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Chapter 1

Introduction

The main concern of the thesis is on the statistical models and methods useful in the

analysis of longitudinal data, that are routinely collected in a broad range of appli-

cations, including agricultural and life sciences, medical and public health research,

and physical science and engineering. In this set up, data in the form of repeated

measurements on the same unit over time are used. The characteristics of this data

is that the same response is measured repeatedly on each unit. This type of the data

structure will be the focus of the thesis.

In addition to the usual kinds of questions being asked, such as how the mean

response differs across treatments, we are more curious to know how change in mean

response over time differs and other issues concerning the relationship between re-

sponse and time. All these warrants, an appropriate representation of the situation

in terms of a statistical model that signifies the way in which the data were collected

in order to address these questions. Needless to say special methods of analysis are
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required in this study to complement the models.

In almost every discipline there is increased awareness of the importance of

longitudinal studies for understanding change over time and the factors that influence

change. This has led to a steady growth in the availability of longitudinal data, often

arising from relatively complex study designs. The analysis of longitudinal data

continues to pose many interesting methodological challenges and is likely to do so

for the foreseeable future. The objective of this research work is to highlight the

current state of the art of longitudinal data analysis, to unravel the potentials of the

longitudinal data analysis to find answers to challenging questions posed in various

disciplines and to provide a glimpse of future directions.

Longitudinal studies represent one of the major strategies employed in research in

various areas nowadays. The main advantage of longitudinal studies is that they can

distinguish changes over time within individuals (longitudinal effects) from differences

between subjects at the start of the study (base-line characteristics; cross-sectional

effects). The statistical literature on the analysis of repeated measurements is based

on the paradigm of multivariate regression. But longitudinal studies, typically, have

unbalanced designs, time varying coefficients, missing data and other characteristics

that make standard multivariate procedures inapplicable.

The type of problems in longitudinal study differs from that usually treated

as time series in the statistical literature to the extent that in the latter, we have,

in general, a single sample unit evaluated at many instants while in the former, we

usually deal with several sample units observed at a few instants. Thus they differ

from classical time series data in consisting of a large number of short series, one
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from each subject, rather than a single long series. The distinctive characteristic

of longitudinal data is the ordered dimension along which data are collected. For

further details of the characterisation of longitudinal studies and their relation with

other forms of data collection one may refer to Goldstein (1979), Duncan and Kalton

(1987), Crowder and Hand (1990), Lindsey (1993), Jones (1993), Baltagi (1995),

Vonesh and Chinchilli (1997) and Diggle et al (2003), among others.

In cross sectional studies a single observation (at a specified instant) of the re-

sponse variable is recorded for each element of the sample. If two or more observations

(at different instances) of the response variable is recorded for each observation of the

sample, the study is known as longitudinal. That is, in longitudinal studies, each sub-

ject gives rise to a vector of measurements, the measurements representing the same

physical quantity at different observation times. For example, we might measure a

subject’s blood pressure on each of five successive days. Longitudinal data therefore

combine elements of multivariate and time series data. However, they differ from

classical multivariate data in that the time series aspect of the data typically imparts

a much more highly structured pattern of interdependence among measurements than

for standard multivariate data sets.

Longitudinal studies are of particular interest for investigating global or indi-

vidual changes along time. In the first place, they allow for the observation of the

response variable under uniform exposure of the sample units to different covariates.

Secondly, longitudinal designs provide information about individual variation of the

levels of the response variable. Finally, some parameters of the underlying statistical

models may be more efficiently estimated under longitudinal data collection schemes
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than under cross sectional schemes with the same number of observations.

The major advantage of longitudinal study is its capacity to separate what in

the context of population studies are called cohort and age effects. The longitudinal

study can distinguish changes over time within individuals(ageing effects) from differ-

ences among people in their baseline levels(cohort effects), whereas a cross-sectional

study cannot. In some studies, a third timescale, the period, or calendar date of

measurement, is also important. Any two of age, period and cohort determine the

third. Analyses which must consider all three scales require external assumptions

which unfortunately are difficult to validate. (See Mason and Feinberg (1985) for

details).

Longitudinal designs are superior to cross sectional designs in several ways. First,

it offers investigators the opportunity for controlled and uniform measurement of

exposure history and other factors related to outcome. Hence the relevant information

is more reliably quantified. Second, longitudinal designs provide information about

individual patterns of change. Finally, longitudinal designs can provide more efficient

estimators of some parameters than cross sectional designs with the same number

and pattern of measurement.

The main disadvantage associated to longitudinal studies is related to cost, for

in many instances they require efforts to assure that the sample units be observed

at designated instants and in others, they need long observation periods. Technical

difficulties due to comparatively complex statistical models may also constitute a

problem.
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1.1 Advances in Longitudinal Data Analysis: A His-

torical Perspective

There have been remarkable developments in statistical methodology for longitudinal

data analysis in the last few decades. As a result statisticians and empirical re-

searchers now have access to an increasingly sophisticated toolbox of methods. How-

ever, there has been a lag between the recent developments that have appeared in the

statistical journals and their widespread application to substantive problems. One

reason for these advances to be somewhat slow to move into the mainstream is their

limited implementation in widely available standard computer software. Recently,

however, the introduction of new programs for analyzing multivariate and longitu-

dinal data has made many of these methods far more accessible to statisticians and

empirical researchers alike. Also, in the present scenario, in which statistical soft-

ware is constantly evolving, we can anticipate that many of the more recent advances

will soon be implemented. Thus, the outlook is bright that modern methods for

longitudinal analysis will be applied more widely and across a broader spectrum of

disciplines.

In this Section, we look back with an historical perspective and review many

of the key advances that have been made, especially in the past four decades. Our

review will be somewhat selective, and the main goal is to highlight the important

and enduring developments in the methodology. We collocate the seminal works that

turned out to be the landmarks in the headway of longitudinal data analysis. The

review will set the stage for the remaining chapters of this thesis, where the focus is
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on the current state of the art of longitudinal data analysis.

For a few years, most of the statistical methodological developments for the

analysis of longitudinal data were directed towards univariate continuous response

variables, with special attention to those with an underlying Gaussian distribution.

Due to the nice behaviour of the multivariate Gaussian distribution and its analytic

characteristics, there has been very sharp focus on research on models under this

distribution, for such a long time after its first introduction by Wishart(1938). As a

result a rich variety of models for Gaussian data is available. The classical papers of

Box (1950), Geisser and Green House (1958), Potthoff and Roy (1964), Rao (1959,

1965), Elston and Grizzle (1962) and Grizzle and Allen (1969) are examples of the

early efforts, which developed into a fruitful research area in the past four decades.

Grizzle and Allen (1969) suggest an interesting computational procedure to implement

Rao’s (1959) technique of covariance adjustment. This technique is further discussed

in Baksalary et al (1978), Kenward (1985), Calinski and Caussinus (1989) and is

summarised in Kshirsagar and Smith (1995).

The use of random effects models for longitudinal data analysis was first consid-

ered by Rao (1959) and Elston and Grizzle (1962), in the context of growth curves. A

generalization was considered in Graybill (1976) and its actual form was presented by

Laird and Ware (1982), based on the idea of Harville (1977). Laird and Ware (1982)

present an excellent discussion of restricted maximum likelihood estimation (REML)

methods for estimation and proposed the use of EM algorithm to fit a class of linear

mixed effects models appropriate for the analysis of repeated measurements. Jennrich

and Schluchter (1986) propose a variety of alternative algorithms, including Fisher-
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scoring and Newton-Raphson algorithms. Winer (1971) provides some application of

repeated measures by ANOVA.

Ware and Liang (1996) provide an interesting historical perspective on the devel-

opment of statistical methods for the analysis of longitudinal data. The foundations

for the repeated measures analysis of variance can be found in the seminal monograph

by Fisher (1925) and in the method of analysing split-plot experiments proposed by

Yates (1935) and Scheffe (1959).

There is increased evidence about the value of using Bayesian predictive inference

for finite population parameters, especially for difficult problems such as estimation.

Bayesian estimation for longitudinal data models has been considered by Lee and

Geisser (1972), Giesser (1970, 1980), Rao (1987), Lee (1988) and Kass and Steffey

(1989). The Bayesian models allow us to pass along both the qualitative form of the

longitudinal model and the information about the parameters in the model, conveyed

by the prior distribution and likelihood. Bayesian nonparametric methods have been

proposed for population models to accommodate population heterogeneity and to

relax distributional assumptions and restrictive models.

Henderson et al (2000) propose a shared latent process for jointly modelling

Gaussian longitudinal data and event time data that incorporated autocorrelation

through a latent process. Li, Shao and Palta (2005) propose a latent variable mea-

surement error model for the error structure and implement it in a linear mixed model,

wherein the estimation procedure is similar to regression calibration but involves a

distributional assumption for the latent variable through an example concerning sleep-

disordered breathing (SDB) in the Wisconsin Sleep Cohort Study (WSCS).
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More recently, statistical methods based on generalized linear models have been

considered for the analysis of data with underlying distributions in the exponential

family, although they still fall behind the need. Generalized linear models are used

for discrete data as well.

1.1.1 Early origins of linear models for longitudinal data analysis

The analysis of change is a fundamental component of so many research endeavours

in almost every discipline. Many of the earliest statistical methods for the analysis

of change were based on the analysis of variance (ANOVA) paradigm, as originally

developed by R. A. Fisher. One of the earliest methods proposed for analyzing longi-

tudinal data was a mixed-effects ANOVA, with a single random subject effect. The

inclusion of a random subject effect induced positive correlation among the repeated

measurements on the same subject. We use the terms subjects and individuals inter-

changeably to refer to the participants in a longitudinal study. Interestingly, it was

the British astronomer George Biddel Airy who laid the foundations for the linear

mixed-model formulation (Airy (1861)), before it was put on a more formal theoreti-

cal footing in the seminal work of R. A. Fisher (see, for example, Fisher (1918, 1925).

Airy’s work on a model for errors of observation in astronomy predated Fishers more

systematic study of related issues within the ANOVA paradigm (e.g., Fisher’s (1921,

1925) writings on the intraclass correlation). Scheffe (1956) provides a fascinating

discussion of the early contributions of 19th century astronomers to the development

of the theory of random-effects models. As such, it can be argued that statistical
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methods for the analysis of longitudinal data, in common with classical linear re-

gression and the method of least squares, have their earliest origins in the field of

astronomy.

The mixed-effects ANOVA model has a long history of use for analyzing longitu-

dinal data, where it is often referred to as the univariate repeated-measures ANOVA.

Statisticians recognized that a longitudinal data structure, with N individuals and

n repeated measurements, has striking similarities to data collected in a randomized

block design, or the closely related split-plot design. So it seemed natural to ap-

ply ANOVA methods developed for these designs (e.g., Yates (1935), Scheffe (1959))

to the repeated-measures data collected from longitudinal studies. In doing so, the

individuals in the study are regarded as the blocks or main plots. The univariate

repeated-measures ANOVA model can be written as

Yij = X ′
ijβ + bi + eij, i = 1, 2, . . . , N ; j = 1, 2, . . . , n,

where Yij is the outcome of interest, X ij is a design vector, β is a vector of regres-

sion parameters, bi ∼ N(0, σ2
b ), and eij ∼ N(0, σ2

e). In this model, the blocks or

plot effects are regarded as random rather than fixed effects. The random effect, bi,

represents an aggregation of all the unobserved or unmeasured factors that make in-

dividuals respond differently. The inclusion a single, individual-specific random effect

induces a positive correlation among the repeated measurements, although be it with

the following highly restrictive “compound symmetry” structure for the covariance:

constant variance Var(Yij) = σ2
b + σ2

e and constant covariance Cov(Yij, Yik) = σ2
b .
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The univariate repeated-measures ANOVA model can be considered a forerun-

ner of more versatile regression models for longitudinal data. For balanced data,

estimates of variance components could be readily obtained in closed form by equat-

ing ANOVA mean squares to their expectations; sometime later, Henderson (1963)

developed a related approach for unbalanced data. So, from an historical perspective,

an undoubted appeal of the repeated measures ANOVA was that it was one of the few

models that could realistically be fit to longitudinal data at a time when computing

was in its infancy. This explains why, in those days, the key issue perceived to arise

with incomplete data was lack of balance.

The repeated-measures multivariate analysis of variance (MANOVA) is a related

approach for the analysis of longitudinal data with an equally long history, requir-

ing somewhat more advanced computations. While the univariate repeated-measures

ANOVA is conceptualized as a model for a single response variable, allowing for

positive correlation among the repeated measures on the same individual via the in-

clusion of a random subject effect, MANOVA is a model for multivariate responses.

As originally developed, MANOVA was intended for the simultaneous analysis of a

single measure of a multivariate vector of substantively distinct response variables. In

contrast, while longitudinal data are multivariate, the vector of responses is commen-

surate, being repeated measures of the same response variable over time. So, although

MANOVA was developed for multiple, but distinct, response variables, statisticians

recognized that such data share a common feature with longitudinal data, namely,

that they are correlated. This led to the development of a very specific variant of

MANOVA, known as repeated-measures analysis by MANOVA (or sometimes referred

to as multivariate repeated-measures ANOVA).
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A special case of the repeated-measures analysis by MANOVA is a general ap-

proach known as profile analysis (Box (1950), see also Geisser and Greenhouse (1958)

and Greenhouse and Geisser (1959)). It proceeds by constructing a set of derived vari-

ables, based on a linear combination of the original sequence of repeated measures,

and using relevant subsets of these to address questions about longitudinal change

and its relation to between subject factors. These derived variables provide informa-

tion about the mean level of the response, averaged over all measurement occasions,

and also about change in the response over time. For the most part, the primary

interest in a longitudinal analysis is in the analysis of the latter derived variables.

The multiple derived variables representing the effects of measurement occasions are

then analyzed by MANOVA.

Box (1950) provided one of the earliest descriptions of this approach, propos-

ing the construction of derived variables that represent polynomial contrasts of the

measurement occasions. A closely related work can be found in Danford et al (1960),

Geisser (1963), Potthoff and Roy (1964), Cole and Grizzle (1966), and Grizzle and

Allen (1969). Alternative transformations can be used, as the MANOVA test statis-

tics are invariant to how change over time is characterized in the transformation of

the original repeated measures. Although the MANOVA approach is computation-

ally more demanding than the univariate repeated-measures ANOVA, an appealing

feature of the method is that it allows assumptions on the structure of the covariance

among repeated measures to be relaxed. In standard applications of the method, no

explicit structure is assumed for the covariance among repeated measures (other than

homogeneity of covariance across different individuals).
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1.1.2 Linear mixed-effects model for longitudinal data

The linear mixed-effects model is probably the most widely used method for analyz-

ing longitudinal data. Although the early development of mixed-effects models for

hierarchical or clustered data can be traced back to the ANOVA paradigm (see, for

example, Scheffe (1959)) and to the seminal paper by Harville (1977), their usefulness

for analyzing longitudinal data, especially in the life sciences, was highlighted in the

1980’s in a widely cited paper by Laird and Ware (1982). Goldstein (1979) is often

seen as the counterpart for the humanities. The idea of allowing certain regression co-

efficients to vary randomly across individuals was also a recurring theme in the early

contributions to growth curve analysis by Wishart (1938), Box (1950), Rao (1958),

Potthoff and Roy (1964), and Grizzle and Allen (1969). These early contributions

to growth curve modelling laid the foundation for the linear mixed-effects model.

The idea of randomly varying regression coefficients was also a common theme in

the so-called two-stage approach to analyzing longitudinal data. In the two-stage

formulation, the repeated measurements on each individual are assumed to follow a

regression model with distinct regression parameters for each individual. The dis-

tribution of these individual-specific regression parameters, or “random effects,” is

modelled in the second stage. A version of the two-stage formulation was popularized

by bio-statisticians working at the U.S. National Institutes of Health (NIH). They

proposed a method for analyzing repeated measures data, where, in the first stage,

subject-specific regression coefficients are estimated using ordinary least-squares re-

gression. In the second stage, the estimated regression coefficients are then analyzed
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as summary measures using standard parametric (or non-parametric) methods. In-

terestingly, this method for analyzing repeated-measures data became known as the

“NIH method.” In the agricultural sciences, a similar approach was popularized in

a highly cited paper by Rowell and Walters (1976). Rao (1965) put this two-stage

approach on a more formal footing by specifying a parametric growth curve model

that assumed normally distributed random growth curve parameters.

In the early 1980’s, Laird and Ware (1982), drawing upon a general class of mixed

models introduced earlier by Harville (1977), proposed a flexible class of linear mixed-

effects models for longitudinal data. These models could handle the complications

of mistimed and incomplete measurements in a very natural way. The linear mixed-

effects model is given by

Y ij = X ′
ijβ + Z ′

ijbi + ei,

where Zij is a design vector for the random effects, bi ∼ N(0, G), and ei ∼ N(0, Ri).

The linear mixed-effects model proposed by Laird and Ware (1982) included the

univariate repeated-measures ANOVA and growth curve models for longitudinal data

as special cases. In addition, the model of Laird and Ware had two desirable features:

first, there were fewer restrictions on the design matrices for the fixed and random

effects; second, the model parameters could be estimated efficiently via likelihood

based methods. Previously, difficulties with estimation of mixed-effects models had

held back their widespread application to longitudinal data. Laird and Ware (1982)

showed how the expectation-maximization (EM) algorithm (Dempster et al (1977))

could be used to fit this general class of models for longitudinal data. Soon after,

Jennrich and Schluchter (1986) proposed a variety of alternative algorithms, including
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Fisher scoring and Newton-Raphson. Currently, maximum likelihood and restricted

maximum likelihood estimation, the latter devised to diminish the small-sample bias

of maximum likelihood, are the most frequently employed routes for estimation and

inference (see Verbeke and Molenberghs (2000); Fitzmaurice et al (2004)).

Since the pioneering work of Laird and Ware (1982), statistical methods for the

analysis of longitudinal data have advanced dramatically. They showed that gen-

eralized mixed-effects regression models could be used to perform a more complete

analysis of all of the available longitudinal data under much more general assump-

tions regarding the missing data (i.e., missing at random; MAR). The net result was

a more powerful set of statistical tools for analysis of longitudinal data that led to

more powerful statistical hypothesis tests, more precise estimates of rates of change

(and differential rates of change between experimental and control groups), and more

general assumptions regarding missing data, for example because of study dropout.

This early work has led to considerable related advances in statistical methodology

for analysis of longitudinal data (for excellent reviews of this development, see Diggle

et al (2003), Fitzmaurice et al (2004), Goldstein (1995), Hedeker and Gibbons (2006),

Longford (1993), Raudenbush and Bryk (2002), Singer and Willett (2003), and Ver-

beke and Molenberghs (2000)). Notable among these advances and relevant to this

review are generalizations of the original Laird-Ware type model to the nonlinear case

(relevant for the analysis of binary, ordinal, nominal, count, and time-to-event out-

comes), even more general forms of missing data (not missing at random; NMAR),

higher levels of nesting such as three-level models (e.g., repeated observations nested

within subjects and subjects nested within hospitals or clinics), alternative distribu-

tional assumptions for residual errors of measurement, correlated residual errors of
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measurement, multivariate mixed-effects regression models, and advances in sample

size determination in the context of longitudinal studies. Computational advances in

parameter estimation have also been seen, particularly in the area of nonlinear mixed

effects regression models, where numerical evaluation of the likelihood function is

more complex and requires high dimensional numerical integration (e.g., adaptive

quadrature or Monte Carlo-type integration for full Bayes estimation of model pa-

rameters).

So, by the mid-1980’s, a very general class of linear models for longitudinal

data had been proposed that could handle issues of unbalanced data, due to ei-

ther mistimed measurement or missing data, could handle both time-varying and

time-invariant covariates, and provided a flexible, yet parsimonious, model for the

covariance. Moreover, these developments appeared at a time when there were great

advances in computing power. It was not too long before these methods were avail-

able at the desktop and were being applied to longitudinal data in a wide variety of

disciplines.

1.1.3 Models for non-Gaussian longitudinal data

The early advances in methods for longitudinal data analysis have been based on linear

models for continuous responses that may be approximately normally distributed.

The developments in methods for analyzing a continuous longitudinal response span

more than a century, from the early work on simple random-effects models by the

British astronomer Airy (1861) through the landmark paper on linear mixed-effects
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models for longitudinal data by Laird and Ware (1982). In contrast, many of the

advances in methods for discrete longitudinal data have been concentrated in the last

four decades, harnessing the high-speed computing resources available at the desktop.

When the longitudinal response is discrete, linear models are no longer appropri-

ate for relating changes in the mean response to covariates. Instead, statisticians have

developed extensions of generalized linear models (Nelder and Wedderburn, 1972) for

longitudinal data. Generalized linear models provide a unified class of models for

regression analysis of independent observations of a discrete or continuous response.

A characteristic feature of generalized linear models is that a suitable non-linear

transformation of the mean response is assumed to be a linear function of the covari-

ates. This non-linearity raises some additional issues concerning the interpretation

of the regression coefficients in models for longitudinal data. Statisticians have ex-

tended generalized linear models to handle longitudinal observations in a number of

different ways; here we consider three broad, but quite distinct, classes of regres-

sion models for longitudinal data: (i) marginal or population averaged models, (ii)

random-effects or subject-specific models, and (iii) transition or response conditional

models. These models differ not only in how the correlation among the repeated

measures is accounted for, but also have regression parameters with discernibly dif-

ferent interpretations. These differences in interpretation reflect the different targets

of inference of these models. Because binary data are so common, we focus much of

our review on models for longitudinal binary data. Most of the developments apply

to, say, categorical data and counts equally well.
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(i) Marginal or population-averaged models

The extensions of generalized linear models from the univariate to the multivariate

response setting have followed a number of different research threads. In this section

we consider an approach for extending generalized linear models to longitudinal data

that leads to a class of regression models known as marginal or population-averaged

models. The term marginal in this context is used to emphasize that the model for

the mean response at each occasion depends only on the covariates of interest, and

not on any random effects or previous responses. This is in contrast to mixed-effects

models, where the mean response depends not only on covariates but also on a vector

of random effects, and to transition or generally conditional models (e.g., Markov

models), where the mean response depends also on previous responses.

Marginal models provide a straightforward way to extend generalized linear mod-

els to longitudinal data. They directly model the mean response at each occasion,

using an appropriate link function. Because the focus is on the marginal mean and its

dependence on the covariates, marginal models do not necessarily require full distri-

butional assumptions for the vector of repeated responses, only a regression model for

the mean response. This can be advantageous, as there are few tractable likelihoods

for marginal models for discrete longitudinal data.

A marginal model for longitudinal data has the following three-part specification:

1. The mean of each response, E(Yij|X ij) = µij, is assumed to depend on the
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covariates through a known link function

h−1(µij) = X ′
ijβ.

2. The variance of each Yij, given the covariates, is assumed to depend on the

mean according to

Var(Yij|X ij) = φ ν(µij),

where ν(µij) is a known variance function and φ is a scale parameter that may

be known or may need to be estimated.

3. The conditional within-subject association among the vector of repeated re-

sponses, given the covariates, is assumed to be a function of an additional set

of association parameters, α (and may also depend upon the means, µij).

The first of above is the key component of a marginal model and it specifies the

model for the mean response at each occasion, E(Yij|X ij), and its dependence on

the covariates. However, there is an implicit assumption in the first component that

is often overlooked. Marginal models assume that the conditional mean of the jth

response, given X i1, . . . ,X in, depends only on X ij, that is,

E(Yij|X i) = E(Yij|X i1, . . . ,X in) = E(Yij|X ij),

where obviously X i = (X i1, . . . ,X in); see Fitzmaurice et al (1993) and Pepe and

Anderson (1994) for a discussion of the implications of this assumption. With time
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invariant covariates, this assumption necessarily holds. Also, with time-varying co-

variates that are fixed by design of the study (e.g., time since baseline, treatment

group indicator in a crossover trial), the assumption also holds, as values of the co-

variates are determined a priori by study design and in a manner unrelated to the

longitudinal response. However, when a time-varying covariate varies randomly over

time, the assumption may no longer hold. As a result, somewhat greater care is re-

quired when fitting marginal models with time-varying covariates that are not fixed

by design of the study. This problem has long been recognized by econometricians

(see, for example, Engle et al 1983), and there is now an extensive statistical literature

on this topic (see, for example, Robins et al 1999).

