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ABSTRACT

This thesis deals with the following main themes: plus subspaces associated with mod-

ular forms of half-integer weight, a generalisation of the Saito-Kurokawa lift which

connects elliptic modular forms and Siegel modular forms, and kernel functions func-

tions for L-values of half-integral weight Hecke eigenforms. Specifically, we focus on

the following problems:

1. To develop the theory of newforms on the space of cusp forms of weight k−1/2

for Γ0(M) and character χ0 =
(

4χ(−1)
·

)
χ where k ≥ 2, M ≥ 1 are integers

with 32|M and χmoduloM , χ2 moduloM/2 are primitive Dirichlet characters.

We denote this space by Sk−1/2(M,χ0).

2. With the same assumptions on k,M, χ as above, we next develop the theory

of newforms for the space of Jacobi forms J cuspk,1 (M,χ) and the for the Maass

spezialschar S∗
k(Γ

2
0(M), χ) when k is even. Then, we obtain the required iso-

morphisms between the spaces of newforms regarding the Saito-Kurokawa cor-

respondence.

3. Final problem in this thesis is to obtain a non-cusp form of half-integral weight

k+1/2 (k ≥ 2 even) for Γ0(4) in the Kohnen plus space whose Petersson scalar

product against a cuspidal Hecke eigenform g is equal to a constant multiple (the

constant is explicit) the L value L(g, k−1/2), and then derive certain arithmeti-

cal information related with the special values of L-function.
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Chapter 1
Introduction

We focus on the following main problems in this thesis:

1. To develop the theory of newforms on the space of cusp forms of weight k−1/2

for Γ0(M) and character χ0 =
(

4χ(−1)
·

)
χ where k ≥ 2, M ≥ 1 are integers

with 32|M and χmoduloM , χ2 moduloM/2 are primitive Dirichlet characters.

We denote this space by Sk−1/2(M,χ0).

2. With the same assumptions on k,M, χ as above, we next develop the theory

of newforms for the space of Jacobi forms J cuspk,1 (M,χ) and the for the Maass

spezialschar S∗
k(Γ

2
0(M), χ) when k is even. Then, we obtain the required iso-

morphisms between the spaces of newforms regarding the Saito-Kurokawa cor-

respondence.

3. Final problem in this thesis is to obtain a non-cusp form of half-integral weight

k+1/2 (k ≥ 2 even) for Γ0(4) in the Kohnen plus space whose Petersson scalar

1



1.1. SURVEY OF LITERATURE

product against a cuspidal Hecke eigenform g is equal to a constant multiple(the

constant is explicit) the L value L(g, k−1/2), and then derive certain arithmeti-

cal information related with the special values of L-function.

Let us explain each of the above in detail. Before that, we give a brief summary of

the existing works in this direction.

1.1 Survey of literature

Saito-Kurokawa lift for level 1:

Let f be a modular form of weight 2k − 2 (k ≥ 3) for SL2(Z), and let f be a Hecke

eigenform. Then after normalizing f by letting af (1) = 1, we get that the eigen-

values are the Fourier coefficients af (n). Using certain explicit eigenvalues through

numerical computations, N. Kurokawa [16], and H. Saito independently observed the

existence of certain eigenvectors F in the space of Siegel modular form of weight k

and degree 2 for the full group Sp4(Z) having a relation with the set of eigenvalues.

This correspondence connecting f and F is known as the Saito-Kurokawa correspon-

dence. In this connection, Maass introduced a subspace in Siegel modular form of

degree two, known as Maass spezialchar. The Maass spezialchar is the space of all

Siegel modular forms F as described above. The Fourier coefficients of F are indexed

by a set of binary quadratic forms T =
(

n r/2
r/2 m

)
where n,m are positive integers and

r ∈ Z such that r2 ≤ 4mn. The Hecke operators on Siegel modular forms introduced

by Andrianov preserve the Maass space and moreover, the forms F and f connected

under the Saito-Kurokawa correspondence. But, the determination of F uniquely up

2



1.1. SURVEY OF LITERATURE

to scalar for each of the normalized Hecke eigenform f of weight 2k − 2 for Γ0(N)

with character χ is an unknown problem. it is proved that the answer is affirmative

when N = 1 by D. Zagier [32], and then by M. Manickam, B. Ramakrishnan and T.

C. Vasudevan [25] whenN is odd and square-free. However in the general case where

N is arbitrary and χ is arbitrary, the Saito-Kurokawa correspondence has been studied

in [8], [7]. We explain this connection when N = 1.

Let 2|k, k ≥ 4 be an integer. Let S2k−2(SL2(Z)) denote the space of cusp forms of

weight 2k− 2 for SL2(Z) and Mk(Sp4(Z)) denote the space of Siegel modular forms

of weight k, degree two for Sp4(Z). H. Maass introduced and studied a canonical sub-

space inside Mk(Sp4(Z)), called the Maass ‘Spezialschar’ M∗
k(Sp4(Z)) which satisfy

a certain condition on the Fourier coefficients: let F ∈ M∗
k(Sp4(Z)), and A(n, r, l)

denote the Fourier coefficients of F . Then, we have

A(n, r, l) =
∑

d|gcd(n,r,l)

dk−1A

(
nl

d2
,
r

d
, 1

)
.

The above relations are called Maass relations.

Let f ∈ S2k−2(SL2(Z)) be a Hecke eigenform. Then the works of Andrianov,

Maass and Zagier proved the existence of a unique (up to a constant) Siegel Hecke

eigenform F ∈ M∗
k(Sp4(Z)) corresponding to f via the Saito-Kurokawa correspon-

dence given by

L(F, s) = ζ(s− k + 2)ζ(s− k + 1)L(f, s), (1.1)

where ζ(s) is the Ramanujan zeta function and L(F, s) and L(f, s) are the L-functions

3



1.1. SURVEY OF LITERATURE

associated with F and f , respectively.

The above connection relating Hecke eigenforms inM2k−2(SL2(Z)) andM∗
k(Sp4(Z))

was first realized by D. Zagier through a set of isomorphisms. Let Mk−1/2(4) denote

the space of modular forms of weight k − 1/2 for Γ0(4). W. Kohnen [11] identified

a special subspace M+
k−1/2(4), called the plus space in Mk−1/2(4) and proved that the

spaces M2k−2(SL2(Z)) and M+
k−1/2(4) are Hecke equivariantly isomorphic. Let 2|k

and k ≥ 2. Let Jk,1 denote the space of Jacobi forms of weight k and index 1 for the

full Jacobi group. The Eichler-Zagier map which sends a Jacobi form to a half-integral

weight modular form in the plus space, gives an isomorphism between the spaces Jk,1

andM+
k−1/2(4). Now, let Vm form ≥ 1 denote the index shifting operator which sends

forms in Jk,1 to Jk,m. Ifm = 0, the operator V0 is the one defined by Eichler and Zagier

in [6] (page 43). The Maass lift ϑ, defined on ϕ ∈ Jk,1 by

ϕ|ϑ :=
∑
m≥0

ϕ|Vm(τ, z)e2πmτ
′

acts as an isomorphism between Jk,1 and M∗
k(Sp4(Z)). We refer to the following

diagram from [6]:

4



1.1. SURVEY OF LITERATURE

Maass ‘Spezialschar’ ⊂ Mk(Sp4(Z))

Jacobi forms of weight k and index 1

Kohnen’s ‘plus’ space ⊂Mk−1/2(4)

M2k−2(SL2(Z))
∼

∼
∼

The composition of the maps as explained above gives an isomorphism between the

spaces M2k−2(SL2(Z)) and M∗
k(Sp4(Z)) (when k is even). This is called the Saito-

Kurokawa lift (for level 1), which preserves the Hecke eigenforms connected via equa-

tion (1.1) in the respective spaces. We refer to [6] for a comprehensive theory on the

topic.

Extension of Saito-Kurokawa lift:

It is natural to expect certain theory of Saito-Kurokawa correspondence when one re-

places SL2(Z) by its congruence subgroups. Specifically, let f be a Hecke eigenform of

weight 2k− 2 for the congruence subgroup Γ0(N). Does there exists a corresponding

Siegel Hecke eigenform F of weight k for the congruence subgroup Γ2
0(N) such that

an equation of the type 1.1 holds true? Also, corresponding to a normalized newform

f ∈ M2k−2(N), how many linearly independent forms F are there in Mk(Γ
2
0(N))?

These questions were answered for the space S2k−2(N) whereN is an odd and square-

free integer in [25], and later generalised to arbitrary odd level in [22]. Let us explain

this in detail.

The Saito-Kurokawa isomorphism in the case of level 1 was realised through a se-

5



1.1. SURVEY OF LITERATURE

ries of isomorphisms. To set up such an isomorpshim for higher levels, one requires

the theory of newforms in the respective spaces. In the case of modular forms of inte-

gral weight, the newform theory was developed by Atkin-Lehner in [3] by identifying a

certain subspace inside S2k−2(N) called the space of newforms, denoted by Snew2k−2(N).

They also proved that the multiplicity one theorem holds true on Snew2k−2(N). Later,

Kohnen set up a parallel theory of newforms inside the plus space S+
k−1/2(4N) where

N is odd and square-free [12]. He proved that the spaces Snew2k−2(N) and S+,new
k−1/2 (4N)

are Hecke equivariantly isomorphic with each other. Now, let J cuspk,1 (N) denote the

space of Jacobi cusp forms of weight k, index 1 and level N . Also, let S∗
k(Γ

2
0(N))

denote the space of Maass spezialschar inside the space of Siegel cusp forms of weight

k, genus two for the congruence subgroup Γ2
0(N). Using the theory of newforms in

S+,new
k−1/2 (N), the authors in [25] set up a parallel theory of newforms inside J cuspk,1 (N)

and S∗
k(Γ

2
0(N)). They also proved that the spaces S+,new

k−1/2 (N) and J cusp,newk,1 (N) are

isomorphic with each other under a generalised version of the Eichler-Zagier map, and

the spaces J cusp,newk,1 (N) and S∗,new
k (Γ2

0(N)) are isomorphic with each other under the

Maass lift. Combining the above three isomorphisms, we get the generalized version

of the Saito-Kurokawa isomorphism for odd and square-free level. Specifically, we

have :

Theorem 1.1.1 (Theorem 8, [25]). Let N be an odd and square-free integer. Then,

there is a one-one correspondence between the spaces Snew2k−2(N) and S∗,new
k (Γ2

0(N)).

For a normalized Hecke eigenform f ∈ Snew2k−2(N) and a Hecke eigenformF ∈ S∗,new
k (Γ2

0(N)),

6



1.2. STATEMENT AND RESULTS

the correspondence is given by

Z∗
F (s) = ζ(s− k + 1)ζ(s− k + 2)Lf (s)

where ZF (s) is the Andrianov zeta function corresponding to F (as in [1]) and

Z∗
F (s) =

∏
p|N

(1− pk−1−s)−1(1− pk−2−s)−1ZF (s).

Later, such a correspondence was obtained for arbitrary level N with trivial char-

acter in [22].

Question: What happens if one replaces the congruence subgroupΓ0(N)withΓ1(N)?

1.2 Statement and results

As a natural extension to the above problem mentioned in the previous subsection, we

try to derive similar results in the case of modular forms for the congruence subgroup

Γ1(N) for an integer N ≥ 1. Note that we have the following direct sum decomposi-

tion:

S2k−2(Γ1(N)) =
⊕
ψ

S2k−2(N,ψ), (1.2)

where S2k−2(Γ1(N)) denote the space of cusp forms for the subgroup Γ1(N) and the

direct sum varies over all Dirichlet characters modulo N .

7



1.2. STATEMENT AND RESULTS

Hence, it is enough to study the problem on each of the individual spacesS2k−2(N,ψ),

where ψ is a Dirichlet character modulo N .

1.2.1 Newforms and Saito-Kurokawa lifts

The aim is to derive the Saito-Kurokawa correspondence on newforms inside the Maass

subspace S∗
k(Γ

2
0(M), χ) under the assumptions that 32|M and the involved characters

are primitive, and prove that a newform f ∈ S2k−2(M/2, χ2) is lifted into two linearly

independent Maass forms under the Saito-Kurokawa correspondence. For this, we

first set up the theory of newforms on the spaces S+
k−1/2(M,χ0) and S+

k−1/2(4M,χ0).

Then, using the Eichler-Zagier map Z1 and the Maass lift ι
M,χ

, we develop the theory

of newforms on the spaces J cuspk,1 (M,χ) and S∗
k(Γ

2
0(M), χ) respectively. Finally as a

consequence we get the required Saito-Kurokawa isomorphism.

More precisely, we make the following assumptions. Let k ≥ 2, M = 2α−2N

(2 ∤ N, α > 6) be integers. Let χ modulo M be a Dirichlet character with ϵ =

χ(−1) such that χ0 =
(
4ϵ
·

)
χ is an even character modulo M . Let cond(χ) = M

and cond(χ2) = M/2. Let Sk−1/2(M,χ0) denote the space of cusp forms of weight

k − 1/2 for Γ0(M) and character χ0. We denote the Petersson scalar product by

⟨f, g⟩ = 1

iM

∫
Γ0(M)\H

f(τ)g(τ)yk−1/2dxdy

y2
,

where τ = x + iy, y > 0, iM denotes the index of Γ0(M) in SL2(Z) and f, g ∈

Sk−1/2(M,χ0). Let S+
k−1/2(M,χ0) denote the Kohnen plus space which consists of the

8



1.2. STATEMENT AND RESULTS

cusp forms inSk−1/2(M,χ0)whosen-th Fourier coefficients vanish unless ϵ(−1)k−1n ≡

0, 1 (mod 4).

We state the following dimension equality (see Lemma 3.2.7): If k ≥ 2, cond(χ) =

M and cond(χ2) =M/2, then

dimSk−1/2(M,χ0) = dimS2k−2(M/2, χ2). (1.3)

IfD ≡ 1(4) is a fundamental discriminant with ϵ(−1)k−1D > 0, we consider theD-th

Shimura-Kohnen lift SD which is the same as the D-th Shimura lift, given by

g|SD =
∑
n≥1

∑
d|n

χ(d)

(
D

d

)
dk−2ag

(
|D|n2

d2

) e2πinz,

where g ∈ Sk−1/2(M,χ0). In order to set up the Shimura lifts SD on S+
k−1/2(M,χ0),

we consider the image of m-th Poincaré series in the plus space S+
k−1/2(M,χ0) under

SD and derive its explicit image as a period function in S2k−2(M/2, χ2). By varying

the integers m ≥ 1 with ϵ(−1)k−1m ≡ 0, 1 (mod 4), we get that all the Poincaré

series P+
k−1/2,M,χ0;m

span the space S+
k−1/2(M,χ0). Hence, the Shimura-Kohnen lifts

SD maps S+
k−1/2(M,χ0) into S2k−2(M/2, χ2) and the adjoint Shintani lifts S∗

D maps

S2k−2(M/2, χ2) into S+
k−1/2(M,χ0). If f ∈ S2k−2(M/2, χ2) is a normalised Hecke

eigenform, it is known that there exists a fundamental discriminant D (ϵ(−1)k−1D >

0, (D,M) = 1) such that the special value L(f, χ
(
D
.

