n.	3.7	
Keg.	No	

Date of Examination.....

U.G./P.G. ENTRANCE EXAMINATION, APRIL 2021

PHYSICS/RADIATION PHYSICS

Time: Two Hours Maximum: 100 Marks

Instructions to Candidates

- Candidates are provided with a Question Booklet and an Optical Marker Reader (OMR) answer sheet to mark the responses.
- Write the Register number and Date of the Examination in the space provided on the top of this booklet.
- · Read carefully all the instructions given in the OMR sheet.
- Each correct answer carries 2 marks. For each wrong answer one-third of the mark for that question will be deducted.

C 2824 (Pages: 8)

Time: Two Hours

U.G./P.G. ENTRANCE EXAMINATION, APRIL 2021

PHYSICS/RADIATION PHYSICS

Maximum: 100 Marks

1.	In digi	tal computer systems, which number systems is preferred for arithmetic circuits:
	(a)	Unsigned binary numbers.
	(b)	Sign-magnitude numbers.
	(c)	1's complement binary numbers.
	(d)	2's complement binary numbers.
2.	In a M	ichelson interferometer:
	(a)	One concave lens and two plane mirrors are used.
	(b)	One half silvered glass plate and two concave mirrors are used.
	(c)	One half silvered glass plate and two plane mirrors are used.
	(d)	One half silvered glass plate and two convex lens are used.
3.	The in	terference phenomenon is shown by :
	(a)	Both longitudinal and transverse waves.
	(b)	Longitudinal waves only.
	(c)	Transverse waves only.
	(d)	None of these.
4.		dth of the central bright fringe of the image of Fraunhofer's diffraction experiment with a wavelength 600 mn. and slit width 0.8 mm. is :
	(a)	1 mm. (b) 2 mm.
	(c)	3 mm. (d) 4 mm.
5.		raunhofer's diffraction experiment, the intensity of the central bright fringe when the slit s decreased :
	(a)	Decreases initially then increases.
	(b)	Increases initially then decreases.
	(c)	Increases.
	(d)	Decreases.
		Turn over

ß	Sno	J.	120	2227	ra	latac	

(a) Light reflection.

(b) Light transmission.

(c) Light refraction.

(d) Light Absorption.

7. A polariser is used to:

- (a) Reduce intensity of light.
- (b) Produce polarised light.
- (c) Increase intensity of light.
- (d) Produce unpolarised light.
- 8. The transverse nature of light is shown by:
 - (a) Polarisation of light.
- (b) Dispersion of light.
- (c) Interference of light.
- (d) Refraction of light.
- 9. A rigid diatomic molecule is free to rotate in a fixed plane. The rotational energy eigen values are given by:
 - (a) $\frac{\hbar m^2}{2I}$

(b) $\frac{\hbar^2 I}{2m}$

(c) $\frac{2mI}{h^2}$

- (d) $\frac{mI}{2\hbar^2}$
- 10. If $\psi = A \exp\left(\frac{-\alpha x^2}{2}\right) \exp\left(\frac{iEt}{\hbar^2}\right)$ is a normalized wave function, the value of A is :
 - (a) 1

(h) (

(c) α/2.

- (d) $\left(\frac{\pi}{a}\right)^{\left(-\frac{1}{4}\right)}$
- 11. Let ϕ_1 and ϕ_2 be orthonormal functions, find the value of n which normalizes the function $f = n \left(\phi_1 + 2i\phi_2 \right)$:
 - (a) 1 + 2i

(b) 1/(1+2i).

(c) 1/5

(d) $1/\sqrt{5}$.

12.		elength 5.6×10^{-7} m. entering the ey		human eye is 10^{-10} W/m ² . The number of photons th pupil area 10^{-6} m ² . per second for vision will be
	(a)	100.	(b)	200.
	(c)	300.	(d)	400.
13.		Broglie wavelength of a particle acce. V, its wavelength (in Å) will be:	lerate	ed with 150 V potential is 10^{-10} m. If it is accelerated
	(a)	0.25.	(b)	0.5.
	(c)	1.5.	(d)	2.
14.	The deside α i		vel 19	$\partial \hbar^{ 2} / (ma^2)$ of a particle in a cubic potential box of
	(a)	3.	(b)	6.
	(c)	9.	(d)	12.
15.	The end with:	ergy contained in a small volume thro	ugh v	which an electromagnetic wave is passing, oscillates
	(a)	Zero frequency.		
	(b)	The frequency of the wave.		
	(c)	Half the frequency of the wave.		
	(d)	Double the frequency of the wave		
16.		etromagnetic wave going through wt), then :	acuu/	m is described by $E = E_0 \sin (kx - wt)$, $B = B_0$
	(a)	$\mathbf{E}_0 k = \mathbf{B}_0 w.$	(b)	$\mathbf{E}_0\mathbf{B}_0 = wk.$
	(c)	$\mathbf{E}_0 w = \mathbf{B}_0 h.$	(d)	None of these.
17.		e electromagnetic wave is incident of ergy E.	n a n	naterial surface. The wave delivers momentum p
	(a)	$p=0, \mathbf{E} \neq 0.$	(b)	$p \neq 0$, $\mathbf{E} = 0$.
	(c)	$p = 0$, $\mathbf{E} \neq 0$. $p \neq 0$, $\mathbf{E} \neq 0$.	(d)	p=0, E=0.