The second component specifies the marginal variance at each occasion, with

the choice of variance function depending upon the type of response. For balanced

longitudinal designs, a separate scale parameter, φj, can be specified at each occa-

sion; alternatively, the scale parameter could depend on the times of measurement,

with φ(tij) being some parametric function of tij. Restriction to a single unknown

parameter φ is especially limiting in the analysis of continuous responses where the

variance of the repeated measurements is often not constant over the duration of the

study.

The third component recognizes the characteristic of lack of independence among

longitudinal data by modelling the within-subject association among the repeated

responses from the same individual.

From a historical perspective, it is difficult to pinpoint the origins of marginal

models. In the case of linear models, the earliest approaches based on the ANOVA
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paradigm fit squarely within the framework of marginal models. In a certain sense,

the necessity to distinguish marginal models from other classes of models becomes

critical only for discrete responses. The development of marginal models for discrete

longitudinal data has its origins in likelihood-based approaches, where the three-part

specification given above is extended by making full distributional assumptions about

the n × 1 vector of responses. Next, we trace some of these early developments and

highlight many of the issues that have complicated the application of marginal models

to discrete data, leading to the widespread use of alternative, semi-parametric meth-

ods. At least three main research threads can be distinguished in the development of

likelihood based marginal models for discrete longitudinal data. Because binary data

are so common, we focus much of this review on models for longitudinal binary data.

One of the earliest likelihood-based approaches was proposed by Gumbel (1961), who

posited a latent-variable model for multivariate binary data. In this approach, there

is a vector of unobserved latent variables, say Li1, . . . , Lin, and each of these is related

to the observed binary responses via

Yij =

 1, Lij ≤ X ′
ijβ,

0, Lij > X ′
ijβ.

Assuming a multivariate joint distribution for Li1, . . . , Lin identifies the joint distri-

bution for Yi1, . . . , Yin, with

Pr(Yi1 = 1, Yi2 = 1, . . . , Yin = 1) = Pr(Li1 ≤ X ′
i1β, Li2 ≤ X ′

i2β, . . . , Lin ≤ X ′
inβ)

= F (X ′
i1β, X ′

i2β, . . . ,X ′
inβ),
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where F (.) denotes the joint cumulative distribution function of the latent variables.

Furthermore, any dependence among the Lij induces dependence among the Yij. For

example, a bivariate logistic distribution for any Lij and Lik induces marginally a

logistic regression model for Yij and Yik,

E(Yij|X ij) =
exp(X ′

ijβ)

1 + exp(X ′
ijβ)

,

with positive correlation between Yij and Yik.

A closely related work, assuming a multivariate normal distribution for the latent

variables, appeared in Ashford and Sowden (1970), Cox (1972), and Ochi and Prentice

(1984). In the latter model, the Yij marginally follow a probit model,

E(Yij|X ij) = φ(X ′
ijβ),

where φ(·) denotes the normal CDF and the model allows both positive and negative

correlation among the repeated binary responses, depending on the sign of the corre-

lation among the underlying latent variables. This model is often referred to as the

multivariate probit model. Interestingly, the multivariate probit model can also be

motivated through the introduction of random effects.

At around the same time as Gumbel (1961) proposed his latent-variable formu-

lation, a second approach to likelihood-based inferences was proposed by Bahadur

(1961). Bahadur (1961) proposed an elegant expansion for an arbitrary probability

mass function for a vector of responses Yi1, . . . , Yin. The expansion for the repeated
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binary responses is of the form

f(yi1, . . . , yin) =

{
n∏

j=1

(πij)
yij(1− πij)

1−yij

}

×

{
1 +

∑
j<k

ρijkzijzik +
∑

j<k<l

ρijklzijzikzil + · · ·+ ρi1...ni
zi1 · · · zin

}
,

where

Zij =
Yij − πij√
πij(1− πij)

,

πij − E(Yij), and ρijk = E(ZijZik), . . . , ρi1···n = E(Zi1 · · ·Zin). Here, ρijk is the

pairwise or second-order correlation and the additional parameters relate to the third

and higher order correlations among the responses.

The Bahadur expansion has a particularly appealing property, shared with the

multivariate probit model and many other marginal models, of being “reproducible”

or “upwardly compatible” in the sense that the same model holds for any subset of

the vector of responses. In addition, the multinomial probabilities for the vector of

binary responses are relatively straightforward to obtain given the model parame-

ters. Kupper and Haseman (1978) and Altham (1978) discussed applications of this

model, albeit with very simple pairwise correlation structure and assuming that the

higher-order terms are zero. The chief drawback of the Bahadur expansion that has

limited its application to longitudinal data is its parameterization of the higher-order

associations in terms of correlation parameters. As noted earlier, for discrete data

there are severe restrictions on the correlations and dependence of the correlations on

the means. Thus, for discrete data, the Bahadur model requires a complicated set of
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inequality constraints on the model parameters that make maximization of the like-

lihood very difficult. Except in very simple settings with a small number of repeated

measures, the Bahadur model has not been widely applied to longitudinal data.

Because of the restrictions on the correlations, alternative multinomial models

for the joint distribution of the vector of discrete responses have recently been pro-

posed where the within-subject association is parameterized in terms of other metrics

of association. For example, Dale (1984), McCullagh and Nelder (1989), Lipsitz et

al (1990), Liang et al (1992), Becker and Balagtas (1993), Molenberghs and Lesaffre

(1994), Lang and Agresti (1994), Glonek and McCullagh (1995), and others have pro-

posed full likelihood approaches where the higher-order moments are parameterized

in terms of marginal odds ratios. In closely related work, Ekholm (1991) parameter-

izes the association directly in terms of the higher-order marginal probabilities (see

also Ekholm et al (1995)). An alternative approach is to parameterize the within-

subject association in terms of conditional associations, leading to so-called “mixed-

parameter” models (Fitzmaurice and Laird (1993); Glonek (1996); Molenberghs and

Ritter (1996)). However, except in certain special cases (e.g., Markov models), these

conditional association parameters have somewhat less appealing interpretations in

the longitudinal setting; moreover, their interpretation is straightforward only in bal-

anced longitudinal designs.

In virtually all of these later advances, the application of the methodology has

been hampered by at least three main factors. First, unlike in the Bahadur model,

there are no simple expressions for the joint probabilities in terms of the model param-

eters. This makes maximization of the likelihood somewhat difficult. Second, even
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with the current advances in computing, these models are difficult to fit except when

the number of repeated measures is relatively small. Finally, many of these models

are not robust to misspecification of the higher-order moments. That is, many of the

likelihood-based methods require that the entire joint distribution be correctly speci-

fied. Thus, if the marginal model for the mean responses has been correctly specified

but the model for any of the higher-order moments has not, then the maximum likeli-

hood estimators of the marginal mean parameters will fail to converge in probability

to the true mean parameters. The “mixed-parameter” models are exception to the

rule; however, even these models lose this robustness property when there are missing

data.

A third approach to likelihood-based marginal models is to specify the entire

multinomial distribution of the vector of repeated categorical responses and estimate

the multinomial probabilities non-parametrically. This was the approach first pro-

posed in Grizzle et al (1969). Specifically, they proposed a weighted least-squares

(WLS) method for fitting a general family of models for categorical data; in recogni-

tion of its developers, the method is often referred to as the “GSK method.” Koch

and Reinfurt (1971) and Koch et al (1977) later recognized how these models could be

applied to discrete longitudinal data; Stanish et al (1978), Stanish and Koch (1984),

and Woolson and Clarke (1984) further developed the methodology for longitudinal

analysis.

The GSK method provides a very general family of models for repeated cate-

gorical data, allowing non-linear link functions to relate the marginal expectations to
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covariates. The GSK method stratifies individuals according to values of the covari-

ates and fully specifies the multinomial distribution of the vector of repeated cate-

gorical responses within each stratum. This method, for example, allows the fitting

of logistic regression models to repeated binary data, albeit with the restrictions that

the longitudinal study design be balanced on time, all covariates must be categorical,

and there are sufficient numbers of individuals within covariate strata to estimate the

multinomial probabilities non-parametrically as the sample proportions. The method

requires the estimation of the covariance among the repeated responses, within strata

defined by covariate values; the covariance follows directly from the properties of the

multinomial distribution. Asymptotically, the GSK method is equivalent to maxi-

mum likelihood estimation; thus, this approach was appealing for analyzing discrete

longitudinal data when all of the conditions required for its use were met.

Although the GSK method was a landmark technique for the analysis of repeated

categorical data, it had many restrictions that limited its usefulness. Specifically, it

required that all covariates be categorical and sample sizes be of sufficient size to allow

for stratification and separate estimation of the multinomial covariance in each covari-

ate stratum. However, as the number of categorical covariates in the model increases,

sparse data problems quickly arise due to Bellman’s (1961) “curse of dimensionality.”

Furthermore, missing data are not easily handled by the GSK method because they

require additional stratification by patterns of missingness. Thus, the GSK method

was restricted to balanced designs with categorical covariates and relatively large

sample sizes.

In the mid-1980’s, remarkable advances in methodology for analyzing discrete

28



longitudinal data were made when Liang and Zeger (1986) proposed the generalized

estimating equations (GEE) approach. Because marginal models separately parame-

terize the model for the mean responses from the model for the within-subject associ-

ation, Liang and Zeger (1986) recognized that it is possible to estimate the regression

parameters in the former without making full distributional assumptions. The avoid-

ance of distributional assumptions is potentially advantageous because, as we have

discussed, there is no convenient and generally accepted specification of the joint mul-

tivariate distribution of Y i for marginal models when the responses are discrete. The

appeal of the GEE approach is that it only requires specification of that part of the

probability mechanism that is of scientific interest, the marginal means. By avoid-

ing full distributional assumptions for Y i, the GEE approach provided a remarkably

convenient alternative to maximum likelihood estimation of multinomial models for

repeated categorical data, without many of the inherent complications of the latter.

The GEE approach advocated in Liang and Zeger (1986) was a natural extension

of the quasi-likelihood approach (Wedderburn, 1974) for generalized linear models to

the multivariate response setting, where an additional set of nuisance parameters for

the within-subject association must be incorporated. The foundation for the GEE

approach relied on the theory of optimal estimating functions developed by Godambe

(1960) and Durbin (1960). Liang and Zeger (1986) highlighted how the GEE pro-

vides a unified approach to the formulation and fitting of generalized linear models

to longitudinal and clustered data. They demonstrated the versatility of the GEE

method in handling unbalanced data, mixtures of discrete and continuous covariates,

and arbitrary patterns of missingness. Until the publication of their landmark paper

(Liang and Zeger, 1986), methods for the analysis of discrete longitudinal data had
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lagged behind corresponding methods for continuous responses. Soon after, marginal

models were being widely applied to address substantive questions about longitudi-

nal change across a broad spectrum of disciplines. Their work also generated much

additional theoretical and applied research on the use of this methodology for ana-

lyzing longitudinal data. For example, to improve upon efficiency, Prentice (1988)

proposed joint estimating equations for both the main regression parameters, β, and

the nuisance association parameters, α.

The GEE approach has a number of appealing properties for estimation of the

regression parameters in marginal models. First, in many longitudinal designs the

GEE estimator of β is almost efficient when compared to the maximum likelihood

estimator. For example, it can be shown that the GEE has a similar expression to the

likelihood equations for β in a linear model for continuous responses that are assumed

to have a multivariate normal distribution. The GEE also has an expression similar

to the likelihood equations for β in certain models for discrete longitudinal data. As a

result, for many longitudinal designs, there is relatively little loss of precision when the

GEE approach is adopted as an alternative to maximum likelihood. Second, the GEE

estimator has a very appealing robustness property, yielding a consistent estimator

of β even if the within-subject associations among the repeated measures have been

misspecified. It only requires that the model for the mean response be correct. This

robustness property of GEE is important because the usual focus of a longitudinal

study is on changes in the mean response. Although the GEE approach yields a

consistent estimator of β under misspecification of the within-subject associations,

the usual standard errors obtained under the misspecified model for the within-subject

association are not valid. However, valid standard errors for the resulting estimator β̂
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can be obtained using the empirical or so-called sandwich estimator of Cov(β̂). The

sandwich estimator is also robust in the sense that, with sufficiently large samples,

it provides valid standard errors when the assumed model for the covariances among

the repeated measures is not correct.

(ii) The Generalized Linear Models

In the previous section, we discussed how marginal models can be considered as an

extension of generalized linear models that directly incorporate the within-subject

association among the repeated measurements. In a certain sense, marginal models

account for the consequences of the correlation among the repeated measures, but

do not provide any explanation for its potential source. An alternative approach for

accounting for the within-subject association, and one that provides a source for the

within-subject association, is via the introduction of random effects in the model for

the mean response. Following the same basic ideas as in linear mixed-effects models,

generalized linear models can be extended to longitudinal data by allowing a subset

of the regression coefficients to vary randomly from one individual to another. These

models are known as generalized linear mixed (effects) models (GLMMs), and they

extend in a natural way the conceptual approach represented by the linear mixed-

effects models. In GLMMs the model for the mean response is conditional upon both

measured covariates and unobserved random effects; it is the inclusion of the latter

that induces correlation among the repeated responses marginally, when averaged

over the distribution of the random effects. However, as we discuss later, with non-

linear link functions, the introduction of random effects has important ramifications
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for the interpretation of the “fixed-effects” regression parameters.

The generalized liner mixed model can be formulated using the following two-

part specification:

1. Given a q×1 vector of random effects bi, the Yij are assumed to be conditionally

independent and to have exponential family distributions with conditional mean

depending upon both fixed and random effects,

h−1{E(Yij|bi)} = X ′
ijβ + Z ′

ijbi,

for some known link function, h−1(·). The conditional variance is assumed to

depend on the conditional mean according to Var(Yij|bi) = φ ν{E(Y ij|bi)},

where ν(·) is a known variance function and φ is a scale parameter that may be

known or may need to be estimated.

2. The random effects, bi, are assumed to be independent of the covariates, X ij,

and to have a multivariate normal distribution, with zero mean and q × q co-

variance matrix G.

These two components completely specify a broad class of generalized linear mixed

models. Any multivariate distribution can be assumed for the bi; in practice, however,

it is common to assume that the bi has a multivariate normal distribution.

Generalized linear mixed models have their foundation in simple random-effects

models for binary and count data. The early literature on random-effects models for

discrete data can be traced back to the development of random compounding models
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that introduced random effects on the response scale. For example, Greenwood and

Yule (1920) introduced the negative binomial distribution as a compound Poisson

distribution for count data, while Skellam (1948) provided an early discussion of

the beta-binomial distribution for binary data. The model has been used in a wide

variety of different clustered data applications (e.g., Chatfield and Goodhardt (1970);

Griffiths (1973); Williams (1975); Kupper and Haseman (1978); Crowder (1978,1979);

Otake and Prentice (1984); Aerts et al (2002)).

The main feature of the beta-binomial model that has limited its usefulness

for analyzing longitudinal data is that it produces the same marginal distribution at

each measurement occasion. While this may not be so problematic in certain clustered

data settings (e.g., in study designs where X i1 = X i2 = · · · = X in), in a longitudinal

study, where interest is primarily in changes in the marginal means over time, this

restriction on the marginal distributions is very unappealing. Nonetheless, the beta-

binomial and other random compounding models motivated the later development of

more versatile random-effects models. Recall that in the beta-binomial model, it is

assumed that success probabilities vary randomly about a mean and the latter can be

related to covariates via an appropriate link function, such as a logit link function. In

contrast to this formulation, Pierce and Sands (1975) proposed an alternative model

where the logit of pi is assumed to vary about an expectation given by X ′
i1,

logit{E(Yij|bi} = X ′
i1β + bi,

where bi has a normal distribution with zero mean and constant variance. The ap-

pealing feature of the model proposed by Pierce and Sands (1975) is that the fixed
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and random effects are combined together on the same logistic scale. This model is

often referred to as the simple logit-normal model and is very similar in spirit to the

random intercept model for continuous outcomes. Although this model was remark-

ably simple, it proved to be difficult to fit at the time because maximum likelihood

estimation required maximization of the marginal likelihood, averaged over the dis-

tribution of the random effect. This required integration, and no analytic solutions

were available. The fact that the integral cannot be evaluated in a closed form limited

the application of this model.

In closely related work, Ashford and Sowden (1970) proposed a very similar

model, except with probit rather than logit link function. Interestingly, Ashford and

Sowden’s (1970) model with random intercept and probit link function was equivalent

to the equicorrelated latent-variable model, leading to identical inferences provided

the correlation is positive. Despite the fact that maximum likelihood estimation

for even the simple logit-normal model was computationally demanding with the

computer resources available at the time, Korn and Whittemore (1979) proposed a

far more ambitious version of the model, where

logit{E(Yij|bi} = X ′
i1β + Z ′

i1bi,

with Zij = X ij. Although their model was very general and avoided some of the

obvious drawbacks of the simple logit-normal model, it was difficult to fit and required

a very long sequence of repeated measures on each subject.

From an historical perspective, the papers by Ashford and Sowden (1970), Pierce

and Sands (1975), and Korn and Whittemore (1979) laid the conceptual foundations
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for generalized linear mixed models; much of the work that followed focused on the

thorny problem of estimation. In GLMMs the marginal likelihood is used as the

basis for inferences for the fixed-effects parameters, complemented with empirical

Bayes estimation for the random effects. In general, evaluation and maximization of

the marginal likelihood for GLMMs requires integration over the distribution of the

random effects. While this is, strictly speaking, true for the linear mixed-effects model

as well, there the integration can be done analytically, so effectively a closed form for

the marginal likelihood function arises, in which case the application of maximum

or restricted maximum likelihood is straightforward. In the absence of an analytical

solution, and because high-dimensional numerical integration can be very trying, a

variety of approaches has been suggested for tackling this problem.

Because no simple analytic solutions were available, Stiratelli et al (1984) pro-

posed an approximate method of estimation for the logit-normal model, based on

empirical Bayes ideas, that circumvented the need for numerical integration. Specifi-

cally, they avoided the need for numerical integration by approximating the integrands

with simple expansions, whose integrals have closed forms. The paper by Stiratelli

et al (1984) led to the development of a general approach for fitting GLMMs, known

as penalized quasilikelihood (PQL). Various authors (e.g., Schall (1991); Breslow and

Clayton (1993); Wolfinger (1993)) motivated PQL as a Laplace approximation to

the marginal likelihood for GLMMs. Despite the generality of this method, and its

implementation in a variety of commercially available software packages, the PQL

method can often yield quite biased estimators of the variance components, which

in turn leads to biased estimators of β, especially for longitudinal binary data. This

motivated research on bias corrections (e.g., Breslow and Lin (1995)) and on more
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accurate approximations based on higher-order Laplace approximations (e.g., Rau-

denbush et al (2000)). In general, the inclusion of higher-order terms for PQL has

been shown to improve estimation. Breslow and Clayton (1993) also considered an

alternative approach, related to PQL, known as marginal quasi-likelihood (MQL).

MQL differs from PQL by being based on an expansion around the current estimates

of the fixed effects and around bi = 0. In general, MQL yields severely biased esti-

mators of the variance components, providing a good approximation only when the

variance of the random effects is relatively small.

There has also been much recent research on alternative methods, including ap-

proaches based on numerical integration (e.g., adaptive Gaussian quadrature) and

Markov chain Monte Carlo algorithms. In particular, adaptive Gaussian quadra-

ture, with the numerical integration centered around the empirical Bayes estimates

of the random effects, permits maximization of the marginal likelihood with any de-

sired degree of accuracy (e.g., Anderson and Aitkin (1985); Hedeker and Gibbons

(1994, 1996)). Adaptive Gaussian quadrature is especially appealing for longitudi-

nal data where the dimension of the random effects is often relatively low. Monte

Carlo approaches to integration, for example Monte Carlo EM (McCulloch (1997);

Booth and Hobert (1999)) and Monte Carlo Newton-Raphson algorithms (Kuk and

Cheng, 1997), have been proposed. The hierarchical formulation of GLMMs also

makes Bayesian approaches quite appealing. For example, Zeger and Karim (1991)

have proposed the use of Monte Carlo integration, via Gibbs sampling, to calculate

the posterior distribution.
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(iii). Conditional and transition models

There is a third way in which generalized linear models can be extended to handle

longitudinal data. This is accomplished by modelling the mean and time dependence

simultaneously via conditioning an outcome on other outcomes or on a subset of

other outcomes (see, for example, Molenberghs and Verbeke (2005), Part III). A

particular case is given by so-called transition, or Markov, models. Transition models

are appealing due to the sequential nature of longitudinal data. In transition models,

the conditional distribution of each response is expressed as an explicit function of the

past responses and the covariates. Transition models can be considered conditional

models in the sense of modelling the conditional distribution of the response at any

occasion given the previous responses and the covariates. The dependence among

the repeated measures is thought of as arising due to past values of the response

influencing the present observation.

There is an extensive history to the use of Markov chains to model equally spaced

discrete longitudinal data with a finite number of states or categories (e.g., Anderson

and Goodman (1957); Cox (1958); Billingsley (1961)). In the simplest of models for

longitudinal data, a first-order Markov chain, the transition probabilities are assumed

to be the same for each time interval. The resulting Markov chain can then be

described in terms of the initial state and the set of transition probabilities. The

transition probabilities are the conditional probabilities of going into each state, given

the immediately preceding state. In a first-order Markov chain, there is dependence

on the immediately preceding state but not on earlier outcomes. Among others, Cox

(1972), Korn and Whittemore (1979), Zeger et al (1985), and Ware et al (1988)
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discuss transition models applicable to longitudinal data.

Although Markov and autoregressive models have a long and extensive history

of use for the analyses of time series data, their application to longitudinal data has

been somewhat more limited. There are a number of features of transition models

that limit their usefulness for the analysis of longitudinal data. In general, transition

models have been developed for repeated measures that are equally separated in

time; these models are more difficult to apply when there are missing data, mistimed

measurements, and non-equidistant intervals between measurement occasions. In

addition, estimation of the regression parameters β is very sensitive to assumptions

concerning the time dependence; moreover, the interpretation of β changes with the

order of the serial dependence. Finally, in many longitudinal studies β is not the

usual target of inference because conditioning on the history of past responses may

lead to attenuation of the effects of covariates of interest. That is, when a covariate is

expected to influence the mean response at all occasions, its effect may be somewhat

diminished if there is conditioning on the past history of the responses.

1.2 Terminology and Notations

The units being studied in a longitudinal analysis are referred to as individuals or

subjects. The time points at which individuals are measured repeatedly are called

measurement occasions or times. If the repeated measures are equally separated

in time, the study is said to be balanced over time. If the repeated measures at

all occasions are for each individual are not available, the data set is said to be
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incomplete.

Yij : Response variable for the ith individual (i = 1, 2, . . . , N) at the jth occasion

(j= 1,2,. . . ,ni). Realised values of Yij are denoted by yij.

Yi : (Yi1, Yi2, . . . , Yini
)′, i = 1, 2, . . . , N. Yi is a time ordered collection of ni response

variables for the ith individual. The vector of responses Yi’s for N subjects are

assumed to be independent of one another.

µj : E(Yij), the mean or expectation of Yij, where E(·) can be loosely thought of

as denoting the long term average over a large population of subjects at the

jth occasion, or the weighted average of Yij’s with weight being probability of

occurrence of each possible value.

µij : E(Yij). The use of double letter subscripts is to allow the mean response to

vary from individual to individual as a function of individual level covariates.

σ2
j = E{Yij − E(Yij)}2 = E{Yij − µij}2, the variance of Yij

σjk = E{(Yij − µij)(Yik − µik)}, covariance between the responses at two different

occasions.

