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ABSTRACT

The thesis presents the theoretical study of enhancing or suppressing synchrony
and the emergence of chimera states in a network of Hindmarsh-Rose neurons,
as a nonlinear system. Different methods have been employed to enhance the
synchrony in the neural network owing to its vital role in signal transmission and
memory processing. However, the unwanted synchrony among neurons results
in several pathological conditions. Desynchrony is thought to be important for
certain functions in the brain, such as attention and perception, because it allows
different neural populations to process information independently and in a flexi-
ble manner. The coexistence of synchronised and desynchronised states is called
chimera states. It was assumed that nonlocal coupling was an essential condition
for the existence of chimera states and obtaining chimeras in globally and locally
coupled networks was considered rare. In this thesis, novel techniques like dis-
tance dependent coupling, cross coupling and self coupling in multiple variables
are introduced to induce chimera states in the Hindmarsh-Rose neuron network.

The external inputs are found to control synchrony in the network. It finds
practical application in the treatment of diseases like Parkinson’s or Alzheimer’s
disease. The distance-dependent coupling induces chimera states and reduces
synchrony in globally coupled network. Travelling chimeras are obtained on the
modification of initial conditions in locally coupled network. The system with
self and mixed electrical coupling synchronises at a lower coupling strength com-
pared to the system with cross coupling. We have obtained chimera states in the
network with self coupling in multiple variables. The three coupled differential
equations is modified to a set of four coupled equations to include the field effects.
The system shows changes in firing patterns under the influence of electromag-
netic induction. The chemical self coupling enhances synchrony and also induces
chimera states in the network whereas the cross coupling is incapable of inducing
synchrony and chimera states. The work is extended to two dimenisonal lattice
topology and the threshold for coupling strength to obtain synchrony is found to
be independent of the network size. The influence of cross coupling in the two
dimensional lattice is found to induce spatial chimeras.

This work helps in understanding the dynamics and collective behavior of a
nonlinear system under the influence of external stimuli, synaptic connections,
coupling schemes and different topologies. It provides insight into the functioning
and control of these interconnected systems. This research can be relevant for
understanding the dynamics of real neural networks.
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സാരം 

 

 

ഈ പ്രബന്ധം  ഹിന്ദ്മാർഷ്-റ ാസ് ന്യൂറയാണുകളെ ഒരു റരഖീയമല്ലാത്ത ഗണിത മാതൃകയായി 
അന്ുമാന്ിച്ചു ളകാണ്ട് ശൃംഖല്യിൽ സമന്വയം, അസമന്വയം കിറമ  അവസ്ഥകൾ എന്നിവളയ 
കു ിച്ചുള്ള സസദ്ധാന്തിക രഠന്ം അവതരിപ്പിക്കുന്നു. സിഗ്നൽ പ്രാൻസ്മിഷന്ില്ും ളമമ്മ ി 
റപ്രാസസ്ിംഗില്ും സമന്വയത്തിന്ള  സുപ്രധാന് രങ്ക് കാരണം ന്യൂറ ാണുങ്ങെുളര ശൃംഖല്യിൽ 
സമന്വയം വർദ്ധിപ്പിക്കുന്നതിന് വയതയസ്ത രീതികൾ ഉരറയാഗിച്ചിരുന്നു. എന്നിരുന്നാല്ും, 

ന്യൂറ ാണുകൾക്കിരയില്ുള്ള അന്ാവശയമായ സമന്വയം ന്ിരവധി റരാഗാവസ്ഥകൾക്ക് 
കാരണമാകുന്നു. മാപ്തമല്ല, പ്ശദ്ധയും ധാരണയും റരാല്ുള്ള തല്റച്ചാ ിളല് ചില് പ്രവർത്തന്ങ്ങൾക്ക് 
അസമന്വയം പ്രധാന്മാളണന്ന് കരുതളപ്പരുന്നു. കാരണം ഇത് വയതയസ്ത ന്യൂ ൽ 
റരാപ്പുറല്ഷന്ുകളെ സവതപ്ന്തമായി വിവരങ്ങൾ റപ്രാസസ്് ളചയ്യാൻ അന്ുവദിക്കുന്നു. സമന്വവും 
അസമന്വവും മിപ്ശിതമായിവരുന്ന അവസ്ഥളയ കിറമ   എന്ന് വിെിക്കുന്നു. കിറമ  
അവസ്ഥകെുളര ഉത്ഭവത്തിന്ും ന്ില്ന്ിൽപ്പിന്ും റന്ാൺ റല്ാക്കൽ സംറയാജന്ം അതയാവശയമാളണന്ന് 
അന്ുമാന്ിക്കളപ്പട്ടു. മാപ്തമല്ല ആറഗാെതല്ത്തില്ും പ്രാറദശികതല്ത്തില്ും സംറയാജികളപ്പട്ട  
ശൃംഖല്യിൽ കിറമ ഗൾ ല്ഭിക്കുന്നത് അരൂർവമായി കണക്കാക്കളപ്പട്ടിരുന്നു. ഈ പ്രബന്ധത്തിൽ,  

ഹിന്ദ്മാർഷ്-റ ാസ് ന്യൂറയാണുകെിൽ ദൂരളത്ത ആപ്ശയിച്ചുള്ള സംറയാജന്ം, റപ്കാസ് സംറയാജന്ം, 

ഒന്നില്ധികം റവരിയബിെുകെിൽ സവയം സംറയാജന്ം തുരങ്ങിയ സാറങ്കതിക വിദയകൾ 
ഉരറയാഗിച്ച് കിറമ  അവസ്ഥകൾ ഉണ്ടാക്കാന്ുള്ള ന്ൂതന് മാർഗങ്ങൾ അവതരിപ്പിക്കുന്നു. 

 

          ബാഹയ ഉറത്തജങ്ങൾ ശൃംഖല്യിളല് സമന്വയം ന്ിയപ്ന്തിക്കുന്നതായി കളണ്ടത്തി. ഇത് 
രാർക്കിൻസൺസ് അളല്ലങ്കിൽ അൽഷിറമഴ്സസ് റരാല്ുള്ള റരാഗങ്ങെുളര ചികിത്സയിൽ 
പ്രറയാജന്പ്രധമാവും. ദൂരളത്ത ആപ്ശയിച്ചുള്ള സംറയാജന്ം ആറഗാെ സംറയാജിത ശൃംഖല്യിൽ 
കിറമ  അവസ്ഥകളെ റപ്രരിപ്പിക്കുകയും സമന്വയം കു യ്ക്ക്കുകയും ളചയ്യുന്നു. പ്രാറദശികമായി 
സംറയാജിച്ച ശൃംഖല്യിൽ പ്രാരംഭ വയവസ്ഥകെുളര രരിഷ്ക്കരണം മൂല്ം പ്രചരിക്കുന്ന 
കിറമ കൾ ല്ഭിച്ചു. സവയം, മിക്സഡ് ഇല്ക്പ്രിക്കൽ സംറയാജന്മായി താരതമയളപ്പരുത്തുറപാൾ 
റപ്കാസ് സംറയാജന്ം ഉള്ള സിസ്റ്റത്തിൽ വല്ിയ സംറയാജന് ശക്തിയിൽ സമന്വയം ല്ഭിക്കുന്നു. 
ഫീൽഡ് ഇഫക്റുകൾ ഉൾളപ്പരുത്തുന്നതിന്ായി മൂന്ന് ഡിഫ ൻഷയൽ സമവാകയങ്ങൾ ഉള്ള മാതൃക 
ന്ാല് സംറയാചിത സമവാകയങ്ങൊയി രരിഷ്ക്കരിച്ചു. ഒന്നില്ധികം റവരിയബിെുകെിൽ സവയം 
സംറയാജിത ശൃംഖല്യിൽ കിറമ  അവസ്ഥകൾ ല്ഭിച്ചു.  സവദയുതകാന്തിക ഇൻഡക്ഷന്ള  
സവാധീന്ത്തിൽ ന്യൂറ ാണുങ്ങെുളര ഫയ ിംഗ് രാററണുകെിൽ മാറങ്ങൾ കാണളപ്പരുന്നു. ളകമിക്കൽ 
സവയം സംറയാജന്ം സമന്വയം വർദ്ധിപ്പിക്കുകയും ശൃംഖല്യിൽ കിറമ  അവസ്ഥകളെ 
റപ്രരിപ്പിക്കുകയും ളചയ്യുന്നു. അറതസമയം റപ്കാസ് സംറയാജന്ത്തിൽ അവയ്ക്ക്ക് കഴിവില്ല.  ഒരു 
ദവിമാന് ല്ാറിസിൽ പ്കമീകരിച്ച ശൃംഖല് വിശകല്ന്ം ളചയ്യുറപാൾ സമന്വയം റന്രുന്നതിന്ുള്ള 
ശക്തി ശൃംഖല്യുളര വല്ുപ്പത്തിൽ ന്ിന്ന് സവതപ്ന്തമാളണന്ന് കളണ്ടത്തി. ദവിമാന് ല്ാറിസിളല് റപ്കാസ് 
സംറയാജത്തിന്ള  സവാധീന്ം സ്റരഷയൽ കിറമ കെുളര ഉത്ഭവം റപ്രരിപ്പിക്കുന്നതായി കളണ്ടത്തി. 

 

           ഈ പ്രബന്ധം ബാഹയ ഉറത്തജന്ം, വയതയസ്ത സംറയാജന്-വിന്യാസ രീതികൾ എന്നിവയുളര 
സവാധീന്ത്തിൽ റരഖീയമല്ലാത്ത സിസ്റ്റത്തിന്ള  കൂട്ടായ ളരരുമാറം മന്സ്ില്ാക്കാൻ 
സഹായിക്കുന്നു. ഇത് രരസ്രരബന്ധിത സംവിധാന്ങ്ങെുളര ന്ിയപ്ന്തണവും 
പ്രവർത്തന്ളത്തക്കു ിച്ചുള്ള ഉൾക്കാഴ്സച ന്ൽകുന്നു. ഈ ഗറവഷണം യഥാർത്ഥ ന്യൂ ൽ 
ശൃംഖല്യുളര ചല്ന്ാത്മകത മന്സ്ില്ാക്കാൻ സഹായകരമാകും. 
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Preface

Nonlinear systems play a vital role in our modern world ranging from modelling

physical phenomena to engineering applications. These systems are complex and

challenging to understand, yet essential to various fields. The aim of the present

work is to analyse synchronisation behaviour of a network of nonlinear biological

oscillators and provide a comprehensive understanding of their behaviour and

properties. The results obtained from the study contribute to the development

of better methods for the design, control and analysis of these nonlinear systems.

The thesis presents the findings of our research in a clear and concise manner

and highlights the importance of nonlinear systems in various fields.

Nonlinear systems have widespread applications in various fields, including

engineering, robotics, biology, economics, finance, machine learning and environ-

mental studies. They are used to model complex systems and to design controls

that ensure stability and performance. Neural networks, which are based on

biological neurons, also use nonlinear models to comprehend data and make pre-

dictions. The nonlinearity of neuron models allows them to mimic the dynamics

of real life neurons.

This thesis presents a theoretical study of the different methods through

which a network is driven into synchrony, desynchrony and chimera states. The

thesis is organised as follows: Chapter 1 provides an overview of basic termi-

nologies used in the thesis. In chapter 2, the Hindmarsh-Rose (HR) network

with mean field coupling is analysed under the influence of external stimuli and an

exponentially decaying coupling strength. The stimuli helps to control the syn-

chrony in the network whereas the decaying coupling strength induces chimera

xix



states. In chapter 3, the mean field coupling is given a distance dependence

governed by power law factor. The synchrony decreases with an increase in the

power law factor and chimera states are induced in the network with global, non-

local and local interactions. Chapter 4 analyses the influence of cross coupling

of state variables in the electrical mode. In-phase and anti-phase oscillations are

induced in the two coupled system under the influence of activator and inhibitor

coupling, respectively. In chapter 5, the modified HR network which incorpo-

rates electromagnetic induction with the help of memristor is analysed under the

influence of external stimuli and distance-dependent field couplings. The mem-

ristor induces changes in the firing patterns of the neurons. In chapter 6, the

memristive HR network in ring topology is analysed with chemical cross con-

nections in membrane potential and electromagnetic flux. The self and mixed

interactions induces synchrony in the network whereas cross coupling is inca-

pable of it. In chapter 7, the memrsitive HR network is analysed in 2D lattice

topology with distance-dependent coupling. The coordination number and net-

work size is varied for the analysis. In chapter 8, the study has been extended

to a network in 2D lattice with cross coupling and distance-dependent chemical

coupling. Chapter 9 summarises the findings of the thesis and describes future

prospects of the work.
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Chapter 1

Fundamental concepts

1.1 Introduction

Every process in nature that seems chaotic has a hidden order of action. A wild

and unpredictable storm with howling wind and heavy rain may seem like com-

plete chaos and disorder at first glance. But random patterns seem to emerge

on closer observation. The electric charge distribution in the case of lightning

strikes also follows random patterns. Chaotic characteristics have been proven to

exist in wind flow following the principles of fluid dynamics. The raindrops may

appear chaotic, but they always follow the laws of gravity and motion. The study

that assists in uncovering the underlying order in seemingly chaotic processes,

analysing it, controlling it and making predictions is called nonlinear dynamics.

Nonlinear systems are found in a wide range of fields including physics, engineer-

ing, economics, biology and more [1, 2]. Examples of nonlinear systems include

chaotic systems like weather, electronic oscillators, coupled physical oscillators,

robot and aircraft. Despite the practical and theoretical challenges that come

with the study of nonlinear systems, such as the difficulty in solving nonlinear

equations analytically, this field is crucial in our understanding of nature. To

overcome these challenges, numerical methods are often utilised to analyse and

control nonlinear systems. One of the most significant applications of nonlinear

systems is in the field of biological systems, such as studying neurodynamics or
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modelling the cardiovascular cycle. In neuroscience, the principles of nonlinear-

ity play a crucial role in understanding the complex behaviour and dynamics

of neural networks and how they process information. Some examples of the

use of nonlinear systems in neural science include the modeling of neural activity

through nonlinear models, the study of synaptic plasticity and learning rules and

the analysis of large scale network dynamics. The neuron models are represented

by a set of nonlinear differential equations that explain the firing patterns of a

single neuron as well as the collective behaviour of a network of neurons.

1.2 Neuron models

Nonlinear models are used to study the individual and collective dynamics of

neurons[3, 4]. Neuron models are mathematical representations of the behaviour

and properties of neurons. Neurons are specialised cells that transmit signals in

the nervous system and ion channels are key to this process. When a neuron

receives a signal, it generates an electrical impulse known as action potential.

The generation of an action potential involves the movement of ions across the

neuron’s membrane. At rest, the neuron has a negative charge inside relative to

the outside, maintained by a higher concentration of potassium ions inside and

a higher concentration of sodium and calcium ions outside. When a stimulus

triggers an action potential, sodium channels open and allow sodium ions to flow

into the neuron, which depolarises the membrane potential. This depolarisation

then causes potassium channels to open, allowing potassium ions to flow out of

the neuron, which repolarises the membrane potential and brings it back to its

resting state.

Calcium ions are also involved in processes like learning and memory. They

can enter the neuron through specialised channels and trigger the release of neu-

rotransmitters, which are chemicals that carry signals between neurons. The

neurotransmitters, which get bound to specialised receptor proteins on the re-

ceiving neuron, generate a new electrical signal that can either excite or inhibit

the neuron in the chain. The electrical signals generated at the synapses are
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summed up in the receiving neuron and can either reach the threshold for trig-

gering an action potential or not, depending on the strength of the inputs. This

process is repeated across many neurons to transmit signals throughout the ner-

vous system, resulting in the processing of information and the ability to respond

to stimuli in the environment [5]. They are used in computational neuroscience

to study the function and dynamics of neuronal networks. There are various

types of neuron models including Hodgkin-Huxley model [6], FitzHugh-Nagumo

model [7], Izhikevich model [8], Hindmarsh-Rose model [9] and Leaky Integrate

and Fire model [10], among others. Each model represents different aspects of

neuronal behaviour and is used to study different phenomena in brain.

1.3 Hindmarsh-Rose neuron model

The Hindmarsh-Rose (HR) neuron model has several advantages over other mod-

els, making it a popular choice in various applications. The HR model is ver-

satile, capable of reproducing multiple types of dynamic behaviours, such as

bifurcations, limit cycles and chaos, which makes it suitable for a wide range of

scenarios [9]. Its mathematical structure is relatively simple, making it easier to

understand and analyse. The HR model also incorporates biologically realistic

features, such as slow and fast variables, which accurately describe the behaviour

of real neurons [11]. Additionally, the model’s ability to capture multiple time

scales in the dynamics of a single neuron is another advantage that sets it apart

from other models [12]. The HR model has been successfully applied in various

fields, such as neuroscience, physics and engineering, demonstrating its predictive

power in a variety of contexts [13–16].

The HR model is mathematically expressed as a set of three nonlinear ordi-

nary differential equations, which are functions of the dimensionless dynamical
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variables x(t), y(t) and z(t) [9]:

ẋ = y + ax2 − bx3 − z + I,

ẏ = c− dx2 − y,

ż = r(s(x− xe)− z).

(1.1)

The variable x denotes the membrane potential, y denotes the spiking variable

and z denotes the bursting variable. The y variable is influenced by the flow of

sodium and potassium ions, while the z variable is influenced by the flow of

calcium ions. The fast oscillations of x and y correspond to spikes, while the

slow oscillations of the z variable cause bursts. The qualitative behaviour of the

neurons is controlled by an external current, I [17]. The parameters a, b, c and

d are used to represent the behaviour of the fast ion channels. The parameter

r is used to model the behaviour of the slow ion channels. The values of the

parameters are fixed as: a = 3, b = 1, c = 1, d = 5, r = 0.006, s = 4 and

xe = −1.61 [18].

1.4 Memristive HR model

The memristor is an electronic component with two terminals that operates

passively and it was first proposed by Leon Chua in 1971 [19]. It is a non-

volatile device that can remember its resistance state even after power is turned

off, making it useful in memory applications. Memristors have been proposed as

potential candidates for building next generation computing and memory devices,

as they offer several advantages such as high density, low power consumption

and fast switching times [20]. At the molecular level, the ionic current crosses

the cell membrane, leading to variations in ion concentration and resulting in

electromagnetic induction. The effect of alternating electromagnetic fields is

depicted by magnetic flux and memristors act as a bridge between the membrane

potential and magnetic flux [21, 22]. The transfer of charged ions results in

fluctuations of intracellular and extracellular charged ions causing a fluctuating
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electromagnetic field. This field modulates the membrane potential of neurons

and thus allows communication between neurons even in the absence of synaptic

coupling. The modified HR neuron model is given as:

ẋ = y − ax3 + bx2 − z + I − k1ρ(ϕ)x,

ẏ = c− dx2 − y,

ż = r(s(x− xe)− z),

ϕ̇ = k2x− k3ϕ.

(1.2)

ϕ describes the magnetic flux across the membrane, k1ρ(ϕ)x denotes induction

current and k1 is induction coefficient [21, 22]. The term ρ(ϕ) is the memory

conductance of a magnetic flux controlled memristor. This term describes the

coupling between magnetic flux and membrane potential of the neuron. The

change in magnetic flux induced by membrane potential is given by k2x and the

leakage of the magnetic flux is represented by k3ϕ.

1.5 Coupling and topology

Coupling and topology are important concepts in neural networks, as they have a

significant impact on the performance and behaviour of the network. The proper

design of coupling and topology can greatly improve the ability of the network to

learn and generalise new data. [23]. Coupling refers to the connections between

neurons in a network. The strength of these connections determines how much

influence one neuron has on another [24].

1.5.1 Electrical, chemical and field coupling schemes

A synapse is a specialised junction that allows communication between neurons

or between neurons and other types of cells such as muscles or glands. Electrical

synapses are types of synapses that enable direct electrical communication be-

tween neurons. They are formed by gap junctions, which are specialised protein

channels that create a direct pathway between the cytoplasm of adjacent neu-
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rons. Electrical synapses allow rapid and bidirectional transmission of electrical

signals between neurons and are found in many regions of the brain and nervous

system [25]. A chemical synapse uses neurotransmitters to transmit signals from

one neuron to another, or to other types of cells [26]. When an action poten-

tial reaches the presynaptic terminal, it triggers the release of neurotransmitters

which diffuse across the synaptic cleft and bind to receptors on the post synaptic

terminal. Chemical synapses are the most common type of synapse in the ner-

vous system and they are responsible for many important functions, including

sensory processing, motor control, learning and memory.

In mean field coupling of neurons, the activity of each neuron is influenced by

the average activity of a large population of neurons, rather than by the activity

of individual neurons. This approach is often used to model large scale neural

networks, where the number of neurons is so large that it is computationally

infeasible to simulate the activity of each individual neuron [27]. Electromagnetic

field coupling of neurons refers to the influence of electromagnetic induction

produced by the change in concentration of ions across the neuron membrane

[21, 22]. Electromagnetic fields can affect behaviour of neurons in a variety of

ways, including altering their firing rates and synchronising their activity.

1.5.2 Chain, ring and lattice topology

Topology refers to the arrangement of neurons in a network. The networks with

more layers or nodes can often learn more complex representations, while net-

works with fewer layers or nodes may be limited in their representation capacity.

The choice of topology should depend on the problem to be solved and the

amount of data available for learning. The combination of well designed cou-

plings and topology can allow neural networks to learn and generalise effectively

[28]. The choice of topology can have a significant impact on the representational

capacity of a neural network and demonstrate how different topologies can lead

to different types of representations being learned [29]. Thus, the coupling and

topology play a crucial role in the design of neural networks and the proper se-

lection of these elements can greatly impact the performance and behaviour of
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the network [30, 31].

As the name suggests, a linear chain topology of neurons refers to a network

that is arranged in a linear sequence or chain with the neurons at both ends not

connected to each other [32]. If the first and last neurons are connected it forms

the ring topology [33]. A network of neurons that are arranged in a regular and

repeating pattern form a lattice, resulting in a highly structured and ordered

network [34, 35]. In all these topologies, if each neuron is connected only to

its closest neighbours, this is known as nearest neighbour or local coupling. On

the other hand, if the connections between neurons extend to a fixed number of

neurons in their vicinity, this is referred to as nonlocal coupling. Finally, if each

neuron is connected to all of the neurons in the network, this is known as global

coupling.

1.6 Distance-dependent coupling and cross inter-

actions

The distance-dependent coupling refers to the dependence of the strength of

connections on the distance between neurons. The idea is that neurons that are

farther apart have weaker connections than those that are close together [36].

This concept has been studied in both theoretical and experimental contexts and

has been shown to play a significant role in the functioning of neural networks

[37, 38].

Theoretical studies have demonstrated that distance-dependent coupling can

help to create more efficient and robust neural networks. It helps to reduce the

number of connections needed to achieve a given level of accuracy in a network

and increase the stability of the network against external perturbations [39].

Experimental studies have also provided evidence for the importance of distance-

dependent coupling in the nervous system. The studies in both invertebrates

and vertebrates have shown that the strength of synaptic connections between

neurons decreases with increasing distance [40, 41]. Additionally, imaging studies
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have shown that the distribution of synapses on dendritic arbors is non-uniform

and can be influenced by factors such as the distance between neurons and the

presence of intervening barriers [42].

In a neuron model, cross coupling refers to the interaction between different

state variables that describe the behaviour of a neuron [43]. A large number of

studies have been carried out considering interactions between same variables

and ignoring the cross interactions. This cross interaction is important because

it helps to capture the complex and dynamic nature of neural behaviour and can

provide a more accurate representation of how neurons interact and communicate

with each other in the brain [44]. By including cross coupling between these

state variables, the model can better reflect the interplay between these different

factors and provide a more complete picture of neural behaviour [45].

The cross coupling can help to account for nonlinear and feedback interactions

between state variables, which are often important for capturing the complex

and dynamic behaviour of neurons [46]. The cross coupled neuron models can

provide a better insight into the mechanisms underlying various neural disorders

and diseases [44]. The cross coupling is an important aspect of neuron modelling

that helps to provide a complete and accurate representation of the behaviour of

neurons and the interactions between different factors that shape this behaviour.

1.7 Synchrony and pattern formations

Synchrony in neurons refers to the phenomenon where groups of neurons fire

action potentials in a coordinated manner, producing oscillations or waves of

activity in the brain. This synchronous activity is thought to play a crucial role

in neural coding and information processing in the brain [47]. Neuron models

have been successful in explaining various phenomena in neuroscience, including

the synchronisation of neurons in the retina, the generation of brain waves in the

cortex and the underlying mechanisms of epilepsy [48–50].

Desynchrony in neurons refers to the absence of coordinated firing of action

potentials among groups of neurons. Instead, the neurons exhibit more random
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and independent patterns of activity. Desynchrony is thought to be important

for certain functions in the brain, such as attention and perception [51], because

it allows different neural populations to process information independently and

in a flexible manner. Research on desynchrony in neurons has implications for

understanding various neurological and psychiatric disorders, such as schizophre-

nia, depression and anxiety [52].

Chimera states are complex spatiotemporal patterns of synchronised and

desynchronised behaviour that arise in the networks of coupled neurons. The

occurrence of chimera states is closely associated with actual phenomena ob-

served in nature, including unihemispheric slow wave sleep in selected aquatic

animals and birds that migrate [53]. The studies have shown that chimera states

can emerge from a wide range of initial conditions [54, 55] and can exhibit a

rich variety of dynamics, including travelling waves, spiral waves and chaotic be-

haviour [35, 56–58]. Chimera states have been observed in various experimental

settings, such as in brain, chemical reactions and mechanical systems [59–61].

The study of chimera states is an active area of research in nonlinear dynamics

and neuroscience, with many open questions and avenues for future exploration.

Multichimera states refer to complex dynamical patterns where some subsets

of oscillators synchronise in different ways while other subsets remain desyn-

chronised [62]. These states are characterised by a coexistence of multiple syn-

chronous and asynchronous regions in the network. Multichimera states have

been observed in electronic circuits [63] and biological systems, particularly in

networks of neurons [64]. In the brain, multichimera states can arise due to the

complex interactions between different types of neurons and synapses. It causes

a variety of cognitive and behavioural phenomena. The multichimera states

have been suggested to play a significant role in epilepsy, where some regions of

the brain exhibit synchronous activity while others remain asynchronous. Mul-

tichimera states have also been observed in other biological systems, such as

populations of cells in microbial colonies or cardiac cells in the heart. Under-

standing the dynamics of multichimera states in biological systems is an active

area of research, with potential implications for the diagnosis and treatment of
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various neurological and cardiovascular disorders.

Mixed oscillatory systems exhibit multiple types of oscillatory activities si-

multaneously, often in the form of a combination of low frequency and high fre-

quency oscillations. These types of neurons have been observed in various brain

regions and are thought to play a significant role in information processing and

communication between different brain regions. It was first discovered in neural

networks when the desynchronised neurons are interspersed among those that

are either stationary or oscillate in synchrony [65]. Later, it was also observed

in HR neurons under the influence of a controller [66].

Another type of pattern formation exhibited by neurons is clusterisation,

where a group of neurons in the network show similar dynamics [66]. These

neurons can form functional units in the brain, such as a sensory processing

module and are thought to communicate with each other to process information.

1.8 Quantifiers

1.8.1 Statistical factor of synchronisation

The complete synchronisation of coupled oscillators is quantified using various

statistical measures. One of the important quantity is statistical factor of syn-

chronisation [22].

R =
⟨F 2⟩ − ⟨F ⟩2

1
N

∑N
i=1[⟨x2i ⟩ − ⟨xi⟩2]

(1.3)

where F = 1
N

∑N
i=1 xi and ‘⟨ ⟩’ represent the average of the variable over time.

xi is the state variable of the ith oscillator in the network. i runs from 1 to N ,

N being the total number of oscillators in the network. The value of R ranges

from 0 to 1, with higher values indicating stronger synchronisation.

1.8.2 Kuramoto order parameter

Phase synchrony refers to the degree to which the phase of the ongoing oscilla-

tions of different neurons become coordinated over time. In other words, it is a
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measure of how closely the timing of the oscillations is aligned. While complete

synchrony between neurons can be important for certain functions, such as in the

synchronisation of heart cells in the heartbeat, in many cases, phase synchrony

also has its own relevance. This is because phase synchrony allows for selective

and flexible communication between neurons, as the specific timing of spikes in

each neuron can carry information about the nature and context of the neural

activity.

