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ABSTRACT

STUDIES ON LABELLING OF
GRAPHS

Graph labeling is the fascinating and active area of graph theory with widespread

applications to combinatorics and arithmetic aspects. It is an assignment of real values

or subsets of a set to the vertices or edges or both subject to certain conditions. If the

domain is the set of vertices we call it vertex labeling. If the domain is the set of edges

we call it edge labeling. If the labels are assigned to both vertices and edges we call

it total labeling. Actually, graph labeling problems are not of recent origin, example,

the problem of colouring the vertices emerged in connection with Thomas Gutherie’s

famous Four Color Conjecture, which was solved in 1976 after more than 150 years of

waiting.

In the first part of the thesis, the study was done by connecting the two topics

namely graph labeling and graph convexity. In the second part a new vertex labeling,

LH labeling is introduced and studied it in some class of graphs.

We made an attempt to study geodesic and monophonic convexity in a graph G

with respect to a labeling function L defined on it. Defined Lg convexity space, g−

convex label, Lm convexity space, m− convex label and strong m− convex label. A

new class of graphs, geodesically elegant graphs are introduced and studied it in some

class of graphs. Also, geodetic and edge geodetic number in labeled graphs are studied.

Defined L− geodetic number and L− edge geodetic number of graphs. The concept

of geodetic label, edge geodetic label, strong geodetic label and strong edge geodetic

label are defined and established it in some family of graphs.

Defined the LH labeling of graphs and the LH labeling of Petersen graph, Hyper

cube Q3, Grotzch graph and the Heawood graph are established. The complete graph

Kn, n ≥ 4, the wheel graph W1,5 and the complete bipartite graph K3,3 are non LH.
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For a non LH graph G, we defined the LH completion Ω∗(G) and LH completion num-

ber ΛG of G. An upper bound for the size of an LH graph is obtained. Demonstrated

the LH labeling of a perfect binary tree Tn and spider graph S3(m). LH completion

number of the complete graph Kn, n ≤ 10 is obtained. Studied LH labeling in some

family of graphs such as path related graphs, cycle related graphs, star related graphs,

splitting graphs, line graphs and theta graphs.

Key Words

1. Graph Labeling

2. Graph Convexity Space

3. Geodesically Elegant Graphs

4. LH Labeling

5. L−geodetic Number

6. L−Edge Geodetic Number

2



This thesis is heartily dedicated to my father

K Moidheen Kutty who departed us for heaven before the

completion of this work, my mother Nazeera M who stood

with me all times, my teachers and friends.





ACKNOWLEDGEMENT

“Indeed, those who patiently persevere will truly receive a reward without measure’

(QS. AZ Zumar : 10).

I would like to acknowledge the favour of the Divine Providence who

has encouraged me innumerably, provided help through various people and whose

faithfulness is marvelous.

I express my deepest sense of gratitude to my supervising guide

Dr. Parvathy K S for her constant inspiration, valuable guidance and academic

support throughout this research work, without which I would not have been able

to accomplish this task. Her skillful guidance, patience, the special care, and easy

accessibility prompted me to keep on my work even in the difficult situation.

I express my heartfelt thankfulness to Dr. Sr Magie Jose, Principal

for her valuable support and encouragement throughout this research work.

I extend my sincere gratitude to the RAC members especially Dr. P

T Ramachandran, Dr Sajith G, Dr Preethi Kuttipulackal and Dr Sini P.

I am thankful to the authorities of St mary’s College, thrissur especially

former Principals Dr. Sr Jacintha C.C and Dr. Sr Marriette A. Therattil for providing

necessary facilities during the period of my research.

I sincerely thank the faculty members of St. Mary’s College, Thrissur

especially from the Department of Mathematics and Librarians. Also, I am thankful

to the Administrative staffs especially Mr. Jyothidas of St Mary’s College, Thrissur

for giving me technical support.

I am immensely thankful to my co-researchers of St Mary’s College for their

support and assistance rendered during this research work.

I am extremely happy to thank my colleagues of GGVHSS NENMARA

especially, Shaharbanu E, Vocational Teacher in C & E, for their support and

incessant encouragement.

iv



I am grateful to my beloved teachers who taught me in various

institutions. I am thankful to my students for their wishes and prayers.

During the process of preparation of my thesis, I have referred many

books and journal research papers for which I personally thank the authors who

provided me a deep insight and inspiration for the solution of the problem.

Nothing is more precious than the value of my family hence, I sincerely

thank my parents, sisters, brothers, my in - laws, nieces and nephews for their

constant love, confidence, good wishes and for being with me against all the odds in

this journey of education.

It is my pleasure to convey my sincere thanks to all my well - wishers

and also to all those who have helped me in different ways in my research work.

FARISA M

v



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 1

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Back ground of the study . . . . . . . . . . . . . . . . . . . . . 10

1.3 Organization of the Thesis. . . . . . . . . . . . . . . . . . . . . 15

2 Convexity in Labeled Graphs 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Geodesic Convexity in Labeled Graphs . . . . . . . . . . . . . 18

2.3 Geodesically Elegant graphs . . . . . . . . . . . . . . . . . . . . 21

2.4 Monophonic Convexity in Labeled Graphs . . . . . . . . . . . 39

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Geodetic Number and Edge Geodetic Number in Labeled Graphs 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 The L-geodetic number and L-edge geodetic number. . . . . 46

3.3 Geodetic Label and Edge Geodetic Label . . . . . . . . . . . 50

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



CONTENTS

4 LH Labeling Of Graphs 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 LH Labeling of Graphs . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 LH completion of a graph G . . . . . . . . . . . . . . . . . . . . 63

4.4 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Some Families of LH Graphs 70

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 LH Labeling of Path Related Graphs . . . . . . . . . . . . . . 70

5.3 LH Labeling of Cycle Related Graphs . . . . . . . . . . . . . . 82

5.4 Star related Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Splitting graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6 Line Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 A Theta graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Conclusion and Further Scope of Research 106

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Application and Proposal for Further Study . . . . . . . . . . 110

Publications in Journals and Presentations 113

Bibliography 115

vii



CHAPTER 1

Introduction

Discrete Mathematics is a branch of Mathematical sciences which deals with the

systematic study of discrete structures and has numerous applications in our day -

to day life. One of the major category in the subject of discrete mathematics is the

theory of graphs, which has applications in various fields like operation research,

biology, information theory, architecture, chemistry, anthropology, economics, psy-

chology, computer science, clustering analysis to name a few. Also, the concept of

graph theory can be used in medical science to study the structures of RNA and

DNA. In the present situation, network plays an important role in many fields in-

cluding society, internet, transportation etc and any network related problem can

be modeled as one of the graph problems and hence solved. Thus any problem of

real life situations can be modeled through graphs.

Graph theory emerged from the famous Koningsberg bridge problem by the Swiss

Mathematician Leonhard Paul Euler in 1736. It is now one of the fastest growing

research field. Some of the potential field of research are topological graph theory,

domination in graphs, graph labeling, algebraic graph theory and fuzzy graph theory.

Our interest is on Graph labeling, the flourishing, fascinating and emerging area of

graph theory with widespread applications to arithmetic and combinational aspects.

This chapter is a collection of some basic definitions, literature reveiw of the research
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Chapter 1. Introduction

topic and an overview of the remaining chapters. The definitions and theorems on

graphs are useful for the subsequent chapters.

1.1 Preliminaries

This section provides basic definition and terminology required for the advancement

of the topic. For all other terminology and notations we refer to Douglas B West

[10], Buckley and Harary [20], Ignacio M.Pelayo [66].

Definition 1.1.1. By a graph we mean an ordered pairG = (V,E), where V = V (G)

is a finite nonempty set of objects called vertices and E = E(G) is a set of unordered

pairs of distinct vertices, i.e., two-element subsets of V called edges. Each edge

{u, v} of G is usually denoted by uv or vu. If e = uv is an edge of G, then e is

said to join u and v. If uv is an edge of G, then u and v are adjacent vertices.

Two adjacent vertices are referred to as neighbours of each other. If uv and vw are

distinct edges in G, then uv and vw are adjacent edges. The vertex u and the edge

uv are said to be incident with each other.

Definition 1.1.2. The number of vertices in a graph G (ie, the cardinality |V | of
V ) is the order of G and the number of edges (ie, the cardinality |E| of E) is the

size of G. A graph of order 1 is called a trivial graph. A nontrivial graph therefore

has two or more vertices. A graph of size 0 is called an empty graph.

Definition 1.1.3. The open neighborhood N(v) of a vertex v ∈ V (G) is the

set of neighbors of v in G, i.e., N(u) = {v ∈ V (G) : uv ∈ E(G)}. The set

N [v] = N(v) ∪ {v} is the closed neighborhood of v.

Definition 1.1.4. The degree of a vertex v in a graph G is defined to be the number

of edges incident with v and is denoted by degv. A vertex of degree 0 is referred to

as an isolated vertex and a vertex of degree 1 is an end vertex or a pendant vertex

or a leaf.
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Chapter 1. Introduction

Definition 1.1.5. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and

E(H) ⊆ E(G), in which case we write H ⊆ G. If V (H) = V (G), then H is a

spanning subgraph of G. An induced subgraph H of a graph G is any subgraph

satisfying the following property: for every pair u, v of vertices of H, if they are

adjacent in G, then they are also adjacent in H. If H is an induced subgraph of a

graph G and S = V (H), then we say that H is the subgraph induced by S in G and

we write H = G[S]. If H is a subgraph of a graph G and either V (H) is a proper

subset of V (G) or E(H) is a proper subset of E(G), then H is a proper subgraph of G.

Definition 1.1.6. Two or more edges that join the same pair of distinct vertices

are called parallel edges. An edge joining a vertex to itself is called a loop. A graph

which has neither loops nor parallel edges is called a simple graph.

Definition 1.1.7. A graph G is regular if the vertices of G have the same degree

and is regular of degree r if this degree is r. Such graphs are also called r- regular.

In particular, a 3- regular graph is called a cubic graph.

Definition 1.1.8. The complete graph Kn is the graph of order n in which any two

distinct vertices are adjacent.

Definition 1.1.9. A graph G is bipartite if V (G) can be partitioned into two sets

U and W (called partite sets) so that every edge of G joins a vertex of U and a

vertex of W . If G contains every edge joining U and W , then G is a complete

bipartite graph. In this case, if U and W have m and n vertices, we write G = Km,n.

Obviously Km,n has mn edges and m+ n vertices. The complete bipartite graph

K1,t is called a star.

Definition 1.1.10. A walk in a graph G is an alternating sequence of vertices

and edges v0, e0, v1, e2, v2, ...., vn−1, en, vn such that every ei = vi−1vi is an edge of G,

1 ≤ i ≤ n. It is important to mention that the vertices need not be distinct and the

same holds for the edges. The walk connects v0 and vn is called a v0 − vn walk. This
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Chapter 1. Introduction

walk has length n, the number of occurrences of edges in it. A walk in a graph G is

a trail if all its edges are distinct and a path if all its vertices (and thus necessarily

all its edges) are distinct. A path on n vertices is denoted by Pn. The walk is closed

if v0 = vn and is open otherwise.

Definition 1.1.11. A closed walk is a cycle provided its n vertices are distinct and

n ≥ 3. A cycle of even length is an even cycle, a cycle of odd length is an odd cycle.

A cycle on n vertices is denoted by Cn. A cycle of length n is an n-cycle. A 3-cycle

is referred to as a triangle.

Definition 1.1.12. Two vertices u and v in a graph G are connected if G contains

a u− v path. A graph G is connected if it has a u− v path whenever u, v ∈ G. A

graph G that is not connected is a disconnected graph.

Definition 1.1.13. A shortest u− v path is called a u− v geodesic. The distance

dG(u, v) (or d(u, v)) between the vertices u and v is defined as the length of a u− v

geodesic.

Definition 1.1.14. Let G1 and G2 be two graphs with disjoint vertex sets.

1. The union G = G1 ∪G2 of G1 and G2 has vertex set V (G) = V (G1) ∪ V (G2)

and edge set E(G) = E(G1) ∪ E(G2).

2. The join G = G1 +G2 of G1 and G2 has vertex set V (G) = V (G1) ∪ V (G2)

and edge set E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

Definition 1.1.15. [70]

1. The cartesian product of G and H is a graph, denoted as G2H, whose

vertex set is V (G) × V (H). Two vertices (g, h) and (g′, h′) are adjacent

precisely if g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′. Thus,

V (G2H) = {(g, h)/g ∈ V (G) and h ∈ V (H)},
E(G2H) = {(g, h)(g′, h′)|g = g′, hh′ ∈ E(H), or gg′ ∈ E(G), h = h′}.
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Chapter 1. Introduction

2. The direct product of G and H is the graph, denoted as G×H, whose vertex

set is V (G) × V (H), and for which vertices (g, h) and (g′, h′) are adjacent

precisely if gg′ ∈ E(G) and hh′ ∈ E(H). Thus, V (G×H) = {(g, h)/g ∈ V (G)

and h ∈ V (H)}, E(G × H) = {(g, h)(g′, h′)/gg′ ∈ E(G) and hh′ ∈ E(H)}.
Other names for the direct product that have appeared in the literature are

tensor product, Kronecker product, cardinal product, relational product, cross

product, conjunction, weak direct product, or categorical product.

3. The strong product of G and H is the graph denoted as G ⊠ H, and de-

fined by V (G ⊠ H) = {(g, h)/g ∈ V (G) and h ∈ V (H)}, E(G ⊠ H) =

E(G2H) ∪ E(G×H). Note that G2H and G×H are subgraphs of G⊠H.

4. The lexico graphic product of graphs G and H is the graph G[H] with vertex set

V (G)× V (H), vertices (g1, h1) and (g2, h2) are adjacent if either g1g2 ∈ E(G)

or g1 = g2 and h1h2 ∈ E(H).

Definition 1.1.16. The corona G1 ◦G2 was defined by Frucht and Harary as the

graph G obtained by taking one copy of G1 of order p1 and p1 copies of G2, and

then joining the i′th vertex of G1 to every vertex in the i′th copy of G2.

Definition 1.1.17. An acyclic graph has no cycles. A tree is a connected acyclic

graph.

Definition 1.1.18. [40, 35] A perfect binary tree is a binary tree in which every

parent has two children and all leaves are at the same depth. For any non negative

integer n, a perfect binary tree of height n denoted by Tn. A perfect binary tree of

n levels has exactly 2n−1 vertices and all its internal vertices must have two children .

Definition 1.1.19. [64]A spider graph or spider is a tree with at most one vertex of

degree greater than 2 and this vertex is called the branch vertex and is denoted

by v0. A leg of a spider graph is a path from the branch vertex to a leaf of the
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Chapter 1. Introduction

tree. Let Sn(m1,m2,m3, ...,mk), n ≥ k, denote a spider of n legs such that its legs

has length one except for k legs of lengths m1, m2, ...., mk, where mi ≥ 2 for all

i = 1, 2, ...., k. Let Sn(m) denote a spider graph of n legs and each leg has length m.

Definition 1.1.20. The n−cube Qn is defined recursively by Q1 = K2 and Qn =

K22Qn−1. Thus Qn has 2n vertices which may be labeled a1a2 . . . an, where each ai

is either 0 or 1. Two vertices of Qn are adjacent if their binary sequences differ in

exactly one place.

Definition 1.1.21. [39] The Crown (Cn ◦K1) is obtained by joining a pendant edge

to each vertex of Cn.

Definition 1.1.22. [80, 46] The triangular snake Tn is obtained from the path Pn

by replacing each edge of the path by a triangle C3.

Figure 1.1: T6

Similarly, A quadrilateral snake Gn is obtained from a path u1, u2, ..., un+1 by

replacing every edge of a path by a cycle C4, and is denoted by Gn.

Definition 1.1.23. [80] The corona graph Pn ◦K1 is called a Comb.

Definition 1.1.24. [2] The wheel graph W1,n is the join of the graphs Cn and K1.

i.e. W1,n = Cn +K1. Here vertices corresponding to Cn are called rim vertices and

Cn is called rim of W1,n while the vertex corresponds to K1 is called apex vertex.

Definition 1.1.25. [42] The Helm Hn, n ≥ 3 is the graph obtained from a wheel

Wn by attaching a pendant edge at each rim vertex.

6



Chapter 1. Introduction

Definition 1.1.26. [42] The Flower graph Fln is obtained from the helm graph by

joining each pendant vertices to the central vertex.

Definition 1.1.27. [81] The friendship graph F3
n is the union of n triangles with a

common vertex. It has 2n+ 1 vertices and 3n edges.

Definition 1.1.28. [30] The generalized friendship graph fq,p is a collection of

p-cycles (all of order q) meeting at a common vertex. It is also called Dutch windmill

graph in literature.

Definition 1.1.29. [81] The Windmill graph Wd(k, n) is an undirected graph ob-

tained by taking k copies of the complete graph Kn with a vertex in common.

Definition 1.1.30. [42] Bistar is the graph obtained by joining the apex vertices

of two copies of star K1,n and is denoted by Bm,n.

Definition 1.1.31. [44] A Twig TW (n), n ≥ 3, is a tree obtained from a path by

attaching exactly two pendant edges to each internal vertex of the path.

Definition 1.1.32. [12]A Y− tree is a graph obtained from a path by appending

an edge to a vertex of a path adjacent to an end point and it is denoted by Yn,

where n is the number of vertices in a tree.

Definition 1.1.33. [9] A sparkler, denoted as Pm
+n, is a graph obtained from the

path Pm and appending n edges to n end point. This is a special case of a caterpillar.

We refer to the hub of Pm
+n, sparkler, as the vertex of degree n+ 1.

7



Chapter 1. Introduction

Figure 1.2: (P6)
+9

Definition 1.1.34. [80] Let Sm be a star with central vertex v0 and pendant ver-

tices v1, v2, ...., vm and let [Pn;Sm] be the graph obtained from n copies of Sm with

vertices v0j , v1j , v2j , ..., vmj
(1 ≤ j ≤ n) and joining v0j and v0j+1

by means of an edge,

1 ≤ j ≤ n− 1.

Definition 1.1.35. [55] The H− graph of a path Pn is the graph obtained from

two copies of Pn with vertices v1, v2, . . . , vn and u1, u2, . . . , un by joining the vertices

v(n+1)/2 and u(n+1)/2 by means of an edge if n is odd and the vertices u(n/2)+1 and

vn/2 if n is even.

Definition 1.1.36. [76, 28] The generalized theta graph denoted by θ(l1, l2, . . . , lk)

consists k ≥ 3 pairwise internally disjoint paths of length l1, l2, . . . , lk that share a

pair of common endpoints u and w. In this thesis, we consider the generalized theta

graph θ(3, 2, 3) as theta graph and it is denoted by Tα. It has two non- adjacent

vertices of degree 3 and all other vertices of degree 2.