18.	. A free electron is placed in the path of a plane electromagnetic wave. The electron will start moving:				
	(a)	Along the electric field.			
	(b)	Along the magnetic field.			
	(c)	Along the direction of the propag	ation	of the wave.	
	(d)	In a plane containing the magnet	ic fiel	d and the direction of propagation.	
19.	An elec	tric dipole is placed in a uniform el	ectric	field. The net electric force on the dipole.	
	(a)	Is always zero.			
	(b)	Depends on the orientation of the	dipol	е.	
	(c)	Can never be zero.			
	(d)	Depends on the strength of the di	pole.		
20.				ith respect to the axis passing though the plane of axis normal to the plane will be:	
	(a)	41.	(b).	21.	
	(c)	1/2.	(d)	1/4.	
21.	1. If the external force acting on a system of particles is zero:				
	(a)	Total momentum is a constant.			
	(b)	Momenta of individual particles is	s a cor	nstant.	
	(c)	Total energy is a constant.		•	
	(d)	Total momentum and energy can	not be	e a constant.	
22.	If angu	lar momentum is a constant of mo	tion :		
	(a)	Torque is zero.	(b)	Force is conservative.	
	(c)	Both (a) and (b).	(d)	None of these.	
23.	23. The escape velocity from the surface of earth is 11.2 km/s. The escape velocity of particle projected from a satellite revolving round the earth at a distance of 6000 km. above the surface of earth will be approximately.				
	(a)	5 km/s.	(b)	8 km/s.	
	(c)	11 km/s.	(d)	14 km/s.	

24.	The nu	mber of degree freedom for a partic	le mo	oving on the circumference of a circle is:
	(a)	1.	(b)	2.
	(c)	3.	(d)	4
25.		oulombs of charge are placed on a the the electric potential inside the hol		alled conducting shell. Once the charge has come onducting shell is found to be :
	(a)	Zero.		
	(b)	Uniform inside the sphere and equ	al to	the electric potential on the surface of the sphere.
	(c)	Smaller than the electric potential	outsi	ide the sphere.
	(d)	Varying as one over r squared.		
26.	An infi	nitely long wire carries a current of	three	e amps. The magnetic field outside the wire:
	(a)	Points radially away from the wire	е.	
	(b)	Points radially inward.		
	(c)	Circles the wire.		
	(d)	Is zero.		
27.		erging thin lens has a focal length of s. Where is the image of this object		entimeters. An object is placed 9 centimeters from ed ?
	(a)	– 13.5 cm.	(b)	– 23.5 cm.
	(c)	– 33.5 cm.	(d)	– 43.5 cm.
28.		a physical property such as charge s, the property is said to be:	exist	s in discrete "packets" rather than in continuous
	(a)	Discontinuous.	(b)	Abrupt.
	(c)	Quantized.	(d)	Non-continuous.
29.	The Mi	llikan experiment showed that elect	tric cl	narge was :
	(a)	Negative.	(b)	Quantized.
	(c)	Positive.	(d)	Unmeasurable.