The Kuramoto order parameter, introduced by Kuramoto, is faithfully used

to distinguish between the systems with phase synchrony, intermittent phase

synchrony and desynchrony [67]. The order parameter has been calculated using

the formula:

R(t)eiψ(t) ≡ 1

N

N∑
j=1

eiΦj(t), (1.4)

where R(t), ψ represent the magnitude and angle of a centroid phase vector,

respectively. Φj represents the phase of jth neuron, with j = 1, 2,..., N.

In a phase synchronised system, the value of R approaches unity and for

a desynchronised system, the value is 0. The time averaged Kuramoto order

parameter, R, has been computed as:

R = limT→∞(1/T )

∫ T

0

R(t)dt. (1.5)

1.8.3 Coefficient of variability

The inter burst intervals (IBI) are an important aspect of neuronal activity that

provide valuable information about neuronal firing patterns and communica-

tion. The temporal and spatial characteristics of IBI have been distinguished by

studying the coefficient of variability (CV ). Generally, variability signifies the

measure of deviations from a central value. The term CV reveals the variations

in the characteristics of IBI collectively [68]. Spatial coefficient of variability,

CVs, represents deviations in the IBIs of kth burst of every neuron, whereas, the

temporal coefficient of variability, denoted by CVt, gives the deviations in IBIs of

each neuron, during its time evolution [69]. The low value of deviations in CVs/t
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shows that the system attains phase synchrony.

The coefficients of variability, CVs and CVt are defined as:

CVs/t =
σs/t(IBI)

⟨IBI⟩
(1.6)

where σ(IBI) is the standard deviation of the IBIs and ⟨IBI⟩ is the time

average taken over the IBIs of all neurons.

The spatial and temporal standard deviations are obtained using the formu-

lae:

σs =
1

kmax

kmax∑
k=1

σ(IBIk,i), where, i = 1, 2, ..., N

σt =
1

N

N∑
i=1

σ(IBIk,i), where, k = 1, 2, ..., kmax

(1.7)

1.8.4 Transverse Lyapunov exponent

Lyapunov exponents provide a qualitative and quantitative characterisation of

dynamical behaviour of a chaotic system. It represents the exponentially fast

divergence or convergence of nearby orbits in phase space. If a system has one

or more positive Lyapunov exponents, it is considered chaotic, indicating a high

level of unpredictability. This concept has been applied to analyse the dynamics

of various systems [70].

The transverse Lyapunov exponent (TLE), in turn is a measure of the rate

of divergence of nearby trajectories in a dynamic system, in directions perpen-

dicular to the direction of motion [71]. It provides an idea about the condition

at which the coupled system is synchronised [72]. The maximum transverse

Lyapunov exponent (MTLE) is used as the bifurcation parameter to get the

point of transition to synchrony. The MTLE becomes negative when system is

synchronised.

The fundamental approach for determining TLE of any coupled system re-

mains the same [73–75]. Let N identical coupled oscillators be represented by
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the dynamical equations of the form:

dx1

dt
= F 1(x1, x2, ..., xN) + cG(x1, x2, ..., xN),

dx2

dt
= F 2(x1, x2, ..., xN) + cG(x1, x2, ..., xN),

...

dxN

dt
= FN(x1, x2, ..., xN) + cG(x1, x2, ..., xN),

(1.8)

Here, the xi are oscillator coordinates such that (xi1, xi2, ..., xin) ∈ Rn and F :Rn

→ Rn is the nonlinear vector field controlling the dynamics of a single oscillator.

The function Gi: Rm →Rn, where m = nM , describe the coupling of the ith

oscillator to all other oscillators and c is a scalar coupling constant.

The geometry of the synchronous attractor is such that it lies on a hyperplane

determined by the n− 1 vector equalities

(x11, x
2
1, ..., x

N
1 ) = (x12, x

2
2, ..., x

N
2 ) = ... = (x1n, x

2
n, ..., x

N
n ) (1.9)

The hyperplane is called the synchronisation manifold and has dimension N .

As long as the entire system’s phase space point remains on the synchronisa-

tion manifold the systems remain in synchrony. Thus all the motions that are

transverse to the synchronisation manifold should be damped out. For this, the

Jacobian matrix has been formed which has the following structure:

J1 + Gγ1,1 Gγ1,2 Gγ1,3 Gγ1,4 · · · Gγ1,n

Gγ2,1 J2 + Gγ2,2 Gγ2,3 Gγ2,4 · · · Gγ2,n

Gγ3,1 Gγ3,2 J3 + Gγ3,3 Gγ3,4 · · · Gγ3,n
...

...
...

... · · · ...

Gγn,1 Gγn,2 Gγn,3 Gγn,4
... Jn + Gγn,n


(1.10)
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Where,

Ji =



∂F 1

∂x1i

∂F 1

∂x2i

∂F 1

∂x3i

∂F 1

∂x−I4 · · · ∂F 1

∂xNi

∂F 2

∂x1i

∂F 2

∂x2i

∂F 1

∂x3i

∂F 1

∂x4i
· · · ∂F 1

∂xNi

∂F 3

∂x1i

∂F 3

∂x2i

∂F 3

∂x3i

∂F 3

∂x4i
· · · ∂F 3

∂xNi...
...

...
... · · · ...

∂FN

∂x1i

∂FN

∂x2i

∂FN

∂x3i

∂FN

∂x4i
· · · ∂FN

∂xNi


(1.11)

The terms γi,i and γi,j is obtained by partially differentiating the coupling term

with respect to fNi and fNj , respectively, f being the state variable. The Jacobian

given by eqn. 1.10 is diagonalised in a coordinate system that isolates the stabil-

ity of the synchronisation manifold from the transverse directions. The system

attains stabilised synchrony when MTLE becomes negative.

1.8.5 Strength of incoherence and discontinuity measure

The strength of incoherence is a term used to verify the occurrence of chimera

states. For this purpose, the local standard deviation, σ(m), has been evaluated

from the time series. The total number of oscillators, N , is split into ‘M’ bins of

equal length ‘n′’ = N/M and the difference dynamical variable ωj = xj − xj+1

has been obtained. Then the local standard deviation is defined as [76]:

σ(m) =

〈√√√√ 1

n′

mn′∑
j=n′(m−1)+1

[
ωj − ⟨ω⟩

]2〉
t

, (1.12)

where, m = 1,2,...,M; ⟨ω⟩ = 1
N

∑N
i=1 ωi(t). ⟨...⟩t denotes the average over

time. The term SI is defined as:

SI = 1−
∑M

m=1 sm
M

, sm = H(ϵ− σ(m)). (1.13)

Here, H is the Heaviside step function and ϵ is a predefined threshold. The

values of SI are 1, 0 or between 1 and 0, representing incoherent, coherent and

chimera or multichimera states, respectively. In order to distinguish chimera

from multichimera states, discontinuity measure (DM) is calculated [76], which

is defined as:
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DM =

∑M
i=1|si+1 − si|

2
, (1.14)

where, sM+1 = s1. For chimera, DM = 1 and for multichimera 2 ≤ DM ≤ M
2

.

1.9 Outline of the thesis

This thesis presents the studies on the synchronisation and the emergence of

chimera states in HR networks under the influence of external inputs, distance-

dependent coupling and cross interactions between the state variables. The

thesis is organised as follows: chapters 2, 3 and 4 analyse the HR network in

linear and ring topologies under the influence of external stimuli, as well as

distance-dependent and cross interactions. The HR network is then modified to

incorporate electromagnetic induction effects and its behaviour in the presence

of external inputs, distance-dependent coupling and cross coupling schemes are

analysed, which is presented in chapters 5 and 6. The study has been extended

to network with higher dimension and network size and is presented in chapters

7 and 8. Chapter 9 summarises the results of the thesis.

In chapter 2, the influence of spike input is analysed in HR network arranged

in linear chain topology with uniform mean field coupling. Mean field coupling

in the network is highly relevant because the neurons behave collectively. The

HR networks are also analysed under the influence of exponentially decaying

coupling strength. The synchrony is controlled by the external input, while

decaying coupling strength induces chimera states. In chapter 3, the HR network

is analysed in ring topology with global, nonlocal and local interactions. The

contribution from the neighbouring neurons is given a distance dependence by

taking the ratio of coupling strength to the distance between neurons. But the

decrease in the contribution is very steep. To avoid this, power law exponent

is introduced which produces a slower decrease in contribution from neurons

as the distance between them increases. In chapter 4, the HR neural network is

analysed with cross coupling between state variables in electrical mode. The cross

interactions are modelled using a rotation matrix, through which the self, mixed
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and cross interactions are realised by varying coupling phase. Electrical coupling

involves the connection of neurons through a gap junction and is mathematically

represented using a linear equation.

In chapter 5, the memristive network of HR neurons is analysed under the

influence of external time varying inputs in linear chain topology. The network

is further analysed under the combined effects of distance-dependent memristors

and mean field coupling. In chapter 6, the chemical cross interactions of state

variables are analysed in memristive HR neural neural network in ring topology.

In chemical coupling, the propagation of information occurs through the release

and diffusion of a chemical known as neurotransmitter, which is expressed using

a nonlinear equation.

In chapter 7, the memristive HR neurons are analysed in a 2D lattice topol-

ogy, with distance-dependent chemical coupling governed by power law exponent.

The lattice arrangement of neurons is a useful tool for modelling spatial relation-

ships between neurons which helps to understand the underlying structure of

neural networks. Chapter 8 analyses the cross coupling of state variables in

a 2D lattice with distance-dependent chemical coupling. The network exhibits

spatial chimeras, which are observed in networks with both regular and random

connectivity.

Chapter 9 summarises the main findings of the thesis and presents potential

future directions for further research in the current work.
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Chapter 2

Linear chain of mean field coupled

Hindmarsh-Rose neurons

2.1 Introduction

The basic principle behind memory and signal transmission in humans is syn-

chronised oscillations in the brain. The human brain has approximately 1011

neurons. The collective behaviour of neuronal synapses can be effectively ex-

pressed through mean field coupling [77, 78], which is an all to all coupling that

has been studied in various systems such as FitzHugh-Nagumo and Hodgkin-

Huxley neurons [79, 80]. The existence and stability of localised solutions in a

network of quadratic integrate and fire neurons with a mean field coupling have

been analysed [81]. A large number of coordinated neurons, which is typical in

mean field models [82, 83], exhibit a Kuramoto self synchronisation transition

with sufficient coupling strength [84, 85].

However, synchronisation is not always desirable. There have been various

methods developed to suppress synchronisation in oscillatory networks with [27]

and without feedback [86]. Neuron models can respond to different external

stimuli by altering bursting modes and neuronal activities [87, 88]. An effective

technique for controlling synchrony in a globally coupled ensemble using pre-

cisely timed pulses has been reported [89, 90]. The dependence of pathological
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conditions such as epilepsy, Parkinson’s disease (PD) and schizophrenia on the

unwanted synchronisation of independent nuclei has been demonstrated both ex-

perimentally [91, 92] and theoretically [93, 94]. This pathological synchronisation

is modelled using mean field coupling [27, 95]. Externally applied electrical im-

pulses could partially or completely control the collective behaviour of neurons,

which forms the theoretical foundation for the surgical technique known as Deep

Brain Stimulation (DBS). This has been studied successfully using the Hodgkin-

Huxley neuron model [96, 97]. It is hypothesised that abnormal synchronisation

of independent neurons causes PD and that DBS suppresses the tremors of PD

by desynchronising neurons [98]. The high desynchronising ability of high fre-

quency spikes with optimal amplitude and pulse width in DBS has been proven

clinically [99]. The automated adaptation of DBS treatment to the fluctuations

in disease symptoms is highly valued [100].

This chapter analyses the phase synchrony and its control by an external

input, in a network of mean field coupled HR neurons. The influence of the

coupling strength, which exponentially decays with distance, is also analysed.

The chapter is organised as follows: The mean field coupled model is described

in section 2.2. Section 2.2.1 studies the phase synchrony in the network using

bursting phase. The synchronisation pattern is analysed using the coefficient

of variability and the Kuramoto order parameter in section 2.2.2 and 2.2.3, re-

spectively. The capability of spike input, in controlling phase synchrony, in the

excitatory mean field coupled HR neurons is presented in section 2.3. The sys-

tem with intermittent phase synchrony under the influence of the external input

is presented in section 2.3.1. The effect of the input on the well synchronised

system is presented in section 2.3.2. The system with coupling strength that de-

cays with distance is analysed in section 2.4. The synchronisation scenario and

the emergence of chimeras are analysed in sections 2.4.1 and 2.4.2, respectively.

Section 2.5 presents the results of the chapter.
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2.2 Phase synchrony

The mean field coupling assumes that each neuron is globally (all to all) coupled

to other neurons, which is typical for a neural population [101].

The modified HR model with spike input has the form:

ẋi = yi + ax2i − bx3i − zi + I + gImfi + Isp,

ẏi = c− dx2i − yi,

żi = r(s(xi − xe)− zi), i = 1, 2, ..., N.

(2.1)

xi, yi and zi represent the membrane potential, spiking variable and bursting

variable of ith neuron, respectively. yi is constituted by the flow of Na+ and

K+ ions and the flow of Ca+ ions constitute the zi term. The fast oscillations of

xi and yi correspond to spikes, whereas, the slow oscillations of the zi variable

cause burst. The external current, I, controls the qualitative behaviour of the

neurons [17].

In a network of mean field coupled neurons, each neuron is driven by the

force, gImfi [27]. g is the coupling strength and Imfi is the mean field term.

It represents the average of contributions from the membrane potentials of all

neurons and is directly proportional to the synaptic current which is given as:

Imfi (t) =
1

N − 1

N∑
j=1
j ̸=i

ϵijxj(t). (2.2)

Indices i and j denote the postsynaptic and presynaptic neuron, respectively.

N is the total number of neurons. xj is the membrane potential of the jth

neuron. In mean field approach, the potential, xi, is influenced by the average

of potentials, xj, where, j = 1, 2, 3, ..., N ; j ̸= i. The matrix element, ϵij, can

take values, 0, 1 or −1, if the presynaptic neuron j is disconnected, excitatory or

inhibitory, respectively, with respect to postsynaptic neuron, i. Fig. 2.1 shows

the mean field coupling topology in which the first neuron is coupled to the mean

potential of neurons 2 to N .

The term Isp represents the external input [96], which has the form:
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Figure 2.1: Schematic diagram of the coupling strategy in the mean field
approach. The combined effect of potentials of neurons, from 2 to N, influences
the potential of the first neuron. The value of ϵij decides the nature of coupling
viz. disconnected, excitatory or inhibitory.

Isp = AH

(
sin

(
2πt

ρ

))(
1−H

(
sin

(
2πt+D

ρ

)))
, (2.3)

where A, ρ and D represent the amplitude, interval and pulse width of spike

input, respectively. H is the bi-valued Heaviside step function, whose value is

zero for negative arguments and one for positive arguments.

The variation of ISI with increasing g have been studied for a single neuron

in a mean field coupled HR network, given by Eq. (2.1), with Isp = 0. The

parameters of the network are fixed as a = 3.0, b = 1.0, c = 1, d = 5, r = 0.006,

s = 4.0 and xe = −1.61 [18]. The initial conditions are chosen randomly between

0 and 1 and the external current, I, is taken as 3.1. The study shows that the

inhibitory mode has no influence on individual neuron dynamics, whereas the

excitatory mode induces dynamical change in each neuron under coupling. The

ISI-g diagram of a single neuron in an excitatory mean field coupled network

is shown in fig. 2.2. The scattered points near g = 0 represent the irregular

bursting dynamics of the system. With an increase in value upto g ≈ 0.2,

regular bursting character is observed, which is visible as the clustering of points
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Figure 2.2: Inter Spike Interval (ISI) of a single neuron in the excitatory mean
field coupled HR network with N = 100. The behaviour represented for single
neuron is consistent for every neuron in the network.

into two categories. The region, from g ≈ 0.2 to g ≈ 1.2, shows spreading of

points, which represents the irregularity induced in bursting. The accumulation

of points, from g ≈ 1.2 to 1.7, into two sections substantiates the dynamical

change to regular bursting, with two spikes per burst. For g > 1.7, the character

of the system is changed to tonic spiking represented by single bifurcation line.

Above the value g = 2.2, the system rests to a stable state and no oscillations

are produced. So, the studies are focused to the excitatory mean field network,

with 0 ⪅ g < 0.2, for which the system shows regular bursting.

2.2.1 The bursting phase

The bursting dynamics of HR neurons are periodic in nature and this periodicity

is used to calculate the bursting phase of the neurons [102]. The bursting phase

description is made simple by considering that, a burst begins at phase, Φ = 0

and evolves until Φ = 2π. The points in between evolve as:

Φi(t) = 2πki + 2π
t− tk,i

tk+1,i − tk,i
, (tk < t < tk+1), (2.4)

where tk,i is the time at which the kth burst of the ith neuron gets initiated.

Fig. 2.3(a) depicts time series of variables x (blue) and z (red). It is evident
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Figure 2.3: Time series and bursting phase of a single HR neuron. (a) Time
series of single HR neuron, exhibiting regular bursting. The blue and red lines
represent x and z variable, respectively. The black dashed lines corresponds
to the beginning of three consecutive bursts, represented as tk−1, tk, tk+1. (b)
Bursting phase, Φ, of the system.

from fig. 2.3(a) that the minima of the z variable coincides temporally with the

beginning of each burst in x variable, as shown by the black dashed lines. The

bursting phase of a single system has been calculated using Eq. (2.4) and is

shown in fig. 2.3(b). The linearly increasing phase proves the regularity in Inter

Burst Intervals (IBIs). The slight change in IBI is evident in the bending of the

phase line after t ≈ 800.

The phase synchronisation in the network of mean field coupled HR neurons,

given by Eq. (2.1), with Isp = 0, has been studied numerically using the burst-

ing phase. The analysis has been carried out for three coupling schemes, viz.,

disconnected, excitatory and inhibitory, by assigning values 0, +1 and −1, for

ϵij, respectively, in Eq. (2.1). The bursting phase lines of neurons with these

coupling schemes are shown in fig. 2.4.

The bursting phase lines of disconnected, excitatory and inhibitory neurons

are presented in fig. 2.4. The average phases of 20 neurons with error bars

are plotted in the figure. The error bar signifies the separation of each phase

line from the average. The low value of error bar depicts the phase synchrony

in the system with excitatory coupling, whereas the high error bar values of

disconnected and inhibitory connected neurons represent the desynchrony in the

system. From the studies, it is found that complete phase synchrony is observed

22



200 400 600 800 1000

5

10

15

20

25

30

35

40

Figure 2.4: Average of bursting phase lines of N = 20 neurons, with error
bars, in disconnected (ϵij = 0, g = 0), excitatory (ϵij = +1, g = 0.2) and
inhibitory (ϵij = -1, g = 0.2) connections.

in the excitatory mean field network. The synchronisation behaviour has been

analysed using the coefficient of variability and the Kuramoto order parameter.

2.2.2 The coefficient of variability

The temporal and spatial characteristics of IBI have been distinguished by study-

ing the coefficient of variability (CV ). Generally, variability signifies the measure

of deviations from a central value. The term CV reveals the variations in the

characteristics of IBI collectively [68]. The spatial coefficient of variability, CVs,

represents deviations in the IBIs of kth burst of every neuron, whereas the tem-

poral coefficient of variability, CVt, gives the deviations in IBIs of each neuron

during its time evolution [69]. The low value of deviations in CVs/t shows that

the system attains phase synchrony.

The coefficients of variability, CVs and CVt, are calculated using the formulae

given in Eq. (1.6)

The variation of CVt (blue) and CVs (red) with increasing g are presented in

fig. 2.5. The high values of CVs/t at g = 0 specify the deviations in the firing

times of neurons in an uncoupled system. As g increases, CVs/t decreases, which

implies that neurons possess same firing times. For values, 0 < g ⪅ 0.1, the value

of CVt is small compared to CVs, signifying that regularity in bursting across

neurons trails behind the regularity of bursting in each neuron. When g > 0.1,
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Figure 2.5: Variation of the CVs/t with coupling strength (g), plotted on the
Y-axis and X-axis, respectively.

CVs/t become low, representing that the system has attained phase synchrony.

2.2.3 The Kuramoto order parameter

The Kuramoto order parameter is calculated using the Eq. (1.4). The variation

of averaged Kuramoto order parameter, R, with coupling strength, g, of an

excitatory mean field coupled system represented by Eq. (2.1), with N = 100

and Isp = 0, have been studied, using the formula given in Eq. (1.5). As shown

in fig. 2.6, R increases as g increases. The system attains an intermittent phase

synchrony, R = 0.52, at g = 0.022 and a well synchronised state with R = 0.94,

at g = 0.15 [103].

2.3 Controlling phase synchrony using external

input

The effects of spike input on the excitatory mean field coupled system with phase

synchrony have been analysed in this section. The bursting phase, coefficient of

variability and Kuramoto order parameter have been studied by varying the

amplitude, A, pulse width, D and interval, ρ, of the input.
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Figure 2.6: Variation of the averaged Kuramoto order parameter (R) with the
increase in coupling strength (g), plotted on the Y-axis and X-axis, respectively.
R ≈ 1 and R ≈ 0 denotes synchrony and desychrony, respectively. The value
of g corresponding to the intermittent synchrony, R = 0.52, is displayed along
with the well synchronised system with R = 0.94.

2.3.1 Intermittent phase synchrony

The influence of spike input on an excitatory mean field coupled system with

intermittent phase synchrony has been analysed by studying the phase of bursts,

coefficient of variability and Kuramoto order parameter.
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Figure 2.7: Average of bursting phase lines of N = 20 neurons with the
error bar, in excitatory mean field coupled HR neurons with intermittent phase
synchrony (g = 0.022), under the influence of spike input (A = 3, D = 0.6, ρ
= 3).

The intermittent phase synchrony at g = 0.022 and the control of synchrony

by the external stimulus are shown in fig. 2.7. The low value of the error bar
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Figure 2.8: Variation of the coefficient of variability (CVs/t) and the Ku-
ramoto order parameter (R) for mean field coupled HR neurons with intermit-
tent phase synchrony (N = 100, g = 0.022, ϵij = +1) under the influence of
spike input. Figures on the left panel represent variation of CVs/t. (a) D =
0.6, ρ = 3, (b) A = 3, ρ = 3, (c) A = 3, D = 0.6. Figures in the right panel
represent the variation of R. (d) D = 0.6, ρ = 3, (e) A = 3, ρ = 3, (f) A = 3,
D = 0.6.

in the system without input represents the similarities in burst phase lines. The

suppression of intermittent phase synchrony under the influence of spike input

is visible from the high valued error bars. The increase in the average value

of phases in the presence of external stimuli is due to the additional bursts

introduced by the input.

The variation of CVs/t with amplitude of the input is shown in fig. 2.8(a).

When A = 0, the system shows intermittent phase synchrony. As A increases,

CVs/t increases, which shows the capability of the input to desynchronise and

cause changes in the firing times of each neuron. At higher values of A, the term

CVs/t remains constant, showing its desynchronising ability. The correspondence

between values of CVs/t implies that an excitatory mean field coupled system
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loses synchrony in the temporal and spatial characteristics of IBIs, identically,

in the presence of the input. The variation of CVs/t with respect to change in

pulse width of the input are shown in fig. 2.8(b). The variation of CVs/t shows

that greater desynchronising ability is visible for values, D > 0.3. The variation

in CVs/t with the interval of the input is shown in fig. 2.8(c). The CVs/t shows

a high value, signifying phase desynchrony and irregularities in bursts, for low ρ

values (i.e., high frequency).

The capability of the spike input to desynchronise the mean field coupled

system is quantified by studying the variation of R with A, D and ρ. The

variation of R with the change in parameter, A, is shown in fig. 2.8(d). The

capability of high frequency input to suppress the synchrony is found to be at

A > 3, compared to the low amplitudes. The variation of R, with change in D

is as shown in fig. 2.8(e). The control of synchrony is higher at values of D >

0.3. The change in desynchronising ability of the input with change in interval

is presented in fig. 2.8(f). Input with low interval, i.e., high frequency, is found

to have higher desynchronising ability. From the above studies, it is clear that a

spike input with high amplitude, high pulse width and low interval has greater

ability to desynchronise the coupled system and the variation of CVs/t is found

to be opposite to those of R.

The parameter space diagram A-ρ, presented in fig. 2.9, reveals the richer

dynamics of the excitatory mean field coupled system with intermittent phase

synchrony in the presence of input. Input with high interval (low frequency) is

found to have less desynchronising capability. A high number of blue points,

signifying desynchrony, is visible for inputs with high amplitude and low interval

(high frequency).

2.3.2 Phase synchronised system

The study is extended to the analysis of the influence of spike input on an

excitatory mean field coupled system, represented by Eq. (2.1), exhibiting phase

synchrony, at g = 0.15.

The phase synchrony, at g = 0.15 and its control by the external stimulus

27



Figure 2.9: Parameter space showing the synchrony pattern for mean field
coupled HR neurons with intermittent phase synchrony under the influence of
the external spike input. A is plotted along X-axis and ρ along Y-axis. Here,
D = 0.6 and g = 0.022. Yellow and blue colours represent synchrony and
desynchrony, respectively.
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Figure 2.10: Average of bursting phase lines of N = 20 neurons, with the
error bars in excitatory mean field system with phase synchrony (g = 0.15),
under the influence of spike input (A = 3, D = 0.6, ρ = 3).
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Figure 2.11: Variation of the coefficient of variability (CVs/t) and the Ku-
ramoto order parameter (R) for mean field coupled HR neurons with phase
synchrony (N = 100, g = 0.15, ϵij = +1) under the influence of spike input.
Figures on the left panel represent variation of CVs/t. (a) D = 0.6, ρ = 3, (b)
A = 3, ρ = 3, (c) A = 3, D = 0.6. Figures in right panel represent the variation
of R. (d) D = 0.6, ρ = 3, (e) A = 3, ρ = 3, (f) A = 3, D = 0.6.

are shown in fig. 2.10. The low valued error bars represent the phase synchrony

in the coupled neurons and the high valued error bars represent the reduction in

phase synchrony by the external stimulus. The introduction of additional bursts

by the external stimulus is visible from the increase in the value of the average

bursting phase.

The irregularities induced by the spike input are studied using CVs/t and R,

with change in A, D and ρ, as shown in fig. 2.11. The variation of CVs/t with

A confirm that high amplitude inputs have better ability to bring irregularity in

bursting, as shown in fig. 2.11(a). The variation of CVs/t with D is presented

in fig.2.11(b). A high value of CVs/t is found for values, D > 0.2. The higher

desynchronising ability of high frequency input is presented in fig. 2.11(c). The

desynchronising ability of the spike input is quantified using R. The variation of
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R with A is shown in fig. 2.11(d). The higher the amplitude of the input, the

better the desynchronising ability, represented by the low values of R. The low

value of R for input is visible, with values D > 0.3, indicating high desynchro-

nising ability, as shown in fig. 2.11(e). The better desynchronising ability for

inputs with a low interval is shown in fig. 2.11(f).

The studies on the influence of spike input on an excitatory mean field coupled

system with intermittent synchrony is consistent with the results of the well

synchronised system as well. It is found that high frequency input with optimum

amplitude and pulse width has a better desynchronising ability.

The studies on the effect of spike input have been extended by analysing

the parameter space g-A for low and high frequency inputs. Fig. 2.12(a) shows

the parameter space diagram g-A for low frequency input. The lower number

points representing desynchrony (blue points) in the figure show the inability of

input to desynchronise the system. The system shows phase synchrony for strong

coupling (0.1 ≤ g ≤ 0.6). Fig. 2.12(b) shows the parameter space diagram g-A

for high frequency input. The abundance of blue points over yellow points proves

the higher desynchronising ability of high frequency input. For low amplitudes,

the input is unable to desynchronise the system, even if the frequency is high.