Figure 1.3: θ(3, 2, 3) = Tα

Definition 1.1.37. The Petersen graph is the simple graph whose vertices are the

2−element subset of a 5− element set and whose edges are the pairs of dijoint 2−

8



Chapter 1. Introduction

element subsets. Peterson graph is a graph with 10 vertices and 15 edges.

Definition 1.1.38. [34] A weighted graph G = (V,E,w) is one in which every edge

is assigned a non negative number w(e) called the weight of e. An ordinary graph is

a weighted graph with unit weight assigned for all edges.

Definition 1.1.39. A chord of a path P in a graph G is any edge joining a pair of

nonadjacent vertices of P .

Definition 1.1.40. [78] For a graph G, the splitting graph S ′ of G is obtained by

adding to each vertex v a new vertex v′ so that v′ is adjacent to every vertex that is

adjacent to v in G, that is N(v) = N(v′).

Definition 1.1.41. [68] LetG = (V,E) be a graph with V = S1∪S2∪...∪St∪T where

each Si is a set of vertices having atleast two vertices and having the same degree

and T = V/ ∪i Si. The degree splitting graph of G denoted by DS(G) is obtained

from G by adding w1, w2, ...., wt and joining vi to each vertex of Si(1 ≤ i ≤ t).

Figure 1.4: DS(G) of a graph G

Definition 1.1.42. A convexity C on a nonempty set V is a collection of subsets of

V such that:

� ∅, V ∈ C.

9
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� Arbitrary intersection of convex sets are convex.

� Every nested union of convex sets is convex .

A convexity space is an ordered pair (V,C), where V is a nonemptyset and C is a

convexity on V . The members of C are called convex sets. Union of nested family of

sets is the nested union.

Definition 1.1.43. A graph convexity space is a an ordered pair (G,C) formed by a

connected graph G = (V,E) and a convexity C on V such that(V,C) is a convexity

space and satisfying the condition that every member of C induces a connected

subgraph of G.

Definition 1.1.44. [76] A vertex switching of a graph G is a graph Gv obtained

by taking a vertex v of G, removing all the edges incident to v and adding edges

joining v to every other vertex which are not adjacent to v in G.

Definition 1.1.45. A vertex labeling of a graph G is a mapping f from the vertices

G to a set of elements, often integers. Each edge xy has a label that depends on

adjacent vertices x and y and their labels f(x) and f(y).

By a graph G = (V,E), we mean a finite, connected graph without loops and

parallel edges.

1.2 Back ground of the study

A graph labeling[69, 60] is an assignment of real values or subsets of a set to the

vertices or edges or both subject to certain conditions. If the domain is the set of

vertices we call it vertex labeling. If the domain is the set of edges we call it edge

labeling. If the labels are assigned to both vertices and edges we call it total labeling.

Usually in graph labeling problems, we label the vertices and then correspondingly

get the labels on the edges. Actually, graph labelling problems are not of recent

origin, example, the problem of colouring the vertices emerged in connection with
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Thomas Gutherie’s famous Four Color Theorem, which was solved in 1976 after

more than 150 years of waiting. [65].

Labeled graphs are useful mathematical model for a variety of applications. It is

used in Coding theory problems, Social networking, design of good Radar location

codes and in electrical circuit theory. Also, it is applied to design Communication

Network addressing systems. X- ray crystallography is the primary method for

characterizing the atomic structure of new materials. Labeled graphs are used to

find out the ambiguities in X- ray crystallographic analysis [29].

Most of the graph labeling, trace their origin to that one introduced by Alexander

Rosa in 1967. Rosa introduced a function f from the set of vertices in a graph G

with q edges to a set of integers {0, 1, 2, ..., q} so that each edge xy is assigned the

label |f(x)–f(y)|, the resulting edge labels are distinct. Rosa studied this labeling

as a tool for attacking the conjecture of Ringel and he called this labeling as β

-valuation. S.W.Golomb called these type of labeling as graceful labeling in 1972

and this is now the popular term [39].

Harmonious graphs naturally emerged in the study by Ron Graham and Neil

Sloane in 1980. They defined a graph G with q edges to be harmonious if there is

an injection f from the vertices of G to the group of integers modulo q such that

when each edge xy is assigned the label f(x) + f(y)(modq), the resulting edge labels

are distinct [39].

Relatively prime numbers play a key role in both algebraic and analytic number

theory. Roger Entringer used the concept of primes in graph labeling and introduced

prime labeling of graphs. In 1980, Entrinjer postulated that every tree is prime.

The notion of prime labeling was further studied by Tout, Dabboucy, and Howalla

in 1982. In prime graph labeling, vertices are labeled with distinct positive integers

less than or equal to the number of vertices in the graph such that labels of adjacent

vertices are relatively prime.
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Due to the Ringel-Kotzig tree-conjecture, All trees are graceful, many new ideas

are added in the development of graph labelling. In 1987, Cahit introduced the

concept of cordial labeling as a weaker version of graceful and harmonious labeling.

A binary vertex labeling f : V (G) → {0, 1} of a graph G is called cordial labeling

if for each edge xy ∈ G, the induced edge function f ∗ : E(G) → {0, 1} is defined

as f ∗(xy) = |f(x) − f(y)| and it satisfies the condition |ef(0) − ef(1)| ≤ 1 and

|vf (0)− vf (1)| ≤ 1. Here vf (i) and ef (i) of G are respectively the number of vertices

and edges having label i, i ∈ {0, 1} [79]. Cahit was inspired by the failure conditions

for the existence of all trees are harmonious or graceful.

With various applications, variations of these labelings and other labelings have

been introduced over time like permutation labeling, combination labeling, fibonacci

labeling to mention a few. Joseph A Gallian, in his brilliant dynamic survey, has

collected everything on graph labeling, which can be acessed freely from the website

of ’ The electronic journal of combinatorics’. It provides resource materials and most

recent developments in the field of labeling of graphs for the new scholars. Note that

it does not address the another major labeling problem, called the band - width

problem. A detailed survey of this can be seen in [8].

Numerous connections exist between labeling and other branches of mathematics,

including algebra, combinatorics, and number theory. In the opinion of L W Beineke

and S. M. Hegde graph labeling serves as a boundary between number theory and the

structure of graph. They introduced the concept of strongly multiplicative graphs in

2001. Also known as productive graphs, thus fitting in with the names harmonious

and graceful. A graph with p vertices is said to be strongly multiplicative if the

vertices can be labeled 1, 2, ...., p so that the values on the edges, obtained as the

products if the labels of their end vertices, are all distinct [2].

Beineke and Hegde proved that every tree has a strongly multiplicative labeling

in which an arbitrary vertex is labeled with 1. Also, every spanning subgraph

of a strongly multiplicative graph is strongly multiplicative and every graph is

an induced subgraph of a strongly multiplicative graph. They obtained an upper

bound for the size of a strongly multiplicative graph with n vertices [2]. Later

12



Chapter 1. Introduction

Chandrashekar Adiga, H. N. Ramaswamy and D.D. Somashekara obtained a sharp

bound for the maximum number of edges in a strongly multiplicative graph [7].

Since then, so many authors studied and contributed to the concept of strongly

multiplicative graphs including K. K. Kanani, T M Chhaya M, Muthusamy, Joice

Punitha, A. Josephine Lissie, K.C. Raajasekar and J Baskar Babujee [42, 60, 41, 59] .

Basically, convexity is a branch of Geometry. It plays an important role in other

branch of Mathematics sucha as algebra, analysis and topology and other branch

of sciences. There is a vast amount of literature on convexity theory from different

perspective. The axiomatic approach to convexity developed in the works of Levi,

Jamison, Vande Vel and Sierksma [62]. An elegant survey on convex structures has

been done by Vande Vel. A convexity space is an ordered pair (V,C), where V is a

nonempty set and C is a family of subsets of V called convex sets, that satisfies

� V and ϕ are in C.

� arbitrary intersection of convex sets are convex

� every nested union of convex sets is convex.

A graph convexity space is a an ordered pair (G,C) formed by a connected graph

G = (V,E) and a convexity C on V such that (V,C) is a convexity space and

satisfying the condition that every member of C induces a connected subgraph

of G . Thus classical convexity can be extended to graphs in a natural way [66].

Convexity in graphs is discussed in the book by Buckley and Harary [20]. For

unweighted and weighted graphs different types of convexities and other related

parameters are introduced and studied by many authors including Chepoi, Dutchet,

Bandelt, Jamison, Juhani Nieminen, Ignacio M Pelayo, Changat, Vijayakumar,

Parvathy, Sunil Mathew and Jill K Mathew and details are available in the literature

[19, 6, 67, 62, 63, 33, 34]. There are many types of convexity geodesic or metric con-

vexity, monophonic convexity or the minimal path convexity, triangle path convexity,

P3 convexity and so on and most prominent among them are geodesic (which arises

when we consider shortest paths) and monophonic convexity (when we consider

chordless paths).

13
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The distance dG(u, v) between vertices u and v is defined as the length of a u−v

geodesic. The geodesic closed interval I[u, v] is the set of all vertices in all u − v

geodesic including u and v. For W ⊆ V , the union of all geodesic closed interval

I[u, v] over all pairs u, v ∈ W is called the geodetic closure of W and is denoted by

I[W ]. Any subsetW of V is called geodesic convex if I[W ] = W . That is, the vertices

in the shortest path connecting any two vertices in W is also in W [6]. A u− v path

P is called a monophonic path if it is a chordless path. It is also known as induced

path or minimal path in literature. The monophonic closed interval J [u, v] is the set

of vertices of all induced paths linking u and v. For W ⊆ V , the monophonic closure

J[W] of W is the union of the intervals J [u, v] over all pairs u and v of W . In ad-

dition, ifW = J [W ] thenW is said to be monophonicaly convex or simplym- convex.

The geodetic number of a graph was introduced by Frank Harary, Emmanuel

Loukakis and Constantine Tsouros in 1986 and is published in [17]. It was further

studied in [21, 22]. A set of vertices of G is called a geodetic set in G if I[W ] = V and

a geodetic set of minimum cardinality is a minimum geodetic set. The cardinality

of a minimum geodetic set in G is called the geodetic number g(G). If G is a non

trivial connected graph of order n, then 2 ≤ g(G) ≤ n [21, 22]. The geodetic number

of a graph can find applications in location theory and convexity theory [17]. Ping

Zhang and Gary Chartrand studied geodetic number of an oriented graph [24].

For a non empty subset S of V, T [S] = {e ∈ E, e is in some geodesic connecting

two vertices of S}. A set S of vertices of V is defined to be an edge geodetic set in G if

T [S] = E. The cardinality of a minimum edge geodetic set in G is the edge geodetic

number ge(G) [58]. The edge geodetic number of graphs was studied by Mustafa

Atici, A P Santhakumaran and J John and can be seen in [73, 58]. The geodetic and

edge geodetic number of some class of graphs are seen in [17, 21, 73, 58, 81]. For

any connected graph G, g(G) ≤ ge(G). There have been many versions of geodetic

and edge geodetic number of a graph in literature like double geodetic number, split

geodetic number and so on.
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1.3 Organization of the Thesis.

This thesis contains six chapters. The chapterwise description of the report is given

below.

In order to make the thesis as self contained as possible, we begin with an

introductory chapter arranged in 3 sections. This chapter includes some basic

definitions and results needed for the upcoming chapters, developments in the study

of graph labeling and summarize the contents covered in each chapter.

’Graph Convexities and Graph Labeling’ are the two major research areas of

Graph theory. Different kinds of convexities and different types of graph labeling

can be seen in literature. Studies connecting these two major topics is not found in

literature. This motivated us to define the concept ’convexity in labeled graphs’.

Chapter 2 deals with the study of geodesic and monophonic convexities in labeled

graphs. In the second section, we introduce the concept of Lg convexity space and

geodesic convex label or g−convex label. Geodesically elegant graphs are discussed

in the next section. We give a necessary condition for a graph G to be geodesically

elegant. The fourth section discuss monophonic convex label or m− convex label

and Lm convexity space.

In chapter 3, we studied geodetic and edge geodetic numbers in labeled graphs.

We defined L−geodetic label, strong L− geodetic label, L−edge geodetic label and

strong L− edge geodetic label and studied these concepts in Petrsen graph, cycle

Cn, Mesh Pr2Ps, Wheel graph W1,n, Friendship graph F3
n and the Windmill graph

Wd(k, n).

In chapter 4, a new type of vertex labeling, ’LH Labeling’ is introduced. A

graph G with n vertices is said to have an LH labeling if there exists a bijective

functionf : V to {1, 2, 3, ..., n} such that the induced map f ∗ : E → N , the set of

natural numbers defined by f ∗(uv) = LCM(f(u),f(v))
HCF (f(u),f(v))

is injective. A graph that admits

an LH labeling is called an LH graph. If the labels of each pair of adjacent vertices

of a given graph G are relatively prime, then the LH labeling coincides with the
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strong multiplicative labeling. All prime graphs are LH. Most remarkable result in

this chapter is an upper bound for the size of an LH graph. We proved that for any

non LH graph G there exist an LH graph Ω∗(G), called the LH completion of G.

Defined LH completion number and LH completion number of the complete graph

Kn up to n = 10 are obtained. LH labeling of a perfect binary tree and spider graph

S3(m) are demonstrated.

In chapter 5, LH labeling of some class of graphs are discussed. In the second

section LH labeling of path related graphs like comb Pn ◦K1, triangular snake Tn,

quadrilateral snake Gn, twig graph TW (n), n ≥ 3, sparkler graph (Pm)
+n, H−

graph and the graph [Pn : S2] are discussed. Third section discusses the LH labeling

of cycle related graphs namely cycle Cn, wheel graph W1,n, Crown Cn ◦K1, Helm

graph Hn, flower graph Fln and the friendship graph F n
3 . Next section deals with

the LH labeling of bistar graph Bm,n. In the fifth section, LH labeling of splitting

graphs namely splitting graph of a path S ′(Pn), comb S ′(Pn ◦K1) and star S ′(K1,n)

are discussed. LH labeling of line graph a comb L(Pn ◦K1) is established in section

6. Last section deals with the LH labeling of a Theta graph Tα, splitting graph

of a theta graph S(Tα), degree splitting graph DS(Tα) and the graph obtained by

switching any vertex of Tα.

Chapter VI briefly sums up the overall work carried out and some directions for

application and further research.
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CHAPTER 2

Convexity in Labeled Graphs

2.1 Introduction

In the study of convexity in graphs, two types of convexity have played a prominent

role - geodesic convexity (also called metric convexity) which arises when we con-

sider shortest paths and the monophonic convexity (also called the minimal path

convexity) when we consider chordless paths [6]. The concepts, main ideas and the

results related to geodesic convexity in graphs can be seen in [66]. In this chapter

we made an attempt to study geodesic convexity and monophonic convexity in a

graph G with respect to a labeling function L defined on the vertex set of G.

If a non negative integer L(v) (may or may not be distinct) is assigned to each

vertex v of G, then the vertices of G are said to be labeled (numbered). In this

thesis, we consider only distinct vertex labels. G is itself a labeled graph if each

edge e = uv is given the value L(uv) = L(u) ∗ L(v) where ∗ is any mathematical

operation like addition, multiplication, modulo addition or absolute difference. Here

we take ∗ as absolute difference of the vertex labels.

Definition 2.1.1. A shortest u− v path is called a u− v geodesic. The distance

dG(u, v) (or d(u, v) between vertices u and v is defined as the length of a u − v

17



Chapter 2. Convexity in Labeled Graphs

geodesic.

The distance function dG : G × G → N associated to a connected graph G

satisfies, for every u, v, w ∈ V , the following properties:

� dG(u, v) ≥ 0, equality holding iff u = v.

� dG(u, v) = dG(v, u).

� dGu, v) ≤ dG(u,w) + dG(w, v).

Definition 2.1.2. [6] The geodesic closed interval I[u, v] is the set of all vertices in

all u− v geodesic including u and v. For W ⊆ V , the union of all geodesic closed

interval I[u, v] over all pairs u, v ∈ W is called the geodetic closure of W and is

denoted by I[W ]. Any subset W of V is called geodesic convex if I[W ] = W .

Definition 2.1.3. [67] A chord of a path u0, u1, u2, ..., un is an edge uiuj with

j ≥ i+ 2(0 ≤ i, j ≤ n). A u− v path P is called a monophonic path or an induced

path if it is a chordless path. The monophonic closed interval J [u, v] is the set of

vertices of all induced paths linking u and v. For W ⊆ V , the monophonic closure

J[W] of W is the union of the intervals J [u, v] over all pairs u and v of W . In

addition, if W = J [W ] then W is said to be monophonicaly convex or simply m-

convex.

2.2 Geodesic Convexity in Labeled Graphs

This section explores the study of geodesic convexity in a graph G with respect to a

labeling function L defined on the vertex set of G. The concept of geodesic convex

label and Lg convexity space are introduced.

The distance between two vertices in a labeled graph is defined in the same

way, as in weighted graphs. Let G(V,E) be an undirected, connected graph with-

out loops and multiple edges. A bijective function L : V → {1, 2, 3, .., |V |} be a

vertex labeling of G and it induces a function L∗ : E → {1, 2, 3, .., |V |} defined by
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Chapter 2. Convexity in Labeled Graphs

L∗(uv) = |L(u)− L(v)|. We use ΓL to denote a labeled graph, ΓL = (G,L).

Definition 2.2.1. For any u− v path P in ΓL, the path sum denoted by L(P ) is

defined as the sum of the edge labels present in the path. That is L(P ) =
∑

e∈P L∗(e).

Definition 2.2.2. For any two vertices u and v in V , the distance between u and v de-

noted by dL(u, v) is defined as dL(u, v) = minP{L(P ) where P is a u−v path in ΓL}.

Let G(V,E,w) be a connected weighted graph and u, v be any two vertices

of G. Then the geodesic distance between u and v is defined and denoted by

d(u, v) = minP

∑
e∈P w(e) where P is a u − v path in G and w(e) is the weight

associated with the edge e.

A labeled graph can be treated as a weighted graph, we define the distance

between any two vertices in ΓL, by replacing w(e) by L∗(e), L∗(e) is the label

associated with the edge e.

Clearly the distance function dL(u, v) : ΓL × ΓL → N associated to a labeled

graph satisfies all the conditions of a metric. Hence for every labeled graph ΓL, dL

is a metric on V and the label induces a convexity CL on V such that the vertices

in any shortest path between each pair of vertices in a set S ⊂ V is contained in it.

Definition 2.2.3. Let ΓL be a labeled graph. A shortest u− v path in ΓL is called

(u, v)L-geodesic. For any two vertices u and v of ΓL the L− geodesic closed interval

IL[u, v] is defined as

IL[u, v] = {w ∈ V : dL(u, v) = dL(u,w) + dL(w, v)}.