)
, k − 1) ̸= 0 (see the remark

after Theorem 1.1 in Chapter 6, [28]). Therefore, using the condition cond(χ) = M

and following the computations as in ( [15],p. 137), we derive that the |D|-th Fourier

9



1.2. STATEMENT AND RESULTS

coefficient of f |S∗
D is non-zero. Since this is valid for each of the normalised Hecke

eigenform f ∈ S2k−2(M/2, χ2) and by using the dimension equality as given by the

equation (1.3), we observe that the space S+
k−1/2(M,χ0) coincides with the full space

Sk−1/2(M,χ0). We state the theory of newforms for the space S+
k−1/2(M,χ0):

Theorem 1.2.1. Let k ≥ 2, 32|M , cond(χ) =M and cond(χ2) =M/2. Then,

S+
k−1/2(M,χ0) = Sk−1/2(M,χ0).

There exists a finite linear combination of Shimura lifts ψK which defines an isomor-

phism from S+
k−1/2(M,χ0) into S2k−2(M/2, χ2). In particular, we have the strong

multiplicity one theorem on S+
k−1/2(M,χ0).

Next, we consider the spaces S+
k−1/2(4M,χ0) and S2k−2(M,χ2). The condition

cond(χ2) = M/2 along with the dimension formula and the theory of newforms

for S2k−2(M,χ2) gives Snew2k−2(M,χ2) = {0}. To get the same for the plus space

S+
k−1/2(4M,χ0), we derive that the Shimura lifts SD (D ≡ 0, 1 (mod 4), ϵ(−1)k−1D >

0, (D,M) = 1) map S+
k−1/2(4M,χ0) into S2k−2(M,χ2). Then we find the relation be-

tween the spaces S+
k−1/2(M,χ0) and S+

k−1/2(4M,χ0). We state the following main

theorem for modular forms of half-integral weight (see §3.2.2):

Theorem 1.2.2.

S+,new
k−1/2 (4M,χ0) = {0} and Snew2k−2(M,χ2) = {0},

10



1.2. STATEMENT AND RESULTS

S+
k−1/2(4M,χ0) = S+

k−1/2(M,χ0)
⊕

S+
k−1/2(M,χ0)|B4,

S2k−2(M,χ2) = S2k−2(M/2, χ2)
⊕

S2k−2(M/2, χ2)
∣∣B2.

Moreover, the isomorphism ψK maps S+
k−1/2(4M,χ0) into S2k−2(M,χ2).

In order to get the Maass lift and theory of newforms for the Maass space, we let

k ≥ 2, ϵ = (−1)k and we first develop the theory of newforms for the space of Jacobi

cusp forms J cuspk,1 (M,χ). This can be done by deriving the Eichler-Zagier canonical

map (see preliminaries for definition)

Z1 : J
cusp
k,1 (M,χ) −→ S+

k−1/2(4M,χ0).

This is an isomorphism preserving the Hecke eigenforms and the scalar product struc-

tures (see Proposition 4.2.2 and Lemma 4.2.3). Using the Theorem 1.2.2 as above and

the existence of Eichler-Zagier canonical isomorphism we get the following. There ex-

ists a non-zero cusp form ϕ ∈ J cuspk,1 (M,χ) such that ϕ|BJ(4) belongs to J cuspk,1 (M,χ)

and ϕ|Z1 ∈ S+
k−1/2(M,χ0). We call the inverse image of the space S+

k+1/2(M,χ0) as

the space of newforms in J cuspk,1 (M,χ). Let Pk,1,M,χ0;D,r denote the (D, r)-th Poincarè

series in J cuspk,1 (M,χ); let UJ(4) and BJ(4) be operators on J cuspk,1 (M,χ) (see prelimi-

naries for definitions). Let J cusp;newk,1 (M,χ) denote the linear span over complex num-

bers of the set {Pk,1,M,χ;D,r|UJ(4) : D}, whereD varies over all the discriminants with

4
∣∣D and D/4 ≡ 0, 1 (mod 4). We call the elements of an orthogonal basis consisting

of simultaneous eigenforms under all the Hecke operators TJ(n) in J cusp;newk,1 (M,χ)

as Jacobi newforms of weight k, index 1, level M and character χ. We have (see, the

11



1.2. STATEMENT AND RESULTS

Lemma 4.2.7):

J cusp;newk,1 (M,χ)|Z1 = S+
k−1/2(M,χ0).

We now state the following main theorem for the theory of newforms of Jacobi cusp

forms:

Theorem 1.2.3.

J cuspk,1 (M,χ) = J cusp;newk,1 (M,χ)
⊕

J cusp;newk,1 (M,χ)|BJ(4).

The space J cusp;newk,1 (M,χ) is isomorphic to the space S2k−2(M/2, χ2) under a certain

linear combination of Shimura lifts. Hence, The multiplicity one result holds good on

J cusp;newk,1 (M,χ).

Let Sk(Γ2
0(M), χ) denote the space of degree two Siegel cusp forms of level M

and character χ, where χ is primitive Dirichlet character modulo M as above. Let

ϕ ∈ J cuspk,1 (M,χ). Let ι
M,χ

denote the Maass embedding (as in [8]) defined by

ϕ|ι
M,χ

(τ, z, w) =
∞∑
m=1

(ϕ|k,1Vm,χ)(τ, z)e2πimw,

where Vm,χ is the index shifting operator on J cuspk,1 (M,χ) (defined in §4.3). Then by

Theorem 3.2 of [8], the map ι
M,χ

is an embedding from J cuspk,1 (M,χ) to Sk(Γ2
0(M), χ).

Denote the image of J cuspk,1 (M,χ) under this embedding by S∗
k(Γ

2
0(M), χ). We define

12



1.2. STATEMENT AND RESULTS

the space of Maass newforms by

S∗;new
k (Γ2

0(M), χ) := J cusp;newk,1 (M,χ)|ι
M,χ
.

Finally, combining the above results we get the relevant Saito-Kurokawa lifting

for level M and a primitive character χ modulo M . For a comprehensive theory on

Saito-Kurokawa correspondence we refer to [6, 8]. Let f ∈ S2k−2(M/2, χ2) be a

normalised newform. Let F ∈ S∗;new
k (Γ2

0(M), χ) be the associated unique (up to a

scalar) newform. The corresponding Andrianov zeta function ZF (s) (see §4.3.2) has

an Euler product expansion

ZF (s) =
∏
p|M

(1− µpp
−s)−1

∏
p ̸|M

Qp(p
−s)−1,

where

Qp(p
−s) = 1− γpp

−s + (pωp + (p2 + 1)χ(p2)p2k−5)p−2s

− ωpχ(p
2)p2k−3−3s + χ(p4)p4k−6−4s.

Now, using the isomorphisms ψk, Z1, ιM,χ
, and the Theorems 1.2.1, 1.2.2, 1.2.3, we

derive the following:

Theorem 1.2.4.

S∗
k(Γ

2
0(M), χ) = S∗;new

k (Γ2
0(M), χ)

⊕
S∗;new
k (Γ2

0(M), χ)|BS(4).

13



1.2. STATEMENT AND RESULTS

The multiplicity one theorem is valid on S∗;new
k (Γ2

0(M), χ). Also, S∗;new
k (Γ2

0(M), χ)

is in one to one correspondence with S2k−2(M/2, χ2) under the Saito-Kurokawa iso-

morphism. A given normalised Hecke eigenform f ∈ S2k−2(M/2, χ2) is lifted into

two equivalent Hecke eigenforms F, F |BS(4), where F ∈ S∗;new
k (Γ2

0(M), χ) is the

newform satisfying

ZF (s) = L(s− k + 1, χ)L(s− k + 2, χ)L(f, s).

1.2.2 Kernel function for L-values of half-integral weight Hecke

eigenforms

Let D be a positive fundamental discriminant and k ≥ 2 be an even integer. W.

Kohnen and D. Zagier [14] considered a modular form θDGk,4D|Tr4D4 Pr+ of weight

k + 1/2 for Γ0(4) in the Kohnen plus space. They proved that its image under Dth

Shimura-Kohnen lift equals a known constant times the square of an Eisenstein series

of weight 2k, level 1 (see proposition 3 of [14]). We consider a similar modular form

ΘDEk,4D,(D
. )
|Tr4D4 Pr+ of weight k+1/2 (k ≥ 2, even) for Γ0(4) in the Kohnen plus

space. We first sum up its cusp parts over all positive fundamental discriminants D

and get a cusp form of weight k+1/2 for Γ0(4) in the plus space, and characterize the

resulting cusp form (see theorem 5.2.1 in section 3). Finally, we characterize the above

modular form θDEk,4D,(D
. )
|Tr4D4 Pr+ for each positive fundamental discriminant D,

and get the following algebraic information.
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1.3. ORGANISATION OF THE THESIS

The results of G. Shimura and Y. Manin ( [26], [31]) show that the values of L-

functions associated with a normalized newform of integral weight belongs to a number

field. More precisely, if f ∈ Snew
2k (N) and L(f, s) =

∑
n≥1 af (n)n

−s (Re(s) >> 1)

is the associated L-series, and if Qf denotes the number field generated by all the

eigenvalues of f over Q, then they proved the existence of a real number ω such that

L(f, n)

πnω
∈ Qf , where 1 ≤ n ≤ 2k − 1.

Let 2|k and consider a normalized Hecke eigenform f of weight 2k, level 1 and the

associated unique non-zero Hecke eigenform g of weight k + 1/2 for Γ0(4). Both of

them are cusp forms with g|SD = ag(D)F for all positive fundamental discriminants

D, where SD denotes the Dth Shimura-Kohnen lift (see [11]). We prove that

ag(D)L(f, 2k − 1)

πk−1⟨g, g⟩L(D, k)
∈ Q.

To get this result, we use the fact that the Fourier coefficients of θDEk,4D,(D
. )
|Tr4D4 Pr+

are rational numbers.

1.3 Organisation of the thesis

This thesis is organised in the following way. In Chapter 2, we gather the necessary

definitions and preliminary results which will be used throughout the thesis. In Chapter
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1.3. ORGANISATION OF THE THESIS

3, we consider both plus spaces of the same weight k − 1/2 and character χ0 for the

groups Γ0(M),Γ0(4M), respectively. We derive the Shimura-Kohnen lifts on each of

the spaces and develop the respective theory of newforms for both the spaces. Next, in

Chapter 4 we derive the Eichler-Zagier canonical map and get the theory of newforms

for the space of Jacobi forms. Using this, we develop the theory of newforms for the

Maass space, and obtain the necessary Saito-Kurokawa isomorphism. Chapter 5 deals

with a certain kernel function associated with the L-values of a half-integral weight

Hecke eigenform. Finally, Chapter 6 concludes the thesis where we also mention few

problems for future work.
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Chapter 2
Preliminaries

This chapter gives the necessary definitions and properties regarding modular forms

of integral and half integral weight, Jacobi forms and Siegel modular forms of genus

two. We start with few notations.

Let (a, b) denote the gcd of given integers a, b. For complex numbers x and y with

y ̸= 0, define ey(x) := e2πix/y. For a real number r, let ⌊r⌋ denote the greatest integer

less than or equal to r. For integers a and n, let
(
a
n

)
denote the Kronecker symbol.

Let M2×2(R) denote the collection of all 2 × 2 matrices with real entries. For a

matrix A, let det(A) denote the determinant of A. We have the following subgroups

of M2×2(R):

• GL2(R) :=
{
A ∈M2×2(R) : det(A) ̸= 0

}
.

• GL+
2 (R) :=

{
A ∈M2×2(R) : det(A) > 0

}
.

17



• SL2(R) :=
{
A ∈ GL2(R) : det(A) = 1

}
.

Let GL2(Z) denote the collection of invertible 2× 2 matrices with integer entries. Let

GL+
2 (Z)(= SL2(Z)) denote the subgroup of GL2(Z) with determinant 1.

For an integerN , letΓ0(N) denote the congruence subgroup (of levelN ) of SL2(Z),

defined by

Γ0(N) :=


a b

c d

 ∈ SL2(Z) : N |c

 .

Note that when N = 1, Γ0(1) = SL2(Z). For integers M,N with M |N we denote

[Γ0(M) : Γ0(N)] to be the index of Γ0(N) in Γ0(M). Also, let

iM := [SL2(Z) : Γ0(M)].

Let H denote the upper half plane. i.e.,

H := {z = x+ iy : z ∈ C and y > 0}.

The group GL+
2 (R) acts on H by

a b

c d

 (τ) :=
aτ + b

cτ + d

where
(
a b
c d

)
∈ GL+

2 (R) and τ ∈ H.
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2.1. MODULAR FORMS OF INTEGRAL WEIGHT

Dirichlet character

Let N ≥ 1 be an integer. A complex valued arithmetical function χ : Z −→ C is

called a Dirichlet character χ modulo N if it satisfies the following properties:

i) periodic with period N :

χ(n+N) = χ(n) for all n ∈ Z,

ii) completely multiplicative:

χ(mn) = χ(m)χ(n) for all m,n ∈ Z,

iii) and

χ(n) = 0 if (n,N) > 1.

2.1 Modular forms of integral weight

Stroke operator:

Let f : H −→ C be a holomorphic function. Let k ≥ 1 be an integer and
(
a b
c d

)
∈

GL+
2 (Q). Then, the stroke operator ‘

∣∣
k
’ is defined by

f
∣∣
k

(
a b
c d

)
(z) := (ad− bc)k/2(cz + d)−kf

(
az + b

cz + d

)
.
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2.1. MODULAR FORMS OF INTEGRAL WEIGHT

When there is no ambiguity, we usually omit the subscript k.

Definition 2.1.1. (Modular form of integral weight): Let k ≥ 1, N ≥ 1 be integers

and χ be a Dirichlet character modulo N . A holomorphic function f : H −→ C is

called a modular form of weight k for Γ0(N) with character χ modulo N if it satisfies

i) automorphic property:

(f
∣∣
k
A)(z) = χ(d)f(z)

for all A =
(
a b
c d

)
∈ Γ0(N),

ii) and it is holomorphic at all the cusps of Γ0(N).

• The vector space of modular forms of weight k for Γ0(N) with character χ is

denoted by Mk(N,χ).

• A form f ∈ Mk(N,χ) is called a cusp form if if vanishes at all its cusps. The

vector space of all cusp forms in Mk(N,χ) is denoted by Sk(N,χ).

When χ is the trivial character, the space Mk(N,χ) (resp. Sk(N,χ)) is denoted

by Mk(N) (resp. Sk(N)). Moreover, when N = 1, the space Mk(1) (resp. Sk(1)) is

denoted by Mk (resp. Sk).

Definition 2.1.2. (Petersson inner product): For f1, f2 ∈ Mk(N,χ) with at least one

of them in Sk(N,χ), we define the Petersson inner product of f1 and f2 by

⟨f1, f2⟩ =
1

[SL2(Z) : Γ0(N)]

∫
Γ0(N)\H

f1(z)f2(z)y
k−2 dx dy.
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2.2. MODULAR FORMS OF HALF-INTEGRAL WEIGHT

Definition 2.1.3. (Hecke operators): For an integer m ≥ 1, define the m-th Hecke

operator Tm on Mk(N,χ) by :

Tm(f) := mk/2−1
∑
ad=m

(a,N)=1
a>0

χ(a)
∑

b (mod d)

f

∣∣∣∣
k

a b

0 d

 .

Certain shift operators:

Let f =
∑

n≥0 af (n)e
2πinτ be a formal power series where af (n) denotes the n-th

coefficient of f . Letm ≥ 1 be an integer. The operator Bm is defined on formal series

by

Bm :
∑
n≥0

ag(n)e
2πinτ −→

∑
n≥0

ag(n)e
2πinmτ ,

and the operator Um is defined on formal series by

Um :
∑
n≥0

ag(n)e
2πinτ −→

∑
n≥0

ag(mn)e
2πinτ .