2.4 Influence of decaying coupling strength

Chimera states are complex and interesting spatiotemporal patterns in which

coherent and incoherent states coexist. Even though chimera states are abundant

in synaptically coupled neural network with nonlocal coupling, their emergence

in non-synaptically coupled and globally coupled network is of great interest

nowadays [104]. The decaying of coupling strength with distance is relevant

in many real world systems like electromagnetic force, gravitational interaction,

radioactive decay, etc.

In this section, the coupling strength is considered in a varying form, which

decreases exponentially with distance between the neurons. The dynamic equa-

tion with decaying coupling strength is given by [9, 27]:
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(a) D = 0.6 and ρ = 20

(b) D = 0.6 and ρ = 3

Figure 2.12: Parameter space showing the synchrony pattern for excitatory
mean field coupled HR neurons under the influence of the external spike input.
g is plotted along X-axis and A along Y-axis. (a) D = 0.6 and ρ = 20 (low
frequency), (b) D = 0.6 and ρ = 3 (high frequency). Yellow and blue colours
represent synchrony and desynchrony, respectively.
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Figure 2.13: Variation of the statistical factor of synchronisation (R) with
coupling constant (g) for different values of decay constant (λ).

ẋi = yi + ax2i − bx3i − zi + I +
1

N − 1

N∑
j=1
j ̸=i

gi,j,

ẏi = c− dx2i − yi,

żi = r(s(xi − xe)− zi), i = 1, 2, ..., N.

(2.5)

The coupling term is given as gi,j = g0+exp(−λ|i−j|), where g0 is a constant,

λ is the decay constant and |i − j| gives the weight factor, which indicates the

distance between the neurons.

2.4.1 Synchronisation scenario

The synchronisation scenario of a linear chain of HR neurons in the presence of

decaying coupling constant is analysed in this section. The amount of synchrony

is quantified using the statistical factor of synchronisation, R, given by the Eq.

(1.3)

The total number of neurons in the network, N , is fixed at 135. The variation

of R with g0 for different values of λ is presented in fig. 2.13. At low values of

g0, synchrony is found to decrease with an increase in the value of λ, up to a

particular value of λ. Beyond that value, λ has no effect on the synchrony. But
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Figure 2.14: Emergence of chimera states under the influence of decaying
coupling strength. (a) g0 = 0.2, (b) g0 = 1, (c) g0 = 1.5. Here, λ = 0.15.

at higher values of g0, the synchrony is unaltered by the value of λ.

2.4.2 Emergence of chimera states

This section exhibits the different patterns induced in the network by the decay-

ing coupling strength. The incoherence, chimera and coherent patterns obtained

for different values of g0 is shown in fig. 2.14. The value of λ is fixed at 0.15.

At g0 = 0.2, the system exhibits incoherent state, as shown in fig. 2.14(a). At

g0 = 1, chimera state is obtained and is presented in 2.14(b). The system exhibits

complete coherence at g0 = 1.5, which is shown in 2.14(c).

The emergence of chimera in the network due to the distance-dependent

coupling is analysed with the help of a quantitative measure called strength

of incoherence (SI) given in Eq. (1.13).

The variation of SI for different values of λ are presented in fig. 2.15. At

low value of λ, the system exhibits chimeras at low values of g0, as shown in fig.

2.15(a). At higher values of g0, the system is at coherence. With the increase

in value of λ, the probability of obtaining chimeras is also high, as shown in fig.

2.15(b). The chimera and coherent states obtained for λ = 0.09 are shown in

fig. 2.15(c). At high values of λ, the system exhibits incoherent, chimera and

coherent states which are shown in fig. 2.15(d). It is found that the probability

of obtaining chimera states is high at moderate values of λ.
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Figure 2.15: Variation of the strength of incoherence (SI) with coupling
constant (g) for different values of decay constant (λ).

2.5 Results and conclusions

In this chapter, the mean field coupled HR network is analysed under the influ-

ence of a uniform and distance-dependent coupling scheme. The phase synchrony

in a network of HR neurons with uniform mean field coupling and the capability

of the external input to control the synchrony have been analysed. The ISI-g

diagram has been analysed to study the change in the dynamics of each neuron

in the mean field network. In inhibitory mode, the mean field coupling has no

influence on individual neuron dynamics, whereas in excitatory mode, the sys-

tem shows regular bursting, irregular bursting, tonic spiking and eventually a

stable state condition with an increase in coupling strength. The average phase

lines with low valued error bars show that excitatory mean field coupling induces

phase synchrony in the system, whereas inhibitory coupling induces desynchrony.

The change in firing times of each neuron under mean field coupling has been

studied using the coefficient of variability in spatial and temporal domains. The

excitatory mean field coupling makes the neurons fire at the same time. The

phase synchrony attained by the system has been quantified using the Kuramoto
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order parameter. The system shows intermittent phase synchrony at weak cou-

pling strength. The system shows well synchronised state for strong coupling.

The capability of the input in controlling the synchrony of the excitatory mean

field coupled system with phase synchrony is studied by varying amplitude, pulse

width and interval. It is found that high frequency spike input with optimum

amplitude and pulse width has a better capability to induce desynchrony in the

system. The parameter space analysis substantiates the result. This study may

find application in programming of the stimulator used in DBS treatment by

focusing on three parameters (amplitude, frequency and pulse width), to deliver

maximum efficacy and safety.

The network is studied under the influence of a coupling constant that decays

exponentially with distance. The synchrony is found to decrease with an increase

in the decay constant. However, the distance-dependent interactions are found

to induce chimera states in the network. The probability of obtaining chimera

states is found to be high at optimum values of the decay constant. At lower

values of the decay constant, the system tends to be more in coherent states and

chimera states are also observed. On the other hand, the system with a high

decay constant exhibits incoherent, coherent and chimera states.
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Chapter 3

Chimera states in HR network with

ring topology

3.1 Introduction

Global coupling finds relevance in oscillators which acts back on themselves. In

real life systems, neurons are connected by an enormous number of synapses and

global coupling is the most suitable coupling scheme to represent them. The

dynamics of globally coupled oscillators have attracted large attention recently

[77, 78]. The synchronisation scenario of uniform mean field coupled neural

network has been studied [105]. The symmetric coupling between identical os-

cillators leads to multistable states in which the synchronised and incoherently

oscillating groups coexist [106–108]. Kuramoto and Battogtokh discovered the

existence of these interesting spatiotemporal patterns in a ring network of sym-

metrically coupled phase oscillators [109] and named them chimera states. The

coupling function always plays an important role in the studies on chimera.

Earlier, the chimera patterns were limited to non-neural systems like phase os-

cillators. But in recent years, the existence of chimeras in neural networks has

become a vastly studied research area. Many brain diseases such as Parkin-

son’s disease, epilepsy, Alzheimer’s disease, schizophrenia and brain tumours are

related with chimera states in neural systems [110, 111].
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Initially, it was assumed that nonlocal coupling was an essential condition for

the existence of chimera states. This demand was reasonable because in nonlocal

coupling, regions with different dynamics can coexist. The coupling range and

coupling strength are the two control parameters to induce chimera states in the

nonlocal coupling. But later, chimera states in oscillators with all to all coupling

that emerged from the breaking of symmetry were discovered [112, 113]. Chimera

like states were observed by Mishra et al. in globally coupled oscillators with

attractive and repulsive mean field feedback [114]. The emergence of chimera

states was demonstrated both theoretically and experimentally in an ensemble

of Stuart–Landau oscillators under nonlinear global coupling [115]. Omelchenko

et al. have observed the presence of multichimera states in nonlocally coupled

Van der Pol oscillators by increasing nonlinearity in the local dynamics [116].

Chimera states were also observed in a network with purely local coupling [117].

The decaying of coupling strength with the distance between two oscillators

is a more general and universal scheme that is relevant to real world systems.

However, this coupling scheme was not widely studied in the context of chimeras

and neural networks. But recently, chimera states were induced in ecological

systems with global, nonlocal and local interactions, which were realised by power

law exponent [118]. Long range interactions obeying a power law have also been

taken into account in the synchronisation of ferromagnetic spin models [119],

biological networks [120], hydrodynamic interactions of active particles [121, 122],

coupled map lattices [123] and phase oscillators [124].

The phase transition of a one dimensional ring of coupled nonlinear phase

oscillators from synchrony to complete desynchrony was induced by decreasing

the range of interactions [125]. The control of connections in animal brains by

a long range interaction with an algebraic scale has been studied [126]. The

synchronisation properties of neural networks with distance-dependent coupling

governed by a power law exponent have been analysed recently and are a newly

emerging field of interest [37, 127]. Chimera states were also induced in systems

for certain class of initial conditions [128–131]. The emergence of chimera states

in a chemically coupled ring network with global, nonlocal and local interactions
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and modified initial conditions were studied [64].

In this chapter, we have analysed the methods by which chimera states are

induced in a network of mean field coupled HR neurons. The ring structure

with global, nonlocal and local interactions is modified by introducing a power

law exponent that reduces the contribution of neurons involved in coupling as

the distance increases. The model and connection architecture are explained in

section 3.2. The emergence of chimera pattern and synchronisation behaviour

with power law exponent in a network with global interaction is numerically

studied in section 3.3. Section 3.4 deals with the synchrony pattern and chimera

states in nonlocally coupled network. The chimera states are induced in the

system with local coupling by modifying the initial conditions and are presented

in section 3.5. Section 3.6 summarises the results of the chapter.

3.2 The model and connection architecture

The collective dynamics of the mean field coupled HR neural network in ring

topology with global, nonlocal and local interactions have been analysed in this

section. These interactions are realised by controlling the number of neurons

taking part in the coupling. The advantage of using this scheme is that we

clearly get the number of interacting neurons, which is very important in mean

field coupling. In addition to it, we have also given a distance gradient effect to

the coupling using power law exponent. The value of power law exponent is so

adjusted that even the farthest neuron in the coupling has a contribution. The

model has the form [37]:

ẋi = yi + ax2i − bx3i − zi + I +
g

2p

p∑
j=1

xi−j + xi+j
jα

ẏi = c− dx2i − yi,

żi = r(s(xi − xe)− zi), i = 1, 2, ..., N.

(3.1)
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Where N represents the total number of neurons in the network. The vari-

ables xi, yi and zi, represent the membrane potential, spiking variable and burst-

ing variable of ith neuron, respectively. yi is constituted by the flow of Na+ and

K+ ions and the flow of Ca+ ions constitutes the zi term [132]. The constant pa-

rameters a, b, c and d model the working of the fast ion channel and r represents

the slow ion channel. s and xe are other constant parameters of the system. I is

the external current that controls the qualitative behaviour of the neurons and g

is the mean field coupling strength. p is the number of neighbours to which each

neuron is coupled in either direction of the ring and helps to limit the number of

neurons in the coupling. So the coupling circle with radius, r = p
N

contains 2p

neurons. α is the power law exponent, which gives the distance gradient effect in

the structure. The power law exponent ensures that the nearest neighbour has

a greater contribution to the coupling term.

The collective dynamics of mean field coupled HR neural network with global,

nonlocal and local interactions and distance gradient effect have been studied by

analysing Eq. (3.1). The values of the parameters are chosen as a = 3, b = 1, c

= 1, d = 5, r = 0.006, s = 4, xe = −1.61 and I = 3.1 [18, 133]. Neurons from

1 to N are placed in a ring structure. A periodic boundary condition x0 = xN ,

x−1 = xN−1 and xN+1 = x1 is considered to realise the ring configuration. The

synchronisation scenario of the network is quantified with the statistical factor

of synchronisation (R) and synchronisation error (E). The collective pattern for-

mations are distinguished by the strength of incoherence (SI) and discontinuity

measure (DM).

3.3 Global interaction

The network of HR neurons in ring topology with distance gradient effect induced

by power law exponent has been analysed. The number of oscillators considered

is 135. We have taken p = N−1
2

in Eq. (3.1) to realise global interaction. The

collective dynamics and pattern formations are studied in this section.

The error in the network is another indicator of synchrony in the network.
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Figure 3.1: Variation of the statistical factor of synchronisation (R) and
synchronisation error (E) with coupling strength (g) for different values of
power law exponent (α). The variation of R with g for α = 0 is shown in the
inset.

The synchronisation error is obtained as [134]:

E =

〈
1

N − 1

N∑
j=2

√
(xj − x1)2 + (yj − x1)2 + (zj − x1)2

〉
t

(3.2)

A zero value of synchronisation error suggests that all neurons follow the

same trajectory and corresponds to complete synchrony. The variation of R and

E with coupling strength, g has been analysed for different values of α, as shown

in fig. 3.1. The plot in the inset shows the statistical factor of synchronisation

for α = 0. It shows that without distance gradient effect, the system acquires

complete synchrony at g = 2. But as the values of α increases the value of

coupling strength at which the system attains synchrony also increases. For

higher values of α, the synchrony is unattainable. The variation of R, presented

on the left side of the Y-axis, shows that complete synchrony is unattainable for

high values of α. This result is substantiated by the variation of E on the right

Y-axis. We have studied the system for different values of α and it is inferred

that for α > 0.5, the global interaction transforms to nonlocal coupling. So, we

have analysed the system for α ≤ 0.5.

The non-existence of chimeras in the mean field coupled HR neurons with

global interaction, for α = 0, has been analysed in fig. 3.2. The left panel

of the figure depicts the snapshots of the network and the right panel shows
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Figure 3.2: Non-existence of chimera states in the network with global in-
teraction. Left panel shows the snapshots of membrane potential with α = 0,
for various values of coupling strength (g). (a) desynchrony at g = 0.1, (c)
imperfect synchrony at g = 1.1, (e) synchrony at g = 2.3. The right panel ((b),
(d) and (f)) shows the corresponding spatiotemporal patterns. The colourbar
in the right panel represents the membrane potential, x.

the corresponding spatiotemporal patterns. Fig. 3.2(a) presents the incoherent

system. The corresponding spatiotemporal pattern is presented in fig. 3.2(b)

shows that the dynamics is chaotic bursting. The imperfect synchronised system

is shown in fig. 3.2(c) and the dynamics of the network is chaotic spiking as

presented in fig. 3.2(d). The coherent system is presented in fig. 3.2(e). Fig.

3.2(f) shows that the dynamics is amplitude death for coherent state.

The distance gradient effect induces chimera patterns in the network. The

interesting patterns in mean field coupled HR neurons for different values of

g and α are analysed. The system passes through incoherent, multichimera,

chimera and coherent states as the value of g is increased, which is shown in the

left panel of fig. 3.3. The incoherent system is presented in fig. 3.3(a) and the

corresponding spatiotemporal pattern in fig. 3.3(b) indicates that the dynamics
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Figure 3.3: Emergence of chimera states under the influence of power law
exponent in the network with global interaction. Left panel shows the snapshots
of membrane potential with α = 0.2, for various values of coupling strength
(g). (a) incoherence at g = 0.5, (c) chimera at g = 1.3, (e) multichimera at g
= 2.2, (g) coherence at g = 2.5. The right panel ((b), (d), (f) and (h)) shows
the corresponding spatiotemporal patterns. The colourbar in the right panel
represents the membrane potential, x.

is chaotic bursting. The chimera state obtained for g = 1.3 is presented in fig.

3.3(c). The dynamics is chaotic bursting as presented in the fig. 3.3(d). The

multichimera state obtained is presented in fig. 3.3(e). The dynamics is chaotic

bursting as represented in the fig. 3.3(f). The coherent system is presented in

fig. 3.3(g) and the dynamics is chaotic spiking which is presented in fig. 3.3(h).

The existence of incoherent, chimera, multichimera and coherent states in a

mean field coupled HR neural network with distance gradient effect is studied

using Eqs. (1.13) and (1.14), respectively, by varying α and g, as shown in fig.

3.4. The values of other parameters are chosen as follows: M = 15 and ϵ = 0.01.

For α = 0, the unattainability of chimera states is justified, as shown in figs.

3.4(a) and 3.4(b). The variation of SI with g for different values of α is shown
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Figure 3.4: Strength of incoherence (SI) and discontinuity measure (DM) are
plotted against coupling strength (g). The left panel shows SI at (a) α = 0, (c)
α = 0.2 and (e) α = 0.5. The right panel ((b), (d) and (e)) shows the DM for
the corresponding values. Here N = 135, M = 15 and ϵ = 0.01.

in figs. 3.4(c) and 3.4(e) and the corresponding plots for DM are shown in figs.

3.4(d) and 3.4(f). The emergence of chimera and multichimera states with the

introduction of power law exponent in network with global interaction are well

visible from them. The state of coherence is unattainable at high values of α.

This is in complete agreement with the results of synchronisation analysis.

The analysis of mean field coupled HR neurons with the distance gradient

effect in ring topology with global interaction shows that the power law exponent

reduces the synchrony and induces chimera states in the network.

3.4 Nonlocal coupling

The nonlocal interaction in the neural network of HR neurons is realised by

limiting the number of neurons with the help of p. α induces the distance gradient

effect in the network. The synchrony pattern is quantified with statistical factor

of synchronisation and error analysis. The existence of chimera and multichimera

patterns are also analysed, for various values of α and p. The maximum value

43



0 1 2 3 4

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

Figure 3.5: Variation of the statistical factor of synchronisation (R) and the
synchronisation error (E) with the coupling strength (g) in the network with
nonlocal interactions. Here α = 0.1.
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Figure 3.6: Variation of the statistical factor of synchronisation (R) and
the synchronisation error (E) with coupling strength (g) in the network with
nonlocal interaction. Here, α = 0.5.

of α is chosen as 0.5, so that the farthest neuron on the coupling circle marks its

contribution towards the coupling term.

The variation of the statistical factor of synchronisation and the synchroni-

sation error for low value of α is presented in fig. 3.5. The number of coupling

neurons is taken as p = 54 (i.e., r = 0.4) and p = 27 (i.e., r = 0.2). From

the figure, it is clear that the sychrony is independent of the number of neurons

taking part in the coupling. The system shows complete synchrony or coherence

state, for low values of α.

The variation of synchrony level with g for a high value of α is shown in fig.

3.6. This study verifies that the synchrony level is independent of the number of

neurons in the coupling circle. The synchrony is low in the system with a high
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Figure 3.7: Emergence of chimera and multichimera states induced by the
interplay of nonlocal coupling and power exponent law. Left panel shows the
snapshots of membrane potential. (a) chimera at p = 57, α = 0, g = 0.8,
(c) multichimera at p = 60, α = 0.1, g = 1.4, (e) chimera at p = 54, α =
0.2, g = 1.7, (g) multichimera p = 27, α = 0.1, g = 2.2. The right panel
shows the corresponding spatiotemporal patterns. The colourbar represents
the membrane potential, x.

power law exponent.

The existence of chimera or multichimera patterns in the mean field coupled

neural network for different values of p and α is shown in fig. 3.7. It is observed

that system exhibits chimera states by limiting the number of neurons in the

coupling circle alone, i.e., for α = 0, as shown in fig. 3.7(a). The corresponding

spatiotemporal pattern in fig. 3.7(b) shows that the dynamics is chaotic bursting.

The multichimera state is presented in fig. 3.7(c) and the corresponding dynamics

is spiking as shown in fig. 3.7(d). Fig. 3.7(e) presents the chimera state and the

corresponding chaotic bursting character is shown in fig. 3.7(f). Fig. 3.7(g) again

shows the multichimera state and the dynamics is chaotic bursting as shown in
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Figure 3.8: Strength of incoherence (SI) and discontinuity measure (DM) are
plotted against the coupling strength (g). The left panel shows SI for (a) p =
54 and (c) p = 27. The right panel (b) and (d) shows DM for the corresponding
values. Here, α = 0.1.

fig. 3.7(h).

The variation of SI and DM with g for different values of α and p has been

analysed. The left panel of fig. 3.8 represents the variation of SI with g for a

low value of α and the right panel shows the corresponding variation of DM.

The chimera and multichimera states for the network with high values of α are

presented in fig. 3.9. The variation of SI with g is plotted in the left panel

and that for DM is shown in the right panel. It is found that for fixed value

of p, the power law exponent enhances the possibility of obtaining chimera or

multichimera states in the network.

3.5 Nearest neighbour coupling

The network of HR neurons with local (nearest neighbour) interaction is analysed

in this section by fixing p = 1 in Eq. (3.1). The statistical factor of synchroni-

sation and synchronisation error have been studied by varying, g, as shown in

fig. 3.10. The synchronisation pattern on the left Y-axis shows a step like func-

tion and error analysis on the right Y-axis of the plot substantiates the result.

This marks the abrupt transition of the system from desynchrony to complete

synchrony.
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Figure 3.9: Strength of incoherence (SI) and discontinuity measure (DM) are
plotted against coupling strength (g). The left panel shows the SI at (a) p = 54
and (c) p = 27. The right panel (b) and (d) shows the DM for corresponding
values. Here, α = 0.5.
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Figure 3.10: Variation of the statistical factor of synchronisation and the
synchronisation error with the coupling strength for local coupling in mean
field coupled HR neurons in ring topology.
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Figure 3.11: Strength of incoherence (SI) of mean field coupled HR neurons
with local coupling without modifications in initial conditions.

On studying the SI for local coupling, it is found that the system is incapable

of attaining chimera or multichimera states, as shown in fig. 3.11. The complete

incoherence upto g < 2.3 and coherence for g ≥ 2.3 are in good agreement with

the synchrony analysis.

Since the nearest neighbour coupling is incapable of inducing chimera or

multichimera states, we have analysed the system by modifying the initial condi-

tions as follows: xi0 = 0.01(i− N−1
2

), yi0 = 0.02(i− N−1
2

), zi0 = 0.03(i− N−1
2

) for

i = 1, 2, ..., N−1
2

and xi0 = 0.1(N−1
2

− i), yi0 = 0.12(N−1
2

− i), zi0 = 0.21(N−1
2

− i)

for i = N−1
2

+ 1, ..., N [64].

The snapshot of the chimera state is presented in fig. 3.12(a). The spa-

tiotemporal pattern shown in fig. 3.12(b) suggests that the chimeras observed

are travelling chimera, i.e, it has a propagating nature over space and time. At

a particular time, a sub population of neurons show desynchronised state and

others show synchronised state. As time changes, the states also change. The

fig. 3.12(c) shows the multichimera state and the fig. 3.12(d) shows that the

multichimera state is travelling in nature.

The variation of SI and DM with g is presented in figs. 3.13(a) and 3.13(b),

respectively. This analysis supports the emergence of chimera and multichimera

states as a result of modified initial conditions.
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Figure 3.12: Emergence of the chimera states by modified initial conditions in
the network with local coupling. Left panel shows the snapshots of membrane
potential. (a) multichimera at g = 2.19, (c) chimera at g = 2.21. Right panel
(b) and (d) shows the spatiotemporal patterns for corresponding values. The
colourbar represents the membrane potential, x.
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Figure 3.13: Variation of (a) strength of incoherence (SI) and (b) disconti-
nuity measure (DM) for different values of mean field coupling strength (g) for
locally coupled Hindmarsh-Rose neurons with modified initial conditions. Here
N = 135, M = 15 and ϵ = 0.01.
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3.6 Results and conclusions

The techniques for inducing chimera states in neural networks with non-synaptic

coupling are presented in this chapter. Global, nonlocal and local interactions

are realised in the mean field coupled HR neurons with ring topology by limiting

the number of neurons involved in the coupling. In addition, the contribution

from the neurons is given a slow gradient effect using the power law exponent.

The synchrony level is quantified using the statistical factor of synchronisation

and the synchronisation error. The existence of chimera states is verified using

strength of incoherence. The discontinuity measure distinguishes the chimera

from multichimera states. In global interaction, it is found that power law ex-

ponent reduces synchrony in the network and also induces chimera states. In

nonlocal coupling, the synchrony level is found to be independent of the number

of neurons contributing to the coupling term, whereas the distance gradient effect

reduces synchrony in the network. The chimera states are induced by limiting

the number of neurons in the coupling. The power law exponent enhances the

possibility of chimera states in the network. In the nearest neighbour or local

coupling, chimera and multichimera states are induced by modifications in initial

conditions of the network.

The emergence of chimera states in networks with time delayed synaptic cou-

pling, non-synaptic (ephaptic) coupling, distance gradient coupling and modified

initial conditions is an area of great interest nowadays. The studies on chimera

states aim to explore the complex functions of the brain with the help of networks

of interconnected neurons.
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Chapter 4

Synchrony and pattern formations

by varying coupling phase

4.1 Introduction

The synchronisation of neural networks in numerous brain regions, including the

hippocampus, thalamus, neocortex and cerebellar cortex, is characterised by the

transition between anti-phase and in-phase oscillations in neurons [135]. When

the coupled neurons fire at the same time, then it is called in-phase oscillations.

Anti-phase oscillations arise when one neuron exhibits spiking behavior while

the other neuron is at rest [136]. The long range in-phase oscillations are con-

sidered to be beneficial for the coordination of various functions taking part in

different parts of the brain [137]. These rhythmic transitions are also crucial

for animal mobility [138]. Anti-phase oscillations were observed experimentally

in different functions such as attention task, sleeping and resting state of the

neurons [139–144]. A model consisting of two electrically coupled pacemakers

was analysed to study the in-phase and anti-phase oscillations [145]. The factors

that lead to stable anti-phase oscillations were analysed in the model of neurons

with biological applications [146, 147]. Travelling chimera were used to identify

the tumorous cells [44]. Researchers have proposed various methods to induce

these oscillations [138, 148]. Experiments on electronic neurons showed in-phase
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synchrony for positive electrical couplings and anti-phase oscillations for nega-

tive couplings. In chemical coupling, in-phase synchrony was found in excitatory

mode and anti-phase oscillations in inhibitory mode [149]. The HR network

showed interesting in-phase and anti-phase oscillations in electrical synapses for

moderate and strong couplings [150].

Chimera states and travelling waves in neural networks are of interest in

clinical studies and research, with numerically confirmed results using FitzHugh-

Nagumo (FHN) and leaky integrate and fire models [108]. Omelchenko et al.

introduced multichimera states in FHN oscillators using a rotation matrix and

cross coupling of state variables [62]. Researchers analysed the influence of ro-

tation matrix on FHN and HR neurons, fixing coupling phase [108, 151, 152].

These spatiotemporal patterns can be brought about by different means, in-

cluding distance-dependent coupling [127, 153], nonlocal interactions [154], cross

coupling or coupling through rotation matrices [152]. The formation of chimera

states can also be attributed to changes in initial conditions or network structure

[155]. Another possibility is that chimera states emerge inherently as a result of

the stabilisation effect of an incoherent subgroup on a coherent subgroup [156].

The underlying principle behind these methods is symmetry breaking [157].

The synchronisation scenario and pattern formations in the HR neural net-

work coupled by a rotation matrix, which helps to realise different coupling

schemes such as self, cross and mixed modes by varying the coupling phase are

analysed. This chapter is organised as follows: The model for two coupled HR

systems and the generation of in-phase and anti-phase oscillations are presented

in section 4.2. The synchronisation scenario and the analysis of its stability using

the Lyapunov function approach are also discussed in this section 4.2.1 and 4.2.2,

respectively. Section 4.3 is devoted to the analysis of N coupled network with self

and cross coupling of variables. The synchrony of the network is quantified and

the patterns obtained are presented. The quantifiers for incoherence, chimera,

multichimera and coherence are also calculated. Results are discussed in Section

4.4.
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4.2 In-phase and anti-phase oscillations

The influence of self, mixed and cross coupling of state variables on two coupled

HR neurons has been studied [44, 152]. The dynamical system is expressed by

the equations of the form:

ẋi = yi − ax3i + bx2i − zi + I + g[b11(xj − xi) + b12(yj − yi) + b13(zj − zi)],

ẏi = c− dx2i − yi + g[b21(xj − xi) + b22(yj − yi) + b23(zj − zi)],

żi = r(s(xi − xe)− zi) + g[b31(xj − xi) + b32(yj − yi) + b33(zj − zi)], i, j = 1, 2.