Definition 2.2.4. Let ΓL be a labeled graph. Let S ⊂ V . The union of all L−
geodesic closed intervals IL[u, v] over all pairs u, v ∈ S is called a L− geodesic

closure of S and is denoted by IL[S]. That is for every u, v ∈ S, the vertices

on an u − v L- geodesic belongs to S. If IL[S] = S, we say that S is Lg convex.
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Equivalently, a set S is Lg convex if for every pair of u, v ∈ S the interval IL[u, v] ⊆ S.

For example consider C4 with different vertex labeling as given in Figure 2.1.

Figure 2.1: 3 different labelings of C4 : L1, L2, L3

Geodesic convexity of the cycle C4 is given by

C = {∅, {a}, {b}, {c}, {d}, {a, b}, {b, c}, {c, d}, {a, d}, {a, b, c, d}}.

Lg convex sets of ΓL1 , ΓL2 and ΓL3 are given in the following table.

Table 2.1: Geodesic convex sets with respect to the vertex labeling.

CL1 CL2 CL3

∅, {a}, {b}, ∅, {a}, {b}, ∅, {a}, {b},
{c}, {d}, {a, b}, {c}, {d}, {a, b}, {c}, {d}, {a, b},
{b, c}, {c, d}, {b, c}, {c, d}, {b, c}, {c, d},

{a, b, c}, {b, c, d} {a, d}, {a, d, c}, {a, d}
and {a, b, c, d} {b, c, d} and {a, b, c, d} and {a, b, c, d}.

Comparing CL1 , CL2 and CL3 with C we conclude the following:

In any graph, the empty set, the whole vertex set, every one point sets and

every two point sets consisting of adjacent vertices are members of C. Clearly, the

empty set, the whole vertex set and every one point sets are in CL; but every two
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point subsets consisting of adjacent vertices need not be in CL.

Number of elements in CL may exceed (subceed) the number of elements in C. In

some cases these are equal.

Definition 2.2.5. An Lg convexity space is an ordered pair (ΓL,CL) where , ΓL is

a labeled graph and CL is the convexity induced by the label L.

It is interesting to find a label in which the convex sets induced by it coincides

with the geodesic convex sets. Based on this concept g-convex label is defined in

the next section.

2.3 Geodesically Elegant graphs

In this section, a new class of graphs, geodesically elegant graphs are introduced

and studied it in some classes of graphs.

Definition 2.3.1. Let ΓL be a labeled graph. The label L is called a geodesic

convex label or simply g-convex label if the convexity CL induced by the label L

coincides with the geodesic convexity C on V . In other words, the Lg convex sets

of CL are the same as the g- convex sets of C in G. A graph G is geodesically

elegant if there exist a g−convex label for G.

Remark 2.3.1. In a tree each pair of vertices are connected by a unique path.

Therefore, CL = C for any vertex labeling. Hence a tree T is always geodesically

elegant.

In the following proposition we characterize the necessary condition for the

existence of geodesic convex label in a graph G.

Proposition 2.3.2. All geodesically elegant graphs are triangle free.

Proof. On the contrary suppose that G contains a triangle C3 or K3. Let us

label the vertices of C3 using the numbers a, b, and c with a < b < c. Then
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dL(v1, v3) = dL(v1, v2) + dL(v2, v3). Hence v2 ∈ I[{v1, v3}]. Thus the two point

subset {v1, v3} is not convex.

Figure 2.2

Hence CL ̸= C, we conclude that if the graph G is geodesically elegant, then G

is triangle free.

2.3.1 Some Family of Geodesically Elegant graphs.

Now we check, which of the following graphs or graph families are geodesically

elegant.

Theorem 2.3.3. The cycle Cn for all n > 3 is geodesically elegant.

Proof. To prove the existence of a g-convex label, find a vertex label L such that the

convexity induced by the label coincides with the geodesic convexity in Cn, n > 3.

Let v1, v2, ......, vn be the vertices of the cycle Cn.

Define L : V → {1, 2, 3, ..., n} by

Case 1 : n is even

L(vi) = 2i− 1, 1 ≤ i ≤ n

2

L(vi) = n, i =
n

2
+ 1

L(vi) = L(vi−1)− 2, i =
n

2
+ 2 ≤ i ≤ n.

Case 2 : n is odd

L(vi) = 2i− 1, 1 ≤ i ≤ n+ 1

2
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L(vi) = 2, i = [
n

2
] + 2

L(vi) = L(vi−1) + 2, [
n

2
] + 3 ≤ i ≤ n.

The label L satisfies the conditions of a g-convex label, Cn, for all n > 3 is geodesically

elegant.

Figure 2.3: Geodesic convex labeling of C5

Theorem 2.3.4. The crown graph Cn ◦K1 for all n > 3 is geodesically elegant.

Proof. Let {vi, i = 1 to n} be the vertices of the cycle Cn and {ui, i = 1 to n} be

the pendant vertices.

To prove the existence of a g-convex label, it is enough to find a vertex label L such

that the convexity induced by the label coincides with the geodesic convexity in

Cn ◦K1.

Define L : V → {1, 2, 3, ..., 2n} by

Case 1 : n is even

L(vi) = 2i− 1, 1 ≤ i ≤ n

2
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L(vi) = n, i =
n

2
+ 1

L(vi) = L(vi−1)− 2,
n

2
+ 2 ≤ i ≤ n.

L(u1) = n+ 1

L(ui) = L(ui−1) + 2, 2 ≤ i ≤ n

2

L(un
2
+ 1) = 2n

L(ui) = L(ui−1)− 2,
n

2
+ 2 ≤ i ≤ n.

vspace3mm Case 2 : n is odd

L(vi) = 2i− 1, 1 ≤ i ≤ n+ 1

2

L(vi) = 2, i = [
n

2
] + 2

L(vi) = L(vi−1) + 2, [
n

2
] + 3 ≤ i ≤ n

L(u1) = n+ 1

L(ui) = L(ui−1) + 2, 2 ≤ i ≤ n+ 1

2

L(un+1
2

+ 1) = n+ 2

L(ui) = L(ui−1) + 2,
n+ 1

2
+ 2 ≤ i ≤ n.

The label L satisfies the conditions of a geodesic convex label and hence Cn ◦K1 for

all n > 3 is geodesically elegant.
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Figure 2.4: Geodesic convex labelings of C5 ◦K1

Theorem 2.3.5. The hypercube graph Qn is geodesically elegant.

Proof. For n = 1 and 2, using the Remark 2.3.1 and Theorem 2.3.3, the result is

true.

Suppose n ≥ 3.

Let {ui, 1 ≤ i ≤ 2n} be the vertices of Qn. Each ui is labeled by the binary n−
tuples (x1, x2, . . . , xn) (that is xi = 0 or 1, 1 ≤ i ≤ n). In Qn, two vertices ui and uj

are adjacent if their corresponding n− tuples differ in exactly one position.

Then |V | = 2n and |E| = n2(n−1).

Define L : V → {1, 2, 3, . . . , 2n} as

L(ui) = L(x1, x2, . . . , xn) = 1 + x1 + 2x2 + 22x3 + · · ·+ 2(n−1)xn.

The label L satisfies the conditions of a geodesic convex label and hence Qn is

geodesically elegant.
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Figure 2.5: Geodesic convex labeling of Q4

Theorem 2.3.6. The generalized friendship graph f4,n is geodesically elegant.

Proof. The generalized friendship graph f4,n is a collection of n cycles of order 4

meeting at a common vertex v0.

Let V (f4,n) = {v0, v1, v2, ...v3n}. Then |V (f4,n)| = 3n+ 1

in f4,n.

Ordinary labeling of f4,n is shown in Figure 2.6
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Figure 2.6: Ordinary labelings of f4,n

Define L : V (f4,n) → {1, 2, 3, ..., 3n+ 1} by

L(v0) = 3n+ 1

L(v3i−2) = L(v0)− i, 1 ≤ i ≤ n

L(v3n) = L(v3n−2)− 1

L(v3i) = L(v3n)− i, 1 ≤ i ≤ n− 1

L(v3n−4) = L(v3(n−1))− 1

L(v3n−1) = L(v3n−4)− 1

L(v3i−1) = L(v3n−1)− i, 1 ≤ i ≤ n− 2.

The label L satisfies the conditions of a g-convex label and hence f4,n is geodesi-

cally elegant.
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Figure 2.7: Geodesic convex labelings of f4,4

Theorem 2.3.7. A Theta graph Tα is geodesically elegant.

Proof. If v0, v1, v2, v3, v4, v5 and v6 are the vertices of a Theta graph Tα with centre

v0. We define the vertex labeling

L : V (Tα) → {1, 2, 3, 4, 5, 6, 7} as in Figure 2.8.

CL(Tα) = C(Tα) = {∅, {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6}
{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v6}, {v6, v1}, {v1, v0}, {v0, v4},
{v1, v2, v3}, {v2, v3, v4}, {v4, v3, v5}, {v4, v5, v6}, {v1, v5, v6}, {v2, v1, v0}, {v1, v0, v4}
, {v4, v3, v0}, {v4, v5, v0}, {v6, v1, v0},
{v0, v1, v2, v3, v4}, {v0, v1, v4, v5, v6}
{v0, v1, v2, v3, v4, v5, v6}}.

Since CL(Tα) = C(Tα), the graph Tα is geodesically elegant.
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Figure 2.8: Geodesic convex labelings of Tα

Theorem 2.3.8. The graph Gv obtained by switching of any vertex v in a graph G

where the non-neighbours of v contains atleast one edge is not geodesically elegant.

Proof. The vertex switching of any vertex v in a graph G where the non-neighbours

of v contains atleast one edge produces a triangle, by Proposition 2.3.2 geodesic

convex label does not exist in the graph Gv.

Corollary 2.3.9. The graph obtained by switching of any vertex in a Theta graph

Tα is not geodesically elegant.

Figure 2.9: The switching of a vertex v1 and v5 in Tα

Remark 2.3.2. The graph Gv obtained by switching of any vertex v in G such that

G−N [v] is an independent set, may or may not be geodesically elegant.
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Take G = C4, geodesically elegant. Then the graph obtained by switching of a vertex

a in G is geodesically elegant.

Figure 2.10: The switching of the vertex a in G = C4, Gv = K1,3

Take G = K3,3, not geodesically elegant. Here, the graph obtained by switching

of a vertex a in G is not geodesically elegant.

Figure 2.11: The switching of the vertex a in G = K3,3, Gv = K2,4

Theorem 2.3.10. Geodesic convex label does not exist in the complete bipartite

graph Km,n except for m = 1 or n = 1 or m = n = 2.

Proof. Case 1: m = 1 or n = 1

Km,n is a tree, by remark 2.3.1 it is geodesically elegant.

Case 2: m,n = 2

The g− convex label of K2,2 is shown in the Figure 2.12.
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Figure 2.12: K2,2

Case 3: m ≥ 2, n ≥ 2, m+ n ≥ 5

Let {vi, 1 ≤ i ≤ m+ n} be the vertices of Km,n. Then |V | = m+ n.

Suppose X and Y be the partition of V with |X| = m and |Y | = n. g− convex

sets of Km,n are ∅, singleton sets, two point sets consisting of adjacent vertices and V .

Define L : V → {1, 2, 3, ....,m+ n} as L(vi) = i, 1 ≤ i ≤ m+ n.

If L is a geodesic convex label, then the Lg convex sets are the same as g−
convex sets.

Let v1 ∈ X.

Let r = minimum{t : vt ∈ X, t ≥ 2}.

Subcase 1 : suppose r > 4.

Then v2, v3 and v4 ∈ Y . So v2 − v1 − v3 is the only L-geodesic connecting v2 and v3.

For all other vi ∈ X, v2 − vi − v3 i s a path of length greater than 3. Thus the set

{v1, v2, v3} is an Lg convex set.
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Subcase 2 : suppose r = 4.

Then v2 and v3 ∈ Y and v4 ∈ X.

The L- geodesic connecting v2 and v3 are v2 − v1 − v3 and v2 − v4 − v3. Also,

L- geodesic connecting v1 and v4 are v1 − v2 − v4 and v1 − v3 − v4. Thus the set

{v1, v2, v3, v4} is an Lg convex set.

Subcase 3 : (i) suppose r = 3

Then v3 ∈ X and v2 ∈ Y . As in sub case 1, {v1, v2, v3} is an Lg convex set.

(ii) Suppose r = 2.

Then v1 and v2 are in X and let s = minimum{i, vi ∈ Y }. So v1 − vs − v2 is the
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only L-geodesic connecting v1 and v2. Thus {v1, v2, vs} is an Lg convex set.

Hence, geodesic convex label does not exist in the complete bipartite graph Km,n,

except for m = 1 or n = 1 or m = n = 2.

We have proved that geodesically elegant graphs are triangle free, so we can’t

find the geodesic convex label in Kn for n ≥ 3. In that case we can find the number

of Lg convex sets.

Theorem 2.3.11. The number of Lg convex sets of Kn for n ≥ 3 with respect to

any label L is n2+n+2
2

.

Proof. Let G ∼= Kn

. V = V (G) = {v1, v2, v3, ..., vn}.
Let L : V → {1, 2, 3, .., n} be a labeling. Assume without loss of generality that

L(vi) = i, for i = 1 to n.

Claim : For every i = 1, 2, ..., n, j = 0, 1, 2, .., n− i,

the set C = {vi, vi+1, ...., vi+j} is Lg convex.

For any i ≤ k ≤ l ≤ i+ j

IL[vk, vl] = {vs : dL(vk, vl) = d(vk, vs) + d(vs, vl)} = {vs : k ≤ s ≤ l} ⊂ C.

Hence C is convex.

on the other hand let W be an Lg convex subset of V .

Let i = Minimum{k : vk ∈ W}
and j = Maximum{k : vk ∈ W}. Then for any s such that i < s < j we have

dL(vi, vs) = s− i, dL(vs, vj) = j − s, and

dL(vi, vj) = j − i = (j − s) + (s− i)

= dL(vs, vj) + dL(vi, vs).

Therefore vs ∈ W for every S such that i ≤ s ≤ j.

Hence the convex sets are precisely ∅ and those sets of the form {vi, vi+1, ...., vi+j}.
Let mi denote the number of convex sets with i vertices for i = 0, 1, 2, .., n.

Then m0 = 1, m1 = n

, m2 = n− 1,....mn = 1. Hence

|CL| = 1 + n+ n− 1 + ...+ 1.

33



Chapter 2. Convexity in Labeled Graphs

= 1 + n(n+1)
2

= n2+n+2
2

Illustration:

Consider K4

Lg convex sets of K4 are ∅, one point sets, {a, b}, {b, c},
{c, d}, {b, c, d}, {a, b, c}, {a, b, c, d}
That is there are 11 Lgconvex sets.

when n = 4, n2+n+2
2

= 22
2
= 11.

2.3.2 g− convex label in Graph Products and Join

In this section, we are discussing about the geodesically elegant graphs in some

graph products and graph operations.

Remark 2.3.3. Strong product of any two graphs G and H, both having atleast

one edge is not geodesically elegant. By the definition of strong product, G ⊠H

contains a subgraph K3. Using Proposition 2.3.2, G⊠H is not geodesically elegant.

Remark 2.3.4. Lexicographic product of any two graphs G and H, both having

atleast one edge is not geodesically elegant. By the definition of lexico graphic

product, G[H] contains a subgraph K3. Using Proposition 2.3.2, G[H] is not

geodesically elegant.
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Example 2.3.1. The join of two geodesically elegant graphs need not be geodesically

elegant. For, Consider G = C4 and H = P2 are two geodesically elegant graphs.

Then G+H contains a subgraph K3, by Proposition 2.3.2, G+H is not geodesically

elegant.

Figure 2.13: G+H

Example 2.3.2. The corona product of two geodesically elegant graphs may not

be geodesically elegant. For, example, G = C4 and H = P2 are two geodesically

elegant graphs. Then G ◦H contains the subgraph K3, by Proposition 2.3.2, G ◦H
is not geodesically elegant.

Figure 2.14: G ◦H

Theorem 2.3.12. The graph Cm2Pn is geodesically elegant.

Proof. To prove the existence of a g-convex label, find a vertex label L such that
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the convexity induced by the label coincides with the geodesic convexity in Cm2Pn.

Let V = {uij, 1 ≤ i ≤ m, 1 ≤ j ≤ n} and

E = {uiju(i+1)j, 1 ≤ i ≤ (m− 1), 1 ≤ j ≤ n} ∪ {uijui(j+1), 1 ≤ j ≤ (n− 1), 1 ≤ i ≤
m} ∪ {umju1j, 1 ≤ j ≤ n}.

Then |V | = mn.

Ordinary labeling of Cm2Pn is shown in figure 2.15

Figure 2.15: Ordinary labeling of Cm2Pn

Define L : V → {1, 2, 3, ...,mn} by

Case 1 : m is even

L(ui1) = 2i− 1, 1 ≤ i ≤ m

2

L(ui1) = m, i =
m

2
+ 1

L(ui1) = L(u(i−1)1)− 2, i =
m

2
+ 2 ≤ i ≤ m.

L(uij) = L(ui(j−1)) +m, 1 ≤ i ≤ m and 2 ≤ j ≤ n.
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Case 2 : m is odd

L(ui1) = 2i− 1, 1 ≤ i ≤ m+ 1

2

L(ui1) = 2, i = [
m

2
] + 2

L(uij) = L(u(i−1)1) + 2, i = [
m

2
+ 3] ≤ i ≤ m.

L(uij) = L(ui(j−1)) +m, 1 ≤ i ≤ m and 2 ≤ j ≤ n.

The label L satisfies the conditions of a geodesic convex label and hence Cm2Pn for

all m > 3 is geodesically elegant.

Figure 2.16: Geodesic convex labelings of C62P3

Theorem 2.3.13. The square mesh graph Pr2Pr is geodesically elegant.

Proof. Let V = ai,j : 1 ≤ i ≤ r, 1 ≤ j ≤ r} and
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E = {a(i−1),jai,j : 2 ≤ i ≤ r, 1 ≤ j ≤ r} ∪ {ai,jai,(j−1) : 1 ≤ i ≤ r, 2 ≤ j ≤ r}
The g− convex sets of Pr2Pr are of the form C = {A × B/A and B are the g−
convex sets of Pr}.
To prove the existence of a g-convex label, find a vertex label L such that the

convexity induced by the label coincides with the geodesic convexity in Pr2Pr.

Define L : V → {1, 2, 3, ..., r2} by

L(ai,1) = i, i = 1 to r

L(ai,j) = L(ai,(j−1)) + r, i = 1 to r and j = 2 to r

The label L satisfies the conditions of a geodesic convex label and hence Pr2Pr

is geodesically elegant.

Figure 2.17: Geodesic convex labelings of P42P4

Theorem 2.3.14. The ladder graph Ln = Pn2P2 is geodesically elegant.