2.2 Modular forms of half-integral weight

LetG denote the collection of all ordered pairs (A, ϕ(τ)), whereA =
(
a b
c d

)
∈ GL+

2 (R)

and ϕ(τ) is a holomorphic function on H such that

ϕ2(τ) = t
cτ + d√
det(A)

, t ∈ {±1} .

21



2.2. MODULAR FORMS OF HALF-INTEGRAL WEIGHT

G forms a group under the group law:

(A, ϕ(τ))(B,ψ(τ)) := (AB, ϕ(Bτ)ψ(τ)).

For congruence subgroups Γ0(4M) we take the embedding Γ0(4M) ↪→ G

Γ∗
0(4M) = {(α, j(α, τ)) : α =

(
a b
c d

)
∈ Γ0(4M), j(α, τ) =

(
c

d

)(
−4

d

)− 1
2

(cτ+d)
1
2}.

Stroke operator:

For a complex valued function g defined on the upper half plane H and (A, ϕ(τ)) ∈ G,

we define the stroke operator by

g
∣∣
k+ 1

2

(A, ϕ(τ))(τ) := ϕ(τ)−2k−1g(Aτ).

Definition 2.2.1. (Modular form of half-integral weight): Let k ≥ 1,N ≥ 1 be integers

and χ be a Dirichlet character modulo 4N . A holomorphic function g : H −→ C is

called a modular form of weight k+1/2 for Γ0(4N) with character χ modulo 4N if it

satisfies

i) automorphic property:

(g
∣∣
k+1/2

A∗)(z) = χ(d)g(z),

for all A =
(
a b
c d

)
∈ Γ0(4N),
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2.2. MODULAR FORMS OF HALF-INTEGRAL WEIGHT

ii) and it is holomorphic at all the cusps of Γ0(4N).

• The vector space of modular forms of weight k+1/2 for Γ0(4N) with character

χ is denoted by Mk+1/2(4N,χ).

• A form f ∈ Mk+1/2(4N,χ) is called a cusp form if if vanishes at all its cusps.

The vector space of all cusp forms inMk+1/2(4N,χ) is denoted bySk+1/2(4N,χ).

When χ is the trivial character, the space Mk+1/2(4N,χ) (resp. Sk+1/2(4N,χ)) is

denoted by Mk+1/2(4N) (resp. Sk+1/2(4N)).

Definition 2.2.2. (Petersson inner product): For g1, g2 ∈ Sk+1/2(4N,χ), we define the

Petersson inner product of g1 and g2 by

⟨g1, g2⟩ =
1

[Γ0(N) : Γ0(4N)]

∫
Γ0(4N)\H

g1(z)g2(z)y
k−3/2 dx dy.

Definition 2.2.3. (Hecke operators): Let g =
∑

n≥0 af (n)e
2πnτ ∈ Mk+1/2(4N,χ).

Let p ∤ 4N be a prime. Then, the p-th Hecke operator Tp2 is given by its action on the

Fourier coefficients in the following way: let

g|Tp2 =
∑
n≥0

b(n)e2πnτ .

Then,

b(n) = ag(p
2n) + χ(p)

(
(−1)kn

p

)
pk−1ag(n) + χ(p2)p2k−1ag(n/p

2),
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where ag(n/p2) = 0 if p2 ̸ |n.

2.3 Jacobi forms

Let H(Q) denote the Heisenberg group and GJ(Q) denote the Jacobi group over Q,

defined by

GJ(Q) := GL+
2 (Q)⋉ H(Q).

For a congruence subgroup Γ0(N), consider

Γ0(N)J :=
{
(M, (λ, µ), γ) ∈ GJ(Q) :M ∈ Γ0(N), λ, µ, γ ∈ Z

}
.

Let y be a complex number and ℓ be a non-negative integer. We use the following

notations:

e(y) := e2πiy and eℓ(y) := e(ℓy) = e2πiℓy.

Stroke operators:

Let ϕ : H× C −→ C be a holomorphic function. Let k ≥ 1. For M ∈ GL+
2 (R) with

det(M) = g and (λ, µ, γ) ∈ H(Q), let

(ϕ
∣∣
k,ℓ
[M ])(τ, z) := (cτ + d)−keℓg

(
− cz2

cτ + d

)
ϕ

(
aτ + b

cτ + d

)
,

(ϕ
∣∣
ℓ
[(λ, µ), γ]) := eℓ(λ2τ + 2λz + λµ+ γ)ϕ(τ + z + λτ + µ).

We usually omit the subscripts ‘k,m’ when there is no ambiguity.
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Definition 2.3.1. (Jacobi form): Let k, ℓ,N ≥ 1 be integers and χ be a Dirichlet

character modulo N . A holomorphic function ϕ : H×C −→ C is said to be a Jacobi

form of weight k, index ℓ for Γ0(N)J with character χ if it satisfies

i) automorphic properties:

a) for any M =
(
a b
c d

)
∈ Γ0(N),

ϕ
∣∣
k,ℓ
[M ] = χ(d)ϕ,

b) and for any λ, µ ∈ Z,

ϕ
∣∣
ℓ
[(λ, µ)] = ϕ;

ii) for any M ∈ SL2(Z), ϕ
∣∣
k,ℓ
[M ] has a Fourier expansion of the form

ϕ
∣∣
k,ℓ
[M ](τ, z) =

∑
n,r∈Z,
r2≤4nℓ

cϕ(n, r)e(nτ + rz).

• The vector space of Jacobi forms of weight k, index ℓ for Γ0(N)J with character

χ modulo N is denoted by Jk,ℓ(N,χ).

• A form ϕ ∈ Jk,ℓ(N,χ) is called a Jacobi cusp form if cϕ(n, r) = 0 unless r2 <

4nℓ. The vector space of all cusp forms in Jk,ℓ(N,χ) is denoted by J cuspk,ℓ (N,χ).

Note: Let n, r, n′, r′ ∈ Z with r2 < 4nℓ, r′2 < 4n′ℓ. Then we have cϕ(n, r) =

cϕ(n
′, r′) if r′2 − 4n′ℓ = r2 − 4nℓ and r′ ≡ r (mod 2ℓ). Thus, we write the Fourier
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expansion of ϕ as

ϕ(τ, z) =
∑

D<0,r∈Z,
D≡r2 (mod 4nℓ)

cϕ(D, r)e

(
r2 −D

4ℓ
τ + rz

)
.

Definition 2.3.2. (Petersson inner product): For ϕ1, ϕ2 ∈ J cuspk,1 (N,χ), we define the

Petersson inner product of ϕ1 and ϕ2 by

⟨ϕ1, ϕ2⟩ =
1

[SL2(Z) : Γ0(N)]

∫
ΓJ
0\H×C

ϕ1(τ, z), ϕ2(τ, z)v
k−3e(−4πy2)/v dx dy du dv,

where τ = u+ iv, v > 0, z = x+ iy and Γ0(N)J is the Jacobi group of level N .

Definition 2.3.3. (Hecke operators): Let

ϕ(τ, z) ==
∑
n,r∈Z,
r2≤4nℓ

cϕ(n, r)e(nτ + rz) ∈ Jk,1(N,χ).

We define the Hecke operators TJ(p) (p ̸ |N ) and UJ(p) (p|N ) by their action on the

Fourier coefficients of ϕ in the following way:

cϕ|TJ (p) = cϕ(p
2D, pr) + pk−2χ(p)

(
D

p

)
cϕ(D, r) + p2k−3χ(p)2cϕ(D/p

2, D/p)

and

cϕ|UJ (p) = cϕ(p
2D, pr).
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For a comprehensive theory of Jacobi forms, we refer to [6, 8].

2.4 Siegel modular forms

For a matrix Z ∈ M2×2(C), let Zt denote the transpose of Z. If Z is positive definite,

we denote it byZ > 0. A matrix T is called a half integral matrix if the diagonal entries

of T are integers and off-diagonal entries are half-integers. We have the following

definitions:

• Siegel upper half space (of genus 2) :

H2 := {Z ∈ M2×2(C) : Z = Zt, Im(Z) > 0}.

• Siegel modular group :

Sp4(Z) :=

M ∈ GL4(Z) :M tJM =M,J =

 02 I2

−I2 02


 .

• Congruence subgroup

Γ2
0(N) :=

M =

A B

C D

 ∈ Sp4(Z) : C ≡ 0 (mod N)

 .

Definition 2.4.1. (Siegel modular form): Let k,N ≥ 1 be integers, andχ be a Dirichlet

character moduloN . A holomorphic functionF : H2 −→ C is called a Siegel modular
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form of weight k for Γ2
0(N) with character χ if it satisfies:

F |
(
A B
C D

)
(Z) := χ(det(A))(det(CZ +D))−kF ((AZ +B)(CZ +D)−1) = F (Z)

for all
(
A B
C D

)
∈ Γ2

0(N).

• The vector space of Siegel modular forms of weight k for Γ2
0(N) with character

χ is denoted by Mk(Γ
2
0(N), χ).

• To define a cusp form, we embed an SL2(Z) element into Sp4(Z) by

(
a b
c d

)
−→

(
A B
C D

)

where A = ( a 0
0 1 ), B =

(
b 0
0 1

)
, C = ( c 0

0 1 ) and D =
(
d 0
0 0

)
.

• For any F ∈ Mk(Γ
2
0(N), χ) and for the above embedding of an SL2(Z) element

in Sp4(Z), we have the following Fourier expansion of the form

F |
(
A B
C D

)
(Z) =

∑
T=T t≥0

T half integral

A
F ;

(
A B
C D

)(T )e2πiTr(TZ).

Now, F is a cusp form if and only if A
F ;

(
A B
C D

)(T ) = 0 for all T ≥ 0 with

det(T ) = 0 in the above Fourier expansion.

Hecke operators: Let

GSp+
4 (R) = {g ∈ M2×2(R) : gtJg = n(g)J, n(g) > 0}.
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Let g ∈ GSp+
4 (Q) ∩ M2×2(Z) with gJgt = n(g)J . Consider the following double

coset decomposition:

T = Γ2
0(N)gΓ2

0(N) =
⋃
ν

Γ2
0(N)

Aν Bν

Cν Dν

 .

We assume that each det(Aν) is co prime to N . Then, for any F ∈ Mk(Γ
2
0(N), χ),

we consider the action of T by

F |k,χT = n(g)2k−3
∑
ν

χ(det(Aν)) det(CνZ +Dν)
−kF ((AνZ +Bν)(CνZ +Dν)

−1).

Whenp ∤ N , for any diagonal matrix diag(pa, pb, pc, pd) with a + c = b + d and

p ∤ N , let

TS(p
a, pb, pc, pd) = Γ2

0(N)



pa 0 0 0

0 pb 0 0

0 0 pc 0

0 0 0 pd


Γ2
0(N).

Let us define the following (Hecke operators):

TS(p) = TS(1, 1, p, p),

TS(p
2) = TS(1, p, p

2, p) + TS(1, 1, p
2, p2) + TS(p, p, p, p),

T ′
S(p) = TS(p)

2 − TS(p
2).
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Note that,

T ′
S(p) = pTS(1, p, p

2, p) + p(1 + p+ p2)TS(p, p, p, p).

Moreover, when p|N we have

US(p) = Γ2
0(N)diag(1, 1, p, p)Γ2

0(N).

For the details we refer to [8].
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Chapter 3
Newforms of half-integral weight

In this chapter, we develop the theory of newforms for the spaces S+
k−1/2(M,χ0) and

S+
k−1/2(4M,χ0), where k ≥ 2, 32|M and χ is a primitive character modulo M such

that χ2 is a primitive character modulo M/2.

3.1 Preliminaries

Throughout this chapter, we let k ≥ 2,N ≥ 1 to be integers such that 32|N . Let χ be a

primitive Dirichlet character modulo M such that χ2 is a primitive Dirichlet character

modulo M/2. Let χ0 = χ
(

4χ(−1)
·

)
.

LetMk−1/2(M,χ0) denote the space of modular forms of weight k−1/2 for Γ0(M)

with characterχ0. LetSk−1/2(M,χ0) denote the space of cusp forms inMk−1/2(M,χ0).
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For g ∈Mk−1/2(M,χ0), we write its Fourier expansion at the cusp ∞ as

g(z) =
∑
n≥0

ag(n)e
2πinz.

If m ≥ 1 is an integer, the operator Bm is defined on formal series by

Bm :
∑
n≥0

ag(n)e
2πinz −→

∑
n≥0

ag(n)e
2πinmz.

Projection operator and plus space:

Let

ξ =


4 1

0 4

 , ϵ1/2eπi/4

 and ξ′ =


4 −1

0 4

 , ϵ−1/2e−πi/4

 .

Then, formal computations show that both g|ξ and g|ξ′ belong to Mk−1/2(M,χ0) for

all g ∈ Mk−1/2(M,χ0). Also, if g is a cusp form, g|ξ and g|ξ′ are cusp forms. The

projection operator is defined on Mk−1/2(M,χ0) by

Pr+ :=

(
8

2k − 1

)
1

2
√
2ϵ
(ξ + ξ′) +

1

2


1 0

0 1

 , 1

 ,

and we let g|Pr+ for its image, where g ∈ Mk−1/2(M,χ0). For this we refer to [21].

Define

M+
k−1/2(M,χ0) :=Mk−1/2(M,χ0)|Pr+, and

S+
k−1/2(M,χ0) := Sk−1/2(M,χ0) ∩M+

k−1/2(M,χ0).
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Then, formal computations give

g|Pr+ =
∑
n≥0

ϵ(−1)k−1n≡0,1 (mod 4)

ag(n)e
2πinz,

where g =
∑

n≥0 ag(n)e
2πinz. For an integer n ≥ 1, (n,M) = 1, let Tn2 denote n-th

Hecke operator onMk−1/2(4M,χ0). It preserves the space of cusp formsSk−1/2(4M,χ0).

A non-zero form g ∈ S+
k−1/2(4M,χ0) is called a Hecke eigenform if it is a simultane-

ous eigenform for all the Hecke operators Tn2 , (n,M) = 1.

Let S2k−2(M/2, χ2) denote the space of cusp forms of weight 2k − 2, level M/2

and character χ2. Let Tn ((n,M) = 1) and Un(n|M ) denote the Hecke operators, and

Wpa (p a prime, pa|M/2 and pa+1 ∤M/2) denote theW operator on S2k−2(M/2, χ2) as

in [3,17]. By a normalised newform f ∈ S2k−2(M/2, χ2)we mean an eigenform for all

the operators Tn((n,M) = 1), Un(n|M ) andWpa (p a prime, pa|M/2 and pa+1 ∤M/2)

with af (1) = 1.

Shimura-Kohnen lift: IfD ≡ 1(4) is a fundamental discriminant with ϵ(−1)k−1D >

0, we consider theD-th Shimura-Kohnen liftSD which is the same as theD-th Shimura

lift, given by

g|SD =
∑
n≥1

∑
d|n

χ(d)

(
D

d

)
dk−2ag

(
|D|n2

d2

) e2πinz,

where g ∈ Sk−1/2(M,χ0).
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k−1/2(4M,χ0)

3.2 Newforms for the spacesS+
k−1/2(M,χ0) andS+

k−1/2(4M,χ0)

In this section, we develop the theory of newforms for both the spaces S+
k−1/2(M,χ0)

and S+
k−1/2(4M,χ0), where k ≥ 2 and χ (modM) is primitive.