(4.1)

The membrane potential of the neuron is represented by xi. The flow of

Na+ ions constitute the spiking variable, yi, whereas, the bursting variable zi

is constituted by the flow of Ca+ ions [102]. The constant parameters a, b, c

and d model the working of the fast ion channel and r represents the slow ion

channel. s and xe are other constant parameters of the system [9, 158]. Constants

r and s approximate the biological behaviour of the model [159]. g represents

the coupling strength and I is the external current entering the neuron. The

interaction takes place through a cross coupling scheme between the variables

xi, yi and zi, which has been modelled by a coupling matrix as,

B =


b11 b12 b13

b21 b22 b23

b31 b32 b33


The system is analysed under the influence of rotational matrix of the form:

B =


cos δ sin δ 0

− sin δ cos δ 0

0 0 0

 (4.2)

where δ, belonging to [−π,π), is the coupling phase. The different values of δ give
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the coupling matrices that enable us to realise self, mixed and cross couplings,

in inhibitory and excitatory modes. For example, when δ = 0, the elements of

the matrix are b11 = 1, b12 = 0, b21 = 0 and b22 = 1. These elements induce the

self coupling in x and y of Eq. (4.1). When δ = π/2, we have b11 = 0, b12 =

1, b21 = −1 and b22 = 0. Here the x variable is cross coupled to y and vice versa.

Also, the cross coupling of x in y is inhibitory. Similarly, when δ = π/4, we have

mixed interactions between the x and y variables. Thus, the coupling phase

represents how a variable is coupled to another variable of the same neuron. The

coupling matrix in Eq. (4.2) helps to simplify the representation and realisation

of these interactions by adjusting a single parameter δ. By continuously varying

the value of δ, we have analysed the bifurcation point at which the effect of cross

interaction overrides the effect of self coupling and vice versa. The parameters

are chosen as: a = 1, b = 3, c = 1, d = 5, r = 0.006, s = 4, xe = −1.61, I =

3.1 [18]. Initial conditions are chosen randomly to lie in the range [-0.5,0.5]. The

results presented in the entire work are consistent for any choice of initial values.

The anti-phase and in-phase bursting dynamics in the system with electrical

coupling in self, mixed and cross interactions in x and y variables is analysed

by varying δ in Eq. (4.2) and the plots are shown in fig. 4.1. When δ = −π,

the self coupling is inhibitor in x and y. The system shows anti-phase bursts as

shown in fig. 4.1(a). When δ = −π
2
, the coupling is cross in x and y, that is,

activator-inhibitor mode and the system exhibits anti-phase bursting as shown

in fig. 4.1(b). In this case, the cross coupling of y variable to x is inhibitory. The

self activator synapse in x and y is realised with δ = 0 and the system shows

in-phase burst synchrony as shown in fig. 4.1(c). When δ = π
4
, the coupling is

mixed (self and cross), with activator self coupling and activator-inhibitor cross

coupling. The oscillations of the neurons are in-phase as shown in fig. 4.1(d).

The activator cross coupling of y variable in x, when δ = π
2
, induces in-phase

synchrony, as shown in fig. 4.1(e). However, the synchrony is obtained at a

comparatively high coupling strength as the coupling of x in y is inhibitory. An

activator-activator cross coupling is realised when b21 is chosen to be positive

which promotes synchronisation at a weaker coupling strength as shown in fig.
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Figure 4.1: Time series of the membrane potential of two coupled HR neurons
for different coupling phases. (a) δ = −π, g = 0.02 (b) δ = −π

2 , g = 0.04,(c)
δ = 0, g = 0.02,(d) δ = π

4 , g = 0.09.(e) δ = π
2 , g = 0.32,(f) δ = π

2 , g = 0.12,
b21 = sin δ.

4.1(f). The system exhibits anti-phase oscillations for inhibitor coupling in the

x variable and in-phase synchrony for activator coupling, whether the coupling

is self or cross. Synchrony is obtained at a lower coupling strength when the

nature of the connection is activator-activator in cross coupling.
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Figure 4.2: Synchronisation error of two coupled HR neurons with self cou-
pling in the state variables.

4.2.1 Synchronisation scenario

The synchrony in the system is analysed with the help of normalised synchroni-

sation error given by the equation [160]:

Ê =

√
e2x + e2y + e2z

x21 + y21 + z21 + x22 + y22 + z22
. (4.3)

Where ex = x2 − x1, ey = y2 − y1, ez = z2 − z1. The synchronisation scenario of

two coupled system has been analysed for self coupling in x, y and z variables

and is shown in fig. 4.2. The blue line represents the synchronisation error

with self coupling in x alone which is realised with b11 = 1 and all the other

components are zero. The synchrony is obtained at g ≈ 0.5. The self coupling in

y along with x, realised with b11 = b22 = 1, helps to induce synchrony at a lower

coupling strength. The red line shows that synchrony is obtained at g ≈ 0.01.

When b11 = b22 = b33 = 1 i.e., self coupling in x, y and z variables further

reduces the value of g at which synchrony is obtained, as represented by yellow

line. The coupling strength at which synchronisation is obtained decreases as

the number of self coupled variables increases.
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4.2.2 Stability of synchronisation

The stability of the synchrony induced under in-phase bursting dynamics is ver-

ified in this section. The coupling matrix is taken of the form as in Eq. (4.2).

This matrix is a simple way to realise self activator coupling (b11,b22) and acti-

vator–inhibitor cross coupling (b12,b21) by a single parameter δ. The choice of

cross coupling in and of z variable is discarded, because only cross coupling in x

and y exhibits bursting dynamics. We have analysed the system of HR neurons

in three different cases: (i) Self coupling in x and y, δ = 0. (ii) mixed coupling

in x and y, δ = π
4
. (iii) Cross coupling in x and y, δ = π

2
.

The time derivative of the Lyapunov function is used to determine the sta-

bility of the system under the influence of different coupling phases [161]. The

complete synchronisation of the coupled system occurs when the two neurons

exhibit identical behaviour, that is,

||x2(t)− x1(t)|| → 0

||y2(t)− y1(t)|| → 0

||z2(t)− z1(t)|| → 0

(4.4)

At synchronised states,

x1(t) = x2(t) = x(t)

y1(t) = y2(t) = y(t)

z1(t) = z2(t) = z(t)

(4.5)

The error states ex = x2 − x1, ey = y2 − y1, ez = z2 − z1, are defined by

introducing coordinates that are transverse to the synchronisation manifold. We
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have the error dynamics of the system without self coupling in z variable as:

ėx = ey − a(x32 − x31) + b(x22 − x21)− ez − 2g cos δex − 2g sin δey

ėy = −d(x22 − x21)− ey + 2g sin δex − 2g cos δey

ėz = rsex − rez

(4.6)

We define a new variable U = x2 + x1. Then, x22 − x21 = Uex and x32 − x31 =

ex(e
2
x + 3U2)/4

On simplifying,

ėx = (−0.25a(e2x + 3U2) + bU − 2g cos δ)ex + (1− 2g sin δ)ey − ez

ėy = (2g sin δ − dU)ex − (1 + 2g cos δ)ey

ėz = rsex − rez

(4.7)

The Lyapunov functions are evaluated from this error dynamics. In Lyapunov

function approach, we define a continuous, positive definite Lyapunov function,

V , using the Eq. (4.7), which has the form:

V (ex, ey, ez) =
1

2
[e2x + e2y + e2z] (4.8)

The first derivative of the Lyapunov function is continuous and the time

derivative along trajectories of the error dynamical system gives

dV

dt
= exėx + eyėy + ez ėz (4.9)

On substitution and simplifying,

dV

dt
= (−0.25a(e2x + 3U2) + bU − 2g cos δ)e2x − (1 + 2g (4.10)

cos δ)e2y − re2z + (1− dU)exey + (rs− 1)exez

The terms x1, x2, ex, ey, ez in Eq. (4.10) is obtained by solving Eqs. (4.1) and
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Figure 4.3: Variation of the derivative of Lyapunov function with coupling
strengths for different values of δ. (a) b33 = 0, (b) b33 = 1.

(4.7), simultaneously. Similarly, the Lyapunov function for the system with self

coupling in z variable is obtained as:

dV

dt
= (−0.25a(e2x + 3U2) + bU − 2g cos δ)e2x − (1 + 2g (4.11)

cos δ)e2y − (r + 2g)e2z + (1− dU)exey + (rs− 1)exez

The stability of the synchrony in the system by varying coupling phases given

in Eq. (4.2) is analysed with b33 = 0 and b33 = 1 using Eqs. (4.10) and (4.11),

respectively. The variation of dV
dt

with g and b33 = 0 is presented in fig. 4.3(a).

The value of dV
dt

is greater than 0 for g < 0.06 in the system with self coupling in

x and y (δ = 0), represented by the blue line. The system exhibits desynchrony
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in this region. For g > 0.06, the system is synchronised with dV
dt

= 0. For

the system with mixed coupling (δ = π
4
), the synchrony is obtained at a higher

value of g = 0.12, represented by the red line. The complete synchrony in the

system with cross coupling (δ = π
2
) is obtained at g = 0.2. The inset shows that

synchrony is more difficult to achieve in systems with mixed coupling than in

systems with self coupling. The variation of dV
dt

for the system with self coupling

in z variable (b33 = 1) along with cross coupling in x and y is analysed using

Eq. (4.11) and is presented in fig. 4.3(b). In contrast to a system lacking self

coupling in z, synchrony stabilisation occurs at lower values of g. The synchrony

is attained at g = 0.02, 0.03, 0.07 for self, mixed and cross couplings, respectively.

In the inset, it is justified that in mixed coupled systems the coupling strength at

which synchrony is obtained is greater than self coupled systems. When δ = π
2
,

the interaction is cross alone and the synchrony is obtained at high coupling

strength compared to the system with self and mixed coupling. The system with

self coupling attains synchrony at a lower coupling strength compared to the

system with sole cross coupling.

The parameter space shown in fig. 4.4 explains the complete synchronisation

scenario by varying g and δ, for b33 = 0 and b33 = 1, at low and high coupling

strengths. When there is self coupling in y and z variable, the synchrony is

highly sensitive to the coupling strength, g, when compared to the system with

self coupling in x alone, as shown in fig. 4.2. The variation of the time derivative

of the Lyapunov function with b33 = 0 for low and high values of g is presented

in figs. 4.4(a) and 4.4(b), respectively. For values near δ = 0, the system has

self interactions and synchrony is obtained at g ≈ 0.05, which is visible from fig.

4.4(a). With the increase in the value of δ, the coupling strength at which the

stabilised synchrony is obtained increases due to the contributions from cross

coupling. On further increase in the value of δ, the interaction from self coupling

decreases and cross coupling increases and the synchrony is obtained at a higher

value of g. When δ = π
2
, the interaction is cross coupling alone and the synchrony

is obtained at g ≈ 0.2, which is observed from fig. 4.4(b).

The synchronisation scenario of the system with b33 = 1 as shown in fig.
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Figure 4.4: Colour coded variation of the time derivative of the Lyapunov
function with coupling strength and phase. Coupling phase is plotted along the
X-axis, coupling strength along the Y-axis and the derivative of the Lyapunov
function is represented by colourbar. (a) b33 = 0 (low coupling strength), (b)
b33 = 0 (high coupling strength), (c) b33 = 1 (low coupling strength), (d)
b33 = 1 (high coupling strength).
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4.4(c) and 4.4(d). For low values of δ, the interaction is self coupling and the

synchrony is obtained at g ≈ 0.02, as shown in fig. 4.4(c). With the increase in δ,

cross coupling works along with self coupling and the value at which synchrony is

obtained increases to g ≈ 0.03. With further increase in δ, interactions are solely

from cross coupling and the value of g at which synchrony obtained increases, as

visible from fig. 4.4(d). The coupling strength at which system attains synchrony

is the lowest when there is self coupling in all the three variables. The parameter

space is rich and complex due to the coupling scheme of the network and it

remains consistent for any values of initial conditions.

4.3 Global, nonlocal and local interactions

A network of HR neurons with interactions represented by a rotation matrix, with

global, nonlocal and local (nearest neighbour) interactions has been analysed in

ring topology.

The dynamical equations are of the form:

ẋi = yi + ax2i − bx3i − zi + I +
g

2p

j=i+p∑
j=i−p

[b11(xj − xi) + b12(yj − yi) + b13(zj − zi)],

ẏi = c− dx2i − yi +
g

2p

j=i+p∑
j=i−p

[b21(xj − xi) + b22(yj − yi) + b23(zj − zi)],

żi = r(s(xi − xe)− zi) +
g

2p

j=i+p∑
j=i−p

[b31(xj − xi) + b32(yj − yi) + b33(zj − zi)].

(4.12)

Where i runs from 1 to N , N being the total number of neurons in the net-

work. A periodic boundary condition x0 = xN , x−1 = xN−1 and xN+1 = x1 is

considered to realise the ring configuration. p is the number of neighbours to

which each neuron is coupled in either direction of the ring. The network is

analysed with N = 525. The global, nonlocal and local interactions are realised

by fixing p = N−1
2

, 10 and 1, respectively. The synchrony pattern in the net-
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work with global interaction for different coupling phases is quantified using the

statistical factor of synchronisation, R, given by Eq. (1.3).

The variation of R with g, for different values of coupling phases is shown

in fig. 4.5. The synchrony in the network with self coupling is presented in fig.

4.5(a). The synchrony attained in the system with self coupling in x variable

alone is presented by blue line. The red and yellow lines represent the synchrony

pattern with self coupling in x, y and x, y, z variables, respectively. With increase

in number of variables having self coupling, the coupling strength at which syn-

chrony is obtained decreases. The synchrony obtained in the system with cross

coupling in x and y variable and no self coupling in z variables (b33 = 0) is

shown in fig. 4.5(b). For g ≈ 0.4, the system attains complete synchrony for

mixed coupling (δ = π
4
), whereas for cross coupling the complete synchrony is

obtained for g ≈ 0.7. For values above 0.7, the synchrony for mixed and cross

coupling coincides with each other. The amount of synchrony obtained with

cross coupling in x and y variable and self coupling in z variable (b33 = 1) is

shown in fig. 4.5(c). In comparison to the system with no self coupling in the z

variable, the synchronisation is attained at a lower coupling strength. The sys-

tem attains complete synchrony at g = 0.1 and 0.7 for mixed and cross coupling,

respectively. The coupling strength at which synchrony is achieved for N coupled

neurons, however, is higher than a system with two neurons.

4.3.1 Emergence of chimera, MOS and clusters

The network with b33 = 1 shows a richer pattern and cluster formations in non-

local and local interactions and is shown in fig. 4.6. The multichimera pattern

obtained for nonlocal interaction in system with self coupling in x, y and z vari-

ables, for δ = 0, is shown in fig. 4.6(a). The self coupling in more than one state

variable is capable of inducing chimera states. The same is not obtained when

the coupling is for a single variable. This proves that a network is self sufficient of

exhibiting chimeras without distance-dependent coupling or cross coupling, un-

der the influence of self coupling in more than one variable. The mixed coupling

in x and y variables and self coupling in z variable, for δ = π
4
, induces chimera
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Figure 4.5: Variation of the statistical factor of synchronisation with coupling
strength in the HR neural network with global interaction for different values
of coupling phase. (a) Self coupling in variables, (b) b33 = 0, (c) b33 = 1.
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state as shown in fig. 4.6(b). Travelling chimera is obtained for mixed coupling

with δ = π
2
− 1 for g = 0.09 and 0.1, as shown in fig. 4.6(c) and 4.6(d), respec-

tively. Multichimera states are obtained for δ = π
2
, at g = 0.17, 0.24, as shown

in figs. 4.6(e) and 4.6(f), respectively. The inhibitor self coupling with δ = −π

in nearest neighbour interaction induces mixed oscillatory state, as shown in

fig. 4.6(g). In MOS, almost half of the neurons are desynchronised, which are

uniformly distributed within the other half that exhibit perfect synchronisation.

The synchronised subpopulation shows amplitude death and the desynchronised

subpopulation possess spiking character. The corresponding spatiotemporal pat-

tern is shown in fig. 4.6(h). The inset shows the enlarged view of the neurons

1 to 20 for the time range 980 to 1000. The dotted lines present the spiking

character and the dark blue solid lines represent the amplitude death states.

The oscillators are grouped in to three clusters for locally coupled network, with

δ = −π as shown in fig. 4.6(i). The dynamics is amplitude death as shown by

the solid lines in fig. 4.6(j). The inset shows the enlarged view of the amplitude

death state.

4.3.2 Strength of incoherence and discontinuity measure

The emergence of chimera and multichimera states in the network with self, cross

and mixed coupling of state variables is analysed with the help of a quantitative

measure called strength of incoherence (SI), given by Eq. (1.13). In order to

distinguish chimera from multichimera states, we calculate discontinuity measure

(DM), using the formula represented by the Eq. (1.14).

The self coupling in three variables x, y and z induces chimera states in non-

locally coupled network as shown in fig. 4.7(a). The fig. 4.7(b) justifies the

presence of chimera states. The emergence of chimera or mulichimera in non-

locally coupled network with mixed coupling in x, y and self coupling in z is

shown in fig. 4.7(c). The variation of DM as shown in fig. 4.7(d) distinguishes

the chimera and multichimera states. The cross coupling in x and y, along with

the self coupling in z variable also induces chimera and multichimera states in

the nonlocally coupled network which is visible from fig. 4.7(e). The fig. 4.7(f)

65



0 250 500

-1.5

0

(a)

0 250 500
-2

-1

0

1

2
(b)

0 250 500
-2

-1

0

1

2
(e)

0 250 500
-2

-1

0

1
(f)

0 250 500
-4

-2

0

2

4
(g)

0 250 500
-6

-4

-2

0

2

4
(i)

Figure 4.6: Emergence of interesting patterns in the HR network by the
variation of coupling phase in nonlocal and local interactions. (a) multichimera
(p = 10, δ = 0, g = 0.1) (b) chimera (p = 10, δ = π

4 , g = 0.19) (c) travelling
chimera (p = 10, δ = π

2 −1, g = 0.09) (d) travelling chimera (p = 10, δ = π
2 −1,

g = 0.1) (e) multichimera (p = 10, δ = π
2 , g = 0.17) (f) multichimera (p = 10,

δ = π
2 , g = 0.24) (g) MOS (p = 1, δ = −π, g = 0.2) (h) cluster (p = 1, δ = −π,

g = 0.3). The colourbar represents the membrane potential, x.

66



0 0.1 0.2

0

1 (a)

0 0.1 0.2

0

4

8 (b)

0 0.1 0.2

0

1 (c)

0 0.1 0.2

0

4

8 (d)

0 0.1 0.2

0

1 (e)

0 0.1 0.2

0

4

8 (f)
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shows that there are no chimeras and that the patterns obtained are multi-

chimeras. The studies have shown that under the influence of rotation matrix,

chimera states are induced in the nonlocally coupled network with self, mixed

and cross interaction and in locally coupled network, neurons show clusterisa-

tion. In mixed and cross interactions, the possibilities of obtaining multichimera

states are high. In self coupled network, chimera and multichimera states are

obtained.

4.4 Results and conclusions

The synchronisation and patterns emerging due to the self and cross interactions

of variables are analysed in the network of HR neurons. The activator self cou-

pling in the x variable induces in-phase synchrony whereas the inhibitory mode

induces anti-phase oscillations in two coupled systems. When the self coupling

in y and z variables are introduced synchrony is attained at a lower coupling

strength. Based on the Lyapunov function approach, the stability of activator

coupling in x variable is verified for self, mixed and cross coupling modes. When

the system achieves synchrony, the time derivative of the function tends to zero.

The synchronisation scenario is explained in detail by the parameter space with

coupling phase and coupling strength, as the parameters. The complete synchro-

nisation is achieved at a lower coupling strength when self coupling is present in

the variables and as cross interactions come into play, synchronisation is achieved

at a higher coupling strength.

The network arranged in ring topology has been analysed with global, non-

local and local interactions. The in-phase synchrony obtained for activator cou-

pling in x variable with self, mixed or cross coupling has been justified in the

globally coupled systems as well. In electrical coupling, the coupling strength at

which synchrony is obtained depends on the network size. Interesting patterns

like chimera, multichimera and travelling chimera are obtained by the interplay

of coupling phase and coupling strength, in nonlocal interactions. The study

shows that in networks with self interactions, chimera and multichimera states
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are obtained, whereas mixed and cross interactions induce multichimera states.

The inhibitor self coupling in x, y and activator self coupling in z variable induces

in-phase, anti-phase and out of phase oscillations which result in the occurrence

of mixed oscillatory state and clusters in nearest neighbour interactions.

The observed in-phase and anti-phase oscillations might be an indicator of

the presence of distinct frequency rhythms and oscillatory patterns in separate

regions of extended neural networks. The findings of this work reveal the dynamic

processes that cause the coupled neurons to exhibit in-phase and anti-phase

oscillations, which is useful for understanding how synapses regulate the rhythms

of the brain activity.
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Chapter 5

Collective behaviour of

magnetically coupled HR network

5.1 Introduction

The use of memristors to represent the electromagnetic field induced by the

flow of ions in the neurons was proposed recently [162] and continues to attract

researchers [163–166]. The dynamics and energy aspects of HR neurons with

quadratic and cubic memristor effects have been analysed [87, 158, 167]. The im-

pact of electromagnetic field on individual and collective dynamics of the neural

system has been studied recently [168]. The utilisation of energy for the electrical

activities in the presence of magnetic coupling and external stimuli have been

studied on the Hodgkin-Huxley model [169]. The memory conductance in the

form of hyperbolic tangent function was recognised as being easily implementable

in electronic circuits and effective in numerical simulations [170, 171].

The diverse firing patterns and synchronous oscillations are crucial features in

neural dynamics of the brains. Both external and inherent stimuli constructively

take part in the excitation of neural activity [172]. Zhijun Li, et al. investigated

the coexistence of multiple firing patterns for different initial conditions with

coupling strength as the only control parameter [173]. Different methods have

been employed to enhance the synchrony in the neural network owing to its vital
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role in signal transmission and processing [174, 175]. However, the unwanted

synchrony among neurons which ought to have behaved independently, results

in several pathological conditions [47, 176, 177]. Thus, the enhancement and

suppression of this synchrony are very necessary [178]. Recently, researchers

investigated the phase synchrony of mean field coupled HR neurons with external

stimuli in the form of spikes [105]. The external stimuli have the capability of

controlling chaotic dynamics in the neural network [179, 180]. However, the

influence of square input on neural network is unexplored.

The coupling function always plays an important role in the studies on

chimera and it was believed that nonlocal coupling was essential to induce

chimera states. But, later, it was found that global coupling and even local cou-

pling (diffusive, to nearest neighbours) also supported chimera states [117, 181].

The existence of chimera and multichimera states has been observed in the locally

coupled HR neuron model [64]. The chimera states have also been reported in

ephaptically coupled HR ring network [104]. The synchronisation as well as the

existence of chimera states have been studied in multilayer networks of neurons

under distance-dependent coupling following a power law model [37, 118, 182].

Basic forces such as electrostatic and gravitational forces exhibit interactions

that are controlled by a power law exponent [183]. The analysis of synchronisa-

tion properties of neural networks under distance-dependent coupling governed

by the power law model is a newly emerging field of interest [37, 127].

In this chapter, the dynamics and synchronisation properties of a network of

HR neurons, arranged in a linear chain structure with distance-dependent field

coupling are analysed. This chapter is organised as follows: The model for the

network with distance-dependent memristor coupling in the presence of external

stimuli is described in section 5.2. The phase portraits and collective dynamics

of the network under the influence of constant current are explained in section

5.2.1. The control of phase space trajectories and synchrony by the combined

effect of magnetic coupling and time varying external currents are presented in

section 5.2.2. Section 5.2.3 has been devoted to quantifying synchrony in the

network with magnetic coupling and external stimuli. The network model with
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the combined effect of distance-dependent memristor and mean field coupling is

explained in section 5.3. The statistical factor of synchronisation, spatiotemporal

dynamics and pattern formations in distance-dependent memristive HR neurons

with uniform mean field coupling are analysed in section 5.3.1. The variation of

the synchrony pattern and the emergence of chimera states under the influence

of memristor and mean field coupling with distance dependence, governed by

power law, are studied in section 5.3.2. The results are presented in section 5.4.

5.2 Controlling synchrony using external stimuli

The electromagnetic fields and externally applied stimuli are capable of altering

collective electrical activities and signal propagation in a neural network. The

current, induced by the change in magnetic flux across the membrane, is rep-

resented by the memristor and that, due to the external stimuli is considered

under three cases. The dynamical equations for a linear chain of HR neurons are

described by [21, 22]:

ẋi = yi + ax2i − bx3i − zi + I − k1ρ(ϕi)xi,

ẏi = c− dx2i − yi,

żi = r(s(xi − xe)− zi),

ϕ̇i = k2xi − k3ϕi +D(ϕi −
N∑
j=1
j ̸=i

W

|i− j|
ϕj), i = 1, 2, ..., N.

(5.1)

Where xi, yi and zi represent the membrane potential, spiking variable and

bursting variable of ith neuron, respectively. yi is constituted by the flow of

Na+ and K+ ions and the flow of Ca+ ions constitute the zi term. The fast

oscillations of xi and yi correspond to spikes, whereas the slow oscillations of the

zi variable cause bursts [17]. Indices i, j and N , represent presynaptic neurons,

postsynaptic neurons and total number of neurons in the network, respectively.

The external current, I, is considered as a constant and two varying forms.
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The interaction between membrane potential, xi and magnetic flux, ϕi, is

realised with the help of memristor, k1ρ(ϕi)xi, where, k1 is the magnetic cou-

pling strength. We have considered the memory conductance term, ρ(ϕi) as a

hyperbolic form, tanh(ϕi) [170]. This function can be easily approximated by

a linear form. The change in magnetic flux induced by membrane potential is

given by k2xi and the leakage of the magnetic flux is represented by k3ϕi. D

describes the field interaction between neurons. W represents the intensity of

the field effect associated with distance between neurons. The parameters of the

model are fixed as, a = 3.0, b = 1.0, c = 1, d = 5, r = 0.006, s = 4.0, xe = −1.61

[18], k2 = 0.9, k3 = 0.4, D = 0.0001, W = 1 [167].

Collective dynamics and synchronisation scenario

The changes in the firing pattern, phase portraits and synchrony level, under the

combined effect of magnetic coupling and external stimulus have been analysed.

We have chosen the external stimuli in different forms (i) a constant (I1) and

(ii) as time varying function. The time varying external inputs are considered in

two different forms: (a) sinusoidal wave, given as I2 = A(sin(ωt)+ cos(ωt)) with

frequency, ω and (b) square wave, represented as I3 = AH
(
sin
(
2πt
ρs

))
, with an

interval, ρs. H is the bi-valued Heaviside step function, whose value is zero for

negative arguments and one for positive arguments.

5.2.1 Constant external current

In this section, the dynamics, phase portraits and synchrony pattern have been

analysed under the memristor effect and constant external current. The dynam-

ics and collective behaviour of the network are analysed numerically by solving

Eq. (5.1) for xi(t), yi(t), zi(t) and ϕi(t) using the Runge-kutta method in step

size of 0.1. Initial conditions for different neurons are chosen as, x0(t), y0(t) and

z0(t) in the range [-0.5,0.5] and ϕ0(t) in the range [0,1]. The study of variation

of xi reveals the dynamical change induced in each neuron under the influence

of magnetic coupling and external stimuli. The average of xi over the number
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Figure 5.1: Time series of the discrete and average membrane potentials of
the magnetically coupled neural network with constant external current (I =
2.9). Here, i = 25 and the dynamics is consistent for any neuron in the network.
(a) k1 = 0.1, (b) k1 = 0.3 and (c) k1 = 1.5.

of neurons in the network reveals the collective behaviour of the network. The

average of membrane potentials is given by

x̄(t) =
1

N

N∑
i=1

xi(t) (5.2)

The dynamical change induced in a single neuron and the collective synchrony

is analysed in the memristive network for different values of k1 in the presence

of constant external current (I1 = 2.9) and is as shown in fig. 5.1.