Proof. Let u1, u2, . . . , u(n−1), un and u′
1, u

′
2, . . . , u

′
(n−1), u

′
n be the vertices of the lad-

der graph Ln = Pn2P2. Then

E = {uiui+1, 1 ≤ i ≤ (n− 1)} ∪ {u′
iu

′
i+1, 1 ≤ i ≤ (n− 1)} ∪ {uiu

′
i, 1 ≤ i ≤ n}.

|V | = 2n and |E| = 3n− 2.
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Define L : V → {1, 2, 3, ..., 2n} by

L(ui) = 2i− 1, 1 ≤ i ≤ n

L(u′
i) = 2i, 1 ≤ i ≤ n

The function L satisfies all the conditions of a g− convex label. Hence the ladder

graph Ln = Pn2P2 is geodesically elegant.

Figure 2.18: Geodesic convex labelings of L6

2.4 Monophonic Convexity in Labeled Graphs

Monophonic convex sets in graphs were discussed for the first time by Farber and

Jamison [34]. As we studied geodesic convexity in labeled graphs, we focused on to

the next convexity - monophonic convexity. Like geodesic convex label, we define

monophonic convex label for a graph G.

A labeled graph can be treated as a weighted graph and weighted monophonic

convexity can be seen in the literature in [34]. Jill K Mathew and Sunil Mathew

[34, 33] defined chord of a path in weighted graph using the concept strength of

a path, which seems to be not apt for our discussion. So we have redefined the

definition of a chord to use in labeled graphs. The following definitions constitute a

background for the monophonic convexity in labeled graphs.

Definition 2.4.1. Let ΓL be a labeled graph. Let P = v0e1v1e2v2.....envn be a

v0 − vn path. A chord of P is an edge e = (vi, vj), j ≥ i+ 2 (that is it joins two non-
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consecutive vertices of the path) such that
∑

eiϵP
L(ei) ≥

∑
eiϵP ′ L(ei) where L(ei)

denotes the label of an edge ei and P ′ = v0e1v1...vievj....envn. If strict inequality

occurs, it is called a strong chord.

Definition 2.4.2. Let ΓL be a labeled graph. A u − v path P in ΓL is called a

L-monophonic u− v path (L- induced u− v path) if it has no chords and it is called

a strong L-monophonic u− v path if it has no strong chords.

Definition 2.4.3. Let ΓL be a labeled graph. The L-monophonic closed interval

JL[u, v] is the set of all vertices in all L-monophonic u − v path including u and

v. The strong L-monophonic closed interval J ′
L[u, v] is the set of all vertices in all

strong L-monophonic u− v path including u and v.

Definition 2.4.4. Let ΓL be a labeled graph. The union of all L-monophonic closed

intervals JL[u, v] over all pairs u, v ∈ S is called L-monophonic closure of S and is

denoted by JL[S]. A subset S of V is called L-monophonic (or simply Lm convex) if

JL[S] = S. That is for every x, y ∈ S, the vertices on an x− y L-monophonic path

belongs to S. The union of all strong L-monophonic closed intervals J ′
L[u, v] over all

pairs u, v ∈ S is called strong L-monophonic closure of S and is denoted by J ′
L[S].

A subset S of V is called strong L-monophonic (or simply strong Lmconvex) if

J ′
L[S] = S. That is for every x, y ∈ S, the vertices on an x− y strong L-monophonic

path belongs to S.

Consider four different labelings of the cycle C4
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Figure 2.19: 4 different labelings of C4 : L1, L2, L3, L4

The m− convex sets of C4 are c singleton subsets, {a, b}, {b, c}, {c, d}, {a, d}
and {a, b, c, d}.

Lm convex sets with respect to the vertex labelings L1, L2, L3 and L4 are

∅, {a}, {b}, {c}, {d}, {a, b}, {b, c}, {c, d}, {a, d} and {a, b, c, d} In all four cases the

function L preserves the m- convex sets , that is the m - convex sets of G and ΓL

are same. In all the cases, except L1, are strong Lm convex sets.

Consider K4.

Them-convex sets ofK4 are ∅, singleton subsets, {a, b}, {b, c}, {c, d}, {a, d}, {a, c}, {b, d}
and {a, b, c, d}.
The Lm convex sets are ∅, singleton subsets, {a, b}, {b, c}, {c, d}, {a, d}, {a, c}, {b, d}
and {a, b, c, d} and strong Lm convex sets are ∅, singleton subsets, {a, b}, {b, c}, {c, d},
{b, c, d}, {a, b, c} and {a, b, c, d}.

Figure 2.20: Labeling of K4
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The empty set, the whole vertex set and every one point sets are convex with

respect to any vertex labeling L.

In weighted graph, any edge is a weighted monophonic path between its end vertices

[34], in labeled graph, any edge is a L - monophonic path between its end vertices,

not true for strong Lm convex.

Thus we have the following definitions.

Definition 2.4.5. Let ΓL be a labeled graph. The function L is called a monophonic

label or simply m-convex label if the convexity CL induced by the function L is the

same as the monophonic convexity C in V . That is, the m-convex sets of C of G are

the same as Lm convex sets of ΓL. A graph G is monophonically elegant if there exist

m− convex label for G. The function L is called a strong monophonic label (strong

m- convex label) if the strong Lm convex sets are the same as them- convex sets of G.

Definition 2.4.6. An Lm convexity space is an ordered pair (ΓL,CL) where, ΓL is

a labeled graph and CL is the convexity induced by the label L

Remark 2.4.1. In a tree each pair of vertices are connected by a unique path.

Therefore, the Lm convex sets with respect to any labeling function is always same

as the m-convex sets of V . Hence m-convex label exists in a tree.

Remark 2.4.2. In K4, The Lm convex sets are the same as the m- convex sets

of V , monophonic convex label exist in K4. But convexity with respect to strong

monophonic convex label does not exist in K4.

In the following Proposition, we characterize the necessary condition for the

existence of strong monophonic convex label in a graph ΓL.

Proposition 2.4.7. If a strong monophonic convex label exists in a graph G then

G is triangle free.

Proof. Suppose that G contains a triangle. Let us label the vertices of using the

numbers a, b, and c with a < b < c as in Figure2.2. Then dL(v1, v3) = dL(v1, v2) +

42



Chapter 2. Convexity in Labeled Graphs

dL(v2, v3). Hence v2 ∈ J ′
L[{v1, v3}]. Thus the two point subset {v1, v3} is not convex.

Hence we conclude that strong monophonic convex label exists in G if G is triangle

free.

Example 2.4.1. Strong monophonic convex label exists in the Petersen graph.

The labeling defined in Figure 2.21 satisfies the conditions of a strong monophonic

convex label.

Figure 2.21: strong monophonic labeling of the petersengraph

Theorem 2.4.8. Strong monophonic convex label exist in the cycle Cn for n > 3.

Proof. To prove the existence of a strong monophonic convex label, we have to find

a vertex labeling function L such that the convexity induced by the labeling function

coincides with the m− convexity in Cn, n > 3. Let v1, v2, v3, ....., vn be the vertices

of the cycle Cn. Define L : V → {1, 2, 3, ..., n} by

Case 1: if n is even

L(vi) = 2i− 1, 1 ≤ i ≤ n
2

L(vi) = n, i = n
2
+ 1

L(vi) = L(vi−1)− 2, i = n
2
+ 2 ≤ i ≤ n.

Case 2 : if n is odd
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L(vi) = 2i− 1, 1 ≤ i ≤ [n
2
]

L(vi) = n, i = [n
2
] + 1

L(vi) = n− 1, i = n+3
2

L(vi) = L(vi−1)− 2, i = n+5
2

+ 2 ≤ i ≤ n.

The function defined above satisfies the condition for a strong monophonic convex

label.

2.5 Conclusion

We made an attempt to study the concept of geodesic convexity and monophonic

convexity in labeled graphs. A new class of graphs namely, geodesically elegant

graphs are introduced. Studied some family of geodesically elegant graphs. We

have’nt obtained the general result - the cartesian product of two geodesically elegant

graphs are geodesically elegant. It is an open problem. To investigate similar results

with other labeling function and other convexities in the literature is a future area

of research.

Problem 2.5.1. Is the Petersen graph geodesically elegant?
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CHAPTER 3

Geodetic Number and Edge Geodetic

Number in Labeled Graphs

3.1 Introduction

In this chapter we discuss the geodetic and edge geodetic number in labeled graphs.

For a non empty subset S of V, I[S] = {u ∈ V , u is in some geodesic connecting

two vertices of S}. The set S is convex if I[S] = S. A set of vertices of V is

called a geodetic set in G if I[S] = V . The cardinality of a minimum geodetic set

in G is called the geodetic number g(G). The geodetic number of a graph was

introduced by Frank Harary, Emmanuel Loukakis and Constantine Tsouros[17].

Further studied by Gary Chartrand, Ping Zhang and it is proved that If G is a non

trivial connected graph of order n, then 2 ≤ g(G) ≤ n [21, 22]. For a non empty

subset S of V, T [S] = {e ∈ E, e is in some geodesic connecting two vertices of S}.
A set S of vertices of V is defined to be an edge geodetic set in G if T [S] = E. The

cardinality of a minimum edge geodetic set in G is the edge geodetic number ge(G)

[58]. The edge geodetic number of graphs was studied in [73, 58]. For any connected

graph G, g(G) ≤ ge(G).

For any non- trivial tree T , g(T ) = ge(T ). The geodetic number of a disconnected
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graph is the sum of the geodetic number of its components and the edge geodetic

number of a disconnected graph is the sum of the edge geodetic number of its

components. For any graph G of order n, 2 ≤ ge(G) ≤ n. The geodetic and edge

geodetic number of some classes of graphs are seen in [17, 21, 73, 58] and some of

them are given below.

g(Pn) = 2.

g(Cn) =

3 if n is odd

2 if n is even.

Every tree T with k end vertices has g(T ) = k. The complete graph Kn has

g(Kn) = n ge(Kn) = n. For the path graph Pn, ge(Pn) = 2. Every mesh

M = Mr,s = Pr2Ps has g(M) = 2.

The Petersen graph has geodetic number 4. For any non- trivial tree T , g(T ) =

ge(T ). The Wheel graph W1,n has

g(W1,n) =

4 if n = 3

⌈n/2⌉ n ≥ 4

For any friendship graph F n
3 , n ≥ 2, ge(F

n
3 ) = 2n. For the Windmill graph Wd(k, n),

ge(Wd(k, n)) = k(n− 1).

3.2 The L-geodetic number and L-edge geodetic number.

In this section we investigate the geodetic and edge geodetic number in labeled

graphs. The concept of L- geodetic number and L - edge geodetic number is intro-

duced.

In the previous chapter we have defined an L- geodesic set. Here, we define an L-

geodetic set.

Definition 3.2.1. Let ΓL be a labeled graph. Let S ⊂ V . The L- geodesic closure

IL[S] of a set S ⊂ V is defined as IL[S] = {u ∈ V, u is in some L- geodesic connecting
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two vertices of S}. A set S of vertices is defined to be a L-geodetic set if IL[S] = V .

The L- geodetic number gL(ΓL) is the cardinality of a smallest L- geodetic set.

Simply, we can denote gL(ΓL) as gL(G).

Definition 3.2.2. For any two vertices u and v in ΓL, we define TL[u, v] to be the

set of all edges lying on uv L-geodesic. For a nonempty subset S of V , TL[S] =

{TL[u, v], u, v ∈ S}. .

Definition 3.2.3. In a labeled graph ΓL, a set S of vertices is defined to be an

L-edge geodetic if TL[S] = E. The L - edge geodetic number denoted by g′L(ΓL) is

the cardinality of a smallest L- edge geodetic set. It is also denoted by g′L(G).

For a connected graph G with n vertices, we have 2 ≤ gL(G) ≤ n and

2 ≤ g′L(G) ≤ n.

Consider a graph G as shown in Figure 3.1.

Figure 3.1

The set S = {a, c, e} is a minimum geodetic set and a minimum edge geodetic

set of G, so g(G) = ge(G) = 3.

Consider different vertex labelings, denoted by L1,L2,L3,L4 of G.

In ΓL1 , the set S = {a, b} is a minimum L- geodetic set and a minimum L- edge

geodetic set. So gL1(G) = g′L1
(G) = 2.
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Figure 3.2: Different labelings of a grah G : L1, L2, L3 and L4

In ΓL2 , IL2 [S] = {a, b} and TL2 [S] = {a, b} for S = {a, b}.

Take S = {a, d}, then S is is a minimum L- geodetic set and a minimum L-

edge geodetic set. So gL2(G) = g′L2
(G) = 2.

In ΓL3 , any two element subset of V is not a minimum L- geodetic set and a

minimum L- edge geodetic set. So gL3(G) ≥ 3 and g′L3
(G) ≥ 3.

Consider S = {a, b, e}, then IL3 [S] = {a, b, c, d, e} and TL3 [S] = {ab, bc, cd, de, eb, ac},
gL3(G) = g′L3

(G) = 3.

In ΓL4 , the set S = {a, e, d} is a minimum L - geodetic set, but not a

minimum L- edge geodetic set. S = {b, c, d}, IL4 [S] = V and TL4 [S] = E. So

gL4(G) = g′L4
(G) = 3.

For a given ΓL, gL(G) and g′L(G) may vary with respect to the label L. Also an

L-geodetic set may not be an L-edge geodetic set. Note that g(G) need not be equal

to gL(G) and ge(G) need not be equal to g′L(G).

Remark 3.2.1. In any vertex labeling L of the path Pn, the end vertices form a

minimum L- geodetic set and L-edge geodetic set and so gL(Pn) = g′L(Pn) = 2.

Remark 3.2.2. For a tree T , each pair of vertices are connected by a unique path,
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therefore if T has k end nodes, then gL(T ) = g′L(T ) = k with respect to any label L.

In particular for the star graph K1,n, gL(T ) = g′L(T ) = n.

Theorem 3.2.4. gL(Kn) = g′L(Kn) = 2.

Proof. Label the vertices of Kn using the numbers 1, 2, 3, ..., n. Since all the vertices

are adjacent in Kn, the vertices with labels 1 and n is a minimum L-geodetic and

minimum L-edge geodetic set, hence gL(Kn) = g′L(Kn) = 2.

For any labeled graph ΓL, gL(G) ≤ g′L(G). Sometimes strict inequality may

occur, which is illustrated in F igure 3.3. Here, {3, 6} is a minimum L-geodetic set

and{3, 6, 1, 8} minimum L-edge geodetic set.

Figure 3.3

In Figure 3.2,

gL1(G) ≤ g(G) and g′L1
(G) ≤ ge(G);

gL2(G) ≤ g(G) and g′L2
(G) ≤ ge(G);

gL3(G) = g(G) and g′L3
(G) = ge(G).

In some cases, for a given label L we get gL(G) > g(G) and g′L(G) > ge(G), as

illustrated in Figure 3.4.

Consider C4 with a label L as shown in Figure 3.4.

There does not exist any two element subset S of V with IL[S] = V and TL[S] = E.

Then g′L(C4) > 2 and gL(C4) > 2.

If S = {a, b, c}, then IL[S] = V and TL[S] = E. So g′L(C4) = gL(C4) = 3.

Thus g′L(C4) > ge(C4) and gL(C4) > g(C4).
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Figure 3.4: A vertex labeling of C4

3.3 Geodetic Label and Edge Geodetic Label

In this section we discuss geodetic and edge geodetic labels and investigate in which

classes of graphs these labels exists.

Definition 3.3.1. Let ΓL be a labeled graph. The label L is said to be a geodetic

label if the geodetic number g(G) and the L geodetic number gL(ΓL) are the same.

That is gL(G). = g(G).

The label L is said to be an edge geodetic label if the edge geodetic number ge(G)

and the L- edge geodetic numberg′L(ΓL) are the same. That is g′L(G) = ge(G).

Definition 3.3.2. Let ΓL be a labeled graph. The label L is said to be a strong

geodetic label if gL(G) < g(G) and a weak geodetic label if gL(G) > g(G).

The label L is said to be a strong edge geodetic label if g′L(G) < ge(G) and a weak

geodetic label if g′L(G) > ge(G).

Remark 3.3.1. In any vertex labeling of Kn, gL(Kn) = g′L(Kn) = 2, strong geodetic

label and strong edge geodetic label exist in Kn, n > 2.

In any vertex labeling of a tree T , gL(T ) = g(T ) and g′L(T ) = ge(T ). So geodetic

label and edge geodetic label exist in every tree.
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Theorem 3.3.3. Geodetic label and edge geodetic label exist for every even cycle.

Strong geodetic label and Strong edge geodetic label exist for every odd cycle.

Proof. To prove the existence, we have to find a vertex label L such that gL(Cn) ≤
g(Cn) and g′L(Cn) ≤ ge(Cn). Let v1, v2, ......, vn be the vertices of the cycle Cn.

Define L : V → {1, 2, 3, ..., n} by

L(vi) = i, i = 1 to n.

The vertices labeled with 1 and n that is {v1, vn} is a L-geodetic set and an L-

edge geodetic set, that is gL(Cn) = g′L(Cn) = 2. If n is even, g(Cn) = gL(Cn) and

ge(Cn) = g′L(Cn).

If n is odd, g(Cn) = 3 > gL(Cn) and ge(Cn) = 3 > g′L(Cn).

Figure 3.5: The coloured vertices is the gL set and g′L set of C8

Theorem 3.3.4. Strong geodetic label exist in the Petersen graph.

Proof. To prove the existence, find a vertex label L such that gL(G) < 4. Label the

vertices {vi, i = 1 to 10} using the set {1, 2, 3, ..., 10} as shown in Figure 3.6. The

set {v1, v8, v9} is an L-geodetic set and g(G) = 4 > gL(G) = 3.
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Figure 3.6: vertex labeling of the Petersen graph

Theorem 3.3.5. Strong geodetic label exists in the Wheel graph W1,n except for

n = 4. Geodetic label exist in the graph W1,4.

Proof. Let v0, v1, v2, ......, vn be the vertices of the wheel graph W1,n with centre at

v0.

Define L : V → {1, 2, 3, ..., n+ 1} by

L(vi) = i, 1 ≤ i ≤ n

L(v0) = n+ 1.

The set {v0, v1} is an L- geodetic set.

When n ̸= 4, g(W1,n) > gL = 2

When n = 4, g(W1,n) = gL = 2.

Figure 3.7: The coloured vertices is the gL set of W1,6
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Theorem 3.3.6. Geodetic label exist in the mesh M = Mr,s = Pr2Ps

Proof. Let V = ai,j : 1 ≤ i ≤ r, 1 ≤ j ≤ s} and

E = {a(i−1),jai,j : 2 ≤ i ≤ r, 1 ≤ j ≤ s} ∪ {ai,jai,(j−1) : 1 ≤ i ≤ r, 2 ≤ j ≤ s}
Define L : V → {1, 2, 3, ..., rs} by

L(a1,j) = j, j = 1 to s

L(ai,j) = L(a(i−1),s) + j, j = 1 to s and i = 2 to r

The set {a1,1, ar,s} is an L- geodetic set, so gL(Pr2Ps) ≤ 2. Clearly, gL(Pr2Ps) ≥ 2.