ρjk =
E{(Yij − µij)(Yik − µik)}

σjσk
, correlation between Yij and Yik.

Xijp : The pth covariate associated with the ith subject (i = 1, 2, . . . , N) and jth

occasion (j = 1, 2, . . . , ni).

X ij : (Xij1, Xij2, . . . , Xijp)
′, the p ×1 vector of covariates associated with response

Yij, i = 1, 2, . . . , N, j = 1, 2, . . . , ni. The p rows of X ij correspond to different

covariates.
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X i : (X ′
i1, X

′
i2, . . . ,X

′
ip)

′

The variance-covariance matrix of Y i

Cov(Y i) = Cov



Yi1

Yi2

...

Yini


=



σ2
1 σ12 · · · σ1ni

σ21 σ2
2 · · · σ2ni

...
...

. . .
...

σni1 σni2 · · · σ2
ni



Corr(Y i) =



1 ρ12 · · · ρ1ni

ρ21 1 · · · ρ2ni

...
...

. . .
...

ρni1 ρni2 · · · 1



X ij may include two main types of covariates: covariates whose values do not

change throughout the duration of study (e.g. gender, fixed experimental treatments

etc.) and covariates whose values change over time (e.g. time since baseline, cur-

rent smoking status, environmental exposures etc.). The inclusion of time-varying

covariates can raise subtle issues concerning the interpretation and estimation of the

resulting models.
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1.3 An Overview of the Thesis

In the previous part of this chapter, we first considered the importance and the

necessity of longitudinal data analysis as an enhancement of the classical theory of

data analysis, explaining the manner in which it is different from the cross sectional

and time series analysis and mentioning the advantages of longitudinal data analysis

over the other methods. Then we had an exploration of the advances in the area of

longitudinal data analysis, highlighting the seminal works in the area. We collocate

the seminal works that turned out to be the landmarks in the headway of longitudinal

data analysis. All the important works that serve the foundation upon which the

entire superstructure of longitudinal data analysis have been included. It further

gives a brief introduction of various tools and models used in longitudinal analysis.

In Chapter 2, we consider the models for continuous data. Modelling the ex-

pected values and covariance structure are considered. Inferential procedures using

maximum likelihood and restricted maximum likelihood are considered in the context

of modelling expected values. For modelling the covariance structure the unstructured

model as well as a large number of structured covariance models, which includes a few

that are used little in practical applications, despite their attractive performances, are

considered. For model selection besides the classical methods of AIC and BIC, the

AICC that outperforms popularly used methods for small samples is also considered.

A comparative study of various models considered in this chapter is made in chapter

5. Further procedures for fixed effects as well as for covariance structure are discussed.

Parametric mixed effect models, random effects models and AR models are discussed

under the framework of general multivariate models.
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Chapter 3 considers the models for discrete data. Starting with the plausibility

of the assumptions underlying the classical regression models, here we explain the

necessity of alternative models to be used when the assumptions are likely to be

violated and introduce the generalised linear models in this context. The two most

popularly used generalised linear models viz, logistic regression for binary responses

and log linear model for counts are considered.

Chapter 4 introduces the nonparametric methods longitudinal data analysis as

an alternative to the usually used parametric methods for cases where the restrictive

assumptions of parametric methods are not realistic. In this chapter we review four

of the most popular smoothers that include local polynomial smoothers, regression

splines, smoothing splines, and P-splines, and briefly describe linear smoothers, which

include the above four popular smoothers as special cases.

In Chapter 5, we consider illustrations of the discussions made in earlier chapters

using real life data, data from internet sites as well as simulated data. SAS codes

using which the computations are done are listed. Performances of large number

of covariance models are compared. We show that the UN model need not always

be better than other models. The larger number of covariance parameters involved

does not always make the UN model superior to others. Further we show that the

heterogeneous models often performs better than the corresponding homogeneous

models, that assume homogeneity of variance over time.

The thesis ends with the concluding remarks and direction for further work

followed by the bibliography.
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Chapter 2

Models for Continuous Longitudinal

Data

2.1 Introduction

The last thirty years have seen remarkable advances in methods for analysing longitu-

dinal and clustered data. The problems that we encounter in longitudinal studies are

similar to those we face under the cross-sectional counterparts and may be classified

as analysis of variance (ANOVA) or more generally as regression problems. The basic

difference between the two approaches is that in cross sectional studies we deal with

independent observations, while in the longitudinal cases it is necessary to consider

a possible statistical dependence among them. There now exists a broad and flexible

class of models for correlated data based on a regression paradigm.
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In longitudinal study the data associated with each sampling unit may usually

be expressed in terms of a vector with the values of the response variable at different

measurement occasions and a matrix with the corresponding values of the explanatory

(independent) variables which may be classificatory (e.g. treatment, sex etc.) or not

(e.g. time, temperature etc.).

Longitudinal data present us with two aspects of data that require modelling:

the mean response over time and the covariance among the repeated measures on

the same individuals. Mean response is modelled using two main approaches viz

the analysis of response profiles and parametric or semi-parametric curves. Overall

modelling strategy that takes account of interdependence between the models for

mean and covariates are also developed.

2.2 Modelling The Expected Values

A variety of models for Gaussian data have been developed during the past decades.

They have well known properties and are excellent tools for practical applications.

The general form of the model is

Y i = g(X i, β, γi) + ei, i = 1, 2, . . . , N, (2.1)

where g is a convenient vector valued function, β = (β1, β2, . . . , βp)
′ a vector of

population parameters, γi = (γ1, γ2, . . . , γq)
′ is a vector of random subject specific

effects with mean 0 and covariance matrix Γ and ei = (ei1, ei2, . . . , eini
)′ is a vector
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of random errors with mean 0 and covariance matrix Ξi. The within sample units

covariance matrices Σi’s are obtained as functions of X i, β,Γ and Ξi. In many

instances, specifically for linear models, a simplification of (2.1) given by

Y i = g(X i, β) + ei, i = 1, 2, . . . , N, (2.2)

is more serviceable. Here Σi = Ξi, so that the within sample covariance matrices are

modelled independently of the location parameters.

The present state of methodological development favours situations in which the

linear version of (2.2), namely

Y i = X iβ + ei, i = 1, 2, . . . , N, (2.3)

where X i is the design matrix for the ith individual and ei is a vector of deviations with

a multivariate normal (MVN) distribution with mean vector 0 and dispersion matrix

Σ. The design matrix can contain functions of time and both within and within

subject covariates. The design is said to be balanced if each subject is observed at

the same p time points. When X i is independent of i, the design is termed completely

balanced. The linear location model (2.3) in combination with the different models

for covariance structure is sufficiently general to handle a large variety of practical

situations.

In most of the problems, the development of a linear model for the mean-value

function is the primary goal of the analysis. The general representation X iβ is

familiar from ordinary linear regression.
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Rao (1959, 1965, 1975) considered the problem of polynomial growth curve anal-

ysis of serial measurements from a single group of subjects. If the design is balanced,

Rao’s model can be written as E(Yi)=Aβ, where the columns of A are powers of

t (time) or polynomials defined by the times of observation. The rank of A equals

the degree of the polynomial growth curve plus one. In the same setting Grizzle and

Allen (1969) introduced covariates by defining the expected value as

E(Yi)=Aβxi, (2.4)

where xi is the vector of covariate values for the ith individual. If xi is q × 1, then

β is r × q, where r is the number of columns in A. Model (2.4) can be written in

the general form of (2.3) by defining Xi=x′i⊗A where ⊗ denotes the tensor product,

and defining β′ as 1 × rq vector produced by writing out the elements of the r × q

matrix row by row. If we think of A as the matrix whose columns contain powers

of ti, this representation shows that the Grizzle and Allen model assumes that every

coefficient in the polynomial model depends on each element of xi. The representation

suggests that this requirement can be relaxed by deleting columns containing specified

products of powers xi and powers of t from the design matrix. In short, the mean-

value model can be determined directly by defining the expected value of each element

of Yij as the desired function of the time of observation and the covariates.

This direct approach to modelling the mean-value function has some important

advantages not offered by the special structure usually assumed for the growth model.

First, individuals need not be observed at the same times or on the same number of

occasions. Second, time varying covariates can be included in the model, provided
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that their contribution to the expected response can be written linearly. Third,

covariates can modify either the expected value of Yi or the rate of change in E(Yi);

the latter arises from interaction terms involving the covariate and the appropriate

power of t.

2.2.1 Inference by Maximum Likelihood/REML

We have the general model of the form

Yi ∼ MV N(Xiβ,Σi). (2.5)

Writing, Y = (Y1,Y2, . . . ,Ym)′, the joint density of Y is,

f(y) =
m∏

i=1

(2π)−ni/2|Σi|−1/2exp

{
−1

2
(yi −Xiβ)′Σ−1

i (yi − Xiβ)

}
.

Maximising this likelihood is equivalent to minimising the quadratic form

m∑
i=1

(yi −Xiβ)′Σ−1
i (yi − Xiβ). (2.6)

The MLE, which is same as the GLS estimator, can now be obtained as

β̂ =

(
n∑

i=1

XiΣ
−1
i Xi

)−1( n∑
i=1

XiΣ
−1
i Yi

)
(2.7)

= (X′Σ−1X)−1X′Σ−1Y (2.8)
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To estimate Σi (or θ) we equate the first derivative of the log-likelihood function to

zero and solve it for θ. In general, this equation is non-linear and it is not possible

to write down simple, closed form expression for the MLE of θ. Instead the MLE

must be found by solving this equation using iterative technique or using computer

algorithms.

The sampling distribution of β̂ can be straightforwardly derived as

β̂ ∼ MV N(β, (X′Σ−1X)−1). (2.9)

MLE’s of β and Σi have desirable large sample properties. But the MLE of Σi is

biased for finite samples. The diagonal elements of Σi are underestimated. The theory

of REML was developed to address this problem. The method of REML estimation,

was introduced by Patterson and Thompson (1971) as a way of estimating variance

components in a general linear models. The method uses an adjustment similar to

changing the divisor in the linear regression to correct the bias of the estimator. The

adjustment involves replacing the usual likelihood by the modified likelihood given

by

m∏
i=1

(2π)−ni/2|Σi|−1/2|X′
iΣ

−1
i Xi|exp

{
−1

2
(yi −Xiβ)′Σ−1

i (yi − Xiβ)

}
. (2.10)

The estimator of β obtained by maximising this modified likelihood has the same

form as the one obtained in (2.7). The difference is that Σ is now estimated by

maximising (2.10).
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2.3 Modelling The Covariance Structure

The correlation among longitudinal data necessitates appropriate modelling of the

covariance or time dependence among the repeated measures obtained on the same

individuals. This enables getting correct standard errors and making valid inferences

about the regression parameters. Accounting for the covariance among the repeated

measures usually increases the precision with which the regression parameters can

be estimated, that is, the positive correlation among the repeated measures reduces

the variability of the estimate of the change over time within individuals. In ad-

dition, when there are missing data, correct modelling of the covariance is often a

requirement for obtaining valid estimates of the regression parameters. In general,

the failure to take into account of the covariance among the repeated measures will

result in incorrect estimates of the sampling variability and can lead to quite mis-

leading inferences. The correlation between observations taken at two instants are

expected to decrease as the distance between them decreases. See Kenward (1987),

Lindsey (1993) or Diggle et al (1994) for practical examples.

The choice of models for the mean response and the covariance are interdepen-

dent. This interdependence arises because the vector of residuals (observed responses

minus fitted responses) depends upon the specification of the model for the mean.

Stating more precisely, the covariance between the pair of residuals, say {Yij−µij(β)}

and {Yik − µik(β)}, depends on the model for mean (i.e. depends on β). As a result

of this interdependence between the models for mean and covariance, we will need to

develop an overall modelling strategy that takes this interdependence into account.
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When Σi = Cov(ei) are known, Aitkin’s generalized least square estimator of β

can be written as

β̂ =

(
n∑

i=1

X iΣ
−1
i X i

)−1( n∑
i=1

X iΣ
−1
i Y i

)
. (2.11)

When the covariate structure is unknown, most estimation procedures lead to esti-

mators of the form (2.11) with estimates substituted for the population covariance

matrix Σi. Thus the estimation problem reduces to the problem of modelling and

estimating Σi.

Three broad approaches to modelling the covariance among the repeated mea-

sures are distinguished: (1) unstructured covariance, (2) covariance pattern models,

and (3) random effects covariance structures. The first is to allow any arbitrary pat-

tern of covariance among the repeated measures. The second and third approaches

place structure on the covariance matrix. The key issue is to choose a covariance

model Σi(θ) that is correct, but parsimonious, meaning that (a) the true covariance

matrix is in the family defined by the covariance model and that (b) vector parameter

θ has as few elements as possible. In this section we present how different covariance

models can be used to model the dependence among the repeated measures on same

individuals over time. We study a large number of covariance models, and explore

the comparative performance of these models.
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2.3.1 The Unstructured Covariance Model

The unstructured covariance (UN) matrix Σ is the most general covariance matrix

possible. Covariance matrix is said to follow unstructured model, if there is no appar-

ent systematic pattern of variance and correlation. With n measurement occasions,

the unstructured covariance matrix has n(n+1)
2

parameters: the n variances at each

occasion and the n(n−1)
2

pairwise covariances,

Cov(Y i) =



σ2
1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σ2
n


.

The number of parameters is large, and they can be hard to estimate when the number

of observations is small relative to n(n+1)
2

.

2.3.2 Covariance Pattern Models

It might seem desirable to use an unstructured covariance model to model the co-

variance matrix of longitudinal data as it would seem guaranteed to model the data

correctly. Unfortunately, use of the unstructured covariance model is usually not

feasible nor recommended. For random observation times there are too many vari-

ance and covariance parameters, and they cannot all be estimated. The variance of

responses at time tij will not be estimable if there is zero or one observation at that

time. When the data set is balanced with possibly missing data, when the sample
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size n is large and the number of repeated measures J is small or modest compared

with n, then we can use the unstructured covariance model. Most data sets do not

meet these constraints, and we need to use a parameterized covariance model.

A parameterized covariance matrix is one where all variances and covariances are

functions of a small to moderate number of covariance parameters θ. The covariance

model Σ(θ) defines a family of possible covariance matrices with members of the family

indexed by θ. The key issue is to choose a covariance model Σ(θ) that is correct, but

parsimonious, meaning that (a) the true covariance matrix is in the family defined by

the covariance model and that (b) vector parameter has as few elements as possible.

i. Compound Symmetry (Uniform) Models

With a compound symmetry or uniform covariance it is assumed that the variances of

the response variable at all observation instants are equal, say σ2, and so are the co-

variances between the response variables observed at any two instances. Consequently

Corr(Yij, Yik) = ρ for all j and k. That is

Cov(Y i) = σ2



1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

...
...

...
. . .

...

ρ ρ ρ · · · 1


= (1− ρ)I + ρJ,

with the constraint that ρ ≥ 0, where J is an n × n unit matrix. The compound

symmetry covariance model has two parameters, σ2 and ρ.
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The key feature of the compound symmetry matrix is that for any time lag

tij − til 6= 0 large or small, the correlation Corr(Yij, Yil) is the same. This means that

observations taken a few minutes apart and those taken a few years apart have the

same correlation. This is unlikely for real data measured on human beings over long

enough periods of time. In practice, measures that are very persistent over the data

collection time frame may follow a compound symmetry covariance model. Weight

might be an example; as adults, our weight often does not change over a period of

years, other than changes due to typical daily energy consumption and expenditure.

ii. Toeplitz

The Toeplitz covariance pattern makes the assumption that any pair of responses

that are equally separated have the same correlation and that the variance is constant

across time. That is the lag i correlation is different from the lag j correlation, but

all lag i correlations are the same. That is, Corr(Yij, Yij+k) = ρk for all j and k and

Cov(Y i) = σ2



1 ρ1 ρ2 · · · ρn−1

ρ1 1 ρ1 · · · ρn−2

ρ2 ρ1 1 · · · ρn−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 · · · 1


.

This structure is appropriate only when the measurements are made at equal or

approximately equal intervals of time, since correlation among adjacent measurement

occasions is a constant, ρ1. The structure has n parameters (1 variance parameter and
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n − 1 correlation parameters). The first order autoregressive covariance is a special

case of the Toeplitz covariance.

iii. Autoregressive

In the autoregressive model for the covariance, it is assumed that variance is a constant

across occasions, say σ2, and Corr(Yij, Yij+k) = ρk for all j and k and ρ ≥ 0. That is

Cov(Y i) = σ2



1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 · · · 1


.

The autoregressive covariance has only two parameters, regardless of the number

of measurement occasions. Because it has a Toeplitz form, it is appropriate only

when the measurements are made at equal/approximately equal intervals of time. In

the AR model, the correlation between two observations Yij and Yil depends on the

absolute value of the time between them:

Corr(Yij, Yil) = ρ|tij−til|.

The farther apart two observations are in time, the lower the correlation between

them.
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iv. Banded

Banding makes assumption about how quickly the correlation decreases to zero with

increasing separation between the repeated measurements. The banded covariance

pattern makes the assumption that the correlation is zero beyond some specified

interval. For example, a banded covariance pattern with a band size of 3 assumes

that Corr(Yij, Yi,j+k) = 0 for k ≥ 3. It is possible to apply a banded pattern to any of

the covariance pattern models considered so far. Thus, a banded Toeplitz covariance

pattern with a band size of 2 is given by

Cov(Y i) = σ2



1 ρ1 0 · · · 0

ρ1 1 ρ1 · · · 0

0 ρ1 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


.

v. Exponential

The formulation of autoregressive covariance model can be generalised to the case of

unequally spaced measurement occasions as follows. Let (ti1, ti2, . . . , tin) denote the

observation times for the ith individual and assume that the variance is a constant

across all measurement occasions, say σ2, and

Corr(Yij, Yik) = ρ|tij−tik|, for ρ ≥ 0. (2.12)
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That is the correlation between any pair of repeated measures decreases exponentially

with the time separation between them. This structure is known as an exponential

covariance model because it can be re-expressed as (Jones (1993))

Cov(Yij, Yik) = σ2ρ|tij−tik| (2.13)

= σ2 exp(−θ |tij − tik|), (2.14)

where θ = −log(ρ) or ρ= exp(−θ) for θ ≥ 0. The Exponential model assumes that

the correlation is one if measurements are made repeatedly at the same occasion and

that the correlation decreases rapidly to zero as the time separation increases. The

first aspect corresponds to an assumption that the responses are measured without

error; an unrealistic assumption in most longitudinal studies in health sciences. The

latter also is rarely observed in longitudinal studies.

vi. Antedependence

The antedependence model is a generalization of the autoregressive model. It allows

for non-constant lag 1 correlations over time. For balanced data with J time points,

there are J −1 correlation parameters and a variance parameter σ2. Each correlation

parameter ρj is the lag 1 correlation between observations at times tj and tj+1. Higher

lag correlations are the product of the intervening lag 1 correlations. For example, It

has four correlation parameters ρ = (ρ1, ρ2, ρ3, ρ4) for data with 5 repeated measures
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and the entire covariance matrix is

Cov(Y i) = σ2



1 ρ1 ρ1ρ2 ρ1ρ2ρ3 ρ1ρ2ρ3ρ4

ρ1 1 ρ2 ρ2ρ3 ρ2ρ3ρ4

ρ1ρ2 ρ2 1 ρ3 ρ3ρ4

ρ1ρ2ρ3 ρ2ρ3 ρ3 1 ρ4

ρ1ρ2ρ3ρ4 ρ2ρ3ρ4 ρ3ρ4 ρ4 1


.

It should be clear that if the lag 1 correlations ρj’s are the same, then we are right

back at the AR(1) correlation model.

vii. Autoregressive Moving Average

The autoregressive moving average or ARMA(1,1) model is a generalization of both

the AR(1) model and the CS model. The ARMA(1,1) model has three parameters, a

variance parameter Var(Yij) = σ2 and two correlation parameters, γ and ρ. The first

correlation parameter γ is the lag one correlation

Corr(Yij, Yi(j−1)) = γ,

while ρ is the additional decrease in correlation for each additional lag. The lag k

correlation is

Corr(Yij, Yi(j−k)) = γρk−1.

The full covariance matrix is
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Cov(Y i) = σ2



1 γ γρ γρ2 γρ3

γ 1 γ γρ γρ2

γρ γ 1 γ γρ

γρ2 γρ γ 1 γ

γρ3 γρ2 γρ γ 1


.

There are at least three interesting special cases of the ARMA(1,1) model.

1. ρ = 1 is the compound symmetry model,

2. γ = ρ is the autoregressive model, and

3. ρ = 0 is the moving average or MA model.

viii. Factor Analytic

The covariance matrix of the qth order factor analytic (FA) structure is of the form

Λ′Λ + D, where Λ is a n × q rectangular matrix and D is a n × n diagonal matrix

with n different parameters. When q > 1, the elements of Λ in its upper right-hand

corner (that is, the elements in the ith row and jth column for j > i) are set to zero

to fix the rotation of the structure. The covariance matrix of the first order factor
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analytic structure (FA(1)), is of the form

Cov(Y i) =



λ2
1 + d1 λ1λ2 λ1λ3 λ1λ4

λ2λ1 λ2
2 + d2 λ2λ3 λ2λ4

λ3λ1 λ3λ2 λ2
3 + d3 λ3λ4

λ4λ1 λ4λ2 λ4λ3 λ2
4 + d4



The FA structure has two other forms. The no diagonal FA (FA0(q)) structure

is similar to FA(q) structure except that no diagonal matrix D is included. When

q < n, that is, when the number of factors is less than the dimension of the matrix,

this structure is nonnegative definite but not of full rank. The equal diagonal FA

(FA1(q)) structure is similar to the FA(q) structure except that all of the elements in

D are constrained to be equal. This offers a useful and more parsimonious alternative

to the full factor-analytic structure.

ix. Huynh-Feldt

The Huynh-Feldt covariance structure is similar to the CSH structure in that it has

the same number of parameters and heterogeneity along the main diagonal. However,

it constructs the off-diagonal elements by taking arithmetic rather than geometric

means.
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Cov(Y i) =


σ2

1
σ2
1+σ2

2

2
− λ

σ2
1+σ2

3

2
− λ

σ2
2+σ2

1

2
− λ σ2

2
σ2
2+σ2

3

2
− λ

σ2
3+σ2

1

2
− λ

σ2
3+σ2

2

2
− λ σ2

3


Remark 2.3.1. Many of the covariance pattern models make strong assumptions

about homogeneity of variance over time. But this assumption is not always realistic

as longitudinal data often exhibit heterogeneity or non-constant variance over time.

Practical experience with many longitudinal studies has led to the empirical observa-

tion that the variances are rarely constant over time. Some of the models discussed

here can be extended by relaxing this assumption, leading to corresponding heteroge-

neous models. It can be shown that generally heterogeneous models outperforms the

corresponding homogeneous models.

The Valid values for covariance-structure in SAS and their descriptions along

with the number of covariance parameters involved and the expression for the (i, j)th

element of the covariance matrix are provided in Table 2.1.