For low values of k1, the system exhibits square wave bursting with five spikes

per burst, as shown in fig. 5.1(a). The lack of synchrony is visible from difference

of x̄ from the individual membrane potential. We have validated the presence

of plateau bursting dynamics with an increase in the value of k1, as shown in

fig. 5.1(b). The dissimilarity in average membrane potential from the individual

values represents the absence of synchrony. On further increasing the value of k1,

fig. 5.1(c) shows AD state with no oscillations. From the studies, it is clear that

magnetic coupling stabilises the system. The system is in complete synchrony,

as visible from the convergence of x̄ with the individual values. The memristor

drives the system from square wave bursting to plateau bursting and to AD state,

74



-0.6 -0.4
-1.5

-1

-0.5

0

0.5

1

1.5

2
(a)

-2 -1 0
-4

-3

-2

-1

0

1
(b)

-2 -1 0 1
-2

-1.5

-1

-0.5

0

0.5
(c)

Figure 5.2: Phase portraits of the neural network with magnetic coupling
and constant external current (I = 2.9). The average membrane potential is
plotted on the X-axis and the membrane potential of a single neuron on the
Y-axis. Here, i = 25. (a) k1 = 0.1, (b) k1 = 0.3 and (c) k1 = 1.5.

where the system exhibits complete synchrony.

The synchrony pattern in the network is further justified by the phase por-

traits as shown in fig 5.2. The phase space has been plotted with average mem-

brane potential x̄(t) on the X-axis and the membrane potential of a single neuron

on the Y-axis. In fig. 5.2(a), the phase space is dense at k1 = 0.1, representing a

lack of synchrony. As the value of k1 is increased, the phase space becomes more

controlled and synchronised, as shown in fig. 5.2(b). The phase space shrinks

to a single point representing stabilisation of the states, on further increase in

k1, as in fig. 5.2(c). The increase in magnetic enhancement of synchrony with

the strength of magnetic coupling is visible from the controlling and shrinking

of phase plots.

5.2.2 Time varying external currents

The variation of firing patterns and the collective dynamics of the network with

magnetic coupling under the influence of time varying external stimuli is analysed

in this section. The time series of x̄(t) for the two different external stimulus is

shown in fig. 5.3. In the presence of memristor and sinusoidal wave, the system

exhibits square wave bursting character, as shown in fig. 5.3(a), for low value
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Figure 5.3: Time series of the discrete and average membrane potentials of
the magnetically coupled neural network with time varying external stimuli.
Here i = 25, k1 = 0.1. (a) sinusoidal input (A =3, ω = 0.05), (b) sinusoidal
input (A =3, ω = 0.2), (c) square input (A = 3, ρs = 10) and (d) square input
(A = 3, ρs = 3).

of input frequency, ω. The initial transients lack complete synchrony, whereas,

with evolution of time, the system attains synchrony. This is visible as the

convergence of individual and average values of the membrane potential. With

an increase in frequency, ω, the number of spikes per burst decreases to two, as

shown in fig. 5.3(b). But the synchrony pattern is maintained. Fig. 5.3(c) shows

the spiking behaviour under the influence of memristor and square wave. The

spikes are induced in the quiescent state. The lack of synchrony is visible from

the figure by the separation of individual membrane potential from the average

value. With decrease in interval of the square input, the synchrony level is even

reduced, which is visible from fig. 5.3(d).

The phase portraits of the system with magnetic coupling and the time vary-

ing external stimulus are as shown in fig. 5.4. The top and bottom panels

show the phase spaces of the system with sinusoidal and square inputs, respec-

tively. In both panels, the value of k1 increases from left to right. The fig. 5.4(a)

presents the influence of input I2 on a network with weak magnetic coupling. The

phase space exhibits a small dispersion. On increasing the strength of magnetic

coupling, k1, the phase space is reduced to a beeline as shown in fig 5.4(b). On
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further increase of k1, the synchrony in the network is preserved by the combined

effect of magnetic coupling and sinusoidal input, (I2), observed as the straight

line in phase portrait of fig 5.4(c). The synchrony attained is sustained at an

even higher value of magnetic coupling strength, as shown in fig 5.4(d). The

dispersed phase portrait for low magnetic coupling strength under the influence

of square input, I3, represents the lack of synchrony in the network, as shown in

fig 5.4(e).

With further increase in magnetic coupling, the phase portrait is still dis-

persed in the presence of square input, as shown in fig 5.4(f). A slight control in

the phase portrait is visible for further increases in magnetic coupling strength,

as shown in fig 5.4(g). At high values of magnetic coupling strength, the phase

portrait is reduced to a beeline in the presence of input, I3, as shown in fig 5.4(h).

Thus, it is found that the magnetic coupling helps to control the phase space in

the presence of time varying external inputs. However, the control is faster in

the presence of sinusoidal input compared to the square input.

-2 0 2

-2

0

2 (a)

-2 0 1

-2

0

2 (b)

-2 0 1

-2

0

2 (c)

-2 0 1

-2

0

2 (d)

-1.5
-2

0

2 (e)

-1.5 -1 -0.5
-2

0

2 (f)

-2 -1 0

-1

-0.6

(g)

-1 -0.5

-1

(h)

Figure 5.4: Phase space with sinusoidal (top panel) and square input (bottom
panel). Here, i = 25, A = 3, ω = 0.2, ρs = 3. The values are fixed as (a), (e)
k1 = 0.1, (b), (f) k1 = 0.3, (c), (g) k1 = 0.7 and (d), (h) k1 = 1.5.
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Figure 5.5: Variation of the statistical factor of synchronisation with (a) mag-
netic coupling strength and (b) amplitude of external input, under the influence
of different external stimuli. The constant input, sinusoidal and square inputs
are represented by the blue, red and yellow lines respectively. (a) A = 3 (b) k1
= 0.3. Here, ω = 0.2, ρs = 3.

5.2.3 Quantifying synchrony

The synchrony induced by the magnetic coupling, in the presence of external

stimuli is quantified using statistical factor of synchronisation, R, given by the

Eqn. (1.3).

The variation ofR with k1 in the presence of different external stimuli is shown

in fig. 5.5(a). The statistical factor of synchronisation has been calculated using

Eqn. (1.3). The blue, red and yellow lines represent the influence of constant,

sinusoidal and square input on the magnetically coupled network, respectively.

The amplitude of the inputs is fixed at A = 3. At low values of k1, the value of

R is about 0.5, representing partial synchrony. The synchrony obtained by the

network, under the influence of a constant current is found to be high compared

to the square input. The high value of R obtained for even low value of magnetic

coupling in the presence of sinusoidal input represents the synchrony obtained by

the network. For weakly coupled system, the synchrony obtained by the constant

input lies in between square and sinusoidal input and for high values of k1, the

magnetic coupling overrides the input effects.

The variation of R with the amplitude of the inputs is presented in fig. 5.5(b).
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The colour codes used for the inputs are similar to fig. 5.5(a). In the absence

of any external input, the synchrony level is obtained to be about R = 0.85, as

the value of k1 is fixed as 0.3. For low intensities of the inputs, the synchrony of

the network is reduced from its initial value in the presence of constant input.

The synchrony is even low under the influence of square input. The presence of

sinusoidal input increases the synchrony in the network. With increase in the

intensities of the inputs, the differences in synchrony become more visible. The

results obtained are in perfect agreement with the studies of fig. 5.5(a). At

sufficiently high amplitudes of the external input, the sinusoidal input is capable

of enhancing synchrony compared to the constant input. The desynchronising

ability of the square input on the magnetically coupled network is also visible.

The study of synchrony pattern has been extended by varying frequencies of

the inputs, I2 and I3. The variation of R with the frequency, ω of sinusoidal input

is shown in fig. 5.6(a). For low value of frequency, the synchrony is quantified

to be about R = 0.7. With further increase in ω the synchrony also increased.

Thus the input with high frequency has a greater synchronising ability. The

desynchronising ability of the square input is analysed for the variations in the

interval of the square input as presented in fig. 5.6(b). For low values of the

interval, ρ, (i.e.,) high frequency, the synchrony is drastically reduced. But on

further increasing the interval (reducing frequency), the synchrony is increasing,

representing the inability of the low frequency input to desynchronise. Thus

it is inferred that high frequency sinusoidal input and square input have the

capability to synchronise and desynchronise the magnetically coupled network,

respectively.

5.3 Distance-dependent field couplings

The model of HR neurons with memristor and mean field coupling is modified

with distance dependence governed by power law. The dynamics, synchronisation

scenario and pattern formations with the neurons arranged in a linear chain
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Figure 5.6: Variation of the statistical factor of synchronisation for different
parameters of the time varying input. Here, k1 = 0.3, A = 3.

structure have been analysed. The modified model has the form: [22, 184]:

ẋi = yi + ax2i − bx3i − zi + I − k1ρ(ϕi) +
g

N − 1

N∑
j=1
j ̸=i

xj(t)

|i− j|α
,

ẏi = c− dx2i − yi,

żi = r(s(xi − xe)− zi),

ϕ̇i = k2xi − k3ϕi +D(ϕi −
N∑
j=1
j ̸=i

W

|i− j|
ϕj), i = 1, 2, ..., N.

(5.3)

Where xi, yi and zi represent the membrane potential, spiking variable and

bursting variable of ith neuron, respectively. yi is constituted by the flow of

Na+ and K+ ions and the flow of Ca+ ions constitute the zi term. The fast

oscillations of xi and yi correspond to spikes, whereas, the slow oscillations of

the zi variable cause burst [17]. Indices i, j and N , represent presynaptic neuron,

postsynaptic neuron and total number of neurons in the network, respectively.

g represents the mean field coupling strength. The external current, I, controls

the qualitative behaviour of the neurons. ϕi describes the magnetic flux across

the membrane, k1ρ(ϕi)x denotes induction current and k1 is induction coefficient

[21, 22]. The term ρ(ϕi) is the memory conductance of a magnetic flux controlled

memristor, which can take different forms. We have considered a hyperbolic

function, tanh(ϕi), whose state equation can be represented by linear terms [170].
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D describes the field interaction between neurons. W represents the intensity of

the field effect associated with distance between neurons. In a network of mean

field coupled neurons, each neuron is driven by the force, described in terms of

the membrane potential of the other neurons [77, 185]. Hence, the potential, xi,

is influenced by the average of potentials, xj, where, j = 1, 2, 3, ..., N ; j ̸= i. The

value of power law exponent α is varied to study the effect of distance gradient

effect of the mean field coupling. When α = 0, the interaction is uniform and

global. As the value of α increased, the interaction is transformed to global

coupling with a distance gradient effect. On further increasing the value of α,

the interaction becomes nonlocal with distance gradient effect.

5.3.1 Uniform global interaction

A network of memristive HR neurons with mean field coupling represented by

Eq. (5.3) has been analysed with α = 0, i.e., uniform global coupling. The

spatiotemporal dynamics, statistical factor of synchronisation and pattern for-

mation have been studied by varying k1 and g. The parameters chosen are: a =

3, b = 1, c = 1, d = 5, r = 0.006, s = 4, xe = −1.61, I = 3.1 [18], k2 = 0.9, k3

= 0.5 [21]. The Eq. (5.3) is solved for x, y and z. Initially, the neurons are at a

negative resting potential. As time evolves, in the presence of external current,

the oscillations in the x variable vary between positive and negative values. The

dynamical state of a neuron, characterised by discrete groups of repeated spikes

is called bursting. Each burst is followed by a quiescent period after which next

burst occurs. The dynamical change induced in the network with the interplay

of memristor and mean field effects are shown in fig. 5.7. The memristive effect

is characterised by plateau bursting, as shown in fig. 5.7(a). The square wave

bursting induced by the mean field coupling in memristive neurons is shown in

fig. 5.7(b). For sufficient strength of memristor and mean field effects, the coex-

istence of plateau and square wave bursting is observed, as shown in fig. 5.7(c).

For further increase in k1, the system exhibits AD state, where the system attains

a stable state condition without oscillations.

The spatiotemporal pattern reveals the dynamical change induced in the AD
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Figure 5.7: Dynamical changes induced by the interplay of memristor and
mean field effects. (a) plateau bursting (k1 = 0.2, g = 0), (b) square wave
bursting (k1 = 0.6, g = 1), (c) mixed behaviour (k1 = 0.8, g = 0.7). This
dynamic is consistent for every neuron in the network.
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Figure 5.8: Spatiotemporal patterns of the HR neurons with memristor and
mean field coupling. (a) AD (g = 0.5), (b) plateau bursting (g = 1), (c) four
spikes per burst (g = 2), (d) two spikes per burst (g = 2.5). Here, k1 = 2, D =
0.0001, W = 1, N = 100 and α = 0. The colourbar represents the membrane
potential, x.

state of memristive neurons under the influence of mean field coupling, as shown

in fig. 5.8. The value of x variable is represented by the colourbar. For low

values of g, every neuron in the system exhibits AD, which is visible as a single

colour in fig. 5.8(a). The system shows plateau bursting at g = 1, as presented in

fig. 5.8(b). The light and dark blue colours show spiking and quiescent period,

respectively. As g increases, the dynamics change from plateau to square wave

bursting. Figs. 5.8(c) and 5.8(d) show square wave bursting with 4 and 2 spikes

per burst respectively. The mean field coupling initiates synchronised oscillations

in the AD state of memristive neurons.

The synchronisation scenario of network with memristive and mean field cou-

pling is studied using the statistical factor of synchronisation, R, given by Eq.

(1.3).

The variation of the statistical factor of synchronisation, R, with g for dif-

ferent values of k1 is shown in fig. 5.9. For g < 1.8, as shown in fig. 5.9(a),

the synchrony increases with an increase in the value of k1. For a high value

of k1, synchrony is high, with R = 1, even for low values of g, as represented

by the purple line. Fig. 5.9(b) shows the synchronisation scenario for g > 1.8.

83



0 0.9 1.8

0.4

0.6

0.8

1 (a)

1.8 2.4 3
0.4

0.6

0.8

1 (b)

Figure 5.9: Variation of the statistical factor of synchronisation of HR neurons
with the mean field coupling strength, for different values of memristor coupling
strength. (a) weak coupling, (b) strong coupling. Here, D = 0.0001, W = 1, α
= 0 and N = 100.

The network shows high synchrony for any value of k1, in the presence of strong

mean field coupling. It is evident that both memristor and mean field effects

help mutually to attain synchrony.

The pattern formations in network with weak memristive coupling are studied

for different values of g. The snapshot of x variable at t = 1000, is presented in

the fig. 5.10. The other variables, y and z, show similar patterns. The system

shows desynchrony for weak coupling, represented as scattered points in fig.

5.10(a). As g is increased, the system attains MOS, in which the desynchronised

neurons are interspersed among synchronised neurons, as shown in fig. 5.10(b).

The imperfect synchrony state with 5 escaping neurons, is shown in fig. 5.10(c),

when g = 1.3. Fig. 5.10(d) represents the perfect synchrony or global death

state when g = 1.8.

5.3.2 Emergence of chimera states

The study has been extended to the linear chain of HR neurons with distance-

dependent memristor and mean field effects, governed by the power law exponent.

The statistical factor of synchronisation, strength of incoherence and discontinu-

ity measure have been studied.

The pattern of synchrony induced in the system is studied by calculating R,

for various values of g and α and is shown in fig. 5.11. The influence of power law
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Figure 5.10: Snapshots of the HR neuron network with memristor and mean
field effects. Value of k1 = 0.5. (a) incoherent state (g = 0.1), (b) MOS (g
= 0.6), (c) imperfect synchrony (g = 1.3), (d) complete synchrony (g = 1.8).
Here, D = 0.0001, W = 1, N = 100 and α = 0.
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Figure 5.11: Variation of the statistical factor of synchronisation with mean
field coupling, for different values of power law exponent. (a) weak coupling,
(b) strong coupling. Here, k1 = 0.5, D = 0.0001, W = 1 and N = 100.
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exponent, α, on the network with g < 1.8 is shown in fig. 5.11(a). It is found that

synchrony in the memristive neural network decreases with increasing value of α.

For strong mean field coupling, g > 1.8, as shown in fig. 5.11(b), the synchrony

decreases with increase in coupling strength, for low values of α, represented

by the blue and red lines. For higher values of α, the synchrony is unaltered

as shown by the yellow and purple lines. Thus, the studies have shown that

for low value of α, i.e., global coupling, the synchrony increases with increasing

coupling strength and then reduces. But for high values of α, i.e., nonlocal or

local interactions, synchrony is rather unaltered.

The existence of incoherent, chimera, multichimera and coherent states is

observed in the memristive HR network with distance-dependent coupling due to

the interplay between g and α. Fig. 5.12(a) shows incoherent state, whereas fig.

5.12(b) shows imperfect synchronisation with 7 escaping neurons. Figs. 5.12(c)-

5.12(e) show chimera states. Multichimera states are shown in fig. 5.12(f) and

5.12(g). Figs 5.12h and 5.12(i) represent coherent states.

To distinguish incoherent, chimera and coherent states,the quantitative mea-

sures called SI and DM have been calculated by defining the local standard

deviation from the time series, which are given by the formulae in Eqs. (1.13)

and (1.14).

We have calculated SI and DM, using Eqs. (1.13), (1.14) for various values of

α which are presented in fig. 5.13. As shown in figs. 5.13(a) and 5.13(b), for low

values of g, incoherent, chimera, multichimera and coherent states are obtained,

whereas for high values of g, the system shows chimera and multichimera states

when α = 0.5. When α = 1, system shows incoherent, chimera, multichimera

and coherent states, for g < 3 and exhibits coherence for g > 3, as shown in figs.

5.13(c) and 5.13(d). As α increases, the value of g for which the system shows

coherence also increases. On further increasing α, the system attains incoherent,

chimera and multichimera states as shown in figs. 5.13(e), 5.13(f), 5.13(g) and

5.13(h). The study has shown that for high values of α system fails to attain

coherence. Hence, the parameter space for low values of α has been drawn to

study the rich dynamics exhibited by the system in this regime.
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Figure 5.12: Snapshots of the HR network with distance-dependent memris-
tor and mean field effects. (a) incoherent state (k1 = 0.5, α = 0.1, g = 0.1),
(b) imperfect synchrony (k1 = 0.5, α = 0.1, g = 1.7), (c) chimera state
(k1 = 0.5, α = 0.3, g = 1.1), (d) chimera state (k1 = 0.5, α = 0.5, g = 1.37), (e)
chimera state (k1 = 0.5, α = 0.5, g = 1.9), (f) multichimera state (k1 = 0.5, α =
0.4, g = 1.8), (g) multichimera state (k1 = 0.5, α = 0.5, g = 2.13), (h) coherent
state (k1 = 0.7, α = 0.5, g = 0.9), (i) coherent state (k1 = 1, α = 0.5, g = 0.7).
Here, D = 0.0001, W = 1 and N = 100.
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Figure 5.13: Variation of the strength of incoherence and discontinuity mea-
sure for different values of the mean field coupling strength. (a) α = 0.5, (c)
α = 1, (e) α = 1.5 and (g) α = 2 show the strength of incoherence. (b), (d),
(f) and (h) present the discontinuity measure for same values of α. Here, k1 =
0.5, D = 0.0001, W = 1, N = 100, M = 20, ϵ = 0.06.
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Figure 5.14: Parameter phase diagram in α− g plane for a network of mem-
ristive HR neurons. (a) Strength of incoherence and (b) Discontinuity measure.
Here, k1 = 0.5, D = 0.0001, W = 1, N = 100, M = 20 and ϵ = 0.06.

The parameter space (α − g) shows incoherent, chimera, multichimera and

coherent states, as shown in fig. 5.14. The variation of SI with parameters α and

g is presented in fig. 5.14(a). Incoherent and coherent states are represented by

the yellow and the blue colours, respectively. The system exhibits incoherence

for low values of g. As α increases, the value of g for which the system shows

coherence also increases. The region of occurrence of chimera and multichimera

states are exactly distinguished using, DM, as shown in fig. 5.14(b). Yellow, blue,

green and black colours indicate incoherence, coherent, multichimera and chimera

states, respectively. It is found that the presence of chimera and multichimera

states are overlapped with each other. The parameter space reveals the collective

dynamics of the system which are in exact agreement with studies of SI and DM.

5.4 Results and conclusions

A linear chain network of HR neurons with magnetic coupling and external stim-

uli of different forms has been analysed. The magnetic coupling is capable of

inducing plateau bursting and amplitude death in the HR neurons with constant

external input. The phase space trajectories are controlled and shrink to a single

point with the increase in magnetic coupling strength, representing synchrony

and amplitude death. The synchrony is quantified using the statistical factor of

synchronisation. The HR neural network with magnetic coupling is also analysed

in the presence of sinusoidal and square waves. The dynamics of the individual
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neurons are square wave bursting and spiking in the presence of sinusoidal and

square inputs, respectively. In the presence of time varying external inputs, the

phase space trajectories of the system are reduced to beeline for high magnetic

coupling strength. The statistical factor of synchronisation justifies the fact that

the sinusoidal input enhances synchrony and the square input suppresses the

synchrony in the network, compared to the constant input. The inputs with

high frequencies have greater ability to enhance and suppress the synchrony.

The HR network has been modified by introducing a distance-dependent

mean field coupling with a power law exponent. This modification helps to

realise the various types of interactions (such as global, nonlocal, or local cou-

pling) by varying the power law exponent. The uniform mean field (with zero

power law exponent) coupling accelerates synchrony in memristive HR neurons.

The combined effect of memristor and uniform mean field effects produces mixed

dynamics of square wave and plateau bursting. The uniform mean field initiates

synchronised bursting in the AD state of memristive network. The study of

pattern formations reveals that the system undergoes desynchronised, mixed os-

cillatory and imperfect synchronised state before attaining complete synchrony.

The synchrony level of memristive network increases initially and then decreases

with increase in mean field coupling strength, in global coupling, whereas the

synchrony is unaltered in nonlocal or local interactions. The complete synchrony

or global death state is unattainable in the network with distance dependence

governed by power law. The network shows incoherent, chimera, multichimera

and coherent states. It is found that, even for low values of power law expo-

nent, incoherent, chimera, multichimera and coherent states are obtained. The

existence of chimera states in system with long range interactions are verified

by parameter space. The long range interactions are common in many physical

and biological systems. The study on such systems will help us to get more

information about chimera states.
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Chapter 6

Memristive Hindmarsh-Rose

neurons with chemical cross

coupling

6.1 Introduction

On account of the significance of synchrony, the brain finds its own mechanism

to restore the lost synchrony. There are different methods of representing this

mechanism mathematically. Adhikari et al. analysed the phase transition to

synchrony in a network of bursting neurons owing to the time delay in synaptic

coupling [132, 186]. The cross coupling between the state variables was also used

to boost the synchronisation procedure by getting added to the pre-existing self

coupling [187]. The structural anomalies of the brain observed experimentally

were given a theoretical foundation by the neuron models with cross coupling

of state variables [44]. The phase synchronisation of coupled HR neurons with

magnetic and electrical cross couplings is also discussed [45]. Chemical coupling

which is nonlinear in nature is found to increase the stochastic coherence of the

system, in comparison with the linear electrical coupling [26]. Chimera states

were obtained in chemically coupled nonlocal networks of Morris Lecar neurons

[55]. The capability of the time delays to induce phase coherent dynamic be-
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haviours in chemically coupled network [188].

The energy aspects of HR neurons with electrical, chemical and field cou-

plings have also been analysed [158]. The magnetic stimulation is found to alter

firing activity and neural synchronisation in a HR neural network [21, 172]. The

suppression of chaotic states and enrichment of neural synchrony in a system of

two coupled HR neurons under the effect of electromagnetic induction is reported

[180].

In this chapter, the synchronisation scenario of a network of HR neurons

with self and cross interactions between membrane potential and magnetic flux

in chemical mode is analysed. The chapter is organised as follows: The influence

of self, mixed and cross coupling of state variables in two coupled HR neurons is

analysed in section 6.2. The stability of the synchrony induced is verified using

Lyapunov function approach. The study is extended to N coupled network and is

presented in section 6.3. The synchrony in the network, with global interaction,

is quantified using the statistical factor of synchronisation which is presented in

section 6.3.1. The influence of nonlocal coupling is discussed in section 6.3.2.

The studies are concluded in section 6.4.

6.2 Two coupled system

In this chapter, in addition to the magnetic coupling, we also consider the cross

synaptic coupling between membrane potential and magnetic flux in chemical

mode. The dynamical equations of two coupled system of HR neurons modelled

to realise cross interactions between membrane potential and magnetic flux, in

chemical mode is given as:

ẋi = yi − ax3i + bx2i − zi + I − k1ρ(ϕi)xi + g[bxxΓi,j(x) + bxϕΓi,j(ϕ)],

ẏi = c− dx2i − yi,

żi = r(s(xi − xe)− zi),

ϕ̇i = k2xi − k3ϕi + g[bϕxΓi,j(x) + bϕϕΓi,j(ϕ)], i, j = 1, 2; i ̸= j.

(6.1)
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Figure 6.1: Time series of two coupled HR neurons. (a) δ = 0, g = 1, (b)
δ = π

4 , g = 0.5, (c) δ = π
2 , g = 0.5. Here, k1 = 0.4.

xi, yi and zi represent the membrane potential, spiking variable and bursting

variable of ith neuron, respectively. yi is constituted by the flow of Na+ and K+

ions and the flow of Ca+ ions constitute the zi term. The fast oscillations of xi

and yi correspond to spikes, whereas the slow oscillations of the zi variable cause

burst [132]. Indices i, j represent presynaptic neuron and postsynaptic neuron,

respectively. g represent the coupling strength. ϕi describes the magnetic flux

across the membrane, k1ρ(ϕi)x denotes induction current and k1 is the induction

coefficient [21, 22]. The term ρ(ϕi) = tanh(ϕi) [170], is the memory-conductance

of a magnetic flux-controlled memristor.

The neurons are coupled through chemical synapse represented by the term:

Γi,j(x) = (v − xi)(1/(1 + exp(−λ(xj − θ)))), (6.2)

In order to maintain the synapse as excitatory, the reversal potential v is always

maintained to be greater than the membrane potential xi of all neurons at all

times. The exponential term is a sigmoidal nonlinear function, with λ deter-

mining the slope of the function and θ denoting the synaptic firing threshold.

The external current, I, controls the qualitative behaviour of the neurons. The

parameters are chosen as: a = 1, b = 3, c = 1, d = 5, r = 0.006, s = 4, xe =

−1.61, I = 3.1 [18], k2 = 0.9, k3 = 0.5 [21], v = 2, λ = 7.5, θ = −0.25 [158]. The

initial conditions (x0, y0, z0) are randomly chosen as to lie in the range [-0.5,0.5]

and ϕ0 in [0,1].
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Figure 6.2: Time series of two coupled HR neurons. (a) δ = 0, g = 0.5, (b)
δ = π

4 , g = 0.5, (c) δ = π
2 , g = 0.5. Here, k1 = 1.5.

The elements bxx, bxϕ, bϕx and bϕϕ form the components of a coupling matrix.

A general form for this coupling matrix which incorporates self and cross coupling

is given by:

B =

bxx bxϕ

bϕx bϕϕ

 =

 cos δ sin δ

− sin δ cos δ


Where δ ∈ [−π, π) is the coupling phase. The switching between the

interactions are made easy by varying the values of δ. We have analysed the

system of HR neurons in three different cases:

(i) Self coupling in x and ϕ, δ = 0.

(ii) Mixed coupling in x and ϕ, δ = π
4
.

(iii) Cross coupling in x and ϕ, δ = π
2
.

The different firing patterns of the two coupled system is analysed using

the time series. The firing patterns of the system with low magnetic coupling

(k1 = 0.4) for different interactions in chemical mode is shown in fig. 6.1. The

synchrony in the system is exhibited using the error term, ex =
√
x21 − x22. Both

neurons show square wave bursting character which is visible from the red and

blue lines (blue line is hidden by the red). The yellow line representing the

error indicates the synchrony in the network induced by the self coupling in

the variables, for δ = 0, as shown in fig. 6.1(a). The mixed coupling realised

with δ = π
4

in fig. 6.1(b) also induces synchrony, represented by the yellow line.
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Figure 6.3: Time series of two coupled HR neurons. (a) δ = 0, g = 0.5, (b)
δ = π

4 , g = 0.5, (c) δ = π
2 , g = 0.5. Here, k1 = 2.4.

The dynamics is square wave bursting with an increased number of spikes per

burst. But cross coupling (δ = π
2
) is incapable of inducing synchrony, as shown

in fig. 6.1(c) and the dynamics is irregular bursting. Self and mixed coupling of

variables helps attain synchrony whereas, synchrony is unattainable with cross

coupling alone.