Hence, gL(Pr2Ps) = 2.

Figure 3.8: The coloured vertices is a gL set of P32P4

Theorem 3.3.7. Strong edge geodetic label exist in the friendship graph F3
n.

Proof. The theorem is trivially true if n = 1.

For n ≥ 2, let G = F3
n with V = {v0, v1, v2, ....., vn, ...., v2n} such that |V | = 2n+ 1

and |E| = 3n and {v0} be a common vertex.

Define a labeling L : V → {1, 2, 3, ..., 2n+ 1} as

L(v0) = n+ 1.

L(vi) = i for i = 1 to n.

L(vi) = i+ 1 for i = n+ 1 to 2n.
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Case 1: when n is even

Let S = {v1, v3, v5, ...., vn−1, vn+2, vn+4, ....., v2n−2, v2n} be an L- edge geodetic set

which contains all the edges of G. Therefore, g′L(G) = n.

Case 2 : when n is odd

Let S ′ = {v1, v3, v5, ...., vn, vn+1, vn+3, vn+5, ...., v2n} be an L- edge geodetic set which

contains all the edges of G. Therefore, g′L(G) = n+ 1.

Figure 3.9: The coloured vertices is the g′L set of F3
5

Theorem 3.3.8. Strong edge geodetic label exist in the Windmill graph Wd(k, n).

Proof. Let G = Wd(k, n) with V = {v, v1, v2, v3, . . . . . . , vk(n−1) and v be the central

vertex. then |V | = k(n− 1) + 1 and E = kn(n−1)
2

.

Define L : V → {1, 2, 3, . . . , k(n− 1) + 1} as

L(v) = 1

L(vi) = i+ 1.

Then the set {vn−1, v2(n−1), v3(n−1), . . . , vk(n−1)}is an L− edge geodetic set which

contains all the edges of G.

Thus gL(e) = k, which is < ge(G). Hence the result.
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Figure 3.10: The coloured vertices is the g′L set of Wd(k, n)

3.4 Conclusion

In this article, the authors made an attempt to study the concept of geodetic and

edge geodetic number in labeled graphs and defined geodetic label, edge geodetic

label, strong geodetic label and strong edge geodetic label. Also studied the existence

of these labels in some classes of graphs. To investigate similar results with other

labeling function in the literature is a future area of research.
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CHAPTER 4

LH Labeling Of Graphs

4.1 Introduction

Each graph can be labeled in infinitely many ways. Prime labeling and strong

multiplicative labeling are two important concepts in graph labeling that have the

same flavour as harmonious and graceful labelings. In prime labeling the vertices of a

graph G is labeled with distinct elements from the set {1, 2, 3, . . . , |V |}, so that every

edge e = (u, v) the greatest common factor of their labels gcd(f(u, f(v)) = 1. A graph

that admits a prime labeling is called a prime graph. In strong multiplicative labeling

we have to label the vertices with distinct elements from the set {1, 2, 3, . . . , |V |}, so
that the resulting edge labels are the product of corresponding vertex labels and

all are different. Recent update of these labelings can be seen in [39]. Motivated

from the research works of these labelings mentioned in literature, a new type of

vertex labeling called LH labeling of graphs is introduced. Here, the elementary

class concepts LCM (least common multiple) and HCF (highest common factor) are

used in the definition. This chapter explores the results on LH labeling of graphs.

4.2 LH Labeling of Graphs

The concept of LH labeling of graphs, Examples and its properties are discussed in

this section.
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Definition 4.2.1. A graph G with n vertices is said to have an LH labeling if

there exists a bijective functionf : V → {1, 2, 3, ..., n} such that the induced map

f ∗ : E → N , the set of natural numbers defined by f ∗(uv) = LCM(f(u),f(v))
HCF (f(u),f(v))

is injective

(where LCM and HCF denotes the least common multiple and highest common

factor respectively). A graph that admits an LH labeling is called an LH graph.

By labeling the vertex vi by i, we observe that the path Pn and odd cycles

are LH graphs. If we label the apex vertex of the star K1,n by 1 and the pendant

vertices by using the remaining numbers serially from 2 to n+1, then the star graph

K1,n becomes an LH graph.

The Y - tree Yn is an LH graph. Since the vertex labeling using the numbers n, n− 1,

n− 2,........, 3, 2 and 1 satisfies the conditions of an LH graph.

Observation 4.2.2. For any LH graph G with n vertices, 2 ≤ f ∗(e) ≤ n2 − n,

where f ∗(e) denotes the label of the edge e.

In prime labeling, the vertices are labeled with relatively prime numbers. So a

prime graph is always an LH graph. But the converse is not true.

Example 4.2.1. The hyper cube Q3 and the Petersen graph are LH graphs.

Figure 4.1: LH labeling of Q3
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Figure 4.2: LH labelling of the Petersen graph

Example 4.2.2. The Heawood graph[27, 20], famous in graph theory literature,

is an undirected 6-cage graph having 14 vertices and 21 edges. It is named after

Percy John Heawood. It is an LH graph.

Figure 4.3: LH labelling of Heawood graph

Example 4.2.3. [26] The Grotzsch graph GZ is a triangle – free graph with 11

vertices and 20 edges. It contains a star K1,5 in which each pendant vertex of

K1,5 is connected with two rim vertices of the cycle C5 whose vertex set , V =

{v1, v2, . . . , v5, v′1, v′2, . . . , v′5, v}. Grotzsch graph is an LH graph.
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Figure 4.4: LH labelling of grotzch graph GZ

L.W. Beineke and S.M. Hegde have introduced strong multiplicative graphs in

[2]. The next remark shows that strong multiplicative labeling is a special case of

LH labeling.

Remark 4.2.1. If the labels of each pair of adjacent vertices of a given graph G

are relatively prime, then the LH labeling coincides with the strong multiplicative

labeling.

The complete graphs K2 and K3 are LH graphs.

Theorem 4.2.3. The complete graph K4 is not an LH graph.

Label the vertices of K4 using the numbers 1,2,3 and 4. Since all the vertices

are adjacent, the edge label 2 is obtained two times. Hence K4 is not an LH graph.

So we conclude that Kn is not an LH gaph for n ≥ 4.

Theorem 4.2.4. Kn is not an LH graph for n ≥ 4.

Note that K4 − e is an LH graph.

59



Chapter 4. LH Labeling Of Graphs

Figure 4.5: LH labeling of K4 − e

Theorem 4.2.5. The complete bipartite graph K2,s is an LH graph.

Proof. Let V = V1 ∪ V2 be the partition of the vertex set. |V | = (s+ 2).

Define f : V → {1, 2, 3, ..., (s+ 2)} as follows.

Let p be the highest prime in the set {1, 2, 3, ..., (s+2)}. Label the vertices of V1 with

1 and p. The vertices in V2 are labeled using the numbers {1, 2, 3, ..., (s+ 2)}\{1, p}.
Induced edge labels are 1, 2, 3,...., p − 1, p + 1,..., s + 2, p, 2p,.....,p(p − 1),

p(p+ 1),....p(s+ 2). By Betrand’s postulate [76], there exist a prime p′ such that

p < p′ < 2p. Since p is the highest prime in the set {1, 2, 3, ..., (s+ 2)}, we conclude

that s + 2 < 2p. Therefore the edge labels obtained are all different. Hence the

result.

Theorem 4.2.6. K3,3 is a non LH graph.

Proof. Let V1 = {u1, u2, u3} and V2 = {v1, v2, v3} be the partition of V . Label the

vertices of V1 and V2 using the set {1, 2, 3, 4, 5, 6}. Note that the pairs (1, 2), (2, 4)

and (3, 6) produce the same edge label 2. Also, the pairs (2, 3), (1, 6) and (4, 6)

produce the same edge label 6. We consider the following cases.

Case 1: The vertices with labels 1 and 2 are not adjacent.

Suppose the vertices with labels 1 and 2 are in V1. Then f(u1) = 1 and f(u2) = 2.

Then the vertex u3 can be labeled with 3 or 4 or 5 or 6.

If f(u3) = 3, the vertices of V2 are labeled with 4, 5 and 6. Then the pairs (2, 4)

and (3, 6) produce the same edge label.

If f(u3) = 4 or 5, then the pairs (2, 3) and (1, 6) produce the same edge label.

If f(u3) = 6, then the pairs (2, 3) and (4, 6) produce the same edge label.
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Case 2 : The vertices with labels 1 and 2 are adjacent.

Suppose f(u1) = 1 and f(v1) = 2. Since (1, 2) and (2, 4) produce the same edge

label, vertex with label 4 must be in V2, say f(v2) = 4. Then v3 can be labeled with

3 or 5 or 6. The vertices with label 3 and 6 must be in the same vertex set, so v3 is

assigned the label 5. Then the pairs (2, 3) and (4, 6) produce the same edge label.

In all the cases the edge labels produced are not distinct and hence K33 cannot be

an LH graph.

In the next result, an observation about the subgraphs of an LH graph is given.

Theorem 4.2.7. (i). Every spanning subgrah of an LH graph is an LH graph.

(ii). Every induced subgraph of an LH graph need not be LH.

Proof. The first part of the Theorem follows directly from the definition of an LH

graph.

We give an illustration for the second part of the Theorem. K4 is a subgraph of the

given LH graph given below, by Theorem 4.2.3, which is not LH.

4.2.1 Size of an LH graph

Here, we consider the question of finding the maximum number of edges in an LH

graph with a given number of vertices.
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To find the maximum number of edges in an LH grah with n vertices, label

the vertices of the complete graph Kn with integers 1, 2, ..., n and then successively

delete edges whose label is duplicated on another edge.

Let f : V → {1, 2, ...n}.
Consider the set W = {(k, l)/k < l, k, l ∈ {1, 2, ...n}}.
Let e and e′ are any two elements in E. Then e = (k, l) and e′ = (k′, l′)

If f ∗(e) = f ∗(e′) then

kl

[gcd(k, l)]2
=

k′l′

[gcd(k′, l′)]2

Define a relation ∼ on the set W such that (k1, l1) ∼ (k2, l2) if

k1l1
[gcd(k1, l1)]2

=
k2l2

[gcd(k2, l2)]2

Clearly this relation is reflexive, symmetric and transitive. Hence it is an equivalence

relation and it partitions the set W into equivalence classes. Label the edges of G

using an element from each class. Thus the number of equivalence classes represents

the maximum possible size of an LH graph.

Let µn denote the distinct number of ratios lcm(a,b)
hcf(a,b)

, for 1 ≤ a < b ≤ n. That is

µn is the number of equivalence classes possible with a given n. Thus if the size of

the graph is greater than µn, then the graph is not an LH graph. But, if the size is

less than or equal to µn the graph may or may not be LH. The table below shows

the value of µn for n ≤ 15.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

µn 1 3 5 9 10 16 20 26 28 38 41 53 57 62

The size of K3,3 is 9 which is less than µ6, still it is not an LH graph by Theorem

4.2.6.

The following theorem shown that µ6 = the size of W1,5, still the graph is not LH.
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Theorem 4.2.8. The wheel W1,5 is not an LH graph.

Proof. Let v1, v2, v3, v4, v5 and v6 be the vertices of W1,5. We can assume that each

vertex vi is labeled with i. The possible equivalence classes are [(1, 2), (2, 4), (3, 6)],

[(1, 3), (2, 6)], [(1, 6), (2, 3), (4, 6)], [(1, 4)], [(3, 4)], [(1, 5)], [(2, 5], [(3, 5)], [(4, 5)] and

[(5, 6)]. Since the size of W1,5 is 10, exactly one pair from each class is required to

label the edges.

The equivalence classes [(1, 5)], [(2, 5], [(3, 5)], [(4, 5)] and [(5, 6)] has only one element,

each pair is required to label the edges. Thus v5 is the central vertex, since the

central vertex is of degree 5. Also the equivalence class [(1, 4)] and [(3, 4)] have

only one element and is required to label the edges. Thus v1, v3 and v4 are the rim

vertices forming the path v1 − v4 − v3. Now we have two cases,

Case 1: v1 is adjacent to v2.

If v1 is adjacent to v2, then v3 is adjacent to v6, producing the edge label 2 two

times.

Case 2: v1 is not adjacent to v2.

Then v1 is adjacent to v6 and v3 is adjacent to v2. So edge label 6 is produced two

times.

Thus in all cases the edge labels obtained are not distinct. Hence, there will not be

an LH labeling possible in W1,5.

4.3 LH completion of a graph G

In the previous section, examples of non LH graphs such as K4, K3,3 and W1,5 are

discussed. It is interesting to find an LH graph in which the given non LH graph as

its subgraph. In this section, the LH completion of a non LH graph is studied.

Theorem 4.3.1. Given a non LH graph G, there exist an LH graph Ω⋆(G) such

that G is an induced subgraph of Ω⋆(G) .

Proof. Let G be a non LH graph on n vertices. Let q be the number so that

the set {1, 2, 3, ..., n + q} contains first n − 1 primes. Form Ω⋆(G) by attaching q

pendant edges to any one vertex, say v of G. Let p be the highest prime in the

set {1, 2, 3, ....n+ q}. Label v by p. The remaining vertices excluding the pendant

63



Chapter 4. LH Labeling Of Graphs

vertices are labeled using the n − 2 primes in the set {1, 2, 3, ....n + q}\{p} and

1. Pendant vertices of Ω⋆(G) are labeled using the remaining numbers in the set

{1, 2, 3, ....n+ q}. Clearly, the induced edge labels are distinct and hence the graph

Ω⋆(G) constructed is an LH graph.

The LH graph Ω⋆(G) constructed in the above Theorem is called the LH

completion of G. That is,

Definition 4.3.2. For any non LH graph G there exist an LH graph Ω⋆(G) such

that G is an induced subgraph of Ω⋆(G), known as the LH completion of G.

Note that LH completion of G is not unique. One of the LH completion of K4

is discussed in theorem 4.2.7.

Definition 4.3.3. Let Ω⋆(G) be an LH completion of a non LH graph G. LH

completion number of G, denoted by ΛG is defined as ΛG = minimum{|V (Ω⋆(G))|−
|V (G)|}.

One of the LH completion of W1,5 is given below. ΛW1,5 = 1

Figure 4.6: Ω⋆(W1,5)

One of the LH completion of K3,3 is shown in Figure 4.7. ΛK3,3 = 1
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Figure 4.7: Ω⋆(K3,3)

LH completion number of the complete graph Kn, n ≤ 10 is given in the

following table.

Table 4.1: LH completion number of Kn, 4 ≤ n ≤ 10

.

n . Number of edges. µn ΛKn

4 6 5 1

5 10 9 1

6 15 10 2

7 21 16 4

8 28 20 5

9 36 26 8

10 45 28 9

It is a challenging task to find the LH completion number of G when the number of

vertices are large. We found a bound for q discussed in the Theorem 4.3.1 using

the following number theory result.

Theorem 4.3.4. [83] For n ≥ 1 the nth prime pn satisfies the inequalities

1
6
nlogn < pn < 12(nlogn+ nlog 12

e
).
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By using the above Theorem, we have

1
6
(n− 1)log(n− 1) < n+ q < 12((n− 1)log(n− 1) + (n− 1)log 12

e
).

where q is as discussed in Theorem 4.3.1

4.4 Trees

Trees are building blocks of a data structure in computer science and involved in

many network applications. Among the different types of trees, binary trees are

most frequently used. In this section, LH labeling of a perfect binary tree and spider

graph S3(m) are analyzed.

Theorem 4.4.1. Spider graph S3(m) is an LH graph.

Proof. Let {v0, v1, v2, ........, v3m} be the vertices and {e1, e2, e3, ...., e3m} be the edges

of S3(m).

|V | = 3m+ 1.

Define f : V → {1, 2, 3, ..., 3m+ 1} as

Case 1: m is even.

f(v0) = 3m+ 1

f(vi) = i, 1 ≤ i ≤ 3m.

The induced edge labels are the product of consecutive integers from 1 to 3m and

(3m+ 1), (3m+ 1)(m+ 1), (3m+ 1)(2m+ 1). Clearly, all are different.

Case 2: m is odd.

f(v0) = 1

f(vi) = i+ 1, 1 ≤ i ≤ 2m.

f(v2m+1) = 3m+ 1

f(vi) = f(vi−1)− 1, 2m+ 2 ≤ i ≤ 3m.

The induced edge labels are 1× 2, 2× 3,....., m(m+ 1), (m+ 2), (m+ 2)(m+ 3),

(m+3)(m+4),...., 2m(2m+1), (2m+2)(2m+3), (2m+3)(2m+4),......, 3m(3m+1)

and (3m + 1). All edge labels induced are even except (m + 2). To prove the
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distinctness of edge labels, we have to consider only one case, that is (3m+ 1) =

i(i+ 1), i ∈ {1, 2, ..., 3m}. =⇒ 3m = i2 + i− 1

=⇒ m = i2+i−1
3

, a contradiction.

In all the cases, the edge labels induced are distinct and hence the spider S3(m)

is an LH graph.

Figure 4.8: LH labeling of S3(6)

Theorem 4.4.2. A perfect binary tree Tn is an LH graph.

Proof. Consider a perfect binary tree Tn. Note that Tn has n levels namely, 1, 2,

3,..., n and level k, 1 ≤ k ≤ n contains 2k−1 vertices and |V | = 2n − 1.

Let apq be the q
th vertex from the left of th pth level from the top in a perfect binary

tree of n vertices. Define f : V → {1, 2, 3, ..., 2n − 1} as

f(a11) = 2n − 1

Case 1: p is odd

f(apq) = 2p(2n−p − 1) + q

Case 2: p is even
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f(apq) = 2n − 2p−1 − q + 1

In view of the above labeling, the vertices of Tn can be numbered as shown below.

Level . Labels.

T1 2n − 1

T2 2(2n−1 − 1), 2(2n−1 − 1)− 1

T3 22(2n−2 − 1), 22(2n−2 − 1)− 1, 22(2n−2 − 1)− 2, 22(2n−2 − 1)− 3

........ ............. ...............................

Tk 2k−1, (2n−k+1 − 1), 2k−1(2n−k+1 − 1)− 1, 2k−1(2n−k+1 − 1)− 2

...... 2k−1(2n−k+1 − 1)− 2k−1 − 1)

..... .................

Tn 1, 2, 3, ........ 2k−1

Each edge of Tn is a path connecting a parent and their children. Each parent

has one odd numbered children and one even numbered children. An even numbered

parent in the level Ti and even numbered child in the level Ti+1 has a common factor

in powers of 2. Then the edge labels obtained is the product of two non adjacent

odd numbered labels or one odd numbered and one even numbered labels. If any

two adjacent vertex label has a common factor say n ∈ N , the edge labels produced

is the product of two pendant vertices. Thus the induced edge labels are distinct.

