Han Wang et al. proposed a real-time recognition approach for

sentence-based Chinese handwriting input [55]. With a dynamically

maintained segmentation–recognition candidate lattice, the system integrates

multiple contexts, including character classification, linguistic, and geometric

context. For every new stroke, dynamic text line segmentation and character

over-segmentation are performed to locate the position of the stroke in text

lines and updated. Candidate characters are generated and recognized to

assign candidate classes, linguistic context, and geometric context involving

the newly created candidate characters. The candidate lattice is updated while

the writing process continues. After the threshold time exceeds, the system

finalizes the search to interpret the character sequence produced in the entire

process and recognize it as the sentence.

Qi Song and Zehua Gao described a real-time handwriting system for

mobile devices [56]. Pyramid Histogram of Oriented Gradients are used in

work as features and achieve faster recognitions than other methods with a

recognition speed of 20 milliseconds per digit.

A real-time recognition system for digits is reported using deep learning

for embedded systems by Vinh Dinh Nguyen et al. [57]. The proposed digit

recognition system used NVIDIA’s Jetson Tx1 Developer Kit and Caffe

31 | P a g e

framework in a real-time environment. The above multiple digit recognition

system’s accuracies were 98.23%, trained, and tested on messily handwritten

numbers but the results of testing as reported on multiple handwritten digits

on a physical whiteboard or paper (real-time) is lower due to camera

conditions and writing angles. A summary of the major studies in real-time

recognition of online handwritten characters is listed in table 2.4.

Table 2.4 Summary of major studies in real-time recognition of online handwritten

characters

Sl.

No Authors Year Language Features Classifier
Sample

Size

Accuracy

(%)

1

S.G.El-

Taweel and

T.S.El-

Sheikh [51]

1990 Arabic
Position,

shape

Hierarchica

l classifiers
700 98.00

2

Krishna S

Nathan et al.

[52]

1995 English
x,y

coordinates
HMM 21000 81.10

3

Alberto

Beltran and

Sonia

Mendoza

[54]

2011 Spanish
Directional

features

Rough

classification
1000 98.40

4

Da Han

Wang et al.

al. [55]

2012 Chinese
Directional

features
MQDF

1,082,2

20
94.09

5

Bartosz

Paszkowskie

t al. [53]

2007 English
Shape

features
SLP 15431 97.83

6

Vinh Dinh

Nguyen et

al. [57]

2013 Digits Contours
Deep

Learning
10094 98.23

32 | P a g e

2.5. Review of Keyword Spotting (KWS) in Handwritten Documents

The growth of various technologies in acquiring data, like digital pens and

touch screen displays, depicted an enormous amount of data as handwritten

document images and online handwritten documents. The storage

requirement for handwritten document images is higher compared to online

handwritten documents. Keyword Spotting (KWS) is a technique to extract

portions of data with specific words from a massive amount of data, either

document images or online handwritten documents.

A keyword spotting system is a combination of keyword indexing and

retrieval techniques. Indexing is performed for fast retrieval and avoids

perplexity in retrievals. Most of the methods are earmarked to spot keywords

relevant to handwritten document images, and limited experiments are

proposed in keyword spotting in online handwritten documents. In this

section, prominent keyword spotting techniques available in the literature for

handwritten document images and online handwritten documents are

extensively addressed. It is found that the studies about keyword spotting in

online handwritten documents are limited in literature, especially for Indic

scripts.

2.5.1. Review of Keyword Spotting in Handwritten Document Images

Most of the ancient studies augmented the technology for handwritten

document images using normal text matching schemes. But the poor

recognition accuracy of these technologies restricted their popularity in word

indexing and spotting. An earlier work by Manmatha et al. proposed an

alternative scheme for indexing handwritten text images [58]. Each page of

the document is segmented into words, and the images of the words are then

33 | P a g e

matched against each other to create equivalence classes. Here each class

contained instances of similar words. The Euclidian Distance measures are

used to compare the similarity of instances in a class and also out of class

instances. They achieved minimum errors for inter-class instances and

maximum distances for out-of-class instances. In another work by Manmatah

et al. describes two methods for word matching in handwritten documents

[59]. The first method is based on Euclidian distance measures, and the

second method is based on the algorithm developed by Scott and Longuet

Higgins, where words are matched by affine transformations. The study

reveals that the performance of the algorithm depends on the variability of

handwriting. Affine transformations performed well in comparison to

Euclidian distance in poor handwriting in their studies. A comprehensive

survey on various keyword indexing techniques is conducted by Angelos P.

Giotiset al. including word retrieval from handwritten documents [60]. A

thorough analysis of keyword spotting methods in various historical and

modern handwritten documents is presented in a lucid manner. They also

agree that the OCR systems are the least efficient in addressing keyword

spotting due to the low recognition rate observed in various experiments. The

survey also briefs various assessment measures, standard datasets, and

performance of the state-of-the-art techniques in keyword spotting. Rashad

Ahmed et al. surveyed word spotting techniques from handwritten documents

[61]. A comparison of word spotting and word recognition is detailed in the

work. Extensive coverage of various features pertained to document image

retrieval, including gradient, structural, and concavity features, profile-based

features, a bag of features, shape coding, and contour, is analyzed in various

experiments. Srihari et al. make use of binary Gradient, Structural, and

34 | P a g e

concavity features to spot words in handwritten documents [62]. Text lines

are segmented into connected components and used correlation distance for

matching two GSC binary feature vectors in the work.

Bai et al. describe a word shape coding based approach for keyword

spotting in handwritten documents [63]. A total of seven features were

extracted from each word. These features are descenders, ascenders, eastward

concavity, westward concavity, horizontal line, intersection, and holes. Each

word was represented by a sequence of codes based on the position and type

of features. DTW technique is used for word matching and achieves higher

precision and recall rates.

An Urdu word recognition system was built by Sagheer et al. [64]. They

segmented the documents into connected components, and by combining

neighboring components, generated words using a sliding window. Then,

profile and gradient features are extracted for each generated word. SVM is

used as the classifier. The experiments are performed on 40 pages obtained

from the CENPARMI Urdu Database. The work reported lesser rates

compared to other methods. Al Aghbari and Brook proposed an algorithm

for retrieving Arabic historical documents [65]. They combined several

structural and statistical features. The structural features used are upper, lower

profiles, and projection profiles. The statistical features are the ratio between

punctuation and main connected parts. Neural networks are used to classify

extracted features into word classes. Can and Duygulu proposed a line-based

representation for historical document matching, where word images are

designated as a set of contour segments [66]. These are approximated to lines

using the polygonal approximation Douglas Peucker algorithm. Each line is

described in this work using the position, the length, and the orientation for

35 | P a g e

faster feature computations. Andreas Fischer et al. describe a word spotting

system based on the character Hidden Markov Model in one of their studies

[67]. It reveals that arbitrary keywords are easily spotted in an efficient

lexicon-free approach without pre-segmenting text words. It is shown that the

proposed learning-based system outperforms a standard template matching

method for multi-writer data on the IAM offline database as well as for single-

writer data on historical data sets. A keyword spotting method using two

approaches is described in the study of David Fernadez, which consists of a

hierarchical process and characteristic loci features [68]. Experiments show

that the system performed well in comparison to other existing methods.

Shingo Uchihashi and Lynn Wilcox exploited the capabilities of chi-square

values in determining the index terms [69]. An automated scheme for

indexing is described with dynamic programming for matching similar text.

A dictionary of possible index terms is created in the work by clustering

groups of ink strokes corresponding to words

Keyword Spotting is also addressed in the Indic script, especially in

Devanagari and Bengla. Sharada B and Sushma S. N demonstrated an

approach for keyword spotting in handwritten Devanagari documents [70].

Using graph editing methods for word matching, they achieved an accuracy

of 88.22%. Kartik Dutta et al. proposed a framework for keyword spotting in

large-scale handwritten word images using deep neural networks for

Devanagari, Bangla, and Telugu scripts. They achieved 96.15% accuracy for

Bangla scrips [71]. Sharada B et al. made a comparison of the performance

of keyword spotting system using Euclidean distance and cosine similarity

metrics for Devanagari scripts [72]. The average matching accuracy obtained

for Manhattan distance is 84% in their work. A system for keyword spotting

36 | P a g e

of the Tamil language is proposed by Sigappiet al. [73]. The features are

projection profile, lowerand upper word profile, and background-to-ink

transitions features extracted from each segmented word. This approach

makes use of HMM to characterize strokes’ variations of handwritten

characters.

2.5.2. Review of Keyword Spotting in Online Handwritten Documents

Keyword spotting in online handwritten documents is extensively reported in

CJK scripts than Indic scripts. Heng Zhang et al. proposed a keyword spotting

method for Chinese online handwritten character documents to directly

estimate the posterior probability (also called confidence) of candidate

characters based on the N-best paths from the candidates segmentation-

recognition lattice and achieved an accuracy of 91.74% [74]. Heng Zhang et

al. describes an online handwritten keyword spotting system for Chinese

script by using a one-vs-all strategy trained prototype classifier and a support

vector machine (SVM) classifier for similarity scoring and achieved an

accuracy of 90.88% [75]. A lattice-based method for keyword spotting in

online Chinese handwriting using a character lattice based method by

generating candidate lattice of N-best list achieved a recall rate of 94.50%

using string matching algorithm [76].

An indexing scheme for online handwritten documents is proposed by

Sebastian Pena Saldarriaga and Mohamed Cheriet using a word confusion

matrix [77]. Alignment for mutually exclusive words and the posterior

probability of each word is done using a word confusion matrix. While

querying the index for a given keyword using their technique, the complexity

O (log n) is obtained compared to usual keyword spotting algorithms, which

run in O(n). Emmanuel Indermuhl et al. proposed a new approach for mode

37 | P a g e

detection (text/non-text categorization) that uses Bi-Directional Long-Short

Term Memory (BDLSTM) Neural Networks (NN) [78]. They experimented

with the potential of BDLSTM over traditional methods for mode detection,

which are usually based on stroke classification. The proposed system is

trainable and does not rely on user-defined heuristics.

C. V. Jawahar et al. describes a word retrieval system for Indic scripts

using a synthesis approach [79]. The language-specific features are also

considered in their work to address the problems in writing variations for ink

domain transformations. They elaborated on the characteristics of Indian

scripts in detail, and three features, namely curvature, tangent, and height, are

considered for word matching with DTW. Anil K Jain and Anoop M

Namboothiri experimented to index and retrieve documents in online

handwritten English words [80]. They achieved higher values of precision

and recall rates in retrieving documents. A DTW string matching is performed

with four major features to compare a keyword against indexed word groups

with higher accuracies. They observed that the error rate depends on the

similarity of words in clusters.

2.6. Conclusion

A brief review of previous research in OHCR specific to segmentation-based

approaches has been conducted in this chapter. A review of OHCR studies

focusing on Syntactic Pattern Recognition is performed. The chapter

summarizes the major studies reported in this direction. Studies on real-time

recognition of handwritten characters, including Keyword Spotting (KWS) in

handwritten document images and online handwritten documents, are also

reviewed.

38 | P a g e

Even though the structure of the characters present in various languages

is different, the studies considering OHCR as a syntactic pattern recognition

problem are limited in Indian context. Hence, a remarkable contribution to

OHCR in Indic languages is possible by initiating studies in this direction. In

the following chapters, the online handwritten character recognition problem

is described in the light of Syntactic Pattern Recognition (SPR) specifically

for real-time applications.

39 | P a g e

Chapter 3

Malayalam Online Handwritten Character Database

Creation and their Preprocessing

3.1. Introduction

Language is a system of communication or arbitrary vocal sounds through

which human beings communicate and interact in their everyday lives. At

present, the number of languages in the world number in thousands [81]. In

Indian context, a variety of languages exist in various parts of the country.

Among the 22 official languages in India, Malayalam is a language spoken in

the state of Kerala and the union territories of Lakshadweep and Puducherry.

It is also a scheduled language in India, nearly spoken by 35 million people

worldwide. Malayalam is a Dravidian language - a family of languages

primarily used in India's southern parts - the scripts are derived from the

Brahmi script of the 5th century BC. The Malayalam language was declared

as a classical language by the Government of India in 2013. The Malayalam

language is agglutinative, with separate units of different meaning in a single

word [82]. The writing direction of the Malayalam script is from left to right.

It is also alphasyllabary, i.e., the writing system is partially alphabetic and

partially syllable-based [83]. There are thirteen vowels(including two

diphthongs), thirty-six consonants, and five chillus in Malayalam. It also

consists of vowel modifiers and special symbols, including anusvaram,

visargam, and chandrakkala.

This chapter describes the orthographical categorization of Malayalam

characters and the creation of an online handwritten database for Malayalam

40 | P a g e

characters. A detailed description of preprocessing methods applied to the

OHCR dataset for further processing, is also presented in the chapter.

3.2. Orthography and Categorization of Malayalam Characters

Orthography - the art of writing words with the proper letters - is an

obligatory part of linguistics. It is also the arrangement of various sounds of

a language by written or printed symbols [84]. These symbols are known as

graphemes- the smallest unit of a writing system of any given language. A

grapheme may or may not correspond to a single phoneme of the spoken

language [85]. When the alphabet of a language is introduced, the graphemes

are termed as characters. A character is the unit of information that roughly

corresponds to a grapheme, or symbol, such as, the alphabet in

the written form of a natural language [86]. The following section explains

the orthographical representations of different writing units in Malayalam.

3.2.1. Vowels and Dependent Signs in Malayalam

The major writing units of Malayalam are vowels and consonants. The other

conjunct units are formed by combining consonants and vowels. There are

eleven vowels in Malayalam, comprising of six short and five long vowels.

Usually, an independent vowel occurs as the first letter for a vowel prefixed

word. The dependent vowel transforms the consonants to form valid

Consonant-Vowel (CV) combinations. The list of independent vowel

characters and dependent vowel signs, namely diacritics of the Malayalam

script, is displayed in Table 3.1

41 | P a g e

 Table 3.1 Vowels and Dependent signs in Malayalam

Vowel List
Independent

Vowel

Dependent

Vowel Sign

Short

a അ <a> -

i ഇ <i> ി

u ഉ <u> ി

e എ <e> െി

o ഒ <o> െി

r ̣ ഋ <r ̥> ി

Long

a: ആ <a:> ി

i: ഈ <i:> ി

u: ഊ <u:> ി

e: ഏ <e:> േി

o: ഓ <o:> േി

From the table, it is observed that the dependent vowel signs of <e> and

<e:> occur at the left part of a consonant letter, and the vowel signs <i>, <a:>,

<i:> are occurring at the right part of a consonant. The vowel signs <o> and

<o:> are unique in the group with two parts: the first part attached to the left

of a consonant, and the second part is placed at the right. The vowel signs

<u>, <u:>, <ṛ> occur at the right side of the consonant.

42 | P a g e

3.2.2. Special Symbols in Malayalam (Anusvaram, Visargam,

Chandrakkala)

A separate group, usually considered with vowels is anusvaram, which

denotes the nasalization of the preceding vowel. In Malayalam, anusvaram is

represented as ം /m/, and it merely represents a consonant /m/ after a vowel,

though this /m/ may be analogized to another nasal consonant. A visargam (ഃ

/h/)represents a consonant /h/ after a vowel, and it is transliterated as ḥ. It is

never followed by an inherent vowel or another vowel, as in the case of

anusvaram. Chandrakkala (് /ə/) is a diacritic constrained to the ending part

of a word. It is attached to a consonant letter and treated as a semi-vowel,

which is an allophone of the vowel /u/. The signs and the usage of special

characters, anusvaram, and chandrakkala, are listed in table 3.2.

Table 3.2 Usage and sign of Anusvaram, Visargam and Chandrakkala

Character
Independent

Dependent

Sign Example

Anusvaram അം<am> ിം /m/ പം

Visargam - ി /h/ ദ

Chandrakkala - ി /ə/ ക

3.2.3. Diphthongs in Malayalam

A combination of two short vowels within the same syllable is termed as a

diphthong. Even though diphthongs are vowels, they are categorically

separated in Malayalam. The diphthongal articulations in Malayalam are ഐ

<ai> and ഔ <au>. The diphthong, /ai/ is named a falling diphthong, which

43 | P a g e

starts with a central vowel and terminates in a semi-vowel. The diphthong

/au/ is a closing diphthong as it begins with an open-element and ends in a

closed element. Table 3.3 describes Malayalam diphthongs with their signs.

Table 3.3 Malayalam Diphthongs

Diphthong
Independent

Dependent

Sign Example

ai ഐ <ai> ൈി ൈൈ

au ഔ <au> ി ല

3.2.4. Malayalam Consonant Classes

Malayalam consonants are grouped, based on their articulation of classes.

Malayalam has five sets of varga consonants and eleven other non-varga

consonants. The varga set comprises of velar, palatal (Postalveolar),

retroflex, dental, labial. Five characters are included in each of these sets.

Based on its phonetic property, the varga set is classified as voiceless and

voiced. These two classes are then subdivided into aspirated, unaspirated, and

nasal. Malayalam varga consonants and subdivisions are given in table 3.4,

followed by consonants other than varga in table 3.5.

Table 3.4 Malayalam Consonant Varga Classification

Consonant

Classes

Voiceless Voiced

Unaspirated Aspirated Unaspirated Aspirated Nasal

Velar
ക ka> ഖ <kha> ഗ <ga> ഘ <gha> ങ <ṅa>

Palatal
ച <ca> ഛ <cha> ജ <ja> ഝ <jha> ഞ <ña>

https://en.wikipedia.org/wiki/Postalveolar_consonant

44 | P a g e

Table 3.4 Malayalam Consonant Varga Classification (cont.)

Table 3.5 Malayalam Consonants other than Varga

S
.N

o

1 2 3 4 5 6 7 8 9 10 11

C
o

n
so

n
a

n
t

യ

<ya>

ര

<ra>

ല

<la>

വ

<va>

ശ

<śa>

ഷ

<ṣa>

സ

<sa>

ഹ

<ha>

ള

<ḷa>

ഴ

<la̱>

റ

<ṟa>

3.2.5. Malayalam Chillu (Chillaksharam)

Chillu (chillaksharam) represents a pure consonant that independently exists

without the help of a virama. Chillu is considered a special consonant letter

that is never followed by an inherent vowel. In Unicode Text Format (UTF)

representation, chillu letters are treated as independent characters and

encoded automatically. Table 3.6 lists all the five chillu consonants in

Malayalam.

Consonant

Classes

Voiceless Voiced

Unaspirated Aspirated Unaspirated Aspirated Nasal

Retroflex
ട<ṭa> ഠ <ṭha> ഡ <ḍa> ഢ <ḍha> ണ <ṇa>

Dental
ത <ta> ഥ <tha> ദ <da> ധ <dha> ന <na>

Labial
പ <pa> ഫ <pha> ൈ <ba> ഭ <bha> മ <ma>

45 | P a g e

Table 3.6 Malayalam Chillu Consonants

S.No Chillu Base letter

1 ൻ ന <na>

2 ർ ര <ra>

3 ൽ ല <la>

4 ൾ ള <ḷa>

5 ൺ ണ <ṇa>

3.2.6. Formation of Various Conjunct Classes in Malayalam

Conjunct classes are formed by combining more than one consonant in

Malayalam. They are usually formed either by combining the same

consonants or different consonants. But, all the consonant combinations are

not valid compounds in Malayalam. For example, aspirated consonants

typically do not double in Malayalam. The formation of compound letters in

Malayalam is categorized based on the following two factors.

1. Position and the order of the component letters,

2. The presence of special symbols.

In the first category, i.e., based on the position and order of component letters,

seven rules are created to form Malayalam compound letters, as described in

table 3.7.

46 | P a g e

Table 3.7 Rules for the formation of compound letters in Malayalam

S.No Method Example

1
Side by side writing of component

letters
ത്ത (ത + ത),(<ta>+<ta>

2
One component letter on top of the

other
പ്പ (പ + പ),(<pa>+ <pa>)

3
The first component fully on the left

and the second partially to the right
ന്ന (ന + ന),(<na>+<na>)

4
First component partially on the left

and the second attached to the right
ണ്ട (ണ + ട),(<ṇa><ʈa>)

5
The second component is partially

written below to the first one
ട്ട (ട + ട),(<ʈa>+ <ʈa>)

6
Component letters attached opposite to

their pronunciation order.

ഹ്ന (ഹ + ന), (<ha>+ <na>) read as (ന

+ഹ), (<na>+ <ha>)

7

More than two components joined

together to form a compound letter

either fully or partially

ദ്ധ്യ(ദ + ധ +യ), (<da>+ <dha>+ <ya>)

 In the second category, the conjunct classes are formed using special

symbols in three ways.

1. Compound letters formed by the arbitrary joining of the component letters.

Example:

ക്ക (ക <ka> + ക <ka>), മ്പ (മ <ma>+ പ <pa>).

2. Compound letters formed by combining different approximants with the

consonant. The approximants (Consonant diacritics) in Malayalam letters are,

യ <ya>, ര <ra>, ല <la> and വ <va>.

Examples for compound letters using approximants:

പ <pa>+ യ <ya>→പയ, ക <ka>+ ല <la> →ക്ല.

47 | P a g e

3. Letters formed using the doubling symbol.

Example:

ച <ca> + ച <ca>→ച്ച, വ <va> + വ <va> →വ്വ.

 A detailed description on orthography and categorization of Malayalam

Characters is given in this section. From the section, various characters present

in Malayalam script are identified. The rules governing the formation of

various conjunct letters are also identified. In the following section, creation

of a Malayalam online handwritten character database is presented.

3.3. Database Creation for Online Handwritten Characters in

 Malayalam

The database is a major part of any system which is based on training models.

In handwritten character recognition studies, the potential of addressing

variations in writing styles, is an essential factor, that improves the

performance of the algorithm. The accuracy of a system for handwriting is

measured upon the variability and the features of different calligraphic styles.

Offline handwritten character databases like MNIST, IAM, CASIA, KHATT,

etc., are popular in foreign languages. For Indic scripts, certain databases are

also available for offline handwritten characters. Due to the finite tenure of

OHCR research in the Indian context, the databases for online handwritings in

Indic scripts are still limited, especially in Malayalam. In this context, a unique

database of online Malayalam handwritings is necessary to conduct various

experiments in the study. In this section, the procedure for creating the

proposed OHCR database in Malayalam is included, with a detailed

description of devices and data collection methods used

48 | P a g e

3.3.1. Devices used for Data Acquisition

Two devices are used for data recording in the proposed work, namely, E-

writemate and touchscreen-enabled laptop. A brief description of the devices

used in data acquisition is given below.

(a) E-writemate

E-writemate is a device specifically used for recording the online handwritten

data. The device consists of a memory unit and an electronic pen. The

technology used in the device is compatible enough to record natural

handwriting on plain paper. Figure 3.1 shows the components of the E-

writemate device. A plain paper is attached to the memory unit, and writing

on the paper is carried out using an electronic pen. The memory unit can store

up to two hundred A4 pages of handwritten data stored in the form of (x, y)

coordinates of the neighboring points [87]. The recorded data is available in

the form of a text file. In this text file, every row with three values correspond

to a point in a stroke. The first value in a row indicates the pen down and pen

up information. A ‘1’ indicates pen down, and ‘0’ indicates pen up for the

corresponding x and y values. This information is used to separate each stroke

from the text file for further processing.

Fig. 3.1 E-writemate pen and memory unit

49 | P a g e

(b) Touchscreen-enabled laptop

To acquire online handwritten data, a touchscreen-enabled laptop is used. A

user interface for data acquisition is also developed using MATLAB software,

where the writer should write using finger or stylus. The software

automatically stores a text file for every stroke. Each row of the text file

corresponds to the point of the stroke with time information. The first two

values in a row of the text file represent the x and y values of a point in the

stroke. The last value in the row represents the time to plot the point on the

screen. Figure 3.2 shows the user interface part designed for handwritten data

capture.

Fig. 3.2 User interface for touchscreen-enabled data acquisition

3.3.2. Setting up of Data Capturing Environment

For the creation of the database, single stroke writing is employed. In the case

of single stroke writing, the character units are written in an isolated form,

separately, for each character at fixed positions with moderate speed. For E-

writemate, the plain paper is printed with a sample of the character, and

thirteen empty boxes are printed near the sample character. From the recorded

50 | P a g e

text file, every stroke is visually inspected for broken sequences. Only those

characters, written in a single stroke, are retained. At least ten samples of every

character, written in a single stroke, are ensured for every writer. Figure 3.3

shows the printed data recording format with sample writing used with E-

writemate.

Fig. 3.3 A sample page used for single stroke data acquisition of handwritten

characters

For touchscreen-enabled data acquisition, the writing is performed on the

user interface screen designed for data acquisition purpose. Twenty single

stroke handwritten samples, for every character, are recorded using the

laptop.

51 | P a g e

3.3.3. Labeling of Samples

There exist two types of recognition schemes based on writer dependency,

namely, writer dependent, and writer independent. To train and test writer-

dependent models, the information regarding the writer is essential. A unique

labeling scheme is proposed, in this study, to differentiate various samples of

a character, written by different writers.

 The labeling procedure of the acquired data samples is as follows. It is a

combination of writer, character number, and sample number. For e.g.,

W001C001S001 is the first sample of the first character written by writer1.

The labeling scheme allows 999 writers to write 999 samples of every 999

characters. The samples from E-writemate and the touchscreen-enabled laptop

are easily differentiable, as E-writemate does not contain time information.

3.3.4. Number of Samples in the Database

Fifty writers are involved in the database creation. All these writers are

graduates within the age group of 20 to 40. The handwriting is performed in a

moderate speed. The database includes samples of eight vowel and thirty six

consonant characters in Malayalam. The samples are selected, labeled, as per

the unique labeling scheme explained in the previous section, and stored as a

text file. Table 3.8 lists the details of the samples in the database. The database

is named CU-OHDB (Calicut University Online Handwriting Data Base),

containing30800 samples of 44 single stroke characters stored as text files.

52 | P a g e

Table 3.8 Number of samples from various methods and devices

Device Writers Characters
Samples per

Character

Total

Samples

E-writemate 30 44 10 13200

Touchscreen

enabled laptop
20 44 20 17600

Total 30800

3.4. Preprocessing Techniques Applied to the Online Handwritten

Character Samples

 Preprocessing is an essential component in data processing systems with

natural interfaces. Online handwritten strokes mostly contain writing

imperfections like jitters, hooks, and duplicated points [88]. The collected

handwritten data samples are preprocessed to reduce them. The major

preprocessing techniques, applied in the proposed work, are normalization,

smoothening, and resampling.

The stroke series are normalized to the range of [0, 1] using min-max

normalization, which is one of the most suitable normalization methods used

for online handwritten character data [89]. The normalized data is then

smoothed using a moving average filter, which is a low-pass filter with filter

coefficients equal to the reciprocals of the span [90]. The resampling

technique used in the work is equidistant resampling, which is found reliable

in most of the works in OHCR [91]. A detailed description of min-max

normalization, smoothing using moving average filter, and equidistant

resampling is given in the following section.

53 | P a g e

3.4.1. Min-Max Normalization

Normalization techniques are used to reduce the within-class variations.

Normalization is generally performed to fix a variable range of values into a

fixed range. The variability in the handwriting of various writers can be

minimized, through the normalization process to an extent. Also, the

normalized points always conserve the shape of the character. Fixing the x

and y values to a particular range is essential to perform better feature

extraction, especially, for the handwritten samples of similar characters. The

normalization method which is used in the proposed work is min-max

normalization [92]. The technique is often known as feature scaling, where

the values of a numeric range of data features are reduced to a scale between

0 and 1. The original coordinates (x,y) of the handwritten characters are

normalized to the range of (0,1) using equation 3.1, where each of the (x,y)

values are divided by the difference of maximum and minimum values of x

and y.

min()

max() min()

x x
X

x x

−
=

−

min()

max() min()

y y
Y

y y

−
=

−
 (Eq. 3.1)

Figure 3.4 (a)-(b) represents the samples of Malayalam character അ <a>

written by two different writers and their normalized form.

54 | P a g e

Fig. 3.4(a) Character അ <a> in raw form

Fig. 3.4(b) Character അ <a> in normalized form

3.4.2. Smoothing

Smoothing is the process of removing jitters, hooks, and redundant points

present in the handwritten data. From the literature, it is evident, that, usage

of moving average filter, preserves the original shape of the character in the

case of Indic scripts [93][94]. Since most of the Malayalam characters contain

smooth edges, a moving average filter, is used in this work for smoothening.

The primary factor, deciding the smoothness of shape in the moving average

filter technique, is filter length, and it is dependent on the data[95]. As the

filter length increases, the smoothness of the shape also increases. Equation

55 | P a g e

3.2 describes a moving average filter where N+1 is the filter length, and M is

the sliding window.

M =
 𝑥[𝑛]+𝑥[𝑛−1]+𝑥[𝑛−2]+⋯…𝑥[𝑛−𝑁]

𝑁+1
 (Eq. 3.2)

It is observed that as the filter length increases beyond five, the shape of

the characters change drastically. Hence, in the experiments, the filter length

is fixed as five, to preserve the original shape and smoothness of all the

characters. The sample outputs obtained for the Malayalam character അ <a>,

after applying a moving average filter with various filter lengths, are shown

in figure 3.5.