2.4 Implication of Correlation among Longitudinal Data

The positive correlation among repeated measures can be used to advantage in the

study of change over time. That is, we can capitalise on the positive correlation

among the longitudinal data when the main focus of the analysis is on change in the

mean response. Consider a sample longitudinal study where the change in the health

outcome before and after receiving a health intervention is of interest. With only two
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Table 2.1: Covariance Structures

Structure Description No of Cov (i,j)th element
Parametrers

UN Unstructured n(n+1)/2 σij

UN(q) Banded [q/2](2n-q+1) σijI(|i− j| < q)
CS Compound Symmetry 2 σ2

1 + σ2I(i = j)
CSH Heterogeneous CS n+1 σiσj[ρI(i 6= j) + I(i = j)]

AR(1) Autoregressive(1) 2 σ2ρ|i−j|

ARH(1) Heterogeneous AR(1) n+1 σiσjρ
|i−j|

TOEP Toeplitz n σ|i−j|+1

TOEP(q) Banded Toeplitz q σ|i−j|+1I(|i− j| < q)
TOEPH Heterogeneous TOEP 2n-1 σiσjρ|i−j|

TOEPH(q) Banded Hetero TOEP n+q-1 σiσjρ|i−j|I(|i− j| < q)

ANTE(1) Antedependence 2n-1 σiσj

∏j−1
k=i ρk

ARMA(1,1) ARMA(1,1) 3 σ2[γ|i−j|−1I(i 6= j) + I(i = j)]
VC Variance Components q σ2

kI(i = j)

FA(q) Factor Analytic [q/2](2n-q+1)+n
∑min(i,j,q)

i=1 λikλjk + σ2
i I(i = j)

FA0(q) No diagonal FA [q/2](2n-q+1)
∑min(i,j,q)

i=1 λikλjk

FA1(q) Equal diagonal FA [q/2](2n-q+1)+1
∑min(i,j,q)

i=1 λikλjk + σ2I(i = j)
HF Huynh-Feldt n+1 (σ2

i + σ2
j )/2 + λI(i 6= j)

repeated measures, the analysis will focus on the difference score, say Yi2−Yi1, whose

variance is given by

V (Yi2 − Yi1) = V (Yi1) + V (Yi2)− 2 Cov(Yi1, Yi2)

= σ2
1 + σ2

2 − 2 ρ12σ1σ2, (2.15)

where ρ12 is the correlation among the pair of responses, Yi1 and Yi2.

On the other hand, if a cross sectional study is adopted, the study participants

are assigned to two groups, a group that receives the intervention and a control group
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that does not. Then the variance of the difference between the responses of any two

individuals, when one individual is randomly selected from the intervention group

and the other from the second group, is given by

V (Yi2 − Yi1) = V (Yi1) + V (Yi2)

= σ2
1 + σ2

2. (2.16)

Thus the variability of the within individual difference is always substantially smaller

than the variability of the between individual differences, provided the correlation is

relatively large and positive. It is in this sense that a longitudinal study can provide

a more precise (i.e., less variable) estimate of change in the mean response than a

cross-sectional study with the same number and pattern of observations.

Further, failure to adequately account for correlation among repeated measures

can result in misleading inferences, as it renders the standard error incorrect. With

incorrect standard errors, test statistics and p-values will also be incorrect and they

may lead to incorrect inferences.

2.5 Model Selection

Model selection involves the choice of an appropriate model from among a set of

candidate models. Model selection is used when there is no particular clear choice

among many different models. Model selection tools are a useful set of techniques for

screening through the many different covariance models. The choice among models
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can be made by comparing the maximum likelihoods for each of the covariance pat-

tern models. Fixed effects models and covariance models are rather different; they

are usually treated differently in modelling, and we discuss model selection for the

covariance parameters and for the fixed effects separately. The covariance models for

our data are often of secondary interest; we do want to pick the best covariance model

for our data but if we make a modest error in covariance model specification it is not

as costly as an error in the fixed effects specification.

2.5.1 Model Selection for The Covariance Model

When faced with a new data set, we want to determine a best covariance model for use

in fitting the fixed effects, and we try out a large number of covariance models. Our

goal is typically to pick a single best or most useable model for use in further analyses

of fixed effects. While we do our covariance model selection, we will pick a single set

of covariates and try out many different covariance models. We compare the perfor-

mance of various covariance structures, by comparing the maximum likelihoods, AIC,

AICC , and BIC for the covariance pattern models. We compare nested covariance

models to each other, using likelihood ratio tests. To compare non-nested models, the

most popular covariance model selection criteria AIC (Akaike information criterion),

AICC (Corrected Akaike information criterion) and BIC(Bayes information criterion)

are used.

In practice, a number of models may be considered for fitting the same longitu-

dinal data. Hence, Jones (1993, Section 2.8), Singer and Willett (2003, Section 4.6),
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and Fitzmaurice et al (2004, Section 7.5) recommended adopting the Akaike infor-

mation criterion (AIC) (Akaike, 1973) and the Bayesian information criterion (BIC)

(Schwarz, 1978) to select the best model from all possible candidate models. It is

known that AIC is an efficient criterion, while BIC is a consistent criterion (McQuar-

rie and Tsai, 1998; Burnham and Anderson, 2002). There is no general agreement

on which of these two categories of criteria is preferable. However, the performance

of both AIC and BIC is often unsatisfactory when the sample size is small. In classi-

cal linear regression models, Hurvich and Tsai (1989) proposed an efficient criterion,

the corrected Akaike information criterion (AICC), by directly minimising the ex-

pected Kullback-Leibler discrepancy. They showed that AICC outperforms AIC in

small samples, while performing comparably to AIC in large samples. The crite-

rion is asymptotically efficient if the true model is infinite dimensional. Furthermore,

when the true model is of finite dimension, AICC is found to provide better model

order choices than any other asymptotically efficient method. More recently, Shi and

Tsai (2002) proposed a consistent model selection criterion, the residual information

criterion (RIC), based on the expected Kullback-Leibler discrepancy of the residual

log-likelihood function. They demonstrated that in linear regression models with the

first order autoregressive process, RIC is superior to BIC when the signal-to-noise

(SNR) ratio is not weak.

We apply the likelihood and the residual likelihood approaches to derive model

selection criteria, AICC and RIC, respectively, for linear regression models with lon-

gitudinal data.

One approach to model selection is to use likelihood ratio tests (section 6.1
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Weiss (2005)). Using likelihood ratio tests, we can compare nested covariance models

to each other.

Two covariance pattern models are said to be nested when one (the reduced)

model is a special case of the other (full) model. For pair of nested models, a likelihood

ratio test statistic can be constructed that compares the “full” and “reduced” models.

The likelihood ratio test is obtained by taking twice the difference in the maximised

REML log-likelihood as

G2 = 2(l̂full − l̂red).

This statistic is compared to the percentiles of a chi-square distribution with de-

grees of freedom equal to the difference between the number of covariance parameters

in the full and reduced models.

However, a number of covariance models are not nested within each other and

have the same or similar numbers of parameters. A number of criterion-based ap-

proaches to model selection have been developed. Criterion-based model selection

approaches compare adjusted log likelihoods penalized for the number of parameters

in the covariance model. The penalty for model m increases with the number of co-

variance parameters qm. Models with more covariance parameters should fit better,

meaning they should naturally have a higher log likelihood, than models with fewer

parameters. The penalty function levels the playing field compared to what would

happen if we compared models using raw log likelihood. The model with the best

score on the criterion is selected as “best.” To compare non-nested models, two most

popular covariance model selection criteria are AIC (Akaike information criterion)
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and BIC(Bayes information criterion). AIC for a given model m is defined as

AIC(m) = −2 log likelihood(m) + 2qm (2.17)

and BIC is nearly identical, except that instead of the 2 multiplying the number of

covariance parameters qm, the penalty is log(N)

BIC(m) = −2 log likelihood(m) + log(N)qm. (2.18)

The model with the smallest value of AIC or BIC is selected as best. Decision theory

suggests that, as sample size increases, we should use a decreasing type-one error rate.

BIC does this for us automatically, by penalizing the model according to both the

number of parameters qm and the number of observations N . The log function does

grow slowly in the number of observations, and so the penalty does not grow quickly

in N . Because of its larger penalty on the number of parameters, BIC tends to pick

smaller models than AIC does and so BIC more than AIC tends to pick the null

model when the null model is in fact correct.

Conversely, for smaller data sets, one should make additional assumptions when

modelling data; as the sample size increases, one should relax the assumptions and

allow the data to determine modelling assumptions. In specifying a covariance model,

additional assumptions means choosing a more parsimonious covariance model, one

with fewer parameters. As the sample size n increases, one should allow for more

complex covariance models with more unknown parameters. BIC goes against this

advice, at least in comparison to AIC. Simulation studies have suggested that BIC
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tends to select a model with too few parameters. On the other hand, having too

many extra parameters in the covariance model can interfere with inferences.

There are 4 equivalent variants of AIC and BIC. We consider the versions of AIC

and BIC in the smaller is the better form. Some programs multiply these definitions

by -1 and have a “larger is better” version, and some programs may multiply AIC

and BIC by ± 0.5 in the definition.

As r, the dimension (number of parameters) of the candidate model, increases in

comparison to n, the sample size, AIC becomes a strongly negatively biased estimate

of the information. A bias corrected to the Akaike information criterion, AIC, is

derived by Hurvich and Tsai (1989). The correction is of particular use when the

sample size is small, or when the number of fitted parameters is a moderate to large

fraction of the sample size. For linear regression, the corrected method, called AICC ,

is exactly unbiased. In all cases, the reduction in bias is achieved without any increase

in variance, since AICC may be written as the sum of AIC and a nonstochastic term.

Among the efficient methods studied, AICC is found to perform best. For small

samples, AICC is able to out-perform even the consistent methods. The bias corrected

AIC, termed as AICC , is defined as

AICC = AIC +
2(r + 1)(r + 2)

n− r − 2
(2.19)

Thus AICC is the sum of AIC and an additional non-stochastic penalty term.

Model selection for covariance parameters is typically done with REML log like-

lihoods; as such, the log likelihoods in the formulas for AIC, AICC and BIC should be
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REML likelihoods, qm is the number of covariance parameters, and the fixed effects

model must be the same in all models.

In covariance model selection, it is important that all models have the same fixed

effects. Otherwise model testing or comparison procedures would be comparing both

different fixed effects and different covariance parameters at the same time.

2.5.2 Model Selection Using Bayesian Probability

Bayesian testing can be used to compare nested or non-nested models. This method

can compare two or more models at the same time. A Bayesian test of two models

1 against 2 is a probability statement that model 1 is the correct model given that

either 1 or 2 is correct. BIC can also be used to approximate the probability that

a given covariance model among a set of covariance models is correct. Let BIC(1)

and BIC(2) be the BIC’s for two models. The probability that model 1 is the correct

model is

P (1|Y ) ≈ exp[−.5BIC(1)]

exp[−.5BIC(1)] + exp[−.5BIC(2)]

=
1

1 + exp{−.5[BIC(2)−BIC(1)}]
,

and the probability that model 2 is correct is P (2|Y ) = 1−P (1|Y ). What is important

in this calculation is the difference of BIC’s. For example, if the difference, BIC(2)−

BIC(1) = 6, then P (1|Y ) = 0.9526 and if the difference is greater than 12, P (1|Y ) >

0.9975. If BIC(2)−BIC(1) =0, the two models are equally likely and P (1|Y ) =
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P (2|Y ) = 0.5. Given K models, the probability that model k is the correct model is

P (k|Y ) ≈ exp[−.5BIC(k)]∑K
j=1 exp[−.5BIC(j)]

.

2.5.3 Model Selection for Fixed Effects

The huge variety of different circumstances involving fixed effects makes, giving advice

for model selection for fixed effects, more complex than for covariance models. The

first step in choosing the fixed effects is to determine if there is a strong time trend. If

there is, we specify fixed effects to adequately describe the time trend. This time trend

must be included in all further analyses including covariance model specification.

Now suppose we wish to wade through a large number of covariates and to

include those that are predictive of the response. The traditional model selection

methods of forward selection and backward elimination can be used with longitudinal

models. Suppose we are contemplating a finite set of potential additional covariates.

Forward selection works by first specifying a base model. Each potential covariate

is added to the base model in turn. The covariate with the most significant t or F

statistic is added to the base model and this new base plus covariate model becomes

the new base model. The remaining covariates are added in to this model one at a

time and the most significant is included in the model. The process continues until no

remaining covariate is significant enough to be included in the model. A significance

level is set as a minimum level required to allow a new covariate into the model.
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Backward selection works similarly, but starts with a model with all of the can-

didate covariates as predictors. The least significant covariate is dropped and the

model is refit. The least significant covariate in the new model is dropped, unless

its significance level is above some minimum level. Many variations of forward selec-

tion and backward elimination have been suggested, included algorithms that switch

between forward and backward steps in various orders.

2.6 General Multivariate Models

When the design is balanced and there is no theoretical or empirical basis to assume

special covariance structure, one need assume only that Cov(ei) = Σ, where Σ is an

arbitrary positive definite covariance matrix. Kleinbaum (1973) investigated multi-

variate methods for estimating the mean and covariance matrix in unbalanced data

sets. This approach breaks down when the set of observation times become large

relative to the number of individuals: estimation of the many parameters in the co-

variance matrix becomes computationally burdensome and the resulting estimators

of location parameters are inefficient when simpler covariance structures apply. Thus

when the data set is highly unbalanced or incomplete or when p is large relative to n,

more parsimonious models for the covariance structure must be considered. Two nat-

ural candidates for the purpose are parametric mixed-effects models which includes

random effects as a special case and autoregressive (AR) models.
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2.6.1 Parametric Mixed-Effects Models

Parametric mixed-effects models or random-effects models are powerful tools for lon-

gitudinal data analysis. Linear and nonlinear mixed-effects models (including gen-

eralized linear and nonlinear mixed-effects models) have been widely used in many

longitudinal studies. Good surveys on these approaches can be found in the books

by Searle et al (1992), Davidian and Giltinan (1995), Vonesh and Chinchilli (1996),

Verbeke and Molenberghs (2000), Pinheiro and Bates (2000), Diggle et al (2003), and

Demidenko (2004), among others. In this section, we shall review various parametric

mixed-effects models and emphasize the methods that we will use in later chapters.

2.6.2 Linear Mixed-Effects Model

In previous sections, we have introduced models for longitudinal data where changes

in the mean response, and their relation to covariates, can be expressed as

E(Y i) = X iβ, (2.20)

and where the primary goal is to make inferences about the population regression

parameters, β. In this section we consider an alternative, but closely related, approach

for analyzing longitudinal data using linear mixed effects models. The underlying

premise of linear mixed effects models is that some subset of the regression parameters

vary randomly from one individual to another, thereby accounting for sources of

natural heterogeneity in the population. That is, individuals in the population are
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assumed to have their own subject-specific mean response trajectories over time and a

subset of the regression parameters are now regarded as being random. The distinctive

feature of linear mixed effects models is that the mean response is modelled as a

combination of population characteristics, β, that are assumed to be shared by all

individuals, and subject-specific effects that are unique to a particular individual.

The former are referred to as fixed effects, while the latter are referred to as random

effects. The term mixed is used in this context to denote that the model contains

both fixed and random effects.

Because linear mixed effects models explicitly distinguish between fixed and

random effects, they allow the analysis of between-subject and within-subject sources

of variation in the longitudinal responses. In addition, it is not only possible to

estimate parameters that describe how the mean response changes in the population

of interest, but it is also possible to predict how individual response trajectories change

over time. For example, linear mixed effects models can be used to obtain predictions

of individual growth trajectories over time. The latter will be of interest when the

focus of inference is on the individual rather than the population of individuals. For

example, in the physician-patient context, these predictions can be used to identify

those patients who do not respond well to their assigned treatment in a clinical trial.

Model Specification

Harville (1976, 1977) and Laird and Ware (1982) first proposed the following general

linear mixed-effects (LME) model:
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yij = x′
ijβ + z′

ijbi + εij,

bi ∼ N(0, D), εi ∼ N(0, Ri),

j = 1, 2, . . . , ni; i = 1, 2, . . . , n,

(2.21)

where εi = [εi1, . . . , εini
]′, yij and εij denote the response and the measurement

error of the jth measurement of the ith subject, the unknown parameters β : p × 1

and bi : q × 1 are usually called the fixed-effects vector and random-effects vectors,

respectively (for simplicity, they are often referred to fixed-effects and random-effects

parameters of the LME model), and xij and zij are the associated fixed-effects and

random-effects covariate vectors. In the above expression, D and Ri, i = 1, 2, . . . , n

are known as the variance components of the LME model. In the above LME model,

for simplicity, we assume that bi and εi are independent with normal distributions,

and the between-subject measurements are independent.

The LME model (2.21) is often written in the following form:

yi = X iβ + Zibi + εi

bi ∼ N(0, D), εi ∼ N(0, Ri),

i = 1, 2, . . . , n,

(2.22)

where yi = [yil, . . . , yin]′, X i = [xil, . . . ,xini
]′, and Zi = [zi1, . . . ,zini

]′.

The above LME model includes linear random coefficient models (Longford 1993)

and models for repeated measurements as special cases. For example, a two-stage

linear random-coefficient model for growth curves (Longford 1993) can be written as
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yi = Ziβi + εi, βi = Aiβ + bi

bi ∼ N(0, D), εi ∼ N(0, Ri),

i = 1, 2, . . . , n,

(2.23)

where yi, Zi, bi and εi are similarly defined as in (2.22), βi is a q × 1 vector

of random coefficients of the ith subject, and Ai is a q × p design matrix contain-

ing between-subject covariates. It is easy to see that the linear random-coefficient

model (2.23) can be written into the form of the general LME model (2.22) once we

set X i = ZiAi, i = 1, 2, . . . , n.

In fact, we can write a general two-stage linear random coefficient model into

the form of the general LME model (2.22). A general two-stage random coefficient

model can be written as (Davidian and Giltinan 1995, Vonesh and Chinchilli 1996)

yi = Ziβi + εi, βi = Aiβ + Bibi

bi ∼ N(0, D), εi ∼ N(0, Ri),

i = 1, 2, . . . , n,

(2.24)

where Bi is a q× k design matrix with elements of 0’s and 1’s arranged to determine

the components of βi, that are random, and bi is the associated k-dimensional random

effects vector. This general two-stage random-coefficient model can be written into

the form of the general LME model (2.22): yi = X iβ + Z∗
i bi + εi once we set

X i = ZiAi and Z∗
i = ZiBi, i = 1, 2, . . . , n. In fact, we can easily show that the

general two-stage random coefficient model (2.24) is equivalent to the general LME

model (2.22). In particular, when Bi = Iq, the general two-stage random coefficient
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model (2.24) reduces to the random coefficient model (2.23) for growth curves. Notice

that the general two-stage random coefficient model (2.24) is also known as a two-stage

mixed-effects model and the general LME model (2.22) is also called a hierarchical

linear model.

In matrix notation, the general LME model (2.22) can be further written as

y = Xβ + Zb + ε,

b ∼ N(0, D), ε ∼ N(0, R),
(2.25)

where

y = [y′
1, . . . ,y

′
n]′, b = [b′1, . . . , b

′
n]′,

ε = [ε′1, . . . , ε
′
n]′, X = [X ′

1, . . . ,X
′
n]′,

Z = diag(Z1, . . . ,Zn), D̃ = diag(D1, . . . ,Dn),

R = diag(R1, . . . ,Rn).

(2.26)

It is usually assumed that the repeated measurements from different subjects

are independent and they are correlated only when they come from the same sub-

ject. Based on the general LME model (2.25), we have Cov(y) = diag(Cov(y1), . . . ,

Cov(yn)) where the covariance matrix of repeated measurement vector yi for the

ith subject is Cov(yi) = ZiDZ ′
i + Ri. We can see that the correlation among the

repeated measurements can be induced either through the between-subject variation

term ZiDZ ′
i or through the within-subject covariance matrix Ri. Thus, even if the

intra-subject measurement errors (εi, i = 1, 2, . . . , n) are independent, the repeated

measurements yi may be still correlated due to the between-subject variation. In
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some problems, the correlation may come from both sources. However, for simplic-

ity, we may assume that the correlation is induced solely via the between-subject

variation or assume that Ri is diagonal in the development of methodologies.

Estimation of Fixed and Random-Effects

The inferences for β and bi, i = 1, 2, . . . , n for the general LME model (2.22) can be

based on the likelihood method or generalized least squares method. For known D

and Ri, i = 1, 2, . . . , n, the estimates of β and bi, i = 1, 2, . . . , n may be obtained

by minimising the following twice negative logarithm of the joint density function of

yi, i = 1, 2, . . . , n and bi, i = 1, 2, . . . , n (upto a constant):

GLL(β, bi|y) =
n∑

i=1

{
[yi −X iβ −Zibi]

′R−1
i [yi −X iβ −Zibi]

+ b′iD
−1bi + log |D|+ log |Ri|

} (2.27)

Since bi, i = 1, 2, . . . , n are random-effects parameter vectors, the expression (2.27) is

not a conventional log-likelihood. For convenience, from now on and throughout this

book, we call (2.27) a generalized log-likelihood (GLL) of the mixed-effects parameters

(β, bi, i = 1, 2, . . . , n). Note that the first term of the right-hand side of (2.27) is

a weighted residual taking the within-subject variation into account, and the term

b′iD
−1bi is a penalty due to random-effects bi taking the between-subject variation

into account.

For given D and Ri, i = 1, 2, . . . , n, minimising the GLL criterion (2.27) is equiv-

alent to solving the so-called mixed model equations (Harville 1976, Robinson 1991):
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 X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z + D̃
−1


 β

b

=

 X ′R−1y

Z ′R−1y

 ,

where y, b, X, Z, D̃ and R are defined in (2.26). Using matrix algebra, the mixed

model equations yield

β̂ = (X ′V −1X)−1X ′V −1y, (2.28)

b̂i = DZ ′
iV

−1
i (yiX iβ̂), i = 1, 2, . . . , n, (2.29)

where V i = ZiDZ ′
i + Ri, i = 1, 2, . . . , n and V = diag(V 1, . . . ,V n). The covariance

matrices of β̂ and b̂i are:

Cov(β̂) = (X ′V −1X)−1 =

(
n∑

i=1

X ′
iV

−1
i X i

)−1

, (2.30)

Cov(b̂i − bi) = D −D(Z ′
iV

−1
i Zi)D + D(Z ′

iV
−1
i X i)

×

(
n∑

j=1

X ′
jV

−1
j Xj

)−1

(X ′
iV

−1
i Zi)D, i = 1, 2, . . . , n. (2.31)

Bayesian Interpretation

It is well known that the general LME model (2.22) has a close connection with a

Bayesian model in the sense that the solutions (2.28) and (2.29) are the posterior

expectations of the parameters of a Bayesian model under non-informative priors.

Before we go further, we state the following two useful lemmas whose proofs can
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be found in some standard multivariate textbooks, e.g., Anderson (1984).

Lemma 2.6.1. Let A, B and X be p × p, q × q and p × q matrices so that A and

A + XBX ′ are invertible. Then

(A + XBX ′)−1 = A−1 −A−1XB(B + BX ′A−1XB)−1BX ′A−1. (2.32)

In particular; when q = 1, B = 1 and X = x where x is a p × 1 vector; we have

(A + xx′)−1 = A−1 −A−1xx′A−1/(1 + x′A−1x). (2.33)

Lemma 2.6.2. Let X1

X2

 ∼ N


 µ1

µ2

 ,

 Σ11 Σ12

Σ21 Σ22


 ,

where Σ22 is invertible. Then

X1|X2 ∼ N
[
µ1 + Σ11Σ

−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

]
.

We now define the following Bayesian problem:

y|β, b ∼ N(Xβ + Zb, R), (2.34)

with prior distributions for β and b :

β ∼ N(0, H), b ∼ N(0, D̃), (2.35)
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where β, b and ε = y−Xβ−Zb are all independent of each other, and D̃ is defined

in (2.26).

Notice that specification of H is flexible. For example, we may let H = λIp.

This indicates that the components of β are independent of each other. Moreover,

when λ →∞, we have H−1 = λ−1Ip → 0. This indicates that the limit of the prior

on β is non-informative.

Theorem 2.1. The Best Linear Unbiased Predictors (2.28) and (2.29) that minimise

the GLL criterion (2.27) are same as the limit posterior expectations of the Bayesian

problem defined in (2.34) and (2.35) as H−1 → 0. That is,

β̂ = lim
H−1→0

E(β|y), b̂ = lim
H−1→0

E(b|y). (2.36)

Moreover, as H−1 → 0 we have the following posterior distributions:

β|y → N(β̂, (X ′V −1X)−1),

b|y → N(b̂D̃ − D̃Z ′P V ZD̃), (2.37)

ε|y → N(ε̂, R−RP vR),

where ε̂ = y −Xβ̂ −Zb̂ and

P V = V −1 − V −1X(XT V −1X)−1X ′V −1. (2.38)

Proof. By (2.34) and (2.35), we have
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β

b

ε

y


∼ N


0,



H 0 0 HX ′

0 D̃ 0 D̃Z ′

0 0 R R

XH ZD̃ R Ω




,

where Ω = V + XHX ′ with V = ZD̃Z ′ + R as defined before. Then applying

Lemma 2.6.2, we have

β|y ∼ N
[
HX ′Ω−1y, H −HX ′Ω−1XH

]
Applying Lemma 2.1, we have

Ω−1 = (V + XHX ′)
−1

= V −1 − V −1XH(H + HX ′V −1XH)−1HX ′V −1

= V −1 − V −1X(H−1 + X ′V −1X)−1X ′V −1.