3.2.1 Theory of newforms of S+
k−1/2(M,χ0)

Poincaré series:

Letn ≥ 1 be an integer. LetPk−1/2,M,χ0;n denote then-th Poincarè series inSk−1/2(M,χ0)

( [24], page 238) characterized by

< g, Pk−1/2,M,χ0;n >= i−1
M

Γ(k − 3/2)

(4πn)k−3/2
ag(n) for all g ∈ Sk−1/2(M,χ0).

Let

P+
k−1/2,M,χ0;n

= Pk−1/2,M,χ0;n

∣∣Pr+.
Then using proposition 2 of [24], we have the Fourier expansion of P+

k−1/2,M,χ0;n
in the

following lemma.

Lemma 3.2.1. Let n be a positive integer such that ϵ(−1)k−1n ≡ 0, 1 (mod 4). We

have

P+
k−1/2,M,χ0;n

(τ) =
∑
m≥1

ϵ(−1)k−1m≡0,1 (mod 4)

g+k−1/2,M,χ0;n
(m)e2πimτ , (3.1)
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where

g+k−1/2,M,χ0;n
(m) = δn,m + π

√
2(−1)⌊

k
2
⌋(1− (−1)k−1i)(m/n)k/2−3/4

×
∑
c≥1

HMc,χ(m,n)Jk−3/2

(
4π

√
mn

Mc

)
,

δn,m is the Kronecker delta, Jk−3/2(.) is the Bessel function and

HMc,χ(m,n) =
1

Mc

∑
δ (mod Mc)∗

χ0(δ)

(
Mc

δ

)(
−4

δ

)k−1/2

eMc(mδ + nδ−1)

with δ−1 ∈ Z and δδ−1 ≡ 1 (modMc) is a Kloosterman type sum.

We state the following which we will use later.

Lemma 3.2.2. With notations as above,

g+k−1/2,M,χ0;n
(m) = (m/n)k−3/2g+k−1/2,M,χ0;m

(n). (3.2)

A certain period function F2k−2,M/2,χ2;|D|M2m,D,χ:

We first let k > 2 and derive the results. If k = 2, we mention appropriate changes

later in order to get the results (see the paragraph before lemma 3.2.7). Letm ≥ 1 be an

integer with ϵ(−1)k−1m ≡ 0, 1 (mod 4). Let D be an odd fundamental discriminant

with ϵ(−1)k−1D > 0. Let QM2/4,|D|M2m be the set of all integral binary quadratic

forms Q(x, y) := ax2 + bxy + cy2 having discriminant b2 − 4ac = |D|M2m and
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a ≡ 0 (mod M2/4). If Q = Q(x, y) ∈ QM2/4,|D|M2m, define the genus character

χD (see, [13]) by χD(Q) =
(
D
r

)
or 0 according as (a, b, c,D) = 1 or not, where Q

represents r. Define a period function in S2k−2(M/2, χ2) by

F2k−2,M/2,χ2;|D|M2m,D,χ(z) =
∑

Q=[a,b,c],
Q∈QM2/4,|D|M2m

χ(c)χ
D
(Q)Q(z, 1)−(k−1).

Similar function has been considered by Kohnen in [13] for trivial character and for

odd M and for a generic case where the conductor of χ depends on the even part of

the level, similar functions have been constructed in [24] in connection with Shimura

correspondence. Note that

F2k−2,M/2,χ2;|D|M2m,D,χ ∈ S2k−2(M/2, χ2).

For f ∈ S2k−2(M/2, χ2), let

r2k−2,M/2,χ2(f ; |D|M2m,D, χ) =
∑

Q (mod Γ0(M/2)),
|Q|=|D|M2m,
4a≡0 (mod M2)

χ(c)χD(Q)

∫
CQ

f(z)dQ,kz

where CQ is the image in Γ0(M/2)\H of the semicircle az2+bRe(z)+c = 0 oriented

from (−b−
√

|D|M2m)/2a to (−b+
√
|D|M2m)/2a, if a ̸= 0 or of the vertical line

bRe(z) + c = 0 oriented from −c/b to i∞ if b > 0 and from i∞ to −c/b, if a = 0,

and dQ,kz = (az2 − bz + c)k−2dz. Then, we have
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Proposition 3.2.3 (see: [13], proposition 7 and [24], proposition 4). For f ∈ S2k−2(M/2, χ2),

⟨f(z), F2k−2,M/2,χ2;|D|M2m,D,χ(−z)⟩ =
π 2−2k+4

(
2k−4
k−2

)
iM/2(|D|M2m)k−3/2

r2k−2,M/2,χ2(f ; |D|M2m,D, χ).

We state the Fourier expansion of F2k−2,M/2,χ2;|D|M2m,D,χ in the following:

Proposition 3.2.4 (see: [24], proposition 1).

F2k−2,M/2,χ2;|D|M2m,D,χ(z) =
∑
n≥1

C2k−2,M/2,χ2;|D|M2m,D,χ(n; |D|M2m)e2πinz, (3.3)

where

C2k−2,M/2,χ2;|D|M2m,D,χ(n; |D|M2m)

=
2(−2π)k−1

Mk−3/2(k − 2)!
(n2/m|D|)(k−2)/2

{
(−1)⌊k/2⌋χ(n/

√
m/|D|)

×Rχ,D

(
D

n/
√
m/|D|

)
δ(n/

√
m/|D|)|D|−1/2

+ π
√
2(n2/m|D|)1/4

×
∑
a≥1,
M2|4a

a−1/2Sa,χ(|D|M2m,n)Jk−3/2

(
πn
√
|D|M2m

a

)}
,

Rχ,D is the Gauss sum given by

Rχ,D = (M |D|)−1/2

(
4ϵD

−1

)−1/2 ∑
r (mod M |D|)

χ(r)

(
D

r

)
eM |D|(r),
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Sa,χ(|D|M2m,n) is the finite exponential sum given by

Sa,χ(|D|M2m,n) =
∑

b (mod 2a),
b2≡|D|M2m (mod 4a)

χ

(
b2 − |D|M2m

4a

)
χD

(
a, b,

b2 − |D|M2m

4a

)
e2a(nb),

and

δ(x) =


1 if x ∈ Z,

0 otherwise.

Action of Shimura map on Poincarè series

To get

SD;k−1/2,M,χ0
: S+

k−1/2(M,χ0) −→ S2k−2(M/2, χ2),

we derive the image of Poincaré series under Shimura lifts.

Proposition 3.2.5.

P+
k−1/2,M,χ0;m

|SD;k−1/2,M,χ0 = λk,D,M,χF2k−2,M/2,χ2;|D|M2m,D,χ, (3.4)

where

λk,D,M,χ =

(
2(−2π)k−1

(k − 2)!
(M |D|)−k+3/2(−1)⌊k/2⌋Rχ,D

)−1

.

Proof. Let

P+
k−1/2,M,χ0;m

|SD;k−1/2,M,χ0 =
∑
n≥1

b(n)e2πinz.
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Using the equations (3.1) and (3.2) we get

b(n) =
∑
d|n

χ(d)

(
D

d

)
dk−2(|D|n2/d2m)k−3/2

×
(
δ |D|n2

d2
,m

+ π
√
2(−1)⌊

k
2
⌋(1− (−1)k−1i)(m/

|D|n2

d2
)k/2−3/4

×
∑
c≥1

HMc,χ(m,
|D|n2

d2
)Jk−3/2

4π
√
m |D|n2

d2

Mc

)

=

(∑
d|n

χ(d)

(
D

d

)
d−k+1(|D|n2/m)k−3/2δ |D|n2

d2
,m

)

+

(
π
√
2(−1)⌊

k
2
⌋(1− (−1)k−1i)

×
∑
d|n

χ(d)

(
D

d

)
dk−2(|D|n2/d2m)k−3/2(m/

|D|n2

d2
)k/2−3/4

×
∑
c≥1

HMc,χ(m,
|D|n2

d2
)Jk−3/2

(
4πn

√
m|D|

Mcd

))

=

(
χ(n/

√
m/|D|)

(
D

n/
√
m/|D|

)

× (n/
√
m/|D|)−k+1(|D|n2/m)k−3/2δ(n/

√
m/|D|)

)
+

(
π
√
2(−1)⌊

k
2
⌋(1− (−1)k−1i)

×
∑
d|n

χ(d)

(
D

d

)
dk−2(|D|n2/d2m)k−3/2(m/

|D|n2

d2
)k/2−3/4

×
∑
c≥1

HMc,χ(m,
|D|n2

d2
)Jk−3/2

(
4πn

√
m|D|

Mcd

))
.

(3.5)
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Substituting (3.5) and (3.3) into left- and right-hand sides of equation (3.4) respectively,

it is enough to prove that,

(
χ(n/

√
m/|D|)

(
D

n/
√

m/|D|

)
(n/
√
m/|D|)−k+1(|D|n2/m)k−3/2δ(n/

√
m/|D|)

)

+

(
π
√
2(−1)⌊

k
2
⌋(1− (−1)k−1i)

×
∑
d|n

χ(d)

(
D

d

)
dk−2(|D|n2/d2m)k−3/2(m/

|D|n2

d2
)k/2−3/4

×
∑
c≥1

HMc,χ(m,
|D|n2

d2
)Jk−3/2

(
4πn

√
m|D|

Mcd

))

=

(
λk,D,M,χ

2(−2π)k−1

(k − 2)!
M−k+3/2(n2/m|D|)(k−2)/2

× (−1)⌊k/2⌋Rχ,D χ(n/
√
m/|D|)

(
D

n/
√
m/|D|

)
δ(n/

√
m/|D|)|D|−1/2

)

+

(
λk,D,M,χ

2(−2π)k−1

(k − 2)!
M−k+3/2(n2/m|D|)(k−2)/2

× π
√
2(n2/m|D|)1/4

∑
a≥1,
M2|4a

a−1/2Sa,χ(|D|M2m,n)Jk−3/2

(
πn
√
|D|M2m

a

))
.

(3.6)

The first terms on both sides of equation (3.6) vanishes if m/|D| is not a square of an

integer and if n ̸=
√
m/|D|. Suppose this happens and if n =

√
m/|D|, then both

first terms are equal in the above equation. Now, we compare the second terms on both

sides of (3.6). Substituting cd = a on the left-hand side of (3.6), it is enough to prove
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that

π
√
2(−1)⌊

k
2
⌋(1− (−1)k−1i)

×
∑
d|(a,n)

χ(d)

(
D

d

)
dk−2(|D|n2/d2m)k−3/2(m/

|D|n2

d2
)k/2−3/4

×
∑
a≥1

HMa/d,χ(m,
|D|n2

d2
)Jk−3/2

(
4πn

√
m|D|

Ma

)

= λk,D,M,χ
2(−2π)k−1

(k − 2)!
M−k+3/2(n2/m|D|)(k−2)/2π

√
2(n2/m|D|)1/4

×
∑
a≥1

((M/2)2a)−1/2Sa(M/2)2,χ(M
2|D|m,n)Jk−3/2

(
4πn

√
m|D|

Ma

)
.

i.e.,

π
√
2(−1)⌊

k
2
⌋(1− (−1)k−1i)

∑
d|(a,n)

χ(d)

(
D

d

)
d−1/2|D|k/2−3/4nk−3/2m−k/2+3/4

×
∑
a≥1

HMa/d,χ(m,
|D|n2

d2
)Jk−3/2

(
4πn

√
m|D|

Ma

)

= ((−1)⌊
k
2
⌋Rχ,D)

−1|D|k/2−3/4nk−3/2m−k/2+3/4π
√
2

×
∑
a≥1

((M/2)2a)−1/2Sa(M/2)2,χ(M
2|D|m,n)Jk−3/2

(
4πn

√
m|D|

Ma

)
,

which follows from the proposition stated below and whose proof needs a standard set

of arguments. Hence we omit the details; for a proof, we refer to ( [13], proposition

5; [24], proposition 3).
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Proposition 3.2.6. For all a,m, n ∈ N, we have

SaM2/4,χ(M
2|D|m,n) = Rχ,D

√
aM2/4(1− (−1)k−1i)

×
∑
d|(a,n)

χ(d)

(
D

d

)
d−1/2HMa/d,χ(m,

|D|n2

d2
).

Let D, ϵ(−1)k−1D > 0 be a fundamental discriminant. The adjoint of Shimura

map SD;k−1/2,M,χ0 is given by

S∗
D;2k−2,M/2,χ2 : S2k−2(M/2, χ2) −→ S+

k−1/2(M,χ0).

We now let k = 2. All the stated results in the above subsection are still valid. We

define the required period function when k = 2, by using the standard ‘Hecke trick’

as in [13]. We leave the details, since we need to proceed along the same lines of

arguments of the quoted paper by Kohnen. We make the following observation. Let

k = 2 andN be an arbitrary odd integer. The proof of Theorem 2 of [13] shows that the

Shintani map S∗
D maps the first Poincaré series P2,N ;1 ∈ S2(N) into |D|-th Poincaré

series P+
3/2,4N ;|D| ∈ S+

3/2(4N). These results are also valid in our case.

We now compare the dimensions of the certain spaces under the stated assumptions.

We have

42



3.2. NEWFORMS FOR THE SPACES S+
k−1/2(M,χ0) AND S+

k−1/2(4M,χ0)

Lemma 3.2.7.

dimSk−1/2(M,χ0) = dimS2k−2(M/2, χ2) =
1

2
dimS2k−2(M,χ2).

Proof. Let k > 2. Using the notations as in [29], we have

dimSk−1/2(M,χ0) =
(k − 3/2)2α−2N

12
.
3

2

∏
p|N

(1 + 1/p)− ζ(k − 1/2, 2α−2N,χ0)

2

∏
p|N

2,

= (2k − 3)2α−6N
∏
p|N

(1 + 1/p)− 2ν(N)

dimS2k−2(M/2, χ2) =
(2k − 3)2α−3N

12
.
3

2

∏
p|N

(1 + 1/p)− λ(r2, s2, 2)

2

∏
p|N

2

= (2k − 3)2α−6N
∏
p|N

(1 + 1/p)− 2ν(N),

where ν(N)= number of distinct primes dividing N . Hence, dimSk−1/2(M,χ0) =

dimS2k−2(M/2, χ2). In a similar manner we can verify

dimS2k−2(M/2, χ2) =
1

2
dimS2k−2(M,χ2).

This completes the proof of the lemma for the case k > 2. The proof for k = 2 follows

using the same computations combined with the following facts. Since cond(χ) =M

the space M1/2(M,χ0) becomes trivial, which follows from the work of Serre-Stark

(see the Theorem A in [30]). Similarly, since χ is not the trivial character, we also

observe that both the spacesM0(M/2, χ2) andM0(M,χ2) are trivial (see, for example,
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the Theorem 7.4.1 of [5]).

We now state the theorem regarding newforms for the space S+
k−1/2(M,χ0):

Theorem 3.2.8. Let k ≥ 2, 32|M , cond(χ) =M and cond(χ2) =M/2. Then,

S+
k−1/2(M,χ0) = Sk−1/2(M,χ0).

There exists a finite linear combination of Shimura lifts ψK which defines an isomor-

phism from S+
k−1/2(M,χ0) into S2k−2(M/2, χ2). In particular, we have the strong

multiplicity one theorem on S+
k−1/2(M,χ0).

Proof. (Theorem 3.2.8) Let d = dimS2k−2(M/2, χ2) = dimSk−1/2(M,χ0) and

{f1, f2, . . . , fd} be the orthogonal basis of normalised Hecke eigenforms ofS2k−2(M/2, χ2).