 Filter length=5 Filter length=10 Filter length=15

Fig. 3.5 Shape variation of Malayalam character അ <a> after applying moving

average filter of various filter lengths

3.4.3. Resampling

From the experiments, it is found that the writing speed profoundly affects

the number of points in the stroke series. The stroke sequence obtained from

a slow writer has a higher number of points than a fast writer for the same

character. Hence, it is mandatory to resample the points to overcome the

assimilations caused by the writing speed. Resampling is the process of

56 | P a g e

arranging the data such that, the distance between adjacent points is

approximately equal. Besides removing the variation, this step substantially

reduces the number of stroke points to the desired value.

The method used for resampling is equidistant resampling, where the

distance between two points is fixed to a value based on the required

resampling points [96]. The points are resampled with equal length, and

missing points are interpolated. A parametric spline approximation, which is

effectively used in various OHCR studies, is used to interpolate missing

points [97]. Figure 3.6 illustrates the interpolation and resampling of points

between original points for the Malayalam character റ<ra>.

Fig. 3.6 Original, resampled, and interpolated points in a Malayalam

character sample റ <ra>

Original and resampled set of the Malayalam characters അ <a>, ഇ <i>,

ഉ <u> are displayed in figure 3.7(a)-(b). From the visual inspection of the

final number of points, it is evident, that, the general shape of the character is

preserved even after resampling.

57 | P a g e

(a) Original

(b) Resampled

Fig. 3.7 (a)-(b) Original and resampled set of Malayalam characters അ <a>, ഇ <i>,

and ഉ <u>

3.5. Conclusion

The characteristics of the Malayalam language, orthographical formulations

of various Malayalam characters, and the database creation procedures are

explained in the first part of this chapter. The rules governing the formation of

various conjuncts and the classes of aspirated and unaspirated consonants are

also demonstrated.

 The importance of a benchmark online handwritten character database is

addressed in the study. The database named CU-OHDB, consisting of 30800

samples of 44 Malayalam online handwritten characters, is developed as part

of the study. The devices and methods for data acquisition are also familiarized

58 | P a g e

in this chapter. A unique labeling scheme is also proposed as part of the study

to distinguish different samples written by various writers.

 The various preprocessing methods used in the proposed work are

explained in the second part of this chapter. The preprocessing techniques,

namely, min-max normalization, moving average filter based smoothing, and

equidistant resampling, are implemented using the online handwritten

character samples in the database. Based on the inspection, it is found that, the

implemented methods perform well and can be used effectively for further

experimental purposes.

59 | P a g e

CHAPTER 4

Analysis of Pattern Primitives and Segmentation of

Online Malayalam Handwritten Characters Using

Ramer Douglas Peucker Algorithm and Eight Direction

Freeman Code

4.1. Introduction

Online Handwritten Character Recognition (OHCR) has been dealt with in

various studies where the recognition is immediately followed by writing

[2][98]. The devices are vital in such recognitions as they must be capable of

recording the temporal or dynamic sequences of strokes. This temporal

information consists of writing directions, the order of strokes, and the speed

of handwriting. It depicts, that, the shape of any character in a language, is

only a visual component, and the underlying concept is a set of points. These

points are represented in a mathematical form as (x1,y1),(x2,y2),……(xN,yN).

The sets of points corresponding to the characters are the major entities in the

online handwriting dataset to conduct various research activities.

The segmentation approach for OHCR is primarily focused in this

chapter. The segmentation approach to handwriting recognition has been

studied in numerous works using various techniques [43][99][100][101].

Here, a pattern recognition scheme to segment Malayalam online handwritten

characters into sub-pattern units, namely pattern primitives is proposed.

The structural similarity of Malayalam characters is thought-provoking to

be considered for segmentation. It is also observed that, most of the characters

60 | P a g e

in the Malayalam script contain similar geometrical patterns, as shown in

figure 4.1. These standard segments are used to discriminate various character

classes in handwriting recognition. A comparison of various patterns and

finding the most similar pattern has a crucial role in character recognition.

Fig. 4.1 Common pattern segments in Malayalam

The first part of this chapter analyses the structural aspects of the

characters in the Malayalam script to identify various pattern primitives. The

second part emphasizes on various segmentation schemes to extract pattern

primitives from the Malayalam online handwritten characters. Section 4.2

discusses the pattern primitives identified in the Malayalam character set. The

formation of the handwritten character reference set marked with pattern

primitives and labeling sequences for every Malayalam character is presented

in section 4.3. The frequency of occurrences of various pattern primitives in

the Malayalam online handwritten characters is described in section 4.4. A

detailed reporting of various algorithms used for pattern primitive

segmentation and the experiments conducted to verify the efficiency of these

algorithms are described in section 4.5. An automated method for measuring

segmentation accuracy is also described in this section. The concluding

remarks of the chapter are outlined in section 4.6.

61 | P a g e

4.2. Pattern Primitives in Malayalam Characters

From visual inspection, it is clear that, the Malayalam characters, when

divided into segments, consist of similar patterns common to most of them.

The order of arrangement and direction of these segments are highly

informative for the recognition purpose. There are generally two different

categories of segments identified in Malayalam characters -arc segments and

straight-line segments. These segments are determined based on direction

changes, writing pattern styles, and similarity among patterns present in the

characters. As an example, for the Malayalam character അ ,<a> there are

seven segments as shown in figure 4.2(a)-(g). From the figure, it can be

observed that, there are three similar segments, (a), (c), (g), and four distinct

segments, (b), (d), (e), and (f).

A minimized representation of the character അ<a> is possible because,

there exist redundant segments. After eliminating these redundant segments,

the final set of unique segments for the character അ <a> is arranged as shown

in figure 4.3.

(a) (b) (c) (d) (e) (f) (g)

Fig. 4.2 (a)-(g) Segments of the Malayalam character അ <a>

62 | P a g e

Fig. 4.3 Unique segments of the Malayalam character അ <a>

The unique segments identified in the letter അ <a> are all arc segments.

This is one of the most relevant features of these types of characters. Consider

another Malayalam character ഘ <gha>, as shown in figure 4.4. From the

figure, it can be seen that, it includes a combination of arc and straight-line

segments.

Fig.4.4 Segments of the Malayalam character ഘ <gha>

The character ഘ <gha> also has redundant segments. The unique

segments obtained after removing these redundant segments from the

character ഘ <gha> are shown in figure 4.5.

Fig. 4.5 Unique segments of the Malayalam character ഘ <gha>

63 | P a g e

In this context, an analysis of the shape and writing direction of the

segments, common to the 44 Malayalam characters, is conducted as part of

the work. From the analysis,26 unique segments are identified, which are

enough to represent the 44 Malayalam characters. If the direction is avoided,

the number of segments will again be reduced to 18. The direction of pattern

primitives is found to be most relevant in identifying visually similar patterns.

Hence, it is decided to consider 26 unique segments for further processing.

These 26 unique segments are known as pattern primitives in the proposed

work. The following section describes these pattern primitives identified for

the 44 selected Malayalam online handwritten characters.

4.3. Pattern Primitives, Labeling of Characters and Creation of

 Reference Character Set

The 26 pattern primitives present in the 44 Malayalam characters with their

direction, type, and label are listed in table 4.1. The label uniquely identifies

these pattern primitives.

Table 4.1 Patterns primitives present in the Malayalam characters

S.No Pattern Primitives Direction Type Label

1

Arc A1

2

Arc A2

64 | P a g e

S.No Pattern Primitives Direction Type Label

3

Arc B1

4

Arc B2

5

Arc C1

6

Arc C2

7

Arc D1

8

Arc D2

65 | P a g e

S.No Pattern Primitives Direction Type Label

9

Arc E1

10

Arc F2

11 Linear G

12

Linear H1

13

Linear H2

14

Linear H3

15

Arc I1

66 | P a g e

S.No Pattern Primitives Direction Type Label

16

Arc I2

17

Arc I3

18

Arc J1

19

Arc J2

20

Arc K

21

Arc L1

22

Arc L2

67 | P a g e

S.No Pattern Primitives Direction Type Label

23

Arc M1

24

Arc M2

25

Arc N1

26

Arc N2

The following sections describe the representation of each of the 44

Malayalam handwritten characters (8 vowels and 36 consonants) using

pattern primitives.

4.3.1. Representation of Malayalam Vowel Characters using Pattern

Primitives

There are eight vowel characters in Malayalam. Representation of these

characters using pattern primitives is given in table 4.2. From the table, it is

evident that, the character അ <a> has eight pattern primitives. Characters ആ

<a:>, എ <e> and ഏ <e:> have seven pattern primitives. The character ഇ <i>

has six pattern primitives. Characters ഉ <u> and ൠ <r> have four pattern

primitives, and the character ഒ<o> has three pattern primitives. The pattern

68 | P a g e

primitive sequences corresponding to each character in the table can be

effectively used to identify the Malayalam vowel characters.

Table 4.2 Representation of Malayalam vowel characters using pattern primitives

S
.N

o

C
h

a
ra

ct
er

S
eg

1

S
eg

2

S
eg

3

S
eg

4

S
eg

5

S
eg

6

S
eg

7

S
eg

8

L
a

b
el

se
q

u
en

ce

1 അ
<a>

A
1

-I
1

-A
1

-

C
2

-D
1

-B
2

-

A
1

2 ആ
<a:>

A
1

-I
1

-A
1

-

C
2

-D
1

-B
2

-

A
1

-K

3 ഇ
<i>

B
2

-A
1

-C
2

-

D
1

-K
-G

4
ഉ

<u>

B
2

-A
1

-K
-G

5 ഋ
<r̥>

B
1

-J
1
-J

2
-2

6 എ
<e>

A
1

-B
2

-G
-

H
1

-H
2

-A
1

-

B
2

7 ഏ

<e:>

A
1

-B
2

-G
-

H
1

-H
2

-A
1

-

I1

69 | P a g e

Table 4.2 Representation of Malayalam vowel characters using pattern primitives

(cont.)

S
.N

o

C
h

a
ra

ct
er

S
eg

1

S
eg

2

S
eg

3

S
eg

4

S
eg

5

S
eg

6

S
eg

7

S
eg

8

L
a

b
el

se
q

u
en

ce

8 ഒ
<o>

B
2

-A
1

-I
1

4.3.2. Representation of Malayalam Consonant Characters using

 Pattern Primitives

There are 36 consonant characters in Malayalam. Representation of these

characters using pattern primitives is given in table 4.3

Table 4.3 Representation of Malayalam consonant characters using pattern primitives

S
.N

o

C
h

a
ra

ct
er

S
eg

1

S
eg

2

S
eg

3

S
eg

4

S
eg

5

S
eg

6

S
eg

7

S
eg

8

L
a

b
el

S
eq

u
en

ce

1 ക
<ka>

A
1

-B
2

-M
1

-

N
2

-A
1

-B
2

2 ഖ
<kha>

B
2

-A
1

-C
2

-

G
-H

1

3 ഗ
<ga>

A
2

-L
1

-B
2

70 | P a g e

Table 4.3 Representation of Malayalam consonant characters using pattern primitives

(cont.)

S
.N

o

C
h

a
ra

ct
er

S
eg

1

S
eg

2

S
eg

3

S
eg

4

S
eg

5

S
eg

6

S
eg

7

S
eg

8

L
a

b
el

S
eq

u
en

ce

4 ഘ
<gha>

A
1

-B
2

-G
-

C
1

-D
2

-G
-H

1

5 ങ
<ṅa>

B
2

-A
1

-C
2

-

D
1

-I
1

6 ച

<ca>

A
1

-K
-G

-H
1

7 ഛ
<cha>

A
1

-K
-G

-A
1

-

B
2

-A
1

8 ജ
<ja>

 B

2
-A

1
-C

2
-

D
1

-K
-L

1
-B

2
-

A
1

9 ഝ

<jha>

A
1

-B
2

-A
1

-

L
2

-E
1

-F
2

-B
1

10 ഞ
<ña>

B
2

-A
1

-C
2

-

D
1

-B
2

-A
1

-

B
2

71 | P a g e

Table 4.3 Representation of Malayalam consonant characters using pattern primitives

(cont.)

S
.N

o

C
h

a
ra

ct
er

S
eg

1

S
eg

2

S
eg

3

S
eg

4

S
eg

5

S
eg

6

S
eg

7

S
eg

8

L
a

b
el

S
eq

u
en

ce

11 ട
<ṭa>

B
1

-J
1

-A
1

12 ഠ
<ṭha>

A
2

-B
1

-A
2

13 ഡ

<ḍa>

A
1

-L
2

-
E

1
-

F
2

-B
1

14 ഢ
<ḍha>

A
1

-L
2

-
E

1
-

F
2

-B
1

-A
2

15 ണ
<ṇa>

B
2

-A
1

-C
2

-

D
1

-C
2

-D
1

-

B
2

16 ത

<ta>

A
1

-B
2

-A
1

-

B
2

17 ഥ
<tha>

H
2

-G
-C

1
-D

2

72 | P a g e

Table 4.3 Representation of Malayalam consonant characters using pattern primitives

(cont.)

S
.N

o

C
h

a
ra

ct
er

S
eg

1

S
eg

2

S
eg

3

S
eg

4

S
eg

5

S
eg

6

S
eg

7

S
eg

8

L
a

b
el

S
eq

u
en

ce

18 ദ
<da>

A
1

-I
1

19 ധ
<dha>

A
2

-E
1

-F
2

-B
1

20 ന
<na>

A
1

-B
2

-A
1

-

B
2

21 പ
<pa>

A
1

-B
2

-
G

-

H
1

22 ഫ
<pha>

A
1

-B
2

-
G

-

C
1

-D
2

23 ൈ
<ba>

B
2

-A
1

-C
2

-

D
1

-B
2

-G
-H

1

24 ഭ
<bha>

A
1

-I
3

73 | P a g e

Table 4.3 Representation of Malayalam consonant characters using pattern primitives

(cont.)

S
.N

o

C
h

a
ra

ct
er

S
eg

1

S
eg

2

S
eg

3

S
eg

4

S
eg

5

S
eg

6

S
eg

7

S
eg

8

L
a

b
el

S
eq

u
en

ce

25 മ
<ma>

A
1

-B
2

-G
-H

3

26 യ
<ya>

A
1

-B
2

-A
1

-

L
2

-B
1

27 ര

<ra>

A
1

-B
2

-A
1

28
ല

<la>

G
-C

1
-D

2
-G

-

H
1

29 വ
<va>

A
1

-B
2

-G
-H

1

30 ശ

<śa>

A
2

-
L

1
-

B
2

-

A
1

31 ഷ
<ṣa>

A
1

-B
2

-G
-

H
1

-N
2

-M
1

-

C
2

74 | P a g e

Table 4.3 Representation of Malayalam consonant characters using pattern primitives

(cont.)

S
.N

o

C
h

a
ra

ct
er

S
eg

1

S
eg

2

S
eg

3

S
eg

4

S
eg

5

S
eg

6

S
eg

7

S
eg

8

L
a

b
el

S
eq

u
en

ce

32 സ
<sa>

A
1

-C
2

-D
1

-

L
2

-B
1

33 ഹ
<ha>

A
1

-B
2

-G
-

A
1

-B
2

34 ള
<ḷa>

B
2

-A
1

-I
2

-G

35 ഴ
<la̱>

M
2

-N
1

-J
1

36 റ
<ṟa>

A
1

-B
2

4.3.3. Creation of Reference Set of Malayalam Characters based on

 Pattern Primitives

As a part of this study, a reference set of Malayalam handwritten characters

is created from the CU-OHDB dataset. Each character in the reference set is

manually marked based on pattern primitives, as shown in table 4.4. This

75 | P a g e

character reference set is used to compute the segmentation accuracy in the

proposed experiments.

Table 4.4 Reference set of Malayalam characters marked based on pattern primitives

S
.N

o

C
h

a
ra

c
te

r

Character marked

with pattern primitives

S
.N

o

C
h

a
ra

c
te

r

Character marked with

pattern primitives

1 അ <a>

2 ആ <a:>

3 ഇ <i>

4 ഉ <u >

5 ഋ <r ̥>

6 എ <e>

7 ഏ <e:>

8 ഒ <o>

76 | P a g e

Table 4.4 Reference set of Malayalam characters marked based on pattern primitives

(cont.)

S
.N

o

C
h

a
ra

c
te

r

Character marked

with pattern primitives S
.N

o

C
h

a
ra

c
te

r

Character marked with

pattern primitives

9 ക <ka>

10 ഖ <kha>

11 ഗ <ga>

12
ഘ

<gha>

13 ങ <ṅa>

14 ച <ca>

15
ഛ

<cha>

16 ജ <ja>

17
ഝ

<jha>

18 ഞ <ña>

77 | P a g e

Table 4.4 Reference set of Malayalam characters marked based on pattern primitives

(cont.)

S
.N

o

C
h

a
ra

c
te

r

Character marked

with pattern primitives S
.N

o

C
h

a
ra

c
te

r

Character marked with

pattern primitives

19 ട <ṭa>

20 ഠ <ṭha>

21 ഡ <ḍa>

22
ഢ

<ḍha>

23 ണ <ṇa>

24 ത <ta>

25 ഥ <tha>

26 ദ <da>

27 ധ <dha>

28 ന <na>

78 | P a g e

Table 4.4 Reference set of Malayalam characters marked based on pattern primitives

(cont.)

S
.N

o

C
h

a
ra

c
te

r

Character marked

with pattern primitives

S
.N

o

C
h

a
ra

c
te

r

Character marked with

pattern primitives

29 പ <pa>

30 ഫ <pha>

31 ൈ <ba>

32 ഭ <bha>

33 മ <ma>

34 യ <ya>

35 ര <ra>

36 ല <la>

37 വ <va>

38 ശ <śa>

79 | P a g e

Table 4.4 Reference set of Malayalam characters marked based on pattern primitives

(cont.)

4.4. Frequency of Occurrence of Pattern Primitives in Malayalam

 Characters

An analysis of the frequency of occurrences of various pattern primitives

present in the Malayalam online handwritten characters is given in this

session.

4.4.1. Frequency of Occurrence of Pattern Primitives

A detailed analysis of the occurrence of pattern primitives in Malayalam

characters reveals that, certain pattern primitives are frequently occurring in

S
.N

o

C
h

a
ra

c
te

r

Character marked

with pattern primitives

S
.N

o

C
h

a
ra

c
te

r

Character marked with

pattern primitives

39 ഷ <ṣa>

40 സ <sa>

41 ഹ <ha>

42 ള <ḷa>

43 ഴ <la ̱>

44 റ <r ̱a>

80 | P a g e

Malayalam characters. The position in which these pattern primitives occur

also varies from character to character. This information can be considered

vital, that can be incorporated while implementing an HCR system. Table 4.5

shows the frequency of occurrence of pattern primitives identified for the 44

Malayalam handwritten characters.

81 | P a g e

Table 4.5 Frequency of occurrence of pattern primitives in Malayalam characters

Ch
ar

ac
te

r

Pattern primitives and corresponding frequency of occurrence

A
1

A
2

B
1

B
2

C
1

C
2

D
1

D
2

E
1

F
2

G

H
1

H
2

H
3

I1

I2

I3

J
1

J
2

K

L
1

L
2

M
1

M
2

N
1

N
2

അ
<a>

3 1 1 1 1

ആ
<a:>

3 1 1 1 1 1

ഇ
<i>

1 1 1 1 1 1

ഉ
<u>

1 1 1 1

ഋ

<r ̥>
 1 1 1 1

എ
<e>

2 2 1 1 1

82 | P a g e

Table 4.5 Frequency of occurrence of pattern primitives in Malayalam characters (cont.)

Ch
ar

ac
te

r

Pattern primitives and corresponding frequency of occurrence

A
1

A
2

B
1

B
2

C
1

C
2

D
1

D
2

E
1

F
2

G

H
1

H
2

H
3

I1

I2

I3

J
1

J
2

K

L
1

L
2

M
1

M
2

N
1

N
2

ഏ
<e:>

2 1 1 1 1 1

ഒ
<o>

1 1 1

ക
<ka>

2 2 1 1

ഖ
<kha>

1 1 1 1 1

ഗ
<ga>

 1 1 1

ഘ
 <gha>

1 1 1 1 2 1

83 | P a g e

Table 4.5 Frequency of occurrence of pattern primitives in Malayalam characters (cont.)

Ch
ar

ac
te

r

Pattern primitives and corresponding frequency of occurrence

A
1

A
2

B
1

B
2

C
1

C
2

D
1

D
2

E
1

F
2

G

H
1

H
2

H
3

I1

I2

I3

J
1

J
2

K

L
1

L
2

M
1

M
2

N
1

N
2

ങ
<kha>

1 1 1 1 1

ച
<ca>

1 1 1 1

ഛ
<cha>

3 1 1 1

ജ

<ja>
2 2 1 1 1 1

ഝ
<jha>

2 1 1 1 1 1

ഞ
<ña>

2 3 1 1

84 | P a g e

Table 4.5 Frequency of occurrence of pattern primitives in Malayalam characters (cont.)

Ch
ar

ac
te

r

Pattern primitives and corresponding frequency of occurrence

A
1

A
2

B
1

B
2

C
1

C
2

D
1

D
2

E
1

F
2

G

H
1

H
2

H
3

I1

I2

I3

J
1

J
2

K

L
1

L
2

M
1

M
2

N
1

N
2

ട

<ṭa>
1 1 1

ഠ
<ṭha>

 2 1

ഡ
<ḍa>

1 1 1 1 1

ഢ
<ḍha>

1 1 1 1 1 1

ണ
<ṇa>

1 2 2 2

85 | P a g e

Table 4.5 Frequency of occurrence of pattern primitives in Malayalam characters (cont.)

Ch
ar

ac
te

r

Pattern primitives and corresponding frequency of occurrence

A
1

A
2

B
1

B
2

C
1

C
2

D
1

D
2

E
1

F
2

G

H
1

H
2

H
3

I1

I2

I3

J
1

J
2

K

L
1

L
2

M
1

M
2

N
1

N
2

ത

<ta>
2 2

ഥ
<tha>

 1 1 1 1

ദ
<da>

1 1

ധ
<dha>

 1 1 1 1

ന
 <na>

2 2

86 | P a g e

Table 4.5 Frequency of occurrence of pattern primitives in Malayalam characters (cont.)

Ch
ar

ac
te

r

Pattern primitives and corresponding frequency of occurrence

A
1

A
2

B
1

B
2

C
1

C
2

D
1

D
2

E
1

F
2

G

H
1

H
2

H
3

I1

I2

I3

J
1

J
2

K

L
1

L
2

M
1

M
2

N
1

N
2

പ
<pa>

1 1 1 1

ഫ
<pha>

1 1 1 1 1

ൈ
 <ba>

1 2 1 1 1 1

ഭ
<bha>

1 1

മ
<ma>

1 1 1 1

87 | P a g e

Table 4.5 Frequency of occurrence of pattern primitives in Malayalam characters (cont.)

Ch
ar

ac
te

r

Pattern primitives and corresponding frequency of occurrence

A
1

A
2

B
1

B
2

C
1

C
2

D
1

D
2

E
1

F
2

G

H
1

H
2

H
3

I1

I2

I3

J
1

J
2

K

L
1

L
2

M
1

M
2

N
1

N
2

യ
<ya>

2 1 1 1

ര
 <ra>

2 1

ല
<la>

 1 1 2 1

വ
<va>

1 1 1 1

ശ
<śa>

1 1 1 1

ഷ
 <ṣa>

1 1 1 1 1 1 1

88 | P a g e

Table 4.5 Frequency of occurrence of pattern primitives in Malayalam characters (cont.)

Ch
ar

ac
te

r

Pattern primitives and corresponding frequency of occurrence

A
1

A
2

B
1

B
2

C
1

C
2

D
1

D
2

E
1

F
2

G

H
1

H
2

H
3

I1

I2

I3

J
1

J
2

K

L
1

L
2

M
1

M
2

N
1

N
2

സ-
<sa>

1 1 1 1 1

ഹ
<ha>

2 2 1

ള
<ḷa>

1 1 1 1

ഴ
<la̱>

 1 1 1

റ
<ra>

1 1

89 | P a g e

The pattern primitives in the descending order of frequency of

occurrence are also displayed in table 4.6. From the table, it is evident

that, the pattern primitives A1, B2, and G are the most frequently

occurring pattern primitives in Malayalam characters. The pattern

primitives H3, I2, I3, J2, M2, and N1, occur only once.

Table 4.6 Pattern primitives in the descending order of frequency of occurrence

A bar diagram showing the frequency of occurrences of pattern

primitives in the Malayalam handwritten characters is given in figure

4.6.

P
r
im

it
iv

e
s

A1 B2 G C2 D1 H1 B1 A2 I1 K L2 C1 D2

F
r
e
q

u
e
n

c
y

54 41 20 12 10 10 9 7 6 6 5 4 4

P
r
im

it
iv

e
s

E1 F2 H2 J1 L1 M1 N2 H3 I2 I3 J2 M2 N1

F
r
e
q

u
e
n

c
y

4 4 3 3 3 2 2 1 1 1 1 1 1

90 | P a g e

Pattern Primitives

Fig. 4.6 Frequency of occurrence of pattern primitives in the Malayalam

handwritten characters

The following sections describe the algorithms used for

segmentation of Malayalam online handwritten characters based on

pattern primitives.

4.5. Pattern Primitive based Character Segmentation Algorithms

Pattern primitive based character segmentation algorithms that are going

to be discussed in this section, marks the segmentation points on the

character samples as per the character reference set, described in section

4.3. Three algorithms are described and implemented in this work,

namely, the Ramer Douglas Peucker (RDP) algorithm, the Eight

Direction Freeman Code (EDFC) algorithm, and a combination of RDP

and EDFC algorithms [6][9]. It is observed from previous studies, that,

these algorithms are giving promising results for these types of

problems.

91 | P a g e

4.5.1. Character Segmentation based on Ramer Douglas Peucker

Algorithm

Segmentation of characters based on Ramer Douglas Peucker (RDP)

algorithm is described in this section. RDP algorithm is extensively used

to approximate curves in numerous studies [8]. The objective of using

the RDP algorithm is to segment the sequence of points representing a

character into a minimum number of points by preserving its shape. The

following procedure illustrates the RDP algorithm, which is used for the

experimental purpose.

Procedure 4.1 Implementation of Ramer Douglas Peucker Algorithm

Input: PointList, The set of points describing the character

Epsilon, The value for Tolerance

Output: ResultList, The set of reduced points

Procedure DouglasPeucker(PointList, Epsilon)

maximum_distance = 0 // Find the point with the maximum distance

index = 0

N= length(PointList)

For all other points do

Let d = Perpendicular distance between PointList[i] and Line with first

and last point

 if d>maximum_distance then

 index = i

 maximum_distance = d

 end

 // If max distance is greater than epsilon, recursively simplify

 if maximum_distance> epsilon then

 recResults1[] = DouglasPeucker(PointList[1...index], epsilon)

 recResults2[] = DouglasPeucker(PointList[index...N], epsilon)

92 | P a g e

 ResultList[] = {recResults1[1...length(recResults1)-1],

 recResults2[1...length(recResults2)]}

 else

 ResultList[] = {PointList[1], PointList[N]}

 Return ResultList[]

End

The procedure is as follows. A character is recursively divided by

measuring the distance between locations. The first and last points in the

character are kept as starting and ending points for segmentation. A line

is drawn from the starting point to the ending point. A point on the

character, which is maximum distant from this line, is also found. This

is the furthest point on the character from the line segment between the

starting and ending points and retained as a marked point. The point

must be kept if the point furthest from the line segment is higher

than ε (the value for tolerance) from the approximation. The procedure

is repeated for the two resultant segments obtained from the selected

point on the character, i.e., a segment with the starting point and furthest

point obtained and another segment with the most distant point and the

endpoint. The recursive execution with marked points based on ε

continues, until all the points are considered at least once. A new set of

points is generated for the character where the number of points is

minimum, and these are the points marked as kept by the procedure.

These marked points are further used for segmenting the characters.

For conducting experiments, 150 samples of the 44 Malayalam

online handwritten characters from the CU-OHDB dataset that are

acquired using the E-writemate device are selected. All these samples

are preprocessed using the methods as described in chapter 3. Before

93 | P a g e

proceeding with segmentation, an ideal tolerance(ε) value needs to be

decided for the RDP algorithm. For this purpose, some random samples

of every character are selected and segmented using RDP algorithm.

From the results, it is observed that, the tolerance(ε), with the value 0.25,

gives the number of points as expected for most of the character

samples. Hence, the tolerance(ε) value is fixed as 0.25 for all the

character samples. Various segmentation points obtained for the

samples of the Malayalam character അ <a> with ε values 0.00, 0.05,

0.15, 0.25, 0.35, and 0.50 are shown in figure 4.7.