It follows that

HX ′Ω−1 = HX ′V −1 −HX ′V −1X(H−1 + X ′V −1X)X ′V −1

= HH−1(H−1 + X ′V −1X)−1X ′V −1

= (H−1 + X ′V −1X)−1X ′V −1.
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Moreover,

H −HX ′Ω−1XH = H − (H−1 + X ′V −1X)−1X ′V −1XH

= (H−1 + X ′V −1X)−1.

It follows that as H → 0, we have the first expression in (2.37) and the first expression

in (2.36) due to (2.28). Similarly, we can show the other expressions in (2.37) and

(2.36). The theorem is then proved.

Notice that β̂ and b̂ involve the unknown parameters D̃ and R. If we substitute

point estimates of D̃ and R (We shall discuss how to estimate them in the next

subsections), the Bayesian estimates, β̂ and b̂ are usually referred to as empirical

Bayes estimates, although empirical Bayes estimation is conventionally applied only

to the random-effects bi, i = 1, 2, . . . , n.

Theorem 2.1 gives the limit posterior distributions of β, b band ε under the

Bayesian framework (2.34) and (2.35) when H−1 → 0 or when the prior on β is

non-informative. Sometimes, it is of interest to know the posterior distributions of b

and ε when β is given, e.g., when β = β̂. Actually, this knowledge is a basis for the

maximum likelihood-based EM-algorithm that we shall review in the next subsection.

The following theorem gives the related results.

Theorem 2.2. Under the Bayesian framework (2.34) and (2.35), we have

b|y, β ∼ N
[
D̃Z ′V −1(y −Xβ), D̃ − D̃Z ′V −1ZD̃

]
,

ε|y, β ∼ N
[
RV −1(y −Xβ), R−RV −1R

]
. (2.39)
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Proof. Set ỹ = y −Xβ. Under the Bayesian framework (2.34) and (2.35), we have


b

ε

ỹ

 ∼ N

0,


D̃ 0 D̃Z ′

0 R R

ZD̃ R V


 .

Applying Lemma 2.6.2 directly, we have

b|y ∼ N
[
D̃Z ′V −1ỹ, D̃ − D̃Z ′V −1ZD̃

]
,

b|ỹ ∼ N
[
RV −1ỹ, R−RV −1R

]
.

Then (2.39) follows by replacing ỹ by y−Xβ in the above expressions. The theorem

is proved.

It is worthwhile to notice that by Theorem 2.2, we have E(b|y, β = β̂) = b̂ and

E(ε|y, β = β̂) = ε̂.

Estimation of Variance Components

If the covariance matrices, D and Ri, are unknown, but their point estimates, say,

D̂ and R̂i, are available, then we can have V̂ i = ZiD̂Z ′
i + R̂i. The estimates of β

and bi thus can be obtained by substitution of V̂ i and D̂ in (2.28) and (2.29). Their

corresponding standard errors are given by (2.30) and (2.32) after replacing V i and

D by their estimates. However, these standard errors are underestimated since the

estimation errors of V̂ i and D̂ are not accounted for.
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Under the normality assumption, the maximum likelihood (ML) method and

the restricted maximum likelihood (REML) method are two popular techniques to

estimate the unknown components of D and Ri, although this may not be appropriate

if the normality assumption is questionable.

Under the following normality assumptions,

y|β, b ∼ N(Xβ + Zb, R), b ∼ N(0, D̃),

the generalized likelihood function can be written as

L(β, b, D̃, R|y) = (2π)−N/2|R|−1/2 exp

{
−1

2
[y −Xβ −Zb]′R−1 × [y −Xβ −Zb]

}
×(2π)−qn/2|D̃|−1/2 exp

(
−1

2
b′D̃

−1
b
)

,

where qn is the dimension of b and N =
∑n

i=1 ni. If the random-effects vector b is

integrated out, we can obtain the following conventional likelihood function:

L(β, D̃, R|y) =
∫

L(β, b, D̃, R|y)db

= (2π)−N/2|V |−1/2 exp
{
−1

2
(y −Xβ)′V −1(y −Xβ)

}
The ML method for estimation of variance components is to maximize the following

log-likelihood function:

log L(β, D̃, R|y) = −1

2
N log(2π)− 1

2
log |V | − 1

2
(y −Xβ)′V −1(y −Xβ), (2.40)

with respect to the variance components for a given β. However, joint maximization

with respect to the variance components D̃, R and the fixed-effects parameter vector
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β also results in the estimate of β in (2.28).

The REML method is used to integrate out both b and β from L(β, b, D̃, R|y)

in order to adjust for loss of degrees of freedom due to estimating β from the ML

method, i.e., to maximize

L(D̃, R|y) =

∫ ∫
L(β, b, D̃, R|y) db dβ.

It can be shown that

L(D̃, R|y) =
(2π)p/2|X ′V −1X|−1/2

(2π)N/2|V |1/2
exp

(
−1

2
y′P V y

)
,

where P V = V −1−V −1X(XT V −1X)−1X ′V −1 as defined in (2.38). Thus, we have

L(D̃, R|y) = (2π)p/2|X ′V −1X|−1/2L(β̂, D̃, R|y).

The REML estimates of variance components can be obtained via maximizing

L(D̃, R|y) = log L(β̂, D̃, R|y) +
1

2
p log(2π)− 1

2
log |X ′V −1X|. (2.41)

More detailed derivations for these results can be found in Davidian and Giltinan

(1995).
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The EM-algorithms

The implementation of the ML and REML methods is not trivial. To overcome

this implementation difficulty, the EM-algorithm and Newton-Raphson methods have

been proposed (Laird and Ware 1982, Dempster et al 1981, Laird, Lange and Stram

1987, Jennrich and Schluchter 1986, Lindstrom and Bates 1990). The books by Searle

et al (1992), Davidian and Giltinan (1995), Vonesh and Chinchilli (1996) and Pinheiro

and Bates (2000) also provide a good review of these implementation methods. The

standard statistical software packages such as SAS and S-PLUS now offer convenient

functions to implement these methods (e.g., the S-PLUS function lme and the SAS

procedure PROC MIXED). We shall briefly review the EM-algorithm here.

Recall that we generally assume that Ri has the following simple form:

Ri = σ2Ini
, i = 1, 2, . . . , n. (2.42)

When bi and εi were known, under the normality assumption, the natural ML esti-

mates of σ2 and D would be

σ̂2 = N−1

n∑
i=1

ε′iεi, D̂ =
n∑

i=1

bib
′
i. (2.43)

This is the M-step of the EM-algorithm. Because εi and bi are unknown, the above

estimates are not computable. There are two ways for overcoming this difficulty,

associated, respectively, with the ML or REML-based EM-algorithm.

Notice that the ML estimates of D and σ2 are obtained via maximizing the
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loglikelihood function (2.40) with the fixed-effects parameter vector β = β̂ given.

Therefore, the key for the ML-based EM-algorithm is to replace the σ̂2 and D̂ in

(2.43) with

E(σ̂2|y, β = β̂) and E(D̂|y, β = β̂), (2.44)

respectively. The underlying rationale is that the variance components D and σ2 are

estimated based on the residuals after the estimated fixed-effects component Xβ̂ is

removed from the raw data, and the estimation will not take the variation of Xβ̂

into account. This is the E-step of the ML-based EM-algorithm. Using Theorem 2.2,

we can show the following theorem.

Theorem 2.3. Assume the Bayesian model defined in (2.34) and (2.35) holds, and

assume Ri, i = 1, 2, . . . , n satisfy (2.42). Then we have

E(σ̂2|y, β = β̂) = N−1
∑n

i=1

{
ε̂′ε̂ + σ2[ni − σ2tr(V −1

i )]
}

,

E(D̂|y, β = β̂) = n−1
∑n

i=1

{
b̂ib̂

′
i + [D −DZ ′

iV
−1
i ZiD]

} (2.45)

In the right-hand sides of the expressions (2.45), the variance components σ2 and

D are still unknown. However, when they are replaced by the current available values,

the updated values for σ̂2 and D̂ can be obtained. In other words, provided some

initial values for D and σ2, we can update σ̂2 and D̂ using (2.45) until convergence.

This is the main idea of the EM-algorithm. For simplicity, the initial values can be

taken as D̂ = Iq, and σ̂2 = 1. The major cycle for the ML-based EM-algorithm is as

follows:

1. Given D̂ and σ̂2, compute β̂ and b̂i using (2.28) and (2.29).
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2. Given β̂ and b̂i, update D̂ and σ̂2 using (2.45).

3. Iterate between (1) and (2) until convergence.

Let r = 0, 1, 2, . . . , index the sequence of the iterations, and β̂(r) and b̂i(r) the es-

timated values for, β and bi at iteration r. Other notations such as V i(r), σ
2
(r) are

similarly defined. Then more formally, the ML-based EM-algorithm may be written

as follows:

ML Based EM-algorithm

Step 0. Set r = 0. Let σ2
(r) = 1, and D̂(r) = Iq.

Step 1. Set r = r + 1. Update β̂(r) and b̂i(r) using

β̂(r) =

(
n∑

i=1

X ′
iV̂

−1

i(r−1)X i

)−1( n∑
i=1

X ′
iV̂

−1

i(r−1)yi

)
,

b̂i(r) = D(r−1)Z
′
iV̂

−1

i(r−1)

(
yi −X iβ̂(r)

)
, i = 1, 2, . . . , n,

where

V̂ i(r−1) = ZiD̂(r−1)Z
′
i + σ̂2

(r−1)Ini
, i = 1, 2, . . . , n.

Step 2. Update σ2
(r), and D̂(r) using
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σ2
(r) = N−1

n∑
i=1

{
ε̂′i(r)ε̂i(r) + σ̂2

(r−1)[ni − σ̂2
(r−1)tr(V̂

−1

i(r−1))]
}

,

D̂(r) = n−1

n∑
i=1

{
b̂i(r)b̂

′
i(r) + [D̂(r−1) − D̂(r−1)Z

′
iV̂

−1

(r−1)ZiD̂(r−1)]
}

,

where ε̂i(r) = yi −X iβ̂(r) −Zib̂i(r).

Step 3. Repeat Steps 1 and 2 until convergence.

The REML-based EM-algorithm can be similarly described. The main differ-

ences include

(a) The REML-based EM-algorithm is developed to find the REML estimates

of σ2 and D that maximize (2.41).

(b) The key for the REML-based EM-algorithm is to replace σ̂2 and D̂ in (2.43)

by E(σ̂2|y) and E(D̂|y) instead of their expectations conditional on y and

β̂ as given in (2.44). These conditional expectations can be easily obtained

using Theorem 2.1 and we shall present them in Theorem 2.4 below for

easy reference.

(c) The REML-based EM-algorithm can be simply obtained via replacing all

the V̂
−1

i(r−1) the Step 2 of the ML-based EM-algorithm above with P V̂ i(r−1)
,

where

P V̂ i(r−1)
= V̂

−1

i(r−1) − V̂
−1

i(r−1)X i

(
n∑

j=1

X ′
jV̂

−1

j(r−1)Xj

)−1

X ′
iV̂ i(r−1)

Theorem 2.2 below is similar to Theorem 2.3 but it is based on Theorem 2.1.

88



Theorem 2.4. Assume the Bayesian model defined in (2.34) and (2.35) holds, and

assume Ri, i = 1, 2, . . . , n satisfying (2.42). Then as H−1 → 0,

E(σ̂2|y) → N−1
∑n

i=1

{
ε̂′iε̂i + σ2[ni − σ2tr(P V i

)]
}

,

E(D̂|y) → n−1
∑n

i=1

{
b̂ib̂

′
i + [D −DZ ′

iP V i
ZiD]

}
,

(2.46)

where P V i
= V −1

i − V −1
i X i

(∑n
i=1 X ′

iV
−1
i X i

)−1
X ′

iV i.

2.6.3 Random Effects Models

An alternative perspective on explicit modelling of longitudinal response is to think

directly of the fact that each unit appears to have its own trajectory or inherent

trend with its own peculiar features. The resulting statistical model, called a random

coefficient model. Random effects models for serial measurements have a long his-

tory(Wishart 1938). Rao(1965, 1975) described a family of two-stage random effects

models for serial measurements and developed estimation and testing procedures for

data sets balanced on time and with no between subject covariates. In Rao’s formu-

lation, the first stage consists of a linear model conditioned on the individual growth

curve parameters, βi. At the second stage, the growth curve parameters are assumed

to depend linearly on fixed covariates.
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Stage 1. Individual Model.

Yi = Ziβi + εi, (2.47)

where, εi ∼ MVN(0, Ri). This is like a regression model for the ith unit, with design

matrix Zi and (k × 1) regression parameter βi.

Stage 2. Population Model.

Stage 1 tells only part of the story; it describes what happens at the level of a unit, and

includes explicit mention of within unit variation. To accommodate the among unit

variation, we write βi = β + bi, where β is the mean vector of the population of all

βi. Here, b i is a vector of random effects with 0 mean, describing how the intercept

and slope for the ith unit deviates from the mean value and dispersion matrix Λ. b i

and εi are assumed to be independent.

βi ∼ MV N(β,Λ). (2.48)

If there are two groups in the population, like males females, the groups may be

allowed to differ in their responses by modifying the relation as βi = Aiβ + bi. If we

combine the two parts of the model, we get

Yi = Z i(Aiβ + bi) + εi = Z iAiβ + Z ibi + εi. (2.49)
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If we assume that there is only one group, so that Ai = I,

Yi = Z iβ + Z ibi + εi. (2.50)

Using the independence of b i and εi, this implies that

var(εi) = Σi = Z iΛZ ′
i + Ri. (2.51)

Thus the model expresses the covariance vector of the data vector as the sum of

two pieces representing the within unit and among unit variations. Assuming that

both b i and εi are both well-represented by multivariate normal distributions and

are independent, we may conclude that

Yi ∼ MV N(Xiβ,Σi), (2.52)

where Xi = ZiAi, and Σi = Z iΛZ ′
i + Ri.

Inference on Regression and Covariance Parameters

As this model resembles with the classical model, the methods of maximum likelihood

and restricted maximum likelihood may be used to estimate the parameters β, D and

the parameters that make up Ri. The generalized least squares estimator for β and

its large sample approximate sampling distribution will have the same form, with X i

and Σi defined as in (2.52).
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2.6.4 AR Models

The AR models (Box and Jenkins 1970) offer a natural alternative to the random

effects models. First and second order AR models have been found specially attractive

for serial measurements.

The general approach to parameter estimation for AR models can be illustrated

by a discussion of the first order AR model. If

Yi = Xiβ + ei, i = 1, . . . , n, (2.53)

and ei is AR(1), then the likelihood can be written in terms of Yi1 and Yij, j = 2, . . . , n

by using the representations

Yi1 = X′
i1β + ei1, (2.54)

and

Yij − ρYi,j−1 = (Xij − ρXi,j−1)β + νij, (2.55)

where X′
ij is the jth row of Xi, ρ is the correlation between successive observations,

and νij = eij − ρei,j−1 is distributed as N(0, σ2(1− ρ2))

MLE of the parameters of this model can be obtained by a modified Gauss-Seidel

procedure (Louis and Spiro, 1984). One part of the procedure consists of weighted

least squares estimation of β from (2.54) and (2.55), with ρ set to its current estimate

and treated as known. The other part consists of maximisation of the likelihood

residuals Yij −X′
ijβ̂ with respect to ρ, with β̂ treated as known.
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This analysis assumes an AR structure for the eij, not the Yij. Some investigators

have studied models of the form

Yij = X′
ijβ + ρYi,j−1 + νij. (2.56)

The above three models for covariance of serial measurements- multivariate, ran-

dom effects and AR- offer a rich set of alternatives from which to choose a covariance

model for a particular application.
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Chapter 3

Models for Discrete Responses.

3.1 Generalized Linear Models

In our discussion hitherto, we have focused on situations where

1. The response is continuous and reasonably assumed to be normally distributed.

2. The variance of the response is constant regardless of the setting of Xi.

3. The model relating mean response to time and possibly other covariates is linear

in parameters that characterize the relationship.

For example, regardless of how we modelled covariance (by direct modelling or by

introducing random effects), we had models for the mean response of a data vector
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of the form

Y i = X iβ. (3.1)

Under these conditions, we were led to methods that were based on the assumption

that

Yi ∼ MV N(Xiβ,Σi), (3.2)

the form of the matrix Σi is dictated by what one assumes about the nature of vari-

ation. To fit the model, we used the methods of maximum likelihood and restricted

maximum likelihood under the assumption that the data vectors are distributed as

multivariate normal. Thus, the fitting method was based on the normality assump-

tion.

The assumption of normality is not always relevant for some data. This issue is

not confined to longitudinal data analysis. It is an issue even in ordinary regression

modelling. If the response is in the form of small counts, or is in fact binary (yes/no),

it is clear that the assumption of normality would be quite unreasonable. Thus, the

modelling and methods we have discussed so far, including the classical techniques,

would be inappropriate for these situations.

Many bio-medical applications involves discrete (e.g. binary or count) longitu-

dinal responses, for example, the presence or absence of respiratory illness, or counts

of the number of elliptic seizures in an interval. When the response is discrete, linear

models are no longer appropriate for relating changes in the mean response to covari-

ates. Instead we consider extensions of GLMs for longitudinal data. Classical linear

regression methods were extended to allow the assumption that these distributions,
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rather than the normal distribution, are sensible probability models for the data. The

term generalized linear models is used to refer to the models and techniques used.

We will focus on three models in particular; a more extensive catalogue of models

may be found in McCullagh and Nelder (1989):

1. The Bernoulli probability distribution as a model for binary data (discrete) (this

may be extended to model data in the form of proportions

2. The Poisson probability distribution as a model for count data (discrete)

3. The gamma probability distribution as a model for continuous but non-normal

data with constant coefficient of variation.

We will see that all of these probability models are members of a special class

of probability models. This class also includes the normal distribution with constant

variance (the basis for classical linear regression methods for normal data); thus,

generalized linear models will be seen to be an extension of ordinary linear regression

models.

Generalised linear models provide a unified class of models for regression analy-

sis of independent observations of a discrete or continuous response. The correlation

among observations obtained from the same individual makes a straightforward ap-

plication of generalised linear models to longitudinal data inappropriate. Hence we

consider extensions of this broad class of models,

We present a unified methodology for analysing diverse types of longitudinal

responses, that avoids making assumptions about the distribution of the vector of
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responses. The method relies solely on the assumption about the mean response.

Generalised linear models provide a unified method for analysing diverse types

of discrete as well as continuous univariate responses. They include as special cases,

the standard linear regression and analysis of variance (ANOVA) models for a nor-

mally distributed continuous response, logistic regression for a binary or dichotomous

response and log-linear or Poisson regression models for counts.

Generalised linear models were introduced in a seminal paper by Nelder and

Wedderburn (1972) as a generalisation of the method described by Finney (1952). In

these papers the authors show that maximum likelihood estimates for a large class

of commonly used regression models can be obtained by the method of iteratively

weighted least squares, in which the weights and the response are adjusted from one

iteration to the next. The proposed algorithm, known as ‘Fisher’s scoring’ is an

extension of Fisher’s (1935) method for computing maximum likelihood estimates in

linear probit models. The same result was obtained independently by Bradley (1973)

and Jenrich and Moore (1975), though not exploited to its full extent.

The logistic regression model for binary responses and Poisson regression model

for count are two popular special cases. The logistic regression model is a generaliza-

tion of the normal linear model. It is used to relate cross-sectional binary data yi to

a vector of covariates xi. Similarly, the Poisson regression model allows us to relate a

single count yi to a vector of covariates xi. The logistic and Poisson regression mod-

els can be generalized to handle longitudinal binary and count data by introducing

random effects into the model. These models are called the binomial or Bernoulli or

logistic random effects model and the Poisson random effects model.
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McCullagh and Nelder (1989) provides a comprehensive description of the theory

and application of generalised linear models. A general overview of logistic regres-

sion, Poisson regression and generalised linear models can be found in Neter et al

(1996). Dobson (1990), Firth (1991) and Gill (2000) provide excellent introductions

to generalised linear models. Hosmer and Lemeshow (2000) provides an accessible

and comprehensive description of logistic regression models for binary data.

3.1.1 Distributional Assumptions

GLMs assume that response variable has a probability distribution belonging to the

exponential family of distributions, that includes many distributions like normal,

Bernoulli, binomial and Poisson distributions. GLM extends the standard linear

regression by taking a suitable transformation of the mean response and relating the

transformed mean response to covariates. This is achieved by the introduction of link

function. The link function applies a transformation to the mean and then links the

covariates, via the linear predictor, to the transformed mean of the distribution of

the responses,

g(µi) = ηi = β1Xi1 + β2Xi2 + · · ·+ βpXip =

p∑
k=1

βkXik = X ′
iβ, (3.3)

where the link function g(·) is some known function, for example, log(µi). This implies

that it is the transformed mean response that changes linearly with changes in the

values of the covariates. Thus, while in a standard linear regression model the mean

response is related directly to the linear combination of covariates, in GLMs, it is
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some appropriate transformation of the mean response that is related to the linear

combination of covariates.

The term linear in GLM means that ηi must be linear in regression parameters

and it allows ηi to be non-linear in Xi, if the non-linearity can be accommodated

by appropriate transformation of covariates (e.g.. log (X)) and/or by including a

polynomial in X.

When viewed as a GLM, the standard linear regression model adopts the identity

link function g(µi) = µi. which gives the standard linear regression model,

µi = ηi = β1Xi1 + β2Xi2 + · · ·+ βpXip. (3.4)

The primary motivation for considering link functions other than the identity

is to ensure that the linear predictor produces predictions of the mean response that

are within the allowed range. For example, when analysing a binary response, µi has

interpretation in terms of the probability of success and we must have 0 < µi < 1.

Hence the identity link is not appealing since, when the mean response (here the

probability of success) is directly related to the linear combination of covariates, the

model can yield predicted probabilities outside the allowable range from 0 to 1 for

sufficiently large or small values of the covariates. The use of certain non-linear link

function ensures that this cannot happen. It is preferable to use a link function that

maps µi from the range [0,1] onto the unrestricted range (∞,−∞).
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Every distribution belonging to the exponential family has a special link func-

tion called canonical link function g(·) defined such that g(µi) = θi, where θi is the

canonical location parameter. The canonical link function for normal distribution

is the identity link function g(µi) = µi, which gives the standard linear regression

model,

µi = ηi = β1Xi1 + β2Xi2 + · · ·+ βpXip. (3.5)

For Poisson distribution the canonical link function is the log link function,

g(µi) = log µi, which gives the log-linear regression model

log µi = ηi = β1Xi1 + β2Xi2 + · · ·+ βpXip. (3.6)

For Bernoulli distribution, where 0 < µi < 1, the canonical link function is the logistic

or logit link function g(µi) = log

(
µi

1− µi

)
, which gives the logistic regression model

log

(
µi

1− µi

)
= ηi = β1Xi1 + β2Xi2 + · · ·+ βpXip. (3.7)

However one can choose other link functions when they seem appropriate to the

application in hand. For example, when Yi is Bernoulli, one may use the log-log link

function g(µi) = log(−log(1−µi)) and the probit link function g(µi) = φ−1(µi), where

φ(·) is the standard normal cumulative distribution function.
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3.2 Logistic Regression for Binary Responses

Logistic regression is widely used to describe the relationship between a binary re-

sponse variable and a set of covariates. In this model, the dependent variable is a logit

(log-odds). Let Yi denote a binary response variable, assuming values 0 and 1. The

probability distribution of Yi is Bernoulli, with P (Yi = 1) = µi, and P(Yi = 0) = 1−µi.