For each i, 1 ≤ i ≤ d select a normalised Hecke eigenform f(= fi) and then a funda-

mental discriminantD(= Di)with ϵ(−1)k−1D > 0, (D,M) = 1 andL(f, χ
(
D
·

)
, k−

1) ̸= 0. Since |D|-th Fourier coefficient of f |S∗
D;2k−2,M,χ is equal to a non-zero con-

stant multiple of L(f, χ
(
D
·

)
, k − 1), by using the arguments which give the Theorem

4.1 of [15], we derive that the d cusp forms fi|S∗
Di;2k−2,M,χ constructed as above forms

an orthogonal set in S+
k−1/2(M,χ0).

Thus we select an orthogonal set of cusp forms {gi : 1 ≤ i ≤ d} in S+
k−1/2(M,χ0)
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such that

gi|SD;k−1/2,M,χ0 = agi(|D|)fi and
fi

< fi, fi >
|S∗
D;2k−2,M/2,χ2 = agi(|D|) gi

< gi, gi >

hold good.

Now S+
k−1/2(M,χ0) is a subspace of Sk−1/2(M,χ0) having d = dimSk−1/2(Mχ0)

linearly independent cusp forms, and hence we conclude that

S+
k−1/2(M,χ0) = Sk−1/2(M,χ0).

This completes the proof of Theorem 3.2.8.

3.2.2 Theory of newforms of S+
k−1/2(4M,χ0)

Let n ≥ 1 be an integer and let Pk−1/2,4M,χ0;n denote the n-th Poincarè series in

Sk−1/2(4M,χ0) characterized by

< g, Pk−1/2,4M,χ0;n >= i−1
4M

Γ(k − 3/2)

(4πn)k−3/2
ag(n) for all g ∈ Sk−1/2(4M,χ0).

Let

P+
k−1/2,4M,χ0;n

= Pk−1/2,4M,χ0;n

∣∣Pr+.
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Let k > 2 and F2k−2,M,χ2;|D|M2m,D,χ denote the function defined by

F2k−2,M,χ2;|D|M2m,D,χ(z) =
∑

Q=[a,b,c],
Q∈QM2,|D|M2m

χ(c)χ
D
(Q)Q(z, 1)−(k−1).

Note that F2k−2,M,χ2;|D|M2m,D,χ ∈ S2k−2(M,χ2).

If k = 2, then we define Poincaré series and the period functions in S2(M,χ2) as

defined by Kohnen in [13] and the stated results in this subsection are valid.

We have the following result, when k ≥ 2 and with other conditions assumed onM ,

χ and χ2. The proof follows using similar arguments as in the proof of the Proposition

3.2.5:

Proposition 3.2.9.

P+
k−1/2,4M,χ0;m

|SD;k−1/2,4M,χ0 = λk,D,M,χF2k−2,M,χ2;|D|M2m,D,χ,

where

λk,D,M,χ =

(
2(−2π)k−1

(k − 2)!
(M |D|)−k+3/2(−1)⌊k/2⌋Rχ,D

)−1

.

Hence, image of P+
k−1/2,4M,χ0;m

under the map SD;k−1/2,4M,χ0 is a constant multiple

of the period functionF2k−2,M,χ2;|D|M2m,D,χ. SinceF2k−2,M,χ2;|D|M2m,D,χ ∈ S2k−2(M,χ2),

and all the Poincaré series P+
k−1/2,4M,χ0;m

span the space S+
k−1/2(4M,χ0) we conclude

that

SD;k−1/2,4M,χ0
: S+

k−1/2(4M,χ0) −→ S2k−2(M,χ2).
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We now observe the following.

Lemma 3.2.10. Snew2k−2(M,χ2) = {0}.

Proof. Since cond(χ2) = M/2, the theory of newforms developed by W. Li in [17]

gives

S2k−2(M,χ2) = (S2k−2(M/2, χ2)⊕ S2k−2(M/2, χ2)|B2)
⊕

Snew2k−2(M,χ2).

NowB2 is an injective linear map and since dimS2k−2(M,χ2) = 2 dimS2k−2(M/2, χ2),

we get

Snew2k−2(M,χ2) = {0}.

We define

S+,old
k−1/2(4M,χ0) = S+

k−1/2(M,χ0)⊕ S+
k−1/2(M,χ0)|B4

and S+,new
k−1/2 (4M,χ0) as the orthogonal complement of S+,old

k−1/2(4M,χ0) with respect to

the Petersson scalar product. We have

Lemma 3.2.11. S+,new
k−1/2 (4M,χ0) = {0}.
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Proof. We first observe the direct sum decomposition

S+
k−1/2(4M,χ0) = S+

k−1/2(M,χ0)⊕ S+
k−1/2(M,χ0)|B4

⊕
S+,new
k−1/2 (4M,χ0)

and

S2k−2(M,χ2) = S2k−2(M/2, χ2)⊕ S2k−2(M/2, χ2)|B2.

Proposition 3.2.5 and Proposition 3.2.9 give

SD : S+
k−1/2(4M,χ0) −→ S2k−2(M,χ2)

and

SD : S+
k−1/2(M,χ0) −→ S2k−2(M/2, χ2),

where we use SD = SD;k−1/2,M,χ0 or SD = SD;k−1/2,4M,χ0 . Let g ∈ S+
k−1/2(M,χ0).

Since SD commutes with B4 and B2 as

g|B4SD = g|SDB2,

each of the Shimura map SD maps

S+
k−1/2(M,χ0)⊕ S+

k−1/2(M,χ0)|B4
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into the space

S2k−2(M/2, χ2)⊕ S2k−2(M/2, χ2)|B2.

Since SD maps S+
k−1/2(4M,χ0) into S2k−2(M,χ2) and the Shimura correspondence

preserves eigenclasses with respect to Hecke operatorsTn2 , (n,M) = 1, if g ∈ S+,new
k−1/2 (4M,χ0)

then g|SD belongs to Snew2k−2(M,χ2), and hence g|SD = 0 for all such fundamental

discriminants D. This proves g = 0, if not there exists a fundamental discriminant

D, (D,M) = 1 with ag(|D|) ̸= 0 so that g|SD ̸= 0, which is not true. Now the result

follows.

We now state the theorem regarding newforms for the spaceS+
k−1/2(4M,χ0), whose

proof is obtained by combining the above results.

Theorem 3.2.12. Let k ≥ 2, 32|M , cond(χ) =M and cond(χ2) =M/2. Then,

S+,new
k−1/2 (4M,χ0) = {0} and Snew2k−2(M,χ2) = {0},

S+
k−1/2(4M,χ0) = S+

k−1/2(M,χ0)
⊕

S+
k−1/2(M,χ0)|B4,

S2k−2(M,χ2) = S2k−2(M/2, χ2)
⊕

S2k−2(M/2, χ2)
∣∣B2.

Moreover, the isomorphism ψK maps S+
k−1/2(4M,χ0) into S2k−2(M,χ2).
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Chapter 4
Saito-Kurokawa lifts

This chapter aims at deriving the Saito-Kurokawa isomorphism on the space of new-

forms for Maaß spezialschar inside Sk(Γ2
0(M), χ) where 32|M , χ is a primitive char-

acter χ modulo M with χ(−1) = (−1)k and χ2 is primitive modulo M/2. For this,

we first develop the corresponding theory of newforms for respective spaces of Jacobi

forms and then for Maass forms. This is achieved using the theory of newforms for

the spaces of cusp forms of half-integral weight in the previous chapter. Finally as a

consequence we get the Saito-Kurokawa isomorphism.

4.1 Preliminaries

Let ℓ ≥ 1 be an integer. Let Jk,ℓ(M,χ) denote the space of Jacobi forms of weight k,

index ℓ and character χ, and its sub space of cusp forms is denoted by J cuspk,ℓ (M,χ).

We refer to [6] for the development of the theory of Jacobi forms. A Jacobi form
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ϕ ∈ J cuspk,ℓ (M,χ) has a Fourier expansion of the form

ϕ(τ, z) =
∑
n,r∈Z,
r2<4nℓ

cϕ(n, r)e(nτ + rz).

Let n, r, n′, r′ ∈ Z with r2 < 4nℓ, r′2 < 4n′ℓ. Then we have cϕ(n, r) = cϕ(n
′, r′) if

r′2 − 4n′ℓ = r2 − 4nℓ and r′ ≡ r (mod 2ℓ). Thus, we write the Fourier expansion of

ϕ as

ϕ(τ, z) =
∑

D<0,r∈Z,
D≡r2 (mod 4nℓ)

cϕ(D, r)e

(
r2 −D

4ℓ
τ + rz

)
.

We note that when the index is 1, J cuspk,1 (M,χ) = {0} unless χ(−1) = (−1)k. So

whenever we consider the space Jk.1(M,χ), we let χ(−1) = (−1)k.

The operators UJ(4) and BJ(4) on J cuspk,1 (M,χ) are defined on formal series by

∑
D<0,r∈Z,

D≡r2 (mod 4)

cϕ(D, r)e

(
r2 −D

4
τ + rz

)∣∣∣∣UJ(4) = ∑
D<0,r∈Z,

D≡r2 (mod 4)

cϕ(4D, 2r)e

(
r2 −D

4
τ + rz

)

and

∑
D<0,r∈Z,

D≡r2 (mod 4)

cϕ(D, r)e

(
r2 −D

4
τ + rz

)∣∣∣∣BJ(4) = ∑
D<0,r∈Z,

D≡r2 (mod 16)

cϕ

(
D

4
,
r

2

)
e

(
r2 −D

4
τ + rz

)
.

Eichler-Zagier map:
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If ϕ ∈ J cuspk,1 (M,χ), the Eichler-Zagier map Z1 on ϕ is given by

∑
D<0,r∈Z,

D≡r2 (mod 4)

cϕ(D, r)e

(
r2 −D

4
τ + rz

)
7−→

∑
D<0,

D≡r2 (mod 4)

cϕ(D, r)e(|D|τ).

Poincaré series:

Let D < 0 be a discriminant and r (mod 2ℓ) with r2 ≡ D (mod 4ℓ). Then, we denote

the (D, r)-th Poincaré series in J cuspk,ℓ (M,χ) by Pk,ℓ,M,χ;D,r and it is characterized by

the relation

⟨ϕ, Pk,ℓ,M,χ;D,r⟩ = αk,ℓ,D,MCϕ(D, r)

for all ϕ ∈ J cuspk,ℓ (M,χ), where

αk,ℓ,D,M =
Γ(k − 3/2)

πk−3/2iM
ℓk−2|D|−k+3/2.

4.2 Theory of newforms of J cuspk,1 (M,χ)

4.2.1 Eichler-Zagier map Z1

Let k ≥ 2 be an integer. ϵ = (−1)k. Let Z1 denote the Eichler-Zagier map defined in

the previous section. We prove the following.

Z1 : J
cusp
k,1 (M,χ) −→ S+

k−1/2(4M,χ0).
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LetD < 0 be a discriminant and r (mod 2) with r2 ≡ D (mod 4). Let Pk,1,M,χ0;D,r

denote the (D, r)-th Poincarè series in J cuspk,1 (M,χ). Let P+
k−1/2,4M,χ0;|D| be the |D|-th

Poincaré series in S+
k−1/2(4M,χ0) as defined in §3.2.2.

Fourier expansion of Pk,1,M,χ0;D,r:

The Fourier expansion of Pk,1,M,χ0;D,r is given by (which can be obtained using stan-

dard arguments):

Pk,1,M,χ0;D,r(τ, z) =
∑

D′,r′∈Z,
D′<0

g±k,M,χ0;D,r
(D′, r′)e

(
r′2 −D

4
τ + r′z

)
, (4.1)

where g±k,1,M,χ0;D,r
(D′, r′) is symmetrized or antisymmetrized with respect to r′, i.e.,

g±k,1,M,χ0;D,r
(D′, r′) = gk,1,M,χ0;D,r(D

′, r′) + χ(−1)(−1)kgk,1,M,χ0;D,r(D
′,−r′)

with D′ = r′2 − 4n′, D = r2 − 4n, and

gk,1,M,χ0;D,r(D
′, r′) = δ(D, r;D′, r′) +

(
π
√
2i−k(D′/D)k/2−3/4

×
∑
c≥1

HMc,χ(D, r;D
′, r′)Jk−3/2

(
π
√
D′D

Mc

))
,

where

δ(D, r;D′, r′) =


1 if D′ = D, r′ ≡ r(mod 2)

0 otherwise,
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Jk−3/2(.) is the Bessel function and

Hc,χ(D, r;D
′, r′) =

1

c3/2

∑
λ,δ (mod c),

δ−1δ≡1(mod c)

χ(δ)ec(δ
−1(λ2+ rλ+n)+n′δ− r′λ)e2c(−rr′).

Fourier expansion of P+
k−1/2,4M,χ0;|D|:

The Fourier expansion of P+
k−1/2,4M,χ0;|D| is given by

P+
k−1/2,4M,χ0;|D|(τ) =

∑
m≥1,

ϵ(−1)k−1m≡0,1 (mod 4)

g+k−1/2,4M,χ0;|D|(m)e2πimτ , (4.2)

where

g+k−1/2,4M,χ0;|D|(m) = δ|D|,m + π
√
2(−1)⌊

k
2
⌋(1− (−1)k−1i)(m/|D|)k/2−3/4

×
∑
c≥1

H4Mc,χ(m, |D|)Jk−3/2

(
4π
√
m|D|

4Mc

)
,

δn,m is the Kronecker delta, Jk−3/2(.) is the Bessel function and

H4Mc,χ(m,n) =
1

4Mc

∑
δ (mod 4Mc),

δ−1δ≡1 (mod 4Mc)

χ0(δ)

(
4Mc

δ

)(
−4

δ

)k−1/2

e4Mc(mδ+nδ
−1).

We have the following standard identity:
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Lemma 4.2.1. Gauss sum identity: Let 4|c, (c, d) = 1. Then

∑
λ (mod c)

ec(dλ
2) = (1 + i)

√
c

(
c

d

)(
−4

d

)−1/2

.

In the following proposition, we prove that the Eichler-Zagier map sends Jacobi

Poincaré series into the plus space Poincaré series.

Proposition 4.2.2.

Pk,1,M,χ0;D,r|Z1 = 2P+
k−1/2,4M,χ0;|D|.

Proof. To prove the above equation, we compare the |D′|-th coefficients on both sides.

We need to show that

∑
r′ (mod 2),

D′≡r′2 (mod 4)

g±k,M,χ0;D,r
(D′, r′) = 2g+k−1/2,4M,χ0;|D|(|D

′|). (4.3)

Comparing the first terms on both sides of the above equation, using (4.1) and (4.2) we

have

δ(D, r;D′, r′) + χ(−1)(−1)kδ(D, r;D′,−r′) = δ(D, r;D′, r′) + δ(D, r;D′, r′)

=


2;D = D′

0;D ̸= D′
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= 2δ|D|,|D′|.

Hence, the first terms on both sides of equation (4.3) are equal. Now, we compare the

second terms on both sides. Second term in the LHS of equation (4.3) is given by

π
√
2i−k(D′/D)k/2−3/4 ×

∑
c≥1

HMc,χ(D, r;D
′, r′)Jk−3/2

(
π
√
D′D

Mc

)
+

π
√
2i−k(D′/D)k/2−3/4 ×

∑
c≥1

HMc,χ(D, r;D
′,−r′)Jk−3/2

(
π
√
D′D

Mc

)

= 2.π
√
2i−k(D′/D)k/2−3/4

∑
c≥1

HMc,χ(D, r;D
′, r′)Jk−3/2

(
π
√
D′D

Mc

)
.