 ε =0 (N=80) ε = 0.05 (N=20) ε = 0.15 (N= 9)

 ε = 0.25 (N=7) ε = 0.35 (N=4)

Fig. 4.7 The output obtained after applying the RDP algorithm on the character

അ <a> for various ε values

As a next step, each of the character samples are segmented using

the RDP algorithm with a tolerance value of 0.25 and the segmentation

points obtained for these samples aremanually compared against the

94 | P a g e

character reference set. Accuracy of the segmentation algorithm for each

character is obtained by dividing the number of samples correctly

segmented as per the reference set by the total number of samples of the

same character. The segmentation accuracy of the RDP algorithm

obtained for the 44 Malayalam characters is listed in table 4.7. The time

complexity of the algorithm is O(n).

Table 4.7 Segmentation accuracy of the RDP algorithm

S. No Character Accuracy

(%)
S. No Character

Accuracy

(%)

1 അ <a> 64.00 23 ണ <ṇa> .6688

2 ആ <a:> 60.66 24 ത <ta> .3358

3 ഇ <i> 70,00 25 ഥ <tha> .6674

4 ഉ <u> 68.66 26 ദ <da> .0076

5 ഋ <r̥> 60.66 27 ധ dha> .0092

6 എ <e> 77.33 28 ന <na> .0092

7 ഏ <e:> 80.66 29 പ <pa> .6680

8 ഒ <o> 90.00 30 ഫ <pha> .0078

9 ക <ka> 64.66 31 ൈ <ba> .6680

10 ഖ <kha> .0070 32 ഭ <bha> .0088

11 ഗ <ga> .0092 33 മ <ma> .3377

12 ഘ <gha> 60.66 34 യ <ya> .0084

13 ങ <kha> .0088 35 ര <ra> .0092

14 ച <ca> .6686 36 ല <la> 3.337

15 ഛ<cha> .0076 37 വ <va> ,6682

16 ജ <ja> .0070 38 ശ <śa> .0090

17 ഝ <jha> 3.337 39 ഷ <ṣa> .6670

18 ഞ <ña> .0080 40 സ <sa> .6692

19 ട <ṭa> .0080 41 ഹ <ha> 90.00

95 | P a g e

Table 4.7 Segmentation accuracy of the RDP algorithm (cont.)

S. No Character Accuracy

(%)
S. No Character

Accuracy

(%)

20 ഠ <ṭha> .0050 42 ള <ḷa> .3317

21 ഡ <ḍa> .0078 43 ഴ <la̱> .0082

22 ഢ <ḍha> .0078 44 റ <ṟa> .6694

Average Segmentation Accuracy = 75.07 %

It can be seen that the average segmentation accuracy of the RDP

algorithm is 75.07%. The algorithm produced better results for certain

characters, especially the characters, ണ <ṇa>, ത <ta>,ന <na> ,ധ <dha>,

and ഞ <ña>. A detailed analysis of the characters with lower

segmentation accuracy depicts the fact that, the directional aspects of

the character also need to be considered for better results. In this context,

the Eight Direction Freeman Code (EDFC) algorithm is proposed to

address directional aspects for the segmentation of characters, which is

described in the following section.

4.5.2. Character Segmentation based on Eight Direction Freeman

 Code Algorithm

Eight Direction Freeman Code (EDFC) is a popular method to represent

curves using eight directions [102]. Each of the points has a direction,

as shown in figure 4.8. In the online handwriting recognition process,

the direction has a crucial role. The advantage of direction in the

recognition of online handwriting is addressed in many studies[6]. In

this method, the segmentation is carried out using directional

information of every point of the temporal sequence of the character.

For the segmentation, the character stroke series is transformed into a

96 | P a g e

chain code based on EDFC. The difference between neighboring points

corresponding to a character is compared, and the difference in x and y

values decides the direction of a point. The conditions which determine

the directions in the EDFC algorithm are listed in table 4.8.

Fig. 4.8 Directions and codes in Eight Direction Freeman Code algorithm

Table 4.8 Conditions and corresponding directions in EDFC

Conditions Code Direction

x>0 and y=0 0

x>0 and y>0 1

x=0 and y>0 2

x>0 and y>0 3

x<0 and y=0 4

97 | P a g e

Table 4.8 Conditions and corresponding directions in EDFC (cont.)

Conditions Code Direction

x<0 and y<0 5

x=0 and y<0 6

x>0 and y<0 7

The algorithm to find the Eight Direction Freeman Code of the online

handwritten sequence of (x ,y) points representing the characters are

described in procedure 4.2.

Procedure 4.2 Implementation of Eight Direction Freeman Code algorithm

Input: PointList, The set of points describing the character

Output: ResultList, The direction code of the points

Procedure Freeman_Eight_Direction_Code(PointList)

x=PointList(x) // Extract x-values

y=PointList(y) // Extract y-values

x=leftshift(x)-x; // Find the difference

y=leftshift(y)-y;

for i=1 to size(x)do

if(x>0 && y==0)

 ResultList(i)=0;

elseif(x)>0 && y>0)

 ResultList(i)=1;

elseif(x==0 && y>0)

 ResultList(i)=2;

elseif(x<0 && y>0)

 ResultList(i)=3;

98 | P a g e

elseif(x<0 && y==0)

 ResultList(i)=4;

elseif(x<0 &&y<0)

 ResultList(i)=5;

elseif(x==0 && y<0)

 ResultLis (i)=6;

elseif(x>0 && y<0)

 ResultList(i)=7;

end

End

Initially, the direction codes for every character are computed using

the EDFC algorithm. The chain code thus obtained is refined for

directional imperfections by modifying the varying directional code

between two different code sequences in a character. For example, in

the direction code 1110777, the direction code 0 will be changed to 1 or

7 to obtain the correct direction.

 The segmentation of the character in correspondence with the

pattern primitive is performed based on the direction code. A moving

direction code windowing technique is used to implement the character

segmentation to its pattern primitive sequences. In this technique, a

direction code sequence containing four digits is used as a code window.

For example, the code window of 1177 represents the change from

directions 1 to 7. Some sample shapes and corresponding code windows

used for the experimental purposes are shown in table 4.9.

99 | P a g e

Table 4.9 Shapes in Malayalam characters and corresponding direction codes

Shapes Code window

1177 or 3355

 7711 or 5533

 6600 or 4422

 0022 or 6644

7711 or 5533

1177 or 3355

 The algorithm for finding the segmentation points using the Eight

Direction Freeman Code based segmentation is illustrated in procedure

4.3.

Procedure 4.3 Implementation of Eight Direction Freeman Code based

segmentation algorithm

Input: PointList, The set of points describing the character

Output: ResultList, The set of reduced points

Procedure Direction_Code_Segmentation(PointList)

direct=Freeman_Eight_Direction_Code(PointList)// direction code

for i=1 to size(direct,2)-2 do

if((direct(i) ≠ direct(i+1))&& (direct(i+1) ≠ direct(i+2)))

 direct(i+1)=direct(i);

100 | P a g e

end

end

// Load Code window representing shapes / direction changes

CodeWindow={‘1177’,’3355’,’7711’,’5533’,’6600’,’4422’,’0022’,’6644’,…}

for i=1 to size(direct) do

// Find locations where code window matches

ResultList=Find(direct,CodeWindow)

end

End

 The procedure is as follows. The direction chain code of the character

is obtained using the Eight Direction Freeman Code algorithm, as

discussed in procedure 4.2. After getting the direction chain codes of the

character, the segmentation algorithm first removes the varying direction

codes in between a sequence of similar direction codes from the direction

chain code. The corresponding code windows representing the direction

changes are compared with the direction chain codes of the character. If

the code window matches the sequence in the character chain code, the

position is marked. After all the windows have passed through the chain

code, the segmentation algorithm returns a collection of indices

corresponding to the marked points.

 For experimental purposes, the same 150 preprocessed samples of

the 44 Malayalam online handwritten characters taken from the CU-

OHDB dataset to conduct experiments with the Ramer Douglas Peucker

segmentation algorithm in the previous section are used. The

segmentation algorithm is applied to the samples of every character and

the segmentation points are obtained. The segmentation points, obtained

for these samples, are manually compared against the character reference

101 | P a g e

set. Accuracy of the segmentation algorithm for each character is

obtained by dividing the number of samples correctly segmented as per

the reference set, by the total number of samples of the same character.

Figure 4.9 shows the direction codes and the segmentation points marked

using the Eight Direction Freeman Code algorithm, for a sample of the

Malayalam character യ<ya>. It is clear from the figure that the algorithm

exactly marks the segmentation points as per the character reference set.

Fig.4.9 Plot of direction codes and segmentation points marked by EDFC

segmentation algorithm for the Malayalam character യ <ya>

The segmentation accuracy of the EDFC based segmentation algorithm

obtained for the 44 Malayalam characters is listed in table 4.10. The time

complexity of the algorithm is O(n).

Table 4.10 Segmentation accuracy of Eight Direction Freeman Code based

segmentation algorithm

S. No Character Accuracy

(%)
S. No Character

Accuracy

(%)

1 അ <a> 68.00 23 ണ <ṇa> .0084

2 ആ <a:> 60.00 24 ത <ta> .0090

102 | P a g e

Table 4.10 Segmentation accuracy of Eight Direction Freeman Code based

segmentation algorithm (cont.)

S. No Character Accuracy

(%)
S. No Character

Accuracy

(%)

3 ഇ <i> 73.33 25 ഥ <tha> .3356

4 ഉ <u> 72.00 26 ദ <da> .6682

5 ഋ <r̥> 40.66 27 ധ >dha> .3377

6 എ <e> 71.33 28 ന <na> .0080

7 ഏ <e:> 66.00 29 പ <pa> .6670

8 ഒ <o> 86.00 30 ഫ <pha> .3357

9 ക <ka> 60.66 31 ൈ <ba> .6674

10 ഖ <kha> .3356 32 ഭ <bha> .3376

11 ഗ <ga> .0080 33 മ <ma> .0076

12 ഘ <gha> .0050 34 യ <ya> .0076

13 ങ <kha> .3318 35 ര <ra> .3319

14 ച <ca> .0008 36 ല <la> .3356

15 ഛ <cha> .0072 37 വ <va> .6676

16 ജ <ja> .3357 38 ശ <śa> .0086

17 ഝ <jha> .6676 39 ഷ <ṣa> .0056

18 ഞ <ña> .6684 40 സ <sa> .6684

19 ട <ṭa> .0086 41 ഹ <ha> .6684

20 ഠ <ṭha> .0072 42 ള <ḷa> .3316

21 ഡ <ḍa> .3318 43 ഴ <la̱> .0084

22 ഢ <ḍha> .3377 44 റ <ṟa> .6696

Average Segmentation Accuracy = 74.68 %

The average segmentation accuracy is obtained as 74.68% for the

Eight Direction Freeman Code based segmentation algorithm. From the

table, it can be seen that, the performance of the algorithm is more

promising for the characters with more number of arc type pattern

103 | P a g e

primitives than, for the characters, which consist of straight-line pattern

primitives. Hence a better approach is needed to segment the characters

more precisely by utilizing the benefits of both of the proposed

segmentation algorithms. In this context, a combined approach for

segmentation by incorporating RDP and EDFC algorithms is proposed

as described in the following section.

4.5.3. A Combined Approach of RDP and EDFC Algorithm for

 Segmentation

It is observed that the segmentation accuracy of the RDP algorithm is

reduced due to excess segmentation points. Similarly, for the EDFC

segmentation algorithm, the direction change at sharp points, mostly

straight-line pattern primitives, are not precisely marked by the

algorithm. To tackle these imperfections in marking, a fine-tuning over

both of these segmentation methods are performed to obtain a combined

approach. In the combined approach, the segmentation points from RDP

and EDFC algorithms are effectively used to form a new set of

segmentation points. In this new set, the nearest points and points

marked, based on unreferred directions are avoided. The implementation

of the algorithm used in the combined approach for segmentation is

described in procedure 4.4.

Procedure 4 .4 Implementation of combined approach of RDP and EDFC

based segmentation algorithms

Input: PointList, The set of points describing the character

Output:CombinedList, The set of reduced points

Procedure Combined_Approach(PointList)

// Call Procedure 4.1 (RDP) with ε = 0.25

CombinedList1=DouglasPeucker(PointList , ε)

104 | P a g e

// Call Procedure 4.3

CominedList2=Direction_Code_Segmentation(PointList)

// Combine the lists and sort in ascending x

CombinedList=CombinedList1+CombinedList2

Unique(CombinedList) // Make the list unique

For i=1 to size(CombinedList)

 If (CombinedList(i+1)-CombinedList(i) <5)

 Remove CombinedList(i) // Delete two closer points

end

Direction=Eight_direction_Freeman_code(PointList)

If(Direction(CombinedList(1), CombinedList(2),,….. CombinedList(end))

= unreferred direction)

 Delete(CombinedList(Item)) //Item is the unreferred direction

end

Return(CombinedList); // Return the final set of segmentation points.

End

 The combined approach for segmentation is as follows. Initially, the

segmentation points obtained from RDP and EDFC algorithms for every

character sample are joined to form a new set of points. It is observed

that, the joined set of points contain redundant or nearby points marked

by these algorithms. These points are to be eliminated. It is found by

experiments that, these nearby points are usually occurring within five

points. Hence, if the joined set of points have duplicate or nearby

segmentation points, make them unique by removing any of the points

as per the following criteria. If the two segmentation points obtained are

five points apart, then keep both of them, else, remove one of the points

from the set of points. It is also observed from the samples segmented,

using the RDP algorithm, that, the points have some directions that are

105 | P a g e

not a part of the code window used in the EDFC algorithm. The direction

codes of such points are identified and eliminated in the algorithm.

 For experimental purposes, the same 150 preprocessed samples of the

44 characters taken from the CU-OHDB dataset to conduct experiments

with the RDP segmentation algorithm and EDFC algorithm based

segmentation are used. Segmentation is performed on every sample of

the character using the combined approach. The set of points, thus

obtained from the experiments, contain the segmentation points

corresponding to pattern primitives. The segmentation accuracy is found

through a manual comparison between the resultant set of points and the

character reference set for every character. The segmentation points

obtained for the Malayalam online handwritten characters, അ <a>, ഗ

<ga>, യ <ya>, ര <ra>, ല <la> and ഹ <ha> based on the combined

approach are shown in figure 4.10.

(a) അ <a> (b) ഗ <ga> (c) യ <ya>

(d) ര <ra> (e) ല <la> (f) ഹ <ha>

Fig. 4.10. Segmentation points obtained for the Malayalam characters അ <a>, ഗ

<ga>, യ <ya>, ര <ra>, ല <la>, and ഹ <ha> using the combined approach for

segmentation

106 | P a g e

The accuracy of the combined approach for segmentation obtained for

the 44 Malayalam characters is listed in table 4.11. The average

segmentation accuracy of the algorithm is obtained as 91.27%. The time

complexity of the algorithm is estimated as O(n). From the table, it is

clear that, the performance of the algorithm is better compared to the

other two methods.

Table 4.11 Segmentation accuracy of the combined approach for segmentation

S. No Character Accuracy

(%)
S. No Character

Accuracy

(%)

1 അ <a> 92.00 23 ണ <ṇa> .00100

2 ആ <a:> 92.00 24 ത <ta> .00100

3 ഇ <i> 90.66 25 ഥ <tha> .6684

4 ഉ <u> 92.66 26 ദ <da> .0096

5 ഋ <r̥> 96.66 27 ധ <dha> .00100

6 എ <e> 82.66 28 ന <na> .00100

7 ഏ <e:> 80.00 29 പ <pa> .6684

8 ഒ <o> 94.00 30 ഫ <pha> 66.86

9 ക <ka> 73.33 31 ൈ <ba> .0086

10 ഖ <kha> .6684 32 ഭ<bha> .00100

11 ഗ <ga> .00100 33 മ <ma> .0086

12 ഘ <gha> 8.008 34 യ <ya> .0092

13 ങ <kha> .0092 35 ര <ra> .00100

14 ച <ca> .3358 36 ല <la> .6678

15 ഛ <cha> 88.66 37 വ <va> .0086

16 ജ <ja> .0090 38 ശ <śa> .0096

17 ഝ <jha> .0096 39 ഷ <ṣa> .3318

18 ഞ <ña> .0094 40 സ <sa> .00100

19 ട <ṭa> .0092 41 ഹ <ha> .0096

20 ഠ <ṭha> .6680 42 ള <ḷa> .0094

107 | P a g e

Table 4.11 Segmentation accuracy of the combined approach for segmentation

(cont.)

S. No Character Accuracy

(%)
S. No Character

Accuracy

(%)

21 ഡ <ḍa> .0096 43 ഴ <la̱> 2.669

22 ഢ <ḍha> .0094 44 റ <ṟa> .00100

Average Segmentation Accuracy = 91.27 %

4.5.4. Automated Method for Determining Segmentation Accuracies

The segmentation accuracy is found in the above discussed methods by

manually comparing the segments obtained from the experiments with

the reference set. But when the sample size increases, it is difficult to

visualize all the pattern primitive segments and compare them with the

reference set. Hence, an automated method for finding the segmentation

accuracy is proposed. For this purpose, the segments are represented

using various direction category codes using eight direction freeman

code. If the direction codes, obtained for a segment, are majorly in the

upward direction; and so the segment is considered as an up segment and

coded as 1. If the direction codes are majorly in the downward direction

for a segment, it is regarded as a down segment and coded as 0. Similarly,

linear segments in the horizontal direction are coded as 2. The direction

category code string representation of all 44 characters in the reference

set is manually generated as per the criteria mentioned. The direction

category code string representation of the vowel characters in Malayalam

is shown in table 4.12.

108 | P a g e

Table 4.12 Direction category code string representation of the Malayalam

vowel characters

Character
Segment

count

Direction category code

string representation

അ <a> 7 1 0 1 0 1 0 1

ആ <a:> 8 1 0 1 0 1 0 1 0

ഇ <i> 6 0 1 0 1 0 2

ഉ <u> 4 0 1 0 2

ഋ <r̥> 4 1 0 1 0

എ <e> 7 1 0 2 1 0 1 0

ഏ <e:> 7 1 0 2 1 0 1 0

ഒ <o> 3 0 1 0

Procedure 4.5 describes the representation of segments into

corresponding direction category codes.

Procedure 4.5 Implementation of the algorithm to represent a segment into

corresponding direction category code

Input: PointList, The set of points describing the segments of acharacter

Output: SegmentCode,Thedirection category code of the segment

Procedure SegmentCoding(PointList)

str=Freeman_Eight_Direction_Code(PointList) // direction code by procedure 4.2

ts1=No of occurrence of ‘1’ in str; // upward directions

ts2=No of occurrence of ‘2’ in str; // upward directions

ts3=No of occurrence of ‘3’ in str; // upward directions

ts4=No of occurrence of ‘0’ in str; // horizontal directions

ts5=No of occurrence of ‘4’ in str; // horizontal directions

total=length(str); // length of direction string

upmajor=ts1+ts2+ts3; // count of upward directions

109 | P a g e

updwminor=ts4+ts5; // count of horizontal directions

ts6=No of occurrence of ‘5’ in str; // downward directions

ts7=No of occurrence of ‘6’ in str; // downward directions

ts8=No of occurrence of ‘7’ in str; // downward directions

dwmajor=ts6+ts7+ts8; // count of downward directions

up=upmajor/(upmajor+dwmajor); // majority vote of up directions

down=dwmajor/(upmajor+dwmajor); // majority vote of downward direction

if(up>down)

rd=1; // upward directions

elseif(down>up)

 rd=0; // downward directions

elseif(updwminor/total>0.50)

rd=2; // predicted as x-axis parallel

end

SegmentCode=rd;

Return(SegmentCode) // return the code corresponding to the segment

End

For determining the segmentation accuracy through the automated

method, the segments of the character samples obtained from the

combined approach are used. As a first step, they are counted to test

whether the number of segments is the same as the number of segments

in the reference character set for that character. If the number of segments

differs from the count of segments in the reference character set, the

character sample is considered as not segmented as per the reference

character set. If the number of segments is the same, then the direction

category code of every segment of the character sample is found using

procedure 4.5. The codes thus obtained are compared with the reference

category code of the character. If they are the same, the character is

110 | P a g e

considered as correctly segmented. The accuracy of each character class

is obtained by dividing the number of correctly segmented samples by

the total number of samples of the same character. The implementation

of the algorithm to estimate the segmentation accuracy through the

automated method is described in procedure 4.6.

Procedure 4.6 Implementation of the algorithm to measure segmentation

accuracy through automated method

Input: Chstring, The array of direction category code strings of characters

Refstring,The array of codes strings of the reference character set

Output:AvgSegAccuracy, The Average Segmentation Accuracy

Procedure SegAccuracy(Chstring,Refstring)

 for character class i = 1 to 44 // loop 1

 Initialise Chmatch(1..N) as 0// where N is the number of samples

 NotSegmented = 0 // Count of segments not as per reference set count

 for Character samples j= 1 to N // loop 2

 Chstring=SegmentCoding(Character)// Find code using Procedure 4.5

 If size(Chstring) = size(Refstring) then

 If Chstring matches with Refstringof the same character class then

 Chmatch=Chmatch+1 // match count incremented

 EndIf

 else

 NotSegmented = NotSegmented +1

 end of for // loop 2

 Chmatch=Chmatch-NotSegmented// difference segment count

 ClassAccuracy(j)=Chmatch/ N// Segmentation accuracy

 end of for // loop 1

AvgSegAccuracy=ClassAccuracy/44 // Average Accuracy

End

111 | P a g e

 The segmentation accuracies for every character obtained for the

combined approach measured through the automated method are

presented in table 4.13. The average segmentation accuracy of the

combined approach through the automated method is 79.13 %. Table

4.14 compares the average segmentation accuracy of the combined

approach through manual comparison and automated method. The

segmentation accuracy obtained through manual comparison is higher

for all the characters compared to the automated method. The higher

segmentation accuracy obtained for the combined approach through

manual comparison shows that, the method is suitable for the

segmentation of online handwritten Malayalam characters into pattern

primitives, in the proposed work.

Table 4.13 Segmentation accuracy of the combined approach for segmentation

through the automated method

S. No Character Accuracy

(%)
S. No Character

Accuracy

(%)

1 അ <a> 78.66 23 ണ <ṇa> .0094

2 ആ <a:> 73.33 24 ത <ta> .0096

3 ഇ <i> 70.00 25 ഥ <tha> .6676

4 ഉ <u> 78.66 26 ദ <da> 88..66

5 ഋ <r̥> 78.00 27 ധ <dha> 3.339

6 എ <e> 64.00 28 ന <na> .0094

7 ഏ <e:> 62.00 29 പ <pa> .6680

8 ഒ <o> 80.00 30 ഫ <pha> .0080

9 ക <ka> 62.66 31 ൈ <ba> 1.338

10 ഖ <kha> 66.76 32 ഭ <bha> 1.339

11 ഗ <ga> 84.00 33 മ <ma> .6678

112 | P a g e

Table 4.13 Segmentation accuracy of the combined approach for segmentation

through the automated method (cont.)

S. No Character Accuracy

(%)
S. No Character

Accuracy

(%)

12 ഘ <gha> .0076 34 യ <ya> .6676

13 ങ <kha> 66.78 35 ര <ra> .0094

14 ച <ca> 6.007 36 ല <la> .6672

15 ഛ <cha> 6.007 37 വ <va> 7.337

16 ജ <ja> .6672 38 ശ <śa> 7.338

17 ഝ <jha> .0082 39 ഷ <ṣa> 5.337

18 ഞ <ña> .0086 40 സ <sa> .0094

19 ട <ṭa> .0084 41 ഹ <ha> .0086

20 ഠ <ṭha> .0074 42 ള <ḷa> .6678

21 ഡ <ḍa> 1.339 43 ഴ <la̱> 0.668

22 ഢ <ḍha> .6692 44 റ <ṟa> .0096

Average Segmentation Accuracy = 79.13 %

Table 4.14 Average segmentation rate of the Combined approach

Average Segmentation Rate (%)

Comparison Automated Method

91.27 79.13

4.6. Conclusion

The pattern primitives in the Malayalam handwritten characters are

identified in this chapter. An extensive study of the pattern primitives

and the segmentation of the characters into pattern primitives are also

carried out as part of the work. A total number of 26 pattern primitives

are identified to represent the 44 Malayalam online handwritten

characters. The reference set of these characters are marked with the

113 | P a g e

pattern primitives, and their labeled sequences are also obtained in this

chapter. The analysis of the frequency of occurrences of various pattern

primitives present in the Malayalam characters show that, certain pattern

primitives are frequently occurring in them.

 This study proposes an approach, that performs the segmentation of

Malayalam online handwritten characters as per the character reference

set marked with pattern primitives. The ability of the Ramer Douglas

Peucker (RDP) algorithm to reduce a curve into a finite number of points

is utilized in the segmentation experiments. Even with the variability in

the writing style of the samples, the algorithm performed well with an

average segmentation rate of 75.07%. Segmentation using the EDFC

algorithm also obtained a better accuracy of 74.68%. The proposed

combined approach, based on RDP and EDFC algorithms, achieved a

segmentation rate of 91.27% through the visual comparison method. An

automated method to compute the segmentation accuracy is also

implemented in the chapter. The automated method for estimating

segmentation accuracy shows an accuracy of 79.13%. So, the higher

accuracy of the combined approach shows that the method is efficient for

segmenting Malayalam online handwritten characters into pattern

primitives.

114 | P a g e

CHAPTER 5

Recognition of Malayalam Online Handwritten

Characters based on Pattern

Primitives: A Class Modular Approach

5.1. Introduction

In pattern recognition, machine understanding of natural handwriting

has been an in-depth study for centuries. The technological upgrades

resulted in several novel methods to achieve better results in handwriting

character recognition. Most of the Handwriting Character Recognition

(HCR) studies were focused on improving recognition accuracy by

considering various features and experimenting with different

classifiers. The shape of handwriting is addressed in many studies on

Indic scripts for offline HCR, where, the images of handwritten

characters are considered [103]. The research in OHCR in Indic scripts,

mainly focused on the statistical features than shape dependent features

[98]. For recognition of the characters, the features of the entire

character are considered in these studies. The methods to address HCR

as a Syntactic Pattern Recognition (SPR) problem based on pattern

primitives are very few in Indic scripts. The extraction of pattern

primitives is considered for Bangla offline character recognition with

chain code features by Priyanka Das et al. [46]. Lajish V.L. and Sunil

Kumar Kppparapu attempted to address primitive based recognition of

online handwritten strokes for Devanagari scripts and achieved higher

accuracies [48]. The pattern primitives, being the smallest recognizable

115 | P a g e

unit found in most of the characters, are highly useful in recognizing a

character, especially for OHCR. Techniques that use pattern primitives

and their features for recognizing Malayalam online handwritten

characters are still in infancy.

In this chapter, a detailed analysis of various features specific to the

pattern primitives, identified for Malayalam handwritten characters in

the previous chapters is described. Using these features, experiments are

conducted on online handwritten character samples taken from the CU-

OHDB dataset to verify the effectiveness of pattern primitives in

Malayalam OHCR. A class modular approach is employed in the

recognition experiments using Support Vector Machine (SVM)

classifier. Support Vector Machines are extensively used in the

classification experiments for OHCR researches, and they are also found

to be effective in Indian scripts [104][105][106]. A block diagram of the

proposed OHCR system is displayed in figure 5.1.

Fig. 5.1 Block diagram of the proposed pattern primitive based OHCR system

The rest of the chapter is divided as follows. In section 5.2, various

methods used for the preprocessing of pattern primitives are discussed.

116 | P a g e

A detailed description of various pattern primitive features extraction

techniques applied to the samples in the work is given in section 5.3.

The description of intra-cluster pattern primitive features to discriminate

the characters within the clusters is detailed in section 5.4. The

experiments conducted in every cluster to verify the effectiveness of

pattern primitives in OHCR using SVM are explained in section 5.5,

followed by the experimental analysis in section 5.6. The conclusion of

the chapter is given in section 5.7.

5.2. Preprocessing of Pattern Primitives

It is found that the pattern primitive segments obtained from the

segmentation experiments are also susceptible to shape deformations

and slope variations. Hence the pattern primitives need to be

preprocessed before feature extraction to obtain better recognition rates.

The following sections describe various preprocessing methods applied

to the pattern primitives in the work.

5.2.1. Categorization of Pattern Primitives into Straight-line and Arc

Segments using Curvature Values

According to Xiaolin Li et al., online handwritten characters contain two

types of segments upon segmentation, namely arc and straight-line

segments [107]. It can be observed, that, the pattern primitives obtained

through the combined approach of Ramer Douglas Peucker algorithm

and Eight Direction Freeman Code for segmentation discussed in chapter

4 also include straight-line and arc segments.

 The curvature value gives the average bending of a segment. Since

the curvature values of straight-line segments are approximately zero,

117 | P a g e

they are easily separable from arc segments. Hence the curvature values

can be effectively used for categorizing pattern primitives into straight-

line and arc segments.

The curvature of a pattern primitive segment is the best information

to differentiate straight-line and arc segments. The arc segment shown

in figure 5.2 contains some sample points to describe the mathematical

basis of curvature. If the arc length is measured from a fixed point, A to

P is s, and A to Q is s+δs (i.e., PQ = δs). The ratio of δΨ and δs is called

the average bending or average curvature where δΨ is the angle of

contingence and δs, the arc length (Equation 5.1). When the limits of

the average curvature tend to zero, the average curvature is called the

curvature at the point P.