For ease of exposition, first we will assume that there is a single covariate Xi. The

analytical goal is to investigate the relationship between µi and Xi. The linear re-

gression

E(Yi/Xi) = β1 + β2Xi, (3.8)

will yield predicted probabilities outside the range from 0 to 1 for sufficiently large Xi.

Further, we cannot always expect a linear relationship between µi and Xi. Also the

usual assumption of homogeneity of variance would be violated, since the variance of

a binary variable depends on the mean, with

V (Yi) = µi(1− µi). (3.9)

If the logit or logistic function, log

(
µi

1− µi

)
is adopted, the resulting model,

log

(
µi

1− µi

)
= logit(µi) = β1 + β2Xi, (3.10)

is known as logistic regression model.
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If the predictor variable Xi is dichotomous, taking values 0 and 1,

logit(µi/Xi = 1)− logit(µi/Xi = 0) = (β1 + β2)− β1 = β2. (3.11)

Thus exp(β2) has interpretation as the odds ratio of the response for the possible

values of the covariates. β2 is the change in log odds for a unit change in Xi. Equiv-

alently, a unit change in Xi changes the odds of success multiplicatively by exp(β2).

The logistic regression can also be expressed as

µi =
exp(β1 + β2Xi)

1 + exp(β1 + β2Xi)
· (3.12)

If X i is a p× 1 vector of covariates, the logistic regression model becomes,

log

(
µi

1− µi

)
= β1Xi1 + β2Xi2 + · · ·+ βpXip, (3.13)

where Xi1 = 1, ∀ i = 1, 2, . . . , N . Here βk represents change in log odds for a unit

change in Xik, given that all other predictor variables remain constant. Equivalently,

a unit change in Xik changes the odds of success multiplicatively by a factor exp(βk).

Illustration

As an illustrative example, we consider a study conducted by Van Marter et al. (1990)

concerning low birth weight infants in a neonatal care unit. The interest was in the

development of brichopulmonary dysplasia (DPD), a chronic lung disease, in a sample

of 223 infants weighing less than 1750 gms. To examine whether there is association
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between the risk of BPD and birth weight (in gms ×10−2) a logistic regression model

was considered. Letting Yi = 1 if the ith infant develops BPD by day 28 of life and

Yi = 0 otherwise, the logistic regression model

log

(
µi

1− µi

)
= β1 + β2 Weighti, (3.14)

where µi = E(Yi) = P (Yi = 1), is estimated as

log

(
µ̂i

1− µ̂i

)
= 4.0343− 0.4229 Weighti, (3.15)

with SE(β2) = 0.0641 and β2 is significantly different from zero (Z = −6.599). This

shows that the BPD decreases with increasing birth weights. Specifically a 100 gms

increases in birth weight causes the log odds of BPD to decrease by 0.42. Thus the

predicted probability corresponding to any specific birth weights can be computed

using the relation

µ̂i =
exp(β̂ + β̂2Xi)

1 + exp(β̂ + β̂2Xi)
·

For an infant weighing 1200 gms, this relation yields, µ̂i ≈ 0.27.

Next we include two additional covariates, gestational age (in weeks) and the

presence of toxemia (with 1 denoting the presence of toxemia and 0 denoting its

absence and then

log

(
µi

1− µi

)
= β1 + β2 Weighti + β3 Agei + β4 Toxemiai, (3.16)
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The estimated regression line is

log

(
µi

1− µi

)
= 13.9361− 0.2644 Weighti − 0.3885 Agei − 1.3437 Toxemiai, (3.17)

with standard errors SE(β2) = 0.0812, SE(β2)=0.1149 and SE(β2)=0.6075. The esti-

mated coefficient for birth weight has now decreased. Comparing mothers who were

diagnosed with toxemia to mothers who were not, the estimated coefficient of toxemia

has now the following interpretation. The adjusted odds ratio (adjusting the effects

of birth weight and gestational age) is 0.26 (=exp(−1.34)) and this indicates that

infants of mothers diagnosed with toxemia has approximately a quarter the risk of

developing BPD.

3.3 Log-linear(Poisson) Regression for Counts

Log-linear regression, often referred to as Poisson regression, is used widely for the

analysis of counts of number of times of occurrence of some events. The logarithm

of the mean of the response variable is related to the explanatory variables in this

model. The objective of the log-linear regression is to relate the mean or expected

count to the set of covariates.

If the occurrences of some event are counted within an interval of time, then the

rate at which the event occurs is of more interest than the count, since rates are more

meaningfully compared if the duration of time during which occurrences are observed

are different.
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When the response is a count, it is often reasonable to assume that Yi has a

Poisson distribution with

P (Yi = yi) =
e−µiµyi

i

yi!
, yi = 0, 1, 2, · · · (3.18)

Note that µi is the expected count. The expected rate is
µi
Ti

where Ti is the interval

of time, Since rate cannot be negative, standard linear regression model relating
µi

Ti

directly to Xi will be unappealing. Instead, we can relate a transformation of the

rate directly to Xi. The log-linear regression model,

log

(
µi

Ti

)
= β1 + β2Xi, (3.19)

is one such, where a logarithmic transformation is adopted. It may be also expressed

as

log µi = log Ti + β1 + β2Xi. (3.20)

When viewed as a GLM, log-linear model is simply the special case where the

distribution of Yi is assumed to be Poisson.

To interpret β2, for the special case where the predictor Xi is dichotomous,

consider

log(µi/Xi = 1)− log(µi/Xi = 0) = {logTi + β1 + β2} − {logTi + β1} = β2. (3.21)

Thus exp(β2) has interpretation as the rate ratio
(µi/Xi = 1)
(µi/Xi = 0)

· β2 has the interpreta-

tion as the change in the log expected rate for a single unit change in Xi. Equivalently,
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a unit change in Xi changes the rate of occurrence of the event multiplicatively by

exp(β2).

If X i is a p× 1 vector of covariates, the log-linear regression model becomes

log(µi) = log(Ti) + β1Xi1 + β2Xi2 + · · ·+ βpXip, (3.22)

where Xi1 = 1, ∀ i = 1, 2, . . . , N . Just as in the case when Xi is univariate, here,

βk can be interpreted in terms of influence of the kth component of X i on the log

expected rate, given that all other predicator variables except Xik remain constant.

Illustration

The data for this illustration arise from a prospective study of potential risk factors for

coronary heart disease (CHD) (Rosenman et al. 1975). The study observed 3154 men

aged 40-50 for an average of 8 years and recorded the incidence of cases of CHD. The

potential risk factors included smoking, blood pressure, and personality/behaviour

type. Let Yi denote the count of number of cases of CHD and Ti denote the duration

of follow up. To examine whether the rates of CHD are related to the smoking

exposure, we consider the log-linear model,

log

(
µi

Ti

)
= β1 + β2 Smokei, (3.23)

where Smokei is the measure of smoke exposure (0 for non smoker, 10 for 1-10

cigarettes per day, 20 for 11-20 cigarettes per day, 30 for 21-30 cigarettes per day).
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The MLE of β2 is 0.0318 with standard error 0.0056 and β2 is significantly

different from zero. The expected rate of CHD for individuals with smoking habit is

e0.0318 Smokei times as high as the rate of CHD for non-smokers.

Including blood pressure and behaviour pattern in the set of covariates, the

log-linear regression model becomes

log

(
µi

Ti

)
= β1 + β2 Smokei + β3 BPi + β4 Typei, (3.24)

where BPi = 1 if BP≥140, and 0 otherwise, Typei = 1 if the person is impatient,

aggressive, tense or competitive and 0 if not. The estimated regression is

log

(
µi

Ti

)
= −5.4202 + 0.0273 Smokei + 0.7526 BPi + 0.7534 Typei, (3.25)

with SE(β2) = 0.0056, SE(β3) =0.1362 and SE(β4) = .1292. All the regression coef-

ficients are significant.

3.4 Estimation

In standard linear regression models, we estimate the regression coefficients using

the method of least squares and the estimators are same as the MLE’s when Yi’s are

normally distributed with constant variance. The parameters of a GLM are estimated

using a more general method of ML estimation. In a GLM, the response is assumed to

have a distribution belonging to the exponential family of distributions, with density
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in the form

f(yi, θi, φ) = exp [{yiθi − a(θi)}/φ + b(yi, φ)] . (3.26)

Thus the likelihood function can be expressed as

L =
n∏

i=1

exp[{yiθi − a(θi)}/φ + b(yi, φ)]. (3.27)

Note that L is a function of β, since θi is a known function of the mean µi, and

µi = g−1

(
p∑

i=1

βkXik

)
, (3.28)

where g−1(·) denotes the inverse of the link function. MLE’s of β’s are obtained by

substituting this expression of µi into the likelihood function and finding those values

of β that produces the largest value for the likelihood function.

Instead of maximising the likelihood, it is usually more convenient to maximise

the log-likelihood

l = logL =
N∑

i=1

[{yiθi − a(θi)}/φ + b(yi, φ)] . (3.29)

∂l

∂β
=

N∑
i=1

(
∂θi

∂β

)
(yi − µi)/φ. (3.30)

When a canonical link function g(µi) = θi = ηi has been assumed,

∂l

∂β
=

N∑
i=1

Xi(yi − µi)/φ. (3.31)
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Solving this set of equations

N∑
i=1

Xi(yi − µi) = 0, (3.32)

yields the MLE’s of β. Generally this requires iterative procedures.
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Chapter 4

Nonparametric Regression Methods

for Longitudinal Data Analysis.

4.1 Introduction.

Nonparametric regression methods for longitudinal data analysis have been a popular

statistical research topic since the late 1990s. The needs of longitudinal data analysis

from biomedical research and other scientific areas along with the recognition of the

limitation of parametric models in practical data analysis have driven the development

of more innovative nonparametric regression methods. Because of the flexibility in the

form of regression models, nonparametric modelling approaches can play an important

role in exploring longitudinal data, just as they have done for independent cross-

sectional data analysis.

110



Parametric mixed-effects models are a powerful tool for modelling the relation-

ship between a response variable and covariates in longitudinal studies. However, for

many applications, although parametric mean models enjoy simplicity, they may be

too restrictive, inflexible or limited, and sometimes unavailable for preliminary data

analyses as well as for modelling complicated relationships between the response and

covariates in various longitudinal studies. One of the basic assumptions for the para-

metric models is that the response variable (or via a known link function) is a known

parametric function of fixed-effects and random-effects. That is, for each individual,

the underlying relationship between the response and the mixed-effects covariates is

parametric. However, this assumption is not always satisfied in practical applications.

To overcome this difficulty, nonparametric regression techniques have been developed

for longitudinal data analysis in recent years.

If an inappropriate parametric model is used, it is possible to produce misleading

conclusions from the regression analysis. To overcome the difficulty caused by the

restrictive assumption of a parametric form of the regression function, one may remove

the restriction that the regression function belongs to a parametric family. This

approach leads to so-called nonparametric regression. Practical applications have

placed a strong demand on developing non-parametric and semiparametric regression

methods for longitudinal data, where flexible functional forms can be estimated from

the data to capture possibly complicated relationships between longitudinal outcomes

and covariates.

The importance of nonparametric modelling methods has been recognized in

longitudinal data analysis and for practical applications, since nonparametric methods
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are flexible and robust against parametric assumptions. Such flexibility is useful for

exploration and analysis of longitudinal data, when appropriate parametric models

are unavailable.

Non-parametric regression methods can be broadly classified into kernel meth-

ods, which are often based on local likelihoods, and splines, which include smoothing

splines, penalized splines, and regression splines.

Let the data be denoted as

(ti, yi), i = 1, 2, . . . , n, (4.1)

where ti, i = 1, 2, . . . , n are known as design time points, and yi, i = 1, 2, . . . , n are the

responses at the design time points. The design time points may be equally spaced in

an interval of interest, or be regarded as a random sample from a continuous design

density, namely, π(t). For simplicity, let us denote the interval of interest, or the

support of π(t) as T , which can be a finite interval, e.g., [a, b] or the whole real line

(−∞,∞).

A simple nonparametric regression model is usually written as

yi = f(ti) + εi, i = 1, . . . , n, (4.2)

where f(t) models the underlying regression function that we want to estimate, but

cannot be approximated using a parametric model adequately, and εi = 1, 2 . . . , n

denote the measurement errors that cannot be explained by the regression function
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f(t). Mathematically, f(t) is the conditional expectation of yi, given ti = t, i.e.,

f(t) = E(yi| ti = t), i = 1, 2, . . . , n.

There are many existing smoothers, with different strengths in one aspect or

another, that can be used to estimate f(t) in (4.2). For example, smoothing splines

may be good for handling sparse data, while local polynomial smoothers may be

computationally advantageous for handling dense designs. We shall review four of

the most popular smoothers that include local polynomial smoothers (Wand and

Jones 1995, Fan and Gijbels 1996), regression splines (Eubank 1988,1999, Stone et

al 1997), smoothing splines (Wahba 1990, Green and Silverman 1994), and P-splines

(Eilers and Marx, 1996, Ruppert et al 2003), and briefly describe linear smoothers,

which include the above four popular smoothers as special cases.

4.2 Local Polynomial Kernel Smoother

4.2.1 General Degree LPK Smoother

Local polynomial kernel (LPK) smoothing considers locally approximating the f in

(4.2) by a polynomial of appropriate degree, using Taylor expansion, which states that

any smooth function can be locally approximated by a polynomial of some degree.

Let t0 be an arbitrary fixed time point where the function f in (4.2) will be
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estimated. Assume f(t) has a (p + 1)’st continuous derivative for some integer p ≥ 0

at t0. By Taylor expansion, f(t) can be locally approximated as,

f(t) ≈ f(t0) + (t− t0)f
(1)(t0) + · · ·+ (t− t0)

pf (p)(t0)/p ! ,

in a neighbourhood of t0 that allows the above expansion where f (r)(t0) denotes the

rth derivative of f(t) at t0.

Set βr = f (r)(t0)/r!, r = 0, . . . , p. Let β̂, r = 0, 1, 2, . . . , p be the minimisers of

the following weighted least squares (WLS) criterion:

n∑
i=1

{yi − [β0 + (ti − t0)β1 + · · ·+ (ti − t0)
pβp]}2 Kh(ti − t0), (4.3)

where Kh(·) = K(·|h)/h, which is obtained via re-scaling a kernel function K(·) with

a constant h > 0, called the bandwidth or smoothing parameter. The bandwidth h

determines the size of the local neighbourhood, namely,

Ih(t0) = [t0 − h, t0 + h], (4.4)

where local fitting is conducted. The kernel function, K(·), determines how observa-

tions within Ih(t0) contribute to the fit at t0. Let f̂
(r)
h (t0) denote the estimate of the

rth derivative f (r)(t0). Then

f̂
(r)
h (t0) = r!β̂r, r = 0, 1, . . . , p.
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An explicit expression for f̂
(r)
h (t0) is useful and can be made via matrix notation. Let

X =


1 (t1 − t0) · · · (t1 − t0)

p

...
...

. . .
...

1 (tn − t0) · · · (tn − t0)
p

 ,

and

W = diag(Kh(t1 − t0), . . . , Kh(tn − t0)),

be the design matrix and the weight matrix for the LPK fit around t0. Then the WLS

criterion (4.3) can be rewritten as

(y −Xβ)′W (y −Xβ), (4.5)

where y = (y1, . . . , yn)′ and β = (β0, β1, . . . , βp)
′. It follows that

f̂
(r)
h (t0) = r!e′r+1(X

′WX)−1X ′Wy, r = 0, 1, . . . , p,

where er+1 denotes a (p + 1) - dimensional unit vector whose (r + 1)st entry is 1

and the other entries are 0. When t0 runs over the whole support T of the design

time points, a whole range estimation of f (r)(t) is obtained. The derivative estimator

f̂
(r)
h (t), t ∈ T is usually called the LPK smoother of the underlying derivative function

f (r)(t). The derivative smootherf̂
(r)
h (t0) is usually calculated on a grid of t’s in T .

We focus only on the curve smoother

f̂h(t0) = e′1(X
′WX)−1X ′Wy, (4.6)
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unless we discuss derivative estimation. Set ŷi = f̂h(ti) to be the fitted value of f(ti).

By (4.6), it is seen that

f̂h(ti) = a(ti)
′y,

where a(ti) is e′1(X
′WX)−1X ′W after replacing t0 with ti. Let ŷh = [ŷ1, . . . , ŷn]′

denote the fitted values at all the design time points. Then ŷh can be expressed as

ŷh = Ahy, (4.7)

where

Ah = (a(t1), . . . ,a(tn))′, (4.8)

is known as the smoother matrix of the LPK smoother. Since Ah does not depend

on the response vector y, the LPK smoother f̂h is known as a linear smoother.

4.2.2 Local Constant and Linear Smoothers

Local constant and linear smoothers are the two simplest and most useful LPK

smoothers. The local constant smoother is known as the Nadaraya-Watson estimator

(Nadaraya 1964, Watson 1964). This smoother results from the LPK smoother f̂h(t0)

(4.6) by simply taking p = 0 :

f̂h(t0) =

∑n
i=1 Kh(ti − t0)yi∑n
i=1 Kh(ti − t0)

. (4.9)
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Within a local neighbourhood Ih(t0) = [t0−h, t0 +h], it fits the data with a constant.

That is, it is the minimiser β0 of the following WLS criterion:

n∑
i=1

(yi − β0)
2Kh(ti − t0).

The Nadaraya-Watson estimator is simple to understand and easy to compute. Let

IA(t) denote the indicator function of some set A. When the kernel function K is the

Uniform kernel

K(t) = I[−1,1](t)/2 =


1
2
, t ∈ [−1, 1],

0, otherwise,
(4.10)

as depicted in the left panel of Figure 4.1, the Nadaraya-Watson estimator (4.9) is

exactly the local average of yi’s that are within the local neighbourhood Ih(t0) (4.4):

f̂h(t0) =

∑n
i=1 I[t0−h,t0+h](ti)yi∑n
i=1 I[t0−h,t0+h](ti)

=

 ∑
ti∈Ih(t0)

yi

 /mh(t0),

where mh(t0) denotes the number of the observations falling into the local neighbour-

hood Ih(t0). However, when t0 is at the boundary of T , fewer design points are within

the neighbourhood Ih(t0) so that f̂h(t0) has a slower convergence rate than the case

when t0 is inside T . For a detailed explanation of this boundary effect, one may refer

to Fan and Gijbels (1996) and Cheng et al (1997).

The local linear smoother (Stone 1984, Fan 1992, 1993) is obtained via fitting

a data set locally with a linear function. Let β̂0, β̂1 minimise the following WLS

criterion
n∑

i=1

[yi − β0 − (ti − t0)β1]
2Kh(ti − t0).

117



Figure 4.1: Two widely used kernel functions

Then the local linear smoother is f̂h(t0) = β̂0. It can be easily obtained from the LPK

smoother f̂h(t0) (4.6) by simply taking p = 1. It is known as a smoother with a free

boundary effect (Cheng et al 1997). That is, it has the same convergence rate at any

point in T . It also exhibits many good properties that the other linear smoothers

may lack. Good discussions on these properties can be found in Fan (1992, 1993),

Hastie and Loader (1993), and Fan and Gijbels (1996), among others. A local linear

smoother can be simply expressed as

f̂h(t0) =

∑n
i=1[s2(t0)− s1(t0)(ti − t0)]Kh(ti − t0)yi

s2(t0)s0(t0)− s2
1(t0)

, (4.11)

where

sr(t0) =
n∑

i=1

Kh(ti − t0)(ti − t0)
r, r = 0, 1, 2.

Usually, the choice of the LPK fitting degree, p, is not as important as the choice
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of the bandwidth, h. A local constant (p = 0) or a local linear (p = 1) smoother is

often good enough for most application problems if the kernel function K and the

bandwidth h are adequately determined. Fan and Gijbels (1996) pointed out that

for curve estimation (not valid for derivative estimation) an odd p is preferable. This

is true since a LPK fit with p = 2q + 1, introduces an extra parameter compared

to a LPK fit with p = 2q, but does not increase the variance of the associated LPK

estimator. However, the associated bias may be significantly reduced especially in the

boundary regions (Fan 1992, 1993, Hastie and Loader 1993, Fan and Gijbels 1996,

Cheng et al 1997). Thus, the local linear smoother is strongly recommended for most

problems in practice.

4.2.3 Kernel Function

The kernel function K(.) used in the LPK smoother (4.6) is usually a symmetric

probability density function. While the bandwidth h specifies the size of the local

neighbourhood Ih(t0), the kernel K(.) specifies how the observations contribute to

the LPK fit at t0.

Figure 4.1 shows two widely-used kernel functions. The left panel shows the

Uniform kernel (4.10) and the right panel shows the Gaussian kernel (standard normal

probability density function). When the Uniform kernel is used, all the ti’s within

the local neighbourhood Ih(t0) contribute equally (the weights are the same) in the

LPK fit at t0, while all the ti’s outside the neighbourhood contribute nothing. When

the Gaussian kernel is used, however, the contribution of the ti’s is determined by
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the distance of ti from t0, that is, the smaller the distance (t − t0), the larger the

contribution. This is because the Gaussian kernel is bell-shaped and peaked at the

origin. The Uniform kernel has a bounded support which allows the LPK fit to use

the data only in the neighbourhood Ih(t0). This makes a fast implementation of the

LPK fit possible, which is advantageous especially for large data sets. The use of the

Gaussian kernel often results in good visual effects of the LPK smoothers, but pays

a price of requiring more computation effort.

The choice of a kernel is usually not so crucial since it does not determine the

convergence rate of the LPK smoother (4.6) to the underlying curve. However, it

does determine the relative efficiency of the LPK smoother. For more discussion

about kernel choice, see Gasser et al (1985), Fan and Gijbels (1996), Zhang and Fan

(2000) and references therein.

4.2.4 Bandwidth Selection

A smoother is considered to be good if it produces a small prediction error, usually

measured by the Mean Squared Error (MSE) or the Mean Integrated Squared Error

(MISE) of the smoother. For the LPK smoother f̂h(t0), its MSE and MISE are defined

as

MSE
(
f̂h(t0)

)
= E

(
f̂h(t0)− f(t0)

)2

= Bias2
(
f̂h(t0)

)
+ Var

(
f̂h(t0)

)
,

MISE(f̂h) =

∫
MSE

(
f̂h(t)

)
w(t)dt, (4.12)
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where w(t) is a weight function, often used to specify a particular range of interest.

Under some regularity conditions including that t0 is an interior point, we can

show that as n →∞,

Bias
(
f̂h(t0)

)
=

 OP (hp+1) , as p odd,

OP (hp+2) , as p even,
(4.13)

Var
(
f̂h(t0)

)
= OP ((nh))−1 , (4.14)

where X = OP (Y ) means X/Y is bounded in probability. See, for example, Fan and

Gijbels (1996) for more details. From this, we can see that the bandwidth h controls

the trade-off between the squared bias and the variance of the LPK smoother f̂h(t0).

When h is small, the squared bias is small but the variance is large. On the other

hand, when h is large, the squared bias is large while the variance is small. A good

choice of h will generally trade-off these two terms so that the associated MSE or

MISE is minimised.

The role played by the bandwidth h can also be seen intuitively. As men-

tioned previously, the bandwidth h specifies the size of the local neighbourhood

Ih(t0) = [t0 − h, t0 + h]. When h is small, Ih(t0) contains only a few observations

so that f̂h(t0) can be well adjusted based on the WLS criterion (4.3) to closely ap-

proximate f(t0). This implies a small bias for f̂h(t0). However, since only a few

observations are involved in the LPK fit, the variance of the estimator is large. With

a similar reasoning, when h is large, Ih(t0) contains many observations so that f̂h(t0)

has a large bias but a small variance.