Second term in the RHS of equation (4.3) is given by

2.π
√
2(−1)⌊

k
2
⌋(1−(−1)k−1i)(|D′|/|D|)k/2−3/4

∑
c≥1

H4Mc,χ(|D′|, |D|)Jk−3/2

(
4π
√
|D′||D|

4Mc

)
.

Note that (−1)⌊k/2⌋(1− (−1)k−1i) = i−k(1 + i). Hence,

i−kHMc,χ(D, r;D
′, r′)

=
i−k

(Mc)3/2

∑
λ,δ (mod Mc),

δ−1δ≡1 (mod Mc)

χ(δ)eMc(δ
−1(λ2 + rλ+ n) + n′δ − r′λ)e2Mc(−rr′).
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Using λ 7→ δλ the above equals

i−k

(Mc)3/2

∑
λ,δ (mod Mc),

δ−1δ≡1 (mod Mc)

χ(δ)eMc(δλ
2 + rλ+ nδ−1 + n′δ − r′δλ)e2Mc(−rr′)

=
i−k

(Mc)3/2

∑
δ (mod Mc)

χ(δ)

 ∑
λ (mod Mc)

eMc(δλ
2 + (r − r′δ)λ)


× eMc(nδ

−1 + n′δ)e2Mc(−rr′)

=
i−k

(Mc)3/2

∑
δ (mod Mc),

δ−1δ≡1 (mod Mc)

χ(δ)

 ∑
λ (mod Mc)

eMc

δ(λ+
rδ−1 − r′

2

)2



× e4Mc(−r2δ−1 + 2rr′ − r′2δ)e4Mc(4nδ
−1 + 4n′δ)e4Mc(−2rr′)

=
i−k

(Mc)3/2

∑
δ (mod Mc),

δ−1δ≡1 (mod Mc)

χ(δ)

(
(1 + i)

(
−4

δ

)−1/2(
Mc

δ

)√
Mc

)

× e4Mc(|D|δ−1 + |D′|δ) (using lemma 4.2.1)

=
i−k(1 + i)

Mc

∑
δ (mod Mc),

δ−1δ≡1 (mod Mc)

χ(δ)

(
4(−1)k

δ

)(
−4

δ

)k−1/2(
Mc

δ

)

× e4Mc(|D|δ−1 + |D′|δ)

=
i−k(1 + i)

4Mc

∑
δ (mod 4Mc),

δ−1δ≡1 (mod 4Mc)

χ0(δ)

(
−4

δ

)k−1/2(
4Mc

δ

)

× e4Mc(|D|δ−1 + |D′|δ)

= (−1)⌊k/2⌋(1− (−1)k−1i)H4Mc,χ(|D′|, |D|).
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So, the second terms on both sides of equation (4.3) are also equal. This completes the

proof.

We now state a result which relates the Petersson scalar products in J cuspk,1 (M,χ)

and S+
k−1/2(4M,χ)whose proof follows by using the same argument of the Proposition

5.1 in [15]. So we omit the details.

Lemma 4.2.3. We have

⟨ϕ|Z1, ψ|Z1⟩ = c⟨ϕ, ψ⟩

for all ϕ, ψ ∈ J cuspk,1 (M,χ) with

c = 2
iM

4k−3/2
.

Hence, Z1 is a canonical isomorphism which preserves the Hecke eigenforms and the

Petersson scalar product structures.

4.2.2 Decomposition of the space of Jacobi forms

We start with the following lemma.

Lemma 4.2.4. Suppose 4|D. Let D/4 ≡ 0, 1( (mod 4)). Then,

P+

k−1/2,M,χ0;
|D|
4

= P+
k−1/2,4M,χ0;|D||U4.
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Proof. It is enough to show that m-th Fourier coefficients are equal for all integers

m ≥ 1. They are respectively given by

g+
k−1/2,M,χ0;

|D|
4

(m) = δ |D|
4
,m

+ π
√
2(−1)⌊

k
2
⌋(1− (−1)k−1i)(4m/|D|)k/2−3/4

×
∑
c≥1

HMc,χ(m, |D|/4)Jk−3/2

4π
√
m |D|

4

Mc


and

g+k−1/2,4M,χ0;|D|(4m) = δ|D|,4m + π
√
2(−1)⌊

k
2
⌋(1− (−1)k−1i)(4m/|D|)k/2−3/4

×
∑
c≥1

H4Mc,χ(4m, |D|)Jk−3/2

(
4π
√
4m|D|

4Mc

)
.

Since 4|D, we have

δ |D|
4
,m

= δ|D|,4m

and hence the first terms are equal. The second terms are also equal since

HMc,χ(m, |D|/4) = H4Mc,χ(4m, |D|),

which follows by using their definitions.

Lemma 4.2.5. Let 4|D, D/4 ≡ 0, 1(4). Then,

Pk,1,M,χ0;D,r|UJ(4)Z1 = 2P+

k−1/2,M,χ0;
|D|
4
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Proof. Follows from Proposition 4.2.2 and Lemma 4.2.4.

Lemma 4.2.6. S+
k−1/2(M,χ0) is spanned by all the Poincaré series P+

k−1/2,M,χ0;
|D|
4

,

where D varies over all the discriminants with 4
∣∣|D| and D/4 ≡ 0, 1 (mod 4).

Proof. Let f ∈ S+
k−1/2(M,χ0) such that it is in the orthogonal complement of the sub

space of S+
k−1/2(M,χ0)spanned by the Poincaré series P+

k−1/2,M,χ0;
|D|
4

, whereD varies

over all the discriminants with 4
∣∣|D| and D/4 ≡ 0, 1 (mod 4). Then,

⟨f, P+

k−1/2,M,χ0;
|D|
4

⟩ = 0,

for all 4
∣∣|D| with D/4 ≡ 0, 1 (mod 4). This implies that

af

(
|D|
4

)
= 0,

for all D ≡ 0, 1 (mod 4), or equivalently

af |B4(|D|) = 0,

for all D ≡ 0, 1 (mod 4). Therefore, f |B4 = 0 (or) f = 0. Hence, the result follows.

Newforms in J cuspk,1 (M,χ):
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We now define the space of newforms in J cuspk,1 (M,χ) by

J cusp;newk,1 (M,χ) = the linear span of the set{Pk,1,M,χ;D,r|UJ(4)},

whereD varies over all the discriminants with 4
∣∣|D| andD/4 ≡ 0, 1 (mod 4). A Hecke

eigenform which is a simultaneous eigenform for Hecke operators TJ(n), (n,M) = 1

in J cusp;newk,1 (M,χ) is called a newform. We have the image of Jacobi newforms under

the Eichler-Zagier isomorphism:

Lemma 4.2.7. J cusp;newk,1 (M,χ)|Z1 = S+
k−1/2(M,χ0).

Proof. Follows from Lemma 4.2.5 and Lemma 4.2.6.

We now state the following main theorem for the theory of newforms of Jacobi

cusp forms:

Theorem 4.2.8.

J cuspk,1 (M,χ) = J cusp;newk,1 (M,χ)
⊕

J cusp;newk,1 (M,χ)|BJ(4).

The space J cusp;newk,1 (M,χ) is isomorphic to the space S2k−2(M/2, χ2) under a certain

linear combination of Shimura lifts. Hence, The multiplicity one result holds good on

J cusp;newk,1 (M,χ).

61



4.2. THEORY OF NEWFORMS OF Jcuspk,1 (M,χ)

Proof. (Theorem 4.2.8) From Theorem 3.2.12, we have the decomposition

S+
k−1/2(4M,χ0) = S+

k−1/2(M,χ0)
⊕

S+
k−1/2(M,χ0)|B4.

Also, we have

ϕ|BJ(4)Z1 = ϕ|Z1B4,

where ϕ ∈ J cuspk,1 (M,χ). Using these we get

J cuspk,1 (M,χ)|Z1 = S+
k−1/2(4M,χ0)

= S+
k−1/2(M,χ0)

⊕
S+
k−1/2(M,χ0)|B4

= J cusp;newk,1 (M,χ)|Z1

⊕
J cusp;newk,1 (M,χ)|BJ(4)|Z1

=
(
J cusp;newk,1 (M,χ)

⊕
J cusp;newk,1 (M,χ)|BJ(4)

)
|Z1.

Thus, by using Z1 defines an isomorphism from J cuspk,1 (M,χ) into S+
k−1/2(4M,χ0), we

have

J cuspk,1 (M,χ) = J cusp;newk,1 (M,χ)
⊕

J cusp;newk,1 (M,χ)|BJ(4).

The multiplicity one result holds on J cusp;newk,1 (M,χ), which follows from the Theorem

3.2.8 and the isomorphism Z1.
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4.3 Theory of newforms of S∗
k(Γ

2
0(M), χ) and

Saito-Kurokawa isomorphism

Let Sk(Γ2
0(M), χ) be the space of Siegel cusp forms of weight k, levelM , genus 2 and

character χ. Let Vm,χ be the index shifting operator

Vm,χ : J cuspk,1 (M,χ) → Jcusp
k,m (M,χ)

(as per [8]). If

ϕ(τ, z) =
∑

D<0,r∈Z,
D≡r2 (mod 4)

c(D, r)e

(
r2 −D

4
τ + rz

)
∈ J cuspk,1 (M,χ),

then

ϕ|Vm,χ(τ, z) =
∑

D<0,r∈Z,
D≡r2 (mod 4m)

 ∑
d|(r,m), (d,M)=1,
D≡r2 (mod 4md)

χ(d)dk−1c

(
D

d2
,
r

d

)
e

(
r2 −D

4m
τ + rz

) .

Maass spezialschar in Sk(Γ2
0(M), χ):

For ϕ ∈ J cuspk,1 (M,χ), we define the Maass embedding ι
M,χ

as follows (see [8]):

ϕ|ι
M,χ

=
∑
m≥1

(ϕ|k,1Vm,χ)(τ, z)e2πimw.
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Denote the image of J cuspk,1 (M,χ) under this embedding by S∗
k(Γ

2
0(M), χ). Then we

have the following result:

Proposition 4.3.1 ( [8], Theorem 3.2). The map ι
M,χ

gives an embedding of J cuspk,1 (M,χ)

into S∗
k(Γ

2
0(M), χ) .

In ( [7], corollary 4.2) it was proved that the Fourier coefficients of the forms in

S∗
k(Γ

2
0(M), χ) also satisfies certain relations analogous to the classical Maass relation.

The converse part was also proved; i.e., if the coefficients of F ∈ Sk(Γ2
0(M), χ) sat-

isfies the said relations, then F ∈ S∗
k(Γ

2
0(M), χ). Hence, let S∗

k(Γ
2
0(M), χ) denote the

Maass space in Sk(Γ2
0(M), χ), defined as the image of J cuspk,1 (M,χ) under the embed-

ding ι
M,χ

. Note that ι
M,χ

gives an isomorphism between the spaces J cuspk,1 (M,χ) and

S∗
k(Γ

2
0(M), χ).

4.3.1 Newforms in S∗
k(Γ

2
0(M), χ)

For F ∈ S∗
k(Γ

2
0(M), χ), define the operator BS(4) by

F (τ, z, τ ′)|BS(4) = F (4τ, 4z, 4τ ′).

For ϕ ∈ J cusp;newk,1 (M,χ), we have ϕ|ι
M,χ

|BS(4) = ϕ|BJ(4)|ιM,χ
.

Let

S∗;new
k (Γ2

0(M), χ) = J cusp;newk,1 (M,χ)|ι
M,χ
.

Thus, ι
M,χ

acts an isomorphism between the spaces J cusp;newk,1 (M,χ) andS∗;new
k (Γ2

0(M), χ).
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Now, using the thoery of newforms for the space J cusp;newk,1 (M,χ) as in Theorem 4.2.8

we obtain the following:

Theorem 4.3.2. Let k ≥ 2,M ≥ 1 be integers such that 32|M . Let χ be a Dirichlet

character moduloM such that cond(χ) =M and cond(χ2) =M/2. Also letχ(−1) =

(−1)k. Then,

S∗
k(Γ

2
0(M), χ) = S∗;new

k (Γ2
0(M), χ)

⊕
S∗;new
k (Γ2

0(M), χ)|BS(4).

Also, the multiplicity one theorem is valid on S∗;new
k (Γ2

0(M), χ).

4.3.2 Saito-Kurokawa lift

Let N be an odd integer and M = 2α−2N, where α > 6. Let χ be a primitive

Dirichlet character modulo M . Let TS(p), T ′
S(p) (for prime p ∤ M ) and US(p) (for

prime p|M ) denote standard Hecke operators in Sk(Γ2
0(M), χ) (see §4 of [8]). An

eigenform in Sk(Γ2
0(M), χ) under the above operators is called a Hecke eigenform.

A non-zero Hecke eigenform which belongs to S∗;new
k (Γ2

0(M), χ) is called a newform

in the Maass space. For a newform F ∈ S∗;new
k (Γ2

0(M), χ), let γp, ωp and µp denote

the corresponding eigenvalues with respect to TS(p), T ′
S(p), US(p) respectively. Sim-

ilarly, let TJ(p) (for prime p ∤ M ) and UJ(p) (for prime p|M ) denote standard Hecke

operators in J cuspk,1 (M,χ), and let af (p) denote the corresponding eigenvalues for the

newform ϕ ∈ J cusp;newk,1 (M,χ) which corresponds to the normalised Hecke eigenform
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f ∈ S2k−2(M/2, χ2). Let F = ϕ|ι
M,χ

(as in §4.3). Then, theorem 4.1 of [8] gives

γp = af (p) + χ(p)(pk−2 + pk−1), p ∤M

ωp = χ(p)(pk−2 + pk−1)af (p) + χ(p2)(2p2k−3 + p2k−4), p ∤M

µp = af (p), p |M.


(4.4)

For a Hecke eigenform F ∈ S∗;new
k (Γ2

0(M), χ), the Andrianov zeta function ZF (s)

has the Euler product expansion (see [8])

ZF (s) =
∏
p|M

(1− µpp
−s)−1

∏
p ̸|M

Qp(p
−s)−1,

where

Qp(p
−s) = 1− γpp

−s + (pωp + (p2 + 1)χ(p2)p2k−5)p−2s

− γpχ(p
2)p2k−3−3s + χ(p4)p4k−6−4s.

This, combined with (4.4) give

ZF (s) = L(s− k + 1, χ)L(s− k + 2, χ)

×
∏
p|M

(1− af (p)p
−s)−1

∏
p ̸|M

(1− af (p)p
−s + χ(p2)p2k−3−2s)−1

= L(s− k + 1, χ)L(s− k + 2, χ)L(f, s),
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where L(f, s) is the L-function of f given by

L(f, s) =
∑
n≥1

af (n)n
−s.

Now, using the isomorphisms ψk, Z1, ιM,χ
, and the Theorems 3.2.8, 3.2.12, 4.2.8,

we get the following:

Theorem 4.3.3. The space S∗;new
k (Γ2

0(M), χ) is in one to one correspondence with

S2k−2(M/2, χ2) under the Saito-Kurokawa isomorphism. A given normalised Hecke

eigenform f ∈ S2k−2(M/2, χ2) is lifted into two equivalent Hecke eigenformsF, F |BS(4),

where F ∈ S∗;new
k (Γ2

0(M), χ) is the newform satisfying

ZF (s) = L(s− k + 1, χ)L(s− k + 2, χ)L(f, s).