The changes in firing patterns for k1 = 1.5 is presented in fig. 6.2. With

increase in magnetic coupling, the dynamics is transformed from square wave

bursting to plateau bursting for self and mixed couplings, as shown in figs. 6.2(a)

and (b). The system do exhibit a degree of synchronisation though not achieving

complete synchrony. The chaotic irregular bursting and the unattainability of

synchrony in system for pure cross coupling (δ = π
2
) is shown in fig. 6.2(c). The

capability of self and mixed coupling in inducing synchrony and unattainability

of synchrony in cross coupling is justified at higher magnetic coupling, k1 = 1.5.

The system shows synchronised dynamics at high value of magnetic coupling

(k1 = 2.4), for self, mixed and cross coupling, as shown by yellow lines in figs.

6.3(a), (b) and (c), respectively. The dynamics at the synchronised state is

Amplitude Death (AD) state, where the oscillations of the system is quenched

and a stable state condition is achieved, as represented by the blue and red lines.

Here, the magnetic coupling overrides the effect of chemical coupling [153] and

induces synchrony in any coupling scheme.
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The stability of synchronous states

The stability of the synchrony attained in the two coupled system is analysed

using master stability approach. The error dynamical equations are calculated

by considering the difference between state variables of the neurons. When the

system reaches a synchronised state where (x1, y1, z1, ϕ1) = (x2, y2, z2, ϕ2), the

error terms x⊥ = x2 − x1, y⊥ = y2 − y1, z⊥ = z2 − z1, ϕ⊥ = ϕ2 − ϕ1 approach zero

as time approaches infinity and there exist a synchronous solution. The stability

equations for perturbations transverse to the synchronisation manifold are of the

form:

ẋ2 − ẋ1 = (y2 − y1)− 3a(x22 − x21) + 2b(x2 − x1)− (z2 − z1)− k1

[
tanh(ϕ2)x2

− tanh(ϕ1)x1

]
+ g cos δ

[
(v − x2)Γ(x1)− (v − x1)Γ(x2)

]
+ g sin δ[

(v − ϕ2)Γ(x2)− (v − ϕ2)Γ(x2)
]

ẏ2 − ẏ1 = −2d(x2 − x1)− (y2 − y1),

ż2 − ż1 = rs(x2 − x1)− r(z2 − z1),

ϕ̇2 − ϕ̇1 = k2(x2 − x1)− k3(ϕ2 − ϕ1)− g sin δ
[
(v − x2)Γ(x1)− (v − x1)Γ(x2)

]
+ g cos δ

[
(v − ϕ2)Γ(x2)− (v − ϕ2)Γ(x2)

]
(6.3)

On simplifying,

ẋ⊥ = y⊥ − 3ax2x⊥ + 2bxx⊥ − z⊥ − k1(xϕ⊥ + ϕx⊥)− g cos δΩ(x)x⊥ − g sin δΩ(ϕ)ϕ⊥

ẏ⊥ = −2dxx⊥ − y⊥,

ż⊥ = rsx⊥ − z⊥,

ϕ̇⊥ = k2x⊥ − k3ϕ⊥ + g sin δΩ(x)x⊥ − g cos δΩ(ϕ)ϕ⊥.

(6.4)

Where tanh(ϕi,j′)xi,j′ + tanh(ϕ1,j′)x1,j′ is approximated as xi+1,j′ϕ⊥i,j′
+ϕi,j′x⊥i,j′

and Ω(f) = (1/(1+exp(−λ(f−θ))))+(v− f)(−λ(f−θ))/(((1+exp(−λ(f−θ)))2).
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Figure 6.4: Variation of the MTLE with coupling strength (g) for different
values of δ. (a) k1 = 0.4 and (b) k1 = 1.5.
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The Jacobian for the whole network with chemical cross coupling will have

the following structure: 
J1,1 + γ1,1E γ1,2E

γ2,1E J2,2 + γ2,2E

 (6.5)

where,

Ji,i =


2axi − 3bx2i − k1ϕi − g cos δΩ(x) 1 −1 −k1x− g sin δΩ(ϕ)

−2dxi −1 0 0

rs 0 −r 0

k2 + g sin δΩ(x) 0 0 −k3 − g cos δΩ(ϕ)


(6.6)

and

E =


cos δ 0 0 sin δ

0 0 0 0

0 0 0 0

− sin δ 0 0 cos δ

 (6.7)

The terms γi,i and γi,j are obtained by partially differentiating g(v − fi)Γ(fj)

with respect to fi and fj, respectively. The Jacobian given by Eq. (6.5) is diag-

onalised in a coordinate system that isolates the stability of the synchronisation

manifold from the transverse directions. The maximum transverse Lyapunov

exponent (MTLE), λ⊥max is used as the bifurcation function to study the stabil-

ity of synchrony. The system is stabilised when MTLE becomes negative. The

variation of λ⊥max with g for different values of δ and k1 is presented in fig. 6.4.

Fig. 6.4(a) presents the synchrony of the system with k1 = 0.4. The system

with self and mixed interactions, presented by blue and red lines are stabilised

at g = 1.3 and g = 1.4, respectively, which is clear from the inset figure. The

system with cross coupling presented by the yellow line in fig. 6.4(a) never at-

tains synchrony. The stability of synchrony for self, mixed and cross couplings

at k1 = 1.5 is shown in fig. 6.4(b). The self and mixed coupled systems attain
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synchrony at g = 0.8 and g = 1, respectively, which is well visible in the inset.

The cross coupled system never attains synchrony as the yellow line never crosses

the zero line. The synchrony is attained at lower coupling strength, compared

to a weakly magnetically coupled system. The incapability of cross coupling in

inducing synchrony is visible with the yellow line never approaching a zero value,

however, it constructively takes part with self coupling in inducing synchrony.

The parameter space with δ on the X-axis and g on the Y-axis with colourbar

representing the variation of λ⊥max is shown in fig. 6.5. The fig. 6.5(a) reveals

the synchronisation scenario with low magnetic coupling strength k1 = 0.4. For

low value of chemical coupling, g, synchrony is unattainable. For high value of g,

synchrony is obtained for self and mixed interactions. At δ = 0, the interaction

is self alone and synchrony is obtained. With an increase in value of δ, the

cross coupling comes into action with self coupling to form mixed coupling. The

system exhibits synchrony for mixed coupling till δ < 3π
8

. The contributions

from self coupling are decreasing and interactions are solely from cross coupling

for values δ > 3π
8

. In this region synchrony is unattainable. At high magnetic

coupling strength (k1 = 1.5), as shown in fig. 6.5(b), synchrony is obtained for

even low values of g in self and mixed interactions. Here, the influence of self

coupling is more intense than cross coupling. But for δ > 3π
8

, cross coupling

overrides the effect of self coupling and is incapable of inducing synchrony.

6.3 The N coupled system

The influence of cross coupling of state variables has been analysed in a network

of HR neurons arranged in ring structure. The dynamical equations are of the
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Figure 6.6: Variation of the statistical factor of synchronisation with coupling
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form:

ẋi = yi − ax3i + bx2i − zi + I +
g

2p

j=i+p∑
j=i−p

[bxxΓi,j(x) + bxϕΓi,j(ϕ)],

ẏi = c− dx2i − yi

żi = r(s(xi − xe)− zi),

ϕ̇i = k2xi − k3ϕi +
g

2p

j=i+p∑
j=i−p

[bϕxΓi,j(x) + bϕϕΓi,j(ϕ)],

(6.8)

where i = 1, 2, ..., N . The network consists of N neurons, each of which is

coupled to p neighbouring neurons in both directions of the ring.
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6.3.1 The synchronisation scenario

The synchronisation scenario in the presence of cross coupling of variables in

magnetically coupled HR neurons in ring topology is analysed in this section.

The total number of neurons in the network, N is fixed as 135 and p = N−1
2

,

to realise global interaction. The amount of synchrony is quantified using the

statistical factor of synchronisation, R, given by the Eq. (1.3).

The variation of R with g, for different values of δ is shown in fig. 6.6. At low

magnetic coupling (k1 = 0.4), the synchrony induced in the absence of chemical

cross coupling is R ≈ 0.5, as shown in fig. 6.6(a). The blue, red and yellow lines

represent the variation of R for self, mixed and cross coupling. For g < 2, the

synchrony in the system increases for self and mixed coupling. But it is to be

noted that synchrony is attained at a faster rate in self coupled system compared

to the one with mixed coupling. For g > 2, the self and mixed coupling have the

same influence and all the neurons in the network are in AD exhibiting complete

synchrony. However, the system with sole cross coupling is incapable of inducing

synchrony at any value of g.

The synchrony level is high (R ≈ 0.8) for k1 = 1.5, in the absence of chemical

coupling. Under the influence of self and mixed coupling, the synchrony further

increases and approaches unity for low values of g. Both self and mixed coupling

have similar influences. In the presence of sole cross coupling, the system is

incapable of attaining synchrony. The incapability of sole cross coupling to induce

synchrony is justified in a network of neurons with weak and strong magnetic

coupling as well.

6.3.2 The pattern formations

The network of HR neurons in ring topology is analysed in nonlocal interactions

with cross coupling of variables. The system is found to exhibit chimera and

multichimera states under the effect of mixed coupling and is presented in fig.

6.7. The multichimera states obtained for δ = π
2
− 1 are shown in figs. 6.7(a),

(b), (c), (d) and (e) for self and mixed coupling schemes. The chimera states
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Figure 6.7: Snapshots of membrane potential under the influence of mixed
interactions in chemically coupled HR neurons with magnetic coupling. (a)
p = 10, δ = π

2 − 1, g = 0.3, (b) p = 10, δ = 0, g = 0.2, (c) p = 5, δ = 0, g = 0.6,
(d) p = 10, δ = π

4 , g = 0.9, (e) p = 5, δ = π
2 −1, g = 0.3, (f) p = 5, δ = π

2 −1, g =
0.5.
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Figure 6.8: The variation of energies of the neurons in the network. (a) p =
10, δ = π
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obtained for δ = π
2
− 1 is presented in fig. 6.7(f).

The chimera states are the coexistence of coherent and incoherent oscillators.

The Hamilton energy function has been faithfully used to analyse the energy of

the system and the energy function corresponding to the HR system represented

by Eq. (6.1) satisfies the equation [21, 87]:

(yi − zi + I − ϕi)
∂Hi

∂xi
+ (c− dx2i )

∂Hi

∂yi
+ rs(xi − xe)

∂Hi

∂zi
+ k2xi

∂Hi

∂ϕi
= 0 (6.9)

A general solution for the Eq. (6.9) is given as:

Hi =
2

3
dx3i − 2xi + rs(xi − xe)

2 + (yi − zi + I − ϕi)
2 + k2x

2
i (6.10)

The Eq. (6.10) is used to analyse the energy of each neuron in the network.
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Figure 6.9: The spatiotemporal patterns of the network. (a) desynchrony
(p = 10, δ = 0, g = 0.1), (b) travelling chimera (p = 5, δ = π

4 , g = 0.7),
(c) travelling chimera (p = 10, δ = 0.8, g = 0.8) and (d) global synchrony
(p = 5, δ = 0, g = 1.3). Here, k1 = 0.4. The colourbar represents the membrane
potential, x.
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The variations in the Hamilton energy function corresponding to the pattern for-

mations shown in fig. 6.7 are depicted in fig. 6.8. From fig. 6.8(a), it is observed

that the energy of the coherent neurons is higher compared to the incoherent

ones. Here, the potential of the coherent neurons is at a higher negative poten-

tial compared to the incoherent ones. Conversely, in fig. 6.8(b), the potential

of the neurons exhibiting coherence is near zero and the energy of the coherent

neurons is lower compared to the incoherent states. In figs. 6.8(c) and 6.8(d),

the energy of the coherent neurons is also lower than that of the incoherent states

and the potential of the neurons in the coherent states is near zero. Similarly, in

fig. 6.8(e), the energy of the coherent states is higher compared to the incoherent

states with the coherent neurons placed at a high negative potential. Finally,

in fig. 6.8(f), the energy of the coherent states is lower, with the potential of

coherent neurons near zero. Based on these observations, it can be concluded

that to maintain the neurons in a coherent state at a high potential, regardless of

polarity, higher energy utilisation is required. On the other hand, if the potential

of the neurons in a coherent state is near zero, the energy utilisation is lower.

The spatiotemporal patterns of the network is analysed. The variations in the

membrane potential, xi for the different neuron is analysed in the network for a

range of time and presented in fig. 6.9. The neuron number is represented in X-

axis and time is presented in Y-axis. The membrane potential is represented by

the colourbar. The desynchronised state is represented in fig. 6.9(a). Travelling

chimeras obtained are presented in figs. 6.9(b) and (c). Fig. 6.9(d) represents

the completely synchronised state.

6.3.3 Quantifying chimeras

The emergence of chimera and multichimera states in the network due to the

topology and coupling scheme is analysed with the help of a quantitative measure

called strength of incoherence (SI) and discontinuity measure (DM), given by

Eqs. (1.13) and (1.14).

The variation of SI and DM with g for different values of δ are presented

in fig. 6.10. The incoherent, chimera and coherent states obtained in a system
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Figure 6.10: Variation of the strength of incoherence and discontinuity mea-
sure with coupling strength for self, mixed and cross couplings. The left panel
shows the strength of incoherence of (a) self, (c) mixed and (e) cross couplings.
The right panel shows the discontinuity measures for (b) self, (d) mixed and
(f) cross couplings. Here, k1 = 0.4, ϵ = 0.05, p = 10.
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with self coupling are presented in fig. 6.10(a). The chimeras and multichimeras

are distinguished by using DM as shown in fig. 6.10(b). In a mixed coupled

system, incoherent, chimera and coherent states are obtained as shown in fig.

6.10(c). Fig. 6.10(d) distinguishes the chimeras and multichimeras for mixed

coupling. From fig. 6.10(e), it is clear that the cross coupled system exhibits

only incoherent states. The chimera or coherent states are never obtained in the

cross coupled system. It is further justified by DM as shown in fig. 6.10(f).

6.4 Results and conclusions

The synchrony and pattern formations in HR neurons with self, mixed and cross

interactions between membrane potential and electromagnetic flux in chemical

mode are analysed in this chapter. In the system of two coupled neurons, the

time series shows that self coupling induces synchrony in the system. Sole cross

coupling is incapable of inducing synchrony. However, cross coupling acts along

with self coupling to form mixed coupling and the system exhibits synchrony.

The analysis of time series also indicates that, at low magnetic coupling strength,

dynamics is square wave bursting. With an increase in magnetic coupling, the

dynamics is transformed into plateau bursting. The inability of the cross coupling

to induce synchrony is evident in the plateau bursting regime as well. With

further increase in magnetic coupling, the system attains an amplitude death

state marked by suppressed oscillations. At this state, the magnetic coupling

overrides the effect of chemical coupling and the system is synchronised for any

interactions viz., self, cross or mixed. The stability of the synchrony attained

in self and mixed coupling is justified by the master stability function. The

maximum transverse Lyapunov exponent crosses the zero line when the system

attains stabilised synchrony. Whereas in cross coupled interactions, stabilised

synchrony is never attained. The parameter space gives a better idea about the

bifurcation point at which cross coupling makes the influence of self coupling

ineffective.

The synchronisation scenario is analysed in a network of HR neurons in ring
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topology with self, mixed and cross chemical coupling. The synchrony quanti-

fied by the statistical factor of synchronisation justifies the fact that synchrony is

unattainable in cross coupling alone and that its effect is nullified in the presence

of strong self coupling. The mixed coupling of variables in ring topology along

with nonlocal interactions are found to induce chimera and multichimera states

in the network. The presence of travelling chimeras in the network is uncov-

ered through the analysis of the spatiotemporal patterns. The Hamilton energy

function analysis reveals that to maintain the coherent neurons at high poten-

tial, higher energy is utilised. Our findings may help in exploring the collective

behaviour of neuronal systems, including physical mechanisms and can be ap-

plied to the study of synchronisation in large-scale networks, including multilayer

networks.
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Chapter 7

Memristive Hindmrash-Rose

neurons with distance-dependent

coupling in 2D lattice

7.1 Introduction

Understanding the role of structural and dynamical symmetries in the appear-

ance of distant synchronisation is important for a wide range of applications,

including the design and optimisation of communication networks and the under-

standing of brain function. Traditional single layer networks are limited in their

ability to accurately represent complex systems because they only capture one

type of interaction or connection [189–191]. By using multilayer models, we can

gain a more detailed understanding of the structure and function of the neuronal

network and how it changes over time [192]. Multilayer networks have gained

significant attention in recent years because of their potential ability to model

real world complex systems with multiple levels of connectivity [193]. Majhi et

al. used a three layer network model to study the role of indirect connections in

the emergence of a chimera state in the uncoupled layer [182]. Spatial chimeras

were obtained in locally coupled neural network with a topology of cubic lattice

[155]. Studies have shown that the evolution of functional network topology with
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different layers can have a significant impact on the processing of visual infor-

mation and other cognitive tasks. For example, research has demonstrated that

the intralayer interaction (interactions within a single layer) can play a critical

role in the processing of visual information [194].

In the case of a triplex network with a ring topology, the outer layers can

synchronise through the intermediate middle layer [195]. Studies have shown that

bounded noise can have a significant impact on the formation and instability of

spiral waves in a 2D lattice of neurons. It can either enhance or suppress the

formation of spiral waves, depending on the strength and type of noise [196].

The significant impact of time delay on the contrast behaviour of each layer in a

three layer is also reported [197]. A study has been conducted on two dimensional

array of neuron models represented by Rulkov maps with the coupling between

neurons arranged in a square shape, but without distance dependence [34].

In this chapter, the synchronisation behaviour and pattern formations of

memristive HR network in 2D lattice with distance-dependent chemical coupling

are analysed. The studies are carried out by varying the number of connections

to each neuron and altering the strength of distance dependence in coupling. The

network model is presented in section 7.2. Section 7.3 analyses the synchrony

pattern between and within 1D arrays. The dependence of synchrony on coor-

dination number is found out in section 7.3.1, whereas section 7.3.2 is devoted

to the analysis of the stability of the network’s synchronised states using the

Lyapunov stability theory. Section 7.4 exhibits the interesting spatiotemporal

patterns and snapshots arising naturally in the arrays of the network. Section

7.5 summarises the results of the chapter.

7.2 HR network in 2D lattice

The network consists of Hindmarsh-Rose neurons, evenly arranged in a 2D lattice

made up of five linear chains. The position of each neuron is identified by its

indices i, j, where i denotes the position along the X-axis and j denotes the

position along the Y-axis. n is the number of neurons present in each 1D array
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and N represents the total number of neurons in the network, which is equal to

5n. The model is given as:

ẋi,j = yi,j − ax3i,j + bx2i,j − zi,j + I − k1ρ(ϕi,j)xi,j + Ti,j,

ẏi,j = c− dx2i,j − yi,j,

żi,j = r(s(xi,j − xe)− zi,j),

ϕ̇i,j = k2xi,j − k3ϕi,j, i = 1, 2, ..., n; j = 1, 2, ..., 5.

(7.1)

Figure 7.1: Scheme of coupling between the reference neuron (red) and its
neighbours, for coupling range Rc = 2. The blue balls represent the neurons in
the first square and green balls show the neurons in the next square.

Where xi,j, yi,j and zi,j represent the membrane potential, spiking variable

and bursting variable of the neuron in the (i, j)th position in the 2D lattice, re-

spectively. n is the number of neurons in each array of the network. The external

current, I, controls the qualitative behaviour of the neurons. ϕi,j describes the

magnetic flux across the membrane, k1ρ(ϕi,j)xi,j denotes induction current and

k1 is induction coefficient [21, 22]. The term ρ(ϕi,j) is the memory conductance

of a magnetic flux controlled memristor, which can take different forms. We

have considered a hyperbolic function, tanh(ϕi,j), whose state equation can be

represented by linear terms [170].

The term Ti,j represents the nonlinear chemical connections between the neu-

rons. The coupling scheme is as shown in fig. 7.1. The coupling range, Rc, is

used to explain the coordination number for the neurons. When Rc = 1, each

neuron (using the red ball as a reference) is coupled to the neurons in the first

nearest square (represented by the blue balls in the figure). The coordination
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number in this case is eight, with four neurons at a distance of l and the remain-

ing four at a distance of
√
2l, where l is the lattice parameter. Then the coupling

term has the form:

Ti,j =
g

8
(v − xi,j)

[ 1
lα
[Γ(xi−1,j) + Γ(xi+1,j) + Γ(xi,j−1) + Γ(xi,j+1)] +

1

(
√
2l)α

[Γ(xj−1,i−1) + Γ(xj−1,i+1) + Γ(xj+1,i−1) + Γ(xj+1,i+1)]
]
.

(7.2)

Where g is the coupling constant that represents the magnitude of the in-

teraction between the neurons. The reversal potential v is so chosen that the

coupling is always excitatory in nature. An exponential function which models

the synaptic junction between the neurons is given by:

Γ(xi,j) = 1/(1 + exp(−λ(xi,j − θ))) (7.3)

The parameters λ and θ represent the slope of the sigmoidal function and the

synaptic firing threshold, respectively.

When Rc = 2, each neuron is coupled with neurons in the next square along

with the first nearest square (blue and green balls as in fig. 7.1). The coordination

number for the second square alone is sixteen with four neurons at a distance

of 2l, four neurons being at 2
√
2l and eight situated at a distance of

√
5l. The

coupling term is of the form:

Ti,j =
g

16
(v − xi,j)

[ 1

(2l)α
[Γ(xi+2,j) + Γ(xi−2,j) + Γ(xi,j+2) + Γ(xi,j−2)] +

1

(2
√
2l)α

[Γ(xi+2,j+2) + Γ(xi+2,j−2) + Γ(xi−2,j+2) + Γ(xi−2,j−2)] +
1

(
√
5l)α

[Γ(xi1,j−2)

+ Γ(xi+1,j+2) + Γ(xi−1,j+2) + Γ(xi−1,j−2) + Γ(xi+2,j−1) + Γ(xi+2,j+1)

+ Γ(xi−2,j+1) + Γ(xi−2,j−1)]
]
.

(7.4)

The lattice parameters l,
√
2l, 2l, 2

√
2l,

√
5l along with the power law exponent,
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Figure 7.2: Dynamics of HR neuron. (a) uncoupled chaotic bursting (k1 =
0, g = 0), (b) uncoupled plateau bursting (k1 = 0.2, g = 0), (c) coupled chaotic
bursting (k1 = 0.1, g = 0.2). Here I = 3.1.

α, give a distance dependence to the coupling terms. The ratio of g to lattice

parameters ensures that the interaction between neurons decreases with distance.

However, this decrease is typically very steep and only the nearest neighbors

have a significant contribution. To address this issue, an additional term, α, is

introduced which produces a gradual decrease in the interaction strength with

distance.

The collective behaviour of the network is analysed by varying the values of g

and α, while keeping l as 1. The value of n is set at 100 unless otherwise specified.

The initial conditions for each oscillator are taken as xi,j(0) = 0.001[N − (i+ j)],

yi,j(0) = 0.002[N−(i+j)], zi,j(0) = 0.003[N−(i+j)] , ϕi,j(0) = 0.004[N−(i+j)]

for i, j = 1, 2, ..., n [155]. We use the following periodic boundary conditions:

x0,j = xn,j, xn+1,j = x1,j;xi,0 = xi,n, xi,n+1 = xi,1. The other parameters are

fixed as a = 3, b = 1, c = 1, d = 5, R = 4, r = 0.006, I = 3.1, xe = 1.61 [18],

λ = 10, V = 2, θ = −0.25 [155], k1 = 0.1, k2 = 0.9, k3 = 0.4 [21].

The dynamics of a HR neuron for different system parameters is presented in

fig. 7.2. Fig. 7.2(a) shows the chaotic bursting of a single neuron. The system
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Figure 7.3: Variation of the statistical factor of synchronisation within each
1D array of the 2D lattice network. (a) Rc = 1 (b) Rc = 2.

exhibits plateau bursting under memristor effects and is presented in fig. 7.2(b).

The chaotic bursting of the coupled system under memristor effect and chemical

coupling is presented in fig. 7.2(c).

7.3 Synchronisation scenario

In this section, the intra and inter array synchronisation in 1D arrays of the 2D

lattice is analysed for different values of α and k (by changing Rc). The intra

array synchrony is quantified using the statistical factor of synchronisation, R,

based on the mean field theory. The synchrony within each 1D array is calculated

using Eq. (1.3). Then it is averaged over the number of arrays.

The pattern of synchrony is analysed in the network with Rc = 1 and is

shown in fig. 7.3(a). With increase in the value of α, the threshold for coupling

also increases. On the other hand, when Rc = 2, each neuron is connected to 24

neighboring neurons, forming two squares of neurons surrounding it as shown in

fig. 7.3(b). As the value of α increases, the coupling strength at which synchrony

is attained also increases. The network in which neurons are coupled to a larger

number of neurons is found to synchronise at a faster rate.

The synchrony between the arrays are evaluated using the formula [195]:

Eij = lim
T→∞

1

nT

∫ T

0

n∑
k=1

∥Xi
k(t)− Xj

k(t)∥dt (7.5)

where ∥.∥ is the Euclidean norm and i, j = 1, 2,...,5 denote the array number.
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Figure 7.4: Variation of the inter array error between the 1D arrays of the
2D lattice network. (a) Rc = 1 (b) Rc = 2.
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Figure 7.5: Variation of the statistical factor of synchronisation with coupling
threshold for different coordination number. (a) k = 24, (b) k = 8, (c) k = 2.

Xi
k(t) represents the variables x, y, z and ϕ of kth neuron in ith array, at time

t. The differences between all the arrays are then averaged to obtain the value

of Eij. A low value of Eij represents synchrony between the arrays, while a high

value corresponds to lack of synchrony.

The error between the arrays of the network at Rc = 1 is shown in fig.

7.4(a). It is observed that for low values of g, the error between the arrays is

high, indicating low levels of synchrony. As the value of g increases, the network

achieves inter array synchrony. However, even at high values of coupling strength

between the arrays, the error is not completely eliminated, suggesting that the

different arrays are stabilised at slightly different potential levels.

The synchrony between the 1D arrays in the network with Rc = 2 is shown in

fig. 7.4(b). The synchrony between arrays is visible from this plot as well. The

synchrony is obtained at lower value of g compared to the network with Rc = 1.
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7.3.1 Coordination number and synchrony

The dependence of synchrony on the coordination number of the neurons is anal-

ysed in this section. The synchrony pattern is analysed using the statistical factor

of synchronisation. The variation of R with g is analysed. It has been already

reported that in a chemically coupled network, the synchronisation threshold

is given by g∗ = g(n=2)/k, where, g(n=2) is the constant corresponding to the

synchronisation coupling threshold between two mutually coupled HR neurons

and k is the coordination number i. e., the number of neurons to which each

neuron is coupled [30]. The value of g(n=2) is numerically found to be 1.402. The

variation of R is analysed for different values of k and is plotted in fig. 7.5. The

quantity g′ = g/k is plotted on the X-axis. The coordination number and theo-

retically calculated g∗ are presented in the legend. In fig. 7.5(a), the variation of

R is presented for the network with Rc = 2. Thus, the coordination number is

24. The expected threshold g∗ obtained theoretically is 0.06 and numerically we

have obtained it as 0.08. The coupling threshold for a network with Rc = 1, the

coordination number being 8, is theoretically obtained as 0.18, which is related

to the numerical value 0.3, within permissible error. This is shown in fig. 7.5(b).

The synchrony pattern in the network with Rc = 1 and fixing j is shown in fig.

7.5(c). The coordination number is 2 and the calculated coupling threshold is

0.7, which corresponds to the numerically obtained value of 0.9.

7.3.2 Network size and stability of synchrony

In this section, we have analysed the dependence of synchrony on the network

size. The synchrony in the network is quantified using R, given by Eq. (1.3).

The variation of R with g for different values of n is presented in fig. 7.6(a). The

network attains synchrony at g = 1.5, irrespective of the size of the network. The

master stability approach is used to analyse the stability of the synchronised

states. It was developed by Louis M. Pecora and Thomas L. Carroll in the

1990s and it has become a widely used tool in the study of synchronisation

phenomena in a variety of contexts [74]. Later the theory was developed by
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Figure 7.6: Variation of (a) statistical factor of synchronisation and (b) max-
imum transverse Lyapunov exponent with coupling strength for different net-
work size.