121



It is then natural to select a global bandwidth h so that the MISE (MSE for

a local bandwidth) of f̂h(t0) is minimised. Unfortunately, the MISE (4.12) is not

computable since f is, after all, unknown and is the target to be estimated. This

problem can be overcome by selecting h to minimise some estimator of the MISE.

An estimator of the MISE may be obtained via estimating the unknown quantities in

the asymptotic MISE expression using some higher degree LPK fit, resulting in the

so-called plug-in bandwidth selectors (Fan and Gijbels 1992, Ruppert et al 1995).

4.3 Regression Splines

Polynomials are not flexible in their ability to model data across a large range of

values. However, this is not the case when the range is small enough. In local

polynomial kernel (LPK) smoothing introduced in Section 4.2, local neighbourhoods

were specified by a bandwidth h and a fixed time point t0. In regression spline

smoothing that we shall discuss in this section, local neighbourhoods are specified by

a group of locations, say,

τ0, τ1, τ2, . . . , τK , τK+1, (4.15)

in the range of interest, say, an interval [a, b] where a = τ0 < τ1 < · · · < τK < τK+1 = b.

These locations are known as knots. These knots divide the interval of interest, [a, b],

into K subintervals (local neighbourhoods):

[τr, τr+1), r = 0, 1, . . . , K,
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so that within any two neighbouring knots, a Taylor’s expansion up to some degree is

valid. In other words, a regression spline is a piecewise polynomial which is a polyno-

mial of some degree within any two neighbouring knots τr and τr+1 for r = 0, 1, . . . , K

and is joined together at knots properly but allows discontinuous derivatives at the

knots.

4.3.1 Truncated Power Basis

A regression spline can be constructed using the following so-called kth degree trun-

cated power basis with K knots τ1, τ2 . . . , τk:

1, t, . . . , tk, (t− τ1)
k
+, . . . , (t− τK)k

+, (4.16)

where wk
+ = [w+]k denotes power k of the positive part of w with w+ = max(0, w).

Note that the first (k + 1) basis functions of the truncated power basis (4.16) are

polynomials of degree up to k, and the others are all the truncated power functions

of degree k.

Using the above truncated power basis (4.16), a regression spline can be ex-

pressed as

f(t) =
k∑

s=0

βst
s +

K∑
r=1

βk+r(t− τr)
k
+, (4.17)

where β0, β1, . . . , βk+K are the associated coefficients. For convenience, it may be

called a regression spline of degree k with knots τ1, τ2 . . . , τK . The regression splines

(4.17) associated with k= 1,2 and 3 are usually called linear, quadratic, and cubic
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regression splines, respectively.

We can see that within any subinterval or local neighbourhood [τr, τr+1), we have

f(t) =
k∑

s=0

βst
s +

r∑
l=1

βk+l(t− τl)
k
,

which is a kth degree polynomial. However, for r = 1, 2, . . . , K,

f (k)(τr−) = k!

(
βk +

r−1∑
l=1

βk+l

)
,

f (k)(τr+) = k!

(
βk +

r∑
l=1

βk+l

)
.

Therefore

f (k)(τr+)− f (k)(τr−) = k!βk+r. (4.18)

That is, f (k)(t) jumps at τr with amount k! βk+r for r = 1, 2, . . . , K. In other words,

a regression spline of degree k with knots τ1, τ2, . . . , τK , has continuous derivatives up

to k− 1 times, and has a discontinuous k-times derivative; the coefficient βk+r of the

rth truncated power basis function measures how large the jump is (up to a constant

multiplicity of k!).

Figure 4.2(a) presents a cubic truncated power basis with knots .2, .4, .6, and .8.

It includes the first four polynomials 1, t, t2, t3, and the four truncated power functions

with nonzero-values starting at knots .2, .4, .6 and .8, respectively. Figure 4.2(b)

displays three cubic regression splines as simple linear combinations (4.17) of the

truncated power basis using coefficients generated randomly. It can be seen that the
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Figure 4.2: Example of Cubic regression spline basis, and three cubic regression
splines

truncated power basis is flexible in describing functions from simple to complicated

ones.

4.3.2 Regression Spline Smoother

For convenience, it is often useful to denote the truncated power basis (4.16) as

Φp(t) = (1, t, . . . tk, (t− τ1)
k
+, . . . , (t− τK)k

+)′, (4.19)

where p = K + k + 1 denotes the number of the basis functions involved. Similarly,

denote the associated coefficients as

β = (β0, . . . , βk, βk+1, . . . , βk+K)′.
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Then the regression spline (4.17) can be re-expressed as

f(t) = Φp(t)
′β, (4.20)

so that the model (4.2) can be re-written as

y = Xβ + ε, (4.21)

where,

y = (y1, . . . , yn)′,

X = (Φp(t1), . . . ,Φp(tn))′,

ε = (ε1, . . . , εn)′.

Since Φp(t) is a basis, X is of full rank, and hence X ′X is invertible when n ≥ p. A

natural estimator for β, which solves the approximation linear model (4.21) by the

ordinary least squares (OLS) method, is

β̂ = (X ′X)−1X ′y. (4.22)

It follows that the regression spline fit of the function f(t) in (4.2) is

f̂p(t) = Φp(t)
′(X ′X)−1X ′y, (4.23)

which is often called a regression spline smoother of f . In particular, the values

of f̂p(t) evaluated at the design time points ti, i = 1, 2, . . . , n are collected in the
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following fitted response vector:

ŷp = X(X ′X)−1X ′y = Apy, (4.24)

where, ŷ = (ŷ1, . . . , ŷn)′ with ŷi = f̂p(ti), i = 1, 2, . . . , n, and

Ap = X(X ′X)−1X ′ (4.25)

is called the regression spline smoother matrix. It is easy to notice that Ap, is a

projection matrix satisfying A′
p = Ap, A

2
p = Ap, and tr(Ap) = p. The trace of the

smoother matrix Ap, is often called the degrees of freedom of the regression spline

smoother. It measures the complexity of the regression spline model used.

4.3.3 Selection of Number and Location of Knots

Good performance of the regression spline smoother (4.23) strongly depends on good

knot locations, τ1, . . . , τk, and good choice of the number of knots, K. The degree of

the regression spline basis (4.16), k, is usually less crucial, and it is often taken as

1, 2 or 3 for computational convenience. Three widely-used methods for locating the

knots are listed as follows:

Equally Spaced Method. This method takes K equally spaced points in the

range of interest, say, [a, b], as knots. That is, the K knots are defined as

τr = a + (b− a)r/(K + 1), r = 1, 2, . . . , K. (4.26)
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This method of knots placing is independent of the design time points. It is usually

employed when the design time points are believed to be uniformly scattered in the

range of interest.

Equally Spaced Sample Quantiles as Knots Method. This method uses

equally spaced sample quantiles of the design time points ti, i = 1, 2, . . . , n as knots.

Let t(1), . . . , t(n) be the order statistics of the design time points. Then the K knots

are defined as

τr = t(1+[rn/(K+1)]), r = 1, 2, . . . , K, (4.27)

where [a] denotes the integer part of a. This method of knots placing is design

adaptive. It locates more knots where more design time points are scattered. When

the design time points are uniformly scattered, it is approximately equivalent to the

equally spaced method.

Model Selection Based Method. This method uses all the distinct design

time points as knot candidates. Note that for the truncated power basis (4.16), dele-

tion of a knot is equivalent to deletion of a truncated power basis function associated

with the knot. This is equivalent to the deletion of a covariate in the approxima-

tion linear model (4.21). Therefore, knot selection can be done via model selection

methods such as forward selection, backward elimination, or stepwise regression for

introducing or deleting a knot from the knot candidates (Stone et al 1997).

For the last method, the selection of the number of knots is done at the same

time as knot introduction or deletion. But for the first two methods, after a knot

placing method is specified, the number of knots, K, is generally chosen based on a
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smoothing parameter selection criterion such as those to be presented in Section 4.6

for linear smoothers. For more knot selection methods for regression splines, see, for

example, Friedman and Silverman (1989), Friedman (1991), and Smith and Kohn

(1996), among others.

4.4 Smoothing Splines

For regression splines, once the knot locating method is specified, the next task is

to choose the number of knots, K, which in general is smaller than the sample size

n. Since K must be an integer, the opportunity for adjusting K is limited, and

the adjustment is usually rather crude. Alternatively, we can use all the distinct

design time points as knots. But too many knots leads to undersmoothing and this

causes curve to be quite rough, showing dramatic curve changes over a short interval.

Smoothing splines overcome this difficulty by introducing a penalty for the roughness

of the curve under consideration.

Without loss of generality, we may assume the range of interest of f in (4.2) to

be a finite interval, say, [a, b] for some finite numbers a and b. The roughness of f is

usually defined as the integral of its squared k-times derivative

∫ b

a

{
f (k)(u)

}2
du, (4.28)

for some k ≥ 1. Then the smoothing spline smoother of the f in (4.2) is defined as
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the minimizer f̂λ(t) of the following penalized least squares (PLS) criterion:

n∑
i=1

{yi − f(ti)}2 + λ

∫ b

a

{
f (k)(t)

}2
dt, (4.29)

over the kth order Sobolev space Wk
2 [a, b]:

{
f : f (r) absolute continuous for 0 ≤ r ≤ k − 1,

∫ b

a

{
f (k)(t)

}2
dt < ∞

}
, (4.30)

where λ > 0 is a smoothing parameter controlling the size of the roughness penalty,

and it is usually used to trade-off the goodness of fit, indicated by the first term in

(4.29), and the roughness of the resulting curve. The f̂λ(t) is known as a natural

smoothing spline of degree (2k − 1). For example, when k = 2, the associated f̂λ(t)

is a natural cubic smoothing spline (NCSS). For a detailed description of smoothing

splines, see for example, Eubank (1988,1999), Wahba (1990), Green and Silverman

(1994) and Gu (2002), among others.

4.4.1 Cubic Smoothing Splines

To minimize the PLS criterion (4.29), we need to compute the integral that defines

the roughness, and estimate parameters numbering up to the sample size n. This is

a challenging aspect for computing a smoothing spline.

When k = 2, however, the associated cubic smoothing spline is less computa-

tionally challenging. Actually, there is a way to compute the roughness term quickly

as stated in Green and Silverman (1994). That is one of the reasons why cubic
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smoothing splines are popular in statistical applications.

Let τ1, τ2, . . . , τK be all the distinct design time points and be sorted in an

increasing order. They are all the knots of the cubic smoothing spline f̂λ(t) that

minimizes (4.29) when k = 2. Set

hr = τr+1 − τr, r = 1, 2, . . . , K − 1.

Define A = (ars) as a K × (K − 2) matrix with all the entries being 0 except for

r = 1, 2, . . . , K − 2,

ar,r = h−1
r , ar+1,r = −(h−1

r + h−1
r+1), ar+2,r = −h−1

r+1.

Define B = (brs) as a (K − 2)× (K − 2) matrix with all the entries being 0 except

b11 = (h1 + h2)/3, b21 = h2/6,

and for r = 1, 2, . . . , K − 4,

br,r+1 = h(r+1)/6, br+1,r+1 = (h(r+1) + h(r+2))/3, br+2,r+1 = h(r+2)/6,

and

bK−3,K−2 = h(K−2)/6, bK−2,K−2 = (h(K−2) + h(K−1))/3.

Finally define a K ×K matrix G:

G = AB−1A′. (4.31)
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Let f = (f1, . . . , fK)′ where fr = f(τr), r = 1, 2, . . . , K. Then it is easy to show that

the roughness, (4.28), of f(t) for k = 2 can be expressed as

∫ b

a

{f ′(t)}2dt = f ′Gf . (4.32)

Therefore, we often refer to G as a roughness matrix. It follows that the PLS criterion

(4.29) can be written as

‖ y −Wf ‖2 +λf ′Gf , (4.33)

where W = (wir) is an n×K incidence matrix with wir = 1 if ti = τr and 0 otherwise,

and ‖ a ‖2=
∑n

i=1 a2
i denotes the usual L2-norm of a. Therefore an explicit expression

for the cubic smoothing spline f̂λ, evaluated at the knots τr, r = 1, 2, . . . , K, is as

follows:

f̂λ = (W ′W + λG)−1W ′y. (4.34)

The fitted response vector at the design time points is

ŷλ = Aλy, (4.35)

where

Aλ = W (W ′W + λG)−1W ′, (4.36)

is known as the cubic smoothing spline smoother matrix. The expression (4.34)

indicates that the cubic smoothing spline smoother is a linear smoother as defined

later in Section 4.6. When all the design time points are distinct,

ŷλ = f̂λ = (In + λG)−1y,
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since W = In, an identity matrix of size n. For more details about cubic smoothing

splines, see Green and Silverman (1994), among others.

4.4.2 General Degree Smoothing Splines

For k 6= 2, computation of the roughness term in (4.29) is quite challenging. However,

it becomes easier if a good basis is provided for the underlying function f(t) in (4.2).

Let Φp(t) = (φ1(t), . . . , φp(t))
′ denote a basis so that φ

(k)
r (t), r = 1, 2, . . . , p are

squared integrable. Then we can express the f(t) in (4.2) as f(t) = Φp(t)
′α where α

is a p dimensional coefficient vector, and the roughness

∫ b

a

{f (k)(t)}2dt = α′Gα,

where obviously

G =

∫ b

a

Φ(k)
p (t)Φ(k)

p (t)′dt. (4.37)

It follows that the PLS criterion (4.29) can be expressed as

‖ y −Wα ‖2 +λα′Gα, (4.38)

where W = (Φp(t1), . . . ,Φp(tn))′. Therefore, ŷλ can be expressed as

ŷλ = Aλy, (4.39)

where

Aλ = W (W ′W + λG)−1W ′, (4.40)
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is the associated smoother matrix.

Note that Φp(t) can be a truncated power basis (4.16) of degree (2k − 1) with

knots at all the distinct design time points among ti, i = 1, 2, . . . , n, a B-spline basis

(de Boor 1978) or a reproducing kernel Hilbert space basis (Wahba 1990) or any other

basis.

4.4.3 Choice of Smoothing Parameters

The smoothing parameter λ plays an important role in the smoothing spline smoother

(4.39). It trades-off the bias with the variance of the smoothing spline smoother f̂λ

(4.39). Since f̂λ is a linear smoother, good choice of λ can be obtained by applying

the smoothing parameter selectors such as cross validation (CV), generalised cross

validation (GCV), AIC or BIC.

Figure 4.3: (a) A cubic smoothing spline fit to the progesterone data from a subject.
(b) The associated GCV curve.

Figure 4.3(a) presents a NCSS fit (solid curve) of the progesterone data from a
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subject. The data were collected in a study of early pregnancy loss conducted by the

Institute for Toxicology and Environmental Health at the Reproductive Epidemiology

Section of the California Department of Health Services, Berkeley, USA. The fit was

obtained using the cubic smoothing spline smoother (4.35) with a smoothing param-

eter λ = 1.0102, selected by GCV. Figure 4.3(b) presents the GCV curve against λ

in a log10-scale.

4.5 Penalized Splines

Let Φp(t) be the truncated power basis (4.19) of degree k with K knots τ1, τ2, . . . , τK .

Then f(t) can be first written as a regression spline Φp(t)
′α where α = (α0, α1, . . . , αk+K)′

is the associated coefficient vector. Let

G =

 0 0

0 IK

 , (4.41)

be a p × p diagonal matrix. Then P -spline smoother of the function f(t) in (4.2) is

defined as f̂λ(t) = Φp(t)
′α̂ where α̂ is the minimizer of the following PLS criterion:

n∑
i=1

(yi −Φp(ti)
′α2 + λα′Gα. (4.42)

Note that

α′Gα =
K∑

i=1

α2
k+r,
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and αk+r is the coefficient of the rth truncated power basis function (t − τr)
2
+ in the

basis Φp(t). The coefficient αk+r, measures the jump of the k-times derivative of f(t)

at the knot τr. It follows that the penalty in (4.42) is imposed just for the derivative

jumps of the resulting P -spline at the knots. Therefore, the larger the coefficients

αk+r, r = 1, 2, . . . , K, the rougher the resulting P -spline. Thus, the term α′Gα is a

measure of the roughness of the resulting P -spline. For convenience, we call G the

P -spline roughness matrix.

Since there is essentially no difference between (4.42) and (4.38), it is expected

that a P -spline has essentially the same formula as that for a smoothing spline (4.39).

Actually, the P -spline smoother f̂λ(t) can be expressed as

f̂λ(t) = Φp(t)
′(W ′W + λG)−1W ′y, (4.43)

where W = (Φp(t1),Φp(t2), . . . ,Φp(tn))′.

Based on (4.43), the fitted response vector at the design time points is

ŷλ = Aλy, (4.44)

where the smoother matrix is

Aλ = W (W ′W + λG)−1W ′. (4.45)

Therefore, a P -spline is also a linear smoother as defined later in Section 4.6.
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4.5.1 Choice of the Knots and Smoothing Parameter Selection

Choice of the knots for P -splines is not so crucial as long as the number of knots K is

large enough so that when λ = 0, the P -spline smoother (4.43) is under smoothing.

One may use the equally spaced method or the equally spaced sample quantiles as

knots method to locate the knots as described in Section 4.3. The number of knots

K may be pre-specified subjectively, for example, taken as a third or a quarter of the

total number of distinct design time points.

4.6 Linear Smoother

Linear smoothers express the fitted response vector ŷ at the design time points as lin-

ear combinations of the response vector y (Buja et al 1989). Specifically, a smoother

f̂p(t) is called a linear smoother if it makes the fitted response vector ŷ to be connected

with y via the following simple formula:

ŷ = Aρy, (4.46)

where ŷ = (ŷ1, . . . , ŷn)′ with ŷi = f̂ρ(ti), Aρ, is the so-called n × n smoother matrix,

determined by the smoother with a smoothing parameter ρ. The smoother matrix

Aρ, usually depends on the design time points but is required to be independent of
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the response vector y. It follows that

E(ŷ|t1, . . . , tn) = AρE(y|t1, . . . , tn),

Cov(ŷ|t1, . . . , tn) = AρCov(y|t1, . . . , tn)A′
ρ.

These two formulas can be used to derive the biases and variances of the fitted re-

sponse vector, and hence allow construction of pointwise standard deviation bands for

the underlying function f(t) based on ŷ. Moreover, in next section, we shall see that

we can develop unified smoothing parameter selection methods for linear smoothers.

From the previous discussions, it is clear that the local polynomial, regression

spline, smoothing spline and P -spline smoothers are all linear smoothers.
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Chapter 5

Some Comparative & Case Studies

In this chapter we make some comparative studies and a case study that lead us to

some rewarding findings. In the first comparative study we compare the performance

of the UN model with that of several structured ones and refute the well accepted

belief that the covariance structure with larger number of covariance parameters will

give better fit to data than those with fewer number of parameters. We establish that

there do exist situations in which the structured models with much lesser number of

covariance parameters perform better than the UN model. In the second study we

make a comparison between the performances of various heterogeneous covariance

models with the corresponding homogeneous ones, and show that the heterogeneous

models often outperform the homogeneous models by way of giving better values for

fit statistics. We corroborate that the heterogeneous covariance models should be

preferred if the economy of number of covariance parameters in the homogeneous

models does not outweigh the gain in efficiency. In the case study we explore the
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impact of a drug in health of rats and the redemption capacity of an extract on these

ill effects.

We use some real data, data downloaded from internet and simulated data for

illustration of the theoretical procedures and to draw conclusions. SAS codes are used

for computation. Performance of various covariance models are compared.

5.1 Structured versus Unstructured Covariance Pat-

terns

In this comparative study we show that the belief that the comparatively larger

number of covariance parameters onvolved in the UN makes the model superior to

the others, is not always true. We establish that, there can be data for which some

other model gives much better results. But in practice, the structured models are

being made use of few often compared to the UN model disregarding their savingness

of degrees of freedom and competency. We suggest that all covariance models should

be tried and the best be picked rather than taking the UN model for granted. We

establish evidences in favour of this by using real data as well as simulated data sets.

5.1.1 Illustration 1 (TLC Data)

The Treatment of Lead-Exposed Children (TLC) example considers a placebo con-

trolled, randomized trial of succimer conducted in 100 children. The TLC data is
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downloaded from the web site www.biostat.harvard.edu/∼fitzmaur/ala. Children re-

ceived up to three 26-day courses of succimer or placebo and were followed for 3 years.

The blood lead levels at baseline, week 1, week 4, and week 6 are measured for each

child.

Table 5.1 presents data on blood lead levels at baseline, week 1, week 4 and week

6 for 10 randomly selected children from the study.

Table 5.1: Blood Lead Levels

ID Group Baseline Week 1 Week 4 Week 6
79 P 30.8 26.9 25.8 23.8
8 S 26.5 14.8 19.5 21

44 S 25.8 23 19.1 23.2
11 P 24.7 24.5 22 22.5
69 S 20.4 2.8 3.2 9.4
29 S 20.4 5.4 4.5 11.9
46 P 28.6 20.8 19.2 18.4
13 P 33.7 31.6 28.5 25.1
74 P 19.7 14.9 15.3 14.7
53 P 31.1 31.2 29.2 30.1

The mean blood levels at each measurement occasion for random subset of 100

children, broken down by treatment group are presented in Table 5.2.

Table 5.2: Mean Blood Lead Levels.

Group Baseline Week 1 Week 4 Week 6
Succimer 26.5 13.5 15.5 20.8

(5.0) (7.7) (7.8) (9.2)
Placebo 26.3 24.7 24.1 23.6

(5.0) (5.5) (5.8) (5.6)

The mean response profiles for the two groups randomised to succimer and
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placebo are presented in the Figure 5.1.

Figure 5.1: Mean Response Profiles

Due to randomisation, the mean response at baseline is similar in the two treat-

ment groups. However, there are discernible differences in the patterns of change in

the mean response over time. At week 1 there is a dramatic drop in blood lead levels

among the children treated with succimer followed by a rebound in blood lead level

as lead stored in the bones and tissues is mobilized and new equilibrium is achieved.

To compare their relative performances, fitting of various covariances models

is done using the SAS codes. The SAS code for getting information like covariance

matrix, simple statistics, and correlation matrix and for fitting the unstructured co-

variance model is given below.

data TLC;

infile ‘D:TLC.txt’ DSD delimiter=‘09’x firstobs=2;

input id Group $ Week0 Week1 Week4 Week6;
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y = Week0; time=0; OUTPUT;

y = Week1; time=1; OUTPUT;

y = Week4; time=4; OUTPUT;

y = Week6; time=6; OUTPUT;

run;

---------------------------------------------------

ods rtf file="tlc.rtf";

---------------------------------------------------

PROC SORT DATA=TLC;

by group;

run;

---------------------------------------------------

PROC MEANS DATA=TLC MEAN STD;

by group;

var Week0 Week1 Week4 Week6 ;

run;

---------------------------------------------------

PROC CORR DATA=TLC COV;

var Week0 Week1 Week4 Week6 ;

run;

---------------------------------------------------

PROC CORR DATA=TLC COV;

by group; var Week0 Week1 Week4 Week6 ;

run;
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---------------------------------------------------

PROC MIXED DATA=TLC COVTEST;

CLASS id group time;

MODEL y=group time group*time/ S CHISQ;

REPEATED time/TYPE=UN SUBJECT=id R RCORR;

run;

---------------------------------------------------

ods rtf close;

---------------------------------------------------

Remark 5.1.1. The MIXED procedure in the above SAS code considers the unstruc-

tured covariance structure. Output corresponding to other covariance structures can

be obtained by replacing the argument UN, in TYPE=UN with their SAS names CS,

AR, TOEP, ANTE etc. These SAS names are shown in column 2 of Table 5.3.

SAS output and interpretation

Selected output in the rtf (Rich Text Format) of SAS and their interpretation are

given below. We have deleted some part of the output of PROC MIXED that is

irrelevant to our purposes here to shorten the presentation.

The procedure MEANS with the argument by groups, computes means and

standard deviations for each of the groups.