Hence the theorem.

Figure 4.9: LH labeling of T5
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4.5 Conclusion

In this chapter, a new type of vertex labeling is introduced and some of the properties

are analyzed. Discussed the LH completion number of a non LH graph. Also, the

LH labeling of a perfect binary tree and spider graph S3(m) are demonstrated. We

conclude this chapter by putting some problems for future research.

Problem 4.5.1. Find the LH completion number of The complete graph Kn.?

Problem 4.5.2. Is the spider graph Sn(m) an LH graph?

Problem 4.5.3. Find the LH labeling of the tree derived networks like X- tree?.
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Some Families of LH Graphs

5.1 Introduction

Finding classes of graphs which admits a specific type of labeling is mostly seen in

literature. In this chapter we discussed the LH labeling of some of the path related

graphs, cycle related graphs, splitting graphs, bistar graph, a theta graph and line

graphs.

5.2 LH Labeling of Path Related Graphs

In this section, the LH labeling of comb graph Pn ◦K1, triangular snake Tn, quadri-

lateral snake Gn, Twig graph TW (n), n ≥ 3, [Pn : S2], Sparkler graph (Pm)
+n and

H− graph are discussed.

Theorem 5.2.1. The comb graph Pn ◦K1 is an LH graph.

Proof. Consider a comb graph Pn ◦ K1 with vertex set {vt, v′t, 1 ≤ t ≤ n} where

v′t, t = 1 to n are the pendant vertices. |V | = 2n.

E = E ′ ∪ E ′′ where E ′ = {vtvt+1, 1 ≤ t ≤ (n− 1)} and

E ′′ = {vtv′t, 1 ≤ t ≤ n}
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Define the vertex labeling f from V to {1, 2, 3, ..., 2n} by

f(vt) = 2t− 1, 1 ≤ t ≤ n

f(v′t) = 2t, 1 ≤ t ≤ n

To prove the graph Pn ◦K1 is LH, we have to show that the edge labels induced

are all distinct. That is the elements within the sets E ′ and E ′′ are distinct and to

show that, no label is common to both E ′ and E ′′.

Let f ∗ : E → N be the induced edge function.

Claim : All the edge labels are distinct.

Note that the edge labels in the set E ′ are of the form (2t−1)(2t+1), 1 ≤ t ≤ (n−1)

and that of E ′′ are of the form 2t(2t− 1), 1 ≤ t ≤ n. Clearly the elements in E ′ are

odd numbers and in E ′′ are even numbers. So no element is common to both E ′

and E ′′. Thus the edge labels are all different.

Hence the comb graph Pn ◦K1 is an LH graph.

Figure 5.1: LH labeling of P6 ◦K1

Theorem 5.2.2. The triangular snake Tn is an LH graph.

Proof. Let Tn denote the triangular snake, which can be obtained from a path

u1, u2, ......., un, un+1, by joining ui, ui+1 to a new vertex vj, j = 1 to n.

V = {ut, i = 1 to n+ 1, vt, t = 1 to n}
|V | = 2n+ 1.

E = E ′ ∪ E ′′ ∪ E ′′′ where E ′ = {utut+1, 1 ≤ t ≤ n}, E ′′ = {utvt, 1 ≤ t ≤ n} and

E ′′′ = ut+1vt, 1 ≤ t ≤ n}.
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Define f : V → {1, 2, 3, ..., 2n+ 1} by

f(ut) = 2t− 1, 1 ≤ t ≤ n+ 1

f(vt) = 2t, 1 ≤ t ≤ n

Let f ∗ : E → N be the induced edge function.

Claim : All the edge labels induced by the function f are distinct.

The edge labels in the set E ′ are of the form (2t − 1)(2t + 1), 1 ≤ t ≤ n,

product of two consecutive odd numbers. The edge labels in E ′′ are of the form

2t(2t − 1), 1 ≤ t ≤ n and that of E ′′′ are 2t(2t + 1), 1 ≤ t ≤ n. Clearly, the edge

labels within E ′′ and E ′′′ are even numbers. Thus to prove the claim, it is enough

to show that, no label is common to both the sets E ′′ and E ′′′.

Consider ei ∈ E ′′ and ej ∈ E ′′′.

Then f ∗(ei) = 2i(2i− 1) and f ∗(ej) = 2j(2j + 1).

Suppose f ∗(ei) = f ∗(ej).

2i(2i− 1) = 2j(2j + 1)

=⇒ 2i2 − i = 2j2 + j

=⇒ 2(i2 − j2) = i+ j

=⇒ i− j =
1

2
, acontradiction.

Thus no edge label is common to both E ′′ and E ′′′.

Hence the labeling function defined above satisfies the conditions of an LH labeling

and the graph under consideration is an LH graph.

Figure 5.2: LH labeling of T6
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Theorem 5.2.3. A quadrilateral snake Gn is an LH graph.

Proof. Consider a quadrilateral snake Gn with vertex set {vi, i = 1 to n+ 1, uj and

wj, j = 1 to n} which is obtained from the path v1, v2, ..., vn+1 by joining vi, vi+1 to

new vertices ui and wi respectively and joining ui and wi, 1 ≤ i ≤ n.

|V | = 3n+ 1.

E = E ′ ∪ E ∪ E ′′′ ∈ Eiv where E ′ = {vtvt+1t = 1 to n}, E ′′ = {utwt, t = 1 to n},
E

′′′
= {uivi, i = 1 to n} and Eiv = {vi+1wi, i = 1 to n}.

Define f : V → {1, 2, 3, ..., 3n+ 1} by

f(vm) = 3m− 2, 1 ≤ m ≤ n+ 1

f(ui) = 3m− 1, 1 ≤ i ≤ n

f(wm) = 3m, 1 ≤ i ≤ n.

Let f ∗ : E → N be the induced edge function.

Claim : All the edge labels are distinct.

To prove the claim, we have to show that the edge labels in each set E ′, E ′′,

E ′′′, Eiv and the labels in each pair E ′and E ′′, E ′ and E ′′′, E ′ and Eiv, E ′′ and E ′′′,

E ′′ and Eiv and E ′′′ and Eiv are distinct.

Case 1: Let ei and ej ∈ E ′, i ̸= j

Then f ∗(ei) = f ∗(vivi+1) = (3i− 2)(3i+ 1) and

f ∗(ej) = f ∗(vjvj+1) = (3j − 2)(3j + 1).

Suppose f ∗(ei) = f ∗(ej).

Then

(3i− 2)(3i+ 1) = (3j − 2)(3j + 1).

9i2 − 3i− 2 = 9j2 − 3j − 2
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which =⇒ i+ j = 1/3, acontradiction.

Therefore, the edge labels within E ′ are distinct.

Case 2: Let ei and ej ∈ E ′′, i ̸= j

Then f ∗(ei) = f ∗(uiwi) = (3i − 1)3i and f ∗(ej) = f ∗(ujwj) = (3j − 1)3j. If

i ̸= j =⇒ f ∗(ei) ̸= f ∗(ej).

Similarly, it can be easily proved that the edge labels within E ′′′ and Eiv are distinct.

Case 3: Let ei ∈ E ′ and ej ∈ E ′′, i ̸= j Then f ∗(ei) = f ∗(vivi+1) = (3i−2)(3i+1)

and

f ∗(ej) = f ∗(ujwj) = (3j − 1)3j.

Suppose f ∗(ei) = f ∗(ej).

Then

(3i− 2)(3i+ 1) = (3j − 1)3j.

ie, 9i2 − 3i− 2 = 9j2 − 3j.

ie, 9i2 − 3i− 2− 9j2 + 3j = 0.

Therefore, i =
3±

√
9− 36(−2− 9j2 + 3j)

18
.

i =
1±

√
9 + 36j2 − 12j

6
, acontradiction,

since i and j are positive integers.

Therefore, there is no edge label common to E ′ and E ′′.

Case 4: Let ei ∈ E ′′ and ej ∈ Eiv, i ̸= j. Then

f ∗(ei) = f ∗(uiwi) = (3i− 1)3i

f ∗(ej) = f ∗(vi+1wj) = (3j + 1)3j.

Suppose f ∗(ei) = f ∗(ej).

=⇒ (3i− 1)3i = (3j + 1)3j.

=⇒ 3i2 − i = 3j2 + j.

74



Chapter 5. Some Families of LH Graphs

=⇒ 3(i2 − j2) = i+ j.

=⇒ i− j =
1

3
, acontradiction.

Therefore, the edge labels within E ′′ and Eiv are distinct.

Similarly we can prove that the edge labels in the pairs E ′ and E ′′′, E ′ and Eiv, E ′′

and E ′′′ and E ′′′ and Eiv are all different.

Hence the graph Gn is an LH graph.

Figure 5.3: LH labeling of G4

Theorem 5.2.4. A Twig graph TW (n), n ≥ 3 is an LH graph.

Proof. Consider a twig graph TW (n), which is obtained from a path u1, u2, ..., un−1, un

by attaching exactly two pendent edges vi and wi to each internal vertex of the path.

V = {ui, i = 1 to n and vi, wi, i = 1to n− 2}.
|V | = 3n− 4.

E = E ′ ∪ E ′′ ∪ E ′′′ where E ′ = {uiui+1, i = 1 to n}, E ′′ = {uj+1vj, j = 1 to n− 2}
and E ′′′ = {uj+1wj, j = 1 to n− 2}

Figure 5.4: Ordinary labeling of TW (n)
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We define the function f : V → {1, 2, 3, 4..., 3n− 4} by

f(um) = 3m− 2, 1 ≤ m ≤ n− 1.

f(vm) = 3m− 1, 1 ≤ m ≤ n− 2.

f(wm) = 3m, 1 ≤ m ≤ n− 2.

f(un) = 3n− 4.

Next we have to show that the edge labels are distinct.

Let f ∗ : E → N be the induced edge function. To prove the edge labels are distinct,

it is enough to show that the edge labels within in the set E ′, E ′′, E ′′′, and the

labels in each pair E ′ and E ′′, E ′ and E ′′′ E ′′ and E ′′′ are distinct.

Claim : All the edge labels are distinct.

Case 1: Let ei and ej ∈ E ′, i ̸= j

Then f ∗(ei) = f ∗(vivi+1) = (3i− 2)(3i+ 1) and

f ∗(ej) = f ∗(vjvj+1) = (3j − 2)(3j + 1).

Suppose f ∗(ei) = f ∗(ej).

Then

(3i− 2)(3i+ 1) = (3j − 2)(3j + 1).

9i2 − 3i− 2 = 9j2 − 3j − 2which =⇒ i+ j = 1/3, a contradiction.

Therefore, the edge labels within E ′ are distinct.

Case 2: Let ei and ej ∈ E”, i ̸= j.

Then f ∗(ei) = f ∗(ui+1vi) = (3i+ 1)(3i− 1)

and f ∗(ej) = f ∗(uj+1vj) = (3j + 1)(3j − 1).

If i ̸= j =⇒ f ∗(ei) ̸= f ∗(ej).

Case 3: Let ei ∈ E ′ and ej ∈ E ′′, i ̸= j

Then f ∗(ei) = f ∗(uiui+1) = (3i− 2)(3i+ 1) and

f ∗(ej) = f ∗(uj+1vj) = (3j + 1)(3j − 1).

Suppose f ∗(ei) = f ∗(ej).

76



Chapter 5. Some Families of LH Graphs

Then

(3i− 2)(3i+ 1) = (3j − 1)(3j + 1).

ie, 9i2 − 3i− 2 = 9j2 − 1.

ie, 9i2 − 3i− 9j2 − 1 = 0.

Therefore, i =
3±

√
9 + 36(9j2 + 1)

18
.

i =
1±

√
5 + 36j2

6
, a contradiction,

since i and j are positive integers.

Case 4: Let ei ∈ E ′′ and ej ∈ E ′′′, i ̸= j

Then f ∗(ei) = f ∗(ui+1vi) =
(3i−1)(3i+1)

4
and

f ∗(ej) = f ∗(uj+1wj) = (3j + 1)3j.

Suppose f ∗(ei) = f ∗(ej). Then

(3i−1)(3i+1)
4

= (3j + 1)3j.

=⇒ 9i2 − 1 = 4(9j2 + 3j)

=⇒ ‘36j2 + 12j − 9i2 + 1 = 0.

j =
−12±

√
144−144(1−9i2

72
j = −1±3i

6
, a contradiction.

Similar proof holds for the other cases. Hence the twig graph TW (n), n ≥ 3 is

an LH graph.

Figure 5.5: LH labeling of TW (8)
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Theorem 5.2.5. The graph [Pn : S2]is an LH graph.

Proof. Consider the graph [Pn : S2]. Let the vertex set of the path Pn is given by

vi, i = 1 to n and ui, wi, 1 ≤ i ≤ n be the vertices which are made adjacent with vi.

V = {ui, vi, wi, 1 ≤ i ≤ n}
|V | = 3n.

E = E ′ ∪E ′′ ∪E ′′′ where, E ′ = {vivi+1, i = 1 to n− 1}, E ′′ = {viwi, 1 ≤ i ≤ n} and

E ′′′ = {viui, 1 ≤ i ≤ n}.

Figure 5.6: Ordinary labeling of [Pn : S2]

We define f : V → {1, 2, 3, ..., 3n} by

f(vm) = 3m− 2, 1 ≤ m ≤ n

f(um) = 3m− 1, 1 ≤ m ≤ n

f(wm) = 3m, 1 ≤ m ≤ n.

Let f ∗ : E → N be the induced edge function.

Claim : All the edge labels are distinct.

To prove the edge labels are distinct, it is enough to show that the edge labels

within in the set E ′, E”, E ′′′, and the labels in each pair E ′ and E ′′, E ′ and E ′′′ &

E ′′and E ′′′ are distinct.

The edge labels within the sets E ′ are of the form (3m − 2)(3m + 1), 1 ≤ m ≤ n

and that of E ′′′ are (3m− 1)(3m− 2), 1 ≤ m ≤ n. In E ′′ the edge labels are

3m(3m− 2), if m is odd

and 3m(3m−2)
4

, if m is even, 1 ≤ m ≤ n
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Clearly, all the labels within the sets E ′, E ′′ and E ′′′ are different.

Now we consider two cases.

Case 1: Let ei ∈ E ′ and ej ∈ E ′′, i ̸= j

Then f ∗(ei) = f ∗(vivi+1) = (3i− 2)(3i+ 1) and

f ∗(ej) = f ∗(vjwj) =
(3j−2)3j

4
if j is even, otherwise (3j − 2)3j.

Suppose f ∗(ei) = f ∗(ej), j is even.. Then

(3i− 2)(3i+ 1) =
(3j − 2)3j

4
.

=⇒ 4(9i2 − 3i− 2) = (9j2 − 6j)

=⇒ ‘36i2 − 12i− 9j2 + 6j − 8 = 0.

i =
12±

√
144− 144(−8− 9j2 + 6j

72

i =
1±

√
9 + 9j2 − 6j

6
, a contradiction.

Similar result holds for the case when j is odd.

Case 2: ei ∈ E ′′ and ej ∈ E ′′′, i ̸= j

If i is odd, f ∗(ei) = (3i− 2)3i and f ∗(ej) = (3j − 1)(3j − 2)

Suppose f ∗(ei) = f ∗(ej). Then

(3i− 2)3i = (3j − 2)(3j − 1).

=⇒ 9i2 − 6i = (9j2 − 9j + 2)

=⇒ ‘9i2 − 6i− 9j2 + 9j − 2 = 0.

i =
6±

√
36− 36(9j − 9j2 − 2

18

i =
1±

√
(3 + 9j2 − 9j)

3
, a contradiction.

Similar result holds for the case when i is even.

Similarly we can prove that the edge labels in the pair E ′ and E ′′′ are distinct.

Thus the induced edge labels are different and hence [Pn : S2] is an LH graph.
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Figure 5.7: LH labeling of [P5 : S2]

Theorem 5.2.6. The Sparkler graph (Pm)
+n is an LH graph.

Proof. Let {vi, i = 1 to m} be the vertices of the path Pm and {ui, i = 1 to n} be

the vertices joined to the vertex vm to form the sparkler graph (Pm)
+n.

|V | = m+ n.

E = E ′ ∪ E ′′ where, E ′ = {vivi+1, 1 ≤ i ≤ m− 1} and E ′′ = {vmui, 1 ≤ i ≤ n}.

Define f : V → {1, 2, 3, ...,m+ n} as follows

f(vm) = 1

f(ui) = i+ 1, 1 ≤ i ≤ n.

f(v1) = m+ n

f(vi) = f(vi−1)− 1, 2 ≤ i ≤ m− 1.

The induced edge function f ∗ : E → {1, 2, 3.....,m + n} is injective, since

the edge labels within the set E ′′ are 2, 3, 4, 5, ...., (n + 1) and that of E ′ are

(m+ n)(m+ n− 1), (m+ n− 1)(m+ n− 2), ....., (n+ 2), and are distinct.

Hence (Pm)
+n is an LH graph.
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Figure 5.8: LH labeling of (P6)
+9

Theorem 5.2.7. The H− graph is an LH graph.

Proof. The vertex and the edge set of H-graph are given by V = {ui, vi/1 ≤ i ≤ n}
and E = {uiui+1, vivi+1/1 ≤ i ≤ n−1} ∪{u(n+1)/2v(n+1)/2 if n is odd (or) u(n/2)+1vn/2

if n is even }. Then |V | = 2n and |E| = 2n− 1.

Define f : V → {1, 2, 3, ..., 2n} as follows

f(vi) = 2i− 1, 1 ≤ i ≤ n

f(u1) = 2n

f(ui) = f(ui−1)− 2, 2 ≤ i ≤ n

The induced edge function f ∗ : E → {1, 2, 3....., 2n} is injective, Since the edge

labels induced by the edge set {uiui+1, 1 ≤ i ≤ n− 1} are odd numbers and the edge

set {vivi+1, 1 ≤ i ≤ n} are even numbers. It is clear that the edge labels induced

are distinct.

Hence the H− graph is an LH graph.
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Figure 5.9: LH labeling of H7 and H6

5.3 LH Labeling of Cycle Related Graphs

In this section LH labeling of cycle Cn, friendship graph F n
3 , crown graph Cn ◦K1,

helm Hn and the flower graph Fln are discussed.

Theorem 5.3.1. The cycle Cn is an LH graph.

Proof. Let v0, v1, v2,.......,vn be the vertices of Cn. Let f : V → {1, 2, 3, ..., n} be

the vertex labeling function.

Suppose n cannot be expressed as the product of two consecutive natural numbers,

ie, n ̸= l(l + 1), l ∈ N .

Define f(vi) = i, clearly the induced edge labels are all different.

Suppose n = l(l + 1). There are 2 cases:

Case 1 : l is even, l > 2.

