\mathbf{D}	7	O	7	6	7
_	•	v	•	v	•

(Pages: 4)

Name

Reg	No
LUCE.	110

THIRD SEMESTER M.A. DEGREE (REGULAR) EXAMINATION NOVEMBER 2019

(CUCSS)

			A	pplied Eco	nomics	
		Core	VII—OPERATIONS	RESEARCH	I FOR ECONOMIC	ANALYSIS
Time:	Thre	ee Hour	rs			Maximum: 36 Weightage
				Part A		
				nswer all qu r questions	estions. carries a weightage of	1.
(A)	Mu	ltiple C	hoice:			
	1	The te	erm Operations Research	was first coi	ned in :	
		(a)	1956.	(b)	1946.	
		(c)	1940.	(d)	1944.	
	2	A feas	ible solution to a LPP wh	ich optimize	s the objective function	n is:
		(a)	Optimum solution.	(b)	Equilibrium solution	
		(c)	Basic feasible solution.	(d)	Unbounded solution.	
	3	Dual	of a dual gives :			
		(a)	Primal.	(b)	Transpose.	
		(c)	Inverse.	(d)	Transpose of dual.	
	4	In an	assignment problem, nur	nber of rows	not equal to number	of columns :
		(a)	Balanced.	(b)	Maximized.	
		(c)	Unbalanced.	(d)	Degenerated.	
(B)	Mu	ltiple C	hoice:			
	5	An ar	tificial variable is a :			
		(a)	Real variable.	(b)	Dummy variable.	
		(c)	Fictitious variable.	(d)	Economic variable.	
	6	An ac	tivity whose float is zero	is called :		
		(a)	Real activity.	(b)	Prime activity.	
		(c)	Key activity.	(d)	Critical activity.	

- 7 Among the following, best example of risk is:
 - (a) Fall in demand.

(b) Fire.

(c) Fall in price.

- (d) Any of the above.
- 8 Drawing of PERT network is based on:
 - (a) Expected time.

(b) Optimistic time.

(c) Pessimistic time.

(d) Likely time.

- (C) Fill in the Blanks:
 - 9 The first step in operational research is ————.
 - 10 The decisions are taken on the basis of probability under ————.
 - 11 In PERT analysis ———— is the shortest possible time for completing an activity
 - 12 Shadow price is also called ———.
- (D) State whether true or false:
 - 13 Quadratic programming problem is a part of linear programming.
 - 14 In Analogue models one set of properties is used to represent another set of properties.
 - 15 In LPP, if the objective functions are of maximization all constraints other than non-negativity conditions are ≤ type.
 - 16 The sequence of critical activities in a network is called decision tree.

 $(4 \times 1 = 4 \text{ weightage})$

Part B

Answer any ten questions.

Each question carries a weightage of 2.

- 17 Explain the methodology of OR.
- 18 Solve the following assignment problem:

	Man				
		1	2	3	4
	Ι	12	30	21	15
Job	II	18	33	9	31
	III	44	25	24	21
	IV	23	30	28	14

- 19 Explain decision making under uncertainty.
- 20 Briefly discuss about Kuhn-Tucker conditions.
- 21 Write the dual of the following LPP.

Maximize
$$Z = 5x_1 + 6x_2$$

Subject to $x_1 + 2x_2 = 5$
 $-x_1 + 5x_2 \ge 3$
 $4x_1 + 7x_2 \le 8$, and x_1 unrestricted in sign, $x_2 \ge 0$.

- 22 Explain the EMV criteria.
- 23 Distinguish between transportation and assignment problem.
- 24 Make a comparison between PERT and CPM.
- 25 Explain the procedure of simplex method.
- 26 Explain the decision tree analysis.
- 27 Briefly explain basic concepts in game theory.
- 28 Find the initial feasible solution to the transportation problem given below, by North West Corner rule:

	D_1	$\mathbf{D_2}$	D_3	D_4	Supply
O_1	6	4	1	5	14
O_2	8	9	2	7	16
O_3	4	3	6	2	5
Demand	6	10	15	4	35

 $(10 \times 2 = 20 \text{ weightage})$

Part C

Answer any three questions.

Each question carries a weightage of 4.

29 Solve the following problem graphically

Maximize
$$Z = 60x + 40y$$

Subject to $2x + y \le 60$
 $x \le 25$
 $y \le 35$ and $x, y \ge 0$.

- 30 Define OR. Explain its scope and limitations.
- 31 What are the different methods of mixed strategy game problems?
- 32 Using the principle of dominance, solve the following game:

$$\begin{pmatrix} 3 & -2 & 4 \\ -1 & 4 & 2 \\ 2 & 2 & 6 \end{pmatrix}.$$

33 Solve the following network technique problem by using CPM:

Activity 0-1 1-2 0-3 2-5 3-4 4-5 5-6

Duration(days) 2 4 2 1 2 5 3

- (a) Draw network diagram.
- (b) Calculate EST, LST, EFT, LFT.
- (c) Find critical path and project duration.

 $(3 \times 4 = 12 \text{ weightage})$