The CORR procedure is used to compute the covariance matrix, simple statis-

tics and Pearson correlation coefficient with their tests of significance for the data.
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Addition of the argument by group computes the covariance matrices for each of the

groups separately. Output of the CORR procedure for the overall data as well as for

each group are given below. The table shows that all the correlation coefficients are

significant.
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The covariance matrices show that the variances are not constant over time.

This suggests that the assumption of homogeneity of variances across time is not

valid in this case.

The MIXED procedure is used to fit various covariance structures. The COV-

TEST option requests asymptotic tests of all of the covariance parameters. By default

SAS uses the REML method to estimate the unknown covariance parameters. The

additional argument METHOD=ML can be added to use the maximum likelihood

method.

The following tables show that 10 covariance parameters result from the 4×4

unstructured blocks of R. Two Newton-Raphson iterations are required to find the

REML estimates.
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The preceding 4×4 matrix is the estimated unstructured covariance matrix.

The preceding table lists the 10 estimated covariance parameters in order; note

their correspondence to the first block of R displayed previously. The parameter

estimates are labelled according to their location in the block in the Cov Parm column,

and all of these estimates are associated with id as the subject effect. The Std Error

column lists approximate standard errors of the covariance parameters obtained from

the inverse Hessian matrix. These standard errors lead to approximate Wald Z-

statistics, which are compared with the standard normal distribution. The results of

these tests indicate that all the parameters are significantly different from 0.

The succeeding tables show that the null model likelihood ratio test (LRT) is

highly significant for this model, indicating that the unstructured covariance matrix

is preferred to the diagonal one of the ordinary least-squares null model. The degrees
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of freedom for this test is 9, which is the difference between 10 and the 1 parameter

for the null model’s diagonal matrix

The “Type 3 Tests of Fixed Effects” table displays Type III tests for all of the

fixed effects. The table shows that all fixed effects are highly significant. It is usually

best to consider higher-order terms first, and in this case the Group*time test reveals

a difference between the slopes that is statistically significant. The time test is one
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for an overall growth curve accounting for possible heterogeneous slopes, and it is

also highly significant. Finally, the Group row tests the null hypothesis of a common

intercept, and this hypothesis cannot be rejected from these data.

Table 5.3, provides summary of the fit statistics of a large number of covariance

structures.

Observe that in Table 5.3 some of the models have fit statistics that are smaller

than those for the UN model suggesting that these models give better fit to data than

the UN model does. This clearly shows that there are models that perform better

than the UN model and that the larger number of covariance parameters involved does

not always make the UN model superior to others. In terms of the BIC, the FA1(2),

CSH, FA1(3), FA(1) and HF models perform either better than or at least as good as

the UN model. The comparison using the Bayesian test, that follows, shows that the

performance of the FA1(2) model is significantly better than that of the UN model and

it gives the best fit to the data. This is quite contrary to the existing belief that the

UN model usually outperforms all other models, which has lead to parsimonious use

of the model disregarding the fact the model involves comparatively greater number

of parameters. That is, though the performance of models improves with increase in

number of parameters in general, there are exceptions.

In Table 5.3, the UN model has BIC = 2462.1 and the FA1(2) model has

BIC = 2454.1. Hence, if we restrict attention to just these two models, then

P (FA1(2)/Y ) ≈ 1

1 + exp[−0.5× (2462.1− 2454.1)
= 0.9820138.
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Table 5.3: Fit Statistics for different covariance models

Covariance Pattern SAS Option # of cov -2 Res AIC AICC BIC
pars logL

Unstructured UN 10 2416.1 2436.1 2436.7 2462.1
Banded1 UN(1) 4 2608.8 2616.8 2616.9 2627.2
Banded2 UN(2) 7 2497.5 2511.5 2511.8 2529.7
Banded3 UN(3) 9 2455.8 2473.8 2474.3 2497.2

Compound Symmetry CS 2 2460.6 2464.6 2464.7 2469.8
Heterogeneous CS CSH 5 2434.0 2444.0 2444.1 2457.0

Autoregressive AR(1) 2 2472.6 2476.6 2476.7 2481.8
Heterogeneous AR ARH(1) 5 2451.6 2461.6 2461.8 2474.7

Toeplitz TOEP 4 2457.2 2465.2 2465.3 2475.6
TOEP(1) 1 2626.3 2628.3 2628.3 2630.9

Banded Toeplitz TOEP(2) 2 2518.7 2522.7 2522.7 2527.9
TOEP(3) 3 2491.6 2497.6 2497.6 2505.4

Heterogeneous TOEP TOEPH 7 2431.1 2445.1 2445.4 2463.4
TOEPH(1) 4 2608.8 2616.8 2616.9 2627.2

Banded Hetero TOEP TOEPH(2) 5 2498.4 2508.4 2508.5 2521.4
TOEPH(3) 6 2471.9 2483.9 2484.1 2499.5

Antedependence ANTE(1) 7 2439.7 2453.7 2454.0 2471.9
AR Moving Average ARMA(1,1) 3 2458.8 2464.8 2464.8 2472.6

FA(1) 8 2421.7 2437.7 2438.1 2458.5
Factor FA(2) 11 2416.1 2438.1 2438.8 2466.7

Analytic FA(3) 13 2416.1 2442.1 2443.0 2475.9
FA(4) 14 2416.1 2444.1 2445.2 2480.5

No Diagonal FA FA0(4) 10 2416.1 2436.1 2436.7 2462.1
FA1(1) 5 2440.0 2450.0 2450.2 2463.0

Equal Diagonal FA1(2) 8 2417.3 2433.3 2433.7 2454.1
Factor Analytic FA1(3) 10 2416.1 2434.1 2434.5 2457.5

FA1(4) 11 2416.1 2436.1 2436.7 2462.1
Huynh-Feldt HF 5 2436.7 2446.7 2446.8 2459.7
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Hence there is overwhelming evidence in favour of the FA1(2) model. The Bayesian

posterior probability for the other models mentioned above, in comparison to the UN

model are

P (CSH/Y ) ≈ 1

1 + exp[−0.5× (2462.1− 2457)
= 0.927573515.

P (FA1(3)/Y ) ≈ 1

1 + exp[−0.5× (2462.1− 2457.5)
= 0.908877039.

P (FA(1)/Y ) ≈ 1

1 + exp[−0.5× (2462.1− 2458.5)
= 0.858148935.

P (HF/Y ) ≈ 1

1 + exp[−0.5× (2462.1− 2459.7)
= 0.768524783.

From the above, it is clear that the FA1(2), CSH, FA1(3), FA(1) and HF models have

Bayesian posterior proababilities significantly higher than 0.5. Thus all these models

give better fit to the data, with FA1(2) in the top position.

5.1.2 Illustration 2 (Simulation Study)

In the previous illustration we have seen that at times there are models that perform

better than the UN model. The improvement is made out using the log likelihood,

AIC, BIC and AICC . We have also quantified the probability of models using the

Bayesian probability that a model is correct. The FA1(2) model had the least BIC

which is smaller than that of the UN model by 8, putting the Bayesian probability of

the FA1(2) model as high as 0.98201379. Now we show with the help of a simulated

model that the difference of the BIC’s can be more striking and there can be very
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strong or undeniable evidence against the widely used UN model, at times. We keep

the values of blood lead level at Week0 as such. Assuming Markovian dependence for

Week1, Week4 and Week 6 values, we simulate values at Week1, Week4 and Week6

so that these values hold the same linear dependence with the just preceding values

as in the original data. That is we maintain the relation Yt = a + ρYt−1 where a and

ρ are estimated from the original data. The estimated relationships that responses at

Week1, Week4 and Week6 hold with those at their immediate preceding measurement

occasions were obtained using R as follows.

Week1 = −0.09942 + 0.72674 ∗Week0

Week4 = 4.7575 + 0.7875 ∗Week1 (5.1)

Week6 = 11.1427 + 0.5589 ∗Week4

The result is quite promising in that the difference between the BIC’s rises as

high as 15.2 for the ARH(1) model, making it far better than the UN model. It may

be noticed that the number of covariance parameters for the ARH(1) model is only 5

where as that for the UN model is 10. The BIC’s of the best three models and that

of the UN model along with their Bayesian probabilities in comparison to the UN

model are summarised in Table 5.4.

In the simulation study considered we have maintained the same correlation

structure as in the original data. Next we show that the situation can be still at-

tractive if the correlation increases. In the second simulation we keep the values at

Week0 as such. The values at Week1, Week4 and Week6 are simulated so as to have
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Table 5.4:
Covariance # of cov pars BIC difference of BIC Posterior

Pattern with that of UN probability
UN 10 1495.8 — —

TOEP 7 1487.6 8.2 0.983697501
ANTE(1) 7 1485 10.8 0.995503727
ARH(1) 5 1480.6 15.2 0.999499799

Table 5.5:
Covariance # of cov pars BIC difference of BIC Posterior

Pattern with that of UN probability
UN 10 2849.7 — —

FA1(3) 10 2845.1 4.6 0.908877039
HF 5 2842.6 7.1 0.972077426

ARH(1) 15 2840.8 8.9 0.988456248
ANTE(1) 14 2838.6 11.1 0.996127597

FA1 6 2823.2 26.5 0.99999824

correlations with the values at the preceding measurement occasion larger than that

in the original data. The values at Week1, Week4 and Week6 are simulated to have

correlation of 0.9, 0.8 and 0.7 with the values at the immediately preceding occa-

sion. This causes larger difference of BIC’s for some models than that in the first

simulation, leading us to the conclusion that the appropriateness of the UN model

worsens for larger correlation. Simulations with still higher correlations ratify this

argument. The BIC’s of the best five models and that of the UN model along with

their Bayesian probabilities in comparison to the UN model for the second simula-

tion are summarised in Table 5.5. The FA(1) model is found to be overwhelmingly

better than the UN model in this case. The difference between the BIC’s has explo-

sively increased to 26.5 in this case. The ANTE(1) model also has a very attractive
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performance. When simulation is done a large number of times, it was found that

the ANTE model and the FA(1) model outperforms the UN model in a significantly

better way if the correlation is high.

5.2 Heterogeneous versus Homogeneous Covariance

Patterns

In this section we compare the performances of various heterogeneous covariance

structures with the corresponding homogeneous covariance structures. We examine

the appropriateness of the covariance structures that assume homogeneity of vari-

ances over time, for varied structures of correlations among repeated-measures. We

elucidate that the relaxation of the strong assumption of homoscedasticity, improves

the covariance models by way of giving smaller AIC, AICC and BIC. Quite often

the heteroscedastic model outperforms the corresponding homoscedastic model. But

heeding little attention to this, homoscedastic models are being made of use of par-

simoniously.

5.2.1 Illustration 3

To illustrate the above arguments we use the TLC data cited earlier. The part of

the computations and tables used for this comparison, that has already appeared in

section 5.1 are not reproduced here.
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The estimated variances at Week0, Week1, Week4, and Week6 for the entire

group are 24.8012, 74.6593, 64.8938, and 59.7067 respectively, which shows that the

assumption of homogeneity of variances is quite invalid in this case. In Table 5.3,

it may be observed that the fit statistics for the heterogeneous models are smaller

than that for the corresponding homogeneous models. That is, disputing to the usual

practise of adopting the prototypical homogeneous models, table 5.3 show that it is

the heterogeneous covariance model that perform better in practical situations. This

shows that the heteroscedastic models are better performers than the corresponding

homoscedastic models.

In terms of BIC, the CSH, ARH(1), TOEPH, TOEPH(1), TOEPH(2) and

TOEPH(3) models perform better than the corresponding homogeneous models. The

comparison using the Bayesian posterior probability, that follows, shows that the

performances of the homogeneous and heterogeneous versions of the same structure

are significantly different. This leads to the observation that the existing practise

of using homogeneous parsimoniously is debatable. For example the CS model has

BIC= 2469.8 whereas the corresponding heterogeneous model, viz, the CSH model

has BIC=2457.0, which is smaller than that of the former by 12.8, which is a highly

significant difference. If we restrict attention to just these two models, then

P (CSH/Y ) ≈ 1

1 + exp[−0.5× (2469.8− 2457.0)
= 0.998341199.

Hence there is overwhelming evidence in favour of the CSH model in comparison to

the CS model. Table 5.6 gives Bayesian posterior probabilities for comparing the

relative performances in different cases, which further vindicate this argument.
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Table 5.6:
Homogeneous No. of BIC Hetereogeneous No. of BIC Posterior

stucture Pars structure Pars Probability
CS 2 2469.8 CSH 5 2457 0.998341199

AR(1) 2 2481.8 ARH(1) 5 2474.75 0.972077426
TOEP 4 2475.6 TOEPH 7 2463.4 0.997762151

TOEP(1) 1 2630.5 TOEPH(1) 4 2627.2 0.83889105
TOEP(2) 2 2527.9 TOEPH(2) 5 2521.4 0.947846437
TOEP(3) 3 2505.4 TOEPH(3) 6 2499.5 0.950263488

5.2.2 Illustration 4 (Simulation Study).

In the previous illustration we have seen that the heterogeneous models perform better

than the corresponding homogeneous models. The betterment is made out using the

log likelihood, AIC, BIC and AICC . We have also quantified the probability of models

using the Bayesian probability that a model is correct. Now we show with the help

of a simulated model that the difference of the BIC’s can be alarmingly high or there

can be undeniable evidence against the parsimonious use of the homogeneous models

if the heterogeneity among variances is large. In the simulated data we maintain the

dependence among the repeated measures same as that in the original data. But the

heterogeneity among variances are increased. As in illustratin 2, we keep the values

of blood lead level at Week0 as such. Assuming Markovian dependence for Week1,

Week4 and Week6 values, we simulate values at Week1, Week4 and week6, so that

these values hold the same linear dependence with the just preceding values as in the

original data. The estimated equations showing these relationship are given in (5.1).

In the simulation, we added a mean zero normal error term with variance 25 to
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the estimated relation. The result is quite alarming in that the difference between

the BIC’s rises above 200 in all the cases, raising the Bayesian posterior probability

approximately 1 for the heterogeneous models throwing the homogeneous models

rubbish. Thus the heterogeneous models are found to be overwhelmingly better than

the than the homogeneous models. It may be noticed that the number of covariance

parameters is slightly larger for the heterogeneous models. But this is immaterial for

such a huge hike in the Bayesian posterior probability. The results are summarised

for six models and their heterogeneous versions in Table 5.7.

Table 5.7:
Homogeneous No. of BIC Hetereogeneous No. of BIC Posterior

structure Pars structure Pars Probability
CS 2 3617.4 CSH 5 3399.0 1

AR(1) 2 3597.4 ARH(1) 5 3388.3 1
TOEP 4 3605.1 TOEPH 7 3396.6 1

TOEP(1) 1 3670. TOEPH(1) 4 3445.1 1
TOEP(2) 2 3603.1 TOEPH(2) 5 3399.5 1
TOEP(3) 3 3601.1 TOEPH(3) 6 3393.4 1

5.3 Longitudinal Analysis of effect of a drug in rats -

A Case Study

In this study we explore the effect of drug ‘vincristine’ in rats and study the curing

ability of extract of the plant Sida Cordifolia on the ill effects of the drug. This

case study is based on an experiment conducted by the Department of Life Sciences,

University of Calicut, and the data generated there from. In the study, paw flick
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responses and tail flick responses to water at 50
o
C of 19 rats were observed at four

occasions - the 0th, 28th, 42nd, 56th and 77th days. The rats were divided into 3

groups - 7 test rats, 6 control and 6 normal rats. The test rats were injected a

drug ‘vincristine’ and plant extract was fed to the animals. To the control rats the

same drug was fed, but no plant extract was given. The normal rats were given

no drug or plant extract. At each measurement occasion responses on paw flick

response latency and tail flick response latency were made. The drug is expected to

induce neuropathy which causes damage to natural body responses to temperature

differences. Objectives were to learn whether the the drug causes any change paw

flick response latency and tail flick response latency and to see if the plant extract

helps in redemption of the drug effect, that is to see if there is significant difference

among these responses in the three groups. The analysis is done using SAS codes.

5.3.1 Effect on Paw Flick Responses

The succeeding figure shows the graph of paw flick responses over different measure-

ment occasions. The figure shows that there is difference among the latency periods

for the three groups and that the extract brings down the latency period almost to

the natural level. This finding is formally established by appropriate test procedures

later.

The tables of the MEANS procedure further establishes these findings. The

latency period is comparatively high for the group injected with the drug (Group 1)

than the normal group (Group 3). However the mean latency is brought down very
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Figure 5.2:

close to the normal level in the case of test rats at the end of the study, showing the

redemption ability of the extract.

In comparison to the control group, the mean latency period is slightly greater

for the test group. But this difference is shown to be insignificant by the comparison

of means as shown in the table of type 3 tests of fixed effects that follows.
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The succeeding table gives the estimates of covariances over the measurement

occasions. The matrix shows that the strong assumption of homogeneity over time is

not valid for this data, as we have remarked in section 2 of this chapter.

The results corresponding to the type 3 tests, shown below, points to formal

justification of the findings arrived at roughly in the earlier discussion. All the three

p values are significantly smaller than 0.05. The test corresponding to the group

effect rejects homogeneity of mean responses for the groups. This shows that the

means of paw flick response times for the groups are significantly different. That is,

the drug induces neuropathic problems to the rats by way of prolonging paw flick

responses to temperature. The time test testifies the violation of the homogeneity

assumption. That is the means are not constant over time. The test concerning

group*time interaction shows that the patterns of changes in the response over time

are not same across the groups. This formally establishes the rough conclusion arrived

at earlier that the extract helps in redemption of the damage to paw flick responses.

166



5.3.2 Effect on Tail Flick Responses

The following figure show the graph of tail flick responses over different measurement

occasions. There is obvious difference among the latency periods for the three groups

and that the extract brings down the latency period almost to the natural level. As

in the earlier case, this finding is formally established by appropriate test procedures

later.
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The output of the MEANS procedure also supports the findings suggested by

the profile plot. The latency period is comparatively high for the group injected with

the drug and in the case of test rats the mean latency is brought down very close to

the normal level towards the end of the study, testifying the redemption ability of the

extract.

In the case of tail flick response data as well, the covariance matrix shows that
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the strong assumption homogeneity over time is not valid.

The results corresponding to the type 3 tests points to formal justification of

the findings arrived earlier. The test corresponding to the group effect shows that

mean responses for the groups are significantly different. This shows that the means

of tail flick response times for the groups are significantly different. That is the

drug prolongs the tail flick responses to temperature. The time test shows that the
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means are not constant over time. The test concerning group*time interaction shows

that the patterns of changes are different for different groups in the responses. This

establishes that the extract helps in redemption of the damage to paw flick responses.
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Chapter 6

Summary and Concluding Remarks

Correct modelling of the covariance is often a requirement for obtaining valid esti-

mates of the regression parameters. In general, the failure to take into account of

the covariance among the repeated measures will result in incorrect estimates of the

sampling variability and can lead to quite misleading scientific inferences.

If the pattern of covariance does show a systematic structure, then not acknowl-

edging this by maintaining the unstructured assumption involves estimation of many

more parameters than might otherwise be necessary, thus making inefficient use of

the available data. Models with more covariance parameters are intuitively expected

to give better fit to data, meaning they should naturally have a higher log likelihood,

than models with fewer parameters. We consider models that represent the corre-

lation structure in terms of fewer parameters and illustrate that the larger number

of covariance parameters involved does not always make the UN model superior to

others. We show that there are models that perform better than the UN model. With
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regard to the data in illustration 1, we show that in terms of the BIC, the FA1(2),

CSH, FA1(3), FA(1) and HF models perform either better than or at least as good

as the UN model. The comparison using the Bayesian test shows that at least the

performance of the FA1(2) model is significantly better than that of the UN model.

This is quite contrary to the existing belief that the UN model usually outperforms

all other models, which has lead to parsimonious use of the model disregarding the

fact the model involves comparatively greater number of parameters. The situation

is more glaring in the simulation studies. In the simulation study we have shown that

when the correlation between values at successive measurement occasions increase,

the performance of the UN model becomes poorer and there can be situations when

the use of UN model should definitely be replaced by models like FA, ANTE etc.

Thus we substantiate that choice among the prominent covariance models should not

merely be aimed at the efficient use of available data alone, and should also aim at

finding model that perform the best by in terms of some selection criteria, (e.g. by

yielding the least BIC).

We further vindicate the avoidance of the use of covariance pattern models that

make the strong assumption that the variances are constant over time. As mentioned

earlier, our practical experience with many longitudinal studies has led to the em-

pirical observation that the variances are rarely constant over time. We show that

when the variances are heterogeneous over time, the homogeneous models are not

suitable. Therefore, because the assumption of constant variance is the one that is

not valid in many setting, we recommend that covariance pattern models with het-

erogeneous variances, allowing the variances to depend arbitrarily on time, should

generally be adopted. Empirical support to this argument has been constructed in
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our illustrations.

We further reiterate that, that there has been a lag between the recent de-

velopments and their widespread application to substantive problems, need special

attention while one goes for longitudinal data analysis. This lag as well as improper

model selection has parented analysis that leads to inefficient conclusion at least in

some cases.

Further, quite often little attention is paid to the plausibility of the assump-

tions using which the theory of longitudinal analysis is built. Data in fields like

bio-medical and health sciences are generally heavy tailed and does not conform to

the assumption of normality. Investigation regarding enhancement of the existing

tools to accommodate nonnormality is therefore necessary.

In ayurveda, Sida Cordifolia is usually used to treat rheumatic complaints and

digestive fire. In the case study we establish that the extract of this plant is effective

in curing neuropathic disorders in rats. This gives scope for studies in human beings

in this direction, which is presumed to be a quite rewarding and pioneering work.

It is worthwhile to study the regression models for longitudinal data, which suffer

from attrition: units drop out of the study before its completion and thus present

incomplete data records. The problem of some missing measurements from some

units is noteworthy in longitudinal studies, where the units leaving the study may

contribute to bias the entire design. The problem of greater interest is, how non-

ignorable attrition can be treated in this framework. In these cases the properties of

estimates like consistency is to be confirmed by choosing the appropriate drop out
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mechanism.

Another problem of interest will be the joint modelling of longitudinal and sur-

vival data. Joint modelling may be accomplished using latent variables that link the

longitudinal models and the survival models together. The joint models may result

in unbiased and more efficient estimates.
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Details of Research Papers/Presentations

Papers presented

1. Presented the paper entitled “Statistical Modeling Approach to Longitudinal

Data” in the INTERNATIONAL CONFERENCE ON ACTUARIAL STATIS-

TICS, BIO-STATISTICS AND STOCHASTIC MODELING (INCABS 11) or-

ganized by the Department of Statistical Sciences, Kannur University during

10-14 January, 2011.

2. Presented the paper entitled “On Selection of Covariance Structure in Mod-

elling of Longitudinal Data” in the NATIONAL CONFERENCE ON RECENT

DEVELOPMENTS IN THE APPLICATIONS OF RELIABILITY THEORY

AND SURVIVAL ANALYSIS (NCRSA - 2012) organized by the Department

of Statistics, Pondicherry University during 02-03 January, 2012.

3. Presented the paper entitled “Essential Statistical Tools as Applied in Empirical

Research” in the DCE sponsored NATIONAL SEMINAR ON METHODOL-

OGY OF EMPIRICAL RESEARCH IN ECONOMICS: APPLICATION OF

STATISTICAL TOOLS & SOFTWARE jointly organized by the Departments

of Statistics and Economics, Govt. Brennen College, Thalassery during 5th,

6th and 7th March 2012.
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Papers Comunicated

1. Paper entitled “Structured versus Unstructured Covariance patterns in Mod-

elling Longitudinal data” Communicated to Journal of Probability and Statis-

tical Science (JPSS).

Papers published

1. “On Selection of Covariance Structure in Modelling of Longitudinal Data.”

(jointly with M Manoharan) to appear in the proceedings of NCRSA - 2012

2. “Heterogeneous versus Homogeneous Covariance patterns in Modelling Longi-

tudinal data” (jointly with M Manoharan) to appear in the Journal of Modern

Mathematics Frontier.
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