Dhamala et al. and was utilised to find the transition to synchrony in various

networks with different couplings and topologies [174, 198]. Researchers continue

to rely on the master stability function to quantify the stability of systems [161,

180]. The stability of the system has been analysed by fixing j = j′, Rc = 1.

The error dynamical equations are calculated by considering the first neuron as

the reference and finding the difference of each oscillator from the first neuron.

At the synchronised state (x1,j′ , y1,j′z1,j′ , ϕ1,j′) = (x2,j′ , y2,j′ , z2,j, ϕ2,j′) = ... =

(xn,j′ , yn,j′ , zn,j′ , ϕn,j′) and the error terms defined as x⊥i,j′
= xi,j′ − x1,j′ , y⊥i,j′

=

yi,j′ − y1,j′ , z⊥i,j′
= zi,j′ − z1,j′ , ϕ⊥i,j′

= ϕi,j′ − ϕ1,j′ , where i = 2, 3, ..., n vanish in

the limit of t→ ∞ and a synchronous solution exist. The stability equations for

perturbations transverse to the synchonisation manifold are expressed as:

ẋ⊥i,j′
= y⊥i,j′

− 3ax2i,j′x⊥i,j′
+ 2bxi,j′x⊥i,j′

− z⊥i,j′
− k1

[
tanh(ϕi,j′)xi,j′

+ tanh(ϕ1,j′)x1,j′
]
+
g

2

[
(v − xi,j′)(Γ(xi+1,j′) + Γ(xi−1,j′))−

(v − x1,j′)(Γ(x2,j′) + Γ(xn,j′))
]

ẏ⊥i,j′
= −2dxi,j′ − y⊥i,j′

,

ż⊥i,j′
= rsx⊥i,j′

− z⊥i,j′
,

ϕ̇⊥i,j′
= k2x⊥i,j′

− k3ϕ⊥i,j′
.

(7.6)
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On simplifying,

ẋ⊥i,j′
= y⊥i,j′

− 3ax2i,j′x⊥i,j′
+ 2bxi,j′x⊥i,j′

− z⊥i,j′
− k1(xi+1,j′ϕ⊥i,j′

+ ϕi,j′x⊥i,j′
)−

g

2
Ω(xi,j′)x⊥i,j′

ẏ⊥i,j′
= −2dxi,j′ − y⊥i,j′

,

ż⊥i,j′
= rsx⊥i,j′

− z⊥i,j′
,

ϕ̇⊥i,j′
= k2x⊥i,j′

− k3ϕ⊥i,j′
.

(7.7)

Where, tanh(ϕi,j′)xi,j′ + tanh(ϕ1,j′)x1,j′ is approximated as xi+1,j′ϕ⊥i,j′
+

ϕi,j′x⊥i,j′
and Ω(xi,j′) = g(1/(1 + exp(−λ(xi,j′ − θ)))) + g(v − xi,j′)(−λ(xi,j′ −

θ))/(((1 + exp(−λ(xi,j′ − θ)))2)

The Jacobian for the whole network with chemical coupling will have the

following structure:



J1,1 + γ1,1E γ1,2E 0 0 · · · 0 γ1,nE

γ2,1E J2,2 + γ2,2E γ2,3E 0 · · · 0 0

0 γ3,2E J3,3 + γ3,3E γ3,4E · · · 0 0
...

...
...

...
...

...
...

γn,1E 0 0 · · · γn,n−1E Jn,n + γn,nE


,

(7.8)

where

Ji,i =


2axi − 3bx2i − k1ϕi + Ω(xi) 1 −1 −k1xi

−2dxi −1 0 0

rs 0 −r 0

k2 0 0 −k3

 (7.9)

and
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E =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (7.10)

The terms γi,i and γi,j is obtained by partially differentiating g
2
(v−xi)[Γ(xi+1+

Γ(xi−1)) with respect to xi and xj, respectively. The Jacobian given by Eq. (7.8)

is diagonalised in a coordinate system that isolates the stability of the synchroni-

sation manifold from the transverse directions. The Maximum Transverse Lya-

punov Exponent (MTLE), λ⊥max is used as the bifurcation function to study the

stability of synchrony. The system is stabilised when MTLE becomes negative.

The variation of λ⊥max with g for different values of n is presented in fig. 7.6(b).

The MTLE crosses the zero line for g = 1.5, irrespective of the value of n. It is

justified that the stability of synchronised states in chemically coupled networks

is independent of the network size [30].

7.4 Spatiotemporal patterns

This section presents the different spatiotemporal patterns in the 2D lattice net-

work with distance-dependent coupling. All the neurons in the network show

bursting dynamics for g = 0.1, as shown in fig. 7.7(a). The dynamics of a sin-

gle neuron from each array shown in fig. 7.7(b) justifies the result. Two arrays

exhibit amplitude death and the other three arrays show bursting dynamics, as

shown in fig. 7.7(c). The corresponding dynamics of a single neuron is presented

in fig. 7.7(d). All the arrays in the network show amplitude death, as shown in

fig. 7.7(e) which is justified by the time series of a single neuron from each array

as shown in fig. 7.7(f).

The 1D arrays of the network exhibit contrasting behaviour for weak coupling

and synchrony with each other when coupling is strong. The contrast behaviors

of each 1D array for different coupling strengths and power law exponent factors

are shown in fig. 7.8. The network shows perfect synchrony in the first array and
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Figure 7.7: Spatiotemporal evaluation of membrane potential. (a) bursting
(g = 0.1) , (c) mixed behaviour of bursting and amplitude death (g = 0.4) and
(e) amplitude death (g = 0.48). The dynamics of the neuron from each layer is
represented in the right panel, (b), (d) and (f). Here, α = 0.1. The colourbar
represents the membrane potential, x.
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Figure 7.8: Snapshots of the different 1D arrays of the network. (a) α =
0.1, g = 0.05, Rc = 1, (b) α = 0.1, g = 0.11, Rc = 1, (c) α = 0.1, g = 0.05, Rc =
1, (d) α = 0.1, g = 1, Rc = 1, (e) α = 0.1, g = 0.06, Rc = 2 and (f) α = 0.5, g =
0.04, Rc = 1. Here, lj , where j = 1, 2, ..., 5 represents the different 1D arrays of
the lattice.
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Figure 7.9: Variation of the strength of incoherence and discontinuity measure
for different values of coupling strength. (a), (b) Rc = 1 and (c),(d) Rc = 2.
Here, α = 0.1. Here, lj , where j = 1, 2, ..., 5 represents the different 1D arrays
of the lattice.
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desynchronisation in all the other arrays for Rc = 1, as shown in fig. 7.8(a). The

fifth array in 7.8(b) is desynchronised, while all other arrays are synchronised.

All the arrays show multichimera states for Rc = 1, as shown in fig. 7.8(c). The

network with Rc = 1 shows clustered synchrony, where each array is perfectly

synchronised at slightly different membrane potentials, as shown in fig. 7.8(d).

First three arrays are synchronised and rest two arrays show multichimera states

in the network with Rc = 2, which is shown in fig. 7.8(e). First array exhibits

multichimera state and the other four arrays are in imperfect synchrony, with

Rc = 1, as shown in fig. 7.8(f). These results are consistent for networks with

higher dimensions as well.

The emergence of chimera and multichimera states in the network due to

the topology and distance-dependent coupling is analysed with the help of a

quantitative measure called strength of incoherence (SI). The local standard

deviation, σ(m), has been defined from the time series. The total number of

oscillators in a single array is divided into ’M’ bins of equal length ’n′’ = n/M

and the difference dynamical variable is calculated as ωj = xj − xj+1. Then the

local standard deviation is defined as [76]:

σ(m) =

〈√√√√ 1

n′

mn′∑
j=n′(m−1)+1

[
ωj − ⟨ω⟩

]2〉
t

, (7.11)

where, m = 1,2,...,M; ⟨ω⟩ = 1
n′

∑n′

i=1 ωi(t). ⟨...⟩t denotes the average over

time. The term SI is defined as:

SI = 1−
∑M

m=1 sm
M

, sm = H(ϵ− σ(m)), (7.12)

where H is the Heaviside step function and ϵ is a predefined threshold. The

values of SI are 1, 0 or between 1 and 0, representing incoherent, coherent and

chimera or multichimera states, respectively. In order to distinguish chimera

from multichimera states, we calculate discontinuity measure (DM) [76], which

is defined as:
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DM =

∑M
i=1 |si+1 − si|

2
, (7.13)

where, sM+1 = s1. For chimera, DM = 1 and for multichimera 2 ≤ DM ≤ M
2

.

The variation of SI and DM with g, for Rc = 1 and Rc = 2 is shown in fig. 7.9.

The first array exhibits multichimera states for low values of g and coherence at

other values. The remaining four arrays display chimera and multichimera states

for various values of g, when Rc = 1, as shown in fig. 7.9(a) and 7.9(b). When

Rc = 2, all the five arrays exhibit chimera and multichimera states for different

values of g as shown in fig. 7.9(c) and 7.9(d).

7.5 Results and conclusions

In this chapter, we have analysed the influence of distance-dependent chemical

connections in a 2D array of modified HR neurons. The synchronisation scenario

and pattern formation are studied by altering the coordination number, strength

of coupling and distance dependence. The study reveals that as the coordination

number increases, the threshold for coupling strength to attain synchrony de-

creases. The stability of the completely synchronous state in chemically coupled

networks depends only on the number of neurons to which each neuron is coupled

and is independent of the network size. We have used the Lyapunov function

approach to measure the stability of the synchronised states in the network. The

network shows low intra and inter array synchrony at low coupling strengths and

the synchrony increases with coupling strength. Additionally, the different 1D

arrays display unique spatiotemporal patterns, chimeras and clusters for various

coupling strengths. The strength of incoherence and the discontinuity measure

have been analysed to verify the presence of chimera and multichimera states.

The significance of our study is that it focuses on intralayer interaction, which

is crucial for visual information processing in the brain. Interlayer synchrony

has also been observed in cognitive processes such as perception, memory, and

attention.

124



Chapter 8

Emergence of spatial chimeras in

cross coupled network of 2D lattice

8.1 Introduction

The dimensionality of a network refers to the number of nodes and the con-

nections between them, can have a significant impact on the synchronisation

behaviour and the emergence of interesting patterns in the network [199]. A

single layer of neurons has limitations in terms of its ability to process complex

information, whereas lattice topology can perform more complex computations

by creating a network of interconnected neurons, which can avoid the limitations

of single layer networks. It is important to analyse the synchronisation stability

and evolution of collective behaviours like spatial and spiral chimeras, in a spa-

tially coupled network [65, 200–203]. The cross coupling between state variables

is an unconventional type of coupling and has been effectively used to induce

chimera states in networks [151, 204–206]. The symmetry breaking induced by

power law coupling has also been used to produce chimera states [37, 127]. There-

fore, the interaction modes, coupling scheme, topology and dimensionality have

a significant impact on the dynamical analysis of neuronal networks.

The emergence of spiral wave chimera patterns in a locally coupled ecological

network composed of diffusible prey predator species was reported [207]. Spiral
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wave chimeras were also obtained in a two dimensional network with nonlocal

coupling [208]. Two dimensional spot and stripe chimeras were observed in a

network of oscillators arranged in a flat torus topology [209]. The rotation speed

of the spiral wave chimeras was calculated using perturbation theory in a network

of phase oscillators [210]. A delayed asymmetric synapse coupling was effectively

used to suppress spiral waves in a lattice array of coupled neurons [211].

In this chapter, the synchronisation scenario and the emergence of spatial

chimeras are analysed in a network of memristive HR neurons with distance-

dependent and cross chemical coupling schemes. The model is explained in sec-

tion 8.2. The synchronisation behaviour of the network is analysed in section

8.3. The interesting patterns obtained are presented in section 8.4. The energy

analysis of the network is carried out in section 8.5 and section 8.6 summarises

the results of the chapter.

8.2 Chemical cross coupling in 2D lattice

The dynamic equations of the network arranged in a 2D lattice with cross cou-

pling between membrane potential and electromagnetic flux is of the form:

ẋi,j = yi,j − ax3i,j + bx2i,j − zi,j + I − k1ρ(ϕi,j)xi,j + bxxT
x
i,j + bxϕT

ϕ
i,j,

ẏi,j = c− dx2i,j − yi,j,

żi,j = r(s(xi,j − xe)− zi,j),

ϕ̇i,j = k2xi,j − k3ϕi,j + bϕxT
x
i,j + bϕϕT

ϕ
i,j, i, j = 1, 2, ..., n.

(8.1)

Where xi,j, yi,j and zi,j represent the membrane potential, spiking variable

and bursting variable of neuron in the (i, j)th position in the 2D lattice, respec-

tively. n is the number of neurons in each array of the network. The external

current, I, controls the qualitative behaviour of the neurons. The magnetic flux

across the membrane is described by ϕi,j, the induction current is represented

by k1ρ(ϕi,j)xi,j and the induction coefficient is represented by k1 [21, 22]. The

term ρ(ϕi,j) is the memory conductance of a magnetic flux controlled memris-
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tor, which can take different forms. We have considered a hyperbolic function,

tanh(ϕi,j), whose state equation can be represented by the linear terms [170].

The term T xi,j represents the nonlinear chemical connections between the neu-

rons in x, given by Eqs. 7.2 and 7.4, respectively for Rc = 1 and Rc = 2. The

coordination numbers are 8 and 24 when Rc = 1 and Rc = 2, respectively. The

chemical coupling term in ϕ is given by:

T ϕi,j =
g

8
(v − ϕi,j)

[ 1
lα
[Γ(ϕi−1,j) + Γ(ϕi+1,j) + Γ(ϕi,j−1) + Γ(ϕi,j+1)] +

1

(
√
2l)α

[Γ(ϕj−1,i−1) + Γ(ϕj−1,i+1) + Γ(ϕj+1,i−1) + Γ(ϕj+1,i+1)]
]
.

(8.2)

Where g is the coupling constant that represents the magnitude of the in-

teraction between the neurons. The reversal potential v is so chosen that the

coupling is always excitatory in nature. The exponential function that models

the chemical coupling is given as:

Γ(ϕi,j) = 1/(1 + exp(−λ(ϕi,j − θ))) (8.3)

The parameters λ and θ represent the slope of the sigmoidal function and the

synaptic firing threshold, respectively. The coupling term for Rc = 2 is of the

form:

T ϕi,j =
g

16

[ 1

(2l)α
[Γ(ϕi+2,j) + Γ(ϕi−2,j) + Γ(ϕi,j+2) + Γ(ϕi,j−2)] +

1

(2
√
2l)α

[Γ(ϕi+2,j+2) + Γ(ϕi+2,j−2) + Γ(ϕi−2,j+2) + Γ(ϕi−2,j−2)] +
1

(
√
5l)α

[Γ(ϕi1,j−2)

+ Γ(ϕi+1,j+2) + Γ(ϕi−1,j+2) + Γ(ϕi−1,j−2) + Γ(ϕi+2,j−1) + Γ(ϕi+2,j+1)

+ Γ(ϕi−2,j+1) + Γ(ϕi−2,j−1)]
]
.

(8.4)

The lattice parameters l,
√
2l, 2l, 2

√
2l,

√
5l give a distance dependence to the
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Figure 8.1: Variation of the statistical factor of synchronisation (R) with
coupling constant (g) for different values of coupling phase (δ).

coupling terms. The elements bxx, bxϕ, bϕx and bϕϕ form the components of a

coupling matrix. A general form for this coupling matrix which incorporates self

and cross coupling is given by:

B =

bxx bxϕ

bϕx bϕϕ

 =

 cos δ sin δ

− sin δ cos δ

 (8.5)

Where δ ∈ [−π, π) is the coupling phase. The switching between the

interactions is made easy by varying the values of δ. We have analysed the

system of HR neurons in three different cases:

(i) Self coupling in x and ϕ, δ = 0.

(ii) Mixed coupling in x and ϕ, δ = π
4
.

(iii) Cross coupling in x and ϕ, δ = π
2
.

8.3 The synchronisation scenario

The synchronisation scenario in the presence of cross coupling of variables in

magnetically coupled HR neurons in 2D lattice has been analysed in this section.

The lattice has dimensions of N = n ∗ n, where n = 40 and N = 1600. The

amount of synchrony is quantified using the statistical factor of synchronisation,

R, given by the equation, Eq. (1.3).

The relation between coordination number and coupling threshold to attain
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Figure 8.2: Snapshots of membrane potential. (a) desynchrony, g = 0.1,
δ = π

4 ,Rc = 2, (b) chimera, g = 0.5, δ = π
4 , Rc = 2, (c) synchrony g = 0.4,

δ = π
4 , Rc = 1, (d) chimera, g = 0.3, δ = π

4 , Rc = 2 (e) patched synchrony
g = 0.9, δ = π

4 , Rc = 2 (f) g = 0.9, δ = π
2 , Rc = 1. The colourbar represents

the membrane potential, x.

synchrony is determined by analysing the variation of R with g. The variations

in R with g for Rc = 1 are shown in fig. 8.1(a). For self (δ = 0) and mixed

(δ = π
4
) interactions, synchrony is obtained at g ≈ 3, but for cross coupling

(δ = π
2
) synchrony is never obtained. For Rc = 2, the synchrony is obtained at

g = 4, for self coupling, as shown in fig. 8.1(b). For mixed coupling, synchrony

is obtained at g ≈ 5 . The synchrony is never obtained for cross coupling.

8.4 Emergence of spatial chimeras

The topology, distance dependent non linear coupling and cross interactions lead

to emergence of interesting spatial chimeras in the network. The snapshots of

the variable x at particular time t (here, 1000 units) of the neurons in the 2D

lattice is presented in fig. 8.2. The incoherent system is shown in fig. 8.2 (a).

The spatial chimera emerging in the network is presented in figs. 8.2 (b). The

completely synchronised state is shown in fig. 8.2 (c). Fig. 8.2 (d) presents a

spatial chimera. Patched synchrony is shown in fig. 8.2 (e). Incoherent state for

cross coupling is presented in fig. 8.2 (f).

The travelling chimera exhibited by the network with g = 0.5, δ = π
4
, Rc = 2
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Figure 8.3: Snapshots of membrane potential. g = 0.5, δ = π
4 , Rc = 2. (a)

t = 800, (b) t = 1000 and (c) t = 1200. The colourbar represents the membrane
potential, x.

is shown in fig. 8.3. Figs. 8.3 (a), (b) and (c), represent the travelling spatial

chimeras obtained for t = 800, 1000 and 1200, respectively.

8.5 Energy aspects

The energy analysis provides insight into the internal behavior of the oscillators

under study. Sarasola et al. have proposed the mathematical formalism for

the energy functions for well known chaotic systems. This method is used to

analyse the energy of the oscillators of the 2D lattice. Using Helmholtz theorem,

the speed vector is decomposed in to conservative and dissipative part. Then

according to Eq. [21, 87], the Hamilton energy corresponding to the system will

satisfy the following partial differential equation :

(y−z+I−ϕ)∂Hi,j

∂xi,j
+(1−bx2i,j)

∂Hi,j

∂i,j
+rR(xi,j−xe)

∂Hi,j

∂zi,j
+k2xi,j

∂Hi,j

∂ϕi,j
= 0 (8.6)

A general solution for the above equation is of the form

H =
2

3
bx3i,j − 2xi,j + rR(xi,j − xe)

2 + (yi,j − zi,j + I − ϕi,j)
2 + k2x

2
i,j (8.7)

The energy function of the system is calculated for the values of the parame-

ters corresponding to fig. 8.2, using the eqn. 8.7 and is presented in fig. 8.4. Fig.

8.4(a) shows the values of the energy function, for an incoherent network. The

energy pattern for the spatial chimera state is shown in fig. 8.2(b). The energy of
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Figure 8.4: Snapshots of Hamilton energy function. (a) g = 0.1, δ = π
4 ,Rc =

2, (b) g = 0.5, δ = π
4 , Rc = 2, (c) g = 0.4, δ = π

4 , Rc = 1, (d) g = 0.3, δ = π
4 ,

Rc = 2 (e) g = 0.9, δ = π
4 , Rc = 2 (f) g = 0.9, δ = π

2 , Rc = 1. The colourbar
represents the energy function, H.

the incoherent region is found to be low compared to the coherent region. When

the system is in completely synchronised state, the energy of the system is found

to be uniform. In fig. 8.2(d) also, the energy of the incoherent system is found

to be low. The energy plot corresponding to the clustered synchrony as shown

in fig. 8.2(e) indicates that the energy of the system is high if the potential of

the neurons are maintained at high potential irrespective of the polarity of the

membrane potential. The energy of the neurons in incoherent state, shown in

fig. 8.2(f), is low compared to the system in fig. 8.2(a). The majority of the

neurons are maintained at high negative potential in the system as shown in

the fig. 8.2(a), compared to the system in fig. 8.2(f). Thus, the energy of the

neurons is low when the membrane potential is nearly zero. The system requires

high energy to maintain at a higher potential regardless of the polarity.

8.6 Results and conclusions

The synchronisation behavior and emergence of spatial chimeras are analysed

in a network of memristive HR neurons with nonlinear chemical cross-coupling

arranged in a 2D lattice topology. Self and mixed interactions induces both syn-

chrony and chimera states, whereas cross interactions are incapable of inducing
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either. These results are consistent for different coordination numbers. The time

series analysis indicates that the spatial chimeras are travelling in nature. The

energy analysis points out that the system requires high energy to maintain a

high membrane potential regardless of the polarity.
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Chapter 9

Conclusions and future prospects

9.1 Summary

This thesis presents the study of the influences of external stimuli, synaptic

connections, coupling schemes and topology in inducing synchrony, desynchrony

and chimera states in the Hindmarsh-Rose networks. The first chapter explains

the basic concepts and terminologies used in this thesis. The work in the thesis

has been presented in next seven chapters. The results are summarised and

future prospects are presented in the ninth chapter.

• The phase synchrony in the HR network with mean field coupling and its

control using external stimuli are analysed in linear chain topology. The

high frequency input with optimum amplitude and pulse width is found

to have better desynchronising ability. The synchrony and variations in

IBI are quantified using the Kuramoto order parameter and the coefficient

of variability. The mean field coupled HR network is also analysed with

an exponentially decaying coupling strength. The synchrony is found to

decrease with an increase in the decay constant. The decaying coupling

scheme induces chimera states in the network. The chimeras are quantified

using the strength of incoherence.

• The mean field coupled network is analysed under the influence of distance-

dependent coupling governed by a power law exponent in ring topology.
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The network is studied in global, non local and local interactions. The

synchrony in the network is quantified using the statistical factor of syn-

chronisation. The synchronisation behaviour is verified through error anal-

ysis as well. The uniform global interaction induces incoherent, imperfect

synchrony and synchronised states. The distance-dependent field coupling

induces chimera states in globally coupled network, which is a rare phe-

nomenon. Even though chimera states are reported in nonlocal interac-

tions, the influence of distance-dependent coupling enhances the emergence

of chimera states. Chimera states in local or nearest neighbour coupling are

also very difficult to obtain. The initial conditions are modified to obtain

travelling chimeras in the network with local coupling.

• The synchronisation scenario and pattern formations in the HR network

coupled by a rotation matrix that helps to realise different coupling schemes

such as self, mixed and cross interactions by varying the coupling phase

have been analysed. In two coupled system, in-phase and anti-phase os-

cillations are obtained for the activator and inhibitor modes of electrical

coupling, respectively. When the off diagonal elements of the matrix are

zero, the system shows self coupling of the three variables, which helps

to attain synchrony faster. The off diagonal elements give cross interac-

tions between the variables, which reduces synchrony. The stability of the

synchrony attained is analysed using Lyapunov function approach. The

self coupling in three variables is sufficient to induce chimera states in

nonlocal coupling. The strength of incoherence and discontinuity measure

validate the existence of chimera and multichimera states. The inhibitor

self coupling in local interaction induces interesting patterns like Mixed

Oscillatory State and clusters. In a nonlocally coupled network, chimeras,

multichimeras, travelling chimeras, MOS and clusters are obtained.

• The HR network has been modified with distance-dependent memristor

and mean field couplings. Memristors are used to represent the electromag-

netic effects. The changes in firing patterns and the collective behaviour
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due to the memristor effect are studied using the mean field approach in

linear chain topology. The network with memristor effects is analysed un-

der the influence of constant and time varying inputs. The memristor

is found to control the phase space even in the presence of inputs. The

sine input is found to enhance synchrony and the square input controls

the synchrony. The inputs with high frequency and optimum amplitude

have high synchronising and desynchronising abilities. The influence of

distance-dependent mean field coupling has been analysed in the mem-

ristive HR network. Square wave bursting is caused by the mean field

coupling, while plateau bursting is caused by the memristors in the net-

work. By using suitable values for both the memristor and mean field

coupling, a combination of bursting patterns are induced. When memris-

tor coupling is strong, the network shows an amplitude death state. In

such a network, mean field coupling is capable of inducing synchronised

bursts. The synchrony pattern under the influence of memristor coupling

is quantified using the statistical factor of synchronisation. The interplay of

memristors and uniform mean field coupling results in the emergence of co-

herent, MOS, imperfectly synchronised and perfectly synchronised states.

The chimera states are obtained under the influence of distance-dependent

coupling scheme. The parameter space for the strength of incoherence and

discontinuity measure is also analysed.

• The chemically coupled HR network is analysed with cross interactions be-

tween membrane potential and magnetic flux. In a two coupled system,

the network is synchronised for self and mixed interactions, but not for

cross interactions. The stability of the synchrony is proven using MTLE.

The synchrony pattern for the network for self, mixed and cross interac-

tions is quantified using the statistical factor of synchronisation. Chimera

and multichimera states are obtained which are verified by the strength of

incoherence and discontinuity measure.

• The work has been extended to memristive HR network in a 2D lattice
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with distance-dependent coupling governed by the power law exponent.

The coordination number of each neuron is varied using coupling range.

The threshold for coupling strength in terms of the coordination number

is evaluated theoretically and numerically. In chemically coupled network,

the threshold is independent of the network size, which is analysed using

MTLE. The spatiotemporal patterns justify the fact that each 1D array

shows different firing patterns for the same coupling strength. The snap-

shots of membrane potential shows that the 1D arrays also exhibit interest-

ing patterns like desynchronised, chimera, multichimera and synchronised

states.

• The emergence of spatial chimeras in a network of memristive HR neurons

in 2D lattice with distance-dependent and cross coupling in chemical mode

has been analysed. The self and mixed interactions induce synchrony and

chimera states, whereas cross coupling is incapable of them. The spatial

chimeras are observed as a result of network topology and interactions.

• The external inputs are capable of controlling synchrony in the HR net-

work. The power law exponent reduces synchrony in the network and also

induces chimera states, even in the globally coupled network. The emer-

gence of chimera states in mixed and cross interactions is verified. The

study shows that chimera states are induced in the network as a result of

self interactions in multiple variables. In the electrically coupled network,

the coupling threshold required to attain synchrony depends on the size

of the network. However, in the chemically coupled network, the coupling

threshold is independent of the network size. In the cross coupled network,

synchrony is obtained in electrical mode whereas chemical coupling is in-

capable of inducing synchrony. Increasing the dimensionality and size of

the network leads to the emergence of spatial chimeras.
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9.2 Future prospects

There is significant difference between the synchronisation characteristics of one-

dimensional and two-dimensional networks. When higher dimensions are used

to analyse the network, its behaviour becomes more complex, which leads to the

emergence of fascinating patterns. This highlights the importance of consider-

ing higher dimensions to achieve a more accurate representation of real world

systems.

• There is ample scope for further study using various topologies, such as

oscillators being positioned on the surface of a sphere or arranged in lattices

inspired by solid-state physics, such as simple cubic, body-centered or face-

centered configurations. These topologies shall be considered with distance-

dependent interactions between oscillators, allowing to study the behaviour

and function of networks in different contexts.

• The choice of random and small-world networks provides a better simula-

tion of the connectivity in real neuron networks. Such networks could lead

to a variety of interesting results and patterns.

• The heterogeneity in coupling schemes can lead to rich dynamics and

open new directions for future research. Networks with mixed coupling

of electrical, chemical and field interactions, with time-dependent coupling

strengths, can exhibit interesting synchronisation behaviours. The dynam-

ics of such a network can be highly complex and may result in various

forms of synchronisation that are not observed in homogeneous networks.