 𝐾 = lim
Δ𝑠→0

ΔΨ

Δ𝑠
=

𝑑Ψ

𝑑𝑠
 (Eq. 5.1)

Fig. 5.2 Average curvature and angle of contingence of an arc

118 | P a g e

The curvature of a curve y=f(x) at any point P on it is the

instantaneous rate of change of the angle of inclination y of the tangent

at P with respect to the arc length. In a non-uniform curve like pattern

primitive, the curvature value is approximated to some threshold for

facilitating the decidability of the curvature.

In another method, the curvature of a pattern primitive is defined

through the osculating circle, which is the circle that best approximates

the pattern primitive at a point. The curvature is the reciprocal of the

radius of curvature of the osculating circle. Procedure 5.1 describes the

algorithm used to find the radius of curvature of the osculating circle

and, thereby the curvature of the pattern primitives for the experimental

purposes.

Procedure 5.1 Implementation of the algorithm to find the curvature of the

pattern primitive using osculating circle based method

Input: PointList, The set of points describing the pattern primitive

Output: C, The value of the curvature

Procedure Curvature (PointList)

x=PointList(x) ,y=PointList(y);

�̅�, �̅� // Find the mean of x and y,

𝑋 = 𝑥 − �̅� , 𝑌 = 𝑦 − �̅� // Get the difference.

𝜕𝑥 = 𝑋2̅̅̅̅ , 𝜕𝑦 = 𝑌2̅̅ ̅// Get the variance of x and y.

Find the solutions a, b using least mean square.

𝑎 =
𝑋

(𝑋2 − 𝜕𝑥 + 𝑌2 − 𝜕𝑦)/2

𝑏 =
𝑌

(𝑋2 − 𝜕𝑥 + 𝑌2 − 𝜕𝑦)/2

Calculate the radius r of the osculating circle.

 𝑟 = √𝜕𝑥 + 𝜕𝑦 + 𝑎2+𝑏2

119 | P a g e

Find the radius of curvature 𝐶 =
1

𝑟

End

The algorithm explained in procedure 5.1 is used to find the curvature

values of the pattern primitives using osculating circle based methods in

the recognition experiments. The following section describes the

smoothing of straight-line pattern primitives using Bresenham’s line

drawing algorithm.

5.2.2. Smoothing of Straight-line Pattern Primitives using

Bresenham’s Line Drawing Algorithm

It is found that the straight-line pattern primitives obtained from

segmentation experiments are not always smooth lines as expected. It is

mainly due to the over smoothing of the straight-line segments happened,

as a result of moving average filter, performed on the online handwritten

character samples as described in chapter 3, section 3.4.2. To retain the

smoothness of such straight-line pattern primitives, it is proposed to use

line drawing algorithms to redraw them. In this work, Bresenham’s line

drawing algorithm illustrated in procedure 5.2 is used to preserve the

linearity of straight-line pattern primitives by redrawing them.

Procedure 5.2 Implementation of Bresenham’s line drawing algorithm

Input: PointList ; The list of points

Output: {X,Y} ;The set of new x and y values

Procedure Bresenham (PointList)

 dx= X2-X1 // X1,Y1 and X2,Y2 are start and points of the PointList

dy=Y2-Y1

p=2*dy-dx // Decision parameter

120 | P a g e

 X= X1, Y= Y1 // initial value of x and y

 plot the point (X, Y)

 for i=1 to size (PointList)

 if p> = 0

 X=X+1

 plot the point (X, Y)

 p=p+2*dy-2*dx

 else

 Y=Y+1

 p=p+2*dy

 plot the point (X, Y)

 end of for

End

Most of the straight-line pattern primitive segments obtained from

segmentation experiments are either oriented in horizontal or vertical

directions. But it is found from visual observations that these primitives

are skewed to a certain degree. Since most of the pattern primitive

features proposed in the study depend on angular and directional

variations, it is mandatory to eliminate skew variations from the straight-

line pattern primitives. The method proposed to correct the skew of the

horizontal and vertical pattern primitives using slope correction method,

is described in the following section.

 5.2.3. Skew Correction of Horizontal and Vertical Straight-line

Pattern Primitives

The slope of a line or gradient is a number defining the direction of the

line and steepness[108]. The slope is determined by computing the ratio

between two distinct points between the vertical transition and the

horizontal change in a line. The ratio is sometimes represented as a

121 | P a g e

quotient (rise over run), giving the same number on the same line for

every two separate points.

 A falling line has a negative rise. The slope's absolute value measures

a line's steepness, incline, or grade, as shown in figure 5.3(a)-(b). A slope

with a higher absolute value indicates a steeper line. A decreasing or

increasing slope in a line also differentiates them as a line drawn

downwards or upwards. Whether the line is increasing, decreasing,

horizontal, or vertical is determined as per the conditions below.

a) A line is a growing line if it goes up from left to right, i.e., positive

slope (m>0).

b) If the line falls from left to right, the line is called a decreasing

line. In that case, the slope is negative (m<0).

c) The slope is zero if a line is horizontal.

d) The slope is undefined if a line is vertical.

Fig. 5.3(a) Slope values

https://en.wikipedia.org/wiki/Line_(mathematics)

122 | P a g e

 Fig. 5.3(b) Slope values and directions

 The slope of a line is estimated using the differences, gradients, and

mean in the current experiment. The gradient of a function F(x,y) is given

in equation 5.2, where 𝛻𝐹 is the gradient of the coordinate values of x

and y over the linear segment and
∂F

∂x
,
 ∂F

∂y
, the partial derivatives.

 ∇𝐹 =
𝜕𝐹

𝜕𝑥
𝑖 +

𝜕𝐹

𝜕𝑦
𝑗 (Eq. 5.2)

 Now slope is estimated as the mean of the gradient of y as in equation

5.3, where 𝜕𝑥 stands for difference, F is a gradient, and Sis the slope.

𝜕𝑥 = 𝑥 − �̅�̅̅ ̅̅ ̅̅ ̅ , 𝐹 =
𝜕𝑦

𝜕𝑥
 , 𝑆 = �̅� (Eq. 5.3)

A threshold value is fixed to distinguish horizontal lines from others.

If the value of the slope is below the threshold value, then the line is

adjusted to be a horizontal line by making all y values zeros. If the value

of the slope is higher than the threshold value, then the line is adjusted

123 | P a g e

as a vertical line by making all x values zeros. In all other cases, the lines

are kept with the same angle of inclination with the x-axis or y-axis.

Features are the essential components used to represent data and the

feature selection is highly dependent on them. A detailed analysis of

structural and directional aspects of the pattern primitives are conducted

to select the appropriate features. The following section describes

various features of pattern primitives identified for the experimental

purposes.

5.3. Feature Extraction from Pattern Primitives

There are many features considered for developing the Malayalam

OHCR systems [104]. But all these features are not applicable for the

pattern primitives, which is either an arc or a straight-line segment. The

characters are analyzed specific to the shape, and the pattern primitives

that constitute each character are also identified. The majority of the

pattern primitives identified has basic geometrical shapes including

straight-line segments and arcs varying in direction, size, and curvature.

Hence, features are determined based on these geometrical shapes. The

direction of pattern primitives (down/up), cusp in the pattern primitives,

and crossings (intersections) present in the Malayalam characters are

identified as features. Certain additional features like minimized chain

code, length, and curvature values of pattern primitives are also

identified as features.

The following section describes various feature extraction

techniques applied to pattern primitives for the conduct of OHCR

experiments.

124 | P a g e

5.3.1. Minimized Chain Code (Reduced Direction Code) Features

The direction of handwriting is vital in identifying a character in most

of the online handwriting recognition systems. In this work, the direction

code of the pattern primitive is obtained using the Eight Direction

Freema Code (EDFC) algorithm, described in chapter 4. It can be seen,

that, the direction code obtained for a character’s pattern primitive is a

sequence of redundant code numbers. For example,the direction code

for a pattern primitive shown in figure 5.4is 333333333111111111. The

directions obtained are reduced into a minimum code by restricting the

same direction code continuously repeating more than three times into a

single code. The code expressed in minimum form (31 for the pattern

primitive shown in figure 5.4) without redundancy is a piece of

information about the direction of the segment, which is called

minimized chain code representation.

Fig. 5.4 Direction Code of the first pattern primitive of the Malayalam character

അ <a>

125 | P a g e

Due to speed variations and distortions, the directional code

sequence usually contains some unexpected directions. For example, the

Freeman Direction Code sequence 11117777775555542222001111

include unexpected directions like 4, 0. The algorithm also eliminates

these unexpected directions to obtain the minimized direction code as

17521. The proposed algorithm to reduce the Eight Direction Freeman

Codes of online handwritten character samples into minimized chain

codes (reduced direction codes) is described in procedure 5.3.

Procedure 5.3 Implementation of the algorithm to obtain the Reduced

Direction Code of a pattern primitive

Input: data ; The 2-d array containing x, y values of the pattern primitive

Output: rddirect ; The minimized freeman direction code of the pattern primitive

Procedure MFC(data)

Direct = Freeman_Eight_Direction_Code (data) // Get direction code using

 // EDFC algorithm

// Remove direction abnormalities

 for all direction codes do

 Consider three neighboring direction codes

 If all are different codes

 Replace middle direction code with first direction code

 end

// Get the minimized direction code

 for all direction codes do

 Consider two neighboring direction codes

 If they are different codes

 Add the first direction code to rddirect

 end

 Return(rddirect) // Reduced code sequence

End

126 | P a g e

The following section describes cusp identification from pattern

primitives.

5.3.2. Cusp Identification in Pattern Primitives

The sequence representing online handwriting is time-varying. Hence,

the movement of points is an alternate meaning given to the online

handwriting representation of characters. These movements by the

points generate variations in the path identified as bumps, cusps,

crossing, etc. A cusp is a point on a curve, where a moving point on

the curve must start to move in the opposite direction. The presence of

a cusp point in a handwritten character easily differentiates them from

other characters. Cusps are common in most of the characters in

Malayalam. The position and occurrence of the cusp are different in

various characters. Sharp cusps are observable in the pattern primitives

of the Malayalam characters അ <a> ,ആ <a:> ,ദ <da> ,ഏ <e:>, and ഒ

<o>. In the characters അ <a>, ആ <a:> and ദ <da> ,the cusp is visible

in the second primitive. For the characterഏ <e:>, the cusp is visible in

the seventh primitive, and for the character ഒ <o>, the cusp is visible in

the third primitive. The pattern primitive with a cusp visible in the

Malayalam characters അ <a> ,ആ <a:> ,ദ <da> ,ഏ <e:>and ഒ <o> is

displayed in figure 5.5. The dot marked in the primitive is the cusp point.

127 | P a g e

Fig. 5.5 Cusp in a pattern primitive present in the Malayalam characters അ

<a> ,ആ <a:> ,ദ <da> ,ഏ <e:>and ഒ <o>

A sharp turn in a curve known as a cusp is identifiable by measuring

the curvature between three consecutive points. Let (x1,y1), (x2,y2), and

(x3,y3) be three such adjacent points in a curve. The curvature of a circle

drawn through them is simply four times the area of the triangle formed

by the three points divided by the product of its three sides. Procedure

5.4 illustrates the algorithm to identify cusps in the pattern primitives.

Procedure 5.4 Implementation of the algorithm for the detection of cusps in

pattern primitives

Input: data ; The 2-d array containing x,y values representing pattern primitives

Output: cuspx(i), cuspy(i); The cusp coordinates

Procedure Cusp(data)

for all points do

 ax=x1, bx=x2, cx=x3;

 ay=y1, by=y2, cy=y3;

𝐾 =
2 ∗ |((bx − ax) ∗ (cy − ay) − (cx − ax) ∗ (by − ay))|

√((bx − ax)2 + (by − ay)2) ∗ ((cx − ax)2 + (cy − ay)2) ∗ ((cx − bx)2 + (cy − by)2)

if (K > threshold) // threshold is a numeric value

 cuspx=x2; cuspy=y2; // cuspx, cuspy are cusp coordinates

end of for

End

128 | P a g e

Using the above algorithm, the cusp features present in the pattern

primitives of the character are extracted and used for further

experiments. The following section describes the method for

determining the length of a pattern primitive.

5.3.3. Length of the Pattern Primitives

The number of points per pattern primitive segment, called the length of

pattern primitive, or segment length, is a strong candidate as a feature.

As the entire character sequence is resampled to a fixed size in the

preprocessing phase, the expected number of points present in a pattern

primitive is almost similar for different samples of the same character.

The figure 5.6 shows the samples of the characters അ <a>, സ <sa>, and

ഹ <ha> with the length of the pattern primitives (blue dots) and the

segmentation points (red dots). Table 5.1 lists the average number of

points per pattern primitive representing the Malayalam online

handwritten character samples of അ <a>, സ <sa>, and ഹ <ha> taken

from the CU-OHDB dataset.

Fig. 5.6 Length of pattern primitives (blue dots), segmentation points (red dots)

for the Malayalam handwritten character samples of അ- <a> ,സ <sa>, ഹ <ha>

129 | P a g e

Table 5.1 Average pattern primitive lengths of the character samples അ <a> ,

സ <sa> ,ഹ <ha>

Character

Average length of pattern primitives

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7

അ <a> 14 16 11 10 10 9 9

സ <sa> 18 14 11 16 19 - -

ഹ <ha> 8 8 15 22 26 - -

Pattern primitive length features are extracted from the pattern

primitives of the handwritten character samples and used for further

experiments. The following section describes the method used to

determine the writing direction of a pattern primitive.

5.3.4. Direction Category Code Features (DCCF) of Pattern

 Primitives

Most of the characters in Malayalam start writing with an upward

direction and ends in a downward direction. The information regarding

the start and end direction of an online handwritten character available

with the first and last pattern primitives, can be effectively used in the

recognition of handwriting. To extract the Direction Category Code

Features (DCCF) of a pattern primitive, the direction codes of the pattern

primitive are obtained using Eight Direction Freeman Code algorithm at

first. If majority of the directions present in the direction codes are in

upward direction, i.e., 1,2,3 then, the pattern primitive is considered as

written in upward direction and the direction category code is assigned

as 1. If majority of the directions present in the direction codes are in

130 | P a g e

downward direction, i.e., 5,6,7 then, the pattern primitive is considered

as written in downward direction and the direction category code is

assigned as 0. If majority of the directions present in the direction codes

are in horizontal direction, i.e., 0,4 then, the pattern primitive is

considered as written in horizontal direction and the direction category

code is assigned as 2. The procedure described in section 4.4.4 of

chapter 4 is used to extract the DCC features from the pattern primitives.

It is observed that, each of the 44 selected characters can be

represented using the DCCF. The DCCF of pattern primitives computed

for Malayalam vowel online handwritten character samples, taken from

CU-OHDB data set, are listed in table 5.2.

Table 5.2 Direction Category Code Features (DCCF) of pattern primitives

S.No Character

Direction Category Code Features (DCCF)

corresponding to pattern primitives (1 to 8)

1 2 3 4 5 6 7 8

1 അ <a> 1 0 1 0 1 0 1

2 ആ <a:> 1 0 1 0 1 0 1 0

3 ഇ <i> 0 1 0 1 0 2

4 ഉ <u> 0 1 0 2

5 ഋ <r̥> 1 0 1 0

6 എ <e> 1 0 2 1 0 1 0

7 ഏ <e:> 1 0 2 1 0 1 0

8 ഒ <o> 0 1 0

131 | P a g e

5.3.5. Intersection (Crossing) of Pattern Primitives

In the case of Malayalam handwritten characters, it can be seen that,

most of the pattern primitives intersect with other pattern primitives.

This information is highly beneficial in differentiating the characters.

The number of such intersections and their positions also varies from

character to character. A common point shared by two pattern primitive

segments is generally known as the point of intersection. The following

section describes the method used to determine the intersection points

in the character samples.

Given two pattern primitives, P1 and P2, with end points (x1,y1) and

(x2,y2) for P1 and (x3, y3) and (x4, y4) for P2. In this case, four equations

with four unknowns are to be solved, to identify t1, t2, x0,and y0 where,

(x0,y0) is the intersection of P1 and P2.

t1 is the distance from the starting point of P1 to the intersection

relative to the length of P1

t2 is the distance from the starting point of P2 to the intersection

relative to the length of P2.

Accordingly, four equalities are framed as shown in equation 5.4.

(x2 - x1) *t1 = x0– x1

(x4– x3) *t2 = x0 – x3 (Eq. 5.4)

(y2 - y1) *t1 = y0–y1

(y4–y3) *t2 = y0–y3

132 | P a g e

These equations are represented in matrix form as shown in equation

5.5.

(x2 - x1) 0 -1 0

*

t1

=

x0–x1

(Eq. 5.5)

0 (x4 – x3) -1

0 t2

x0–x3

(y2 - y1) 0 0 -1

0

y0–y1

0 0 (y4– y3) 1 0 y0–y3

After solving the equations for t1 and t2, it can be determined that

whether P1 and P2 intersect by verifying the following conditions.

If 0 <= t1< 1 and 0 <= t2< 1, then the two pattern primitives P1 and

P2 intersect at (x0, y0).

Using this method, presence of intersection points is identified from

various online handwritten character samples. If there is an intersection

point in the pattern primitive, the feature is represented using 1, else it

is represented using 0. The intersection points obtained for the

characters അ<a> ,ത<ta> ,and എ<e> are shown in figure 5.7.

133 | P a g e

Fig. 5.7 Intersection points obtained for the Malayalam characters

അ <a>, ത <ta>, and എ <e>

A detailed study of various pattern primitive features, described in

previous sections applied to differentiate handwritten character samples,

is described in the following section.

5.4. Grouping of Malayalam Handwritten Characters based on

 the characteristics of Pattern Primitives

A class modular approach is proposed in the work to cluster and further

recognize the characters. For this purpose, the number of pattern

primitives present in each character is identified as a basic feature to

form various clusters. It is identified that the number of pattern

primitives present in Malayalam online handwritten characters ranges

from two to eight. Hence, seven character clusters are formed

corresponding to the number of pattern primitives. The Malayalam

characters coming under various clusters formed, based on the number

of pattern primitives present in the character, are shown in table 5.3.

134 | P a g e

Table 5.3 Character clusters based on the number of pattern primitives

Cluster

Number of

pattern

primitives

Characters

A 2 റ <ṟa>, ഭ <bha>,ദ <da>

B 3
ഒ <o> ,ഗ <ga> ,ട <ṭa>, ര <ra>, ഠ <ṭha> ,ഴ

<la̱>

C 4

ഉ <u> ,ഋ <r̥> ,ച <ca> ,ത <ta> ,ഥ <tha> ,ധ

<dha> ,ന <na> ,പ <pa> ,മ <ma> ,വ <va> ,

ശ <śa> ,ള <ḷa>

D 5
ഖ <kha> ,ങ <kha> ,ഡ <ḍa> ,ഫ <pha> ,ല

<la> ,സ <sa> ,ഹ <ha> ,യ <ya>

E 6 ഇ <i> ,ക <ka> ,ഛ <cha> ,ഢ <ḍha>

F 7
അ <a> ,എ <e> ,ഏ <e:> ,ഘ <gha> ,ഝ

<jha> ,ഞ <ña> ,ണ <ṇa> ,ൈ <ba>,ഷ <ṣa>

G 8 ആ <a:> ,ജ <ja>

From table 5.3, it can be seen that, the clusters A, B, C, D, E, F, and

G have 3, 6, 12, 8, 4, 9, and 2 numbers of distinct characters,

respectively. The pattern primitive features of the characters included in

each of the character clusters are studied in detail. Based on the studies,

the distinct pattern primitive features with respect to each character

cluster are identified and used further in recognition experiments.

The following sections describe the features of the pattern

primitives, which are capable of distinguishing the characters present in

each cluster.

135 | P a g e

5.4.1. Pattern Primitive Features of Characters in Cluster A

Cluster A has three characters, namely റ <ṟa>, ഭ <bha>, and ദ <da>,

consisting of two pattern primitives. The first pattern primitive for all

these characters is visually similar, and hence it is not considered as a

feature for recognition. The features of the second pattern primitives of

these characters are distinguishable in nature and hence considered for

recognition purposes.

The minimized direction code feature extracted from the second

pattern primitive is identified as a feature for distinguishing റ <ṟa> from

ഭ <bha> and ദ <da>. The minimized direction code of the second pattern

primitive for റ <ṟa> is ‘75’ or ‘7’. For the other two, it is ‘7575’ or ‘757’.

It may also be noted that, the characters, ഭ <bha> and ദ <da> are not

distinguishable using these minimized direction code features alone.

It is visible that, the characterദ<da> has a sharp cusp in the second

primitive, whereas it is not present in ഭ <bha>. Hence, cusp in the second

pattern primitive is taken as an additional feature to differentiate them.

The number of direction changes in the second primitive is also different

for റ <ṟa> and the other two characters, ഭ <bha> and ദ <da>. For റ <ṟa>,

the number of direction changes is identified as two, and it is more than

two for ഭ <bha> and ദ <da>. Figure 5.8 (a)-(d) shows the visual

representations of directional features and cusps present in the selected

character samples under cluster A.

136 | P a g e

(a) (b)

(c) (d)

Fig. 5.8 (a)-(c) Direction code features of second pattern primitive for the

Malayalam characters റ <ṟa>, ഭ <bha> and ദ <da> respectively and Fig. 5.8 (d)

Cusp features of second pattern primitive for the Malayalam characters ദ <da>

The features considered for classifying the characters representing

cluster A are listed in Table 5.4.

Table 5.4 Pattern primitive features of the characters in cluster A

Sl. No Features
Pattern

primitive
Related characters

1 Cusp Second ദ <da>

2 Minimized direction code Second റ <ṟa>,ഭ <bha>

3 Number of direction changes Second റ <ṟa>, ഭ <bha>,ദ <da>

5.4.2. Pattern Primitive Features of Characters in Cluster B

Characters with three numbers of pattern primitives are included in

cluster B. The characters in cluster B are ഒ <o>, ഗ <ga>, ട <ṭa>, ര <ra>,

ഠ <ṭha>, and ഴ <la̱>. It is observed that, a cusp found in the third pattern

primitive is a unique feature of the character ഒ <o> and hence, it is

137 | P a g e

considered for classification purpose. For the character ര <ra>, the

direction of the first pattern primitive is considered as a unique attribute

that differentiates it from other characters in the cluster. It is the only

character written in an upward direction compared to the other members

in this cluster. The minimized direction codes of the character ട <ṭa>

majorly represent the downward directions, unlike the other three

members. The minimized direction codes specific to the second pattern

primitive of the character ട <ṭa> are computed as ‘575’, in which 5 and

7 are downward directions. It is a unique feature found only in the

character ട <ṭa>. For differentiating the character, ഗ <ga>, from other

members, the minimized direction code of it’s first pattern primitive (57)

is considered. The specialty of ഠ <ṭha> is the crossing made by the first

pattern primitive with the last pattern primitive. In ഴ <la̱>, a crossing by

the third pattern primitive and the second pattern primitive is unique.

The pattern primitive features of the characters present in cluster B used

for classification experiments are listed in table 5.5.

 Table 5.5 Pattern primitive features of the characters in cluster B

Sl. No Features
Pattern

primitive

Related

characters

1 Cusp Third ഒ <o>

2 Pattern primitive up/down First ര <ra>

3 Minimized direction code Second ട <ṭa>

4 Minimized direction code First ഗ <ga>

5 Crossing Final ഠ <ṭha> ,ഴ <la̱>

6 Minimized direction code Third ഠ <ṭha> ,ഴ <la̱>

138 | P a g e

5.4.3. Pattern Primitive Features of Characters in Cluster C

The characters with three pattern primitives are included in cluster C.

The cluster includes twelve characters namely, ഉ <u>, ഋ <r̥>, ച <ca>, ത

<ta>, ഥ <tha>, ധ <dha>, ന <na>, പ <pa>, മ <ma>, വ <va>, ശ <śa>,

and ള <ḷa>. The cluster is then subdivided into two based on the

direction of the first pattern primitive. The first pattern primitives of the

characters ഋ <r̥>, ച <ca>, ത <ta>, ന <na>, പ <pa>, മ <ma> and, വ

<va> are starting in the upward direction, and the cluster is named as

C(Up). Similarly, the first pattern primitives of the characters ഉ <u>, ഥ

<tha>, ധ <dha>, ശ <śa>, and ള <ḷa>are starting in a downward direction,

and the cluster is named as C(Down).

 As a next step, specific features are identified for the characters in

cluster C(Up) for ease of classification. A crossing in the third pattern

primitive is identified as a unique feature of both the characters ഋ <r̥>

and ത <ta>. For discriminating the characters, പ <pa> from വ <va>, the

lengths of the first, second, and third pattern primitive are considered. It

can be observed, that the third pattern primitive is always a straight-line

for the characters പ <pa>, ച <ca>, and വ <va>. Hence it is also included

in the feature set. The straight-line with a slope in the fourth pattern

primitive of the character മ <ma> is identified as a unique feature to

differentiate it from the other characters in the cluster. Table 5.6 lists the

various pattern primitive features of the characters in cluster C(Up).

139 | P a g e

Table 5.6 Pattern primitive features of the characters in cluster C(Up)

Sl. No Features
Pattern

primitives
Related character

1 Crossing Third ഋ <r̥>, ത <ta>,ന <na>

2
Pattern primitive

length
Third ഋ <r̥>, ത <ta>,പ <pa>, വ <va>

3
Pattern primitive

length
Second പ <pa>, വ <va>

3
Straight-line pattern

primitive
Third പ <pa>,വ <va>,ച <ca>,മ <ma>

4
Straight-line pattern

primitive with slope
Fourth മ <ma>

5

Direction code,

Pattern primitive

length

First ച <ca>, പ <pa>

 In the cluster C(Down), the character ഥ <tha> can be easily

distinguished from other characters, based on the presence of straight-

line in the first pattern primitive and the downward direction of the last

pattern primitive. A cusp identified in the third pattern primitive is

capable of easily classifying the character ള <ḷa>.

 The minimized direction code and the length of the fourth pattern

primitive are identified as unique features for the character ധ <dha>. The

direction code of the first pattern primitive is considered as a feature to

differentiate ഉ <u> and ള <ḷa> from other characters in the cluster. The

pattern primitive features of the characters in cluster C(Down) are

displayed in table 5.7.

140 | P a g e

Table 5.7 Pattern primitive features of the characters in cluster C(Down)

Sl.

No
Features

Pattern

primitive

Related

character

1
Straight-line pattern

primitive
First ഥ <tha>

2 Direction Last ഥ <tha>

3 Cusp Third ള <ḷa>

4
Minimized direction code,

Pattern primitive length
Last

ധ <dha>,ശ
<śa>

5 Minimized direction code First ഉ <u>, ള <ḷa>

5.4.4. Pattern Primitive Features of Characters in Cluster D

The cluster D is formed by grouping the characters which consist of five

numbers of pattern primitives. The cluster consists ofthe characters, ഖ

<kha>, ങ <kha>, ഡ <ḍa>, ഫ <pha>, ല <la>, സ <sa>, ഹ <ha>, and യ

<ya>. The cluster is then subdivided into two, based on the direction of

the final pattern primitive. The final pattern primitives of the characters,

ഖ <kha>, ഡ <ḍa>, ല <la>, സ <sa>, and യ <ya> are in upward

directions, and the cluster is named D(Up). Similarly, the final pattern

primitives of the characters ങ <kha>, ഫ <pha>, and ഹ <ha> are in the

downward direction, and the cluster is named, D(Down).

 A crossing in the fourth pattern primitive is identified as a unique

feature of യ <ya> in cluster D(Up). The minimized direction code of the

second and fourth pattern primitive is the major feature that differentiates

the characters സ <sa> and ഡ <ḍa>. The minimized direction code of

the third primitive of ല <la> is found to be unique in this cluster. It is

also found that the character ഖ<kha> starts in the downward direction.

Hence, the direction of the first pattern primitive is considered as the

feature to identify the character ഖ <kha> in the cluster. The summary of

141 | P a g e

the selected features to identify the characters in group D(Up) is given in

table 5.8(a).

Table 5.8(a) Pattern primitive features of the characters in cluster D(Up)

 In the cluster D(Down), it is found that, the characterങ<kha> starts in

the downward direction with a cusp in the fifth pattern primitive. Hence

the features, starting direction, and cusp in the fifth pattern primitive are

selected for further processing. The straight-line nature and length of the

third pattern primitive along with the minimized direction code of the

fourth pattern primitive are identified to differentiate the characters, ഫ

<pha> and ഹ <ha>. Table 5.8(b) lists the pattern primitive features of

the characters present in cluster D(Down).