Define the vertex labeling as

f(v1) = l

f(v2) = l − 1
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f(v3) = 1

f(vj) = f(vj−1) + 1 4 ≤ j ≤ l

f(vi) = i, Otherwise.

The induced edge labels are l(l − 1), (l − 1), 1 × 2, 2 × 3, ......,(l − 2)(l + 1),......,

(l + 1), and are all different.

Case 2 : l is odd.

f(v1) = l + 1

f(vj) = f(vj−1)− 1 2 ≤ j ≤ l + 1

f(vi) = i, Otherwise.

The edge lab els produced are (l+1)l, l(l−1),.....,1.(l+2),....,l, which are all different.

When l = 2, ie, n = 6, the labeling defined in Figure 5.10 is an LH labeling.

Thus C6 is LH.

Hence Cn is an LH graph.

Figure 5.10: LH labeling of C6

Theorem 5.3.2. The Friendship graph F n
3 is an LH graph.
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Proof. Let V = {ui, i = 0 to 2n} be the vertex set of F n
3 with u0 be the center

vertex.

E = E ′∪E ′′ where E ′ = {u0ui, 1 ≤ i ≤ n} and E ′′ = {uiui+1, i = 1, 3, 5...., 2n−1}.
|V | = 2n+ 1 and |E| = 3n.

Define f : V → {1, 2, 3, ..., 2n+ 1} as

f(u0) = p, where p is the highest prime in the set {1, 2, 3, ...., 2n+ 1}.
Now, label the remaining vertices v1, v2, ...., v2n consecutively from the set {1, 2, 3, ..., 2n+
1}/{p}.
The induced edge function is f ∗ : E → {1, 2, 3....., 2n+ 1}.
Claim : All the edge labels are distinct.

The edge labels within the set E ′ are p, 2p, 3p, . . . , (p−1)p, (p+1)p, . . . (2n+1)p.

The edge labels within the set E ′′ are respectively of the following form:

If 2n+ 1 is prime, then 1× 2, 3× 4, 5× 6,....(2n− 1)2n; Otherwise, 1× 2, 3× 4,

5× 6,....(2n+ 1)2n. clearly, the edge labels produced are all different. Hence, the

friendship graph F n
3 is an LH graph.

Figure 5.11: LH labeling of F 5
3

Theorem 5.3.3. The Wheel graph W1,n is an LH graph if (n+ 1) is prime or n+ 1

is the product of two consecutive natural numbers.
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Proof. Let v0, v1, v2, . . . , vn be the vertices of the wheel W1,n with centre at v0. Let

(n + 1) = p. Then |V | = p and E = E ′ ∪ E ′′ where E ′ = {v0vt, 1 ≤ t ≤ n} and

E ′′ = {v1vn, vtvt+1, 1 ≤ t ≤ n− 1}.
Define f : V → {1, 2, 3, ...., p}.
If n cannot be expressed as the product of two consecutive natural numbers, ie,

n ̸= m(m+ 1),m ∈ N . Define f(v0) = p and f(vi) = i for 1 ≤ i ≤ n. Clearly the

induced edge labels induced are all different.

Suppose n = m(m+ 1),m ∈ N . We consider 4 cases.

Case 1: m is even and m > 2

Define the vertex labeling as

f(v0) = p

f(v1) = m

f(v2) = (m− 1)

f(v3) = 1

f(vj) = f(vj−1) + 1, 4 ≤ j ≤ m

f(vi) = i, otherwise.

The edge labels induced are p, 2p, . . . . . . ,np, m(m− 1), (m− 1), 1× 2, 2× 3, . . . ,

(m− 2)(m+ 1), (m+ 1)(m+ 2), . . . , (m+ 1). Clearly all the labels are distinct.

Case 2: m is odd.

Define the vertex labeling as

f(v0) = p

f(v1) = (m+ 1)

f(vj) = f(vj−1)− 1, 2 ≤ j ≤ (m+ 1)

f(vi) = i, otherwise.

The edge labels induced are p, 2p, . . . . . . ,np, m(m+1), m(m−1), . . . , 2×1, (m+2),

(m+ 2)(m+ 3), . . . , m. Clearly all the labels are distinct.
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Case 3: m = 2 ie, p = 7.

The LH Labeling of W1,6 is shown in the figure given below.

Figure 5.12: LH labeling of W1,6

Case 4: Suppose n+ 1 is the product of two consecutive natural numbers, ie,

n+ 1 = m(m+ 1),m ∈ N .

Let p be the highest prime in the set {1, 2, 3, . . . . , (n+ 1)}
Define the vertex labeling as

f(v0) = p

f(v1) = 1

f(v2) = m(m+ 1)− 2

f(v3) = 2

f(v4) = m(m+ 1)

f(v5) = 3

f(vj) = f(vj−1) + 1, 6 ≤ j ≤ n

The induced edge labels are p, 2p, 3p, . . . , p(p−1), p(p+1), . . . , (n+1)p, m(m+1)−2,
m(m+1)−2

2
, m(m+1)

2
, m(m+1)

3
or 3m(m+1), 3×4, 4×5, . . . , [m(m+1)−4][m(m+1)−3].

All the edge labels induced are distinct.

Thus in all cases the graph under consideration is an LH graph.
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Theorem 5.3.4. The crown graph Cn ◦K1 for all n ≥ 3 is an LH graph.

Proof. Let {ui, i = 1 to n} be the vertices of the cycle Cn and {vi, i = 1 to n} be

the pendant vertices. Then

E = {uiui+1, 1 ≤ i ≤ (n− 1)} ∪ {uivi, 1 ≤ i ≤ n} ∪ {u1un}.
|E| = |V | = 2n

Define f : V → {1, 2, 3, . . . , 2n} as

Case 1: (2n− 1) cannot be expressed as the product of two consecutive odd

numbers.

f(ui) = 2i− 1, 1 ≤ i ≤ n

f(vi) = 2i, 1 ≤ i ≤ n

The induced edge labels are (2i− 1)(2i+ 1), 1 ≤ i ≤ (n− 1), 2i(2i− 1), 1 ≤ i ≤ n

and (2n− 1).

Clearly all are different.

Case 2: (2n− 1) is the product of two consecutive odd numbers, ie,

(2n− 1) = m(m+ 2), m is odd.

Subcase i: m > 3

Define the vertex labeling as

f(u1) = m

f(u2) = (2n− 1) = m(m+ 2)

f(u3) = (m+ 2)

f(ui) = f(ui−1 + 2, 4 ≤ i ≤ (n− 2)

f(vi) = f(ui) + 1, 1 ≤ i ≤ n
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The remaining vertices are numbered consecutively using the set {1, 3, 5, . . . , (m−2)}.
The induced edge labels are (m+2), m, 1×3, 3×5, . . . , (m−4)(m−2), (m+2)(m+4),

. . . , (2n− 3)(2n− 5) and 2i(2i− 1), 1 ≤ i ≤ n.

Clearly, all the labels induced are distinct.

Subcase ii: m = 3, or (2n− 1) = 15.

LH labeling of C8 ◦K1 is shown in the 5.13

Figure 5.13: LH labeling of C8 ◦K1

Hence the crown graph Cn ◦K1 is an LH graph.

Theorem 5.3.5. The flower graph Fln is an LH graph.

Proof. Let u0 be the central vertex, u1, u2, ....., un be the rim vertices and u′
1, u

′
2, ....., u

′
n

be the vertices of Fln as shown in figure 5.13.

V = {u0, ut, u
′
t, 1 ≤ t ≤ n}.

E = E ′ ∪ E ′′ ∪ E ′′′ where E ′ = {u0ut, u0u
′
t, 1 ≤ t ≤ n}, E ′′ = {utu

′
t, 1 ≤ t ≤ n} and

E ′′′ = {u1un, utut+1, 1 ≤ t ≤ n− 1}.
|V | = 2n+ 1 and |E| = 4n.

Define the vertex labeling f : V → {1, 2, 3...., 2n+ 1} as

Case 1: (2n+ 1) is prime.
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Figure 5.14: Ordinary labeling of Fln

f(u0) = (2n+ 1)

f(ut) = (2t− 1)

f(u′
t) = 2t

The edge labels induced are (2t − 1)(2n + 1), (2n + 1)2t, (2t − 1)2t, 1 ≤ t ≤ n,

(2n− 1) and (2t− 1)(2t+ 1), 1 ≤ t ≤ n− 1. Clearly all the labels are different.

Case 2: (2n+ 1) is not a prime number.

Let p be the highest prime in the set {1, 2, 3, ...., 2n+ 1}. We have two sub cases.

Sub case (i) : (2n+ 1) cannot be expressed as the product of two consecutive

odd numbers.

Define the vertex labeling as

f(u0) = p

f(ut) = (2t− 1), 1 ≤ t ≤ (p− 1)

2

f(ut) = (2t+ 1),
(p+ 1)

2
≤ t ≤ n

f(u′
t) = f(ut) + 1, 1 ≤ t ≤ n.
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The edge labels induced within E ′ are p, 2p 3p, . . . , p(p− 2), p(p− 1), p(p+ 2), . . . ,

p(2n+ 1).

The edge labels within E ′′ are 1× 2, 2× 3, . . . , (p− 2)(p− 1), (p+ 2)(p+ 1), . . . ,

2n(2n+ 1).

The edge labels within E ′′′ are 1× 3, 3× 5, . . . , (2n− 1)(2n+ 1), (2n− 1).

Clearly all are different.

Sub case (ii) : (2n + 1) is the product of two consecutive odd numbers. ie,

(2n+ 1) = m(m+ 2), m is odd.

When m = 3, ie,(2n+ 1) = 15. LH labeling of Fl7 is shown in the figure 5.15

Figure 5.15: LH labeling of Fl7

When m > 3.

Define the vertex labeling as

f(u0) = p

f(u1) = m

f(u′
1) = (m+ 1)

f(u2) = (2n+ 1) = m(m+ 2)
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f(u′
2) = 2n

f(u3) = (m+ 2)

f(ut) = f(ut−1) + 2, 1 ≤ t ≤ (p− 1)

2

f(u′
t) = f(ut) + 1, 3 ≤ t ≤ n.

The remaining vertices u p+1
2
, u p+3

2
, . . . , un are numbered consecutively using the set

{1, 3, 5, . . . , (m− 2)}.
The edge labels induced within E ′ are p, 2p 3p, . . . , p(p− 2), p(p− 1), p(p+ 2), . . . ,

p(2n+1). The edge labels within E ′′ are 1×2, 2×3, . . . , (p−2)(p−1), (p+2)(p+1),

. . . , 2n(2n+ 1). The edge labels within E ′′′ are (m+ 2), m, (m+ 2)(m+ 4), . . . ,

(2n− 1), 1× 3, 3× 5, . . . , m(m− 2). Thus all the labels induced are distinct.

The labeling pattern defined above satisfies the vertex conditions and edge conditions

of an LH graph. Hence the graph Fln is an LH graph.

Figure 5.16: LH labeling of Fl6

Corollary 5.3.6. The helm Hn, n ≥ 3 is an LH graph

Proof. Hn is a spanning subgraph of Fln and the result follows from the theorems

4.2.8 and 5.3.4.

91



Chapter 5. Some Families of LH Graphs

Figure 5.17: LH labeling of H6

5.4 Star related Graphs

LH labeling of bistar graph is demonstrated in this section.

Theorem 5.4.1. The bistar graph Bm,n is an LH graph.

Proof. First number the m pendant vertices by u1, u2, ...., um and n pendant vertices

by v1, v2, v3...., vn. The vertex adjacent to ui is u and vertex adjacent to vi is v.

V = {u, v} ∪ {ui, i = 1 to m} ∪ {vj, j = 1 to n}.
|V | = m+ n+ 2.

E = E ′ ∪ E ′′ ∪ E ′′′ where E ′ = {uui, i = 1 to m}, E ′′ = {vvj, j = 1 to n} and

E ′′′ = {uv}.
Vertex labeling f from V to the set {1, 2, 3, ...,m+ n+ 2} is defined as follows:

We have 3 cases.

Case 1 : When m = n

|V | = 2n+ 2

f(u) = 2n+ 1
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f(ui) = 2i+ 2, 1 ≤ i ≤ n

f(v) = 2n− 1

f(vi) = 2i− 1, 1 ≤ i ≤ (n− 1)

f(vn) = 2

The induced edge labels within the set E ′ are of the form (2n+ 1)(2i+ 2), i = 1 to

n and within the set E ′′ are 2(2n − 1), (2n − 1)(2i − 1), i = 1 to (n − 1). In E ′′′

only one label (2n+ 1)(2n− 1). Clearly, all labels are different.

Case 2 : When m = 1

V = {u, u1, v, vi, i = 1 to n}
|V | = n+ 3

f(u) = n+ 2

f(u1) = n+ 3

f(v) = 1

f(vi) = i+ 1, 1 ≤ i ≤ n.

The induced edge labels within the set E ′ is (n+ 2)(n+ 3) and within the set E ′′

are (i+ 1), i = 1 to n. In E ′′′ only one label (n+ 2). Clearly, all labels are different.

Case 3 : When m < n

i) n odd and m even or n even and m odd

f(u) = m+ n+ 2

f(u1) = m+ n+ 1

f(ui) = f(ui−1)− 2, 2 ≤ i ≤ m

f(v) = m+ n

The remaining vi, i = 1 to n can be numbered using the digits 1, 3, 5, 7, ....,m+ n−
2, 2, 4, 6.., f(um)− 2.

The induced edge labels within the set E ′ are of the form (m+n+2)(m+n+1),
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(m+n+2)(m+n−1),.... (m+n+2)(n−m+3) and within the set E ′′ are 1(m+n),

3(m+ n), 5(m+ n), ....,(m+ n− 2)(m+ n), 2(m+ n), (n−m+ 1)(m+ n). In E ′′′,

the edge label is (m+ n+ 2)(m+ n). Clearly all labels are different.

ii) n even and m even or n odd and n odd

f(u) = m+ n+ 1

f(u1) = m+ n+ 2

f(ui) = f(ui−1)− 2, 2 ≤ i ≤ m

f(v) = m+ n− 1

The remaining vi, i = 1 to n can be numbered using the digits 1, 3, 5, 7, ....,m+ n−
3, 2, 4, 6.., f(um)− 2.

The induced edge labels within the set E ′ are of the form (m+ n+ 2)(m+ n+ 1),

(m+n+1)(m+n),.... (m+n+1)(n−m+4) and within the set E ′′ are 1(m+n−1),

3(m+ n− 1), 5(m+ n− 1), ....,(m+ n− 1)(m+ n− 3), 2(m+ n− 1), 4(m+ n− 1),

..., (n−m+2)(m+n− 1). In E ′′′, the edge label is (m+n+1)(m+n− 1). Clearly

all labels are different.

Hence Bm,n is an LH graph.

Figure 5.18: LH labeling of B6,6
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5.5 Splitting graphs

The concept of splitting graphs are originated to yield new large graph from the

given graph. Splitting graph was introduced by Sampath Kumar and Walikar [68].

In this section LH labeling of splitting graph of a path, comb and star are discussed.

Theorem 5.5.1. Splitting graph of a path S ′(Pn) is an LH graph.

Proof. Let {vt, 1 ≤ t ≤ n} be the vertices of a path Pn and Let {ut, 1 ≤ t ≤ n} be

the new set of vertices added to Pn to obtain the splitting graph of Pn, denoted by

S ′(Pn). Then V = {vt, ut, 1 ≤ t ≤ n}
and E = E ′ ∪ E ′′ ∪ E ′′′ where E ′ = {vtvt+1, 1 ≤ t ≤ n− 1}, E ′′ = {vt+1ut, 1 ≤ t ≤
n− 1} and E ′′′ = {vtut+1, 1 ≤ t ≤ n− 1}.
|V | = 2n.

Define f : V → {1, 2, ....2n} by

f(v1) = 1

f(v2) = 2n− 1

f(vi) =

 f(vi−2) + 2 if i is odd

f(vi−2) − 2 if i is even.


f(u1) = 2n

f(u2) = 2

f(ui) =

 f(ui−2) − 2 if i is odd

f(ui−2) + 2 if i is even.


The induced edge function is f ∗ : E → N .

Claim : All the edge labels are distinct.

Note that the edge labels with in the set E ′ are odd. To prove the claim, it is enough

to show that the edge labels within E ′′ and E ′′′ are distinct. The edge labels within

the set E ′′ are of the form 2× 3, 4× 5, 6× 7,......,(2n− 1)2n and that in E ′′′ are

1× 2, 3× 4, 5× 6,......, (2n− 1)(2n− 2). Therefore, no edge label is common to the
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sets E ′′ and E ′′′. Thus all the edge labels induced are distinct. Hence the proof.

Figure 5.19: LH labeling of S ′(P7)

Theorem 5.5.2. The Splitting graph of of a comb S ′(Pn ◦K1) is an LH graph.

Proof. Let {vi, 1 ≤ i ≤ n} and {v′i, 1 ≤ i ≤ n} be the vertices of comb in which

{v′i, 1 ≤ i ≤ n} are the pendant vertices.

Let {ui, 1 ≤ i ≤ n} and {u′
i, 1 ≤ i ≤ n} be the newly added vertices to obtain the

splitting graph.

Then |V | = 4n.

E = E ′ ∪ E ′′ ∪ E ′′′ ∪ Eiv ∪ Ev ∪ Evi where E ′ = {vivi+1, 1 ≤ i ≤ (n − 1)},
E ′′ = {viv′i, 1 ≤ i ≤ n}, E ′′′ = {uiv

′
i, 1 ≤ i ≤ n}, Eiv = {viu′

i, 1 ≤ i ≤ n},
Ev = {viui+1, 1 ≤ i ≤ (n− 1)} and Evi = {uivi+1, 1 ≤ i ≤ (n− 1)}.

Define f : V → {1, 2, 3, ..., 4n} as follows:

f(v1) = 4n− 1

f(vi) = f(vi−1)− 2, 2 ≤ i ≤ n

f(v′1) = 4n

f(v′i) = f(v′i−1)− 2, 2 ≤ i ≤ n

f(ui) = 2i− 1, 1 ≤ i ≤ n

f(u′
i) = f(v′n)− 2i, 1 ≤ i ≤ n

The induced edge function is f ∗ : E → N .
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Claim : All the edge labels are distinct.

Table 5.1: Induced edge labels .

Edge set Edge labels

E ′ (4n− 1)(4n− 3), (4n− 3)(4n− 5),......., (2n+ 3)(2n+ 1)

E ′′ (4n− 1)4n, (4n− 3)(4n− 2), .........,(2n+ 1)(2n+ 2)

E ′′′ 4n, 3(4n− 2), 5(4n− 4) ........,(2n− 1)(2n+ 2)

Eiv (4n− 1)2n, (4n− 3)(2n− 2), (4n− 5)(2n− 4),......,(2n+ 1)2

Ev 3(4n− 1), 5(4n− 3), 7(4n− 5),....., (2n− 1)(2n+ 3)

Evi (4n− 3), 3(4n− 5), 5(4n− 7),........,(2n− 3)(2n+ 1).