Finally, we make the following observation:

Remark 4.3.4. The map Z1 is a canonical isomorphism from J cuspk,1 (M,χ) into the

space S+
k−1/2(4M,χ0), which has the decomposition:

S+
k−1/2(4M,χ0) = S+

k−1/2(M,χ0)⊕ S+
k−1/2(M,χ0)|B4.

Hence, we have the corresponding decomposition for Jacobi forms as

J cuspk,1 (M,χ) = J cusp,newk,1 (M,χ)⊕ J cusp,newk,1 (M,χ)|BJ(4).
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This gives, ifϕ ∈ J cusp,newk,1 (M,χ), then we haveϕ|Z1 ∈ S+
k−1/2(M,χ0) andϕ|BJ(4)Z1 =

ϕ|Z1B4 ∈ J cuspk,1 (M,χ). Now by using the space S+
k−1/2(M,χ0) is isomorphic to

the space S2k−2(M/2, χ2) as module over Hecke algebra and using the embedding

of J cuspk,1 (M,χ) in the Maass space, we realise that a normalised Hecke eigenform

f ∈ S2k−2(M/2, χ2) is lifted into two linearly independent Hecke eigenforms F and

F |BS(4), where F ∈ S∗,new
k (Γ2

0(M), χ). We call the form F ∈ S∗,new
k (Γ2

0(M), χ) a

newform of weight k, level M , character χ in the Maass space.
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Chapter 5
A certain kernel function for L-values of

half-integral weight Hecke eigenforms

In this chapter, we derive a non-cusp form of weight k+1/2 (k ≥ 2, even) for Γ0(4) in

the Kohnen plus space whose Petersson scalar product with a cuspidal Hecke eigenform

g is equal to a constant times the L value L(g, k− 1/2). As a corollary, we obtain that

for such a form g and the associated form f under the Dth Shimura-Kohnen lift the

quantity ag(D)L(f,2k−1)

πk−1⟨g,g⟩L(D,k) is algebraic.

5.1 Preliminaries

Let k ≥ 2 be an even integer. ForN odd and square free integer, letM+
k+1/2(4N) denote

the Kohnen ‘plus’ space containing the forms g in Mk+1/2(4N) whose Fourier coeffi-
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cients ag(n) are 0 unless (−1)kn ≡ 0, 1 (mod 4).We let S+
k+1/2(4N) =M+

k+1/2(4N)∩

Sk+1/2(4N).

Let Tm be the mth Hecke operator on M2k(SL2(Z)). These operators preserves the

space of cusp forms. Suppose a non-zero form f ∈ S2k(SL2(Z)) satisfies the relation

f |Tm = af (m)f for every m ≥ 1 and af (1) = 1. Then f is known as a normalized

Hecke eigenform. The space S2k(SL2(Z)) has an orthonormal basis of normalized

eigenforms of all Hecke operators (for example, see theorem 6.15 in [9]); let B be such

a basis. Similarly for the space of half integral weight forms in S+
k+1/2(4) we denote

the Hecke operators by T+
m2 (as in [11]; the operators T+

m2 for m ≥ 1 are generated

by operators T+
p2 where p varies over all primes). Let B+ denotes an orthogonal basis

of eigenforms for all Hecke operators T+
m2 (m ≥ 1) on S+

k+1/2(4), (Theorem 1 of [11]

gives the existence of such a basis). Note that elements of B+ can be chosen in such a

way that their Fourier coefficients are real and algebraic numbers ( [10], page 216, line

12).

For k ≥ 2, Proposition 1 of [11] gives the decomposition:

M+
k+1/2(4) = CHk+1/2

⊕
S+
k+1/2(4),

where Hk+1/2 is an Eisenstein series:

Hk+1/2 := Ei∞
k+1/2 + 2−2k−1(1− (−1)ki)E0

k+1/2,
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where Ei∞
k+1/2 and E0

k+1/2 are as defined in [11], page 254. Hk+1/2 takes the value 1 at

infinity; this series was first studied by H. Cohen [4]. If g ∈ Mk+1/2(4) with Fourier

expansion g =
∑

n≥1 ag(n)e
2πinz, define the standard operators U4 and W4 by

f |U4 =
∑
n≥1

af (4n)e
2πinz, and f |W4 =

(
2z

i

)−k−1/2

f

(
−1

4z

)

Now, define the projection mapPr+ (as in [14], page 185) fromMk+1/2(4) intoM+
k+1/2(4)

by

Pr+ = (−1)[
k+1
2 ]2−k

W4U4 +
1

3
.

The map Pr+ satisfies ⟨g1|Pr+, g2⟩ = ⟨g1, g2|Pr+⟩ for g1, g2 ∈ M+
k+1/2(4) where g1

or g2 is a cusp form (see [14], page 186, line 13). Thus, the projection map Pr+ pre-

serves the plus space of cusp forms S+
k+1/2(4) and it is hermitian on this space. It also

preserves the space generated by the Cohen-Eisenstein series as it is the orthogonal

complement of the space of cusp forms.

Let D be a positive fundamental discriminant and s ∈ C with Re(s) >> 1, define

L(D, s) :=
∑
n≥1

(
D

n

)
n−s.

Let Θ(z) =
∑

n∈Z e
2πin2z be the standard theta function, where z ∈ H. It is

a modular form of weight 1/2 for Γ0(4) (we refer to chapter 15 of [5] or chapter 3,

section 1 of [10] for the details). Let k ≥ 2 be a positive integer andD ≡ 0, 1 (mod 4)
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be a positive fundamental discriminant. Define

ΘD(z) := Θ(Dz) =
∑
n∈Z

e2πiDn
2z.

It is a modular form of weight 1/2 for Γ0(4D) with character
(
D
.

)
of conductor D or

4D according as D ≡ 1(4) or D/4 ≡ 2, 3(4) (refer [30], page 32, lines 16-18). We

also define an Eisenstein series Ek,4D,(D
. )

by

Ek,4D,(D
. )

=
1

2

∑
(c,d)=1

4|c

(
D

d

)
(cDz + d)−k.

It is a modular form of weight k, level 4D and character
(
D
.

)
, and has rational Fourier

coefficients (rationality of the Fourier coefficients can be proved by deriving the Fourier

expansion explicitly, this is done towards the end of this chapter).

Let

g
∣∣Tr4D4 =

1

[Γ0(4) : Γ0(4D)]

∑
(
a b
c d

)
∈Γ0(4D)\Γ0(4)

g
∣∣
k+1/2

a b

c d


denote the trace operator (adjoint to the inclusion map under Petersson scalar product)

and it maps Sk+1/2(4D) into Sk+1/2(4). We take


 1 0

4D1 1


1 µ

0 1

∣∣∣∣D = D1D2 and µ (mod D2)
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as a set of representatives to define the above trace operator (see page 196 of [14]).

5.2 Statement of results

Let λD,k be a constant such that ΘDEk,4D,(D
. )

∣∣Tr4D4 Pr+ − λD,kHk+1/2 ∈ S+
k+1/2(4).

Also let k ≥ 2 be even. Then we have,

Theorem 5.2.1.

∑
0<D fund. disc.

(
ΘDEk,4D,(D

. )

∣∣Tr4D4 Pr+ − λD,kHk+1/2

)

=
Γ(k − 1/2)

(4π)k−1/2

∑
g∈B+

L(g, k − 1/2)
g

⟨g, g⟩
,

where the sum in left hand side is taken over all the fundamental discriminants D > 0

and the sum in right hand side is taken over an orthogonal basis of Hecke eigenforms

of S+
k+1/2(4).

In the simplest case where k = 6, we use S+
13/2(4) = Cδ and S12 = C∆ (where δ

and ∆ are as defined in page 177 of [14]) :

∆(z) = 8000G4(z)
3 − 147G6(z)

2

and

δ(z) =
60

2πi

(
2G4(4z)θ

′(z)−G′
4(4z)θ(z)

)
,
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where

Gk(z) :=
1

2
ζ(1− k) +

∑
n≥1

σk−1(n)q
n

and σk−1(n) =
∑

d|n d
k−1. We have δ|S1 = ∆ (this can be seen by comparing

the Fourier coefficient of δ and ∆), where S1 is the first Shimura-Kohnen lift from

S+
k+1/2(4) into S2k (the definition of Shimura map defined by Kohnen is given in page

176 of [14]; see section §5.4 and equation (5.3)). We have,

Corollary 5.2.2.

∑
0<D fund. disc.

(
ΘDE6,4D,(D

. )

∣∣Tr4D4 Pr+ − λD,6H13/2

)
=

Γ(11/2)L(δ, 11/2)

(4π)11/2
δ

< δ, δ >
.

5.3 Proof of the theorem

Observe that, for

 a b

Dc d

 ∈ Γ0(4D), 4|c and 2|k (hence
(−4
d

)k
= 1) one has

ΘD

∣∣∣∣
1/2

 a b

Dc d


 (z) : =

(
Dc

d

)(
−4

d

)1/2

(Dcz + d)−1/2ΘD

(
az + b

Dcz + d

)

=

(
D

d

)
ΘD(z).
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5.3. PROOF OF THE THEOREM

That is,

ΘD(z) =

(
c

d

)(
−4

d

)1/2

(Dcz + d)−1/2
∑
n∈Z

e2πiDn
2 az+b
Dcz+d

=

(
c

d

)(
−4

d

)k+1/2

(Dcz + d)−1/2
∑
n∈Z

e2πiDn
2 az+b
Dcz+d .

Multiplying with 1
2
(cDz + d)−k

(
D
d

)
on both sides, we get

1

2
(cDz + d)−k

(
D

d

)
ΘD(z)

=
1

2
(cDz + d)−k

(
D

d

)(
c

d

)(
−4

d

)k+1/2

(Dcz + d)−1/2
∑
n∈Z

e2πiDn
2 az+b
Dcz+d

Sum over (c, d)’s (with gcd(c, d) = 1 and 4|c)

∑
(c,d)=1

4|c

1

2
(cDz + d)−k

(
D

d

)
ΘD(z)

=
∑

(c,d)=1
4|c

1

2
(cDz + d)−k

(
D

d

)(
c

d

)(
−4

d

)k+1/2

(Dcz + d)−1/2
∑
n∈Z

e2πiDn
2 az+b
Dcz+d

We get

ΘDEk,4D,(D
. )

=
1

2

∑
n∈Z

∑
(c,d)=1

4|c

(
Dc

d

)(
−4

d

)k+1/2

(Dcz + d)−k−1/2e2πiDn
2 az+b
Dcz+d

=
1

2

∑
(c,d)=1

4|c

(
Dc

d

)(
−4

d

)k+1/2

(Dcz + d)−k−1/2
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+
∑
n≥1

∑
(c,d)=1

4|c

(
Dc

d

)(
−4

d

)k+1/2

(Dcz + d)−k−1/2e2πiDn
2 az+b
Dcz+d

= Ek+1/2,4D +
∑
n≥1

Pk+1/2,4D;n2D.

In the above,

Ek+1/2,4D =
1

2

∑
(c,d)=1

4|c

(
Dc

d

)(
−4

d

)k+1/2

(Dcz + d)−k−1/2

is an Eisenstein series of weight k + 1/2 for Γ0(4D). For each n ≥ 1, the Poincarè

series

Pk+1/2,4D;n =
∑

(c,d)=1

4D

∣∣c
(
c

d

)(
−4

d

)k+1/2

(cz + d)−k−1/2e2πin
az+b
cz+d

is a cusp form of weight k + 1/2 for Γ0(4D) and characterized by

⟨g, Pk+1/2,4D;n⟩ =
1

[SL2(Z) : Γ0(4D)]

Γ(k − 1/2)

(4πn)k−1/2
ag(n),

where g =
∑

n≥1 ag(n)e
2πinz is an arbitrary cusp form of weight k + 1/2, level 4D.

Using straightforward computations we have noticed that, Tr4D4 maps Poincarè series

to Poincarè series and Eisenstein series to Eisenstein series. We have

Pk+1/2,4D;n2D

∣∣Tr4D4 = Pk+1/2,4;n2D ,
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5.3. PROOF OF THE THEOREM

and

Ek+1/2,4D

∣∣Tr4D4 Pr+ = Hk+1/2 ,

where Hk+1/2 is the Cohen-Eisenstein series defined in preliminaries. To get this, let

g ∈ Sk+1/2. Now,

〈
Ek+1/2,4D

∣∣Tr4D4 , g
〉
=
〈
Ek+1/2,4D , g|ι

〉
= 0,

since g|ι is cusp form (here, ι is the inclusion map, adjoint to the trace map Tr4D4 ). This

proves Tr4D4 preserves the space of Eisenstein series, which is orthogonal complement

of the space of cusp forms with respect to the Petersson scalar product. So, we get a

constant λD,k such that

(
ΘDEk,4D,(D

. )

) ∣∣Tr4D4 Pr+ = λD,kHk+1/2 +
∑
n≥1

P+
k+1/2,4;n2D

= λD,kHk+1/2 +
∑
n≥1

Γ(k − 1/2)

i4(4πn2D)k−1/2

∑
g∈B+

ag(n2D)
g

⟨g, g⟩

= λD,kHk+1/2 +
Γ(k − 1/2)

i4(4π)k−1/2

∑
g∈B+

∑
n≥1

ag(n
2D)

(n2D)k−1/2

 g

⟨g, g⟩
,

(5.1)

where i4 = [SL2(Z) : Γ0(4)]. Now, by summing both sides over all the fundamental

discriminants D > 0, we get

∑
D fund. disc.

D>0

(
ΘDEk,4D,(D

. )

∣∣∣∣Tr4D4 Pr+ − λD,kHk+1/2

)
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5.3. PROOF OF THE THEOREM

=
∑

D fund. disc.
D>0

∑
g∈B+

Γ(k − 1/2)

i4(4π)k−1/2

∑
n≥1

ag(n
2D)

(n2D)k−1/2

 g

⟨g, g⟩
. (5.2)

Now we state the following result:

Claim: As D varies over all the positive fundamental discriminants and n2 (n ≥ 1)

varies over all squares, then n2D varies over all integers m ≥ 1 such that m ≡

0, 1 (mod 4) where k is even.

Proof of claim: Let m ≥ 1 be an integer such that m ≡ 0, 1 (mod 4). If m is an odd

integer, split m = Dn2 where D ≡ 1 (mod 4) and square-free with n ≥ 1 since

m ≡ 1 (mod 4). If m is an even integer then 4|m. We write m/4 = dn2 where d is a

square-free integer and n ≥ 1. If d ≡ 1 (mod 4), replace d by D so that m = D(2n)2.

If d ≡ 2, 3 (mod 4), let D = 4d so that m = Dn2. Since d is square-free integer, in all

the cases, D is a fundamental discriminant. This proves the claim.

Thus the above equation (5.2) becomes

∑
D fund. disc.

D>0

(
ΘDEk,4D,(D

. )

∣∣∣∣Tr4D4 Pr+ − λD,kHk+1/2

)

=
Γ(k − 1/2)

i4(4π)k−1/2

∑
g∈B+

 ∑
m≥1

m≡0,1 (mod 4)

ag(m)

mk−1/2

 g

⟨g, g⟩

=
Γ(k − 1/2)

i4(4π)k−1/2

∑
g∈B+

L(g, k − 1/2)
g

⟨g, g⟩
.