Table 5.8(b) Pattern primitive features of the characters in cluster D(Down)

Sl. No Features
Pattern

primitive
Related character

1 Starting direction First ങ <kha>

2 Cusp Fifth ങ <kha>

3
Pattern primitive

length
Third ഫ <pha> ,ഹ <ha>

4
Minimized direction

code
Fifth ഫ <pha> ,ഹ <ha>

Sl. No Features
Pattern

primitive
Related character

1 Starting direction First ഖ <kha>

2 Crossing Fourth യ <ya>

3
Minimized direction

code
Second സ <sa> ,ഡ <ḍa>

4
Minimized direction

code
Fourth സ <sa> ,ഡ <ḍa>

5
Minimized direction

code
Third ല <la>

142 | P a g e

5.4.5. Pattern Primitive Features of Characters in Cluster E

The cluster E is formed by grouping the characters which consists of six

numbers of pattern primitives. The members in the cluster are ഇ <i>, ക

<ka>, ഛ <cha>, and ഢ <ḍha>. It is found that, the character ഇ <i>

starts in the downward direction, and there are no other characters in the

cluster that starts in the downward direction. Hence, the starting direction

of the first pattern primitive is selected as a feature to recognize the

character ഇ <i>. The length of the third pattern primitive of the character

ക <ka> is shorter than the other characters. Also, the minimized direction

code of the fourth primitive is found to be unique for the character ക

<ka>. These two features are considered to differentiate the character ക

<ka> from others. The minimized direction code of the sixth pattern

primitive is a feature distinguishing the character ഢ <ḍha>. The straight-

line feature of the third pattern primitive differentiates the character ഛ

<cha> from others in the cluster. The direction of the last primitive is

upward for the character ഛ <cha> unlike other characters. Hence, these

features are selected to identify the character ഛ <cha>. The features

selected for classifying the characters in cluster E are listed in table 5.9.

Table 5.9 Pattern primitive features of the characters in cluster E

Sl. No Features
Pattern

primitive

Related

character

1 Starting direction First ഇ <i>

2
Pattern primitive

length
Third ക <ka>

3
Minimized direction

code
Fourth ക <ka>

143 | P a g e

Table 5.9 Pattern primitive features of the characters in cluster E (cont.)

Sl. No Features
Pattern

primitive

Related

character

4
Minimized direction

code
Sixth ഢ <ḍha>

5
Straight-line pattern

primitive
Third ഛ <cha>

5.4.6. Pattern Primitive Features of Characters in Cluster F

Cluster F includes nine characters with seven numbers of pattern

primitives. The characters in the cluster are അ <a>, എ <e>, ഏ <e:>, ഘ

<gha>, ഝ <jha>, ഞ <ña>, ണ <ṇa>, ൈ <ba>, and ഷ <ṣa>. The cluster

is then subdivided into two, based on the presence of straight-line pattern

primitive in the third position. The first cluster, F(L), is formed by

including the characters എ <e>, ഏ <e:>, ഘ <gha>, and ഷ <ṣa>, which

consists of a straight-line pattern primitive in the third position. The

second cluster, F(NL), contains the characters അ <a>, ഝ <jha>, ഞ

<ña>, ണ <ṇa>, and ൈ <ba>, with an arc in the third pattern primitive.

 In the F(L) cluster, the characters എ <e> and ഏ <e:>possess similar

features, except a cusp, present in the seventh primitive. Hence, the cusp

in the seventh pattern primitive is identified as a feature for recognizing

the character ഏ <e:>. In the case of the character ഘ <gha>, the upward

direction of the final pattern primitive is found to be unique in this cluster.

The minimized direction code of the sixth pattern primitive is identified

as a unique feature to distinguish the character ഷ <ṣa> from others. The

list of pattern primitive features for the F(L) cluster characters are given

in table 5.10.

144 | P a g e

Table 5.10 Pattern primitive features of the characters in cluster F(L)

Sl. No Features
Pattern

primitives
Related character

1
Straight-line

pattern primitive
Third

എ <e>, ഏ <e:>, ഘ
<gha>, ഷ <ṣa>

2 Cusp Seventh ഏ <e:>

3
Direction of pattern

primitive
Last ഘ <gha>

4
Minimized

direction code
Sixth ഷ <ṣa>

 The direction of starting pattern primitive is upward for the characters

അ <a> and ഝ <jha> present in the F(NL) cluster. Additionally, a cusp

in the second pattern primitive is identified as a unique feature for the

character അ<a>. For the characters ഞ <ña>, ണ <ṇa>, and ൈ <ba>, the

direction of starting pattern primitive is downward with a crossing in the

sixth pattern primitive exclusively for the character ഞ <ña>. The

occurrence of a straight-line pattern primitive at the sixth position is

considered as a unique feature for the character ൈ <ba>. The features

selected for differentiating the characters in cluster F(NL) are detailed in

table 5.11.

Table 5.11 Pattern primitive features of the characters in cluster F(NL)

Sl. No Features
Pattern

Primitives
Related character

1 Starting direction First

അ <a>, ഝ <jha>, ഞ
<ña>, ണ <ṇa>, ൈ
<ba>

2 Cusp Second അ <a>

3 Crossing Sixth ഞ <ña>

4
Straight-line

pattern primitive
Sixth ൈ <ba>

5
Minimized

direction code
Third ഝ <jha>

145 | P a g e

5.4.7. Pattern Primitive Features of Characters in Cluster G

The cluster G is the smallest cluster which consists of only two characters

ആ <a:> and ജ <ja> with eight number of pattern primitives. The starting

directions of these characters are considered for the classification

purposes. The character ആ <a:> starts in the upward direction, whereas

the character ജ <ja> starts in the downward direction. In addition to that,

a cusp present in the second pattern primitive is identified as unique for

the character ആ <a:>. Table 5.12 lists the features identified for the

cluster G characters.

Table 5.12 Pattern primitive features of the characters in cluster G

Sl. No Features
Pattern

primitives
Related character

1 Starting direction First ആ <a:>, ജ <ja>

2 Cusp Second ആ <a:>

 The following section describes the experiments conducted for the

cluster-wise classification of the online handwritten character samples.

5.5. Experimental Setup

In this section, the experimental framework is set to classify the

characters present within each cluster (A to G), which are already

formed, based on the number of pattern primitives present in each

character. For this purpose, online handwritten samples of each 44

Malayalam characters taken from the CU-OHDB dataset are used. This

dataset consists of eight single stroke vowel characters and thirty six

consonant characters. For the experimental purpose, the 100 samples of

each character which are correctly segmented based on the pattern

146 | P a g e

primitive segmentation experiments conducted using the combined

approach of RDP and EDFC, are used as described in chapter 4.

 As a next step, the straight-line pattern primitive segments have

undergone two preprocessing phases. In the first phase, the characters

having straight-line pattern primitives are smoothed using the methods

described in section 5.2.1 and 5.2.2. The osculating circle based

method mentioned in procedure 5.1 is implemented in MATLAB to find

the curvature of the pattern primitive. The experiment is conducted on

the correctly segmented pattern primitives and computed their curvature

values. From the experimental results, it is observed that the pattern

primitives with a straight-line nature also hold certain curvature values.

Considering this, the character segments with curvature values less than

0.75 are categorized as straight-line pattern primitives. These pattern

primitives are then redrawn as straight-lines using Bresenham’s line

drawing algorithm as described in Procedure 5.2.

 In the second phase, pattern primitives identified as straight-line are

adjusted for angular variations by measuring slope values as described in

section 5.2.3. For this purpose, a threshold value which is fixed as 0.2, is

used to distinguish horizontal lines. If the value of the slope is below the

threshold value, then the line is adjusted to be a horizontal. The threshold

value fixed at 4.0 is used to distinguish vertical lines. If the value of the

slope is higher than the threshold value, then the line is adjusted as

vertical. In all other cases, the lines are kept with the same angle of

inclination. In the next stage, the specific features are extracted from the

preprocessed pattern primitives of the characters under each cluster.

147 | P a g e

 Table 5.13 lists the number of characters in each cluster and the

corresponding number of features to be extracted for experimental

purposes. The features specified for each cluster are already described in

sections 5.4.1 to 5.4.7.

Table 5.13 Number of features in various clusters

Sl.No
Cluster

Number

of

characters

Number

of

features

1 A 3 3

2 B 6 6

3 C(Up) 7 7

4 C(Down) 5 6

5 D(Up) 5 5

6 D(Down) 3 4

7 E 4 5

8 F(L) 4 4

9 F(NL) 5 5

10 G 2 2

 The cluster wise (class-modular) character classification experiments

are conducted based on the features extracted from the pattern primitives

with respect to the characters belonging to each cluster using the Support

Vector Machines (SVMs). The train and test sets are prepared in the ratio

of 3:2 for experimental purposes. Five-fold cross-validation is also

performed to measure the classification accuracy. The following three

basic numeric scores, true positive, false positive, and false negative, are

computed to evaluate the performance of the system.

148 | P a g e

• True positive: Number of characters correctly recognized

• False-positive: Number of characters falsely recognized

• False-negative: Number of missed characters

The performance scores viz. precision, recall, and F1-score of the

experiments, are also computed based on the above parameters. The

precision is computed to measure how many of the characters are

identified correctly. Recall measures, how many characters in the test

samples are not missed in recognition. F1 score is the weighted average

of precision and recall, and it is also referred to as harmonic mean, which

represents the overall accuracy of the system.

Precision =
True Positive

True Positive + False Positive

Recall =
True Positive

True Positive + False Negative

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

The following section describes the performance analysis of the

proposed pattern primitive based OHCR system.

5.6. Analysis of the OHCR Results

In this work, the experiments are conducted in a class modular approach,

i.e., classification is performed within every cluster. In cluster A, there

are three character classes with three features. The performance

measures of the classifier used for classifying the characters within

cluster A with precision, recall, and F1-score are shown in table 5.14.

The average recognition accuracy obtained for the characters in cluster

149 | P a g e

A is 96.67%. The normalized confusion matrix obtained for cluster A is

shown in figure 5.9.

Table 5.14 Performance scores for cluster A

Character Class label Precision Recall F1-Score

ഭ <bha> 32 0.77 1.00 0.87

ദ <da> 26 1.00 0.80 0.89

റ <ṟa> 44 1.00 0.90 0.95

Fig. 5.9 Normalized confusion matrix for cluster A

In cluster B, there is six character classes with six features. The

performance scores obtained for the classifier used to classify the

characters of cluster B are shown in table 5.15. The average recognition

accuracy obtained for the characters in cluster B is 98.88%. The

normalized confusion matrix obtained for cluster B is shown in figure

5.10.

150 | P a g e

Table 5.15 Performance scores for cluster B

Character Class label Precision Recall F1-Score

ഒ <o> 8 1.00 1.00 1.00

ഗ <ga> 11 1.00 1.00 1.00

ട <ṭa> 19 0.95 1.00 0.98

ഠ <ṭha> 20 1.00 1.00 1.00

ര <ra> 35 1.00 0.95 0.97

ഴ <la̱> 43 1.00 1.00 1.00

Fig. 5.10 Normalized confusion matrix for cluster B

In cluster C(Up), there are seven characters with seven features. The

performance scores obtained for the classifier used to classify the

characters of cluster C(Up) are shown in table 5.16. The average

recognition accuracy obtained for the characters in cluster C(Up) is

151 | P a g e

96.20%. The normalized confusion matrix obtained for cluster C(Up) is

shown in figure 5.11.

Table 5.16 Performance scores for cluster C(Up)

Character Class Label Precision Recall F1-Score

ഋ <r̥> 5 1.00 0.85 0.92

ച <ca> 14 0.83 1.00 0.91

ത <ta> 24 1.00 1.00 1.00

ന <na> 28 0.91 1.00 0.95

പ <pa> 29 0.89 0.85 0.87

മ <ma> 33 1.00 0.85 0.92

വ <va> 37 0.95 1.00 0.98

Fig. 5.11 Normalized confusion matrix for cluster C(Up)

In cluster C(Down), there are five characters with six features. The

performance scores obtained for the classifier used to classify the

characters of cluster C(Down) are shown in table 5.17. The average

152 | P a g e

recognition accuracy obtained for the characters in cluster C(Down) is

98.67%. The normalized confusion matrix obtained for cluster C(Down)

is shown in figure 5.12.

Table 5.17 Performance scores for cluster C(Down)

Character Class label Precision Recall F1-Score

ഉ <u> 4 1.00 1.00 1.00

ഥ <tha> 25 1.00 1.00 1.00

ധ <dha> 27 1.00 1.00 1.00

ള <ḷa> 42 1.00 1.00 1.00

ശ <śa> 38 1.00 1.00 1.00

Fig. 5.12 Normalized confusion matrix for cluster C(Down)

In cluster D(Up), there are five characters with six features. The

performance scores obtained for the classifier used to classify the

characters of cluster D(Up) are shown in table 5.18. The average

153 | P a g e

recognition accuracy obtained for the characters in cluster D(Up) is

94.67 %. The normalized confusion matrix obtained for cluster D(Up)

is shown in figure 5.13

Table 5.18 Performance scores for cluster D(Up)

Character Class label Precision Recall F1-Score

ഖ <kha> 10 1.00 1.00 1.00

ഡ <ḍa> 21 1.00 0.80 0.89

ല <la> 34 1.00 1.00 1.00

സ <sa> 36 1.00 1.00 1.00

യ <ya> 40 0.83 1.00 0.91

Fig. 5.13 Normalized confusion matrix for cluster D(Up)

In cluster D(Down), there are three characters with four features.

The performance scores obtained for the classifier used to classify the

characters of cluster D(Down) are shown in table 5.19. The average

recognition accuracy obtained for the characters in cluster D(Down) is

154 | P a g e

100%. The normalized confusion matrix obtained for cluster D(Down)

is shown in figure 5.14.

Table 5.19 Performance scores for cluster D(Down)

Character Class label Precision Recall F1-Score

ങ <kha> 13 1.00 1.00 1.00

ഫ <pha> 30 1.00 1.00 1.00

ഹ <ha> 41 1.00 1.00 1.00

Fig. 5.14 Normalized confusion matrix for cluster D(Down)

In cluster E, there are four characters with five features. The

performance scores obtained for the classifier used to classify the

characters of cluster E are shown in table 5.20. The average recognition

accuracy obtained for the characters in cluster E is 100%. The

normalized confusion matrix obtained for cluster E is shown in figure

5.15.

155 | P a g e

Table 5.20 Performance scores for cluster E

Character Class label Precision Recall F1-Score

ഇ <i> 3 1.00 1.00 1.00

ക <ka> 9 1.00 1.00 1.00

ഛ <cha> 15 1.00 1.00 1.00

ഢ <ḍha> 22 1.00 1.00 1.00

Fig. 5.15 Normalized confusion matrix for cluster E

In cluster F(L), there are four characters with four features. The

performance scores obtained for the classifier used to classify the

characters of cluster F(L) are shown in table 5.21. The average

recognition accuracy obtained for the characters in cluster F(L) is

81.67%. The normalized confusion matrix obtained for cluster F(L) is

shown in figure 5.16.

156 | P a g e

Table 5.21 Performance scores for cluster F(L)

Fig. 5.16 Normalized confusion matrix for cluster F(L)

In cluster F(NL), there are five characters with five features. The

performance scores obtained for the classifier used to classify the

characters of cluster F(NL) are shown in table 5.22. The average

recognition accuracy obtained for cluster F(NL) characters is 99.33%.

The normalized confusion matrix obtained for cluster F(NL) is shown

in figure 5.17.

Character Class label Precision Recall F1-Score

എ <e> 6 1.00 0.40 0.57

ഏ <e:> 7 1.00 1.00 1.00

ഘ <gha> 12 1.00 1.00 1.00

ഷ <ṣa> 39 0.62 1.00 0.77

157 | P a g e

Table 5.22 Performance scores for cluster F(NL)

Character Class label Precision Recall F1-Score

അ <a> 1 1.00 1.00 1.00

ഝ <jha> 17 0.95 1.00 0.98

ഞ <ña> 18 1.00 1.00 1.00

ണ <ṇa> 23 1.00 0.95 0.97

ൈ <ba> 31 1.00 1.00 1.00

Fig.5.17 Normalized confusion matrix for cluster F(NL)

In cluster G, there are two characters with two features. The

performance scores obtained for the classifier used to classify the

characters of cluster G are shown in table 5.23. The average recognition

accuracy obtained for the characters in cluster G is 100%. The

normalized confusion matrix obtained for cluster G is shown in figure

5.18.

158 | P a g e

Table 5.23 Performance scores for cluster G

Character Class label Precision Recall F1-Score

ആ <a:> 2 1.00 1.00 1.00

ജ <ja> 16 1.00 1.00 1.00

Fig. 5.18 Normalized confusion matrix for cluster G

The average recognition accuracies obtained for each character

cluster are listed in table 5.24. The graphical representation of the same

is shown in figure 5.19.

159 | P a g e

Table 5.24 Average recognition accuracies for each cluster

Cluster

Number of

 characters

 per cluster

Accuracy

(%)

A 3 96.67

B 6 98.88

C(U) 7 96.20

C(D) 5 98.67

D(U) 5 94.67

D(D) 3 100.00

E 4 100.00

F(L) 4 81.67

F(NL) 5 99.33

G 2 100.00

 Average Accuracy 96.61

160 | P a g e

Fig. 5.19 Average recognition accuracies for each cluster

From the experimental results, it is found that, the average

recognition accuracy obtained for all the clusters is 96.61%. Hence, it is

evident that the features related to the pattern primitives can be

effectively utilized to recognize online handwritten characters.

5.7. Conclusion

The chapter discussed a scheme to recognize Malayalam online

handwritten characters based on pattern primitives. Initially, various

clusters are formed based on the number of pattern primitives present in

each character. A detailed description of various pattern primitive

features and the algorithms used to extract these features are presented.

The specific features are extracted from the pattern primitives

constituting the characters representing each cluster.

161 | P a g e

The classification experiments are performed based on the pattern

primitive features using the Support Vector Machine classifier. The

recognition accuracies obtained from each character cluster are

tabulated. The average recognition accuracy obtained for all the clusters

is 96.61%. The performance of the proposed method is found to be

promising, and it can be effectively utilized for the development of an

OHCR system in Malayalam based on pattern primitives.

162 | P a g e

CHAPTER 6

A Predictive Model for Real-Time Recognition of

Malayalam Handwritten Characters based on

Pattern Primitives

6.1. Introduction

In the last few decades, the rapid technological changes in input-output

devices accelerated the research to simplify handwriting recognition

systems. Even though online handwriting recognition systems are also

known as real-time systems, the latency in data acquisition and

execution time for recognition engines inculcates a time factor that

obliterates the meaning of real-time behavior [2][109].

In real-time handwriting recognizers, the system must be capable of

recognizing the characters within a lesser time. The invention of faster

and more compact devices with touch screen interfaces made attention

to new techniques to recognize handwriting faster. An online

handwriting recognition method with minimum recognition time is best

suited for real-time applications, especially for mobile platforms and

touch interfaces. Recently, certain promising OHCR applications for

mobile devices have been launched that are suited for real-time

recognition of handwritten characters in multiple languages [110]. But

these systems recognize the characters after completion of writing with

a time delay that is negligible for human understanding. Ideally, in a

real-time system, it is expected that the character should be recognized

even before the completion of writing. Studies that focus on real-time

recognition of handwritten characters are limited in literature, especially

163 | P a g e

for Indic scripts. In this context, it is highly relevant to conduct an

extensive study emphasizing real-time aspects of online recognition of

handwritten characters.

This chapter proposes a real-time model for Malayalam OHCR

based on pattern primitives. It includes a Deterministic Finite Automata

(DFA) based OHCR and a predictive model for the real-time recognition

of Malayalam handwritten characters using pattern primitives. The

proposed model is shown in figure 6.1.

The rest of the chapter is organized as follows. The representation

of Malayalam online handwritten characters as pattern Primitive String

(PPS) is described in section 6.2. The design and implementation of a

Deterministic Finite Automata (DFA) for Malayalam OHCR is detailed

in section 6.3. The predictive model for real-time recognition of

Malayalam handwritten characters based on pattern primitives with their

transition sequence and tree representation is presented in section 6.4.

The average Reduction in Writing Time (RWT) for the characters is

estimated in section 6.5, followed by the implementation of the real-time

prediction model. The results are analyzed in detail, and conclusive

remarks are given in section 6.6.

164 | P a g e

Fig. 6.1 Proposed model for real-time recognition of Malayalam handwritten characters based on pattern primitive

165 | P a g e

6.2. Pattern Primitive String (PPS) Representation of Malayalam

Online Handwritten Characters

The representation of Malayalam online handwritten characters in the

form of pattern primitive strings are discussed in this section.

Representing characters in the form of feature strings are common in

OHCR [39][111][112]. The characters represented as Pattern Primitive

Strings (PPS) are easily identifiable and useful for further recognition

processes. All the pattern primitives present in Malayalam characters

have already been identified and labeled in chapter 4. In order to

conveniently represent the characters as a string of pattern primitives,

the existing labels assigned to the pattern primitives are modified, as

shown in table 6.1.

Table 6.1 Modified labels of pattern primitives

Existing

Label

Modified

Label

Existing

Label

New

Label

A1 a E1 n

B2 b F2 o

G c H2 p

C2 d J1 q

D1 e L1 r

H1 f M1 s

B1 g N2 t

A2 h H3 u

I1 i I2 v

K j I3 w

L2 k J2 x

C1 l M2 y

D2 m N1 z

166 | P a g e

The characters are represented as Pattern Primitive Strings (PPS) using

the modified labels based on the pattern primitive sequences represented

in table 4.2 and table 4.3 of chapter 4. Table 6.2 lists the PPS

representations of the Malayalam characters thus obtained. These PPS

representations are used effectively for constructing DFAs

corresponding to each character.

Table 6.2 Pattern Primitive String (PPS) representation of Malayalam

handwritten characters

S.No Character
PPS

representation
S.No Character

PPS

representation

1 അ <a> aiadeba 23 ണ <ṇa> badedeb

2 ആ <a:> aiadebaj 24 ത <ta> abab

3 ഇ <i> badejc 25 ഥ <tha> pclm

4 ഉ <u> bajc 26 ദ <da> ai

5 ഋ <r̥> gqxh 27 ധ <dha> hnog

6 എ <e> abcfpab 28 ന <na> abab

7 ഏ <e:> abcfpai 29 പ <pa> abcf

8 ഒ <o> bai 30 ഫ <pha> abclm

9 ക <ka> abstab 31 ൈ <ba> badebcf

10 ഖ <kha> badcf 32 ഭ <bha> aw

11 ഗ <ga> hrb 33 മ <ma> abcu

12 ഘ <gha> abclmcf 34 യ <ya> abakg

13 ങ <kha> badei 35 ര <ra> aba

167 | P a g e

Table 6.2 Pattern Primitive String (PPS) representation of Malayalam

handwritten characters (cont.)

S.No Character
PPS

representation
S.No Character

PPS

representation

14 ച <ca> ajcf 36 ല <la> clmcf

15 ഛ <cha> ajcaba 37 വ <va> abcf

16 ജ <ja> badejrba 38 ശ <śa> hrba

17 ഝ <jha> abaknog 39 ഷ <ṣa> abcftsd

18 ഞ <ña> badebab 40 സ <sa> adekg

19 ട <ṭa> gqa 41 ഹ <ha> abcab

20 ഠ <ṭha> hgh 42 ള <ḷa> bavc

21 ഡ <ḍa> aknog 43 ഴ <la̱> yzq

22 ഢ <ḍha> aknogh 44 റ <ṟa> ab

6.3. Pattern Primitive based OHCR using DFA

This section describes the design and implementation of pattern

primitive based OHCR using Deterministic Finite Automata (DFA). As

a first step, the online handwritten characters are segmented as per the

pattern primitive reference set using the combined approach of RDP and

EDFC algorithms described in chapter 4. In the next step, the pattern

primitives are recognized using their features. These pattern primitives

are then used for the conduct of OHCR experiments based on DFA.

Finite State Automata or Deterministic Finite State Automata (DFA)

have been attempted in various offline and online handwritten character

168 | P a g e

recognition problems for the last few decades[41][113][114]. In a

Deterministic Finite State Automata (DFA), initial states are accepted to

predict the final state. The Deterministic Finite Automata (DFA) is

a finite-state machine that accepts or rejects a given string of symbols

by running through a state sequence uniquely determined by the

string[115]. The term deterministic refers to the uniqueness of the

computation run. In search of the simplest models to capture finite state

machines, Warren Mc Culloch , and Walter Pitts were among the first

researchers to introduce a concept of finite concept automata [116][117].

DFA is a quintuple (Q, Σ, 𝛿, q0 , F) where,

Q; is the fixed non-empty finite states of the automata

Σ; is the fixed non-empty alphabet, Q∩ Σ={}

𝛿; is a transition function, Q X Σ →Q (i.e., for each q∈Q,a∈

Σ,𝛿(q,a) is the next state when processing symbol a from state q)

q0;is the initial state, q0∈Q

 F;is the set of accepting states(final state),F⊆Q

A sample DFA that accepts all strings starting with ‘ab’ is shown in

figure 6.2, where the alphabets are {a,b} and L (Language) is {‘ab’,

’abab’, ’abbbb’, ’ab*’}

169 | P a g e

Fig. 6.2 DFA which accepts all strings starting with ‘ab’

It can be observed from figure 6.2, that after accepting the smallest

string ‘ab’, whatever string comes, the DFA consider them as don’t care

since the condition is already satisfied. In a DFA, all the input alphabets

at every state are to be considered. So the input symbol ‘b’ on state A is

rejected to state D (rejected state). On state B, if ‘a’ comes, then reject

it, so this is directed to state D. On state D for input ‘a’ and ‘b’, a self-

loop is made as these are don’t care states.

6.3.1. Design of the Deterministic Finite Automata based on Pattern

Primitives Present in the Characters

DFAs are constructed for every Pattern Primitive String (PPS)

representing each of the 44 Malayalam online handwritten characters.

For example, the Pattern Primitive String (PPS) of the Malayalam online

handwritten character ന<na> is obtained as ‘abab’, and the

corresponding DFA representing the character is shown in figure 6.3.

170 | P a g e

Fig. 6.3 DFA of the pattern primitive string ‘abab’ representing the

Malayalam online handwritten character ന <na>

After obtaining the DFAs for all the characters, an unknown

character represented as PPS is fed to these DFAs for recognition. If the

PPS representing a character is accepted by any of the DFA, then the

character is recognized as the character corresponding to that DFA.

Figure 6.4 illustrates a sample DFA representing the Malayalam online

handwritten character ഛ <cha>.

6.3.2. Implementation of the DFA based OHCR

The experiments are conducted for the recognition of Malayalam online

handwritten characters, based on the DFAs generated, as described in

section 6.3.1. For the experimental purpose, hundred samples of each

vowel characters taken from the CU-OHDB dataset are used. These

samples are then segmented, using the combined approach of RDP and

EDFC algorithms. It is found that, there are thirteen distinct pattern

primitives present in these vowel characters. The features identified for

these thirteen distinct pattern primitives constituting the Malayalam

vowel characters are listed in table 6.3. A reference feature set for each

pattern primitive (present in eight vowel characters under study) is

created by extracting the features specified in table 6.3. As a next step,

171 | P a g e

the character segments obtained are classified into pattern primitives, by

matching the features extracted from each segment against all reference

pattern primitive features.

In the next phase, a reference Pattern Primitive String (PPS) is

created for each vowel character as per the representation given in

section 6.2. The DFAs corresponding to each vowel character is created

using these reference Pattern Primitive String (PPS). The algorithms

described in procedure 6.1 and procedure 6.2 is implemented in

MATLAB for the conduct of recognition experiments. The recognition

experiments are conducted for the hundred samples of each of the eight

vowel characters. The Pattern Primitive String (PPS) corresponding to

each test sample are given as input to the reference DFAs created for

each vowel character. The recognition accuracies obtained for each

vowel character are tabulated in table 6.4. The average recognition

accuracy obtained for all the characters is 65.75 %.

172 | P a g e

Fig. 6.4 A sample DFA representing the Malayalam online handwritten character ഛ <cha>

173 | P a g e

Table 6.3 Features of the pattern primitives present in the Malayalam vowel

characters

Sl.No
Pattern

primitive
Label Direction Features

1

a Upwards
Reduced Direction Code, Writing

direction, Arc / Straight-line

2

b Downwards
Reduced Direction Code, Writing

direction, Arc / Straight-line

3

c Left to right
Reduced Direction Code, Writing

direction, Arc / Straight-line

4

d Downwards
Reduced Direction Code, Writing

direction, Arc / Straight-line

5

e Upwards
Reduced Direction Code, Writing

direction, Arc / Straight-line

6

f Upwards
Reduced Direction Code, Writing

direction, Arc / Straight-line

7

g Upwards
Reduced Direction Code, Writing

direction, Arc / Straight-line

174 | P a g e

Table 6.3 Features of the pattern primitives present in the Malayalam vowel

characters (cont.)