In E ′′′, if two vertex label have a common factor then the edge label is an even

number between 1 and n.

Similarly, In E ′′′, if two vertex label have a common factor then the edge label is an

odd number between 1 and n.

In view of the above defined labeling pattern f satisfies the conditions of an LH

labeling. Hence the proof.

Figure 5.20: LH labeling of (P7 ◦K1)
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Theorem 5.5.3. The splitting graph of a star S ′(K1,n) is an LH graph.

Proof. Let v, vi, 1 ≤ i ≤ n are the vertices of the star K1,n with central vertex v. Let

u, ui, 1 ≤ i ≤ n are the newly added vertices to obtain the splitting graph S ′(K1,n).

Then V = {u, v, vi, ui, 1 ≤ i ≤ n}. E = E ′ ∪ E ′′ ∪ E ′′′ where E ′ = {uiv, 1 ≤ i ≤ n},
E ′′ = {vvi, 1 ≤ i ≤ n} and E ′′′ = {uvi, 1 ≤ i ≤ n}.
|V | = 2n+ 2

Define f : V → {1, 2, 3, ..., 2n+ 2} as follows:

f(v) = p, p is the highest prime in the set {1, 2, 3, ..., 2n+ 2}

f(vi) = (2i+ 1), 1 ≤ i ≤ (n− 1)

f(vn) = (2n+ 2)

f(ui) = 2i, 1 ≤ i ≤ n

f(u) = 1.

The induced edge function is f ∗ : E → N .

Claim : All the edge labels are distinct.

Table 5.2: Induced edge labels

.

Edge set. Edge labels.

E ′ 2p, 4p, 6p, ..., 2np

E ′′ 3p, 5p, 7p, ....(2n+ 1)p, (2n+ 2)p

E ′′′ 3, 5, 7, ......, (2n+ 1), (2n+ 2)

‘ It is clear that the induced edge labels are distinct. Hence the splitting graph

of a star S ′(K1,5) is an LH graph.
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Figure 5.21: LH labeling of S ′(K1,5)

5.6 Line Graphs

Line graphs are first introduced by Harary and Norman. Let G be a graph, then

the line graph of G is denoted by L(G) and it is a graph whose vertex set is in 1− 1

correspondence with the edge set of G and two vertices of L(G) are joined by an

edge if and only if the corresponding edges of G are adjacent in G [48]. In this

section LH labeling of line graph of comb is derived .

Theorem 5.6.1. The line graph of a comb L(Pn ◦K1) is an LH graph.

Proof. Consider a comb graph Pn ◦ K1 with vertex set {vt, v′t, 1 ≤ t ≤ n} where

v′t, t = 1 to n are the pendant vertices.

E = {viv′i, 1 ≤ i ≤ n} ∪ {vivi+1, 1 ≤ i ≤ (n− 1)} and

|E| = 2n− 1.

Let pi = viv
′
i, 1 ≤ i ≤ n and qi = vivi+1, 1 ≤ i ≤ (n − 1) are the vertices of

L(Pn ◦ K1). |V | = 2n − 1. The edge set of L(Pn ◦ K1) is E = E ′ ∪ E ′′ ∪ E ′′′,

where E ′ = {qiqi+1, 1 ≤ i ≤ (n − 2)}, E ′′ = {qipi, 1 ≤ i ≤ (n − 1)} and
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E ′′′ = {qipi+1, 1 ≤ i ≤ (n− 1)}.

Define f : V → {1, 2, 3, ..., (2n− 1)} as follows:

Case 1: n is even.

f(qi) = (2i− 1), 1 ≤ i ≤ (n− 1)

f(p1) = (2n− 2)

f(pi) = 2i− 2, 2 ≤ i ≤ n− 1

f(pn) = (2n− 1).

Case 2: n is odd.

f(qi) = (2i− 1), 1 ≤ i ≤ (n− 1)

f(p1) = (2n− 1)

f(pi) = 2i− 2, 2 ≤ i ≤ n.

The induced edge function is f ∗ : E → N .

Claim : All the edge labels are distinct.

For n even, the edge labels are given in the following table.

Table 5.3: Induced edge labels

.

Edge set. Edge labels.

E ′ 1× 3, 3× 5, 5× 7,.....,(2n− 5)(2n− 3)

E ′′ 1(2n− 2), 2× 3, 4× 5, ....., (2n− 4)(2n− 3)

E ′′′ 1× 2, 3× 4, 5× 6,....., (2n− 5)(2n− 4)

Clearly the edge labels are distinct. Similar proof holds for the case when n is

odd. Hence the proof.
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Figure 5.22: LH labeling of L(P6 ◦K1)

5.7 A Theta graph

In this section, the LH labeling of a theta graph Tα, splitting graph of Tα, degree

splitting graph of Tα are discussed. Also studied the LH labeling of the graph

obtained by the switching of a vertex in Tα.

Theorem 5.7.1. A Theta graph Tα is an LH graph.

Proof. Let v0, v1, v2, v3, v4, v5, v6 are the vertices of a Theta graph Tα with centre v0

and |V | = 7.

We define the vertex labeling f : V → {1, 2, 3, 4, 5, 6, 7} as follows:

f(v0) = 6, f(v1) = 7, f(v2) = 1, f(v3) = 2, f(v4) = 5, f(v5) = 4 and f(v6) = 3 In

view of the labeling defined above, it is clear that the induced edge labels are distinct.

Hence the proof.

Figure 5.23: LH labeling of Tα
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Theorem 5.7.2. The splitting graph of a Theta graph S ′(Tα) is an LH graph.

Proof. Let v0, v1, v2, v3, v4, v5, v6 are the vertices of a Theta graph Tα with centre v0

and u0, u1, u2, u3, u4, u5, u6 be the newly added vertices corresponding to vi, 0 ≤ i ≤ 6

to obtain the splitting graph of a Theta graph. |V | = 14.

We define the vertex labeling f : V → {1, 2, 3, 4, ...., 14} as follows:

f(v0) = 11, f(v1) = 7, f(v2) = 1, f(v3) = 3, f(v4) = 13, f(v5) = 9, f(v6) = 5

f(u0) = 6, f(u1) = 12, f(u2) = 2, f(u3) = 4, f(u4) = 14, f(u5) = 8, f(u6) = 10.

It is clear that the induced edge labels are distinct. Hence the splitting graph of a

Theta graph S ′(Tα) is an LH graph.

Figure 5.24: LH labeling of S ′(Tα)

Theorem 5.7.3. The switching of any vertex in a Theta graph is an LH graph.

Proof. Let v0, v1, v2, v3, v4, v5, v6 are the vertices of a Theta graph Tα with centre v0

and |V | = 7.

Let Gv be the graph obtained from Tα after switching the vertex vi, 0 ≤ i ≤ 6.

Clearly |V (Gv)| = 7

We define the vertex labeling f : |V (Gs)| → {1, 2, 3...., 7} as follows :

Case 1 : switching of the center vertex v0

f(v0) = 1, f(v1) = 6, f(v2) = 5, f(v3) = 4, f(v4) = 7, f(v5) = 3 and f(v6) = 2
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Case 2 : switching of any vertex of degree 3

In Tα, only two vertices are of degree 3. The vertex in which switching is done is

labeled with 5, centre vertex with 6 and the vertices adjacent to 5 with 7,2 and 4.

The vertex adjacent to 4 is labeled with 3 and the vertex which is adjacent to 2

with 1.

Case 3 : switching of any vertex of degree 2 other than the centre

The vertex in which switching is done is labeled with 7, centre vertex with 2 and

the pendant vertex with 6. Label the adjacent vertices of centre with 5 and 1. The

vertex adjacent to 5 is labeled with 3 and the vertex adjacent to 4 is labeled with 1.
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Theorem 5.7.4. The degree splitting graph of a Theta graph DS(Tα) is an LH

graph.

Proof. Let v0, v1, v2, v3, v4, v5, v6 are the vertices of the Theta graph Tα with centre

v0.

It has two vertices of degree 3 and all other vertices are of degree 2. Therefore,

V = S1 ∪ S2 where S1 = {v1, v4} and S2 = {v0, v2, v3, v5, v6}. Add two vertices w1

and w2 corresponding to the sets S1 and S2 and make w1 adjacent to v1 and v4 and

w2 adjacent to v2, v3, v5, v6 and v0, to obtain the degree splitting graph DS(Tα).

|V | = 9

We define the vertex labeling f : V → {1, 2, 3, 4, ...., 9} as follows: f(v0) = 6, f(v2) =

1, f(v3) = 2, f(v4) = 5, f(v5) = 8, f(v6) = 3f(w1) = 9, f(w2) = 7 The vertex labeling

defined above satisfies the conditions of an LH graph. therefore, the degree splitting

graph of a Theta graph DS(Tα) is an LH graph.

Figure 5.25: LH labeling of DS(Tα)

104



Chapter 5. Some Families of LH Graphs

5.8 Conclusion

In this chapter, LH labeling of some well-known and familiar families of graphs

are investigated. Exploring the LH labeling of other families of graphs like middle

graphs, shadow graphs, total graphs etc is a future area of research.

Problem 5.8.1. Is it true that the cartesian product of two LH graphs is an LH

graph?

Problem 5.8.2. Find the LH labeling of arbitrary super subdivision of paths and

cycles?
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CHAPTER 6

Conclusion and Further Scope of Research

In the first section, we give a summary of the thesis and the second section includes

application and proposals for further study.

6.1 Conclusion

We begin with an introductory chapter which includes preliminaries and literature

survey of the topic.

In the first part of the report, the study was done by connecting the two topics

namely graph labeling and graph convexity. In the second part a new vertex labeling,

LH labeling is introduced and studied it in some classes of graphs.

In chapter II, we made an attempt to study geodesic and monophonic convexity

in a graph G with respect to a labeling function L defined on it. Defined Lg convexity

space, g− convex label, Lm convexity space and m− convex label. A new class

of graphs, geodesically elegant graphs are introduced. Some of the results of this

chapter are published in Malaya Journal of Mathematik [14]. The main results in

this chapter are
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1. All geodesically elegant graphs are triangle free.

2. The cycle Cn for all n > 3 is geodesically elegant.

3. The crown graph Cn ◦K1 for all n > 3 is geodesically elegant.

4. The generalized friendship graph f4,n is geodesically elegant.

5. The hypercube graph Qn is geodesically elegant.

6. The graph Cm2Pn is geodesically elegant.

7. The square mesh graph Pr2Pr is geodesically elegant.

8. The ladder graph Ln = Pn2P2 is geodesically elegant.

9. A Theta graph Tα is geodesically elegant.

10. The graph obtained by switching of any vertex in a Theta graph Tα is not

geodesically elegant.

11. Geodesic convex label does not exist in the complete bipartite graph Km,n

except for m = 1 or n = 1 or m = n = 2.

12. A tree T is always geodesically elegant.

13. The number of Lg convex sets of Kn for n ≥ 3 with respect to any label L is

n2+n+2
2

.

14. Strong product of any two graphs G and H, both having atleast one edge is

not geodesically elegant.

15. Lexicographic product of any two graphs G and H, both having atleast one

edge is not geodesically elegant.

16. The corona product of two geodesically elegant graphs may not be geodesically

elegant

17. The join of two geodesically elegant graphs need not be geodesically elegant.

18. m-convex label exists in a tree.
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19. If a strong monophonic convex label exists in a graph G then G is triangle

free.

20. Strong monophonic convex label exist in the cycle Cn for n > 3.

21. Strong monophonic convex label exists in the Petersen graph.

Chapter III deals with the study of geodetic and edge geodetic number in

labeled graphs. Defined L− geodetic number and L− edge geodetic number

of graphs. The concept of geodetic label, edge geodetic label, strong geodetic

label and strong edge geodetic label are studied. The results of this chapter

are communicated to AIP Conference Prooceedings. The main results are

22. gL(G) ≤ g′L(G).

23. Geodetic label and edge geodetic label exist in every tree.

24. Strong geodetic label and strong edge geodetic label exist in Kn, n > 2.

25. Geodetic label and edge geodetic label exist for every even cycle. Strong

geodetic label and Strong edge geodetic label exist for every odd cycle.

26. Strong geodetic label exist in the Petersen graph.

27. Strong geodetic label exists in the Wheel graphW1,n except for n = 4. Geodetic

label exist in the graph W1,4.

28. Geodetic label exist in the mesh M = Mr,s = Pr × Ps.

29. Strong edge geodetic label exist in the friendship graph F3
n.

30. Strong edge geodetic label exist in the Windmill graph Wd(k, n).

Chapter IV deals with the LH labeling of graphs. For a non LH graph G,

we defined the LH completion Ω∗(G) and LH completion number ΛG of G.

An upper bound for the size of an LH graph is obtained. The results of this

chapter are published in Advances in Mathematics: Scientific Journal[15].

Main results of this chapter are
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31. Petesrsen graph, Grotzch graph, Heawood graph and hyper cube Q3 are LH.

32. For any LH graph G with n vertices, 2 ≤ f ∗(e) ≤ n2 − n, where f ∗(e) denotes

the label of the edge e.

33. All prime graphs are LH.

34. If the labels of each pair of adjacent vertices of a given graph G are relatively

prime, then the LH labeling coincides with the strong multiplicative labeling.

35. The complete graphKn, n ≥ 4, the wheel graphW1,5 and the complete bipartite

graph K3,3 are non LH.

36. The complete bipartite graph K2,s is an LH graph.

37. Every spanning subgrah of an LH graph is an LH graph.

38. Every induced subgraph of an LH graph need not be LH.

39. Given a non LH graph G, there exist an LH graph Ω⋆(G) such that G is an

induced subgraph of Ω⋆(G), called the LH completion of G.

40. Let Ω⋆(G) be an LH completion of a non LH graph G. LH completion number

of G, denoted by ΛG is defined as ΛG = minimum{|V (Ω⋆)| − |V (G)|}.

41. ΛK3,3 = 1 and ΛW1,5 = 1.

42. LH completion number of the complete graph Kn, n ≤ 10 is given in the

following table.

Table 6.1: LH completion number of Kn, 4 ≤ n ≤ 10

.

n . Number of edges. µn ΛKn

4 6 5 1

5 10 9 1

6 15 10 2

7 21 16 4

8 28 20 5

9 36 26 8

10 45 28 9
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43. A perfect binary tree Tn and spider graph S3(m) are LH graphs.

Finally, we discussed the LH labeling of some class of graphs in chapter V.

The results of this chapter can be seen in [13, 15]. The following classes of

graphs are proved to be LH.

44. Path related graphs : comb graph Pn ◦K1, triangular snake Tn, quadrilateral

snake Gn, Twig graph TW (n), n ≥ 3, [Pn : S2], sparkler graph (Pm)
+n and

the H− graph.

45. Cycle related graphs : cycle Cn, Crown Cn ◦K1, Friendship graph Fn, Wheel

graph W1,n if (n+1) is prime or n+1 is the product of two consecutive natural

numbers, flower graph Fln and helm Hn, n ≥ 3.

46. Bistar graph Bm,n.

47. Splitting graph of a path S ′(Pn), star S
′(K1,n) and comb S ′(Pn ◦K1).

48. Line Graph of comb Pn ◦K1.

49. A Theta graph Tα.

50. The splitting graph of a Theta graph S ′(Tα).

51. The degree splitting graph of a Theta graph DS(Tα).

52. Graph obtained by switching of any vertex in a Theta graph Tα.

6.2 Application and Proposal for Further Study

Any real life situation can be studied and solved using a mathematical model. A

weighted graph is used to model all the practical problematic situations like rail

networks, communication networks, electrial power systems, road networks etc.

Usually, the weight in a weighted graph is single. But in a real life situation, a single

weight is not enough to describe the information totally.
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For example: in a road network, we always prefer to travel in the shortest path

between two places. Sometimes these shortest path includes bumpy roads and toll

roads with huge amount. There are narrow roads and bridges in the network in

which huge vehicles can’t pass through. Sometimes, the shortest path includes these

two which is to be avoided. There is a restriction for heavy vehicles in some routes

in the network. So small vehicles can pass through that route without any traffic

congestion. Also the network consist of roads with chaotic traffic which takes hours

to cross the road. To calculate the shortest distance, we have to consider all these

factors. So to model a road network in the real world multi-dimension weighted

graphs are needed. A multi-dimension graph was introduced and studied by Shuo

Jiang, Zhiyong Feng, Xiawoang Zhang, Xinwang and Guozheng Rao in [75].

Multi-dimension weighted graph is an extension of weighted graph. Multi di-

mension weighted graph is, not single weight on every edge. It can be represented

as G = (V,E,w1, w2, w3, ..., wn) [75]. A Multi dimension weighted graph can be

transformed to a single dimension weigted graph, so that the properties which are

used in the single dimension weighted graphs can also be applied in multi-dimension

weighted graph. Jill K mathew and Sunil mathew defined weighted geodesic con-

vexity in weighted graphs in [33]. If we transform the multidimensional weighted

graph into a weighted graph, then it should coincide with the weighted geodesic

convexity defined by them. But we can see that these studies on weighted graph

only focus on one dimension weight and the weighted distance between the vertices

u and v in G is defined and denoted by dw(u, v) = min{l(P ) ∗ S(P )/P is a u− v

path} where l(P ) represents the length and S(P ) is the strength of the path. The

length of a path is the number of edges present in the path and strength is the

minimum of the edge weights in it. While discussing the connectivity concept, the

definition of strength of a path is apt. But in the context of discussing shortest

distance in a transportation network, S(P ) defined to be the minimum edge weight

is not enough and the distance function does not satisfy the metric property. Also

in a road network usually we avoid weak strength roads and prefer to travel in

shortest and strong routes. We can study geodesic convexity in multi-dimension

weighted graphs as in the case of labeled graphs. Since we are able to find the least

common multiple and highest common factor of a group of numbers, we can apply
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the concept of LH labeling in these graphs also.

We know that the study carried out in this report is not complete. The following

are some of the questions in our mind for future research.

Problem 6.2.1. Find the geodetic iteration number gin(G) in labeled graphs for

different labelings.

Problem 6.2.2. Does there exist two graphs G and H such that one of them is not

geodesically elegant but thier cartesian product is not geodesically elegant.

Problem 6.2.3. Find L− geodetic number of power of cycles?.

Problem 6.2.4. Is all trees LH?.

Problem 6.2.5. Study convexity determined by LH labeling..

Problem 6.2.6. If G is LH, is it true that the Myscielskian M(G) is LH or not?

Problem 6.2.7. Find the (G,D) number of graphs with respect to the labeling

function L

Problem 6.2.8. Find the LH labeling of power of cycles.
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