• The work in 2D lattice can be extended to 3D network with distance-

dependent and cross coupling. Proper selection of coupling strength and

topology may yield interesting patterns such as spatial, spiral, spirally os-

cillating, rotating or 3D chimeras. These patterns may have wide spread

applications in oscillatory biological networks like human heart and brain

networks.

137



Bibliography

[1] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics,

biology, chemistry, and engineering (CRC press, 2018).

[2] J. D. Murray, Mathematical Biology, Springer 17 (2002).

[3] M. I. Rabinovich, P. Varona, A. I. Selverston and H. D. Abarbanel, Reviews

of Modern Physics 78, p. 1213 (2006).

[4] T. Nowotny, R. Huerta and M. I. Rabinovich, Chaos: An Interdisciplinary

Journal of Nonlinear Science 18, p. 5692 (2008).

[5] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. Siegelbaum, A. J. Hudspeth,

S. Mack et al., Principles of neural science (McGraw-hill New York, 2000).

[6] A. L. Hodgkin and A. F. Huxley, The Journal of Physiology 117, p. 500

(1952).

[7] E. M. Izhikevich and R. FitzHugh, Scholarpedia 1, p. 1349 (2006).

[8] E. M. Izhikevich, IEEE Transactions on neural networks 14, 1569 (2003).

[9] J. L. Hindmarsh and R. Rose, Proceedings of the Royal society of London.

Series B. Biological sciences 221, 87 (1984).

[10] Y.-H. Liu and X.-J. Wang, Journal of Computational Neuroscience 10, 25

(2001).

[11] G. Innocenti, A. Morelli, R. Genesio and A. Torcini, Chaos: An Interdis-

ciplinary Journal of Nonlinear Science 17, p. 043128 (2007).

[12] D. Jun, Z. Guang-Jun, X. Yong, Y. Hong and W. Jue, Cognitive Neurody-

namics 8, 167 (2014).

[13] D. Hrg, Neural Networks 40, 73 (2013).

138



[14] Y. Xie, Z. Yao, G. Ren and J. Ma, Physics Letters A , p. 128693 (2023).

[15] J. M. González-Miranda, Chaos: An Interdisciplinary Journal of Nonlinear

Science 13, 845 (2003).

[16] X. Hu, G. Feng, S. Duan and L. Liu, IEEE transactions on neural networks

and learning systems 28, 1889 (2016).

[17] N. Burić, D. Ranković, K. Todorović and N. Vasović, Physica A: Statistical

Mechanics and its Applications 389, 3956 (2010).

[18] X. Shi and Z. Wang, Nonlinear Dynamics 69, 2147 (2012).

[19] L. Chua, IEEE Transactions on circuit theory 18, 507 (1971).

[20] D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, Nature

453, 80 (2008).

[21] Y. Xu, H. Ying, Y. Jia, J. Ma and T. Hayat, Scientific Reports 7, p. 43452

(2017).

[22] Y. Xu, Y. Jia, J. Ma, T. Hayat and A. Alsaedi, Scientific Reports 8, 1

(2018).

[23] K. O. Stanley, J. Clune, J. Lehman and R. Miikkulainen, Nature Machine

Intelligence 1, 24 (2019).

[24] S. Curteanu and H. Cartwright, Journal of Chemometrics 25, 527 (2011).

[25] A. E. Pereda, The Journal of Physiology 594, p. 2561 (2016).

[26] P. Balenzuela and J. García-Ojalvo, Physical Review E 72, p. 021901

(2005).

[27] M. Rosenblum and A. Pikovsky, Physical Review E 70, p. 041904 (2004).

139



[28] X. Miao, W. Zhang, Y. Shao, B. Cui, L. Chen, C. Zhang and J. Jiang,

IEEE Transactions on Knowledge and Data Engineering (2021).

[29] D. Erhan, Y. Bengio, A. Courville and P. Vincent, University of Montreal

1341, p. 1 (2009).

[30] I. Belykh, E. De Lange and M. Hasler, Physical Review Letters 94, p.

188101 (2005).

[31] X. Sun, Z. Liu and M. Perc, Nonlinear Dynamics 96, 2145 (2019).

[32] H. F. El-Nashar, Y. Zhang, H. A. Cerdeira and F. Ibiyinka A, Chaos: An

Interdisciplinary Journal of Nonlinear Science 13, 1216 (2003).

[33] B. Kriener, M. Helias, S. Rotter, M. Diesmann and G. T. Einevoll, Frontiers

in Computational Neuroscience 7, p. 187 (2014).

[34] E. Rybalova, A. Bukh, G. Strelkova and V. Anishchenko, Chaos: An In-

terdisciplinary Journal of Nonlinear Science 29, p. 101104 (2019).

[35] S. Guo, Q. Dai, H. Cheng, H. Li, F. Xie and J. Yang, Chaos, Solitons &

Fractals 114, 394 (2018).

[36] B. Kriener, M. Helias, A. Aertsen and S. Rotter, Journal of Computational

Neuroscience 27, 177 (2009).

[37] R. Budzinski, K. Rossi, B. Boaretto, T. Prado and S. Lopes, Physical

Review Research 2, p. 043309 (2020).

[38] M. Strüber, J.-F. Sauer, P. Jonas and M. Bartos, Nature Communications

8, p. 758 (2017).

[39] A. Levina, J. M. Herrmann and T. Geisel, Nature Physics 3, 857 (2007).

[40] C. I. Bargmann and E. Marder, Nature Methods 10, 483 (2013).

140



[41] A. E. Pereda, Nature Reviews Neuroscience 15, 250 (2014).

[42] J. C. Magee, Nature Neuroscience 2, 508 (1999).

[43] J. Ma and J. Tang, Science China Technological Sciences 58, 2038 (2015).

[44] I. Koulierakis, D. Verganelakis, I. Omelchenko, A. Zakharova, E. Schöll

and A. Provata, Chaos: An Interdisciplinary Journal of Nonlinear Science

30, p. 113137 (2020).

[45] Y. Zhao, X. Sun, Y. Liu and J. Kurths, Nonlinear Dynamics 93, 1315

(2018).

[46] S. Shirasaka, N. Watanabe, Y. Kawamura and H. Nakao, Physical Review

E 96, p. 012223 (2017).

[47] G. Buzsaki, Rhythms of the Brain (Oxford university press, 2006).

[48] J. Shlens, F. Rieke and E. Chichilnisky, Current Opinion in Neurobiology

18, 396 (2008).

[49] V. L. Galinsky and L. R. Frank, Journal of Cognitive Neuroscience 32,

2178 (2020).

[50] M. P. Richardson, Journal of Neurology, Neurosurgery & Psychiatry 83,

1238 (2012).

[51] S. P. Kelly, E. C. Lalor, R. B. Reilly and J. J. Foxe, Journal of Neurophys-

iology 95, 3844 (2006).

[52] X.-J. Wang, Physiological Reviews 90, 1195 (2010).

[53] N. C. Rattenborg, C. J. Amlaner and S. L. Lima, Neuroscience & Biobe-

havioral Reviews 24, 817 (2000).

141



[54] L. Khaleghi, S. Panahi, S. N. Chowdhury, S. Bogomolov, D. Ghosh and

S. Jafari, Physica A: Statistical Mechanics and its Applications 536, p.

122596 (2019).

[55] A. Calim, P. Hövel, M. Ozer and M. Uzuntarla, Physical Review E 98, p.

062217 (2018).

[56] B. K. Bera, D. Ghosh and T. Banerjee, Physical Review E 94, p. 012215

(2016).

[57] G. R. Simo, P. Louodop, D. Ghosh, T. Njougouo, R. Tchitnga and H. A.

Cerdeira, Physics Letters A 409, p. 127519 (2021).

[58] B.-W. Li and H. Dierckx, Physical Review E 93, p. 020202 (2016).

[59] R. Xu, X. Li, A. J. Boreland, A. Posyton, K. Kwan, R. P. Hart and P. Jiang,

Nature Communications 11, p. 1577 (2020).

[60] M. Wickramasinghe and I. Z. Kiss, Physical Chemistry Chemical Physics

16, 18360 (2014).

[61] D. Dudkowski, K. Czołczyński and T. Kapitaniak, Nonlinear Dynamics

95, 1859 (2019).

[62] I. Omelchenko, E. Omel’chenko, P. Hövel and E. Schöll, Physical Review

Letters 110, p. 224101 (2013).

[63] L. Gambuzza, L. Minati and M. Frasca, Chaos, Solitons & Fractals 138,

p. 109907 (2020).

[64] B. K. Bera and D. Ghosh, Physical Review E 93, p. 052223 (2016).

[65] J. Hizanidis, V. G. Kanas, A. Bezerianos and T. Bountis, International

Journal of Bifurcation and Chaos 24, p. 1450030 (2014).

142



[66] K. Usha, P. Subha and C. R. Nayak, Chaos, Solitons & Fractals 108, 25

(2018).

[67] Y. Kuramoto, Chemical oscillations, waves and turbulence. mineola (2003).

[68] C. F. Stevens and A. M. Zador, Nature Neuroscience 1, 210 (1998).

[69] K. L. Rossi, R. C. Budzisnki, J. A. P. Silveira, B. R. R. Boaretto, T. L.

Prado, S. R. Lopes and U. Feudel, arXiv preprint arXiv:2003.03289 (2020).

[70] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Physica D: nonlinear

phenomena 16, 285 (1985).

[71] K. Pyragas, Physical Review E 56, p. 5183 (1997).

[72] K.-S. Hong et al., Mathematics and Computers in Simulation 82, 590

(2011).

[73] J. Heagy, T. Carroll and L. Pecora, Physical Review E 50, p. 1874 (1994).

[74] L. M. Pecora and T. L. Carroll, Physical Review Letters 80, p. 2109 (1998).

[75] L. M. Pecora, Physical Review E 58, p. 347 (1998).

[76] R. Gopal, V. Chandrasekar, A. Venkatesan and M. Lakshmanan, Physical

Review E 89, p. 052914 (2014).

[77] A. Pikovsky and M. Rosenblum, Chaos: An Interdisciplinary Journal of

Nonlinear Science 25, p. 097616 (2015).

[78] X. Zhang, A. Pikovsky and Z. Liu, Scientific Reports 7, 1 (2017).

[79] I. Ratas and K. Pyragas, Physical Review E 90, p. 032914 (2014).

[80] E. Baspinar, L. Schülen, S. Olmi and A. Zakharova, Physical Review E

103, p. 032308 (2021).

143



[81] H. Schmidt and D. Avitabile, Chaos: An Interdisciplinary Journal of Non-

linear Science 30, p. 033133 (2020).

[82] P. Bressloff, Physical Review E 60, p. 2160 (1999).

[83] J. Milton and P. Jung, Epilepsy as a Dynamic Disease , 341 (2003).

[84] A. T. Winfree, The Geometry of Biological Time (Springer, 1980).

[85] S. H. Strogatz, Physica D: Nonlinear Phenomena 143, 1 (2000).

[86] B. Lysyansky, O. V. Popovych and P. A. Tass, Journal of Neural Engi-

neering 8, p. 036019 (2011).

[87] K. Usha and P. Subha, Chinese Physics B 28, p. 020502 (2019).

[88] L. Lu, M. Ge, Y. Xu and Y. Jia, Physica A: Statistical Mechanics and its

Applications 535, p. 122419 (2019).

[89] M. Rosenblum, Chaos: An Interdisciplinary Journal of Nonlinear Science

30, p. 093131 (2020).

[90] Z. Yao, C. Wang, P. Zhou and J. Ma, Communications in Nonlinear Science

and Numerical Simulation 95, p. 105583 (2021).

[91] M. Ogura and H. Kita, Journal of Neurophysiology 83, 3366 (2000).

[92] A. Cooper and I. Stanford, Neuropharmacology 41, 62 (2001).

[93] P. A. Tass, Phase resetting in medicine and biology: stochastic modelling

and data analysis (Springer Science & Business Media, 2007).

[94] D. Golomb, D. Hansel and G. Mato, Mechanisms of synchrony of neural

activity in large networks, in Handbook of Biological Physics , (Elsevier,

2001), pp. 887–968.

144



[95] C. Batista, S. R. Lopes, R. L. Viana and A. M. Batista, Neural Networks

23, 114 (2010).

[96] H. Zhang, Q. Wang and G. Chen, Chaos: An Interdisciplinary Journal of

Nonlinear Science 24, p. 033134 (2014).

[97] C. Batista, R. Viana, F. Ferrari, S. Lopes, A. Batista and J. Coninck,

Physical Review E 87, p. 042713 (2013).

[98] P. A. Tass, Progress of Theoretical Physics Supplement 139, 301 (2000).

[99] R. Ramasubbu, S. Lang and Z. H. Kiss, Frontiers in Psychiatry 9, p. 302

(2018).

[100] S. Santaniello, J. T. Gale and S. V. Sarma, Wiley Interdisciplinary Reviews:

Systems Biology and Medicine 10, p. e1421 (2018).

[101] D. Hansel and H. Sompolinsky, Physical Review Letters 68, p. 718 (1992).

[102] C. Batista, E. Lameu, A. Batista, S. Lopes, T. Pereira, G. Zamora-López,

J. Kurths and R. Viana, Physical Review E 86, p. 016211 (2012).

[103] H. Yamamoto, S. Kubota, F. A. Shimizu, A. Hirano-Iwata and M. Niwano,

Frontiers in computational neuroscience 12, p. 17 (2018).

[104] S. Majhi and D. Ghosh, Chaos: An Interdisciplinary Journal of Nonlinear

Science 28, p. 083113 (2018).

[105] T. Remi, P. Subha and K. Usha, International Journal of Modern Physics

C 33, p. 2250058 (2022).

[106] F. P. Kemeth, S. W. Haugland, L. Schmidt, I. G. Kevrekidis and

K. Krischer, Chaos: An Interdisciplinary Journal of Nonlinear Science

26, p. 094815 (2016).

145



[107] F. P. Kemeth, S. W. Haugland and K. Krischer, Physical Review Letters

120, p. 214101 (2018).

[108] S. Majhi, B. K. Bera, D. Ghosh and M. Perc, Physics of Life Reviews 28,

100 (2019).

[109] Y. Kuramoto and D. Battogtokh, arXiv preprint cond-mat/0210694 (2002).

[110] R. Levy, W. D. Hutchison, A. M. Lozano and J. O. Dostrovsky, Journal of

Neuroscience 20, 7766 (2000).

[111] G. Ayala, M. Dichter, R. Gumnit, H. Matsumoto and W. Spencer, Brain

Research 52, 1 (1973).

[112] L. Schmidt, K. Schönleber, K. Krischer and V. García-Morales, Chaos: An

Interdisciplinary Journal of Nonlinear Science 24, p. 013102 (2014).

[113] G. C. Sethia and A. Sen, Physical Review Letters 112, p. 144101 (2014).

[114] A. Mishra, C. Hens, M. Bose, P. K. Roy and S. K. Dana, Physical Review

E 92, p. 062920 (2015).

[115] L. Schmidt and K. Krischer, Physical Review Letters 114, p. 034101 (2015).

[116] I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert and E. Schöll, Chaos:

An Interdisciplinary Journal of Nonlinear Science 25, p. 083104 (2015).

[117] C. R. Laing, Physical Review E 92, p. 050904 (2015).

[118] T. Banerjee, P. S. Dutta, A. Zakharova and E. Schöll, Physical Review E

94, p. 032206 (2016).

[119] S. A. Cannas and F. A. Tamarit, Physical Review B 54, p. R12661 (1996).

[120] S. Raghavachari and J. A. Glazier, Physical Review Letters 74, p. 3297

(1995).

146



[121] N. Uchida and R. Golestanian, Physical Review Letters 106, p. 058104

(2011).

[122] R. Golestanian, J. M. Yeomans and N. Uchida, Soft Matter 7, 3074 (2011).

[123] C. Anteneodo, S. E. d. S. Pinto, A. M. Batista and R. L. Viana, Physical

Review E 68, p. 045202 (2003).

[124] H.-Y. Kuo and K.-A. Wu, Physical Review E 92, p. 062918 (2015).

[125] J. L. Rogers and L. T. Wille, Physical Review E 54, p. R2193 (1996).

[126] B. G. Szaro, R. Tompkins and B. G. Szaro, Journal of Comparative Neu-

rology 258, 304 (1987).

[127] B. Bandyopadhyay, T. Khatun, P. S. Dutta and T. Banerjee, Chaos, Soli-

tons & Fractals 139, p. 110289 (2020).

[128] Z. Faghani, Z. Arab, F. Parastesh, S. Jafari, M. Perc and M. Slavinec,

Chaos, Solitons & Fractals 114, 306 (2018).

[129] E. A. Martens, M. J. Panaggio and D. M. Abrams, New Journal of Physics

18, p. 022002 (2016).

[130] S. Rakshit, B. K. Bera, M. Perc and D. Ghosh, Scientific Reports 7, 1

(2017).

[131] M. J. Panaggio and D. M. Abrams, Physical Review E 91, p. 022909 (2015).

[132] N. Burić, K. Todorović and N. Vasović, Physical Review E 78, p. 036211

(2008).

[133] I. Omelchenko, M. Rosenblum and A. Pikovsky, The European Physical

Journal Special Topics 191, 3 (2010).

147



[134] S. Rakshit, B. K. Bera, D. Ghosh and S. Sinha, Physical Review E 97, p.

052304 (2018).

[135] L. L. Colgin, Nature Reviews Neuroscience 17, 239 (2016).

[136] E. Lee and D. Terman, SIAM Journal on Applied Dynamical Systems 14,

448 (2015).

[137] R. Vicente, L. L. Gollo, C. R. Mirasso, I. Fischer and G. Pipa, Proceedings

of the National Academy of Sciences 105, 17157 (2008).

[138] B. Jia, Y. Wu, D. He, B. Guo and L. Xue, Nonlinear Dynamics 93, 1599

(2018).

[139] C. M. Lewis, A. Baldassarre, G. Committeri, G. L. Romani and M. Cor-

betta, Proceedings of the National Academy of Sciences 106, 17558 (2009).

[140] K. Shmueli, P. van Gelderen, J. A. de Zwart, S. G. Horovitz, M. Fukunaga,

J. M. Jansma and J. H. Duyn, Neuroimage 38, 306 (2007).

[141] M. Corbetta and G. L. Shulman, Nature Reviews Neuroscience 3, 201

(2002).

[142] J. R. Simpson, A. Z. Snyder, D. A. Gusnard and M. E. Raichle, Proceedings

of the National Academy of Sciences 98, 683 (2001).

[143] D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani and M. Corbetta,

Proceedings of the National Academy of Sciences 104, 13170 (2007).

[144] S. G. Horovitz, A. R. Braun, W. S. Carr, D. Picchioni, T. J. Balkin,

M. Fukunaga and J. H. Duyn, Proceedings of the National Academy of

Sciences 106, 11376 (2009).

[145] G. S. Cymbalyuk, E. Nikolaev and R. Borisyuk, Biological Cybernetics 71,

153 (1994).

148



[146] R. Merrison-Hort and R. Borisyuk, Frontiers in Computational Neuro-

science 7, p. 173 (2013).

[147] D. Li and C. Zhou, Frontiers in Systems Neuroscience 5, p. 100 (2011).

[148] A. G. Korotkov, A. O. Kazakov, T. A. Levanova and G. V. Osipov, Com-

munications in Nonlinear Science and Numerical Simulation 71, 38 (2019).

[149] R. D. Pinto, P. Varona, A. Volkovskii, A. Szücs, H. D. Abarbanel and M. I.

Rabinovich, Physical Review E 62, p. 2644 (2000).

[150] R. Erichsen Jr, M. Mainieri and L. Brunnet, Physical Review E 74, p.

061906 (2006).

[151] Z. Wang and Z. Liu, Frontiers in Physiology 11, p. 724 (2020).

[152] Z. Wang, Y. Xu, Y. Li, T. Kapitaniak and J. Kurths, Chaos, Solitons &

Fractals 148, p. 110976 (2021).

[153] T. Remi, P. Subha and K. Usha, Communications in Nonlinear Science

and Numerical Simulation 110, p. 106390 (2022).

[154] A. Zakharova, M. Kapeller and E. Schöll, Physical Review Letters 112, p.

154101 (2014).

[155] S. Kundu, B. K. Bera, D. Ghosh and M. Lakshmanan, Physical Review E

99, p. 022204 (2019).

[156] Y. Zhang and A. E. Motter, Physical Review Letters 126, p. 094101 (2021).

[157] M. Asllani, B. A. Siebert, A. Arenas and J. P. Gleeson, Chaos: An Inter-

disciplinary Journal of Nonlinear Science 32, p. 013107 (2022).

[158] K. Usha and P. Subha, Nonlinear Dynamics 96, 2115 (2019).

[159] R. Erichsen Jr and L. Brunnet, Physical Review E 78, p. 061917 (2008).

149



[160] A. Buscarino, M. Frasca, M. Branciforte, L. Fortuna and J. C. Sprott,

Nonlinear Dynamics 88, 673 (2017).

[161] M. E. Yamakou, Nonlinear Dynamics 101, 487 (2020).

[162] Y. Xu, Y. Jia, J. Ma, A. Alsaedi and B. Ahmad, Chaos, Solitons & Fractals

104, 435 (2017).

[163] J.-Q. Yang, R. Wang, Z.-P. Wang, Q.-Y. Ma, J.-Y. Mao, Y. Ren, X. Yang,

Y. Zhou and S.-T. Han, Nano Energy 74, p. 104828 (2020).

[164] L. Xu, G. Qi and J. Ma, Applied Mathematical Modelling 101, 503 (2022).

[165] K. Rajagopal, A. Karthikeyan, S. Jafari, F. Parastesh, C. Volos and I. Hus-

sain, International Journal of Modern Physics B 34, p. 2050157 (2020).

[166] H. Bao, Y. Zhang, W. Liu and B. Bao, Nonlinear Dynamics 100, 937

(2020).

[167] K. Usha and P. Subha, Biosystems 178, 1 (2019).

[168] N. Zandi-Mehran, S. Jafari, S. M. R. Hashemi Golpayegani, F. Nazarimehr

and M. Perc, Nonlinear Dynamics 100, 1809 (2020).

[169] F. Wu, J. Ma and G. Zhang, Science China Technological Sciences 63, 625

(2020).

[170] Y. Tan and C. Wang, Chaos: An Interdisciplinary Journal of Nonlinear

Science 30, p. 053118 (2020).

[171] M. Chen, C.-j. Chen, B.-c. Bao and Q. Xu, Multi-stable patterns coexisting

in memristor synapse-coupled hopfield neural network, in Mem-elements

for Neuromorphic Circuits with Artificial Intelligence Applications , (Else-

vier, 2021), pp. 439–459.

150



[172] A. S. Eteme, C. B. Tabi and A. Mohamadou, Communications in Nonlinear

Science and Numerical Simulation 72, 432 (2019).

[173] Z. Li, H. Zhou, M. Wang and M. Ma, Nonlinear Dynamics 104, 1455

(2021).

[174] M. Dhamala, V. K. Jirsa and M. Ding, Physical Review Letters 92, p.

074104 (2004).

[175] Y. Sakurai, K. Song, S. Tachibana and S. Takahashi, Frontiers in Systems

Neuroscience 8, p. 11 (2014).

[176] P. J. Uhlhaas and W. Singer, Neuron 52, 155 (2006).

[177] A. Schnitzler and J. Gross, Nature Reviews Neuroscience 6, 285 (2005).

[178] M. Rosenblum, Chaos: An Interdisciplinary Journal of Nonlinear Science

30, p. 093131 (2020).

[179] H. Lin, C. Wang, W. Yao and Y. Tan, Communications in Nonlinear Sci-

ence and Numerical Simulation 90, p. 105390 (2020).

[180] A. S. Eteme, C. B. Tabi, J. F. Beyala Ateba, H. P. Ekobena Fouda, A. Mo-

hamadou and T. Crepin Kofane, Nonlinear Dynamics 105, 785 (2021).

[181] P. Kalle, J. Sawicki, A. Zakharova and E. Schöll, Chaos: An Interdisci-

plinary Journal of Nonlinear Science 27, p. 033110 (2017).

[182] S. Majhi, M. Perc and D. Ghosh, Scientific Reports 6, 1 (2016).

[183] R. P. Feynman, R. B. Leighton and M. Sands, American Journal of Physics

33, 750 (1965).

[184] M. Lv, J. Ma, Y. Yao and F. Alzahrani, Science China Technological Sci-

ences 62, 448 (2019).

151



[185] F. Devalle, E. Montbrió and D. Pazó, Physical Review E 98, p. 042214

(2018).

[186] B. M. Adhikari, A. Prasad and M. Dhamala, Chaos: An Interdisciplinary

Journal of Nonlinear Science 21, p. 023116 (2011).

[187] S. Saha, A. Mishra, P. K. Roy and S. K. Dana, Opera Medica et Physiologica

, 93 (2017).

[188] X. Liang, M. Tang, M. Dhamala and Z. Liu, Physical Review E 80, p.

066202 (2009).

[189] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno and M. A.

Porter, Journal of Complex Networks 2, 203 (2014).

[190] M. De Domenico, C. Granell, M. A. Porter and A. Arenas, Nature Physics

12, 901 (2016).

[191] L. V. Gambuzza, M. Frasca, L. Fortuna and S. Boccaletti, Physical Review

E 93, p. 042203 (2016).

[192] M. Vaiana and S. F. Muldoon, Journal of Nonlinear Science 30, 2147

(2020).

[193] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardenes,

M. Romance, I. Sendina-Nadal, Z. Wang and M. Zanin, Physics Reports

544, 1 (2014).

[194] N. S. Frolov, V. A. Maksimenko, M. V. Khramova, A. N. Pisarchik and

A. E. Hramov, The European Physical Journal Special Topics 228, 2381

(2019).

[195] F. Drauschke, J. Sawicki, R. Berner, I. Omelchenko and E. Schöll, Chaos:

An Interdisciplinary Journal of Nonlinear Science 30, p. 051104 (2020).

152



[196] Y. Yao, H. Deng, M. Yi and J. Ma, Scientific Reports 7, 1 (2017).

[197] M. Shafiei, S. Jafari, F. Parastesh, M. Ozer, T. Kapitaniak and M. Perc,

Communications in Nonlinear Science and Numerical Simulation 84, p.

105175 (2020).

[198] M. Dhamala, V. K. Jirsa and M. Ding, Physical Review Letters 92, p.

028101 (2004).

[199] F. P. Ulloa Severino, J. Ban, Q. Song, M. Tang, G. Bianconi, G. Cheng

and V. Torre, Scientific Reports 6, 1 (2016).

[200] A. Koch and H. Meinhardt, Reviews of Modern Physics 66, p. 1481 (1994).

[201] D. Dudkowski, Y. Maistrenko and T. Kapitaniak, Physical Review E 90,

p. 032920 (2014).

[202] Y. Wang, D. Song, X. Gao, S.-X. Qu, Y.-C. Lai and X. Wang, Nonlinear

Dynamics 93, 1671 (2018).

[203] J. Ma, J. Tang, A. Zhang and Y. Jia, Science China Physics, Mechanics

and Astronomy 53, 672 (2010).

[204] I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll and P. Hövel, Physical

Review E 91, p. 022917 (2015).

[205] T. Remi and P. A. Subha, Journal of biological physics , 1 (2023).

[206] T. Remi and P. Subha, Journal of Physics A: Mathematical and Theoretical

56, p. 345701 (2023).

[207] S. Kundu, S. Majhi, P. Muruganandam and D. Ghosh, The European Phys-

ical Journal Special Topics 227, 983 (2018).

[208] A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata and P. Hövel, Physical

Review E 95, p. 032224 (2017).

153



[209] M. J. Panaggio and D. M. Abrams, Physical Review Letters 110, p. 094102

(2013).

[210] E. A. Martens, C. R. Laing and S. H. Strogatz, Physical Review Letters

104, p. 044101 (2010).

[211] K. Rajagopal, S. Jafari, C. Li, A. Karthikeyan and P. Duraisamy, Chaos,

Solitons & Fractals 146, p. 110855 (2021).

154