Sl.No
Pattern

primitive
Label Direction Features

8

h Downwards
Reduced Direction Code, Writing

direction, Arc / Straight-line

9

i Downwards
Reduced Direction Code, Writing

direction, Arc / Straight-line, Cusp

10

j Downwards
Reduced Direction Code, Writing

direction, Arc / Straight-line

11

p Downwards
Reduced Direction Code, Writing

direction, Arc / Straight-line

12

q Downwards
Reduced Direction Code, Writing

direction, Arc / Straight-line

13

x Upwards
Reduced Direction Code, Writing

direction, Arc / Straight-line

175 | P a g e

Procedure 6.1 Implementation of the OHCR using DFA

Input: PointList(N), The set of points describing N characters

Output: Hit, The hit ratio of every character

Procedure OHCR_DFA()

For i=1 to N

Segments(i) = Combined_Approach(PointList(i)) // using procedure 4.4

Features(i) = Extarct features from Segments(i) // using techniques in chapter 5

 PPS(i) = Compare (Features(i), Reference (1..13) // Assign pattern primitive

labels

 Hit(i)=DFAT(PPS(i), ReferencePPS) // /test DFA

 End

End

Procedure 6.2 Implementation of the algorithm for generating DFA

Input: Pattern, The pattern primitive string to be searche

 String, The reference string of pattern primitives

Output: Hit, The state where the pattern ends if any else return ‘0’

Procedure DFAT (Pattern, String)

 Find Newtstate from Currentstate as

 Newstate=Transition (Strings, States, Currentstate, Stringcount)

 Represent transitions as a table from States

 Check for similarities for the pattern primitive strings

 If found

 Hit=Position where the pattern ends

 else

 Hit=0

 Return (Hit)

End

176 | P a g e

Table 6.4 Recognition accuracies obtained for the OHCR experiments using

Malayalam vowel characters based on DFA

Character

Pattern

Primitive String

(PPS)

Recognition

Accuracy(%)

അ <a> aiadeba 66

ആ <a:> aiadebaj 62

ഇ <i> badec 70

ഉ <u> baec 74

ഋ <r ̥> bqxh 76

എ <e> abcfpab 56

ഏ <e:> abcfpai 52

ഒ <o> bai 70

Average Recognition Accuracy 65.75

 Even though the results are promising, the method uses a holistic

approach, which considers the entire character for recognition purpose.

In this approach, the character will be recognized only after finishing the

writing of the entire character which causes considerable delay in

recognition. To address the issues related to the time factors in real-time

implementation of the OHCR systems, an alternate predictive model for

the recognition of Malayalam handwritten characters is proposed.

177 | P a g e

6.4. The Predictive Model for Real-Time Recognition of Malayalam

 Handwritten Characters based on Pattern Primitives

The predictive model for real-time recognition of Malayalam

handwritten characters based on pattern primitives is presented in this

section. For this purpose, the transition sequences of pattern primitives

that constitute each character are analyzed in detail. These pattern

primitive transition information obtained from the characters are utilized

for constructing a tree structure for the possible predictions of every

character in a real-time environment. The Reduction in Writing Time

(RWT) for the Malayalam online handwritten characters is computed

from these tree representations. Experiments are also conducted to

verify the effectiveness of the model, using online handwritten character

samples taken from the CU-OHDB dataset.

6.4.1. Pattern Primitive Transition Sequences in the Malayalam

Online Handwritten Characters

Pattern primitive transition sequences present in the Malayalam online

handwritten characters are analyzed in this section. The sequence of

occurrence of a pattern primitive after a selected pattern primitive in the

formation of a handwritten character is termed as pattern primitive

transition sequence. A detailed description of pattern primitives present

in a character is already given in chapter 4. The pattern primitive

transition sequences obtained for the 44 Malayalam online handwritten

characters are displayed in table 6.5. The tick mark () in the table

denotes the occurrence of the pattern primitive after the selected pattern

178 | P a g e

primitive, and the cross mark (x) denotes the non-occurrence of the

pattern primitive.

This information is highly useful in designing a predictive model for

real-time HCR. While proceeding with the character recognition, some

characters could be excluded from the process based on the possibility

of the occurrence of certain pattern primitives preceding the other. This

predictive approach will considerably reduce certain computations.

Hence it can be effectively utilized for implementing an improved

OHCR system.

179 | P a g e

Table 6.5 Occurrence of a pattern primitive after a selected pattern primitive obtained for the Malayalam characters
P

a
tt

e
r
n

p
r
im

it
iv

e
s

w
it

h

la
b

el
s

a h g b l d e m n o c f p u i v w q x j r k s y z t

a

h

g

b

l

180 | P a g e

Table 6.5 Occurrence of a pattern primitive after a selected pattern primitive obtained for the Malayalam characters (cont.)
P

a
tt

e
r
n

 p
r
im

it
iv

e
s

w
it

h
 l

a
b

e
ls

 a h g b l d e m n o c f pu i v wq x j r k s y z t

d

e

m

n

o

181 | P a g e

Table 6.5 Occurrence of a pattern primitive after a selected pattern primitive obtained for the Malayalam characters (cont.)
P

a
tt

e
r
n

 p
r
im

it
iv

e
s

w
it

h
 l

a
b

e
ls

 a h gb l d e m n o c f p u i v wq x j r k s y z t

c

f

p

u

i

v

182 | P a g e

Table 6.5 Occurrence of a pattern primitive after a selected pattern primitive obtained for the Malayalam characters (cont.)
P

a
tt

e
r
n

 p
r
im

it
iv

e
s

w
it

h
 l

a
b

e
ls

 a h g b l d e m n o c f pu i v wq x j r k s y z t

w

q

x

j

r

183 | P a g e

Table 6.5 Occurrence of a pattern primitive after a selected pattern primitive obtained for the Malayalam characters (cont.)
P

a
tt

e
r
n

 p
r
im

it
iv

e
s

w
it

h
 l

a
b

e
ls

 a h g

b l d e mn o c f pu i vwq x j r k s y z t

k

s

y

z

t

184 | P a g e

From the table 6.5, it can be observed, that the transition sequences

of pattern primitives differ in various characters. It can be seen, that

pattern primitive a is followed by maximum number of pattern

primitives, and certain pattern primitives like u and w are not followed

by any other pattern primitives.

It is also observed that, only seven pattern primitives are found to be

occurring as the first pattern primitive in Malayalam characters, namely

a, b, c, h, g, p, and y. The possible occurrence of the subsequent pattern

primitives after these first primitives is also found comparatively lesser

in number. It is also found that, there are only five possible subsequent

pattern primitives for a, three possible pattern primitives subsequent to

h, and two followers for b. For all the other first pattern primitives, a

unique pattern primitive is followed in the second position. The possible

transitions from the first pattern primitive to the second pattern

primitives for the Malayalam handwritten characters are shown in figure

6.5.

Fig. 6.5 The possible transitions from first to second pattern primitives in

Malayalam handwritten characters

185 | P a g e

Considering the significance of the transitions from the first to

second pattern primitives in Malayalam handwritten characters in the

recognition process, the characters that belong to such transitions are

identified and listed in Table 6.6.

Table 6 .6. Transition of first to second pattern primitives and the corresponding

characters

S.No

Transition of

pattern

primitives

Characters

No of

characters

1 a → b

എ <e>, ഏ <e:>, ക <ka>, ഘ
<gha>, ഝ <jha>, ത <ta>,ന
<na>, പ <pa>, ഫ <pha>, മ
<ma>, യ <ya>, ര <ra>, വ <va>,

ഷ <ṣa>, ഹ <ha>, റ <ṟa>

16

2 b → a

ഇ <i>, ഉ <u>, ഒ <o>, ഖ <kha>,

ങ <kha>, ജ <ja>, ഞ <ña>, ണ
<ṇa>, ൈ <ba>, ള <ḷa>

10

3 a →i അ <a> , ആ <a:>, ദ <da> 3

4 a → j ച <ca>, ഛ <cha>, 2

5 a →k ഡ <ḍa>, ഢ <ḍha> 2

6 g→q ട <ṭa>, ഋ <r̥> 2

7 h→r ഗ <ga>, ശ <śa> 2

8 a →d സ<sa> 1

9 a →w ഭ <bha> 1

10 c→l ല <la> 1

11 h→g ഠ <ṭha> 1

12 h→n ധ <dha> 1

13 p→c ഥ <tha> 1

14 y→z ഴ <la̱> 1

From the table 6.6, it can be deducted that out of 44 characters, 25

characters start with the pattern primitive a, and 10 characters start with

the pattern primitive b and most of the characters belong to the transition

sequences a→ b and b → a. The frequency of occurrence of various

pattern primitive transitions present in the 44 Malayalam characters is

186 | P a g e

obtained in the form of a heat map, as shown in figure 6.6. From the

figure, it can be seen that there are mainly six transitions occurring

frequently. The highest frequency of transition is identified for a →b,

which is 23. For b → a, the frequency of transition is 21 and for the

transitions b→c, a →d, c →f, and d →e; it is 10. For all other transitions,

the frequency ranges from 0 and 5.

While proceeding with the character recognition, some characters

could be excluded from the process, based on the information obtained

from the pattern primitive transition sequences in the Malayalam online

handwritten characters. This will considerably reduce certain

computations; hence can be effectively utilized for implementing an

improved OHCR system.

187 | P a g e

Fig. 6.6 Heat map showing the frequency of pattern primitive transitions obtained for the Malayalam online handwritten

characters

188 | P a g e

6.5. Tree Representation of the Predictive Model for Real-Time

OHCR Implementation

In this section, tree representation of the predictive model proposed for

the implementation of real-time OHCR is described in detail. The

pattern primitives, especially, the starting primitives have a decisive role

in the real-time recognition of handwritten characters. Hence, tree

representations are generated by fixing the first pattern primitives as the

root node. The proposed character prediction models, based on tree

representation with first pattern primitives as root nodes, are explained

in the following sections.

6.5.1. Tree Representation of the Predictive Model based on the First

 Pattern Primitive b as Root Node

Out of the 44 Malayalam online handwritten characters under

consideration in the study, the characters namely, ഉ <u>, ഒ <o>, ങ

<kha>, ജ <ja>, ഞ <ña>, ഖ <kha>, ണ <ṇa>, ൈ <ba>, ള <ḷa> and, ഇ

<i> start with the pattern primitive b. The tree representation of the

proposed predictive model for these characters, generated, based on the

pattern primitive transitions with the character prediction stage, is

shown in figure 6.7. From the tree representation, it can be observed

that, the characters ഉ <u>, ജ <ja>, ഞ <ña>, ഖ <kha>, ണ <ṇa> and, ൈ

<ba> can be predicted even before completely writing all its constituent

pattern primitives.

189 | P a g e

Fig. 6.7 Tree representation of the predictive model based on the first pattern

 primitive b as root node

190 | P a g e

6.5.2. Tree Representation of the Predictive Model based on the First

 Pattern Primitive p as Root Node

The only Malayalam character which starts with the pattern primitive p

is ഥ <tha>. Even though the character ഥ <tha> has four pattern

primitives, it can be easily predicted soon after the first pattern primitive

is written. The tree representation of the proposed predictive model for

the character, generated, based on the pattern primitive transitions with

the character prediction stage is shown in figure 6.8.

Fig. 6.8 Tree representation of the predictive model based on the first pattern

 Primitive p as root node

191 | P a g e

6.5.3. Tree Representation of the Predictive Model based on the First

 Pattern Primitive c as Root Node

From the analysis of the pattern primitive transitions, it is found that the

character ല <la>is the only character that starts with the pattern

primitive c. The character ല <la> has five pattern primitives. The tree

representation of the proposed predictive model for the character ല

<la>, generated, based on the pattern primitive transitions with the

character prediction stage is shown in figure 6.9. From the figure it is

evident that, the character ല <la> can be predicted soon after writing the

first pattern primitive.

Fig. 6.9 Tree representation of the predictive model based on the first pattern

 Primitive c as root node

192 | P a g e

6.5.4. Tree Representation of the Predictive Model based on the First

 Pattern Primitive y as Root Node

The Malayalam online handwritten character ഴ <la̱> is identified to be

starting with the pattern primitive y. The character has only three pattern

primitives. The tree representation of the proposed predictive model for

the character ഴ <la̱>with its character prediction stage is shown in figure

6.10. It can be noted that, the character ഴ <la̱> can be predicted even

after completely writing the first pattern primitive.

Fig. 6.10 Tree representation of the predictive model based on the first pattern

 Primitive y as root node

193 | P a g e

6.5.5. Tree Representation of the Predictive Model based on the First

 Pattern Primitive g as Root Node

The characters ട <ṭa> and ഋ <r̥> start with the pattern primitive g. The

first two pattern primitives of the characters ട <ṭa> and ഋ <r̥> are same.

Hence the third pattern primitive needs to be written completely to

predict the character ഋ <r̥>. Figure 6.11 shows the tree representation of

the pattern primitive transitions present in the characters ട <ṭa> and ഋ

<r̥> with their character prediction stages.

Fig. 6.11 Tree representation of the predictive model based on the first pattern

 Primitive g as root node

194 | P a g e

6.5.6. Tree Representation of the Predictive Model based on the First

 Pattern Primitive h as Root Node

The characters ഗ <ga>, ഠ <ṭha>, ധ <dha> and, ശ <śa> start with the

pattern primitive h. Figure 6.12 shows the tree representation of the

pattern primitive transitions present in the characters ഗ <ga>, ഠ <ṭha>,

ധ <dha> and, ശ <śa> with the character prediction stages. From figure

6.12, it can be observed that, the character ധ <dha> can be easily

predicted after writing the second pattern primitive. Similarly, the

character ഠ <ṭha> can be predicted after writing the second pattern

primitive.

Fig. 6.12 Tree representation of the predictive model based on the first pattern

 Primitive h as root node

195 | P a g e

6.5.7. Tree Representation of the Predictive Model based on the First

 Pattern Primitive a as Root Node

There are twenty characters starting with pattern primitive a. They are

അ <a>, ആ <a:>, എ <e>, ഏ <e:>, ക <ka>, ഘ <gha>, ച <ca>, ഛ

>cha>, ഝ <jha>, ഡ <ḍa>, ഢ <ḍha>, ത <ta>, ദ <da>, ന <na>, പ < pa>,

ഫ <pha>, ഭ <bha>, മ <ma>, യ <ya>, ര <ra>, വ <va>, ഷ <ṣa>, സ

<sa>, ഹ <ha> and, റ <ṟa>. The tree representations of the proposed

predictive model for these characters with their character prediction

stages are shown in figure 6.13, 6.13(a), and 6.13(b). From the figures,

it can be seen that, the characters അ <a>, ആ <a:> and, ദ <da> can be

easily predicted after writing the second pattern primitive i. The

character സ <sa> can be predicted after writing the second pattern

primitive. After completing the writing process of the second pattern

primitive k, the characters ഡ <ḍa> and ഢ <ḍha> can be predicted.

Similarly, the characters ച <ca> and ഛ <cha> can be predicted after

writing the second pattern primitive j. The characters എ <e> and, ഏ

<e:> are predictable after writing their fourth pattern primitive. After

writing the fifth pattern primitive, the character ഷ <ṣa> is predictable.

For the character ഝ <jha>, prediction is possible after writing the fifth

pattern primitive. The character ക <ka> can be predicted after its third

primitive.

196 | P a g e

 Fig. 6.13 Tree representation of the predictive model based on the first

pattern primitive a as root node

197 | P a g e

Fig. 6.13(a) Tree representation of the predictive model based on the first

pattern primitive a as root node

198 | P a g e

Fig. 6.13(b) Tree representation of the predictive model based on the first

pattern primitive a as root node

 The tree representation of the proposed character predictive models,

incorporating the pattern primitive transitions, are effectively utilized to

compute the average reduction in writing time for every character, as

described in the next section.

199 | P a g e

6.6. Reduction in Writing Time (RWT) for the Malayalam Online

Handwritten Characters

From the tree representations of the predictive model described in the

previous section, it is evident that, most of the Malayalam characters are

predictable even before completely writing them. The detailed analysis

of the tree representations reveals that their exist a considerable

reduction in the number of character classes to be taken into

consideration for the next level of prediction. Based on the same, the

reduction in writing time for each character is computed. The following

section describes the process of estimating the reduction in writing time

for the characters.

6.6.1. Reduction in the Number of Classes in Character Prediction

In a real-time environment, after each pattern primitive is written, the

number of character classes to be involved in the next stage of prediction

reduces considerably. The reduction in character classes to be

considered for character prediction thus obtained is listed in table 6.7.

The columns P1, P2, P3, P4, P5, P6, P7 and P8 in the table denote the

pattern primitives. The cross (X) mark in the table denotes the pattern

primitives that need not be considered for predicting the character. The

number ‘1’ indicates the position of the pattern primitive where the

character prediction is taken place.

200 | P a g e

Table 6.7 Reduction in the number of classes in character prediction

S.No Character
Reduction in character classes

P1 P2 P3 P4 P5 P6 P7 P8

1 അ <a> 24 3 2 2 2 2 2

2 ആ <a:> 24 3 2 2 2 2 2 1

3 ഇ <i> 10 10 7 6 2 1

4 ഉ <u> 10 10 1 X

5 ഋ <r̥> 2 2 1 X

6 എ <e> 24 16 9 5 2 2 1

7 ഏ <e:> 24 16 9 5 2 2 1

8 ഒ <o> 10 10 1

9 ക <ka> 24 16 1 X X X

10 ഖ <kha> 10 10 7 1 X

11 ഗ <ga> 4 2 1

12 ഘ <gha> 24 16 9 2 2 1 X

13 ങ <kha> 10 10 7 6 1

14 ച <ca> 24 2 2 1

15 ഛ <cha> 24 2 2 1 X X

16 ജ <ja> 10 10 7 6 2 1 X X

17 ഝ <jha> 24 16 5 2 1 X X

18 ഞ <ña> 10 10 7 6 2 1 X

19 ട <ṭa> 2 2 1

20 ഠ <ṭha> 4 1 X

21 ഡ <ḍa> 24 2 2 2 2

201 | P a g e

Table 6.7 Reduction in the number of classes in character prediction (cont.)

S.No Character
Reduction in character classes

P1 P2 P3 P4 P5 P6 P7 P8

22 ഢ <ḍha> 24 2 2 2 2 1

23 ണ <ṇa> 10 10 7 6 5 1 X

24 ത <ta> 24 16 5 2

25 ഥ <tha> 1 X X X

26 ദ <da> 24 3

27 ധ <dha> 4 1 X X

28 ന <na> 24 16 5 2

29 പ <pa> 24 16 9 5

30 ഫ <pha> 24 16 9 2 2

31 ൈ <ba> 10 10 7 6 2 1 X

32 ഭ <bha> 24 1

33 മ <ma> 24 16 9 1

34 യ <ya> 24 16 5 2 1

35 ര <ra> 24 16 5

36 ല <la> 1 X X X X

37 വ <va> 24 16 9 5

38 ശ <śa> 4 2 2 1

39 ഷ <ṣa> 24 16 9 5 1 X X

40 സ <sa> 4 1 X X X

41 ഹ <ha> 24 16 9 1 X

42 ള <ḷa> 10 10 1 X

202 | P a g e

Table 6.7 Reduction in the number of classes in character prediction (cont.)

S.No Character
Reduction in character classes

P1 P2 P3 P4 P5 P6 P7 P8

43 ഴ <la̱> 1 X X

44 റ <ṟa> 24 16

The information regarding the reduction in the number of classes to

be considered for character prediction, shown in table 6.7, is effectively

utilized for determining the reduction in writing time for every

character, as described in the following section.

6.6.2. Reduction in Writing Time (RWT)

The reduction in writing time for the characters is considered as a

potential information that can be utilized to build an online handwriting

recognition system in a real-time environment. The Reduction in

Writing Time (RWT) is computed based on the information related to

the reduction in number of classes to be considered for predictions as

shown in table 6.7. Table 6.8 shows the reduction in writing time

obtained for various characters, where t is the average time required for

writing the character. From the table, it can be observed that the

maximum reduction in writing time (RWT) is obtained as 4t/5 for the

character ല <la>.

203 | P a g e

Table 6.8 Reduction in Writing Time (RWT) for the Malayalam characters

S.No Character

Number of

pattern

primitives

(A)

Position of the

pattern primitive

from which

prediction is

possible

(B)

Reduction in

Writing Time

(RWT)

(A-B)*t/A

1 അ <a> 7 7 0

2 ആ <a:> 8 8 0

3 ഇ <i> 6 6 0

4 ഉ <u> 4 3 t/4

5 ഋ <r̥> 4 3 t/4

6 എ<e> 7 7 0

7 ഏ <e:> 7 7 0

8 ഒ <o> 3 3 0

9 ക <ka> 6 3 t/2

10 ഖ <kha> 5 4 t/5

11 ഗ <ga> 3 3 0

12 ഘ <gha> 7 6 t/7

13 ങ <kha> 5 5 0

14 ച <ca> 4 4 0

15 ഛ <cha> 6 4 t/3

16 ജ <ja> 8 6 t/4

17 ഝ <jha> 7 6 t/7

18 ഞ <ña> 7 6 t/7

19 ട <ṭa> 3 3 0

20 ഠ <ṭha> 3 2 t/3

21 ഡ <ḍa> 5 5 0

22 ഢ <ḍha> 6 6 0

23 ണ <ṇa> 7 6 t/7

24 ത <ta> 4 4 0

204 | P a g e

Table 6.8 Reduction in Writing Time (RWT) for the Malayalam characters

(cont.)

The following section describes the implementation of the proposed

character prediction model, which can be effectively used for real-time

OHCR applications.

S.No Character

Number of

pattern

primitives

(A)

Position of the

pattern primitive

from which

prediction is

possible

(B)

Reduction in

Writing Time

(RWT)

(A-B)*t/A

25 ഥ <tha> 4 1 3t/4

26 ദ <da> 2 2 0

27 ധ <dha> 4 2 t/2

28 ന <na> 4 4 0

29 പ <pa> 4 4 0

30 ഫ <pha> 5 5 0

31 ൈ <ba> 7 6 t/7

32 ഭ <bha> 2 2 0

33 മ <ma> 4 4 0

34 യ <ya> 5 5 0

35 ര <ra> 3 3 0

36 ല<la> 5 1 4t/5

37 വ <va> 4 4 0

38 ശ <śa> 4 4 0

39 ഷ <ṣa> 7 5 2t/7

40 സ <sa> 5 2 3t/5

41 ഹ <ha> 5 4 t/5

42 ള <ḷa> 4 3 t/4

43 ഴ <la̱> 3 1 2t/3

44 റ <ṟa> 2 2 0

205 | P a g e

6.6.3. Implementation of the Character Prediction Model for Real

Time OHCR

Experiments are conducted for the recognition of Malayalam online

handwritten characters, based on the proposed character prediction

model. For the experimental purpose, samples of each vowel characters,

taken from the CU-OHDB dataset are used. In a real-time prediction

model, the system lists out the possible characters after every pattern

primitive, is written. In the case of Malayalam vowel characters, it is

observed that, the character prediction will be taken place even after the

first pattern primitive is written. There are thirteen distinct pattern

primitives present in the vowel characters. The features of these pattern

primitives constituting the Malayalam vowel characters considered for

character prediction purposes are listed in table 6.9. A reference feature

set for each of these pattern primitive (present in eight vowel characters

under study) is created by extracting the features specified in table 6.9

Table 6.9 Features of the nine pattern primitives constituting the Malayalam

vowel characters

Sl.No
Pattern

primitive
Label Direction Features

1

a Upwards
Reduced direction code, writing

direction, arc / straight-line

2

b Downwards
Reduced direction code, writing

direction, arc / straight-line

206 | P a g e

Table 6.9 Features of the nine pattern primitives constituting the Malayalam

vowel characters (cont.)

Sl.No
Pattern

primitive
Label Direction Features

3

c Left to right
Reduced direction code, writing

direction, arc / straight-line

4

d Downwards
Reduced direction code,writing

direction,arc / straight-line

5

e Upwards
Reduced direction code, writing

direction, arc / straight-line

6

f Upwards
Reduced direction code, writing

direction, arc / straight-line

7

g Upwards
Reduced direction code, writing

direction, arc / straight-line

8

h Downwards
Reduced direction code, writing

direction, arc / straight-line

9

i Downwards
Reduced direction code, writing

direction, arc / straight-line, cusp

207 | P a g e

Table 6.9 Features of the nine pattern primitives constituting the Malayalam

vowel characters (cont.)

Sl.No
Pattern

primitive
Label Direction Features

10

j Downwards
Reduced direction code, writing

direction, arc / straight-line

11

p Downwards
Reduced direction code, writing

direction, arc / straight-line

12

q Downwards
Reduced direction code, writing

direction, arc / straight-line

13

x Upwards
Reduced direction code, writing

direction, arc / straight-line

The detailed procedure proposed for implementing the prediction

model is described in procedure 6.3. The procedure is implemented in

MATLAB for the conduct of prediction experiments. The prediction

experiments are conducted using hundred samples, among each of the

eight vowel characters. Each sample of the character is given as input to

the algorithm. As a first step, these characters are segmented using the

combined approach of RDP and EDFC algorithms, as described in

chapter 4. In the next step, every segment of the character is compared

with the corresponding reference pattern primitive feature set. If the

segment is recognized as a pattern primitive, and the number of

208 | P a g e

predicted characters is equal to 1, then the character is considered as

predicted and the next character sample can be considered as the input

to the algorithm. If the segment is recognized as a pattern primitive, and

the number of predicted characters is not equal to 1, then the next

segment of the character is considered for recognition. The procedure is

repeated until the number of predicted characters become 1. If a segment

is not recognized as a pattern primitive in any of the stages, the character

is considered as invalid. The procedure is repeated using every character

sample to obtain the recognition accuracy. The recognition accuracies

thus obtained for each vowel character are tabulated in table 6.10. From

the table, it can be seen that, the average recognition accuracy obtained

for the characters is 77.63 %. The time complexity of the algorithm in

average case is estimateed as O(n). Procedure 6.3 can be extended to

recognize all 44 characters by making appropriate changes based on the

pattern primitive transitions present in them.

Procedure 6.3 Implementation of the prediction model for real-time HCR

Input: PointList ; The set of points describing a character

Output: Ch ; Predicted character

Procedure Predict()

Segments(i)=Combined_Approach (PointList) // Getcharacter segments

 // using procedure 4.4

Ch={1,2,3,4,5,6,7,8} // Labels of eight vowel characters

// 1 for അ <a>, 2 for ആ<a:>, 3 for ഇ<i>, 4 forഉ<u>,5 for<r̥>, 6 forഎ<e>,

// 7 forഏ<e:>, 8 forഒ<o>

P={a,b,c,d,g,i,j,q,x} // Reference pattern primitives

i=1

While number of characters in Ch>1

Read(Segments(i))

209 | P a g e

// First pattern primitive

If (i=1) then

If (Segments(i) = a) then Ch= {1,2,6,7}

Elseif (Segments(i) = b) then Ch= {3,4,8}

Elseif (Segments(i) = g) then Ch= {5}

Else Ch= {0}

// Second pattern primitive

If (i=2) then

If (Segments(i) = i) then Ch= {1,2}

Elseif (Segments(i) = b) then Ch= {6,7}

Elseif (Segments(i) = a) then Ch= {3,4,8}

Else Ch= {0}

// Third pattern primitive

If (i=3) then

If (Segments(i) = a) then Ch= {1,2}

Elseif (Segments(i) = c) then Ch= {6,7}

If (Segments(i) = d) then Ch= {3}

Elseif (Segments(i) = j) then Ch= {4}

Elseif (Segments(i) = i) then Ch= {8}

Elseif (Segments(i) = x) then Ch= {5}

Else Ch= {0}

// Fourth pattern primitive

If (i=4) then

If (Segments(i) = d) then Ch= {1,2}

Elseif (Segments(i) = f) then Ch= {6,7}

Else Ch= {0}

// Fifth pattern primitive

If (i=5) then

If (Segments(i) = e) then Ch= {1,2}

Elseif (Segments(i) = p) then Ch= {6,7}

Else Ch= {0}

// Sixth pattern primitive

210 | P a g e

If (i=6) then

If (Segments(i) = b) then Ch= {1,2}

Elseif (Segments(i) = a) then Ch= {6,7}

Else Ch= {0}

// Seventh pattern primitive

If (i=7) then

If (Segments(i) = a then

If (Segments(i+1) =Null) then

Ch= {1}

Else

Ch={1,2}

Elseif (Segments(i) = b) then Ch= {6}

Elseif (Segments(i) = i) then Ch= {7}

Else Ch= {0}

// Eighth pattern primitive

If (i=8) then

If (Segments(i) = j) then Ch= {2}

Else Ch= {0}

i=i+1

End of While

End

211 | P a g e

Table 6.10 Prediction accuracies obtained for the Malayalam vowel characters

Character

Prediction Accuracy

(%)

അ <a> 77

ആ <a:> 72

ഇ <i> 79

ഉ- <u> 82

ഋ <r̥> 84

എ <e> 73

ഏ <e:> 73

ഒ <o> 81

Average Prediction Accuracy 77.63 %

 The prediction accuracies show that the method is suitable for the

real-time recognition of Malayalam online handwritten characters. In

this approach, the character is predicted as soon as certain pattern

primitives are completed. Hence, a considerable amount of time

required for writing the character can be saved. This will improve the

overall performance of the system. Hence, the method is adaptable in a

real-time OHCR environment.