Note that in (5.2), before summing over all positive fundamental discriminants, right

hand side is a finite linear combination of absolutely convergent series. Each of the
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series in the finite sum becomes an absolute convergent series
∑
m≥1

m≡0,1 (mod 4)

ag(m)

mk−1/2 after

taking the sum over all fundamental discriminant D > 0.

5.4 Applications

We derive a certain algebraic nature involving someL− series associated with a Hecke

eigenform f and Fourier coefficient of g. We now use multiplicity result for S+
k+1/2(4)

and its relation with S2k via Shimura correspondence (as in [14], pages 176-177). Let

f ∈ S2k be the normalized Hecke eigenform which corresponds to g via the identity:

If D is a positive fundamental discriminant, then there exists a unique (upto a scalar

multiple) non zero Hecke eigenform g ∈ S+
k+1/2(4) such that the following holds:

ag(n
2D) = ag(D)

∑
d|n

dk−1µ(d)

(
D

d

)
af (n/d). (5.3)

The multiplicity result for S+
k+1/2(4) states that: if f ∈ S2k is a Hecke eigenform and

g ∈ S+
k+1/2(4) is a corresponding eigenform for all T+

p2 (with eigenvalue λp) via above

equation (5.3) such that f |Tp = λpg for all primes p, then the eigenspace generated

by g has dimension one ( [11]). The corresponding basis element g via (5.3) can be

chosen in such a way that its Fourier coefficients are real and algebraic (refer [14], page

177, lines 4-6). Now, equation (5.3) gives,

∑
n≥1

ag(n
2D)

(n2D)k−1/2
=

ag(D)

Dk−1/2

∑
n≥1

∑
d|n d

k−1µ(d)
(
D
d

)
af (n/d)

n2k−1
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=
ag(D)

Dk−1/2

∑
n≥1

nk−1µ(n)
(
D
n

)
n2k−1

∑
m≥1

af (m)

m2k−1

=
ag(D)

Dk−1/2

L(f, 2k − 1)

L(D, k)
.

Substituting this in equation (5.1), we get

ΘDEk,4D,(D
. )

∣∣Tr4D4 Pr+

= λD,kHk+1/2 +
Γ(k − 1/2)

i4(4π)k−1/2

∑
g∈B+

ag(D)

(D)k−1/2

L(f, 2k − 1)

L(D, k)

g

⟨g, g⟩

= λD,kHk+1/2 +
Γ(k − 1/2)D−k+1/2

i4(4π)k−1/2L(D, k)

∑
g∈B+

ag(D)L(f, 2k − 1)g

⟨g, g⟩
. (5.4)

Claim: ΘDEk,4D,(D
. )

∣∣Tr4D4 Pr+ has rational Fourier coefficients.

Proof of claim: Let G = ΘDEk,4D,(D
. )

∈ Mk+1/2(4D). Note that, since ΘD and

Ek,4D,(D
. )

have rational Fourier coefficient, so has G (the rationality of the Fourier

coefficients of Ek,4D,(D
. )

is obtained by explicitly deriving its Fourier series expan-

sion, which is given towards the end of this chapter). The projection operator Pr+

picks up the coefficients such that (−1)kn ≡ 0, 1 (mod 4), so it does not change the

nature of Fourier coefficients. It is enough to prove that G|Tr4D4 has rational Fourier

coefficients. We take

{(
1 0

4D1 1

) (
1 µ
0 1

) ∣∣∣∣D = D1D2 and µ (mod D2)

}
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as a set of representatives for the action of trace operator. Note that,

(
1 0

4D1 1

) (
1 µ
0 1

)
=
(

0 1/4D
−1 0

) ( −1 −1
0 D2

) (
0 −1

4D1 0

) (
1 µ
0 1

)
.

By considering the action of the above representative matrices individually, one by one

(in this order) and by proceeding along the standard arguments (see calculations in the

appendix of [14]), we conclude that the Fourier coefficients of G|Tr4D4 are rational.

Finally, we have the following

Proposition 5.4.1. If g ∈ S+
k+1/2(4) is a Hecke eigenform and f ∈ S2k is the corre-

sponding eigenform via (5.3), then ag(D)L(f,2k−1)

πk−1⟨g,g⟩L(D,k) is algebraic over rationals.

Proof: Let d′ = dim(M+
k+1/2(4)), and {g0 = Hk+1/2, g1, . . . , gd′−1} be a basis of

Hecke eigenforms for M+
k+1/2(4), whose Fourier coefficients are real and algebraic

(coefficients of Hk+1/2 are rationals, refer [4]). Let jr ≡ 0, 1 (mod 4) where 0 ≤ r ≤

d′ − 1. Let j0 = 0 and e′j0 = Hk+1/2 so that ae′j0 (j0) = 1. Let us consider the j th
1

Poincarè series Pj1 in S+
k+1/2(4) which is not identically zero. Let e′j1 =

Pj1

aPj1
(j1)

. Then

e′j1 ∈ S+
k+1/2(4) with ae′j1 (j1) = 1 and ae′j1 (j0) = 0. We pick e′j2 from the orthogonal

complement of span of {e′j0 , e
′
j1
}. To select this, we find a non-zero Poincarè series

indexed by j2 in this orthogonal complement and in the plus space. We consider the

Poincarè series Pj2 ∈ S+
k+1/2(4) and take its projection inside the orthogonal comple-

ment of span of {e′j0 , e
′
j1
}. Denote this projection by P ′

j2
(Pj2 = P ′

j2
⊕ P ′′

j2
, where P ′′

j2

is in the linear span of {e′j1}). Let e′j2 =
P ′
j2

aP ′
j2

(j2)
. Then e′j2 is orthogonal to both the

forms e′j0 and e′j1 with ae′j2 (j2) = 1 and ae′j2 (j0) = ae′j2
(j1) = 0. By proceeding in this
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way we have obtained a basis {e′j0 , . . . , e
′
jr , . . . , e

′
jd′−1

} for the spaceM+
k+1/2(4),where

ae′jr (jr) = 1 and ae′jr (ji) = 0 for i = 0, 1, . . . , r − 1.

Using this basis, we get another basis {ej0 , ej1 , . . . , ejd′−1
} of M+

k+1/2(4) such that

aejr (ji) = 1 if i = r and 0 otherwise, where 0 ≤ i, r ≤ d′ − 1. A direct computation

gives this set of basis from the constructed basis {e′j0 , . . . , ej′d′−1
} (for a detailed one

such proof, we refer to the proof of lemma 4.1 in [23]).

Now, consider the system of linear equations formed by writing {g0, . . . , gd′−1} in

terms of the new basis {ej0 , . . . , ejd′−1
}. We note that in this system of equations, both

{g0, . . . , gd′−1} and {ej0 , . . . , ejd′−1
} are bases for M+

k+1/2(4). Hence the correspond-

ing matrix (agi(jr))d′×d′ is invertible.

Now, equation (5.4) gives,

ΘDEk,4D,(D
. )

∣∣Tr4D4 Pr+ = λD,kHk+1/2+
Γ(k − 1/2)D−k+1/2

i4(4π)k−1/2L(D, k)

∑
g∈B+

ag(D)L(f, 2k − 1)g

⟨g, g⟩
.

By comparing the consecutive j0, j1, . . . , jd′−1 Fourier coefficients from the above, we

get a system of equations: (
agi(jr)

)
d′×d′ X = Y.

Entries of Y are Fourier coefficients of ΘDEk,4D,(D
. )

∣∣Tr4D4 Pr+, which are ratio-

nals. Entries of X are

{
λD,k ,

Γ(k − 1/2)D−k+1/2

i4(4π)k−1/2L(D, k)

ag1(D)L(f1, 2k − 1)

⟨g1, g1⟩
, . . . ,
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Γ(k − 1/2)D−k+1/2

i4(4π)k−1/2L(D, k)

agd′−1
(D)L(fd′−1, 2k − 1)

⟨gd′−1, gd′−1⟩

}
,

where {f1, . . . , fd′−1} are normalized cuspidal Hecke eigenforms corresponding to the

eigenforms {g1, . . . , gd′−1} respectively via Shimura correspondence as given by equa-

tion (5.3). IfKg = Q(agi(jr))0≤i,j≤d′−1, the number field, then entries ofX are inKg.

Thus we get that the entries of X are algebraic numbers. Hence, ag(D)L(f,2k−1)

πk−1⟨g,g⟩L(D,k) is al-

gebraic.

Fourier expansion of the Eisenstein series Ek,4D,(D
. )

:

we derive the Fourier series expansion of the Eisenstein series Ek,4D,(D
. )

, and obtain

that they are rational numbers. In the following computation, we have assumed that D

is a positive fundamental discriminant. Also k ≥ 2 is even, hence
(−4
d

)k+1/2
= 1.

Ek,4D,(D
. )

=
1

2

∑
(c,d)=1

4|c

(
D

d

)
(cDz + d)−k

=
1

2

∑
(4c,d)=1

(
D

d

)
(4cDz + d)−k

=
1

2

∑
d=1,−1

(
D

d

)
(d)−k +

1

2

∑
c ̸=0

∑
d∈Z

(4c,d)=1

(
D

d

)
(4cDz + d)−k

=
1

2

((
D

1

)
(1)−k +

(
D

−1

)
(−1)−k

)
+
∑
c≥1

∑
d∈Z

(4c,d)=1

(
D

d

)
(4cDz + d)−k

= 1 +
∑
c≥1

∑
d∈Z

(
D

d

)∑
δ|4c
δ|d

µ(δ)(4cDz + d)−k
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= 1 +
∑
c≥1

∑
δ|4c

µ(δ)
∑
d∈Z

(
D

dδ

)
(4cDz + dδ)−k

= 1 +
∑
c≥1

∑
δ|4c

µ(δ)

δk

∑
d∈Z

(
D

dδ

)
(
4cD

δ
z + d)−k

d 7→ Dn+ d′

= 1 +
1

Dk

∑
c≥1

∑
δ|4c

µ(δ)

δk

(
D

δ

) ∑
d′ (mod D)

(
D

d′

)∑
n∈Z

(
4cD
δ
z + d′

D
+ n)−k

= 1 +
(−2πi)k

Dk(k − 1)!

∑
n≥1

nk−1
∑
c≥1

∑
δ|4c

µ(δ)

δk

(
D

δ

) ∑
d (mod D)

(
D

d

)
e2πin(

4cD
δ

z+d′

D
+n)

= 1 +
(−2πi)k

Dk(k − 1)!

∑
n≥1

nk−1
∑
c≥1

∑
δ|4c

µ(δ)

δk

(
D

δ

) ∑
d (mod D)

(
D

d

)
e2πin

d
D e2πin

4c
δ
z

= 1 +
(−2πi)k

√
D

Dk(k − 1)!

∑
n≥1

nk−1

(
D

n

)∑
c≥1

∑
δ|4c

(
D

δ

)
µ(δ)

δk
e2πin

4c
δ
z

= 1 +
(−2πi)k

Dk−1/2(k − 1)!

∑
n≥1
c≥1

nk−1

(
D

n

)∑
δ|4c

µ(4c/δ)

(4c/δ)k

(
D

4c/δ

)
e2πinδz

= 1 +
(−2πi)k

Dk−1/2(k − 1)!

∑
m≥1
c≥1

∑
δ|m
δ|4c

(m/δ)k−1

(
D

m/δ

)
µ(4c/δ)

(4c/δ)k

(
D

4c/δ

)
e2πimz

= 1 +

 (−2πi)k

Dk−1/2(k − 1)!

∑
m≥1
c≥1

∑
δ|m/4
δ|c

(m/4δ)k−1

(
D

m/4δ

)
µ(c/δ)

(c/δ)k

(
D

c/δ

)
e2πimz



−

(−2πi)k2−k
(
D
2

)
Dk−1/2(k − 1)!

∑
m≥1
c≥1

∑
δ|m/2
δ|c,δ odd

(m/2δ)k−1

(
D

m/2δ

)
µ(c/δ)

(c/δ)k

(
D

c/δ

)
e2πimcz


= 1 +

 (−2πi)k

Dk−1/2(k − 1)!

∑
n≥1

∑
c≥1

∑
δ|n

(n/δ)k−1

(
D

n/δ

) µ(c)
(
D
c/δ

)
ck

e2πin4z
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−

(−2πi)k2−k
(
D
2

)
Dk−1/2(k − 1)!

∑
n≥1

∑
c≥1

∑
δ|n
δ odd

(n/δ)k−1

(
D

n/δ

) µ(c)
(
D
c/δ

)
ck

e2πin2z


= 1 +

 (−2πi)k

Dk−1/2Γ(k)L(D, k)

∑
n≥1

∑
δ|n

δk−1

(
D

δ

)
e2πin4z



−

 (−2πi)k2−k
(
D
2

)
Dk−1/2Γ(k)L(D, k)

∑
n≥1

∑
δ|n
δ odd

δk−1

(
D

δ

)
e2πin2z


= 1 +

2

L(D, 1− k)

∑
n≥1

σk−1,D(n)e
2πin4z −

2
(
D
2

)
L(D, 1− k)2k

∑
n≥1

σ∗
k−1,D(n)e

2πin2z,

where σk−1,D(n) =
∑
d|n

(
D
d

)
dk−1 and σ∗

k−1,D(n) =
∑
d|n
d odd

(
D
d

)
dk−1. We have used func-

tional equation for Dirichlet L function (notations as given in [2] theorem 12.11)):

L(D, 1− k) =
Dk−1Γ(k)

(2π)k

(
e

−πik
2 +

(
D

−1

)
e

πik
2

)
G(1, D)L(D, k)

= 2.
Dk−1Γ(k)

(−2πi)k

√
DL(D, k),

or,
(−2πi)k

Dk−1/2Γ(k)L(D, k)
=

2

L(D, 1− k)
.

Since L(D, 1− k)/ζ(1− 2k) ∈ Q and ζ(1− 2k) ∈ Q, we have L(D, 1− k) ∈ Q and

hence the coefficients of the defined Eisenstein series are rational.
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Chapter 6
Conclusions and Recommendations

In this thesis, we set up a generalized version of the Saito-Kurokawa isomorphism.

Specifically, if f is a normalised newform of weight 2k − 2, level M/2 with character

χ2, we derived that the form f is lifted into two linearly independent Hecke eigenforms

F, F |BS(4) in the Maass space of degree two Siegel modular forms of weight k, level

M with character χ under the Saito-Kurokawa correspondence. Moreover, the relevant

Saito-Kurokawa isomorphism maps the space of newforms Snew2k−2(M/2, χ2) into the

space of newforms S∗,new
k (Γ2

0(M), χ) in the Maass space. Here, 32|M , cond(χ) =M

and cond(χ2) =M/2.

In another problem, we derived a non-cusp form of half-integral weight k + 1/2

(k even) for Γ0(4) in the Kohnen plus space whose Petersson scalar product with a

cuspidal Hecke eigenform g is equal to a constant times the L value L(g, k − 1/2).
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Future works:

We mention few problems for future work :

• Obtain a formula relating the Petersson inner products ⟨f, f⟩ and ⟨F, F ⟩ where

f ∈ S2k−2(M,χ2) and F ∈ S∗
k(Γ

2
0(M), χ) where 32|M , cond(χ) = M and

cond(χ2) =M/2.

• Develop the theory of newforms for the spaces S+
k−1/2(8N) and S+

k−1/2(16N)

where N is an odd and square-free integer.

• Obtain Saito-Kurokawa isomorphisms using the theory of newforms developed

in the above cases.
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