30.	Two ra	dioactive isotopes P and Q have half-	lives	of 10 minutes and 15 minutes respectively. Freshly
	prepar	ed samples of each isotope initially	cont	ain the same number of atoms. After 30 minutes
	what is the ratio of number of atoms of P to that of Q $\left(rac{ ext{N}_P}{ ext{N}_Q} ight)$?			
	(a)	1.	(b)	2.
	(c)	1.5.	(d)	0.5.
31.'		ass number A must be conserved i l conservation rule. Which?	nan	nuclear reaction. This is a special case of a more
	(a)	Baryon number.	(b)	Charge.
	(c)	Energy.	(d)	Mass.
32.	Why do	o we have decay with alpha emissio	n but	not with proton emission?
	(a)	The proton is too light.		
	(b)	The proton has too small charge.		ě
	(c)	The alpha-is loosely bound.		25)
	(d)	The alpha-particle has high bindi	ng en	ergy per nucleon.
33.	In the l	binding energy B (Z, A) formula, th	e pair	ing term is proportional to :
	(a)	A.	(b)	$A^{-3/4}$.
	(c)	$A^{-1/3}$.	(d)	$A^{2/3}$.
34.	In the l	binding energy B (Z, A) formula, the	e pair	ring term will be zero in the case of:
	(a)	Even-even nuclei.	(b)	Odd-odd nuclei.
	(c)	Even-odd nuclei.	(d)	None of these.
35.	Fundan	nental or elementary particles are p	artic	les that aren't made up of smaller particles. What
	is the m	nost common type of fundamental p	article	e in the universe?
	(a)	Atom.	(b)	Meson.
	(c)	Neutrino.	(d)	Quark.
36.	effèct.	– lines are of longer wavelength tha	in tha	at of exciting radiation responsible for the Raman
	(a)	Lymen.	(b)	Anti-Stokes.
	(c)	Balmer.	(d)	Stokes.

6

37.		— laser is used for the treatment in	diab	etic retinopathy.
	(a)	Ruby.	(b)	Diode laser.
	(c)	CO_2 laser.	(d)	Nd: YAG.
38.	Carbor	n dioxide laser was invented by:		
	(a)	C. V. Raman.	(b)	K. P. Patel.
	(c)	Kumar Patel.	(d)	Edison.
39.		tion temperature of mercury is:		
	(a)	4.2°C.	(b)	4.2 K.
	(c)	2.3 K.	(d)	77 K.
40.	Meissn	er effect tells the superconductors a	re:	
	(a)	Dielectric.	(b)	Paramagnetic.
	(c)	Ferroelectric.	(d)	Diamagnetic.
41.	Which	of the following statements are Tru	e ?	
	A. Bo	sons does not obey Pauli exclusion p	princi	ple.
	B. Bo	sons are in general spin 1 particles.		
	(a)	Only A.	(b)	Only B.
	(c)	Both (A) and (B).	(d)	None.
42.	In a fir	st order phase transition, at the tra	nsitio	on temperature :
	(a)	Entropy and specific volume show	disco	ontinuity.
	(b)	Entropy and specific volume are c	ontin	uous.
	(c)	Gibbs energy show discontinuity.		
	, (d)	Gibbs energy and entropy show di	iscont	inuity.
43.	A Carn	ot engine takes in a thousand kiloca	llorie	of heat from a reservoir at 627° C and exhausts it
	to a sin	k at 27°C. What is its efficiency?		
	(a)	100 %.	(b)	66 %.
	(c)	33 %.	(d)	25 %.
44.		5		pody at -73° C. The net heat transferred from the d per square metre is ($\sigma = 5.67 \times 10^{-8}$ S.I. units).
	(a)	370.	(b)	220.
	(c)	90.	(d)	10.
				Turn over

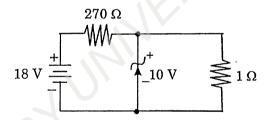
45. In general, the particles for which their wave functions overlap to a negligible extent, will obey.

- (a) Maxwell Boltzmann Statistics.
- (b) Fermi Dirac statistics.
- (c) Bose Einstein statistics.
- (d) None of these.

46. The average energy per degree of freedom for any classical particle in thermal equilibrium system at a temperature T is (k is Boltzmann constant).

(a) 0.

(b) 1.


(c) $\frac{3}{2}kT$

(d) $\frac{1}{2}kT$.

47. When the temperature of a radiating black body increases, the maximum intensity of radiation?

- (a) Shifts towards the longer wavelength.
- (b) Shifts towards the shorter wavelength.
- (c) Remains unaffected.
- (d) Depends on the ambient temperature.

48. Find the voltage and current through the Zener diode ($R_s = 270 \Omega$, $V_z = 10 V$ and $R_L = 1 k\Omega$).

(a) 18 V and 10 mA.

(b) 10 V and 10 mA.

(c) 8 V and 1 mA.

(d) 9 V and 19.6 mA.

49. A photo diode is normally:

(a) Forward biased.

- (b) Reverse biased.
- (c) Neither forward nor reverse biased.
- (d) Emitting light.

50. Which of the following has a negative-resistance region?

(a) Tunnel diode.

(b) Step-recovery diode.

(c) Shottkey diode.

(d) Opto-coupler.