6.7. Conclusion

A predictive model for the real-time recognition of Malayalam

handwritten characters, based on pattern primitives, is proposed as part

of the study. In the first method, DFA based OHCR using pattern

primitive is proposed. Here, the entire pattern primitives constituting

each of the characters are considered for the recognition purpose. In this

212 | P a g e

approach, the character is recognized only after finishing the writing of

the entire character. The recognition experiments are conducted for the

eight vowel characters and achieved an accuracy of 65.75%.

An alternate predictive model for the real-time implementation of

the Malayalam OHCR systems is also proposed as part of the study. It

can be observed that, most of the Malayalam characters can be predicted

even after completing the first pattern primitive. Considering this, the

pattern primitive transition sequences present in the Malayalam online

handwritten characters are analyzed and found that, the order of

occurrence of pattern primitives is highly useful in designing a

predictive model for real-time OHCR. It is also observed that, only

seven pattern primitives have the possibility of occurrence at the starting

position of the Malayalam characters. The study shows that most of the

Malayalam characters start writing in the upward direction. It can also

be seen that fifty percentage of the characters start with the pattern

primitive ‘a’. The most frequent pattern primitive transition is also

identified as ‘a → b’. The information about writing direction, starting

pattern primitive and frequent pattern primitive transition are highly

useful in designing prediction based HCR systems. In the chapter, the

tree representations of character predictions based on it’s pattern

primitive transitions, by fixing the first pattern primitives as the root

node, are described. These tree representations as character predictive

models are effectively utilized to compute the average reduction in

writing time for every character. The Reduction in Writing Time

(RWT), obtained for the characters shows that, certain characters need

not be written completely to be predicted. The advantage in RWT is

213 | P a g e

highly beneficial in designing real-time HCR systems. Experiments are

conducted for the recognition of eight Malayalam online handwritten

vowel characters based on the proposed character prediction model and

obtained an average recognition accuracy of 77.63%. The results show

that the proposed model is suitable for real-time Malayalam HCR

systems.

214 | P a g e

CHAPTER 7

Keyword Spotting in Online Handwritten

Malayalam Documents

7.1. Introduction

Over the last few decades, advances in data capturing technologies and

its extensive distribution in digital devices have created vast amount of

handwritten data that need to be stored and retrieved in an efficient way.

To cope with these drastic changes, notebook PCs, PDAs and, other

mobile computing devices are now migrating from keyboard data input

methods to simple data input methods like touch screen interfaces. This

allows the data to be stored as digital handwritten documents. In this

context, methods for archiving and recovering handwritten documents

stored in the digital form need special attention.

The technology of earlier decades kept most historical records in

document image format. The studies were also aligned to handle

handwritten document image data. When stored in document image

format, a text data document consumes more storage space. The recent

technologies reduce storage space and speed up data retrieval by

allowing text data to be stored in the form of online handwritten

documents. In online handwritten documents, the data is recorded as a

sequence of points. These points are the carriers of original data, making

contact over the surface, either a paper or an electronic surface. These

sequences of points considerably reduce the storage requirement for

handwritten data. Hence, most handwritten data are now stored in the

form of online handwritten documents rather than handwritten

215 | P a g e

document images. But, retrieval of these online handwritten documents

is difficult from a massive collection of such documents. To simplify the

task of retrieving handwritten documents, a technique called Keyword

Spotting (KWS) is extensively used to extract documents that contain

specific words from vast amounts of handwritten documents.

Most of the earlier studies on KWS addressed the problem of

retrieval from handwritten document images than online handwritten

documents. Manmatha et al. describes the importance of word spotting

and word indexing methods in document retrieval from historical

documents stored as images [59]. Stroke directions, Hough transform,

Gabor filters, and shape features are extensively reported in various

document image based word spotting techniques [62][118][119][120].

Keyword Spotting (KWS) techniques specific to online handwritten

documents have been studied for various scripts to a limited extent

[74][79][121][80]. In Indic scripts, Keyword Spotting techniques for

retrieving online handwritten documents are rare, especially for the

Malayalam script. In this context, a study initiated for Keyword Spotting

(KWS) on Malayalam online handwritten documents is found to be

highly useful in real-life applications.

In Keyword Spotting, a document is retrieved based on the input

keyword present in the document. A Keyword Spotting (KWS) system

is a combination of keyword indexing and retrieval techniques. In

indexing, the instances of a keyword are generated from the document

when it is stored. While retrieving, the keywords are matched against

indexed keywords. The block diagram of a KWS system is shown in

figure 7.1. It can be seen, that the input documents need to be

216 | P a g e

preprocessed. The preprocessed documents are segmented to obtain the

list of reference words. The features are extracted from these reference

words to obtain similar instances for indexing. These indexed words are

stored and used for matching with the input keyword for document

retrieval.

Fig 7.1 Block diagram of the KWS system

In the proposed work, a keyword dataset is prepared from online

handwritten documents through word segmentation, and it is used for

experimental purposes. The samples in the keyword dataset are

preprocessed to remove skews, jitters, and writing attenuations and they

are labeled manually. There are twenty such reference keywords and

fifteen instances of each of them. In the keyword spotting experiments,

the features extracted from the input keyword is matched with the

217 | P a g e

features of the reference keyword dataset using Dynamic Time Warping

(DTW) algorithm. The rest of the chapter is organized as follows.

Section 7.2 describes the creation of keyword dataset and preprocessing

methods. Various feature extraction techniques applied to the keyword

samples are described in section 7.3. Section 7.4 describes the Keyword

Spotting experiments conducted, followed by the result analysis in

section 7.5. Section 7.6 of the chapter concludes the work.

7.2. Creation of Keyword Dataset and Preprocessing

This section describes the creation of a reference keyword dataset

generated from online handwritten documents and various

preprocessing methods applied to the keyword dataset.

7.2.1. Malayalam Online Handwritten Keyword Dataset Creation

The role of data samples used to conduct OHCR experiments is very

crucial. They must address all types of variations as expected in a real-

time environment. It is evident from the literature, that the reliability of

a system based on natural handwriting, improves when it handles

various writing styles and writing speeds [2]. Hence, considerable

attention has been paid while creating a dataset, that accommodates

handwritten samples with variations in writing styles and speeds.

In the proposed work, online handwritten Minutes of Meetings of

Academic Council pertaining to a Government College in Kerala are

considered to acquire handwritten samples. The Academic Council is

the superior body of a college that makes academic and administrative

decisions. Usually, the Minutes of Meetings are kept in their original

handwritten form and the machine-readable text of the same has to be

218 | P a g e

circulated among the council members in printed form. In most of the

cases, it may require to search for referring to certain major decisions

taken or information regarding the members present in the previous

meetings.

For experimental purposes, the online handwritten version of the

original Minutes of the Meetings of the Academic Council is created

using E-writemate device as described in chapter 3. The handwritten

keyword dataset is created by extracting selected keywords through

segmentation from twenty such handwritten pages of Minutes of the

Meetings written by five different writers. A sample Minutes of the

Meeting written using E-writemate device is shown in figure 7.2.

Fig. 7.2 A sample Malayalam online handwritten document written using

E-writemate device

Segmentation of words from online handwritten documents is more

effortless than handwritten document images due to the availability of

temporal information. In the proposed work, word segmentation is

carried out by measuring the difference between neighboring x-values

in the stroke series. A threshold value is determined based on the (x, y)

219 | P a g e

values in the stroke series, corresponding to the online handwritten

documents. When the difference between neighboring x-values exceeds

the threshold, the word is segmented. The word segmentation method

employed in the current work is described in procedure 7.1.

Procedure 7.1: Implementation of the algorithm for word segmentation from

online handwritten documents

Input: Text, The online handwritten document text file containing x and y values

Output: Words, The array of words

Procedure Word_Seperate(Text)

j=1

TextX=x-value of Text

From start to end of Text

If (difference of (TextX (i)- TextX (i+1))> threshold)

 Words(j)=store (x,y) points up to the point which exceeds threshold

 j=j+1

End

Words // Contains various words in the document

End

After segmenting the words from the Minutes of the Meeting, the

number of instances of every word is labeled to create the reference

word dataset, which includes fifteen instances of twenty Malayalam

words. Sample words taken from the word dataset are shown in figure

7.3.

220 | P a g e

Fig. 7.3 Samples from the word dataset

 Table 7.1 shows the details of the own created Malayalam online

handwritten word dataset. The dataset includes 1500 samples of

handwritten words taken from the handwritten Minutes of the Meeting.

Table 7.1 Details of the Malayalam online handwritten keyword dataset

Number of

words

Number of

samples

Number of

writers

Total number of

words

20 15 5 1500

7.2.2. Preprocessing Methods Applied

Preprocessing is an essential phase in systems handling natural

handwritings, which vary in speed, skew, and size [122]. It is evident

that, most of the samples are affected by writing attenuations like skew,

jitters, and size variations. Hence, preprocessing is applied to remove

such noises in the samples to conduct further experiments. The

preprocessing stages applied to the word samples consist of smoothing,

resampling, skew correction, and normalization. Figure 7.4 shows the

various stages of preprocessing methods applied to the online

handwritten word samples.

221 | P a g e

Fig. 7.4 Stages of preprocessing

(a) Smoothing

The smoothing operation is carried out in every character in the word

using a moving average filter. The detailed procedure for smoothing the

characters is already described in chapter 3, section 3.4.2.

(b) Resampling

The speed of handwriting and hardware limitations result in missing and

crowded points in online handwritten words. To eliminate the disparity

in the distribution of strokes, resampling is used. Here, every stroke in

the word is resampled to 80 points to adjust missing points and make all

points equidistant. A parametric spline approximation, which is

effectively used in various OHCR studies, is used to interpolate missing

points [97][123][124].

222 | P a g e

(c) Skew Correction

The skew of writing induces errors in the features extracted from the

word. Most of the methods in previous studies employed Hough

transforms, Radon transforms, and centre of gravity for skew detection

and correction[125]. In the proposed experiments, the centre of gravity

is used for skew correction. The method of using centre of gravity is

based on the principle of rotation correction by gravity center balancing

[126]. The word is divided into two parts by measuring the centroid

(gravity centre). The skew angle is estimated as the inclination of the

line connecting the gravity centres. Procedure 7.2 describes the centre

of gravity method used for skew correction of online handwritten words

in the proposed work.

Procedure 7.2: Implementation of the algorithm for skew correction of online

handwritten words using the centre of gravity method

Input: RawWord, The raw word data

Output:SkewCorrectedWord, The skew corrected word

Procedure COG(RawWord)

X=x1+x2+x3+…….xn

Y=y1+y2+y3+…….yn

Xc=X / n

Yc=Y / n // Xc and Yc are centroids of the word

Word1=((x1,y1),(x2,y2),………(Xc,Yc))

Word2=((Xc+1,Yc+1),(Xc+2,Yc+2),………(Xn,Yn))

W1Xc= (x1+x2+x3+…….Xc) /size(Word1)

W1Yc= (y1+y2+y3+……..Yc) /size(Word1)

// W1Xc and W1Yc are centroids of word part 1

W2Xc= (Xc+1+Xc+1+Xc+1+…….Xn) /size(Word2)

W2Yc= (Yc+1+Yc+1+Yc+1+…….Yn) /size(Word2)

// W2Xc and W2Yc are centroids of word part 2

223 | P a g e

Slope= (W2Yc - W1Yc)/ (W2Xc - W1Xc) // slope m=(y2-y1)/(x2-x1)

Theta=tan-1(slope) // skew angle

xnew = x*cos(Theta) - y*sind(Theta);// skew correction

ynew = y*cosd(Theta) + x*sind(Theta);

SkewCorrectedWord=(xnew , ynew)// skew corrected word

End

(d) Normalization

A word level normalization is performed over the samples to standardize

the size of every word. The normalization performed here is min-max

normalization, as described in chapter 3, section 3.4.1.

A sample Malayalam online handwritten word അജണ്ട / ajaṇṭa /

before and after various preprocessing phases is shown in figures 7.5(a),

7.5(b), respectively.

Fig. 7.5(a) Malayalam online handwritten word അജണ്ട /ajaṇṭa/ before

preprocessing

Fig. 7.5(b) Malayalam online handwritten word അജണ്ട / ajaṇṭa / after

preprocessing

224 | P a g e

The following section presents features that are identified for KWS

on Malayalam online handwritten words and the methods to extract

these features.

7.3. Feature Extraction

Identifying various features and techniques to extract these features is

essential in KWS. In this study, structural features that are found to be

highly relevant for differentiating the Malayalam online handwritten

words are considered. Three features are considered in the work namely,

direction, height and curvature of the stroke points in the word. Table

7.2 shows the list of features extracted from the words for the conduct

of KWS experiments.

Table 7.2 List of features identified for the Malayalam online

handwritten words for KWS experiments

Sl.No Feature Relevance

1 Direction of the stroke points in

the word

Direction of stroke point differ in

different words

2 The height of the stroke points

in the word

The height of the stroke points from

base line differs in various words

3 The curvature of the stroke

points in the word

The angle subtended by lines joining

the point and its neighbors vary

The following section describes the methods used for extracting the

above features from the online handwritten Malayalam words present in

the dataset.

(a) The direction of the Stroke Points in the Word

The direction of every stroke point in the handwritten word is a strong

feature to differentiate one word from others. The counter clockwise

angle between x-axis and the tangent to the stroke point is considered as

225 | P a g e

the stroke direction. The line joining neighboring points of the stroke

point is considered as the tangent for extracting directions. A sample

graphical representation of the direction of the stroke points is shown in

figure 7.6 (a).

Fig. 7.6(a) Direction of a stroke point in the Malayalam character ത <ta>

(b) Height of the Stroke Points in the Word

The distance from the base of the word to the stroke points is considered

as the height. This is obtained by estimating the distance of the stroke

points from the base of the word. The base of the word is the horizontal

line drawn through the lowest y-value in the stroke points. For every

stroke point corresponding to the word, the height value is obtained. A

graphical representation of the height of the stroke points in the word is

shown in figure 7.6 (b).

Fig. 7.6(b) Height of a stroke point in the Malayalam character ത <ta>

226 | P a g e

(c) Curvature of the Stroke Points in the Word

In the case of Malayalam online handwritten words, majority of the

characters contain arc segments. Hence, the curvature of the stroke

points can be considered as a feature to identify various words. The

curvature of a stroke point means the angle subtended by the stroke point

with neighboring points. To calculate the curvature value of a stroke

point, lines are drawn from neighboring points to the stroke point. The

angle between these lines is estimated to obtain the curvature value of

the stroke point. Similarly, the curvature value of every stroke point is

obtained. Figure 7.6 (c) shows the graphical representations of the

curvature feature of stroke points in the words.

Fig. 7.6(c) Curvature of a stroke point in the Malayalam character ത <ta>

The algorithm described in procedure 7.3 is implemented in MATLAB

to extract the features mentioned.

Procedure 7.3: Procedure to extract the direction, height and curvature

features from the words

Input: Word, The stroke points in the word with (x, y) values

Output: Direction, height, and curvature features

Procedure DHC(Word)

// To find the direction of the stroke points //

227 | P a g e

Read from second to N-1th point of a strokes

Get the neighbor points of the stroke point

Estimate the line from left neighbor to the right neighbor

Estimate the horizontal axis of the point

Estimate the angle between the line and horizontal axis to obtain the

direction

 Repeat the procedure up to N-1th point

// To find the height of the stroke points //

 Estimate the base of the word

Read from first to Nth point of a strokes

Compute the vertical distance from base of the word to the stroke

point to obtain height

 Repeat the procedure up to Nth point

// To find the curvature of the stroke points //

Read from second to N-1th point of a strokes

Get the neighbor points of the stroke point

Estimate the line from left neighbor to stroke point

Estimate the line from right neighbor to stroke point

Find the angle between these two lines to obtain the curvature

 Repeat the procedure up to N-1th point

End

7.4. Experimental Setup

This section details the experiments carried out to verify the

effectiveness of the Keyword Spotting system. Dynamic Time Warping

(DTW) is the proposed technique for matching the keywords. Dynamic

Time Warping (DTW) is a powerful technique that has been applied to

match temporal sequences [127][128]. In the proposed experiments, the

samples from the word dataset discussed in section 7.2.1 are used. The

experiments are setup to verify the effectiveness of a writer dependent

228 | P a g e

KWS system. Hence, separate experiments are conducted for five

different writers. Ten instances of twenty selected words, written by a

writer are considered as the reference word dataset for the experiments.

These words are preprocessed using the techniques mentioned in section

7.2.2. Features are also extracted from these words using the procedure

7.3. After extracting the features, an optimal value for the DTW distance

is computed for every reference word in the dataset.

Initially, an instance of a word is taken from the dataset and it is

considered as the keyword. The keyword is preprocessed, and features

are also extracted, as discussed in previous sections. Matching between

the input keyword and the remaining instances of every word is

performed using the DTW technique. Matches within the optimal value

of the DTW distance for the keyword are identified from the

experiments. The same procedure is repeated with an instance of the

next word until all the words are accommodated. From these results, the

precision and recall values are obtained for twenty keywords. Precision

is referred to here as the percentage of correct matches out of the total

matches in the comparison. Recall denotes the fraction of the number of

correct matches to the total number of instances of the keywords.

Similarly, the entire experiment is repeated for all the five writers using

the word samples written by them. After conducting experiments for all

the five writers, the average precision and recall values are calculated.

From this precision and recall values, the average F1 score is also

computed.

229 | P a g e

7.5. Result Analysis

The precision and recall rates obtained in the KWS experiments for the

five writers are shown in figure 7.7, where the x-axis denotes the writers,

and the y-axis denotes precision and recall values obtained for every

writer. The average F1 score obtained for the proposed technique is

78.31%, for an average precision of 90% and an average recall rate of

69.31%.

Fig. 7.7 Precision and Recall values obtained in the Keyword Spotting

experiments

7.6. Conclusion

This chapter discussed the implementation of a Keyword Spotting

(KWS) system for online handwritten Malayalam documents. As a part

of the work, a Malayalam online handwritten keyword dataset is created

from online handwritten documents. Various preprocessing methods

applied to the online handwritten keywords are familiarized in the study.

The techniques to extract the features, that apply to the selected online

230 | P a g e

handwritten Malayalam keywords, are identified in the work. These

features are extracted using the methods described. Experiments are also

conducted using these extracted features to verify the effectiveness of

the system. An average performance score of 78.31% is obtained for

twenty keywords in the KWS experiments. The results show that, the

method can be effectively used in Malayalam Keyword Spotting

systems with massive online document databases.

231 | P a g e

CHAPTER 8

Conclusions and Recommendations

8.1. Conclusions

Technological growth in human-machine interaction deployed many

research contributions in online handwritten character recognition

(OHCR) for various scripts. In the Indian context, the research in OHCR

for various Indic scripts is tremendous for the last few years. Various

methods, which vary in features and classifiers, are reported in most of

the studies to attain higher recognition rates. In this study, a diversified

approach which is a part of Syntactic Pattern Recognition (SPR), is

proposed for OHCR of Malayalam characters. The thesis mainly

proposed an approach by segmenting Malayalam online handwritten

characters into pattern primitives and implemented recognition schemes

suitable for developing real-time applications. As a part of this study, a

detailed analysis of pattern primitives in Malayalam online handwritten

characters have been conducted. The directional and structural features

of the characters and their pattern primitives are addressed in the

research with prime focus.

The characteristics of the vowels and consonants in the Malayalam

language are examined as part of the study. The various rules that

pertain to the formation of conjuncts are also discussed within the

orthographical perspective. The necessity of creating a benchmark

dataset for Malayalam online handwritten character recognition is

addressed in the study. A database of Malayalam online handwritten

characters is created and used for experimental purposes. Two methods

are employed in data acquisition. In the first method, handwritten

232 | P a g e

strokes are acquired while writing on a normal paper using a digital

pen. In the second method, the touch screen capability of current

technology is utilized in acquiring data through a laptop computer. The

own created dataset named CU-OHDB contains 30800 samples of 44

Malayalam online handwritten characters written by twenty different

writers properly categorized and labeled. Various preprocessing

techniques, including smoothing, normalization, resampling is also

proposed and implemented as part of the study.

The directional and structural properties of the Malayalam online

handwritten characters are identified in the study. By analyzing these

properties, the subunits in the characters called pattern primitives are

also identified. The study shows that, eight vowel characters and thirty

six consonant characters in Malayalam script can be represented by

using these twenty six pattern primitives. A character reference set for

the online handwritten Malayalam characters with marked points,

corresponding to the pattern primitives, is also formed as part of the

study. All the 44 characters are visually arranged and represented using

the labels of the pattern primitives.

Segmentation of Malayalam online handwritten characters is

performed using three algorithms: Ramer Douglas Peucker (RDP),

Eight Direction Freeman Code (EDFC), and a combined approach of

both algorithms. The segmentation accuracy of the algorithms is also

computed by comparing the pattern primitive segments obtained with

the reference character set. The performance of the Ramer Douglas

Peucker(RDP) algorithm, applied for reducing a curve into a finite

number of points is analyzed; and this advantage is utilized to segment

233 | P a g e

the characters into pattern primitives. Even with the variability in the

writing style of the samples, the Ramer Douglas Peucker(RDP)

algorithm based segmentation scheme performed well with an average

segmentation rate of 78.36%. The segmentation scheme, based on the

Eight Direction Freeman Code (EDFC), also had a better average

segmentation accuracy of 74.55%. The combined approach based on the

Ramer Douglas Peucker algorithm and Eight Direction Freeman Code

attained an average segmentation accuracy of 91.12%. The accuracy

obtained for the combined approach to segmentation shows that, the

method can be effectively used to segment Malayalam online

handwritten characters into pattern primitives. An automated method to

estimate segmentation accuracy is also implemented. The automated

method obtained a segmentation accuracy of 81.59% using the

combined approach of RDP and EDFC.

A scheme to recognize Malayalam online handwritten characters

based on pattern primitives is discussed in the thesis. Various

preprocessing methods for categorizing arc and straight-line pattern

primitives, smoothing, and slope correction of linear pattern primitives

are implemented in the study. Initially, various clusters are formed based

on the number of pattern primitives present in each character. A detailed

description of various pattern primitive features and the algorithms used

to extract these features are presented. The specific features are then

extracted from the pattern primitives constituting the characters

representing each cluster.

The classification experiments are performed based on the pattern

primitive features using the Support Vector Machine (SVM) classifier.

234 | P a g e

The recognition accuracies obtained for each character cluster are

tabulated. The average recognition accuracy obtained for all the clusters

is 96.61%. The performance of the proposed method is found to be

promising and hence it can be effectively used for the development of

OHCR systems in Malayalam.

A model for the real-time recognition of Malayalam handwritten

characters, based on pattern primitives, is proposed as part of the study.

In the first method, the pattern primitive based OHCR system using

DFA is proposed. Here, the entire pattern primitives constituting each

of the characters are considered for the recognition purpose. In this

approach, the character is recognized only after finishing the writing of

the entire character. The recognition experiments are conducted for the

eight vowel characters and achieved an average accuracy of 65.75%.

A predictive approach for the real-time recognition of Malayalam

handwritten characters is also proposed as part of the model. It can be

observed that, most of the Malayalam characters can be predicted even

after completing the first pattern primitive. Considering this, the pattern

primitive transition sequences present in the Malayalam online

handwritten characters are analyzed, and found that, the order of

occurrence of pattern primitives is highly useful in designing a

predictive model for real-time HCR. It is also observed that, only seven

pattern primitives have the possibility of occurrence at the starting

position of the Malayalam characters. The study shows that most of the

Malayalam characters start writing in the upward direction. It can also

be seen that fifty percentage of the characters start with the pattern

primitive ‘a’. The most frequent pattern primitive transition is also

235 | P a g e

identified as ‘a → b’. The information about writing direction, starting

pattern primitive and frequent pattern primitive transition are highly

useful in designing prediction based HCR systems.

In the next stage of the prediction model, the tree representations of

characters based on its pattern primitive transitions by fixing the first

pattern primitives as the root node are implemented. These tree

representations, which would be used as character predictive models,

are effectively utilized to compute the average reduction in writing time

for every character. The Reduction in Writing Time (RWT), obtained

for the characters shows that, certain characters need not be written

completely to be predicted. The advantage in RWT is highly beneficial

in designing real-time HCR systems.

Experiments are conducted for the recognition of eight Malayalam

online handwritten vowel characters based on the proposed character

prediction model and obtained an average recognition accuracy of

77.63%. The results show that, the proposed model is suitable for real-

time Malayalam HCR systems.

Keyword Spotting (KWS) in online handwritten documents has

been attempted as an application of handwriting recognition in the

thesis. Various preprocessing methods applied to the online handwritten

keywords are familiarized in the study. The techniques to extract the

features that apply to the selected online handwritten Malayalam

keywords are identified in the study; and using these techniques, the

features are extracted. Experiments are also conducted using these

extracted features to verify the effectiveness of the system. An average

performance score of 78.31% is obtained in the KWS experiments. The

236 | P a g e

results show that, the proposed system could be considered for Keyword

Spotting (KWS) in online handwritten documents in Malayalam.

8.2. Contributions of the Thesis

The major contributions that have been reported as part of the thesis in

the field of OHCR are as follows. An online handwritten character

database for Malayalam has been developed as a part of the study. The

database named CU-OHDB (Calicut University Online Handwriting

Data Base) consists of 30800 samples of the 44 Malayalam characters

written by twenty different writers, that are properly arranged and

labeled. This dataset can be effectively used for the conduct of further

studies in Malayalam OHCR.

The study on pattern primitives, derived from each character present

in the thesis, is beneficial for implementing segmentation based OHCR

in Malayalam. The representation scheme proposed for the 44

Malayalam online handwritten characters based on 26 pattern primitives

is a unique contribution of the thesis.

Segmentation using the Ramer Douglas Peucker (RDP) algorithm

and Eight Direction Freeman Code (EDFC) that ensure both structural

and directional aspects of the characters, implemented for the

recognition of Malayalam online handwritten characters in the thesis, is

a notable contribution. The pattern primitive features of the characters,

described in the study, can be effectively used for implementing real-

time handwritten character recognition systems in Malayalam.

The information regarding transitions from one pattern primitive to

the other, identified for all the Malayalam online handwritten characters,

237 | P a g e

is a remarkable outcome of the study. The frequency of occurrence of

various pattern primitives and their position in a character are also

identified and reported. Representation of the pattern primitive

transition sequences in the form of trees and the computation of

Reduction in Writing Time (RWT) based on the predictions are also

unique to the thesis. The analysis done on the RWT for various

characters would be useful, in understanding the effect of using pattern

primitive based features, in a real-time handwriting recognition

environment.

Implementation of the Keyword Spotting (KWS) system is another

major contribution of this thesis, which effectively utilizes the features

of online handwritten words in Malayalam. The method suggested is

useful in developing Keyword Spotting (KWS) systems for retrieving

specific documents from massive collection of online handwritten

Malayalam documents.

8.3. Recommendations

The study made a novel attempt in online handwriting recognition for

various Malayalam character units consisting of 44 characters which

include vowels and consonants. There are also conjuncts, chillu,

modifiers, and other symbols in Malayalam. The variability of those

characters and symbols may not be reflected in the studies. As a future

direction, the work can be extended to include the entire character set of

Malayalam. As an initial work based on pattern primitives in Malayalam

OHCR, certain selected directional and structural features are only

considered. In future studies, additional features, including statistical

features, need to be considered. As the recognition accuracy of the entire

238 | P a g e

system mentioned in the thesis depends entirely on the segmentation

accuracy, various pattern primitive segmentation schemes may also be

considered to get more précised results.

In the proposed real-time prediction model, the system makes

predictions from the first pattern primitive for certain characters. This

information may be used to convert the present character prediction

model to a word prediction model, by incorporating a word dictionary.

Also, the model may be fully implemented to test the effect of pattern

primitive features for real-time recognition of handwritten characters in

future studies. As a future recommendation, the proposed KWS method

can be extended to include additional word level features and other word

matching schemes.

The practical challenegs for incorporating the techniques in a real-

time application include accomodating various writing styles, rotation /

skew corrections, delayed and broken strokes etc. These are also be

addressed in future studies for improving the performance of the system

in a real-time environment.

Studies to achieve lesser time and space complexity may also be

considered in the future with in-depth research on multi-dimensional

aspects of Malayalam characters. The studies in the thesis are entirely

focused on Malayalam characters and their pattern primitives, but

capable of performing well in other scripts. It is also a future

recommendation to identify pattern primitives in other Indian scripts and

initiate studies to develop a language independent framework for real-

time handwritten character recognizer in Indian scripts.

References

[1] IBM, "Rochester Chronology," IBM Rochester Lab , 1966.

[2] C. Y. Suen ,T. Wakahara C. C. Tappert, "The state of the art in online

handwriting recognition," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 12, no. 8, pp. 787-808, 1990.

[3] Eden M, "On the Formalization of Handwriting," Structure of

Language and its Mathematical Aspect, American Mathematical

Society, pp. 83-88, 1961.

[4] Eden M, "Handwriting and Pattern Recognition," IRE Trans.

Information Theory, pp. 160-166, 1963.

[5] Sankar K Pal, Nikhil R Pal, "A review on image segmentation

techniques," Pattern Recognition, pp. 1277-1294, 1993.

[6] H Freeman, "On the Encoding of arbitrary geometric configurations,"

IRE Transaction on Electronic Computers, pp. 260-268, 1961.

[7] Jeremy M Glass, H Freeman, "On the quantization of line drawing

data," IEEE Transactions on Information Systems and Cybernetics, pp.

70-78, 1969.

[8] URS Ramer, "An iterative procedure for the polygonal approximation

of plane curves," Computer Graphics and Image Processing, pp. 244-

256, 1972.

[9] Thomas K Peucker, David H Douglas, "Algorithms for the reduction

of the number of points required to represent a digitized line or its

caricature," The Canadian Cartographer, pp. 112-122, 1973.

[10] Herbert Freeman, "Computer processing of line-drawing images,"

Computing Surveys, pp. 58-97, 1974.

[11] Larry S. Davis, Herbert Freeman, "A corner finding algorithm for

chain coded curves," IEEE Transaction on computers, pp. 297-303,

1977.

[12] Herbert Freeman, "Shape description via the use of critical points,"

Pattern Recognition, pp. 159-166, 1978.

[13] Li-De Wu, "On the chain code of a line," IEEE Transactions on

Pattern Analysis and Machine Intelligence, pp. 347-353, 1982.

[14] Mike Usher, Samir Al-Emami, "On-Line Recognition of Handwritten

Arabic Characters," IEEE Transactions on Pattern Analysis and

Machine Intelligence, pp. 704-710, 1990.

[15] Eric Lecolinet, Richard G. Casey, "A survey of methods and stratagies

in character segmentation," IEEE Transactions on Pattern Analysis

and Machine Intelligence, pp. 690-706, 1996.

[16] Ciro D'elia, Alessandra Scotto Di Freca, Angelo Marcelli Claudio De

Stefano, "Incorporating A Wavelet Transform Into A Saliency-Based

Method For Online Handwriting Segmentation," International Journal

of Pattern Recognition and Artificial Intelligence, pp. 43–59, 2007.

[17] Sok Gek Lim, Michael K. Brown Jianying Hu, "Writer independent

on-line handwriting recognition using an HMM approach," Pattern

Recognition , pp. 133-147, 2000.

[18] Ahmed M. Zeki, Akram M. Zeki, Mustafa Ali Abuzaraida,

"Segmentation Techniques for Online Arabic Handwriting

Recognition: A Survey," in 3rd International Conference on

Information and Communication Technology for the Muslim World

(ICT4M), pp. 37-40, 2010.

[19] Chaabouni Aymen , Alimi Adel, El Abed Haikal Boubaker Houcine,

"Fuzzy Segmentation and Graphemes Modeling for Online Arabic

Handwriting Recognition," in 12th International Conference on

Frontiers in Handwriting Recognition, pp. 695-700, 2010,

[20] Hozeifa Adam Abd, Alshafy Mohamed, Elhafiz Mustafa, "Characters'

Boundaries based Segmentation for Online Arabic Handwriting," in

International Conference On Computing, Electrical And Electronic

Engineering, pp.306-310, 2013.

[21] Salem Meftah Jebriel, Mustafa Ali Abuzaraida, "The Detection of the

Suitable Reduction Value of Douglas-Peucker Algorithm in Online

Handwritten Recognition Systems," in IEEE International Conference

on Service Operations And Logistics, And Informatics, pp. 82-87,

2015.

[22] Paul L. Rosin, "Assessing the behaviour of polygonal approximation

algorithms," Pattern Recognition, pp. 505 – 518, 2003.

[23] Maylor K.H. Leung, Chai Quek , Siu-Yeung Cho, Dilip K. Prasad, "A

Novel Framework For Making Dominant Point Detection Methods

Non-Parametric," Image and Vision Computing, pp. 843–859, 2012.

[24] Sherif Abdel Azeem, Hesham M. Eraqi, “An on-line arabic

handwriting recognition system: Based on a new on-line graphemes

segmentation technique," in International Conference on Document

Analysis and Recognition, pp. 409-413, 2011.

[25] Fatos T. Yarman-Vural, A. Alper Atici, "A Heuristic Algorithm for

Optical Character Recognition of Arabic Script," Signal Processing,

pp. 87-99, 1997.

[26] Sherif Abdel Azeem, Hesham M. Eraqi, "A New Efficient Graphemes

Segmentation Technique for Offline Arabic Handwriting," in

International Conference on Frontiers in Handwriting Recognition,

pp. 95-100, 2012.

[27] Umapada Pal, Nilanjana B hattacharya, "Stroke Segmentation and

Recognition from Bangla Online Handwritten Text," in International

Conference on Frontiers in Handwriting Recognition, pp. 740-745,

2012.

[28] Anoop M Namboodiri, Prabhu Teja S, "A Ballistic Stroke

Representation of Online Handwriting for Recognition," in 12th

International Conference on Document Analysis and Recognition, pp.

857-861. 2013.

[29] Anuj Sharma, Indu Chhabra, Sukhdeep Singh, "A dominant points-

based feature extraction approach to recognize online handwritten

strokes," IJDAR, pp. 37-58, 2017.

[30] K S Fu, P H Swain, "On Syntactic Pattern Recognition," in

Proceedings of the Third Symposium on Computer, Florida, pp. 164,

1969.

[31] V V Rozensveig, Shelya A Guberman, "Algorithm for the recognition

of Handwritten Text," Automatica i Telemanicha, pp. 122-129, 1976

.[32] J.R. Bellegarda, D. Nahamoo K.S, E.J. Bellegarda, "A probabilistic

framework for on-line handwriting recognition," in IWFHR III, 1993,

pp. 225-234.

[33] I. Lossev, A.V. Pashintsev, S.A. Guberman, "Method and apparatus

for recognizing cursive writing from sequential input information," US

Patent WO 94/07214, 1994.

[34] Koichi Higuchi, Youichi Yamada, Yunosuke Haga, Yoshiyuki

Yamashitha, "Classification of hand printed Kanji characters by the

structural segment matching method," Pattern Recognition Letters,

vol. 1, pp. 475-479, 1983.

[35] Lei Guo, Tianyun Zhao, Xiaoliang Qian Bo YU, "A Curve Matching

Algorithm Based on Freeman Chain Code," in IEEE, pp. 669-672,

2010

[36] Vikas Kumar, "Online Handwriting Recognition Issues and

Techniques," MIT IJCSIT, vol. 5, no. 1, pp. 16-24, 2014.

[37] Mollah Masum Billah Azadi, Md. Abdur Rahman.M, M. A. Hashem

Mohammad Badiul Islam, "Bengali Handwritten Character

Recognition using Modified Syntactic Method," in Procs. of the 2nd

National Conference on Computer Processing of Bangla (NCCPB-

2005, pp. 264-275, 2005

[38] Dit-Yan Yeung, Xiaolin Li, "Online Handwritten Alpha-Numeric

Recognition Using Dominant Points in Strokes," pp.31-44, 1996.

[39] Anil K jain, Scott D Connel, "Template-Based online Character

Recognition," Pattern Recognition, vol. 1, no. 34, pp. 1-14, 2001.

[40] Satya Lahari Putrevu, C V Jawahar, Karteek Alahari, "Discriminant

Substrokes for Online Handwriting Recognition," in Eighth

International Conference on Document Analysis and Recognition, pp.

499-503, 2005.

[41] Ahmad T Al-Taani, "An Efficient Feature Extraction Algorithm for the

Recognition of Handwritten Arabic Digits," Engineering and

Technology, International Journal of Computer, Electrical,

Automation, Control and Information Engineering, World Academy of

Science, pp.2221-2225, 2008.

[42] Jihad El-sana, Nizar Habash, Fadi Biadsy, "Online Arabic

Handwriting Recognition using Hidden Markov Models," in The 10th

International Workshop on Frontiers of Hand-writing Recognition, pp.

108-116, 2006.

[43] M Borahan Tumer, Tunga Gungor, Aleksei Ustimov, "A Low-

Complexity Constructive Learning Automaton Approach to

Handwritten Character Recognition," Research in Computing Science,

pp. 311-322, 2010

[44] Najiba Tagougui, Haikal El Abed, Monji Kherallah, Houcine

Boubaker, "Graphemes Segmentation for Arabic Online Handwriting

Modeling," J Inf Process Systems, vol. 10, no. 4, pp. 503-522, 2014

[45] Santanu Chaudhury, Abhijith Dutta, "Bengali alpha-numeric character

recognition using Curvature features," Pattern Recognition, vol. 26,

no. 12, pp. 1757-1770, 1993.

[46] Tanmoy Dasgupta, Samar Bhattacharya, Priyanka Das, "A Handwritten

Bengali Consonants Recognition Scheme based on the detection of

Pattern Primitives," in Second International Conference on Research

in Computational Intelligence and Communication Networks., pp.72-

77, 2016.

[47] Bikash K Guptha, Swapan K Parui, Ujjwal Bhattacharya, "Direction

Code Based Features for Recognition of Online Handwritten

Characters of Bangla," , International Conference on Document

Analysis and Recognition. pp. 58-62, 2007.

[48] Sunil Kumar Kopparappu, Lajish VL, "Fuzzy Directional Features for

Unconstrained On-line Devanagari Handwriting Recognition," in

National Conference On Communications (NCC), pp. 1-5, 2010.

[49] U. Bhattacharya, S. K. Parui, S. Dutta Chowdhury, "Handwriting

Recognition Using Levenshtein Distance Metric," in 12th

International Conference on Document Analysis and Recognition, pp.

79-83, 2013.

[50] S Al-Emami, M Usher, "Online Recognition of Handwritten Arabic

Characters," Transactions on Pattern Analysis and Machine

Intelligence, vol. 12, no. 7, p. 704, 1990.

[51] S.G.El-Taweel T.S.El-Sheikh, "Real-time arabic handwritten

character recognition," Pattern Recognition, pp. 1323-1332, 1990.

[52] Beigi Homayoon, Subrahmonia Jayashree, Clary G.J., Maruyama

Hiroshi, Nathan K.S, ".Real-Time On-Line Unconstrained

Handwriting Recognition Using Statistical Methods.," in ICASSP, pp.

2619-2622, 1995.

[53] Wojciech Bieniecki, Szymon Grabowski, Bartosz Paszkowski,

"Preprocessing for real-time handwritten character recognition," in

Computer Recognition Systems: Proc. Int. Conf. mboxCORES, pp.

470-476, 2005.

[54] Alberto Beltrán, Sonia Mendoza, "Efficient algorithm for real-time

handwritten character recognition in mobile devices," in 2011 8th

International Conference on Electrical Engineering, Computing

Science and Automatic Control, pp. 1-6, 2011

[55] Cheng-Lin Liu, Xiang-Dong Zhou, Da-Han Wanga, "An approach for

real-time recognition of online Chinese Handwritten Sentences,"

Pattern Recognition, pp. 3661–3675, 2012.

[56] Zehua Gao, Qi Song, "Real Time Handwritten Digit Recognition on

Mobile Devices," in Fourth International Conference on Intelligent

Control and Information Processing (ICICIP), pp. 487-490, 2013.

[57] Vinh Dinh Nguyen, Jae Wook Jeon, Hyung-Min Jeon, "Real-Time

Multi-Digit Recognition System Using Deep Learning on an

Embedded System," in IMCOM ’18: The 12th International

Conference on Ubiquitous Information, pp. 1-6, 2018.

[58] Chengfeng Han, E. M. Riseman , W. B. Croft R. Manmatha, "Indexing

Handwriting Using Word Matching," in First ACM Intl. Conf. on

Digital Libraries, pp. 1-9, 1996.

[59] Chengfeng Han , E. M. Riseman R. Manmatha, "Word Spotting: A

New Approach to Indexing," in CVPR IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pp. 1-29,

1996.

[60] Giorgos Sfikas, Basilis Gatos, Christophoros Nikou, Angelos P.

Giotis, "A survey of document image word spotting techniques,"

Pattern Recognition, vol. 68, pp. 310-332, 2017.

[61] Wasfi G. Al-Khatib, Sabri Mahmoud, Rashad Ahmed, "A Survey on

handwritten documents word spotting," International Journal of

Multimedia Information Retrieval, Springer, vol. 6, no. 1, pp. 31-47,

2017.

[62] Srinivasan H, Babu P, Bhole C, Srihari S, "Handwritten arabic word

spotting using the cedarabic document analysis system," in Symposium

on document image understanding technology, pp. 123-132, 2005.

[63] Li L, Tan C, Bai S, "Keyword spotting in document images through

word shape coding," in 10th international conference on document

analysis and recognition, pp. 331-335, 2009

[64] Nobile N, He CL, Suen C, Sagheer M, "A novel handwritten urdu word

spotting based on connected components analysis," in 20th

international conference on pattern recognition (ICPR), pp. 2013-

2016, 2010.

[65] Brook S, Aghbari ZA, "HAH manuscripts: a holistic paradigm for

classifying and retrieving historical Arabic handwritten documents,"

Expert System Applications, pp. 10942–10951, 2009.

[66] Duygulu P Can EF, "A line-based representation for matching words

in historical manuscripts," Pattern Recognition Letters, pp. 1126–

1138, 2011.

[67] Andreas Keller, Volkmar Frinken, Horst Bunke, Andreas Fischer,

"Lexicon-Free Handwritten Word Spotting Using Character HMMs,"

Pattern Recognition Letters, pp. 934-942, 2012.

[68] Fernández David, "Handwritten Word Spotting in Old Manuscript

Images using Shape Descriptors," Pattern Recognition and Image

Analysis, pp. 628-635, 2010.

[69] Lynn Wilcox Shingo Uchihashi, "Automatic index creation for

handwritten notes," in IEEE International Conference on Acoustics,

Speech, and Signal Processing, pp. 3453-3456. 1999.

[70] Sushama S.N, Sharada.B, "Keyword Spotting in Historical

Handwritten Devanagari Documents: A Graph Based Approach,"

American International Journal of Research in Science, Technology,

Engineering and Mathematics, pp. 1-8, 2019.

[71] Praveen Krishnan, Minesh Mathew. C.V.Jawahar, Kartik Dutta,

"Towards Spotting and Recognition of Handwritten Words in Indic

Scripts," in 16th ICFHR, pp. 32-37, 2018.

[72] Sushma S.N., Bharathlal, Sharada B., "Keyword Spotting in Historical

Devanagari Manuscripts by Word Matching," Data Analytics and

Learning. Lecture Notes in Networks and Systems, pp. 65-76, 2019.

[73] Palanivel S, Ramalingam V, Sigappi A, "Handwritten document

retrieval system for tamil language," International Journal of

Computer Applications, vol. 31, pp. 42-47, 2011.

[74] Da-Han Wang, Cheng-Lin, Liu Heng Zhang, "Character confidence

based on N-best list for keyword spotting in online Chinese

handwritten documents," Pattern Recognition, pp. 1880-1890, 2014.

[75] Da-Han Wang, Cheng-Lin Liu, Heng Zhang, "Keyword Spotting from

Online Chinese Handwritten Documents Using One-vs-All Trained

Character Classifier," in 12th International Conference on Frontiers

in Handwriting Recognition, Kolkatta, pp. 271-276, 2010

[76] H. Zhang, C. Liu, "A Lattice-Based Method for Keyword Spotting in

Online Chinese Handwriting," in International Conference on

Document Analysis and Recognition, Beijing, pp. 1064-1068, 2011.

[77] Mohamed Cheriet Sebastian Pena Saldarriaga, "Indexing On-Line

Handwritten Texts UsingWord Confusion Networks," in International

Conference on Document Analysis and Recognition, pp. 197-201,

2011.

[78] Volkmar Frinkeny, Horst Bunke, Emanuel Indermuhl, "Mode

Detection in Online Handwritten Documents Using BLSTM Neural

Networks," in International Conference on Frontiers in Handwriting

Recognition, pp. 302-307, 2012.

[79] A. Balasubramanian, Million Meshesha, Anoop M Namboodiri, C. V.

Jawahar, "Retrieval of online handwriting by synthesis and matching,"

Pattern Recognition, pp. 1445-1457, 2009.

[80] Anoop M. Namboodiri Anil K. Jain, "Indexing and Retrieval of On-

line Handwritten Documents," in Seventh International Conference on

Document Analysis and Recognition (ICDAR’03), pp. 655-659, 2003.

[81] Kenneth Katzner, The Languages of the world.: Reutledge and Kegan

Paul Ltd, 2002.

[82] Soman.K. P, Antony. P. J, "Computational Morphology and Natural

Language Parsing for Indian Languages : A Literature Survey,"

IJCSET, vol. 3, pp. 136–146, 2012.

[83] Vivek P., Lajish V.L.. "Hidden markov model based keyword spotting

for malayalam speech analytics," http://hdl.handle.net/10603/213852,

Calicut, 2017.

[84] Merriam Webster. (1828), Merriam Webster dictionary.

[85] Coulmas. F, The Blackwell's Encyclopedia of Writing Systems.:

Oxford: Blackwells, 1996.

[86] WikipediA. (2019, October) [Online]. https://en.wikipedia.org/wiki/

Phonology

[87] Hi-Tech.(2019, November),http://www.hitech-in.com.[Online]. http://

www.hitech-in.com

[88] Y. B. Zhang, M. T. Kechadi, Bing Quan Huang, "Preprocessing

Techniques for Online Handwriting Recognition," in Studies in

Computational Intelligence.: Springer, pp. 25-45, 2009.

[89] Rejean Plamondon, Wacef Guerfali, "Normalizing and restoring on-

line handwriting," Pattern Recognition, vol. 26, no. 3, pp. 419-431,

1993.

[90] Steven W. Smith, The Scientist and Engineer's Guide to Digital Signal

Processing.: California Technical Publishing , 1999.

[91] Bong-Kee Sin, Jin Hyung Kim, "Online Handwriting Recognition," in

Handbook of Document Image Processing and Recognition.: Springer,

pp. 887-915, 2019.

[92] R. Haralick, S. Aksoy, "Feature normalization and likelihood-based

similarity measures for image retrieval," Pattern Recognition Letters-

Special Issue on Image and Video Retrieval, pp. 563-582, 2000.

[93] Anitha Jayaraman, V. Srinivasa Chakravarthy, C. Chandra Shekhar, H.

Swethalakshmi, "Online Handwritten Character Recognition of

Devanagari and Telugu Characters using Support Vector Machines,"

HAL, pp. 100-107, 2006.

[94] M. Sukumar, A.G. Ramakrishnan, Mahadeva Prasad M, "Divide and

Conquer Technique in Online Handwritten Kannada Character

Recognition," in International Workshop on Multilingual OCR, pp. 1-

7, 2009.

[95] T. S. S. V. L. L. K. B. Baiju, "Segmentation of Malayalam Handwritten

Characters into Pattern Primitives and Recognition using SVM,"

International Journal of Engineering and Advanced Technology , vol.

Vol. 9, no. 3, p. 1817–1822, February 2020.

[96] Anil K Jain, Anoop M. Namboodiri, "Online handwritten script

recognition," IEEE Transactions on Pattern Analysis and Machine

Intelligence, pp. 124-130, 2004.

[97] Toru Ayabe, Takahiro Nishizaki, Ningping Sun, "Efficient Spline

Interpolation Curve Modeling," in Third International Conference on

Intelligent Information Hiding and Multimedia Signal Processing

(IIH-MSP 2007), pp. 59-62, 2007.

[98] Sriganesh Madhvanath, Bharath A, "Online Handwriting Recognition

for Indic Scripts," in OCR for Indic Scripts: Document Recognition

and Retrieval, Springer, pp. 209-234, 2008.

[99] Jun S Huang, Chia-Wei Liao, "Stroke segmentation by bernstein-

bezier curve fitting," Pattern Recognition, vol. 23, no. 5, pp. 475-484,

1990.

[100] M.K. Brown,W. Turin Jianying Hu, "HMM based online handwriting

recognition," IEEE Transactions on Pattern Analysis and Machine

Intelligence , vol. 18, no. 10, pp. 1039 – 1045, 1996.

[101] Keiji Taniguchi, Hideo Ogawa, "Thinning and stroke segmentation for

handwritten Chinese character recognition," Pattern Recognition, vol.

15, no. 4, pp. 299-308, 1982.

[102] D. G. Thakore, N. J. Randive, "Static Hand Gesture Recognition using

Freeman Chain Code and Neural Network," Int. J. Adv. Eng. Res. Dev.

Sci. J. , pp. 113–134, 2015.

[103] Jayadevan.R, Sharma.N, Pal U, "Handwriting Recognition in Indian

Regional Scripts: A Survey of Offline Techniques," ACM

Transactions on Asian Language Information Processing, pp. 1-35,

2012.

[104] Sabeerath K, Lajish V.L, Baiju.K.B, "A Quick Review on Features and

Classification Techniques in Online recognition of handwritten

Dravidian Scripts," International Journal of Research in Advent

Technology, vol. 6, no. 11, pp. 3245- 3251, November 2018.

[105] Swethalakshmi H, "Online handwritten character recognition of

Devanagari and Telugu Characters using support vector machines," in

Tenth International Workshop on Frontiers in Handwriting

Recognition, pp. 1-6. 2006.

[106] AM Al-Salman, H Alyahya, "Arabic online handwriting recognition:

A survey," in ACM International Conference Proceeding

Series,Association for Computing Machinery, 2017.

[107] Marc Parizeau, Rejean Plamondon, Xiaolin Li, "Segmentation And

Reconstruction Of On-Line Handwritten Scripts," Pattern

Recognition, vol. 31, no. 6, pp. 675-684, 1998.

[108] Nicholson J, Clapham C, Oxford Concise Dictionary of Mathematics,

Gradient.: Addison-Wesley, 2009.

[109] Han Shu, "On-line handwriting recognition using HMM,", ME theis,

MIT, 1996.

[110] Thomas Deselaers, Henry A. Rowley, Li-Lun Wang, Victor Carbune,

Daniel Keysers, "Multi-Language Online Handwriting Recognition,"

IEEE Transactions on Pattern Analysis And Machine Intelligence, pp.

1180-1194, 2016.

[111] K.H. Aparna,M. Kasirajan, G.V. Prakash, V.S. Chakravarthy, S.

Madhvanath, Aparna, "Online Handwriting Recognition for Tamil,"

in Ninth International Workshop on Frontiers in Handwriting

Recognition, Tokyo, 2004.

[112] V Anoop, VS Chakravarthy, G Shankar, "LEKHAK [MAL]: A System

for Online Recognition of Handwritten Malayalam Characters," in

NCC IIT Madras, 2003.

[113] M. Nakagawa, C. T. Nguyen, "Finite State Machine Based Decoding

of Handwritten Text Using Recurrent Neural Networks," in 15th

International Conference on Frontiers in Handwriting Recognition

(ICFHR), pp. 246-251, 2016.

[114] R. Fernandez, L. Sanchez, D. Alvarez, "Stroke-based intelligent

character recognition using a deterministic finite automaton," in Logic

Journal of the IGPL, vol. 23, no. 3, pp. 463-471, 2015.

[115] Wikipedia((2019),Wikipedia[Online], https://en.wikipedia.org/wiki/

Deterministic_finite_automaton#RS59

[116] Pitts. W, McCulloch W. S, "A Logical Calculus of the Ideas Immanent

in Nervous Activity," Bulletin of Mathematical Biophysics, pp. 115–

133, 1943.

[117] Scott D, Rabin M. O, "Finite automata and their decision problems,"

IBM Jornal of Research and Development, pp. 114-125, 1959.

[118] Wang D-H, Liu C-L, Zhang H, "Keyword Spotting From Online

Chinese Handwritten Documents Using One-Vs-All Trained

Character Classifier," in International Conference on Frontiers in

Handwriting Recognition, pp. 271-276, 2010.

[119] Nabil Aouadi AK, "Word spotting for Arabic handwritten historical

document retrieval using generalized hough transform," in Third

International Conference on Pervasive Patterns Applications, pp. 67-

71, 2011.

[120] Gil J, Pinto J, Sousa J, "Word indexing of ancient documents using

fuzzy classification," Fuzzy Systems IEEE Transactions, pp. 852-862,

2007.

[121] Andrew Tomkins, Daniel Lopresti, "On the Searchability of Electronic

Ink," in Fourth International Workshop on Frontiers in Handwriting

Recognition, pp. 156—165, 1997.

[122] Yoshua Bengio, Yann Le Cun, "Word Normalization for On-Line

Handwritten Word Recognition," in Proceedings of the 12th IAPR

International Conference on Pattern Recognition, vol. 2, pp. 409-413,

1994.

[123] Michael Unsar, Akram Aldroubi, Murray Eden, "B-Spline Signal-

Processing.2. Efficient Design and Applications," in IEEE

Transactions on Signal Processing, vol. 41, pp. 834-848, 1993.

[124] J. D'Errico, "MATLAB Central File Exchange.," 2016. [Online].

https://www.mathworks.com/matlabcentral/fileexchange/34874-

interparc),[Accessed September 7, 2016 September 7, 2016.

September 7, 2016].

[125] Baiju.K.B, Lajish V.L, Sabna.T.S, "Online handwritten Malayalam

word recognition from Ayurveda Prescriptions using Support Vector

Machines," Complience Engineering Journal, vol. 10, no. 11, pp. 243-

249, 2019.

[126] Rajib Ghosh, Gouranga Mandal, "A novel Approach of Skew

Correction for Online Handwritten Words," International Journal of

Computer Applications, vol. 48, no.9, pp. 45-48, 2012.

 [127] R. Manmatha, T. M. Rath, "Word image matching using dynamic time

warping," in IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2003.

[128] L. I. Jiaping Zhao, "shapeDTW: Shape Dynamic Time Warping,"

Pattern Recognition, vol. 74, pp. 171-184, 2018.

[129] K. B. Urala, A. G. Ramakrishnan, S. Mohamed., "Recognition of open

vocabulary, online handwritten pages in Tamil script," in Proceedings

of the International Conference on Signal Processing and

Communications, pp. 1-6, 2014.

[130] N.V. Neeba, Anoop Namboodiri, C.V. Jawahar, P.J. Narayanan,

"Recognition of Malayalam Documents," in Guide to OCR for Indic

Scripts.: Springer, pp. 125–146, 2009.

[131] Herve Abdi, "Centroid," Wiley, 2009. [Online]. Available:

http://www.wiley.com/wires/compstats.

[132] G Sita, A G Ramakrishnan, S Madhvanath, N Joshi, "Comparison of

Elastic Matching Algorithms for Online Tamil Handwritten Character

Recognition," in IWFHR , pp. 444-449, 2004.

[133] Baiju. KB, "Effect of Directional Features in the Recognition of Online

Handwritten Characters in Malayalam," in Infinitude:Frontiers of

Research in Mathematical and Computing Sciences. UGC-HRDC,

University of Calicut, 2018.

List of Publications by the Author

[1] K. B. Baiju, T. S. Sabna, and V. L. Lajish, “Segmentation of

Malayalam Handwritten Characters into Pattern Primitives and

Recognition using SVM”, International Journal of Engineering and

Advent Technology, vol. 9, no. 3, pp. 1817–1822, 2020.

[2] K. B. Baiju, V. L. Lajish, “Primitive Segmentation of Online

Malayalam Handwritten Strokes using Ramer-Douglas-Peucker

Algorithm and Eight Direction Freeman Code”, International. Journal

of Research in Electronics, Computing and Engineering, vol. 7, no. 2,

pp. 87–90, 2019.

[3] T. S. Sabna, K. B. Baiju, and V. L. Lajish, “Online Handwritten

Malayalam Word Recognition from Ayurveda Prescriptions using

Support Vector Machine”, Compliance Engineering. Journal, vol. 10,

no. 11, pp. 242–250, 2019.

[4] K. B. Baiju, “Effect of Directional Features in the Recognition of

Online Handwritten Characters in Malayalam”, Infinitude, UGC-

HRDC, University of Calicut, pp. 30–40, 2018

[5] K. B. Baiju, K. Sabeerath, and V. L. Lajish, “A Quick Review on

Features and Classification Techniques in Online Recognition of

Handwritten Dravidian Scripts”, International Journal of. Research in

Advent Technology., vol. 6, no. 11, pp. 3245–3251, 2018.

[6] K. Sabeerath, K. B. Baiju, , “Review of Feature Extraction and

Classification Techniques for OHCR in Indian Scripts”, International

Advanced Research Journal of Science, Engineering and. Technology,

vol. 3, no. 10, pp. 131–135, 2016.

[7] K. B. Baiju, K. Sabeerath, “Online Recognition of Malayalam

Handwritten Scripts - A comparison using KNN, MLP and SVM”, 2016

IEEE International Conference on Advanced. Computing,

Communication and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur,

India, pp. 2078–2083, 2016.

 [8] K. B. Baiju, K. Sabeerath, and V. L. Lajish, “Online Recognition of

Malayalam Scripts with Minimized Feature Dimensions”, International

Journal of Advanced Research in Computing and. Communication

Engineering., vol. 5, no. 9, pp. 472–476, 2016.

